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When Easy Comes Hard: The Development of Adaptive Strategy Selection

Rui Mata
Max Planck Institute for Human Development,

Berlin and University of Lisbon

Bettina von Helversen and
Jörg Rieskamp

Max Planck Institute for Human Development,

Berlin and University of Basel

Can children learn to select the right strategy for a given problem? In one experiment, 9- to 10-year-olds
(N = 50), 11- to 12-year-olds (N = 50), and adults (N = 50) made probabilistic inferences. Participants encoun-
tered environments favoring either an information-intensive strategy that integrates all available information
or an information-frugal strategy that relies only on the most valid pieces of information. Nine- to 10-year-
olds but not older children or adults had more difficulties learning to select an information-frugal strategy
than an information-intensive strategy. This counterintuitive finding is explained by children’s less developed
ability to selectively attend to relevant information, an ability that seems to develop during late childhood.
The results suggest that whether a strategy can be considered ‘‘easy’’ depends on the development of specific
cognitive abilities.

The ability to consider the right amount of informa-
tion is crucial to making good choices. In some
cases, it may be appropriate to focus on single
pieces of information, while other times one may
have to use more information-intensive strategies
that integrate several pieces of information to make
the correct decision. But which decision strategies
are available to children and what factors deter-
mine children’s ability to learn about which one is
most appropriate in a given situation?

In this article, we claim that frugal decision strat-
egies that rely on single cues and more informa-
tion-intensive ones that consider additional
information tend to exploit distinct abilities. Specifi-
cally, information-frugal decision strategies often
require ignoring available information and, conse-
quently, demand selective attention to specific cues.
In contrast, information-intensive compensatory
strategies have more pronounced memory require-
ments and mostly tap the ability to integrate infor-
mation. These underlying abilities, selective
attention and information integration, however,
may develop at different rates across ontogenetic
time, leading to developmental trends in prefer-

ences for strategies and constraints in strategy
selection. Crucially, these differences can lead to
counterintuitive predictions, namely, that children
prefer information-intensive strategies and have a
hard time learning to select frugal strategies usually
viewed as computationally simpler. In other words,
for children, easy may come hard.

The Development of Multiple-Cue Inference

Multiple-cue inference, the ability to derive con-
clusions from several premises or cues, develops
considerably across childhood and adolescence
(Zimmerman, 2007). Research on the development
of estimation, categorization, and reasoning, sug-
gests that, on the one hand, young children have
difficulties focusing on individual pieces of infor-
mation and that there is a developmental trend
toward being able to selectively focus on relevant
cues. For example, Miklich and Gillis (1975) com-
pared the learning abilities of 8- and 14-year-olds in
an estimation task requiring the integration of three
cues to estimate a criterion. In one condition, all
three cues had the same validity and learning per-
formance was similar across age groups. However,
in a condition in which only one cue was valid, the
younger participants had more difficulties than
older ones. Likewise, some findings suggest that
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young children tend to perform induction relying
on multiple sources of information, whereas pre-
adolescents are able to rely on a single source
(Hayes, McKinnon, & Sweller, 2008; Sloutsky, Lo, &
Fischer, 2001). Also, reasoning research suggests
that younger children and preadolescents are more
likely than adolescents or adults to consider unin-
formative factors or experiments when reasoning
about scientific experiments (Klahr, Fay, & Dunbar,
1993; Schauble, 1996). On the other hand, there is a
developmental trend in the ability of children and
adolescents to integrate multiple cues. For example,
the ability to consider several cues to estimate a
continuous criterion has been shown to increase in
late childhood and adolescence (Lafon, Chasseigne,
& Mullet, 2004; Montanelli, 1972). Work on catego-
rization suggests an age trend in the ability to
integrate multiple cues when categorizing objects
(von Helversen, Mata, & Olsson, 2010). Finally,
children and young adolescents show difficulties
relative to adults in integrating multiple cues when
reasoning about scientific problems (Kuhn, Iorda-
nou, Pease, & Wirkala, 2008). In sum, there are two
developmental trends in multiple-cue inference.
First, there is an increased tendency to be able
to selectively focus on relevant information.
Second, there is a trend toward effective informa-
tion integration. Our goal is to evaluate the poten-
tial impact of such trends on children’s decision
making.

Learning to Choose: The Development of Compensatory
and Noncompensatory Decision Making

Decision abilities develop considerably through-
out the life span (Klaczynski, 2001; Reyna &
Farley, 2006). For example, young children have
difficulties in learning from feedback about the
value of decision options due to both cognitive and
motivational factors, but this ability develops sig-
nificantly across childhood and adolescence
(Crone & Van der Molen, 2007; Hooper, Luciana,
Conklin, & Yarger, 2004). In this article, we
address how children are able to learn the value
of decision strategies.

Decision strategies specify how a person gathers
and integrates information to make a decision.
When deciding which food is most healthy, a child
has available many different pieces of information
(i.e., cues), such as the food’s category (animal vs.
vegetable), taste, smell, and so on (Scheibehenne,
Miesler, & Todd, 2007). Likewise, when crossing
the street, a child can use several cues, such as the
speed and the distance of approaching traffic, to

make a decision about whether it is safe to cross
(Hoffrage, Weber, Hertwig, & Chase, 2003).

What decision strategies can people apply in
these or other similar situations? Decision makers
may select information-intensive compensatory
strategies, for example, a weighted-additive rule
(WADD; e.g., Payne, Bettman, & Johnson, 1993).
WADD integrates all available information by
adding cue values weighted by their importance.
Alternatively, a person may rely on a less cogni-
tively demanding strategy that assigns equal
weights to cues and adds them using a Tally strat-
egy (Gigerenzer & Goldstein, 1996). In contrast,
when using an information-frugal noncompensato-
ry strategy, such as take the best (TTB; Gigerenzer
& Goldstein, 1996), one focuses on the single most
important cue to make a decision and ignores any
further information. Whether a strategy will lead to
correct inferences depends on the statistical struc-
ture of the environment, such as the association
between the cues and the criterion, and the correla-
tion between cues. For example, Dieckmann and
Rieskamp (2007) have shown that in environments
where cues are positively correlated with each
other, a noncompensatory strategy is sufficient to
make good inferences with little information and is
thus both accurate and economical. In contrast, in
environments where cues are slightly or negatively
intercorrelated, a compensatory strategy is best, as
it allows for trade-offs.

What decision strategies are available to chil-
dren? Children are likely to have a number of
strategies available to them, but there may be sys-
tematic patterns in the development of adaptive
strategy selection, that is, the ability to select the
right strategy as a function of the situation (Lem-
aire & Siegler, 1995; Siegler, 1999). Some research
suggests that young children may be limited to
using information-frugal, noncompensatory deci-
sion strategies due to working memory limita-
tions—we refer to this idea as the memory
hypothesis. In general, information-intensive com-
pensatory strategies require more computations
and they are often considered as more effortful to
apply than noncompensatory strategies (e.g., Payne
et al., 1993). This view receives support from vari-
ous sources: Young adults rely more frequently on
simple noncompensatory strategies when many
options have to be compared (e.g., Ford, Schmitt,
Schechtman, Hults, & Doherty, 1989) or when
under time pressure (Rieskamp & Hoffrage, 2008).
Likewise, Bereby-Meyer, Assor, and Katz (2004)
found that 8- to 9-year-olds seem to rely more
often on noncompensatory strategies than 12- to
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13-year-olds, and Mata, Schooler, and Rieskamp
(2007) showed an increase in the reliance on non-
compensatory decision strategies in older adults.
Furthermore, Mata et al. showed that increased
reliance on noncompensatory strategies was
related to age-related decline in cognitive abilities,
suggesting that compensatory strategies place
higher requirements on cognitive capacities such
as working memory. These results are important
for the development of strategy selection in child-
hood because children show similar levels of per-
formance in cognitive tasks to that of older adults
(e.g., Case, 1985; Kail, 1991; Kail & Salthouse,
1994). In sum, children up to 9 years old may have
difficulties in applying information-intensive, com-
pensatory strategies and thus may rely more on
information-frugal, noncompensatory strategies
(Bereby-Meyer et al., 2004).

At the same time, however, children’s reliance
on decision strategies may be limited by their
ability to selectively allocate their attention—an
idea we refer to as the attention allocation hypothe-
sis. The successful application of noncompensatory
strategies requires focusing on relevant, valid
information, and ignoring less valid sources. The
ability to ignore information in predecisional
information search seems to develop across child-
hood (Davidson, 1991a, 1991b, 1996; Gregan-
Paxton & Roedder John, 1995, 1997; Howse, Best,
& Stone, 2003). For example, Davidson (1991a)
showed that 7- to 9-year-olds searched for more
irrelevant information than 9- to 12-year-olds.
Similarly, Gregan-Paxton and Roedder John (1997)
have shown that 9-year-olds benefit from
increased information costs to prevent them from
searching irrelevant information before making a
decision.

In sum, there are different strategies available to
decision makers that differ in their memory and
selective attention requirements. While some
research suggests that children may tend to select
information-frugal noncompensatory strategies that
have little working memory requirements, other
findings suggest that children may prefer compen-
satory strategies that do not require selective atten-
tion to information. The goal of this article is to test
these competing views. In the following, we report
a study aimed at investigating children’s prefer-
ences for different types of strategies and, more
importantly, their ability to learn which type is
most appropriate from performance feedback. Our
approach thus helps understand children’s ability
to adaptively select and apply both compensatory
and noncompensatory strategies.

The Current Study: Going to the Races

We examined 9- to 10-year-olds, 11- to 12-year-
olds, and adults’ ability to adapt their decision
strategies to one of two task environments (non-
compensatory vs. compensatory). We focused on
the relatively narrow age range in children because
maturation of prefrontal cortical areas associated
with working memory and selective attention have
been shown to develop considerably in the 9–12
age range (Bunge & Zelazo, 2006; Diamond, 2001).
These findings also match previous work on the
development of decision making suggesting signifi-
cant change in strategy use in this age range
(Davidson, 1996; Gregan-Paxton & Roedder John,
1997; Klayman, 1985).

Our participants’ task was to make a series of
inferences about which of three cars would win a
race based on six dichotomous cues such as each
car’s horsepower, type of fuel, tires, and so on.
Moreover, after an initial phase in which partici-
pants received no feedback concerning their
choices, participants received feedback favoring
either a compensatory strategy WADD (compensa-
tory environment) or a noncompensatory strategy
TTB (noncompensatory environment). We thus
were able to go beyond assessing children’s initial
strategy preferences and evaluate their strategy
selection given substantial learning opportunity.

Our experimental setting allowed us to contrast
two perspectives on the development of adaptive
strategy selection: First, the memory hypothesis
states that children’s cognitive limitations in infor-
mation storage and manipulation will constrain the
selection of information-intensive compensatory
strategies even after considerable learning opportu-
nity. In contrast, the attention allocation hypothesis
suggests that children’s attention allocation abilities
pose a main constraint in strategy selection and
that younger children should perform particularly
poorly in an environment favoring the use of a
noncompensatory strategy that requires selective
attention to particular pieces of information.

Method

Participants

Fifty fourth-grade children (mean age = 9.3
years, SD = 0.5; 50% female), 50 sixth-grade chil-
dren (mean age = 11.5, SD = 0.6; 52% female), and
50 young adults (mean age = 22.7, SD = 2.2; 56%
female) participated in the study. Children were
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recruited from a Berlin school. Young adults were
students at the Free University of Berlin.

Material

To determine which cue labels to use for our
car race task and to ensure that the task matched
participants’ prior beliefs we asked independent
samples of 9- to 10-year-olds (N = 26), 11- to 12-
year-olds (N = 51), and young adults (N = 31) to
rate the importance of 14 potential cues in deter-
mining how fast a car is on a scale from 1 (not
important) to 7 (extremely important). We then
selected seven cue labels minimizing both age and
gender differences in the subjective importance of
each cue and constructed two sets of six cue labels,
which differed in the dispersion of the six cues’
importance. Note that the two sets were identical
with the exception that a cue with an extremely
positive rating (horsepower) was substituted by a
cue with a moderate rating (cooling system). The
set of labels with more dispersed importance
ratings was used to label cues in the noncompen-
satory environment (horsepower, number of cylin-
ders, tires, fuel, spoiler, suspension; with the
respective mean importance ratings of 6.2, 5.3, 4.7,
4.3, 3.6, 2.8) and the less dispersed set was used to
label cues in the compensatory environment (num-
ber of cylinders, tires, fuel, spoiler, cooling system,
suspension; with the respective mean importance
ratings of 5.3, 4.7, 4.3, 3.7, 3.6, 2.8). All cues were
given dichotomous values; for example, a car
could have normal or special tires, and use normal
or special fuel. The experimental software
used was a modification of that developed by
Czienskowski (2004).

Design

The experimental design had three factors:
environment (between subjects), trial block (within
subjects), and age group. Altogether, participants
made 210 decisions, corresponding to seven repe-
titions (blocks) of an item set of 30 items pre-
sented in random order within each block.
Feedback was provided after the first block to
enable learning. In each of the seven blocks of the
noncompensatory environment, TTB reached an
accuracy level of 90% (i.e., 27 correct predictions
of 30) while both WADD and Tally reached an
accuracy level of 60% (i.e., 18 correct predictions
of 30). In the compensatory environment, the
strategies’ accuracies were reversed with an accu-
racy of 60% for TTB, 75% for Tally, and 90% for

WADD. Overall, the three strategies made differ-
ent predictions for about one third of the items.
To avoid limiting our conclusions by using only
one specific item set, we followed the constraints
mentioned above to create a different item set for
each participant within an age group. Conse-
quently, we constructed a total of 50 environ-
ments, each being assigned to one participant in
each age group. The age groups were thus
matched regarding the item sets (yoked design).
Because each participant within an age group
experienced a slightly different item set, the valid-
ity of each cue was slightly different for each
participant. Cue validity can be understood as the
predictive value of each cue and is calculated as
the proportion of times the cue enables the right
decision to be made, given that it discriminates
between the options. The mean cue validities in
the noncompensatory environment were .77, .66,
.57, .50, .44, .36, and in the compensatory environ-
ment .71, .65, .59, .52, .45, .38. The cue validities
were assigned to the cue labels (e.g., horsepower,
number of cylinders) so as to reflect the subjective
importance of each cue (see the Material section).

Procedure

Participants were first told they would be mak-
ing a number of inferences about which of three
race cars would win a particular race on the basis
of six characteristics (i.e., cues) describing each car.
Participants were told that they would make 210
inferences, how much they would earn for a correct
inference (€0.10) and how much they would have
to pay for an incorrect inference (€0.05). The con-
cept of cue validity was explained to the partici-
pants in the instructions. More specifically,
participants were informed that a cue with a valid-
ity of .70 would lead to a correct decision in 70 of
100 cases in which it discriminated, while a cue
with a validity of .5 would lead to a correct deci-
sion in 50 of 100 cases. To ensure that children
grasped the concept, the experimenter always
asked which of two cues with differing validities
would be better to make an inference. If a parti-
cipant answered incorrectly, the experimenter
explained why the other cue would have been
better and gave a second example question. All par-
ticipants correctly answered the second question.
Participants were also told which of the two possi-
ble values of each cue indicated a higher likelihood
of winning the race.

The computer display used to make decisions
had two main parts (see Figure 1). The upper part
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of the display presented cue icons for all six cues
and the respective validities were shown below
each cue icon. The positions at which the charac-
teristics were displayed at the top of the screen
were the same for all decisions for a given partici-
pant but varied randomly across participants. Par-
ticipants were able to choose a car at any time
during a trial by clicking on one of three buttons
assigned to each option (A, B, C) on the lower
half of the display. Participants were thus not
forced to search for any information before mak-
ing a decision; however, they had the possibility
of making informed decisions by looking up the
cars’ cue values. To look up cue values, partici-
pants could click on the corresponding cue icon
on the upper part of the display. When a cue icon
was clicked upon, the three cue values corre-
sponding to the attributes of the three race cars
on that cue were revealed and remained visible
until a decision was made. The order in which
characteristics appeared on the lower part of the
screen was determined by the order in which the
cues had been clicked upon in the upper part of
the display. In those trials in which feedback was
provided, each decision was followed by either a
green correct box with a ‘‘smiley’’ or a red wrong
box with a ‘‘frowny.’’

After performing the decision task, participants
completed a verbal knowledge test (Lehrl, 1999)
and two measures of fluid abilities (Wechsler,

1981): the digit-symbol substitution task and the
digit span task (forward and backward).

Results

We first provide an overview of participants’
performance by reporting their payoffs. Second, we
report participants’ information search and strategy
classification results. Finally, we use a compu-
tational model (Rieskamp & Otto, 2006) to
describe participants’ learning processes and pro-
vide an explanation for age differences in strategy
selection.

Payoff

Visual inspection of the data showed that the
younger children’s payoffs increased over the
course of the experiment but then decreased
slightly in the last two to three blocks. In contrast,
payoffs increased over time for the other age
groups. This seems to have been due to the 9- to
10-year-olds becoming tired in the final blocks. To
avoid drawing conclusions about age differences
simply due to the younger children becoming tired
over the course of the study, we conducted separate
analyses for the first four blocks of the experiment
as well as for the full set of seven blocks. Overall,
the results of the first four blocks generalize to the
full experiment, but as expected, age differences
become slightly more pronounced when the final
blocks are considered in the analyses.

We first conducted an analysis of variance
(ANOVA) with the cumulative payoff at the end of
the fourth block as the dependent variable and age
group, environment, and their interaction as inde-
pendent variables. The analysis revealed an effect
of age group, F(2, 144) = 11.88, p < .001, gp

2 = .14,
and an Age Group · Environment interaction, F(2,
144) = 3.8, p = .03, gp

2 = .05, but no main effect of
environment, F(2, 144) = 2.37, p = .13, gp

2 = .02. To
better distinguish between age groups and under-
stand the interaction effect, we additionally con-
ducted separate ANOVAs comparing the three age
groups in a pairwise fashion. The 9- to 10-year-olds
reached significantly lower payoffs (M = 6.2,
SD = 1.9) compared to those of the older children
(M = 7.4, SD = 1.7), F(1, 99) = 10.73, p = .001, gp

2 =
.10, and the adults (M = 7.8, SD = 1.3), F(1, 99) =
22.84, p < .001, gp

2 = .19. Additionally, comparing
9- to 10-year-olds to adults we found an effect of
environment, F(1, 99) = 4.49, p = .04, gp

2 = .05,
qualified by an Age · Environment interaction,

Figure 1. Information board used in the experiment.
Note. Participants could find out about the cars’ characteristics
by clicking on the icons at the top of the screen. The cue values
for all three alternatives were then presented in the lower section
of the display.
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F(1, 99) = 5.87, p = .02, gp
2 = .06. As can be seen in

Table 1, younger children reached a significantly
lower payoff in the noncompensatory compared to
the compensatory environment. Likewise, 9- to 10-
year-olds seemed to reach lower payoffs relative to
11- to 12-year-olds, particularly in the noncompen-
satory environment as shown by a marginal effect
of environment, F(1, 99) = 3.55, p = .06, gp

2 = .04,
qualified by an Age · Environment interaction
F(1, 99) = 4.96, p = .03, gp

2 = .05. In contrast, the
adults’ payoffs and that of the 11- to 12-year-olds did
not differ significantly, F(1, 99) = 1.47, p = .23, gp

2 =
.02, and we found no effect of environment, F(1,
99) = 0.13, p = .72, gp

2 < .01, nor an Age · Environ-
ment interaction, F(1, 99) = 0.002, p = .97, gp

2 < .01.
An analysis of variance for all seven blocks with

the total payoff as the dependent variable revealed
similar results compared to the analysis of the first
four blocks. We found an effect of age group, F(2,
144) = 19.72, p < .001, gp

2 = .22, and an Age
Group · Environment interaction, F(2, 144) = 4.02,
p = .02, gp

2 = .05, but no effect of environment,
F(2, 144) = 0.14, p = .71, gp

2 = .001. Consequently,
the results for the first half of the experiment gener-
alize to the full experiment. However, as expected
from the younger children becoming tired over
time, while the older children and adults continued
to learn, the differences between the 9- to 10-year-
olds and the older age groups became more
pronounced in the second half. For example, age
differences in payoff were larger when all blocks
were considered (gp

2 = .22) compared to when only
the first four blocks were examined (gp

2 = .14).

Our analysis of payoffs thus provides evidence
for the attention allocation hypothesis. The results
suggest that 9- to 10-year-olds had difficulties in
selectively attending to information, an ability
required to successfully apply noncompensatory
strategies: While 11- to 12-year-olds resembled
adults in their performance, the younger 9- to 10-
year-olds showed poorer payoffs and fared particu-
larly poorly in the noncompensatory compared to
the compensatory environment.

Information Search

To describe participants’ information search, we
considered the average proportion of information
searched per trial (PROP) and two variables describ-
ing the pattern of information search: the proportion
of trials in which information was searched in the
order of the cues’ validities (VALIDITY) and the
proportion of trials in which information was
searched in the order of the display (DISPLAY). The
results are summarized in Table 1.

We conducted separate ANOVAs with each
search variable as the dependent variable and age
group and environment as independent variables.
Again, we focused initially on the results from the
first four blocks. Concerning PROP, we found a
small effect of age, F(2, 144) = 2.99, p = .05,
gp

2 = .04. As can be seen in Table 1, adults
searched for slightly less information compared to
children, which may be an indicator that they were
more strategic in their information search. We also
identified a main effect of environment, F(2, 144) =

Table 1

Payoffs and Means (Standard Deviations) of the Information Search Variables by Age Group

Children 9–10 Children 11–12 Adults 20–25

NC C NC C NC C

M SD M SD M SD M SD M SD M SD

Blocks 1–4

Payoff 5.5 2.0 7.0 1.6 7.5 1.7 7.3 1.6 7.8 1.3 7.7 1.4

PROP .81 .21 .93 .15 .87 .19 .93 .13 .79 .18 .84 .19

VALIDITY .10 .22 .22 .38 .60 .42 .63 .43 .75 .36 .66 .41

DISPLAY .44 .40 .45 .43 .23 .40 .17 .36 .04 .13 .18 .37

Blocks 1–7

Payoff 9.9 3.8 11.9 2.5 13.8 2.9 13.0 2.9 14.7 2.1 13.9 2.3

PROP .80 .21 .92 .14 .85 .19 .94 .12 .76 .19 .86 .17

VALIDITY .14 .26 .23 .39 .63 .42 .63 .44 .79 .35 .70 .40

DISPLAY .46 .41 .44 .44 .23 .41 .18 .37 .02 .07 .18 .36

Note. NC = noncompensatory environment; C = compensatory environment; PROP = average proportion of information searched per
trial; VALIDITY = proportion of trials in which the validity of cues was followed; DISPLAY = proportion of trials in which information
was searched in the order of the display.

6



8.28, p = .005, gp
2 = .05, suggesting participants

generally searched for more information in the
compensatory environment: This was expected as
the compensatory environment favored the use of a
more information-greedy strategy compared to the
noncompensatory environment. We found no
Age · Environment interaction, F(2, 144) = 0.72,
p = .49, gp

2 = .01.
Concerning the pattern of search, adults and

11- to 12-year-olds were more likely to search for
information in order of validity compared to 9- to
10-year-olds, suggesting younger children relied
less on a noncompensatory strategy such as TTB
that involves validity-ordered search for informa-
tion. We identified significant age-related effects
regarding VALIDITY, F(2, 144) = 30.49, p < .001,
gp

2 = .3, but no effect of environment, F(2, 144) =
.10, p = .76, gp

2 = .001, or Environment ·
Age group interaction, F(2, 144) = .96, p = .39,
gp

2 = .01. In turn, adults and 11- to 12-year-olds
were less likely to search for information in order
of display compared to 9- to 10-year-olds, suggest-
ing younger children tended to use more of a spa-
tial strategy when searching for information. We
identified significant age-related effects regarding
DISPLAY, F(2, 144) = 11.53, p < .001, gp

2 = .14, but
no effect of environment, F(2, 144) = .33, p = .57,
gp

2 = .002, or Environment · Age group inter-
action, F(2, 144) = 1.06, p = .35, gp

2 = .02. We also
conducted separate ANOVAs with each search var-
iable as the dependent variable across all seven
blocks of the experiment. The results closely match
those for the first half of the experiment.

In sum, we found small effects of age on the total
amount of information searched but larger effects
concerning the patterns of search. The analyses con-
cerning the pattern of information search support
the attention allocation hypothesis, which holds
that younger children have difficulties using strate-
gies that require selective attention to information
and instead rely on spatial strategies to search for
information.

Strategy Classification

We classified each participant as selecting either
the noncompensatory TTB or the compensatory
WADD and Tally strategies in the first, fourth, and
final blocks of the decision task. Strategy choices
were determined based on the cue values in each
trial and the cues’ validities. Cue values were
coded as either positive (1) or negative (0) so that
these numbers can be directly compared, as in the
case of TTB, or multiplied by cue validities (ranging

from 0 to 1), and added up to obtain weighted
sums, as in the case of WADD and Tally. The
classification consisted of labeling a participant as a
user of the best fitting strategy in each block, where
fit was defined as the likelihood of a strategy
producing the individual’s sequence of choices.
Specifically, the model fit was determined as
G2 = )2

P
ln(p), where p is the probability of mak-

ing the observed choice.
We implemented a naı̈ve error theory by assum-

ing that each participant deviated from a strategy’s
prediction and thus made an error with a constant
probability. For each participant, we selected the
error probability that maximized the likelihood of
the data given the strategy. Thus, if a participant
made an application error with a constant probabil-
ity of .20, then the choice of TTB was predicted with a
probability of .80 and the other two options were
predicted to be chosen with a constant probability of
.10. The fits of the best fitting strategy were superior
to those expected by chance for all participants,
suggesting that the three strategies provide adequate
descriptions of their decision behavior.

Figure 2 shows the percentage of participants
classified as TTB, WADD, and Tally users in the
two environments for the first, fourth, and final

Figure 2. Strategy classification as a function of environment
(noncompensatory, compensatory) and block (first, fourth, and
seventh) for the three age groups (9–10, 11–12, and 20–25 years
old). TTB = take the best; WADD = weighted-additive strategy.
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blocks of the decision task. Figure 2 illustrates that
in the first block a majority of participants were
classified as selecting compensatory strategies
regardless of the environment, v2(1, N = 150) =
0.32, p = .85, wES = .05. Interestingly, younger
children were more likely to rely on a simpler com-
pensatory strategy, Tally, relative to older children
and adults, suggesting younger children had more
difficulties applying the complex WADD strategy.

At the end of the fourth decision block there
were clear differences between environments, v2(1,
N = 150) = 37.23, p < .001, wES = .45: As expected,
in the noncompensatory environment, TTB better
captured participants’ decisions, while in the com-
pensatory environment most participants selected
compensatory strategies. Additionally, the classifi-
cation analysis suggested age-related differences in
strategy selection similar to the age-related differ-
ences in payoff: The 9- to 10-year-olds seem to have
had more difficulties in learning to select the appro-
priate strategy as a function of performance feed-
back: The effect size (wES) of environment on
strategy classification for the 9- to 10-year-olds was
smaller (wES = .37) compared to 11- to 12-year-olds
(wES = .49) and adults (wES = .54). Note that youn-
ger children generally relied more on the simpler
Tally strategy relative to the older groups. This sug-
gests that younger children may have difficulties in
relying on the more complex WADD strategy that
requires the integration of cue values with their
validities and thus preferred the simpler Tally strat-
egy that uses equal weighting of cues.

Finally, the classification results for the final
block of the noncompensatory environment show
that while the overwhelming majority of young
adults learned to select TTB, children, in particular
9- to 10-year-olds, had difficulties in learning to
select this strategy even after extensive learning.
Concerning the compensatory environment, there
was an increase in the number of younger children
classified as using TTB compared to the fourth
block, possibly due to children getting tired
over time.

Strategy Selection Learning

To analyze the reasons underlying age-related
differences in strategy selection we modeled partic-
ipants’ choices with the strategy selection learning
(SSL) theory (Rieskamp & Otto, 2006). SSL is a com-
putational learning model that decomposes partici-
pants’ performances into three components: an
initial preference parameter, b, representing the
initial preference for the noncompensatory TTB

strategy; a learning rate parameter, w, representing
the speed of learning; and an error parameter, e,
representing errors in strategy application (see the
Appendix for a formal definition). The SSL parame-
ters were optimized separately for each individual
by maximizing the likelihood of the observed
choices.

Overall, SSL captured participants’ learning pro-
cesses well and had an average fit (G2) that was
better than a pure chance baseline model, which
assumes that the participants did not use strategies
to make decisions but randomly chose one of the
three cars. The baseline model predicted the choice
of each of the three alternatives with a probability
of 1 ⁄3 and had an average fit of G2 =
)2

P
ln(p) = 263 for the first four blocks (120

trials). Figure 3a illustrates that the fit of the SSL
theory is better than the baseline model for all
participants. In addition, we tested SSL against a
number of more stringent baseline models and the
successful test of the SSL theory against these sug-
gests that it captured participants’ choices well and
we can confidently interpret the models’ parame-
ters. In the following, we report the results based
only on the first four blocks of the experiment to
ensure that children becoming tired over the course

Figure 3. (a) Goodness of fit of the strategy selection learning
(SSL) theory for each individual participant. The dotted line
represents the baseline G2 of a pure chance prediction and 0
represents a perfect fit. (b) Participants’ parameter values in the
noncompensatory and (c) compensatory environments. The
location of each circle represents each group’s initial preference
for take the best (TTB), (b; values below .5 represent preference
for weighted-additive [WADD] and Tally), and the proportion of
application errors (e). The diameter of each circle is proportional
to the learning parameter (w) with larger circles representing
faster learning rates. Error bars represent 95% confidence
intervals.
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of the study did not influence the results or our
conclusions. Nevertheless, the analysis using the
full set of blocks provides a similar pattern of
results, albeit that age differences are somewhat
larger when the full set of blocks is considered.

We first conducted separate ANOVAs with each
parameter of the SSL theory as the dependent
variable and age group, environment, and their
interaction as the independent variables. Figure 3b
and c shows the mean estimated parameter values
for each of the three age groups and the two
environments. Regarding the initial preference
parameter, we found an effect of age group, F(2,
149) = 8.04, p < .001, gp

2 = .10, but no effect of envi-
ronment, F(1, 149) = .15, p = .70, gp

2 = .001, or Age
Group · Environment interaction, F(2, 149) = .22,
p = .80, gp

2 = .003. As Figure 3 illustrates, the esti-
mated mean value for the initial preference param-
eter for the noncompensatory strategy TTB was
lower for the youngest age group in comparison to
the other age groups, illustrating a stronger initial
preference for a compensatory strategy. The learn-
ing parameter did not differ between age groups,
F(2, 144) = 2.09, p = .13, gp

2 = .03, and environ-
ments, F(1, 144) = 0.24, p = .62, gp

2 < .01, nor did
we find an Age Group · Environment interaction,
F(2, 144) = 0.36, p = .69, gp

2 < .01. Finally, concern-
ing the error parameter, children showed signifi-
cantly more errors when applying strategies,
particularly in the noncompensatory environment.
We found an effect of age group, F(2, 144) = 9.13,
p < .001, gp

2 = .11, and an Environment · Age
interaction, F(2, 144) = 3.09, p = .02, gp

2 = .05, but
no main effect of environment, F(1, 144) = 0.35,
p = .55, gp

2 < .01. As can be seen in Figure 3, 9- to
10-year-olds made more errors overall compared to
older children and adults but this was particularly
evident in the noncompensatory environment.

As an additional step to understanding differ-
ences between age groups with the estimated
parameters of the SSL theory, we compared groups
in a pairwise fashion. The 9- to 10-year-olds
revealed parameter values that differed consider-
ably from those of older children and adults. Sepa-
rate ANOVAs with each parameter as the
dependent variable and age group, environment,
and their interaction as the independent variables
showed that, compared to adults, 9- to 10-year-olds
showed less overall initial reliance on TTB, F(1, 99)
= 17.50, p < .001, gp

2 = .15; a slower learning rate,
F(1, 99) = 3.71, p = .05, gp

2 = .04; and more applica-
tion errors, F(1, 99) = 14.13, p < .001, gp

2 = .13. The
differences between 9- to 10-year-olds and 11- to
12-year olds were less pronounced: Nonetheless,

9- to 10-year-olds showed a significant tendency for
less initial reliance on TTB, F(1, 99) = 7.01, p = .01,
gp

2 = .07, and more application errors, F(1,
99) = 8.25, p < .01, gp

2 = .08, but a similar learning
rate, F(1, 99) = 2.04, p = .16, gp

2 = .02, compared to
older children. We also found an Age · Environ-
ment interaction concerning application errors, F(1,
99) = 6.05, p = .01, gp

2 = .06, again suggesting
younger children had more difficulties in applying
strategies correctly in the noncompensatory envi-
ronment. A similar analysis comparing the 11- to 12-
year-olds and adults revealed no significant age-
related differences in initial preference for TTB, F(1,
99) = 1.48, p = .23, gp

2 = .02, and learning rate, F(1,
99) = 0.29, p = .59, gp

2 < .01, nor application errors,
F(1, 99) = 1.01, p = .32, gp

2 = .01. Summing up,
SSL suggests there are significant age-related
differences in strategy selection. While 11- to
12-year-olds resembled adults in their strategy use,
9- to 10-year-olds showed comparatively less reliance
on noncompensatory strategies, generally poorer
learning, and considerably more application errors,
particularly in the noncompensatory environment.

The SSL parameters can help explain the reasons
underlying age-related payoff differences. We con-
ducted a hierarchical regression analysis on payoff
with age as a predictor (Step 1) and, in a second
step, with age and the three SSL parameters as pre-
dictors (Step 2). As shown in Table 2, the SSL
parameters captured the age differences in payoff
quite well in both environments. The regression
models captured 89% of the variance in the noncom-
pensatory environment and 79% in the compensa-
tory environment. Age was a significant predictor of
performance when entered alone in the regression
(Step 1), but it showed a small, nonsignificant
relation to payoff when the SSL parameters were
examined (Step 2). This analysis shows that the
age-related differences can be explained by learning
differences that are captured by the parameters of
the SSL theory. Although all parameters significantly
contributed to payoff, in the noncompensatory
environment, initial preference for TTB (b) was the
strongest predictor followed by application error (e).
This pattern was reversed in the compensatory envi-
ronment. The full pattern of results holds even when
controlling for individual differences in cognitive
abilities, suggesting that our measures of verbal
knowledge, speed of processing, and short-term
memory did not capture the abilities underlying the
age-related parameter differences. Future studies
using a more powerful and extensive battery of mea-
sures as well as larger sample sizes may be necessary
to adequately assess relations between individual
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differences in cognitive abilities and strategy
selection learning. In sum, the regression analysis is
consistent with the idea that age-related differences
in adaptive strategy selection stem partly from
children’s initial preference for compensatory
strategies but also from problems in correctly execut-
ing both compensatory and noncompensatory
decision strategies.

Discussion

What decision strategies are available to children?
We addressed this question in an experiment in
which 9- to 10-year-olds, 11- to 12-year-olds, and
adults encountered two different environments
and were given extensive opportunity to learn to
select the appropriate strategy: One environment
favored the use of an information-intensive, com-
pensatory strategy, while the other favored the use
of a noncompensatory strategy that neglects infor-
mation. Our results showed that 11- to 12-year-
olds were remarkably similar to adults in their
strategy use, both regarding the strategies initially
selected and the efficiency in their application. In
contrast, 9- to 10-year-olds showed considerably
less reliance on noncompensatory strategies,

poorer learning, and more application errors,
which led to poorer performance compared to
older groups, particularly in the noncompensatory
environment.

Implications for Understanding the Development of
Strategy Selection

Our finding that strategy application errors are
more prevalent at younger ages is intuitive and
mirrors results from other developmental studies in
domains, such as arithmetic skill, estimation, and
memory (e.g., Lemaire & Lecacheur, 2002; Luwel,
Lemaire, & Verschaffel, 2005; Miller, 1990; Siegler,
1999). The idea that strategies can be misapplied
leading to poor performance has a tradition in the
developmental literature under the term ‘‘utiliza-
tion deficiency’’ (Miller, 1990). For example, Bjorkl-
und, Miller, Coyle, and Slawinski (1997) have used
the concept to explain how the use of memory
strategies does not necessarily lead to memory
enhancement in children—children may rely on an
appropriate memory strategy but fail to apply it
correctly. Our results thus match work showing
that the optimization of strategy application, for
example, in the memory domain, continues to
develop after childhood (Shing, Werkle-Bergner, Li,
& Lindenberger, 2008).

In turn, the finding that young children per-
formed worse in the noncompensatory compared
to the compensatory environment is novel and
counterintuitive, particularly when considering that
the application of an information-frugal strategy
should be well suited to children’s working mem-
ory limitations. Our findings shed light on why it
sometimes could be more difficult for children to
apply noncompensatory strategies compared to
information-intensive, compensatory ones. We
found that although children and adults searched
for similar amounts of information, most adults
searched for information in order of validity, which
allowed them to focus on the relevant pieces. In
contrast, younger children searched more often in
order of display, making it difficult to focus their
attention on the most relevant information. This
finding supports the attention allocation hypothe-
sis, which holds that young children have
difficulties in selectively attending to the most
relevant pieces of information (Davidson, 1991a,
1991b, 1996; Miller, Haynes, DeMarie-Dreblow, &
Woody-Ramsey, 1986; Turner & Bentley, 1982). The
ability to distinguish between relevant and irrele-
vant information seems to develop throughout
adolescence and may have significant real-world

Table 2

Summary of Hierarchical Regression Analysis With Payoff as the

Dependent Variable and Age, SSL Parameters, and Cognitive Abilities

as Independent Variables for the Noncompensatory and Compensatory

Environments

Variable B t p

Noncompensatory environment (N = 75)

Step 1

Age .40 3.77 < .01

Step 2

Age .07 1.61 .11

w ).29 6.59 < .01

b .65 15.08 < .01

e ).41 9.29 < .01

Compensatory environment (N = 75)

Step 1

Age .15 2.63 .01

Step 2

Age .15 1.25 .22

w ).44 7.34 < .01

b ).49 8.28 < .01

e ).61 10.26 < .01

Note. For Step 2, R2 = .89 in the noncompensatory environment
and R2 = .79 in the compensatory environment. SSL = strategy
selection learning; w = learning rate; b = initial preference for
take-the-best; e = error.

10



consequences. For example, Cook and Rieser (2005)
showed that individual differences in this ability
persist into adolescence and predict achievement in
mathematical problem solving.

Our results also suggest that the use of compen-
satory strategies is not trivial for 9- to 10-year-olds,
as they showed increased reliance on Tally, a sim-
pler, unit-weighted version of WADD, compared to
older groups. This suggests that the younger chil-
dren had difficulties in integrating cue values with
their validities and that the ability to integrate
information in working memory is also related to
the children’s efficient application of strategies:
WADD requires decision makers to hold in mind
both cue values and cue weights posing additional
memory and processing requirements compared to
Tally.

In sum, our results suggest that the efficient
execution of noncompensatory and compensatory
strategies pose significant demands to children
but the two may follow slightly different develop-
mental paths. Noncompensatory strategies rely
mainly on the ability to selectively attend to the
most relevant information, which can be mastered
at levels close to adult performance only at age
11. In contrast, simple compensatory strategies
that do not require differential cue weighting
seem to be in reach of children as young as 9.
While our cross-sectional design is only indicative
of such a pattern, future studies making use of a
longitudinal design could map the developmental
path of the use of compensatory and noncompen-
satory strategies more directly as well as individ-
ual differences in both cognitive ability and other
factors, such as formal education, on strategy
selection.

Computational Models of Strategy Selection

In the present study, we chose to use a computa-
tional model of strategy selection, SSL theory
(Rieskamp, 2006, 2008; Rieskamp & Otto, 2006), to
describe children’s and adults’ strategy selection
processes. SSL provides a parsimonious model that
has been specifically designed and successfully
tested to explain SSL in the domain of probabilistic
inferences. Our findings suggest that SSL is useful in
identifying which decision components (e.g., utiliza-
tion deficits) develop across late childhood to allow
adaptive strategy selection. Nevertheless, future
studies should test SSL against other qualitatively
different approaches and models (e.g., Rieskamp,
2006; Shrager & Siegler, 1998) to assess whether

further assumptions are useful in accounting for the
differences between children and adults’ decision-
making processes.

Improving Strategy Application

Our results suggest that children had difficulties
in selecting decision strategies as a function of the
situation despite receiving extensive performance
feedback. Future studies should look at the factors
favoring children’s ability to correctly apply
decision strategies. For example, future research
could use the choice versus no-choice method
(Lemaire & Siegler, 1995) to investigate whether
explicit training of noncompensatory strategies can
lead to examining less irrelevant information or
weighting information appropriately. Another
promising technique involves having children rely
on well-known, self-generated cue rankings, to
encourage 9- to 10-year-olds to focus on the most
relevant pieces of information (see Bereby-Meyer
et al., 2004; Montanelli, 1972). In addition, it may be
fruitful to adopt experimental designs that require
participants to rely on recalled cues from memory,
as opposed to observing cues on a computerized
display, to test whether these more demanding sit-
uations can lead children to rely on simpler non-
compensatory strategies (e.g., Bröder & Schiffer,
2003; Persson & Rieskamp, 2009). Hopefully, such
work will help generate interventions with the
power to improve children’s real-world decisions,
from food choice to crossing the street.

Conclusion

We investigated children’s learning ability to
select the most successful strategy in different deci-
sion environments. Our results suggest that specific
decision strategies exploit abilities that pose differ-
ent but significant challenges to young children:
Simple noncompensatory strategies require selec-
tive attention to information, while compensatory
strategies have considerable information-integration
requirements. Crucially, our results show that 9- to
10-year-olds prefer information-intensive strategies,
and have a harder time learning to select frugal
noncompensatory strategies even when given sub-
stantial learning opportunity. Thus, younger chil-
dren do not seem to benefit from the reduced
informational load of noncompensatory strategies
that are usually considered computationally sim-
pler. In other words, for younger children, easy
may come hard.
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Appendix

Computational Specification of the Strategy Selection
Learning (SSL) Theory

The SSL theory (Rieskamp & Otto, 2006) assumes
that a person has subjective expectancies associated
with each decision strategy, selects strategies pro-
portional to their expectancies, and updates expec-
tancies on the basis of feedback. We assume that
the strategy repertoire can be reduced to three strat-
egies: take the best (TTB), Tally, and weighted addi-
tive (WADD). An individual’s preference for a
strategy i is expressed by positive expectancies q(i).
The probability that strategy i is selected at trial t
depends on its expectancy relative to the other
strategies’ expectancies and is defined by

pt ið Þ ¼
qt ið ÞPN
j¼1 qt jð Þ

: ðA1Þ

The strategies’ expectancies in the first period of
the task may differ and are defined by

q1 ið Þ ¼ rmax $ w $ bi; ðA2Þ

where rmax is the maximum payoff that can be
obtained by a correct decision, w is the initial asso-
ciation parameter (constrained by w > 0), and b is
the initial preference parameter (restricted to
0 < b < 1 and

PN
i¼1 bi ¼ 1). The initial association

parameter expresses a person’s initial association
with the available strategies relative to later rein-
forcement and can thus be interpreted as the learn-
ing rate at which individuals adapt their strategy
selection throughout the task. To keep our model
parsimonious, we assumed an equal initial prefer-
ence parameter bi for Tally and WADD (i.e., bTally =
bWADD), so that a value of bTTB = .40 implies a
value for bTally = bWADD = .30. Consequently,
b > 1 ⁄3 implies that the decision maker will select
TTB with a larger probability at the beginning of
the task than Tally or WADD.
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After a decision is made, the expectancies of the
cognitive strategies are updated for the next trial t
by

qt ið Þ ¼ qt%1 ið Þ þ It%1 ið Þ $ rt%1 ið Þ; ðA3Þ

where rt)1(i) is the reinforcement defined by the
produced payoff of a strategy and It)1(i) is an indi-
cator function that denotes whether a strategy has
been selected. The indicator function It)1(i) equals 1
if strategy i was selected and equals 0 if the strategy
was not selected. According to SSL, two require-
ments are necessary to assume that a strategy was
selected on any given trial: (a) the necessary
information for applying the strategy was acquired,
and (b) the choice coincides with the strategy’s
prediction.

The SSL theory incorporates a simple error theory
to account for application errors. The probability

p(a|i) of choosing alternative a when strategy i is
selected is either p(a|i) = 1 or p(a|i) = 0 for deter-
ministic strategies (if strategies lead to an ambigu-
ous prediction p(a|i) = 1 ⁄ k, with k being the
number of alternatives the strategy does not dis-
criminate between). The conditional probability of
choosing alternative a given application error e is

pt aji; eð Þ ¼ ð1% eÞ $ pt ajið Þ þ e
k% 1

$ pt !ajið Þ; ðA4Þ

where pt !ajið Þ denotes the probability of choosing
any other alternative than a out the available alter-
natives, given strategy i was selected. Finally, the
probability of choosing alternative a depends on
the probabilities of selecting the strategies and the
corresponding choice probabilities of the strategies

pt að Þ ¼
XN

i¼1
ptðiÞ $ pt aji; eð Þ: ðA5Þ
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