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Abstract 

How do people make quantitative estimations, such as estimating a car’s selling price? 

Traditionally linear-regression-type models have been employed to answer this question. 

These models assume that people weight and integrate all information available to estimate a 

criterion. We propose an alternative cognitive theory for quantitative estimation: The 

mapping model, inspired by the work of Brown and Siegler (1993) on metrics and mappings, 

offers a heuristic approach to decision making. We test this model against established 

alternative models of estimation, namely, linear regression, an exemplar model, and a simple 

estimation heuristic. With four experimental studies we compare the models under different 

environmental conditions. The mapping model proved to be a valid model to predict people’s 

estimates.  
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The Mapping Model:  

A Cognitive Theory of Quantitative Estimation  

Estimating unknown quantities represents a judgment problem encountered frequently 

in daily life. People estimate the selling price of cars, the productivity of job candidates, or 

the travel time for journeys. To make these estimates, people use cues that are 

probabilistically related to the quantity being estimated; for instance, the selling price of a car 

can be estimated on the basis of the car’s mileage, age, or accident record. How do people 

make estimates? We approach this central question by introducing a new cognitive model—

the mapping model. We test this model against alternative models of human estimation.  

Beginning with the work of Ken Hammond (1955), who was in turn inspired by Egon 

Brunswik’s ideas (e.g., Brunswik, 1952), linear additive models have been the standard for 

describing human judgments (Gigerenzer & Kurz, 2001). The research on “social judgment 

theory” (for an overview, see Doherty & Kurz, 1996) that followed from this seminal work 

encompasses a large body of studies examining people’s judgments in many areas, including, 

among others, clinical judgments (Harries & Harries, 2001; Wryobeck & Rosenberg, 2005), 

teachers’ evaluations of student achievement (Cooksey, Freebody, & Davidson, 1986), bail 

decisions (Ebbesen & Konecni, 1975), personnel selection and evaluation (Zedeck & Kafry, 

1977), and medical decision making (Wigton, 1996; for reviews see Brehmer & Joyce, 1988; 

Brehmer, 1994). In all these studies, people’s judgments are described by fitting a regression 

model to the data. Following the tradition of social judgment theory (Hammond, 1996) we 

hitherto refer to the quantity being estimated as the criterion and to the information used to 

estimate the criterion as the cues. Like the broader class of linear additive models, linear 

regression assumes that for each cue, the relation between the cue and the criterion is 
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abstracted and represented by a weight, where the specific weight of a cue defines the cue’s 

impact on the final estimation.  

The strong influence of linear additive models is not restricted to research on 

judgment and decision making. For instance, the linear additive model was employed in 

Anderson’s (1981) “information integration theory,” which describes integration of social as 

well as physical information. Likewise it was adopted to describe the impact of social norms 

on behavior (Fishbein & Ajzen, 1980). Despite the model’s success in describing human 

behavior, in the present article we challenge the assumption that the underlying cognitive 

process of human judgment follows the additive integration of weighted information. In its 

stead we propose the mapping model as a new model of human estimation. This model is 

based on Brown and Siegler’s (1993) work on metrics and mapping. Our main goal was to 

test this model rigorously against a linear additive model, and additionally against alternative 

recent cognitive models of human estimation. 

The Mapping Model  

Brown and Siegler (1993; see also Brown, 2002) suggested that real-world 

quantitative estimations rely on knowledge about the mapping properties of the objects and 

the metric properties of the criterion. The mapping properties reflect the ordinal relations 

among the objects in one domain, that is, the knowledge about which object will have a 

higher value on the criterion compared to other objects. Knowledge about the metric 

properties, on the other hand, refers to the statistical properties of the criterion, such as the 

mean, the median, and the functional form of the distribution. Brown and Siegler (1993) 

assumed that to make accurate quantitative estimations, knowledge about both types of 

properties is indispensable, yet they did not specify a computational model describing human 

estimation. Therefore we suggest one that is inspired by the ideas of mapping and metrics.  
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The mapping model specifies how knowledge about the mapping and metric 

properties of objects is acquired in two separate steps. First, knowledge about the mapping 

properties is gathered from the cues. The sum of the cue values is used to infer the ordinal 

relations of the objects and to group them into categories. Second, to represent the metric 

properties of the criterion, a typical criterion value is derived for each category by considering 

the criterion values of other objects falling into the same category. The mapping model only 

uses binary cue information, so that each cue can have either a positive or a negative value. 

Cues are coded so that they are positively correlated with the criterion. The knowledge about 

the mapping properties is then derived by a simple counting strategy, adding up the positive 

cue values for all cues J of each object i and categorizing them according to their cue sums: 

∑
=

=
J

j

jii ck
1

         (1)  

where k denotes the cue sum of object i and cji refers to the cue value of object i on cue j.  

For each cue sum category a typical criterion value is abstracted, represented by the 

median criterion value of all known objects that share the same cue sum.1 To estimate the 

criterion value of a new object, the probe (p), the cue sum of the probe is computed and the 

typical criterion value of the corresponding cue sum category is used as an estimate:  

( )piip kk,xMdnŷ == ,       (2) 

where pŷ  denotes the estimated criterion value for probe p, which is estimated by the median 

(Mdn) of the criterion values of all known objects i that belong to the group of objects with 

the same cue sum k as the probe p. If a cue sum category does not exist because no object 

with a corresponding cue sum was encountered in the past, the average value of the adjacent 

categories is employed as an estimate.  
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We demonstrate the mechanism of the mapping model with the illustrative example of 

estimating the selling price (i.e., the criterion) of two mobile phones, let’s call them Psi and 

Omega, offered in an online marketplace. The phones’ features (i.e., weight, display size, 

digital camera, and Internet access) can be employed as cues to estimate the selling price. To 

estimate the selling prices of Psi and Omega we can compare them on the features to four 

similar phones, A, B, C, and D, that were sold in the past (see Table 1). The mapping model 

estimates that phone Psi will sell for $100, because of the four phones sold (A–D), only 

phone D—which sold for $100—falls into the same cue sum category. For phone Omega 

with a cue sum of one, the mapping model estimates the median price of the two phones A 

and B with the same cue sum, which sold for $10 and $20, respectively, yielding an estimated 

selling price of $15.  

Alternative Theories of Estimation 

With the mapping model, we question the widespread assumption in cognitive 

psychology that human judgments follow a linear additive process of information integration. 

We first test the mapping model against the most established representative of linear additive 

models—linear regression. Because other models have recently been proposed to explain 

estimations from multiple cues, the mapping model is also tested against two of these 

competitors: an exemplar model (Juslin, Olsson, & Olsson, 2003b) and a heuristic strategy 

(Hertwig, Hoffrage, & Martignon, 1999). We use our illustrative example to explain the 

models and show how their predictions differ.  

Multiple linear regression. Linear additive models assume that explicit cue–criterion 

relationships are abstracted and represented as cue weights. Multiple linear regression (MLR) 

computes optimal weights for every cue, minimizing the squared deviations of the prediction 

from the criterion (e.g., Cohen & Cohen, 2003). The weights indicate how much impact a 
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given cue has on the estimate of the criterion. The estimated criterion value, pŷ , of the probe 

p is given by the sum of the product of the cue values, cj, of the cues j with their respective 

weights, ωj, plus an intercept, ω0: 

0

1

ˆ ωcωy
J

j

jjp +=∑
=

        (3) 

In our example, the four sold phones are used to fit the regression model. That is, the 

model finds the weights that minimize the squared deviation of the predicted from the real 

criterion value of the phones sold. In our example optimal weights for the cues are 80, 10, 10, 

and 0, respectively, with an intercept of 10. The fitted regression model then predicts a selling 

price of $110 and $90 for the new phones Psi and Omega, respectively.  

In addition we tested two simplified versions of this standard regression model. First, 

we included a stepwise regression model that includes only significant parameters (Hastie, 

Tibshirani, & Friedman, 2001). Second, we tested a simplified version of the regression 

model that was not fit to participants’ estimations. Instead, the optimal parameters for solving 

the task were selected a priori based on the objective criterion values. However, across all of 

the following studies the standard regression model was most successful in predicting 

participants’ estimations for new independent observations that were not used to estimate the 

models’ parameters, so that for the sake of clarity we only report the results for the standard 

regression model. 

Exemplar-based model. A promising alternative approach to quantitative estimation is 

provided by exemplar-based models (EBMs), which in the past have been successfully 

applied to explain human categorization (for an overview see, for example, Nosofsky & 

Johansen, 2000). Exemplar models assume that people categorize objects by determining how 

similar they are to formerly encountered exemplars of the categories and assigning them to 
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the category with the most similar exemplars. Thus, in contrast to a linear additive model, 

exemplar models do not assume the abstraction of cue–criterion relationships but rely on a 

knowledge base of memorized exemplars. Recently, Juslin et al. (2003b; Juslin, Jones, 

Olsson, & Winman, 2003a) reformulated the original context model of Medin and Schaffer 

(1978) for the area of quantitative estimation (see also Dougherty, Gettys, & Ogden, 1999; 

Juslin & Persson, 2002; Smith & Zárate, 1992). Juslin, Karlsson, and Olsson (in press, see 

also Olsson, Enqvist, & Juslin, 2006) showed that exemplar models are more suitable for 

predicting people’s estimations than linear regression when the cues are non-linearly related 

to the criterion. 

The exemplar model proposed by Juslin et al. (2003a, b) is closely related to the 

generalized context model2 (Nosofsky, 1986, 1992; Nosofsky & Johansen, 2000). Exemplar 

models assume a memory-based inference process. To estimate the criterion of a new object 

(the probe), the similarity of the probe to the exemplars retrieved from memory is determined. 

The more similar the probe is to an exemplar, the closer the estimate will be to the exemplar’s 

criterion value. The final estimate of the criterion is the average of the criterion values of all 

memorized exemplars, weighted by their similarities to the probe: 

( )

( )∑

∑

=

=

⋅

=
I

i

I

i

i

p

ipS

xipS

y

1

1

,

,

ˆ ,        (4) 

where pŷ  is the estimated criterion value for probe p; S is the similarity of the probe p to the 

stored exemplars i with the criterion value xi; and I is the number of stored exemplars in 

memory. The similarity S between the probe and an exemplar is determined by the 

multiplicative similarity rule of the context model (cf., Medin & Schaffer, 1978): 
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=

=
J

j

jdipS
1

, ,        (5) 

where the variable d specifies the similarity between the probe and the exemplar on the cue 

dimension j, and dj takes the value 1 if the values of the probe and the exemplar on cue 

dimension j match and sj if they do not. The parameter sj is an attention weight parameter 

capturing a cue’s importance for the similarity assessment and varies between 0 and 1. A 

large value for the attention parameter s close to 1 implies that a mismatch on this cue has 

almost no effect on the overall similarity, whereas a low value for s close to 0 implies that the 

cue is very important, because the overall similarity approaches zero if the cue values do not 

match.  

The standard exemplar model assumes that the importance given to each cue varies by 

using different attention parameters (e.g., Juslin et al. 2003a, b). However, by having one free 

parameter for each cue the exemplar model is relatively complex and it is an open question 

whether this complexity is required to capture the underlying cognitive process of 

estimations. To answer this question we additionally implemented a simplified version of the 

exemplar model, which assumes that only one single attention parameter s is used for all cues 

(see also Juslin & Persson, 2002). This single parameter then represents the gradient of the 

similarity function; that is, if s is close to 0 only very similar exemplars will influence the 

estimation, but if s is close to 1 also less similar exemplars will be considered. Finally, we 

implemented a third version of the exemplar model that did not fit parameters to participants’ 

estimations; instead, the parameter values were derived by using the objective criterion values 

of the objects in the training phase. It turned out that the simplified exemplar model with only 

one free parameter was most successful in predicting individuals’ estimations for new 

independent observations, so that for the sake of clarity we only report the results for the 
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simplified exemplar model with the exception of the following simulation study and Study 4. 

When the simplified exemplar model is applied to our phone example, using an attention 

parameter of s = .001 to predict the phones’ selling prices, the selling prices of phone Psi and 

Omega were estimated to be $20 and $43, respectively. 

A heuristic for estimation—QuickEst. Although regressions models are able to 

describe the outcome of a cognitive process (i.e., the final estimation), they have been 

criticized for not capturing the process itself (Brehmer, 1994; Einhorn, Kleinmuntz, & 

Kleinmuntz, 1979; Hoffman, 1960; for a review see Doherty & Brehmer, 1997). Gigerenzer, 

Todd, and the ABC Research Group (1999) have argued that the cognitive process of making 

judgments can often be best described with simple heuristics. Recent experimental work has 

illustrated that simple heuristics can predict people’s inferential choices well, in particular 

when the application of complex strategies is more costly (e.g., Bröder, 2000; Bröder & 

Schiffer, 2003; Rieskamp, 2006; Rieskamp & Hoffrage, 1999; Rieskamp & Otto, 2006). In 

this vein, Hertwig et al. (1999) proposed a heuristic for quantitative estimations, QuickEst, 

that uses only a small amount of information. According to the heuristic, people process cues 

sequentially and stop searching as soon as a cue has a negative cue value. Hertwig et al. 

showed that QuickEst’s predictions are as accurate as those of linear regression when applied 

in an environment where the distribution of the objects’ criterion values is J-shaped. A 

distribution is called J-shaped if most values are small and only a few high values exist, such 

as, for instance, the distribution of incomes.  

QuickEst uses only binary cue information. Each cue can have either a positive or a 

negative value. All cues are coded such that they correlate positively with the criterion. 

Accordingly, for each cue, objects with a positive cue value will on average have higher 

criterion values than objects with a negative value. Next, for each cue the mean criterion 
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value of all objects that have a negative cue value is computed, here called the nil mean size 

(Hertwig, Hoffrage, & Sparr, 2007). Likewise the mean criterion values of the objects with a 

positive cue value are determined (conditional positive mean). The idea of QuickEst is to stop 

searching for more information as soon as it becomes probable that an object has a small 

criterion value. Thus QuickEst stops search as soon as a cue with a negative cue value is 

encountered or if the cue value for the object is missing. If a positive cue value is 

encountered, the next cue is considered until all relevant cues have been looked up. QuickEst 

searches through the cues according to their nil mean size beginning with the smallest.  

In contrast to Hertwig et al. (1999) we assume that the maximum number of cues that 

are searched for is a free parameter capturing individual differences. An estimation is based 

on the cue that stopped search. If the search was stopped because a negative cue value was 

encountered, the nil mean size of that cue is used as an estimate. If search was stopped 

because the maximum number of cues had been considered, the conditional positive mean of 

the last cue is estimated. For the estimates the means are rounded to the next spontaneous 

number3 (Albers, 2001). For our phone example, the nil mean sizes of the cues are 20, 55, 15, 

and 25, respectively. QuickEst starts search by looking up the information of the phones’ 

weight, the cue with the smallest nil mean size. If this cue has a positive value, it continues 

search, considering whether the phone has a digital camera, and so on. Because phone Psi has 

a positive value on weight and has a digital camera, search continues until information for 

display size is looked up. As phone Psi has a negative value on display size, the rounded 

conditional mean of this cue ($30) is estimated as the selling price. For phone Omega, search 

stops after looking up information for weight, and its nil mean size of $15 is estimated as the 

selling price.  
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Testing the theories. Conceptually the theories we consider can be distinguished by 

two aspects: (1) the way they abstract knowledge from objects encountered in the past, that is, 

their knowledge abstraction assumptions; and (2) the way the abstracted knowledge and the 

information a probe provides is processed to make a final estimation, that is, their process 

assumptions.  

The regression model assumes an additive estimation rule. To build this estimation 

rule it abstracts knowledge about the cue weights from the encountered objects, taking the 

dependencies between cues into account. Once this rule is established, previously 

encountered objects can be forgotten. For the estimation process the model integrates all 

available information, determining a weighted sum of the cue values. Like the regression 

model, QuickEst assumes that knowledge, that is, the mean criterion values of the cues, is 

abstracted from encountered objects. However, QuickEst does not integrate any information; 

instead cues are searched sequentially and an estimation is made on the basis of one single 

cue. The exemplar model does not abstract much knowledge; instead it assumes that all 

encountered objects are stored in memory. Nevertheless, the knowledge of how much 

attention a cue receives is abstracted from the encountered objects. For the estimation process 

the exemplar model assumes that the information of all stored exemplars is integrated, by 

determining a mean of the retrieved criterion values weighted by the similarity of the 

retrieved exemplars to the probe. In sum, the regression model assumes heavy knowledge 

abstraction from encountered objects and an information integration process for estimation. 

QuickEst assumes knowledge abstraction and no information integration, and the exemplar 

model assumes little knowledge abstraction but relies heavily on integration of information 

for making an estimation.  
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Similar to QuickEst and regression, the mapping model assumes a rule-based 

estimation process, relying on the abstraction of knowledge. The mapping model groups 

objects into categories on the basis of their cue sums, regardless of the pattern of cue values. 

For each cue sum category the criterion values of the objects falling into this category are 

stored (see also Footnote 1). For the estimation process the cues’ information on the probe is 

integrated by a simple adding strategy. Then for each probe the median criterion value of the 

corresponding cue sum category is retrieved and used as an estimate.  

How does the mapping model compare to the other models? The mapping model 

resembles QuickEst in the way it abstracts knowledge by categorizing objects into groups. 

However, while QuickEst bases its estimation on only one cue, the mapping model assumes 

that the available information is integrated. Similar to regression, the mapping model relies on 

an additive integration of information. However, it assumes that every cue contributes equally 

to the cue sum, whereas the regression model assumes differential weighting of cues. Further, 

the estimation process of the mapping model does not terminate with the integration of the 

cue values but continues with determining the typical criterion value using the median of the 

criterion values of the objects falling in the same cue sum category. As in the exemplar 

model, this retrieval process of the mapping model can be conceptualized as “similarity 

based,” because the retrieval is guided by finding the best match between the cue sum 

category determined for the probe and the criterion values for the categories abstracted from 

the objects encountered in the past. However, the exemplar model and the mapping model 

differ in how they define similarity. The exemplar model assumes that objects are represented 

in terms of discrete cue values and similarity is a function of the matches and mismatches on 

each cue. For the mapping model similarity is a strict function of the cue sum category. Thus, 

although the simplified exemplar model and the mapping model both assume that cues are 
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equally weighted, two objects that the mapping model groups together because they share the 

same cue sum could be very different for the exemplar model depending on the pattern of cue 

values.  

Although the theories that we consider differ conceptually, empirically they often lead 

to similar predictions. To test the theories against one another it is therefore important to 

identify conditions under which the predictions differ. One aspect of the environment has 

already been shown to differentiate the theories: the distribution of the criterion values. 

Hertwig et al. (2007) found that QuickEst outperformed linear regression if the criterion 

distribution was J-shaped but performed poorly when the criterion was uniformly distributed. 

In J-shaped distributions characteristically only a few objects have high criterion values, 

while most have low values. Such distributions are so named because they resemble a J 

(rotated 90 degrees clockwise) if the objects are ordered according to their ranks. Formally, 

they can often be described by a power function (i.e., y = b × x
a). A distribution following a 

power law additionally implies that the rank of an object is specifically related to its size, so 

that if log rank is drawn against log size, a straight line results. Likewise we will refer to a 

uniform distribution as a linear distribution, because a straight line results if rank is plotted 

against size. 

The use of a criterion that follows a power function has a further advantage. Test 

situations that allow discrimination between models often consist of highly artificial cases 

that are no longer representative of the original problem. Power law distributions, on the other 

hand, are among the most prevalent distributions encountered in everyday life. Since power 

law distributions are related to general growth processes (Gabaix, 1999), they can well 

describe phenomena as diverse as people’s incomes, magnitudes of earthquakes, sales of 

books or music, or the sizes of computer files, moon craters, or cities (Levy & Solomon, 
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1997; for a review see Schroeder, 1991). Therefore we extend the work of Hertwig et al. 

(2007) by conducting a simulation study to investigate how all the models discussed here, 

especially the mapping model, perform in an environment with a J-shaped and a linearly 

distributed criterion, respectively. 

Simulation study  

The goal of the simulation study was to examine how accurate the various models are 

in solving estimation problems under different environmental conditions. Furthermore the 

goal was to identify environments in which the models make distinct prediction that allow an 

experimental test.  

The simulations were designed to resemble an experimental condition as closely as 

possible, while still providing enough data to result in reliable evaluations of the models’ 

accuracies. First, J-shaped and linearly distributed criterion values, ranging between 2 and 

100, were created for 50 objects by using a power function (y = bx
a, with a = −1, b = 100, and 

x ranging between 1 and 50) for the J-shaped environment and a linear function (y = bx + c, 

with b = −2 and c = 102) for the linear environment. To investigate if potential accuracy 

differences would hold over a wide range of situations, we varied two further factors: The 

cue–criterion correlation and the percentage of positive and negative cue values per cue (for 

details see Appendix A). 

We examined models’ accuracies by cross-validation (averaged over 100 trials). That 

is, we randomly selected 100 times one half of the data—the calibration sample— to estimate 

the models’ parameters, and then we tested the models on the other half—the validation 

sample—to test the models’ accuracies for new objects. Models’ accuracies were 

characterized by the root mean square error (RMSE) of the models’ predictions and the 

criterion values.  
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How accurate were the four models? In general, accuracy was strongly affected by the 

distribution of the criterion value. In the linear environment, the RMSE was on average two 

times larger than in the J-shaped environment. When fitting the data of the calibration sample, 

all four models performed better than a baseline model, which always predicted the average 

criterion value of all objects of the calibration sample (see Table 2). The exemplar model was 

the best model in both conditions, and QuickEst was worst. However, the validation sample 

represents the crucial situation of making predictions for new objects. Here QuickEst 

performed best in the J-shaped environment, and the mapping model was second best, t(31) = 

2.15, p = .02, with an effect size of d = .45 (Cohen, 1988). In the linear environment, the 

mapping model was the best in the validation sample, followed by the exemplar model, 

t(53)= 3.08, p < .01, d = .42, and QuickEst performed worst. These results illustrate that the 

criterion distribution influences models’ accuracies differentially. They are in line with the 

results of Hertwig et al. (2007), who reported that the accuracy of linear regression is affected 

negatively by a skewed distribution, whereas the accuracy of QuickEst deteriorates if the 

criterion is linearly distributed.  

The difference in model accuracy between the calibration sample and the validation 

sample highlights the problem of over-fitting: Complex models with several free parameters 

are highly flexible in fitting any data, running the risk of fitting noise instead of fitting 

systematic structure (see Olsson, Wennerholm, & Lyxzén, 2004; Pitt, Myung, & Zhang, 

2002). For this reason in our experimental studies we tested the models by using a 

generalization test (cf., Busemeyer & Wang, 2000): First, participants made estimations for a 

training set, which was later used to estimate the models’ parameters. Then they made 

estimations in a test set, which was used to test the models’ predictions against each other.  
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Study 1 

Study 1 was designed to test how well the four models of quantitative estimation can 

predict human estimations. To control for prior knowledge, participants were presented with 

an artificial inference problem. Following the work of Juslin et al. (2003a, b), participants had 

to estimate the toxicity of fictional bugs, which were described by five dichotomous cues. For 

a rigorous test of the models, the experiment varied the distribution of the criterion values in a 

between-subjects design. In the first condition, the linear environment, the criterion values 

were linearly distributed, whereas in the second condition, the J-shaped environment, the 

distribution of the criterion values followed a power law function.  

Method 

Participants. Sixty participants took part in the experiment: 30 women and 30 men. 

The participants were randomly assigned to the two experimental conditions, balanced for 

gender. They were on average 25 years old and most were students from one of the Berlin 

universities. The data of one participant in the linear environment was later excluded because 

the participant did not put any effort into solving the task, responding with the same number 

as an estimate in every trial. Participants were paid according to their performance in the task; 

the average payment was €13 for an individual session lasting on average 1.5 hr (with €1 

corresponding to $1.28 at the time of the study).  

Procedure and materials. The study was conducted as a computer-based experiment. 

Written instructions informed the participants that their task was to estimate the toxicity of 

different bugs on the basis of five binary cues (color of head, length of antennae, color of 

wings, size, and biotope). The toxicity of the bugs was measured by the amount of venom in 

the saliva and could vary between 20 and 1,000 mg per liter. As a cover story the participants 

were told that the toxicity of the bugs differed depending on the subspecies the bugs belonged 
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to and that the cues would help them to estimate the bugs’ toxicity correctly. The bugs could 

not be distinguished solely on the basis of the cues, as some of the subspecies were very 

similar in appearance. In these cases only a genetic test could identify the correct subspecies. 

To speed up learning of the task, the participants were informed about the direction of the 

cues, that is, which cue values indicated higher levels of toxicity, without learning the 

magnitude of the correlation.  

Depending on the experimental condition the criterion was either J-shaped or linearly 

distributed. In both conditions, the experiment consisted of a learning phase, in which the 

participants could learn to estimate the bugs’ toxicity, and a test phase, in which the toxicity 

of new bugs had to be estimated. In the training phase the participants had to estimate the 

toxicity of 20 bugs. This phase consisted of 200 trials structured in 10 blocks, each presenting 

the 20 bugs from the training set in random order. The participants were not told that the 

same bugs would be repeated; instead each time a bug reappeared, it had a new number. In 

each trial one bug was presented with its five cue values on the screen and participants were 

asked to give an estimate of the toxicity of the bug. The order in which the cues were 

presented was randomly determined for each participant.  

After making the estimation, participants were given feedback about the accuracy of 

their estimate and received points accordingly. Participants’ payment was contingent on their 

performance. After the experiment the total number of earned points was exchanged into 

euros at a rate of €0.1 for 100 points. For each estimation that exactly matched the correct 

criterion value, the participants were awarded 100 points. Deviations from the correct 

criterion value led to fewer points, with increasing inaccuracy leading to a disproportionately 

larger decrease in points. Specifically, the feedback algorithm used the mean squared 
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deviation of the estimation from the actual criterion value to determine how many points were 

subtracted from the maximum 100 points for an exact estimation.  

To create a moderately exacting feedback environment (Hogarth, Gibbs, McKenzie, & 

Marquis, 1991), which has been shown to lead to high performance (Gonzalez-Vallejo & 

Bonham, in press), the feedback algorithm incorporated a correction term to account for the 

difficulty of the task (see Appendix B for details). The correction term consisted of a constant 

that determined the magnitude of the deviation that would result in a payoff of zero points. 

Any deviation exceeding the deviation by the correction term would lead to the subtraction of 

points. The correction term was chosen so that reliance on a baseline model that always 

estimated the same value would result in zero points. Since the baseline model reached a 

better fit in the J-shaped environment, the correction terms in the two environments differed. 

In both conditions participants received 100 points for a correct answer; in the J-shaped 

environment a maximum of 355 points was subtracted for an error whereas a maximum of 

only 127 points was subtracted in the linear environment. In the instructions it was explained 

to the participants that subtracting points for errors was employed to correct for chance 

performance.  

In addition to earning points, the participants received outcome feedback on each 

bug’s actual criterion value, the mean squared error of their estimation, and their current total 

score. In the test phase the participants made the same judgments as in the training phase, but 

without outcome feedback. They were informed that nevertheless they would earn points 

according to their accuracy. The test set consisted of 21 profiles that included the old profiles 

from the training set as well as new profiles.  

The training and the test set were constructed so that the models’ predictions for the 

test set, given the training set, would be as different as possible.4 To find a training set–test 
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set combination that would allow for good discrimination between the models in both 

environments, we first chose an environment from the simulation in which the models had 

differed in their predictive accuracy. In this environment each cue had 50% negative cue 

values and correlated positively with both criteria. We randomly selected 100 training sets of 

20 bugs from this environment under the constraint that the highest and the lowest criterion 

value were always included, ensuring the full range of the criterion for the estimations. All 

criterion values were multiplied by 10 to have a larger range. Then each model was fitted to 

the bugs of the training sets, maximizing the model’s accuracy in estimating the bugs’ 

toxicity. After fitting the models’ parameters, the models’ predictions were determined for all 

objects that did not appear in the training set.  

From the 100 training sets we selected the one that allowed the best discrimination 

between all four models on the new objects, given two additional restrictions. First, to avoid 

the objection that the participants simply learned to make estimations according to the best 

performing model in the training set, we excluded all training sets in which the models’ 

accuracy differed widely in the J-shaped environment. Second, we excluded all training sets 

in which the same cue profile appeared more than four times, to ensure that the differences in 

model predictions were not due to an extreme training set. Finally from the remaining training 

sets the one that maximized the differentiability of the models in the test set was selected, 

which was the set with the highest number of cue profiles for which two models made 

predictions differing by more than 100 mg/l of estimated toxicity. 

The final training set consisted of 20 objects with 20 different criterion values, but 

with only eight different cue profiles, so that one profile appeared once, three profiles twice, 

three profiles three times, and one profile four times (see Table 3). All cues correlated 

positively with the criterion and the cue–criterion correlations differed between .30 and .79 
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(see Table 4). For the test set, the cue profiles for which the four models made the most 

different predictions were selected. For any pairwise model comparison, at least four profiles 

allowed a good differentiation between the two models. Also the bugs of the training set were 

included in the test set. The test sets of the linear and the J-shaped environments and the 

models’ predictions based on the training set can be found in Appendix C. 

How well could the different models solve the estimation problem in the training 

phase? In the J-shaped environment the models’ predictions, when fitting the parameters to 

the objective criterion values, deviated from the criterion with a mean root mean square 

deviation (RMSD) of 136 and could explain about 64% of the variance. QuickEst and the 

mapping model did slightly worse than the other models. Because the training set in both 

environments consisted of the same cue profiles, the models’ accuracies could not be 

controlled for in the linear environment, but the accuracies did not differ substantially among 

the regression, exemplar, and mapping model (M = 145, SD = 11). Only QuickEst with an 

RMSD of 183 did clearly worse than the other models. Although the RMSD in the linear 

environment was higher on average, the models could explain more linear variance (average 

r² = .74).  

Results 

Overall, the mapping model explained the predictions of the participants best in the 

test phase, if all conditions were considered jointly. However, the distribution of the criterion 

played an important role. In the J-shaped environment the mapping model was clearly the 

best model, whereas in the linear environment the standard regression model and the 

exemplar model with only one parameter performed equally well. Before we come to the 

model comparisons, we first report participants’ accuracy. 
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Accuracy of the participants. Participants’ accuracy was measured by the RMSD 

between participants’ estimations and the criterion and by the Pearson correlation of the 

estimations with the criterion. Participants were quite successful in learning the bugs’ toxicity 

levels during the training phase, in particular when considering that due to the 

indistinguishable cue profiles perfection was not possible. The strongest learning effects were 

observed between the first and the fourth block. Overall, the mean RMSD dropped in both 

environments from 236 (J-shaped) and 232 (linear) in the first block to 149 and 194, 

respectively, in the 10th block. The last three blocks showed no significant learning effects, 

so the data were merged for the further analyses. The average accuracy in the linear 

environment (RMSD = 210) was worse than in the J-shaped environment (RMSD = 163), U = 

104, p < .01. However, the average amount of variance explained did not differ; r2
linear = .58, 

r
2

J-shaped = .58. 

Estimating the models’ parameters. As the primary measure of the models’ goodness-

of-fit, the RMSD between the participants’ estimations and the models’ predictions was used. 

The models’ parameters were estimated by minimizing the RMSD for participants’ 

estimations in the last three blocks of the training phase. The models were tested against each 

other on the basis of the RMSDs of their estimations for the test phase. Additionally we 

considered the degree of linear variance explained by the models (the coefficient of 

determination r2), because the two measures capture slightly different aspects of model fit and 

r
2 is the preferred measure in the social judgment theory literature. But since the two 

measures are not independent all model tests are solely based on the models’ RMSD.5  

The models were fitted individually to each participant: For the linear regression the 

parameters were determined analytically using the cues of the training set and the individual 

participants’ estimates. The exemplar model was fitted on the last three blocks of the training 
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phase with the correct cue and criterion values of the training set as the memory base. The 

best parameter for each participant was searched for by using the quasi-Newton optimization 

method as implemented in MATLAB. To avoid local minima, parameters were first derived 

by a grid search with the results serving as the starting values for the subsequent fitting 

procedure. For QuickEst only one parameter had to be estimated specifying the maximum 

number of cues considered, and here the optimal parameter value was selected by an 

exhaustive search. If different numbers of cues reached the same fit the lowest number was 

selected. The mapping model entails no free parameters, so no parameter was estimated; the 

medians for the different categories the mapping model used were determined on the basis of 

the objects’ criterion values in the training set.  

Model comparison—training phase. We first compared each model’s fit with the fit of 

a baseline model in the training phase, which predicted only one single value for all objects 

encountered; the specific value the baseline model predicted was fitted to the data of the 

training phase. The baseline model reached an average fit of RMSD = 289 in the linear 

environment and of 225 in the J-shaped environment. Because the baseline model is a rather 

naïve model of estimation, any of our four models needs to prove first that it can do better by 

taking the dependencies of the estimations on the cue profiles into account. For the training 

phase all four models did better than the baseline model in predicting participants’ 

estimations (see Table 5). To test if one model could explain participants’ estimations 

significantly better than another model we used a non-parametric test (i.e., the Wilcoxon Z-

test). In describing the data of the training phase, the regression model did best in both 

environments, followed by the exemplar model (linear: MLR vs. EBM, Z= −4.67, p < .01; J-

shaped: Z = −4.78, p < .01), explaining more than 80% of the variance in the linear 

environment and almost 80% in the J-shaped environment (see Table 5). The mapping model 
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and QuickEst did significantly worse than the other two models, particularly in the linear 

environment. As described above, for clarity we only report the results for the standard 

regression model with six free parameters and the simplified exemplar model with one free 

parameter (for the results of the other versions see Appendix D). 

However, the models’ fit for the training phase is not very meaningful for testing the 

models against each other: Even though we tried to put the models on more equal footing, 

they still differed in their complexities, that is, in the number of free parameters and the 

complexity of their functional form. Thus it is not surprising that the models with greater 

flexibility—the regression and the exemplar model—did better in fitting the data than the 

mapping model. Therefore the crucial model comparison test consists of how well the models 

predict participants’ estimations for new independent objects of the test phase. This 

generalization test goes beyond a pure cross-validation test, because the new objects of the 

test phase differed from the objects of the training phase.  

Model comparison—test phase. The models’ predictions for the test phase were 

determined on the basis of the estimated parameters of the training phase. The baseline model 

reached a better fit in the test set than in the training set with an average fit of RMSD = 180 in 

the J-shaped environment and RMSD = 282 in the linear environment. This is presumably 

because the new profiles included in the test set had less extreme cue profiles; that is, the new 

profiles had a maximum of only four positive cues and a minimum of one positive cue (see 

Appendix C). In the linear environment, the regression model, the exemplar model, and the 

mapping model did better, on average, than the baseline model (baseline vs. EBM: Z = −4.68, 

p < .01). In the J-shaped environment, QuickEst and the mapping model were able to beat the 

baseline model (QuickEst vs. baseline: Z = −2.05, p = .04), while the exemplar model could 

not be distinguished from the baseline model (EBM vs. baseline: Z = −1.37, p = .18) and the 
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regression model performed worse than the baseline model (MLR vs. baseline: Z = −3.47, p < 

.01).  

Figure 1 illustrates the models’ different successes in predicting participants’ 

estimations. The figure shows the models’ and participants’ average estimations for each 

profile of the test phase, demonstrating that in the linear environment it is difficult to 

discriminate between the models, whereas in the J-shaped environment the mapping model 

predicted participants’ estimations best. In the linear environment the regression model, the 

exemplar model, and the mapping model performed equally well and significantly better than 

QuickEst (QuickEst vs. MLR: Z = −4.5, p < .01; see also Table 5). In the J-shaped 

environment the mapping model was the best model in predicting the estimations (mapping 

model vs. EBM: Z = −3.2, p < .01) and the exemplar model was indistinguishable from 

QuickEst (QuickEst vs. EBM: Z = −.03, p = .98), but both the exemplar model and QuickEst 

outperformed the regression model (QuickEst vs. MLR, Z = −3.59, p < .01).  

To consider individual differences, we examined which model, including the baseline 

model, was best in predicting each participant’s estimations (according to the RMSD). In the 

linear environment, the mapping model was best in predicting the estimations for 12 

participants (41%), the regression model was best for 11 (38%), the exemplar model for 5 

(17%), and QuickEst for 1 (3%) participant. In the J-shaped environment, the mapping model 

was best for 16 participants (53%), QuickEst for 6 (20%), and the baseline model for 2 (7%). 

The regression model and the exemplar model, respectively, predicted the estimations of 3 

(10%) participants best. In sum, the individual analyses led to the same conclusions as the 

analysis of the aggregated results: The mapping model was the best model in predicting 

participants’ estimations. It did as well as the regression model for the linear environment, 

and it was the outstanding model for the J-shaped environment.  
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Discussion of Study 1  

Study 1 showed that the mapping model was able to predict participants’ estimations 

well in both environments, suggesting that it could be a simple alternative to standard 

estimation models. Although in the linear environment all models performed equally well, the 

exemplar model and the regression model made worse predictions compared to the mapping 

model in the J-shaped environment. Even though Juslin et al. (2003a, in press) showed that 

the exemplar model performed well in a related task, in our study, people apparently did not 

rely on an exemplar-based estimation process. However, this conclusion needs to be limited 

to the experimental situation considered, which might have been disadvantageous for an 

exemplar-based process. In particular, some of the cue profiles in the experiment were 

indistinguishable. Although this is a realistic feature in quantitative estimations in everyday 

life it could nevertheless have impeded an exemplar-based inference process, by making it 

more difficult to establish memory traces for the exemplars. Therefore in Study 2 an 

experimental situation was created that should favor an exemplar-based inference process and 

should increase the differentiability of the models in the linear environment. 

Study 2 

The first goal of Study 2 was to examine the reasons for the poor performance of the 

exemplar model in Study 1. As described above, using objects with identical cue profiles but 

with different criterion values could have made memorization of exemplars cognitively very 

demanding. Therefore in Study 2 each cue profile appeared only once in the training set. 

Additionally, the objects (i.e., bugs) were given names to emphasize that the same objects had 

to be evaluated several times. This procedure made memorization of exemplars easier and 

fostered an exemplar-based inference process. It also allowed, in principle, perfect 
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performance in the training phase, when following an exemplar-based estimation process. 

Thus, Study 2 provided good conditions for the exemplar model.  

To test the exemplar model against the mapping model, in the test phase of the 

experiment all possible cue profiles that could be created with the limited number of cues 

were presented to the participants, so that some of the profiles had been encountered before in 

the training phase and some were new. The objects of the training set were presented with 

new names in the test phase to test for memory effects of the pure cue profiles, excluding 

memory effects due to memorizing exemplars by their names. To examine the consistency in 

estimations all profiles were presented twice, again with new names at the second appearance. 

This allowed us to compare the consistency in estimations for the old profiles encountered in 

the training phase with the consistency for the new profiles. Larger consistency for known 

profiles than for new profiles would indicate that memory processes played an important role 

in the estimations, whereas no differences between old and new profiles would speak in favor 

of a rule-based approach, described, for instance, by the mapping model. Finally, in Study 2 

we aimed for an increased discrimination between the models’ predictions.  

Method 

Participants. In Study 2, 50 participants took part and were randomly distributed to 

the two conditions, balanced for gender; 25 were women and 25 were men. The mean age 

was 25 years and the participants were mostly recruited from the universities in Berlin. 

Participants were paid according to their performance with an average payment of €17 for an 

individual session lasting on average 1.5 hr.  

Design, procedure, and materials. The procedure of Study 2 was similar to that of 

Study 1, in that participants solved the same estimation task. In contrast to Study 1, the 

participants only had to learn 19 bugs in the training phase and had to estimate 64 (2 × 32) 
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bugs in the test phase. They were told that in the training phase the same 19 bugs would 

appear 10 times each, whereas in the test phase they would have to evaluate unknown bugs. 

To ensure that the participants would recognize the bugs when they reappeared, each bug 

received a male German name. The names were randomly assigned from a list of the most 

common German names. Otherwise the procedure was the same as in Study 1. Participants 

were paid according to the accuracy of their estimations. A similar feedback algorithm to that 

from Study 1 was used, with the correction terms based on the fit of the baseline model (for 

details see Appendix B).  

In Study 2 the training set and the test set were selected in a similar way to Study 1, 

though with different constraints. The main objective was to improve differentiation between 

the mapping model, the regression model, and the exemplar model in the linear environment 

and the mapping model and QuickEst in the J-shaped environment. This was limited, 

however, by the restriction of unique profiles in the training set. Additionally, in Study 2 the 

correlation of the cues with the criterion was the same for the linear and the J-shaped 

environment (but the cue–criterion correlations differed substantially within the 

environments). Because in Study 1 this correlation differed between the environment 

conditions, this could explain why the participants differed in their accuracy of estimating the 

bugs’ toxicity in the linear and the J-shaped environment. These changes led to slightly 

different training sets for the two conditions.  

As in Study 1 we examined how well the models predicted the criterion values in the 

training phase. The exemplar model estimated the criteria perfectly in both environments, due 

to the unique profiles. All other models did worse with the linear environment than with the J-

shaped environment. In the linear environment the regression model was the second-best 

model, explaining 65% of the variance of the criterion (RMSD = 177), whereas the worst 
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model, QuickEst, explained only 32% of the variance (RMSD = 269). In the J-shaped 

environment, the mapping model reached the second-best accuracy for estimating the 

criterion values, explaining almost 90% of the variance (RMSD = 78), and the regression 

model was the worst (RMSD = 143, r² = .60). In sum, the models’ accuracies differed 

substantially for the training phase, which can be explained by two factors. First, we created a 

task structure that kept the cue–criterion correlations in the linear and the J-shaped 

environment equal. Second, items were selected such that the differences between the 

models’ predictions for the test phase were increased. Both factors increased the differences 

of the models’ accuracies in the training phase.  

Results 

Overall, we were able to replicate the results of Study 1. The mapping model was 

again the best model for predicting participants’ estimations when both conditions were 

considered jointly, and it outperformed all other models in the J-shaped environment. The 

exemplar model, however, did not substantially profit from the changes in the experimental 

structure, suggesting that exemplar-based estimation processes do not occur very frequently.  

Accuracy and consistency of participants’ estimations. The accuracy of the 

participants was measured in the same way as in Study 1 with the RMSD between the 

participants’ estimations and the criterion. The participants mastered the estimation task very 

easily. The mean RMSD dropped in the linear condition from 279 in the first block to 148 in 

the 10th block. In the J-shaped environment the accuracy increased from an almost equally 

high error in the first block (RMSD = 215) to an RMSD of 51 in the 10th block. Just as in 

Study 1 the data from the three last blocks was merged to analyze the performance. The 

average RMSD in the linear environment was three times as high as in the J-shaped 

environment [RMSDlinear = 164 vs. RMSDJ-shaped = 58; U = 68, p < .01]. Likewise, the 
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achievement measured by the Pearson correlation between the criterion and the estimations 

was on average r = .82 in the linear environment and r = .96 in the J-shaped environment (U 

= 87, p < .01). In sum, participants’ different accuracies in the two environments reflect the 

environments’ different difficulties. 

The cue profiles of the test phase were split into two groups, one consisting of the old 

profiles known from the training phase and the other containing only new profiles (Table 6). 

To investigate participants’ consistency, the correlations (and the RMSD) between the two 

estimations for the same profile presented twice in the test phase were determined. The 

participants were equally consistent in the two environments in their estimations for the old 

profiles, rlinear = .90 vs. rJ-shaped = .89; U = 239; p = .16, but the estimations for the new profiles 

were less consistent in the linear environment than in the J-shaped environment, rlinear = .67 

vs. rJ-shaped = .78, U = 207; p = .04. The consistency for the new profiles was significantly 

lower than the consistency for the old profiles, rnew = .72 vs. rold = .90; Z = −5.03, p < .01. The 

higher consistency in the J-shaped environment indicates that participants relied more on 

rule-based processes in the J-shaped environment than in the linear environment. However, 

the drop in consistency from the old profiles to the new profiles suggests memory effects, as 

the application of rules should not be influenced by the familiarity of the profile.  

Response times. In Study 2 we measured the response times for the estimations. 

Response times dropped during training from a median response of 14.7 s in the first block to 

7.5 s in the 10th block. There were no significant difference between the two conditions in the 

training phase, Mdnlinear = 8.4s vs. MdnJ-shaped = 7.1s (U = 255, p = .27), or the test phase (U = 

238, p = .15). Participants responded faster at the end of the training phase (Mdn = 7.4 s) than 

in the test phase (Mdn = 9.9 s; Z = −4.01, p < .01), but there was no difference in response 

time between old and new profiles (Z =−1.3, p = .20). 
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Model comparison. The fit of the models was quantified in the same way as in Study 

1. Again, the data of the last three blocks of the training phase were used to estimate the 

models’ parameters and the fitted models were employed to make predictions for the test 

phase. Here we focus on the model performance in the generalization test, but the models’ fits 

in the training set can be found in Appendix E. For the generalization test the items of the test 

phase were split into two groups: one consisting of the old cue profiles encountered in the 

training phase and the other of only new profiles that had not been encountered before. We 

first report the results on the old profiles and then come to the decisive comparison in 

predicting the estimations for the new profiles. In the linear environment, the regression 

model was the best model for the old profiles, with a significant advantage over the exemplar 

model (Z = −2.70, p < .01) and the mapping model (Z = −3.16, p < .01; see Table 7 for the 

means). In the J-shaped environment the exemplar and the mapping model were equally good 

in predicting the estimations for the old profiles in the test phase (Z = −.71, p = .47) and 

significantly better than QuickEst or the regression model (mapping model vs. MLR: Z = 

−4.32, p < .01).  

However, the crucial model test consists of considering how well the models are able 

to predict participants’ estimations for new, independent profiles. As in Study 1, the baseline 

model was first used as a comparison standard for model performance. For the new profiles, 

the baseline model reached an average fit of RMSD = 213 in the linear environment and of 

RMSD = 136 in the J-shaped environment. Although the exemplar model, the regression 

model, and the mapping model were better than the baseline model in the linear environment 

(EBM vs. baseline: Z= −3.32, p <.01), only the mapping model beat the baseline model in the 

J-shaped environment (mapping model vs. baseline: Z = −4.37, p <.01). This indicates that 

the rather naïve baseline model might not be so bad after all. Especially in the J-shaped 
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environment, its estimations can be quite accurate, as most of the objects have similarly low 

criterion values. It also resonates with research on human estimation showing that people tend 

to rely on the mean if they must predict new objects without further information (Helson, 

1964). 

When comparing the models against each other the regression model, the mapping 

model, and the exemplar model were equally good predictors of the participants’ estimations 

of the new objects in the linear environment (see Table 7; mapping vs. MLR: Z = −.18, p = 

.87; MLR vs. EBM: Z = −1.28, p = .21). In the J-shaped environment, the results become 

much clearer, particularly when we focus on the new objects. The mapping model was the 

best model; the exemplar model came in second, performing significantly worse than the 

mapping model (Z = −3.27, p < .01). Both models performed distinctly better than the 

regression model or QuickEst. In sum, the two best models (MLR and mapping) 

demonstrated a quite impressive fit, coming close to the variance in participants’ estimations 

caused by inconsistencies. This error variance provides an upper limit of the fit that can be 

reached by any deterministic model. Surprisingly, the exemplar model could not predict 

participants’ estimations better than in Study 1, although Study 2 provided better conditions 

for a memory-based estimation process.  

Qualitative analyses. The mapping model proved itself as a valid competitor with the 

other models. However, to enhance this conclusion drawn from the quantitative model 

comparison, it is desirable to provide additional qualitative support. The predictions of the 

mapping model are based on typical criterion values abstracted during the training phase. The 

mapping model assumes that this typical criterion value is the median criterion value of 

objects with the same cue sum. Thus the criterion value of some objects in the training set 

will coincide with the typical criterion value of the mapping model (or be very close to it, if 
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the median is not defined but the mean of two adjacent objects), while criterion values of 

others will be clearly different from the typical criterion value. According to the mapping 

model, objects with criterion values close to the typical criterion value should be estimated 

more accurately than objects with criterion values differing substantially from the typical 

value.  

In the linear environment, this hypothesis is also compatible with estimations based on 

the regression model, but in the J-shaped environment the mapping model is the only model 

that predicts a difference in accuracy between the estimations for objects with typical 

criterion values and objects with non-typical criterion values. To test this hypothesis, the 

average errors made on typical objects (objects with the typical criterion value or the two 

objects with adjacent criterion values) were compared with the errors made on the non-typical 

objects (all other objects) in the last three blocks of the training set. In both environments the 

participants made significantly fewer errors estimating the criterion values for objects with 

typical criterion values than for objects with non-typical criterion values [linear: RMSDtypical = 

127, SE = 13; RMSDnon-typical = 179, SE = 17; t(24) = 22.90, p < .01; J-shaped: RMSDtypical = 

38, SE = 6.7; RMSDnon-typical = 54, SE = 7.6; t(24) = 2.4, p = .03). These results give further 

support to the mapping model.  

Discussion of Study 2 

Overall, the results of Study 2 replicated those of Study 1. The mapping model was 

again best in predicting quantitative estimations, if both environments are considered jointly. 

In the J-shaped environment, it clearly outperformed the other models. It reached a fit very 

close to the error variance in the data and was the best model for a distinct majority of 

participants. In the linear environment, though, it was still not possible to decide 

unambiguously which model predicted the data of the participants best—the regression 
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model, the exemplar model, or the mapping model. The differentiation between the models 

was complicated by the high variance in participants’ estimations in the linear environment. 

In the training phase as well as in the test phase, the estimations showed a high degree of 

inconsistency. However, the inability of the participants to learn to estimate the criterion 

values in the linear environment accurately is interesting in itself, as it reflects the poorer 

ability of the regression model and the mapping model to predict the criterion in the linear 

environment. Only the exemplar model predicted no differences in learning between the two 

environments. Because the exemplar model remembers individual cue profiles, its 

performance is independent of the criterion distribution. 

The exemplar model predicted participants’ estimations quite well for the old profiles 

in the test phase, but this was not true for the new profiles. The good fit for the old profiles 

suggests that participants relied on retrieved exemplars when a cue profile of an object was 

recognized from the training phase. Unfortunately it does not explain how the estimations for 

the unknown profiles were made. Here the exemplar model seemed to offer a good 

description of the estimation process for only a minority of the participants.  

Similarly, Juslin et al. (in press) showed in various experiments that the exemplar 

model described participants’ behavior quite well in a “non-linear task,” while a regression 

model was better suited to predict participants’ estimations in a “linear task.” Similar to our 

task, the criterion distribution was linear in the linear task and J-shaped in the non-linear task. 

However, Juslin et al. (in press) conceptualized the difference in the environmental structure 

not in terms of the distribution of the criterion but by the underlying cue–criterion 

relationship. The cue–criterion relationship specifies how the criterion is determined as a 

function of the cue values.  
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The form of the distribution and the cue–criterion relationship are related in the sense 

that if representative samples are taken, a linear cue–criterion relationship will result in a 

roughly linear distribution, and an exponential cue–criterion relationship in a J-shaped 

distribution. However a linear distribution does not have to stem from a linear function and 

there are many non-linear functions that would not result in a J-shaped distribution. So far we 

have not specified the relationship between cues and the criterion in our tasks explicitly but 

have used a random procedure to generate the criterion distribution. To rule out that this 

impedes the predictive success of the exemplar model we conducted a third study, in which 

we chose an approach similar to Juslin et al.’s (in press) to create the objects’ criterion values.  

Study 3 

In Studies 1 and 2 the item sets of the experiments were created by using randomly 

drawn samples from the simulation study that allowed discrimination between the models. 

Here the criterion value could only be predicted to some extent by a linear or non-linear 

function of the cues. Therefore, to further generalize the empirical support for the mapping 

model, in Study 3 the criterion values were either a linear or a multiplicative function of the 

cue values (see Juslin et al., in press). Given the results of Studies 1 and 2 we only tested the 

mapping model against the strongest competing models, which are the standard regression 

model and the simplified exemplar model with one parameter. 

Method 

Participants. Forty students from Berlin universities participated in the study, 25 

males and 15 females. The mean age was 24 years. The study lasted for approximately 1.5 hr 

and participants earned on average €17. 

Design, procedure, and materials. Study 3 was constructed in the same way as 

Studies 1 and 2. To generalize the task to further contexts the estimation task was changed to 
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a medical task. Participants had to estimate the probability that a patient would be cured of a 

fictitious disease. Participants were told that patients could receive different types of 

medication and that the information on which drugs a patient took would help them to 

estimate the criterion, that is, the probability that the patient would be cured within a year, 

ranging from 1 to 100%. The cues were five different drugs (labeled U, V, W, X, Y), which a 

patient could either receive or not receive. Participants were told that each drug on its own 

had a positive effect, but that there could be interaction effects between the drugs. In the 

linear environment the criterion (CL) was a linear additive function of the cues (ci): 

CL = 5 + 33c1 + 22c2 + 20c3 + 15 c4 + 5c5 

In the J-shaped environment the criterion (CJ) was a multiplicative function of the cues:  

L
/ 25

J
1.85 1

C
C e= ⋅ −   

For a large number of new cases in the generalization test we used a training set of only 16 

profiles.  

We created 20 different training–test sets that were used for both experimental 

conditions with 20 participants each. Again we aimed for an experimental item set with large 

discrimination between the models’ predictions. Therefore we first created 1,000 training sets 

consisting of 16 randomly selected cue profiles and by using the two functions we determined 

the criterion values. The respective generalization sets consisted of the 16 profiles that did not 

appear in the corresponding training set. Next we excluded all sets in which cues correlated 

negatively with the criteria. Then we rank ordered the training sets according to how well 

they discriminated between each possible pair of models in the generalization set and chose 

the 20 environments that allowed maximum discrimination between all models. The 

experimental procedure was the same as that used in Studies 1 and 2. During a training phase 

consisting of 160 trials, participants learned to estimate the criterion value connected with 
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each profile in the training set. After each trial participants received feedback on the correct 

criterion values and their performance. The order of appearance was randomized as well as 

the assignment of the cues to the five different drugs and the order in which the drugs 

appeared on the screen. In the test phase each participant estimated all possible profiles two 

times without feedback. Participants were paid according to a feedback algorithm that was 

determined in the same way as in Studies 1 and 2 (for details see Appendix B). 

Results 

Overall, Study 3 replicated the results of Studies 1 and 2. The mapping model was 

clearly the best model in the J-shaped environment. However, in the linear environment the 

regression model outperformed the other models. Before we come to the model comparisons 

we report the participants’ accuracy. 

Accuracy of the participants. 

The participants learned to estimate the criterion quite well in both conditions. In the 

linear environment the RMSD dropped from 18 in the first block to 7 in the 10th block and in 

the J-shaped environment from 29 to 7, with a rather stable accuracy in the last three blocks 

of the training phase. Participants’ accuracy at the end of the training phase did not differ 

significantly between the two environments (MLinear = 7 RMSD vs. MJ-shaped = 8 RMSD; U = 

176, p = .53).  

Did the participants capture the underlying function generating the criterion values? 

This can be seen in how well participants could predict the criterion values of the new cue 

profiles in the generalization set. In both environments participants were worse at estimating 

criterion values of patients with new drug combinations than with previously encountered 

combinations (Mold = 7 RMSD vs. Mnew = 14 RMSD, Z = −5.3, p <.01). However, they were 

significantly better in the linear environment than in the J-shaped environment (MJ-shaped = 16 
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vs. MLinear = 12; U = 123, p = .04). This suggests that the participants in the linear 

environment captured the function generating the criterion values to some extent. 

Model comparison. As in the preceding studies, the models were fitted on the last 

three blocks of the training phase for each. For the crucial model comparison test we focused 

on the generalization test of the test phase. In particular we compared the accuracies of the 

models in predicting participants’ estimates of the criterion values for the new cue profiles, 

that is, combinations of drugs they had not seen during the training phase. Here the results 

were clear-cut. In the linear environment the regression model predicted participants’ 

estimations significantly better than all other models, with the mapping model coming in 

second (MMLR = 9 RMSD vs. Mmapping model = 14 RMSD, Z = −3.1, p <.01). In the J-shaped 

environment the mapping model clearly outperformed all other models (Mmapping model = 10 

RMSD vs. MMLR = 17 RMSD, Z = −3.3, p < .01). The exemplar model and the regression 

model performed equally poorly. Figure 2 illustrates the accuracies of the different models in 

predicting participants’ estimations in the generalization test. 

Discussion of Study 3 

We conducted Study 3 to test if our results from Studies 1 and 2 would also hold if the 

criterion distributions were generated by a linear and a non-linear function of the cue values. 

In the J-shaped environment this was clearly the case. In the linear environment, however, 

linear regression outperformed the mapping model. As the linear criterion was generated by a 

linear additive function, the regression model could now be equivalent to the function 

generating the criterion values and could estimate the criterion faultlessly. Thus if participants 

were able to detect the underlying structure in the data, then the regression model would 

capture their estimations. We will discuss this issue further in the General Discussion.  



Mapping Model of Quantitative Estimation  39 

In the J-shaped environment, we did not find a shift to an exemplar-based estimation 

process as advocated by Juslin et al. (in press); instead, the mapping model still described 

participants’ behavior best. This corroborates that the mapping model is the best model for J-

shaped distributions regardless of whether the underlying function has been specified.  

Study 4 

Study 4 represents a reanalysis of Experiment 1 of Juslin et al. (in press). In this study 

the authors found empirical support for a rule-based estimation process in an environment 

with a linear distribution of the criterion, whereas support for an exemplar-based estimation 

process was reported for an environment with a J-shaped criterion distribution. To test 

whether the mapping model, which Juslin et al. did not examine, offers an alternative account 

of the estimation processes, we reanalyzed the experimental data.  

Juslin et al.’s experiment differed in important aspects from our studies. First, in the 

training phase of the experiment the participants were confronted with only 11 different 

profiles, a small number, that were described by only four cues, as opposed to 20, 19, and 16 

different profiles with five cues each in Studies 1, 2, and 3, respectively. Second, although 

participants had to process less information in the training phase compared to our studies, 

much more training was provided by repeating each profile 20 times, as opposed to 10 

repetitions in our studies. This procedure should have made it easier to memorize each 

profile, thus fostering an exemplar-based estimation process. Moreover, and maybe most 

importantly, in the experiment by Juslin et al. the participants had to learn the direction of the 

cues during the training phase, while in our studies the direction of the cues was told to the 

participants. Additionally, the cue–criterion correlations of some cues were rather small and 

fluctuated during training, increasing the difficulty of learning the correct direction of the 

cues.6 We think this last difference is disadvantageous for a rule-based estimation process, as 
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described by the mapping model, for which the cue–criterion correlations are essential. In 

sum, we think the experimental procedure is beneficial for an exemplar-based estimation 

process and it would be surprising if the mapping model still predicted people’s behavior 

well.  

Method 

Design and procedure. The experiment had two conditions in which participants had 

to estimate the toxicity of bugs based on four binary cues, similar to Studies 1 and 2. In the 

first condition, the linear condition, the criterion was a linear function of the cues; in the 

second, the multiplicative condition, the criterion was a multiplicative function of the cues. 

Similar to our tasks the criterion values followed either a linear or a J-shaped distribution. In 

an initial training phase with 220 trials participants learned to estimate the criterion values on 

a subset of 11 of the 16 possible bugs. In a subsequent test phase they then estimated the 

toxicity of all 16 bugs, that is, including the 5 bugs that they had not encountered before.  

Model fitting. Following the same procedure used by Juslin et al. (in press) we fitted 

the models on the second half of the training data. Juslin et al. used the standard exemplar 

model with a free parameter for each cue, so we included this version together with the 

simplified exemplar model that we have reported so far. Thus, we will report results for two 

exemplar models, one complex exemplar model with four free parameters and one simple 

exemplar model with one free parameter. As in our preceding studies we analyzed the data on 

the individual level. We estimated the exemplar models’ parameters on the second half of the 

training set starting with a memory base consisting of the correct cue and criterion values of 

the first half of the training set.7 Then we successively added the exemplars of the second half 

of the training set to the memory base in the order in which they were encountered. This way 

the memory base always represented all objects the respective participant had seen so far (we 
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think this method is most appropriate, because due to random error the same cue profiles had 

varying criterion values). The regression model was fitted directly to the participants’ 

estimations from the second half of the training set. Consistent with our previous studies but 

in contrast to Juslin et al., we used an unconstrained linear regression.8 For the mapping 

model we determined the directions of the cue–criterion relationship on the basis of the 

correlation of the cue with the criterion in the second half of the training set and then 

calculated the typical criterion values for each cue sum category based on the criterion values. 

With the estimated parameters from the training phase, each model predicted estimations for 

the test phase.  

Results 

Overall, we replicated the results of Juslin et al. (in press), but our results were not 

quite as clear-cut. The regression model performed best in the linear condition and the 

exemplar model with one parameter was the best model in the multiplicative condition. 

However, the simplified exemplar model was not significantly better than the regression 

model and the mapping model performed as well as the standard version of the exemplar 

model. 

Model comparison. Surprisingly, and in contrast to the results of our Studies 1–3, all 

models performed worse in the training phase than in the test phase. In the test phase, the 

regression model performed best in the linear condition. It was significantly better than the 

mapping model and the simplified exemplar model. However, the comparison between the 

regression model and the standard exemplar model with four parameters only approached 

significance, MMLR = 1.4 RMSD vs. MEBM = 1.5 RMSD, Z = −1.78, p = .08.  

In the multiplicative condition it was difficult to identify one best model. The standard 

exemplar model used by Juslin et al. (in press) was statistically indistinguishable from the 
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mapping model, the regression model, and the simplified exemplar model. However, the 

simplified exemplar model with one parameter performed slightly better than the regression 

model (MMLR = 1.8 RMSD vs. MEBM = 1.7 RMSD, Z = −1.65, p = .10) and was significantly 

better than the mapping model (Mmapping = 2.0 RMSD, Z = −3.1, p < .01).  

Discussion of Study 4 

In contrast to Studies 1–3, the mapping model performed as well as or worse than the 

linear regression or the simplified exemplar model. This result highlights the dependence of 

the models’ predictive accuracy on the structure of the task and indicates boundary conditions 

for the mapping model. 

In the linear condition participants were able to pick up the linear additive structure of 

the task. Thus, in line with the reasoning of Juslin et al. (in press) and the results of Study 3, 

the regression model was the best model in the linear condition. In the multiplicative 

condition, however, the simplified exemplar model described participants’ behavior better 

than the mapping model. We assume that this difference is due to the experimental procedure 

employed by Juslin et al., which was different from that employed in our studies. Due to a 

smaller number of cue profiles and more extensive training, memorization of exemplars was 

presumably enhanced, favoring an exemplar-based estimation process. In contrast, the 

mapping model was constrained by the small number of cues and the selection of the training 

examples. Due to the composition of the training set the mapping model could only establish 

three categories, limiting the number of possible estimates to a rather small number.  

However, the presumably most important difference in the tasks lies in the correlation 

of the cues with the criteria. In the experiment by Juslin et al. (in press), the direction of the 

cues had to be detected by the participants. The mapping model assumes that knowledge 

about the correct cue directions can be learned from the environment, but it does not specify 
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the learning process. Thus, we assumed that participants picked up the cues’ directions from 

the training set. However, as some cue–criterion correlations were rather small, it could easily 

be that some participants got the direction of the cues wrong or ignored cues that did not seem 

predictive for the task. In such a situation—where the direction of the cue–criterion 

correlation is unclear, participants have extensive experience with the exemplars, and the 

criterion is a non-linear function of the cues—a shift to an exemplar-based process seems 

plausible. However, if all cues reliably predict the criterion and their direction is known to the 

participants, the mapping model seems to be the better model. 

General Discussion 

To describe the cognitive process underlying quantitative estimations we proposed a 

new cognitive theory that we called the mapping model. In four studies we tested this model 

against three alternative estimation models under a variety of environment conditions. We 

examined how well the models predicted estimations in a linear environment with a linear 

additive cue–criterion relationship, as opposed to a J-shaped environment with a non-linear 

cue–criterion relationship.  

The Success of the Mapping Model 

The mapping model is built on an existing, successful framework for quantitative 

estimations—the so-called metrics and mappings framework (Brown & Siegler, 1993, 1996; 

Brown, 2002). Implementing a computational model of this framework enabled us to test the 

mapping model against other cognitive computational models of estimations. Naturally the 

way we specified the mapping model is only one possibility and there might be other and 

better ways to do so. Nevertheless, we think that our model captures the general idea of the 

metrics and mapping framework, and when considering the empirical evidence provided by 

Studies 1–3, the model appears successful in predicting people’s estimations. In three out of 
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four studies, the mapping model was clearly superior to the other models in the J-shaped 

environment. Even in the linear environment, where a clear advantage of linear regression 

might have been expected, it performed equally well and was only outperformed when the 

criterion was perfectly predictable by a linear regression.  

Rule-based Estimation 

In the J-shaped environments the regression model was clearly not the appropriate 

model to predict participants’ estimations. In the linear environments, the results were less 

clear. The regression model predicted participants’ estimations as well as the mapping model 

in the first two studies but outperformed the mapping model in Studies 3 and 4. This 

resonates with innumerable articles that have shown that the regression model can 

successfully capture linear judgments (see Hammond & Stewart, 2001; Brehmer & Brehmer, 

1988).  

The varying results might be explained by an adaptive response to the environment 

(for a theoretical account see Rieskamp, Busemeyer, & Laine, 2003; Rieskamp & Otto, 

2006). Because in Studies 3 and 4 the criterion values were generated by a linear additive 

function of the cues, the regression model was the optimal model for predicting the criterion. 

Thus, in their attempts to be behave adaptively, the participants might have learned to follow 

a linear additive estimation strategy, as captured by the regression model. This adaptive 

response to the environment was also enhanced by the ease with which optimal cue weights 

of a linear additive estimation strategy could be abstracted during training. In Study 3 optimal 

cue weights could be reliably estimated from any pair of objects differing on only one cue. 

That is, when the cue changed from a negative to a positive cue value from one object to 

another, the criterion value always increased by a constant amount. In Studies 1 and 2, in 

contrast, an estimation process in line with the mapping model was equally successful. The 
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regression model could only approximately predict the criterion and it was more difficult to 

judge a cue’s contribution correctly. This might have favored an approach of giving equal 

weights to all cues, as assumed by the mapping model. It could also help explain why the 

regression model and the mapping model could not be distinguished in Studies 1 and 2. In a 

linear environment the mapping model can be equivalent to a unit weight regression model, 

so that the systematic variance captured by the mapping model and the regression model 

potentially overlap. In addition, research on linear regression models has often shown a flat 

maximum effect, where equal weights lead to the same accuracy in prediction as optimal 

weights (Dawes, 1979; Einhorn & Hogarth, 1975). 

In sum, in a task where the criterion is a linear additive function of the cues, people 

appear to be able to recognize the structure underlying the data and to abstract the appropriate 

weights for a linear additive estimation process. Consequently participants’ estimations in 

such a situation are best described by the regression model. However, when abstracting the 

optimal cue weights is complicated, because the criterion is not a linear additive function of 

the cues, a shift to a unit weight model such as the mapping model seems to take place. 

Exemplar-based Estimations 

Research by Juslin et al. (2003b, in press) suggests that in the case of a linear cue–

criterion relationship, rule-based processes offer a better description of human estimation than 

exemplar-based models. Consistently the regression model or the mapping model was best in 

predicting estimations when the criterion values were linearly distributed. Consistent with 

Juslin et al.’s (in press; Karlsson, Juslin, & Olsson, 2004) prediction that exemplar-based 

processes should occur for non-linear cue–criterion relationships, we found that the exemplar 

model outperformed the regression model in predicting participants’ estimations in J-shaped 

environments. However, in three of the four studies the mapping model as opposed to the 
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exemplar model was best in predicting participants’ estimations and only in Study 4 was the 

exemplar model best. Thus other factors besides the criterion distribution or the functional 

cue–criterion relationship seem to drive the models’ predictive success.  

The number of exemplars as well as the number of cues on which the exemplars differ 

and the amount of experience needed to memorize exemplars appear important: The exemplar 

model requires that all or at least a majority of the objects encountered during training be 

stored. Therefore the more information there is that has to be stored and the less often each 

object is encountered, the more difficult memorizing complete exemplars should become. If 

memorization of exemplars is difficult, a shift to a less demanding estimation process, 

captured by the mapping model, should be expected. Consistently we found that the mapping 

model performed better in Studies 1–3.  

Further, the direction and the magnitude of the cue–criterion correlations and how 

reliably they can be abstracted when gaining experience with an estimation situation could 

influence the models’ predictive success. For the exemplar model the direction and the 

magnitude of the cue–criterion correlation is not decisive. As long as objects can be 

sufficiently differentiated by their cue profiles, the exemplar model will always reach perfect 

performance with a given set of known objects. In contrast, the mapping model relies on 

knowing the correct direction of the cues. However, the mapping model does not specify how 

knowledge about the cues’ direction is acquired, but we made the simplifying assumption that 

participants learn the correct direction during training. This appears justified when the cues 

correlate substantially with the criterion. In Study 4, however, some of the cues did not 

predict the criterion very well, with cue–criterion correlations fluctuating around zero, 

making it difficult to detect the cues’ directions. This indicates that in a situation where it is 

difficult to abstract the direction of the relationship of the cues with the criterion and where 
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the quality of the cues is dubitable, the exemplar model might be more suitable for predicting 

estimation processes than the mapping model.  

In sum, the characteristics of the estimation situation of Study 4 were beneficial for an 

exemplar-based estimation process and detrimental for a rule-based process. We identified 

two task factors that influence the predictive success of the mapping model and the exemplar 

model in predicting estimations. We expect that the mapping model will be able to predict 

estimations in situations where many predictive cues are available, prior knowledge about the 

cues exists, and training is short. The exemplar model will be better in situations where the 

quality and the direction of the cues is unclear and extensive training on objects differing only 

on a few predictive cues is available. These expectations require further empirical tests.  

Simple Heuristics for Estimation 

In Study 1 a considerable number of participants were best described by QuickEst in 

the J-shaped environment. This raises the question of under which the conditions QuickEst 

might capture the process of human estimation. QuickEst does not integrate information, 

whereas the mapping model uses all information available. For probabilistic inference tasks it 

has been found that models integrating information are often good predictors of people’s 

inferences when all information is visible and easily accessible (Bröder, 2000; Newell & 

Shanks, 2003). In contrast, when information search is costly, shifts to simple heuristics that 

do not integrate information have been reported (e.g., Payne, Bettman, & Johnson, 1993; 

Rieskamp & Hoffrage, 1999; Rieskamp & Otto, 2006). This suggests that QuickEst was in a 

disadvantageous position in our experiments, in which all information was presented 

simultaneously on the screen. Another recent study has also not found any empirical support 

for QuickEst (Hausmann, Läge, Pohl, & Bröder, in press). 
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Complexity of the Models 

The models we considered differed in their complexity, that is, their flexibility in 

predicting different behaviors. Though complex models are better in fitting data, they face the 

problem of over-fitting—instead of describing the systematic structure of the cognitive 

process underlying estimation they might fit unsystematic error. To reduce the problems of 

model complexity in model selection we relied on a generalization test and included 

simplified versions of the models. To our surprise the complex standard regression model, 

with a free parameter for each cue, performed better than the simplified versions of the 

regression model. Thus, only by using its full complexity was the regression model able to 

predict people’s estimations.  

However the standard exemplar model (Medin & Schaffer, 1978, adapted by Juslin et 

al., 2003b), with one free parameter for each cue, apparently over-fitted the data. Overall, the 

simplified exemplar model, assuming that all cues are regarded as equally important, 

provided a better account of people’s estimations. Thus the psychological interpretations of 

the attention parameters of the original exemplar model representing the subjective 

importance of each cue should be treated very cautiously. Further the linear condition of 

Study 4 indicates that there might be inference situations in which it becomes necessary to 

assume different attention weights for the cues. This leaves open the problem of predicting a 

priori which of the two exemplar models will predict behavior better.  

The mapping model was the simplest model we considered as it entailed no free 

parameters and we only tested one version of it. Without flexibility, the model is unable to 

capture any specific ways people respond to a particular estimation situation. However, this 

disadvantage can turn out to be an advantage: the lack of flexibility reduces the danger of 

over-fitting, thereby making predictions more robust. This is particularly important because 
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the environments we encounter in everyday life are typically noisy. For instance, 

environments can rarely be expressed by a linear additive function of cues, which could favor 

the unit weight approach taken by the mapping model. In a similar vein, the mapping model 

reduces the information load by ignoring the pattern of the cue values. In environments where 

it is unclear which cues can help to predict the quantity of interest, this might not be a utile 

assumption. However, if a set of predictive cues has been identified, the assumption appears 

psychologically plausible, making the mapping model a good model of human estimations.  

Limitations of the Mapping Model 

What are the boundary conditions of the mapping model’s success in predicting 

quantitative estimations? For one, we showed that the mapping model can be outperformed 

by linear regression when the criterion is a linear additive function of the cues. This touches 

upon a limitation of the mapping model: It relies exclusively on the objects it has encountered 

so far, so that—in contrast to the regression model—it is unable to extrapolate over the range 

of encountered criterion values. Research on function learning has shown that with sufficient 

practice, people are quite adept at learning a variety of one-dimensional functions (Kalish, 

Lewandowsky, & Kruschke, 2004; DeLosh, Busemeyer, & McDaniel, 1997; for a review see 

Busemeyer, Byun, DeLosh, & McDaniel, 1997). However, if multiple cue dimensions have to 

be integrated into a single response, the ability to extrapolate seems to be restricted to linear 

functions. Juslin et al. (in press; see also Karlsson et al., 2004; Olsson et al., 2006) showed in 

several studies that participants did not extrapolate if the cues were non-linearly connected to 

the criterion. Thus, we believe that the mapping model’s inability to extrapolate could to 

some extent mirror human behavior.  

The comparison with the exemplar model in Studies 3 and 4 highlighted other 

boundary conditions for the mapping model. The model assumes that the direction of the cue–
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criterion relationship can be learned from the environment. When this is complicated the 

cues’ direction assumed by the mapping model might not correspond with the subjective 

directions perceived by a decision maker, so that the predictions of the mapping model 

become inaccurate. Likewise, the mapping model does not specify which cues are used for 

the estimation process but includes all cues. In a condition where all cues are good predictors 

of the criterion this is a reasonable strategy, but in situations in which a few good predictors 

have to be picked out of a bunch of irrelevant cues, it will not work well. Further, the 

mapping model relies on a representative sample of criterion values for each category. In the 

case where a cue sum category is only represented by an outlying criterion value of one single 

object, the estimation of the mapping model can be distorted. Finally, another limitation of 

the mapping model is its application to estimation problems with only binary cues. How can 

the mapping model be extended to continuous cues? One way would be to dichotomize 

continuous cues (e.g., by a median split). However this rather crude approach might result in 

an overly strong loss of information. A second possibility would be to reduce a large number 

of cue sum categories to a few manageable categories, for instance, by applying range–

frequency theory (Parducci, 1965).  

Final Conclusion 

Past research on multiple cue judgments has focused on linear regression as a tool to 

analyze human judgments (Brehmer, 1994; Hammond, 1996). Although linear additive 

models can predict the outcome of estimation processes rather well, they have been criticized 

for not capturing the underlying cognitive process (e.g., Gigerenzer & Todd, 1999; Hoffman, 

1960; see also Doherty & Brehmer, 1997). In response to this criticism, alternative estimation 

models have recently been proposed and tested, including exemplar models adapted to 

estimation problems (Juslin et al. 2003b; Medin & Schaffer, 1978), and simple heuristics such 
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as QuickEst (Hertwig et al., 1999). Following up on the criticism, we proposed the mapping 

model as a simple, new cognitive theory and showed that it can successfully predict human 

estimation.  
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Appendix A 

Simulation Procedure  

The simulation study examined in a 9 × 4 (in the J-shaped environment) and 9 × 6 (in 

the linear environment) factor design the impact of the percentage of negative cue values and 

the magnitude of the cue–criterion correlation. The conditions for the simulation were created 

in several steps. First, nine sets of five dichotomous cues with differing percentages of 

negative cue values were created. All cues of a set shared the same percentage of negative cue 

values, varying in steps of .10, between .10 and .90 per cue. The cue values were randomly 

assigned to the 50 objects representing an environment. Second, for each level of percentage 

of negative cue values we created further sets to manipulate the cue–criterion Pearson 

correlation. For each set with the same percentage of negative cue values we created different 

sets with different cue–criterion correlations. The cue–criterion correlations were varied in 

steps of .10 between .0 and .30 in the J-shaped environment (providing four different levels) 

and between .0 and .50 in the linear environment (providing six different levels). Again, all 

cues of a set shared the same correlation. Because the maximal possible correlation decreases 

with increasing percentages of positive cue values in the J-shaped environment, the number 

of factor levels for the correlations was lower in the J-shaped environment. The cue–criterion 

correlations were modified by randomly selecting two objects with different cue values and 

exchanging their cue values if this changed the cue–criterion correlation in the desired 

direction (this step was repeated until the desired correlations were obtained). This resulted in 

a 9 (percentage of negative cue values) × 4 (magnitude of correlation) design in the J-shaped 

environment and a 9 (percentage of negative cue values) × 6 (magnitude of correlation) 

design in the linear environment. In every condition each model was fit to half of the data and 

then tested on the other half. 



Mapping Model of Quantitative Estimation  61 

Appendix B 

Feedback Algorithms 

During the training phase participants got feedback about the accuracy of their 

estimations and the number of points they were earning. The points participants received for 

their estimations were determined by the following algorithms. Any unusual deviation 

exceeding 500mg/l, as might be caused by a typing mistake, was treated as a deviation of 

500mg/l. For each environment a different correction term (e.g., 1,100 for the linear 

environment in Study 1) was used to adjust for the task difficulty. The correction term was 

chosen dependent on the baseline model and determined the magnitude of the deviation for 

which a participant would receive zero points. The magnitude of the deviation that would 

result in zero points is given by the root of the correction term multiplied by 100. Thus in the 

linear environment a participant deviating less than 332 = (1,100 × 100)½ mg/l would earn 

points whereas for a deviation exceeding 332 mg/l, points would be subtracted.  

The equations for the feedback algorithms are defined as  

y = −x²/c + 100, for x ≤ 500 and  

 y = −500²/c + 100, for x > 500,  

where x is the absolute difference between a participant’s estimation and the actual criterion 

value for a given trial, y denotes the number of points that were added or subtracted from the 

participant’s account, and c is the correction term. The correction terms for Study 1 were c = 

1,100 for the linear environment and c = 550 for the J-shaped environment. The correction 

terms for Study 2 were c = 888.58 for the linear environment and c = 536.26 for the J-shaped 

environment. The correction terms for Study 3 were c = 556 for the linear environment and c 

= 512 for the J-shaped environment. 
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Appendix C 

Structure of the Test Sets in Study 1 

In Study 1 the test sets in the two environments differed slightly. Each test set 

consisted of old objects that had appeared in the training phase and new objects that the 

participants had not encountered before (see Tables C1 and C2). 

 

Table C1 

Test Set in the J-shaped Environment in Study 1 

Number Profile Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Exemplar Regression QuickEst Mapping 

1 Old 0 0 0 0 0 23 37 30 23 

2 Old 0 0 0 1 0 33 25 30 40 

3 Old 0 0 1 0 1 34 32 30 34 

4 Old 0 1 0 0 0 75 61 50 40 

5 Old 0 1 0 1 0 41 49 50 34 

6 Old 0 1 0 1 1 130 131 70 71 

7 Old 0 1 1 0 1 52 56 50 71 

8 New 0 1 1 1 1 284 44 70 286 

9 New 1 0 0 0 0 23 559 30 40 

10 New 1 0 0 0 1 29 641 30 34 

11 New 1 0 0 1 0 33 548 30 34 

12 New 1 0 0 1 1 232 629 30 71 

13 New 1 0 1 0 1 34 554 30 71 

14 New 1 0 1 1 1 566 543 30 286 

15 New 1 1 0 0 0 75 584 50 34 

16 New 1 1 0 0 1 242 665 50 71 

17 New 1 1 0 1 0 42 572 50 71 
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Number Profile Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Exemplar Regression QuickEst Mapping 

18 New 1 1 0 1 1 317 653 500 286 

19 New 1 1 1 0 1 438 579 50 286 

20 New 1 1 1 1 0 566 485 50 286 

21 Old 1 1 1 1 1 567 567 500 500 

Note. The profiles are ordered lexicographically according to the cues’ correlation with the 

criterion in the training set. Profiles 1–7 and 21 also appeared in the training set. The 

parameters for the models were set as follows: Exemplar model with one free parameter: s = 

.0006; regression model: intercept = 36.92, c1 = 522.39, c2 = 24.16, c3 = −86.23, c4 = −11.83, 

c5 = 81.25; for QuickEst all cues were included. 
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Table C2  

Test Set in the Linear Environment in Study 1  

Number Profile Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Exemplar Regression QuickEst Mapping 

1 Old 0 0 0 0 0 50 151 200 50 

2 Old 0 0 0 1 0 220 150 200 300 

3 Old 0 0 1 0 1 240 244 200 240 

4 Old 0 1 0 0 0 480 379 300 300 

5 Old 0 1 0 1 0 307 377 300 240 

6 Old 0 1 0 1 1 665 665 700 640 

7 Old 0 1 1 0 1 480 472 700 640 

8 New 0 0 1 1 1 240 243 200 640 

9 New 0 1 1 1 1 738 470 700 780 

10 New 1 0 0 0 1 145 889 200 240 

11 New 1 0 0 1 0 220 600 200 240 

12 New 1 0 0 1 1 608 888 200 640 

13 New 1 0 1 0 1 240 69 200 640 

14 New 1 0 1 1 1 920 693 200 780 

15 New 1 1 0 0 0 480 829 300 240 

16 New 1 1 0 0 1 686 1117 700 640 

17 New 1 1 0 1 0 307 827 300 640 

18 New 1 1 0 1 1 774 1115 700 780 

19 New 1 1 1 0 1 810 922 700 780 

20 New 1 1 1 1 0 920 632 300 780 

21 Old 1 1 1 1 1 920 920 700 920 

Note. The profiles are ordered lexicographically according to the cues’ correlation with the 

criterion in the training set. Profiles 1–7 and 21 also appeared in the training set. The 

parameters for the models were set as follows: Exemplar model with one free parameter: s = 
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.0001; regression model: intercept = 151.32, c1 = 450.09 c2 = 227.37, c3 = −195.09, c4 = 

−1.67, c5 = 287.98; for QuickEst all cues were included.  
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Appendix D 

Comparison of the Standard Exemplar Model, the Simplified Exemplar Model, and the 

Regression Model 

In Study 1 we included simplified variants of the regression model and the exemplar 

model in addition to the standard versions. For the exemplar model we included a version 

with five parameters fit to each participant individually (standard exemplar), a simplified 

exemplar model with only one free parameter (simplified exemplar), and an exemplar model 

with its five parameter values optimized by using the objective criterion value instead of 

participants’ estimations (a priori exemplar). For the regression model we included the 

standard model with six free parameters fit to each participant individually (standard 

regression), a stepwise regression model that only included the cues that received significant 

weights (stepwise regression), and a regression model with the parameter values optimized by 

using the objective criterion value instead of participants’ estimations (a priori regression).  

The parameters of the simplified variants of the exemplar model and the regression 

model were estimated in the same way as for the standard versions. For the a priori exemplar 

model and the a priori regression model the parameters were optimized by using the objective 

criterion values of the training set. The simplified exemplar model and the standard exemplar 

model were fitted on the last three blocks of the training phase with the correct cue and 

criterion values of the training set as the memory base. The best parameters for each 

participant were searched for by using the quasi-Newton optimization method as 

implemented in MATLAB. To avoid local minima, parameters were first derived by a grid 

search with the results serving as the starting values for the subsequent fitting procedure. The 

parameters for the standard regression model and the stepwise regression model were 

obtained by respectively determining a multiple linear regression and a stepwise regression 
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on the last three blocks of the training set. The stepwise regression model reduced the number 

of employed cues substantially; on average only 3.7 (SD = 1.06) cues were used in the linear 

environment and only 1.5 (SD = .77) in the J-shaped environment.  

Naturally, of the different versions of the exemplar and regression models, when fitted 

to the data of the training phase the most complex ones did significantly better than the 

simplified versions. In the crucial generalization test of the test phase, however, the simplified 

exemplar model was clearly superior to the standard version of the exemplar model and the a 

priori exemplar model (all Zs < −2.48, ps < .01). The standard version of the regression model 

in all cases did significantly better than the two simplified versions except in the J-shaped 

environment, where the a priori regression model was equally as good as the standard 

regression model (Z = −.59, p = .57). Here we report the RMSDs of all versions for the test 

phase (see Table D1). 

In Study 2 we again tested all versions of the exemplar model and the regression 

model in the model comparison. But similar to in Study 1, the stepwise regression and the 

regression with the parameters set a priori performed worse than the full model. The 

simplified exemplar model also performed again significantly better than the standard 

exemplar model and the a priori exemplar model. 
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Table D1 

Average Predictive Accuracy of the Models in the Test Set of Study 1  

 Standard 

exemplar 

Simplified 

exemplar 

A priori 

exemplar 

Standard 

regression 

Stepwise 

regression 

A priori 

regression 

Linear environment 

RMSD 219 161 206 166 182 282 

SD 60 40 37 56 58 45 

J-shaped environment  

RMSD 242 166 179 342 359 352 

SD 89 70 73 124 123 72 

Note. The J-shaped environment condition had 30 participants and the parameters determined 

a priori for the exemplar model were s1= .0055, s2 = .0008, s3 = .0088 s4 = .0005, and s5 = 

.0006; the parameters for the regression model were intercept = 36.92, c1= 522.39, c2 = 24.16, 

c3 = −86.23, c4 = −11.83, and c5 = 81.25. The linear environment condition had 29 

participants and the parameters determined a priori for the exemplar model were s1= .0274, s2 

= .0002, s3 = .0049, s4 = .0001, and s5 = .0001; the parameters for the regression model were 

intercept = 151.32, c1= 450.09, c2 = 227.37, c3 = −195.09, c4 = −1.67, and c5 = 287.98. 
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Appendix E 

Model accuracies for the training phase of Study 2. 

In Study 2 all models performed better than the baseline model in predicting 

participants’ estimations for the training phase. Because the training phase consisted of 

unique profiles, we expected the exemplar models to reach a fit close to the participants’ 

accuracy. As anticipated, the exemplar model performed very well, explaining over 74% of 

the variance in the linear environment and 90% in the J-shaped environment. The models’ 

accuracies are reported in Table E1.  
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Table E1 

Model Accuracies in the Training Set of Study 2 

Environment 

 Linear J-shaped 

 Mapping Regression QuickEst Exemplar   Mapping Regression QuickEst Exemplar 

RMSD 192 153 253 138     83 150 144 56 

SD 30 28 18 54     18 11 19 35 

r
2
 .58 .71 .31 .74     .88 .58 .75 .92 

SD 0.12 0.09 0.06 0.14    0.05 0.06 0.11 0.08 
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Footnotes 

1. We chose the median as opposed to the mean to represent the typical criterion value 

of a cue sum category, because it provides a more robust measure of central tendency. 

However, the use of the median implies that in a learning situation in which the decision 

maker gets familiar with the estimation problem the criterion values of all encountered 

objects need to be stored to compute the median. In contrast, using the mean would not 

require storing all criterion values—the criterion value of each new object could be used to 

update the mean. More specifically the mean Mk,n of all encountered objects n falling in the 

cue sum category k can be determined by )()1( 11 −− −⋅+= n,kn,kn,kn,k Mxn/MM , where xk,n 

represents the criterion value of the newly encountered objects and Mk,n-1 represents the mean 

of all objects encountered before. Thus, this updating rule requires less demand on memory, 

because the decision maker only needs to store the mean and the number of objects 

encountered so far. In the reported studies we do not model the learning process of how 

people represent cue sum categories, but it is a task for future research to test whether the use 

of the mean as opposed to the median might have the advantage of providing a better 

description of the initial learning process.  

2. In the case of binary cue information the multiplicative similarity rule of the 

original context model is a special case of a multidimensional scaling approach to modeling 

similarity as used by the generalized context model (Nosofsky, 1992). Thus the exemplar 

model we used is comparable to Nosofsky’s model in how similarity is modeled. 

3. According to Albers (2001), spontaneous numbers are multiples of powers of 10 {a 

10i: a ∈  {1, 1.5, 2, 3, 5, 7}}, where i is a natural number. They form a psychologically 

sensible set of coarse numbers, which increase in their crudeness as the numbers increase in 

magnitude (see also Hertwig et al., 1999). 
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4. The training and test sets in Studies 1 and 2 were selected on the basis of the 

predictions of the standard exemplar model. For the sake of clarity we focus throughout this 

article on the simplified exemplar model with one parameter—the strongest version of the 

exemplar model; however, the simplified versions of the models were only included post hoc. 

Thus the design of Studies 1 and 2 were based on the standard version of the exemplar model. 

5. We used two measures of goodness-of-fit, the RMSD between the estimation and 

the criterion and the coefficient of determination (r²). These two measures are closely related 

but capture slightly different aspects of the model fit. Both are based on the sum of squares 

error (SSE); but whereas the RMSD averages the SSE across the number of estimations, the 

coefficient of determination puts the squared error in relation to the total variance. This 

relationship can be demonstrated by the following equations: 

RMSD = mwSSE LSE /)( , 

r² = (1 - SSE (wLSE))/SST 

where SSE is the sum of squares error; wLSE the parameter that minimizes SSE (w), SST the 

sum of squares total defined by )( meani i yy −∑ , and m the sample size (cf., Myung, Pitt, & 

Kim, 2005, p. 426). 

6. The cue–criterion correlations of some cues fluctuated around zero. For example, in 

the first three quarters of the training phase of the linear condition the third cue was positively 

correlated with the criterion, but in the last quarter of 55 trials it was negatively correlated 

with the criterion.  

7. Additionally, we fitted the exemplar model in the exact same way as reported by 

Juslin et al. (in press) and replicated the reported fits. We chose an iterative fitting procedure 

to model the growing memory base during the training phase, because in Juslin et al. the 
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criterion values were not deterministic but changed for the identical profiles due to a random 

error. In Studies 1, 2, and 3 the iterative fitting procedure was unnecessary due to the 

deterministic criterion values.  

8. Our results for the regression model differ from the results reported by Juslin et al. 

(in press) because we implemented an unconstrained regression model. Juslin et al. restricted 

the intercept to be the minimum criterion value in the training set and all cue weights had to 

add up to 1 (see Juslin et al. in press, Appendix, p. 49). The unconstrained regression model 

performed better in both conditions—in particular in the multiplicative condition our results 

were much better than those reported by Juslin et al. 
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Tables 

Table 1  

Mobile Phone Example for Illustrating the Predictions of the Models  

 Phone A Phone B Phone C Phone D Phone Psi Phone Omega 

Cues 

  Digital camera - - - + + + 

  Internet access - + + - + - 

  Weight - - + + + - 

  Display size  + - - + - - 

Criterion (selling 

price, in dollars) 10 20 30 100 ? ? 

Estimations of the models (in dollars) 

  Mapping  15 15 30 100 100 15 

  Regression 10 20 30 100 110 90 

  QuickEst 15 15 20 50 30 15 

  Exemplar 10 20 30 100 30 43 

Note. A plus sign indicates a positive cue value—for example, the phone possesses a digital 

camera or is lightweight; A minus sign indicates a negative cue value—for example, the 

phone does not possess a digital camera or it is heavy.  
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Table 2 

Models’ Average Accuracies (Root Mean Square Error) in the Simulation Study for the Two 

Environments 

Model J-shaped  Linear 

 Calibration sample Validation sample   Calibration sample Validation sample  

 M SD M SD  M SD M SD 

Mapping 14.3 3.5 15.3 1.6  21.6 5.1 25.9 6.4 

Regression 14 2.4 16.5 1.2  20.9 4.7 27.7 6.3 

QuickEst 14.8 1.7 14.9 1.1  24.8 3.5 28.3 3.5 

Exemplar 12 3.5 15.8 1.7  17.5 4.9 27.2 6.2 

Note. The models were initially fitted to the calibration sample, which contained 50% of the objects; the 

validation sample was used to cross-validate the results and comprised the other 50% of objects. Model 

predictions in the validation sample were made by using the parameter values derived in the calibration sample. 

The variation in model accuracy was higher in the linear environment, as the design in the linear environment 

varied over a higher number of correlations, and magnitude of correlation affected the accuracy of the models. 
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Table 3  

Task Structure of Study 1  

 

Exemplar no. Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 J-shaped criterion  Linear criterion  

1 0 0 0 0 0 20 20 

2 0 0 0 1 0 23 60 

3 0 0 0 0 0 26 80 

4 0 1 0 1 0 28 140 

5 0 0 0 1 0 29 160 

6 0 0 1 0 1 33 220 

7 0 1 0 1 0 34 240 

8 0 0 1 0 1 35 260 

9 0 1 0 0 0 40 300 

10 0 1 0 1 1 41 420 

11 0 0 0 1 0 47 440 

12 0 1 1 0 1 52 480 

13 0 1 0 1 0 62 540 

14 0 1 0 1 1 71 640 

15 0 1 0 0 0 110 660 

16 0 1 0 1 1 160 720 

17 1 1 1 1 1 200 840 

18 0 1 0 1 1 250 880 

19 1 1 1 1 1 500 920 

20 1 1 1 1 1 1,000 1,000 
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Table 4 

Correlations Between Cues and Criteria in Study 1 

 

 

 

 

 Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 

J-shaped criterion .79 .35 .48 .30 .42 

Linear criterion .65 .66 .37 .39 .62 
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Table 5 

Models’ Average Accuracies in Predicting Participants’ Estimations in Study 1  

 

 Linear environment  J-shaped environment 

 Mapping Regression QuickEst Exemplar   Mapping Regression QuickEst Exemplar 

Training set 

RMSD 149 93 168 138     125 98 125 116 

SD 35 26 23 62     41 40 40 37 

r
2
 .75 .89 .69 .81     .77 .77 .76 .76 

SD 0.16 0.07 0.10 0.08   0.17 0.17 0.18 0.17 

Test set 

RMSD 158 166 285 161     139 342 166 166 

SD 49 56 46 40     93 124 101 70 

r
2
 .68 .67 .31 .67     .55 .20 .39 .47 

SD 0.17 0.17 0.07 0.13    0.23 0.23 0.24 0.17 

Note. The number of participants was 29 in the linear environment and 30 in the J-shaped environment. The 

exemplar model had one free parameter. 
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Table 6 

Mean Consistency of the Participants in the Test Set of Study 2 

 Linear  J-shaped 

 r SD RMSD SD         r SD RMSD SD 

Old profiles .89 0.08 129 48      .91 0.10 89 54 

New profiles .67 0.17 146 56  .78 0.17 86 42 

Note. There were 25 participants in the linear environment and 25 in the J-shaped environment.  
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Table 7 

Models’ Average Accuracies in Predicting Participants’ Estimations in the Test Phase of 

Study 2 (Test Set) 

 Linear  J-shaped 

 Mapping Regression QuickEst Exemplar  Mapping Regression QuickEst Exemplar 

  Old 

    RMSD 160 139 244 165     92 156 147 88 

    SD 35 36 33 35     26 9 24 31 

    r
2
 .68 .76 .33 .68     .84 .54 .69 .85 

    SD 0.13 0.11 0.09 0.12    0.11 0.10 0.14 0.11 

  New 

    RMSD 174 172 246 184     100 216 163 148 

    SD 43 58 51 42     58 34 33 24 

    r
2
 .38 .50 .25 .37     .61 .44 .29 .50 

    SD 0.19 0.18 0.14 0.15    0.19 0.14 0.22 0.19 

  Total 

    RMSD 167 154 246 174  99 186 156 118 

    SD 34 44 35 32  13 17 21 18 

    r
2
 .60 .67 .27 .58  .77 .36 .44 .70 

    SD 0.13 0.14 0.09 0.15  0.13 0.08 0.11 0.09 

Note. There were 25 participants in the linear environment and 25 in the J-shaped environment. 
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Figure Captions 

Figure 1.  

Models’ predictions and participants’ estimations in the test phase for (A) the linear 

environment and (B) the J-shaped environment of Study 1. The profiles in the test set are rank 

ordered according to the participants’ average estimations. In the linear environment, profiles 

1, 2, 3, 5, 7, 12, 13, and 21 were included in the test and training set. In the J-shaped 

environment, profiles 1, 2, 3, 4, 5, 7, 8, and 21 were included in the test set and the training 

set.  

 

Figure 2.  

Models’ predictive accuracies for the new profiles of the test phase of Study 3. The average 

root mean square deviation (RMSD) between the models’ predictions and the participants’ 

estimations for the linear and the multiplicative condition is depicted. The error bars represent 

the 95% confidence intervals.  
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Figure 1. 
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Figure 2. 
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