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Abstract

The presence of turbulence in the circulatory system is thought to lead to cardiovascular diseases.

Despite its importance, turbulence transition in cardiovascular flows is not well understood. In

particular, it is unclear which one of the numerous complex features of blood flow (unsteady driving,

rheology, flexible walls, complex geometry...) is the dominant one in terms of turbulence transition.

The main aim of this thesis is to single out the effects of one of these features: the unsteady driving

of the flow.

Specifically, the case of a pulsatile driven, Newtonian fluid, in a rigid smooth pipe of circular

cross-section is considered, referred to as pulsatile pipe flow. Two main questions are investigated:

whether and how laminar pulsatile pipe flows transition to turbulence, and how turbulence behaves

once triggered. Pulsatile pipe flows in the transitional regime, with a mean 1000 ≲ Re ≲ 3000, are

considered. Apart from single harmonic pulsations, different waveforms are considered, including

waveforms relevant for physiological flows.

By combining linear transient growth and stability analyses, it is demonstrated that, at intermediate

pulsation frequencies (4 ≲Wo ≲ 20) and moderate to high pulsation amplitudes (0.5 ≲ A ≲ 3), the

laminar pulsatile pipe flow is highly susceptible to large disturbance amplification. Coincidentally

the blood flow in the human aorta falls in this parameter regime. The underlying mechanisms

related to this susceptibility are identified, and their dependence with respect to the flow parameters

explored. Additionally, it is shown that, specific features of the driving waveform can enhance

these mechanisms. In particular, bulk velocities with steep acceleration/deceleration phases and,

counter-intuitively, with longer low velocity phases promote turbulence transition.

The turbulence behavior in this broad parametric space is studied with the use of a large number

of direct numerical simulations. As part of this thesis a new C-CUDA code was developed in order

to perform fast direct numerical simulations. The code outperforms state-of-the-art CPU codes in

terms of computing time and computing resources. With the use of a causal analysis, it is shown

that turbulence production increases due to the same mechanisms that render the flow susceptible

to transition. Finally, a reduced-order model is developed to approximate the behavior of turbulence

in pulsatile pipe flow reasonably well.

In sum, this thesis describes the way the flow is more likely to transition to turbulence in this

parametric regime, and the behavior of turbulence once triggered. The results presented here

suggest that blood flow in the larger arteries is susceptible to transition due to the pulsatile beating

of our hearts alone.
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Abstract (German)

Es wird oft vermutet, dass das Vorhandensein von Turbulenz im Blutkreislauf zu Herz-Kreislauferkran-

kungen führen kann. Trotz der Bedeutung des Turbulenzüberganges in kardiovaskulären Strö-

mungen, ist dieser jedoch nur wenig verstanden. Insbesondere ist unklar, welcher der zahlreichen

komplexen Merkmale von Blutströmungen (instationäre Antrieb, Rheologie, flexible Wände, kom-

plexe Geometrie usw.) für den Turbulenzübergang maßgeblich ist. Das Hauptziel dieser Doktorarbeit

ist es, die Auswirkungen eines dieser Merkmale herauszuarbeiten: den instationären Antrieb der

Strömung.

Konkret wird der Fall eines pulsierend angetriebenen Newtonschen Fluids in einem starren und

glatten Rohr mit kreisförmigem Querschnitt betrachtet. Dieser Fall wird als pulsierende Rohrströ-

mung bezeichnet wird. Zwei Hauptfragen werden untersucht: ob und wie laminare pulsierende

Rohrströmungen in Turbulenz übergehen und wie sich Turbulenz verhält, sobald sie ausgelöst

wurde. Dafür werden pulsierende Rohrströmungen im Übergangsbereich mit einem Mittelwert

von 1000 ≲ Re ≲ 3000 betrachtet. Abgesehen von harmonischen Pulsationen mit einer einzigen

Frequenz, werden verschiedene Wellenformen betrachtet, darunter solche, die für physiologische

Strömungen relevant sind.

Durch die Kombination von linearen transienten Wachstums- und Stabilitätsanalysen wird gezeigt,

dass die laminare pulsierende Rohrströmung bei mittleren Pulsationsfrequenzen von (4 ≲Wo ≲ 20)
und mäßigen bis hohen Pulsationsamplituden (0.5 ≲ A ≲ 3) besonders anfällig für große Störungsver-

stürkungen ist. Zufälligerweise fällt die Blutströmung in der menschlichen Aorta in diesen Parame-

terbereich. Die dieser Anfälligkeit zugrunde liegenden Mechanismen werden identifiziert und ihre

Abhängigkeit von den Strömungsparametern untersucht. Außerdem wird gezeigt, dass bestimmte

Merkmale der treibenden Wellenform diese Mechanismen verstärken können. Insbesondere steile

Beschleunigungs-/Verzögerungsphasen der mittleren Geschwindigkeit und - kontraintuitiv - längere

Phasen niedriger Geschwindigkeit begünstigen den Turbulenzübergang.

Das Turbulenzverhalten in diesem breiten Parameterraum wird mit Hilfe einer großen Anzahl

direkter numerischer Simulationen untersucht. Im Rahmen dieser Arbeit wurde ein neuer C-CUDA

Code entwickelt, mit dem schnelle direkte numerische Simulationen durchgeführt werden können.

Der Code übertrifft den Stand der Technik in Bezug auf Rechenzeit und Rechenressourcen. Mit Hilfe

einer Kausalanalyse wird gezeigt, dass die Turbulenzerzeugung durch dieselben Mechanismen zu-

nimmt, die die Strömung für den Übergang anfällig machen. Schließlich wird ein Modell reduzierter

Ordnung entwickelt, das das Verhalten von Turbulenzen in pulsierenden Rohrströmungen recht gut

approximiert.

Insgesamt wird in dieser Arbeit beschrieben, wie die Strömung in diesem Parameterbereich eher

in Turbulenz übergeht und wie sich die Turbulenz verhält, sobald sie ausgelöst wurde. Die hier

vorgestellten Ergebnisse deuten darauf hin, dass der Blutfluss in den größeren Arterien allein durch

das pulsierende Schlagen unseres Herzens anfällig für einen Turbulenzübergang ist.
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1 Introduction

Human kind has always been fascinated by the behavior of the skies, rivers and oceans. Proof

of that, is the prevalence and importance of sky, river and ocean deities in pretty much every

religious pantheon, like: Enlil for the Mesopotamian, Zeus and Poseidon for the Greek or Thor for

the Norse. However, it was not spiritual beliefs, but rather fluid dynamics knowledge what allowed

our ancestors to navigate the seas and the oceans by harnessing wind power with sails. It was the

knowledge of sea currents, what allowed Columbus to re-discover (what we know today as) the

American continent. And it was the use of fluid dynamics what allowed the Wright brothers to

perform the first manned controlled flight a little bit more than a century ago. In sum, humankind

has learned for millennia how to predict and even influence fluid mechanics. This knowledge has

greatly impacted our history, and fueled innovations that have taken societies to new technological

advances. But, there are still many aspects of fluid dynamics that we still do not understand.

Fig. 1.1.: Airbus A320 flying over the Atlantic ocean and turbulent clouds. The photo was taken on the 22nd
of December of 2021.

A major open problem is turbulence. To start with, turbulence does not have a clear definition.

Instead, it is identified according to a series of characteristics [Pop00; Dav15]. The two most

important ones are that turbulence is chaotic, and that it displays a wide range of motion scales. The

first means that, infinitesimal changes in the initial conditions have large effects in the subsequent

motions, and the second that, the velocity field fluctuates in a wide range of magnitudes in time and

space. These characteristics make turbulence extremely difficult to predict and highly dependent

on the initial conditions and the geometry of the flow. Despite the difficulty to study turbulent

flows, there is an urgent need to improve our understanding of turbulence, from how flows become

turbulent (the problem of turbulence transition) to how turbulence behaves once triggered. After all,

turbulent flows are related with increased friction, and therefore, with energy losses. Some estimates
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suggest that turbulence is behind the 10% of the yearly energy losses worldwide [Blo18]. Moreover,

turbulence plays an important role in other physical set-ups that are of great scientific interest.

It plays a major role in weather prediction, and in larger scale phenomena like solar ejections or

accretion disks of black holes [Dav15; BH98].

Turbulence also has a direct impact on our health. The presence of turbulence, or at least irregular

flow patterns, in cardiovascular flows has been long linked with cardiovascular diseases [FH64;

CG05; GN10]. The reason is that, irregular flow patterns, and/or turbulence, exert additional shear

stresses locally, which can lead to the formation of injuries in large arteries [MAI99] and eventually

serious health issues like aneurysms. Despite its importance, it is still not clear how turbulence

emerges and behaves in cardiovascular flows. There are several reasons for this:

1. The flow behavior in the larger arteries is difficult to measure, specially in in-vivo experiments

[Gül+18; Cor+21].

2. According to the typical parameters observed in cardiovascular flows (more on this below)

they lay in the transitional regime [Bür+12; Les+10; Sta+11]. In this regime, flows can

either be laminar (ordered and predictable), turbulent (disordered and unpredictable) or

intermittently transition between the two.

3. Cardiovascular flows are extremely complex. The flow is influenced by patient specific

physiological traits, by blood rheology, by the geometric complexity of the cardiovascular

network [Gül+18], by fluid-structure interactions between the vessel walls and the flow

[RB20]; and by the unsteady driving force of the pumping heart, see fig. 1.2.

The main motivation of this thesis is to determine if flows in the larger arteries may be susceptible

to transition or not, and if they are, how turbulence behaves once triggered. The idea is to consider

a highly simplified model of cardiovascular flows: the ideal case of a Newtonian fluid in a smooth,

straight, rigid and cylindrical pipe, thereby ignoring all the complex features of cardiovascular

flows, except for the unsteady driving of the flow. With this simplification, I can focus on just one

characteristic, analyze it in detail and achieve a deep understanding on the most important effects

the unsteady driving has. Future studies can benefit from this thesis, and combine my results with

their analyses of other features: such as rheology, fluid-structure interactions or the effect of the

geometry.

There are several reasons to consider the unsteady driving and not other complex features. Here I

name three. First, our understanding on turbulence transition and behavior in pipe flow driven at a

steady rate has greatly improved in the last century, see Avila et al. [ABH23] for a recent review. The

idea is to exploit this knowledge and extend it to unsteadily driven flows. Second, flows driven with

time-dependent forces are ubiquitous. Two examples are: the weather system that is driven mostly

by a time dependent solar radiation [AO18], and turbulence in flapping wings [CL16]. Third, in

larger vessels, other effects like rheology or the geometric complexity are expected to play a smaller

role. In the next section, I justify the reasons to ignore them and to ignore the compliance wall

effects.

1.1 From cardiovascular to pulsatile pipe flow

Blood is a complex fluid, that shows shear-thinning, viscoelastic and other Non-Newtonian behaviors

[Ber+21]. Moreover, it is heterogeneous, and carries, apart from other cells, red blood cells, that

conform 40 − 45% of the total blood volume. Red blood cells vibrate, move and interact with each

other, forming stacked structures like rouleaux, see fig. 1.2 (center), that increase the friction forces
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Fig. 1.2.: Three examples of complex features of cardiovascular flows. First on the left: flow trajectories
measured in a model of a human aorta with stenosis by the group of M. Holzner [HZ]. Second
on the left: rouleaux structures formed by stacked red blood cells [Bäu+99]. To the right: the
Windkessel effect: the flow deforms the aorta, that stores some volume of fluid during the heart
systole and then releases it during diastole [MZJ18].

in the flow [Bäu+99]. These structures have yield stresses and can be broken down by the flow,

releasing energy and momentum carried by the red blood cells. Unfortunately, currently we do not

have the computer capabilities to model all these complex multiscale features, let alone model them

together with the fluid movement. Fortunately, in the larger vessels, these features are expected to

play a small role [Kar+14] and are typically considered as part of the viscous effects. Moreover, the

observed velocity of blood in the larger arteries is small enough to assume that compressible effects

are negligible [Bür+12]. Therefore, here, and in the rest of my thesis, I only consider incompressible

flows of Newtonian fluids.

The aorta is the vessel where turbulence is expected to be more prominent [CL13], since blood flow

in the aorta has the highest flow velocity observed in the circulatory system. The human aorta can

be split in different sections: the ascending aorta, the aortic arch, the descending aorta and the

supraceliac aorta. (See a representation of the human aorta at the end of this chapter in figure 1.10).

The most critical section, in terms of cardiovascular diseases, is the descending aorta [Mal+16].

Incidentally this section is relatively straight, that is why I model it as a straight pipe. Also, although

the descending aorta has a certain roughness, that worsens with age and diseases [XT10; Sco+20],

here I model it as a smooth pipe. In order to consider the effect of geometric imperfections in

turbulence transition, at some point of this thesis I model the effect of individual roughness elements

at the wall, see §2.1.5.

Note that the endothelial cells that cover the vessel walls can actually freely move and adapt to the

flow [FBF20]. This behavior is ignored in this thesis, and the flow is assumed to vanish at the walls.

Another geometric feature, here ignored, is the flow bifurcations in the aorta. I understand that both

features should be considered in future analyses, as they have an impact on the boundary conditions

and behavior of the flow as a whole. I also assume the flow to be fully developed at the pipe inlet.

This is not the case for cardiovascular flows [Ha+16], and future analysis should consider the effect

of different inlet conditions.
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Fig. 1.3.: Geometric definition of the problem. The rigid pipe of circular cross-section is represented with
a grey surface. The cylindrical coordinates of the problem are: x as the axial and stream-wise
direction, ¹ is the azimuthal direction and r the radial and wall normal direction. Find with surfaces
and arrows the instantaneous laminar profiles of a pulsatile pipe flow at Reynolds number (see
eq. (1.9)) Re = 2000, Womersley number (see eq. (1.17)) Wo = 11 and pulsation amplitude (see
eq. (1.16)) A = 1, at different phases of the period. Brighter colors mean higher ux axial velocities.

Lastly, it is widely known that fluid-structure interactions between the flexible vessel walls and blood

flow are of major importance in arterial flows. In fact, as blood travels from the heart to the smaller

vessels, the Windkessel effect dampens the harmonic components of the flow, and makes it steady

[MZJ18], see fig. 1.2(right). The aorta is a flexible vessel and its stiffness depends on gender, age

and health [Mal+16]. Stiffer aortas have been associated with cardiovascular diseases, as they

are suspected to affect the behavior of the flow and stresses at the wall. Despite its importance,

it is currently extremely difficult to correctly model fluid-structure interactions, specially if other

features like the unsteady driving are considered. Here I adopt a bottom-top approach and ignore

the fluid-structure interaction effects on transition. I believe that, by obtaining a deep understanding

on the effects of the unsteady driving, future analysis can build up from my results and extend the

analysis to pulsatile flows bounded by flexible walls.

In this thesis, pulsatile pipe flow refers to the incompressible flow of a Newtonian fluid in a

smooth, straight and cylindrical pipe driven with a time dependent bulk velocity. See a graphical

representation of the problem considered here in figure 1.3.

The rest of the chapter is organized as follows. First a methodology to study shear flows is presented,

§1.2. Then, a short survey on methods to study turbulence transition and turbulence in shear

flows §1.3 & 1.4 is included. The description then offers a state of the art analysis of transition

and turbulence behavior in pulsatile pipe flows §1.5. At the end of the chapter, §1.6 the questions

addressed in this thesis are clearly stated together with a short description of the rest of the

chapters.

1.2 A methodology to study fluid dynamics

The physics discipline of fluid dynamics is fortunate enough to have a successfully tested and

clearly defined set of equations of motion: the Navier–Stokes equations. Here I quickly go over the

philosophy by which these equations were originally derived.

Firstly, the fluid is assumed as a continuum. Therefore, a property ϕ of the fluid, like the velocity uuu
or the density Ä, is described as a field. This means that, the property is assigned a unique value at

each position xxx and time t, ϕ (xxx, t).
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Just as a quick word about notation, in this thesis, bold quantities denote vectors. For instance, in

cylindrical coordinates the position is defined as xxx = [r, ¹, x] and the velocity as uuu = [ur, uθ, ux]. The

vorticity field is defined as

ÉÉÉ = ∇ × uuu. (1.1)

Take an infinitesimally small lump of fluid. The movement of the lump of fluid is affected by body

forces fBfBfB and surface forces fSfSfS . By invoking Newton’s second law, the linear momentum of the

lump is governed by:

D (Äuuu)

Dt
= fBfBfB + fSfSfS , (1.2)

where

D•
Dt

=
∂•
∂t

+ uuu · (∇•) , (1.3)

is the material derivative. The body forces act on the whole volume of the fluid lump, and can be for

instance gravity or magnetic forces. The surface forces can be further split between pressure forces

and friction forces. The latter, that we know as viscous forces, have a molecular origin and must be

modeled [Dav15]. Here I model the viscous forces as linearly proportional to the shear rate, what is

known as a Newtonian fluid. The constant of proportionality is the viscosity ¿, that is an emergent

property of the fluid. It quantifies the molecular interactions that result in the macroscopic friction

(viscous) forces of the flow.

Together with Newton’s second law, the fluid lump must also satisfy mass and energy conservation.

From these conditions, two additional equations can be defined, that, together with Newtons

second law and a model for the fluid, allow for the study of the fluid energy, density and velocity

evolution.

The first to define such a model was Euler [Eul52]. Instead of modeling the friction forces of the

fluid, he ignored them all-together and obtained (what we now know as) the Euler equations. Much

later, Navier and Stokes used the Newtonian fluid model for the viscous forces, and obtained a set of

second-order in space, and first order in time, non-linear partial-differential equations that we know

today as the Navier–Stokes equations (NSE). The accuracy of the NSE has been proven time and

time again comparing experiments and theory/simulations. They are the most successful model we

currently have to study fluid dynamics.

In this thesis the incompressible flow of a Newtonian fluid with density Ä and kinematic viscosity ¿
in a pipe with circular cross section, driven with a pulsatile bulk velocity constraint, is studied. The

linear momentum of the flow is governed by the NSE:

∂uuu

∂t
+ (uuu · ∇)uuu = −∇ · p+ ¿∇2∇2∇2uuu+

1

Ä
fBfBfB, (1.4)

where p = P/Ä is a modified pressure; and fBfBfB is any body force acting on the flow. The flow velocity

must also satisfy the divergence free condition:

∇ · uuu = 0. (1.5)

Despite coming from simple physical principles (mass and linear momentum conservation) the

NSE are extremely difficult to solve. In order to effectively use them, they are either simplified, or
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numerically integrated. By this I mean that the NSE are discretized in space, and are integrated at

discrete time steps using time-marching algorithms. In the past, human calculators were used to

perform this integration. Nowadays, we write numerical codes that run in computers and that do

the calculations for us. Direct Numerical Simulations (DNS) refer to the numerical integration of

the full NSE, without the inclusion of (turbulent) models or other simplifications to the equations.

Computational Fluid Dynamics (CFD) is an active research area that seeks to improve the accuracy

and the efficiency of numerical codes to numerically solve fluid dynamic problems. As part of

this thesis I developed a C-CUDA code that runs in Graphical Processing Units GPUs to numerically

integrate the shear flow in a rigid, straight, smooth and cylindrical pipe. The code outperforms

existing CPU codes for similar (in terms of spent energy) computational resources, with the same

accuracy. It has allowed me to perform DNS on a broad parametric space in a fast way. Find more

about the methods and the code in Chapter 2.

1.2.1 Statistically steady pipe flow

In the following sections, the case of statistically steady pipe flow (SSPF), i.e. pipe flow driven in a

steady manner, is given a special attention. This is because, as I show in this thesis, the transitional

regime of pulsatile pipe flow is very similar to the transitional regime of SSPF in a broad parametric

regime. Moreover, it was the problem of transition to turbulence in pipe flow what originally

motivated most of the studies on turbulence transition.

In the case of laminar pipe flow, the velocity UUU = [0, 0, UHP (r)] has only a stream-wise component,

that is only radially dependent. This unidirectional velocity field is known as the Hagen-Poiseuille

flow, and it has an analytical solution. Let U be the time-averaged bulk velocity and D the diameter

of the pipe, the Hagen-Poiseuille profile is given as:

UHP (r) = 2U

(

1 −
(

2r

D

)2
)

. (1.6)

The mean shear of the laminar profile is defined as the derivative of the velocity profile with respect

to the (radial) wall-normal direction: dUHP

dr .

Note that in the case of a flow in a pipe with length Lx, the bulk velocity is defined as:

ub = ïuxðV =
4

ÃD2Lx

∫ 2π

0

∫ D/2

0
uuu · exexexrdrd¹dx, (1.7)

where exexex is the unit vector in the (axial) stream-wise direction. The time averaged bulk velocity can

be computed as:

U = ïubðt =
1

t

∫ t

0
ubdt. (1.8)

Angled brackets denote averaging with respect to one or more spatial directions, time or pulsation

phase. In this case V stands for the pipe volume and t for time.

I will use the time-averaged bulk velocity and pipe diameter as the characteristic velocity and length

of the flow in the rest of my thesis.
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1.3 Turbulence transition in shear flows

Flows with a mean velocity that is predominantly one-dimensional, are known as shear flows

[Dav15]. They are usually related with the presence of a force and/or a boundary condition, like

a wall, that result in a mean shear in the flow. Several canonical flows are shear flows, such as

channel, Taylor-Couette, boundary layer or, the main focus of this thesis, pipe flow.

In this section I review the mechanisms by which shear flows transition to turbulence, and the main

methods to study transition.

1.3.1 Reynolds experiment

The famous experiments of Reynolds [Rey83] kick-started the study of turbulence transition 140

years ago. In his experiments, Reynolds observed how, at low bulk velocities, pipe flow remained

ordered and ’featureless’ (what we now know as laminar). As he increased the bulk velocity of

the flow, he noticed that some ’flashes’ of disordered flow were intermittently triggered. At these

velocities, the flow remained ordered (laminar) except for the regions with turbulent flashes. We

now know this regime as the transitional regime. By increasing the velocity, after a certain value,

the flashes elongated rapidly and contaminated the whole pipe with disordered flow, what we know

today as fully turbulent flow. His experiments raised many questions about turbulence transition

that took more than a century to solve [ABH23], and others that have not been answered yet.

Reynolds found that, what regime to expect: laminar, transitional or turbulent, depends on a single

non-dimensional parameter:

Re =
UD

¿
, (1.9)

that we know today as the Reynolds number.

The Reynolds number compares the viscous forces with the inertial (advective) forces of the flow. It

can also be understood as a ratio of time scales. The numerator represents a viscous time scale in

the form D2/¿ and the denominator the advective time scale D/U . This means that, if Re k 1 the

averaged inertia processes on the flow occur much faster than the averaged viscous processes.

Reynolds identified that at low Re the flow in the pipe is always laminar. As he increased the velocity,

and thus Re, the flow becomes transitional and at some point turbulent at Re ≳ 2000. Reynolds was

unable to accurately determine the critical Rec of pipe flow and suggested that would be around

Rec ≈ 2000. The critical Reynolds number sets the boundary between turbulent flow at Re > Rec

and laminar flow at Re < Rec. The critical Reynolds number of pipe flow was determined almost

130 years after Reynolds experiment by Avila et al. [Avi+11], and it is now fixed at Rec ≃ 2040,

1.3.2 Supercritical transition (modal growth)

After Reynolds experiments, many researchers suspected that, at a sufficiently high Re, laminar pipe

flow becomes unstable. In that case, infinitesimal perturbations in the experimental set up, instead

of decaying, grow in magnitude, saturate and trigger turbulence in the flow. In order to check if

infinitesimal perturbations do grow in magnitude, researchers studied the linear stability of shear

flows [Eck10].
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In the framework of linear stability, first a given solution/state of the system is selected. In the case

of shear flows this usually corresponds to the laminar profile UUU . Then, the equations of motion are

used to describe the behavior of perturbations around this equilibrium condition. The perturbations

are assumed to be infinitesimally small, and therefore, the equations of motion can be linearized

about the equilibrium condition. In the case of a steady UUU , this results in a linear problem with the

form:

∂u′u′u′

∂t
= Au′u′u′, (1.10)

where u′u′u′ is the velocity perturbation, and A a linear operator on u′u′u′, that depends onUUU and Re. In the

case of fluid dynamics, the operator A corresponds to the linearized NSE about the laminar profile UUU
(more about this in §3.1). If the real part of any of the eigenvalues of A is positive, perturbations can

grow exponentially in magnitude. This is commonly referred to as modal growth of perturbations,

as they exponentially grow through linear instabilities. Here modal refers to the mode defined by

the eigenvector of the unstable eigenvalue.

Perturbations that exponentially grow at some point will reach a magnitude big enough to trigger

non-linear effects and then turbulence. This kind of transition is known as supercritical.

Determining the eigenvalues of the operator A is a difficult task, specially without the use of

numerical methods. Therefore, some researchers tried to develop formulas or expressions that could

indicate whether a laminar flow is unstable or not. Rayleigh considered the case of inviscid flows.

Using the Euler equations, and for Cartesian coordinates, he determined that, a necessary condition

for a laminar profile to be inviscidly unstable is that it must have at least an inflection point [Ray95].

Inflection points are positions in the laminar profile where the mean shear is maximum or minimum.

Later Fjørtoft [Fjø50] found that this condition applies only if there is a single inflection point in

the flow profile, and only if it satisfies a certain condition, see §4.2.1 for more details. Indeed,

the presence of inflection points has been historically linked with turbulence transition. A notable

example is the Kelvin-Helmholtz instability, that is related with the existence of inflection points in

the flow profile [PHC78]. In the case of cylindrical coordinate, there exists an equivalent condition

also related with the existance of inflection points [BG62].

However most laminar shear flows, like the parabolic Hagen-Poiseuille profile, do not have inflection

points, but still transition to turbulence at finite Re. To determine the stability of most shear

flows, one needs to inevitably take into account the viscous effects and obtain the eigenvalues of

the operator A in equation (1.10). One can find in the literature the critical Re at which several

canonical flows become unstable. Two notable examples are: plane Poiseuille flow Rec g 5772.2
and the Blasius boundary layer flow, with Rec g 519.4 (table 3.1 in Schmid & Henningson[SH00]).

In the case of boundary layer flow, at sufficiently high Re the laminar profile becomes susceptible to

the growth of a certain type of perturbations, Tollmien-Schlichting waves [Tol35; Sch33], no matter

how small they initially are. They grow, saturate and lead to a supercritical turbulence transition.

Even after considering viscous effects, the Hagen-Poiseuille profile is linearly stable, at least up to

Re ≈ O
(

107
)

[MT03], while transition is observed at Re ≈ 2000. This is also observed in plane

Couette flow that, despite being linearly stable, transitions to turbulence at finite Re [DHB92]. Other

shear flows typically experience turbulence transition at Re far lower than what their corresponding

linear stability analysis suggests like channel flow [Cha02] or the Blasius boundary layer flow

[BSH04]. Obviously the linear stability theory is not able to explain transition in all of these cases.
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Fig. 1.4.: Graphical representation of non-modal growth due to the superposition of two non-orthogonal
vectors. To the left, from top to bottom, the time evolution of the perturbation velocity. To the right
the energy growth. Results correspond to u′u′u′ (t) = a1Φ1Φ1Φ1 exp (¼1t) + a2Φ2Φ2Φ2 exp (¼2t) for a1 = a2 = 1,
¼1 = −1, ¼2 = −10, Φ1Φ1Φ1 = (−3, 1) and Φ2Φ2Φ2 = (3, 0).

1.3.3 Subcritical transition (non-modal growth)

The failure of the linear stability analysis to explain transition to turbulence seemed to contradict

the theoretical works of Orr and others. They had established that the only way perturbations can

grow on top of a laminar profile is through linear mechanisms [SH00]. Yet, tiny perturbations grow

and trigger turbulence in flows that are stable, and they do so without the presence of (linear)

instabilities. What was wrong: the theory or the experimental evidence?

It turns out that, for most shear flows, the A operator in equation (1.10) is non-normal. This means

that the eigenvalues of A do not need to be orthogonal to one another. This has a profound impact

on the growth of perturbations on top of the laminar profile, and it is best understood with an

example.

Let me consider a profile without linear instabilities. In that case, the eigenvalues of the correspond-

ing operator A in equation (1.10) have a negative real part ℜ (¼j) < 0. For the sake of simplicity I

will assume that all the eigenvalues are real valued. Let me order the eigenvalues according to their

real part so: ¼j>2 < ¼2 < ¼1 < 0, and let ΦΦΦj be the corresponding eigenvectors. The time evolution

of any perturbation with initial magnitude u′u′u′
0, can be described as:

u′u′u′ (t) =
∑

j

ajΦjΦjΦj exp (¼jt) , (1.11)

where aj depend on the shape of the initial condition. The value of the perturbation can be

approximated with the two leading eigenvalues as:

u′u′u′ (t) ≈ a1Φ1Φ1Φ1 exp (¼1t) + a2Φ2Φ2Φ2 exp (¼2t) . (1.12)

Since both eigenvalues are smaller than 0, the flow is stable, and the magnitude of perturbations

will asymptotically decay. However, if the angle between the two eigenvalues is bigger than 90◦, see

top-left of figure 1.4, and for certain initial conditions, perturbations can in fact grow in magnitude

during finite times and then decay. See in the figure how, while ΦΦΦ1 exp (¼1t) and ΦΦΦ2 exp (¼2t)
decrease in magnitude, the magnitude of u′u′u′, represented by the length of the vector, actually
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increases transiently. See in figure 1.4 (right), how the energy of the perturbation grows until it

reaches a maximum usually denoted as :

G = max
t

u′u′u′ (t) · u′u′u′ (t)

u′u′u′
0 · u′u′u′

0
, (1.13)

and then quickly decays. In the case of sear flows, the maximum energy growth G of perturbations

scales algebraically with Re: G ∝ Re2 [SH00].

Using this linear mechanism, perturbations can grow on top of laminar flows for finite times. This

type of growth is referred to as non-modal or transient growth, as it does not come from modal

instabilities of the laminar profile and is only found during finite time spans. Perturbations that

have a sufficiently big magnitude grow through this mechanism and at some point trigger non-

linear effects and turbulence. This type of transition is known as subcritical transition, as it is

inevitably related with the initial magnitude of the perturbation. The minimal (initial) magnitude

the perturbations need to trigger turbulence is known as the ’minimal seed’, [PK10; Che+11] and it

is an active area of research in transition to turbulence. Usually, the higher the Re is, the smaller

in magnitude the minimal seed becomes. It must also be noted that some perturbations are more

likely than others to trigger turbulence, i.e. reach a higher G for the same initial magnitude. The

determination of which perturbations are optimal, for which kind of flows, is also an open research

area.

Interestingly, Reynolds hypothesis for turbulence transition was close to this phenomena. He

wrote:

’This showed that the steady motion was unstable for large disturbances long before the

critical velocity was reached . [...] But the fact that in some conditions it [the laminar flow]

will break down for a large disturbance, while it is stable for a smaller disturbance shows

that there is a certain residual stability so long as the disturbances do not exceed a given

amount’ (Reynolds 1883 [Rey83]).

Basically, Reynolds suspected that transition in pipe flow does not happen due to linear instabilities,

but due to sufficiently large perturbations.

In summary, it is due to transient non-modal growth, and not due to modal instabilities, that

pipe flow transitions to turbulence [Col65]. Perturbations can grow on top of the laminar profile

thanks to non-modal mechanisms. If the initial energy of the perturbation and Re are high enough,

perturbations will grow and eventually trigger turbulence. In the case of pipe flow, the optimal

perturbation is a pair of stream-wise constant vortices [SH94]. See a representation of the stream-

wise constant perturbation in figure 1.5. Note that the non-modal growth is a linear mechanism,

which does not contradict the theoretical works of Orr and others.

Mechanisms for non-modal growth

Some of the linear mechanisms behind non-modal growth are found in several shear flows. Here we

mention the two most important ones:

• Lift-up. This type of mechanism is found in the case of perturbations that have velocities

perpendicular to the shear of the laminar profile. The perturbations extract energy from the

shear and energize stream-wise perturbations [EP75]. If the perturbation velocity is in the

wall normal direction, this mechanism is called the lift-up mechanism, see fig. 1.5.
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Fig. 1.5.: (a) cross section view of the optimal stream-wise coherent perturbation in SSPF at Re = 2000. The
snapshot corresponds to the instant of time where the energy of the perturbation is maximum.
With colors the axial perturbation velocity normalized with the perturbation velocity at t = 0. (b)
the energy growth of the perturbation with respect to time.

• Orr-mechanism. This mechanism is found in perturbations that are initially backwards-leaning

with respect to the shear of the laminar profile. These perturbations are tilted forward, until

they are normal to the mean shear. This happens by the action of continuity, and releases high

cross-shear velocities when the perturbations are finally normal to the mean shear [Orr07;

Cha+16].

How to determine the non-modal growth

In the literature one finds several methods to obtain the perturbations that yield the maximal

non-modal, also known as transient, growth. The majority of the methods share a similar idea: to

solve an optimization problem and obtain the initial u′u′u′
0 that maximizes G in equation (1.13). They

differ in the type of constraints they impose to the problem.

One method imposes that the perturbation u′u′u′ evolves according to the linearized NSE [BBS08;

XSA21]. This is the method I use in this thesis to compute the optimal perturbations on top of

pulsatile pipe flow. The method is relatively fast and robust, which allows me to compute the optimal

perturbation at several flow parameters. More on this, in Chapters 3 & 4. Unfortunately the method

does not allow for the calculation of the minimal seed, as perturbations here are assumed to be

infinitesimally small. To obtain the minimal seed one needs to consider the full non-linear NSE.

Another method imposes that the perturbation u′u′u′ evolves according to the NSE [Ker18]. This

method is able to compute the minimal seed for turbulence transition. It is, however, much more

computationally expensive and not that robust.

In the recent years, a new method called the optimally time-dependent modes [BS16] has also

been used to compute the optimal perturbation on top of time dependent flows. Instead of solving

the optimization problem, the method generates a time-evolving orthonormal basis, capable of

identifying transient growth and instabilities in a time-evolving flow. Recently this framework has

been successfully applied to pulsatile Poiseuille flow [Ker+21] and time dependent solutions of

Boundary Layer flows [Ben+23]. The first optimally dependent mode actually corresponds to the

optimal perturbation of the flow obtained with the first optimization problem described above. As

drawbacks, this method does not return the minimal seed, it can be computationally costly and more

importantly, apart from the first mode, the rest of modes do not have a physical interpretation.
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Fig. 1.6.: Visualization of a turbulent puff in a direct numerical simulation of statistically steady pipe flow at
Re = 2000. Grey denotes low axial velocity streaks with −0.4U with respect to the Hagen-Poiseuille
profile and in red/blue positive/negative axial vorticity with ±3U/D.

1.4 Turbulence in shear flows

Independently of the type of growth of perturbations, modal or non-modal, once they reach a

sufficiently high magnitude, they trigger non-linear effects and if Re is high enough, turbulence. As

mentioned above, in the turbulent regime, the flow is organized in multiple scales of motion and is

also chaotic and unpredictable. These characteristics make turbulence extremely difficult to study.

Historically turbulence has been studied with the use of statistics. This is because, despite being

seemingly random, the statistics of turbulence are reproducible between shear flows and experimen-

tal realizations (the NSE are deterministic but result in chaotic dynamics). A notable example of

this is the famous log-law of the wall. At sufficiently high Re, the mean stream-wise velocity profile

attains a universal form, that is independent on Re. Instead, it scales with the shear at the wall. The

log-law of the wall only has one parameter, that, when correctly fitted, perfectly reproduces the mean

profile of several wall bounded flows at high Re. This, (and other universal statistic results), indicate

that there may exist some dominant dynamics of turbulence behind its complicated behavior, that

we still do not know of [Dav15]. One of the main goals of modern fundamental turbulence research,

is the identification of these underlying dynamics.

Apart from the use of simple statistics, in this thesis I use two additional methods to study the

behavior of turbulence in pulsatile pipe flow: the study of coherent structures and low-order models.

The former focuses in persistent structures of the flow, as they are believed to be the cause of

persistent turbulent dynamics. The latter tries to define models as simple as possible, that are able

to explain the main dynamics of turbulence. In what follows I describe them both in more detail.

1.4.1 Coherence in turbulent flows

Coherent structures are local solutions of the flow, that are intense enough to evolve on their

own and are not greatly affected by the rest of flow structures [Jim18]. The study of persistent

structures in wall-bounded flows dates back to the works of Townsend [Tow61]. He already noted

the importance eddies have on the behavior of the flow. Eddies can be understood as a sort of

coherent structures. However, it is difficult to find a concrete definition of what an eddy is, and I
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Fig. 1.7.: Visualization of the temporal evolution of turbulent puffs and slugs in SSPF, extracted from figure
1 from Song et al. [Son+17]. In (a) a puff at Re = 2000, in (b) a slug at Re = 2600 and in (c) a
slug at Re = 5000. The flow is from left to right and turbulence is visualized by the cross-section
kinetic energy u2

r + u2

θ
with respect to a reference frame moving at the averaged upstream and

downstream front speed. Dark areas correspond to small fluctuations and bright areas to large
fluctuations. The vertical length scale (radial) is scaled by a factor of 2 for better visualization.
Time evolves in the upward direction and panels are separated by 10D/U in (a,c) and by 100D/U
in (b), where U is the time-averaged bulk velocity, and D the pipe diameter.

will not try to come up with one here. Roughly, eddies are vortical structures that persist during

relatively long times in the flow [Dav15].

Another classical example of coherent structures are velocity streaks. Streaks are flow structures,

that have an streamwise velocity smaller (or larger) than the mean one. They tend to be relatively

long, and persist for relatively long times. Because of this, their presence has a big impact on

the local dynamics and dominates them during certain times. Streaks are usually linked with the

presence of stream-wise vortices. The interaction between streaks and vortices is the main ingredient

of a coherent motion observed in all wall-bounded turbulent flows: the wall-cycle. The wall cycle

is a self-sustaining process [JM91; JP99], that can be understood as a coherent motion. The cycle

starts with the development of velocity streaks due to (allegedly) linear mechanisms (more on this

later). At some point the streaks meander, and result in vortical bursts that release high levels of

turbulent kinetic energy. The mechanisms by which the cycle restarts are currently unknown, and

are actively researched.

1.4.2 Turbulent puffs in pipe flow

When linearly stable flows first transition to turbulence, they do so in the form of localized turbulent

patches that remain coherent (with approximately a constant length and magnitude) for asymp-

totically long times. Examples are: spiral turbulence in the Taylor Couette flow [Col65; Mes+09;

Fel+23], stripes in plane-Poiseuille and plane-Couette flow [AHA86; BT05] and turbulent puffs

in pipe flow [WC73]. See an example of a turbulent puff in figure 1.6 and in figure 1.7a. These

structures can be understood as localized wall cycles, that are advected at a certain velocity with

respect to the bulk of the flow. In what follows I describe the behavior of puffs in pipe flow in more

detail.

Puffs exhibit a variety of chaotic behaviors. The probability to observe one behavior, and not others,

depends on Re. Puffs are more likely to randomly decay at low Re ≲ 2040, split at 2040 ≲ Re ≲ 2250
or elongate into slugs at Re ≳ 2250 [ABH23]. Slugs are turbulent structures that have a similar

upstream front to puffs [Son+17] but that elongate until they fill the pipe with turbulence, see

fig 1.7b and c.

See an example of random puff decay at Re = 1900 in figure 1.8. At this Re puffs decay at seemingly

unpredictable times, as seen in figure 1.8a. Even though all of the puffs in the figure are initialized

with similar instantaneous states, they show radically different times of decay. The probability that a
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Fig. 1.8.: Decay of turbulent puffs in SSPF at Re = 1900. (a) the temporal evolution of turbulent fraction
is shown, where Ft = 1 corresponds to fully turbulent flow, Ft = 0 to fully laminar. The results
correspond to 5 different DNS in Lx = 50D long pipes. Each simulation is initialized with a different
instantaneous puff. Puffs may persist for significant time before abruptly decaying to laminar
flow. (b) probability of puff survival at Re = 1900 collected from 100 independent simulations. It
corresponds to the probability to observe a puff survive for a time t or longer. The figure is adapted
from figure 8 in Avila et al. [ABH23].

puff survives for a time t or longer after being initialized at t = 0, follows an exponential distribution

as shown in figure 1.8b.

In SSPF, puffs (slugs) move (and elongate) at a certain upstream (and downstream) front speed cu

(and cd) that also depends on Re. The exact mechanisms by which turbulent puffs decay, split or

elongate are still un-clear.

1.4.3 Models of turbulence in wall-bounded flows

Historically, researchers have looked for reduced-order models that can explain the main dynamics

of turbulent flows. They can be divided between linear and non-linear models.

Many phenomena in the wall cycle can be explained with linear mechanisms [Jim13]. For example

Encinar et al. [EJ20] showed that the bursts of turbulence in the wall cycle, are mainly due to the

Orr mechanism. This mechanism happens at a time scale set by the local mean shear.

Also Lozano et al. [LD+21] recently studied the effect linear mechanisms have on turbulence survival.

They performed causal analysis where they modified the flow field in order to sequentially eliminate

the effects of: linear-instabilities of the streaks, lift-up and Orr mechanisms on the turbulent flow.

They showed how linear instabilities play almost no role on turbulence survival, and that, out of

the lift-up and the Orr-mechanism, the latter is more important. In this thesis I perform a similar

causal analysis, and show that at some flow parameters, and in contrast to their results, localized

turbulence actively makes use of instabilities in the flow to survive.

Recently the use of machine learning methods to obtain reduced order models of turbulent flows has

gained popularity. Some examples are Dynamic Mode Decomposition [Sch10] or Sparse Non-linear

Dynamic identification algorithms [BPK16]. However, their successful application to (relatively)

high Re flows is still limited.

Other researchers have developed non-linear models to describe particular dynamics of turbulence.

A classic example is the Lorenz model [Lor63], that corresponds to a model of turbulent natural
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convection. In the case of transitional flows, Baggett et al. [BDT95] developed a simple model

to explain transition and turbulence survival due to non-modal effects. Additionally, Moehlis et

al. [MFE04] developed a reduced-order model of transitional Walaffe flow (the flow between

two free-slip walls subjected to a sinusoidal force). The model is able to reproduce the transient

chaos behavior (random decays) observed in transitional shear flows (like puffs in pipe flow at

Re ≲ 2040).

1.4.4 Model of puffs in steady pipe flow

One of the most successful reduced-order models of turbulence is the one proposed by Barkley et al.

[Bar11a; Bar11b; Bar+15; Bar16] for puffs in pipe flow. This model is further referred to as the

Barkley Model (BM) and it is briefly introduced in the following paragraphs, and explained in detail

in Appendix A.

The BM is able to reproduce the front speeds of turbulent puffs and slugs in SSPF. The model

considers only two one-dimensional, time-dependent variables, q (x, t) and u (x, t), whose evolution

is described by two non-linearly coupled advection-diffusion-reaction equations. These equations

are inspired by, but not derived from, the Navier–Stokes equations. The variable q represents the

turbulence intensity, and u the state of the local mean shear of the flow, at each axial location x and

time t. The key feature of the BM is the non-linear interaction between u and q. The turbulence

intensity q takes advantage of the mean shear u to grow. However, in the axial locations where q > 0,

the local mean shear is reduced [Hof+10; Küh+18], and in turn, adversely affects the growth of q.
When fitted correctly, the model returns the turbulent front speeds cu and cd of turbulent structures

in SSPF with high accuracy in a broad Re regime [Bar+15; Son+17; CXS22]. The remarkable

success of this model has motivated some researchers to use it to study puffs split dynamics, [FG22],

or even turbulence transition of non-Newtonian pipe flow [Rom+21].

The question still remains of, to what extent, the assumptions and simplifications of the BM are

correct, and if it can be easily adapted to similar flow set ups, such us the pipe flow driven at an

unsteady flow rate studied in this thesis. In Chapter 7 I extend the BM to the case of pulsatile pipe

flow.

1.5 Pulsatile pipe flow

The bulk velocity of a pulsatile pipe flow with a generic waveform, and non-dimensionalized with

the time averaged bulk velocity U , is defined as:

ub (t) = 1 +
∞
∑

n=1

an cos (n · 2Ãf · t) +
∞
∑

n=1

bn sin (n · 2Ãf · t) , (1.14)

where an and bn are the Fourier coefficients of the pulsation and f the frequency of the pulsation. In

the case of a single harmonic pulsation, the bulk velocity is defined as:

ub (t) = 1 +A sin (2Ãf · t) (1.15)

being

A = max (ub) − 1, (1.16)
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the amplitude of the pulsation. Apart from the waveform of the pulsation, i.e. either the combination

of an and bn or the amplitude A, pulsatile pipe flow depends on two dimensionless parameters, the

Reynolds number and the Womersley number. Re is computed using U , and the pipe diameter D,

see equation (1.9). The Womersley number compares the viscous time scale with the characteristic

time scale of the pulsation:

Wo =
D

2

√

2Ãf

¿
. (1.17)

It also defines the Stokes boundary layer thickness as ¶S ∝ 1
Wo . The Stokes boundary layer thickness

sets the normal distance from the wall that separates the Stokes layer (close to the wall) dominated

by viscous forces, from the layer (away from the wall) dominated by the inertia of the pulsation.

The pulsation period is defined as T = 1/f . In advective time units (d(U), the length of the period

is:

T =
ÃRe

2Wo2
. (1.18)

Additionally, an instantaneous Rei (t) can be defined as:

Rei (t) = ub (t)Re, (1.19)

and a maximum Remax as:

Remax = max (ub)Re = (1 +A)Re. (1.20)

As it was firstly obtained by [Sex30; Wom55] in the case of laminar flow, pulsatile pipe flow has an

analytical solution, the Sexl-Womersley (SW) velocity profile UUU = [0, 0, USW (r, t)]. In that case, the

flow has only an axial component, that is radial and time dependent USW (r, t). See a representation

of the SW profile at a given Re, Wo and A, and different phases of the period in figure 1.3. See

additional SW profiles in Appendix B. In this thesis I study transition to turbulence of the SW profile

and the behavior of turbulence once triggered.

In what follows I summarize the existing knowledge about transition and the transitional regime of

pulsatile pipe flow. Apart from some notable exceptions [BV18; Sca+23] most research on transition

in pulsatile pipe flow has mainly focused on harmonic pulsations, eq (1.15). Studies with single

harmonic pulsations can be classified between those that consider small-to-moderate A and those

that consider higher A.

1.5.1 Small-to-moderate amplitudes

At small-to-moderate A ≲ 0.4, the critical Rec was initially suspected to scale withWo and A. Peacock

et al. [Pea+98] performed measurements for a broad range of flow parameters, and determined

that Rec = 1220Wo0.42A0.17/(1 +A). However, others [Sar66; SH86; Tri+12] showed that at large

Wo, Rec actually reaches an asymptotic value. Despite reaching the same conclusion, all of these

studies reported different asymptotic Rec as Wo increased.

These discrepancies were eventually explained in the experimental and numerical studies of Xu et al.

[Xu+17; XA18]. They identified that, the differences in Rec observed by all the previous studies,

were due to the type of perturbations they used to trigger turbulence in the flow. For instance, Stettler
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[SH86] and Trip [Tri+12] continuously perturbed the flow, while Sarpkaya [Sar66] introduced

impulsive perturbations.

Xu et al. also offered a convincing explanation on how pulsatile pipe flows at A ≲ 0.4 transition to

turbulence. Transition occurs due to finite amplitude perturbations as in SSPF. During the phases

of the period where Rei ≳ 1600, the perturbations can trigger a turbulent puff, whose behavior

depends on the pulsation frequency. At high Wo ≳ 20 (independently of A) puffs do not have

enough time to adapt to the fast harmonic driving [XA18], and their behavior is identical to the

one found in SSPF. At low Wo ≲ 4 the behavior is quasi-steady, and the puff dynamics depend on

the instantaneous Reynolds number [Xu+17]. At intermediate 5 ≲Wo ≲ 19, the behavior of puffs

smoothly transitions between the two limiting cases described above.

1.5.2 Moderate-to-high amplitudes

At higher A g 0.5, transition in pulsatile pipe flow shows a different behavior.

Thomas et al. [Tho+11] studied the problem from a linear stability point of view. They performed

Floquet stability analysis on pulsatile pipe flows at many Re, Wo and A. The Floquet stability analysis

is similar to the linear stability analysis presented in equation (1.10). In this case the operator A

corresponds to the linearized Navier-Stokes equations integrated over 1 pulsation period. A periodic

flow is Floquet stable if, after one pulsation period, all infinitesimal perturbations on top of it decay.

In their study they only considered axisymmetric perturbations to the flow. They identified that only

at extremely high A ≳ 10 the corresponding SW profile is unstable at Re ≲ 1000. They also reported

that Wo has a small effect on turbulence transition. However, later experiments by Xu et al. [Xu+20]

exhibited turbulence transition at Re ≈ 800 and A ≳ 1, with a strong dependence on Wo.

Specifically Xu et al. [Xu+20] reported transition in the form of localized sudden bursts at intermedi-

ate Wo ≈ 6 and small Re ≈ 800, see fig. 1.4. These bursts appeared periodically in every deceleration

phase
(

dub

dt < 0
)

and were attributed to small geometric imperfections in the experimental set-up.

Initially, the bursts exhibit a helical shape that collapses and evolves into a localized turbulent spot.

The turbulent spot first expands in the axial direction and is later advected by the mean flow before

it is finally dampened during the acceleration phase
(

dub

dt > 0
)

. Xu et al. [XSA21] linked these

bursts to a family of non-modal helical perturbations. They performed transient growth analysis

at different combinations of Re, Wo and A and showed that for Re g 800 and A g 0.5 at least two

different types of perturbations are able to grow on top of the laminar SW profile. Depending on

Wo, one grows more than the other. At Wo ≲ 4 or Wo ≳ 20, the optimal perturbation is the pair

of stream-wise-constant vortices, as in SSPF [SH94]. At 5 ≲ Wo ≲ 19, on the other hand, helical

perturbations exhibit the highest energy growth (G). While stream-wise vortex perturbations exhibit

only algebraic scaling with Re (G ∝ Re2, [SH00]), helical perturbations exhibit an exponential

scaling (G ∝ eaRe, [XSA21]). This exponential scaling renders helical perturbations more dangerous

(in terms of turbulence transition) than the stream-wise vortices at some Wo and A [PS21]. Initially

Xu et al. [XSA21] linked the growth of helical perturbations with an Orr mechanism. But non-modal

mechanisms, by definition, do not grow exponentially as described above in §1.3.3. The reason for

the outstanding growth of helical perturbations have not been identified yet.

At certain combinations of Wo and A, the SW profile exhibits inflection points [Tru06; Mia+17;

Neb19]. Remember that inflection points are usually linked with flow instabilities [Stu82]. At high

Wo, the SW profile changes quickly and perturbations do not have enough time to take advantage

of these instabilities to grow. Kerczek [KD74] reached a similar conclusion for a similar study in

Stokes layer flow. However, at lower Wo, the SW profile evolves slower and perturbations have
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Fig. 1.9.: Visualization of transition to turbulence in pulsatile pipe flow, extracted from Xu et al. [Xu+20].
The figure shows the evolution of the helical instability at (Re,Wo,A) = (2200, 5.6, 0.85) from a
tiny geometric disturbance close to the wall. Even though the flow is from left (upstream) to
right (downstream), the helical wave spreads downstream as well as upstream. The snapshots
correspond to equispaced phases of the period from t/T = 0.625 at the top to t/T = 0.75 at the
bottom.

enough time to take advantage of the inflection points to grow. This was first suggested by Cowley

et al. [Cow87] and recently demonstrated by Nebauer et al. [Neb19]. Following these ideas, Kern

et al. [Ker+21] recently connected the growth of optimal time dependent modes to the presence

and characteristics of inflection points in (plane) pulsatile Poiseuille flow. However, a relationship

between the inflection points and the growth of the helical perturbations in pulsatile pipe flow has

not been shown yet.

The pulsation waveform

In most applications, pipe flows exhibit a bulk velocity with multiple harmonics, resulting in multiple

non-zero coefficients (an, bn) in eq. (1.14). This introduces additional control parameters to the

problem, as the transition scenario depends on all the non-zero an and bn that define the waveform

of the pulsation. This new parametric space has been largely unexplored. Experiments on turbulence

transition for non-single harmonic pulsations show that waveforms with longer deceleration phases

have an earlier onset of transition, whereas steeper accelerations delay it [BV18]. Despite these

interesting results, there is still a huge range of waveform characteristics (including cardiovascular-

like waveforms) that have not been studied in detail yet.

Another question concerns the dynamics after the flow transitions to turbulence. In the experiments

and numerical simulations of Xu et al. [Xu+20; XSA21], they observe how the helical instability

is able to trigger turbulence during some phases of the period, that then quickly decays after a

single pulsation. Whether this behavior is found at other flow parameters or not, it is still unknown.

Recent studies have also shown how pulsatile pipe flows driven with physiological-like waveforms

can result in a reduction of the energy input to achieve a mean net flux [Sca+23], compared to the

corresponding SSPF case. To this day, broad parametric regimes of pulsatile pipe flow remain largely

unexplored.

1.6 Objectives of the thesis

The scope of this thesis is the transitional regime of pulsatile pipe flows, at 1000 ≲ Re ≲ 3000,

3 ≲Wo ≲ 21, at different pulsation amplitudes and for different pulsation waveform. All the cases

considered here correspond to moderate-to-high amplitudes A ≳ 0.5 with little or no reverse bulk

flow min (ub) ≈ 0. Note that the parametric space considered here is relevant for cardiovascular

flows, as combinations of these flow parameters are found in different sections of blood flow in the

human aorta, see figure 1.10 and table 1.1. The objective of the thesis is two-fold.
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First, the transition mechanisms of pulsatile pipe flows at these flow parameters will be studied. To

that end, transient growth and stability analyses will be combined, to identify the features that make

some pulsatile pipe flows more susceptible to transition than others. Here, and for the first time, not

only single harmonic pulsations will be considered, but also pulsations with multiple harmonics.

Second, the behavior of turbulence once triggered will be studied. To that end, a large number of

direct numerical simulations (DNS) of different pulsatile pipe flows, will be performed. Again, not

only single harmonic pulsations will be considered, but also multiple harmonic pulsations, including,

cases with a physiological-like pulsation. In order to understand the dynamics by which turbulence

survives at some flow parameters, causal analyses are performed. At the end of the thesis, the

low-order Barkley model (BM) of turbulence in transitional SSPF is extended to the pulsatile case.

1.6.1 Outline of the thesis

The rest of the thesis is organized as follows.

• Find in Chapter 2 the mathematical models used in this thesis and the numerical methods

used to perform DNS of pulsatile pipe flows. As part of this thesis a new C-CUDA code was

developed to perform fast and efficient simulations. Find a description of the code also there.

• Chapter 3 includes a description of the methods to numerically perform the transient growth

and stability analyses.

• Chapter 4 includes the results of the transient growth and stability analyses.

• Find in Chapter 5 the results of different pulsatile pipe flows DNS. In this chapter, several

strategies to trigger turbulence in pulsatile pipe flow are studied, together with the behavior

of turbulence once it is triggered.

• In Chapter 6 a causal analysis is performed to show that, the mechanism that makes some

pulsatile pipe flows more susceptible to transition, is also related with the survival of turbulence

once it is triggered.

• Find in Chapter 7 a description on how the original BM is extended to pulsatile pipe flow using

the lessons learned in the previous chapters. The chapter describes the new model and the

results of the model compared with the numerical simulations presented in Chapter 5.

• Chapter 8 includes the main conclusions of the thesis together with an outlook.

At the end of the thesis a series of Appendixes are added to complement the information discussed

in the main chapters.

• Appendix A includes a description of the original BM for SSPF.

• Appendix B has a catalogue of figures with the SW profile at different flow parameters, and

the results of the corresponding linear stability.

• Appendix C includes a description on how we estimate the grid in our DNS, together with the

list of DNS analyzed in this thesis.

• Appendixes D & E expand on the methods and results of my causal analysis.

• Appendix F includes a list of Peer-Reviewed papers related with this thesis.

• Appendix G includes a list of student bachelor thesis related to this thesis.
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Fig. 1.10.: Human aorta.

Tab. 1.1.: Typical flow parameters for individuals in unstressed
conditions, in different sections of the aorta according
to Les et al. [Les+10] and Stalder et al. [Sta+11]. AA
stands for ascending aorta, DA for descending aorta
and SA for supraceliac aorta.

AA DA SA

Re
1000-

1500

1100-

1400

700-

900

Remax
3300-

4800

3630-

4620

2310-

2970

Wo
15-

18

10-

14

5.3-

7.5
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2 Mathematical formulation

and DNS numerical methods

Find in this chapter first a short description of the mathematical formulation used in this thesis. This

includes the way the bulk velocity is defined and also how the effect of geometric defects at the wall

are modeled in DNS.

In the second part of this chapter, §2.2 and following sections, the description of the methods used

in this thesis to numerically integrate the Navier–Stokes equations (NSE), eq. (2.3), are described.

All the methods are implemented in an open-source, pseudo-spectral code nsPipe [Ló+20] which is

also described here. As part of this thesis, a new C-CUDA GPU-version of nsPipe was developed. A

detailed explanation of the new GPU-nsPipe is included in this chapter, together with its validation

and performance verification.

2.1 Mathematical models

Find in this section more details on the NSE presented in equation (1.4), and the method by which

they are discretized in this thesis. The methods by which the bulk velocity and the effect of geometric

defects in the pipe wall are defined are also shown.

2.1.1 Pressure-velocity coupling

The pressure p in the NSE, see equation (1.4), does not act as a thermodynamic pressure, but as a

dynamic pressure and it is another unknown of the flow. Here, the pressure is actually a Lagrange

multiplier, that is meant to make sure the divergence free condition is satisfied at all positions in the

flow xxx.

By taking the divergence of equation (1.4), and invoking ∇·uuu = 0 one can obtain a Poisson equation

for the pressure as:

∇2p = −∇ · [(uuu · ∇)uuu] . (2.1)

See section 2.4.3 for a description of the boundary conditions.
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2.1.2 Non-dimensionalization

In this thesis, a rigid circular cross section pipe with diameter D (and radius R = D/2) is considered.

All the variables in the problem are rendered non-dimensional with the pipe diameter D, the time

averaged bulk velocity of the laminar profile U and the fluid density Äf . The incompressible NSE

take the form:

Äf
U2

D

∂ûuu

∂t̂
+ Äf

U2

D

(

ûuu · ∇̂
)

ûuu = −Äf
U2

D
∇̂ · p̂+ Äf

U2

D

1

Re
∇̂2∇̂2∇̂2ûuu+ Äf

U2

D
f̂B̂fB̂fB, (2.2)

where Re = UD
ν , and variables with a hat are non-dimensional. One can eliminate Äf

U2

D from the

above equation and obtain the non-dimensional NSE as:

∂uuu

∂t
+ (uuu · ∇)uuu = −∇ · p+

1

Re
∇2∇2∇2uuu+ fp (t)eeex + fff b, and ∇ · uuu = 0, (2.3)

where the upper hat has been dropped from the notation. In the rest of this thesis only non-

dimensional quantities are considered, unless stated otherwise.

Here the body force fBfBfB = fp (t)eeex +fff b has been split between the driving pressure gradient fp (t)eeex,

and any other body force acting on the flow defined as fff b. Note that, the unitary vector eeex defines

the stream-wise direction.

2.1.3 Cylindrical coordinates

The problem here is considered in cylindrical coordinates: (r, ¹, x), where r is the radial and at the

same time wall normal direction, x is the axial and at the same time stream-wise direction, and ¹
the azimuthal direction.

In cylindrical coordinates, the NSE take the following form for each velocity component:

∂ur

∂t
+ ur

∂ur

∂r
+
uθ

r

∂ur

∂¹
− u2

θ

r
+ ux

∂ur

∂x
= −∂p

∂r

+
1

Re

[

∂

∂r

(

1

r

∂

∂r
(rur)

)

+
1

r2

∂2ur

∂¹2
+
∂2ur

∂x2
− 2

r2

∂uθ

∂¹

]

+ fff b · eeer,

∂uθ

∂t
+ ur

∂uθ

∂r
+
uθ

r

∂uθ

∂¹
+
uθur

r
+ ux

∂uθ

∂x
= −1

r

∂p

∂¹

+
1

Re

[

∂

∂r

(

1

r

∂

∂r
(ruθ)

)

+
1

r2

∂2uθ

∂¹2
+
∂2uθ

∂x2
+

2

r2

∂ur

∂¹

]

+ fff b · eeeθ, and

∂ux

∂t
+ ur

∂ux

∂r
+
uθ

r

∂ux

∂¹
+ ux

∂ux

∂x
= −∂p

∂x
+

1

Re

[

1

r

∂

∂r

(

r
∂ux

∂r

)

+
1

r2

∂2ux

∂¹2
+
∂2ux

∂x2

]

+ fp + fff b · eeex.

The continuity equation takes the form:

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂¹
+
∂ux

∂x
= 0. (2.4)
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Fig. 2.1.: Definition of three bulk velocity waveform and corresponding laminar flow profiles. In the top
panel, the black stars denote the 6 control points which define the waveform 1 (WF1), with
tac = tdc = 0.05 and tm = 0.45; in blue a 30 Fourier mode approximation of the corresponding
spline. The grey stars denote the 6 points which define the waveform 2 (WF2), with tac = tdc = 0.2
and tm = 0.55; in green a 30 Fourier mode approximation of the spline. In yellow a single harmonic
sine wave pulsation with A = 1. In the bottom three panels, the laminar profiles for the three
waveform defined in the top panel are shown at three instants of time. Filled points denote the
position and existence of inflection points in the laminar profile.

2.1.4 Definition of the bulk velocity

The driving pressure gradient fp (t) in equation (2.3) can either be constant, or time dependent.

In the latter case, it is set to adjust the bulk velocity of the flow so at each time step the desired

bulk velocity is obtained. As described in §1.6, in this thesis single harmonic and multiple harmonic

pulsations at A ∈ [0, 1] are considered. In the case of multiple harmonic pulsations, a certain type of

waveform is designed.

The waveform is designed so the bulk velocity is never negative, and has a minimum min (ub (t)) = 0.

This is inspired by cardiovascular flows, where the minimum bulk velocity is close to zero in the

larger vessels [Bür+12]. Although the bulk velocity is always positive, locally the velocity profile

can have negative axial velocities, as shown in fig. 2.1c. Apart from this constraint, the waveform is

designed so its acceleration and deceleration slopes, and its time symmetry, can be controlled with a

limited number of parameters.

Six control points (black or grey stars in figure 2.1a) are defined in time. They represent the skeleton

of the waveform. Their horizontal position is controlled by 3 parameters tac, tdc and tm. They are

understood as the length in time of certain phases of the period, and are described in detail below.

All the waveform shapes have an acceleration phase with a slope that is set by the parameter tac.

Note that the total time the bulk velocity stays in the acceleration phase is 2tac. The bulk velocity

then remains in a high velocity phase ub = max (ub (t)) for a the time span tm − tac − tdc. Then the

pulsation enters a deceleration phase
(

∂ub

∂t < 0
)

, whose slope is set by the parameter tdc, so that

the total time the pulsation decelerates is 2tdc. Finally the bulk velocity remains in a low velocity
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phase where ub ≡ 0 for the rest of the pulsation period (T − tm − tac − tdc). The last parameter

(0 < tm < T ) defines how symmetric the waveform is with respect to time. This, together with the

minimum bulk velocity constraint min (ub (t)) = 0 in turn indirectly sets the maximum Remax of the

flow as

Remax = Re
T

tm
. (2.5)

At tm = 1
2 , the waveform is symmetric and stays the same fraction of time in the high and low

velocity phases. Since the minimum velocity is ub = 0, for this case Remax = 2Re. As tm → 0 the

time the flow stays in a high velocity phase decreases and Remax increases.

The parameters tac, tdc and tm are non-dimensional, normalized in terms of T so they are always

within tac, tdc, tm ∈ [0, 1]. They are connected with one another such that

tm + tac + tdc < 1, tac < 0.5 and tdc < 0.5. (2.6)

The velocity at each of the control points (black or grey stars in figure 2.1a) is then determined so

the time-averaged bulk velocity is equal to U . The velocities at the points are then embedded in a

smooth spline, using a monotone piecewise cubic Hermite interpolating polynomial [FC80]. The

spline is then fitted using NF = 30 Fourier modes to obtain a periodic pulsation.

2.1.5 Model geometric defects close to the pipe wall

At some point in the thesis, the effect of geometric disturbances close to the wall are studied. Inspired

by the work of Marensi et al. [Mar+20], this is done, not by changing the geometry of the problem,

but by using body forces to model the effect of disturbances close to the wall. The body force takes

the form:

fbfbfb (r, ¹, x, t) = −Ab · fb (r, ¹, x) · uuu (r, ¹, x, t) . (2.7)

It acts against the velocity field uuu and is localized in the radial, azimuthal, and axial direction by

fb (r, ¹, x) = f (r) · g (¹, x) · h (x) with (2.8)

f (r) =
1

2
+

1

Ã
arctan (Sr (r − r0)) , (2.9)

g (¹, x) =
1

Ã
(arctan (Sθ (¹ − Ã (¹0 (x) − lθ))) − arctan (Sθ (¹ − Ã (¹0 (x) + lθ)))) , (2.10)

h (x) =
1

Ã

(

arctan

(

Sx

(

x− x0 +
lx
2

))

− arctan

(

Sx

(

x− x0 − lx
2

)))

and (2.11)

¹0 (x) = 1 + 2∆¹
(x− x0)

lx
. (2.12)

These localization functions are bounded by fb ∈ [0, 1] and satisfy the constraints: max (f) = 1,

min (f) = 0, max (g) = 1, min (g) = 0, max (h) = 1, and min (h) = 0; the perturbation amplitude is

given by Ab.

Due to the big parametric space in hand, three simple body force set-ups are designed. The first

set-up is an axisymmetric force that models the effect of a small circumferential contraction, similar

to a weak stenosis in blood vessels or imperfect pipe joints in laboratory experiments. See the

geometry of this disturbance in figure 2.2a.
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Fig. 2.2.: Geometric representation of the perturbation force (fbfbfb, eq. (2.7)) in terms of iso-surfaces (black) of
the localization function for fb = 0.5. (a) Axisymmetric contraction. (b) localized bump. (c) Tilted
bump. See table 2.1 for details. The direction of the mean bulk flow is always from left to right.

Tab. 2.1.: Parameters to control the body force term in equation (2.7) to model the effect of geometric
perturbations: Magnitude (Ab), slope (S), size (l), and location in the radial (r), azimuthal (¹),
and axial (x) direction. Geometric representations of the perturbations are shown in figure 2.2.

Ab Sx in 1

D
lx in D x0 in D Sr in 1

D
r0 in D Sθ lθ ∆θ

Contraction 0.25 4 2.5 10 100 0.45 20 g 1 0
Bump 0.25 4 2.5 10 100 0.45 20 0.25 0
Tilted Bump 0.25 4 2.5 10 100 0.45 20 0.0625 0.1

The second set-up is a highly localized force that approximates the effect of a single bump or an

individual roughness element, see fig. 2.2b. The third set-up is also a highly localized force that

approximates the effect of a single bump or an individual roughness element, but this time, it is

tilted with respect to the axial direction, see fig. 2.2c. The parameters defining the perturbations are

given in table 2.1.

2.2 Spatial discretization

In nsPipe the NSE are treated in cylindrical coordinates, see §2.1.3. The axial and azimuthal

directions x and ¹ are treated as periodic, and are discretized using a Fourier-Galerkin method. The

code employs high order finite-differences in the (in-homogeneous) wall-normal (radial) direction

r. In this section the Fourier-Galerkin method and the discretization of the radial direction r are

described.

2.2.1 Fourier spectral methods

In the Fourier-Galerkin method, any variable f is approximated as a truncated series of harmonic

functions:

f (r, ¹, x, t) ≈
K/2−1
∑

k=−K/2

M/2−1
∑

m=−M/2

f̂k,m (r, t) eikk0x+imm0θ, (2.13)

where, k = 1, 2, ... and m = 1, 2, ... are the axial and azimuthal wavenumbers, k0 and m0 the axial

and azimuthal first harmonics, and f̂k,m the spectral coefficients. In the rest of the manuscript,

m0 = 1 and k0 = 2π
Lx

, where Lx is the length of the pipe in diameters. Also, the axial and azimuthal

number of modes are denoted as Nx = K/2 and Nθ = M/2.
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The spectral coefficients can be obtained with a Discrete Fourier Transform (DFT):

f̂k,m (r, t) =
1

MθMx

Mθ−1
∑

jθ=0

Mx−1
∑

jx=0

f (r, ¹jθ
, xjx , t) e

−ik 2πjx
Mx

−im
2πjθ
Mθ , (2.14)

where Mθ and Mx are the azimuthal and axial discrete points where the function is evaluated in

physical space. The axial discrete points xj are computed as: k0xj = 2πjx

Mx
and the azimuthal discrete

points ¹j as m0¹j = 2πjθ

Mθ
, where jx = 0, 1, ...,Mx − 1 and jθ = 0, 1, ...,Mθ − 1.

Find in the rest of this section a series of issues one needs to consider when using Fourier-Galerkin

methods. The description is done for a one dimensional variable f (x), defined in the periodic

domain 0 f x f 2Ã, but can be extended to the two dimensional case in eq.(2.13).

Convergence of the Fourier Transform

Let the one dimensional variable f (x) be discretized as:

f (x) ≈
N/2−1
∑

k=−N/2

f̂ke
ikx. (2.15)

Invoking Parseval identity:

∫ 2π

0
f2dx = 2Ã

∞
∑

k

f̂2
k , (2.16)

the error ϵN of approximating f using a truncated Fourier series can be shown to be:

ϵ2N =

∫ 2π

0
f2dx− 2Ã

∑

|k|<N/2

f̂2
k = 2Ã

∑

|k|gN/2

f̂2
k . (2.17)

This error is dominated by the spectral coefficient of |k| ≡ N/2. As long as f is continuous, this

coefficient can be computed as:

2Ãf̂N/2 =

∫ 2π

0
fe−iNx/2dx =

−2

iN
[f (2Ã) − f (0)] e−iNx/2 +

2

iN

∫ 2π

0

df

dx
e−iNx/2dx. (2.18)

If f is periodic, f (2Ã) = f (0). One can apply this formula recursively as long as the derivative dhf
dxh

is continuous and periodic. At the end, the error of the discretization can be shown to be:

ϵN ∝ (N/2)−H

∣

∣

∣

∣

∣

dHf

dxH

∣

∣

∣

∣

∣

, (2.19)

where H is the last continuous and periodic derivative of f . The error thus, depends on how smooth

f is [Pey02]. In case f is infinitely differentiable, the convergence of the method is better than any

exponent, what is known as infinite convergence or spectral.

Fast-Fourier transform (FFT)

The Fast Fourier transform (FFT) computes the DFT (and corresponding inverse Fourier transform)

in an outstandingly fast and efficient way. The algorithm takes advantage of the symmetries of

the Fourier Transform to speed up the computations. Note that, to compute the coefficients f̂k, a
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simple DFT performs of the order of O
(

N2
)

operations, while the FFT needs only O (2 log2 (N)N)
operations. Find here the main ideas behind this outstanding speed-up of the calculations.

Let the variable f be discretized in xj = 2πj
N discrete points in physical space. The spectral coefficient

f̂k can be computed as:

f̂k =
1

N

N−1
∑

j=0

fj exp

(

−i2Ã
N
kj

)

. (2.20)

Firstly, the FFT takes advantage of the odd/even symmetry between the points j:

f̂k =
1

N







N/2−1
∑

m=0

f2m exp

[

−i 2Ã

N/2
km

]

+

N/2−1
∑

m=0

f2m+1 exp

[

−i 2Ã

N/2
k

(

m+
1

2

)]







, (2.21)

where

exp

[

−i 2Ã

N/2
k

(

m+
1

2

)]

= exp

[

−i2Ã
N
k

]

exp

[

−i 2Ã

N/2
km

]

. (2.22)

Let

Ck = exp

[

−i2Ã
N
k

]

, (2.23)

then

f̂k =
1

N







N/2−1
∑

m=0

(f2m + Ckf2m+1) exp

[

−i 2Ã

N/2
km

]







. (2.24)

Secondly, the FFT takes advantage of the odd/even symmetry between the modes k. Note that if

k g N/2, one can write k = N/2 + r, and find:

exp

[

−i 2Ã

N/2
m

(

N

2
+ r

)]

= exp [−i2Ãm] exp

[

−i 2Ã

N/2
mr

]

. (2.25)

Note that exp [−i2Ãm] = 1, which means that for k g N/2: f̂k = f̂k−N/2.

The FFT takes advantage of this two ideas to construct a recursive algorithm, that goes from

computing the first pair of N = 2 modes, to N > 2. There are more advanced versions of the FFT,

that speed up the calculations even when N is not a multiple of 2. The CPU and GPU versions of

nsPipe use open-access FFT algorithms to perform FFT and IFFT.

Pseudo-spectral method

Spectral methods are really convenient for linear problems. The orthogonal properties of the Fourier

decomposition allow for a fast parallelization of the problem. However, in the case of non-linear

problems one must take care of a particular issue. Find below a one dimensional example.

Let

f (x) = g (x)h (x) , (2.26)
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being g and h:

g (x) ≈
N/2−1
∑

m=−N/2

ĝme
imx and h (x) ≈

N/2−1
∑

n=−N/2

ĥne
inx, (2.27)

in spectral space one finds:

f̂k =
∑

m+n=k

ĝmĥn. (2.28)

In order to evaluate the product in equation (2.28) for every k, one needs to perform a total of

O
(

N2
)

operations. If instead, one performs the product 2.26 in N physical discrete points, the total

number of operations is O (N). Thus, in the case of spectral methods, the computation of non-linear

terms in spectral space, is much more expensive than for methods that consider the variables in

physical space.

In order to avoid this problem one can use a hybrid pseudo-spectral algorithm [Boy01]. In this

algorithm all the linear operations are performed in spectral space, while the non-linear terms are

evaluated in physical space. Every time one needs to compute a nonlinear term, the algorithm

performs an IFFT to go from spectral to physical space f̂ → f . Then, it evaluates the nonlinear

product in N physical points. After the product is computed, the algorithm performs a FFT to

go back from physical to spectral space f → f̂ . If one performs the inverse and direct Fourier

transforms using a Fast Fourier transform algorithm, the total number of operations to compute

the nonlinear terms is of order O ((1 + 2 log2 (N))N), and not the O
(

N2
)

operations required for a

purely spectral method.

The code nsPipe uses this pseudo-spectral approach to compute the non-linear terms in the NSE.

There is however one last problem one must address when using pseudo-spectral methods, the

problem of aliasing.

Aliasing

Aliasing is a type of error that takes place when one uses a sampling frequency smaller than the

frequencies in the signal being processed. This results in day-to-day phenomena like the eye-

perception of the blades of an helicopter rotating in the opposite direction to their actual rotating

sense. See an example of aliasing in figure 2.3. In the figure, the signal of angular frequency É is

being sampled with a frequency É/9. The resultant sampled frequency is then of É/9, even though it

does not exist in the actual data. In general, two trigonometric functions eik1x and eik2x, sampled at

the same discrete points xj = 2πj
N , appear to be equal when k2 − k1 = mcN for mc = 0,±1,±2, ...

This error is also found in pseudo-spectral methods, as described below for the one dimensional

example. Say one wants to compute the product (2.26), but the variables g and h are discretized

with an spectral method. One can perform an inverse Fourier transform and obtain the physical

value of g and h at N discrete xj points. Then the product is computed as:

f (xj) = g (xj)h (xj) , (2.29)

at N discrete locations xj .
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Fig. 2.3.: Example of aliasing error. The solid black line is the signal to be sampled. The vertical grey lines
and open circles represent the discrete points at which the original signal is sampled. The dotted
blue line represents the resultant sampled signal.

Let:

f̂k =
1

N

N−1
∑

j=0

f (x) e−ikxj (2.30)

=
1

N

N−1
∑

j=0

[g (x)h (x)] e−ikxj (2.31)

=
1

N

N−1
∑

j=0









N/2−1
∑

m=−N/2

ĝme
imxj









N/2−1
∑

n=−N/2

ĥne
inxj







 e−ikxj , (2.32)

this returns:

f̂k =
∑

m+n=k

ĝmĥn +
∑

m+n=k±N

ĝmĥn, (2.33)

where the second sum is the aliasing error of sampling the original signal with N discrete points.

This error will always appear whenever one tries to sample a signal with a discrete number of

physical points/sampling frequencies. Pseudo-spectral methods either ignore this error, or avoid its

effects by using a technique called padding.

Padding

Before performing the product (2.26), the variables g and h are computed as:

g (x) ≈
J/2−1
∑

m=−J/2

g̃me
imx and h (x) ≈

J/2−1
∑

n=−J/2

h̃ne
inx, (2.34)

where J > N and:

g̃m =

{

ĝm |m| f N/2
0 otherwise

and h̃n =

{

ĥn |n| f N/2
0 otherwise.

(2.35)
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The variables g and h are then interpolated to J physical points, and the product (2.26) computed

in this J points. The spectral coefficients of f are then computed as:

f̃k =
1

J

J−1
∑

j=0

fj exp

(

−i2Ã
N
kj

)

, (2.36)

which can be shown to be equivalent to:

f̃k =
∑

m+n=k

g̃mh̃n +
∑

m+n=k±J

g̃mh̃n. (2.37)

Since the spectral coefficients of f will be padded back so the code only retains all |k| f N/2, the

number of points J must be chosen so, for all |k| f N/2:

|J | > |m+ n− k| . (2.38)

According to the formulation, the worst case scenario corresponds to m = n = −N/2 and k =
N/2 − 1. Therefore:

J g 3N

2
. (2.39)

This means that, if everytime one goes from spectral to physical space, one interpolates in J and

not on 2N physical points, one will push the aliasing error to modes |k| > N/2. These modes are

in any case ignored by the code, effectively removing the aliasing error from the modes of interest

|k| f N/2. This strategy is usually referred to as padding and the 3/2 rule.

Symmetry of the Fourier transform

The Fourier transform of a real signal results in symmetric Fourier modes. Let k ∈ [−N/2, N/2 − 1],
and f̂k be the Fourier coefficients that result from the one dimensional Fourier transform of the real

signal f . It can be shown that f̂k = f̂  
−k where the dagger stands for complex number conjugate.

In the case of a two-dimensional FT like equation (2.13), one can choose which direction to transform

first. This way one can reduce the total number of Fourier modes considered in the discretization to

one half, by reducing by one half the modes considered in one of the two directions.

In the original CPU code, the variables are firstly Fourier transformed in ¹ when a transform is

performed. This means that the total number of modes consider is of mf = (Nθ + 1) × 2Nx. In the

new GPU code, the variables are firstly Fourier transformed in x. This means that the number of

modes considered is of mf = (Nx + 1) × 2Nθ.

2.2.2 Radial discretization

The code nsPipe discretizes the inhomogeneous radial direction r using Nr discrete radial points.

The discrete points are not uniformly distributed in the radial direction. They are clustered close

the wall as shown in figure 2.4. The code does this by initially distributing the points as Chebyshev

collocation points:

rj = cos

(

Ãj

2Nr − 1

)

, (2.40)

and later employing a relaxation to define more points away from the wall.
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Fig. 2.4.: Cumulative distribution of radial grid points rj for three different discretizations methods. The
vertical axis represents the percentage of the total number of points clustered at locations rj f r. In
black, the case of uniformly distributed radial points. In yellow a grid with Chebyshev collocation
points. In blue the discretization in nsPipe.

M∂r =
s

Fig. 2.5.: Banded structure of the radial derivative matrix. Kindly provided by Dr. Plana [PT22].

The radial derivatives are computed using high order finite differences. In order to compute the

coefficients for the finite difference derivatives, also known as the weights, the strategy described in

Fornberg [For88] is used. The method uses a recursive approach based on Lagrange polynomials,

and computes the weights for stencils of arbitrary sizes and non-homogeneous grids. Here, only the

final recursive expression is given. For a more detailed explanation see Fornberg [For88].

The coefficient ck
i,j corresponds to the weight of the i grid point, in a j stencil, to approximate the

derivative of order k. Starting with c0
0,0 = 1, and assuming that any undefined coefficient is 0, any

arbitrary coefficient can be computed as:

ck
i,j =











[
∏j−2

l=0
(rj−1−rl)

∏j−1

l=0
(rj−rl)

]

(

kck−1
i−1,j−1 − rj−1c

k
i−1,j−1

)

for i = j

1
rj−ri

(

rjc
k
i,j−1 − kck−1

i,j−1

)

otherwise.
(2.41)

In this thesis, a stencil s = 7 is considered in the GPU code, and a stencil s = 9 in the CPU code. This

results in diagonal banded matrices as shown in figure 2.5 which are computed at the beginning of

the simulation, and efficiently stored as sparse. To compute the radial derivatives one only needs to

perform a matrix vector multiplication. Say f is a one dimensional variable discretized at j radial
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locations, and vector fff has all these values stored. The vector with the value of the radial derivative

of f evaluated at each radial location is then:

∂fff

∂r
= M∂rfff . (2.42)

2.3 Numerical integration

In this section the numerical integration algorithm is described.

2.3.1 Characteristic magnitudes in the code

It is important to note that, in nsPipe, the variables are non-dimensionalized with the fluid density

Äf = 1, with the pipe radius R = D/2 and the center-line velocity of the Hagen-Poiseuille flow

profile uc = 2U . This means that the characteristic time of the code defined as tc = R/uc actually

corresponds to tc = 0.25D/U advective time units.

2.3.2 Discretization of the momentum equation

Let the superscript n denote the time step, ∆t the time step size, and c be a constant c ∈ [0, 1]; in

nsPipe the NSE are discretized using a Crank-Nicolson method:

uuun+1 − uuun

∆t
= −c

(

uuun+1 · ∇
)

uuun+1 − (1 − c) (uuun · ∇)uuun − ∇pn+1

+
1

Re

[

c∇2u∇2u∇2un+1 + (1 − c)∇2u∇2u∇2un
]

+ cfpfpfp
n+1 + (1 − c)fpfpfp

n + cfbfbfb
n+1 + (1 − c)fbfbfb

n,

where fff b is any body force acting on the flow, fpfpfp = fp (t)eeex the driving pressure gradient of the flow,

and

∇ · uuun = ∇ · uuun+1 = 0. (2.43)

Due to the presence of the non-linear term
(

uuun+1 · ∇
)

uuun+1 and pressure ∇pn+1 the above equation

needs to be iteratively solved in order to obtain the new velocity field uuun+1. The code nsPipe uses a

predictor-corrector algorithm to do so in a numerically efficient way.

Below I describe the predictor-corrector method in more detail. In the description I use as notation:

Nu
∗ ≡ − (uuu∗ · ∇)uuu∗ + fpfpfp

∗ + fbfbfb
∗, (2.44)

rhs∗ ≡ Nu
∗ +

[

1

∆t
+

1 − c

Re
∇2∇2∇2
]

uuun, and (2.45)

X ≡
[

1

∆t
− c

Re
∇2∇2∇2
]

. (2.46)

The asterisk ∗ can either correspond to n, n+ 1 or an intermediate step of the integration k.
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2.3.3 Predictor-corrector time-stepping algorithm

The predictor-corrector algorithm integrates the NSE in two steps. In the first step, during the

predictor, it computes an intermediate velocity field uuuk, for k = 1, as a guess to the actual velocity

field uuun+1. Then, during the corrector step, it iterates and obtains new uuuk+1 velocity fields to improve

the original guess uuuk. At each iteration step it checks the error between the current uuuk+1 and past

uuuk guess. If the error is small enough it stops the iteration and sets uuun+1 = uuuk+1.

Predictor step

The nonlinear term Nu
n in equation (2.44) is computed using uuun. With the non-linear term, the

term rhsn in equation (2.45) is then computed by setting ∗ ≡ n.

With rhsn, an intermediate pressure pk is obtained by solving the Poisson equation:

∇2pk = ∇ · rhsn, (2.47)

with a Neumann boundary condition at the wall:

∂pk

∂r

∣

∣

∣

∣

∣

r=R

= 0. (2.48)

The first guess (prediction) of the new velocity field uuuk is then computed by solving the Helmholtz

problem:

Xuuuk = rhsn − ∇pk, (2.49)

for each velocity component. The velocity field is solved so it is zero at the pipe wall. Finally, as

shown later in §2.4.3 and 2.4.4 the boundary condition of the pressure at the wall are corrected,

and the mass flux imposed (if needed).

The code then iterates on the guessed velocities uuuk in the corrector step.

Corrector step

At each iteration of the corrector step, a new nonlinear term Nu
k is computed, eq. (2.44), using the

velocity field uuuk. This nonlinear term is subsequently used to compute:

Nu
k+1 = cNu

k + (1 − c) Nu
n. (2.50)

With the new guess on Nu
k+1 the term rhsk+1 in equation (2.45) is obtained after setting ∗ ≡ k+1.

With rhsk+1, a new intermediate pressure pk+1 is obtained by solving again the Poisson equation:

∇2pk+1 = ∇ · rhsk+1, (2.51)

with again, the Neumann boundary condition at the wall:

∂pk+1

∂r

∣

∣

∣

∣

∣

r=R

= 0. (2.52)

2.3 Numerical integration 33



A new velocity field uuuk+1 is then computed by solving the Helmholtz problem:

Xuuuk+1 = rhsk+1 − ∇pk+1, (2.53)

for each velocity component. The velocity field is solved so it is zero at the pipe wall. Afterwards,

the boundary condition at the wall and the mass flux are adjusted.

The algorithm then computes the error between the new guess uuuk+1 and the previous one uuuk as:

err =
d2

d1
, (2.54)

where

d1 = max

{

max

[

(

uk
x

)2
]

,max

[

(

uk
θ

)2
]

,max

[

(

uk
r

)2
]}

, and (2.55)

d2 = max

{

max

[

(

uk+1
x − uk

x

)2
]

,max

[

(

uk+1
θ − uk

θ

)2
]

,max

[

(

uk+1
r − uk

r

)2
]}

. (2.56)

If the error is higher or equal to a certain tolerance, err g tol, the code sets uuuk = uuuk+1 and continues

iterating. If the error is smaller, then the code sets uuun+1 = uuuk+1, finishes the iteration and the

integration of the current time step n+ 1.

Integration parameters

In this work the integration parameters c and tol have been set to c = 0.51 and tol = 5e− 5.

2.4 Building blocks of the algorithm

In this section, some steps/aspects performed by nsPipe during the integration of the NSE are

described in detail. Find a work-flow of the integration algorithm in figure 2.7.

2.4.1 Variable time step

At each point of the domain xxx the Courant number is computed as:

CFL (xxx) = |uuuuuuuuu| ∆t

|∆xxx| . (2.57)

In the CPU version of the nsPipe code, the time step size is adjusted, so the Courant number is

always smaller than CFL f 0.2 in the whole domain.

2.4.2 Change of variables

In cylindrical coordinates, the radial and azimuthal velocities are coupled through the vector

Laplacian operator:

∇2u∇2u∇2u · eeer = ∇2ur − 2

r2

∂uθ

∂¹
− ur

r2
, (2.58)
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∇2u∇2u∇2u · eeeθ = ∇2uθ +
2

r2

∂ur

∂¹
− uθ

r2
, (2.59)

∇2u∇2u∇2u · eeex = ∇2ux, (2.60)

where ∇2 is the Laplacian operator in cylindrical coordinates defined as:

∇2f =
1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂¹2
+
∂2f

∂x2
(2.61)

The vector Laplacian can be decoupled in spectral space [BCN82]:

u± = ur ± iuθ. (2.62)

With the use of this transformation, the vector Laplacian operator of u± is:

∇2
±u± = ∇2u± − u±

r2
± 2i

r2

∂u±
∂¹

. (2.63)

The original variables can be computed as:

ur =
1

2
(u+ + u−) , and uθ = − i

2
(u+ − u−) . (2.64)

By performing this variable change, the equations to compute the cross-section velocities can be

decoupled, speeding up the numerical integration.

2.4.3 Boundary conditions

In the nsPipe formulation the axial and azimuthal directions are treated as periodic directions. In

the radial direction boundary conditions must be set at the pipe center-line and pipe wall.

Pipe center-line: parity condition

In order to impose boundary conditions at the pipe center-line, the code uses the method proposed

by Trefthen [Tre00]. The idea is to expand the radial coordinate from r ∈ (0, 1] to r ∈ [−1, 1]. Note

that in this new domain there exists an equivalence between data points in the domain since the

coordinate:

rrr (r, ¹, x) ≡ rrr (−r, Ã + ¹, x) . (2.65)

All the variables in the problem must have a unique value at each physical coordinate, independently

of the sense of r. This imposes a condition to the fields also in spectral space as:

f̂m (r,m) = −f̂m (−r,m) if m is odd

f̂m (r,m) = f̂m (−r,m) if m is even.
(2.66)

The code takes advantage of this parity conditions, to calculate the radial derivatives close to the

pipe center-line.

Let f̂ffm (r) be a vector that contains all the discrete spectral coefficients of azimuthal wavenumber m
in the 2Nr grid, where r ∈ [−1, 1]. The derivative of f̂ffm (r) can be computed through a matrix-vector

multiplication, as shown in figure 2.6, where M∂r is now a 2Nr × 2Nr matrix. One can split the
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∂f̂
∂r

= M∂rf̂ =

M3

M1

M4

M2

...

f̂1(0
+)

f̂1(r)

...

f̂2(0
−)

f̂2(−r)

r > 0

r < 0

r > 0 r < 0

Fig. 2.6.: Decomposition of the radial derivation matrix according to the parity condition, kindly provided by
Dr. Plana [PT22].

vector f̂ffm (r) in two parts: f̂ffm,1 for r > 0 and f̂ffm,2 for r < 0. Conversely the matrix can be splitted

in 4 sub-matrices M1, M2, M3 and M4. From (2.66), f̂ffm,2 = ±f̂ffm,1, and from the symmetry of the

problem M1 + M2 = M3 + M4. The calculation of the derivative can then be simplified to:

∂f̂m

∂r = (M1 − aM2) f̂m if m is odd
∂f̂m

∂r = (M1 + aM2) f̂m if m is even.
(2.67)

where the constant a depends on the variable f and can be a = ±1. The axial velocity and

pressure fields are even functions in r, as for instance ux (r, ¹, x) = ux (−r, Ã + ¹, x). In this

case a = 1. The radial and azimuthal velocity fields are odd functions in r, as for instance

ur (r, ¹, x) = −ur (−r, Ã + ¹, x). In this case a = −1.

In order to compute higher order derivatives, note that the derivative of an odd function in r is an

even function in r, and conversely, the derivative of an even function in r is an odd function in r.

Pipe wall: influence matrix

At the pipe wall the code imposes a zero-velocity boundary condition. Regarding the pressure, at

each predictor step, and corrector iteration, a Poisson problem is solved in order to compute p, see

eq. (2.47) and (2.51). As mentioned earlier the Poisson equation is solved with Neumann boundary

conditions at the wall:

∂p

∂r

∣

∣

∣

∣

r=R
= 0. (2.68)

But this boundary condition is unrealistic, and the resultant pressure field does not correspond to

the actual pressure field of an incompressible flow, specially close to the wall [Rem06].

In order to avoid this error, nsPipe implements an influence matrix method [KS80; KS84; Wil17].

The idea is to perform an additional step during the time integration, after solving the Helmholtz

problem, see eq. (2.49) and (2.53). In this new step a better boundary condition to the pressure field

is imposed, and additionally, the incompressible condition in the flow close to the wall improved.

Find below a quick description of the method.

Let uuu∗ be the resultant velocity field after solving the Helmholtz problem in eq. (2.49) or eq. (2.53),

and p∗ the corresponding pressure field, the one obtained in a previous step by solving eq. (2.47)

or eq. (2.51) with the unrealistic Neumann boundary condition in eq. (2.68). The velocity field
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satisfies zero velocity at the wall, but, due to the unrealistic pressure field p∗, it is not guaranteed

that it satisfies the incompressibility condition ∇ · uuu = 0 at all points in the flow, and in particular

close to the pipe wall. The velocity and pressure fields are corrected with:

uuu! = uuu∗ + a4uuu
′ +

3
∑

j=1

ajuuu
′′
j , and p! = p∗ +

a4

∆t
p′, (2.69)

where aj are tuning parameters that must be determined, so the improved velocity field uuu! complies

with the incompressible and zero velocity conditions at the wall:

∇ · uuu!
∣

∣

∣

r=R
= 0, and uuu!

∣

∣

∣

r=R
= 0. (2.70)

The auxiliary velocity fields uuu′′j are computed by solving:

Xuuu′′j = 0, (2.71)

with different boundary conditions:

(

u′′+, u
′′
−, u

′′
x

)∣

∣

r=R
= (1, 0, 0) , if j = 1,

(

u′′+, u
′′
−, u

′′
x

)∣

∣

r=R
= (0, 1, 0) , if j = 2,

(

u′′+, u
′′
−, u

′′
x

)∣

∣

r=R
= (0, 0, i) , if j = 3.

(2.72)

The pseudo-pressure field p′ is computed by solving the Poisson equation:

∇2p′ = 0, (2.73)

with the boundary condition:

∂p′

∂r

∣

∣

∣

∣

r=R
= 1. (2.74)

And the corresponding velocity as:

uuu′ = −∇p′. (2.75)

As a side note, if one multiplies the above equation by X, one can obtain:

Xuuu′ = −X
(

∇p′
)

= c
∇2

Re

(

∇p′
)

− ∇p′
∆t

= c
∇
Re

(

∇2p′
)

− ∇p′
∆t

, (2.76)

and, since ∇2p′ = 0, then:

Xuuu′ = −∇p′
∆t

. (2.77)

2.4 Building blocks of the algorithm 37



By imposing the boundary condition in eq. (2.70), to the improved velocity in eq. (2.69), one

finds:

0 = uuu∗|r=R + a4 uuu
′
∣

∣

r=R +
3
∑

j=1

aj uuu
′′
j

∣

∣

∣

r=R
, and (2.78)

0 = (∇ · uuu∗)r=R + a4
(

∇ · uuu′
)

r=R +
3
∑

j=1

aj

(

∇ · uuu′′j
)

r=R
, (2.79)

that corresponds to a system of 4 equations with 4 unknowns, aj for j = 1, 2, 3, 4. This system can

be written as:

Aaaa = ggg →











1 0 0 u′+
0 1 0 u′−
0 0 i u′x

∇ · uuu′′1 ∇ · uuu′′2 ∇ · uuu′′3 ∇ · uuu′′4











r=R

·











a1

a2

a3

a4











=











−u∗+
−u∗−
−u∗x

−∇ · uuu∗











r=R

(2.80)

where A is the so-called influence matrix. By inverting the influence matrix, one can obtain the

coefficients aj , that allow uuu! to satisfy the zero velocity and incompressible conditions at the wall

at each time step. Note that at points different to the wall, the velocity uuu! can still have a certain

divergence
(

∇ · uuu!
)∣

∣

∣

r<R
̸= 0.

As a final note, if one multiplies equation (2.69) by X one obtains:

Xuuu! = Xuuu∗ + a4 Xuuu′ +
3
∑

j=1

aj Xuuu′′j = Xuuu∗ + a4 Xuuu′. (2.81)

If ∗ = k + 1, and invoking eq. (2.77) one finds an evolution equation of uuu! as:

Xuuu! = rhsk+1 − ∇pk+1 − a4
∇p′
∆t

= rhsk+1 − ∇p!, (2.82)

which represents a complementary equation to eq. (2.53), and where p! is the actual pressure field

in the flow.

2.4.4 Pulsatile driving of the flow

In the case of an axially periodic pipe flow, there are two strategies to model the driving of the flow:

to either impose a pressure gradient or to impose a desired bulk velocity. Both methods consider the

use of an axial body force (pressure gradient) fpfpfp = fp (t)eeex.

Option 1: prescribed pressure gradient

A caveat of imposing the pressure gradient is that the bulk velocity of the flow becomes an output

of the simulation, and not an input. If the turbulent fraction increases in the pipe, the mean bulk

velocity and/or the waveform of the bulk velocity will change.

The strategy to implement it in the code is simple: the driving force fpfpfp = fp (t)eeex is set by the user

when Nu
∗ is computed in eq. (2.44).
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Option 2: prescribed bulk velocity

A caveat of imposing the bulk velocity is that the pressure gradient will become an output and not

an input of the simulation. In this thesis this second option is used unless stated otherwise.

In order to impose a pre-defined bulk velocity, nsPipe takes advantage of the iterations in the

predictor and the corrector steps to adjust the bulk velocity to machine precision. It does so by

following several steps.

1. In the initialization phase of the code, the auxiliary axial velocity profile uaux (r) is computed

as the resultant velocity from an unit axial impulse:

X [0, 0, uaux] = [0, 0, 1] . (2.83)

Together with this velocity profile, an auxiliary bulk velocity ua is computed as:

ua = ïuauxðV =
1

LxÃR2

∫ Lx

0

∫ 2π

0

∫ R

0
uauxrdrd¹dx. (2.84)

2. Before solving the Helmholtz problems in equations (2.49) and (2.53), the code computes a

guess of the driving pressure gradient as the balance to the mean viscous stresses at the wall:

f̃p (t) =
−1

LxÃR2

∫ Lx

0

∫ 2π

0

∫ R

0

1

Re

∂u∗x
∂r

∣

∣

∣

∣

r=R
rdrd¹dx, (2.85)

where ∗ = k or ∗ = k + 1. It plugs this guess of the driving force in the term Nu
∗ computed in

eq. (2.44).

3. After solving the Helmholtz problem, and adjusting the boundary conditions of uuu∗, the current

bulk velocity uc is computed as:

uc =
1

LxÃR2

∫ Lx

0

∫ 2π

0

∫ R

0
u!xrdrd¹dx. (2.86)

Note that at this stage, probably uc ̸= ub (tn) being u∗b the desired bulk velocity at time step ∗.

4. A correction to the bulk velocity is then computed as:

´∗ =
u∗b − uc

ua
. (2.87)

And the axial velocity at ∗ = k or ∗ = k + 1 is corrected as:

u∗x = u!x + ´∗ · uaux (r) . (2.88)

As a final note, if one multiplies equation (2.88) by X, and by setting ∗ = k + 1, one arrives at:

Xuuuk+1 = Xuuu! + ´k+1eeex. (2.89)

By plugging equation (2.82) one finds

Xuuuk+1 = rhsk+1 − ∇p! + ´k+1eeex, (2.90)
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which represents a complementary equation to eq. (2.53). After invoking the definition of rhs in

equation (2.45), it is easy to check that the actual pressure gradient driving the flow is equal to:

fp (t) = f̃p (t) + ´ (t) , (2.91)

and it is indirectly computed by the code at each discrete time step.

2.4.5 Solving the Poisson and Helmholtz problems

It can be shown that, for each Fourier mode, the solution of the discretized Poisson and Helmholtz

problem reduces to a one dimensional (radial) problem, which is solved by inverting a diagonal

matrix, similar to the matrix shown in fig. 2.5. For the case of the Helmholtz problem, by invoking the

change of variables explained in §2.4.2, the three velocity components can be decoupled. Therefore,

instead of one, three Helmholtz problems can be solved, one for each velocity component, to obtain

the velocity field of the corresponding Fourier mode.

In the case of the CPU code, the system of equations are solved using open-access C libraries. In the

case of the GPU code, with an in-house programmed LU decomposition.

2.5 Parallelization strategies

Note that, in all the operations described in §2.3, §2.4, and in fig. 2.7, except for the times where the

nonlinear term Nu
∗, (2.44), is computed, the velocity and pressure fields are discretized in spectral

space. This means that, any linear operation on the velocity or pressure fields can be computed for

each Fourier mode independently of the others. Even the computation of the non-linear term Nu
∗ is

performed at each discrete point independently of the others. In sum, the above described algorithm

is highly susceptible to parallelization. In this section, the strategies followed in the CPU and GPU

code are described.

2.5.1 CPU code

In the original nsPipe code the parallelization is performed with an hybrid method. It combines

shared-memory parallel programming using OpenMP (Open MultiProcessing) and distributed-

memory parallel programming using MPI (Message Passing Interface). Using MPI the program can

be distributed in multiple nodes. At each node the OpenMP allows for parallelized execution of

certain operations.

Find in this section a description of the main ideas behind these strategies, and the way they are

implemented in the code. For a more detailed description the reader is referred to more detailed

references [HW10; PT22].

Shared-memory parallel programming (OpenMP)

In OpenMP some CPUs perform operations on a common shared memory space. All of them have

access to the full memory. OpenMP is rarely working all the time. Instead it is only initiated during

certain operations. When an OpenMP instance starts, a single thread, called the master thread

performs the operations in a serial way, until the order to execute in parallel is reached. There,

parallel threads are spawned and execute the subsequent instructions concurrently. When the
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Initialization:

0.1. Initialize radial grid and radial derivatives matrices (fig. 2.4 and 2.5).

0.2. Initialize the flow field, and do a FFT to go from physical to spectral space.

0.3. Initialize the influence matrix A, eq. (2.80) for each mode.

0.4. Initialize auxiliary velocity profile to adjust the bulk velocity, eq. (2.83).

Start time integration:

(Predictor) Compute the nonlinear term Nu
n:

Do an IFFT on the velocity field uuun and compute Nu
n, eq. (2.44).

(Predictor) Compute the right hand side term rhsk:

Do a FFT on the term Nu
k and compute rhsk, eq. (2.45).

(Predictor) Solve the Poisson and Helmholtz problems:

In spectral space solve eq. (2.47) and then eq. (2.49) to obtain uuuk.

(Predictor) Correct boundary conditions and adjust the bulk velocity:

Compute the influence matrix, eq. (2.80) and obtain uuu!, eq. (2.70).

Adjust the velocity field using equation (2.88).

(Corrector) Compute the nonlinear term Nu
k:

Do an IFFT on the velocity field uuuk and compute Nu
k, eq. (2.44).

(Corrector) Compute the right hand side term rhsk+1:

Do a FFT on the term Nu
k+1 and compute rhsk+1, eq. (2.45).

(Corrector) Solve the Poisson and Helmholtz problems:

In spectral space solve eq. (2.51) and then eq. (2.53) to obtain uuuk+1.

(Corrector) Correct boundary conditions and adjust the bulk velocity:

Compute the influence matrix, eq. (2.80) and obtain uuu!, eq. (2.70).

Adjust the velocity field using equation (2.88).

Start new time step

Finish time integration

Check convergence

Fig. 2.7.: Description of the code and the time-stepping algorithm.
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parallel region finishes, the threads are terminated. They send the information to the master thread,

which continues the execution until the OpenMP is called off.

Distributed-memory parallel programming (MPI)

In MPI, the total memory of the program is distributed among a series of CPUs, which run their

version of the program independently to one another. This means that the variables are distributed

among the CPUs and the portion of the variable that is in one CPU cannot be accessed by the other

CPUs unless the CPUs exchange information. This can be done through MPI standard messages, that

can go from simple point-to-point communication, to broadcast to all CPUs at once.

Distribution of memory among CPUs

The total number of data points in spectral space in the CPU code is equal to the product of

mf = (Nθ + 1) 2Nx Fourier modes and Nr radial points. In physical space the total number of points

is equal to, after padding, mp = Nr · (3Nθ + 1) · (3Nx + 1). Both in spectral and physical space the

data points have to be distributed among the Nc MPI CPUs.

In spectral space, each CPU has stored nf =
mf

Nc
Fourier modes, and the corresponding radial points.

This means that each CPU is able to operate only on nf modes. Each CPU can then compute all the

radial derivatives and even invert the Poisson and Helmholtz problems for all the nf modes, without

needing to communicate with the other CPUs.

In order to perform the IFFT operation, the information of all the mf modes are needed for each

radial position. In order to go to physical space, the code performs a global transpose on the memory

of each CPU. After this operation, now the CPUs have the information of all mf modes at nr = Nr

Nc

radial positions. Now each CPU can efficiently perform the IFFT of the corresponding nr radial points.

Then it can compute the nonlinear term in the np = nr · (3Nθ + 1) · (3Nx + 1) physical points, and

subsequently perform a FFT and a global transposition to set the code back to its spectral space

standard.

Using this approach, the number of radial points must be a multiple of the number of processors

Nc, and Nc f nr. This second limitation is alleviated by the code using the hybrid OpenMP-MPI

architecture, allowing, in physical space, for the concurrent work of OpenMP threads doing different

tasks.

2.5.2 GPU code

In the case of the GPU code, the parallelization is performed with the use of CUDA kernels.

Every time a linear operation is performed by the code, that does not correspond to a solution of the

Poisson or Helmholtz problem, each thread of the GPU card is assigned to one Fourier mode and

one radial position. That thread performs the linear operation on the mode and the radial location,

independently of the rest.

The same is done for the computation of the nonlinear term Nu
∗ in eq. (2.44). Each thread is

assigned a discrete point in the domain, and computes Nu
∗ at that point and independently to the

rest.

In order to solve the Poisson and Helmholtz problems, one thread is assigned to each Fourier mode.

The thread then reads all the radial points of that particular mode, and inverts the corresponding

matrix. Find more details of the new GPU code in the following section
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Tab. 2.2.: Performance of the GPU code compared with the performance of the CPU code. The code has been
tested for two different grids, described in the three first columns, with the number of physical
radial Nr, azimuthal Mθ and axial Mx points. The third column denotes the total memory required
to run the code in the GPU, for each grid size. The rest of the columns denote the computing time
of performing a time step in ms, averaged over 1000 time steps. The GPU used is an A100 80GB
(fifth column). The CPU code (sixth to ninth columns) is run with different numbers of Xeon 8360Y
processors. A single processor has 36 cores. The test was performed by Markus Rampp who is
here gratefully acknowledged.

Nr MθMθMθ MxMxMx Memory GPU GPU 2x36 4x36 8x36 16x36

48 96 768 2GB 8.65 40.15 22.37 14.16 8.923

96 240 5760 30GB 397.45 2302.66 1230.55 649.68 372.28

2.6 Details of the GPU-nsPipe code

2.6.1 Code functionalities

The user can select the stencil-length of the finite-difference scheme, being the default a length of 7.

Regarding the driving of the flow, the user can select between a prescribed or time variable driving

pressure gradient.

All the relevant parameters (number of Fourier modes, radial points, time step size, Reynolds number,

etc.) can be written in the head.h file before the code is compiled and run.

2.6.2 Code architecture and performance

In order to run the GPU-nsPipe code, a CUDA-capable GPU device with compute capability 2.0 (or

higher), support for double-precision arithmetic and NVIDIA’s CUDA toolkit are required. The GPU

code runs in a massively parallel setup with thousands of GPU threads and highly efficient memory

management. It relies on CUDA kernels for linear algebra and Fast-Fourier Transforms (cuFFT). An

in-house algorithm is implemented to invert the Helmholtz and Poisson problems that result from

the discretization of the velocity and pressure equations respectively.

This GPU version runs on single GPU devices, although there are plans to further develop it for hybrid

MPI-GPU applications. Currently the maximum size of the case to be run is limited by the amount of

memory of the GPU.

The performance of the code was tested by comparing the computing time per time step of the GPU

code with the computing time of the CPU code for different grids and number of CPUs. Note that

all the cases have the same stencil s of radial points. See the main results of this comparison in

table 2.2. There is an outstanding speed-up of the GPU code compared with the original nsPipe code

run in 72, 144 or 288 cores. Only by running the CPU nsPipe code in 566 or more cores, both codes

reach the same level of performance. Note that, this will require at least 16 CPUs or more, while

the CUDA code needs a single GPU. In sum, the GPU code results in a much faster code than the CPU

code.

Another limitation of the GPU-nsPipe code is its dependency on NVIDIA GPU architectures. As part

of the development of this code, some functionalities to port the CUDA code to other GPUs have been

tested, yielding similar performance capabilities in AMD GPUs.
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Fig. 2.8.: Lifetimes statistics of puffs in DNS using the new C-CUDA code in Lx = 50D long pipes at Re = 1850.
The vertical axis represents one minus the cumulative distribution function of puff decay after a
time step size ∆t. In blue (red) and circles (squares) cases with a constant bulk velocity (constant
pressure gradient). The dotted line corresponds to the value of the exponential distribution pro-
posed by Avila et al. [Avi+11], 1−Pq ≈ exp (−∆t/Ä), where Ä = exp (exp (0.005556 ·Re− 8.499)),
that fits the experimental data of Hof et al. [Hof+08].

2.6.3 Code validation

In order to validate the code, lifetimes statistics of puffs in SSPF at Re = 1850 are computed with

the GPU code. The two versions of the GPU code are considered, one with constant and other with a

time-dependent driving of the flow. In the case of the first version, the pressure gradient is set so,

the bulk velocity is always close to ub ≈ U .

See in figure 2.8 the lifetime distribution of puff decay using the two versions of the code. The

simulations are capped to a maximum run time of t f 400D/U . The two distributions are compared

with the exponential distribution derived by Avila et al. [Avi+11], 1 − Pq ≈ exp (−∆t/Ä), where

Ä = exp (exp (0.005556 ·Re− 8.499)), that fits the experimental data of Hof et al. [Hof+08]. As seen

in the figure, the distributions produced by the code matches the experimental fit, independently of

the method used to drive the flow.
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3 Methods: Linear Stability and

Transient Growth Analysis

In this thesis the stability of laminar pulsatile pipe flows is studied. Two methods are used: transient

growth analysis (TGA) and linear stability analysis (LSA). They both make use of the Navier–Stokes

equations linearized with respect to the laminar flow, what is referred to as the Linearized Navier–

Stokes equations (LNSE). Find in this chapter the mathematical formulation behind the laminar

profile and the LNSE. Find also the methods used to integrate the laminar profile and also to perform

the TGA and LSA.

3.1 Mathematical formulation of the LNSE

Assuming axisymmetric and parallel flow UUU = (0, 0, USW (r, t)), the NSE (2.3) can be simplified to

the equation:

∂USW

∂t
= fp (t) +

1

Re

(

∂2USW

∂r2
+

1

r

∂USW

∂r

)

, (3.1)

where USW (r, t) is the laminar profile. As initially derived by Sexl and Womersley [Sex30; Wom55],

equation (3.1) has an analytical expression, the Sexl-Womersley profile.

Let the velocity field be defined as uuu = UUU + uuu′ and the pressure field as p = p′, where uuu′ and p′ are

perturbation velocity and pressure fields. By plugging this definition in the NSE (2.3), and ignoring

any body force, one finds:

∂ (UUU + uuu′)

∂t
+
[(

UUU + uuu′
)

· ∇
] (

UUU + uuu′
)

= −∇p′ +
1

Re
∇2∇2∇2 (UUU + uuu′

)

+ fp (t)eeex. (3.2)

After invoking equation (3.1), the above equation simplifies to:

∂uuu′

∂t
+ (UUU · ∇)uuu′ +

(

uuu′ · ∇
)

UUU = −∇p′ +
1

Re
∇2∇2∇2uuu′ −

(

uuu′ · ∇
)

uuu′. (3.3)

Here |uuu′| is assumed to be small enough, so the last term (uuu′ · ∇)uuu′ can be ignored. Thus the

linearized Navier–Stokes equations (LNSE), on top of a laminar profile UUU , can be written as:

∂uuu′

∂t
+ (UUU · ∇)uuu′ +

(

uuu′ · ∇
)

UUU = −∇p′ +
1

Re
∇2∇2∇2uuu′, and ∇ · uuu′ = 0. (3.4)
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3.1.1 The LNSE in cylindrical coordinates

In the case of the SW profile, and cylindrical coordinates, the LNSE take the form:

∂u′r
∂t

+ USW
∂u′r
∂x

= −∂p′

∂r
+

1

Re

[

∂

∂r

(

1

r

∂

∂r

(

ru′r
)

)

+
1

r2

∂2u′r
∂¹2

+
∂2u′r
∂x2

− 2

r2

∂u′θ
∂¹

]

,

∂u′θ
∂t

+ USW
∂u′θ
∂x

= −1

r

∂p′

∂¹
+

1

Re

[

∂

∂r

(

1

r

∂

∂r

(

ru′θ
)

)

+
1

r2

∂2u′θ
∂¹2

+
∂2u′θ
∂x2

+
2

r2

∂u′r
∂¹

]

, and

∂u′x
∂t

+ USW
∂u′x
∂x

= −u′r
∂USW

∂r
− ∂p′

∂x
+

1

Re

[

1

r

∂

∂r

(

r
∂u′x
∂r

)

+
1

r2

∂2u′x
∂¹2

+
∂2u′x
∂x2

]

,

with:

1

r

∂

∂r

(

ru′r
)

+
1

r

∂u′θ
∂¹

+
∂u′x
∂x

= 0. (3.5)

3.2 Mathematical formulation of the TGA

In this thesis, the optimal perturbations uuu′0, that, according to the LNSE, can grow the most on top

of the laminar USW profile, are determined. They are computed with a transient growth analysis

(TGA). Find in this section the mathematical background behind the TGA. Note that the methods

used here were developed by Barkley et al.[BBS08].

3.2.1 TGA as an optimization problem

The idea is to find the initial velocity field uuu′0 at time t0 that results in the highest energy (E)

growth

G (tf , t0) = max
uuu′(t0)

E (tf )

E (t0)
=

(uuu′ (tf ) · uuu′ (tf ))V

(uuu′ (t0) · uuu′ (t0))V

, (3.6)

at time tf . Note that (•)V here represents integration in the fluid domain. The velocity at time tf
can be computed as:

uuu′ (tf ) = A (tf , t0)uuu′ (t0) , (3.7)

where A (tf , t0) represents a linear operator that is equivalent to the action of integrating the LNSE

in the time interval t ∈ [t0, tf ]. The operator A (tf , t0) is also referred to as the evolution operator of

the LNSE.

The TGA used in this thesis is equivalent to an optimization problem that looks for the initial flow

field uuu′0 that maximizes G in equation (3.6), with the constraint that the behavior of uuu′ is governed

by the LNSE. The perturbation that results in the biggest G for all t0 and tf is called the optimal

perturbation.
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In the following subsections, a method to simplify and solve the above optimization problem is

presented.

3.2.2 Equivalent algebraic problem to the TGA

Let the fraction in equation (3.6) be written as:

E (tf )

E (t0)
=

(uuu′ (tf ) · uuu′ (tf ))V

(uuu′ (t0) · uuu′ (t0))V

=
(A (tf , t0)uuu′ (t0) · A (tf , t0)uuu′ (t0))V

(uuu′ (t0) · uuu′ (t0))V

, (3.8)

one can define the numerator in the right hand side as:

(

A (tf , t0)uuu′ (t0) · A (tf , t0)uuu′ (t0)
)

V ≡
(

uuu′ (t0) · A∗ (tf , t0) A (tf , t0)uuu′ (t0)
)

V , (3.9)

where A∗ (tf , t0) is the adjoint evolution operator to the LNSE in the t ∈ [t0, tf ] time interval,

A (tf , t0), according to the L2 inner product. See a detailed description of this operator in §3.2.3.

Let ¼j and vvvj denote eigenvalues and eigenvectors of the joint operator A∗A:

A∗ (tf , t0) A (tf , t0)vvvj = ¼jvvvj , (3.10)

it can be shown that the optimization problem in equation (3.8) is equivalent to finding the maximum

eigenvalue:

G (tf , t0) = max
uuu′(t0)

E (tf )

E (t0)
= max

j
¼j . (3.11)

This means that, in order to obtain the maximum growth G, one needs to find the maximum

eigenvalue ¼j of the operator A∗A. The corresponding eigenvector vvvj is actually the optimal initial

flow field uuu′0. As shown in §3.4.1 there is a simple way to compute these eigenvalues using an

Arnoldi iteration. This method requires the integration of not only the LNSE but the adjoint LNSE as

well. See in the following paragraphs the definition of the adjoint LNSE.

3.2.3 The adjoint LNSE

By definition, given two fields qqq and qqq∗, with compact support (so they vanish at the boundaries), the

adjoint operator, according to a L2 norm, of the linear operator H, is any operator H∗ that satisfies

ïHqqq · qqq∗ð = ïqqq · H∗qqq∗ð , (3.12)

where

ï•ð =

∫ tf

t0

∫∫∫

V
• dV dt. (3.13)

Find here the derivation of the adjoint operator A∗ of the LNSE, eq. (3.4) term by term. Here

qqq = [uuu′, p′] corresponds to the perturbation velocity uuu′ and pressure p′ fields, and qqq∗ = [uuu∗, p∗] to the

corresponding velocity uuu∗ and pressure p∗ adjoint fields. Note that, axial and azimuthal periodic

boundary conditions are considered, and no-slip velocity (and adjoint velocity) at the walls.
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Partial time derivative

Let:

∫ tf

t0

∫∫∫

V

∂uuu′

∂t
· uuu∗dV dt =

∫ tf

t0

∫∫∫

V

∂ (uuu∗ · uuu′)
∂t

dV dt−
∫ tf

t0

∫∫∫

V
uuu′ · ∂uuu

∗

∂t
dV dt, (3.14)

where the first term in the right hand side takes the form:

∫ tf

t0

∫∫∫

V

∂ (uuu′ · uuu∗)
∂t

dV dt =

∫∫∫

V

[

uuu′ · uuu∗
]tf

t0
dV =

(

uuu′ (tf ) · uuu∗ (tf )
)

V −
(

uuu′ (t0) · uuu∗ (t0)
)

V . (3.15)

By choosing suitable initial conditions this term vanishes. In particular, given that, by definition:

uuu∗ (t0) = A∗uuu∗ (tf ) , (3.16)

if one sets:

uuu∗ (tf ) = Auuu′ (t0) , (3.17)

the term reduces to 0 and then:

∫ tf

t0

∫∫∫

V

∂uuu′

∂t
· uuu∗dV dt = −

∫ tf

t0

∫∫∫

V
uuu′ · ∂uuu

∗

∂t
dV dt. (3.18)

Note that here the adjoint operator of interest is the one related with (•)V (volume integral),

eq. (3.9), not ï•ð (volume and time integral), eq. (3.12). In what follows, as long as the initial

condition derived in equation (3.17) is satisfied for the desired combination of tf and t0, the adjoint

operator of the operation ï•ð is equivalent to the one of the (•)V operation.

First cross-term

Given that, ∇ ·UUU = 0, one can show that:

∇ ·
{

UUU ·
(

uuu′ · uuu∗
)}

= (∇ ·UUU) ·
(

uuu′ · uuu∗
)

+UUU ·
[

∇ ·
(

uuu′ · uuu∗
)]

= UUU ·
[

∇ ·
(

uuu′ · uuu∗
)]

. (3.19)

Furthermore:

∇ ·
{

UUU ·
(

uuu′ · uuu∗
)}

= UUU ·
[

∇ ·
(

uuu′ · uuu∗
)]

=
[

(UUU · ∇)uuu′
]

· uuu∗ + [(UUU · ∇)uuu∗] · uuu′ (3.20)

Thus:

∫ tf

t0

∫∫∫

V

[

(UUU · ∇)uuu′
]

· uuu∗dV dt =

∫ tf

t0

∫∫∫

V
∇ ·

{

UUU ·
(

uuu′ · uuu∗
)}

dV dt− (3.21)

∫ tf

t0

∫∫∫

V
[(UUU · ∇)uuu∗] · uuu′dV dt, (3.22)

where, by invoking the Gauss divergence theorem:

∫ tf

t0

∫∫∫

V
∇ ·

{

UUU ·
(

uuu′ · uuu∗
)}

dV dt =

∫ tf

t0

∫∫

∂V

{

UUU ·
(

uuu′ · uuu∗
)}

· NdSdt. (3.23)

48 Chapter 3



Since the velocity fields are periodic in the axial and azimuthal directions, and they vanish at the

pipe wall the surface integral in the right hand side of the above expression is equal to 0. Thus, the

adjoint operator of the second term in eq. (3.4) can be shown to be:

∫ tf

t0

∫∫∫

V

[

(UUU · ∇)uuu′
]

· uuu∗dV dt = −
∫ tf

t0

∫∫∫

V
[(UUU · ∇)uuu∗] · uuu′dV dt. (3.24)

Second cross-term

One can show that:

[(

uuu′ · ∇
)

UUU
]

· uuu∗ =
[

(∇UUU)T uuu∗
]

· uuu′, (3.25)

by simply rearranging the terms. Thus:

∫ tf

t0

∫∫∫

V

[(

uuu′ · ∇
)

UUU
]

· uuu∗dV dt =

∫ tf

t0

∫∫∫

V

[

(∇UUU)T uuu∗
]

· uuu′dV d (3.26)

Viscosity term

One can show, using Green’s second vector identity, that:

(

∇2∇2∇2uuu′
)

· uuu∗ = ∇ · ∇
(

uuu′ · uuu∗
)

+
(

∇2∇2∇2uuu∗
)

· uuu′ − 2∇ ·
[

(uuu∗ · ∇)uuu′ + uuu∗ × ∇ × uuu′
]

. (3.27)

When integrating over the volume, all the terms multiplied by the divergence are canceled at the

boundaries, and the adjoint operator reduces to:

∫ tf

t0

∫∫∫

V

(

∇2∇2∇2uuu′
)

· uuu∗dV dt =

∫ tf

t0

∫∫∫

V

(

∇2∇2∇2uuu∗
)

· uuu′dV dt. (3.28)

The adjoint LNSE

The final adjoint equations of the operator in eq. (3.9) are defined as:

−∂uuu∗

∂t
− (UUU · ∇)uuu∗ + (∇UUU)T uuu∗ = −∇p∗ +

1

Re
∇2∇2∇2uuu∗, and ∇ · uuu∗. (3.29)

The adjoint LNSE in cylindrical coordinates

In the case of the SW profile, and cylindrical coordinates, the adjoint LNSE take the form:

−∂u∗r
∂t

− USW
∂u∗r
∂x

= −u∗x
∂USW

∂r
− ∂p∗

∂r
+

1

Re

[

∂

∂r

(

1

r

∂

∂r
(ru∗r)

)

+
1

r2

∂2u∗r
∂¹2

+
∂2u∗r
∂x2

− 2

r2

∂u∗θ
∂¹

]

,

−∂u∗θ
∂t

− USW
∂u∗θ
∂x

= −1

r

∂p∗

∂¹
+

1

Re

[

∂

∂r

(

1

r

∂

∂r
(ru∗θ)

)

+
1

r2

∂2u∗θ
∂¹2

+
∂2u∗θ
∂x2

+
2

r2

∂u∗r
∂¹

]

, and

−∂u∗x
∂t

− USW
∂u∗x
∂x

= −∂p∗

∂x
+

1

Re

[

1

r

∂

∂r

(

r
∂u∗x
∂r

)

+
1

r2

∂2u∗x
∂¹2

+
∂2u∗x
∂x2

]

,
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with:

1

r

∂

∂r
(ru∗r) +

1

r

∂u∗θ
∂¹

+
∂u∗x
∂x

= 0. (3.30)

3.3 Numerical integration of the LNSE (and adjoint)

In this thesis, the LNSE are used in order to perform the TGA on the laminar profile, and to integrate

the evolution of the optimal perturbations obtained with the TGA. Here the methods by which the

LNSE, and the adjoint of the LNSE, eq. (3.29), are integrated, are described. Note that the original

MATLAB code used in this thesis was first developed by Xu et al. [XSA21]. Please refer to that paper

for additional information.

3.3.1 Axial and azimuthal discretization

The pressure and perturbation flow fields are discretized with a Chebyshev-Fourier-Fourier spectral

method;

uuu′ =
m
∑

α
∑

û̂ûu′m,α (r, t) exp (im¹) exp (i³x) (3.31)

Here, m is the azimuthal wavenumber, and ³ the axial one. Note that m ∈ Z is an integer number,

while ³ = kk0 is a real number, being k ∈ Z and k0 = 2Ã/Lx.

Radial discretization

The velocity is discretized in Nr Chebyshev collocation points rj:

rj = cos

(

Ãj

2Nr − 1

)

, (3.32)

where j = 0, 1, ..., Nr. Following Trefthen [Tre00], the profile is discretized using a Chebyshev

spectral method, and it is interpolated using a Nr degree polynomial. The polynomial is chosen

so it automatically satisfies the zero velocity at the pipe wall and the boundary condition at the

center-line of the pipe.

Using this spectral method, any radial derivative can be computed as a matrix-vector multiplication.

Let UUUSW be a vector with the value of the laminar profile USW at the rj discrete radial points. The

derivative of the profile can be computed as:

∂UUUSW

∂r
= M∂rUUUSW , (3.33)

where M∂r is a filled matrix with the derivative coefficients.

Using a Clenshaw–Curtis quadrature, the integral in the radial direction can be numerically computed

as the dot product between a vector www and the integrand f :

a = www · fff . (3.34)
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The idea behind this quadrature is related to the inverse problem:

∂uuu

∂r
= fff → M∂ruuu = fff → uuu = IMfff . (3.35)

Here IM is the inverse matrix of M∂r. By taking the first row of IM as www, and the first value of uuu as a,

equation (3.34) is obtained.

3.3.2 Time stepping algorithm

The integration in time is performed using a second-order (AB/BDF) scheme, that is a combination of

Adams–Bashforth and backward differentiation formula. The incompressibility condition is imposed

using a projection method [HR98].

The perturbation velocity uuu′, at the time step n+ 1, is computed as:

3uuu′,n+1 − 4uuu′,n + uuu′,n−1

2∆t
+ 2Nu′

n − Nu′
n−1 = −∇p′,n+1 +

1

Re
∇2∇2∇2uuu′,n+1, and ∇∇∇ · uuu′,n+1 = 0, (3.36)

In the case of the LNSE:

Nu′ = (USW · ∇)uuu′ +
(

uuu′ · ∇
)

USW , (3.37)

and in the adjoint:

Nu′ = − (USW · ∇)uuu′ + (∇USW )T uuu′. (3.38)

Note that the LNSE are integrated forward in time, so n+ 1 corresponds to a time instant tn+1 > tn.

The adjoint LNSE are integrated backwards, so n+ 1 corresponds to a time instant tn+1 < tn.

At the pipe center-line the code imposes even/odd boundary conditions depending on the azimuthal

wavenumber m, and the variable of interest, as described in §2.4.3. The numerical methods used

here to integrate the LNSE, also make use of other tricks during the integration, like the change of

variables described in §2.4.2.

Find below a short description of the projection method used to impose the incompressibility

condition to the flow. The algorithm, at its core, is based on a predictor-corrector method similar to

the one described in §2.3.3.

Predictor step

In the predictor step, first a guess on the pressure is computed as:

∇2p̄′,n+1 = −∇ ·
[

2Nu′
n − Nu′

n−1
]

, (3.39)

with boundary condition:

∂p̄′,n+1

∂r

∣

∣

∣

∣

∣

r=R

= ererer ·
{

−3uuu′,n+1 + 4uuu′,n − uuu′,n−1

2∆t
− 2Nu′

n + Nu′
n−1 +

1

Re

[

2∇2∇2∇2uuu′,n − ∇2∇2∇2uuu′,n−1
]

}∣

∣

∣

∣

∣

r=R

.
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In order to improve the stability of the code, the Laplacian operator is implemented in the form:

∇2∇2∇2uuu′ = −∇ × (∇ × uuu′). As a second step, an intermediate velocity is computed as:

3u
′,∗ − 4uuu′,n + uuu′,n−1

2∆t
+ 2Nu′

n − Nu′
n−1 = −∇p̄′,n+1 +

1

Re
∇2∇2∇2uuu′,∗, (3.40)

which does not satisfy the incompressibility condition.

Corrector step

In the corrector step, the new velocity is solved using:

3uuu′,n+1 − 3uuu′,∗

2∆t
= −∇

(

p′,n+1 − p̄′,n+1
)

, with ∇ · uuu′,n+1 = 0. (3.41)

The pressure field p′,n+1 is computed using the intermediate pseudo-pressure ϕ′, computed as:

∇2ϕ′ = ∇ · uuu′,∗, (3.42)

with Neumann boundary condition:

∂ϕ′

∂r

∣

∣

∣

∣

r=R
= 0. (3.43)

The pressure field is then computed as:

p′,n+1 = p̄′,n+1 +
3

2∆t
ϕ′, (3.44)

and the velocity field:

uuu′,n+1 = uuu′,∗ − ∇ϕ′. (3.45)

This algorithm does not iterate in the corrector step.

Grid spacing

The number of radial grid points is estimated using eq. (C.13), where Remax = (1 +A)Re. The time

step size is estimated by imposing a constant Courant number CFL = 2(1 +A)U Nr∆t
R = 0.8.

3.4 Algorithm to compute the TGA

As lengthy described in §3.2.1, in order to perform the transient growth analysis, one solves an

optimization problem, to find the initial perturbation velocity field uuu′ (t0) that maximizes the kinetic

energy of uuu′ (t = tf ) at time tf . After some mathematical developments, it turns out that this is

equivalent to solving for the maximum eigenvalue ¼j of a matrix operator A∗A:

G (tf ) = max ¼j → A∗Avvvj = ¼jvvvj . (3.46)

In order to compute the dominant eigenvalue, an Arnoldi iteration is used.
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3.4.1 Arnoldi iteration

The Arnoldi iteration is an iterative method to solve for the eigenvalues of a matrix M = A∗A, where

Mvvvj = ¼jvvvj . It constructs a matrix, B, whose columns, for an initial guess vvv0 are:

BN =

[

vvv0

³0
,
Mvvv0

³1
,
M2vvv0

³2
, ...,

MNvvv0

³N

]

, (3.47)

being N the total number of Arnoldi iterations and ³ constants to normalize all the columns

vectors.

The action of M on BN is given by:

MBN = BN+1DN+1
N , (3.48)

where the (N + 1) ×N matrix DN+1
N , has elements Dij = ³i¶i,j+1. Here ¶i,j is the Kronecker delta.

This is the fundamental operation in a Krylov sequence.

Then the matrices BN and BN+1, are expressed in terms of their QR decomposition:

MQN RN = QN+1RN+1DN+1
N , (3.49)

where the matrix QN has N orthonormal columns, and RN is a N ×N upper triangular matrix. One

can then define an upper Hessenberg matrix:

HN+1
N = RN+1DN+1

N R−1
N , (3.50)

and find:

MQN = QN+1HN+1
N . (3.51)

The last row in the upper Hessenberg matrix has only one non-zero element, denoted as h∗ ≡ HN,N+1.

Let HN be the N ×N resultant matrix, after copying all the elements of matrix HN+1
N , except for the

last column. If one explicitly separates the last column qqqN of QN+1 one obtains:

MQN = QN HN + h∗qqqNeee
T
N , (3.52)

where eeeT
N is a unit vector of length 1 × N . This definition is the projection of M on the reduced

orthonormal basis QN . The term h∗ represents the error of the projected HN matrix.

Using this projection one can compute the eigenvalues vvvj and eigenvectors ¼j of matrix HN . By

gathering the eigenvectors in the matrix ΓN and the eigenvalues in the diagonal matrix ΛN one can

show that:

MQN ΓN = QN ΓN Γ−1
N HN ΓN + h∗qqqNeee

T
N ΓN → MΨN = ΨN ΛN + h∗qqqNeee

T
N ΓN . (3.53)

Here ΨN = QN ΓN = [ÈÈÈ0,ÈÈÈ1, ...] is the matrix whose columns are the normalized approximate (Ritz)

eigenvectors ÈÈÈj of M. The residual error of the eigenpar ÈÈÈj and ¼j is exactly given by:

ϵj = |MÈÈÈj − ¼jÈÈÈj | =
∣

∣

∣h∗qqqNeee
T
Nvvvj

∣

∣

∣ . (3.54)

3.4 Algorithm to compute the TGA 53



3.4.2 Implementation of the algorithm

In the MATLAB code used in this thesis, the above method is used to compute the leading eigenvalue

of the operator M = A∗A. The code initializes vvv0, with a random and small O
(

10−20
)

velocity

field. It then constructs the matrix in eq. (3.47), by repeatedly integrating forward (LNSE) and

backwards (adjoint LNSE) the initial velocity field vvv0. Note that, the act of integrating forward, and

then backwards vvv0, is equivalent to perform Mvvv0. The number of Arnoldi iterations is kept to N = 5,

unless the final error ϵj g tol is bigger than a certain tolerance. In that case the code performs more

steps of the Arnoldi iteration, i.e. more for-backwards integrations.

3.4.3 The maximal growth G

In this thesis, the maximal growth G corresponds to the maximal G (tf ) obtained after checking

all possible combinations of t0, tf , m and ³ for a particular laminar profile. To that end, the code

always iterates on all possible combinations of t0, tf , m and ³ for the selected Wo, Re and A.

3.5 Linear Stability Analysis

In this thesis the laminar profile is computed and saved at several time steps during the pulsation

period. Then, each instantaneous laminar profile is plugged, as if it were steady, in the algorithm

developed by Meseguer et al.[MT00]. The code performs a linear stability analysis, that returns a

vector with the eigenvalues ¼¼¼ of the laminar profile at that time step. The maximum eigenvalue

¼max (t) = max¼¼¼ (t) at each time step is saved. All the maximum eigenvalues are then treated as a

continuous function in time ¼max (t) and used to study the stability of the flow during one pulsation

period, as analyzed in Chapter 4.

In what follows, the main ideas of the algorithm will be presented. For more details the reader is

referred to the original references [MT00; MT03].

3.5.1 Spatial discretization

The perturbation velocity is discretized with a Petrov-Galerkin projection. A Fourier Ansatz is used

in the axial and azimuthal directions. In the radial direction the velocity is expanded with the use of

two polynomial:

uuu′ =
m
∑

α
∑

û̂ûu′m,α (r, t) exp (im¹ + i³x) (3.55)

=
m
∑

α
∑

L
∑

l=0

[

a
(1)
l vvv

(1)
l,m,α (r, t) + a

(2)
l vvv

(2)
l,m,α (r, t)

]

exp (im¹ + i³x) . (3.56)

The polynomial are chosen so the zero-divergence condition is satisfied:

∇ ·
[

vvv
(1,2)
l,m,α exp (im¹ + i³x)

]

= 0. (3.57)

The trial functions VVV are the solenoidal base to which the polynomial are projected. They are

computed so they comply with the divergence free condition.
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3.5.2 Weak formulation

The problem is defined using the weak formulation. One can write the LNSE in the form:

∂uuu′

∂t
= Nu′ − ∇p′ +

1

Re
∇2∇2∇2uuu′ → uuu′t = Luuu′ − ∇p′, (3.58)

where L are all the linear operations on the perturbation velocity. Using the weak formulation, the

above equation can be written as:

(

uuu′t,WWW
)

=
(

Luuu′t,WWW
)

−
(

∇p′,WWW
)

, (3.59)

where (·, ·) is the inner product in the flow domain, and WWW are solenoidal tests functions that

vanish at the pipe wall. Since WWW = 0 at the wall, the functions are solenoidal ∇ ·WWW = 0, and

using periodic boundary conditions in the axial and azimuthal directions, one can show that

(∇p′,WWW ) = − (p′,∇ ·WWW ) = 0. This means that, in the weak formulation, the above problem can be

simplified as:

(

uuu′t,WWW
)

=
(

Luuu′t,WWW
)

. (3.60)

The test functionsWWW could be set equal to the trial functions VVV [MT00]. InsteadWWW are computed

as modified trial functions VVV .

3.5.3 Implementation of the algorithm

The above method is used to compute the leading eigenvalue of the operator L, for each snapshot

of the laminar profile. The code performs three loops, one in the time step of the laminar profile,

other on the azimuthal wavenumber m and another on the axial wavenumber ³. At each time step

it computes the instantaneous maximum eigenvalue max (¼¼¼) out of all wavenumbers, and saves it to

the function ¼max (t).
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4 Results: Linear Stability and

Transient Growth Analysis

In this chapter, transient growth analysis and linear stability analysis of pulsatile pipe flows driven

with different pulsation waveforms and different flow parameters Re, Wo are performed. Among the

inifinite combinations of flow parameters possible, here only cases at Re ≈ O
(

103
)

, 5 ≲ Wo ≲ 20,

A g 0.5 are considered. At these Re and A, and at intermediate 8 ≲Wo ≲ 20 the laminar pulsatile

pipe flow USW (r, t) is highly susceptible to the growth of helical perturbations [XSA21]. These

perturbations are optimally triggered during the deceleration phase of the pulsation, dub

dt < 0 and

show an outstanding energy growth which scales exponentially with Re, A and Wo−2. Similar flow

patterns have been observed in experiments [Xu+20], where they behave similar to their theoretical

counterparts until they saturate and trigger turbulence.

The main focus of this chapter is the analysis of these helical perturbations. As it is described below,

the mechanisms the helical perturbations use to outstandingly grow, are related to the shape of the

laminar pulsatile pipe flow itself. Therefore, at the beginning of this chapter, some time is devoted

to describe the laminar pulsatile pipe flow itself. Following our paper [MFA22], the causes of the

helical perturbations and the effect the shape of the pulsation has on them are then explained. Part

of the results in this chapter have been published there.

4.1 General characteristics of pulsatile pipe flow

In order to highlight some characteristics of laminar pulsatile pipe flow and the transient growth of

perturbations on top of them, here some results of the original work of Womersley [Wom55] and Xu

et al. [XSA21] are reproduced.

4.1.1 Sexl–Womersley profile

Laminar pulsatile pipe flow has an analytical solution, the Sexl-Womersley (SW) profile USW (r, t)
§3.1. As Wo increases the maximum center-line velocity of the SW profile:

Uc (t) = USW (r = 0, t) , (4.1)

decreases, and the phase difference between the driving pressure gradient fp (t) and bulk velocity

ub increases, see fig. 4.1b.
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Fig. 4.1.: Characterization of the laminar pulsatile pipe flow profile USW for different pulsation waveforms
(symbols) and Wo (horizontal axis). Here WF1 corresponds to a custom waveform with tm = 0.45
and tac = tdc = 0.05. WF2 corresponds to tm = 0.55 and tac = tdc = 0.2, see §2.1.4. Sine stands
for a single harmonic pulsation at A = 1. See the waveform in fig. 2.1 and 4.3. In a), the maximum
center-line velocity during the pulsation. In b) phase difference between bulk velocity ub (t) and
the driving pressure gradient fp (t). In c) the total lifetime of inflection points in the laminar profile
as a fraction of the pulsation period. In d) with colors, the lifetime of inflection points in the
laminar profile as a fraction of the period. The area denotes all the radial positions of inflection
points during a pulsation period at each Wo.

At A = 1 and Wo g 1, the SW profile has inflection points where:

∂2USW

∂r2
= 0, (4.2)

that survive for a certain phase of the period ∆ti

T , that scales with Wo, see fig. 4.1c and d. These

inflection points appear at the pipe wall during the deceleration phase of the pulsation and move

radially towards the center-line of the pipe during the rest of the pulsation. How close they come to

r = 0 depends on Wo, see fig. 4.1d.

These inflection points, as shown later, are related with the stability of the laminar pipe flow and

with the growth of perturbations on top of it. By changing the pulsation waveform, one can change

the radial movement and lifetime of these inflection points, see fig. 4.1c and d.

4.1.2 A word of warning regarding optimal perturbations

In this chapter the main focus is the optimal perturbations to different USW profiles. The optimal

perturbation corresponds to the perturbation that can grow the most by extracting energy from

the laminar flow. In the case of pulsatile pipe flow, it is optimally triggered at a given phase t0/T ,

and reach maximum energy after a time tf/T . For most of the flows considered here, this optimal

perturbation corresponds to the so-called helical perturbation, see fig. 4.2. The shape of the optimal

helical perturbation varies between flows. For all the cases considered here, it always has an

azimuthal wavenumber m = 1, but its radial profile and axial wavelength ³ change, as described by

Xu et al. [XSA21]. By focusing on the optimal perturbation, however, other perturbations that can

also grow in pulsatile pipe flow are ignored. They are quickly mentioned here.

On the one hand, as long as Re ≈ O
(

103
)

, pulsatile pipe flows are susceptible to the growth of

stream-wise constant perturbations with m = 1 and ³ = 0, as in the case of steady pipe flow. Their

growth depends on Re. See in figure 4.3 (in dashed lines) the transient growth of stream-wise
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Fig. 4.2.: Isosurfaces of positive (blue) and negative (vermilion) axial vorticity Éx of the optimal helical
perturbation of a pulsatile pipe flow driven with a sine wave pulsation at Re = 2000, A = 1 and
Wo = 11. In a) at t0/T = 0.5 and in b) at t/T = 1. In both panels a section x = 1.5D long of the
pipe is shown, and the isosurface corresponds to the ±0.9max (Éx) at that instant of time.

Tab. 4.1.: Parametric space considered for the linear stability (LSA) and transient growth (TGA) analyses:
range of Reynolds (Re) and Womersley (Wo) numbers and the three parameters (tm, tac, tdc)
defining the generic waveform, the total number of each parameter values (N···) and the total
number of cases (N).

Method Re NRe Wo NWo tm Ntm tac,dc Ntac,dc
N

LSA 1000 to 4000 7 1 to 25 25 0.40 to 0.60 5 0.05 to 0.2 4 14 000
TGA 1500 to 2500 3 7 to 15 5 0.45 to 0.55 3 0.05 to 0.2 2 180

constant perturbations on top of three different pulsatile flows. At these particular Wo, Re and A the

growth of these perturbations is much smaller than the helical perturbations. Note, however, that

their energy decays at a much slower rate than the helical perturbation one.

On the other hand, the mechanism behind the growth of the helical perturbation, allows the growth

of additional perturbations. In particular, the presence of inflection points in the profiles is related

to the optimal growth of helical perturbations with m = 1 and ³ ≈ 4, but also of perturbations with

m = 2 and 1 ≲ ³ ≲ 6. These results are not shown here.

4.2 Linear analysis

In this section, results of a large set of LSA and TGA of laminar profiles at many different com-

binations of Re, Wo and waveforms, as compiled in table 4.1, are shown. For 5 f Wo f 19 all

the bulk velocities show susceptibility to the development of the helical perturbations in a similar

fashion to the single harmonic pulsation. According to the TGA the helical perturbation is optimally

triggered during deceleration and grows during the low velocity phase, see fig. 4.3. It then reaches

its maximum during, or right after, the acceleration phase for all the bulk velocities considered here.

4.2.1 Mechanism of the helical perturbation growth

The velocity profile at Re = 2000, Wo = 11 and A = 1, is instantaneously unstable for more than 50 %
of the period. This can be seen in fig. 4.4, where the maximum real part out of all the instantaneous

eigenvalues (¼max, see §3.5), is shown for this case. For most part of the acceleration phase, ¼max is

constant and negative. This corresponds to the maximum eigenvalue of Hagen-Poiseuille flow at

Re = 2000 [MT00]. However for the second half of the deceleration phase and the first half of the
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WF1

WF2

Sine

Fig. 4.3.: Energy growth of the optimal helical perturbation (³ > 0 and m = 1) in solid lines, and of
stream-wise constant perturbations (³ = 0 and m = 1) in dashed lines, according to TGA for three
different waveform (dotted lines) at Re = 2000 and Wo = 11.

Fig. 4.4.: Laminar profile and instantaneous maximum eigenvalue ¼max according to LSA for a sine wave
pulsation. In yellow the instantaneous laminar profiles USW at Re = 2000, Wo = 11 and A = 1.
To not interfere with one another the profiles are scaled using a scalar with arbitrary units
so the all time maximum is smaller than t/T = 0.15, since only the development of USW in
time is of interest. With points find the existence and position ri of inflection points in the
profile. Filled points correspond to inflection points that also satisfy the Fjørtoft criterion locally
∂2USW

∂r2 (USW − USW (ri)) < 0. In red, the maximum real component out of all the instantaneous
eigenvalues of the laminar profile ¼max.
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Fig. 4.5.: Laminar profile and the Q criteria, see eq. (4.4), at different phases of the pulsation period. In
yellow thick lines, the instantaneous laminar profiles USW at Re = 2100, Wo = 10 and A = 1.
With points find the existence and position ri of inflection points in the profile that satisfy the

Fjørtoft criterion locally ∂2USW

∂r2 (USW − USW (ri)) < 0. In a thinner orange line, the Q criteria, see
eq. (4.4), related with the instability of the profile, for the case of m = 1 and ³ = 0. The marker
denotes the location of local minimum of Q in the interval r ∈ [0, D/2). In a dashed purple line
the criteria Q for the case m = 1 and ³ = 3.77 1/D. For the sake of clarity, this last line is scaled
by multiplying Q by 1 + ³2D2.

acceleration phase, ¼max is positive. The crossover occurs at t
T ≈ 0.45, which is very close to the

optimal time to trigger the helical perturbation ( t0

T ≈ 0.5) found by Xu et al. [XSA21] based on a

transient growth analysis for the same values of Re, Wo and A.

The instantaneous linear instability of the Sexl–Womersley velocity profile is related to the existence

and characteristics (number or position (ri)) of inflection points (∂2USW

∂r2 = 0) [Mia+17; Neb19].

An inflection point is regarded as inviscidly unstable, in Cartesian coordinates, when the Fjørtoft

criterion:

∂2USW

∂r2
(USW − USW (ri)) < 0, (4.3)

is satisfied locally [SH00]. In the case of cylindrical coordinates, there is an equivalent criterion that

depends on the term:

Q (r) =
r

m2 + ³2r2

∂USW

∂r
. (4.4)

A necessary condition for the profile to be unstable is that Q has a numerical minimum at some

r ̸= 0 and r ̸= R, [BG62]. For the case of the helical perturbations considered here, with m = 1 and

³ ≈ 3.7 1/D, this maximum is found almost exactly at the radial location of inflection points, as

seen in fig. 4.5.

Perturbations can sit on top of these inflection points and feed energy from them [Neb19]. In the

following, it is shown how the helical perturbations take advantage of this mechanism to grow. To

this end, the LNSE are integrated forward in time using the optimal helical perturbation according

to the TGA as initial condition. Then, the production (P ′) and dissipation (ε′) of the kinetic energy

(E) contained in the perturbations are computed as

P ′ = −u′ru′x
∂USW

∂r
and ε′ = − 1

Re

∫

V
∇uuu′ : ∇uuu′dV where

dE

dt
= P ′ + ε′. (4.5)

4.2 Linear analysis 61



Fig. 4.6.: Link between inflection points in the Sexl–Womersley profile (USW ) and production (P ′, see
eq. (4.5)) of kinetic energy contained in the helical perturbations. Results are based on a simulation
of the LNSE for a sine wave pulsation at Re = 2000, Wo = 15 with A = 1. Yellow lines represent
U(r, t) scaled in arbitrary units and dots represent existence and location (ri) of inflection points.
Filled dots additionally satisfy the Fjørtoft criterion locally. The production is normalized by the
maximum value at t0

T
= 0.5, where the simulation was started. a): Mid deceleration phase at

t
T

= 0.5. b): Mid acceleration phase at t
T

= 1.

Figure 4.6 shows how the location of strong production events of the helical perturbation attach to

the radial position of the inflection points in the SW profile. This means that, the optimal helical

perturbation, takes advantage of the presence and characteristics of inflection points to grow during

the pulsation.

4.2.2 Simple model for helical perturbation growth

Pulsatile pipe flow has at least two important time scales when it comes to the evolution of

perturbations. One is the advective time scale (D
U ) and the other is the pulsation period (T = πRe

2Wo2

in advective time units). Already Cowley et al. [Cow87] noted that, for sufficiently long pulsation

periods (in terms of D
U ), the perturbations would perceive a quasi-steady velocity profile. In that case,

the perturbations would have enough time to grow on top of the instantaneous linear instability

before the velocity profile changes and becomes stable again.

In view of these findings, it is hypothesised that the energy growth (GT GA) observed by Xu et al.

[XSA21], depends on how much and how long the SW velocity profile is instantaneously linearly

unstable. The instability of the velocity profile, in turn, depends on the existence of inflection points

that satisfy the Fjørtoft criterion [SH00; Neb19; Ker+21], as already discussed above. With these

ideas in mind, from an LSA perspective, the energy growth rate should scale as

Emax

E0
∝ GLSA = e2 λi T , (4.6)

where, ¼i is the weighted time integral

¼i =
1

T

t0+∆tu
∫

t0

¼max (t) dt, (4.7)

for the time window ∆tu where ¼max > 0. The new parameter ¼i is taken as a combined proxy for

how much and how long the laminar profile USW is linearly unstable during one pulsation period.
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Fig. 4.7.: a) Relationship between eigenvalue proxy ¼i (see equation (4.7)) and tm. Cases correspond to
Re = 2000, Wo = 11 and different lines indicate different tac and tdc. b) ∆tu or fraction of the
period during which the laminar profile is instantaneously unstable for different tm, tac and tdc. c)
∆tu for different waveform with respect to Wo. The thin grey line corresponds to the total time
∆t∗i where the profile has a single inflection point that satisfies the Fjørtoft criterion.

4.3 Parametric study of helical perturbation growth

In general, the proposed eigenvalue proxy in eq. (4.7) depends on all the control parameters. Here

these dependencies are studied. First its dependency with respect to the parameters that define the

waveform (tm, tac and tdc) are explored, while fixing Re = 2000 and Wo = 15. Afterward, the flow

parameters Re and Wo are varied. Motivated by these findings, the parametric space is massively

explored and a simplified formulation from the generated data base is developed, to approximate

the energy growth of a pulsatile pipe flow as a function only of the waveform and flow parameters.

This formulation is finally tested with a realistic physiological waveform.

4.3.1 Dependency with respect to the waveform

The first parameter to consider is tm, which controls the asymmetry of the waveform. The smaller

tm is, the shorter the high velocity phase (in terms of T ) and the larger Remax become, see eq. (2.5).

From fig. 4.7a, it is clear that ¼i increases monotonically as tm decreases. This is because a longer

low velocity phase (smaller tm) results in a longer fraction of the period ∆tu where the profile is

instantaneously unstable, see fig. 4.7b. Thus the shorter tm is the more unstable the laminar profile

becomes. This conclusion is in good agreement with experimental findings of [BV18], who showed

that flows with longer deceleration and longer low velocity phases are more prone to transition.

In figure 4.7a, it is also shown how ¼i depends on the other two waveform parameters. Bear in

mind that tac and tdc control the slope of the acceleration and the deceleration, but do not affect

Remax. It is evident from figure 4.7a, that ¼i is inversely proportional to both parameters, implying

that steeper acceleration and steeper deceleration both lead to more unstable flows. However, the

sensitivity of ¼i with respect to tdc is larger than the sensitivity with respect to tac. While increasing

tac by a factor of four decreases ¼i by only 9 %, doing the same for tdc decreases ¼i by 16 %.
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Fig. 4.8.: a) Eigenvalue proxy ¼i with respect to Re at Wo = 11 and two different waveform (blue/green
lines). b) ¼i, equation (4.7), with respect to Wo at Re = 2000. c) GLSA, see equation (4.6), with
respect to Re at Wo = 11. c) GLSA with respect to Wo at Re = 2000. Orange lines correspond
to the optimal transient growth GT GA. Blue and orange lines correspond to waveform 1 with
tm = 0.45 and tac = tdc = 0.05, while green lines correspond to waveform 2 with tm = 0.55 and
tac = tdc = 0.2.

4.3.2 Dependency with respect to Reynolds and Womersley numbers

The hypothesis is that GLSA is proportional to the product of the period (T ) and the proposed

eigenvalue proxy (¼i, eq (4.7)). Here the dependency of ¼i on Re and Wo is explored and GLSA is

compared with GT GA, the latter obtained with a transient growth analysis.

For both waveform considered here, ¼i grows with the Reynolds number, see fig. 4.8a. At very high

Re, ¼i seems to approach a given asymptotic value, which depends on the waveform.

The dependence of ¼i on the Womersley number is more complex. From Wo ≳ 2 on, ¼i > 0, see

fig. 4.8b, but the exact value at which the flow becomes unstable, depends on both the Reynolds

number and the waveform. Thereafter ¼i increases with Wo, until it reaches a maximum around

Wo ≈ 11. The exact location and magnitude of this maximum also depends on the Reynolds number

and the waveform. If Wo is now further increased, ¼i decreases again but remains positive for all

parameters considered here.

The dependence of ¼i on Wo is determined by the relationship between ∆tu and Wo, as observed

when comparing figures 4.8b and 4.7c. It is the fraction of the period where the flow is unstable

what dictates the value of ¼i with respect to Wo. In turn, as shown in figure 4.7c, ∆tu follows

the trend of ∆t∗i . Here, ∆t∗i is the fraction of the period, where the profile has only one inflection

point, that additionally satisfies the Fjørtoft criterion. Thus the presence of inflection points sets the

fraction of the period where the laminar profile is unstable, which sets the level of instability ¼i.

For Wo ≳ 3 the velocity profiles exhibit inflection points for more than one quarter (∆t∗i ≳ T
4 ) of the

pulsation period, see fig. 4.7c. By increasing Wo (3 ≲Wo ≲ 15), the lifespan of the inflection points

(∆ti) increases, see fig. 4.1c. The inflection points appear close to the pipe wall at the early stages of

deceleration, see fig. 4.4. During the rest of the deceleration and the subsequent low velocity phase,
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the inflection points move towards the pipe center-line. However, before they are able to reach the

center-line, they disappear during the acceleration phase. Their movement is restricted to a radial

span ∆ri = max (ri) − min (ri) that decreases with increasing Womersley number, see fig. 4.1d. For

large Wo, the evolution of the velocity profile prevents the inflection points from approaching the

center line before they die. Already from Wo ≈ 11 on, they remain in the vicinity of the pipe wall

(min (ri) <
D
4 ) and so do the perturbations that may grow on top of them. This in turn does not

allow perturbations to access the more energetic flow in the central region of the pipe, resulting in a

decreasing ¼i for Wo > 11, see fig. 4.8a.

In order to characterize the dependency of GLSA (eq (4.6)) with respect to Re and Wo, one needs

to combine the knowledge on ¼i with the effect of the pulsation period T = πRe
2Wo2 . For intermediate

Womersley numbers, GLSA grows monotonically with Re, see fig. 4.8d. At sufficiently high Reynolds

numbers, ¼i is more or less constant, see fig. 4.8a, and GLSA ends up following the exponential

relationship between T and Re.

The combined effects of ¼i and pulsation period set the point of maximum growth at Wo ≈ 7.5, see

fig. 4.8c. Depending on the waveform or the Reynolds number, the exact position of this maximum

with respect to Wo can vary slightly. Interestingly, the region close to Wo ≈ 7.5 matches the point of

maximum transient growth for a flow driven with a sine wave pulsation [XSA21], and it is close

to the point of maximum growth of perturbations in pulsatile channel flow [PS17]. It is at this

particular Wo, where the competing effects of shorter pulsation periods (in terms of advective time

units) and higher level of average instability of the laminar profile, make the flow more susceptible

for perturbations to grow.

In figure 4.8c and d it is shown that GLSA approximates the optimal transient growth GT GA

reasonably well at several Re and Wo. This shows that the energy growth of the helical perturbation

is related to the instantaneous instability of the laminar profile and confirms the initial hypothesis.

It is the instantaneous instability of the laminar profile what yields the outstanding perturbation

growth observed in transient growth analyses [XSA21].

Difference between energy growth in TGA and LSA

Note that GT GA must always be GT GA g GLSA. The energy growth of perturbations according to

the TGA is the combination of modal and non-modal growth, whereas the energy growth of the

LSA is only modal. As discussed by Xu et al. [XSA21], the optimal helical perturbation in the TGA

is initially tilted against the mean shear of the pulsation. See this initial tilt in figure 4.6. This tilt

triggers an initial Orr like mechanism where the energy of the perturbation grows as it is tilted in

favor of the mean shear.

This initial growth can be seen in figure 4.3, where there is a clear change of trend of energy

growth at a time t/T ≈ 0.1 after the perturbation has been triggered. At Re = 2000 and Wo = 15,

t = 0.1T ≈ 1D/U . The Orr mechansm time scale is equal to the time scale of the mean shear [EJ20],

which in this case is indeed ≈ 1D/U .
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Tab. 4.2.: Weights (w) and biases (bi) used to fit LSA and TGA results to eqs. (4.8)–(4.10).

Case bi1 w1 w2 w3 bi2 wm wac wdc bi3 N

LSA 0.989 1.55 0.0059 0.1821 18.746 -17.634 -2.064 -16.38 -2.9638 14000

TGA -0.13 1.67 0.0083 0.1925 -8.111 -16.223 -3.404 -5.491 -0.6191 180

4.3.3 A model for perturbation growth in pulsatile pipe flows

The dependency of the perturbation growth on the governing parameters is quantified by fitting the

two sets of LSA and TGA results listed in table 4.1 to the expression

logGg = s · Ã ·Re+ bi3, (4.8)

s = bi2 + wm · tm + wac · tac + wdc · tdc, (4.9)

Ã =
[

w1 (Wo− bi1) + w2 (Wo− bi1)2
]

· exp (−w3Wo). (4.10)

The parameter Gg is the guess on GLSA or GT GA. An exponential dependence on Re is assumed,

motivated by figure 4.8d. Also, from the observations above, the slope of this relationship is assumed

to be the product of eq. (4.9) and eq. (4.10). The function Ã tries to reproduce the shape of GLSA

with respect to Wo that is shown in fig. 4.8c. The function s accounts for the dependency of Gg on

the shape of the pulsation waveform (i.e. tm, tac and tdc).

Then Gg is computed by looking for the set of weights (wi) and biases (bii) in eqs. (4.8)–(4.10) that

minimize the error

ϵ =
1

N

N
∑

n=1

(logG− logGg)2
n , (4.11)

being N the total number of data items to fit (table 4.2). Two fits have been produced, one to

the LSA results where G = GLSA and another to the TGA results where G = GT GA. Each fit is

initialized with the vector xxx0, that is filled with random guesses of weights and biases with values

between zero and one. Then a gradient descent method is used to find the vector xxxi that minimizes

eq. (4.11). Iterations are performed until a minimum is reached. At iteration i the weights and

biases are updated as

xxxi+1 = xxxi − ¸
N
∑

n=1

dϵn

dxxxi
, (4.12)

where ¸ here is a learning parameter that is dynamically adjusted so that the error ϵ
(

xxxi+1
)

< ϵ
(

xxxi
)

.

The case is considered as converged when the error decreases to less than 10−10 for consecutive

iterations.

The quality of the fit is visualized in figure 4.9. The horizontal axis represents the number of the

case, where the list of cases is ordered in the sense of increasing first Re, then Wo and finally tm, tac

and tdc as in table 4.1. This explains why the data appears in packets of functions that look similar

to the shape of the function shown in figure 4.8c.

Note that the fit performs poorer as Re increases. Re also has an effect on ¼i, as shown in figure 4.8b.

But the formulation here proposed, ignores this, and other cross-dependencies, as it only considers

the dependency of G on Re coming from T . Despite these differences, the error is of the order of

10−4 for both fits.
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Fig. 4.9.: Results of the fit using the gradient descent method. a) Fit of GLSA (see equation (4.6)) to
equation (4.8). Hollow circles are individual results of the LSA for all the parameters considered,
the first row of table 4.1. Black dots are the fit of the method. The horizontal axis corresponds to
the number of data points in table 4.1. Each horizontal location corresponds to just one case with
a given combination of Re, Wo, tm, tac and tdc. The cases are ordered in increasing sense of first
Re then Wo and finally tm, tac and tdc. b) Same fit but for GT GA, or the results of second row of
table 4.1.
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Fig. 4.10.: Results and fit of the energy growth of helical perturbations on a laminar profile driven with a
physiological waveform. a) Physiological waveform defined by coefficients of table 4.3 in blue,
compared with a sine wave pulsation in yellow. b) Evolution of energy growth G with Re at
Wo = 12 for the physiological waveform. The blue solid line corresponds to GLSA and the blue
dotted line is a guess using the expression (4.8) with the weights in the first row of table 4.2.
Filled red points correspond to TGA results and the dotted red line corresponds to a guess using
the expression (4.8) with the weights in the second row of table 4.2. c) Evolution of energy
growth G with respect to Wo at Re = 2000 for the physiological waveform. Lines and symbols
correspond to the same cases as in b).

Tab. 4.3.: Fourier coefficients (an, bn) used to approximate the physiological waveform [Bür+12]

a1 = -0.053 a5 = 0.0368 b1 = 1.4637 b5 = -0.0664

a2 = -0.7278 a6 = 0.0142 b2 = -0.1712 b6 = -0.0259

a3 = -0.0957 a7 = -0.0013 b3 = -0.1905 b7 = 0.00869

a4 = -0.0514 a8 = -0.0152 b4 = -0.1433 b8 = -0.00434

The final weights of the two fits (Table 4.2) show that tm has a higher impact on the energy growth

compared to tac and tdc, since |wm| > |wdc| > |wac|. The smaller tm, tac and tdc are, the bigger the

energy growth is, since wm < wac < wac < 0. These fits allow us to generalize the dependency

of GLSA and GT GA on all the control parameters for all the waveform considered here. With this

tool one can infer how much helical perturbations can grow in a given pulsatile pipe flow by only

knowing the waveform of the pulsation and the flow parameters (Re and Wo).

4.3.4 Physiological waveform

As a test of these observations, the behaviour of a laminar profile driven by a physiological waveform

is studied. To that end a particular signal presented in the physiological study of Bürk et al. [Bür+12]

was selected, see fig. 4.10a. In their study, they measured the mean velocity of blood flow at different

sections of the aorta in several patients. I chose the signal for the descending aorta section of a

young volunteer and fitted it using NF = 8 Fourier modes. The resultant Fourier mode coefficients

for the physiological waveform are presented in table 4.3. The corresponding waveform parameters
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Fig. 4.11.: Energy growth G of helical perturbations on pulsatile pipe flows driven with the physiological
waveform at several Re and Wo. Highlighted regions correspond to the typical flow parameter
values at certain sections of the aorta [Les+10; Sta+11], gathered in table 1.1. AA stands for
ascending aorta, DA for descending aorta and SA for supraceliac aorta. See figure 1.6 for a visual
representation of these sections.

(tac, tdc and tm) of the physiological waveform are computed by measuring the time span between

the half point of the acceleration and deceleration (tm ≈ 0.279). Additionally, the half length of the

acceleration (tac ≈ 0.108) and the deceleration (tdc ≈ 0.141) are measured. By introducing these

parameters to expression (4.8) and using the weights listed in table 4.2, a guess of the energy growth

on top of the laminar velocity profile of the physiological waveform is generated, see fig. 4.10b and

c. Additionally, LSA (solid blue line) and TGA (red dots) are preformed, to probe the accuracy of the

fits.

The fitting of expression (4.8) gives a good estimate of the growth of perturbations for the physio-

logical waveform, even though the training data used to obtain the fit coefficients are for tm g 0.3
(Table 4.1). Larger errors are found for Wo f 10 and correspond to the definition of Ã in equa-

tion (4.10). Future analyses may improve this equation to better capture the behaviour at low

Womersley numbers.

The TGA is extended to physiological waveform driven at flow parameters typically found in

different sections of cardiovascular flow. As shown in the figure 4.11, there is a high chance of

helical perturbation growth on top of pulsatile pipe flows driven with parameters and waveform

found in cardiovascular flows, and at several sections of the human aorta.

4.4 Summary of the chapter

The presence of inflection points in laminar pulsatile pipe flow, at certain flow parameters, render it

instantaneously unstable. If the pulsation period is long enough, in terms of advective time units,

perturbations can take advantage of this instantaneous instability to transiently grow on top of it.

Therefore, and despite pulsatile pipe flow is Floquet stable, perturbations can outstandingly grow

during some phases of the pulsation period on top of it.

The helical perturbation happens to be the one that can grow the most on top of the inflection

points. It has the shape that can take the most advantage possible of the presence and behaviour
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of inflection points to grow. By changing the behaviour of the inflection points, using different

pulsation waveform, one can control how unstable the flow profile is, and therefore, how much

perturbations can grow on top of it. In general, the longer in time the inflection points are in the

laminar profile, and the closer they get to the center-line of the pipe as they move from the wall, the

higher the energy growth of the perturbations will be.

Lastly it must be noted that, despite using an instability of the flow profile, transition to turbulence

due to helical perturbations is not supercritical, but subcritical. The perturbation does grow

outstandingly during some phase of the pulsation period, but its energy quickly decreases during the

rest of the period. As shown in figure 4.3, after one pulsation period the energy of the perturbation

in smaller than the initial one. In order to trigger turbulence, the helical perturbation needs a high

enough initial energy E0 to grow to a certain energy E that is able to trigger non-linear mechanisms

in the flow and then turbulence.
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5 Results: DNS of pulsatile pipe flow

In this chapter the results of direct numerical simulations (DNS) of pulsatile pipe flow at different Re,
Wo and harmonic pulsations are described. The parametric space considered here corresponds to the

transitional regime of pulsatile pipe flow at 0.5 f A ≲ 1, and Re ≈ O
(

103
)

, with Remax = (1 +A)Re
in the range of 2500 ≲ Remax ≲ 4000 and intermediate frequencies 6 ≲Wo ≲ 20. Different methods

are used to trigger turbulence in DNS, and it is also described how turbulence behaves once triggered.

As it is shown in this chapter, turbulence in pulsatile pipe flow at these flow parameters, first appears

in the form of localized turbulent patches. A special attention is given to these localized structures

and their behaviour depending on the flow parameters.

5.1 Trigger turbulence in pulsatile pipe flow

In order to trigger turbulence, three methods are used:

1. Some simulations are initialized with an already computed statistically steady pipe flow

simulation. These simulations are referred to as DNS with IC-SSPF. In this case, the initial

condition can have a puff, a slug or a fully turbulent flow.

2. Other simulations are initialized with the corresponding laminar pulsatile pipe flow profile

USW . These simulations are continuously perturbed by a localized body force. These DNSs

are referred to as simply DNS with a Force. As described in §2.1.5 the body force is meant to

model the effect of geometric defects close to the wall, by locally decelerating the flow velocity

close to the wall.

3. The majority of simulations are initialized with the corresponding laminar pulsatile pipe flow

profile USW perturbed with the optimal perturbation according to the TGA described in §3.2.1.

The simulations are initialized at the phase of the period t0/T where the perturbation is

optimally triggered. These DNSs are referred to as DNS with IC-SWOP. The initial perturbation

is a helical perturbation, and, for reasons explained later, they are introduced localized in a

given axial length and scaled to a given magnitude. All these simulations are listed in table C.1

in Appendix C.

5.1.1 DNS with IC SSPF

Firstly DNS initialized with the resultant flow field of a DNS of SSPF at Re = 2400 are discussed.

At this Re, in SSPF, turbulence spreads in the whole pipe. The system reaches a spatio-temporal

intermittent state where localized turbulent patches randomly split/elongate/decay next to laminar
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Fig. 5.1.: Turbulent fraction, eq. (5.1), based on the axial vorticity. (a) Time series of the turbulent fraction
for several cases at Re = 2400 and Wo = 8 in a Lx = 100D long pipe. SSPF stands for statistically
steady pipe flow, or A = 0. C1 corresponds to a simulation with A = 0.2 initialized with a fully
turbulent SSPF. C2 same as C1 but with A = 0.6. C3 corresponds to a DNS at A = 0.6 initialized
at t/T = 0.5 with the corresponding USW profile and the optimal helical perturbation scaled to
|uuu′

0
| ≈ 3e− 2 and localized in a 10D axial length. (b) Time averaged turbulent fraction in the 3

types of DNS explained in the main text, see section 5.1.

patches (see fig. A.5a). At this Re the turbulent fraction approaches but rarely reaches Ft ≈ 1, see

fig. 5.1. Here the turbulent fraction Ft is defined as:

Ft =
Lt

Lx
, (5.1)

where Lt is the length of the pipe where
〈

É2
x

〉

r,θ g 0.1U2/D2.

Several DNS of pulsatile pipe flow at Re = 2400, Wo = 8 and different A are initialized using this

highly intermittent flow field. As shown in figure 5.1a, at this pulsation frequency, the pulsation

tends to stabilize the flow. At A = 0.2, the intermittency of the flow decreases, as the turbulent

structures tend to aggregate in individual, localized patches that are modulated in length and

magnitude by the flow. By increasing A, the time averaged turbulent fraction decreases, see fig. 5.1b.

At low pulsation frequencies the flow tends to behave in a quasi-steady way. This was already

studied by Xu et al. [XA18], where they observed how localized turbulent patches elongate or

decay depending on the instantaneous Rei (t) ≈ ub (t)Re. When Rei ≳ 2250 turbulence in pulsatile

pipe flow tends to elongate, while at Rei ≲ 2000 it tends to decay. These effects manifest more

prominently as A increases.

5.1.2 DNS with a localized Force

Here DNS constantly perturbed by a body force are discussed. As described in §2.1.5 the body forces

are meant to model the effect of geometric defects at the wall. The body forces are proportional to

−uuu and are localized in a small azimuthal, radial and axial section of the domain. The force acts as
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a less permeable region to the flow and its magnitude is tuned so it does not trigger turbulence in

SSPF at Re ≈ 2400. At the flow parameters considered here we observe that the axisymmetric body

force does not trigger turbulence. Only the azimuthally localized forces do. Since the results of both,

the tilted and non-tilted body forces are similar, here we only show/discuss results of the former.

At flow parameters where the helical perturbation has an outstanding growth on top of the laminar

USW profile, the body force is able to intermittently trigger turbulence. See an example of this

behaviour at the end of this chapter in figure 5.11. During each deceleration phase, irregular flow

patterns are triggered close to the body force. These structures grow during the low velocity phase of

the period, and are then advected downstream by the flow. Depending on the flow parameters, the

structures developed close to the body force can either decay or survive in the following pulsation

periods.

This behaviour is also observed in experiments [Xu+20], where turbulence is intermittently triggered

due to small defects at the pipe walls and then either decays or survives. This means that, even if

turbulence is not able to survive for a whole pulsation period, it will be periodically triggered in the

flow. As it is shown in figure 5.1 this results in a time averaged turbulent fraction ïFtðt > 0.

At Re = 2400 and Wo = 8 the effect of the body force is stronger at A = 1 than at A = 0.5 and

A = 1.4, see fig. 5.1. At this pulsation frequency, the flow is much more instantaneously unstable at

A = 1 than at A = 0.5. This explains why, at A = 1 the structures the body force triggers are longer

in length and have a longer lifetime, than those at A = 0.5. At this pulsation frequency, and for the

particular body force used here, at A = 1 the body force is able to trigger turbulent patches that

survive for at least one additional period. However at A = 1.4 the body force triggers turbulent

patches that survive for a shorter time. This explains why at A = 1 the time averaged turbulent

fraction is higher than at A = 1.4.

5.1.3 DNS with IC SWOP

In our paper [FMA21] we describe DNS initialized with the correct laminar profile USW and on top

of it, the corresponding optimal helical perturbation. Since at Re = 2400 and Wo = 8 only at high A
the flow is susceptible to the growth of these perturbations, only cases with A g 0.5 are considered

here. The perturbations are introduced axially localized in either a 10D or 5D axial section of the

pipe and their magnitude is scaled to a small value |uuu′0| ≈ 3e− 2. The simulations are initialized at

the optimal time t0/T to trigger the growth of the helical perturbations.

In figure 5.2 it is shown how the helical perturbation grows, saturates and triggers turbulence in

the pipe. The helical perturbation first grows in magnitude and in length until it saturates. As it

saturates, it triggers low velocity streaks in the flow that disrupt the mean velocity profile. Depending

on the flow parameters, once they saturate, the perturbations can either decay as they are advected

by the flow, or trigger a localized turbulent structure. In the case shown in figure 5.2, at Re = 2400,

Wo = 11 and A = 1.4, it triggers a localized turbulent patch, that is qualitatively similar to puffs

typically found in SSPF: compare the structures at the back of the pipe in fig. 5.2f with fig. 1.6.

These patches are then modulated in length and magnitude by the flow.

As it is shown in figure 5.1b, by initializing the DNS with the optimal perturbation, and not with

the IC SSPF the lifetime of turbulence at Re = 2400, Wo = 8 and A = 0.6 is improved. In order to

explain this phenomena, the hypothesis is that the shape of the laminar profile USW helps puffs

survive the pulsation. Thus, only by initializing DNS with the corresponding laminar profile USW ,

and not with a highly perturbed turbulent field, can turbulence survive the pulsation at certain flow

parameters. Later in the thesis this hypothesis will be demonstrated.
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Unless stated otherwise, in the rest of the thesis only DNS of pulsatile pipe flow initialized with a

localized helical perturbation or turbulent puff, without any body force, will be considered.

5.2 Turbulent patches in pulsatile pipe flow

Once turbulence is triggered it behaves in different ways depending on the flow parameters. At low

Re ≲ 2000 turbulence eventually decays. Depending on Wo and A this decay can happen earlier or

later (in average). At higher Re ≳ 2000 and 0.5 f A ≲ 1, four different behaviors are observed:

1. First elongation, then rapid decay (RaD): the initial helical perturbation, used to initialize

the flow, first grows in length and magnitude, and then decays in less than one pulsation

period (figure 5.3a). These decay events are classified as deterministic. They are different

from decay events that happen (stochastically) after more than one pulsation period, which

are classified in another category (3. below).

2. Localized turbulent structures (Loc): the initial helical perturbation localizes in a puff, that is

then modulated in length and magnitude by the pulsation and survives for long times without

successfully splitting or decaying. See an example of this behaviour in figure 5.3b.

3. Localized structures, then stochastic decay (StD): the initial helical perturbation localizes

in structures that are modulated, in length and magnitude, by the pulsation. These struc-

tures however tend to suddenly decay after typically a short number of pulsation periods

(figure 5.3c). Although here no life-time statistics are explicitly computed, these decay events

happen at random times, as in pulsatile pipe flows at lower A f 0.4 [XA18] or driven with

more complex waveform, §5.3. In those cases, turbulent structures decay after a random

number of pulsation periods. However, different to SSPF, these decay events are more likely to

happen at a particular phase of the period.

4. Highly intermittent state (Int): the initial helical perturbation localizes in structures mod-

ulated by the pulsation. These structures, however, randomly split until the DNS reaches a

highly intermittent state where turbulence aggregates in localized structures modulated by the

pulsation and separated by laminar patches (figure 5.3d).

In this section the characteristics of these localized structures and their dependence with respect to

the flow parameters will be studied.

5.2.1 Statistics of turbulent patches in pulsatile pipe flow

Here two DNS of pulsatile pipe flow at Re = 2100, Wo = 11 and either A = 0.5 or A = 1 are

analyzed. In both simulations a turbulent patch remains localized and is modulated by the pulsation

for long times, like in fig. 5.3b. The total time of the simulations is of t/T ≲ 180 and the turbulent

patches survive the whole simulation time. Phase-dependent statistics of the results are computed

by splitting the pulsation period in 200 equally spaced period phases. At each time step the reference

system x̂ is changed so the upstream most part of the puff, where the axial vorticity squared is first
〈

É2
x

〉

r,θ g 0.1, is located at x̂ = 0. Apart from the axial vorticity squared, the defect of center-line

velocity is considered. It is defined as

∆ ïux0
ðξ = ïux (r = 0, t)ðξ − Uc (t) , (5.2)
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Fig. 5.2.: Evolution from a localized helical perturbation to a turbulent patch in a DNS of pulsatile pipe
flow at Re = 2400, Wo = 11 and A = 1.4. The simulation has been initialized at t/T = 0.5 with
the corresponding laminar USW profile, with the helical perturbation scaled to |uuu′

0
| ≈ 3e− 2 and

localized in a 5D axial length. In red/blue, positive/negative axial vorticity Éx = ±4U/D. In
grey, low axial velocity streaks ux − ïuxðθ,x = −0.4U . The images are centered with respect to
the instantaneous location of the turbulent patch. The flow direction of the time-averaged bulk
velocity is from left to right.
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Fig. 5.3.: Space-time diagram of the cross section integral of axial vorticity squared
〈

É2

x

〉

r,θ
of DNS in a 100D

long pipe. The DNS are initialized with the optimal helical perturbation scaled to |uuu′

0
| ≈ 3e− 2 of

magnitude and localized in an axial span of 5D [FMA21]. The diagrams are shown with respect to
a moving frame x∗, moving with the bulk velocity ub (t). a) corresponds to Re = 2800, Wo = 8 and
A = 1. b) corresponds to Re = 2100, Wo = 9 and A = 0.5. c) corresponds to Re = 3000, Wo = 8
and A = 1. d) corresponds to Re = 3000, Wo = 11 and A = 1.
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Fig. 5.4.: Statistics of turbulent patches in pulsatile pipe flow at Re = 2100, Wo = 11 and either A = 0.5
or A = 1. The results correspond to DNS in a Lx = 100D long pipe initialized with the optimal
perturbation scaled to |uuu′

0
| ≈ 3e− 2 of magnitude and localized in an axial span of 5D [FMA21].

a) in solid lines, the phase averaged turbulent fraction, see eq. (5.1), for t/T ≈ 180 periods. With
dotted lines find the minimum 10% and maximum 90% turbulent fraction percentiles registered in
each phase of the period. b) histogram (in color) of

〈

É2

x

〉

r,θ
versus defect of center-line velocity,

see eq. (5.2), for all the simulation time at A = 0.5. The solid lines denote the mean ïÉxðr,θ versus
defect of center-line velocity profiles at different phases of the period. c) same as b) but at A = 1.

being Uc (t) = USW (r = 0, t) the center-line velocity of the corresponding laminar profile. Angled

brackets denote averaging with respect to À, being À any combination of spatial directions r, ¹ and x,

as well as a fixed phase t∗ of the period or time t.

In figure 5.4a phase averaged statistics of the turbulent fraction Ft are shown. Both for A = 0.5 and

A = 1, the turbulent fraction is maximum at t/T ≈ 0.5 and minimum at t/T ≈ 1. The mean and

standard deviation of turbulent fraction are higher for A = 1 than for A = 0.5 at all phases of the

period.

The behaviour between
〈

É2
x

〉

r,θ and ∆ ïux0
ðθ in pulsatile pipe flow, see fig. 5.4b and c, and fig. 5.6,

is similar to the behaviour between the cross section kinetic energy and center-line velocity in

SSPF, see fig. A.2 and the works of Barkley and Song et al. [Bar+15; Son+17]. The presence of

turbulence
〈

É2
x

〉

r,θ > 0 disrupts the mean profile and decreases the center-line velocity ∆ ïux0
ðθ < 0.

The mean profiles of
〈

É2
x

〉

r,θ versus ∆ ïux0
ðθ look similar to those of puffs and slugs in SSPF, see

fig 5.4 and 5.5. While the standard deviation of
〈

É2
x

〉

r,θ is higher at A = 1 than A = 0.5, both cases

have a similar standard deviation of ∆ ïux0
ðθ. This is also observed in the phase dependent statistics

in figure 5.5.

According to the phase dependent statistics, at t/T ≈ 0.5 turbulence reaches its highest magnitude

and standard deviation, see fig. 5.5a and e and 5.6. They are both higher at A = 1 than at A = 0.5.

At this phase of the period the mean
〈

É2
x

〉

r,θ and ∆ ïux0
ðθ profile looks similar to a turbulent puff

in SSPF, see fig 5.5a and e and 5.6 compared to fig. A.2. At following phases of the period the

magnitude and standard deviation of
〈

É2
x

〉

r,θ and ∆ ïuxðr=0,θ, decrease. At t/T ≈ 0.75 the mean
〈

É2
x

〉

r,θ and ∆ ïux0
ðθ profile looks similar at A = 0.5 to a weak slug, see fig. 5.5b, and at A = 1 to a

strong slug, see fig. 5.5f and 5.6. At t/T ≈ 1, turbulence intensity reaches its minimum value. At

this phase of the period the mean
〈

É2
x

〉

r,θ and ∆ ïux0
ðθ profile looks like a decaying strong slug for
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Fig. 5.5.: Histogram of
〈

É2

x

〉

r,θ
versus defect of center-line velocity, see eq. (5.2), at different phases of the

period. The results correspond to DNS at Re = 2100, Wo = 11, in a Lx = 100D long pipe initialized
with the optimal perturbation scaled to |uuu′

0
| ≈ 3e− 2 of magnitude and localized in an axial span

of 5D and with total time t/T ≈ 180. Subplots (a,b,c,d) correspond to a DNS at A = 0.5; while
Subplots (e,f,g,h) at A = 1. The phase of the period is indicated at the top of each subplot column.

both A, fig. 5.5c and g. At t/T ≈ 1.25 the mean profile looks similar to either a puff or a strong slug

of SSPF.

The localized turbulent patches observed in pulsatile pipe flow at these flow parameters, are similar

to puffs and slugs of SSPF. At certain pulsation parameters, localized turbulent patches can take the

form of both puffs and slugs in the duration of a single pulsation period. However these turbulent

patches show unique characteristics. Firstly, they reach maximum length (Ft) and turbulence

intensity at a phase of the period where their
〈

É2
x

〉

r,θ and ∆ ïux0
ðθ mean profiles look similar to

a turbulent puff and not to a slug, see fig A.2. Secondly, the phase of the period at which they

reach maximum turbulence intensity does not correspond to the phase of the period where the bulk

velocity is maximum. In the following section this phase difference between maximum turbulence

intensity and ub is computed.

5.2.2 Phase shift between driving and turbulence intensity

The pulsatile bulk velocity ub (t) and turbulence intensity ïÉxðr,θ,x (t) are harmonic functions with

respect to time. See an example of these two quantities in figure 5.7. The time-averaged phase

difference between the two signals, ï∆ϕðt, is computed by projecting the time signal of
〈

É2
x

〉

r,θ,x (t)
to a harmonic function, and comparing its phase with the sinusoidal bulk velocity. In figure 5.8a see

the resultant phase shift as an angle for all the DNS listed in tables C.1 and C.2 (Appendix C).

The phase difference between the turbulence intensity (represented by
〈

É2
x

〉

r,θ,x (t)) and bulk velocity

is consistent with studies of small-to-moderate amplitude A f 0.4 pulsatile pipe flow [XA18], and

fully turbulent pulsatile channel flows [WBH16; Liu+24]. There, they observed how the phase
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Fig. 5.6.: Phase averaged (t∗) cross section axial vorticity squared, a and c, and center-line velocity defect, b
and d (see eq. (5.2)) of DNS of pulsatile pipe flow at Re = 2100, Wo = 11, A = 0.5, in a and b, and
A = 1, in c and d. The results are presented with respect to a moving reference frame x̂, such that
the turbulent patch upstream front, where

〈

É2

x

〉

r,θ
g 0.1, always lays at x̂ = 0.
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Fig. 5.7.: Time profile of
〈

É2

x

〉

r,θ,x,t∗
(solid thick lines) compared with the bulk velocity Ū (t) (dotted lines).

The shaded regions delimit the volume of data between the max/min 10% percentile of the
corresponding

〈

É2

x

〉

r,θ,x
(t∗) phase-dependent statistics. Blue color and circle symbols correspond

to a DNS at Re = 2100, Wo = 11 and A = 0.5. Red color and square symbols correspond to a DNS
at Re = 2100, Wo = 15 and A = 1.

difference increases for increasingWo, as seen in figure 5.8a. At small Re ≈ 2100 the phase difference

saturates at ∆ϕ ≈ 3π
2 . There is no apparent effect of A on ∆ϕ.

Note that, at high Wo ≳ 20, there is a 90◦ phase difference between the driving pressure gradient

and the bulk velocity in the laminar profile [Wom55], see fig. 4.1. Thus, as the frequency increases,

the turbulence intensity tends to correlate better with the driving pressure gradient, than with the

bulk velocity.

5.2.3 Front speed of localized turbulent patches

We compute the upstream front speed cu by tracking the upstream-most position in the turbulent

patch, defined as
〈

É2
x

〉

r,θ g 1 × 10−1. Since the patches tend to remain localized, for most of the

cases considered here, the average upstream front speed corresponds to the averaged speed of the

patch itself.

The upstream front speed, as in the case of SSPF (see fig. A.4) [Bar+15], is mainly affected by Re,
see fig. 5.8b. The higher Re is, the smaller the upstream front speed becomes. According to these

results, there is also a weak dependence of the front speed on the A. The upstream front speed

decreases for increasing A. As Wo increases, the upstream front speed approximates the value of

SSPF, as turbulence is less affected by the pulsation.

5.2.4 Production of turbulent kinetic energy of turbulent patches

In order to investigate the physical mechanisms by which turbulent patches survive in pulsatile pipe

flow, the production of turbulent kinetic energy:

Pξ = −
〈

ur

(

ux − ïuxðξ

)〉

ξ

∂ ïuxðξ

∂r
, (5.3)
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Fig. 5.8.: Effect of flow parameters on: (a) the phase difference ∆ϕ between bulk velocity Ū and volume-
averaged turbulence intensity

〈

É2

x

〉

r,θ,x
(t); (b) upstream front speed cu. Each marker corresponds

to the time averaged value of either cu or ∆ϕ of an individual DNS of pulsatile pipe flow listed
in table C.1 (and master simulations listed in table C.2). Downward (upward) pointing triangles
correspond to simulations at 0.5 f A f 0.8 (0.8 < A f 1). The face color indicates Re in subplot
a) and Wo in subplot b). The dotted line in subplot b) corresponds to a fit of the upstream front

speed of puffs in SSPF: cu − U ≈ 0.28
[

0.024 +
(

Re
1936

)−0.528 − 1.06
]

in U , according to Chen et al.

[CXS22].

Fig. 5.9.: Production of turbulent kinetic energy at different phases of the pulsation, for two DNS of pulsatile
pipe flow at Re = 2400 and Wo = 8. The simulations are performed in a Lx = 100D long pipe
initialized with the optimal perturbation scaled to |uuu′

0
| ≈ 3e − 2 of magnitude and localized in

an axial span of 10D. In a) results correspond to A = 0.6, and the production is averaged in the
homogeneous directions and the phase of the period t∗. In b) results correspond to A = 1, and
the production is averaged only in the homogeneous directions. Markers denote the existence and
wall-normal location of inflection points in the corresponding mean profile that satisfy the Fjørtoft
criterion.
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is studied.

At Re = 2400, Wo = 8 and A = 0.6 turbulence survives for long times, as shown in fig. 5.1. In this

case, peak production takes place during the early deceleration phase of the pulsation and is very

similar to steady pipe flow in terms of magnitude and wall-normal distribution, see fig. 5.9a. Right

after the peak in flow rate, the mean velocity profile develops an inflection point at the wall, which

satisfies the Fjørtoft criterion. During the ongoing deceleration phase, the inflection point moves

away from the wall and catches up with the point of peak production. Both travel together further

towards the pipe center-line. Near to the minimum flow rate, the unstable inflection point loses the

Fjørtoft condition and the production collapses.

At Re = 2400, Wo = 8 and A = 1 turbulence rapidly decays, as shown in fig. 5.1b. Here, phase

averaging of turbulence production is not possible, and averaging was performed only in the

homogeneous directions (¹, x), see fig. 5.9b. Again for this case, the peak production follows the

movement of inflection points from the wall to the center-line of the pipe.

These results, as was first discussed in our paper [FMA21], suggest that turbulent patches take

advantage of inflection points to survive the pulsation. Later in this thesis further arguments that

support this hypothesis are provided.

5.3 Effect of pulsation waveform on turbulent patches

In the following section DNS results of pulsatile pipe flow driven with waveforms different from a

single harmonic pulsation are discussed.

5.3.1 Generic waveform

In our paper [MFA22] we show results of DNS of pulsatile pipe flow driven with waveform whose

shape we can control with the use of three parameters (see §2.1.4).

According to the TGA and LSA, the shape of the waveform has an effect on the chance of turbulence

transition. Here it is checked if the waveform has an effect on turbulence behaviour and survival.

Ensembles of 10 simulations of 8 different waveforms at Re = 2000 and Wo = 11 are performed.

Each of the 80 simulations runs for 20 periods and is stopped if the corresponding turbulent fraction

vanishes, Ft = 0.

Cases with smaller tm exhibit faster growing Ft in the initial transient when compared to cases with

larger tm, see fig. 5.10. Once the perturbation has triggered turbulence at t ≳ 1.5T , the turbulent

fraction remains at roughly 50%, but is clearly modulated by the pulsation in all cases. However,

cases with smaller tm reach a slightly higher turbulent fraction. Both observations are in good

agreement with the stability analyses shown in Chapter 4, which predict larger energy growth for

smaller tm.

The waveform parameters have an effect on relaminarization, as shown in fig. 5.10. For large tm
only 13 out of 40 cases remain turbulent for the full 20 periods, whereas 16 out of 40 cases remain

turbulent when tm is small. Regarding the other two parameters, for large tdc 17 out of 40 cases

remain turbulent for the full 20 periods, whereas 12 out of 40 cases remain turbulent when tdc

is small. For large tac 20 out of 40 cases remain turbulent for the full 20 periods, whereas 9 out

of 40 cases remain turbulent when tac is small. This suggests that both, less steep acceleration
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Fig. 5.10.: Turbulent fraction, see eq. (5.1), in DNS at Re = 2000 and Wo = 11. The simulations are
performed in a 50D long pipe initialized with the helical perturbation localized in a 5D axial
length and scaled to different initial magnitudes. Results correspond to 80 DNS: for 8 different
waveform, or different tac, tdc and tm; and 10 different initial helical perturbation magnitudes in
ten steps from 5e− 3 to 5e− 2. In panels find the cases with the same pair of tac, tdc. The colors
and symbols of the lines denote different tm. In each panel, and for each tm, see in a thick line
the instantaneous mean turbulent fraction of the cases (out of the initial 10) that have not yet
relaminarized. The thickness of the mean turbulent fraction decreases whenever one of the 10
cases relaminarizes. In thin lines, see the evolution for the cases that relaminarize at t < 20 · T .
With numbers find the number of cases where turbulence is sustained for t f 20 · T .
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and deceleration phases as well as long low velocity phases promote turbulence survival. Fast

accelerations, on the other hand, have a strong stabilizing effect.

It is also important to mention that the decay events happen always at certain phases of the period

and not in others. This was also observed for pulsatile pipe flows driven with one harmonic

component, as described at the beginning of §5.2.

5.3.2 Physiological waveform

DNS of pulsatile pipe flow driven with a physiological waveform are also performed. The flow is

driven at the bulk velocity measured by Bürk et al. [Bür+12] in the descending aorta of a young

volunteer. See in fig. 4.10a the shape of this physiological waveform fitted with 8 Fourier modes. In

this case two different types of DNS are performed.

DNS with a localized Force

In fig. 5.11a, b and c see DNS results of pulsatile pipe flow constantly perturbed close to the wall by

a body force. The results correspond to a flow driven with a physiological waveform at Re = 1277
and Wo = 12, values typically found in the human descending aorta, see table 1.1. In the figure,

one can observe the development of strong irregular flow patterns during the deceleration and low

velocity phase of the pulsation. These irregular patterns develop close to the axial position of the

perturbation, at the leftmost boundary of the snapshots. As time marches they detach from the

perturbation, they elongate and are advected downstream by the flow. During the next deceleration

phase new structures develop close to the perturbation, see fig. 5.11f, and the cycle repeats itself.

Due to the shape of the physiological waveform the structures that are developed close to pertur-

bations on the wall tend to stay close to them as they grow in magnitude. The smaller Wo is, the

shorter axial distance the structures separate from them, see figure 5.11d, e and f.

DNS with IC SWOP

Other DNS of pulsatile pipe flow driven with a physiological waveform are initialized with the

optimal helical perturbation scaled and localized in a section of the pipe. In this DNS, like for the

case of a single harmonic pulsation, the helix grows in length and in magnitude, saturates and

triggers irregular flow patterns in the flow that survive one or more pulsation periods, depending on

the flow parameters. These irregular flow patterns exert additional shear stresses:

∆ÄÄÄ = ÄÄÄ − ÄSWeeex (5.4)

at the wall, as shown in figure 5.12. Here

ÄÄÄ = (0, Äθ, Äx) , (5.5)

are the shear stresses in the DNS, ÄSW the shear stresses of the laminar profile and pmbex the unitary

vector in the axial direction.

The results show that, even at low Re = 1277, pulsatile pipe flows driven with physiological

waveforms, are highly susceptible to the onset of irregular flow patterns. When the flow is constantly

perturbed by geometric defects close to the wall, see fig. 5.11, these irregular flow patterns will be

triggered at each pulsation period. They will exert additional shear stresses in the walls, as shown

in fig. 5.12, that could lead to further wall injuries or even diseases in cardiovascular vessels.
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Fig. 5.11.: In a, b and c, development of irregular flow patterns in DNS of pulsatile pipe flow driven with a
physiological waveform at Re = 1277 and Wo = 12. The flow is constantly perturbed by a body
force close to the wall. The flow direction is from left to right and the snapshots show a 10D
section of the pipe downstream the position of the perturbation. It is shown in red Éx ≈ 3U/D,
in blue Éx ≈ −3U/D and in grey low speed axial velocity streaks with ux − ïuxðθ,x = −0.3 · U .
In d, e, f space-time diagram of the cross section integral of axial vorticity squared. The results
correspond to DNS in a 40D long pipe at Re = 1277 permanently disturbed by a body force. In d)
at Wo = 8. In e) at Wo = 10. In f) at Wo = 12 . The vertical dotted line represents the location of
the geometric center of the body force. The dashed lines correspond to the position and time of
the snapshots shown in a,b and c.
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Fig. 5.12.: Additional shear stresses at the wall for a pulsatile pipe flow driven with a physiological waveform
at Re = 1277 and Wo = 12 at different phases of the period. The results correspond to a DNS
in a 40D long pipe, initialized with the corresponding laminar profile USW and the optimal
helical perturbation localized in a 5D axial length and scaled to |uuu′

0
| ≈ 3e− 2 in magnitude. The

arrows indicate the direction of the additional shear stresses ∆ÄÄÄ = ÄÄÄ − ÄSWeeex and the colors the
difference between the shear stresses in the DNS and the laminar flow ∆Ä = |Ä⃗ | − ÄSW . In the
top panel see the shear stresses of the laminar USW profile with respect to time.
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5.4 Summary of the chapter

In this chapter, DNS results of pulsatile pipe flow at different flow parameters were described.

The parameter space has A g 0.5, and Re ≈ O
(

103
)

, with Remax = (1 +A)Re in the range of

2500 ≲ Remax ≲ 6000 and intermediate frequencies 6 ≲Wo ≲ 20, and different pulsation waveforms.

It has been shown how turbulence can be triggered using different methods in DNS. Once turbulence

is triggered its behaviour is determined by the combination of Re, Wo and A. It can either behave

quasi-steadily, unaffected by the pulsation, or appear in the form of localized turbulent patches, that

are heavily modulated by the pulsation. These turbulent patches are the main focus of the rest of

the chapter. At the flow parameters considered here, the turbulent patches are similar to the puffs

and slugs observed in SSPF. Preliminary results suggest that they actively make use of the inflection

points in the quiescent laminar profile to survive the pulsation. Finally, the results of pulsatile pipe

flows driven with custom and physiological waveforms are described. It is shown that, even at low

Re = 1277 pulsatile pipe flows driven with a physiological waveform are susceptible to the trigger of

irregular flow patterns that can last for more than a pulsation period. This irregular flow patterns

exert additional shear stresses on the pipe walls that, in a more realistic scenario, could potentially

lead to injuries or even diseases in cardiovascular flows.

5.4 Summary of the chapter 87





6 Causal analysis of puffs in pulsatile

pipe flow

A hypothesis made in Chapter 5, is that, as in SSPF, [Bar+15; Son+17; CXS22], the behavior of

puffs in pulsatile pipe flow is determined by the shape of the axial velocity profile ïuxðθ (x = xu, r, t)
at the upstream front x = xu of the puff. In the ideal case of an extremely long pipe, and a single

localized turbulent puff, the mean profile in the pipe ïuxðθ,x (r, t) approximates this profile. The idea

is that puffs take advantage of two characteristics of the mean (upstream) velocity profile. One is

the mean shear, as in SSPF, that, for the pulsatile case, is time-dependent. The other is the instability

of the SW profile, that is linked with the presence of inflection points.

While the mean shear is related to the transient growth of stream-wise constant perturbations, like

in SSPF; inflection points are related with the helical perturbation extensively explained in Chapter

4. In the previous Chapter 5 it was argued that inflection points may have an effect on turbulence

once it has been triggered. However, this was not rigorously demonstrated.

In this chapter, a causal analysis is developed and performed precisely to do that. The goal is to

separate the two mechanisms: the effect of the inflection points from the effect of the time varying

mean shear. Inspired by the ideas of Tuerke et al. [TJ13], DNS are performed with an imposed time

varying artificial mean profile without inflection points. The transient growth of perturbations on

top of these artificial profiles are studied. Then, the behaviour of puffs in DNS with artificial mean

profiles without inflection points are studied.

6.1 Methods

Following Vela-Martín [VM21], and references therein, for different combinations of Re, Wo and A,

pairs of DNS that run parallel to each other are performed. Each pair of simulations is initialized

with the same localized turbulent patch, and while one of them is a full DNS of pulsatile pipe flow

that runs independently of the other, known as the master; the second DNS, known as the slave, uses

the information of the master to modify some of its characteristics. While in Vela-Martín [VM21] the

slave copies some small scales of the master, here the slave simulation uses the instantaneous mean

profile of the master UM = ïuxðθ,x (r, t) to generate its instantaneous mean profile US (r, t).

The artificial profiles US (r, t) are designed according to a series of constraints. In this section,

first these requirements are described, followed by the methods by which the US (r, t) profiles are

generated. Finally the changes to numerical methods to compute and also impose the artificial

profiles in DNS are shortly described.
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6.1.1 Requirements of the slave mean profile

Four requirements are enforced to the instantaneous US . Firstly, they must comply with the no-slip

boundary condition and vanish at the wall:

US (r = R, t) = 0. (6.1)

Secondly, the bulk velocity ubS
of the profile,

ubS
(t) =

2

R2

∫ R

0
USrdr, (6.2)

must be time dependent, and it is set equal to:

ubS
(t) =

√

3EL (t)

2
, (6.3)

being:

EL (t) =
1

ÃR2

∫ 2π

0

∫ R

0

1

2
U2

SW rdrd¹, (6.4)

the kinetic energy of the laminar pulsatile pipe flow USW (r, t). With this condition one ensures that

the energy of the profile is equal or smaller than the corresponding laminar USW profile. Thirdly,

the average shear:

S =
2

R2

∫ R

0

1

2

(

∂US

∂r

)2

rdr, (6.5)

of the profile must be minimum. Given conditions (6.1) and (6.3), by minimizing S, one obtains

profiles whose shear monotonically decreases from the wall to the center-line of the pipe.

The parabolic profile:

US0
(r, t) = 2ubS

(t)

(

1 −
(

r

R

)2
)

, (6.6)

whose energy is exactly EL (t), complies with these three initial requirements. For R = 1, and

dropping the time dependence of ubS
and EL, one finds:

∫ 1

0
U2

S0
rdr = 4u2

bS

∫ 1

0

(

1 − r2
)2
rdr = 4u2

bS

[

r2

2
− 2r4

4
+
r6

6

]1

0

=
4u2

bS

6
= EL. (6.7)

The profile US0
does not have the same bulk velocity as the corresponding laminar pulsatile pipe

flow ub (t). As it is shown in Appendix D, for the parameters considered here, this error is relatively

small.

As a final requirement, the slave mean profile must have the same energy as the master profile:

2

R2

∫ R

0

1

2
U2

Srdr = EM (t) =
2

R2

∫ R

0

1

2
ïuxð2

θ,x rdr. (6.8)
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Fig. 6.1.: Phase (ϕ) averaged mean profiles of master (M) and slave (S) simulations at Re = 2100, Wo = 11,
A = 0.5 (a,b,c,d) and A = 0.9 (e,f,g,h). The phase of the period is indicated at the top of each
subplot column.

If EM ≡ EL, the flow in the master simulation is laminar, US ≡ US0
, and the energy of the slave

mean profile will be maximum. Otherwise EM < EL and, as it is shown in fig. 6.1, the resultant US

is blunted. A blunted mean profile is related with a decrease in turbulence production as described

by Kühnen et al. [Küh+18] and a reduced transient growth of perturbations.

The four conditions (6.1), (6.3), (6.5) and (6.8) define the artificial profiles. In what follows it is

shown how the profiles are actually computed.

6.1.2 Method of small variations

Conditions (6.3)–(6.8) can be mathematically written in a functional:

S = 2

∫ R

0
L
(

r, US , U
′
S

)

dr, (6.9)

to be minimized, being U ′
S = ∂US

∂r ,

L =
1

2
U ′2

Sr + ¼L

(

USr − ubS

2R

)

+ µL

(

1

2
U2

Sr − EM

2R

)

(6.10)

the Lagrangian, and ¼L and µL two Lagrange multipliers. In what follows, the time dependence

of ubS
, EM , US and therefore L, ¼L and µL in the notation are dropped for clarity. As part of his

Bachelor thesis José Cela París, see Appendix G, derived an equation to obtain the profile US from

the optimization of the Lagrangian L. His derivation is reproduced below.
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From the method of small variations, one can find the function US that minimizes L by solving the

Euler-Lagrange equation:

∂L
∂US

− ∂

∂r

∂L
∂U ′

S

= 0. (6.11)

In this case, one finds:

¼Lr + µLUSr − ∂

∂r

(

rU ′
S

)

= 0, (6.12)

that, after rearranging, results in the partial differential equation:

∂2US

∂r2
+

1

r

∂US

∂r
− µLUS = ¼L, (6.13)

with the boundary condition (6.1):

US (r = R) = 0. (6.14)

The homogeneous part of equation (6.13) can be turned into a modified Bessel’s equation of order

0:

r2∂
2US

∂r2
+ r

∂US

∂r
− µLUSr

2 = 0, (6.15)

being the modified Bessel’s equation of order ¿B:

x2y′′ + xy′ −
(

a2x2 + ¿2
B

)

y = 0, (6.16)

with solution

y (x) = AIνB
(ax) +BKνB

(ax) . (6.17)

Here IνB
and KνB

are the modified Bessel functions of order ¿B , of the first and second kind, and A
and B integration constants. After comparing equation (6.15) with (6.17), a =

√
µL and ¿B = 0.

The solution is written as:

US = AI0 (
√
µLr) +BK0 (

√
µLr) . (6.18)

Since K0 diverges at r = 0, B = 0. Regarding the particular solution, the constant US = C:

−µLC = ¼L → C = −¼L

µL
, (6.19)

is tried, yielding

US = AI0 (
√
µLr) − ¼L

µL
. (6.20)

One can determine the constant A from the boundary condition, at r = R ≡ 1, and find:

US =
¼L

µL

(

I0
(√
µLr

)

I0
(√
µL

) − 1

)

. (6.21)
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The two Lagrangian multipliers in equation (6.21) must be tuned so the slave profile complies with

conditions (6.3):

2

∫ 1

0
USrdr = ubS

=

√

3EL

2
, (6.22)

and (6.8):

2

∫ 1

0

1

2
U2

Srdr = EM . (6.23)

A Newton-Raphson method is used at each time step, to find the values of ¼L and µL that comply with

the desired instantaneous ubS
and EM . In the event of EM ≡ EL one recovers from equation (6.21),

US ≡ US0
, the parabolic profile. See in figure 6.1 the instantaneous US , US0

and corresponding

UM , USW profiles at Re = 2100, Wo = 11, A = 0.5 and A = 0.9 computed using this method. The

artificial profiles are also time dependent but, while UM and USW have inflection points for some

phases of the period, in US and US0
there are none.

6.1.3 Numerical methods

Here pairs of master-slave DNS of pulsatile pipe flows at different Re, Wo and A are performed.

Find in Appendix C all the simulations performed here, and their corresponding grid. Each pair of

simulations are initialized with the same velocity field with a localized turbulent puff of a previous

master DNS. In order to initialize each pair of simulations, a previously computed case, with a

similar Re, Wo and A is used.

In order to integrate simultaneously the master and slave simulations, a new version of the new

GPU-nsPipe (see §2.5.2) code was developed. The code performs the following sub-steps during

each time step:

1. The master simulation is integrated one time step.

2. Using the instantaneous mean profile UM = ïuxðθ,x of the master, it computes the instanta-

neous energy EM , see eq. (6.8). In the pseudo-spectral code, UM = ïuxðθ,x, corresponds to

the (0, 0) Fourier mode of the axial velocity.

3. Using the corresponding laminar pulsatile pipe flow kinetic energy EL it computes the desired

ubS
, see eq. (6.3).

4. It uses a Newton-Raphson method to compute the US profile, eq. (6.21), that complies with

the desired ubS
and EM .

5. It overwrites the mean profile of the slave simulation and imposes US instead. (In the code, it

overwrites the (0, 0) Fourier mode of the axial velocity of the slave simulation.)

6. It integrates one time step the slave simulation, ignoring the evolution of its mean profile.

The pipe length

The artificial profiles US will highly depend on the selected length of the pipe Lx. For an infinitely

long pipe Lx → ∞, with a single localized turbulent puff, the mean profile of the master simulation

will tend to the laminar profile ïuxðθ,x → USW . This means that the energy of the mean profile

EM → EL and therefore US → US0
. The Newton-Raphson method works better as long as EM ≈ EL.
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Fig. 6.2.: Energy growth of perturbations on top of master (M) and slave (S) profiles at Re = 2100, A = 0.9
and Wo = 11 according to TGA. Line styles correspond to different perturbations: solid and
red, to the optimal perturbation on top of the slave (S) profile; solid and blue to the optimal
streamwise-constant perturbation with ³ = 0 on top of the master (M) profile; dashed to the
optimal perturbation on top of the master (M) profile for any perturbation shape. In a) for the
case of laminar pipe flow, where the master mean profile corresponds to USW and the slave to US0

.
In b) for master-slave DNS in a Lx = 100D long pipe using the phase averaged mean profiles of
master and slave respectively.

However the computational cost increases as the length of the pipe increases. A good compromise is

found, by setting a length of Lx = 100D.

6.2 Transient growth analysis of the laminar slave profiles

In this section the transient growth of perturbations on top of the slave mean profiles when EM ≡ EL

and US = US0
, eq. (6.6), is assessed. The analysis considers the parametric regime Re g 2100,

8 < Wo < 20 and 0 < A < 1. Find the instantaneous US0
profiles of two combinations of Re, Wo

and A, at several phases in the period in figure 6.1. Find the US0
profiles for additional Re, Wo and

A in Appendix D.

The maximum transient growth of perturbations on top of different US0
(r, t) profiles using the

methods described in Chapter 3 [MFA22; XSA21] have been computed. The analysis is limited to

two particular types of perturbations: stream-wise constant perturbations with axial ³ = 0 and

azimuthal m = 1 wavenumbers; and helical perturbations with ³ > 0 and m = 1. Here, the radial

shape of the optimal perturbations is not shown, as the main interest is to check whether the slave

profiles are highly susceptible to the growth of helical perturbations with ³ > 0 and m = 1 or not.

The optimal time where to trigger the perturbations, which is always around t0 ≈ T/2, and when

the perturbations reach the highest G, tf , are also not analyzed. The energy growth corresponds to

the maximum G observed during one pulsation period after t0.

In figure 6.2a the maximum transient growth of any perturbation on top of US0
(red solid lines)

and perturbations with with ³ = 0 and m = 1 on top of the USW profiles (blue solid lines) are

compared. It turns out that, for all the parameters considered here, in the case of the slave profiles,

the perturbations that attain a highest energy growth have ³ = 0 and m = 1. These perturbations

grow due to non-modal mechanisms, and their transient growth scales algebraically with Re. They

behave the same way as the optimal perturbation to trigger turbulence in SSPF, and they are solely
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Fig. 6.3.: Maximum transient growth of perturbations on top of master USW and slave US0
laminar profiles

at Re = 2100 and different Wo and A. In a), the maximum energy growth of perturbations with
³ = 0 on top of USW profiles. In b) the maximum energy growth of any perturbation ³ g 0 on top
of US0

profiles. In c) the maximum energy growth of any perturbation ³ g 0 on top of US0
profiles.

The maximum growth G is capped to G f 1e3 in the figure for clarity.

related with the mean shear and not with the existence of inflection points. The transient growth

of perturbations with ³ = 0, on top of the US0
and USW profiles are almost identical, as seen in

fig. 6.2a.

In figure 6.2a see also the maximum transient growth of perturbations with ³ > 0 and m = 1 on top

of the USW profile at Re = 2100, Wo = 11 and A = 0.9. As shown in Chapter 4, at certain A ≳ 0.3
and Wo, the laminar USW profile is susceptible to the growth of helical perturbations. This growth is

related with the existence of inflection points in the USW profile, as extensively discussed in Chapter

4 and can be much higher than the growth of stream-wise constant perturbations.

In figure 6.3 the maximum transient growth of perturbations in a bigger parametric space is shown.

The parameter regimes where the growth of helical perturbations (³ > 0 and m = 1) is higher

than the growth of stream-wise constant perturbations (³ = 0 and m = 1) on top of USW profiles

can be clearly identified, see fig. 6.3a and c. Note that in the figure the actual growth G is capped

to a maximum of G f 1e3 for clarity. The growth of stream-wise constant perturbations in the

USW and US0
profiles are almost identical for all the parameters considered here, except at high

A ≳ 0.3. At these A, perturbations in the artificial profiles are able to grow slightly more than in

the corresponding USW profiles. For all the US0
profiles considered here, the energy growth of

stream-wise constant perturbations with ³ = 0 is always bigger than the energy growth of helical

perturbations with ³ > 0. As expected, profiles without inflection points are not susceptible to the

outstanding growth of helical perturbations.

6.3 Master and slave DNS

In this section the results of pairs of master–slave simulations listed in table C.2 are presented.

First, the results of statistically steady pipe flow (SSPF) at Re = 2100 are described, and then of

master-slave simulations at different Re, Wo and A.
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Fig. 6.4.: Space-time diagram of the cross section integral of cross section kinetic energy (a,b), and deficit
of stream-wise kinetic energy, compared with the laminar kinetic energy EL (c,d). The results
correspond to a pair of master-slave DNS in a Lx = 100D long pipe at Re = 2100 and A = 0,
initialized with a localized turbulent puff. The results are plotted with respect to a moving reference
frame, moving at the bulk velocity ub = U . In a) and c) for the master simulation, in b) and d) for
the slave simulation.
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Fig. 6.5.: Comparison between master and slave SSPF DNS in a Lx = 100D long pipe at Re = 2100. In a)
the mean profile of the master (M), slave (S) and laminar (L) cases. In b) histogram of the cross
section integral of cross-section kinetic energy, and stream-wise kinetic energy compared with the
laminar kinetic energy EL for the master simulation. In a black line find the mean cross-section vs
stream-wise kinetic energy profile. In c), same as b), but for the slave simulation.

6.3.1 Master-slave simulations of SSPF

In the case of SSPF at Re = 2100, as shown in figure 6.4, there are no qualitative differences between

the cross-section averaged cross-section kinetic energy of the master and slave simulations. The puffs

even share almost identical upstream and downstream front speeds. For this pair of simulations the

statistics of axial and cross section kinetic energies are compared. In both simulations, both energies

are bounded by similar maximum and minimum values, and even share an almost identical mean

behaviour, see fig. 6.5b and c.

These results show that, as long as turbulent puffs remain localized, and the mean profile of the

master simulation remains similar to a parabolic profile, see fig. 6.5a, the behaviour of turbulence in

the master and slave simulations is almost identical. Moreover, no additional or spurious dynamics

are introduced in the slave simulations after artificially imposing the slave profiles.

6.3.2 Master-slave simulations of pulsatile pipe flow

Here pairs of master-slave simulations of pulsatile pipe flow at different Re, Wo and A > 0, are

analyzed. For all the cases considered here, turbulence remains localized and modulated by the flow

in the master DNS, as shown in figure 6.6a and c.

The phase-averaged mean profiles of master and slave DNS are computed, see fig. 6.1, and a TGA

is performed on top of them. As shown in figure 6.2b, for simulations in a Lx = 100D long pipe,

similar transient growth characteristics are observed as in the laminar case, fig. 6.2a. This means

that, even after imposing a constraint on how blunt the artificial profiles are, the master and slave

mean profiles still allow a similar growth of perturbations with ³ = 0. The slave mean profiles, and
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Fig. 6.6.: Space-time diagram of the cross section integral of cross-section kinetic energy, in DNS at Re = 2100
and Wo = 11. In a) and b) at A = 0.1 and in c) and d) at A = 0.5. The results correspond to two
pairs of master-slave DNS in a Lx = 100D long pipe initialized with a localized turbulent puff. The
results are plotted with respect to a moving reference frame moving at the bulk velocity ub = U . a)
and c) correspond to master simulations, b) and d) to slave simulations.
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Fig. 6.7.: Survive or decay behaviors of turbulent puffs in individual pairs of master-slave DNS at different
Wo and A, in a) at Re = 2100, in b) at Re = 2300. The results correspond to DNS in a Lx = 100D
long pipe initialized with a localized turbulent puff. Symbols (open and closed) denote pairs of
DNS whose master simulation has puffs that survive for long times. Open symbols indicate pairs
of DNS whose slave simulation has puffs that decay at t f td = 120D/U . The background color
represents the maximum transient growth of perturbations on top of the corresponding laminar
profile USW as in figure 6.3c.

different to the master mean profiles, are less susceptible to the growth of helical perturbations with

³ > 0 than to perturbations with ³ = 0.

For all the cases considered here, one observes two distinct behaviors in the master-slave simulations.

On the one hand, there are slave simulations that show quick puff decay, in less than 3 pulsation

periods. The corresponding laminar profiles USW of these slave simulations, are highly susceptible

to the growth of helical perturbations. An example of this behaviour is shown in figure 6.6c and d.

At A = 0.5 and Wo = 11 the profile is susceptible to the growth of helical perturbations, as seen in

fig. 6.3c. While the master simulation has a localized puff that survives for a long time, fig. 6.6c, the

puff in the slave simulation decays in less than two pulsation periods, fig. 6.6d.

On the other hand, there are simulations where there is no qualitative difference between master

and slave simulations. These simulations correspond to cases whose laminar pipe flow are not

susceptible to the growth of helical perturbations. For example, at A = 0.1 and Wo = 11, see fig. 6.6a

and b, both the slave and master profiles are not susceptible to the growth of helical perturbations,

fig. 6.2b. At these parameters, puffs survive for asymptotically long times for both, slave and master

simulations. See additional results of master-slave DNS pairs in Appendix E.

In order to compare all the master-slave DNS pairs, an heuristic threshold td = 120D/U is set. The

master-slave pairs are classified according to this threshold: between pairs whose slave simulation

shows a decay event before the threshold and those which do not. See in figure 6.7 a graphic

representation of this classification for two different Re and different combinations of A and Wo.
Symbols denote individual master-slave DNS pairs, whose master simulation shows puffs survive for

long times. Hollow symbols indicate slave simulations that show puff decay at t f td. There is a

clear boundary between cases that show quick puff decay in the slave simulations and those which

do not. This boundary, in the A and Wo parametric space is very similar to the boundary between

pulsatile pipe flows which are more susceptible to the helical perturbation than those that are more

susceptible to the stream-wise constant perturbation, see fig. 6.3c.
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At A ≳ 0.5 and 8 ≲ Wo ≲ 17 pulsatile pipe flows are highly susceptible to helical perturbations,

fig. 6.3c. As seen in fig. 6.7, at these flow parameters, by suppressing the inflection points, puffs

quickly decay. At A ≲ 0.3 and/or Wo ≳ 20, the growth of the helical perturbations is smaller than

that of stream-wise constant perturbations. At these flow parameters, erasing the inflection points

has no effect on the lifetime of turbulent puffs. This result further supports that, at several Re, Wo
and A, as soon as puffs cannot make use of the inflection points to survive, they quickly decay.

6.4 Summary of the chapter

In this chapter a causal analysis of pulsatile pipe flows is performed, in order to study the effect

inflection points have on turbulence survival. The key idea was to separate the effect of inflection

points from the effect of the mean shear. DNS with imposed mean profiles without inflection points

are performed and their behaviour compared with full DNS. At flow parameters where the presence

of inflection points cause a huge transient growth of perturbations, removing the inflection points

cause a rapid turbulence decay.

The analysis shows that at certain 2100 ≲ Re ≲ 2500 , 9 ≲Wo ≲ 17 and A ≳ 0.3 puffs actively make

use of the shape of the mean profile of pulsatile pipe flow, and in particular of inflection points, to

survive. At these parameter regime, and different to statistically steady pipe flow, the effect of the

mean shear alone is not able to sustain puffs.
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7 Model for puffs and slugs in pulsatile

pipe flow

In this chapter the BM of steady pipe flow is extended to single harmonic pulsatile pipe flows at

2100 f Re f 3000, Wo ≳ 5 and 0.5 f A f 1. The objective is to extend the original model with the

minimum number of changes possible, so it can reproduce the behaviour of turbulent patches at

these flow parameters. The resultant Extended Barkley Model (EBM) returns to the original BM

when A = 0.

The chapter is organized as follows. Firstly, a short introduction to the original BM model is included.

Secondly, the changes proposed are described. Thirdly, the results of EBM compared with results of

individual DNS of pulsatile pipe flow are shown. Finally the limitations of the extended model are

discussed.

7.1 The original BM

The BM describes the evolution of two scalar variables, q (x, t) and u (x, t). The variable q represents

the turbulence intensity, and u the state of the local mean shear of the flow, at each axial location

x and time t. The main idea of the BM is the non-linear interaction between u and q. Turbulence

intensity q takes advantage of the mean shear u to grow. However, in the axial locations where

q > 0, the local mean shear is reduced [Hof+10; Küh+18], and in turn, adversely affects the growth

of q.

The variable q is always either q = 0, which corresponds to laminar flow, or q > 0, which corresponds

to non-laminar (turbulent) flow. As a proxy to the state of the mean shear, u corresponds to the

local center-line velocity of the pipe. When the center-line velocity is maximum, u ≡ Uc, the flow

is locally laminar and the value of the parabolic (laminar) profile Uc = 2 is recovered. Otherwise,

when the flow is locally turbulent q > 0, the center-line velocity is u < Uc, since the velocity profile

is blunted.

Find a detailed description of the BM in Appendix A.

7.2 Derivation of the EBM

The core idea of the EBM is the same as in the original BM: the non-linear interaction between

the turbulence intensity q and the mean shear u. As in the BM, in the EBM u corresponds to the

center-line velocity, as a proxy to the state of the local mean shear. The instantaneous laminar profile
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of pulsatile pipe flow is much more complex than the simple parabolic profile of steady pipe flow,

specially at high A g 0.5, see Appendix B. For these complex profiles, the shape of its shear can not

be described with a single variable u like in the case of steady pipe flow. Here it is assumed that at

moderate to high amplitudes 0.5 ≲ A ≲ 1 the state of the mean shear can be approximated with

the center-line velocity and an additional parameter, without the need to include new variables in

the model. As in Appendix A with the BM, in this section the EBM is described from its local to its

spatially extended dynamics.

7.2.1 Local dynamics of the mean shear

In pulsatile pipe flow, the laminar center-line velocity Uc (t) and bulk velocity ub (t) are functions of

time. While the bulk velocity is set by the pulsation, the evolution of Uc (t) can be obtained from the

NSE. The equation that gives the laminar SW profile can be written as:

∂USW

∂t
= fp (t) + Fvisc (r, ) , (7.1)

where,

Fvisc (r) =
1

Re

(

∂2USW

∂r2
+

1

r

∂USW

∂r

)

. (7.2)

At r → 0,

Fv0
(t) = lim

r→0
Fvisc = lim

r→0

[

1

Re

(

∂2USW

∂r2
+

1

r

∂USW

∂r

)]

. (7.3)

If one applies L’Hopital’s rule to the above limit,

Fv0
(t) =

2

Re

∂2USW

∂r2
, (7.4)

and, being Uc (t) = USW (t, r = 0),

∂Uc

∂t
= fp (t) + Fv0

(t) . (7.5)

The equilibrium of forces described in equation (7.5) must be included in the model in order to

account for the time dependence of Uc. Thus, the original equation of the BM, eq. (A.3), is extended

to:

du

dt
= gEBM (q, u) = ϵ (Uc (t) − u) + 2ϵ (ub (t) − u) q + fp (t) + Fv0

(t) , (7.6)

where Uc, fp and Fv0
are the corresponding laminar velocity, pressure gradient and the viscous force

at the center line of the pipe. They can be precomputed by numerically integrating equation (7.5)

for a given ub (t) bulk velocity.
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7.2.2 Local dynamics of turbulence intensity

A time dependent control parameter rEBM (t) = r (Re)·ub (t+ ϕ) is considered, where r is calculated

using the mean Re:

r =
Re−R0

R1 −R0
, (7.7)

and ub (t+ ϕ) is a time shifted bulk velocity. The phase lag ϕ models the time delay between the

maximum integrated turbulence intensity ïqðr,θ,z and the bulk velocity ub, observed in DNS of

pulsatile pipe flow, fig. 5.8. It is found that the phase lag ϕ (Wo) between the pressure gradient

and laminar profile, first derived by Womersley [Wom55], is a good approximation to this phase

difference:

ϕ (Wo) ≈ 32.34◦ + 35.17◦ arctan (0.75 (Wo− 2)) (7.8)

As shown in Chapter 4, at certain 5 ≲ Wo ≲ 17 and A ≳ 0.5, the laminar profile of pulsatile pipe

flow is instantaneously unstable at certain phases of the period. In the EBM, the instantaneous

stability of the mean shear is modeled by adding to the local dynamics of q in equation (A.4) the

term +µ¼max (t) q. Here ¼max (t) represents how linearly unstable the instantaneous laminar profile

is, and is always ¼max g 0. When ¼max > 0, it corresponds to the maximum eigenvalue of the

instantaneous laminar profile, as described in §3.5. See a catalog of laminar profiles, with the

corresponding eigenvalues in Appendix B. The parameter µ models the effect ¼max has on the growth

of q. It represents the accuracy of the quasi-steady assumption used to compute ¼max. It should

scale with the length of the period in terms of advective time units T = πRe
2Wo2 . A good compromise is

found by setting:

µ = min (1, 0.28 log (T )) . (7.9)

By introducing these changes to the model, the local dynamics of q in the EBM are described by the

following ODE:

dq

dt
= fEBM (q, u) = q

[

r ub (t+ ϕ) + µ¼max (t) + u− Uc (t) − (r ub (t+ ϕ) + ¶) (q − 1)2
]

. (7.10)

7.2.3 Spatially extended and stochastic model

In the case of the center-line velocity the spatially extended equation is:

∂u

∂t
= −u∂u

∂x
+ gEBM (q, u) . (7.11)

In the original BM, the velocity at which q is advected is equal to u− · where · acts as a correction

parameter. In the case of pulsatile pipe flow, the advection velocity should also depend on the phase

of the pulsation. This is modeled by correcting the velocity by u− ·ub (t):

∂q

∂t
= − (u− ·ub (t))

∂q

∂x
+ fEBM (q, u) +Dq

∂2q

∂x2
+ Ã (Re) Ä (t, x) q, (7.12)
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Tab. 7.1.: BM parameters as described in [Bar+15] and the value of parameters used in the EBM.

R0 R1 · Dq Ã ¶ ϵ

BM 1920 2250 0.79 0.13 f 0.5 0.1 0.2

EBM 1920 2250 0.79 0.13 0.2 f Ã f 0.85 0.1 0.1

Note that, in the EBM Ã depends on Re, and is given as:

Ã =
6

5
· (Re− 1933)

1000
, (7.13)

with a lower limit of Ã g 0.2, so there are always some stochastic behaviors in the model, and an

upper limit of Ã f 0.85, so the stochastic term is never dominant

7.2.4 Parameters of the EBM

The EBM parameters are fitted as in the original BM [Bar+15], see table 7.1, except for two

exceptions. One, as described before, is Ã, that is now a function of Re and not a constant. The

other is ϵ that is changed from ϵ = 0.2 to ϵ = 0.1.

In the original work of Barkley, [Bar16], he suggests that ϵ should be inversely proportional to Re.
But, since changing this parameter does not have a huge impact on turbulence front speeds and

survival in the case of SSPF, he keeps it constant. In the case of pulsatile pipe flow, in order to

find a better match with the DNS results, it should be slightly decreased. This is justified since, the

maximum Remax = (1 +A)Re is, in the worst case scenario considered here, two times the mean

Re. Therefore ϵ is set to half its BM value in the EBM.

7.2.5 Time scale of the EBM

In §A.3.1 it is described how Barkley, [Bar+15], in order to compare the model and DNS/experiment

front speeds, identifies that there is a:

È = 2 (C0 − C1) = 0.28, (7.14)

velocity scale difference between model and DNS/experiment results. This velocity scale difference

can also be described as a time scale difference between model and DNS/experiments. In particular,

an advective time unit (D/U) in DNS/experiments, corresponds to È = 0.28 time units in the model.

This is of paramount importance in the EBM, as, a period of length T = πRe
2Wo2 , actually corresponds

to a period of length T ∗ = 0.28T in the model. This scaling is introduced in the model.

Equations (7.12) and (7.11) together with the local dynamics (7.10) and (7.6), the parameters

defined in equations (7.9) and (7.13), and summarized in table 7.1, define the EBM. Note that,

when A = 0 one recovers the original BM, since there is no oscillatory component in fp, Fv0
, ub or

Uc; fp + Fv0
= 0 and ¼max ≡ 0.

7.3 Numerical methods

Equations (7.12) and (7.11) are integrated following Barkley et al. [Bar+15]. The second order

derivatives are discretized with central finite differences of second order, and the first order deriva-
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Fig. 7.1.: Grid convergence study of the integrator of the EBM. The figure shows the relative error between
the resultant front speed, for different ∆t compared to the fine case with ∆t = 5 · 10−4. The results
correspond to simulations at Re = 2100, Wo = 11, A = 1 and Ã = 0 with a grid spacing ∆x such
that the CFL number CFL = 4 ∆t

∆x
= 0.2 is the same for all the cases. With a red square find the case

∆t = 0.0025 used in the rest of EBM simulations.

tives with a first order upwind scheme. Periodic boundary conditions are considered in x. The

system is integrated using an explicit Euler method, with a time step size ∆t = 0.0025. The results

here correspond to a pipe of length L = 100 and a uniform grid spacing ∆x = 0.5. The stochastic

term is modeled as white Gaussian noise in space and time. All the EBM simulations are initialized

with a localized 5 axial units long disturbance with magnitude q f 0.5 at initial time t0 = T ∗/2.

In order to validate the code, the EBM is integrated at Re = 2100, Wo = 11, A = 1 and Ã = 0 with

different ∆t and ∆x, see figure 7.1. The grid spacing ∆x is changed according to the desired ∆t to

impose a constant CFL = 4 ∆t
∆x = 0.2. A good compromise between accuracy and computation time

is found by setting ∆t = 0.0025 and assuming an error of 5% in the front speeds.

In order to prepare all the variables needed to integrate the EBM the following algorithm has been

implemented in a MATLAB code. After selecting the desired A, Re and Wo the code first numerically

integrates the corresponding laminar profile to obtain all the time dependent parameters: ub, Uc, fp,

Fv0
and ¼max. It then computes the phase shift angle ϕ (Wo), the parameter Ã using eq. (7.13) and

scales the pulsation period to adapt it to the time scale of the model using equation (7.14). Finally

it integrates the equations (7.12), (7.11), (7.10) and (7.6) to obtain u and q.

7.4 Results of the EBM

In this section the results obtained with the EBM, and their qualitative and quantitative comparison

with DNS results are described. The cross section axial vorticity squared:

ïÉ2
xðr,θ (x, t) =

1

ÃR2

∫ R

0

∫ 2π

0
É2

x r dr d¹, (7.15)

is used as an indicator of the existence and magnitude of turbulence in each axial x location in the

DNS. Throughout this section this quantity and q are referred to as turbulent indicators in DNS and

EBM respectively.
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Fig. 7.2.: Space-time diagram of the cross section integral of axial vorticity squared (eq. (7.15)) of DNS (left
plots: a, c, e) and 10 · q of the model (right plots b, d, f). The results correspond to DNS and model
simulations in a Lx = 100D long pipe. The DNS are initialized with the optimal perturbation scaled
to |uuu′

0| ≈ 3e− 2 of magnitude and localized in a span of 5D [FMA21], while the model simulations
with a localized puff of length 5D. The figure is presented with respect to a moving frame x∗,
moving with the bulk velocity ub. a) and b) correspond to Re = 3000, Wo = 11, A = 0.5. c) and d)
correspond to Re = 2100, Wo = 11, A = 0.75. e) and f) correspond to Re = 2400, Wo = 8, A = 1.
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Fig. 7.3.: Turbulence indicator (cross section axial vorticity squared in DNS and 10 · q in the EBM) with
respect to the center-line velocity u at different pulsation phases. The results correspond to phase
averaged DNS and EBM results at Re = 2100 and Wo = 11. Cases a)-d) are for A = 0.5, cases e)-h)
for A = 1. The phase of each panel is indicated at the top of the corresponding panel column.

See in figure 7.2 three examples of DNS and model comparisons. The model is able to capture

reasonably well the turbulent front speed and turbulence behaviour of all the cases, as seen

qualitatively in figure 7.2.

See additional EBM results at the end of this chapter, in figure 7.6. There, 4 additional EBM results

are shown. The parameters selected there correspond to the parameters shown in the DNS results in

figure 5.3. By comparing model and DNS results, it becomes clear that the EBM is able to reproduce

the 4 turbulent behaviors of puffs in pulsatile pipe flow described in Chapter 5.

7.4.1 Phase averaged puffs in pulsatile pipe flow

See in fig 7.3, phase averaged results of model and DNS. At Re = 2100, Wo = 11 and either A = 0.5
or A = 1. In these cases turbulence is localized and modulated by the pulsation as in the case shown

in fig. 7.2c and d.

According to the local phase space in fig. 7.3 a, b, e and f, the structures at t/T ≈ 0.5 and t/T ≈ 0.75
are similar to localized turbulent slugs, see fig. A.2 [Son+17; Bar16]. According to the model, at

A = 1, fig. 7.3f, turbulence elongates into a strong slug, while at A = 0.5, fig. 7.3b, the structure is

more similar to a weak slug. As u∗b decreases at t/T = 1, the magnitude q∗ of slugs also decreases,

fig. 7.3c and g. At t/T ≈ 1.25 the slug shrinks to its minimum length and magnitude, becoming a

turbulent puff, fig. 7.3d and h.

7.4.2 Effect of γ and λmax in the EBM

In the EBM, there are two main sources of turbulent intensity production, see eq. (7.10). One is the

time varying Re number that is modeled with the term r ub (t+ ϕ). The second one is the instability
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Fig. 7.4.: Space-time diagram of the cross section integral of axial vorticity squared of DNS (left plots: a,
e) and 10 · q of the EBM (right plots b, c, d, f, g, h). The results correspond to DNS and model
simulations in a 100D long pipe at A = 1. The top panels (a,b,c,d) at Re = 3000 and Wo = 6.
The bottom panels at Re = 2200 and Wo = 11. The DNS (a,e) are initialized with the optimal
perturbation scaled to |uuu′

0| ≈ 3e− 2 of magnitude and localized in a span of 5D [FMA21], while
the model simulations with a localized puff of length 5D. The figure is presented with respect to a
moving frame x∗, moving with the bulk velocity ub. Panels b, f correspond to EBM simulations with
the parameters listed in table 7.1. Panels c, g correspond to EBM simulations with the parameters
listed in table 7.1 but µ = 0. Panels d, h correspond to EBM simulations with the parameters listed
in table 7.1 but ϕ = 0.
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Fig. 7.5.: (With color) time and ensemble averaged upstream front speed of q according to simulations of
the EBM at several Re and Wo for three different pulsation amplitudes. Note that the front speed
has been transformed from model to U units to ease the comparison with figure 5.8b. The results
correspond to the interpolated time and ensemble averaged front speed of 39 × 37 Re and Wo
combinations, for Ni = 50 simulations each. In a) at A = 0.5, in b) at A = 0.75 in c) at A = 1.
The dotted lines denote the threshold between Re and Wo cases where more than half of the Ni

simulations show turbulence decay q f 0.005 before t/T < 4. With black dots we denote the
observed survive/decay behaviors of different DNS at parameters close to the decay threshold.
Filled dots correspond to simulations where turbulence survives for long times, or splits/elongates.
Hollow points denote DNS where we observe turbulence decay at t/T f 8.

of the mean profile that is modeled by the product µ¼max (t). Here the effects of ignoring ϕ or µ are

shown.

See in figure 7.4 additional comparisons between DNS and EBM results. The figure also includes

results of the EBM model for ϕ = 0 or µ = 0. According to the results, if one does not consider

the phase lag in the model, the results clearly diverge from the DNS ones at most flow parameters,

see fig. 7.4d and h. This behaviour is also observed at other flow parameters. This confirms that

turbulence perceives the pulsation at a certain phase lag, and that this phase lag can be modeled as

a function of Wo alone.

Regarding the parameter µ, see fig. 7.4c and g, Re = 3000, Wo = 6 and A = 1, there is no apparent

effect of ignoring the linear instability of the mean profile. At these flow parameters turbulence

rapidly decays due to the effect of the pulsation, regardless of the presence of inflection points in the

profile. However, at Re = 2200, Wo = 11 and A = 1, without the effect of the instantaneous linear

instability, puffs quickly decay due to the effect of the pulsation.

7.4.3 Parametric study using the EBM

A huge number of simulations of the EBM were performed in a big Wo and Re parametric space for

three different amplitudes. At each amplitude, 39 equispaced Re between 2050 f Re f 3000 and

37 Wo between 5 f Wo f 16 are considered. For each combination of Wo, Re and A; Ni = 50 EBM

simulations for t/T < 4 are performed. The simulations are interrupted either at t/T < 4 or when

turbulence decays in the whole domain q f 0.005.
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See in figure 7.5 the time and ensemble averaged upstream front speed ïcuðt,Ni
together with an

empiric threshold for turbulence decay of all the EBM simulations considered here. The threshold

separates the parametric regions where more than half of the Ni simulations decay, at t/T f 4,

from the rest. It can be understood as a critical Rec (Wo,A), up to which all puffs are more likely to

decay than survive, split or elongate. This critical Rec is a function of Wo and A. At low Wo, as the

system becomes increasingly quasi-steady, puffs need of a higher mean Re to survive the phases of

the period where ub (t+ ϕ) < U . The amplitude A sets the minimum Re at each Wo. As A increases,

this minimum Re increases. At A = 1, the EBM shows an asymptotic behavior at Wo ≈ 10. Here,

independently of the selected Re f 3000, puffs show a high chance to decay as soon as Wo f 10.

Regarding the upstream front speed, at high Wo and independently of the selected A, ïcuðt,Ni

decreases as Re increases. This is expected as the behaviour of puffs at high Wo is similar to the

behaviour of puffs in SSPF. As shown in figure A.4, the upstream front speed of puffs in steady pipe

flow, decreases for increasing Re.

As Wo decreases from Wo < 20, at 10 ≲Wo ≲ 20, ïcuðt,Ni
first decreases. At these frequencies, and

specially at higher A, µ¼max > 0 for some phases of the period, which increases the overall turbulent

production. This increase in turbulent production is analogous to an increase in Re, and therefore

returns a lower averaged ïcuðt,Ni
. At Wo ≈ 10 the system is close to the decay threshold discussed

above. Puffs tend to accelerate as they decay, which explains the increase of ïcuðt,Ni
at these Wo.

However the results show that, as Wo is further decreased, ïcuðt,Ni
decreases again. This is due

to the way the EBM simulations are initialized. At t0 = T ∗/2 the puffs tend to elongate since

rub (t+ ϕ) g 0 and µ¼max g 0. So during the initial phase of the EBM simulations at Wo ≲ 8 puffs

first rapidly elongate (cu < 0), and then quickly decay when ub (t+ ϕ) < U . Since the decay is faster

than the elongation, the averaged front speed is ïcuðt,Ni
< 0.

Comparison with DNS results

The EBM qualitatively captures the behavior of the upstream front speed observed in the DNS, as

seen after comparing figure 7.5 with figure 5.8 (right). As in the DNS, the upstream front speed

in the EBM decreases for increasing Re and A, and, at high Wo, it approaches the values of the

upstream front speed of puffs in SSPF. The quantitative values of the upstream front speed of model

and DNS are also similar.

In figure 7.5, the symbols represent the survival/decay behaviors of the DNS listed in table C.1,

whose flow parameters are close to the decay thresholds of the EBM. Hollow symbols represent DNS

where puffs decay at t/T f 8, and solid ones, DNS that show turbulence survival for long times.

The model approximates relatively well the minimum Wo at each Re and A, where turbulence does

not decay after a short number of pulsation periods. The match between EBM and DNS results is

better at smaller A, like A = 0.5 than at higher A. At A = 1, while the model has a threshold to

decay close to Wo = 10, in the DNS the threshold seems to be closer to Wo = 8, and slightly change

as Re increases.

The observed discrepancies between model and DNS results are rooted in the limitations of the EBM.

Some of them are described in the following section.

7.5 Limitations of the EBM

When correctly fitted, the EBM captures the dynamics of pulsatile pipe flow in a broad parametric

regime, but it has some limitations that need to be mentioned. In this section these limitations are
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described together with some suggestions on possible ways to improve the model in future analyses.

The limitations are classified between limitations possibly inherited from the original BM, and those

that are new to the EBM.

As a general comment, and different to the original BM, the EBM shows a much worse robustness

with respect to the model parameters. Specially worrying are the dependence of the results to the

noise intensity Ã (from a qualitative point of view) and linear instability strength µ.

7.5.1 Limitations inherited from the original BM

The problem with parameter σ

In the original BM, the parameter Ã was included in order to model puff decay, split and intermittency.

As explained in Appendix A, the original BM fails to capture the intermittent behaviour of localized

turbulence in steady pipe flow at 2250 ≲ Re ≲ 2500. In this regime, according to the model,

puffs elongate until they fill the whole domain with turbulence. However, according to DNS and

experiments, at these Re, turbulent patches like puffs and slugs coexist with laminar regions of the

flow, and elongate, split, decay in a highly intermittent way.

According to the DNS of pulsatile pipe flow, see Chapter 5, at these Re and A > 0.5, puffs remain

localized at 6 ≲Wo ≲ 12. If the parameter Ã is not scaled with Re, puffs at these flow parameters

tend to elongate in the EBM.

The shape of elongated patches

The shape of the turbulent structures in the EBM do not perfectly match those observed in DNS, as

seen in fig. 7.3f. The EBM clearly overestimates the ratio between the magnitude of q in the core of

the turbulent patch. This was also observed in the case of slugs in the BM.

7.5.2 The problems with parameter γ

As described at the beginning of this chapter, the EBM was expected to work worse as A increases.

At higher A, and Wo > 5, the laminar profile is very different to the simple parabolic profile of

steady pipe flow, see Appendix B. In order to account for the shape of the pulsatile laminar profile,

the instantaneous linear instability ¼max, and the parameter µ are used. Both work reasonably well,

as long as µ is correctly fitted. But as soon as µ is changed puffs either decay or elongate when they

should not.

Also, due to the definition of µ the model overestimates the lifetime of puffs at certain flow

parameters. In particular, according to the EBM, puffs at 10 ≲Wo ≲ 15, A = 1 and 1800 ≲ Re ≲ 2050
survive the pulsation. This is obviously not observed in DNS of pulsatile pipe flow, where atRe < 2050
and A = 1 puffs tend to decay independently of the pulsation frequency. Moreover, at these flow

parameters, the EBM is clearly dominated by the parameter ¼max, and therefore by µ.

The EBM considers that, as long as ¼max > 0, turbulence can always make use of the instantaneous

linear instability to grow. However this may not be the case in a full DNS. At a given time step, the

mean profile of a DNS can be highly perturbed. In this case, puffs do not have the chance to take

advantage of the linear instability to grow.
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Fig. 7.6.: Space-time diagram of turbulence indicator of the EBM in a 100 axial units long domain. The
model simulations are initialized with a localized q patch, in an axial span of 5 axial units. The
diagrams are shown with respect to a moving frame x∗, moving with the bulk velocity ub (t). a)
corresponds to Re = 2800, Wo = 8 and A = 1. b) corresponds to Re = 2100, Wo = 9 and A = 0.5.
c) corresponds to Re = 3000, Wo = 8 and A = 1. d) corresponds to Re = 3000, Wo = 11 and
A = 1.

7.6 Summary of the chapter

Here the BM is extended to the case of pulsatile pipe flow. By introducing a minimal number of

changes in the BM, inspired by the physics discussed in Chapters 5 and 6, it is shown how the

new EBM qualitatively and quantitatively agrees with DNS results of pulsatile pipe flow in a wide

parametric regime.
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8 Conclusions

In this thesis, the transition to turbulence, and the transitional regime, of pulsatile pipe flow

at moderate-to-high amplitudes A g 0.5 have been studied. In particular, pulsatile pipe flows

with non-reversal bulk velocities ub (t) g 0, at pulsation frequencies of 3 ≲ Wo ≲ 21 and mean

Reynolds numbers 1000 ≲ Re ≲ 3000 have been considered. This parameter regime is relevant for

cardiovascular flows, particularly in the blood flow in the human aorta.

Two questions have been addressed:

1. How do pulsatile pipe flows transition to turbulence? And, corollary, how do the flow

parameters affect this transition?

2. How does turbulence behave once triggered at these flow parameters?

In order to answer these questions, stability and transient growth analysis, together with direct nu-

merical simulations, causal analysis and turbulence modeling were performed. The main conclusions

are summarized in what follows.

Optimal perturbations

All the laminar pulsatile pipe flows studied here are susceptible to the transient growth of a pair

of axially coherent stream-wise vortices. This perturbation is known to be the most amplified

one for turbulence transition in steady pipe flow [SH94]. At certain flow parameters, however,

pulsatile pipe flow is more susceptible to the growth of a new family of perturbations known as the

helical perturbations [Xu+20]. In this thesis, it has been shown that these helical perturbations

are linked to the instantaneous linear instability of the laminar velocity profile in pulsatile pipe

flow. This instability emerges from the presence of inflection points in the laminar profile and their

characteristics. Two requirements must be fulfilled for helical perturbations to grow.

The first one is that the flow is instantaneously unstable at some phases of the pulsation period.

This instability occurs when inflection points in the laminar profile satisfy the Fjørtoft criterion. In

general this is the case for Re ≳ 800, Wo ≳ 3 and A ≳ 0.5, although the precise dependence on Re,
Wo and A is intricate.

The second requirement is that the laminar profile evolves much slower than the perturbations. The

perturbations evolve in the advective time scale D/U , while the laminar profile evolves according

to the pulsation period T . In advective time units, the period is equal to T = πRe
2Wo2 . As long as

T ≳ 10D/U , the perturbations have enough time to take advantage of the inflection points to

grow.

The waveform of the pulsation can change the lifetime, the radial span and the characteristics of

these inflection points. For waveforms with longer low velocity phases, the inflection points remain

a longer fraction of the period in the flow and give more time for the perturbations to grow on top
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of them. Also, perturbations grow more, the more abrupt the acceleration and deceleration phases

are. This means that, by just knowing the waveform and the flow parameters (Re and Wo), one can

easily estimate the growth of perturbations for a given pulsatile pipe flow, without even performing

stability or transient growth analysis (see eq. (4.8) in Chapter 4).

Transition to turbulence due to helical perturbations is not supercritical. Helical perturbations make

use of linear instabilities to grow, but these instabilities are only present during some phases of the

period. In fact, the net growth of helical perturbations, at these flow parameters, is always smaller

than G < 1 after a sufficiently long time. That is the reason why Floquet analysis of pulsatile pipe

flow at these flow parameters do not show the actual susceptibility to transition observed in the

experiments [Tho+11]. In order for the helical perturbation to grow to a certain magnitude where it

saturates, triggers non-linear effects and then triggers turbulence; it needs a sufficiently high initial

magnitude. Therefore, the transition to turbulence via helical perturbations is subcritical.

It is worth noting that the (rare) existing measurements of the flow in models of the human aorta,

primarily report helical flow patterns [Cor+21; Ha+16]. Coincidentally, the alignment of fibers in

the tissue of cardiovascular vessels is helical [TKV13]. The fibers are believed to be aligned with

the principal direction of wall shear stresses, which indirectly would confirm the presence of helical

patterns in the flow. As it has been shown in this thesis, pulsatile pipe flows in rigid pipes driven with

cardiovascular like waveforms are susceptible to the growth of helical perturbations. This would

suggest that, the pulsatile nature of the flow alone, leads to the development of helical patterns.

This hypothesis should be further studied, and compared to other cardiovascular flow features such

as the inlet conditions or geometry of the aorta.

The rise of turbulence in pulsatile pipe flow

In order to understand how turbulence is triggered in pulsatile pipe flows, different DNS have

been performed. All of them are initialized with the corresponding laminar profile, and on top of

it, different disturbances are used to trigger turbulence. In a first group of simulations, the flow

is constantly perturbed close to the pipe wall by a body force that models a localized geometric

defect. In these simulations, at the flow parameters where the flow is susceptible to the growth

of helical perturbations, turbulent patches are intermittently triggered every deceleration phase of

the period. Turbulence may or may not survive the rest of the pulsation, but, what is important is

that, at these flow parameters, the flow is highly susceptible to transition. This means that, when

sufficiently perturbed, the flow is expected to have turbulent patches at least during some phases of

the pulsation, as observed in experiments [Xu+20].

Other simulations are initialized with the helical perturbation, scaled to a small magnitude and

localized in a short axial length. In these simulations, the initial helix grows in magnitude and axial

length until it triggers localized turbulent patches. If the initial perturbation is not localized in the

axial direction, the helical perturbation triggers turbulence in the whole domain. The turbulent

patches require a certain distance with respect to one another to survive. If the initial perturbation

is not localized, the turbulent patches that are created close to one another, tend to quickly decay

[Hof+10].

In accordance with the energy growth predicted by the LSA and TGA, turbulence transition happens

faster or slower depending on the waveform of the pulsation. Cases with longer low velocity phases

and steeper acceleration/deceleration phases show higher initial peaks of turbulent fraction than

cases with longer high velocity phases.
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Turbulence in the transitional regime

Independently of the method used to trigger turbulence, at the flow parameters considered here,

turbulence first appears in the form of localized turbulent patches. These turbulent patches are

modulated in length and magnitude by the pulsation, and they are similar to the puffs and slugs

found in SSPF. Depending on the flow parameters, they can have different behaviors, see §5.2. At

some flow parameters (typically at Wo ≲ 8), the structures decay after one, or a short number of,

pulsation periods. These decay events happen always at the same phase of the period [XA18]. This

means that decay events in pulsatile pipe flow are much more predictable than in SSPF. At higher

pulsation frequencies, puffs either remain localized for asymptotically long times, or randomly split

until the flow reaches a highly intermittent state, where localized turbulent patches split/decay in a

quiescent laminar flow.

The waveform has also an effect on turbulence survival once turbulence is triggered. Opposite to

what their effects on perturbation growth suggests, steeper acceleration/deceleration and longer

low velocity phases, actually promote turbulence decay. This suggests that, in the non-linear regime,

the waveform has additional effects.

It was observed that turbulent production of puffs in pulsatile pipe flow tends to localize radially

close to the position of inflection points in the quiescent laminar profile. In order to further study the

effects of inflection points on turbulence, a non-linear causal analysis was performed. The analysis

systematically eliminates the inflection points from the laminar profile, while minimally affecting the

state of the mean shear. According to the analysis, puffs actively make use of the inflection points in

the quiescent laminar profile, and their corresponding instabilities, to survive the pulsation. This

seems to contradict the results of Lozano et al. [LD+21], who determined that linear instabilities do

not play an important role on turbulence survival. However, they considered fully turbulent flows,

while I studied the case of localized turbulent patches in a quiescent laminar profile. My conclusion

is that, as long as turbulence remains localized, it can make use of the surrounding laminar profile

and its instantaneous instabilities to grow.

Using the lessons learned from the DNS results and the results of the causal analysis, a pre-existing

model of puffs in SSPF developed by Barkley was adapted to pulsatile pipe flow. The extended model

is able to reproduce reasonably well the behaviour of turbulent front speeds of puffs in pulsatile

pipe flow, and their dependence on Re, A and Wo. It is also able to approximate the thresholds in

terms of Re, A and Wo up to which rapid decay of turbulence is expected. According to the model at

A = 1 and 2000 ≲ Re ≲ 3000, any case with Wo ≲ 10 is highly susceptible to relaminarization.

According to the DNS, causal analysis and extended model results, turbulence in pulsatile pipe flow,

makes use of mainly two mechanisms to survive. The first mechanism is the turbulent production

due to the mean shear, that is maximum in the phases of the period where the bulk velocity is high,

ub (t+ ϕ) > U . This production has a certain phase lag ϕ with respect to the pulsation, that is

mainly set by Wo. The second mechanism is the instantaneous instability of the quiescent laminar

flow. As long as puffs remain localized in pulsatile pipe flow, and surrounded by a quiescent laminar

profile, they can take advantage of this instability to increase their turbulent production at certain

phases of the period.

Outlook

This thesis mainly focuses on two particular questions regarding turbulence and turbulence transition,

on a limited parametric space of pulsatile pipe flow. The results presented here suggest that the

pulsatile driving of the flow alone is able to render the flow highly susceptible to transition. The

question still remains on whether this effect is dominant for turbulence transition in cardiovascular

flows or not, and if it is relevant at other flow parameters.
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Future works should extend this analysis and consider additional blood flow characteristics, such as

non-Newtonian effects, the effect of flexible walls or complex geometries. The inclusion of any of

these features will result in laminar flows that are different to the Sexl-Womersley profile. This will

have an impact on the presence and behavior of inflection points, and potentially reduce the growth

of helical perturbations. For instance, the human aorta is obviously not straight, see fig. 1.10. The

aortic arch can be modeled a 180◦ bend, while, although the descending aorta is almost straight, it

still has some curvature. Both geometries will induce secondary flows that can disrupt the laminar

profile and result in other types of instabilities and transition scenarios. In the case of flexible walls,

fluid-structure interactions such as the Windkessel effect or wall oscillations, will have an impact on

the laminar flow.

Different to the rest of the features, non-Newtonian effects are expected to be not so important in

the larger arteries, except for the phases of the period where the bulk velocity is minimum. At these

phases of the period, blood flow will experience a small mean shear, that could lead to the formation

of red-blood cells structures like rouleaux, see fig. 1.2. The presence of these structures are usually

modeled as a local increase in viscosity. This could have a detrimental effect on the growth of

perturbations. Blood has other non-Newtonian features like shear-thinning and visco-elasticity.

According to preliminary results, shear-thinning effects reduce the growth of helical perturbations,

while visco-elastic effects enhance it. The former tend to radially move the inflection points closer

to the wall, while the latter to the center-line. Some of these results are discussed in the Bachelor

thesis of Laura Dot, see Appendix G. However more thorough analyses are needed in order to test

these observations.

The additional features of cardiovascular flows will also have an impact on the behavior of turbulence

once it is triggered. For instance, mild curvatures have been observed to delay transition and change

the behavior of puffs and slugs in SSPF [RCS19]. It is expected that, the more pronounced curvatures

of the aorta will have a bigger impact on the flow. Non-Newtonian effects also have an important

effect on turbulence. In fact, if the visco-elastic effects are big enough, the flow reaches a new

chaotic state known as Elasto-Inertial Turbulence, that shows different dynamics to turbulent flows

[DTH23]. Perhaps the most critical feature is the effect of flexible walls. The expectation is that,

stiffer walls promote turbulence, as they have been historically linked with cardiovascular diseases

[Mal+16]. This has not been demonstrated yet, and the results of this thesis could serve as a nice

starting point to study turbulence transition of pulsatile flows bounded by flexible walls.

In this thesis, in order to understand the behavior of turbulence in pulsatile pipe flow, a fairly new

causal analysis was developed. This analysis can be used in the future, to study the behavior of

localized turbulent structures in pipe, or in other set-ups like channel flows. Additionally, the EBM

developed in this thesis could be used in future studies to quickly assess the behavior of puffs at

different flow parameters, to investigate the interaction between several puffs in the same pipe,

or the effect of suddenly changing the flow parameters. As it has been shown in this thesis, slight

changes in the pulsation parameters, can result in big changes on the behavior of turbulence. Future

analyses may be interested on designing control laws to manipulate the behavior of turbulence by

changing the pulsation frequency or amplitude. They could use the EBM to, in a fast way, obtain

preliminary control laws. All of these studies will need to, at some point, perform a big number of

DNS. The C-CUDA code developed in this thesis, can aid in these analyses by performing fast and

efficient simulations.

There are several fundamental questions regarding puffs in steady pipe flow that have not been

answered yet, such as why puffs randomly decay at low Re and randomly split at higher Re. These

behaviors are also observed in pulsatile pipe flow, but they take place in a more deterministic way.

Puffs in pulsatile pipe flow tend to decay and/or split, only during concrete phases of the period and
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not during others. A more thorough analysis of these behaviors may help explain the still unresolved

dynamics of puffs in SSPF.
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A Model for puffs and slugs

in steady pipe flow

The model proposed by Barkley [Bar11a; Bar11b; Bar+15; Bar16] (here referred to as the Barkley

Model BM) is able to reproduce the behavior of turbulent puffs and slugs in statistically steady pipe

flow (SSPF). In this appendix the model is described in detail. Some important results of the BM

and their comparison with DNS of SSPF are shown at the end. The main purpose of this appendix is

to give an overview of the successful model by Barkley, that is extended to the case of puffs and

slugs in pulsatile pipe flow in Chapter 7.

A.1 Derivation of the BM

In this section, the equations that describe the evolution of q and u in the BM are presented.

The explanation follows the derivation presented by Barkley in [Bar16], and goes from the local

(temporal) dynamics of q and u (§A.1.1), to the spatially extended model that includes advection

and diffusion (§A.1.4). Finally, the need to use a stochastic term to better model the behavior of

localized turbulence in statistically steady pipe flow is discussed (§A.1.6).

A.1.1 Local dynamics of the turbulence intensity in the BM

The local dynamics of q are described by the potential equation:

dq

dt
= −

dVq

dq
= f∗ (q) = q

[

r − (r + ¶) (q − 1)2
]

, (A.1)

where r is a control parameter and ¶ a model parameter. The parameter r is proportional to the

Reynolds number:

r =
Re−R0

R1 −R0

, (A.2)

being R0 = 1920 and R1 = 2250 for the case of pipe flow and ¶ = 0.1 [Bar+15].

At low r, the potential Vq has a single minimum, meaning that, the local dynamics have a single

equilibrium at q = 0 (laminar flow), see fig. A.1a. Hence any q > 0 quickly decays. At a certain

r > r1 the potential Vq presents a global and a local minimum, see fig. A.1b. The global minimum

corresponds to q = 0, and the local minimum to a certain q > 0. At this r the local dynamics are
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Fig. A.1.: Potential Vq in equation (A.4) as a function of turbulence intensity q and center-line velocity defect
∆u = Uc − u for three different r values. Find with dashed lines the local minimum of the function
at each ∆u. The potential Vq is normalized so it lays between V̂q = −1 and V̂q = 1, for the ∆u and
q considered here.

unconditionally stable for q = 0, and metastable for q > 0 (localized turbulence). As r further

increases to r > r2, q = 0 becomes a local minimum of the system, whereas q > 0 the global

one, see fig. A.1c. In this case, the laminar profile is metastable, whereas the turbulent profile is

unconditionally stable.

A.1.2 Local dynamics of the mean shear

The ordinary differential equation that describes the local dynamics of u reads:

du

dt
= g (q, u) = ϵ (Uc − u) + 2ϵ (ub − u) q, (A.3)

where ϵ is a model parameters.

According to equation (A.3), if there is no turbulence, q = 0, and u < Uc, the center-line velocity

increases until it reaches the center-line velocity Uc = 2 of the laminar (parabolic) profile. The

characteristic time of this viscous development of the laminar profile is set by the model parameter

ϵ. According to Barkley, this parameter should be inversely proportional to the Reynolds number

[Bar16], but it is fixed at ϵ = 0.2 for all Re.

When the flow is locally turbulent q > 0 the center-line velocity decreases due to the effect of q > 0.

The model assumes that the most disturbed mean shear possible is a plug like profile, where the

center-line velocity equals the bulk velocity of SSPF u = ub = U = 1. The parameter 2ϵ models the

effect the turbulence intensity has on the mean shear.

A.1.3 Non-linear interactions in the local dynamics

As mentioned at the beginning of this appendix, the core idea of the BM is the non-linear interaction

between q and u. The evolution of u, eq. (A.3), considers the effect q has on u. To model the effect

u has on q, Barkley extends equation (A.1) to:

dq

dt
= f (q, u) = q

[

r + u− Uc − (r + ¶) (q − 1)2
]

. (A.4)

Note that if u ≡ Uc, one recovers equation (A.1).
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The idea is that the growth of q is maximum when u ≡ Uc, when the mean profile is parabolic

(laminar profile). When u < Uc, and therefore the profile is blunted, the growth of q is adversely

affected. This is in line with direct numerical simulations and experiment results, where a blunter

profile has been linked with a decrease in turbulence lifetime [Hof+10; Küh+18].

The non-linearly coupled ordinary differential equations (A.4) and (A.3) describe the local dynamics

of q and u. After the model parameters ¶, R0, R1 and ϵ are adjusted, the equations only depend on

the control parameter r that is in turn set by Re. Importantly, r sets the equilibrium points of the

equations: dq
dt = du

dt = 0.

A.1.4 Spatially extended model

Puffs and slugs are localized structures that are advected by the flow and they move, elongate or

shrink at certain front speeds. To model these dynamics the BM includes spatially extended features:

advection and diffusion.

For the turbulence intensity, the equation reads

∂q

∂t
= − (u− ·)

∂q

∂x
+ f (q, u) +Dq

∂2q

∂x2
, (A.5)

where · and Dq are two additional model parameters. Dq represents the diffusion coefficient of q
on the axial direction, whereas · corrects the mean advection velocity of q in the pipe.

The model assumes that the bulk of turbulent structures, q, is advected at a velocity close to, but

smaller than, the center-line velocity. This was later confirmed in the DNS analysis of Song et

al. [Son+17] where they identified that the mean advection speed of turbulent structures was

cq ≈ Uc (1 − (0.143 ± 0.004)). The parameter · models this correction.

In the case of u, the equation reads

∂u

∂t
= −u

∂u

∂x
+ g (q, u) . (A.6)

A.1.5 About puffs and slugs in the BM

Equations (A.5) and (A.6) together with (A.4) and (A.3), define the deterministic version of the

original Barkley Model. When its parameters, (¶, R0, R1, ϵ, ·, Dq) are correctly fitted, the model is

able to perfectly capture the front speeds of puffs and slugs in pipe and duct flows [Bar+15]. More

importantly, the model allows to classify puffs and slugs as two distinct types of states/solutions.

At r = r1, fig. A.2a, the system has a single point of equilibrium at u = q = 0 (laminar flow).

However, at this r, when sufficiently perturbed, the system can have q > 0 during a certain time

span before returning to q = 0. This corresponds to an excitable media, a system that has only one

stable equilibrium point, but can be perturbed to an excitable state. Once excited the system takes

a certain time to relax again to its equilibrium state, and then an additional time to be able to be

excited again. This time is usually referred to as a refractory time. In spatially extended systems,

this refractory time can be also understood as a refractory length. This is similar to the case of puffs,

that can be triggered by exciting the laminar profile. Once a puff has been triggered, one needs to

either wait a certain refractory time at a fixed location, or to move a given refractory length from

the puff, to trigger a second one [Hof+10].
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Fig. A.2.: Comparison between q and u trajectories according to equations (A.5) and (A.6) (a, b, c); and
time averaged qDNS and uDNS (eq. (A.7)) trajectories in DNS (d). Model results correspond to
BM simulations using the parameters listed in table A.1. The black lines correspond to the q and u
trajectory according to the spatially extended equations (A.5) and (A.6); and the arrows represent
the phase portrait computed using the local dynamics in equations (A.4) and (A.3). The black
dots denote equilibrium points where dq

dt
= du

dt
= 0. In a, at Re = 2100, r = r1 = 0.55; in b, at

Re = 2400, r = r2 = 1.46 and in c, at Re = 3000, r = r3 = 3.27. DNS results have been kindly lend
by Prof. Baofang Song, from his results published in Song et al. [Son+17].

At r = r2, r3 > r1 the system has two stable equilibrium points at q = u = 0 (laminar flow) and

q > 0 u < 2 (turbulent flow), fig. A.2b and c. This corresponds to a bi-stable system where two

different states can coexist in equilibrium. This is similar to the case of slugs, where a region of

turbulent flow is stable. As shown below, the model is able to distinguish between weak and strong

slugs. Weak slugs have a strong upstream front and a weak downstream font, see fig. A.2b, while

strong slugs have only strong fronts, fig. A.2c.

When comparing q vs u in the BM, with the time averaged

qDNS =

〈

√

ïurð2

r,θ + ïuθð2

r,θ

〉

t
vs uDNS = ïux (r = 0)ðt , (A.7)

in the DNS, fig. A.2d, the model trajectories are qualitatively similar to the DNS results for the case

of puffs, weak and strong slugs.

A.1.6 Stochastic model

Puffs and slugs are chaotic structures. Puffs can (randomly) decay, or split, and slugs present

intermittent behaviors, with sudden changes of front speeds or relaminarization in some sections

of their turbulent core. The BM only considers two variables, and it does not show any chaotic

behavior for any value of r. In order to model these dynamics, Barkley considers a stochastic term.

After including this last term the resultant stochastic-partial-differential equation of the turbulence

intensity reads:

∂q

∂t
= − (u− ·)

∂q

∂x
+ f (q, u) +Dq

∂2q

∂x2
+ ÃÄ (t, x) q, (A.8)

being Ä white Gaussian noise in space and time, and Ã the strength of the noise.
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Fig. A.3.: Qualitative comparison between BM and DNS results of turbulence intensity q̂, see eq (A.10), at
different Re (or r, see eq. (A.2)). In a, b, c a puff at Re = 2100 (r = 0.55); d, e, f a weak slug at
Re = 2400 (r = 1.46); g, h, i a strong slug at Re = 3000 (r = 3.27). The BM simulations have been
performed with the parameters listed in table A.1 and at either Ã = 0 and Ã = 0.25. Left subplots
a, d, g compare the instantaneous q̂ axial profiles of model and DNS at the same t∗. Here t∗ is
equal to the advective time scale in the DNS, and to the time scale of the model in the BM. The
right subplots correspond to space-time diagrams of q̂, of the BM (b, e, h) at Ã = 0.25 and DNS (c,
f, i). The results correspond to DNS and BM simulations in a 100D pipe, initialized with a localized
puff of length 5D. The figure is presented with respect to a moving frame x∗, moving with the
bulk velocity ub, and corresponding time scale t∗.
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Tab. A.1.: BM fitted parameters [Bar+15].

R0 R1 · Dq Ã ¶ ϵ

1920 2250 0.79 0.13 f 0.5 0.1 0.2

Fig. A.4.: Scaled front speeds c (C), see eq. (A.11), of puffs and slugs with respect to r (Re) according to
the BM (DNS). The BM simulations are performed with the parameters listed in table A.1 unless
stated otherwise in the corresponding legend item. The results of the BM are the mean front speed
of Ni = 100 simulations, and corresponding 2 standard deviation errorbars at each r. The DNS
results have been obtained from Barkley et al.[Bar+15].

Equations (A.8) and (A.6) together with (A.4) and (A.3), define the original BM.

A.2 Numerical methods

The second order derivatives are discretized with central finite-differences of second order, and the

first-order derivatives with a first-order upwind scheme. Periodic boundary conditions are considered

in x. The system is integrated using an explicit Euler method, with a time step size ∆t = 0.0025. The

pipe length is set to L = 100 and the grid spacing to a uniform ∆x = 0.5. All the BM simulations are

initialized with a localized 5 axial units long disturbance with magnitude q f 0.5.

A.3 Results of the model

After correctly fitting the model parameters, see table A.1, the BM can reproduce the front speeds of

puffs and slugs for a wide range of Re [CXS22]. The front speeds measure the velocity at which the

puffs and slugs are advected or elongated in pipe flow. In the case of puffs, the upstream cu and

downstream velocity cd are equal, while for the case of slugs cd > cu. The case of a strong slug also

satisfies cd ≈ 2U − cu [Bar16].
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In figure A.4 the front speeds of the model are shown, compared with DNS results. The figure

includes results of the model for three sets of parameters. Even after changing some parameters

(ϵ, Ã) the model returns front speeds remarkably close to those observed in DNS and experiments,

highlighting its robustness.

Find in figure A.3 space time diagrams and instantaneous turbulence intensity axial profiles of DNS

and BM results. The cross section axial vorticity squared is computed as:

ïÉ2
xðr,θ (x, t) =

1

ÃR2

∫ R

0

∫ 2π

0

É2
x r dr d¹ (A.9)

and represents an indicator of the existence and magnitude of turbulence in each axial x location in

the DNS. In this thesis, these indicator is chosen before qDNS , eq. (A.7), since 10 · q in the BM has a

remarkably similar magnitude to it. The parameter q̂ represents a general turbulent indicator and

corresponds to eq. (A.9) for the DNS results, and 10 · q for the BM results:

q̂ =

{

10 · q, BM
1

πR2

∫ R
0

∫ 2π
0
É2

x r dr d¹, DNS
(A.10)

As seen in figure A.3 the model is able to qualitatively capture the behaviour of turbulent fronts

at all studied Re. However it does not capture the actual shape of slugs in steady pipe flow. See

in figure A.3d and g a comparison of instantaneous slugs in DNS and on the model. The model

overestimates the amplitude of q in the core of the slug. In the case of the DNS there is a clear

difference between the turbulence magnitude in the upstream front and on the core. This was

already noted by Barkley [Bar16]. This discrepancy is not important for the front speeds of the slugs

in the model, when compared with those computed in the DNS, but results in qualitative differences

between the axial behavior of q̂ as seen in figures A.3 and A.5.

A.3.1 Time scale of the model

In order to compare the front speeds of the model c with the front speeds observed in DNS and

experiments C, Barkley proposes the scaling:

c− c0 =
1

2

C − C1

C0 − C1

. (A.11)

Here C0 is the front speed in advective units (U) at Re = R0 and C1 at Re = R1. In the case of pipe

flow C0 = 1.06U and C1 = 0.92U . By setting this scaling, the front speeds calculated by the model

almost perfectly match the front speeds observed in DNS and experiments.

Equation (A.11) indicates that the front speeds calculated with the BM, are scaled with a factor

È = 2 (C0 − C1) = 0.28, (A.12)

to the corresponding velocity of the actual puffs in pipe flow. This difference between velocity scales,

can also be understood as a time scale difference between model and DNS/experiments. Note that

the model has no units. In the rest of this thesis, it is assumed that an advective time unit (U/D) in

DNS/experiments corresponds to 0.28 time units in the model.
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Fig. A.5.: Space-time diagram of the cross section integral of axial vorticity squared (eq. (A.9)) of DNS (a)
and 10 · q of the BM (b, c, d) with the parameters in table A.1. The results correspond to DNS
and BM simulations in a 100D pipe, at Re = 2400, initialized with a localized puff of length 5D.
The figure is presented with respect to a moving frame x∗, moving with the bulk velocity ub, and
time t∗ in advective time units for DNS, and model units for the BM. Subplot b) corresponds to a
simulation of the BM with Ã = 0; c) Ã = 0.5 and d) Ã = 0.7.

A.4 Limitations of the model

Despite being able to perfectly capture front speeds, the model has some limitations that are worth

mentioning. The first big limitation is the aforementioned overestimation of the magnitude of q
in the core of the slugs in the BM. Additionally, and as also previously noted, the model does not

have clear physical units. This makes it difficult to compare with actual DNS or experimental results.

Another source of concern is the long list of parameters of the model. In particular the model

includes at least three different time rates ϵ, Dq and ¶. This means that the model includes at least

three different time scales, apart the time scale of the whole model.

Furthermore, the model does not capture the chaotic behaviors of localized turbulence in the Re
regime 2250 ≲ Re ≲ 2500. In this regime, according to the BM, puffs elongate into slugs filling the

whole pipe with turbulence, as seen in figure A.5b, c and d and figure A.3e. However, in full DNS,

puffs in this regime are observed to elongate and split in a highly intermittent manner. At these Re
the flow usually reaches a highly heterogeneous state, where localized turbulent patches coexist

with laminar flow patches, see fig. A.5a and A.3f. This behaviour can only be approximated by

radically increasing the noise parameter Ã in the model, see fig. A.5d, but at the same time loosing

the good agreement between model and DNS/experiments front speeds.
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B LSA and waveform

Find in this appendix a series of plots that are meant to represent a short catalog of pulsatile pipe

flows at different flow parameters. The figures are equivalent to figure 4.4, and they show the

laminar profile and its corresponding instantaneous maximum eigenvalue ¼max. In yellow, the

instantaneous laminar profiles USW of a single harmonic pulsation, at the indicated Re, Wo and A,

and phase of the period. To not interfere with one another the profiles are scaled using a scalar with

arbitrary units so the all time maximum is smaller than t/T = 0.15, since only the development of

USW in time is of interest. With points, find the existence and position ri of inflection points in the

profile. Filled points correspond to inflection points that also satisfy the Fjørtoft criterion locally
∂2USW

∂r2 (USW − USW (ri)) < 0. In red, the maximum real component out of all the instantaneous

eigenvalues of the laminar profile ¼max, which are computed as described in §3.5. The areas (dc)

and (ac) denote the deceleration
(

dub

dt < 0
)

and acceleration
(

dub

dt > 0
)

phases of the period.
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C DNS grid and grid estimation

Find in this appendix a description of the way the grid resolution is estimated a priori, before

running the DNS. The estimation is used as a guideline to define the final grid resolution of the

simulations. Find at the end of the appendix tables with relevant data of all the single harmonic

pulsatile pipe flow simulations performed in this work, both for individual DNS, see Chapter 5, and

also for pairs of Master-Slave DNS, see Chapter 6. The tables gather the grid resolution of each case

and the observed behaviour of turbulence in each simulation. For the case of Master-Slave pairs

only the behaviour of turbulence in the Master simulation is shown.

C.1 Strategy to choose the grid resolution

In order to perform DNS of turbulent flows, the grid resolution must be fine enough so all the

turbulent scales are well represented. There is a caveat however, one can only guess the size of the

smallest scales before performing the simulation. Moreover it is of the best interest to keep the grid

spacing as coarse as possible, in order to reduce the computation time. Thus, the goal is to make a

good enough a priori estimation, that returns the minimal resolution possible that best represents

the turbulent flow.

There are different methods to a priori estimate the size of the smallest scales and therefore of the

minimum grid spacing beforehand. In this section a method proposed by Dr. Daniel Feldmann is

explained. Note that the shear thickness is defined as ¶ν = ¿/uτ = D/ (2Reτ ), where uτ =
√

Äw/Ä is

the shear velocity, Äw is the magnitude of the average shear at the wall and Reτ = uτD/ (2¿) the

shear Reynolds number.

C.1.1 Estimate the dissipation

First assume that the dissipation ε is equal to the volume (V ) and time (t) averaged dissipation:

ε ≈
1

tV

∫ t

0

∫∫∫

V
ε (xxx, t) dV , (C.1)

at each point of the flow.

Secondly, assume that all the energy injected to the flow is dissipated by the dissipation. The energy

injected by the flow is assumed to be equal, on average, to the axial pressure gradient
〈

∂p
∂x

〉

t
that

drives the flow. Then:
〈

∂p

∂x

〉

t
· U ≈ Äε. (C.2)
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From the Reynolds Average Navier Stokes equations, one can obtain an equation for the pressure

gradient as:

〈

∂p

∂x

〉

t
=

〈

4Äw

D

〉

t
, (C.3)

which in turn leads to:

ε ≈
4u2

τU

D
. (C.4)

C.1.2 Estimate the shear at the wall

Here, fully turbulent flow is assumed. According to Blasius empirical resistance formula [Pop00],

the shear stress is given as:

Äw

ÄU2
=

1

8

0.3164

Re1/4
. (C.5)

This means that the shear velocity, uτ can be computed as:

uτ

U
=

√

Äw

ÄU2
=

√

1

8

0.3164

Re1/4
(C.6)

and the shear Reynolds number can then be written as a function of Re:

Reτ =
uτ

2U
Re = 0.099373Re7/8. (C.7)

C.1.3 Estimate the Kolmogorov scale

An approximate Kolmogorov scale can be computed as:

¸ =

(

¿3

ε

)1/4

≈

(

D¿3

4u2
τU

)1/4

. (C.8)

In plus units, the Kolmogorov scale is then:

¸+ =
¸

¶ν
=
¸uτ

¿
≈

(

D¿3u4
τ

4u2
τU¿

4

)1/4

=

(

Du2
τ

4U¿

)1/4

=

(

uτ

2U
Reτ

)1/4

. (C.9)

Invoking eq. (C.7), one finds:

¸+ ≈

(

Re2
τ

Re

)1/4

. (C.10)

With this definition, one can estimate the number of grid points needed for each coordinate.
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C.1.4 Radial points

Here a uniform radial grid is assumed. Thus, the grid spacing in r is constant and equal to ∆r = D
2Nr

,

where Nr are the radial points.

The radial grid spacing is chosen so, in the worst case scenario ∆r+ f ¸+. This is a typical

requirement in the simulation of shear flows.

One can obtain an expression for the required number of radial grid points as:

∆r+ f ¸+ →
Reτ

Nr
f ¸+ → Nr g

Reτ

¸+
. (C.11)

By invoking eq. (C.10) and eq. (C.7), one can write the number of radial points as a function of

Re:

Nr g Re1/4Re1/2
τ = 0.31532Re7/16Re1/4, and find: (C.12)

Nr g 0.31523Re11/16. (C.13)

C.1.5 Azimuthal points

Here a uniform azimuthal grid is assumed. The larger grid spacing of an azimuthal grid is found

at the wall. There, the grid spacing is equal to ∆¹ = πD
2Nθ

, where Nθ is half the total number of

azimuthal Fourier modes.

The number of azimuthal grid points is chosen so, at the wall ∆¹+ f 4¸+, which is the common

spacing used in the span-wise direction of the simulations of shear flows.

With this requirement one can obtain an expression of the total number of azimuthal grid points

as:

∆¹+ f 4¸+ →
2ÃReτ

2Nθ
f 4¸+ → 2Nθ g

ÃReτ

2¸+
. (C.14)

By invoking equation (C.11) one finds:

2Nθ g
Ã

2
Nr. (C.15)

C.1.6 Axial points

A uniform axial grid is assumed. For a pipe length L∗

x = LxD, the axial grid spacing is ∆x = LxD
2Nx

,

where Nx is half the total number of axial Fourier modes.

The number of axial grid points is chosen so: ∆x+ f 8¸+, which is the common spacing used in the

stream-wise direction of simulations of shear flows.

With this requirement, one can obtain an expression of the total number of axial grid points as:

∆x+ f 8¸+ →
2LxReτ

2Nx
f 8¸+ → 2Nx g

LxReτ

4¸+
. (C.16)
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By invoking the last equality in equation (C.11) one finds:

2Nx g
Lx

4
Nr. (C.17)

C.1.7 Actual grid points

Equations (C.13), (C.15) and (C.17), represent a priori guesses of the grid resolution in pulsatile

pipe flow DNS. In this thesis, instead of the mean Re, the maximum Remax = (1 +A)Re is plugged

in this equations when the number of points are estimated. This ensures that, at the time steps where

the bulk velocity is maximum, the grid resolution is fine enough to represent the flow structures.

As a second requirement, the number of grid points are chosen so Nx and Nθ are powers of 2 when

possible, and Nr a multiple of 4. The former is enforced, in order to ease the calculation of the FFT,

and the latter for the parallelization of the CPU code. Note that this latter requirement is not needed

for the GPU code.
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C.2 Grid resolution in DNS

Tab. C.1.: Simulations in a Lx = 100D long pipe of pulsatile pipe flow performed in this study. All of them
are initialized with the corresponding SW profile, and the helical perturbation scaled in an axial
length and in magnitude. In columns find the identification number of the simulation (Case); the
flow parameters (Re, Wo, A); the radial points Nr and half the number of azimuthal and axial
Fourier modes Nθ and Nx (the total number of points in physical space is Nr × 3Nθ × 3Nx); the
maximum Reτ and grid discretization in + units; the total number of periods run in the simulation
NT and the behaviour of the simulation according to the description in §5.2: Rapid decay (RaD),
Localized structures (Loc), Stochastic decay (StD) and Highly intermittent state (Int).

ID Re Wo A Nr Nθ Nx Reτ ∆r+
min ∆r+

max ∆R¹+ ∆x+ NT Bhave

1 2100 8 0.50 96 80 1200 96.49 0.022 1.47 2.53 5.36 8.3 StD

2 2100 9 0.50 96 96 1600 99.52 0.023 1.52 2.17 4.15 12.4 Loc

3 2100 9 1.00 96 96 1536 123.55 0.028 1.89 2.70 5.36 23.0 StD

4 2100 11 0.50 96 80 1800 104.68 0.024 1.60 2.74 3.88 188.0 Loc

5 2100 11 0.75 96 80 1800 118.75 0.027 1.81 3.11 4.40 7.9 Loc

6 2100 11 1.00 96 80 1800 131.87 0.030 2.01 3.45 4.88 193.0 Loc

7 2100 15 0.50 96 80 1800 114.92 0.026 1.75 3.01 4.26 10.0 Loc

8 2100 15 1.00 96 80 1800 146.73 0.034 2.24 3.84 5.43 64.0 Loc

9 2100 17 0.50 96 80 1800 118.95 0.027 1.82 3.11 4.41 10.0 Loc

10 2100 17 1.00 96 80 1800 153.99 0.035 2.35 4.03 5.70 13.0 Loc

11 2200 5 0.50 96 80 1200 88.74 0.020 1.35 2.32 4.93 3.2 RaD

12 2200 8 0.50 96 80 1200 98.89 0.023 1.51 2.59 5.49 7.4 Loc

13 2200 8 1.00 96 80 1200 121.18 0.028 1.85 3.17 6.73 2.9 RaD

14 2200 9 0.50 96 80 1200 101.89 0.023 1.56 2.67 5.66 10.7 Loc

15 2200 11 0.50 96 96 1800 107.44 0.025 1.64 2.34 3.98 36.7 Loc

16 2200 11 1.00 96 96 1800 134.95 0.031 2.06 2.94 5.00 35.0 Loc

17 2400 8 0.50 96 96 2400 103.90 0.024 1.59 2.27 2.89 5.9 Loc

18 2400 8 1.00 96 96 2400 127.39 0.029 1.94 2.78 3.54 3.8 RaD

19 2500 8 1.00 96 80 1200 129.36 0.030 1.97 3.39 7.19 1.7 RaD

20 2500 9 1.00 96 80 1200 137.43 0.031 2.10 3.60 7.63 10.8 Int

21 2500 11 1.00 96 80 1200 147.43 0.034 2.25 3.86 8.19 12.5 Int

22 2600 8 1.00 96 80 1200 132.19 0.030 2.02 3.46 7.34 2.8 StD

23 2600 11 1.00 96 80 1200 148.81 0.034 2.27 3.90 8.27 11.6 Int

24 2700 8 1.00 128 96 1536 134.57 0.017 1.55 2.94 5.84 1.8 RaD

25 2700 9 1.00 128 96 1536 144.27 0.019 1.66 3.15 6.26 8.7 Int

26 2700 11 1.00 128 96 1536 154.13 0.020 1.77 3.36 6.69 9.2 Int

27 2800 8 1.00 128 96 1536 136.94 0.018 1.57 2.99 5.94 2.6 RaD

28 2800 11 1.00 128 96 1536 159.07 0.021 1.83 3.47 6.90 9.2 Int

29 2900 8 1.00 128 96 1536 143.55 0.019 1.65 3.13 6.23 6.5 Loc

30 2900 9 1.00 128 96 1536 150.14 0.019 1.73 3.28 6.52 8.3 Int

31 2900 11 1.00 128 96 1536 161.83 0.021 1.86 3.53 7.02 8.5 Int

32 3000 6 0.50 128 128 1536 114.48 0.015 1.32 1.87 4.97 3.5 Loc

33 3000 6 1.00 128 96 1536 129.97 0.017 1.49 2.84 5.64 1.5 RaD

34 3000 8 0.50 128 96 1536 118.80 0.015 1.37 2.59 5.16 4.0 Int

35 3000 8 1.00 128 96 1536 143.27 0.019 1.65 3.13 6.22 4.9 StD

36 3000 11 0.50 96 96 2800 136.95 0.031 2.09 2.99 3.26 4.6 Int

37 3000 11 1.00 128 96 1536 166.88 0.022 1.92 3.64 7.24 4.4 Int
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Tab. C.2.: Simulations of pulsatile pipe flow using the master-slave method described in Chapter 6 performed
in this study. All the simulations correspond to a Lx = 100D long pipe. In columns find the
identification number of the simulation (ID); the flow parameters (Re, Wo, A); the radial points
Nr and half the number of azimuthal and axial Fourier modes Nθ and Nx (the total number of
points in physical space is Nr × 3Nθ × 3Nx); the maximum Reτ and grid discretization in + units;
the total number of periods run in the simulation NT and the behaviour of the master simulation
according to the description in §5.2: Rapid decay (RaD), Localized structures (Loc), Stochastic
decay (StD) and Highly intermittent state (Int).

ID Re Wo A Nr Nθ Nx Reτ ∆r+
min ∆r+

max ∆R¹+ ∆x+ NT Bhave

1 2100 9 0.50 80 64 1152 99.35 0.032 1.81 3.25 5.75 5.8 Loc

2 2100 9 0.70 80 64 1152 109.47 0.036 2.00 3.58 6.33 5.8 Loc

3 2100 9 0.90 80 64 1152 118.58 0.039 2.17 3.88 6.86 5.8 StD

4 2100 11 0.50 80 64 1152 104.55 0.034 1.91 3.42 6.05 6.0 Loc

5 2100 11 0.70 80 64 1152 116.35 0.038 2.12 3.81 6.73 7.8 Loc

6 2100 11 0.90 80 64 1152 126.71 0.041 2.31 4.15 7.33 6.0 Loc

7 2100 13 0.50 76 64 1152 109.68 0.039 2.10 3.59 6.35 9.6 Loc

8 2100 13 0.70 76 64 1152 122.38 0.044 2.35 4.01 7.08 9.6 Loc

9 2100 13 0.90 76 64 1152 133.99 0.048 2.57 4.38 7.75 9.6 Loc

10 2100 15 0.50 76 64 1152 114.47 0.041 2.19 3.75 6.62 13.6 Loc

11 2100 15 0.70 76 64 1152 128.50 0.046 2.46 4.21 7.44 13.6 Loc

12 2100 15 0.90 76 64 1152 140.92 0.051 2.70 4.61 8.16 13.6 Loc

13 2100 17 0.50 80 64 1152 119.02 0.039 2.17 3.89 6.89 11.0 Loc

14 2100 17 0.70 80 64 1152 134.08 0.044 2.45 4.39 7.76 11.0 Loc

15 2100 17 0.90 80 64 1152 147.39 0.048 2.69 4.82 8.53 11.0 Loc

16 2300 9 0.50 80 64 1152 104.52 0.034 1.91 3.42 6.05 4.8 Loc

17 2300 9 0.70 76 64 1152 114.97 0.041 2.20 3.76 6.65 4.8 Loc

18 2300 9 0.90 76 64 1152 124.75 0.045 2.39 4.08 7.22 4.8 StD

19 2300 11 0.50 80 64 1152 109.92 0.036 2.01 3.60 6.36 19.7 Loc

20 2300 11 0.70 80 64 1152 122.10 0.040 2.23 4.00 7.07 6.7 Loc

21 2300 11 0.90 80 64 1152 140.15 0.046 2.56 4.59 8.11 7.1 Loc

22 2300 13 0.50 80 64 1152 115.25 0.038 2.10 3.77 6.67 9.9 Loc

23 2300 13 0.70 80 64 1152 128.47 0.042 2.35 4.20 7.43 9.9 Loc

24 2300 13 0.90 80 64 1152 140.58 0.046 2.57 4.60 8.14 9.9 Loc

25 2300 15 0.50 80 64 1152 120.55 0.039 2.20 3.94 6.98 13.2 Int

26 2300 15 0.70 76 64 1152 134.89 0.048 2.59 4.41 7.81 13.2 Loc

27 2300 15 0.90 76 64 1152 148.14 0.053 2.84 4.85 8.57 14.8 Loc

28 2300 17 0.50 80 64 1152 125.86 0.041 2.30 4.12 7.28 20.0 Loc

29 2300 17 0.70 80 64 1152 141.07 0.046 2.58 4.62 8.16 20.0 Loc

30 2300 17 0.90 80 64 1152 154.80 0.050 2.83 5.07 8.96 16.0 Loc

31 2500 9 0.50 80 64 1152 109.47 0.036 2.00 3.58 6.34 4.9 Loc

32 2500 11 0.50 80 64 1152 115.18 0.038 2.10 3.77 6.67 5.8 Loc

33 2500 17 0.50 80 64 1152 133.98 0.044 2.45 4.38 7.75 17.5 Int

34 2500 17 0.70 80 64 1152 149.59 0.049 2.73 4.90 8.66 17.5 Int
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D Master-Slave laminar profiles

Find in this appendix a series of plots that are meant to represent a short catalog of master-slave

laminar profiles at different flow parameters. All the figures show in dashed lines the bulk velocities

of slave and master laminar profiles. In solid lines, the instantaneous laminar profiles of master-slave

cases at the indicated Re, Wo and A, and phase of the period. To not interfere with one another the

profiles are scaled using a scalar with arbitrary units. In blue (right pointing triangles ▷ ) master

bulk velocities/laminar profiles and in red (left pointing triangles ◁) slave bulk velocities/laminar

profiles. Note that the slave laminar profiles have a monotonic decreasing shear from the wall to the

center-line of the pipe. Note also that the slave bulk velocity deviates from the master one, specially

at higher A and during the deceleration phase of the period.
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E Master-Slave additional results

Find in this appendix a series of plots that are meant to represent a short catalog of master-slave

pairs of simulations. All the figures show space-time diagrams of the cross section integral of the

cross section average cross section kinetic energy, in pairs of master-slave DNS at different Re, Wo
and A. The results correspond to DNS in a Lx = 100D long pipe initialized with a localized turbulent

puff. The results are plotted with respect to a moving reference frame moving at the bulk velocity

ub. The left hand-side plots represent master DNS and the right hand side DNS to slave DNS. The

figures are equivalent to fig. 6.6.
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