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Abstract 

The planning and control of production processes is increasingly reliant on centralized ap-

proaches. This means that production schedules must be developed in advance. With changing 

conditions, such as the arrival of rush jobs, either partial or complete rescheduling is required, 

and these tasks are time-consuming and cost-intensive. A possible solution is the implementa-

tion of autonomous production systems. This alternative enables logistic objects (e.g. machines) 

to make autonomous decisions based on current system conditions, so that they can react flex-

ibly and quickly to any changes. Autonomous control is thus expected to contribute positively 

to the achievement of logistic objectives. Recent research indicates that a hybrid approach – a 

mix of autonomous job sequencing and central work system allocation – is particularly prom-

ising.  

Research on autonomous production systems can be subdivided into three fields: technol-

ogy, algorithms and topology. The first two fields have been sufficiently researched. The rele-

vance of the topology of a material flow system has been confirmed, but the extent to which 

such topology should be considered when introducing autonomous control has not been ade-

quately addressed. A new research approach, adapted from network theory, examines how clus-

tering algorithms can be used to identify units of logistic objects that share intensive material 

flows. Such units are referred to as clusters. The logistic objects in a cluster should act as au-

tonomous units to make decisions regarding the sequencing of jobs on a given resource, based 

on the state of the current system.  

The objective of this thesis is to investigate whether, or to what extent, the cluster topology 

(i.e. structural characteristics of a cluster) can be used as an additional source of information to 

support the introduction of autonomous control. First, the thesis explores how job sequencing 

could occur decentrally based on previously identified material flow clusters. It appears prom-

ising to select the logic for the sequencing using the characteristics of identified clusters. Next, 

a simulation study is conducted using synthetically generated material flow networks. The net-

works differ in cluster topology to yield the highest possible degree of variability. A benchmark 

is used, and the results show that considering the cluster topology significantly improved the 

achievement of logistic objectives in more than half of the studied cases. Additionally, the re-

sults indicate that the size and number of clusters in a material flow network are crucial param-

eters that represent a potential starting point for further research.
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Zusammenfassung 

Bisher wird bei der Planung und Steuerung von Produktionsprozessen vermehrt auf zentrali-

sierte Ansätze gesetzt. Dabei werden Produktionspläne im Voraus erstellt. Bei veränderten Be-

dingungen (etwa der Ankunft von Eilaufträgen) wird entweder teilweise oder vollständig neu 

geplant. Dies gestaltet sich jedoch zeit- und kostenintensiv. Eine denkbare Lösung bietet die 

Etablierung autonomer Produktionssysteme. Entsprechende Systeme befähigen logistische Ob-

jekte, auf Basis aktueller Systemzustände autonom Entscheidungen zu treffen. Dies ermöglicht 

es ihnen, flexibel und schnell auf mögliche Veränderungen zu reagieren. Dadurch kann auto-

nome Steuerung einen positiven Beitrag zur logistischen Zielerfüllung leisten. Jüngste For-

schungsergebnisse deuten darauf hin, dass ein hybrider Ansatz, also ein Mix aus autonomer 

Reihenfolgebildung sowie zentraler Maschinenzuordnung, vielversprechend ist. Bisherige For-

schungsaktivitäten auf dem Feld autonomer Produktionssysteme lassen sich in drei Bereiche 

einteilen: Technologie, Algorithmen und Topologie. Während die ersten beiden Bereiche als 

umfassend erforscht gelten, ist die Relevanz der Topologie eines Materialflusssystems bestä-

tigt. Jedoch wurde bislang nicht ausreichend herausgearbeitet, in welchem Umfang sie bei der 

Einführung autonomer Steuerung Berücksichtigung finden sollte.  

Anhand eines neuen netzwerktheoretischen Forschungsansatzes wird untersucht, wie mit 

Hilfe von Clustering-Algorithmen die Identifizierung eines Zusammenschlusses von logisti-

schen Objekten erfolgen kann, die über einen intensiven Materialflussaustausch verfügen. Ein 

entsprechender Zusammenschluss wird als Cluster bezeichnet. Die Objekte innerhalb eines 

Clusters sollen schließlich als autonome Einheiten agieren, die aufgrund der aktuellen System-

zustände Entscheidungen über die Reihenfolge der als nächste abzuarbeitende Aufträge treffen. 

Das übergeordnete Ziel dieser Arbeit bestand daher darin zu untersuchen, ob und in welchem 

Ausmaß die Clustertopologie, also die strukturellen Eigenschaften eines Clusters, als zusätzli-

che Informationsquelle zur Unterstützung der Einführung autonomer Steuerung genutzt werden 

kann.  

Zunächst wurde aufgezeigt, wie die Reihenfolgebildung in solchen autonomen Clustern um-

zusetzen ist. Dabei scheint es Erfolg zu versprechen, die Logik für die Reihenfolgebildung auf 

Basis der Eigenschaften der Cluster auszuwählen. Anschließend fand die Durchführung einer 

Simulationsstudie unter Verwendung synthetisch erzeugter Materialflussnetzwerke statt, die 

sich in der Clustertopologie voneinander unterscheiden, um eine möglichst hohe Variabilität zu 

erreichen. Durch die Verwendung eines Benchmarks konnte nachgewiesen werden, dass das 

Einbeziehen der Clustertopologie in mehr als der Hälfte aller Fälle zur signifikant besseren 

Zielerreichung führt. Darüber hinaus implizieren die Ergebnisse, dass die Größe und die Anzahl 

der Cluster eines Materialflussnetzwerks entscheidende Parameter sind sowie einen potenziel-

len Ansatzpunkt für weitere Forschungen darstellen. 
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1 Introduction 

This introductory chapter provides a brief review of today’s challenges in manufacturing sys-

tems. The problem area of this thesis is identified, and the chapter outlines the main objectives, 

research questions (RQs) and the methods used. The organization of the thesis is then summa-

rized.  

1.1 Motivation and Problem Definition 

Since the beginning of the 21st century, scientists have been pointing to increasing dynamics 

and complexity in modern today's manufacturing systems (Alkan, Vera, Ahmad, Ahmad, & 

Harrison, 2018). Heterogeneous markets with strong fluctuations in demand as well as short 

product life cycles have been mentioned as critical factors (e.g. Windt & Hülsmann, 2007). 

Additionally, high product variance and unforeseen changes in customer requirements increase 

the uncertainty faced by manufacturing companies (e.g. Nyhuis & Wiendahl, 2009).  

One possibility to address these limitations is the development of autonomously acting pro-

duction systems (e.g. Freitag, Herzog, & Scholz-Reiter, 2004). To enable such autonomy, re-

cent technological developments such as cyber-physical systems (e.g. Monostori et al., 2016) 

are used, where logistic units are connected through modern information and communication 

technologies (ICT) to enable them to communicate with each other and make autonomous de-

cisions. The development toward more autonomy and decentralization is ongoing in practice 

(Fottner et al., 2021). The terms autonomy and decentralization are often used synonymously 

and are used interchangeably in this thesis.  

The above factors create both challenges and opportunities in production planning and con-

trol (PPC). The main challenge is the inability of existing approaches with a centralized plan-

ning and coordinating unit to meet the new requirements, as the effects of a dynamic and com-

plex production environment may be insufficiently considered (Kurbel, 2016). The transfor-

mation from centralization to decentralization also creates new opportunities. Decentralized 

systems are able to react quickly and flexibly to changing customer needs or operating condi-

tions, resulting in a better achievement of logistic objectives (Liaqait, Hamid, Warsi, & Khalid, 

2021). Moreover, due to the increasing integration of modern ICT, new algorithms and meth-

odologies have been developed to enable autonomous decision-making (Lasi, Fettke, Kemper, 

Feld, & Hoffmann, 2014).  

The challenge for the future will remain the effective introduction and implementation of 

these new technological solutions and advanced methods. Many ideas and applications will 

follow as part of initiatives such as Industry 4.0 (Kagermann, Helbig, Hellinger, & Wahlster, 

2013). Experts agree that the transition toward decentralization will be made in several stages 

(Fottner et al., 2021). Concrete approaches are thus necessary to achieve the paradigm shift 

from centralized to decentralized systems.  
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For example, at the operational level, the broad application possibilities of sensors enable 

the gathering of shop floor real-time data to support effective scheduling (Liaqait et al., 2021; 

Mehrsai, Figueira, Santos, Amorim, & Almada-Lobo, 2017; Parente, Figueira, Amorim, 

& Marques, 2020). Scheduling addresses two decision problems: (i) the allocation of resources 

(e.g. human or machine) and (ii) the sequencing of jobs on a given resource (Pinedo, 2014). To 

date, manufacturing scheduling techniques have operated efficiently in systems with relatively 

few dynamics (Mehrsai et al., 2017). The shift away from centralization toward decentralization 

allows manufacturers to schedule close to real-time, which means they can deal more effec-

tively with new challenges. Scientists and practitioners are concerned with how these newly 

available real-time data can be used in scheduling to allow for increased autonomy (e.g. Liaqait 

et al., 2021; Parente et al., 2020).  

Along with the advantages of autonomous systems, there exists a certain degree of auton-

omy in highly complex systems. Beyond that point, the achievement of logistic performance 

may decline again, since the lack of a coordinating unit can sometimes lead to confusion in the 

decision-making process (e.g. Philipp, Böse, & Windt, 2006). To solve this dilemma, hybrid 

approaches combine central production planning with autonomous control. The hybrid ap-

proach offers the advantages of reliable central production planning as well as the ability to 

respond quickly and flexibly to discrepancies through autonomous control (Trentesaux, 2009; 

Zambrano Rey, Bonte, Prabhu, & Trentesaux, 2014). In this approach, scheduling-related de-

cisions can be split into central work system allocation and autonomous sequencing of jobs (see 

e.g. Mehrsai et al., 2017; Schukraft, Grundstein, Freitag, & Scholz-Reiter, 2015; Schukraft, 

Grundstein, Freitag, & Scholz-Reiter, 2016). The results of such a hybrid approach are prom-

ising. They offer an opportunity for practitioners to support the gradual integration of decen-

tralized control, because only one scheduling task follows a decentralized strategy (Mehrsai et 

al., 2017). Because of its potential, this thesis focuses on the hybrid approach. 

According to Mourtzis and Doukas (2012), to reduce complexity in autonomous systems, 

practitioners can merge the individual work systems into two or more modules that have their 

own decision-making competencies. For the coordination of such modules, a high level of in-

teraction between the elements within the modules is necessary (Mourtzis & Doukas, 2012). 

The integration of ICT at the shop floor level enables collecting relevant data regarding, inter 

alia, the element-to-element interactions. Such data can be transferred into a network represen-

tation that offers an objective overview of the material flows between the individual work sys-

tems, which is referred to as material flow networks (Becker, Beber, Windt, & Hütt, 2012). 

This representation provides new methods from complex network theory to support the imple-

mentation of decentralized control, with consideration given to the topology of a material flow 

network (Becker, Weimer, & Pannek, 2015; Vrabič, Husejnagić, & Butala, 2012).  

The modularization of a system proposed by Mourtzis and Doukas (2012) resembles the 

idea of clustering in network theory. In clustering, with the help of algorithms, several elements 

are merged to form individual clusters, so that the elements within a cluster have more mutual 

connections than they do to elements outside the cluster (Newman & Girvan, 2004). The clus-

tering process thus involves the topology of a material flow network. Considering that most 

material and information flows remain within a cluster, Vrabič et al. (2012) evaluated the hy-

pothesis that such clusters are generally suited to perform as units of autonomous work systems. 

They demonstrated that identified clusters were associated with specific work processes, so that 

in principle they could operate autonomously. Derived from this, it seems to be a promising 

approach, although there is a need for concrete practical suggestions to implement autonomy 

within such clusters. According to the hybrid approach, it has to be decided what decision-

making competences should be assigned to the individual clusters. Given the importance and 
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potential of autonomous sequencing, it seems promising to perform the decision-making situa-

tion-based and outsource the decision-making to individual clusters. In this way, a sequencing 

rule is not assigned to each machine individually, as was previously the case, but rather to an 

entire cluster. Research has shown that the overall topology of a material flow network has a 

measurable impact on a system’s performance (Becker et al., 2012). However, studies have not 

sufficiently examined how existing sequencing rules generally perform in autonomous clusters, 

or how the rules may need to be adapted or modified depending on the given cluster topology 

of the network. 

1.2 RQs and Methodology 

The main objective of this thesis is to ascertain whether – or to what extent – the cluster topol-

ogy of a material flow network affects the logistic performance achievement when the job se-

quencing is decentralized within previously identified material flow clusters. Based on this ob-

jective, the following five RQs were formulated:  

The importance of topology has been highlighted in previous research (Becker et al., 2012) 

and there are concrete proposals for identifying autonomous clusters (Becker & Wagner, 2015; 

Vrabič et al., 2012). However, there are still no strategies concerning how the autonomous se-

quencing of jobs as part of a hybrid approach could be realized within such autonomous clusters 

(Becker et al., 2015). Such an approach should have a high degree of practicability and be easy 

to implement, and it should initially be defined independently of the given cluster topology. A 

literature review on existing PPC methods offers the answer to RQ 1. The result is a conceptual 

framework for a hybrid clustering-based approach. 

Despite the increasing digitalization in manufacturing systems, the volume of publicly avail-

able data is small (Nyhuis, Mayer, & Kuprat, 2014). The purpose of answering RQ 2 is to 

provide a data basis to study the influence of the cluster topology and demonstrate the practical 

applicability of the proposed hybrid clustering-based approach on different material flow sys-

tems with varying cluster topology. Certain models can be used to create synthetic networks 

(e.g. Lancichinetti & Fortunato, 2009b; Orman, Labatut, & Cherifi, 2011), but so far they have 

not addressed in sufficiently specific terms the emergence of material flow networks. Accord-

ingly, to answer RQ 2, this thesis proposes a methodological approach to generate synthetic 

material flow networks with a predefined cluster topology.  

Vrabič et al. (2012) and Becker and Wagner (2015) proposed concrete clustering algorithms 

to identify autonomous clusters. However, many other clustering algorithms are provided in 

literature to reveal hidden structures (Fortunato, 2010). These algorithms not only consider dif-

ferent clustering criteria but also enable including additional network information, such as the 

intensity or direction of the material flow. Considering or ignoring such information may have 

a major impact on the resulting clusters (Lancichinetti & Fortunato, 2009b) and thus the ar-

rangement of the autonomous clusters. Therefore, a set of clustering algorithms was selected 

RQ 1: How can autonomous job sequencing be implemented in previously identified mate-

rial flow clusters? 

 

 

 

 

 
RQ 2: How can synthetic material flow networks be created with a predefined cluster topol-

ogy?  

 

 

 

 

 

RQ 3: Which global network information should be used to identify autonomous clusters 

from a network theory perspective? 
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and applied that considered different kinds of network information. The evaluation of the vari-

ous clustering algorithm outputs addresses RQ 3 from a network theory perspective. 

The general relationship between network topology and logistics performance has previ-

ously been documented (e.g. Becker et al., 2012; Vrabič, Škulj, & Butala, 2013). However, 

similar work has not been undertaken regarding the cluster topology in material flow networks. 

Understanding this relationship provides insights into the key challenges to overcome through 

appropriate shop floor management. To answer RQ 4, a simulation study was conducted to 

examine the relationship between the cluster topology and the logistics performance. Many 

synthetically generated material flow networks that differed from each other, particularly in 

their cluster topology, were employed. 

This RQ is answered in three consecutive steps, with each step providing the input for the 

next steps. Thereby, the following sub-questions are addressed: 

A set of sequencing rules within autonomous clusters was applied. First, their 

effectiveness in a range of scenarios – in particular regarding the cluster topology 

of different material flow networks – was tested in a simulation study. These 

tests provided an answer to sub-RQ 5.1. The results for the best sequencing rule 

for each scenario provided a benchmark to answer the next sub-questions. 

As stated above under RQ 3, considering or ignoring certain network infor-

mation may have a major impact on the resulting clusters. Different algorithms 

can also result in different clustering outputs. However, when these outputs are 

used as autonomous clusters, the characteristics of individual clusters can be de-

cisive because the selection of an appropriate sequencing rule may depend on 

them. To answer sub-RQ 5.2, the different outputs of the clustering algorithms 

generated to answer RQ 3 were treated as autonomous clusters. Hence, the se-

quencing rules were applied as proposed in the answer to RQ1. The evaluation 

from a logistics-based perspective was undertaken through a simulation. The in-

dividual simulation results were compared with the results from the respective 

benchmark sequencing rule. 

 

 

RQ 4: How does the cluster topology of material flow networks relate to the logistics per-

formance?  

 

 

 

 

 RQ 5: Do systems having autonomous clusters that are formed according to the intensity of 

material flow improve the logistical performance?  

 

 

 

 

 

• Sub-RQ 5.1: For material flow systems that possess varying cluster topology, 

how effective are selected sequencing rules to reduce the mean tardiness of 

tardy jobs and enhance the schedule reliability? 

 

 

 

• Sub-RQ 5.2: Which global network information should be used to identify 

autonomous clusters, from a logistics perspective? 
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To make a final conclusion about whether the cluster topology of a given mate-

rial flow network had a significant impact and thus should be taken into account 

in the gradual introduction of decentralized control, the performance of the pro-

posed hybrid clustering-based approach was compared with the respective 

benchmark sequencing rule in a simulation study. This analysis yielded an an-

swer to sub-RQ 5.3. 

The above descriptions of the RQs indicate that it was necessary to use a combination of 

methods. In particular, the main research methods of scheduling, synthetic network, clustering 

and discrete-event simulation were used to address the above listed RQs. Additional methods 

are discussed in detail in the relevant sections of this thesis. Below is a description and justifi-

cation of the four research methods mentioned. 

Scheduling 

The diverse contributions in the Journal of Scheduling0F

1 show the relevance of scheduling in 

both theory and practice and across many disciplines and applications. Scheduling problems 

are optimization problems and are usually known to be non-deterministic polynomial-time hard 

(NP-hard; Pinedo, 2014). To solve such problems, heuristics have proven to be practical, with 

solutions that are close to the optimum (Liaqait et al., 2021).  

Given the ongoing technological progress in manufacturing systems, scheduling holds 

strong importance due to the availability of real-time data (see e.g. Parente et al., 2020). This 

data provides major potential for the effective application of existing heuristics and enables 

developing new heuristics (Lasi et al., 2014). The thesis proposes one approach to using such 

heuristics in autonomous clusters.  

Synthetic Networks 

In almost all disciplines, the availability of data is limited. This is not only due to technological 

limitations but is also because data are often not accessible to the public. Hence, new research 

activities arises in different disciplines that addresses the designing of synthetic networks (e.g. 

Palla, Lovász, & Vicsek, 2010). With the help of such synthetic networks, for example, new 

approaches and concepts can be tested for their effectiveness. The advantage is that the network 

generation process is relatively transparent and can typically be influenced by only a few pa-

rameters. Thus, the process can also be manipulated to generate various types of networks hav-

ing specific properties (e.g. Lancichinetti & Fortunato, 2009b). This process is suited to gener-

ate material flow networks with a built-in cluster topology. 

 

 

1 https://www.springer.com/journal/10951, Retrieved October 14, 2022. 

• Sub-RQ 5.3: What is the efficiency of sequencing rules applied in autonomous 

clusters to reduce the mean tardiness of tardy jobs and enhance the schedule 

reliability in material flow systems with varying cluster topology? 

 

 

 

 

https://www.springer.com/journal/10951
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Clustering  

In the theory of complex networks, the development and application of clustering algorithms 

have evolved into a specific research field (Emmons, Kobourov, Gallant, & Börner, 2016; Yang 

& Leskovec, 2015). In the simplest cases, little information is necessary and no prior knowledge 

is required (Fortunato, 2010). This extends the number of possible applications to reveal under-

lying relationships among the individual network elements (Lancichinetti, Fortunato, & Radic-

chi, 2008). Given this practicability, the use of clustering algorithms to identify autonomous 

clusters seems to be promising.  

Discrete-Event Simulation 

In manufacturing, new PPC approaches can be tested cost-efficiently and easily in different 

scenarios with the help of simulation, without affecting the actual production (Rabe, Spiecker-

mann, & Wenzel, 2008). The importance of simulations becomes clear in particular through the 

numerous expert conferences on this subject (e.g. organized by the Association for Simulation, 

ASIM,1F

2 in the German-speaking region). Hence, the use of simulations is an essential part of 

this thesis. 

1.3 Thesis Structure 

This thesis comprises seven chapters. The structure of the thesis is illustrated in Figure 1.1, 

indicating in which sections the individual RQs are answered. Following this introduction, 

Chapter 2 summarizes the necessary theoretical knowledge of the principles and methods of 

PPC. The application of methods drawn from complex network theory on manufacturing sys-

tems is motivated. Given this knowledge, a hybrid clustering-based approach is derived. Chap-

ter 3 provides a general understanding and the definitions of terms and concepts in complex 

network theory. Chapter 4 proposes a new methodological approach to generate material flow 

networks with varying cluster topology to evaluate the proposed hybrid clustering-based ap-

proach. Based on these material flow networks, the outputs of various clustering algorithms – 

which cover different network information – are evaluated and compared in Chapter 5. In Chap-

ter 6, several studies are described, which can be divided into three subsections. First, the sim-

ulation setup and the assumptions made in this context are described. Then the relationship 

between cluster topology and logistic performance is examined. In the third subsection, the 

efficiency of the proposed hybrid clustering-based approach is evaluated, to demonstrate the 

impact of the cluster topology. Chapter 7 summarizes the main findings of the thesis and an-

swers the five corresponding RQs. The chapter closes with an outlook regarding further re-

search activities related to the findings.  

 

 

 

 

 

2 https://www.asim-gi.org/, Retrieved October 14, 2022. 

https://www.asim-gi.org/
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Figure 1.1: Structure of thesis and relationship of chapters to RQs.

Chapter 1
Introduction

Chapter 2
Related Work and Conceptual Framework

Chapter 7
Conclusion and Outlook

Chapter 3
Clustering in Complex Networks

Chapter 4
Generating Material Flow Networks with Varying Cluster Topology

Chapter 5
Edge Weight and Direction in Cluster Identification

Chapter 6
Experimental Evaluation

RQ 1

RQ 2

RQ 3

RQ 4 & 5
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2 Related Work and Conceptual Framework 

Given the many concepts and methods that are relevant to this thesis, the literature review was 

broad. Section 2.1 explains how production systems can be viewed from a system theoretical 

perspective, which is relevant for the classification of production systems as transformation 

systems with value-adding processes. Moreover, the four main logistic objectives are outlined 

in detail as they are essential for the thesis. In line with the overall objective of this thesis, key 

terms and basic concepts of PPC are introduced (Section 2.2). Next, various sources and thus 

also types of complexity and dynamics with which today’s manufacturing companies are in-

creasingly confronted are described (Section 2.3). Section 2.4 shows what attempts are made to 

deal with complexity and dynamics through centralized, decentralized and hybrid PPC ap-

proaches. In particular, the role of the topology of a material flow system in the previous re-

search is highlighted. This review lays the theoretical foundation to propose a conceptual frame-

work for the hybrid clustering-based approach. The chapter closes with a summary (Section 

2.5).  

2.1 A System Theoretical Perspective on Production Systems 

A production system can be described using systems theory (Bellgran & Säfsten, 2010; Wien-

dahl, Reichardt, Nyhuis, & Rossi, 2015). Bellgran and Säfsten (2010) described a system as the 

sum of elements (e.g. machines and people) that are related to each other. The system’s structure 

is thus determined by their reciprocal relations with each other. In general, a system is divided 

into several subsystems. The overall system and its components (i.e. individual elements and 

subsystems) are separated from the environment by the system’s boundary. Depending on the 

level of interaction between a system and its environment, a distinction can be made between 

closed and open systems. As shown in Figure 2.1, a closed system is isolated from its environ-

ment. In contrast, an open system interacts dynamically with the environment and both influ-

ences it (through output) and is influenced by it (through input). According to Bellgran and 

Säfsten (2010), production systems are open systems and are thus an example of a transfor-

mation system. They are also known as an input-output model. 
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Figure 2.1: Characteristics of open and closed systems. Adapted from Wiendahl et al. (2015). 

A typical transformation system comprises three components: inputs, transformation pro-

cesses and outputs. As applied to production systems, this means that desired outputs – such as 

goods and services – are transformed through an activity or function from a set of inputs – such 

as land, labor, capital, raw materials and resources (Dangelmaier, 2009). The overall goal of 

this transformation process is to create and add value. The value of the outputs should thus 

exceed the value of the inputs (Reid & Sanders, 2005). The major challenge is to manage these 

complex processes successfully. All associated activities can be summarized under the term 

operations management. In operations management, a strong focus is placed on the efficiency 

and effectiveness of value-added processes to generate goods and services (Schönsleben, 2011). 

Additionally, according to Nyhuis and Wiendahl (2009), these objectives can be further speci-

fied and therefore they invented a target system. Regarding the objectives, both internal (com-

pany) and external (customers’) viewpoints exist.  

As illustrated in Figure 2.2, on the market side the logistic performance is mainly evaluated 

based on throughput times and schedule reliability. For this reason, the aims within a company 

are to achieve short throughput times and high schedule reliability. The company will attempt 

to keep its logistic costs as low as possible through high capacity utilization and low work-in-

process (WIP) levels. Given their importance for the company’s success as well as the evalua-

tion of PPC methods (such as those proposed in this thesis), the logistic objectives are explained 

below in further detail. The overall objective is to improve efficiency, i.e. particularly to keep 

the unit costs as low as possible.  
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Figure 2.2: Four logistic objectives in the target system of Nyhuis and Wiendahl (2009). 

Schedule Reliability 

Schedule reliability is defined as the percentage of jobs that are completed within a prede-

fined due date tolerance. High schedule reliability prevents companies from incurring extraor-

dinary expenses for express deliveries and avoids large downtime costs for the customer (Ny-

huis & Wiendahl, 2009). 

Short Throughput Times 

Throughput time is the period it takes to complete a job. This includes not only the comple-

tion process itself but also transportation and waiting times. Because a growing number of cus-

tomers require quick deliveries, companies today aim for short throughput times (Nyhuis & 

Wiendahl, 2009). 

High Utilization 

Utilization refers to the probability that a resource will run empty due to a lack of jobs in 

the system. A highly utilized system is associated with increased profit for the company. This 

is because unit costs decrease as the total costs are absorbed across many products (Nyhuis & 

Wiendahl, 2009). 

WIP Level 

Broadly, the WIP level is defined as the number of jobs in the system at a specific point in 

time. A high level of WIP ties up capital and valuable storage space, which means that compa-

nies will aim to reduce their WIP (Nyhuis & Wiendahl, 2009). 
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In practice, it is inevitable that conflicts arise between the four objectives. For example, 

high-capacity utilization is generally achieved only by high WIP levels (Hopp & Spearman, 

2011). However, this also leads to high throughput times and thus impairs the schedule relia-

bility. For companies, the consequence is that there is a contradiction in the simultaneous pur-

suit of all logistic objectives. Therefore, prioritization is required. A possible solution to this 

problem comes in the form of logistic operating curves. A detailed description of this concept 

appears in Nyhuis and Wiendahl (2012). 

In the past, the focus was mainly on high levels of shop utilization to avoid the high costs 

of resource downtime. Due to the transformation from a seller’s market to a buyer’s market, 

companies have become more focused on customers’ demands. To enable these demands to be 

met, the focus has shifted toward short throughput times and high schedule reliability (Lödding, 

2013; Wiendahl et al., 2015). The described transformation and the associated shift toward 

market-oriented objectives have led to increased requirements and challenges for the planning 

and control of production processes (Kurbel, 2016). Various PPC principles are described in 

detail in the following section.  

2.2 Basic Principles of PPC 

This section discusses the principles of planning and control in production systems. According 

to the length of the planning horizon, a distinction is made between strategic planning (about 

five years), tactical planning (one to five years) and operational planning (up to one year) for 

production. The primary task of strategic production planning is to define long-term strategies 

to promote the development of competitive production. The practical implementation of the 

strategies occurs during medium-term tactical production planning through restructuring the 

internal infrastructure. This concerns particularly the layout and material flow planning, product 

design and increased utilization of resource capacities. In line with the strategic and tactical 

production planning, the focus of operational production planning is to ensure the efficient use 

of existing resource capacities in the short term (Dangelmaier, 2009; Dyckhoff & Spengler, 

2010). Operational production planning is also referred to as PPC (Dangelmaier, 2009; Kurbel, 

2016) and is therefore further discussed. In the following text, the terms order and job are used 

synonymously, an approach also used by Lödding (2013). 

One of the first definitions of PPC in the German literature was provided by Hackstein 

(1989). Illustrated in Figure 2.3, production planning is understood as a multistage process, 

which is subdivided into the following four tasks: production programme planning, quantity 

planning, due dates and capacity planning. Within production programme planning, the product 

type and quantity are determined. Based on these results, in the quantity planning the dependent 

requirements (such as raw materials, semi-finished products and sub-assemblies) are deter-

mined. In the final stage, scheduling, the due dates for jobs are determined, and it is ensured 

that all necessary resources are provided in the quantities demanded.  

Once these tasks are complete, the production control is responsible for the release, control 

and monitoring of jobs. This stage is thus subdivided into order release and order monitoring. 

Finally, during data management an interface is created for communication between the plan-

ning and control aspects of production systems. As evident from the above description, the 

individual PPC tasks are processed in the order they are listed. Therefore, the results of one 

planning stage serve as input for the subsequent stage. The reference model by Hackstein is 

thus characterized by a successive, hierarchical character while the different tasks are per-

formed.  
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Figure 2.3: PPC model by Hackstein (1989). 

According to Schuh and Stich (2012), the reference model of Hackstein does not fully re-

flect the logistic processes that occur in reality. For this reason, it was extended to the Aachen 

PPC model. The successive approach remains the same, but the hierarchical character is re-

placed by a cross-linked structure. A distinction is made between intercompany network tasks 

and key tasks or cross-functional tasks that occur within one company. Further explanation of 

the network tasks is not provided here, since the focus of this research project is an analysis of 

the material flow in a company. Further details can be found in Schuh and Stich (2012).  

Similar to the previous PPC model, the first stage of the key tasks represents the production 

programme planning (see Figure 2.4), whereas the production requirement planning corre-

sponds to the quantity planning. As shown in Figure 2.4, the main difference is the distinction 

between external and in-house PPC. A main reason for this are the different requirements for 

the planning tasks. The external PPC assumes tasks such as selecting suppliers or evaluating 

tenders. In contrast, the in-house PPC deals with internal procedures and thus allocates tasks 

such as fine-tuning, sequence scheduling, order release and order monitoring. Scheduling tasks 

and allocation to resources and the sequencing of jobs (see Pinedo 2014) fall under in-house 

PPC.  

Cross-functional tasks enhance the integration and optimization of the PPC in all production 

areas. This includes order coordination, storage and PPC monitoring. Similar to the reference 

model by Hackstein, data management is viewed as an integrated solution to support all PPC 

activities. 
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Figure 2.4: Aachen PPC model without network tasks. Adapted from Lödding (2013). 

Lödding (2016) indicated that an emphasis must be placed on the in-house PPC in terms of 

achieving the desired logistic objectives. Because this was not the case in the Aachen PPC 

model, he developed a new model for production control, which he referred to as manufacturing 

control. As shown in Figure 2.5, there are four tasks in the new model to influence the logistic 

objectives: order generation, order release, order sequencing and capacity control.  

 

Figure 2.5: A manufacturing control model. The connections and dependencies between actu-

ating variables, control variables and logistic objectives are illustrated. Adapted 

from Lödding (2013). 
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Strictly speaking, the order generation is part of production planning. It defines the planned 

input and output of jobs in the production system. Furthermore, the planned sequence of jobs 

is determined here, and the remaining tasks are assigned to the production control (Lödding, 

2013). 

The order release specifies the precise point in time at which the processing of a job order 

can begin. The main aim is to influence the WIP by releasing jobs once the WIP falls below a 

specified threshold. In this way, the system utilization and throughput times are impacted. A 

high WIP level increases the utilization and simultaneously results in faster throughput times. 

There exist several control policies to keep the WIP level low on the shop floor, with pull sys-

tems being distinguished from push systems. In many cases, pull systems require less WIP 

(Lödding, 2013) and can be more easily controlled than push systems (Hopp & Spearman, 

2004). The two most widely known pull systems, Kanban and constant work-in-process (Con-

WIP), are briefly presented. (Further details, proposed modifications and alternative WIP con-

trol policies appear in Lödding, 2013). In Kanban, several card sets are used to control each 

pair of work systems, with a card being associated with (for example) a particular part type. 

After the completion, the card returns to the beginning and new cards are released. The process 

allows close control of the WIP. In this simplest form, a Kanban system is especially suited for 

production environments with high volumes and low variants (Hopp & Spearman, 2004). By 

contrast, the aim of ConWIP is to keep the WIP at a constant level anywhere in the system 

(Spearman, Woodruff, & Hopp, 2022). In ConWIP, only one set of cards is assumed, where the 

number of cards corresponds to the desired WIP level. This simplifies the implementation. Be-

cause the cards are not associated with a particular part type, ConWIP is suitable for production 

environments with low volumes and high variants (Hopp & Spearman, 2004).  

The order sequencing determines which of the jobs in the waiting queue will be processed 

next on a particular resource. For this purpose, priority numbers are assigned to individual jobs 

according to the set logistic objective. The jobs with the highest priority are first in the queue 

and are processed first. The impact of order sequencing is significant in production systems 

with high WIP levels, since it leads to a high number of jobs in the queue and multiple sequence 

options. A match between the actual sequence and the planned sequence results in high schedule 

reliability (Lödding, 2013). The range of possible sequencing rules is explained in the following 

set of standards, which have been used for many years in both theory and practice (e.g. Black-

stone, Phillips, & Hogg, 1982; Haupt, 1989; Sels, Gheysen, & Vanhoucke, 2012): 

• First Come First Served (FCFS): select the job that is added first to the queue. Owing 

to its simplicity, this rule is fairly popular and is often used as a benchmark for other 

rules.  

• Shortest Processing Time (SPT): select the job with the shortest processing time in the 

queue. 

• Least Number of Operations (LNOP): select the job with the least remaining number of 

operations in the queue. 

• Total Shortest Processing Time (TSPT): select the job with the least total processing 

time in the queue.  

• Earliest Due Date (EDD): select the job with the earliest due date in the queue. 

• Longest Remaining Processing Time (LRPT): select the job with the longest remaining 

processing time. 

Some of these rules define the value of priority when jobs entering the system, such as EDD 

and TSPT. Others update the priority value after each processing step, such as LNOP, LRPT 

and TSPT. No one priority rule is effective for all cases. The effectiveness of rules essentially 
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depends on the assumptions made regarding the given shop conditions and which specific per-

formance indicators are considered (Holthaus, 1996).  

As part of capacity control, the capacity of work systems (e.g. working hours for each re-

source) is adapted to the real-life conditions of the production system. The focus here is not 

only on determining what resources are necessary but also that they are reliably available at the 

required time (Lödding, 2013). 

When selecting suitable production control methods, the planer must consider the structure 

of the production system and the jobs as well as company goals and customer requirements 

(Wiendahl et al., 2015). These characteristics are partly summarized under the terms complexity 

and dynamics and are explained in further detail in the next section. 

2.3 Complexity and Dynamics in Production Systems  

The presence of many influencing variables and strongly interconnected elements results in 

systems that have high complexity. Such complexity means that these systems tend to be diffi-

cult to describe and handle (Magee & de Weck, 2004). However, in the context of production 

systems, there is a more concise definition of complexity, which is used in English literature 

and is consistent with the system theoretical perspective. Depending on the area of application, 

a distinction can be made between functional and physical domain complexity (see Figure 2.6). 

Functional domain complexity is defined as “a measure of uncertainty in achieving the func-

tional requirements” (Efthymiou, Mourtzis, Pagoropoulos, Papakostas, & Chryssolouris, 2016). 

The functional domain deals mostly with the design of production systems and is therefore not 

part of this thesis. More detailed descriptions of this type of complexity can be found in Efthym-

iou et al. (2016) and ElMaraghy, ElMaraghy, Tomiyama, & Monostori (2012).  

The relevant definition of complexity in this thesis is from the physical domain, as it focuses 

on both the products and the production process. Figure 2.6 illustrates that a distinction is made 

between structural and operational complexity. Static or structural complexity depends on the 

number of product variants or the product mix, current processes and the structure of the re-

spective system (ElMaraghy et al., 2012). Thus, structural complexity is time-independent as it 

includes all the static characteristics of a system. For example, the degree of structural com-

plexity increases with an increasing number of system elements (e.g. machines and people) 

and/or the interconnections between those elements.  

The number of interconnections between system elements, or in other words the material 

flow, is strongly related to the number of product variants (Lödding, 2013). According to Lö-

dding (2013), an increasing number of variants can lead to production processes in which there 

are several predecessors and/or successors. In addition, an increasing number of variants can 

be associated with increasing material backflows. Both these aspects mean that the material 

flow is becoming more complex. In recent decades, the diversity of variants has risen due to 

the transformation from a seller’s to a buyer’s market and the related trend toward customer-

specific products. With the high number of variants, the tasks of PPC are becoming notably 

complex and challenging, because even with a high number of variants, the aim is to maintain 

a low level of material flow complexity (Lödding, 2013).  
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Figure 2.6: Different forms of complexity distinguished by domains. Adapted from ElMaraghy 

et al. (2012). 

Dynamic complexity, also termed operational complexity, relates to the operational behavior 

of a system (Efthymiou et al., 2016). More precisely, the term refers to the frequency and in-

tensity of system changes and environmental changes. Dynamic complexity is time-dependent 

(ElMaraghy et al., 2012), and unpredictable events – like machine breakdowns or variation in 

process times – increase the dynamic complexity. Equally, machine locations and process steps 

can change from time to time. The aim of PPC is to keep the dynamics of all predictable and 

unpredictable events under control (Efthymiou et al., 2016; Wiendahl & Scholtissek, 1994). 

In this thesis, the term dynamic meets the definition of the dynamic complexity. It is irrele-

vant whether the root of dynamics is located inside or outside the system. Furthermore, the term 

complexity relates to static complexity. In the literature, there are numerous approaches to as-

sess the complexity and dynamics of a system. This is achieved, for example, by entropy 

(Frizelle & Woodcock, 1995), individual indices (e.g. Schoettl, Paefgen, & Lindemann, 2014; 

Modrak & Soltysova, 2017) or even entire models (e.g. Philipp et al., 2006) that take account 

of several criteria. ElMaraghy et al. (2012) quantified the complexity using graph theory. Alkan 

et al. (2018) provided a literature review and reflections on the assessment of complexity in 

manufacturing systems. 

According to ElMaraghy, Kuzgunkaya, and Urbanic (2005), an advantage of highly com-

plex and dynamic production systems is that they can react quickly to changing requirements. 

This is possible because the interconnection patterns between the individual system elements 

are not static but can adjust to a new situation. In case of a machine breakdown, usually a similar 

machine can perform the requested process step. This is important in terms of increasing com-

petitive pressure, because a system that has the ability to adjust to its environment by constantly 

generating new patterns enables a company remaining competitive. However, this flexibility is 

often related to higher costs. Isik (2011) described other performance-related disadvantages, 

such as customer dissatisfaction resulting from delays in deliveries or the rapid reduction of 

inventory levels that could result from a higher degree of dynamic and structural complexity. 

Hence, as previously mentioned, one of the challenges in PPC is to manage these complexity 
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dimensions. There are several promising approaches, which are described in detail in Section 

2.4.  

In connection with the planning and control of production processes, there is a further type 

of complexity, namely computational complexity. Computational complexity is closely related 

to the evaluation of an algorithm for solving problems in various areas, such as scheduling 

problems (Deshmukh, Talavage, & Barash, 1998). Problems of this kind are normally NP-hard 

(Garey & Johnson, 1979; Hoogeveen, Lenstra, & Veltman, 1996). The fundamental difficulty 

can be traced to the fact that the computational time to find an optimal solution increases with 

an increasing problem size, more than any polynomial function. In the context of production, 

computational complexity mainly results from the number of system elements (e.g. individual 

machines, subsystems or jobs). With a high number of elements, an algorithm might no longer 

be able to solve the problem in a reasonable period (ElMaraghy et al., 2012). Computational 

complexity is thus closely related to structural complexity.  

The most effective way to deal with computational complexity, according to ElMaraghy et 

al. (2012), is by reducing the number of elements. However, this is not always possible, since 

in some cases the availability of special resources is required for specific processing steps. 

Therefore, rather than removing individual system elements, it is possible to group several of 

them into manageable units based on the Divide & Conquer principle. In this approach, a prob-

lem is partitioned into small sub-problems that can be solved independently and in a reasonable 

computing time. To enable this method, the units must be autonomous and independent and 

must not interact with each other – more precisely, there must be no material flow between 

them (ElMaraghy et al., 2012).  

A further possibility instead of searching for an optimal solution is to use heuristic algo-

rithms. They offer solutions in a reasonable computing time, and which are close to the global 

optimum. There are numerous descriptions and examples, from simple to complex heuristic 

algorithms for solving scheduling problems. An extensive overview can be found in (Dom-

schke, Scholl, & Voß, 1997). The following section describes how to deal with increasing com-

plexity and dynamics in PPC. 

2.4 Centralized, Decentralized and Hybrid PPC 

In conventional production systems, software systems such as Enterprise Resource Planning 

(ERP) systems are often used to support PPC (Kurbel, 2016). The aim is to create an overall 

production plan for all areas. An often noted weak point of these software solutions is that they 

follow the successive planning approach, which was described earlier in connection with the 

various PPC models (Section 2.2). This means the results of a superior planning level are passed 

on to subsequent levels. It is possible, for example, that poor results of a particular planning 

level will be passed to the next level, or that short-term changes (like rush jobs) are not consid-

ered directly. These are all valid reasons for the creation of a new production plan. However, 

this is often omitted due to the time needed. Instead, an attempt is made to consider the dynamic 

changes at the shop floor level, for example by employees, or even in the subsequent planning 

period. Changes in a system are thus interpreted as disturbances, which are associated with 

economic losses or loss of quality. Assuming a more static production environment, a high 

degree of planning accuracy and reliability can be achieved through this centralized approach. 

Hence, from a theoretical perspective the centralized planning and control of production sys-

tems seems a reasonable approach. Nevertheless, in practical terms, this approach can only be 

used on a limited basis for real-world applications, as the plans often do not adequately reflect 
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the actual production situation (Kim & Duffie, 2004; Spath, 2013; Windt, Philipp, Böse, & 

Becker, 2010b).  

By contrast, decentralized systems can take into account the growing complexity and dy-

namics of current production systems, such as unforeseen changes or environmental influences. 

In autonomous systems, the responsibilities for decision-making are spread over several ele-

ments that are interconnected with each other over a real-time communication system (Freitag 

et al., 2004). This enables the elements to communicate and cooperate. A precondition for this 

approach is the use of ICT that enables real-time monitoring of shop floor processes. Changes 

can be detected directly, and based on this information, all possible alternatives can be identi-

fied and evaluated (Fottner et al., 2021). Thus, in contrast to the centralized approach, all activ-

ities related to information processing, decision-making and the execution of decisions are 

shifted to the shop floor level from the start (Bouhai & Saleh, 2017). Autonomous systems are 

characterized by short decision-making processes and low coordination effort, which means 

they are able to react quickly and flexibly (Thomas, Trentesaux, & Valckenaers, 2012).  

Previous studies, especially within the Collaborative Research Centre 637 (CRC 637) “Au-

tonomous Cooperating Logistic Processes – A Paradigm Shift and its Limitations” (the main 

findings are summarized in Schukraft, Teucke, Freitag, & Scholz-Reiter, 2021), support the 

assumption that in complex and dynamic production environments decentralized decision-mak-

ing approaches provide as good or even better performance compared to selected centralized 

approaches (e.g. Scholz-Reiter, Rekersbrink, & Görges, 2010; Windt, Becker, Jeken, & Ge-

lessus, 2010c; Windt, Becker, & Kolev, 2010a).  

According to Becker et al. (2015), decentralized control systems are characterized by the 

following three elements (compare Figure 2.7), which are simultaneously the core research 

fields: technology, control algorithms and topology. Technology is important as it enables real-

time control of the production processes. In addition to permanent data availability, data trans-

parency and rapid data collection and processing are crucial. With the decision of a company 

to dispense with a central control unit, e.g. work systems, workpieces and products must be-

come intelligent so that they are able to solve certain tasks autonomously (Kurbel, 2016). This 

is part of Industry 4.0 (Kagermann et al., 2013).  

Cyber-physical systems are fundamental components of Industry 4.0 (Monostori et al., 

2016). They are characterized by the combination of sensors, actors and intelligently embedded 

software systems. The integrated sensors are used to permanently collect data. The gathered 

data is evaluated and analyzed using the software. After this, the software sends control com-

mands to the actuators. A detailed description of actuator and sensor technologies appears in 

Fottner et al. (2021). In generally, the research field of technology includes, in particular, the 

development of hardware and software to enable the communication between individual system 

elements and provide them with the ability to make decisions autonomously.  

In autonomous systems, decisions are made according to the logic of control algorithms. 

The availability of real-time data gained from advanced technologies has enabled new control 

algorithms to be developed in recent years (Lasi et al., 2014). To make the right decisions, 

autonomous elements need reliable (real-time) information. Windt et al. (2010c) presented a 

selection of well-known control algorithms for autonomous decision-making. They identified 

seven dimensions to give a more specific classification of the algorithms. These included tem-

poral data (referring to past or future data or both), the number of planning steps, the use of 

artificial values, the data scope and the type of data storage. According to Scholz-Reiter et al. 

(2010), the algorithms generally fall into three groups: bounded rational algorithms, rational 
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algorithms or a combination of both. Many bounded rational algorithms are based on the adap-

tation of principles from biology, where all data needed for decision-making come from past 

events (e.g. ant algorithm proposed by Cicirello & Smith, 2001). Rational algorithms, by con-

trast, use data that represent potential future system states – such as queue length estimator 

(QLE) by Scholz-Reiter, Beer, Freitag, and Jagalski (2008). An example of a combination of 

bounded rational and rational algorithms is one logistics target per rule (OLTPR) mentioned in 

Windt et al. (2010c).  

No autonomous algorithm is dominant in all cases. Rather, increases in performance depend 

on the particular assumptions made regarding the shop floor scenario or the considered evalu-

ation criteria. To develop such a method, all available data (e.g. about the system state) would 

have to be provided to make decisions based on them. This requirement would contradict the 

idea of autonomous systems.  

 

Figure 2.7: Three main elements of autonomous control according to Becker et al. (2015). 

The term topology reflects the structure of the underlying material flow system, or more 

precisely the material flow pattern. At the shop floor level, topology describes the interconnec-

tion patterns of work systems that are linked to each other by material flows (Becker, Meyer, 

& Windt, 2014). Of all three research fields, the topology of a production system is the least 

researched (Becker et al., 2015), although Becker et al. (2012) showed there was a positive 

correlation between specific topological patterns and logistic performance. Vrabič et al. (2012) 

and Becker et al. (2015) indicated that if companies want to switch to autonomous control, they 

need to concentrate on whether the topology of the underlying material flow system enhances 

the practical implementation. Mourtzis and Doukas (2012) suggested that it seems reasonable 

to merge the individual system elements into two or more modules with their own decision-

making competencies to reduce complexity. For better coordination, the elements within mod-

ules should interact with each other. However, it is not specified what criteria should be used 

for the modularization. 

Autonomous 
Control

Technology

TopologyAlgorithms
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The idea to create autonomous units is not entirely new and is widely known as the concept 

of Cellular Manufacturing. In this approach, parts with a similar sequence of operations are 

grouped into part families. Subsequently, work systems that are required to process a specific 

part family are spatially grouped into manufacturing cells. The responsibility for technical and 

organizational interventions in these cells is assigned to the respective staff (Wiendahl et al., 

2015). Decentralization is thus primarily defined by the operational decision-making frame-

work of the staff. The advantages of such an organizational structure are (among other things) 

shorter order throughput times and setup times due to the spatial proximity of work systems 

required for a certain part family (Burbidge, 1975).  

In Cellular Manufacturing, a static production environment is usually assumed (Saxena & 

Jain, 2011). However, today’s production systems are increasingly exposed to dynamic influ-

ences, which are reflected in high fluctuations in demand and increasing numbers of variants. 

These changes require more frequent identification of new part families as well as a spatial 

regrouping of work systems. This is not only time-consuming and costly, but it can also happen 

that the regrouping required for new part families may not be feasible in practice (Hamedi, 

Esmaeilian, Ismail, & Ariffin, 2012). Additionally, it is possible for a specific machine type to 

be needed in several manufacturing cells simultaneously, so that the additional machine pro-

curement leads to high investment requirement. To meet these difficulties, the concept was 

extended to include Virtual Cellular Manufacturing. In Virtual Cellular Manufacturing, work 

systems are summarized not spatially but logically, so that the procurement of redundant ma-

chines can be avoided (Khilwani, Ulutas, Islier, & Tiwari, 2011). This approach makes it pos-

sible to react more flexibly to dynamic influences, because the manufacturing cells are only 

virtual and thus can be regrouped easily.  

In the context of Virtual Cellular Manufacturing, a distinction can be made between two 

different research areas (Hamedi et al., 2012). The focus of the first area is on comparing the 

performance of Virtual Cellular Manufacturing with other existing concepts. The second re-

search area deals with the characterization of the actual Virtual Cellular Manufacturing. These 

include, for example, the formation of part families and manufacturing cells as well as the 

scheduling of jobs within these cells. The job processing order set this way will last until the 

next change in the production system (Tanchoco, 1999) and is therefore not adjusted after each 

operation, as would be the case using corresponding autonomous control algorithms. Therefore, 

this approach is a product-oriented solution that does not reflect the control-oriented perspec-

tive. Thus, while virtual cellular manufacturing is an interesting approach due to the logical 

combination of work systems, it is not sufficient for a dynamic production environment because 

of its insufficient utilization of autonomous decision-making.  

The idea of virtual manufacturing cells was pursued and extended with aspects of autono-

mous control by Vrabič et al. (2012). They also demonstrated that topology is a crucial factor 

when applying autonomous control. In this context, they analyzed the intensive exchange of 

materials, and thus also of information, between the individual system entities. For this purpose, 

they transferred the material flow within a manufacturing system into a network representation 

(see Section 3.2 for details). According to Vrabič et al. (2012), this network representation has 

the decisive advantage of providing an objective evaluation of material and information flows 

between the individual work systems.  

This new perspective differs from the concept of Cellular Manufacturing, in which work 

systems are grouped according to part families. Furthermore, the network representation offers 

a wide range of methods from complex network theory. A non-trivial topological characteristic 

of complex networks is the presence of so-called clusters (Fortunato, 2010). As described in 
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Section 3.4, there is more than one definition of clusters. However, as illustrated in Figure 2.8, 

all definitions have in common that the elements within a cluster have more connections within 

the cluster than they do with elements outside the cluster (Newman & Girvan, 2004). Vrabič et 

al. (2012) evaluated the hypothesis that such clusters are generally suited to perform as units of 

autonomous work systems, given that most material and information flows stay within a cluster. 

Essentially, the identification of such clusters comes close to the idea of Mourtzis and Doukas 

(2012) to merge the individual system elements based on their interaction into at least two or 

more modules with their own decision-making competencies. Indeed, Vrabič et al. (2012) 

showed that the identified clusters were associated with specific work processes, so that in prin-

ciple they operated as autonomous units. Among other things, they demonstrated that work 

systems with similar functionality did not have to belong to the same cluster, as they might not 

exchange any material or information with each other (Vrabič et al., 2012).  

 

Figure 2.8: Autonomously acting work systems merged into units with their own decision-mak-

ing competencies. Vrabič et al. (2012) called such units clusters. Figure modified 

from Becker et al. (2015). 

Despite the many advantages, in highly complex systems the use of autonomous control 

only makes sense up to a point; from then onward the achievement of logistic performance 

drops again (see Figure 2.9). The absence of a coordinating unit means that a high level of 

autonomy sometimes leads to confusion in the decision-making process (Philipp et al., 2006). 

Therefore, there exists an optimal degree of autonomous control. To support the implementa-

tion of autonomous control in manufacturing systems, Böse and Windt (2007) proposed a cat-

alog of criteria to determine the degree of autonomy in a given manufacturing environment. 

The criteria can also be used to compare different systems. This approach does not necessarily 

support the specification of the optimal degree of autonomous control in advance, and there is 

generally a lack of concrete approaches to determine the optimal degree.  
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Figure 2.9: Limitations of autonomous control. The achievement of logistic objectives mainly 

depends on the degree of autonomy and the complexity level of a given production 

scenario. Adopted from Philipp et al. (2006). 

Hybrid solutions combine the advantages of both approaches, namely, the planning relia-

bility of central production planning and the ability of autonomous control to respond quickly 

and flexibly to discrepancies (Trentesaux, 2009). The more detailed the activities of the coor-

dinating unit, the smaller the decision-making possibilities of the autonomous part. The chal-

lenge here is mainly to select suitable planning and control methods and combine them in a 

harmonized way to increase the overall performance (e.g. Blunck, Armbruster, Bendul, & Hütt, 

2018). In the research project “Methods for the interlinking of central planning and autonomous 

control in production” (reference number SCHO 540/26-1) by the German Research Founda-

tion (DFG) (see, for example, Grundstein, Schukraft, Freitag, & Scholz-Reiter, 2015; 

Schukraft, Grundstein, Freitag, & Scholz-Reiter, 2015; Schukraft, Grundstein, Freitag, & 

Scholz-Reiter, 2016) and in Mehrsai et al. (2017) a hybrid approach was proposed. The re-

searcher split the scheduling-related decisions into central work system allocation and autono-

mous sequencing of jobs. This meant that work systems decided independently about the se-

quence of jobs based on real-time data from the shop floor. The results of this hybrid approach 

within a flexible job shop environment are promising. In previous works, the same sequencing 

rule was used for all work systems. Due to the local behavior of such rules, the possibilities for 

coordination between the individual system elements are limited. 

By contrast, Miyashita (2000) merged work systems according to their individual utilization 

rate into several units and assigned different rules to them to improve the logistics performance. 

Such rule combination resulted in good performance. Although this was not done within the 

context of autonomous control, it still seems a promising approach. Pickardt, Hildebrandt, 

Branke, Heger, and Scholz-Reiter (2013) stated that merging could be challenging if the utili-

zation of the individual work systems varies significantly. This problem could be avoided by 

applying the idea of Vrabič et al. (2012), where work systems are merged according to their 

exchange of material and information flow, to create a set of autonomous clusters with their 

own decision-making competencies. This scenario enables these autonomous clusters to indi-

vidually select a rule from a set of sequencing rules to increase the overall performance.  
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Rules are chosen according to the material flow intensity within an autonomous cluster. 

Consequently, this thesis combines the hybrid approach and the clustering-based approach pro-

posed by Vrabič et al. (2012). The conceptual framework of such a hybrid clustering-based 

approach is illustrated in Figure 2.10, and the approach is described further in Section 6.3. 

 

Figure 2.10: Conceptual framework of hybrid clustering-based approach. (1) The network 

representation of a material flow system provides global system information, 

which is used to merge the individual work systems to autonomous clusters. (2) 

Material is exchanged between clusters to some degree, but most material ex-

change occurs within a cluster. Sequencing rules use information that is local to 

the corresponding cluster.  

2.5 Summary 

To sum up, there is a need for new planning and control methods to deal with the changing 

manufacturing environment. In particular, the autonomous sequencing of jobs as part of a hy-

brid approach has proved promising. This approach can directly respond to newly occurring 

prioritizations without triggering a time-consuming adjustment. To reduce complexity, it seems 

promising to perform decision-making situation-based and outsource it to individual clusters. 

Such clusters are identified using the topology of a given material flow system. After the con-

ceptual framework of hybrid clustering-based approach has been outlined as a basis for further 

steps, the next chapter presents the basics of complex networks, with a focus on identifying and 

evaluating clusters.
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21

Work 

System 1

Work 

System 2

Work 

System 3

• Sequencing Rule 1

• Sequencing Rule 2

• Sequencing Rule 3

• Sequencing Rule 4

queue 2

queue 1

queue 3

Cluster 1 Cluster 3

Cluster 2



24 

3 Clustering in Complex Networks 

The theory of complex networks has gained attention in recent decades, mainly because of the 

technological progress in data collection and processing (Reichardt, 2009; Takemoto & 

Oosawa, 2012). A major benefit of network models is their representation of patterns of con-

nections between the system elements. Networks are a powerful tool to simplify real-world 

complex systems and reduce them to the essentials for the user (Takemoto & Oosawa, 2012). 

Technological networks (e.g. the Internet, transportation networks and power grids), biological 

networks (e.g. metabolic systems, proteins and neural networks) and social networks (e.g. 

friendship networks or collaboration among scientists) represent concrete examples in which 

complex networks are used as a methodology for the description and modeling of complex 

systems (Newman, 2010).  

Recently, complex networks have been used in manufacturing. An example is the study of 

structural characteristics of material flow systems to deduce appropriate consequences for de-

cision-makers (e.g. Becker et al., 2014; Omar, Minoufekr, & Plapper, 2018; Vrabič et al., 2013).  

 

Figure 3.1: Four crucial steps in the clustering process. Modified from Xu & Wunsch (2005).  

The structure of this chapter is based on the process shown in Figure 3.1. The first section 

(3.1) presents the relevant terms and concepts from complex network theory. In Section 3.2, 

the transformation of job routing data into a network representation is described in detail. The 

next section (3.3) introduces two structural properties that can be found in real-world networks. 

A detailed definition of the term cluster is given in Section 3.4. The last two sections provide 

an overview of classification options of well-known clustering algorithms (Section 3.5) and 

evaluation and validation possibilities for the resulting clusters (Section 3.6). This is followed 

by a brief summary in Section 3.7. This chapter is intended to give an impression of the mani-

fold possibilities and should not be considered exhaustive. 
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3.1 Basic Notions in Graph Theory 

Complex networks can be formally described using graph theory. Graphs and networks help 

scientists to understand and study complex systems, and the two terms are used interchangeably 

in this thesis. The necessary theoretical knowledge is discussed below. The explanations are 

limited to terms and concepts that are essential for this thesis. Detailed descriptions of graph 

theory and complex networks theory appear in Albert and Barabási (2002), Newman (2003), 

Boccaletti, Latora, Moreno, Chavez, and Hwang (2006) and Diestel (2017).  

Graph Definitions Formally, a graph G = (V, E) comprises a set 𝑉of |𝑉| = 𝑁 vertices (also 

called nodes) and a set 𝐸 ⊆ 𝑉 × 𝑉 of |𝐸| = 𝑀 edges (also called links). It is possible to extend 

the definition of a graph regarding the edge direction and edge weight. Where edges have a 

direction, represented graphically by arrows (see Figure 3.2b), this is called a directed graph. 

The connection between two nodes of G can be characterized by two arrow directions: 

• tuple of (𝑖, 𝑗) specifies the arrow direction from 𝑖 to 𝑗  
• tuple of (𝑗, 𝑖) describes the arrow direction from 𝑗 to 𝑖.  

For undirected graphs (see Figure 3.2a), (𝑖, 𝑗) = (𝑗, 𝑖) applies. Regardless of whether it is a 

directed or undirected graph, assigning a real number to an edge 𝜔𝑖𝑗 → ℝ results in a weighted 

graph (see Figure 3.2c). The edge weight usually represents the intensity of a connection be-

tween any two nodes. Typical examples for edge weights are distances, costs or amount of flow.  

 

Figure 3.2: Graph definitions. (a) Nodes are illustrated as circles and edges as lines between 

nodes. (b) For the directed graph, the edge direction is indicated as an arrow. (c) 

For the weighted graph, the edge values represent the weights. A weighted graph 

can be both directed and undirected.  

Adjacency Matrix Real systems typically comprise up to 1,000 nodes and are characterized 

by many connections between the nodes (Newman, 2003). Therefore, more complex calcula-

tions are necessary. For simplification, the mathematical representation as an adjacency matrix 

is widely used (Boccaletti et al., 2006). This matrix includes the relations of the individual 

nodes N of a graph G. The adjacency matrix A of an unweighted graph G is an 𝑁 × 𝑁 matrix, 

where the entries 𝐴𝑖𝑗 are defined as follows: 

𝐴𝑖𝑗 = {
1, if (𝑖, 𝑗) ∈ 𝐸,
0, otherwise.

 (3.1) 

Taking into account edge weights, the entries 𝐴𝑖𝑗 change to: 
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𝐴𝑖𝑗 = {
𝜔𝑖𝑗 , if (𝑖, 𝑗) ∈ 𝐸,

0, otherwise.
 (3.2) 

For the graphs illustrated in Figure 3.2, the following adjacency matrices are obtained: 

𝐴(𝐺(𝑎)) =

(

 
 

0 1 1 1 0
1 0 1 1 0
1 1 0 1 1
1 1 1 0 1
0 0 1 1 0)

 
 

, 𝐴(𝐺(𝑏)) =

(

 
 

0 1 1 1 0
0 0 0 1 0
0 1 0 1 1
0 0 0 0 0
0 0 0 1 0)

 
 

, 

𝐴(𝐺(𝑐)) =

(

 
 

0 3 2 6 0
0 0 0 4 0
0 2 0 3 1
0 0 0 0 0
0 0 0 2 0)

 
 

. 

(3.3) 

For undirected graphs, the adjacency matrix is symmetric because 𝐴𝑖𝑗 = 𝐴𝑗𝑖. 

Complete Graph In graph theory, the term complete graph describes the case where each 

node is connected to every other node of a graph. If only one edge is missing between any two 

nodes, this is called an incomplete graph (Reichardt, 2009). 

Subgraph A graph GS = (VS, ES) is a subgraph of G = (V, E), if 𝑉𝑆 ⊆ 𝑉 and 𝐸𝑆 ⊆ 𝐸. Hence, 

a subgraph is a subset of nodes in which the nodes are connected only by the edges that also 

occur in the original graph (Costa, Rodrigues, Travieso, & Villas Boas, 2007). Edge character-

istics such as weights or directions are also adopted.  

Clique A subgraph of an undirected graph G that is fully connected is referred to as a clique 

(Schaeffer, 2007). The size of a clique is defined by its number of nodes. A maximum clique is 

a clique of the largest possible size. If a clique comprises k nodes, it is referred to as a k-clique.  

Node degree In general terms, the node degree 𝑘𝑖 is defined as the number of edges a node 

i has with the remaining nodes (Newman, 2003). For directed graphs, a distinction is made 

between incoming and outgoing edges. The number of incoming edges indicates the in-degree 

𝑘𝑖
𝑖𝑛 of a node, and the number of outgoing edges indicates the out-degree 𝑘𝑖

𝑜𝑢𝑡 of a node (Boc-

caletti et al., 2006).  

In the case of weighted graphs, the edge weights must be considered. Hence, the node degree 

is referred to as weighted degree or node strength 𝑠𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=1  (Barrat, Barthélemy, Pastor-

Satorras, & Vespignani, 2004). Accordingly, weighted in-degree 𝑠𝑖
𝑖𝑛 and weighted out-degree 

𝑠𝑖
𝑜𝑢𝑡 can be calculated when analyzing directed graphs (Opsahl, Agneessens, & Skvoretz, 

2010). A node without any edges represents a special case and is referred to as an isolated node 

(Albert & Barabási, 2002).  

Path In an unweighted and undirected graph, a path is a node-to-node connection, where 

any two consecutive nodes are connected by an edge. The path length is determined by the 

required number of edges to traverse from one node to another (Albert & Barabási, 2002). There 
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can be multiple paths between two nodes. The shortest path length 𝑑𝑖𝑗 specifies the least re-

quired number of edges to traverse from node i to node j (Boccaletti et al., 2006).  

Density The ratio of actual edges to the number of theoretically possible edges is defined 

as density D (Albert & Barabási, 2002). Mathematically, for unweighted and undirected graphs, 

density is defined by the following equation: 

𝐷 =  
2|𝐸|

|V|(|V|−1)
. (3.4) 

For directed, unweighted graphs, D is calculated as 

𝐷 =  
|𝐸|

|V|(|V|−1)
. (3.5) 

If there are no connections between any nodes, meaning there are only isolated nodes, the 

density is 0. By contrast, D is 1 if the graph is complete. Therefore, the density value ranges 

from 0 to 1. For weighted graphs, the number of edges can be replaced by the sum of their 

weights (Arratia & Mirambell, 2021). 

Clustering Coefficient For an unweighted and undirected graph, the clustering coefficient 

C of a given node i is defined as the ratio of existing edges 𝑒𝑖 between the node’s neighbors and 

potentially possible edges (Watts & Strogatz, 1998). If the neighbors of the observed node are 

fully connected, the clustering coefficient is 1. With only a few edges within its neighborhood, 

the value is close to 0. The equation for C is 

𝐶 = 
2𝑒𝑖

𝑘𝑖(𝑘𝑖−1)
. (3.6) 

Random Walk A random walk generally represents a specific sequence of visited nodes, 

starting at node i and randomly selecting the next node j among its neighbors. A random walk 

is a stochastic process (Göbel & Jagers, 1974). The random walk picks the next step uniformly 

and at random from among all neighbors of a given node. The probability of the transition from 

node i to node j depends on the node degree 𝑘𝑖. The transition probabilities are summarized in 

a transition matrix P. The transition probability 𝑃𝑖𝑗 on an undirected graph is given by  

𝑃𝑖𝑗 = {

𝐴𝑖𝑗

𝑘𝑖
, if (𝑖, 𝑗) ∈ 𝐸,

0, otherwise.

 (3.7) 

The length l of a random walk is given by the number of steps required to traverse from 

node i to node j (Lovász, 1996).  
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3.2 Modeling Material Flow Systems as Complex Networks 

The following explanations on the modeling of material flow networks as complex networks 

refer to Becker et al. (2014) and Wagner and Becker (2016). Within manufacturing systems, 

jobs are a form of routing between individual work systems. This routing creates material flows. 

A network model offers a clearly structured and easy-to-understand representation of the actual 

material flow. Such a network-based representation has the advantage that the focus is placed 

on the routing of jobs and the interactions between individual work systems, not on the under-

lying process or the manufacturing layout (Vrabič et al., 2012). The data required for the net-

work representation can be obtained from the Manufacturing Execution System (MES).  

Figure 3.3 shows an example of a data list of the internal material flows and how these data 

can be transferred into a network representation. Each line in the table contains all the infor-

mation about a specific processing task. For each job, the job identity (ID) (first column), work 

system ID (second column) and time at which the job execution started (third column) are dis-

played. The table is sorted in ascending order, first by the job ID and then by the execution start 

time. As evident from the job ID, each job comprises one or more operations. Each work system 

represents a node in the network model. The material flow between any two work systems is 

represented by a directed edge. Depending on the required level of detail, an edge weight can 

optionally be added that corresponds to the aggregate material flow between any two work 

systems. The edge weight reflects the intensity and relevance of interactions between two work 

systems. A material flow system can thus be represented by a directed and weighted graph. 

 

Figure 3.3: Transformation of feedback data from Manufacturing Executions Systems (MES) 

into a network representation. Each work system is represented by a node, and the 

material flow between two systems is represented as edges. Edges have directions 

that show the orientation of flow. Edge weights are assigned to represent the amount 

of material flow between any two nodes.  

This section has given a short overview of how job routing data can be used to create a 

network representation of a material flow system. The following section discusses the structural 

properties of real-world networks, some of which are also found in material flow networks. 

job ID work system ID time

#1000 - 1 #1 10/7/2021 08:02:20 

#1000 - 2 #3 10/7/2021 08:15:25 

#1000 - 3 #5 10/7/2021 08:30:28 

#1001 - 1 #2 10/7/2021 08:05:20 

#1002 - 1 #4 10/7/2021 08:32:27 

#1002 - 2 #3 10/7/2021 08:37:30 

#1002 - 3 #5 10/7/2021 08:42:32 
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3.3 Structural Properties of Real-World Networks 

Access to real-world data enabled researchers precise analysis of networks in terms of their 

common structural properties. This information helped to illustrate how individual structural 

properties evolve and how they relate to each other. To this end, the properties of real-world 

networks were compared to those of random networks. In random networks, connections be-

tween any two nodes are distributed by chance (Boccaletti et al., 2006). By comparing real 

networks with random networks, scientists can determine whether the structural properties in 

real networks are significant or the result of random processes (Newman, 2010). Among the 

many properties that occur in real-world networks, scale-freeness and small-world-ness are 

considered the most important (Newman, Barabási, & Watts, 2006). 

Scale-freeness means there are many nodes with only a few connections as well as some 

nodes with many connections to other nodes. The degree distribution of a scale-free network 

fits a power-law (Barabási, Albert, & Jeong, 2000). Barabási, Albert, and Jeong (1999) con-

cluded that this structural property occurs because new nodes tend to attach to existing nodes 

that possess many edges to other nodes. This process is referred to as preferential attachment. 

Furthermore, scale-free networks are considered robust, at least when nodes fail randomly. 

However, if highly connected nodes are removed on purpose, the network quickly collapses 

into several sub-graphs (Boccaletti et al., 2006). These nodes, therefore, take a leading part 

regarding system’s behavior (Barabási et al., 1999).  

Vrabič et al. (2012) demonstrated the scale-freeness of material flow networks. Small-world 

networks are characterized by a short average path length between any two nodes and a high 

average clustering coefficient (Albert & Barabási, 2002; Travers & Milgram, 1969). This is 

reflected in a degree distribution where all nodes have nearly the same degree. Such networks 

are particularly well suited for disseminating information within the respective network (Boc-

caletti et al., 2006).  

This section has introduced the important terms and concepts related to graph theory and 

used throughout this thesis. The next step is to describe how clusters can be defined, identified 

and evaluated. 

3.4 Network-based Definitions of Clusters 

The major benefit of finding clusters is that they support discovering and understanding the 

internal organization of a network. A cluster is generally defined as a group of elements with 

similar properties (Schaeffer, 2007). Therefore, it is assumed that a cluster reflects a special 

relationship between its nodes (Fortunato, 2010).  

Clustering refers to a process where elements are assigned to individual clusters, with the 

aim of ensuring that elements within a cluster are more similar than they are to elements of 

other clusters. Similarity measures therefore play a major role in clustering. Depending on the 

particular application, a distinction can be made between different similarity measures. For ex-

ample, the similarity of product groups can be described based on common characteristics (e.g. 

size, color) (Zhang, Priestley, DeMaio, Ni, & Tian, 2021).  

In complex network theory, the degree of similarity is usually determined by the connect-

edness of nodes. This creates a cluster with strongly connected nodes. Moreover, these nodes 

have only a few connections to the nodes of other clusters (Fortunato, 2010; Schaeffer, 2007). 
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In cases where nodes within a cluster are fully connected, they are referred to as a clique (Palla, 

Derényi, Farkas, & Vicsek, 2005). Therefore, a clique is a special case of a cluster. The size of 

a clique is usually user-defined. Finding cliques of the maximum possible size is considered 

algorithmically difficult (NP-complete) (Schaeffer, 2007). However, this definition of clusters 

is rather restricted and a broader definition is used in this thesis. There is a need to modify this 

broader definition of clusters regarding the weights and directions of edges as relevant infor-

mation about the intensity and orientation of material flows.  

There is relatively little literature that considers the edge weights (Lancichinetti & Fortu-

nato, 2009b). Fan, Li, Zhang, Wu, and Di (2007) showed the effects that arise from considering 

edge weights and confirmed that the cluster topology of a network changed significantly with 

varying edge weights. Usually this means that the broader cluster definition from above is ex-

tended to include edge weights. According to Brandes, Gaertler, and Wagner (2007), the sum 

of edge weights within a cluster should be higher than to rest of the network.  

For directed graphs, two types of clusters can be distinguished, namely density-based clus-

ters and pattern-based clusters (Malliaros & Vazirgiannis, 2013). The density-based definition 

of a cluster is essentially identical to the above definition for undirected cases. In the pattern-

based definition of a cluster, the edge directions are used to find nodes with similar patterns of 

connections. It is assumed that these nodes are merged to one cluster. Malliaros and Vazirgian-

nis (2013) mentioned co-citation and flow as examples of potential patterns. Here, the flow-

based definition of a cluster seems highly relevant, since the routing of jobs corresponds to a 

flow. Therefore, nodes are merged according to the flow pattern. By analogy to the density-

based definition of a cluster, the flow within a cluster should be larger than to rest of the net-

work. However, Malliaros and Vazirgiannis (2013) highlighted that density- and pattern-based 

clusters quite often arise within the same network.  

To summarize, there is no clear and generally accepted definition of clusters in the literature. 

Moreover, it is important to determine whether edge weights and/or edge directions should be 

included in the definition of a cluster. Generally, all available information should be included 

for better clustering results (Fortunato, 2010). The definition of a cluster is important because 

it provides a necessary orientation when choosing an appropriate clustering algorithm. As de-

scribed in Section 3.2, material flow systems can be modeled as directed and weighted net-

works. For this reason, edge directions and edge weights should be considered when choosing 

an appropriate clustering algorithm for identifying autonomous clusters. Since the routing of 

jobs corresponds to a kind of flow, the flow-based cluster definition seems reasonable. Further-

more, due to the consideration of edge weights, a clustering algorithm needs to be able to iden-

tify a mixed type of flow-based and density-based clusters. In literature, there are numerous 

clustering algorithms which allow edge weights and/or edge directions to be considered. The 

following section provides an overview of the different types of clustering algorithms and in-

dicates the limitations of considering edge weights and directions. 

3.5 Classification of Clustering Algorithms  

In recent years, many clustering algorithms have been developed for different applications. 

Overviews of existing algorithms are provided by Schaeffer (2007), Fortunato (2010) and Dao, 

Bothorel, and Lenca (2020). However, there is no general agreement on how to classify the 

different clustering algorithms (Dao et al., 2020). In this thesis, clustering algorithms are clas-

sified according to the membership of nodes to each cluster. Most algorithms allow one node 

to belong to exactly one cluster (disjoint clusters). However, in recent years some extensions 
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regarding the membership of a node were made, and clustering algorithms were developed 

where a node is allowed to belong to one or several clusters (overlapping and fuzzy clusters).  

In the case that each node is assigned to exactly one cluster, clusters are referred to as dis-

joint clusters. Hierarchical and partitional clustering algorithms aim to identify such disjoint 

clusters. Hierarchical clustering can be further subdivided into agglomerative and divisive al-

gorithms. Agglomerative algorithms start with each node representing its own cluster. Next, 

they are successively merged using a similarity measure until all nodes end up in a single clus-

ter. To obtain the best clustering, the intermediate results from the merging are compared using 

quality criteria. With divisive algorithms, the procedure is the opposite, i.e. all nodes start in a 

single cluster (Scott, 2017). Then, this cluster is split into several clusters until each node rep-

resents its own cluster. Again, the intermediate results are evaluated. For both agglomerative 

and divisive algorithms, the same principle applies: if there is no improvement, the merging or 

splitting process is stopped.  

In summary, hierarchical algorithms have the advantage that the number of clusters is vari-

able, i.e. a predefinition of the number of clusters is unnecessary. However, according to Scott 

(2017), this aspect also has the disadvantage that it is up to the user to define a stop criterion 

for the merging or splitting process. This disadvantage is avoided when using partitioning al-

gorithms because the number of clusters is defined from the beginning, although this requires 

a good knowledge of the network topology (Fortunato, 2010). Partitioning algorithms work by 

randomly assigning existing nodes to clusters, and successively changing the membership of 

nodes until a desired cluster quality is achieved. Because of the reassignment of node member-

ship, partitioning algorithms are time-consuming (Fränti & Sieranoja, 2019).  

Palla et al. (2005) stated that some networks intrinsically have overlapping clusters, i.e. 

nodes can be members of more than one cluster. The authors indicated that friendship networks 

provide a good example. A person makes friends with other people depending on their interests, 

and within a friendship network, one node (person) may be part of several clusters (friends with 

similar interests). In fact, networks with many overlapping clusters are more difficult to handle 

for users as they tend to become blurry (Lancichinetti, Radicchi, Ramasco, & Fortunato, 2011). 

Fortunato (2010) presented a review of clustering algorithms that provide overlapping clusters. 

Another mechanism enables each node to belong to different clusters according to a certain 

degree of membership. These clusters are described as fuzzy clusters. In clustering algorithms 

that use the principle of fuzzy logic, each node is assigned a membership weight from the in-

terval [0, 1] for each cluster found (Fortunato, 2010). A value of 0 indicates that the node does 

not belong to the cluster and a value of 1 indicates that the node definitely belongs to the cluster. 

Any value between 0 and 1 indicates the probability of a node belonging to the cluster.  

With respect to material flow clusters, this classification of clustering algorithms according 

to the membership of nodes in each cluster has several implications. In overlapping and fuzzy 

clusters, work systems may belong to more than one cluster at the same time. This situation 

requires effective coordination among the clusters to check the current availability of work sys-

tems. Derived from the idea of the hybrid clustering-based approach, where no overall cluster 

coordination unit is intended, only algorithms that result in disjoint clusters are used in this 

thesis. In this approach, each work system belongs to exactly one cluster. 

Most clustering algorithms focus on unweighted and undirected networks. Particularly, the 

simultaneous consideration of edge weights and edge directions is rare. Furthermore, the con-

sideration of edge weights is easier than the consideration of edge directions (Lancichinetti et 
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al., 2011). This is partly because directed graphs are described using asymmetrical matrices, 

which makes calculations particularly complicated (Fortunato, 2010). In their systematic re-

view on clustering in directed networks, Malliaros and Vazirgiannis (2013) provided a sum-

mary of 27 popular clustering algorithms that can be extended to include edge directions. 

Lancichinetti and Fortunato (2009b) evaluated a set of seven clustering algorithms regarding 

their performance in directed and/or weighted networks. They created networks with different 

predefined cluster topologies according to various parameters, such as cluster sizes and the 

number of clusters, and thus covered a wide range of applications. Their findings suggest that 

in networks with well-defined clusters, the clusters can be identified equally well by several 

algorithms. Essentially, any algorithm is able to find clusters in any network, and thus it is 

crucial to evaluate the quality of the resulting clusters (Fortunato, 2010). 

3.6 Cluster Validation for Weighted and Directed Networks 

In the light of the fact that algorithms are able to find clusters in any given data set, evaluating 

the quality of the clustering results is essential. There are two ways to evaluate the quality of 

clustering: (i) quality measures can be used, especially where little is known about cluster to-

pology, or (ii) the algorithm is applied to networks with a priori known cluster topology (also 

referred to as benchmark graphs; Fortunato, 2010). Both possibilities are described below.  

Quality Measures 

In literature, there is a variety of measures that can easily be adopted to evaluate the quality 

of clustering algorithms. One of the main advantages of using such quality measures is that no 

prior knowledge of the underlying cluster topology is required (Arratia & Mirambell, 2021). 

However, some of these measures have a dual function and are also used as objective functions 

in optimization clustering algorithms. The simultaneous use of the same measure as both an 

objective function and a quality measure positively influences the performance evaluation of a 

clustering algorithm (Schaeffer, 2007). Hence, this could mean that when the results of two 

different clustering algorithms are compared, one algorithm might be preferred. It is important 

to select quality measures that are objective and do not favor a specific clustering algorithm.  

Several quality measures are provided for unweighted and undirected networks. An over-

view of quality measures for unweighted and undirected cases can be found in Brandes, Gaert-

ler, and Wagner (2003), Schaeffer (2007) and Yang and Leskovec (2015). They focused mainly 

on quality measures for weighted and directed networks. Brandes et al. (2007) and Arratia and 

Mirambell (2021) adapted well-known quality measures for weighted networks. Brandes et al. 

(2007) indicated possible weaknesses in the quality measures used in their study and proposed 

using a combination of these measures to compensate for those weaknesses. Arratia and Miram-

bell (2021) indicated that some quality measures (e.g. internal density) are determined by the 

number of identified clusters. These measures penalize algorithms that find a few large clusters 

and reward those that find many small clusters. Weighted modularity, by contrast, seems to 

offer a measure that is not notably affected by this issue and is therefore better suited. Malliaros 

and Vazirgiannis (2013) surveyed directed graphs and stated that the directed version of mod-

ularity was the most widely used quality measure.  

Based on these findings and the fact that modularity is one of the few measures that can 

integrate both edge weights and edge directions. Modularity is calculated as the difference be-

tween the total number of edges within a cluster and the total number of edges in a randomly 

generated network having same degrees of nodes. Modularity values range from 0 to 1. For a 
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detailed mathematical description, the reader may refer to Newman and Girvan (2004) and Are-

nas, Duch, Fernández, and Gómez (2007).  

It is a challenge to relate the network-theoretical perspective of cluster validation to the 

logistic-based perspective, since they can strongly differ. Just as there is no single correct qual-

ity measure, it must also be decided as the case arises what measure is appropriate in the context 

of autonomous clusters. Little experience is available. However, researchers agree that material 

flow clusters should be identified based on the interactions of their elements. The quality 

measures presented here can therefore be applied to the identified material flow clusters.  

Synthetic Graphs 

Alternatively, the performance of a clustering algorithm can be demonstrated based on net-

works with a priori known cluster topology. This approach requires real-world networks with 

known cluster topology, which are quite rare (Fortunato & Hric, 2016; Khan & Niazi, 2017). 

Hence, in recent years a number of models to synthetically create networks with a built-in clus-

ter topology have been introduced. Such models allow a built-in cluster topology to be modified 

to meet specific application needs (Aldecoa & Marín, 2013). 

The most well-known existing synthetic or benchmark graphs – these two terms are often 

used interchangeably – are based on the planted l-partition model (Fortunato, 2010). Hence, it 

was selected as a starting point. The planted l-partition graph comprises n nodes that are split 

into l clusters with equal size, where p indicates the probability that two nodes of the same 

cluster are connected, and r represents the probability that two nodes of different clusters are 

connected. The Girvan-Newman (GN) benchmark graph is a simple model that results in net-

works with same node degrees and clusters with same sizes (Fortunato & Hric, 2016; Girvan & 

Newman, 2002). However, in many real-world networks, node degrees and cluster sizes follow 

a power-law distribution (Clauset, Shalizi, & Newman, 2009). As a result, many clustering 

algorithms perform well on GN benchmark graphs (Danon, Díaz-Guilera, Duch, & Arenas, 

2005).  

The Lancichinetti–Fortunato–Radicchi (LFR) benchmark graph was proposed by Lancich-

inetti and Fortunato (2009a) to overcome the above problem. The following parameters (among 

others) are used: number of nodes n, exponent for the degree distribution, exponent for the 

cluster size distribution and mixing coefficient μ. The latter specifies how well-defined the clus-

ters are. The larger the μ, the more blurred clusters the become and the harder it is to detect 

them (Orman, Labatut, & Cherifi, 2012). This model is characterized by a power-law distribu-

tion of node degrees and cluster sizes. This makes the network topology complex and the iden-

tification of clusters difficult, which means some clustering algorithms perform poorly 

(Lancichinetti & Fortunato, 2009b; Orman et al., 2011). LFR graphs are now widely used as a 

standard benchmark graph.  

Another type of benchmark is based on relaxed caveman (RC) structures, where initially it 

is assumed that networks are created by isolated cliques. In the next step, the edges within these 

cliques are rewired with a probability p. The initial clique structures become more blurred by 

increasing the edge rewiring probability p (Schaeffer, 2007). In analogy to LFR graph, the iden-

tification of clusters becomes more difficult. Three parameters are required to create RC bench-

mark graphs: number of clusters c, cluster sizes s and edge rewiring probability p. Accordingly, 

it is a simple model that is easy to use. Although RC benchmark graphs do not reflect the char-

acteristics of a real-world network, they – along with the LFR graph – are widely used as a 

standard benchmark graph (Aldecoa & Marín, 2013). 
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Regarding the consideration of edge weights and/or edge directions, two benchmark graphs 

have been notably modified. The GN benchmark was extended to include edge weights (Fan et 

al., 2007), and the LFR model was modified to take into account both edge weights and edge 

directions (Lancichinetti & Fortunato, 2009b). The modified LFR model also allows creating 

networks with overlapping clusters (i.e. nodes belonging to more than one cluster). However, 

these models do not consider any kind of flow within the generation process as it is required 

for material flow networks. 

The overall conclusion is that there are numerous models to create benchmark graphs with 

a built-in cluster topology, but there remain significant structural differences between them and 

real-world networks (Orman et al., 2012). This fact must be considered when using the models 

to evaluate the performance of clustering algorithms.  

Typically, to test the performance of a single clustering algorithm or to compare the clus-

tering results of two or more clustering algorithms, the researcher generates a set of benchmark 

graphs with varying degrees of well separated clusters. In the next step, these clustering results 

are compared with the built-in cluster topology of the respective benchmark graph to quantify 

the similarity (Lancichinetti & Fortunato, 2009b). There are several similarity measures, of 

which the information-theoretical measures are most popular (e.g. Orman et al., 2011). They 

include the normalized mutual information (NMI) value. NMI is an entropy-based metric that 

quantifies the amount of information shared between two clustering results (Vinh, Epps, & 

Bailey, 2010). It can take values between 0 and 1. The higher the value, the more similar the 

clustering results of the two networks; 1 means that results are a perfect match, whereas values 

close to 0 indicate dissimilarity between the clusters. Normalized NMI can be used to compare 

the results of two clustering algorithms, where the number of identified clusters varies (van der 

Hoef & Warrens, 2019). Such similarity measures are also used to compare the clustering of 

different algorithms to ascertain whether the results are consistent (Malliaros & Vazirgiannis, 

2013).  

3.7 Summary 

Clustering algorithms are typically developed to help to solve specific problems. Therefore, not 

every clustering algorithm is applicable for all problems and it requires validation before it can 

be used. Furthermore, edge weights and edge directions are still not widely considered. In par-

ticular, only a few models generate weighted and directed synthetic networks. Notably, most 

existing models do not allow for considering any kind of flow within the process. The next 

chapter introduces a method for the generation of networks with predefined cluster topology 

considering the material flow.
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4 Generating Material Flow Networks with Vary-

ing Cluster Topology  

Data relating to production processes are not widely available (Nyhuis et al., 2014) and there is 

a lack of models to generate weighted and directed networks that consider any kind of flow 

within the process (compare Section 3.6). The aim of this chapter is to develop and evaluate a 

methodological approach to generate material flow networks. The overall objective of this the-

sis is to ascertain whether (and to what extent) the cluster topology of a material flow network 

affects the achievement of logistic objectives when job sequencing occurs decentrally, within 

previously identified material flow clusters. The proposed methodological approach should be 

sufficiently flexible to allow generating networks with varying cluster topology with relatively 

little effort.  

Although the term cluster was defined in detail in the previous chapter. Here, it must first 

be determined what type of clusters may coexist within a network to generate networks with 

varying cluster topology. Furthermore, an appropriate concept from network theory needs to be 

selected to imitate the material flow within a system (see Section 4.1). The next step is to eval-

uate the methodological approach (Section 4.2). To gain knowledge on how different parame-

ters influence the cluster topology, the main results are given (Section 4.3). This is followed by 

a summary in Section 4.4. Parts of this chapter have been published in Wagner and Becker 

(2018). 

4.1 Methodological Approach  

According to the definition of a cluster given in Section 3.4, a rough distinction can be made 

between strong and weak clusters. Figure 4.1 shows examples of two networks with different 

cluster topologies. They differ particularly in the degree of interconnection (Schaeffer, 2007). 

In strong clusters the nodes are more connected to each other compared to the rest of the net-

work. By contrast, in weak clusters the nodes have fewer connections between each other and 

therefore more edges connected to the rest of the network. For weak clusters, there is a risk that 

the structure will become too weak and the clusters will be no longer identifiable. Radicchi et 

al. (2004) offered a precise definition of strong and weak clusters. They assumed that in a strong 

cluster, any node has more connections within a certain cluster than to the rest of a network. 

Their definition of a weak cluster fits with the one of strong clusters. However, they highlighted 

that for some use cases, a slight variation of the definition is required. Regarding the effective-

ness of the hybrid clustering-based approach, there is no evidence related to the influence of 

cluster quality; hence, a less strict definition seems sufficient for this thesis. 
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Figure 4.1: A distinction can be made between (a) strong and (b) weak clusters depending on 

the degree of interconnection. This partition can also be applied to weighted di-

rected networks. 

For creating networks with varying cluster topology, it seems insufficient to distinguish 

between strong and weak clusters, as a more global perspective is required. For example, net-

works can contain many or few clusters (Lancichinetti & Fortunato, 2009b). Another way to 

vary the cluster topology of networks is through defining the size of clusters (Lancichinetti 

& Fortunato, 2009b). For example, networks may display a few large or many small clusters 

(Figure 4.2). 
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Figure 4.2: Networks with differing cluster topology, showing two extreme scenarios. (a) This 

network has a few large clusters. (b) A reduction in cluster sizes may lead to many 

small clusters. Other intermediate levels are possible; e.g. many large clusters with 

a few small clusters. The focus here is on the number and size of clusters and not 

on the correct representation of their degree of interconnection. 

All the above descriptions assume disjoint clusters, i.e. each node is assigned to exactly one 

cluster. This is derived from the definition of decentralized control systems in Chapter 2. Thus, 

each cluster represents an individual control unit. In addition, all potential types of clusters can 

coexist in one network. Ideally, they can all be affected to achieve a sufficiently high degree of 

flexibility in the network design. To meet this requirement, numerous models have been pro-

posed in literature; a short overview appears in Section 3.6. Some models, such as the LFR 

model, address edge directions and edge weights. However, material flow networks arise 

through job routing and processing; that is, jobs flow from one work system to the next in a 

certain order. A possible approach to simulate such dynamic processes is the random walk 

(Barrat, Barthélemy, & Vespignani, 2008). Essentially, a random walk is a stochastic process: 

the walker moves randomly within a network until the process is stopped (Bollobás, Riordan, 

Spencer, & Tusnády, 2006). The result is a node sequence, which is equivalent to the sequence 

of the operations of a job. A precise mathematical description of random walks appears in 

Lovász (1996).  

Random walks are used in different areas and for different purposes (e.g. Lü & Zhou, 2011; 

Newman, 2005). Recently, new clustering algorithms have been developed based on the con-

cept of random walks. The main idea is that once entered into a cluster, a random walk visits 

many of the cluster’s nodes and therefore remains in the cluster for a while (Fortunato, 2010; 

Pons & Latapy, 2006). In this way, the different clusters can be identified. This concept com-

pletes the idea of using random walks to generate material flow networks with varying cluster 

topology.  
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The originality of the proposed methodological approach in this thesis concerns the integra-

tion of the desired cluster topology and a realistic manufacturing environment. Essentially, the 

approach builds on the general procedure for generating synthetic networks. First, information 

about the desired material flow network properties needs to be specified, including, for exam-

ple, the number of nodes and some general characteristics of the cluster types. Furthermore, 

when defining a manufacturing environment for a simulation study, data on the relevant work 

systems and jobs need to be considered (Holthaus, 1996). Work system data are considered in 

the first step (Section 4.1.1), whereas job data are specified toward the definition of random 

walks in the second step (Section 4.1.2). Moreover, information from real data sets can be in-

cluded or own assumptions can be made at any step. In the following section, the individual 

steps are described in further detail. 

4.1.1 Definition of the Underlying Network 

A suitable network topology must be selected, which forms the basis for the random walk pro-

cess. Such a network is referred to as the “underlying network” (Cupertino, Carneiro, Zheng, 

Zhang, & Zhao, 2018; Rosvall, Axelsson, & Bergstrom, 2009). The definition of the underlying 

network is crucial, since the links between individual nodes represent potential routes for the 

random walks. Hence, random walks mainly affect the edge weights and directions but do not 

create any new edges.  

Generally, any real-world manufacturing system can be used as an underlying network. 

However, if it is desirable to plant certain network properties – like cluster topology in this case 

– then existing networks models should be used. Through the use of predetermined model pa-

rameters, different network topologies can be created. Based on the above specification of var-

ious cluster types, the following parameters should take different values: specification of (i) the 

total number of nodes (i.e. number of work systems) in the network, (ii) the number of clusters, 

(iii) the cluster sizes and (iv) the degree of interconnection between individual clusters. If pos-

sible, to enhance the transparency and simplicity, the network model should only be adjustable 

using these four parameters.  

A model that meets these requirements is the RC graph. As explained earlier, the RC graph 

is defined by three parameters (the number of clusters c, the cluster size s and the probability p 

that clusters are interconnected; Schaeffer, 2007). The number of nodes results from the product 

of c and s. Furthermore, the strictest definition of a cluster is assumed, which means that all 

nodes in a cluster are interconnected, with a low p-value. For higher p-values, clusters become 

more blurred and cannot be clearly identified, which leads to unequal cluster sizes (Aldecoa 

& Marín, 2013). Increasing the p-value has also the effect of reducing the number of clusters in 

a network. Regardless of the clustering algorithm used, there is effectively an upper limit for p, 

after which all nodes result in one giant cluster (Chin & Ratnavelu, 2016). The upper limit value 

depends on the respective use case and must be determined individually.  

To summarize, the p-value has a substantial influence on the resulting cluster topology. 

Regarding the parameters c und s, they require further investigation. Since the underlying net-

works are considered crucial for the random walks, one aim is to show how these three network 

parameters correlate and affect the resulting cluster topology.  
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4.1.2 Definition of Random Walks  

When jobs are created in a simulation study, time-related data and technological data are re-

quired to describe their characteristics (Holthaus, 1996). While time-related data (e.g. job pro-

cessing time and job arrival time) become relevant when running the simulation study (see 

Chapter 6), technological data may affect the network topology. To use technological data dur-

ing the process of creating material flow networks with varying cluster topology, equivalent 

parameters for random walks can be found in literature. Table 4.1 provides a summary of rele-

vant parameters. However, random walk assumptions are constrained by the assumptions made 

for the underlying network. 

Technological data Random walks 

Total number of jobs Total number of random walks (Lü & 

Zhou, 2011) 

Number of operations of an individ-

ual job 

Number of steps of an individual ran-

dom walk (Pons & Latapy, 2006) 

Job routing under technological con-

straints 

Start- and endpoint of a walker (Lü & 

Zhou, 2011) 

Selection of the next step of a walker 

(Pons & Latapy, 2006) 

Table 4.1: Comparison of technological data (derived from Holthaus 1996) and equivalent 

random walk parameters to describe the characteristics of jobs. 

In conducting a simulation study, it may be necessary to define how many jobs must be 

processed in a certain period. Usually, this is a fixed number and is described by the parameter 

total number of random walks. Depending on the assumptions related the underlying network, 

a sufficient number of random walks is necessary to adequately capture the hidden cluster to-

pology. Furthermore, running many random walks increases the edge weights (Wagner & 

Becker, 2017). This point might be important when running a clustering algorithm.  

Each job comprises a specified number of operations, expressed by the parameter total num-

ber of steps of individual random walks. This parameter is either fixed or variable. Depending 

on the cluster sizes, random walks with few steps generally perform more poorly in recognizing 

the hidden cluster topology than do random walks with more steps. Accordingly, from the net-

work perspective, the values of this parameter should be variable.  

Depending on the production type on hand, it might be that jobs have to be processed in a 

certain work system sequence. For example, in a flow shop, the sequence is the same for all 

jobs, and in a job shop it varies depending on the job type (Lödding, 2013). In this thesis, the 

assumptions made for random walks are based on the job shop characteristics because autono-

mous control methods are better suited for job shop environments (as described in Chapter 2). 

The parameters start- and endpoint of a random walk describe the first and last work system on 

which a certain job needs to be processed. Both start- and endpoint can be defined in advance. 

For a given endpoint, a walker must enable achieving this endpoint. However, because of the 

predefined number of steps of a random walk and the existing edges between the individual 
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nodes, the endpoints are not always achieved, and thus start- and endpoints are determined 

randomly. Additionally, the parameter selection of the next step should be added. Derived from 

previous work, the next step of a walker can be individually set in advance or in the middle of 

the random walk process. Due to the fixed topology of the underlying network, it is difficult to 

establish predefined routes for the random walks. Given this restriction, it is assumed that the 

selection of the next step is purely random, with every neighboring node having an equal prob-

ability of being chosen. The fact that the selection of the next step is restricted can be seen as a 

technological constraint.  

4.2 Experimental Setup and Evaluation 

The proposed methodological approach was evaluated, and its performance was assessed on 

various underlying networks having different parameter configurations. The findings help to 

explain how the parameter values of the underlying network affect the desired cluster topology. 

For this purpose, real historical data derived from the ERP system of a medium-size tool and 

assembly manufacturer were used.  

From the combination of a high number of variants and low volumes, it can be concluded 

that it is a single or small batch production in a job shop environment (Lödding, 2013). Because 

of the complexity of the routing processes, the use of autonomous control is appropriate, and 

this production environment is ideally suited for further simulation studies. However, when 

generating synthetic material flow networks with a certain cluster topology, it was not possible 

to consider all available information from the original data set. Where possible and appropriate, 

these dates were adopted in subsequent steps. 

Based on the selected real data set, the resulting material flow network should include a 

total number of 50 nodes. Depending on the field of application, complex networks may com-

prise up to several thousand nodes (Albert & Barabási, 2002). However, real material flow net-

works are considerably smaller. For example, in Becker et al. (2014), networks with between 

50 and 220 work systems were analyzed. Other material flow networks have included 99 nodes 

(Vrabič et al., 2013) or 199 nodes (Vrabič et al., 2012). By contrast, material flow simulations 

are performed with a wide range of work systems, such as from four to 223 (Freitag & Hilde-

brand, 2016; Holthaus, 1996; Vinod & Sridharan, 2010). The decisive factor here is that a net-

work should be sufficiently large so that a sufficient number of clusters can be found. Based on 

the results of Becker and Wagner (2015) and Wagner and Becker (2016), the assumption that 

the resulting network comprises approximately 50 nodes, creates an appropriate basis for fur-

ther analysis. Although a network and its elements are subject to changes due to dynamic pro-

cesses (Wagner & Becker, 2016), this study assumed that the number of nodes would remain 

constant over the studied period. 

When generating material flow networks, researchers face the challenging task of selecting 

the right configuration of the parameters c, s and p. Previous work on synthetic networks has 

indicated the effect of p on the resulting cluster topology. To date, it has not been fully assessed 

how the network topology changes for different combinations of c and s. Therefore, the value 

of p was varied for different combinations of c and s, as follows.  

The values for the parameters c and s of the underlying network result from the total number 

of nodes, whereby the product of these two parameters remains 50. The value of 50 has the 

factors 1, 2, 5, 10, 25 and 50, with 1 and 50 being trivial. Table 4.2 shows the different combi-

nation options of these two parameters. For experiments in this work, 36 underlying networks 
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of each possible configuration involving c, s ϵ {2, 5, 10, 25} and p ϵ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9} were generated.  

Combination c s 

1 2 25 

2 5 10 

3 10 5 

4 25 2 

Table 4.2: Possible combinations of number of clusters c and cluster size s to generate under-

lying networks with 50 nodes. 

Derived from the real data set, the following assumptions were made regarding the random 

walks. Overall, there are 3,702 random walks, with the length of each random walk ranging 

from 1 to 31. As in the original data set, material backflows are allowed. This means a walker 

is allowed to go back to a node that it has visited before. Additionally, in the definition of an 

underlying network, it can be differentiated whether a manufacturing system contains one or 

several work systems of the same type. This mainly depends on the type of production (Hol-

thaus, 1996; Lödding, 2013). Assuming that there are several work systems of the same type, it 

can happen that exactly these work systems result in one cluster. However, since a random walk 

selects its next step randomly, there is a high probability – especially for nodes with only a few 

neighboring nodes – that the walker will visit the same type of work system multiple times. 

This does not correspond to reality. Otherwise, one would have to restrict the random walks or 

force them to change the cluster. Therefore, it is assumed that there was only one unit of each 

type of work system. The remaining parameters (such as the start- and endpoint or the next step 

of a walker) were defined according to the general assumptions described in Section 4.1.2. Each 

of the 36 networks was generated 15 times with different random seeds.  

The setting and effect of parameters of the underlying network and of the random walks 

were analyzed for the resulting cluster topology. It should be considered that the cluster results 

significantly depend on the clustering algorithm used. However, the results of different algo-

rithms become more relatively similar if the clusters are relatively unique (Lancichinetti & For-

tunato, 2009b). Derived from the characteristics of a material flow network (see Section 3.2) 

and the desired cluster properties described at the beginning of this section, a clustering algo-

rithm should meet the following requirements:  

• integration of edge weights and edge directions 

• each node belongs to only one cluster (disjoint clusters) 

• no specification of the number of clusters or the size of individual clusters in advance. 

The challenge was that the integration of edge weights and edge directions makes a cluster-

ing algorithm more complex (Lancichinetti et al., 2011). It also limits the choice of available 

algorithms. The results of previous work on weighted and directed synthetic networks show 

that Infomap (IM) outperforms other algorithms (Lancichinetti & Fortunato, 2009a), and in 

unweighted and undirected networks it is one of the best-performing clustering algorithms (e.g. 

Aldecoa & Marín, 2013; Orman et al., 2011). This suggests that an algorithm that performs well 

for various synthetic networks is preferable to algorithms that work well only in a specific set-

ting. Additionally, the IM algorithm is especially suited for networks where connections be-

tween individual nodes describe a movement-pattern of flow (Rosvall & Bergstrom, 2008). It 

is therefore well suited for material flow networks.  
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The IM algorithm is an information-theoretical approach, which analyzes the flow in net-

works. For modeling the network flow, random walks are also used here. The basic idea is to 

identify clusters in which the flow remains for a relatively long time. This is achieved through 

minimization of the map equation, which describes the average description length of a random 

walker. A detailed description of the IM algorithm can be found in Rosvall and Bergstrom 

(2008) and Rosvall et al. (2009). 

To evaluate the effect of the underlying network on the cluster topology when applying 

random walks, the resulting clusters were compared with those of the underlying networks. To 

determine how closely the clustering results matched, NMI was used (for a definition, see Sec-

tion 3.6). This is a widely used metric to measure the similarity of two clustering results (van 

der Hoef & Warrens, 2019).  

In the next step, a measure to evaluate the quality of the individual clusters of the resulting 

network was used. According to the specifications mentioned at the start of this section, a dis-

tinction was made between strong and weak clusters. Modularity seemed to be a good indicator 

for this evaluation (for a definition, see Section 3.6). Higher values indicate that the nodes in a 

cluster have more connections to each other than to the rest of the network and thus represent a 

strong cluster. In addition, it is a widely used measure and is often used as a quality function in 

optimization algorithms (Fortunato, 2010). However, IM is based on information-theoretical 

principles. Overall, it seemed an appropriate measure for this use case as the assumptions on 

which the calculations were based varied.  

4.3 Influence of Parameters c, s and p on Cluster Topology 

The results of the NMI values are shown in Figure 4.3. As expected, depending on the selected 

configuration of the number of clusters c, cluster size s and probability p that clusters were 

interconnected, there were differences between the cluster results for the underlying networks 

versus the results after applying random walks.  
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Figure 4.3: Similarity is expressed in NMI for different combinations of c, s and p. The IM 

algorithm was used to find clusters. Each point in the diagram corresponds to the 

average value over 15 material flow networks. 

As described in Section 4.1.1, with increasing p, it becomes more difficult to identify clus-

ters due to blurry boundaries between them. However, the results imply that the impact of p is 

determined by the selected combination of parameters c and s. If the c-value is smaller than the 

s-value, the cluster results of the underlying network match the results from applying the ran-

dom walk approach, regardless of the p-value. However, if the c-value is larger than the s-value, 

the value of NMI drops with an increasing p-value. This means the clustering results differ 

strongly between individual networks. Thus, random walk’s performance is particularly sensi-

tive to combinations where c>s.  

In other words, specifying an underlying network with few large clusters (c<s) leads to 

these clusters remaining almost unchanged after applying random walks. Given this scenario, 

once a random walk enters a cluster, it remains trapped in it for a while. This fact is not changed 

for different p-values. By contrast, specifying an underlying network with many small clusters 

(c>s) means these clusters become blurry. Hence, the random walk changes between the clus-

ters more frequently, so the clusters of the resulting network no longer match those of the un-

derlying network. This is reinforced by a higher p-value. This result could be connected to the 

performance of the IM algorithm. Previous work on synthetic networks indicates that the per-

formance of the IM algorithm mainly depends on the average degree of nodes (e.g. Lancichi-

netti & Fortunato, 2009b; Orman et al., 2011).  

As evident in Figure 4.4, the combination of the parameters c and s has a significant influ-

ence on the average degree of nodes. In general, the larger c is in comparison to s, the higher 

the resulting average degree. This principle can be explained by the fact that in networks with 

only a few large clusters (e.g. c=2 and s=25), the nodes within these clusters have many edges 

between them. Thus, the individual nodes have a higher degree, which results in a higher aver-



44 

age degree. By contrast, in networks with many small clusters (e.g. c=25 and s=2), the individ-

ual nodes have a lower degree, and since random walks only use existing edges, this leads to a 

low average degree. The parameter p has little influence on the average degree for a fixed com-

bination of c and s (see Figure 4.4). However, the degree distribution is affected by varying p 

(Orman et al., 2011). The different degree distributions are necessary so that different cluster 

topologies can result. These results are also observed when considering edge weights.  

 

Figure 4.4: A small average degree leads to many clusters being found. By contrast, a high 

average degree means only a few clusters are found. Different values of p have 

relatively little effect on the average degree for a fixed combination of the parame-

ters c and s.  

A closer look at the correlation between the average degree and the number of identified 

clusters reveals that there seems to be an upper limit for p, above which all nodes end up in one 

giant cluster (see Figure 4.4). For example, this is the case where c<s, whereby the decisive 

factor is the exact combination of c and s. For c>s, as well as for larger p-values, several clusters 

can be identified. These results are also reflected when evaluating the cluster quality.  

As expected, the modularity steadily decreased for all combinations of c and s as the p-value 

increased, as evident in Figure 4.5. This can be explained by the increasingly blurry boundaries 

between clusters. Furthermore, it can be seen that the combination of c=25 and s=2 was nearly 

the best performer regarding modularity. The choice of a relatively large cluster size (c=2 and 

s=25) led to opposite results. Derived from the previous findings, a similar decrease in perfor-

mance was observed for the modularity. For example, modularity fell from 0.36 at p=0.3 to 0 

at p=0.4, for c=2 and s=25.  
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Figure 4.5: The measure modularity was used here to evaluate and compare the quality of clus-

ters for different combinations of c, s and p. 

When comparing the overall findings for different configurations of the parameters c, s and 

p, it is obvious that the parameter p has a major impact on the resulting cluster topology of a 

network, with the level of influence determined primarily by the combination of c and s. With 

this information, previous findings (e.g. Chin & Ratnavelu, 2016) can be updated regarding the 

influence of p on the resulting cluster output. Furthermore, the topology of the underlying net-

work in this methodological approach has a considerable influence on the topology of the re-

sulting material flow network. Thus, the creation of material flow networks with arbitrary prop-

erties is possible simply by using a different network model for the underlying network. 

4.4 Summary 

When developing this methodological approach, the main challenges faced were to determine 

what parameters should be used to define the cluster topology and what concept could be used 

to imitate the material flow resulting from job routing and processing. Initially, the following 

three parameters were identified to adequately describe the cluster topology: (i) the number of 

clusters c, (ii) the cluster sizes s and (iii) the degree of interconnection between individual clus-

ters p. Next, random walks were identified as one possibility to simulate such dynamic job 

routing processes. Each random walk stands for an individual job. This involved adapting as 

many assumptions as possible from a given real data set. Initial evaluation results showed that 

by combining different values of the three parameters and simultaneously apply the random 

walk process, it was possible to achieve a wide range of synthetic material flow networks with 

varying cluster topology. Examples are networks with few large clusters (c<s) or many small 

clusters (c>s). Definitive statements about appropriate initial values for the parameters c, s and 

p can only be made if the particular use case is specified in further detail. 
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In summary, 36 different material flow network models, which varied primarily in their 

cluster topology, were generated and are available for further studies. Generally, with a few 

modifications this approach can be applied to create networks with arbitrary features. During 

the evaluation only the IM algorithm was used, but as stated in Chapter 3, other clustering 

algorithms may lead to different outputs. The next chapter demonstrates the differences using 

several clustering algorithms and shows how the consideration or neglect of edge weights and 

directions can influence the clustering results.
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5 Edge Weight and Direction in Cluster Identifica-

tion  

As explained in Chapter 3, identifying clusters in material flow networks requires the user to 

select a specific algorithm from a variety of existing clustering algorithms. Algorithms differ in 

their underlying concepts (e.g. maximization or minimization of an objective function) to iden-

tify clusters. Some consider only the connections between nodes, while others include the edge 

weight in terms of material flow intensity and the material flow directions as relevant infor-

mation (see Lancichinetti and Fortunato (2009b) for an overview). The challenge is that by 

considering such information, a clustering algorithm becomes increasingly complex, particu-

larly in the case of directed networks, as described in Section 3.5. Therefore, users are restricted 

in their choice of an appropriate clustering algorithm. Nevertheless, the literature on complex 

networks recommends including both edge weights and edge directions, where these are avail-

able (Fortunato, 2010).  

It has been insufficiently addressed to date whether the integration of edge weights and edge 

directions is a reasonable approach in all cases. This approach can affect the performance of a 

clustering algorithm and thus the output quality. This chapter is intended to show that the choice 

of an appropriate clustering algorithm mainly depends on the particular application and its re-

quirements, and especially on the specific characteristics of a given network.  

Using material flow networks (see Chapter 4), it is shown that from a network-theoretical 

perspective, a reduced representation of a network may be sufficient. A decisive benefit of using 

these material flow networks is that they clearly differ in their characteristics, namely their 

cluster topology. This allows for a wide-ranging evaluation. To assess the meaning and impact 

of additional information, the results of different clustering algorithms – which enable including 

the edge weights and/or edge directions, among other things – are evaluated and compared. The 

following sections describe the clustering algorithms applied (Section 5.1) and a presentation 

of the results (Section 5.2). This chapter closes with a brief summary (in Section 5.3). 

5.1 Types of Clustering Algorithms  

The literature presents several clustering algorithms that are able to consider edge weights 

and/or edge directions. The diverse combinations of the three parameters (number of clusters c, 

cluster size s and degree of interconnection between clusters p) lead to many use cases, of which 

only a few algorithms are applied here. Essential criteria for selection were that the considera-

tion of edge weights and/or edge directions must be possible and that the underlying clustering 

mechanism must vary to cover a wide range of algorithms. Algorithms that take both edge 

weights and directions into account are rare. The clustering algorithms used in this work are, 

however, widely known, as they have been applied relatively often in relevant literature (e.g. 

Arratia & Mirambell, 2021; Lancichinetti & Fortunato, 2009b; Orman et al., 2012).  
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Table 5.1 provides an overview of the considered clustering algorithms. Fast Greedy (FG) 

and Louvain (LV) algorithms were created with the goal to maximize modularity. However, 

although they try to optimize the same objective function, the findings of Orman et al. (2012) 

and Dao et al. (2020) indicated that they obtain slightly different clusters. Furthermore, when 

selecting appropriate clustering algorithms to answer the corresponding RQs in this thesis, care 

was taken that only optional pre-settings were required for their application and that they would 

work on disconnected graphs. Therefore, the algorithms of Edge Betweenness (Girvan & New-

man, 2002), Spinglass (Reichardt & Bornholdt, 2006) and Leading Eigenvector (Newman, 

2006) were not included although they are extensively used as benchmark clustering algo-

rithms. 

Algorithm Concept Directed edges Weighted edges 

Fast Greedy (FG) modularity-based FALSE TRUE 

Louvain (LV) modularity-based FALSE TRUE 

Walktrap (WT) random walk-based FALSE TRUE 

Infomap (IM) information theory-

based 

TRUE TRUE 

Label Propagation (LP) diffusion-based FALSE TRUE 

Table 5.1: Details of clustering algorithms used in this thesis, indicating whether edge weights 

and/or directions are considered.  

Fast Greedy. The FG algorithm was originally proposed by Newman (2004) and was ex-

tended by Clauset, Newman, and Moore (2004) to make a faster version. It aims to optimize 

modularity. As its name implies, the greedy principle is applied. Based on the assumption that 

each node starts in its own cluster, the nodes are successively merged in further steps with the 

goal of optimizing the objective function. The clustering with the highest modularity value rep-

resents the best solution. 

Louvain. The LV algorithm by Blondel, Guillaume, Lambiotte, and Lefebvre (2008) is an-

other modularity-optimizing approach. As a first step, the greedy principle is used to identify 

initial clusters. In the second and last step, all nodes of each cluster are merged into a single 

node, and using these nodes, a new network is created. The greedy principle is again applied 

until no more modularity improvements are observed. By adding an extra step, LV is an im-

provement over the FG algorithm.  

Infomap. The IM algorithm is explained in Section 4.2 in detail. 

Walktrap. The WT algorithm was developed by Pons and Latapy (2006). Similar to the IM 

algorithm, the random walk process is applied. However, a series of random walks are used 

here to calculate the distance from neighboring nodes. It is generally expected that short random 

walks tend to stay in the same cluster. 

Label Propagation. The LP algorithm was introduced by Raghavan, Albert, and Kumara 

(2007) and is based on the diffusion of information. First, each node is given its own label. 

Next, by an iterative process the label of each node is reassigned according to the labels of its 
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neighboring nodes. The process ends when each node is given a label that the majority of its 

neighboring nodes have. All nodes with the same label are treated as a cluster.  

5.2 Results 

In this section, the evaluation results are presented and discussed. The objective is to understand 

how the clustering results differ from each other when edge weights and/or edge directions are 

considered. For this purpose, the NMI was selected as a similarity metric. To quantify the in-

fluence of edge weights, the quality of the resulting clusters was evaluated by assessing the 

modularity. This measure is applicable to weighted and unweighted networks, according to 

Arratia and Mirambell (2021). The results for NMI and modularity corresponded to the average 

over 15 material flow networks. 

5.2.1 Edge Directions  

First, the effects arising from edge directions were explored. The results of the IM algorithm 

for directed and undirected cases were evaluated and compared with each other. In Lancichinetti 

and Fortunato (2009b), the IM algorithm demonstrated superiority over other clustering algo-

rithms when handling directed networks; hence, using IM as the only algorithm seemed suffi-

cient to assess the significance of edge directions in this study. The following section further 

shows that the influence of edge directions depends largely on the consideration of edge 

weights.  

 
Directed, weighted 

vs. 

undirected, weighted networks 

Directed, unweighted 

vs. 

undirected, unweighted networks 

p   
c, s

 2,25 5,10 10,5 25,2 2,25 5,10 10,5 25,2 

0.1 1 1 1 1 0.68 0.69 0.81 0.94 

0.2 1 1 1 1 0.66 0.65 0.76 0.91 

0.3 1 1 0.97 1 0.64 0.62 0.72 0.92 

0.4 1 1 0.98 1 0.66 0.63 0.69 0.86 

0.5 1 1 0.90 1 0.65 0.63 0.69 0.89 

0.6 1 1 0.91 1 0.63 0.58 0.66 0.92 

0.7 1 1 0.91 1 0.63 0.59 0.64 0.91 

0.8 1 1 0.80 1 0.62 0.59 0.65 0.84 

0.9 1 1 0.81 1 0.62 0.59 0.61 0.88 

Table 5.2: Joint influence of edge weights and edge directions on the performance of IM algo-

rithm using NMI as similarity metric. The influence of edge directions relies on 

considering the edge weights. Hence, in weighted networks, clusters are highly sim-

ilar for undirected and directed cases. In the weighted case, the influence of p is 

almost non-existent (except for c=10 and s=5), whereas in the unweighted case the 

NMI values decrease with increasing p-value. The reason is the increasing blurri-

ness of clusters when p increases. (Abbreviations: number of clusters, c; cluster 

size, s; degree of interconnection between individual clusters, p). 

The results in Table 5.2 indicate that edge directions become more important when edge 

weights are removed, as evident in an NMI value deviating from 1. This can be explained by 
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the fact that the IM algorithm detects substantially more clusters in the unweighted case than in 

the weighted case (see annexed Table A.1). For example, where c=2 and s=25 with p=0.1, the 

IM algorithm detects on average 25 clusters. With consideration of edge directions, the number 

of clusters is reduced to 14. However, with the results from Section 4.3 in mind, where the 

clusters of the underlying networks and the resulting material flow networks were compared, it 

can be reasonably assumed that the clusters from the unweighted networks do not correspond 

to the real clusters planted by the underlying network. Thus, edge weights appear to be im-

portant when identifying true clusters, at least when using IM algorithm. The next section pro-

vides further details. Furthermore, for unweighted networks, the combination of parameters c 

and s has considerable influence on the NMI values. In cases where c>s (i.e. many small clus-

ters), the outputs become more similar, as evident in relatively high NMI values.  

By comparison, with the same parameter setting (c=2 and s=25 with p=0.1), there were – 

as expected – only two clusters in the weighted network, irrespective of whether the edge di-

rections were considered. However, when the parameters were set to c=10 and s=5, there was 

a slight deviation from 1 for NMI values. Therefore, edge directions appear less important in 

this respect.  

In summary, a distinction must be made between a weighted and an unweighted network. 

For the weighted case, edge directions can be neglected when using an IM algorithm. The in-

fluence of edge weights is examined in detail in the next section.  

5.2.2 Edge Weights 

This subsection examines how the clustering results of weighted networks differ when the edge 

weights are removed. The five clustering algorithms in Section 5.1 were performed to determine 

the influence of the edge weights. 

As shown in Figure 5.1, LV was the only algorithm that was entirely insensitive to edge 

weights for all combinations of c, s and p. The FG algorithm and WT algorithm followed a 

similar pattern. As expected, the NMI value decreased with increasing p-values. This finding 

was due to the fact that clusters become blurrier for higher p-values and thus the results for the 

weighted and unweighted cases may differ significantly. Furthermore, Figure 5.1 indicates that 

although the FG and LV algorithms both had the optimization of modularity as a goal, they 

performed differently on weighted and unweighted networks. 

The gap between IM and LP and the other algorithms widened as the p-value exceeded 0.4 

and 0.6 for c<s. This is because from the point where the p-values are exceeded, all clusters end 

up in one giant cluster in the weighted networks. From that point onward, the NMI value drops 

to zero. For smaller p-values, the LP algorithm performed independently of whether edge 

weights were considered. The IM algorithm reacted very sensitively when edge weights were 

removed, for all values of p. For c>s, the trend of the curves of both algorithms were similar to 

the rest of the algorithms.  
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Figure 5.1: Comparison of the results for five algorithms. NMI was used to evaluate the simi-

larity between the clustering results with and without considering the edge weights. 

Essentially, that the larger and fewer in number (c>s) the clusters, the more minor 

was the influence of edge weights. However, p had an increased impact on NMI 

values. IM, Infomap; WT, Walktrap; LP, Label Propagation; FG, Fast Greedy; LV, 

Louvain. 

In summary, the influence of edge weights varied depending on what clustering algorithm 

was used. Furthermore, the development of NMI also depended on the setting of the parameters 

c, s and p. For a final evaluation, it was necessary to compare the quality of the resulting clusters 

from each clustering algorithm. Table 5.3 represents the results for modularity obtained by ap-

plying the five clustering algorithms on weighted and unweighted networks.  

As evident in Table 5.3 and expected from the earlier findings, the IM algorithm reacted 

very sensitively to the removal of edge weights. In the unweighted case, the IM algorithm per-

formed relatively poorly and the identified clusters showed a poor quality. Although the per-

formance of IM improved with increasing p-values – which meant the clusters became blurry 

and thus the overall cluster quality decreased – existing edge weights should be considered 

when using IM. In the weighted case, particularly, IM performed as well as or better than the 

remaining algorithms.  
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 p = 0.3 p = 0.7 

 c=2, 

s=25 

c=5, 

s=10 

c=10, 

s=5 

c=25, 

s=2 

c=2, 

s=25 

c=5, 

s=10 

c=10, 

s=5 

c=25, 

s=2 

FG 0.38 

(0.37) 

0.66 

(0.63) 

0.66 

(0.63) 

0.94 

(0.92) 

0.2 

(0.19) 

0.48 

(0.43) 

0.48 

(0.43) 

0.91 

(0.87) 

LV 0.38 

(0.38) 

0.66 

(0.66) 

0.66 

(0.66) 

0.94 

(0.94) 

0.21 

(0.21) 

0.51 

(0.51) 

0.51 

(0.51) 

0.88 

(0.88) 

IM 0.38 

(0.01) 

0.66 

(0.26) 

0.66 

(0.26) 

0.94 

(0.94) 

0.0 

(0.01) 

0.0 

(0.25) 

0.5 

(0.25) 

0.88 

(0.86) 

WT 0.38 

(0.38) 

0.65 

(0.65) 

0.65 

(0.65) 

0.94 

(0.94) 

0.21 

(0.21) 

0.45 

(0.34) 

0.45 

(0.34) 

0.82 

(0.82) 

LP 0.38 

(0.38) 

0.56 

(0.55) 

0.64 

(0.64) 

0.94 

(0.94) 

0.0 

(0.0) 

0.0 

(0.0) 

0.46 

(0.44) 

0.88 

(0.86) 

Table 5.3: Comparison of modularity values from different algorithms. The larger the value of 

modularity, the better the cluster quality. For each network, the value for the un-

weighted case appears in brackets. The modularity value in bold indicates the best 

clustering algorithm in the weighted case. 

In addition, Table 5.3 shows that taking edge weights into account when using FG and WT 

also improved the performance. Considerations of edge weights had no effect – or minimal 

effect – on the output performance of all other algorithms. Although the selected clustering 

algorithms reacted differently to the absence of edge weights, from a network theory perspec-

tive the consideration of edge weights seems reasonable.  

As shown in Table 5.3, all algorithms performed well on weighted networks with well-

defined clusters (low p-value). Only with increasing p, minor deviations arose in the perfor-

mance, although no clustering algorithm was clearly identified as the best performing. One 

would expect the modularity-based algorithms to outperform the other algorithms. Indeed, the 

results indicated that LV and FG led to overall higher modularity values. However, the output 

of the IM algorithm was somewhat similar to these results. These conclusions were supported 

by the findings from the scenarios with the remaining p-values. A summary of all the modularity 

values is depicted in the appendix Table A.2. 

To complete the performance comparison of the algorithms, the NMI matrices in Figures 

5.2 to 5.5 provide interesting insights into how the results of the individual clustering algorithms 

differ from each other in the weighted case (weighted and directed in the case of IM). Based on 

the findings in Table 5.3, where the modularity values were highly similar for all algorithms in 

specific network models, it could be assumed that all clustering algorithms would yield similar 

results. The NMI matrices take all the same appearance. They indicate the level of similarity 

between different clustering algorithms for each network model. A value of 1 indicates that two 

clustering algorithms led to the same output. Each NMI matrix is symmetric around the diago-

nal.  
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 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(a) p=0.1 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(b) p=0.2 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(c) p=0.3 

 IM FG LV WT LP 

IM 1 0 0 0 0 

FG  1 0.9 0.9 0.9 

LV   1 1 1 

WT    1 1 

LP     1 

(d) p=0.4 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(e) p=0.5 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.9 0.9 0 

LV   1 1 0 

WT    1 0 

LP     1 

(f) p=0.6 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.8 0.8 0 

LV   1 1 0 

WT    1 0 

LP     1 

(g) p=0.7 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.7 0.7 0 

LV   1 1 0 

WT    1 0 

LP     1 

(h) p=0.8 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.4 0.4 0 

LV   1 0.7 0 

WT    1 0 

LP     1 

(i) p=0.9 

Figure 5.2: NMI matrix for c=2 and s=25.  

As evident from previous findings, the differences between the algorithms arose from the 

various combinations of c, s and p. For c=2 and s=25, all algorithms showed the same results 

until the p-value exceeded 0.3 (compare Figure 5.2). Beyond that point, the IM algorithm could 

not identify any clusters. The same was true for LP for p > 0.5. The NMI values were 0. From 

p > 0.4, the FG also showed slight variations. The difference increased with increasing p-val-

ues. For p=0.9, there are no same clusters (apart from IM and LP as all clusters result in one 

giant cluster). Overall, the results in Figure 5.3 (c=5 and s=10) corresponded to earlier results. 

This means that for p > 0.5, the clusters of FG and LP vary slightly. For p=0.6, all clusters end 

up in one giant cluster for IM and LP. The remaining algorithms led to different clusters. For 

c=10 and s=5, the differences arose from p=0.3 (see Figure 5.4). For smaller p-values, the 

resulting clusters showed only minor differences across the algorithms, with the differences 

increasing as the p-value increased. 
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 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(a) p=0.1 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(b) p=0.2 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(c) p=0.3 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(d) p=0.4 

 IM FG LV WT LP 

IM 1 0.9 1 1 1 

FG  1 0.9 0.9 0.9 

LV   1 1 0.9 

WT    1 0.9 

LP     1 

(e) p=0.5 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.6 0.5 0 

LV   1 0.6 0 

WT    1 0 

LP     1 

(f) p=0.6 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.5 0.7 0 

LV   1 0.7 0 

WT    1 0 

LP     1 

(g) p=0.7 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.4 0.5 0 

LV   1 0.3 0 

WT    1 0 

LP     1 

(h) p=0.8 

 IM FG LV WT LP 

IM 1 0 0 0 1 

FG  1 0.4 0.5 0 

LV   1 0.7 0 

WT    1 0 

LP     1 

(i) p=0.9 

Figure 5.3: NMI matrix for c=5 and s=10.  

As shown in Figure 5.5, the most similar clusters were obtained for c=25 and s=2. For 

p=0.8, the LV and WT algorithms yielded slightly different cluster results. 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(a) p=0.1 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(b) p=0.2 

 IM FG LV WT LP 

IM 1 0.9 0.9 0.9 0.9 

FG  1 1 0.9 0.9 

LV   1 0.9 0.9 

WT    1 0.9 

LP     1 

(c) p=0.3 

 IM FG LV WT LP 

IM 1 0.7 0.8 0.9 1 

FG  1 0.8 0.8 0.8 

LV   1 0.8 0.9 

WT    1 0.8 

LP     1 

(d) p=0.4 

 IM FG LV WT LP 

IM 1 0.8 0.8 0.8 0.8 

FG  1 0.7 0.7 0.8 

LV   1 0.7 0.8 

WT    1 0.7 

LP     1 

(e) p=0.5 

 IM FG LV WT LP 

IM 1 0.8 0.7 0.8 0.7 

FG  1 0.8 0.6 0.7 

LV   1 0.5 0.7 

WT    1 0.7 

LP     0.7 

(f) p=0.6 

 IM FG LV WT LP 

IM 1 0.7 0.9 0.8 0.8 

FG  1 0.7 0.6 0.7 

LV   1 0.7 0.8 

WT    1 0.7 

LP     1 

(g) p=0.7 

 IM FG LV WT LP 

IM 1 0.6 0.8 0.7 0.7 

FG  1 0.7 0.6 0.6 

LV   1 0.6 0.7 

WT    1 0.6 

LP     1 

(h) p=0.8 

 IM FG LV WT LP 

IM 1 0.7 0.8 0.8 0.7 

FG  1 0.8 0.7 0.5 

LV   1 0.7 0.5 

WT    1 0.6 

LP     1 

(i) p=0.9 

Figure 5.4: NMI matrix for c=10 and s=5.  
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 IM FG LV WT LP 

 IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

 LP     1 

(a) p=0.1 

 IM FG LV WT LP 

 IM 1 1 1 1 1 
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LV   1 1 1 
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 LP     1 

(b) p=0.2 
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 IM 1 1 1 1 1 

FG  1 1 1 1 
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 LP     1 

(c) p=0.3 

 IM FG LV WT LP 

 IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

 LP     1 

(d) p=0.4 

 IM FG LV WT LP 

 IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

 LP     1 

(e) p=0.5 

 IM FG LV WT LP 

 IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

 LP     1 

(f) p=0.6 

 IM FG LV WT LP 

 IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

 LP     1 

(g) p=0.7 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 0.9 

WT    1 0.9 

LP     1 

(h) p=0.8 

 IM FG LV WT LP 

IM 1 1 1 1 1 

FG  1 1 1 1 

LV   1 1 1 

WT    1 1 

LP     1 

(i) p=0.9 

Figure 5.5: NMI matrix for c=25 and s=2.  

In summary, the larger and fewer in number the clusters (c>s), the higher the dissimilarity 

across the algorithms. Consequently, in networks with many small clusters (c>s), the perfor-

mance of the algorithms did not change considerably. In contrast, the impact of p was consistent 

for all combinations of c and s. As expected, with increasing p-values the dissimilarity between 

the clustering algorithms became more evident. Interestingly, although the modularity values 

deviated only slightly across the algorithms, the results (see Figures 5.2 to 5.5) showed that the 

resulting clusters differed depending on the respective combinations of c, s and p for the various 

algorithms. These results imply that it remains unknown which algorithm is superior. This un-

certainty can be partly explained by the specific characteristics of the synthetically generated 

material flow networks. However, it is possible that clusters which can be identified by multiple 

algorithms are representative of the given network (Lancichinetti & Fortunato, 2009b). Hence, 

the results confirm that the choice of an appropriate clustering algorithm mainly depends on the 

particular application and its requirements, in addition to the characteristics of a given network.  

5.3 Summary 

It has been demonstrated that the edge directions have no or little impact on the resulting clus-

ters when the IM algorithm is used with edge weights taken into consideration. Removing the 

edge weights strongly impacts the outcome of the IM algorithm and leads to clusters of poor 

quality. Although several authors have emphasized the importance of edge directions, espe-

cially in flow-based networks, the effect appeared negligible for the present material flow net-

works. Instead, edge weights must be viewed as the dominant edge characteristic – at least when 

using the IM algorithm.  

In addition, the impact of edge weights was examined. Some clustering algorithms, such as 

IM, WT and FG, show different levels of sensitivity to the elimination of edge weights. For the 
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remaining algorithms, the overall quality of the resulting clusters improved slightly or stayed 

the same when edge weights were included. From these results, it can be concluded that edge 

weights should be considered when available.  

An unambiguous recommendation regarding the superiority of one algorithm in terms of 

cluster quality is not possible. Nonetheless, the results show that different algorithms lead to 

different clustering results depending on the network topology. However, overall, because of 

the characteristics of the given data sets, the differences between individual clustering algo-

rithms were marginal. Because the findings in this chapter were based on the network theory 

perspective, the next step was to evaluate the clustering results through a simulation according 

to other logistic-based criteria. This analysis is described in Section 6.3.2.
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6 Experimental Evaluation 

This chapter is divided into several sections, with the simulation setup and the necessary as-

sumptions made in this context described in Section 6.1. The simulation results presented in 

Section 6.2 illustrate the effects that arose given the varying cluster topology of material flow 

networks and how they were related to the logistic performance. Section 6.3 focuses on the 

evaluation of the hybrid clustering-based control approach. Using different material flow net-

work models, which differed particularly in their cluster topology, the performance of several 

autonomous sequencing rules was compared (Section 6.3.1). These results serve as a bench-

mark for the hybrid clustering-based control approach proposed in this thesis (Section 6.3.2). 

In this context, the outputs of several clustering algorithms were evaluated from the logistic-

based perspective. The individual simulation results were compared with results from the re-

spective benchmark sequencing rule. This chapter concludes with a summary of all experi-

mental results (Section 6.4). 

6.1 Simulation Setup 

For the subsequent simulation studies, the hypothetical manufacturing environment from Chap-

ter 4 was used. Based on the assumptions described there, 34 different network models 

emerged, which differed primarily in their cluster topologies. More specifically, they were dis-

tinguished regarding their cluster size s, the number of clusters c and the degree of interconnec-

tion between individual clusters p. As a result of the varying cluster topologies, these network 

models were suitable for evaluating both the relationship between network topology and system 

performance and the effectiveness of the hybrid clustering-based approach. Wherever possible 

and reasonable, the assumptions were made according to the real data set. Due to inconsistency 

and lack of relevant data, it was necessary to make additional literature-based assumptions and 

simplifications. In the following paragraphs, basic assumptions are described that were neces-

sary for the implementation of the simulation model. Additional modifications are listed in rel-

evant sections of this chapter.  

As a reminder: the examined manufacturing environment included 50 work systems, with 

each job having a random routing through the system. Overall, there were 3,702 jobs, each 

comprising a set of operations between 1 and 31. Both the number of work systems and the 

number of jobs significantly affect the computation time. Hence, the size of the system was 

smaller than in other research fields involving complex networks. As shown in Chapter 4, the 

network size was nonetheless sufficiently to create networks with varying cluster topologies 

and thus to achieve statistically significant results. 

According to Law (2007), jobs were assumed to arrive randomly following a Poisson pro-

cess to ensure the independent arrival of jobs, which is consistent with real systems. All arriving 

jobs entered a global buffer and were released according to their position in the buffer queue. 

This meant that a job in the first position in the buffer was released first. For the simulation 
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experiments in Subsection 6.2.1, it was assumed that jobs were released directly after their ar-

rival at the shop floor. To achieve a desired shop utilization level, a job release mechanism was 

applied in Subsection 6.2.2. The exact mechanism is explained in Section 2.2.  

In all experiments, the processing time and due date of each job were determined after the 

job left the global buffer. Here, probability distributions were used to create a stochastic envi-

ronment. In this way it was possible to evaluate the hybrid clustering-based approach in a dy-

namical environment arising from the use of probability distributions. The processing times 

were normally distributed with a mean of 60 minutes and standard deviation of 15 minutes. As 

is assumed in numerous studies, setup times and machine breakdowns were a part of the pro-

cessing times (e.g. Holthaus, 1996). The due dates were assigned using the total work content 

(TWK) method, which is a simple and popular method (Baker, 1984; Kanet & Hayya, 1982). 

The due dates were created as a multiple of the processing times using a due date tightness 

factor. This factor determines how tight or loose the assigned due dates are (Lu & Liu, 2011); 

the larger the value of the factor, the looser the due date. By contrast, a low value of the factor 

means a tighter due date, which is more difficult to meet. As evident in literature, a due date 

tightness factor of 3 leads to tighter due dates than the value of 5, which leads to relatively loose 

due dates (e.g. Holthaus & Rajendran, 1997; Jayamohan & Rajendran, 2010). The due date 

tightness is also affected by the overall shop utilization rate (Baker, 1984). A high utilization 

rate leads to tight due dates even with a large due date factor. The corollary is that when the 

shop utilization rate is low, due dates tend to be loose even with a small due date factor. Derived 

from preliminary studies, a due date tightness factor of 3.5 was assumed for all experiments in 

this chapter. 

So far, the assumptions described have related mainly to jobs. The assumptions regarding 

work systems must be complemented: There were no unforeseen interruptions, such as break-

downs or maintenance periods. Hence, all work systems were continuously available. Addi-

tional to the global buffer, a local buffer of unlimited size was added in front of each work 

system. This allowed jobs to build up queues in front of the corresponding resources and be 

processed according to their priority (Reményi & Staudacher, 2014). 

As a rule, at the beginning of each simulation run the shop is empty. A shop thus reaches a 

steady state only after a set period (Robinson, 2014), which is referred to as the warm-up period. 

It was therefore appropriate to start with data collection at the end of a reasonable warm-up 

period to avoid the effects of the system warm-up that might otherwise bias the results. The 

warm-up period was set up for every network model individually. Furthermore, it was necessary 

to eliminate the clean-up period (Holthaus, 1996). During the clean-up, no new jobs enter the 

shop and the remaining jobs are completed. The time interval after the release of the last job is 

considered to be the clean-up period. Additionally, to reduce influences from the stochastic 

environment, this study employed several simulation runs (replications) with different seed val-

ues (Rabe et al., 2008). Twenty replications were performed.  

6.2 Understanding the Topological Impact on System Perfor-

mance 

Modeling material flow systems as networks holds considerable potential to uncover hidden, 

non-trivial relationships between topology and logistic performance (Becker et al., 2012; 

Vrabič et al., 2013). The current research work is motivated in particular by Becker et al. (2012) 

and Liu, Li, Feng, and Rong (2013), who demonstrated the relationship between the overall 

efficiency of a logistics system and the various connectivity patterns among individual system 
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entities. Becker et al. (2012) captured the topology of material flow networks using the average 

node degree of a network as single measure. Liu et al. (2013) described the connectivity pattern 

of supply networks considering the clustering topology.  

The relationship between cluster topology and the resulting performance has not yet been 

considered in detail for material flow networks. An understanding of this relationship could 

help to identify the main challenges so as to address them through appropriate shop floor man-

agement. As described in Section 4.3, the average node degree significantly affects the output 

of the IM algorithm and thus the resulting clusters. Hence, the average node degree not only 

reveals much about the interaction between individual work systems but also allows conclu-

sions to be drawn regarding the cluster topology. Specifically, a high average degree may be 

associated with few large clusters and a low average degree with many small clusters. However, 

the average degree does not allow any conclusions to be drawn about the cluster quality and the 

respective system behavior.  

In the following sections, simulation experiments are reported, in which the cluster topology 

resulting from logistic processes and its relationship to performance were evaluated. In concrete 

terms, in the first step the objective is to show how the cluster topology of material flow net-

works and the resulting shop utilization level are related (6.2.1). The second step demonstrates 

how much average WIP is needed to achieve a desired shop utilization level according to the 

given cluster topology (6.2.2). 

6.2.1 Cluster Topology and Utilization Rate 

This subsection examines the relationship between the cluster topology of different material 

network models and the shop utilization rate. The utilization of a shop as a key measure was 

chosen because theory indicates it has a significant impact on logistic performance, e.g. on 

throughput time (Nyhuis & Wiendahl, 2012). A high utilization rate, for example, leads to long 

waiting times and thus to higher average throughput times of the jobs. In addition, the level of 

shop utilization and the associated average queue lengths influence the effectiveness of control 

algorithms (Holthaus, 1996). For example, low utilization levels may lead to short average 

queue lengths, which in turn may reduce the performance difference between the various con-

trol algorithms. A system should thus prevent overloading to keep the average queue length 

short; the system should also prevent underloading to yield sufficiently long queues and provide 

a choice between several jobs in the queue. 

First, it is shown how the three parameters c, s and p (which are used in this thesis to deter-

mine the cluster topology) were related to the shop utilization. To study the influence of the 

topology accurately, the jobs in this study were processed on a FCFS basis. The simulation 

results are shown in Figure 6.1. 
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Figure 6.1: Mean shop utilization rate for different material flow network models using FCFS 

rule. 

As shown in Figure 6.1, the mean shop utilization rate depended strongly on the parameters 

the number of clusters c and their sizes s. The highest mean utilization values were achieved 

for c=2 and s=25, and the lowest mean utilization values were for c=25 and s=2. Furthermore, 

the mean utilization dropped slightly as p increased (which meant clusters became blurrier and 

thus the overall cluster quality generally decreased). A slightly higher decline in mean utiliza-

tion was evident for c=25 and s=2.  

The above point can be explained with reference to Figure 6.2. Figure 6.2 shows how the 

utilization of individual work systems varied for different combinations of c and s in depend-

ency of p. The impact of the cluster topology is highlighted through two extreme scenarios 

(p=0.1 and p=0.9; see appendix Figures A.1 to A.4 for the results of all other scenarios). For 

c=2 and s=25, the work systems were more or less equally utilized; for c=25 and s=2, it was 

evident that a few work systems played a leading role in the process – the term bottlenecks here. 

This was reinforced as the p-value increased. A reasonable explanation is that due to the bot-

tlenecks there were not enough jobs to keep the remaining work systems busy. As a result, idle 

times might occur, which reduced the utilization rates. The result was that the mean utilization 

rate for c=25 and s=2 was by far the lowest. Hence, it appears that as the p-value increases, the 

role of individual work systems changes, and a kind of key work system emerges across all 

network models, which represents connecting parts between the individual clusters and thus 

processes most of the operations. 
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Figure 6.2: The impact of parameters c, s and p on the underutilization and overutilization of 

individual work systems, in descending order. It is assumed that if the utilization 

rate of a work system exceeds the overall mean utilization rate, this system is a 

bottleneck (as described in Raman, Talbot, & Rachamadugu, 1989). The horizontal 

red line represents the mean of the data.  

In summary, there is a clear connection between network topology and shop utilization. 

Material flow networks with a few large clusters (c=2 and s=25) indicate effective and con-

sistent shop utilization. This is only slightly affected by increased blurriness of the cluster to-

pology. By contrast, many small clusters (c=25 and s=2) indicate that only a few work systems 

show a high level of utilization. This was reinforced by increased blurriness between clusters, 

leading to an overall low mean utilization rate of the shop.  

6.2.2 Cluster Topology, Utilization and WIP 

This section discusses the relationships between cluster topology, utilization rates and WIP. To 

quantify the effectiveness of the proposed hybrid clustering-based approach on different net-

work models, the simulation studies assumed a fixed utilization level. The advantage of a fixed 

utilization is that it makes the results of the different network models comparable. Here, a fixed 

utilization level for the entire shop was set, with two levels of shop utilization assumed. The 

lower utilization level was determined mainly by the topological features of c=2 and s=25. In 

this context, a theoretical utilization rate of 85 % is regarded as a moderate level and 90 % as a 
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high level of utilization (Holthaus, 1996). Such utilization levels ensure that sufficiently long 

queues are created, which are necessary for the sequencing of jobs (Kiran & Smith, 1984).  

To ensure that the planned shop utilization is achieved, ConWIP was used (for brief expla-

nations see Section 2.2). This involved keeping the mean WIP, measured in hours, at a constant 

level for the duration of a simulation. In this way, all work systems were limited to the same 

time, and a job was released only when another job left the shop. The job release mechanism is 

especially suitable for small to medium series production with diverse variants and a high ma-

terial flow complexity; hence, it was ideally suited to the production environment on hand. It is 

known that high shop utilization implies high average WIP (Hopp & Spearman, 2011). There-

fore, the idea was to achieve the planned utilization levels with the minimum amount of WIP, 

to limit the throughput times.  

To investigate what amount of WIP was necessary to reach the desired utilization levels of 

85 % and 90 % for the individual network models, the normalized average WIP was introduced. 

The normalization was necessary to make the systems comparable (Schäfer, Chankov, & Ben-

dul, 2016) and was achieved by  

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
,  (6.1) 

where the observed value x is the current mean WIP, while 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum 

or maximum mean WIP values among all network models. The normalized average WIP level 

of a corresponding network model is then scaled between 0 and 1. Figure 6.3 shows the devel-

opment of the normalized average WIP level for different network models having different 

cluster blurriness (p). As expected from previous results, the lowest WIP level was required for 

c=2 and s=25. With an increasing p-value, on average more WIP was needed. This was because 

the individual work systems were subject to varying degrees of demand, so that more jobs must 

be released to achieve a higher overall utilization. Furthermore, for c=25 and s=2, the planned 

utilization of 90 % was not reached for all p-values, because (as noted in Section 6.2.1), only a 

few work systems were heavily utilized, whereas others remained idle. Due to the higher aver-

age WIP, the other work systems also became busier, but only for a short time, because there 

were still no long queues waiting for these work systems.  
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Figure 6.3: The normalized mean WIP values for various network models to achieve a desired 

shop utilization rate. For comparison of the network models, the normalized aver-

age WIP is used. There is a monotonous but nonlinear relationship between the 

normalized average WIP level and p.  

In general, the results were highly similar to those in the previous section. There is a clear 

dependence of the cluster topology on the average WIP. The smaller and more numerous the 

clusters, the higher the average WIP. Furthermore, limitations regarding achievable utilization 

levels arose from the features of individual network models. Hence, in further simulation stud-

ies, a mean utilization rate of 85 % was assumed.  

In Figure 6.4 the mean utilization levels of individual work systems are presented for p=0.1 

and p=0.9 after applying ConWIP (see appendix, Figures A.4 to A.8 for details). In general, an 

improvement in the mean utilization of individual work systems is observed due to higher av-

erage WIP levels. The number of highly utilized work systems has increased for all combina-

tions of c and s (for comparison see Figure 6.2). At first glance it comes as surprise that the 

number of highly utilized work systems increased with higher p-values. Conversely, it seemed 

reasonable that the number of low utilized work systems would increase with increasing p, as 

this effect was previously observed (see Figure 6.2). However, this development might be ex-

plained by the fact that the higher average WIP, which becomes necessary with a rising p-value 

to reach the desired mean shop utilization, implies that the work systems that were previously 

well-utilized increase in demand and simultaneously the number of work systems that most of 

the time remain idle is rising.  

For c=25 and s=2, the distribution showed an opposite trend. The combination of higher 

average WIP level and higher p-value led to a light smoothing of the utilization rates of indi-

vidual work systems (Figure 6.4). 
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Figure 6.4: The impact of the parameters c, s and p on the mean utilization rate of individual 

work systems in descending order for p=0.1 and p=0.9 (or p=0.7 for c=25 and s=2) 

after applying CONWIP. The horizontal red line represents the mean of the given 

data.  

The results of the simulation experiments indicate a clear relationship between the cluster 

topology of material flow networks and the resulting performance. The experiments confirmed 

that network models with a clear cluster topology (here, c=2 and s=25) require less mean WIP 

to achieve the corresponding utilization levels. However, the smaller the clusters and the more 

plentiful they are (c>s), the larger the required WIP.  

These results reflect those of Becker et al. (2012), who also found a relationship between 

network topology (represented by average degree) and logistics performance, inter alia, the 

corresponding WIP values. However, they found a non-monotonous relationship, whereas here 

monotonous, but nonlinear relationship between the cluster topology and the mean WIP values 

could be observed. This means that the blurrier the clusters become, the greater the required 

WIP. Liu et al. (2013) applied two network models with different clustering behavior (i.e. clus-

ters were existent or non-existent). Their results showed that the network model with well-

defined cluster topology positively affected the performance. Here, it was also shown that re-

gardless of the corresponding combination of c and s, for lower p-values (where clusters are 

well defined) less mean WIP was required to achieve the target utilization level.  
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6.3 Evaluation of Hybrid Clustering-based Approach  

This section aims to demonstrate the extent to which the hybrid clustering-based control ap-

proach performs better than the use of a single sequencing rule for the entire system. There is 

also a need for deeper knowledge about how networks with different cluster topologies specif-

ically impact the ability to be managed using the hybrid clustering-based approach. This exam-

ination was achieved in a two-step procedure (see Figure 6.5).  

First, preliminary simulation studies were conducted to examine the behavior of selected 

sequencing rules in a range of network models with varying cluster topology. In this thesis, job 

tardiness-based criteria were chosen due to their importance for the real-world manufacturing 

environment. The first objective was thus to test the effectiveness of the selected autonomous 

sequencing rules to reduce the mean tardiness of tardy jobs 𝑀𝑇𝑇 (Kiran, Alptekin, & Kaplan, 

1991) and enhance the schedule reliability 𝑆𝑅 (Lödding, 2013). The mean tardiness of tardy 

jobs is calculated as follows:  

𝑀𝑇𝑇 =
∑

𝑇𝑖
𝑛⁄

𝑛
𝑖=1

𝑛𝑇
,  (6.2) 

where  

𝑇𝑖  tardiness of job 𝑖, 
𝑛  number of all jobs, 

𝑛𝑇  actual number of tardy jobs.  

A job is considered tardy if the completion occurs after the due date (Lödding & Kuyumcu, 

2015). From this definition, sequencing rules that result in only a few late jobs, but those jobs 

being notably late, should be penalized (Kiran et al., 1991).  

The mean tardiness only considers the lateness of jobs, although completion before the due 

date is also undesirable (Lödding, 2013). Hence, schedule reliability was used as a second per-

formance measure. It is defined as the percentage of jobs completed within a defined tolerance 

(Lödding & Kuyumcu, 2015). The relevant equation is  

𝑆𝑅 =  
∑ 𝑂𝑖,𝑡𝑤
𝑛
𝑖=1

𝑛
∗ 100%, (6.3) 

where 𝑂𝑖,𝑡𝑤 is a job i completed within a given tolerance window, and 𝑛 is the number of 

all jobs. Hence, some flexibility is provided, and the in-time completion of jobs is combined by 

penalizing both early and late completion. There is no general way to set the size of the tolerance 

window, which depends on many factors (e.g. due date tightness factor). Here, the size of the 

tolerance window was set to 15 %. For clear observation of the impact of the various autono-

mous sequencing rules and the hybrid clustering-based approach on the two performance 

measures, each measure was considered separately. To compare the results of the different net-

work models with each other, the two performance measures were normalized in line with 

Equation 6.1.  
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Figure 6.5: Two-step procedure to evaluate the performance of the hybrid clustering-based ap-

proach. Global sequencing means that one autonomous sequencing rule is applied 

in the entire system. Local sequencing means one autonomous sequencing rule is 

applied in a cluster. 

In this thesis, existing autonomous control algorithms – which were developed within 

CRC 637 – were not used because many of them assume there are several work systems of the 

same type in a manufacturing system. Hence, alternative routes arise. By contrast, this study 

assumed there was only one work system of each type, which means there are no alternative 

routes. Furthermore, many of these algorithms are look-ahead rules and use global system in-

formation for that. This is not necessary here, because the pre-clustering based on global system 

information means that autonomous clusters are created, which can make decisions based on 

local information. Therefore, sequencing rules are used here to specify an order for each work 

system for job completion. 

The current simulation studies are limited to 12 frequently used autonomous sequencing 

rules. With each additional rule, the complexity increases, especially the computational effort. 

The first six rules (FCFS, LNOP, TSPT, SPT, SRPT and EDD) in Table 6.1 were chosen for 

due date–based objectives and their ability to consider different job-specific characteristics (e.g. 

due date, processing times and remaining number of operations). For practical implementation, 

these rules can be integrated with little effort and require no additional information regarding 

the overall system. The remaining six rules (LCFS, MNOP, TLPT, LPT, LRPT and LDD) in 

Table 6.1 do not correspond to the selection criteria mentioned above and are actually the 

preemptive version of the former rules. However, they are considered here for the sake of com-

pleteness.  
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Rule Abbreviation Description 

First Come First Served FCFS select the job that is added 

first to the queue 

Least Number of Operations LNOP select the job with the least 

remaining number of opera-

tions in the queue 

Total Shortest Processing Time TSPT  

 

select the job with the least 

total processing time in the 

queue 

Shortest Processing Time SPT 

 

select the job with the 

shortest processing time in 

the queue 

Shortest Remaining Processing Time SRPT  select the job with the 

shortest remaining pro-

cessing time in the queue 

Earliest Due Date EDD select the job with the earli-

est due date in the queue 

Last Come First Served LCFS select the job that is added 

last to the queue 

Most Number of Operations MNOP select the job with the most 

remaining number of opera-

tions in the queue 

Total Longest Processing Time TLPT select the job with the long-

est total processing time in 

the queue 

Longest Processing Time LPT select the job with the long-

est processing time in the 

queue 

Longest Remaining Processing Time LRPT select the job with the long-

est remaining processing 

time in the queue 

Latest Due Date LDD select the job with the latest 

due date in the queue 

Table 6.1: Details of the sequencing rules used in this thesis. Other terminology may exist in 

the literature for the same rules listed here. 

Usually, such heuristic approaches are compared with the optimal solution. Sequencing is 

in general NP-hard (Holthaus, 1996) and thus an optimal solution can only be determined for 

small problem instances. However, the given manufacturing environment with a high number 

of jobs and work systems is not considered a small problem instance. Hence, the individual 

heuristics were compared with each other. The results of the best-performing rule then served 

as a benchmark for studying the hybrid clustering-based approach. 

To test the statistical significance of performance differences between the individual rules, 

a paired t-test was conducted (Law, 2007). A paired-t-test is performed to confirm the signifi-

cance between two mean values. The values of interest here were derived from 1) two autono-

mous sequencing rules or 2) the benchmark sequencing rule and the hybrid clustering-based 

approach. For each material flow network model, the best sequencing rule was found, and all 

remaining rules were compared pairwise against this rule. For the tests a 95 % confidence in-

terval was assumed.  
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Second, as evident in Figure 6.5, the second and last step consists of evaluating the hybrid 

clustering-based approach. To test which autonomous sequencing rule combinations led to im-

proved performance for the given material flow model, all possible combinations were tested; 

the combination yielding the highest increase in performance was selected. With a small num-

ber of clusters (e.g. c=2 and s=25), it works well. For two clusters and 12 rules, there were 

144 possible combinations. Increasing the number of clusters increased the number of possible 

combinations: for five clusters and 12 rules, there were 248,832 possible combinations. It was 

therefore no longer possible to calculate all possible combinations, given the high computa-

tional effort. Therefore, a genetic algorithm (GA) was used on the assignment of autonomous 

sequencing rules to individual clusters. GAs are particularly well suited where no optimal so-

lution is available or many possible combinations arise because of a wide range of parameters 

(Shahsavar, Najafi, & Niaki, 2011). Both conditions occurred here. However, there is no guar-

antee that the solution is the best possible, without having tried all combinations beforehand 

(Kramer, 2017).  

GAs are based on the reproduction process of living beings. A brief description of the prin-

cipal function of a GA follows; for further details, the reader is referred to Eiben and Smith 

(2015). To find a near optimal solution, several iteration loops are required. First, an initial 

population is randomly created with possible solutions. Therefore, at the beginning, each cluster 

is randomly assigned a rule. To find the best solution for each iteration, a fitness score is calcu-

lated; in the current study, these were the two performance measures. To improve the solution, 

the population is newly created. This process is repeated until no more improvement is ob-

served.  

After having given all the necessary information for evaluation. The results of the simulation 

studies are presented and discussed in the next subsections.  

6.3.1 Efficiency of Various Autonomous Sequencing Rules  

This subsection demonstrates how the individual sequencing rules performed in material flow 

networks with varying cluster topologies, for a level of 85 % shop utilization. The results were 

evaluated regarding the mean tardiness of tardy jobs and schedule reliability, with a 15 % tol-

erance window. The values of the performance measures were determined by calculating the 

mean values over 20 replications. 

Figures 6.6 and 6.7 show the results of the two performance measures for the best autono-

mous sequencing rule of a particular network model. In the result presentation, only the best 

rule of each network model is considered. This approach makes the result presentation clearer 

and focuses on the most interesting rules for further simulation studies.  
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Figure 6.6: The mean normalized tardiness per tardy job for the best rule of each network 

model. 

In moderate shop utilization (85 %), the influence of p is clearly observed for the different 

combinations of c and s. As expected from preliminary studies (see Section 6.2), for c=2 and 

s=25 and p=0.1, the normalized mean tardiness was by far the lowest value. With increasing p-

values, the value increased rapidly. From the start – i.e. for low p-values – the normalized mean 

tardiness for the remaining combinations of c and s was much higher than for c=2 and s=25. 

Furthermore, for c=5 and s=10 and c=10 and s=5, the normalized mean tardiness increased 

with increasing p-values until it reached a maximum around p=0.5 and p=0.3. Subsequently, 

the values gradually decreased again, i.e. the normalized mean tardiness was reduced. For c=25 

and s=2, the development of the normalized mean tardiness did not follow the general trend.  

In short, the value of the normalized mean tardiness was highest for small p-values and fell 

abruptly at p=0.3. This means that increasing p-values were associated with lower normalized 

mean tardiness.  
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Figure 6.7: Normalized schedule reliability for the best rule of each network model. 

Similar to the previous results regarding tardiness, the normalized schedule reliability was 

highest for c=2 and s=25 (see Figure 6.7). However, with increasing p-values, the smaller in 

size and larger in number were the clusters (c > s), the lower was the normalized schedule 

reliability. For c=25 and s=2, again an opposing trend was observed: with increasing p-value, 

the normalized schedule reliability increased steadily, reaching a high at p=0.4 and declining 

thereafter.  

In summary, there were only minor differences between the results of the two performance 

measures. The characteristic patterns of the different combinations of c and s can be related to 

the results of preliminary studies in Section 6.2.2. The number of very high and very low uti-

lized work systems strongly increased for all combinations of c and s (excluding c=25 and s=2) 

for higher p-values. This means that in cases where the shop utilization is balanced – which is 

the case for low p-values with well-defined clusters – the best values are achieved for the per-

formance measures. For this reason, the development of the performance measures shows an 

opposite trend for c=25 and s=2, where higher p-values lead to a light smoothing of the utili-

zation rates of individual work systems. Systems with highly utilized work systems have rela-

tively long waiting queues, which creates the potential to select and process a suitable job first. 

However, the long waiting times have a negative effect on the performance measures. Hence, 

the outcomes for performance measures were guided by the cluster topology and underlying 

utilization of single work systems.  

This section has presented the results of the best rule for each model network. The next step 

is to examine the frequency of an autonomous sequencing rule to be identified as the best rule. 

In Figures 6.8 and 6.9, the relative number of times a certain autonomous sequencing rule out-

performed the others is summarized.  
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Figure 6.8: Relative frequency of autonomous sequencing rules that led to top ranking for mean 

tardiness.  

In summary, the experimental results showed there were five autonomous sequencing rules 

(FCFS, LNOP, SPT, SRPT and EDD) that were ranked as a best rule (see Figure 6.8). For c=25 

and s=2, the rules SPT (71 %) and FCFS (29 %) were ranked first. For the remaining combi-

nations of c and s, three rules were ranked first. For c=2 and s=25, they were FCFS (45 %), 

EDD (45 %) and SPT (10 %). Furthermore, the representation of the relative frequencies in 

Figure 6.8 indicates that for c=5 and s=10, the LNOP rule was ranked first in about 60 % of 

cases, FCFS in 30 % and SRPT in 10 % of cases. For c=10 and s=5, SRPT outperformed all 

other rules in 45 % of cases. Moreover, LNOP was ranked first in 33 % and FCFS in 22 % of 

cases. The following conclusion can be drawn from the distribution of the relative frequencies: 

There is no single rule that outperforms all other rules. Interestingly, the FCFS rule was often 

ranked first across all combinations of c and s, as it essentially corresponds to a random selec-

tion of the next job. By contrast, in other cases it was one of the worst performing rules.  
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Figure 6.9: Relative frequency of an autonomous sequencing rule to be ranked first for schedule 

reliability. 

The schedule reliability was evaluated, and the following five rules were ranked as the best 

rule: FCFS, LNOP, TSPT, SRPT and EDD (see Figure 6.9). This meant the SPT rule disap-

peared and the TSPT became more significant. At first glance, TSPT performed the best across 

all scenarios for c=5 and s=10. For c=10 and s=5, among all the autonomous sequencing rules, 

TSPT dominated for schedule reliability in 47 %, SRPT in 40 % and LNOP in 13 % of cases. 

For c=25 and s=2, TSPT achieved the best the results in 50 %, SRPT in 40 % and LNOP in 

10 % of cases. As shown in Figure 6.9, for c=2 and s=25, all five autonomous sequencing rules 

appeared as best rules. The rules TSPT and EDD outperformed other rules in 36.5 %, respec-

tively. For the remaining rules, they outperformed other rules in 36 % of cases.  

To conclude, TSPT was the single rule that was ranked first most often across all combina-

tions of c and s. Sometimes, multiple autonomous sequencing rules achieved the best value for 

a given network model and performance measure. This meant that several rules (here: 2 or 3) 

all achieved the top ranking. For mean tardiness it is in 8.82 % of cases and for schedule relia-

bility in 26.47 % of cases.  

These preliminary simulation studies determine the behavior of the selected autonomous 

sequencing rules in a range of situations, particularly regarding the cluster topology of different 

material flow networks. Apart from c=5 and s=10, where TSPT was the dominant rule for 

schedule reliability, no rule outperformed all other rules in all cases. The remaining autonomous 

sequencing rules changed their behavior according to each network model and the observed 

performance measure. Hence, no specific recommendation can be made. The results of the best 

rule of each network model provide the benchmark for the following simulation studies. 
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6.3.2 Efficiency of the Hybrid Clustering-based Approach 

Chapter 5 demonstrated the effects of additional information (namely edge weights and/or edge 

directions) on the resulting clusters when using different clustering algorithms. From a network 

theory perspective, edge weights should be considered when they are available. It has also been 

demonstrated that the edge directions have no or little impact on the resulting clusters when the 

IM algorithm is used with edge weights taken into consideration. Removing the edge weights 

has a strong impact on the outcome of the IM algorithm. From a production logistics perspec-

tive, edge weights are relevant, and considering them allows merging the work systems based 

on their interactions. Neglecting the edge weights leads to clusters where all edges have the 

same weight of 1 and are thus regarded as equal. This scenario does not reflect the true interac-

tions. Hence, work systems would end up in the same cluster even if there was only single 

exchange of material between them. From a production logistics perspective, edge directions 

may be relevant, depending on what sequencing logic is used for a certain cluster. Emphasis 

has been given here to forward-looking sequencing rules, as it might be advantageous to place 

the subsequent work systems in one cluster. Therefore, the consideration of edge weights and 

edge directions must be carefully assessed, from both a network-theoretical and a production 

logistics perspective, as such considerations restrict the choice of available clustering algo-

rithms. Moreover, no agreement could be reached on whether one algorithm was the best in 

terms of cluster goodness. Despite this, the results also showed that different algorithms led to 

slightly different clustering results, depending on the given network topology.  

The findings were evaluated from a network theory perspective only. Hence, in this section, 

the clustering results are additionally evaluated for the ability to (i) provide an autonomous 

cluster to reduce the mean tardiness of tardy jobs and (ii) increase the schedule reliability, com-

pared to the corresponding benchmark rule. The results of the best-performing clustering algo-

rithm are then described in further detail. In this respect it is noted that the weighted versions 

of the clustering algorithms were used, and in the case of IM, the edge directions were also 

considered.  

Analysis of Mean Tardiness over all Tardy Jobs 

Figure 6.10 shows where the hybrid clustering-based approach performed better than the cor-

responding benchmark rule when using the clustering results of different algorithms. Overall, 

the clustering algorithms performed highly similarly. Most obvious were the differences for 

c=5 and s=10 and for c=10 and s=5. As mentioned earlier, the marginal differences between 

the individual clustering algorithms can be explained by the characteristics of the given data 

sets.  

The findings for IM and LP need to be interpreted with care. For particular combinations of 

c and s, there seems to be an upper limit for p, above which all nodes end up in one giant cluster. 

It is evident that the LV algorithm performed slightly better. Therefore, the results for the LV 

algorithm are presented and discussed in detail below. The complete results appear the appendix 

(Table A.3).  
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Figure 6.10: Relative frequency of the proposed hybrid clustering-based approach performing 

better than the benchmark rule. The variable of interest was the mean tardiness 

over all tardy jobs. 

The results in Table 6.2 indicate that for c=2 and s=25, in only three of nine cases did the 

best benchmark rule outperform the hybrid clustering-based approach. This was true especially 

for small and medium p-values. With the results from Figure 6.6 in mind, where it was described 

that mean tardiness is the lowest for c=2 and s=25 and small p-values, combined with the 

knowledge that this is a balanced manufacturing system (see Section 6.2.2), it seems reasonable 

that best autonomous sequencing rule dominates. When the hybrid clustering-based approach 

is applied in a system with balanced utilization, the clusters may be quite similar in their mate-

rial flow pattern, which would mean a combination of several autonomous sequencing rules 

would not improve the performance. In 26.5 % of the cases in all scenarios, the hybrid cluster-

ing-based approach led to similar results for mean tardiness. By contrast, in 64.7 % of cases, 

the hybrid clustering-based approach outperformed the best rule.  

Network 

Model 

(c, s, p) 

Best Rule Hybrid Clus-

tering-based 

Approach 

Confidence  

Interval 

Improve-

ment [%] 

2, 25, 0.1 571 611 [-61.82; -18.58] 7.00 

2, 25, 0.2 846 861 [-65.95; 35.55] 

(not significant) 

1.80 

2, 25, 0.3 840 891 [-69.52; -31.68] 6.10 

2, 25, 0.4 920 953 [-53.12; -12.48] 3.60 

2, 25, 0.5 3214 2229 [52.23; 253.77] -30.60 

2, 25, 0.6 2173 1869 [260.21; 348.59] -14.00 

2, 25, 0.7 3214 2229 [932.44; 1038.36] -30.60 

2, 25, 0.8 4292 3404 [529.05; 1048.95] -20.70 

2, 25, 0.9 4299 3009 [1185.26; 1395.54] -30.00 

5, 10, 0.1 2238 1872 [319.54; 412.06] -16.40 

5, 10, 0.2 2334 1816 [477.04; 559.76] -28.50 

5, 10, 0.3 3261 2240 [945.93; 1094.87] -31.30 

5, 10, 0.4 4592 3759 [734.62; 931.78] -18.10 

5, 10, 0.5 4907 4309 [352.12; 845.88] -12.20 

5, 10, 0.6 4821 4610 [-1538.29; -1158.91] -4.40 
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Network 

Model 

(c, s, p) 

Best Rule Hybrid Clus-

tering-based 

Approach 

Confidence  

Interval 

Improve-

ment [%] 

5, 10, 0.7 4766 3867 [774.82; 1023.58] -18.90 

5, 10, 0.8 4377 4412 [-137.73; 68.13] 

(not significant) 

0.80 

5, 10, 0.9 4343 3966 [206.17; 546.63] -8.70 

10, 5, 0.1 2070 1737 [227.56; 437.64] -16.10 

10, 5, 0.2 2706 2159 [481.81; 611.79] -20.20 

10, 5, 0.3 4686 3724 [858.54; 1064.26] -20.50 

10, 5, 0.4 4380 3610 [613.84; 928.16] -17.60 

10, 5, 0.5 4522 4172 [276.99; 423.41] -7.70 

10, 5, 0.6 3489 3337 [58.51; 246.29] -4.40 

10, 5, 0.7 3417 3111 [167.18; 442.82] -9.00 

10, 5, 0.8 3231 3202 [-39.8; 97.8] 

(not significant) 

-0.90 

10, 5, 0.9 2944 2987 [-150.81; 64.81] 

(not significant) 

1.50 

25, 2, 0.1 3721 3583 [64.06; 211.54] -3.70 

25, 2, 0.2 3909 3637 [184.53; 360.67] -7.00 

25, 2, 0.3 1186 1226 [-102.31; 22.31] 

(not significant) 

3.37 

25, 2, 0.4 669 617 [-5.06; 110.26] 

(not significant) 

-7.80 

25, 2, 0.5 662 655 [-89.91; 103.91] 

(not significant) 

-1.06 

25, 2, 0.6 679 663 [-34.51; 66.91] 

(not significant) 

-2.40 

25, 2, 0.7 634 614 [-9.82; 50.22] 

(not significant) 

-3.20 

Table 6.2: Computational results for mean tardiness [time units] of tardy jobs, using the LV 

algorithm. Values in bold indicate the approach that achieved the best performance. 

If there was no statistical difference between two approaches, both values are in 

bold. The non-overlapping confidence interval indicate that an approach was supe-

rior in the considered scenario. The improvement over the next-best autonomous 

sequencing rule is reported in the last column. 

For c=2 and s=25, five of the nine cases were dominated by the proposed approach, indi-

cating significant improvement over the benchmark rule. For c=5 and s=10, the hybrid cluster-

ing-based approach was superior in eight of nine cases. For c=10 and s=5, in seven out of nine 

cases. Finally, for c=25 and s=2, in four out of seven cases. However, it cannot be concluded 

from these results alone whether – and when – the hybrid clustering-based approach would lead 

to a significantly lower mean tardiness of tardy jobs. The results in Figure 6.11 should be useful 

for practitioners to make a choice.  

Based on the above description of the results, it is surprising that for both c=2, s=25 and 

c=5, s=10, the hybrid clustering-based approach achieved the greatest improvements, namely 
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almost 30 % (see Figure 6.11). A possible explanation is that with increasing p, the shop be-

comes more unbalanced and following a distinction between the different clusters regarding 

their structural properties emerge, and hence a combination of several autonomous sequencing 

rules leads to significant better results, whereas for c=25 and s=2, the improvement is the low-

est. In conclusion, in network models having many small clusters (c>s), the potential for im-

provement decreases.  

 

Figure 6.11: Relative frequency of improvement values. This representation considers only 

those cases where the hybrid clustering-based approach was superior. 

Analysis of Schedule Reliability  

The performance of all clustering algorithms is presented in Figure 6.12. Again, performance 

was measured by how often the hybrid clustering-based approach outperformed the correspond-

ing benchmark rule. It is evident that the clustering algorithms perform very similarly. Again, 

the LV algorithm performed best for c=10 and s=5. Hence, the results for LV are presented 

and discussed below. The complete results are depicted in the appendix (Table A.4). Because 

of the limited interpretation of the IM output in this thesis, the findings of Lancichinetti and 

Fortunato (2009a) were not confirmed. Those authors reported that IM surpassed all clustering 

algorithms they used.  
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Figure 6.12: Relative frequency of the hybrid clustering-based approach outperforming the 

benchmark rule, for schedule reliability. 

The computational results for schedule reliability are shown in Table 6.3. Again, the best-

performing autonomous sequencing rule of the corresponding network model was used as a 

benchmark for evaluating the effectiveness of the hybrid clustering-based approach. The results 

(Table 6.3) indicate that the hybrid clustering-based approach outperformed the benchmark rule 

in many scenarios in terms of schedule reliability. For c=2 and s=25, the results for small p 

were very similar to previous results. This meant the best sequencing rule dominated in two out 

of 34 cases. The difference was small but significant. In 12 of 34 cases, there was no statistical 

difference between the best rule and the proposed approach. For c=10 and s=5, the proposed 

approach was superior in all cases. For c=25 and s=2, it was superior in two of seven cases.  

Overall, the superiority of the hybrid clustering-based approach was most notable for c=10 

and s=5. In summary, the proposed approach yielded better values than the best rule in 20 out 

of 34 cases. However, the dependence on p was less obvious. 

Network 

Model 

(c, s, p) 

Best Rule Hybrid Clus-

tering-based 

Approach 

Confidence 

Interval 

Improve-

ment [%] 

2, 25, 0.1 97.95 97.81 [0.0065; 0.2655] -0.14 

2, 25, 0.2 97.20 96.43 [0.5359; 1.0161] -0.80 

2, 25, 0.3 95.02 95.18 [-1.0144; 0.6984] 

(not significant) 

0.17 

2, 25, 0.4 94.35 94.50 [-0.6830; 0.3910] 

(not significant) 

0.16 

2, 25, 0.5 91.24 92.16 [-1.2485; -0.6035] 1.01 

2, 25, 0.6 88.55 89.32 [-1.2915; -0.2325] 0.86 

2, 25, 0.7 86.33 87.82 [-1.8517; -1.1083] 1.72 

2, 25, 0.8 82.68 84.37 [-2.5423; -0.8377] 2.05 

2, 25, 0.9 81.95 82.43 [-1.2583; 0.2863] 

(not significant) 

0.59 
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Network 

Model 

(c, s, p) 

Best Rule Hybrid Clus-

tering-based 

Approach 

Confidence 

Interval 

Improve-

ment [%] 

5, 10, 0.1 92.60 92.60 [-0.1641; 0.1881] 

(not significant) 

0.00 

5, 10, 0.2 91.72 91.90 [-0.6838; 0.3078] 

(not significant) 

0.20 

5, 10, 0.3 90.87 90.76 [-0.1054; 0.3374] 

(not significant) 

-0.12 

5, 10, 0.4 80.66 81.77 [1.3798; 0.8482] 1.38 

5, 10, 0.5 74.89 77.20 [-3.0158; -1.6722] 

(not significant) 

3.08 

5, 10, 0.6 74.16 76.88 [-3.3595; -2.0765] 3.67 

5, 10, 0.7 73.82 74.99 [-1.5442; -0.7838] 1.58 

5, 10, 0.8 72.07 74.88 [-3.0609; -2.5551] 3.90 

5, 10, 0.9 71.37 71.15 [-0.3208; 0.7488] 

(not significant) 

-0.30 

10, 5, 0.1 89.83 90.59 [-1.4994; -0.0166] 0.85 

10, 5, 0.2 87.78 88.22 [-0.6082; -0.2518] 0.50 

10, 5, 0.3 75.65 80.93 [-5.9460; -4.6020] 6.98 

10, 5, 0.4 78.73 80.71 [-2.6385; -1.3175] 2.52 

10, 5, 0.5 72.38 78.51 [-6.8529; -5.4151] 8.48 

10, 5, 0.6 71.14 75.40 [-5.0031; -3.5929] 5.99 

10, 5, 0.7 72.02 72.78 [-1.5111; -0.0049] 1.05 

10, 5, 0.8 73.32 75.50 [-2.8953; -1.4647] 2.97 

10, 5, 0.9 73.09 73.95 [-1.5518; -0.1682] 1.18 

25, 2, 0.1 78.23 81.86 [-3.9352; -3.3208] 4.64 

25, 2, 0.2 76.94 80.52 [-4.2099; -2.9461] 4.65 

25, 2, 0.3 82.18 82.26 [-1.7332; 1.5772] 

(not significant) 

0.10 

25, 2, 0.4 86.99 87.11 [-0.9591; 0.7111] 

(not significant) 

0.14 

25, 2, 0.5 83.20 83.03 [-0.7202; 1.0602] 

(not significant) 

-0.21 

25, 2, 0.6 82.73 83.33 [-1.3800; 0.1800] 

(not significant) 

0.72 

25, 2, 0.7 83.01 83.28 [-1.2724; 0.7324] 

(not significant) 

0.33 

Table 6.3: Computational results for schedule reliability, with a tolerance window of 15 %, 

using the LV algorithm. Values in bold indicate the approach that achieved the best 

performance for mean tardiness. In cases where there was no statistical difference 

between two approaches, both values are in bold. The non-overlapping confidence 

interval indicate that an approach is superior in the considered scenario. The im-

provement over the next-best autonomous sequencing rule is reported in the last 

column.  
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As evident in Figure 6.13, the potential for improvement was highest for c=10 and s=5, 

where the largest improvement was 8.48 % and the least 0.5 %. For c=2 and s=25, the improve-

ment was minimal. The smaller and more numerous the clusters become, the more the distribu-

tion shifts to the right. In summary, with many small clusters (c>s), the improvement increases. 

These findings are exactly the opposite of the previous findings.  

 

Figure 6.13: Relative frequency of improvement values. This representation only considers 

cases where the hybrid clustering-based approach is superior. 

To conclude, consideration of the cluster topology of a material flow network through using 

the hybrid clustering-based approach is a promising approach. The results were better than those 

obtained using a single sequencing rule for the entire system. For the mean tardiness of tardy 

jobs, the proposed approach significantly outperformed others in 64.7 % of the cases and for 

schedule reliability in 58.8 % of cases. The improvement in schedule reliability was less note-

worthy than for mean tardiness. For schedule reliability, the greatest improvement of 8.48 % 

over the best-performing rule was 22.82 % less than the improvement regarding mean tardiness. 

Overall, for mean tardiness, the hybrid clustering-based approach offers strong potential for 

improved results.  

The simulation results show that considering the cluster topology of a material flow network 

can influence the achievement of logistic objectives, when the job sequencing is decentralized 

among identified material flow clusters. The effectiveness of the hybrid clustering-based ap-

proach depends mainly on the performance measure used. The substantial gains in performance 

must be considered carefully and should be ensured by adding further sequencing rules.  

These findings broadly support the work of Vrabič et al. (2012) in this area, linking auton-

omous control with the topological characteristics of a material flow system. The results of 
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Becker et al., 2015) are also supported, where they considered topology in the context of au-

tonomous control as a central element. However, the current findings do not enable direct con-

clusions to be drawn about the given cluster topology and the resulting performance. Rather, 

they lead to more general observations. For example, the potential improvement compared to a 

single sequencing rule for mean tardiness for a few large clusters (c<s) and for schedule relia-

bility is higher for many small clusters (c>s). 

For practitioners, these findings constitute a first indication of cases in which autonomous 

clusters would be advantageous. The influence of cluster blurriness p on the two observed per-

formance measures was not clearly demonstrated, and further research is required for general-

ization. The findings give an initial indication of what parameters may benefit from further and 

deeper analysis. Overall, the findings are helpful for initial estimates of whether the proposed 

hybrid clustering-based approach has the potential to improve a system’s performance. Further-

more, since there is no dominant sequencing rule, the hybrid clustering-based approach appears 

promising. 

6.4  Summary 

First, it has been demonstrated that there is a clear relationship between the cluster topology of 

a material flow network and the resulting performance. For this purpose, two performance 

measures were used: average shop utilization and average WIP to achieve a targeted utilization 

level. The findings show that material flow networks with a few large clusters (e.g. c=2 and 

s=25) imply a high and consistent shop utilization of 86 %. This result remains generally con-

sistent for higher p-values, which represent increasing blurriness of the cluster topology. By 

contrast, many small clusters (e.g. c=25 and s=2) indicate that only a few work systems show 

a strong level of utilization. Thus, the average shop utilization is comparatively low at 36 %. 

This is reinforced with increasing blurriness between clusters. After considering the average 

WIP to achieve target utilization levels, the previous findings were confirmed. In summary, for 

c=2 and s=25, it is less mean WIP required to achieve target utilization levels. However, when 

clusters are smaller and more plentiful (c>s), larger mean WIP is needed. Moreover, increasing 

blurriness of the cluster topology requires higher levels of WIP. These findings are consistent 

with those of earlier studies, where networks with well-defined cluster topology (low p-values) 

were identified as superior to networks with blurry clusters (high p-values).  

Second, the effectiveness of the selected autonomous sequencing rules to reduce the mean 

tardiness of tardy jobs and enhance the schedule reliability was tested. The results showed a 

tendency for cluster topology to influence the effectiveness of individual sequencing rules and 

thus also the logistics performance. Similar to previous results, high p-values – indicating 

smaller and more plentiful clusters (c>s) – were associated with high mean tardiness and low 

schedule reliability. However, for c=25 and s=2, an opposing trend was noted; i.e., with in-

creasing p-value, the performance improved. There was no sequencing rule that was superior 

in all cases, regardless of the performance measure used. Thus, no specific recommendation 

can be made. Moreover, the results of the best sequencing rule of each network model provide 

the benchmark.  

Third, the effectiveness of the hybrid clustering-based approach was evaluated using the 

clustering results from five algorithms (proposed in Chapter 5). The findings were evaluated 

from a production logistic perspective. The previous findings indicated that weights and direc-

tions should be considered. Therefore, the weighted versions of the clustering algorithms were 

used, and in the case of IM the edge directions were also considered. The performance was 
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measured by how often the hybrid clustering-based approach outperformed the corresponding 

benchmark rule. There were no major performance differences among the clustering algo-

rithms. Including the edge directions, as in the case of IM, did not lead to significant perfor-

mance improvements. This confirms the previous results reported in Chapter 5. Since the results 

of the LV algorithm were marginally better, the output of that algorithm was used for autono-

mous clusters in further investigations.  

Finally, the application of the hybrid clustering-based approach appears reasonable for al-

most all cases when the performance is evaluated in terms of mean tardiness or schedule relia-

bility. However, for mean tardiness, the hybrid clustering-based approach offered the greatest 

potential for improvement. For example, the proposed approach achieved better results than the 

best rule in 64.7 % of cases. Reductions of up to 30 % were achieved for mean tardiness. Hence, 

cluster topology is a crucial factor to consider when introducing autonomous control. Although 

no general conclusions can be drawn concerning the relationship between cluster topology and 

logistic performance, in material flow networks, the potential for improvement compared to a 

single sequencing rule is higher for a few large clusters (c<s) for mean tardiness and for many 

small clusters (c>s) for schedule reliability.
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7 Conclusion and Outlook 

To answer the RQs introduced in Chapter 1, this chapter first summarizes the main findings of 

this thesis. The chapter also highlights the contributions of this research to theory and practice, 

discusses the limitations and offers an outlook for future research directions. 

7.1 Summary of Results and Contributions 

In the introductory part of this thesis, the complex and often unpredictable environment of to-

day’s manufacturing was described. One way to deal with the corresponding challenges is the 

transformation toward autonomous manufacturing systems. Apart from technology required to 

enable data acquisition and real-time control of manufacturing processes, along with algorithms 

used to set the logic behind decisions in autonomously acting systems, the topology of a given 

material flow network could prove to be an important factor. The topology of a material flow 

network can, for example, serve as a basis to identify work systems that are characterized by 

intensive interactions and merge those systems into autonomous clusters with their decision-

making competencies. The main objective of this thesis was to demonstrate whether – or to 

what extent – the cluster topology of a material flow network affects the logistic performance 

achievement. Specifically, the study focused on situations where the job sequencing is decen-

tralized within previously identified material flow clusters. The RQs and the relevant findings 

were as follows:  

RQ 1: How can autonomous job sequencing be implemented in previously identified mate-

rial flow clusters? The first step was to develop an approach to provide autonomous job se-

quencing within previously identified material flow clusters. In the following, this is referred 

to as the hybrid clustering-based approach. Besides the obvious possibility of using identical 

sequencing rules for all clusters, it is promising to enable autonomous clusters to individually 

select a rule from a set of sequencing rules. The combination of several sequencing rules seems 

promising to increase the overall performance. In addition, it is assumed that a sequencing rule 

is chosen according to the material flow pattern within an autonomous cluster. This permits it 

to react more easily to the conditions within a cluster because the autonomous sequencing rule 

is individually adapted to the cluster. Overall, the cluster topology is a central factor in the 

implementation process of decentralized control. 

RQ 2: How can synthetic material flow networks be created with a predefined cluster to-

pology? A methodological approach to generate synthetic material flow networks with a pre-

defined cluster topology was proposed in Chapter 4. The challenges were to determine what 

parameters define the cluster topology and what concept can be used to imitate the material 

flow that results from job routing and processing. The following parameters were derived from 

the definition of a cluster in Chapter 3: (i) the number of clusters c, (ii) the cluster size s and 

(iii) the degree of interconnection between individual clusters p. Random walks were identified 

as one possibility to simulate such dynamic job routing processes. Initial evaluation results 

showed that by combining different values of the three parameters and simultaneously applying 

the random walk process, researchers can achieve a range of synthetic material flow networks 
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with varying cluster topology. Examples are networks with a few large clusters or many small 

clusters. In summary, 36 material flow network models – which differed primarily in their clus-

ter topology – were generated and are available for further study. Generally, with a few modi-

fications, this methodological approach can be applied to create networks with arbitrary fea-

tures. 

RQ 3: Which global network information should be used to identify autonomous clusters 

from a network theory perspective? From a network theory perspective, the direction and in-

tensity of material flow are represented by edge direction and edge weight, respectively. Exist-

ing clustering algorithms allow for the use of such information to some degree. To answer this 

RQ, the study employed five well-known clustering algorithms. The IM algorithm was applied 

to the 36 synthetic material flow networks, and the results showed that the edge directions had 

little or no impact on the resulting output when the edge weights were considered. Regarding 

edge weights, for some clustering algorithms – such as IM, WT and FG – the elimination of 

edge weights led to lower cluster quality. For the remaining algorithms, the overall quality of 

the resulting clusters improved slightly or remained the same when edge weights were consid-

ered. Overall, it was concluded that edge weights should be included when available. However, 

the edge direction may be ignored from a network theory perspective. There was no clear evi-

dence for whether one algorithm was the best regarding cluster quality. 

RQ 4: How does the cluster topology of material flow networks relate to the logistics per-

formance? From the simulation results, it was concluded that a clear relationship exists between 

the cluster topology of given material flow networks and the resulting performance. Material 

flow networks with a few large clusters displayed the best and most consistent shop perfor-

mance. This performance was only slightly affected by increasing blurriness of the cluster to-

pology. By contrast, many small clusters indicated that the performance was negatively af-

fected, which was reinforced by increased blurriness between clusters. These results support 

the importance of considering the cluster topology when implementing autonomous control.  

RQ 5: Do systems having autonomous clusters that are formed according to the intensity 

of material flow improve the logistical performance? 

Sub-RQ 5.1: For material flow systems that possess varying cluster topology, how effective 

are selected sequencing rules to reduce the mean tardiness of tardy jobs and enhance the sched-

ule reliability? The performance of the 12 sequencing rules was tested to evaluate their poten-

tials and weaknesses. It was assumed that one rule was applied to the entire system at once. The 

sequencing rule that outperformed all others for a given scenario then served as benchmark for 

the remaining simulation studies. The results showed that, depending on the given scenario and 

the observed performance measure (tardiness or schedule reliability), different rules led to the 

best results. No sequencing rule outperformed all other rules. However, only five or six (out of 

12) sequencing rules, depending on the outcome measure, were ranked as the best rule. Overall, 

no specific recommendation can be made.  

Sub-RQ 5.2: Which global network information should be used to identify autonomous 

clusters, from a logistics perspective? To evaluate the findings from a logistics-based perspec-

tive, this study examined the effectiveness of the hybrid clustering-based approach using the 

results of the five clustering algorithms proposed in Chapter 5. For this purpose and in addition 

to previous findings, the weighted versions of the clustering algorithms were used, and in the 

case of the IM algorithm, the edge directions were also considered. The aim was to determine 

the number of cases in which the hybrid clustering-based approach was better than the corre-

sponding benchmark sequencing rule. It was concluded that there were no major performance 
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differences between the different clustering algorithms. This confirms the findings from Chap-

ter 5.  

Sub-RQ 5.3: What is the efficiency of sequencing rules applied in autonomous clusters to 

reduce the mean tardiness of tardy jobs and enhance the schedule reliability in material flow 

systems with varying cluster topology? The potential improvement of the logistic objective 

achievement through the hybrid clustering-based approach was evaluated by simulation. The 

performance of the proposed approach was compared with the performance of the respective 

benchmark sequencing rule. It can be summarized that the application of the hybrid clustering-

based approach is reasonable in almost all cases when evaluating the performance using mean 

tardiness of tardy jobs or schedule reliability. However, for mean tardiness, the hybrid cluster-

ing-based approach offers stronger potential for improvement. For example, the proposed ap-

proach achieves in 64.7 % better results than the best rule. Moreover, for the schedule reliability 

in 58.8 % of cases. Moreover, the findings imply that the potential for improvement, compared 

to a single sequencing rule, was highest for a few large clusters (c<s) for mean tardiness and 

was highest for many small clusters (c>s) for schedule reliability. These generalizations con-

cerning the relationship between cluster topology and logistic performance are limited, and the 

topic should be further researched. 

To conclude, the insight gained by answering the RQs is that the cluster topology has a 

significant impact on a system’s performance. Therefore, cluster topology is a crucial factor 

when introducing autonomous control. The findings of this thesis contribute to the theory by 

complementing previous work by Vrabič et al. (2012). This study has shown how methods, 

perspectives and resulting knowledge from network theory can be transferred to manufacturing. 

For instance, the idea of autonomy can be transferred to material flow clusters, and the perfor-

mance of additional clustering algorithms has been evaluated. Moreover, the proposed hybrid 

clustering approach offers a high degree of flexibility regarding the sequencing rules used and 

the given cluster topology. Hence, transferability to similar problems is ensured.  

These findings also contribute in practice toward a smooth transformation to autonomous 

manufacturing systems with a consideration of the topology of given material flow networks. 

Knowledge of a cluster topology of a complex material flow system could provide the produc-

tion planner with a first indication (at an early stage) to decide whether the transition to decen-

tralized control is worthwhile. If so, the expected degree of effort (e.g. computational effort and 

cost of technological devices) can be estimated. For the concrete practical implementation of 

the hybrid clustering-based approach, the availability of the data and tools for analyzing and 

processing these data must be ensured. For example, data obtained from the MES enable a 

network representation of a material flow system. For analytical purposes, NetworkX, a Python 

package (Hagberg, Swart, & Chult, 2008) and igraphdata, a R package (Csardi & Nepusz, 

2006) offer sets of tools, and various clustering algorithms and quality measures are pre-imple-

mented. In principle, the job sequencing in autonomous clusters is relatively easy to implement, 

assuming that many well-known sequencing rules are already realized within MES. Further-

more, technologies such as radio frequency identification (RFID) and sensors that provide job-

specific information (e.g. processing times, due dates) can be saved locally on a product. This 

means control decisions can be decentralized, according to the underlying logic of a sequencing 

rule. For the preliminary simulation studies that evaluated the performance of a set of sequenc-

ing rules within autonomous clusters, there was no need to access existing systems. Addition-
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ally, companies have recently gained experience in simulating their manufacturing systems us-

ing software solutions like Plant Simulation2F

3 or AnyLogic.3F

4 However, the interfaces for data 

exchanges between all software solutions are crucial for the successful practical implementation 

and need to be addressed in the future. 

7.2 Outlook and Future Research  

Based on the results reported in this thesis, questions arise for future research. They can be 

divided into three distinct activities, described next.  

Generalizability  

In this thesis, the variety and number of scenarios considered was low. This kept the research 

at a manageable size, but it also meant that the generalizability of the findings is limited. Further 

research is necessary to test the findings and determine the effects of cluster topology in addi-

tional scenarios. Concerning the modeling of material flow networks, further parameter com-

binations with other sets of values – or even a different underlying network – are required. 

Additions could also be made regarding the hybrid clustering-based approach.  

In this thesis, a small set of autonomous sequencing rules was chosen to keep the computa-

tional complexity low. The approach could be extended by integrating more or other sequencing 

rules. To further explore the effectiveness, researchers could also ascertain how the proposed 

approach performs on systems having additional uncertainties, such as machine breakdowns or 

rush jobs – which are associated with a complex and dynamic environment. 

Computational Effort 

The findings of this thesis demonstrate, inter alia, the potential of the hybrid clustering-based 

approach. However, the challenge in this approach is that the computational effort increases 

vastly with an increasing number of clusters and/or sequencing rules. The reason is that simu-

lation must be performed for all the available sequencing rules to enable a proper decision; 

therefore, all possible combinations of sequencing rules must be computed. Regarding its prac-

ticability, future research could investigate a relationship between the cluster features (in the 

form of network measures to capture the cluster topology) and the corresponding sequencing 

rule. The aim would be to identify the most appropriate sequencing rule for a given cluster to 

avoid simulations where possible. Moreover, it might be possible to go a step further and study 

which individual clusters need to be addressed concretely. In concrete terms, further studies are 

necessary to explore whether there is a positive correlation between specific cluster features 

and the logistics performance. These insights could support the stepwise introduction of auton-

omous control in manufacturing systems.  

 

 

3 https://plant-simulation.de/, Retrieved October 14, 2022. 

 
4 https://www.anylogic.com/, Retrieved October 14, 2022. 

https://plant-simulation.de/
https://www.anylogic.com/
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Dynamics in Networks  

This thesis has assumed that clusters do not change over time. This means the clustering algo-

rithms were applied to the aggregated network representation over a certain period. Indeed, the 

material flow may increase or decrease between any two work systems, or work systems may 

remain idle for a long period (Wagner & Becker, 2016). Multiple changes would inevitably 

affect the resulting network clusters. This could have a considerable impact on the management 

of the shop floor, because the current clusters may no longer correspond to the autonomous 

clusters, as a result of the changing material flow network. Therefore, robust clusters are re-

quired that do not change significantly through certain events occurring.  

A possible approach to this problem is to consider not only the aggregated form of the net-

work representation but also several subsequent time steps. The drawback of this approach is 

that the resulting clusters can differ strongly across the individual time steps (Fortunato, 2010). 

It might therefore be appropriate to enable smoothing of the resulting clusters, as clusters do 

not usually change abruptly but develop gradually (Backstrom, Huttenlocher, Kleinberg, & 

Lan, 2006). Certain clustering algorithms (e.g. Bansal, Bhowmick, & Paymal, 2011; You, Hu, 

Kamigaito, Funakoshi, & Okumura, 2021) that compensate for random variations across the 

time steps could be used to find robust clusters based on historical data. Procedures such as that 

of Greene, Doyle, and Cunningham (2010) enable tracking the clusters over time and identify-

ing superordinate clusters based on the observations. Further research on cluster changes over 

time is recommended.
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A Appendix 

 

 

 Directed, unweighted networks Undirected, unweighted networks 

p    
c, s

 2,25 5,10 10,5 25,2 2,25 5,10 10,5 25,2 

0.1 14 14 12 33 25 23 22 22 

0.2 14 12 12 32 24 23 21 19 

0.3 13 11 10 33 24 23 21 20 

0.4 14 12 10 27 24 23 21 17 

0.5 13 12 9 26 24 22 20 17 

0.6 13 10 9 26 24 22 20 17 

0.7 12 10 10 30 24 22 20 18 

0.8 13 11 10 15 24 22 20 16 

0.9 12 10 8 22 23 21 19 18 

Table A.1: Identified number of clusters using the IM algorithm. Each value corresponds to the 

average over 15 material flow networks. 
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(a) p=0.1       (b) p=0.2 

 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 

FG 0.45 

(0.45) 

0.70 

(0.70) 

0.83 

(0.83) 

0.94 

(0.93) 

0.43 

(0.42) 

0.65 

(0.65) 

0.76 

(0.76) 

0.93 

(0.91) 

LV 0.45 

(0.45) 

0.70 

(0.70) 

0.83 

(0.84) 

0.94 

(0.94) 

0.43 

(0.43) 

0.65 

(0.65) 

0.76 

(0.76) 

0.93 

(0.93) 

IM 0.45 

(0.45) 

0.70 

(0.08) 

0.83 

(0.29) 

0.94 

(0.93) 

0.43 

(0.01) 

0.65 

(0.08) 

0.76 

(0.27) 

0.93 

(0.93) 

WT 0.45 

(0.45) 

0.70 

(0.70) 

0.83 

(0.83) 

0.94 

(0.93) 

0.43 

(0.43) 

0.65 

(0.65) 

0.76 

(0.76) 

0.93 

(0.93) 

LP 0.45 

(0.45) 

0.70 

(0.70) 

0.83 

(0.83) 

0.94 

(0.94) 

0.43 

(0.43) 

0.65 

(0.60) 

0.76 

(0.75) 

0.93 

(0.93) 

 

(c) p=0.3      (d) p=0.4 

 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 

FG 0.38 

(0.37) 

0.66 

(0.63) 

0.66 

(0.63) 

0.94 

(0.92) 

0.31 

(0.33) 

0.52 

(0.51) 

0.58 

(0.57) 

0.84 

(0.83) 

LV 0.38 

(0.38) 

0.66 

(0.66) 

0.66 

(0.66) 

0.94 

(0.94) 

0.32 

(0.32) 

0.52 

(0.52) 

0.59 

(0.59) 

0.84 

(0.84) 

IM 0.38 

(0.01) 

0.66 

(0.26) 

0.66 

(0.26) 

0.94 

(0.94) 

0.00 

0.01 

0.52 

(0.08) 

0.59 

(0.26) 

0.84 

(0.82) 

WT 0.38 

(0.38) 

0.65 

(0.65) 

0.65 

(0.65) 

0.94 

(0.94) 

0.32 

(0.32) 

0.51 

(0.51) 

0.55 

(0.55) 

0.84 

(0.84) 

LP 0.38 

(0.38) 

0.56 

(0.55) 

0.64 

(0.64) 

0.94 

(0.94) 

0.32 

(0.32) 

0.52 

(0.52) 

0.57 

(0.57) 

0.83 

(0.83) 

 

(e) p=0.5      (f) p=0.6 

 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 

FG 0.30 

(0.30) 

0.44 

(0.43) 

0.55 

(0.56) 

0.89 

(0.86) 

0.23 

(0.23) 

0.31 

(0.30) 

0.49 

(0.46) 

0.90 

(0.87) 

LV 0.30 

(0.30) 

0.46 

(0.46) 

0.55 

(0.55) 

0.89 

(0.89) 

0.24 

(0.24) 

0.31 

(0.31) 

0.48 

(0.48) 

0.90 

(0.90) 

IM 0.00 

(0.01) 

0.46 

(0.10) 

0.55 

(0.29) 

0.89 

(0.87) 

0.00 

(0.00) 

0.00 

(0.08) 

0.51 

(0.26) 

0.90 

(0.87) 

WT 0.30 

(0.30) 

0.45 

(0.45) 

0.51 

(0.51) 

0.89 

(0.89) 

0.24 

(0.24) 

0.28 

(0.28) 

0.48 

(0.37) 

0.90 

(0.90) 

LP 0.30 

(0.30) 

0.46 

(0.46) 

0.51 

(0.51) 

0.87 

(0.87) 

0.00 

(0.24) 

0.00 

(0.00) 

0.41 

(0.41) 

0.86 

(0.86) 

 

(g) p=0.7      (h) p=0.8 

 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 

FG 0.20 

(0.19) 

0.48 

(0.43) 

0.48 

(0.43) 

0.91 

(0.87) 

0.15 

(0.16) 

0.27 

(0.25) 

0.43 

(0.42) 

0.75 

(0.77) 

LV 0.21 

(0.21) 

0.51 

(0.51) 

0.51 

(0.51) 

0.88 

(0.88) 

0.16 

(0.16) 

0.26 

(0.26) 

0.44 

(0.44) 

0.75 

(0.75) 

IM 0.00 

(0.01) 

0.00 

(0.25) 

0.50 

(0.25) 

0.88 

(0.86) 

0.00 

(0.01) 

0.00 

(0.09) 

0.44 

(0.25) 

0.75 

(0.60) 

WT 0.21 

(0.21) 

0.45 

(0.34) 

0.45 

(0.34) 

0.82 

(0.82) 

0.16 

(0.16) 

0.21 

(0.20) 

0.42 

(0.31) 

0.75 

(0.75) 

LP 0.00 

(0.0) 

0.00 

(0.0) 

0.46 

(0.44) 

0.88 

(0.86) 

0.00 

(0.15) 

0.00 

(0.00) 

0.40 

(0.41) 

0.70 

(0.70) 

 

(i) p=0.9 

 c=2, s=25 c=5, s=10 c=10, s=5 c=25, s=2 

FG 0.12 

(0.10) 

0.27 

(0.24) 

0.43 

(0.41) 

0.84 

(0.82) 

LV 0.12 

(0.12) 

0.28 

(0.28) 

0.45 

(0.45) 

0.84 

(0.84) 

IM 0.00 

(0.01) 

0.00 

(0.01) 

0.44 

(0.23) 

0.84 

(0.71) 

WT 0.11 

(0.05) 

0.23 

(0.19) 

0.41 

(0.20) 

0.84 

(0.84) 

LP 0.00 

(0.00) 

0.00 

(0.00) 

0.34 

(0.39) 

0.81 

(0.81) 

Table A.2: Modularity resulting from different clustering algorithms (IM: Infomap, WT: 

Walktrap, LP: Label Propagation, FG: Fast Greedy, LV: Louvain). The values for 

unweighted networks appear in brackets. For the weighted case, the highest value 

of each column is shown in bold. 
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Figure A.1: Impact of parameter p on the mean utilization rate of individual work systems in 

descending order for c=2 and s=25. Jobs are released immediately after they have 

been entered into the system. The horizontal red line represents the mean of the 

given data. 
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Figure A.2: Impact of the parameter p on the mean utilization rate of individual work systems 

in descending order for c=5 and s=10. Jobs are released immediately after they have 

been entered into the system. The horizontal red line represents the mean of the 

given data. 
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Figure A.3: Impact of the parameter p on the mean utilization rate of individual work systems, 

in descending order, for c=10 and s=5. Jobs are released immediately after they 

have been entered into the system. The horizontal red line represents the mean of 

the given data. 
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Figure A.4: Impact of the parameter p on the mean utilization rate of individual work systems, 

in descending order, for c=25 and s=2. Jobs are released immediately after they 

have been entered into the system. The horizontal red line represents the mean of 

the given data. 
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Figure A.5: Impact of the parameter p on the mean utilization rate of individual work systems, 

in descending order, for c=2 and s=25 after applying ConWIP. The horizontal red 

line represents the mean of the given data. 
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Figure A.6: Impact of the parameter p on the mean utilization rate of individual work systems, 

in descending order, for c=5 and s=10 after applying ConWIP. The horizontal red 

line represents the mean of the given data. 
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Figure A.7: Impact of the parameter p on the mean utilization rate of individual work systems, 

in descending order, for c=10 and s=5 after applying ConWIP. The horizontal red 

line represents the mean of the given data. 
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Figure A.8: Impact of the parameter p on the mean utilization rate of individual work systems, 

in descending order, for c=25 and s=2 after applying CONWIP. The horizontal red 

line represents the mean of the given data. 
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Network 

Model 

(c, s, p) 

Best Rule Hybrid Clus-

tering-based 

Approach 

with FG 

Hybrid Clus-

tering-based 

Approach 

with LV 

Hybrid Clus-

tering-based 

Approach 

with IM 

Hybrid Clus-

tering-based 

Approach 

with WT 

Hybrid Clus-

tering-based 

Approach 

with LP 

2, 25, 0.1 571 611 611 611 611 611 

2, 25, 0.2 846 861 861 861 861 861 

2, 25, 0.3 840 891 891 891 891 891 

2, 25, 0.4 920 950 953 - 953 953 

2, 25, 0.5 3214 2229 2229 - 2229 - 

2, 25, 0.6 2173 1892 1869 - 1869 - 

2, 25, 0.7 3214 2307 2229 - 2229 - 

2, 25, 0.8 4292 3297 3404 - 3404 - 

2, 25, 0.9 4299 3486 3009 - 3211 - 

5, 10, 0.1 2238 1872 1872 1872 1872 1872 

5, 10, 0.2 2334 1816 1816 1816 1816 1816 

5, 10, 0.3 3261 2240 2240 2240 2240 2240 

5, 10, 0.4 4592 3759 3759 3759 3759 3759 

5, 10, 0.5 4907 4568 4309 4309 4309 4626 

5, 10, 0.6 4821 4906 4610 - 4752 - 

5, 10, 0.7 4766 4615 3867 - 3923 - 

5, 10, 0.8 4377 4315 4412 - 4044 - 

5, 10, 0.9 4343 4331 3966 - 4083 - 

10, 5, 0.1 2070 1737 1737 1737 1737 1737 

10, 5, 0.2 2706 2159 2159 2159 2159 2159 

10, 5, 0.3 4686 3724 3724 3811 4303 3820 

10, 5, 0.4 4380 3845 3610 4127 4023 3848 

10, 5, 0.5 4522 4258 4172 4411 4312 4480 

10, 5, 0.6 3489 3454 3337 3371 3258 3445 

10, 5, 0.7 3417 3336 3111 3232 3412 3244 

10, 5, 0.8 3231 3351 3202 3109 3163 3299 

10, 5, 0.9 2944 3022 2987 3272 3022 2944 

25, 2, 0.1 3721 3583 3583 3583 3583 3583 

25, 2, 0.2 3909 3637 3637 3637 3637 3637 

25, 2, 0.3 1186 1226 1226 1226 1226 1226 

25, 2, 0.4 669 617 617 617 617 617 

25, 2, 0.5 662 655 655 655 655 655 

25, 2, 0.6 679 663 663 663 663 663 

25, 2, 0.7 634 614 614 614 614 614 

Table A.3: Results for mean tardiness [time units] over all tardy jobs for all clustering algo-

rithms: (IM: Infomap, WT: Walktrap, LP: Label Propagation, FG: Fast Greedy, LV: 

Louvain). The missing values (-) result from the presence of only one giant cluster. 

Key: number of clusters, c; cluster size, s; and degree of interconnection among 

individual clusters, p. Values in bold indicate that the hybrid clustering-based ap-

proach led to better performance. 
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Network 

Model 

(c, s, p) 

Best Rule Hybrid Clus-

tering-based 

Approach with 

FG 

Hybrid Clus-

tering-based 

Approach with 

LV 

Hybrid Clus-

tering-based 

Approach with 

IM 

Hybrid Clus-

tering-based 

Approach with 

WT 

Hybrid Clus-

tering-based 

Approach with 

LP 

2, 25, 0.1 97.95 97.81 97.81 97.81 97.81 97.81 

2, 25, 0.2 97.20 96.43 96.43 96.43 96.43 96.43 

2, 25, 0.3 95.02 95.18 95.18 95.18 95.18 95.18 

2, 25, 0.4 94.35 94.20 94.50 - 94.50 94.50 

2, 25, 0.5 91.24 92.16 92.16 - 92.16 - 

2, 25, 0.6 88.55 89.15 89.32 - 89.32 - 

2, 25, 0.7 86.33 87.70 87.82 - 87.82 - 

2, 25, 0.8 82.68 84.38 84.37 - 84.37 - 

2, 25, 0.9 81.95 82.20 82.43 - 83.40 - 

5, 10, 0.1 92.60 92.60 92.60 92.60 92.60 92.60 

5, 10, 0.2 91.72 91.90 91.90 91.90 91.90 91.90 

5, 10, 0.3 90.87 90.76 90.76 90.76 90.76 90.76 

5, 10, 0.4 80.66 81.77 81.77 81.77 81.77 81.77 

5, 10, 0.5 74.89 77.70 77.20 77.20 77.20 76.50 

5, 10, 0.6 74.16 74.70 76.88 - 75.20 - 

5, 10, 0.7 73.82 74.50 74.99 - 78.70 - 

5, 10, 0.8 72.07 73.00 74.88 - 75.70 - 

5, 10, 0.9 71.37 71.00 71.15 - 70.70 - 

10, 5, 0.1 89.83 90.59 90.59 90.59 90.59 90.59 

10, 5, 0.2 87.78 88.22 88.22 88.22 88.22 88.22 

10, 5, 0.3 75.65 80.93 80.93 75.90 77.90 81.30 

10, 5, 0.4 78.73 81.80 80.71 77.80 78.90 79.70 

10, 5, 0.5 72.38 77.60 78.51 72.70 73.70 73.90 

10, 5, 0.6 71.14 72.30 75.40 75.00 74.80 70.50 

10, 5, 0.7 72.02 69.00 72.78 72.00 72.40 73.70 

10, 5, 0.8 73.32 73.10 75.50 72.70 73.00 67.70 

10, 5, 0.9 73.09 73.70 73.95 73.10 72.20 73.50 

25, 2, 0.1 78.23 81.86 81.86 81.86 81.86 81.86 

25, 2, 0.2 76.94 80.52 80.52 80.52 80.52 80.52 

25, 2, 0.3 82.18 82.26 82.26 82.26 82.26 82.26 

25, 2, 0.4 86.99 87.11 87.11 87.11 87.11 87.11 

25, 2, 0.5 83.20 83.03 83.03 83.03 83.03 83.03 

25, 2, 0.6 82.73 83.33 83.33 83.33 83.33 83.33 

25, 2, 0.7 83.01 83.28 83.28 83.28 83.28 83.28 

Table A.4: Results for schedule reliability [%] within a tolerance window of 15 % for all clus-

tering algorithms: (IM: Infomap, WT: Walktrap, LP: Label Propagation, FG: Fast 

Greedy, LV: Louvain). The missing values (-) occurred because there was only one 

giant cluster. Key: number of clusters, c; cluster size, s; and degree of interconnec-

tion bet-ween individual clusters, p. Values in bold indicate that the hybrid cluster-

ing-based approach led to better performance.
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