
Proximal Sensing For Scalable Mapping
Of Shallow Coastal Ecosystems
Elucidating the community structure of coral reefs and

mangrove forests through dense and detailed maps and inventories

Daniel Schürholz

Doctoral Dissertation
Date of thesis defense: 09.02.2024



Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems

Elucidating the community structure of coral reefs and mangrove forests through dense and detailed maps and
inventories

©Daniel Schürholz, 2023–2024



Fachbereich 2: Biologie und Chemie

Proximal Sensing For Scalable
Mapping Of Shallow Coastal

Ecosystems

Elucidating the community structure of coral reefs
and mangrove forests through dense and detailed

maps and inventories

Dissertation zur Erlangung des Grades eines Doktors der
Naturwissenschaften

– Dr. rer. nat. –

Vorgelegt von: Daniel Schürholz

03. Januar 2024
Datum des Kolloquiums: 09.02.2024

1. Gutachter: PD Dr. Hauke Reuter
2. Gutachter: Dr. Dirk de Beer

Betreuer: Dr. Arjun Chennu



The presented work was conducted from October 2019 to December 2023 at the Microsensor Group at
the Max Planck Institute for Marine Microbiology, Bremen and at the Data Science and Technology
group at the Leibniz-Centre for Tropical Marine Research (ZMT), Bremen and was part of the Marie

Curie Initial Training Network “4D-REEF”.

Daniel Schürholz

Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems

Elucidating the community structure of coral reefs and mangrove forests through dense and detailed
maps and inventories

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. –

Fachbereich 2: Biologie und Chemie, Universität Bremen, January 2024



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems

Selbstständigkeitserklärung
Erklärung gemäß §7 Abs. 7 Punkte 1 bis 3 der Promotionsordnung der Universität Bremen für
den Fachbereich 2 (Biologie/Chemie).

Hiermit versichere ich, dass ich die vorliegende Arbeit

1. ohne unerlaubte fremde Hilfe (selbständig) angefertigt habe,
2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe,
3. die den benutzten Werken wörtliche oder inhaltlich entnommene Stellen als solche kenntlich

gemacht habe.

Bremen, den 03. Januar 2024
Datum des Kolloquiums: 09.02.2024

Daniel Schürholz

5



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems

Abstract
Shallow coastal habitats, such as shallow coral reefs and mangrove forests, provide invaluable
services to surrounding ecosystems and coastal human populations. In recent decades, they have
experienced rapid decline and are under constant threat from direct and indirect anthropogenic
stressors, such as: land run-offs, water pollution, over-fishing, coastal infrastructure development,
sea-level rise and ocean acidification due to climate change. Thus, it is critical to understand how
these fragile environments are fairing under present-day conditions, and how they can adapt, to
be able to design and implement better regulations, protection plans and recovery efforts. Cre-
ating platforms fueled by qualitative and quantitative ecological information about the biotic
communities is key in the task of posing and answering relevant questions. However, in past
decades, survey efforts have struggled to capture thematically detailed, temporally frequent and
spatially fine-grained information of ecosystems, partially failing to set concrete baselines. The
current accelerated improvement of Artificial Intelligence (AI) algorithms and the increased ac-
cessibility of powerful imaging devices provide new tools to significantly reduce the costs of
ecosystem monitoring, by automating and scaling up tedious processes. Furthermore, the in-
crease in detail of environmental monitoring introduces the possibility of new discoveries to be
made, previous beliefs to be challenged and concrete baselines to be set. This doctoral study
identifies the shortcomings of traditional coral reef and mangrove forests surveying methods, on
both the proximal sensing scale (e.g., underwater or on-ground sensors) and remote sensing scale
(e.g., air- or spaceborne sensors). Furthermore, it shows that through well designed AI work-
flows, more detail and new insights on these ecosystems can be drawn, while reducing uncertainty.
Moving away from sparse sampling towards dense thematic mapping provides a closer view of
the underlying biodiversity in shallow coastal ecosystems, captures intra-group composition and
configuration patterns, without neglecting rare species or small specimens. An environmental
correlation analysis shows that more detailed sampling helps unveil the mechanisms and drivers
of shifts in community composition and configuration, as well as the co-occurrence of species
and substrate classes. The modern capabilities of AI workflows also enable a shift from purely
areal coverage percentage studies towards organism-focused analysis. This not only facilitates
in-depth spatial and temporal investigations of individuals within populations, but also reduces
the error in ecosystem accounting calculations. The subsequent studies explore the ecological
applications of state-of-the-art imaging platforms and novel AI workflows to automatically create
habitat maps with thematic detail and individual-organism resolution, as well as showing that
these analyses are spatially and thematically scalable.

Chapter 1 introduces shallow coastal ecosystems, specifically coral reefs and mangrove forests
and their overall importance, the threats they face in the Anthropocene, their intricate char-
acteristics that complicate their detailed monitoring, and the traditional and current methods
used to survey them. Then, the different scales and platforms for ecosystem observation, with
image analysis and environmental mapping, are briefly explained. Afterwards, the state-of-the-
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art of AI applications in environmental mapping is presented. The lack of scalable dense and
organism-focused mapping of habitats is described, followed by an explanation of how this dis-
sertation helps remediate this gap. Finally, current limitations in the literature are explained
and the motivations for this doctoral project are outlined.

Chapter 2 presents the design, development and assessment of an AI workflow to leverage un-
derwater hyperspectral image transects with two machine learning algorithms, to produce dense
habitat maps of a large subsection of reefs across an island’s coastline. The multi-method work-
flow was used to label large quantities of pixels with very thematic detail for biotic classes, such
as corals, algae, sponges, and substrate classes, such as sediment, turf algae and cyanobacterial
mats. The workflow enabled accurate survey-scale mapping with low annotation effort and no
external data. An assessment of the composition and configuration of the benthic communities
was possible, with unprecedented thematic detail and with fine spatial resolution. The dense
habitat maps created in this study reveal the inadequacies of traditional point sampling methods
to accurately describe reef benthic communities.

Chapter 3 describes a study were an optimized version of the AI workflow presented in Chapter 2
is applied to an island-wide survey to produce 147 habitat maps of benthic coral reef communities
along the leeward coast of the Caribbean island of Curaçao. The densely sampled maps provided
evidence that deriving community diversity indices from sparse sampling and abstracted thematic
labels can mask the true diversity of coral reefs, as well as neglect information about intra-group
communities. An environmental statistical analysis provided a unique view into the drivers of
community composition and the co-occurrence of biotic and abiotic benthic elements along a
complete island-wide gradient. The community description was compared to previous reports on
the island and provided a consistent and valuable addition to the reefs’ recent natural history.

Chapter 4 focuses on the design and implementation of an AI workflow to produce an inventory
of a mangrove forest with dense vegetation, inhabited by two species of mangroves. The AI work-
flow uses aerial imagery of the mangrove forests captured using a consumer-grade Unoccupied
Aerial System (UAS), from which large orthophoto mosaics and digital surface models are built.
The workflow accurately delineated individual tree canopies, segmented areas other biotic and
abiotic elements of the forests and automatically created a Canopy Height Model (CHM). The
workflow shows that the combination of organism-oriented analysis and area cover classifications
can be used to create detailed inventories of a mangrove forests, with individual tree height
information, crown shape and crown size descriptions. This reduces uncertainty in ecosystem
accounting by calculating biomass and carbon stocks on organism level for large forests.

Chapter 5 discusses the next step in the implementation of organism-oriented classification in
a shallow coastal ecosystem that presents higher biodiversity: coral reefs in the Coral Triangle.
The taxonomic diversity requires spatially and spectrally richer data to be acquired, such that
individual biotic organisms can be automatically delineated and classified to finer taxonomic
levels through AI workflows. The requirements and a data collections example are shown in this
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chapter, laying the ground-work for detailed ecological descriptions of shallow coastal ecosystems.

Chapter 6 presents the merits of the doctoral research in terms of the technical achievements of
the AI workflows designed and implemented, the ecological insights gained due to the application
of the new methods and the limitations of the workflows. Finally, future work regarding the
optimization, the scalability and the adaptation of the workflows to other settings is discussed.
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Zusammenfassung
Flache Küstenlebensräume, wie viele Korallenriffe und Mangrovenwälder, erbringen unschätzbare
Leistungen für die umliegenden Ökosysteme und für die Küstenbevölkerung. In den letzten
Jahrzehnten haben sie einen raschen Rückgang erlebt und sind ständig durch direkte und in-
direkte anthropogene Stressfaktoren bedroht, wie z. B. Landabfluss, Wasserverschmutzung,
Überfischung, Anbau von Küsteninfrastruktur, Anstieg des Meeresspiegels und Versauerung der
Meere infolge des Klimawandels. Daher ist es von entscheidender Bedeutung zu verstehen, wie
sich diese empfindliche Ökosysteme unter den heutigen Bedingungen verhält und wie sie sich
anpassen kann, um bessere Vorschriften, Schutzpläne und Wiederherstellungsmaßnahmen en-
twerfen und umsetzen zu können. Die Schaffung von Plattformen, die sich auf qualitative und
quantitative ökologische Informationen über die Lebensgemeinschaften stützen, ist der Schlüssel,
um relevante Fragen zu stellen und zu beantworten. In den vergangenen Jahrzehnten haben
sich die Erhebungen jedoch schwer getan, thematisch detaillierte, zeitlich häufige und räum-
lich feinkörnige Informationen über Ökosysteme zu erfassen, so dass es teilweise nicht gelungen
ist, konkrete Grundlinien festzulegen. Die derzeitige beschleunigte Verbesserung von Algorith-
men der künstlichen Intelligenz (KI) und die zunehmende Verfügbarkeit leistungsfähiger Bildge-
bungsgeräte bieten neue Werkzeuge, um die Kosten der Ökosystemüberwachung durch die Au-
tomatisierung und Skalierung langwieriger Prozesse erheblich zu senken. Darüber hinaus bietet
die zunehmende Detailliertheit der Umweltüberwachung die Möglichkeit, neue Entdeckungen zu
machen, frühere Annahmen in Frage zu stellen und konkrete Ausgangspunkte festzulegen. In
dieser Doktorarbeit werden die Unzulänglichkeiten herkömmlicher Vermessungsmethoden für Ko-
rallenriffe und Mangrovenwälder aufgezeigt, und zwar sowohl auf der Ebene der Naherkundung
(z. B. Unterwasser- oder Bodensensoren) als auch auf der Ebene der Fernerkundung (z. B. luft-
oder weltraumgestützte Sensoren). Außerdem wird hier zeigt, dass durch gut konzipierte KI-
Workflows Arbeitsabläufe mehr Details und neue Erkenntnisse über diese Ökosysteme gewonnen
werden können und gleichzeitig die Fehlerquote gesenkt werden kann. Die Abkehr von spärliche
Probenahmen hin zu einer dichten thematischen Kartierung ermöglicht einen genaueren Blick auf
die zugrunde liegende biologische Vielfalt in flachen Küstenökosystemen und erfasst die Zusam-
mensetzung innerhalb von Gruppen und Konfigurationsmuster, ohne seltene Arten oder kleine
Exemplare zu vernachlässigen. Eine korrelative Analyse von Umweltfaktoren zeigt, dass eine de-
tailliertere Probenahme dazu beiträgt, die Mechanismen und Triebkräfte von Veränderungen in
der Zusammensetzung und Konfiguration von Gemeinschaften sowie das gemeinsame Auftreten
von Arten und Substratklassen aufzudecken. Diese Doktorarbeit zeigt auch, dass die modernen
Leistungsfähigkeiten von KI-Workflows eine Verlagerung von rein flächenbezogenen Studien hin
zu organismusorientierten Analysen ermöglichen. Dies erleichtert tiefgreifende räumliche und
zeitliche Untersuchungen von Individuen innerhalb von Populationen, verringert aber auch den
Fehler bei Berechnungen der Ökosystembilanz. Die nachfolgenden Studien untersuchen die ökolo-
gischen Anwendungen modernster Bildgebungsplattformen und neuartiger KI-Workflows zur au-
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tomatischen Erstellung von Habitatkarten mit thematischer Detailgenauigkeit und mit einzelne
Organismen-Auflösung, und zeigen, dass diese Analysen räumlich und thematisch skalierbar sind.

Kapitel 1 stellt flache Küstenökosysteme vor, insbesondere Korallenriffe und Mangrovenwälder,
ihre Bedeutung, die Bedrohungen, denen sie im Anthropozän ausgesetzt sind, ihre Merkmale, die
ihre detaillierte Überwachung erschweren, sowie die traditionellen und aktuellen Methoden zu
ihrer Überwachung. Dann werden die verschiedenen Maßstäbe und Plattformen für die Beobach-
tung von Ökosystemen mit Bildanalyse und Umweltkartierung kurz erläutert. Anschließend wird
der Stand der Technik bei KI-Anwendungen in der Umweltkartierung vorgestellt. Der Mangel
an skalierbaren, dichten und auf Organismen fokussierten Kartierungen von Lebensräumen wird
beschrieben, und dann, wie diese Dissertation dazu beiträgt, diese Lücke zu schließen. Ab-
schließend werden die derzeitigen Einschränkungen in der Literatur erläutert und die Motivation
für dieses Promotionsprojekt dargelegt.

Kapitel 2 präsentiert die Konzeption, Entwicklung und Bewertung eines KI-Arbeitsablaufs zur
Nutzung von Unterwasser-Hyperspektralbild-Transekten und zwei Algorithmen für maschinelles
Lernen, um dichte Habitatkarten eines großen Abschnitts von Korallenriffen entlang der Küsten-
linie einer Insel zu erstellen. Der Multi-Methoden-Workflow wurde verwendet, um große Men-
gen von Pixeln mit sehr detaillierten thematischen Angaben für biotische Klassen wie Korallen,
Algen und Schwämme sowie für Substratklassen wie Sediment, Turf-Algen und Cyanobakte-
rienmatten zu kennzeichnen. Der Arbeitsablauf ermöglichte eine genaue Kartierung im Unter-
suchungsmaßstab mit geringem Anmerkungsaufwand und ohne externe Daten. Eine Bewertung
der Zusammensetzung und Konfiguration der benthischen Lebensgemeinschaften war möglich,
und zwar mit einer noch nie dagewesenen thematischen Detailliertheit und einer feinen räum-
lichen Auflösung. Die dicht-geprobten Habitatkarten, die in dieser Studie erstellt wurden, zeigen
die Unzulänglichkeiten herkömmlicher Punktprobenmethoden zur genauen Beschreibung ben-
thischer Korallenriffgemeinschaften.

Kapitel 3 beschreibt eine Studie, bei der eine optimierte Version des in Kapitel 2 vorgestell-
ten KI-Arbeitsablaufs auf eine inselweite Erhebung angewendet wurde, um 147 Habitatkarten
von benthischen Korallenriffgemeinschaften entlang der Leeseite der Karibikinsel Curaçao zu
erstellen. Die dicht geprobte Karten lieferten den Beweis, dass die Ableitung von Indizes der
Gemeinschaftsvielfalt aus spärlichen Probenahmen und abstrakten thematischen Bezeichnungen
die wahre Vielfalt von Korallenriffen verschleiern und Informationen innerhalb Funktionelle-
Gruppen in Gemeinschaften vernachlässigen kann. Eine statistische Analyse von Umweltfak-
toren ermöglichte einen einzigartigen Einblick in die Triebkräfte der Gemeinschaftszusammenset-
zung und das gemeinsame Vorkommen biotischer und abiotischer benthischer Elemente entlang
eines kompletten inselweiten Gradienten. Die Beschreibung der Lebensgemeinschaften wurde mit
früheren Berichten über die Insel verglichen und lieferte eine konsistente und wertvolle Ergänzung
zur jüngsten Naturgeschichte der Riffe.

Kapitel 4 konzentriert sich auf die Entwicklung und Umsetzung eines KI-Arbeitsablaufs zur
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Erstellung einer Bestandsaufnahme eines Mangrovenwaldes mit dichter Vegetation, der von zwei
Mangrovenarten bewohnt wird. Der KI-Arbeitsablauf verwendet Luftbilder der Mangroven-
wälder, die mit einem unbesetzten Luftfahrtsystem (UAS) der Verbraucherklasse aufgenommen
wurden, aus denen große Orthofoto-Mosaike und digitale Oberflächenmodelle erstellt werden.
Der Arbeitsablauf ermöglichte eine genaue Abgrenzung der einzelnen Baumkronen, die Segmen-
tierung von Gebieten mit anderen biotischen und abiotischen Elementen der Wälder und die
automatische Erstellung eines Baumkronenhöhenmodells (CHM). Diese Studie zeigt, dass die
Kombination aus organismusorientierter Analyse und Flächendeckungsklassifizierungen verwen-
det werden kann, um detaillierte Bestandsaufnahmen eines Mangrovenwaldes mit Informationen
über die Höhe einzelner Bäume, die Kronenform und die Kronengröße zu erstellen. Dies ver-
ringert die Unsicherheit bei der Ökosystembilanzierung durch die Berechnung von Biomasse und
Kohlenstoffvorräten auf Organismusebene für große Waldflächen.

Kapitel 5 erörtert die nächste Schritte bei der Umsetzung der organismusorientierten Klas-
sifizierung in einem flachen Küstenökosystem, das eine größere Artenvielfalt aufweist: Koral-
lenriffe im Korallendreieck. Die taxonomische Vielfalt erfordert die Erfassung räumlich und
spektral reichhaltigerer Daten, so dass einzelne biotische Organismen durch KI-Workflows au-
tomatisch abgegrenzt und auf feineren taxonomischen Ebenen klassifiziert werden können. In
diesem Kapitel werden die Anforderungen und ein Beispiel für Datensammlungen vorgestellt,
die die Grundlage für detaillierte ökologische Beschreibungen von flachen Küstenökosystemen
bilden.

Kapitel 6 präsentiert die Erreichungen der Doktorarbeit im Hinblick auf: die technischen Leis-
tungen der entwickelten und implementierten KI-Workflows, die durch die Anwendung der neuen
Methoden gewonnenen ökologischen Erkenntnisse und die Grenzen der Workflows. Abschließend
werden zukünftige Arbeiten hinsichtlich der Optimierung, der Skalierbarkeit und der Anpassung
der Arbeitsabläufe an andere Umgebungen diskutiert.
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Chapter 1

Scalable observations in shallow coastal ecosys-
tems

Sight has played a major role in the human capacity to navigate and remember their environ-
ment, and the temporal changes within it. As our understanding of the natural world expands
and the visual tools to measure its features improve, it becomes more complex to mentally retain
every observed detail. In this context, maps have emerged as preferred models to help us visu-
ally portray advanced information about our environment, helping researchers and policymakers
better understand the spatial distribution of environmental variables such as biotic communities,
land cover, vegetation, terrain, anomalies, among many more (Lecours 2017; Maes et al. 2012).

In the past, field observations were made with visual identification followed by notebook-
annotations or hand-drawn sketches of the spatial distribution of biotic and abiotic elements
(Duyl 1985; Goreau 1959). With the advent of modern imaging technologies and platforms, in-
creasingly more complex photographs and models are being used to capture snapshots of entire
ecosystems at different scales (Alonso et al. 2019; Goldberg et al. 2020; Lassalle et al. 2022;
UNEP-WCMC et al. 2010). The ecological analyses that these models unlock, provide ground-
breaking insights into the functioning of the natural world. On their own, the image snapshots
are useful for an offline visual reference of the captured ecosystems, but visually identifying all
target features to the highest detail possible, would take an extraordinary amount of effort. Fur-
thermore, considering that these data-acquisition platforms are starting to cover larger spatial-
and more frequent temporal scales, analysis by human-experts alone can become a bottleneck
(Beijbom et al. 2015). Thus, the sheer amount of incoming raw data precludes the extraction
of important information, when counting only with the capacity of human observers. The finer
the detail that is to be extracted from an ecosystems’ community characteristics, from the dis-
tribution of its biotic communities to their changes over time, the more reliance is to be had on
technological advances that can automate and scale-up the observation process.

Technological advances in computer-based image analysis and AI promise to aid in the daunting
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task of analysing a large number of field observations, but many ecosystems manifest complex
settings that create a set of difficulties to be correctly surveyed and analysed. Shallow coastal
ecosystems are no exception, as they present challenging settings for traditional and current ob-
servation methods to accurately capture and describe their biotic communities and the structure
of their habitats. In the following sections, the characteristics of these ecosystems are explained,
the traditional techniques for surveying their biotic and abiotic features are explored, the scales
of modern imaging techniques are listed, and the trends in environmental mapping and analysis
using AI are discussed.

1.1 Shallow coastal ecosystems
Tropical shallow coastal ecosystems, such as coral reefs and mangrove forests, are distributed
across many tropical and a few sub-tropical regions of the world (Figure 1.1). Coral reefs help
maintain the health of marine environments and provide numerous services to terrestrial ecosys-
tems, as well as to many human populations (Moberg and Rönnbäck 2003). They play a major
role in stabilizing the global climate, despite their rather reduced cover of Earth’s surface. Coral
reefs provide critically important habitats, thus understanding the intricate composition of biotic
communities in these ecosystems and their interactions with their abiotic environment is very
relevant, as it facilitates the development of strategies for conservation, sustainable management
and restoration efforts (Lecours 2017).

Figure 1.1 Worldwide distribution map of coral reefs and mangrove forests. Coral reef distri-
bution data was taken from the UN Environment Programme - World Conservation
Monitoring Centre (UNEP-WCMC), WorldFish Centre, World Resources Institute
(WRI), The Nature Conservacy (TNC) (UNEP-WCMC et al. 2010) and mangrove
forest data from the Global Mangrove Watch Version 3.0 (Bunting et al. 2022).
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1.1.1 Shallow coral reef ecosystems

Coral reefs provide essential habitats for a wide variety of marine species, including fish, crus-
taceans, mollusks, and various other invertebrates. While occupying just 0.1 – 0.5% of the ocean
floor, these ecosystems serve as habitats for nearly a third of marine fish species and other marine
biota (MacNeil et al. 2015; M. D. Spalding et al. 1997). The complex structure of scleractinian
corals in healthy reefs offers shelter, breeding grounds, and food sources, supporting a rich di-
versity of life (Connell 1978; Grigg et al. 1984; Plaisance et al. 2011). Coral reef ecosystems also
provide many direct and indirect services to human populations (Moberg and Folke 1999; Moberg
and Rönnbäck 2003). Many commercially important fish species use coral reefs as nurseries and
breeding grounds, helping in the recruitment and maintenance of fish populations, supporting
the sustainability of fisheries (Costanza et al. 1997; Moberg and Rönnbäck 2003; Nagelkerken,
Velde, et al. 2000). Coral reefs often attract tourism, generating revenue for local economies
(M. Spalding et al. 2017). They also provide protection of coastal shorelines from storms and
erosion, allowing coastal settlement and development. The degradation and loss of coral reefs
could have devastating effects on all other ecosystems and populations depending on these listed
services.

Coral reefs are currently under increased pressures as a consequence of human activities. Large
changes in community composition and disruptions of the trophic hierarchy are prompted by
activities like over-fishing, pollution, eutrophication, coastal development, diving tourism, and
the introduction of invasive species (T. P. Hughes et al. 2003; Terence P. Hughes 1994; Terence P.
Hughes et al. 2007; Terry P. Hughes, Barnes, et al. 2017; J. B. C. Jackson et al. 2001; Lamb
et al. 2014; Pandolfi et al. 2003). Already weakened reefs fail to cope with other stresses coming
from indirect factors as a consequence of climate change, such as rising sea levels, rising water
temperatures and ocean acidification (D. R. Bellwood et al. 2004; Terry P. Hughes, Barnes, et al.
2017; Pandolfi et al. 2003).

Among the biogeographic regions containing coral reefs, the Caribbean presents a large number of
deteriorated reefs. In recent decades, reefs in the Caribbean have seen the loss of vast numbers of
Acroporid specimens and other reef-building species, inducing a loss in reef complexity (Alvarez-
Filip et al. 2009; Gardner et al. 2003; Precht et al. 2006). Exploding human populations in urban
areas, added to large numbers of tourists yearly visiting Caribbean beaches, have significantly
contributed to this deterioration (Fund 2017; Hawkins et al. 1999). Given that these reefs
contain lower biodiversity than reefs in other biogeographic regions, such as the Indo-Pacific,
their resilience is diminished by the lack of functional redundancy (D. R. Bellwood et al. 2004;
David R. Bellwood et al. 2003; E. J. Jackson et al. 2014). Reefs once dominated by Orbicella,
Acropora and Diploria scleractinian corals are shifting to macroalgae dominated reefs, and if
further deteriorated, to bacteria-dominated ecosystems (Bak et al. 2005; Brocke et al. 2015; De
Bakker, Meesters, et al. 2016; De Bakker, Van Duyl, et al. 2017; Reverter et al. 2022).

5



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
1.1. SHALLOW COASTAL ECOSYSTEMS

Reefs in the Coral Triangle, located in the Indo-Pacific biogeographic region, usually contain
a much higher scleractinian coral diversity, with up to 605 species (Veron et al. 2011). This
boosts their resilience to changes due to functional redundancy. However, the region has also
experienced a high increase in human population and number of coastal of settlements, with
countries like Indonesia increasing from 87.75 Million to 275.50 Million inhabitants from 1950
to 20221. The demand for fish as basic diet has increased on-par with the population, and
illegal fishing techniques (e.g., blast fishing) have become pervasive in the region, debilitating
reefs by directly breaking their structure or removing large numbers of grazers, leading to algal
overgrowth (Hampton-Smith et al. 2021; Pauly et al. 1989). Mass coral bleaching events and
band-disease outbreaks have further decimated some of the already weakened coral reefs in the
region (Terry P. Hughes, Anderson, et al. 2018; McManus et al. 2020; Peñaflor et al. 2009). This
increase in human population, has also elevated eutrophication levels in shallow coral reefs due
to agricultural and industrial run-offs and sewage output from cities. Under these conditions,
certain genera of scleractinian corals have adapted to conditions with high concentration of
suspended particles and turbidity, forming turbid reefs, which are being studied as possible coral
havens under more extreme future conditions (Browne et al. 2012; Evans et al. 2020; Perry et al.
2012; Sully et al. 2020).

The current state of coral reefs globally, added to the harsh conditions predicted in the future,
increase the importance of constantly surveying these reefs as a mean to monitor, protect and
recover them, as well as to set detailed baselines on different spatial scales. However, coral reefs
present complicated conditions for observation methods.

1.1.1.1 Environmental settings of shallow coral reefs
The exact depth until which a coral reef is deemed as shallow is a debated topic, but usually
reefs within the first 30 meters below sea-level are considered as shallow. These reefs are located
in the euphotic zone and are usually found in oligotrophic environments with clear water. De-
spite having high levels of incident sunlight, they present difficult environments to be visually
surveyed while underwater. For example, because of their complex 3D structure, many benthic
organisms are occluded by geomorphic structures or other superposing organisms (Kornder et al.
2021). In reef slopes, light attenuation along the depth gradient influences the visibility and
reduces discernability between organisms, specially those with similar colors and morphologies.
The high taxonomic diversity of benthic organisms in coral reefs also increases the difficulty of
visually identifying separating between species and sometimes even genera, prompting the use
of molecular methods (Fabricius 2006). The medium itself presents another limit for human
observers, given that divers have a limited air-supply and have to control the length and depth
of the underwater activities to avoid dive-related illnesses. Turbid reefs present another limita-
tion, with suspended particles significantly reducing underwater visibility by reflecting much of
1https://www.worlddata.info/asia/indonesia/populationgrowth.php, visited on: 17/12/23
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the incoming light. Out-of-water observation methods have the added difficulty of the air-water
interface, with light attenuation, glint, light refraction and increased distance to target, limiting
the visibility to a certain depth. All the aforementioned characteristics change with the reef ge-
omorphology, the geographic location and the distance-to-shore of each coral reef. For example,
reef flats, reef crests and lagoons typically receive more direct sunlight, while deeper outer reefs
and reef slopes see a rapid decrease with depth of incident sunlight.

Despite the challenging environmental conditions to survey reefs, researchers have found inno-
vative ways to describe large sections of coral reefs worldwide (Reverter et al. 2022; Sandin,
Alcantar, et al. 2022; Sandin, Smith, et al. 2008). However, the use of an array of different sur-
veying methods, lack of standardized surveying protocols, the shift/lack of baselines and the lack
of reported uncertainty values, has resulted in only 0.01 – 0.1% of reefs having been quantitatively
described (Estes et al. 2018; Hochberg et al. 2021; Muldrow et al. 2020). Thus, standardization
of survey methods with clear uncertainty values, are imperative to scale up observation across
time and space.

1.1.1.2 Benthic surveying methods in coral reefs
Since the invention of the Self-Contained Underwater Breathing Apparatus (SCUBA) for inde-
pendent diving, scientists have developed a number of quantitative and semi-quantitative meth-
ods to survey benthic sessile communities in coral reefs, capturing the diversity and community
composition of large stretches of reefs while being underwater (Urbina-Barreto et al. 2021) (Fig-
ure 1.2). Methods, such as Line Intersect Transect (LIT) or point-sampling with photoquadrats
have been implemented to sample representative sparse points along a series of underwater tran-
sects (Kohler et al. 2006; Loya 1972). These methods have the advantage of reducing the survey
and analysis time, by largely under-sampling the reef, while reporting numbers of percentage
cover, mostly of dominant classes. Nonetheless, studies have shown that with these methods,
rare and smaller species are usually neglected (Pante et al. 2012; Perkins et al. 2016). Random
sampling in photoquadrat point-counts also has also been questioned as to its ability to truly
represent the taxon richness (Cao et al. 2002). Another caveat of these methods is that all anno-
tations are carried out by human experts, which can introduce biases influenced by their level and
field of expertise (Beijbom et al. 2015; Misra et al. 2016). LIT annotations are also problematic
given the fact that they cannot be revisited by multiple experts, because the identification and
annotation of benthic targets takes place underwater.

More modern techniques rely on Structure-from-Motion (SfM) software to build photogrammet-
ric models from large numbers of co-registered top-down images taken with submersible or aerial
imaging platforms. The resulting models are ortho-rectified photomosaics (or orthomosaics),
which are top-down views of entire scenes, 3D models, which can be meshes or point-clouds
and digital surface models (DSMs), that provide topographic or bathymetric information. These
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models provide detailed information on the distribution of elements in a scene and on the com-
plexity of the 3D structure of coral reefs (Carlot et al. 2020; Ferrari et al. 2016; Fukunaga et al.
2019; Storlazzi et al. 2016). Novel annotation tools (e.g., TagLab (Pavoni, Corsini, Ponchio,
et al. 2022)) can aid human experts in labeling analytical targets in the benthic communities
within the photogrammetric models. This ”dry” annotation process of underwater ecosystems
remove the air-time restriction of purely diver-oriented methods, allowing multiple experts to
concentrate on targets of their own field of expertise. However, as camera platforms and SfM
software become more accessible, increasingly larger areas are being captured and with more
frequency, and automated scalable workflows are required to meet the demand for annotation
effort.

A pervasive problem when undertaking submersed surveys of underwater environments, is the
lack of precise georeferencing of samples. Geo-positional systems, such as GPS, do not work
below the water surface, as the signal is scattered through the medium. This difficults survey
repetition and photogrammetric model co-registration on a site, hindering temporal analyses.
Low-tech solutions exist, but are not very precise. For example, GPS receivers are inserted in
a surface buoy that is dragged by a diver while doing a line transect. In contrast, high-end
robotic systems like Autonomous Underwater Vehicles (AUVs) and rovers, can have underwater
positioning systems, that rely on a connection to a surface vessel, but this survey setting can be
prohibitively expensive for small-scale operations. Aerial platforms (such as Unoccupied Aerial
Systems (UASs)) or surface platforms (such as boats with cameras attached to their hulls) have
the advantage of carrying GPS devices, which automatically georeferences all their products.

1.1.2 Mangrove ecosystems

Many services provided by coral reefs are also provided by mangrove forests, as they have a
similar worldwide bio-geographical distribution (Figure 1.1). Mangroves, and other coastal vege-
tation, act as natural buffers in the sea-land interface, providing protection against storm surges,
hurricanes, and tsunamis (Bimrah et al. 2022; Getzner et al. 2020; M. Brander et al. 2012). The
intricate root systems of mangroves stabilize coastlines, reduce erosion, and mitigate the impacts
of extreme weather events, contributing to the overall resilience of coastal areas. Mangroves
and seagrasses, play a vital role in carbon sequestration, as they absorb large amounts of car-
bon dioxide from the atmosphere and store it in their biomass and sediments, providing better
storage than other forest types (S. E. Hamilton and Friess 2018). This sequestered carbon has
been coined ”blue carbon”. It helps mitigate climate change and is an asset that is gaining im-
portance in international environmental management in recent decades (Macreadie et al. 2019;
Ouyang et al. 2023). Mangroves also act as natural filters, trapping sediments and pollutants
and improving water quality overall, helping maintain the balance of nutrients in coastal waters.
They also provide a similar volume of nursery space for important fish species as coral reefs
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Figure 1.2 Comparison of coral reef benthic surveying methods. All 5 methods sample at differ-
ent spatial and thematic scales. The LIT method produces spatially sparse samples
that have no spatial coordinate system, but the thematic scale can be very detailed,
depending on the expertise of the human observer. Photoquadrat sampling pro-
duces similar samples as LIT, but the use of images allows for annotation revisiting,
contextual information and partial automation through AI. Low-resolution semantic
mapping densely samples the seafloor, but lumps many benthic targets into large
squares, while high-resolution semantic mapping provides better delineation of biotic
and abiotic targets. Lastly, instance segmentation can detect and contour individual
organisms, the thematic detail then depends on the identification capabilities of the
(human or automated) annotator.

(Castellanos-Galindo, Krumme, et al. 2013; Nagelkerken and Velde 2002; Nagelkerken, Velde, et
al. 2000). In some biogeographic regions mangroves provide habitat for unique and endemic ter-
restrial species (i.e., proboscis monkeys – Nasalis larvatus – in mangroves in Sarawak, Malaysia)
and nesting places for marine birds (e.g., frigate birds – Fregata magnificens – in mangroves in
Tumbes, Peru).
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Despite the valuable services they provide, mangroves forest areas have shrunk by approximately
20% – 35% over the last 50 years (Polidoro et al. 2010). From 1996 to 2020, the greatest losses
have occurred in Southeast Asia (loss of 4.8%) and in North and Central America and the
Caribbean (loss of 4.7%) (Leal et al. 2022). The loss of mangrove forests has been mainly driven
by coastal infrastructure development, particularly aquaculture farms and palm oil plantations
(Goldberg et al. 2020; S. Hamilton 2013; Lai et al. 2015). In certain regions, mangrove forests
are used for timber and firewood (Castellanos-Galindo, Cantera, et al. 2015). In the past 7 years,
the aggregate global loss of mangrove cover has come to a halt. This has been mainly due to
the increased awareness of the importance of mangroves in regulating global climate and of the
service they provides to other coastal ecosystems and communities, prompting several restoration
projects (Gerona-Daga et al. 2022; Goldberg et al. 2020; Leal et al. 2022). For example, 100%
of mangrove forests in Ecuador and at least 75% of mangroves in Brazil have some degree of
protected status (S. E. Hamilton and Lovette 2015; Magris et al. 2010).

Despite their recent improved conditions, these ecosystems still require further monitoring and
restoration efforts, under increasingly harsher coastal conditions worldwide. Effective mangrove
surveying is nonetheless difficult, as in coral reefs, because of the complex environmental settings
that these ecosystems present.

1.1.2.1 Environmental settings of mangrove forests
Mangrove forests are a difficult habitat to survey, specially from the ground. They are generally
located in remote coastal areas, that are only accessible by boat or several days of car travel
(Castellanos-Galindo, Cantera, et al. 2015; Mejía-Rentería et al. 2018). Mangroves usually grow
between coral reefs and dense terrestrial forests and, having adapted to brackish waters, they
are found on river mouths and deltas. They can be found in mudflats that experience high tidal
fluctuations, reducing their accessibility, both by foot or by boat. Many mangrove tree species
present intricate aerial root systems, sometimes with bush-like sizes and branches, obstructing
the passage through tree stands.

Mangrove forests can be composed by a variety of mangrove tree species, and communities differ
across biogeographic regions. Mangrove forests in the Indo-Pacific region, for example, contain
a high diversity of mangrove tree species in their forests with up to 42 species, while forests
in the Atlantic-East-Pacific (AEP) region have a lower diversity, with up to 12 species (Barth
1982). The high heterogeneity within a forest can hinder the discernability between species,
given their similar phenotype. Some mangrove forests also present dense tree stands (which
results in dense overlapping crowns in canopies) from which it is difficult to differentiate between
individual trees from aerial images. For example, mangrove forests in the Colombian Pacific
Coast have very dense sections of canopies with low species diversity, mainly inhabited by the
endemic ”tea mangrove” species (Pelliciera Rhizophorae). These forests present many of the

10



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
CHAPTER 1. SCALABLE OBSERVATIONS IN SHALLOW COASTAL ECOSYSTEMS

hindering conditions that difficult surveying it from the ground. They are located in very remote
coastal regions with no viable road infrastructure. They also present strong tidal fluctuations,
intricate root systems and present some of the tallest mangrove specimens in the world (>30
meters) (Mejía-Rentería et al. 2018).

1.1.2.2 Mangrove forest surveys
Throughout decades, researchers have ventured into mangrove forests and acquired on-ground
measurements, despite the complex in-situ conditions. The traditional approach for creating a
forest inventory has been to sample dozens of smaller plots (e.g., 35× 35 meters). The samples
consist of tree counts (only trees greater than a preset size) within each plot and measuring
their heights and Diameter at Brest Height (DBH) (Ravindranath et al. 2008) (Figure 1.3).
Allometric equations are usually then applied, in which tree height, DBH and a species-specific
wood density constant are used to calculate the Above Ground Biomass (AGB), which in turn
is used to calculate above-ground carbon stocks. Generally, the resulting numbers are then
extrapolated from the sub-sample units (plots) to the total area covered by the forest. The exact
forest area has been generally derived from Earth observation products (satellite imagery).

In the procedure of creating a mangrove forest inventory with these traditional methods, the
number of factors contributing to uncertainty are high. For example, DBH and height mea-
surements can be difficult to capture accurately (Zang et al. 2023), as some mangrove species
present complex morphologies. Due to poor planning, lack of funding or inaccessibility, the se-
lected sampling subplots might not represent accurately the tree distribution in the total forest
extent (Cao et al. 2002). These errors accumulate and are extrapolated from field estimates to
larger areas, rapidly increasing the uncertainty, and recent studies have pointed out this growing
problem for global mangrove ecosystem accounting (Mejía-Rentería et al. 2018; Persson et al.
2022; Zang et al. 2023). See (Persson et al. 2022) for a complete description on the uncertainties
that arise during this process.

Modern techniques are trying to overcome this shortcoming, producing complete inventories of
mangrove forests using aerial or high-resolution satellite imagery. These platforms cover large
areas and produce SfM products that can be further used with manual annotation of experts or
machine learning algorithms, for automated mapping (Lassalle et al. 2022; Navarro et al. 2020;
Otero et al. 2018; Ruwaimana et al. 2018; Wirasatriya et al. 2022). Furthermore, other sensors,
such as Light Detection and Ranging (LiDAR), multispectral and hyperspectral cameras are used
to improve the height measurements and to provide richer data, to visually identify the species of
mangrove trees. Nonetheless, the cost of specialized sensors quickly becomes prohibitive, specially
for entities in remote areas in tropical countries, where mangroves are usually located. Consumer-
grade UASs prices on the contrary, have become more accessible, providing a promising tool for
monitoring large extents of mangrove forests, even in remote locations. Hence, the products of
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SfM on consumer-grade UAS imagery of dense mangrove forest canopies provide a cost-accessible
entry point for detailed mangrove forest monitoring across the tropics (Castellanos-Galindo,
Casella, et al. 2019; Joyce et al. 2023).

Figure 1.3 Comparison of mangrove forest surveying methods. All 4 methods sample at different
spatial and thematic scales. The tree plots method produces spatially sparse samples
inside subplots of forests, by counting a subset of trees and measuring their DBH and
height. Low-resolution semantic mapping (usually from satellite imagery) densely
samples the mangrove forests, but lumps forest targets together into large pixels, while
high-resolution semantic mapping provides better delineation of biotic and abiotic
targets. Lastly, instance segmentation can detect and contour individual organisms,
the thematic detail then depends on the identification capabilities of the (human or
automated) annotator.

1.2 The scales of ecosystem observation through imaging
One aim of effective ecosystem mapping is to provide multi-scale resolution, which hinges on the
acquisition of fine-grained detail to allow for higher-level abstractions, thus encompassing pro-
cesses across different scales (Sparrow et al. 2020). Ecosystem observation with imaging sensors
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is constrained by a set of scales that determine the level of detail that can be extracted. Sensors
can be mounted on mobile or static platforms, and both their specifications define their range
within scales, such as: spatial cover, spatial resolution, temporal frequency, spectral resolution
and thematic detail. The capabilities of each imaging technology and the possible downstream
analysis on their data product, are set from a trade-off between these scales.

1.2.1 Spatial and temporal scales

Spatial cover and resolution vary from micro-scale point samples on individual organisms to
meter-scale global-wide coverage (Figure 1.4). Spatial cover will determine how much of an
ecosystem is considered in the analysis, while the resolution will determine how much detail can
be extracted. Ecosystem observation platforms are categorized in a gradient between proximal
sensing and remote sensing.

Proximal sensing techniques acquire information close to the targets, gathering information on
cells, tissues, organs, individuals and up to a group of individuals (i.e., a stand of trees), with
a large number of samples (i.e., pixels in images) per organism (Figure 1.4) (Tao et al. 2022).
Examples of these technologies are imagers mounted on AUVs and UASs, hovering close to the
surveyed targets. The emergence of UASs has improved the flexibility of low-altitude observations
and greatly reduced data costs, becoming a promising solution for coastal ecosystem surveying
(Joyce et al. 2023). One current disadvantage of UASs is their short battery life and reduced
load capacity. Other ground platforms, such as handheld devices, fixed tripods, mobile gantries,
and ground vehicles can be used to measure certain aspects of an ecosystem with high detail,
but with limited mobility and cover.

Remote sensing platforms are airborne or spaceborne platforms that have a higher flying alti-
tude, which facilitates covering complete landscapes up to global scales. Although most satellite
platforms have a relatively low spatial resolution, some low-orbit satellite platforms are showing
promising sub-meter resolution (e.g., WorldView-4, GeoEye-1, PlanetLab’s SKYSAT, and GF-2).
Airborne platforms (e.g., planes) have the benefit of covering large areas of a specific ecosystem
on-demand, and they have an augmented carrying capacity for an array of complex sensors (e.g.,
hyperspectral imagers or LiDAR sensors). A disadvantage of remote sensing solutions is that the
price of these platforms (or of the captured data products) can sometimes be prohibiting for low-
budget monitoring projects. Furthermore, the coarser resolution of images from remote sensing
platforms has the effect of grouping one or more survey subjects within a single pixel, and signal
unmixing techniques have to be applied to discern between compounding signals (Figure 1.2
& Figure 1.3). Another disadvantage is that cloud cover can interfere with direct line-of-sight
to the studied targets. A great benefit of remote sensing is that worldwide distribution maps
can be attained, but generally on-ground validation surveys, undertaken with proximal sensing
platforms, are still required to confirm estimations and reduce uncertainty (B. Lyons et al. 2020;
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Figure 1.4 Spatial and thematic scales in ecosystem observation. Observational methods can
capture different levels of detail in ecosystems, depending on the spatial resolution
and cover, temporal frequency and spectral detail they provide. The interactions
between these scales are often a trade-off. Satellite imaging, for example, covers large
areas, but provides broader pixel-resolutions between 0.5 to 10 meters. The finest
thematic scales attainable depends on the given grain of spatial and spectral detail,
and represents the detail of the labelset that describes the habitat/community. For
example, describing all scleractinian corals as only one class, removes all the detail of
the intra-class taxonomic differences like genera or species. Spatial scale descriptions
are adapted from (Tao et al. 2022).

Estes et al. 2018; Hochberg et al. 2021; Lecours 2017; Stehman et al. 2019).
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Selecting the proper spatial scale for identifying ecological patterns in an ecosystem is paramount
for the success of a study, and ideally multiple scales are used to gain a better characterization of
species−habitat relationships (Congalton 1991; Lecours, Brown, et al. 2016; Lecours, Devillers,
et al. 2015; Riitters 2019; Sparrow et al. 2020). Nonetheless, narrowing each survey to answer a
reduced set of questions removes the possibility of reusing a dataset, and thus, it is important
that all the information possible is extracted from observation products (Sparrow et al. 2020).

The temporal scale varies with the deployment type that different observation platforms have. For
example, satellites can have near-daily temporal resolution (e.g., AVHRR/MODIS, WorldView-
4, and SuperView-1), and after deployment, the effort to keep this frequency is low. Other
survey-oriented platforms (e.g., UASs) depend on the logistics and structure of the project or
framework they are deployed under and the associated costs (Joyce et al. 2023). To monitor
the community composition of a coral reef for example, annual surveys might suffice, unless
specific events break out (e.g. mass-bleaching), in which case higher frequency is required to
gain detailed insights to specific processes. Also, the comparability of time point measurement
is very relevant. Standardization and consistency between observations and meta-data, such as
geo-referencing, is paramount to enable temporal comparisons (Mayr et al. 2019).

1.2.2 Spectral scale

The spectral information of an image adds richness to each pixel, that is very useful for au-
tomatic classification analysis, specially for habitat maps on any spatial scale (Chennu et al.
2017; Guanter et al. 2015; La Rosa et al. 2021; Lodhi et al. 2018; Mills et al. 2023; Rashid
et al. 2020; Rast et al. 2019). Spectral imaging is a combination of spectroscopic analysis and
imaging. Optical imaging captures the light reflected or emitted by an object, forming a visual
representation of its size, shape, or layout. The light information is captured by a sensor into
a grid of pixels, that represent the scene in a 2D-model. How much information of the light
spectrum is captured, determines the spectral type of the sensor. Color cameras reduce the elec-
tromagnetic visible-light spectrum to only three values (Red-Green-Blue). In contrast, spectral
imaging works by capturing light at every spatial point in an image with specific spectral details.
Multi-spectral sensors, for example, capture light in spectral bands of varying bandwidths that
are not necessarily contiguous, while hyperspectral imaging involves narrow, usually contiguous
spectral bands, including possibly hundreds or thousands of spectra. This means that each pixel
in an image has an almost continuous spectrum, providing rich information. Analyzing these
spectral images helps to combine spectroscopic data (such as the function of a material) with
spatial data (like its shape). The combination of fine spatial and spectral resolutions is the goal
of improvements in the development of spectral imaging sensors. The cost of spectral sensors is
steep compared to consumer-grade color sensors, although multi-spectral sensors are becoming
more accessible in recent years.
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1.2.3 Thematic scale

The thematic scale is defined as the level of classification detail of the sampling units (Buyantuyev
et al. 2007). For example, mapping all scleractinian corals under a single class constitutes a
broader scale in contrast to mapping each coral species/genus separately, which defines a finer
thematic scale (Figure 1.4). The influence of thematic resolution in ecological analysis derived
from mapping products has only recently started to be investigated and its importance to be
highlighted (Bailey et al. 2007; Lechner et al. 2016). It has been observed that using broad
classes for describing groups of taxonomically or morphologically similar organisms can mask
intra-group specific processes and dynamics (Brito-Millán et al. 2019).

The granularity of the attainable classification detail in habitat maps is tightly related to the
spatial and spectral scales, given that the discernability between many organisms – by a hu-
man expert or automated workflow – requires rich descriptive information. In some cases, the
achievable level of detail is not possible even with the most advanced imaging technologies, and
in those cases molecular methods have to be applied. Nonetheless, for any mapping effort the
most detailed thematic level possible should be targeted, to produce reusable datasets that can
be applied to answer questions at many scales, given that finer thematic scales can usually be
abstracted to broader or intermediate scales. Producing a set of abstractable/hierarchical cate-
gories within maps allows to cater to different possible users of mapping products, from ecologists
to policy makers (Kennedy et al. 2021; Lecours 2017).

Another important consideration when selecting a thematic scale is the use of standardized clas-
sification labelsets. This allows for consistency between revisits of the same ecosystems and
temporal comparisons between mappings. Openly available, standardized libraries are recom-
mended, such as the World Register of Marine Species (WORMS) for marine flora and fauna,
and the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) for un-
derwater mapping of habitats with labels for biota, bedforms, relief and substrates (Althaus et al.
2015; WoRMS 2023).

1.2.4 Automation and scalability through Artificial Intelligence

Imaging technologies for ecosystem observation can cover larger areas at a high spatial, spectral
and temporal resolution, resulting in large datasets of photographic data being captured for
survey projects and earth observation efforts. This results in an ever-growing flow of incoming
raw data that synchronously grows the demand for expert time for analysis, and if the demand
is not met, large datasets remain unanalysed or under-analysed. Thus, automated and scalable
analysis pipelines, that extract as much detail as possible from observations have to be researched.

AI has shown to be a promising tool in automating and scaling up the analysis of environmental
datasets. For a few decades already, feature engineering, Object-Based Image Analysis (OBIA)
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and computer vision algorithms have been applied to satellite imagery, providing Land Use/Land
Cover (LULC) classifications, habitat maps, bio-physical and physical-chemical maps. LULC
maps, for example, are provided by the the European Space Agency (ESA) World Cover (2020–
2021) (ESA WorldCover 2020; ESA WorldCover 2021), the National Aeronautics and Space
Administration (NASA) MCD12Q1 500 m resolution dataset 6 (2001–2018) (Friedl et al. 2022;
Sulla-Menashe et al. 2019), and Copernicus Global Land Service (CGLS) Land Cover 100 m
dataset (from 2015 to 2019) (Buchhorn, Lesiv, et al. 2020; Buchhorn, Smets, et al. 2020). ML
approaches were also used to create global coral reef habitat maps and reef geomorphology maps
(B. Lyons et al. 2020; Kennedy et al. 2021; Roelfsema et al. 2020). Similar approaches have
been applied at survey scales, for example, to detect tree crowns in mangrove forests (Miraki
et al. 2021; Navarro et al. 2020; Otero et al. 2018). Early ML techniques provided accurate
classification results, but require large training datasets and do not generalize well. This means
that when applied on new raw data that has not been used during training, their performance
drops significantly.

Deep Convolutional Neural Networks (CNNs) have become very popular in recent years for
their capacity to provide good predictions and better generalization. Their application is al-
ready widespread in numerous ecosystem mapping scenarios, specially on photographic data
taken during ecosystem surveys (Alonso et al. 2019; Beijbom et al. 2015; Kattenborn et al. 2021;
Lassalle et al. 2022; Paoletti et al. 2019; Pavoni, Corsini, Callieri, et al. 2020; Schiefer et al.
2020). CNNs provide an end-to-end framework, meaning that feature extraction from raw im-
ages is done by the algorithm all the way down to the classification task. They also provide
different levels of classification granularity depending on their network architecture (Figure 1.2
& Figure 1.3). Image (or image-patch) classification predicts a label for the whole image or
an image-patch. Image-patch classification can expedite automatic labelling of coral point sam-
ples collected with sparse photoquadrat techniques (Beijbom et al. 2015; Williams et al. 2019).
Semantic segmentation networks predict a label for every single pixel in an image, producing
densely classified/sampled images. Large orthomosaics can be annotated with these networks
resulting in detailed community distribution maps (Hopkinson et al. 2020; Schiefer et al. 2020).
Instance segmentation networks also delineate the boundaries of different objects in images,
before classifying them. These networks can also be applied on images or orthomosaics to de-
tect individual organisms, such as mangrove trees (Lassalle et al. 2022), and produce detailed
inventories of the surveyed environment (Tucker et al. 2023).

1.2.5 Current limitations
Many ecosystem observations have been executed with sparse sampling and with a variety of
methodologies making it rather difficult to reliably compare between reported values (Hochberg
et al. 2021; Reverter et al. 2022). The analysis workflows to produce community and habitat
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maps also rely on different methodologies with custom settings, and resulting publications failed
to report uncertainty values. Standardized solutions are necessary to provide consistent baselines
as validation for future global mapping efforts.

State-of-the-art AI workflows can produce accurate habitat maps, but they generally include low
thematic detail and do not consider organism-wise segmentation. The level of thematic detail
and the accuracy in delineating organisms within a habitat/community map, heavily relies on
the richness of the captured image data – the spatial and spectral resolution. Hence, as high-
lighted by Kattenborn et al. 2021, to produce detailed ecosystem-wide inventories and consistent
habitat/community maps, ecosystem survey workflows have to consider an end-to-end process,
which starts with rich data acquisition, leverages on novel AI algorithms and finally validates its
products with ecological assessments.

1.3 Motivation of the doctoral thesis
As outlined so far, shallow coastal ecosystems are critically important to the health of our planet.
Despite their small global cover, they provide important services for other adjacent ecosystems
and coastal human populations, besides helping regulate the global climate. Anthropogenic
stressors are decimating coral reef biotic communities worldwide and reducing mangrove forest
extents. Hence, constant surveying of their state and deepening our knowledge about their
intricate processes is paramount to enact effective protective and restorative measures.

There is a lack of effective and consistent surveying of coral reefs and mangroves that can inte-
grally set the baselines of local biodiversity, community composition and habitat structures, for
future comparisons and more accurate ecological analysis (Brito-Millán et al. 2019; Flower et al.
2017; Hochberg et al. 2021; Reverter et al. 2022). Most monitoring reports on shallow coastal
ecosystems are analysed into very broad thematic groupings, spatially sparse samplings and/or
low spatial resolution, masking local ecological phenomena and intra-group specific processes
(Brito-Millán et al. 2019; Reverter et al. 2022). Even to understand patterns occurring at large
scales, such as those reported in most global or continental mapping efforts, effects observed at
smaller scales should be considered (Levin 1992; Underwood et al. 2000).

Habitat maps that describe ecosystems with fine-grained community composition and config-
uration descriptions, can provide key information to understand their health, and to predict
past occurrences and future scenarios. These maps unlock more intricate spatio-temporal anal-
ysis such as those already being applied on terrestrial ecosystems at landscape scale, moving
beyond simple percentage cover reporting (Nowosad et al. 2019; Riitters 2019). Riitters 2019
mentions that landscape pattern analysis fundamentally provides information about landscape
composition and landscape configuration, which vary continuously over geographic space and
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observation scale. Thus, observations must be captured across many scales, not only spatially,
but also thematically.

At a local survey scale (e.g., the coral reefs on an island), there has been a lack of fine-grained
mapping products. This can be attributed to the low resolution of Earth observation imaging
technologies, the high cost of aerial and submersible platforms, the cost of specialized sensors
and the nonexistence of automated workflows for mapping large quantities of acquired image
data. However, the astounding current progress in observation platforms and in computational
resources is prompting many researchers to revisit the creation and use of densely annotated
habitat maps.

Information rich habitat maps can provide the opportunity to deepen our understanding of shal-
low coastal ecosystems and to revisit past beliefs. Previous descriptions of coral reef community
compositions across environmental gradients have many times neglected intra-group diversity
and the configurational patterns, focusing mostly on point-sample abundance and/or on abun-
dance of dominant reef groups (De Bakker, Meesters, et al. 2016; De Bakker, Van Duyl, et
al. 2017; Reverter et al. 2022; Sandin, Smith, et al. 2008; Teichberg et al. 2018). Dense and
thematic detailed maps would allow for fine-scaled co-occurrence analysis of biotic organisms
(down to genus and species level) and substrate classes. Tracking temporal shifts in composition
and configuration of an ecosystem’s community, with replacement analysis and fragmentation
indices of patch communities would be possible. Species-specific growth and accretion rates of
scleractinian corals could be studied in more detail, which are key indicators for coral reef health
(Flower et al. 2017).

Individual organism detection and analysis on a large scale has not been easily achievable in the
past and is still a daunting task. In traditional mangrove forest surveys only a subset of trees
are usually measured and used as a proxy in allometric equations to calculate AGB estimates for
large forested areas (Goldberg et al. 2020; Ravindranath et al. 2008). This produces significant
uncertainty in regional, continental and global estimates (Marvin et al. 2016; Vorster et al.
2020). Detailed inventories with geo-located individual mangrove trees would narrow the error
from allometric equations and better account for stored above ground carbon in forests (Tucker
et al. 2023). The capability to identify organisms in images would also allow to track events over
time, quantifying different aspects of change in biological and ecological settings (Keefe et al.
2022).

All the aforementioned needs motivate the technical and scientific goals of this doctoral project:
design and implement AI workflows to produce dense and thematically detailed habitat maps of
surveys in a shallow coastal ecosystems to describe in detail their community composition and
configuration and apply it in a case study. Furthermore, produce habitat maps with organisms
delineated and classified on large surveyed areas, to improve derived ecosystem accounting statis-
tics in shallow coastal ecosystems. Finally, comment on the future of ecosystem mapping through
an example of the ideal dataset collected to provide habitat maps with organisms delineated and
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labelled, abiotic elements segmented and classified, all to the most detailed level possible.
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2.1. ABSTRACT

2.1 Abstract
1: Coral reefs are the most biodiverse marine ecosystems, and host a wide range of taxonomic
diversity in a complex spatial community structure. Existing coral reef survey methods strug-
gle to accurately capture the taxonomic detail within the complex spatial structure of benthic
communities.

2: We propose a workflow to leverage underwater hyperspectral image transects and two machine
learning algorithms to produce dense habitat maps of 1150 m2 of reefs across the Curaçao
coastline. Our multi-method workflow labelled all 500+ million pixels with one of 43 classes at
taxonomic family, genus or species level for corals, algae, sponges, or to substrate labels such as
sediment, turf algae and cyanobacterial mats.

3: With low annotation effort (2% pixels) and no external data, our workflow enables accurate
(Fbeta 87%) survey-scale mapping, with unprecedented thematic and spatial detail. Our assess-
ments of the composition and configuration of the benthic communities of 23 image transects
showed high consistency.

4: Digitizing the reef habitat and community structure enables validation and novel analysis of
pattern and scale in coral reef ecology. Our dense habitat maps reveal the inadequacies of point
sampling methods to accurately describe reef benthic communities.

2.2 Introduction
Under rapidly changing environmental conditions, the need for accurate and speedy ecologi-
cal assessment of marine and freshwater ecosystems has greatly increased. This is particularly
pressing for coral reefs, which are the most biologically diverse marine ecosystems on the planet,
but have suffered significant deterioration in recent years due to a variety of stressors, such as
tourism overuse, destructive fishing practices, land-based pollution and climate change (Cesar
et al. 2003; Hughes et al. 2021). Continued stress on coral reefs deteriorates their health, lead-
ing to increased coral bleaching, coral mortality, disease outbreaks, loss of coral dominance and
diversity loss (Burke et al. 2004). In turn, the deterioration of coral reef health world-wide will
endanger the ecosystem services that these reefs provide (i.e. shoreline protection, bioprospect-
ing, food production, etc.) to coastal populations and other associated systems (Hoegh-Guldberg
et al. 2017; Moberg et al. 1999). Furthermore, this long-term degradation of reefs confounds an
inter-generational understanding of baseline reef health that informs reef restoration and man-
agement interventions (Muldrow et al. 2020), thus highlighting the need for objective assessments
of reef health through monitoring.

Modern reef monitoring efforts focus on the creation of benthic habitat maps, as they capture the
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spatial distributions of species and habitat features (Guisan et al. 2013; Roelfsema, Kovacs, et al.
2020). Such information captured over a long time series forms the basis of scientific evaluation
of the ecosystem’s evolution, and underpins the decisions for management, conservation and
restoration (Foo et al. 2019). The spatial, temporal and thematic scales of ecosystem mapping
have a critical influence on the viability of specific scientific analyses (Lecours 2017), such as
elucidating functional drivers, detecting community phase shifts or signalling deterioration of
habitats. Most reef inventories compiled from in-situ surveys lack sufficient taxonomic and spatial
detail, and have been carried out in only 0.01%–0.1% of coral reef regions world-wide (Eric J.
Hochberg et al. 2021). In addition, many surveys do not report any uncertainty information that
limits the utility of the data for scaling up studies to the ecosystem-level (Reverter et al. 2022).
Thus, a priority for future in-situ reef surveys should be wider biogeographic coverage, clearer
uncertainty estimates and deeper taxonomic and spatial detail at the survey scale.

Satellites are increasingly used to map shallow benthic habitats and analyse regional and global
phenomena affecting coral reefs (Hedley et al. 2016; Heron et al. 2016). With recent enhanced
spectral and spatial resolutions of remotely sensed images (0.5–10 m per pixel), better reef
monitoring products have been enabled, such as geomorphological zonation of reefs (Kennedy
et al. 2021) and benthic habitat maps (B. Lyons et al. 2020; Roelfsema, Lyons, et al. 2021).
However, validating the accuracy of satellite-derived maps is a difficult task, impeded by the
lack of in-situ validation datasets and the lack of error estimation in existing datasets (Eric J.
Hochberg et al. 2021; Phinn et al. 2012). While remote sensing offers a viable approach for large
scale analyses of reefs, current satellite sensors lack spatial resolution to represent small organisms
(<0.5 m) and the spectral resolution to potentially differentiate organisms to a deep taxonomic
description (Eric J Hochberg et al. 2003; Muller-Karger et al. 2018). In contrast, in-situ surveys
can provide enhanced spatial and spectral resolutions in underwater imagery, made available by
advancements in instrumentation and robotic platforms (Chennu, Färber, et al. 2017), both aerial
(Casella et al. 2017) and underwater (Armstrong et al. 2019). Improvements ML, especially with
the application of artificial neural networks, have contributed to better accuracy and throughput
of efforts in automated classification (Beijbom et al. 2015; González-Rivero et al. 2020) and
semantic segmentation (Alonso et al. 2019; Pavoni et al. 2020) of benthic images. Carefully
designed ‘ground-truthing’, produced from images acquired via underwater/proximal sensing,
and mapped through scalable and automated workflows, can provide a consistent source of
validation for current and upcoming ecosystem-level studies.

Deriving validation support from in-situ surveys requires careful design conformity between the
proximal and remote sensing campaigns (Roelfsema and Phinn 2013). For example, the lack of
conformity in the set of labels used between satellite and in-situ studies is a major confounding
factor (Foody 2004). The labelspace of global maps usually include broad reefgroups (coral, algae,
sediment, etc.), some status indicators (dead, alive, bleached) or morphological descriptions
(branching, massive, weedy; Kennedy et al. 2021). This multi-faceted and easy-to-interpret view
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of the reef structure is useful for coastal management (Roelfsema, Kovacs, et al. 2020). However,
describing the reef community with broad reefgroups can hide intra-group shifts and conceal key
dynamics of coral reef communities (Brito-Millán et al. 2019). To enable these analyses, in-situ
studies leverage thematic scales that identify organisms down to genus or species level, as well as
different substrata (sand, rock, rubble) and the substrate-associated communities (cyanobacterial
mats, turf algae), rendering a detailed view of the biotic and abiotic components (Althaus et
al. 2015). Capturing community structure with a detailed labelspace is typically limited by
the availability of expert time or by logistical constraints. For this reason, reef community
structure, as assessed in a majority of reef studies, is severely undersampled—both spatially and
thematically—with respect to habitat complexity, neglecting spatial distributions and locations
of benthic components.

Here we demonstrate how to produce dense and detailed maps of coral reef habitats from un-
derwater surveys (Figure 2.1). Dense means that all regions/pixels in each image transect are
assigned a (biotic or abiotic) habitat label, resulting in full semantic segmentation of the tran-
sect without any ‘background’ or ‘unknown’ labels. Detailed refers to the thematic detail that is
captured by the labels, either being taxonomic (species, genus, etc) or broad reefgroups (corals,
sponges, etc). We leverage ML to automate the classification of underwater hyperspectral image
transects captured over multiple weeks and locations along the coast of the Caribbean island of
Curaçao (Chennu, Färber, et al. 2017; Rashid et al. 2020). Our workflow description (Figure 2.1)
considers all the steps from the field survey to the classification of 500+ million pixels to the val-
idation of aggregate habitat descriptions derived from the detailed habitat maps. We show how
dense maps can be produced, with clear assessments of accuracy, into multiple thematic scales,
either at a broad (‘reefgroups’) or taxonomic (‘detailed’) labelspace. By implementing two inde-
pendent ML methods (neural networks and object-based ensemble classification) in parallel, we
provide an assessment of the consistency between the reef community structures as described by
the maps produced with each ML method. These ML methods can be used to rapidly convert
transect spectral data into habitat maps at the survey scale, without the need to augment the
training data with external datasets. Finally, we exploit the dense habitat maps of island-wide
transects to reveal the inadequacies of sparse point sampling methods to accurately describe reef
benthic communities.
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Figure 2.1 Schematic of scalable acquisition-mapping-assessment workflow for digitizing reef
community structure. (Caption continues on next page)
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Figure 2.1 The underwater survey with the HyperDiver at eight study sites over 147 transects (50
m each) in Curaçao produced radiance and reflectance spectral images. A subset of 31
transect images was annotated into the detailed (43 classes) labelspace and aggregated
into the reefgroups (11 classes) labelspace (see Figure A.3 for complete labelspaces).
Labelspaces can be adapted to encompass the underlying benthic community being
studied. Annotated regions from 23 transects were used in two separate machine
learning methods to classify each region of the spectral images into each labelspace
independently. The segmented method used ensemble learning on image superpixel
features, while the patched method used spatial-spectral neural network learning of
image patches. The modular architecture of our workflow facilitates the usage of
other ML models that produce probabilistic predictions. The classifiers were used to
predict the label probabilities at each of 500+ million pixels in all 31 transects. The
classifier-predicted probability maps were contextually smoothed and converted into
densely labelled habitat maps. The habitat maps were assessed for their consistency
with reference annotations as well as their ability to describe the composition and
configuration of the benthic communities in the transects. The effort-versus-error
relationship for point-count sampling of the reef habitats was assessed using virtual
sampling of the 23 dense habitat maps.

2.3 Materials and Methods

2.3.1 Underwater hyperspectral surveying

Underwater hyperspectral transects were acquired with the HyperDiver surveying system (Chennu,
Färber, et al. 2017), and a detailed description of the acquisition and processing is available in a
data descriptor (Rashid et al. 2020). A brief overview is provided here.

Hyperspectral transects were acquired in a survey conducted along the leeward coastline of the
Caribbean island of Curaçao (Figure 2.1 “Field Survey”). At each of the eight survey sites, 10 to
20 transect images of 50m×1m area were acquired by divers at varying depths (3 m to 9 m range).
The resulting dataset contains 147 hyperspectral transects, from which 31 transects were selected
for testing the proposed workflow. The 31 transects were comprised by 23 transects selected from
the 3 m, 6 m and 9 m depth for each site (except for one site where the 6m transect was missing),
and 8 additional transects randomly selected across the depth gradient. The hyperspectral push-
broom imager captures lines of 640 pixels at a time. Each pixel contained 12-bits of radiometric
information for each of the 480 wavelength bands in the 400-800 nm range. The spectral images
were interpolated and reduced to 200 bands of 8-bit radiometric precision. Although the spectral
transect images contain 60 times more colour information per pixel, the overall data size is smaller
or comparable to high resolution colour photography used in reef surveys.

The hyperspectral transect images were captured as radiance data under natural and varying
light conditions due to depth, cloud cover, water surface conditions, etc. To be independent
of these lighting conditions,each transect’s radiance image was converted to pseudo-reflectance
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images (for brevity we refer to pseudo-reflectance as reflectance for the rest of this manuscript)
by dividing out the average radiance signal of a gray reference board present at the ends of each
transect plot.

2.3.2 Benthic annotation and thematic flexibility

Annotations were created by human experts to support automated classification of the transects
by ML methods. The annotations consisted of 2089 small polygons covering 8.2 million pixels
with a corresponding habitat label across the 31 transects (Figure A.1,A.2; Figure 2.1 “Survey
annotation”). Biotic classes were annotated to the deepest taxonomic level possible, such as
family, genus or species. Substrate classes are represented as sediment, cyanobacterial mat or
turf algae. Survey materials were also included to give semantic labels to any object found in
the transects, i.e. transect tape or reference board. Three classes were removed given their very
low representation in the selected transects (<2 annotated regions). The resulting “detailed”
labelspace had 43 final labels (Figure A.3). Loosely speaking, the detailed labelspace describes
the habitat in the perspective of a reef ecologist, aiming for full taxonomic resolution of the
studied reef community.

From the perspective of a reef manager, typically interested in the broad demographic description
of a reef, taxonomic detail is not useful or a detriment to management analysis. We created a
labelspace to serve the perspective of a reef manager, by abstracting each label in the detailed la-
belspace to a corresponding broad reef group class (Figure A.3). For example, the 19 coral species
and genera were abstracted to a class called “Coral”. The 11 resulting classes formed the “reef-
groups” labelspace. This thematic flexibility allowed us to run the ML setup with annotations in
either labelspace, to measure the workflow’s ability to classify into both labelspaces correctly. To
compare classifications across labelspaces, we created an abstracted “detailed-to-reefgroups” ver-
sion of the detailed lablespace maps, that is, assigning all labels to their corresponding reefgroups
label. Then the reef community composition was compared between the detailed-to-reefgroups
maps and the reefgroups maps.

The reference annotations were created with a bias towards reducing human effort rather than
providing uniform coverage of samples across the survey data (ibid.). This resulted in a ML
dataset with a relatively high degree of label imbalance, both when considered as a set of polygons
or as a set of pixels across the annotated transects (Figure A.1,A.2). The degree of imbalance
meant that, for example, the 5 most abundant classes (Sediment, Turf algae Diploria strigosa,
Dictyota, Siderastrea siderea) had 789 polygons and 3.16 million pixels, while the 5 rarest classes
(Aplysina cauliformis, Briareum asbestinum, Dichocoenia stokesii, Zoanthid, Lobophora variegata)
had only 14 polygons and 18464 pixels.

The annotated data consisted of 23 “learning transects” (373+ million pixels), that were used to
train and test classifiers in the ML steps of our workflow, and 8 separate “validation transects”
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(150+ million pixels) that were used to assess the performance of our workflow on unseen data
outside the learning transects. Overall, it was possible to represent each annotated transect
with two types of signal (radiance or reflectance) and labelspaces (detailed or reefgroups) for ML
towards automated classification. The automation of mapping steps in our workflow (i.e., ML
classifier training, map creation and assessment) was implemented with the snakemake workflow
management system (Mölder et al. 2021).

2.3.3 Machine learning for benthic mapping

ML classifiers were then created to predict the identity of each image region based on its spectral-
spatial features (Figure 2.1 “Machine learning”). Two separate ML methods – “patched” and
“segmented” – were independently implemented for each combination of signal type (radiance,
reflectance) and labelspace (detailed, reefgroups). The predictions of both methods for each
image region were a probability value for each label/class in a labelspace.

For the patched method, a deep learning network called spectral-spatial residual network (Zhong
et al. 2018) – was used to train a classifier. This network identifies spectral and spatial features by
first convolving 1D filters in a spectral branch and then convolving 2D filters in a spatial branch
over square patches from the hyperspectral image. Our hyperparameter tuning experiments
indicated good performance for parameter values close to original study (see Supplement). For
each pixel in the image, the probability of labels is predicted for the central pixel based on the
neighbouring pixels in a regular image patch (hence the name “patched”). The image was padded
with reflection of border pixels to enable selection of patches at the image edges. After training,
each transect was mapped by passing every image patch through the trained network to obtain
the predicted label probabilities for the central pixel.

The segmented method consisted of three sequential processes to obtain the the label probabilities
for each image region (Figure 2.1). The first step was to reduce each transect image to six
principal components and calculate the mean at each pixel. The second step was superpixel
over-segmentation of the transect using the mean image as input to the watershed algorithm.
The parameters for the watershed algorithm were a batch size of 2000×640 pixels, 12000 markers
per batch and a compactness of 1000. This reduced the transect image into a set of irregularly
shaped superpixels, which were contiguous image segments of similar pixels (hence the name
“segmented”). Descriptors for each hyperspectral image segment were calculated for each spectral
band: mean, standard deviation, minimum and maximum values. There were concatenated into
a feature vector of 800 features for each image segment. These vectors were then used as input
samples for the random forest ensemble classifier in the scikit-learn library. The parameters for
the classifier used for transect mapping were 300 base estimators, 2 minimum leaves per tree,
25 as the maximum tree depth and a minimum of 3 samples per tree split. The function used
to measure the quality of a split was the Gini inequality function and the class weights were
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adjusted inversely to the class abundance in the samples. The classifier output was the label
probabilities for an image segment, which were assigned to all the pixels within the segment to
generate the class probability map of each transect.

Both methods were set up to take as input an image segment/patch from either of the signal
types and produce the same output: an array of probability values for each label in the labelspace
linked to all pixels inside a segment or the central pixel in a patch. The predictive performance of
the trained classifiers was tested on a set of image annotations, which was spatially disjoint (no
shared pixels) from the annotations used for training, as recommended in recent reviews (Paoletti
et al. 2019). This testing set comprised of 15496 image segments for the segmented method and
50000 pixels for the patched method. The ML setup allowed us to utilize the segmented method
(ensemble classifiers) and the patched method (deep learning) as interchangeable ML components
in the workflow for scalable reef mapping.

The performance metrics used to evaluate the classifiers on the testing dataset were: overall
accuracy (OA), recall (or producer accuracy), precision (or user accuracy), Fbeta (or F1-score)
and Cohen’s kappa (Figure 2.2; Table 2.1). OA was calculated by dividing the number of
correctly predicted by total predicted segments/pixels. Recall, precision and Fbeta values were
calculated for each class separately, and then aggregated using weighted averaging, with weights
corresponding to the inverse of the class proportion in the testing dataset. Recall was calculated
as the fraction of segments/pixels of a given class that were correctly classified. Precision for
a class was the fraction of predicted segments/pixels that were annotated as that class. Fbeta
is the harmonic mean of recall and precision. Cohen’s kappa measures the performance of a
classifier as a distance to an uninformed classifier (value of 0) and to a perfect classifier (value
of 1), considering the dataset class imbalance.
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Method Label-
space

Signal
type

Overall
accu-
racy

Precision Recall Fbeta Cohen’s
Kappa

radiance 0.767 0.779 0.769 0.769 0.760
detailed

reflectance 0.715 0.723 0.720 0.720 0.708

radiance 0.869 0.871 0.869 0.869 0.829
patched

reefgroups
reflectance 0.841 0.841 0.841 0.841 0.793

radiance 0.772 0.779 0.771 0.771 0.755
detailed

reflectance 0.846 0.848 0.845 0.845 0.835

radiance 0.792 0.796 0.794 0.794 0.737
segmented

reefgroups
reflectance 0.875 0.876 0.875 0.875 0.841

Table 2.1 Classifiers performance. Comparison of the performance of each ML method in com-
bination with each labelspace and each signal type. The classifiers were tested on
disjoint datasets of 50000 patches for the patched method and 15946 segments for the
segmented method. The best performing classifiers are highlighted in boldface for the
detailed and reefgroups labelspace.

We studied how both classifiers performed depending on the quantity and quality of annotated
spectral pixels (Figure 2.3A,B). The quantity of annotated data was measured as unique pix-
els (in each patch or segment) used during training. Classifier performance was measured by
training on various quantities of data but keeping the amount of computing effort constant (see
Supplement). Furthermore, to measure the effect of the quality of the spectral information on the
classifiers’ performance, a subset (N=[10, 25, 50, 100, 150]) of equally-spaced spectral bands were
selected (out of the original 200 bands) from the transect images (Figure 2.3C). Each method
was separately trained and tested on the transect images with the subsampled spectral bands.

The class probability maps of each transect from either ML method were smoothed by refining
the probabilities with Dense Conditional Random Fields (DCRF) (Krähenbühl et al. 2011).
DCRF were used to update the probability of each pixel based on the surrounding context, i.e.
label probabilities. DCRF interconnect every pixel in an image through a graph model, thus
allowing fusing of long-range and short-range context within the image. The class probability
maps were used as unary potential inputs to the DCRF, to obtain the smoothed probability
maps (Figure 2.1 “Habitat mapping”; Figure 2.4A,B; Figure 2.5).

Each class probability map – from either ML method and with or without smoothing – was
converted to a class map by assigning the identity of the class with the highest probability at
each transect image location. The result was a categorical habitat map where every pixel was
assigned to one label in the labelspace of the trained classifier.
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Figure 2.2 Performance evaluation of classifiers in detailed and reefgroups labelspaces. (Caption
continues on next page)

2.3.4 Comparison of community structure
We assessed and compared the compositional and configurational structures of the reef benthos
from the 23 (learning) transects distributed across Curaçao island (Figure 2.1 “Assessment”;
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Figure 2.2 Performance evaluation of classifiers in detailed and reefgroups labelspaces. Recall
confusion matrices of classifiers from a subset of ML method+labelspace+signal-type
combinations were used to asses performance on a held-out testing set. The segmented
method (A) had an excellent overall performance (84.6% Fbeta score; other metrics
shown in the side notes) on the detailed labelspace. It presented little (<3%) to
minor (<20%) confusions for the rare classes such as Zoanthid and D. anchorata.
The patched method (B) showed a lower overall performance (Fbeta of 76.7%) in
the detailed labelspace; with similar confusion for rare classes, such as A. cauliformis
and refboard. On the reefgroup labelspace, both the segmented (C) and patched (D)
methods showed excellent overall performance (87.5% and 86.9% Fbeta, respectively),
with high recall (92%) shown by the segmented method for Sediment and similarly by
the patched method for Coral (96%). The segmented method showed some relevant
confusion between the Zoanthid and Macroalgae classes, due to the rarity (only three
segments) of Zoanthids in the dataset.

Figure 2.6). Since both ML methods independently generated habitat maps in each labelspace of
each transect, the habitat maps derived from each method were used for pairwise comparisons of
the transect’s community structures. For each transect the percentage cover (Pi) was calculated
as:

Pi = 100× (
Ci

N
)

where Ci is the count of pixels of class i in the transect and N is the total pixel count in the
transect.

As a diversity measure for each transect we used Shannon diversity index (H ′), defined as:

H ′ = −
R∑
i=1

pi ln pi

where pi is the proportion of elements of a class i and R is the total number of classes in the
labelspace.

To identify biases in the ML methods, we applied a Bland-Altman analysis on the habitat metrics
derived for the transects from each ML method (Figure 2.6A-D). This analysis consists of two
plots that help identify agreement between two quantitative methods of measurement. The first
plots the values of both methods for the specific variable – percentage cover of a class or Shannon
diversity index – against each other, to identify values deviating from the one-to-one correlation
line. In the second plot the differences of the paired measurements are plotted against their
averages, to identify the mean of the difference and its ±1.96 standard deviation lines. The bias
is read as the gap between the mean of the difference and the 0 difference line. The two methods
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Figure 2.3 Effect of quantity and quality of spectral data on classifier performance. The effects of
increasing the unique number of pixels in the data, but training the ML models with
the same computational effort, were measured (Fbeta score) for both methods and
labelspaces. The segmented method (A) showed improved performance whereas the
patched method (B) showed little change in performance. Both methods performed
better at predicting into the reefgroup labelspace (with 11 classes) than the detailed
labelspace (with 43 classes) irrespective of the spectral signal type. (C) Both methods
performed better when using an increasing number of (uniformly sampled) spectral
bands for training, with limited improvement beyond 50 spectral bands.

are considered to be in agreement if 95% of the values lie within the standard deviation lines in
the second plot.
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To measure the compositional similarity between two classified maps we used the Bray–Curtis
similarity (BCS) index defined as:

BCS = 1−
∑R

i=1 |Ai −Bi|∑R
i=1 |Ai +Bi|

where Ai is the count of pixels of class i in map A and Bi is the count of pixels of class i in map
B. R is the total number of classes in the labelspace. We used the “braycurtis” function from
scipy python library (Virtanen et al. 2020). The closer the BCS value is to 1 the more similar
the composition of the two compared communities.

We measured the similarity in the configuration of the communities between each reefgroups
habitat map and their corresponding detailed-to-reefgroups map provided by each method, by
calculating the Jaccard score for each reefgroups class. The Jaccard score (J) is defined as:

Ji =
Ai ∩Bi

Ai ∪Bi

When the Jaccard score is 1, then the two maps are identical in configuration and when the score
is 0 then the maps are entirely dissimilar. A high Jaccard score requires that across the habitat
maps from both ML methods, both the identity and the location of the pixels are a match. Thus,
it is a stringent measure of the similarity between two maps or sets.

2.3.5 Effort-vs-error of point-count sampling
We conducted simulations to estimate the error associated with a certain level of sampling effort
in assessing the diversity and coverage of key groups through sparse point sampling of transects.
For this simulated experiment, we selected 4 transects with Shannon diversity index from low to
high (H ′ = {0.61, 1.26, 1.6, 2.64}). Each transect was divided into 50 non-overlapping quadrats
of size 640 pixels × 406–705 pixels. Each of these quadrats was sparsely sampled with N = {5, 10,
20, 40, 80 ,160, 240, 320, 480, 640, 960} randomly selected points. For example, this means that
when N = 5 points, 250 points (50 quadrats × 5 points) were randomly selected from the habitat
map of the transect. The random sampling of the quadrats was conducted 250 times for each
effort level. From each set of subsampled points in each transect, the coral coverage, sediment
coverage and Shannon diversity index were calculated. For each metric, the relative deviation
of the value obtained from the subsampled points from the value obtained from all the points
in each transect was calculated. We selected 5% relative error as the limit for acceptable error,
similar to a previous simulation study (Pante et al. 2012). The resulting error from changing
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Figure 2.4 Smooth and consistent habitat mapping. The process of producing consistent habitat
maps in the detailed (A) and reefgroups (B) labelspaces. Habitat maps produced from
the classifiers’ probability maps exhibit small-scale spatial noise and regions of low
confidence. Smoothing the label probabilities with DCRF renders spatially cohesive
maps. (See Figure A.3 for colour legend.) (C-F) The use of DCRF improved the
map consistency in all cases. The patched method was better than the segmented
method at generalization and was more accurate at mapping the validation transects,
which were completely disjoint from the learning transects used for training the ML
classifiers.

sampling effort was compared for each of the transects containing a significantly different species
diversity and coverage distribution (Figure 2.7).

2.4 Results

2.4.1 Automated workflow for scalable benthic mapping
To measure the performance of the ML methods on the expert annotations several experi-
ments with combinations of signal type and labelspace were executed (see Methods and Ma-
terials). For the detailed labelspace, the segmented+reflectance combination had the best pre-
dictive performance with an Fbeta score of 84.5% (Figure 2.2A; Table 2.1). The classifier had
80% to 96% recall for a majority of the 43 labels with sufficient data support (see diagonal
of Figure 2.2A). Some labels with low data support showed excellent recall (Aplysina archeri,
Aiolochroia crassa, B. asbestinum and D. stokesii), while others showed significant errors (Zoan-
thid, L. variegata and Desmapsamma anchorata). Despite having to distinguish between 43
labels, the segmented+reflectance classifier had a high Cohen’s kappa coefficient indicating per-
formance which is 83.5% of a perfect classifier (Figure 2.2A; Table 2.1). For the same labelspace,
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Figure 2.5 The rich structure of a digitized reef community. Sections of habitat maps produced
with the patched ML method, with colours corresponding to classes from each la-
belspace (see legend and Figure A.3). Rows 1 and 4 are the natural view, as would be
seen by a human observer. Rows 2 and 5 show the sections in the detailed labelspace
and rows 3 and 6 in the reefgroups labelspace. Our proposed workflow accurately
discerns among a large labelspace and delineates complicated shapes of reef biota. In
image A:2 and A:3, the habitat maps show correctly classified and well delineated in-
stances of three coral species (D. strigosa, P. asteroides and M. cavernosa), a sponge
(N. nolitangere) as well as regions of Sediment, Turf algae and Dictyota macroalgae.
The maps in F:5 and F:6 show another example of fine-grained segmentation of the
branches of a specimen of the Plexauridae soft coral family. Comparing the maps in
D:2 and D:3, or in H:5 and H:6, shows the number of different coral species that can
be identified under the broad Coral group (in orange). Small encrusting taxa such
as Coralline algae are visible in B:2 and E:2. The delineation of Cyanobacterial mat
in G:2 and I:2, along with the many regions of Sediment and Turf algae represent
substrate and microbial components of coral reef benthos.

the patched+radiance combination (Figure 2.2B; larger version in Figure A.4) performed with
a 9% lesser Fbeta score (76.7%). Most classes had a recall value between 70% and 90%, with
some rare classes, such as A. cauliformis and B. asbestinum, having significant errors.

For the reefgroups labelspace, the best predictive performance was 87.5% in the segmented+reflectance

54



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
CHAPTER 2. DIGITIZING THE CORAL REEF

combination (Figure 2.2C) followed closely by the patched+radiance combination with 86.9%
(Figure 2.2D). The latter showed high recall values for all 11 classes, even reaching 96% correct-
ness for the Coral class – which consists of 19 different coral genera and species (Figure A.3).
The highest confusion occurred between Turf algae and Sediment classes. For both ML methods
classifiers had a Cohen’s kappa score of 83% towards a perfect classifier (Figure 2.2; Table 2.1).
Overall, both ML methods showed Fbeta scores between 72% to 87% with better performances
on the reefgroups labelspace than on the detailed labelspace (Figure 2.2; Figure A.4-Figure A.8;
Table 2.1).

Both classifiers had different responses to the amount of unique input data seen during train-
ing. The classifier performance in the segmented method improved significantly with greater
quantities of training data (Figure 2.3A). The greatest improvement was an Fbeta from 76%
with 1.47 million pixels to 86% with 5.89 million pixels seen in the detailed labelspace using
reflectance spectra. The performance also improved with greater quantities of radiance spectra,
but overall the segmented method performed better on reflectance rather than radiance spectra.
In contrast, the patched method showed no improvement with larger quantities of training data
(Figure 2.3B). Instead, the performance in the detailed labelspace showed a 1% deterioration
when the same computing effort was distributed over all the available data (5.93 million pixels).
This seemingly unexpected result of poorer performance with more data can be understood by
considering the lower number of training iterations over the larger dataset to maintain the same
computing effort.

The impact of data quality, or spectral resolution, on predictive performance was assessed by
using a subset of 10-100 spectral bands in the training data. In both the segmented and patched
methods (Figure 2.3C), the predictive performance showed a strong 5% to 15% improvement
when the number of spectral bands was increased from 10 to 25 with diminishing improvements
when using 50+ spectral bands. Overall, the availability of greater spectral resolution, even when
the bands were chosen without special consideration, had a large effect on the performance of
the ML methods.

To produce habitat maps for further analysis, we selected one patched classifier that was trained
on all 200 bands and with 62500 patches (4̃.1 million unique pixels) and one segmented classifier
that was trained on all 200 bands and with 62332 segments (5̃.8 million unique pixels).

2.4.2 Smooth habitat maps to digitize reef community structure

The label probability map obtained directly from the classifier’s prediction showed generally noisy
spatial distribution, with many areas of low confidence (Figure 2.4). This effect of low and noisy
confidence was larger in the detailed than the reefgroups labelspace. Processing the predicted
probability map with DCRF produced a more uniform map of probabilities with high confidence
except for the border pixels between adjacent targets (Figure 2.4C,E). The habitat maps from
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the DCRF-processed probability maps better delineated the benthic scene with smooth and
contiguous regions (Figure 2.4A-B).

Beyond the visual cohesiveness, the smoothed habitat maps were quantitatively more consistent
than the raw habitat maps in all combinations of ML methods and labelspaces for transects
(Figure 2.4C,F; Figure A.9A-B ). The map consistency was measured as the average of the label
accuracy in each of the annotation regions in all of the annotated transects, i.e. regions used for
both training and testing the ML methods. The consistency of the habitat maps in the regions
of the validation transects were lower than in the learning transects (Figure 2.4C-F): consistency
for the segmented method dropped from 94% to 43% and from 95% to 56% with the detailed
and reefgroups labelspaces (Figure 2.4D,F), respectively, and from 88% to 66% and from 92% to
74% for the patched method (Figure 2.4C,E). This indicated that the patched method (convo-
lutional neural networks) was better than the segmented method (ensemble object classifiers) at
generalizing to unseen data. Classification of transects with the reflectance signals resulted in a
large drop of consistency, with a worst case change from 92% for the learning transects to 18%
for the validation transects (Figure A.9). Overall, the best predictive performance on data from
the validation transects, which was not used in any ML step, was from the patched method.

Smooth habitat maps in both labelspaces were produced for all 31 transects. With each transect
approximately 50 m × 1 m in size, this task involved assigning each of the 500+ million spectral
pixels to one of 43 labels (detailed) or one of 11 labels (reefgroups) independently. Montages of
the habitat maps for all transects were visualized (Figure A.10-A.13). A selection of interesting
sections of these habitat maps were visualized (Figure 2.5) with the natural view (rows 1 and 4),
the detailed map (rows 2 and 5) and the reefgroups map (rows 3 and 6) shown together. Despite
overall conformity, the habitat map sections also display some confusions: different sections of
the same colony in C:2 are assigned to Plexauridae and Gorgoniidae, which are both soft coral
families with similar digitate morphologies, while in C:3 this same colony is assigned between
Coral and Soft coral. The incorrectly labelled regions of Neofibularia nolitangere sponge in E:2
(and Sponge in E:3) along the image edge are also errors. These errors likely occur due to the
poorly illuminated shadow regions that received predictions with low confidence, and then got
reassigned to the Sponge class by the DCRF process due to nearby high-confidence regions. Note
however that this did not occur for the Transect tape in the shadow regions which was predicted
with high confidence.

2.4.3 Assessing the community structure

A Bland-Altman analysis of the coral coverage (Figure 2.6A,B) and the Shannon diversity index
(Figure 2.6C,D) from the reefgroups labelspace maps showed a high degree of correlation and
low bias between the segmented and patched methods. The coverage of all other reefgroups
classes, except for Sponges, derived from either mapping method, were comparable across the
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range of values in all the transects (Figure A.14). The Bray-Curtis similarity, which compares
the compositional structure between the communities in the maps of both methods, had a me-
dian value of 82% in the detailed and reefgroups labelspaces with a quartile range of 72%–89%
and 75%–90%, respectively (Figure 2.6E). With the Sediment and Turf algae substrate classes
merged together, the median value for the similarity rose to 89% for the detailed and reefgroups
labelspaces, with a quartile range of 78%–92% and 79%–94%, respectively. This improvement
in the similarity index indicates a large effect of the inherent definition problem of Turf algae on
reef habitat mapping.

The similarity assessment across the learning transects for the patched method showed an 88%
similarity median value with a quartile range of 84%–92%, while the segmented method showed
an 87% median value with a quartile range of 77–91%. With the Sediment and Turf algae classes
merged, the patched method showed a similarity median of 90% (quartile range 88%–97%),
whereas the segmented method showed a barely improved median similarity of 88% (quartile
range 77%–93%). Our proposed workflow recovered a reef community composition that was
highly consistent between the taxonomic and broad reef group descriptions of the reef benthos.

The spatial configuration analysis between the detailed-to-reefgroups and reefgroups maps
showed that three classes had higher configurational similarity for the patched method than
for the segmented method: Cyanobacterial mat (64% vs. 40%), Coral (74% vs. 57%) and
Macroalgae (51% vs. 29%) (Figure 2.6F). Two classes showed higher configurational similarity
for the segmented method than the patched method: Sediment (83% vs. 78%) and Turf algae
(72% vs. 67%). The Jaccard score was lower for both methods on rarer classes (Figure A.15).

2.4.4 Evaluating the effort-vs-error compromise in reef sampling
We exploited our dense and accurate habitat maps to revisit the effort-vs-error relationship of
sparser reef sampling techniques (see Methods for point selection). The number of random point
samples required to achieve a relative error lesser than 5% was assessed (Figure 2.7). To recover
the hard coral coverage in transect T1 – which had low biodiversity (H ′ = 0.6) and low coral
coverage (2.3%) – 960 random points per quadrat were required (Figure 2.7B,C). For the transect
T4, with H ′ = 2.6 and coral coverage of 34.2%, 80 random points per quadrat were sufficient.
Similarly, 960 points per quadrat were needed to recover the sediment coverage in transect T4,
where sediment covers only 2% of the benthos (Figure 2.7D,E). In contrast, only 5 points per
quadrat were required to capture the sediment coverage in transect T1, which has the highest
sediment coverage (84.6%). The Shannon index was recovered with 10 sampling points per
quadrat for transect T4 (H ′ = 2.6), with 40 points per quadrat for the transects T2 (H ′ = 1.6)
and T3 (H ′ = 1.3), and with 160 points per quadrat for transect T1 (H ′ = 0.6) (Figure 2.7F,G).
Overall, higher sampling effort was required to accurately recover the coverage of rare species or
to capture the Shannon biodiversity index of scenes with low biotic coverage.
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Figure 2.6 Assessing the benthic community structure from dense maps. (A) Coral cover of 22
learning transects was compared from the habitat maps for each ML method. The
segmented method predicted slightly more coral cover than the patched method in
the transects. (B) No clear bias was noted for either method in the Bland-Altman
plot. (C) The Shannon index values for 22 compared transects were highly correlated
between the maps from the segmented and patched methods. The segmented method
produced habitat maps with slightly higher Shannon diversity. (D) No significant bias
was found in either ML method for the Shannon index comparison. (E) The median
Bray-Curtis similarity between the mapped communities was 8̃0% across ML methods
and 8̃8% across labelspaces. Note that the orange bars refer to a labelspace where
Sediment and Turf algae were combined into a single class, resulting in a higher
compositional similarity. (F) Configurational similarity assessed using the Jaccard
index between the reefgroups and detailed-to-reefgroups habitat maps for the top-five
dominant labels are shown. Given the 500+ millions of pixels in this assessment, the
maps showed very good consistency in configuration.
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Figure 2.7 Effort-vs-error analysis for point-count sampling of reef community structure. (A)
Schematic of the simulations of quadrat-wise random sparse sampling of dense habitat
maps to estimate metrics (coverage or Shannon index) through point-count estimates
of four transects with different biodiversity values (H = 0.61, 1.26, 1.6, 2.64). The
error in the habitat metric from sparse random points relative to the metric of the full
map was calculated from repeated trials. The number of point samples per quadrat
required to achieve a relative error lesser than 5% (dashed red line) was assessed. (B,
C) The transect with the least coral coverage (T1) required more than 960 points
per quadrat to estimate it within the 5% error limit, whereas the transect with the
highest coral coverage (T4) required 80 or less points per quadrat. (D, E) The transect
with the least sediment coverage (T4) required more than 960 points per quadrat to
estimate sediment coverage within the 5% error limit, whereas the transect with the
highest sediment coverage (T1) required only 5 points per quadrat. (F, G) The least
diverse transect (T1) required 160 points, compared to 40 points per quadrat for the
more diverse transect (T4), to estimate the Shannon diversity index within the 5%
error limit. These results suggest that rarer species require more sampling effort and
that over 80 points per quadrat should be used to estimate habitat metrics in reef
transects where the expected diversity or coverage is not previously known.
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2.5 Discussion

2.5.1 Dense and detailed mapping of benthic communities
The presented reef mapping workflow was able to produce dense habitat maps with an unprece-
dented degree of thematic (43 labels) detail and high spatial (2̃.5 cm/pixel) resolution. The rich
spectral detail in the HyperDiver data was leveraged by ML classifiers to produce highly accu-
rate habitat maps (87% Fbeta) with little annotation effort (2% pixels in 2̃0 hours). The two
labelspaces used in the maps describe the reef benthic biodiversity down to genus and species
level as well as abiotic and microbial components, such as sediment, turf algae and cyanobacterial
mats. Our habitat maps provide a no-pixel-left-behind dense view of entire 50 m long transects,
which allowed us to identify, localize and delineate the components of the surficial reef benthic
community. Two ML methods with different complexities were used independently to produce
dense and detailed habitat maps, thus facilitating objective comparison of reef descriptions at
big data scale. Our workflow provides a deep description of community structure (diversity, cov-
erage, composition and configuration), which demonstrated high convergence between both ML
methods. Nonetheless, our detailed assessment indicates that deep learning classifiers (i.e. the
patched method) are better at generalizing towards new and unseen datasets under comparable
annotation and computational effort.

We designed the thematic detail in our workflow to target multiple user groups. Our workflow
uses a detailed thematic scale in the form of 43 benthic categories that describe biotic and
abiotic components of the reef habitat. Subsequently, a reefgroups labelspace, comprised of
broad groups of reef biodiversity, was abstracted from the taxonomically detailed labelspace
through interconnected ontologies, similar to hierarchical geomorphic zones developed previously
(Kennedy et al. 2021). By independently mapping into the reefgroups labelspace we showed
that the workflow consistently retrieved the composition and configuration of the reef transects
across thematic resolutions (Figure 2.6E,F). This enables comparisons between our maps and
previous/historical datasets which may have different thematic resolutions, as well as allowing
for the workflow to ’translate’ between the needs of different expert groups, such as reef ecologists
or managers (Lecours et al. 2015; Roelfsema, Lyons, et al. 2021). We incorporated this thematic
flexibility in our workflow, so that it can be reused in other benthic mapping scenarios (i.e., other
coral reef sites, seagrass meadows, rocky reef sites).

2.5.2 Comparison of machine learning methods
To automate the digitization of reef communities and community structure, careful consideration
of workflow parameters is recommended. In our workflow, we independently utilized two ML
approaches: one based on object-based image analysis (i.e., segmented method) and the other
on deep neural networks (i.e., patched method). Continual increase in complexity and specificity
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of ML tasks for automation impedes a clear judgment of an ML method’s ability to generalize
(Paoletti et al. 2019). We tested two ML methods with different operational paradigms on a non-
overlapping dataset to explore the trade-off in performance vs. complexity of automation. Both
segmented and patched methods showed 80% ± 5% Fbeta scores in both labelspaces (Figure 2.2),
the segmented approach performing better with reflectance data and the patched method with
radiance data. We do not consider this to be generally indicative for future efforts, because
both our ML models have no consideration of the optical physics between the two signal types.
Another work targeting a similar sized labelspace (35 labels) achieves a mean pixel accuracy of
49.9% with a deep semantic segmentation network (DeepLabV3+) on sparse samples in 729 test
images of coral reef orthomosaics (Alonso et al. 2019). Given only 2% of annotated pixels, our
workflow mapped, with higher accuracy on 43 labels, underwater transects with high natural
variability. We show that both ML methods can produce accurate mapping of reef transects,
apparently due to the spectral detail (Figure 2.3C). Nonetheless, we found significant differences
in the data requirements of both ML methods, and in their generalization abilities.

To determine the data requirements for the ML algorithms, we assessed the performance of both
methods – under a constant computational effort – based on the number of unique pixels (in
segments or patches) used for training (Figure 2.3A,B). The patched method needed less data
to achieve its peak performance under the same amount of computing power and annotation
effort. Despite the variable lighting conditions and methodological artefacts between training
and validation transects , the patched method classified into both labelspaces more consistently
(Figure 2.4C-F). Although classifier performance metrics on the training transects are better
for the segmented method (Figure 2.2), the patched method was 23% better at classifying out-
of-distribution data (i.e., validation transects) in the detailed labelspace and 18% better in the
reefgroups labelspace than the segmented method (Figure 2.4C-D). Given that expert annotation
is the biggest bottleneck for reef survey analysis (Beijbom et al. 2015; Roelfsema and Phinn 2013),
the patched method, with its better generalization capability, provides better performance-per-
human-effort compared to the segmented method.

2.5.3 How well do the habitat maps capture the community structure?

The smoothed habitat maps from our workflow show spatial and thematic detail of the struc-
ture of the coral reef benthic community (Figure 2.5). Benthic targets are clearly separated
into meaningful regions, which represent different substrata, different organisms of various sizes.
Small coral colonies and intricate shapes of branching corals, soft corals and sponges, and even
transect tapes are correctly delineated and classified. Our workflow is able to accurately map
bare sediment, turf algae and cyanobacterial mats achieving a previously missing capability in
reef habitat mapping: dense mapping of the microbial components of reef substrata, while in-
tegrating them into a benthic community labelspace. This can be used to quantify changes in
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abundance of cyanobacterial mats or turf algae, usually an indicator of reef deterioration (De
Bakker et al. 2017).

The primary focus of our workflow development was to convert underwater spectral images into
dense habitat maps. The target of our assessment was to go beyond comparing classifier-level
metrics, and assess the final habitat maps for consistency and accuracy. We considered the goal
of comparing the densely classified maps to photo-quadrats with point-count estimates (Rashid
et al. 2020), but the large difference in sample sizes – 2̃000 quadrat points vs. millions of
classified points – made the experiment statistically unsound. Given that 98% pixels (out of
500+ million) do not have reference label annotations and the complex spatial structure of the
transects (Figure A.10-A.13), it is difficult to assess the maps accuracy on a pixel level. To
overcome this limitation, we exploited the fact that the two ML methods produced the same
type of output, but worked fully independent of each other in terms of method, input signal and
parametrization. We compared the community structure of the dense maps in describing the
same physical transect of the seafloor. To achieve this we used coverage, as well as composition
and configuration metrics, which are key descriptors of community structure (Nowosad et al.
2019; Riitters 2019). We consider that if the statistical properties of the habitat maps from
independent methods are similar, our workflow will have succeeded in representing the true
composition and configuration of the coral reef transects captured by the underwater surveys.

The Bland-Altman analysis showed that the habitat maps agree on coverage and diversity met-
rics, except for some small discrepancies (Figure 2.6A,B; Figure A.14). These discrepancies are
noticeable in coverage of corals, sponges and cyanobacterial mats which were overestimated by
the segmented method in a few transects (Figure A.14 I-J). The demographic composition of
the communities between pairs of dense habitat maps (considering all pixels) was highly similar
as shown by the Bray-Curtis similarity index (Figure 2.6E). This shows that both ML methods
independently ascribe similar classes and a similar number of those classes to the same transect.
Furthermore, the assessment of the communities between the two labelspaces was also very simi-
lar (Figure 2.6E), providing confidence in the thematic flexibility of our workflow. We infer that
automated mapping with ML methods of underwater hyperspectral transects can handle intra-
class variability (detailed labelspace) as well as inter-group variability (reefgroups labelspace)
with high accuracy.

Going beyond the composition, we also assessed the spatial configuration similarity of the ben-
thic community in the transects described by both ML methods using the Jaccard index. The
regions from the abstracted detailed-to-reefgroups maps and direct reefgroups maps yielded Jac-
card scores over 60% for the dominant labels (Figure 2.6F). Given that these comparisons are
across hundreds of millions of pixels and over 43 different labels, these results indicate high con-
figurational similarity between the maps. Therefore, our workflow is able to correctly localize
and delineate important targets in benthic habitat maps, despite the degree of thematic detail.
Nonetheless, these assessments are inter-comparisons within our workflow and a correct assess-
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ment of the configuration of the community structure would require dense manual annotations
of the transects. The high degree of convergence in the community structure mapped indepen-
dently by the two ML methods using two different hyperspectral signal types gives confidence
in the ability of the workflow to produce accurate in-situ descriptions of coral reef habitats with
high detail and analytical throughput.

2.5.4 The effect of sampling effort on community structure

There has been some debate about the amount of sampling effort necessary to accurately measure
reef community structure. In benthic surveys with photo-quadrats, the ‘adequate’ number of
samples (points-per-quadrat or quadrat-per-area) to accurately describe the community has been
a topic of debate (Dumas et al. 2009; Pante et al. 2012; Perkins et al. 2016). The goal is to find a
good balance between expert effort (labelling the sampling units in images) and reliability in the
derived scene description. At the reef area scale, the number of quadrats per area (i.e, sampling
density) is an important determinant of the precision of coverage estimations (Lechene et al. 2019;
Perkins et al. 2016). At the quadrat scale, various studies have used different numbers of points
per quadrat (from 5 to 99) within indeterminate quadrat distributions, and hence, a similar
analysis at the point scale is valuable. Simulations of sampling synthetic habitat maps, based
on normal distribution of class abundances, to recover the coral and sponge coverage estimates
with less than 5% relative error, revealed that the optimal number of points per quadrat ranged
between 13 points for a heterogeneous area with high coral coverage and over 600 points for a very
homogeneous region with low coral coverage (Pante et al. 2012). The recommended number of
points per quadrat was 80 for transects of unknown community structure, but generally depended
on the true underlying diversity and dispersion of the community configuration.

We contribute to the debate with a reef-scale analysis based on empirical community structure
derived from our benthic habitat maps (Figure 2.7). We simulated quadrat sampling with var-
ious degrees of sampling effort, and found that higher densities of sampling points reduced the
estimation error, similar to the results at the quadrat scale (Lechene et al. 2019). The number of
point per quadrat to accurately recover the coverage of rare classes exceeded the recommended
values in the literature. Even with 1000 sampling points per quadrat, rare classes at the transect
level could not be detected within the 5% relative error limit (Figure 2.7B,D). In contrast to
the coverage of individual classes, the Shannon diversity index was captured within 5% relative
error with 160 sampling points per quadrat (Figure 2.7E). We demonstrate that the rarity and
skewness of occurrence significantly impacts the error associated with a constant sampling effort.
Ultimately, the precision of survey estimations is determined by the tension between distribution
and density of sampling units, whether points or quadrats. When dense mapping at new sites is
not possible and logistics constrain the number of quadrats , we recommend to sample over 160
points per quadrat during generation of baseline data, as well as to communicate the uncertainty
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generated from the sampling design (Eric J. Hochberg et al. 2021).

2.5.5 Limitations and outlook

Although the results of our workflow are encouraging enough to recommend the different meth-
ods applied in this work, some limitations are noteworthy. For example, the nature of the
images gathered by the push-broom hyperspectral camera (without georeferencing) meant that
the resulting transects are not ideal for photogrammetric techniques. This hinders the gener-
ation of 3D models and orthomosaics, which provide a more comprehensive view of reef sites
and facilitate temporal studies through georeferencing. Recent studies are investigating novel
techniques to overcome this limitation of hyperspectral push-broom sensors and have succeeded
in producing rectified orthomosaics of hyperspectral transects (Jurado et al. 2021; Moroni et al.
2012). Similarly, new robotic platforms, survey methods and data sources are being developed
to improve benthic habitat mapping. We believe that the future direction of reef mapping is to
develop end-to-end workflows that can handle mapping at the reefscape scale, with thematic and
technical flexibility. Our workflow lays the groundwork for such end-to-end frameworks, where
spectrally rich data flows are leveraged for mapping coral reefs.

It is also important to note, that the ML methods presented in this study are tailored for
hyperspectral data and would not produce similarly high performance on RGB images. Another
limitation of our ML methods is that they show low classification confidence in darkened areas
(i.e., shadows). Thus, caution is advised when measuring small changes in temporal studies
or reporting size of benthic organisms. A simple solution would be to group such problematic
regions in a “Shadow” class of the labelspace. It must also be mentioned, that deep neural
networks require high computational power to train and predict on hyperspectral data within
reasonable time frames.

Regardless of the imaging techniques and ML methods used in reef surveys, we consider it
important to evaluate the dense habitat maps (and not the classifiers) in terms of accuracy and
completeness, as the measure of progress. To disentangle the effects of changes in ML methods
and data, we urge that the original images and annotations be made publicly available so that
they can be re-evaluated independently. We have made the complete datasets (Chennu, Rashid,
et al. 2020; Schürholz et al. 2022a) and source code available to reproduce the results presented
in this work (Schürholz et al. 2022b).

Even though our workflow produces dense habitat maps with species level resolution in several
reef groups, it is not a replacement for biodiversity assessments, where every species is recorded.
New ML paradigms might be necessary to resolve the taxonomical hierarchy within reef organ-
isms. Habitat descriptions that are derived from purely surficial surveys neglect cryptic biota,
which can account for as much as half of the reef community and are hence critical to biodiversity
assessments (Kornder et al. 2021). Further development of interdisciplinary efforts intersecting

64



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
CHAPTER 2. DIGITIZING THE CORAL REEF

ML, computer vision, robotics, environmental DNA analysis and reef ecology will be required to
automate survey outputs that directly enable biodiversity assessments and detailed reef inven-
tories.

2.6 Conclusions
Our proposed workflow showcases a way to generate dense habitat maps of coral reefs with flexi-
ble thematic detail. This thematic and spatial detail in the maps enables fine-grained analyses of
coral reef functions and community dynamics by coral reef ecologists. We seek to contribute to
unifying the perspective of ecologists, environmental managers, remote sensing and ML commu-
nities involved in the study of coral reefs. Particularly for ecologists and managers, our approach
provides a consistent habitat description with adaptive thematic detail. Between remote sensing
and machine learning experts, it offers a perspective on bridging the ‘measurement gap’ between
ML classifiers and the ultimate data products, i.e. habitat maps. The consistency achieved by
our mapping workflow, and the patched method in particular, is related to the richness in spec-
tral detail and the spatial acuity of our proximal sensing vantage point of underwater surveys
(Chennu, Färber, et al. 2017; Rashid et al. 2020). When certain limitations are overcome and
with improvements in cost and performance of underwater spectral surveying technology, it will
become feasible to integrate it as a standard in-situ reef monitoring technique. The widespread
use of underwater spectral surveying and automated benthic habitat mapping promises to pro-
vide the best validation data for aerial Earth observation efforts to map coral reefs globally. The
integration of thematic detail into global habitat mapping promises to enable novel analyses of
pattern and scale in coral reef ecology.
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3.1 Abstract
The current accelerated improvement of artificial intelligence (AI) algorithms provides a new tool
to significantly reduce the costs of coral reef monitoring, whilst also allowing for improvements
in the detail of the thematic, spatial and temporal scales. In this study we use AI to provide an
island-wide description of coral reef benthic communities along the leeward coast of the Caribbean
island of Curaçao. We apply a machine learning workflow that uses hyperspectral transects,
acquired in 2016 with the HyperDiver method, to produce densely-classified thematically-detailed
community maps covering approximately 74 ha of reefs (over 2.2 billion samples) and 20 ha

(over 600 million samples) after filtering by prediction confidence. Furthermore, paired with
depth readings for each sample, we provide a detailed community distribution analysis across
the depth-gradient down to 18 meters. With our densely sampled maps, we provide evidence that
deriving community diversity indices from sparse sampling and abstracted thematic labels can
mask the true diversity of the coral reef, as well as lose information about intra-class dynamics.
Combining dense community sampling with an environmental statistical analysis, we explore
the possible drivers of the community compositions along the coastline of the island. The reef
communities in sites situated towards the southern tip of the island show higher cover and
diversity of corals, possibly driven by being farther away from coastal infrastructure, trash and
sewage pollution. Sites in the northern most tip, despite being similarly distant to these stressors,
showed a deteriorated state, with higher abundance of macroalgae and sponges, and a lack of
reef-building corals. Reefs in the center of the island, closer to the capital city Willemstad were
most deteriorated, dominated by cyanobacterial mats, turf algae and large stretches of bare
sediment, and reduced diversity in corals.

3.2 Introduction
Tropical coral reefs have undergone significant degradation in recent decades, caused by direct
and indirect stressors (Erftemeijer et al. 2012; Fabricius 2005; Hughes et al. 2003; Wilkinson
1999). As stressors become more acute, coral reef communities shift towards more degraded
states, becoming dominated by algae and bacteria, at the cost of reef-building organisms such
as scleractinian corals (De Bakker, Van Duyl, et al. 2017; Heery et al. 2018; Knowlton et al.
2008). The loss of structurally complex corals causes significant degradation or cessation of
the services that reefs provide for other sessile and many motile organisms (e.g., fish hideouts,
fish nurseries), as well as services that they provide for coastal human populations (e.g., wave
breakers, fishing grounds) (Moberg et al. 1999; Pratchett et al. 2014). Surveying and monitoring
the state and trajectories of coral reefs is paramount to set concrete baselines and implement
effective management plans (Camacho et al. 2020; Muldrow et al. 2020; Sandin, Smith, et al.
2008).
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Caribbean reefs have been specially affected by the expansion of the human population and
industrial expansions in the region. It is estimated that mean scleractinian coral cover between
0 – 20 m depth has decreased by up to 80% on many reefs, from 35% areal cover in the 1970s to
only 15% in 2014 (Gardner et al. 2003; Jackson et al. 2015). In the same time span, the benthic
real estate vacated by corals was initially taken over by fleshy macroalgae and their abundance
rose by 7% to 23% (Jackson et al. 2015), in what is known as the coral-macroalgae phase shift.
However, in more recent studies it was demonstrated that the eventual benefactor of the vacated
benthic space are bacterial mats and bacteria-algae symbiotic communities, such as turf algae
(Brocke et al. 2015; De Bakker, Van Duyl, et al. 2017; Ford et al. 2018; Paerl et al. 2012).

In the islands of the Leeward Antilles located in the southern Caribbean Sea, this trend has
been convincingly demonstrated based on a compendium of detailed studies of reef communities
spanning over 40 years (Bak 1977; Bak and Luckhurst 1980; Bak, Nieuwland, et al. 2005; De
Bakker, Van Duyl, et al. 2017; Van Duyl 1985). Based on reef monitoring data spanning from
1973 to 2013 it is shown that coral reefs in 3 locations of Curaçao and one location in Bonaire
experience rise and decline of turf algae, followed by a rapid expansion of cyanobacterial mats
covering up to 22.2% of their 10-40 m deep quadrats in 2013 (from 0.1% in 1973). Macroalgal
cover and sponge cover also increased from 1973 to 2013, although far less: from 0% to 2%
and from 0.5% to 2.3% cover, respectively. In contrast, scleractinian corals showed a loss of
up to 71% from 1973 to 2013. While this represents the most detailed temporal study of the
island’s reefs, it was spatially constrained to a small section of the Curaçaoan leeward coastline,
with the 3 studied locations in Curaçao clustered very close to CARMABI Research Station (see
Figure 3.1). The proximity of this study site to Willemstad (capital of Curçao and only major
city on the island) does not capture the variety of reef environments and communities to be
found on the rest of the island’s coast.

In the Waitt Institute’s report titled “The State of Curaçao’s Coral Reefs” (WAITTS-Institute
2017), the authors present the percentage cover of the most dominant functional groups along
the island. Similarly, a 2015 study (Sandin, Alcantar, et al. 2022) of benthic assemblages along
the island found more scleractinian coral cover on the south side, with small pockets of high
cover of hard coral in the center and north of the coastline. Although the spatial extent of the
studies is quite large (148 sites for (WAITTS-Institute 2017) and 122 for (Sandin, Alcantar,
et al. 2022)), the sampling density within each site is low. Following the Global Coral Reef
Monitoring Network (GCRMN) guidelines for benthic cover surveys, both studies (WAITTS-
Institute 2017) and (Sandin, Alcantar, et al. 2022) recorded 25 random points within each of the
15 photo-quadrats (0.9 m × 0.6 m) acquired along 5 line transects of 30 meters length for each
site, calculating percentage covers from only 1875 sampled points per site with an area of 300
m2 each. The thematic resolution of the studies were broad benthic groups, such as hard coral,
macroalgae, sponges, Crustose Coralline Algae (CCA), turf algae, cyanobacteria, soft corals, etc.

Sparse spatial sampling, coupled with broad thematic labelsets, can lead to the occlusion of rare
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species and the masking of intra-group dynamics (Brito-Millán et al. 2019; Hochberg et al. 2021;
Pante et al. 2012; Schürholz et al. 2023). Scleractinian corals, for example, are composed by
many genera and species in the Caribbean (Corals of the World 2016). If only overall coral
cover is reported, the actual diversity (or lack thereof) within this benthic group is obscured.
A detailed study with the same photoquadrat data as in (De Bakker, Van Duyl, et al. 2017)
focused on the scleractinian coral community changes, from 1973 to 2014, adding one site in
the south of the island as comparison (De Bakker, Meesters, et al. 2016). They show that hard
coral communities between 10 – 20 m became dominated by the massive frame-building Orbicella
spp., the opportunistic digitate Madracis spp. and the submassive/encrusting Stephanocoenia
michelini species, whereas the communities down to 40 m shifted towards encrusting/foliose
Agaricia spp.. Branching corals, such as Acropora spp., critical for maintaining the 3D complexity
of reefs, have lost the most benthic coverage and can only be found in the shallower parts (≤ 8

meters) of more protected reefs in the south of Curaçao (WAITTS-Institute 2017). Not many
studies exist that cover several reefs across the leeward side of Curaçao and study its community
with thematic detail.

The distribution of benthic groups and coral genera/species along the island is affected by envi-
ronmental conditions and (physical and anthropogenic) stressors (Sandin, Alcantar, et al. 2022;
WAITTS-Institute 2017). The human population in the Caribbean increased from 27 million in
1973 to approximately 43 million in 2016, while Curaçao’s population also increased by 9.4% from
154,000 to 170,000 in the same time period (United Nations et al. 2015). The consequences of the
population expansion and industrial development are more polluted water run-offs, over-fishing
and coastal building encroachments, which pressure the biotic communities of coral reefs(Heery
et al. 2018). It is also believed that the abundance of Acroporid species has dramatically re-
duced due to the presence of increased human settlements since the 1950s (Cramer et al. 2020).
Curaçao receives a high influx of tourists through cruises and airline passengers, totaling over a
million visitors in 2016 alone (Curaçao Tourist Board - Annual Report 2016). This increased the
amount trash, waste water efflux and diving activities near coral reefs. Further negative impacts
to reef health can come from physical factors driven by global climate change, such as more fre-
quent hurricanes, increasing sea water temperature and levels (Crabbe 2008). As a consequence,
several coral bleaching events have been recorded within the last 30 years in Caribbean reefs
(Alemu et al. 2014; R. Aronson et al. 2002; Bries et al. 2004; Donner et al. 2017; Eakin et al.
2010; Muñiz-Castillo et al. 2019), as well as rapid spread of Band Diseases which has greatly
reduced the cover of Acropora spp. from the late seventies to the mid-eighties (R. B. Aronson
et al. 2001; Gladfelter 1982).

The influence of environmental factors on the Curaçaoan reefs has to be further investigated in
relation to detailed accounting of their communities. Dense habitat maps with thematic and spa-
tial detail of large stretches of coral reefs provide the opportunity to implement in-depth analyses
of community composition and configuration (Nowosad et al. 2019; Riitters 2019; Riitters and
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Vogt 2023; Schürholz et al. 2023). In this study we present a detailed analysis of the states of
the coral reef benthic communities in 8 sites along the leeward coast of Curaçao. Expanding on
machine learning of underwater hyperspectral images captured in 2016 (Schürholz et al. 2023),
we created dense and detailed habitat maps derived from high-resolution (cm-scale) sampling
of large areas of the reef floor. The benthic maps have thematic detail of up to 39 taxonomic
and 3 substrate classes, with 19 scleractinian coral species/genera mapped separately. With this
information we aim at (1) determining the spatial (latitudinal and depth-wise) distribution of
benthic groups along the island, (2) similarly determining the distribution of coral species along
the island coast, (3) connect the groups’ distribution to previously reported information and
(4) correlate the distribution information to environmental (physical and anthropogenic) factors
along the island, taken from (WAITTS-Institute 2017). Through our analysis and data presen-
tation, we provide an independent measure the coral communities in Curaçao and an insightful
complement to previous studies of these reef communities.

3.3 Materials and Methods

3.3.1 Study site

Between the 4th and 26th of August of 2016, underwater hyperspectral image transects were
captured using the HyperDiver device in 8 sites along the coast of Curaçao Island in the Dutch
Caribbean (Chennu et al. 2017; Rashid et al. 2020) (see Figure 3.2 & Figure 3.1 and Table 3.1).
In total, 147 transects were captured and processed Table 3.1.

Table 3.1 Study sites locations and characteristics of acquired transect data.
Number

of
transects

Number
of

samples1

Latitude Longitude Island
zones2

Depth
range (m)

Playa Kalki 20 60,666,270 12.375344°N 69.158931°W 7 3.6 – 16.2

Habitat 22 75,742,973 12.197850°N 69.079558°W 6 4.2 – 14.1

Kokomo 20 118,301,180 12.160331°N 69.005403°W 5 5.3 – 10.9

Carmabi 22 120,961,636 12.122331°N 68.969234°W 4 3 – 14

Water Factory 10 52,838,930 12.109989°N 68.956258°W 4 4.8 – 11.2

Marie Pampoen 18 79,908,190 12.091894°N 68.907918°W 4 5.3 – 12.8

Sea Aquarium 15 59,273,382 12.083234°N 68.895114°W 3,4 4.1 – 11.7

East Point 20 72,022,092 12.042249°N 68.745104°W 2 4 – 12
1Number of samples is the number of pixels in all transects in a site after the reliability filtering process.
2Island zones taken from (WAITTS-Institute 2017).
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Figure 3.1 Benthic reefgroups and coral community abundances across our 8 survey sites. The
four southernmost sites have a high cover of Coral (scleractinian corals). From
the Carmabi site northwards larger areas of Cyanobacterial mat and Turf algae are
found. Playa Kalki,in the far north, presents the highest abundance of Macroalgae
and Sponge. The coral communities of Playa Kalki, Carmabi, Water Factory, Marie
Pampoen and Sea Aquarium are dominated by Madracis auretenra. Orbicella an-
nularis, Orbicella faveolata, Siderastrea siderea and Montastrea cavernosa show high
abundances in all sites. East Point in the south, shows the only Acroporid dom-
inated community, with 34% Acropora cervicornis. Coastline zones are taken from
(WAITTS-Institute 2017). Study sites described in (De Bakker, Meesters, et al. 2016;
De Bakker, Van Duyl, et al. 2017) shown with red squares.

3.3.1.1 Environmental factors
The 8 study sites were selected to represent different states of environmental gradients on Cu-
raçao’s coastline. The report “The State of Curaçao’s Coral Reefs” (WAITTS-Institute 2017)
provided a detailed zonation of the island in terms of the type and level of different stressors
(Table 3.2). The island is divided into 8 zones, and our sites are situated within zones 2-7 on the
leeward side of Curaçao main island. The windward side (zone 8) was not surveyed, because it is
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exposed to strong winds and currents. The smaller “Klein Curaçao” island – zone 1 – was out of
scope for the survey’s purpose. The southern end of the island (zone 2) is the most isolated area,
given its distance to urban settlements and road inaccessibility. The central region (zones 3-5)
of the island are the most affected by human activities from nearby coastal settlements, such
as farming, sewage and coast-infrastructure development, producing elevated sedimentation and
eutrophication. The northern part of the island (zones 6, 7) receives the most tourists, and thus
is affected by anthropogenic stressors: such as diving tourism, trash agglomeration and sewage
run-offs.

Table 3.2 Environmental variables, taken from The State of Curaçao’s Coral Reefs report by the
Waitt Institute (WAITTS-Institute 2017).

Anthropogenic factors Fish Biomass

Sewage Pollu-
tion

Infra-
struc-
ture

Diving
use

Fishing
use Total Herbi-

vorous
Carni-
vorous

Playa Kalki Low Very
high

Very
low

Very
high

Very
high

Very
low

Very
low Low

Habitat Very
low High Very

low
Below
average

Below
average

Very
low

Very
low

Very
low

Kokomo Low Very
high Low Low Below

average
Very
high

Very
high

Very
high

Carmabi Very
high High Very

high
Above
average

Very
low

Above
average

Above
average High

Water Factory Very
high High Very

high
Above
average

Very
low

Above
average

Above
average High

Marie Pampoen Very
high High Very

high
Above
average

Very
low

Above
average

Above
average High

Sea Aquarium Below
average

Above
average

Below
average

Very
high

Below
average

Very
high High Very

high

East Point Low Very
low

Very
low Low Very

low
Very
high

Below
average

Above
average

In Figure 3.1 we also show the study locations from de Bakker et al 2016 (De Bakker, Meesters,
et al. 2016) & de Bakker et al (De Bakker, Van Duyl, et al. 2017). These studies provided
a thorough temporal analysis of the community shifts of dominant benthic classes and coral
communities from 1973 until 2014, respectively. Three of their sites (Buoy I, II, & III) are
located close to our Carmabi site in zone 4, while the site Awa Blancu (AB) is located closer to
our East Point site in zone 2. Their analysis spans 4 depth zones – 10, 20, 30 & 40 meters –
while our transects were captured in a depth between 3 to 16 meters.
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3.3.2 Detailed thematic benthic habitat maps

The captured hyperspectral transects were used as input to an AI workflow to create spatially
and thematically detailed benthic community maps (Figure 3.2).

3.3.2.1 Spectral-spatial deep learning of hyperspectral transects
In total 147 benthic maps were predicted, each 640 pixels wide and with lengths from 6,090 to
40,720 pixels, with a mean of 24,352 pixels. Each of the approximately 2.X Billion pixels was
classified to one of 48 classes (see Figure 3.3). In total, 4224 polygons were manually annotated
across all transects to one of the 48 labels. This subset containing 35 million pixels was used
to train an AI workflow with multiple spectral-spatial residual neural networks (SSRNs) at its
core (Zhong et al. 2018). We modified the workflow presented in Schürholz and Chennu 2023
(Schürholz et al. 2023) to include 5 ensemble SSRN networks. Ensemble networks have been
shown to improve the prediction accuracy of AI workflows by introducing voting mechanisms
that remove the biases of single networks (Ganaie et al. 2022; Wyatt et al. 2022). The networks
predicted the softmax probabilities for each label in each pixel. Biotic elements on the benthos
were predicted to the highest taxonomic detail possible (one out of 39 possible classes) following
the World Registry of Marine Species (WORMS) database (Marine Species 2023). Substrates
were classified to one of three classes (Turf algae, Cyanobacterial mat or Sediment) following
the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) standard
(Althaus et al. 2015); coral rubble was initially classified independently as a substrate, but later
merged in to the Turf algae class (Schürholz et al. 2023). The remaining 6 classes were 5 survey
materials (transect tape, transect reel, reference board – refboard, floating marker – float and
other material) introduced in the scenes and appearing on the spectral transects plus one class
called Shadow for regions too dark to distinguish the true cover. These last classes were masked
out for community analyses.

We tested the AI workflow’s performance through an experiment, in which a subset of approx-
imately 105,000 annotated pixels were separated as a testing set, and then predicted with the
ensemble networks trained on another subset of 293,427 annotated pixels. The overall predic-
tion accuracy was of 90.8%, with 43 out of the 48 classes being predicted with over 80% recall
(Figure 3.4). Only the sponge genus Hyrtios was completely confused with the sponge species Ne-
ofibularia nolitangere and the sponge species Aplysina cauliformis was confused with the Aplysina
archeri species, but since they were rare species, this error was neglected. The result of the AI
workflow were 147 predicted habitat maps with each pixel labeled by class.

The AI workflow was implemented using the PyTorch machine learning Python package (Paszke
et al. 2019), Sci-kit Learn package (Pedregosa et al. 2011) and the Snakemake workflow manage-
ment tool (Mölder et al. 2021).
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Figure 3.2 Schematic of the methodology. The reefs in each site were surveyed using the Hyper-
Diver methodology. The acquired hyperspectral transects with 200 spectral bands
(evenly spaced between 400 and 800nm) were used as input to an ensemble deep neu-
ral network AI workflow. The resulting habitat maps had every pixel assigned to one
of 48 labels, with 42 reef community biotic and substrate classes. We further filtered
the predictions through a reliability analysis for each label. Around 25% of pixels (640
Million) were retained across 147 transects approximately covering approximately 20
hectares of seafloor. The class abundance number were used as input to a Generalized
Linear Latent Variable Model (GLLVM) and correlated to environmental variables
taken from WAITTS-Institute 2017.
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Figure 3.3 Labelsets used in this study. The Detailed labelset (A) lists all classes that were
annotated on the hyperspectral transects and predicted by the trained AI workflow.
The Reefgroups labelset (B) presents broader benthic groups into which the detailed
labels were abstracted. Colors are consistent throughout all figures in this study.
Shapes inside the rectangles map the detailed labels to their abstracted reefgroups
class.

3.3.2.2 Per-class reliability filtering of predicted maps
Deep neural networks have greater generalization capabilities than other machine learning tech-
niques, when applied to habitat mapping (Schürholz et al. 2023). Similar to Mills et al. 2023
Mills et al. 2023, we assessed the uncertainty in the prediction accuracy of the out-of-distribution
(not used in the training process) pixels, because only 1.5% of pixels out of the 2.3 billion in
the dataset were used to train the networks. After a detailed visual inspection some errors
were found, and to avoid counting these in the final community descriptions we performed a
network-confidence-driven pixel filtering (Figure 3.2).

Due to the large number of pixels in the dataset, we inspected the frequency distribution of the
probabilities with which each class was predicted in the annotated pixels and compared it to
the empirical correctness of the predictions. From this distribution, we calculated a threshold
probability for each class to retain a parameterized “correct fraction” of all pixels. We tested
with correct fraction values of 5% up to 95% with increments of 5%, and found that the threshold
value that retained the best visual consistency was 75% for 40 out of the 42 classes. Only for
the Orbicella annularis and Porites asteroides fraction values of 60% and 50% were selected,
respectively (see all reliability plots in Figure B.1). We also calculated the abstracted reliability
plots for the reefgroups labelset, by selecting the label with the highest predicted probability
within each dominant benthic class (Figure 3.5).

After applying the filtering to the 147 habitat maps, we retained 639,714,653 pixels, which we
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Figure 3.4 Recall confusion matrix for the detailed labelspace. The AI workflow classified the
48 classes with 90.8% accuracy, 90.8% recall and 90.6% precision on the out-of-
distribution assessment set (with 105,600 samples). 43 classes were predicted with
over 80% recall. 16 out of 19 coral species/genera were classified with over 80% re-
call. The other three classes were confused with Orbicella annularis a very abundant
species in the reefs. Only Aplysina cauliformis and Hyrtios had 0% recall, likely due
to its similarities with other sponge classes and their low number of available training
samples.

call samples hereafter. The per-site distribution of final filtered samples are in Table 3.1. We
utilized these filtered samples for all further statistical analyses in the study. All analysis were
carried out in one of three labelsets (Figure 3.3). The “detailed” labelset contains the 42 low-level
classes. Each label in this labelset was then abstracted to higher-level benthic groups, in what
we called the “reefgroups” labelset. The subset of scleractinian coral genera and species formed
the “coral community” labelset.
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Figure 3.5 Sample filtering for reliability of predictions based on predicted probabilities. For each
reefgroups class, we inspected the number of correct predictions that would remain
after a certain probability threshold is applied. We settled on a 75% correct fraction
value, then selected the corresponding probability threshold for each class and only
retained all samples that were predicted with a probability that was higher than the
threshold. This improved the confidence on the selected samples considerably, while
providing a per-class expectation of correctness in the predictions.

3.3.3 Benthic community analysis

We calculated cover percentages for each label in the detailed, reefgroups and coral community
separately, by dividing the number of pixels of each class by the total number of pixels in each
site. We also provide a statistical multivariate analysis, in which nMDS was used as a tool to
display benthic communities differences between sites. The nMDS analysis was implemented
with the “R” programming language and the “Vegan” package, using a Bray-Curtis distance as
a metric (Oksanen et al. 2022). We also plotted the pair-wise Bray-Curtis distance matrix for
the 8 sites separately (Figure 3.8-3.10).

3.3.3.1 Diversity indices
To compare the diversity between sites we calculated 4 indices (Table 3.3). We calculated the
Shannon diversity index (H), the Simpson diversity index (D), Gini-Simpson index (GS) and
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Table 3.3 Diversity indices for all 3 labelsets over all sites.

Reefgroups Diversity Indices

S H D GS equitability

Playa Kalki 10 2.42 0.23 0.77 0.44

Habitat 10 2.25 0.28 0.72 0.36

Kokomo 11 1.83 0.37 0.63 0.25

Carmabi 10 1.78 0.37 0.30 0.27

Water Factory 10 2.03 0.34 0.66 0.30

Marie Pampoen 11 1.75 0.40 0.60 0.23

Sea Aquarium 10 2.24 0.31 0.69 0.32

East Point 10 2.45 0.23 0.77 0.43

Coral Community Diversity Indices

S H D GS equitability

Playa Kalki 16 2.93 0.18 0.82 0.35

Habitat 16 3.12 0.14 0.86 0.46

Kokomo 18 2.83 0.20 0.80 0.28

Carmabi 18 2.55 0.24 0.76 0.23

Water Factory 18 2.39 0.28 0.72 0.20

Marie Pampoen 18 2.13 0.34 0.66 0.16

Sea Aquarium 19 2.52 0.29 0.71 0.18

East Point 19 2.93 0.19 0.81 0.28

Detailed Diversity Indices

S H D GS equitability

Playa Kalki 34 2.85 0.22 0.78 0.13

Habitat 33 2.71 0.23 0.77 0.13

Kokomo 37 2.36 0.33 0.67 0.08

Carmabi 37 1.96 0.38 0.62 0.07

Water Factory 34 3.28 0.15 0.85 0.19

Marie Pampoen 36 3.09 0.18 0.82 0.16

Sea Aquarium 36 3.48 0.14 0.86 0.19

East Point 35 3.77 0.10 0.90 0.30

S = Species number, H = Shannon index, D = Simpson index, GS = Gini-Simpson index, equitability =

Simpson’s evenness.

the Simpson’s Eveness index (equitability):
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H = −
S∑

i=1

pi log pi

D =

S∑
i=1

p2i

GS = 1−D

equitability =
1
D

S
=

1

D × S

Where S is species richness, pi is the relative abundance of species i and log is the natural
logarithm. The diversity indices were calculated using the scikit-bio Python package (Rideout
et al. 2023).

Figure 3.6 Dominant reefgroups coverage. East Point, Sea Aquarium, Marie Pampoen and Water
Factory show a higher concentration of scleractinian corals. East Point had the most
amount of Soft coral coverage and together with Sea Aquarium also present the highest
cover of Hydrozoans. Water Factory, Carmabi, Kokomo, Habitat and Playa Kalki
present the largest percentages of Cyanobacterial mats and Turf algae. Playa Kalki
presented the highest abundance of Macroalgae, followed by Habitat. Playa Kalki
also presents the highest abundance of Sponge.

3.3.3.2 Depth-wise distribution analysis
We compiled the depth-wise distribution for each class in the reefgroups labelset and for the 9
most dominant scleractinian corals in the coral-community labelset (Acropora cervicornis, Diplo-
ria strigosa, Madracis auretenra, Meandrina meandrites, Montastrea cavernosa, Orbicella annu-
laris, Orbicella faveolata, Porites asteroides and Siderastrea siderea). To obtain the distribution
we divided each habitat map transect into smaller segments or quadrats of size 40× 640 pixels.
The HyperDiver measured the hydrostatic pressure and the diving altitude from the seafloor for
each hyperspectral push-broom line. The depth of the HyperDiver at image acquisition time
was calculated from the hydrostatic pressure and then added to the altitude of the device from
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the sea-floor, to obtain the total depth of the acquired pixel line. The median depth for each
quadrat was calculated from the 40 acquisition lines that composed it. Within each quadrat the
relative fraction of each label was calculated by dividing the number of pixels for the class by
the size of the quadrat. The depth-wise distribution was then plotted using vertical ridge-plots
for the whole island (Figure 3.11).

Figure 3.7 Coral communities coverage. The coral communities across the 8 sites were mostly
dominated by the Madracis auretenra species. The second most dominating coral
class was the Orbicella annularis species. Orbicella faveolata, Siderastrea siderea also
appeared in mid-high percentage across sites. The brain corals Diploria strigosa and
Diploria labyrinthiformis were abundant in Habitat, Carmabi and Water Factory.
Porites furcata was highest in Sea Aquarium and Meandrina meandrites in Carmabi.
Porites asteroides was more abundant towards the northern side of the island (Habitat
and Playa Kalki). Acropora cervicornis was only dominant in East Point.

3.3.3.3 Environmental correlation analysis
Understanding the correlation between environmental variables and community distributions can
elucidate drivers of increase and decline of certain species. The difference in reef communities
across the island is mostly driven by external factors, such as physical, ecological and anthro-
pogenic stressors. In this study we focused on the anthropogenic and ecological factors and
their influence on the community distributions. To correlate our multivariate distribution and
environmental variables, we apply GLLVM (Rabe-Hesketh 2004). GLLVMs extend generalized
linear models to be used with multivariate data using a factor analytic approach. It incorporates
a small number of latent variables for each site accompanied by species-specific factor loadings
to model correlations between responses. One of the main advantages of GLLVMs is that they
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can handle situations where there are many species, because the number of parameters in the
covariance model scales linearly with the number of responses (Warton et al. 2015). We use
the R package gllvm implementation (Niku et al. 2019) to calculate the GLLVM responses for
our data. This package provides a flexible and fast implementation of GLLVMs to apply on
ecological data.

We calculated the co-occurrence between the cover percentages of reefgroups and coral commu-
nity classes and the environmental factors for each site, by running the gllvm package with a
“negative.binomial” family, 3 latent variables and a random seed of 1234 (Figure 3.12&3.13).
We fitted the model with and without environmental variables. When considering the environ-
mental variables we used the formula: ∼ infrastructure+ trash+ sewage+diving_pressure+

fishing_pressure + carnivorous_fish_biomass + herbivorous_fish_biomass. We plotted
the coefficients for each class with each environmental factor. We also plotted the occurrence
correlation between benthic classes and scleractinian coral community classes controlled by the
environmental variables.

3.4 Results

3.4.1 Reef community distribution and diversity
We calculated and compared the community composition per-site, for the reefgroups, as well as
for the coral community (Figure 3.1).

3.4.1.1 Reefgroups
Sites closer to the southern end – East Point (37%), Sea Aquarium (52%), Marie Pampoen (23%)
& Water Factory (53%) – of the island showed a higher abundance of Coral than on the sites
in the northern part. A greater amount of Hydrozoans were found at East Point (9%) and Sea
Aquarium (13%), and the greatest amount of Soft coral (23%) was found at East Point.

Sites located further north and close to urban areas presented the largest percentages of
Cyanobacterial mats – Water Factory (6%), Carmabi (15%), Kokomo (24%), Habitat (13%)
& Playa Kalki (16%). Turf algae followed a similar trend, with Water Factory (15%), Carmabi
(24%) and Habitat (20%) showing high coverage of this class. The northern sites had higher
abundance of Macroalgae with 24% in Playa Kalki, followed by Habitat with 10%. Playa Kalki
also showed the highest abundance of Sponges (6%).

The nMDS and Bray-Curtis distance plots (Figure 3.8) show the similarities in dominant groups
communities in the southern sites of East Point and Sea Aquarium. These sites also shared
a similarly high Shannon diversity index of 2.49 and 2.3 for the reefgroups labelset. Marie
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(a) nMDS Analysis (b) Bray-Curtis similarity

Figure 3.8 The nMDS and Bray-Curtis distance plots. East Point and Sea Aquarium show
similar communities differentiating themselves through higher CCA, Soft coral and
Hydrozoa coverage. Marie Pampoen and Water Factory cluster on the plot driven by
the similar number of Coral, Soft coral and Turf algae cover. Playa Kalki and Habitat
cluster because of similar Macroalgae and Sponge cover. Carmabi and Kokomo share
similar community distributions dominated by Cyanobacterial mat and large areas of
Sediment.

(a) nMDS Analysis (b) Bray-Curtis similarity

Figure 3.9 Coral community nMDS and Bray-Curtis plots. Porites asteroides and Agaricia spp.
drive the communities in the northern site of the island (Playa Kalki and Habitat).
The southern most sites loosely cluster together, with East Point showing a distinct
community driven by the Acropora spp., plus the rare species Orbicella franksi and
Dendrogyra cylindrus. The Carmabi site war far from any cluster due to its large
percentage of Meandrina meandrites species. The Bray-Curtis distances show that
the closest communities were those in Sea Aquarium, Marie Pampoen and Water
Factory, dominated by the Madracis spp.. Together with East Point, they were also
the most distant from the Carmabi site community.

Pampoen and Water Factory sites have also similarities in their reefgroups communities, and are
mostly affected by the similar number of Coral, Soft coral and Turf algae cover. Similarly, Playa
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(a) nMDS Analysis (b) Bray-Curtis similarity

Figure 3.10 Detailed nMDS and Bray-Curtis plots, with 41 biotic and substrate labels.

Kalki and Habitat presented a similar community distribution and cluster together in the nMDS
plot, distinguished mostly by macroalgal cover. Carmabi and Kokomo shared similar community
distributions dominated by cyanobacterial mats and large areas of sediment.

The depth-wise distribution of reefgroups classes shows that cyanobacterial mats are located
below 5 or 6 meters (Figure 3.11a). Macroalgae and Soft coral were located in shallower areas
between 4 and 7 meters depth. Scleractinian corals were more evenly distributed along the depth
gradient with a small conglomeration around 7 meters. Sponge and Turf algae were mostly found
around 6 to 8 meters as well.

3.4.1.2 Scleractinian coral communities
The coral communities across the 8 sites were mostly dominated by the Madracis auretenra
species. It covered around 52% of the coral community in Marie Pampoen, 50% in Sea Aquar-
ium, 48% in Water Factory, 41% in Carmabi and 32% in Playa Kalki. Only in East Point
(18%), Kokomo (7%) and Habitat (1.65%) was it not the most dominant species. In East Point
was dominated by Acropora cervicornis, which otherwise only appeared in small percentages in
Sea Aquarium (4.1%) and Playa Kalki (4.5%). The second most dominant coral class was the
Orbicella annularis species, with 35% percentage cover in Kokomo and 18% in Habitat. Orbi-
cella faveolata, Siderastrea siderea also appeared in mid-high percentage across sites. The brain
corals Diploria strigosa and Diploria labyrinthiformis were abundant in Habitat, Carmabi and
Water Factory. Porites furcata was relevant in the Sea Aquarium community with 6.11% and
Meandrina meandrites in Carmabi with 15%. Porites asteroides was more abundant towards
the northern side of the island with almost 10% cover in Habitat and 6% in Playa Kalki.

The nMDS analysis for the coral communities showed that sites towards the northern side of
the island clustered together and thus showed a similar community, driven by Porites asteroides
and Agaricia spp. (Figure 3.9a). The southern most sites loosely clustered together, with East
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(a) Reefgroups (b) Coral community

Figure 3.11 Depth-wise distribution for the benthic reefgroups across all 8 sites. Cyanobacterial
mats were mostly found below 6 meters. Macroalgae and Soft coral were located in
shallower areas between 4 and 7 meters depth. Coral was more evenly distributed
along the depth gradient with a small conglomeration around 7 meters. Sponges
and turf algae were mostly found around 6 to 8 meters as well. Acropora cervicornis
was mostly found between 4 and 6 meters depth. Diploria strigosa and Siderastrea
siderea were mostly found between 4 and 8 meters. Madracis auretenra, Orbicella
annularis, Orbicella faveolata and Montastrea cavernosa were distributed between
6 and 11 meters depth, with Madracis auretenra having a more evenly distribution
even towards the deeper end of the range. The Porites asteroides species showed
a more even distribution across all depths down to 12 meters. The Meandrina
meandrites species was found mostly between 5 and 8 meters depth with sporadic
occurrences in the shallower and deeper ends.

Point differentiated by the Acropora spp., and the rare species Orbicella franksi and Dendrogyra
cylindrus. The Carmabi site did not cluster to any other sites due to its large percentage of
Meandrina meandrites species and low overall coral cover. The Bray-Curtis distances show
that the closest communities were those in Sea Aquarium, Marie Pampoen and Water Factory,
dominated by the Madracis spp. and together with East Point, they were also the most distant
from the Carmabi site community (Figure 3.9b).

The depth-wise analysis shows that Acropora cervicornis was mostly found between 4 and 6
meters depth (Figure 3.11b). Diploria strigosa and Siderastra siderea were found between 4 and
8 meters. Madracis auretenra, Orbicella annularis, Orbicella faveolata and Montastrea cavernosa
were distributed between 6 and 11 meters depth, with Madracis auretenra having a more evenly
distribution even towards the deeper end of the range. The Porites asteroides species showed a
more even distribution across all depths down to 12 meters. Finally, the Meandrina meandrites
species was found mostly between 5 and 8 meters depth with sporadic occurrences in the shallower
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and deeper ends.

3.4.2 Environmental drivers

We inspected the correlation of the environmental factors to the distribution of reef communities
across the 8 surveyed sites.

3.4.2.1 Coefficient analysis
The GLLVM estimated coefficients for environmental predictors from the fitted model between
environmental factors and the abundance of the reefgroups (Figure 3.12). Coastal infrastructure,
as well as pollution by trash residue, positively correlated with Turf algae abundance with a
coefficient of 0.5 and 0.9, respectively, followed closely by diving activity and biomass of herbiv-
orous fish. Trash found on the reefs impacted negatively for Coral, Hydrozoa and Macroalgae
abundances. Sewage output affected Turf algae, Soft coral, Macroalgae and Hydrozoa negatively,
and Sponge and Cyanobacterial mats positively. Diving activity was positively correlated with
Hydrozoa, Macroalgae and Coral. In places with high fishing activity the abundance of Soft
coral and Turf algae were significantly reduced, while Sponge and Cyanobacterial mat benefited
from it. Higher carnivorous fish biomass affected positively the abundance of Hydrozoa, Coral
and Sponge, while affecting negatively the abundance of Turf algae, Macroalgae, and Soft coral.
Higher herbivorous fish biomass correlated with lower Macroalgae, lower Sponge coverage.

3.4.2.2 Co-occurrence of dominant reefgroups
The co-occurrence of benthic classes was derived from the GLLVM, which factors in the weight of
environmental drivers in each pair-wise co-occurrence value. Coral, Soft coral and Hydrozoa were
mostly found in the same sites in higher abundance, together with Coralline algae (Figure 3.13a).
Macroalgae was located in sites with high abundance of Sediment and Turf algae, Coralline algae.
Turf algae, Sponge and Cyanobacterial mat co-occurred in many location as well. Sediment and
Turf algae were found together in several sites. Coral, Soft coral and Hydrozoa did not co-occur
often with Sediment, Macroalgae, Turf algae, Sponge and Cyanobacterial mat.

3.4.2.3 Co-occurrence of scleractinian coral species/genera
Scleractinian corals’ co-occurrence was calculated from the GLLVM and controlled by the envi-
ronmental factors of each site (Figure 3.13b). Some species, such as Meandrina meandrites and
Porites asteroides, were only found near each other. Dichocenia stokesii, a rare species in the
dataset, was found mostly near Eusmilia fastigiata, Diploria labyrinthiformis and Dendrogyra
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Figure 3.12 Environmental factors impact on the most dominant reefgroups. The coefficient
plot was derived from the Generalized Linear Latent Variable Model (GLLVM),
ran on 8 reefgroups and 7 environmental factors that have a different impact on
each of the 8 surveyed sites. Trash found on the reefs impacted negatively for Coral,
Hydrozoa and Macroalgae abundances. Diving activity was positively correlated with
these 3 classes, as diving tourism usually seeks these more visually pleasing settings.
Higher sewage output, fishing activity and trash presence correlated with higher
Cyanobacterial mats abundance. Similarly, Sponge was found more in locations
with higher sewage output and fishing activity.

cylindrus. Many species co-occurred quite often, for example, Acropora palmata, Siderastrea
siderea, Diploria strigosa, Orbicella franksi, Acropora cervicornis and Porites furcata. Another
cluster of co-occurrence include the species Colpophyllia natans, Montastrea cavernosa, Solenas-
trea bournoni, Madracis auretenra and Orbicella annularis. Orbicella annularis and Orbicella
faveolata were often found together. Finally, corals of the Agaricia genus had the most evenly dis-
tributed co-occurrence values, being found often next to the Orbicella genus, Madracis auretenra,
but not in the same sites as Meandrina meandrites, Dichocenia stokesii, Eusmilia fastigiata and
Dendrogyra cylindrus.
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(a) Reefgroups (b) Coral community

Figure 3.13 Co-occurrence of the dominant benthic reefgroups and coral community, controlled
by the environmental variables.

3.5 Discussion
Our detailed survey of 8 sites along the coast of Curaçao revealed a substantial variability in the
overall community composition along the leeward coastline. Refining an AI workflow (Figure 3.2),
147 hyperspectral transects were converted into habitat maps (with 90% accuracy) containing
about 640 million samples (pixels), each labelled to one of 42 habitat labels. Our detailed labelset
comprised 39 biotic labels, which included 19 scleractinian coral species and genera, and 3 labels
describing substrate types: cyanobacterial mats, bare sediment and turf algae. The detailed
community labels were also abstracted to 12 labels describing functional benthic reefgroups,
providing an aggregated view of the Curaçaoan reef communities. We compiled community
composition and percentage coverage for each class over the 8 sites, as well as their depth-wise
distribution. Finally, we analysed the possible driver factors for community composition across
environmental gradients and stress variables taken from a thorough report conducted a year prior
to our survey.

3.5.1 Reefgroups community shifts and their drivers
The community composition and coverage percentage values from our survey (in 2016) follow
similar values to previous surveys in the region (in the years 2013–2015) (De Bakker, Meesters,
et al. 2016; De Bakker, Van Duyl, et al. 2017; Sandin, Alcantar, et al. 2022), although the
temporal, spatial and thematic scales in those studies differed from the ones used in our study.
De Bakker et al 2016 (De Bakker, Meesters, et al. 2016) & de Bakker et al 2017 (De Bakker,
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Van Duyl, et al. 2017) both had sparse spatial cover, both latitudinally as well as in the sampling
density, as they covered 3 clustered sites close to the Carmabi station and one extra control site
near East Point, and used a sparse sampling method on photoquadrats (Kohler et al. 2006).
They provide a detailed temporal analysis of reef community shifts from 1973 to 2014 at 4 depth
levels. Other studies and reports considered more sites across the coastline, with limited thematic
detail (dominant benthic classes) (Sandin, Alcantar, et al. 2022) added to a reduced set of coral
genera/species (WAITTS-Institute 2017).

Previous studies have shown that reef communities when deteriorated shift towards macroalgae
and turf algae dominated reefs, and if further deteriorated, towards reefs dominated by benthic
cyanobacterial mats (BCMs) (De Bakker, Van Duyl, et al. 2017). BCMs expand in degraded reefs
and benefit from substrate-level nutrient release (Brocke et al. 2015; Haan, Huisman, et al. 2016).
Together with turf algae, BCMs are the primary N2 fixating benthic organisms. N2 fixation by
these organisms contributes to a positive feedback loop that accelerates the proliferation of both
BCMs and turf algae, accelerating coral reef degradation (Gorgula et al. 2004; Haan, Visser,
et al. 2014). Our results suggest that BCM and turf algae expansion continued into 2016 with
15% cover of cyanobacterial mats in Carmabi, and we provide more evidence that reefs further
north present similarly shifted communities, with 24% BCM cover in Kokomo, 13% in Habitat
and 16% in Playa Kalki. Turf algae covered 23.6% of the area surveyed in Carmabi and 20%
covered in Habitat, being the most dominant class after bare sediment. Sandin et al. 2022 also
show that turf algae covers a large areal percentage, average of 27% across 122 surveyed sites
along the coastline of the island in November 2015 (Sandin, Alcantar, et al. 2022). They also
show that the height of turf algae correlated with decreased coral cover. In our environmental
drivers analysis, we noticed that the presence of trash (a proxy for pollution) correlated with
low abundance of all corals types and of macroalgae, while correlating to high sediment, BCMs
and turf algae coverage, all features of deteriorated reefs (Figure 3.12). Similarly, sewage output
and fishing activity, correlated to higher sediment, BCMs and sponge coverage. Turf algae was
negatively correlated with sewage output, given that with higher eutrophication levels BCMs
become more dominant, as mentioned in previous studies in the area (De Bakker, Van Duyl,
et al. 2017).

Some environmental factors, such as diving activity, correlate with features of a healthier coral
reef, but as a consequence – rather than a driver of it. For example, coral, hydrozoa and macroal-
gae abundance was correlated with higher diving activity, because diving tourism generally seeks
more visually attracting reefs as destinations and it is in the interest of the industry to keep the
reef’s status. Nonetheless, if the pressure is not managed properly, reefs can start to deteriorate
due to physical contact from divers with corals, as well as an increase in littering and sewage
output from tourism related infrastructure. Playa Kalki is a good example of this process, where
much of Curaçao’s diving tourism takes place, due to relatively extensive coral cover (10%), but
having macroalgae coverage as dominant (23.9%), followed by BCMs (16.3%), hinting towards a
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coral-macroalgae-cyanobacteria shift. Depth also played a role in the composition of reefgroups
communities, with BCMs mostly found below 6 meters, while turf algae and macroalgae were
located in shallower areas (4–8 meters) (Figure 3.11a). This could indicate different photosyn-
thetic light requirements of these groups and the space sharing between BCMs and turf algae
in deteriorated reefs. In healthier reefs, scleractinian and soft corals are also found in higher
quantities in shallower areas.

The difference of the deteriorated reefs found from the center towards the north of the island
is highlighted in the nMDS and Bray-Curtis plots of the detailed and reefgroups labelsets (Fig-
ure 3.10&3.8a). They show that the two sites considered in the (De Bakker, Meesters, et al. 2016)
and (De Bakker, Van Duyl, et al. 2017) studies (Carmabi & East Point) show very different com-
munities, with the rest of the sites in between these two extremes. The Carmabi and Kokomo
sites were dominated by large stretches of bare sediment, turf algae and cyanobacterial mats,
while the East Point community was more balanced and resembles a healthier reef, dominated by
scleractinian corals, hydrozoans and soft corals (Figure 3.1&3.6). Further evidence is provided
by the reefgroups co-occurrence plot (Figure 3.13a), where turf algae, BCMs and sponges have
a higher probability to be found at the same site, while macroalgae and coralline algae start
the transition towards healthier reefs, dominated by scleractinian-, soft- and hydrocorals. These
results suggest that reefs close to human settlements (Carmabi, Kokomo), to aggro-industrial
areas (Kokomo, Habitat) and tourism infrastructure (Playa Kalki) continue to deteriorate due
to increased anthropogenic stressors.

3.5.2 Coral community shifts: opportunism on the rise

The coral community across the island varied as well, with sites such as Carmabi and East
Point being the most different ones from each other (Figure 3.9b). The coral community in
Carmabi was dominated by opportunistic fast-growing species such as Madracis auretenra and
Meandrina meandrites; while the East Point site was dominated by more structurally complex
corals such as Acropora cervicornis, Orbicella complexes and Siderastrea siderea, as well as by the
Madracis auretenra species (Figure 3.7). Other survey efforts show a similar coral community
compositions along the coastline, with higher Acroporid and Orbicella spp. coverage in the
south of the island (WAITTS-Institute 2017). The absence of Acroporid species in previous
studies (e.g., (De Bakker, Meesters, et al. 2016)) could be attributed to the depth of sampling,
where the shallowest depth was 10 meters. In our study, Acropora cervicornis was mostly found
between 4 and 6 meters depth (Figure 3.11b). Healthier reefs showed more complexity in their
coral community providing a better habitat for other fauna, shown in the higher fish biomass
correlated with corals and hydrozoans (Figure 3.12). Degraded reefs presented lower overall coral
coverage and only sporadic appearances of small opportunistic colonies, having a clear winner
in the Madracis auretenra coral species, being the dominant in 5 out of the 8 sites, with around
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50% in 3 sites. Opportunistic-fast growing corals like Madracis auretenra do not provide enough
hiding and nursery spaces for invertebrates and reef fish, lowering the overall diversity of reefs,
reducing fish stocks and removing coastal protection from wave exposure (Carlot et al. 2023;
Graham 2014).

3.5.3 The diversity is in the details

The combination of fine-grained benthic descriptions and abstracted functional classes allowed
to compare the difference in community diversity indices between the 3 thematic scales we con-
sidered. Noteworthy was that, when using the reefgroups labelset with 10–11 habitat classes, the
Shannon and Simpson diversity indices were very similar for the northernmost sites (Playa Kalki
and Habitat) and the southernmost sites (East Point and Sea Aquarium) (Table 3.3). When
calculating the indices using the detailed labelset (34–37 classes) the southernmost sites show a
substantially higher diversity of up to 3.77 H in East Point, compared to 2.85 H in Playa Kalki.
Even the Water Factory and Marie Pampoen sites show a higher diversity than the northern
sites. When focusing specifically on scleractinian coral communities, the diversity shift as well,
with more diversity (up to 0.86 GS) in the northern sites, although with lower total coral cover-
age (Figure 3.7). These findings reveal obscuring of true underlying diversity when labeling the
survey data with abstracted high level classes, and the necessity of reporting diversity indices
calculated from the lowest taxonomic level possible. Furthermore, the use of dense sampling
with high thematic detail allows to consider rare species, usually neglected by sparse sampling
studies (Hochberg et al. 2021; Pante et al. 2012; Schürholz et al. 2023).

3.6 Conclusions
Our study provides an in-depth description of 8 coral reef sites along the leeward coastline of
Curaçao , continuing a large set of studies describing its reef communities and their shifts. We
provide a detailed overview of the reefs, with dense habitat maps containing up to 42 commu-
nity labels, many down to genera/species level. We show that many of the reefs continued to
deteriorate, specially due to anthropogenic stressors in the center and north of the island, with
BCMs and turf algae dominating many of the communities. Dense and detailed habitat sampling
has the potential to provide in-depth information about reef communities and their shifts over
time. The automatic creation of benthic habitat maps through AI creates consistent community
composition and configuration descriptions, enabling thematic and spatial detail to scale up to
an island-wide survey level. As demonstrated in this and other recent studies Mills et al. 2023;
Teague et al. 2023, the advent of more accessible proximal sensing platforms, spectral imagers

97



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
3.7. ACKNOWLEDGMENTS

and more powerful computing resources promises the democratization of automated and scalable
workflows, leading to the standardization of coral reef mapping with unprecedented detail.
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4.1 Abstract
Mangrove forests provide valuable ecosystem services to coastal communities across tropical and
subtropical regions. Current anthropogenic stressors threaten these ecosystems and urge re-
searchers to create improved monitoring methods for better environmental management. Recent
efforts that have focused on automatically quantifying the above-ground biomass using image
analysis have found some success on high resolution imagery of mangrove forests that have sparse
vegetation. In this study, we focus on stands of mangrove forests with dense vegetation consist-
ing of the endemic Pelliciera rhizophorae and the more widespread Rhizophora mangle mangrove
species located in the remote Utría National Park in the Colombian Pacific coast. Our devel-
oped workflow used consumer-grade Unoccupied Aerial System (UAS) imagery of the mangrove
forests, from which large orthophoto mosaics and digital surface models are built. We apply
CNNs for instance segmentation to accurately delineate (33% instance Average Precision) indi-
vidual tree canopies for the Pelliciera rhizophorae species. We also apply CNNs for semantic
segmentation to accurately identify (97% precision and 87% recall) the area coverage of the
Rhizophora mangle mangrove tree species as well as the area coverage of surrounding mud and
water land-cover classes. We provide a novel algorithm for merging predicted instance segmen-
tation tiles of trees to recover tree shapes and sizes in overlapping border regions of tiles. Using
the automatically segmented ground areas we interpolate their height from the digital surface
model to generate a digital elevation model, significantly reducing the effort for ground pixel
selection. Finally, we calculate a canopy height model from the digital surface and elevation
models and combine it with the inventory of Pelliciera rhizophorae trees to derive the height of
each individual mangrove tree. The resulting inventory of a mangrove forest, with individual P.
rhizophorae tree height information, as well as crown shape and size descriptions, enables the use
of allometric equations to calculate important monitoring metrics, such as above-ground biomass
and carbon stocks.

4.2 Introduction
For the past decades, the global area covered by mangrove forests has receded because of direct
and indirect anthropogenic causes such as land use changes, deforestation, pollution and climate
change (Goldberg et al. 2020). The potential impacts of the disappearance of mangrove forests
to local communities and adjacent ecosystems are manifold due to the critical services that these
forests provide (coastal protection (Menéndez et al. 2020), fish nurseries (Castellanos-Galindo,
Krumme, et al. 2013), feeding grounds (Carugati et al. 2018), carbon sequestration (Alongi 2012),
etc.). The urgency of the current state of affairs has lead to the launch of many protection,
rehabilitation and reforestation efforts of mangrove forests worldwide (Ellison et al. 2020; Friess
et al. 2020). For these efforts to succeed, careful observation and detailed analysis of forest
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conditions are required to identify problems, calibrate predictive models and enact mitigatory
management actions (Innes 1994).

The condition of most forests can be assessed on different scales: individual trees, the collection
of trees in a forest stand or the complete forest ecosystem (considering biotic and abiotic factors)
(Ferretti 1997). An individual tree can be assessed in the field through many indicators such
as nutritional status, presence of parasites/pathogens, crown transparency, DBH, crown length
and crown width (m), to provide a few examples. Then, these indicators are collected for
trees in several plots, aggregating the measurements in inventories and extrapolating for trees
onto the forest stand. Creating inventories of a forest enables certain ecosystem indicators
to be derived, which can be its biomass (above- and below-ground), canopy structure, tree
species composition and community structure (Ding et al. 2021; Guo et al. 2023). For example,
to calculate the AGB for a forest using allometric equations, the following variables must be
collected for each individual tree: its species, height, DBH (Chave et al. 2005) and, to calculate
the canopy structure, the crown size and shape must be acquired.

The manual in situ measurement of these variables is a labor-intensive task when a forest of
several hectares is surveyed, even with advances in on-ground sensing technologies (Tockner et
al. 2022; J. Wang et al. 2019). Thus, a limited number of small plots are surveyed depending on
the aim, the sampling costs, the extent of the forest, the tree sizes and species diversity found in
a patch of forest (e.g., 35 × 35 m plots for trees over 50 cm DBH) (Ravindranath et al. 2008).
There is a trade-off between the sampling cost and the accepted uncertainties that appear when
extrapolating the measurements to the complete forest area (Persson et al. 2022). Recent studies
suggest that field surveys entail significant errors in measurement and plot positions (Persson et
al. 2022; Zang et al. 2023). As in other intertidal systems, in-situ plot measurements in mangrove
forests can be difficult to execute, given that tidal regimens, muddy terrain, pneumatophores
and stilt roots, remote locations and other factors severely reduce the accessibility. Furthermore,
DBH can be difficult to measure for some mangrove species (i.e., Rhizophora mangle), due to
their complex trunk-growing structure (Clough et al. 1997), and correct crown size and shape is
difficult to measure visually, given the irregular shape and clumpiness of the canopies (Yin et al.
2019).

In recent decades, researchers have used fly-over strategies to capture plane-view images of forests
to use for inventory creation. This has been fueled by the advancements in remote sensing, image
analysis and machine learning. These advancements have enabled analyses of mangrove forests
and their dynamics across vast scales (Hai et al. 2022; Samanta et al. 2021; Thomas et al. 2018).
In these studies, spectral indices, such as normalized difference vegetation index, are calculated
for each pixel to describe and classify mangrove forests, being able to label the tree species
and tree density within a pixel, as well as canopy width and forest fragmentation (Hai et al.
2022). The benefits of Earth-observation technologies are the large spatial coverage and frequent
acquisition of images. Paired with machine learning automation, studies of long time-series of
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images can be carried out. Recent improvements in satellite image resolutions (i.e., 0.031 m for
the World-View 3 satellite) have allowed for more resolved classification of trees using semantic
segmentation neural networks (Ulku et al. 2022; Z. Wang et al. 2023), detection of individual
trees using instance segmentation networks (Flood et al. 2019; G. Braga et al. 2020; Khan et
al. 2018; Lassalle, Ferreira, et al. 2022) and detection of mangrove forest clearings (Lassalle
and Souza Filho 2022) on high-resolution RGB images. Nonetheless, the calculation of certain
variables, such as the height of trees extracted from canopy height models (CHMs) is error-prone
at the current resolution of satellite imagery and should be paired with low-flying platforms,
such as planes or UASs (Lassalle, Ferreira, et al. 2022) for better validation and performance.

Several recent studies have pointed out and demonstrated the value offered by UASs for moni-
toring coastal environments, such as mangrove forests (Castellanos-Galindo, Casella, et al. 2019;
Joyce et al. 2023; Otero et al. 2018; Ruwaimana et al. 2018). The imagery taken with UASs
can be processed with SfM software to produce geo-referenced orthorectified photo-mosaics (or-
thomosaics) and DSMs. Paired with novel image segmentation techniques, precise area coverage
of individual tree species in a forest are determined and other surrounding land cover classified
(i.e., grass, shrubs, water, sand, mud, etc.) (Kattenborn, Eichel, et al. 2019; Schiefer et al. 2020).
Certain terrain classes such as mud and sand are used to calculate the height of forest canopies or
of individual trees by subtracting their elevation from the elevation of trees in the DSM (Miraki
et al. 2021; Navarro et al. 2020). Furthermore, using hyperspectral and multispectral cameras
yielding high-dimensional input data, the area covered by multiple tree species in a forest can be
accurately segmented (La Rosa et al. 2021). Individual tree crown segmentation, delineation and
classification can be facilitated by the advancement of machine learning algorithms on the high
resolution RGB and LiDAR images of low-flying platforms (Weinstein et al. 2020). Recent stud-
ies segmented mangrove trees in forest plots using images from RGB or LiDAR sensors mounted
on a consumer-grade UASs together with OBIA algorithms, and compare the predicted segments
to on-ground measurements (Navarro et al. 2020; Wannasiri et al. 2013; Yin et al. 2019). Despite
the success of OBIA algorithms on UAS images to detect mangrove trees, they rely upon tree
crowns that are visually well separated and detailed elevation maps. The potential benefit of
state-of-the-art instance segmentation techniques is to handle dense canopies and rely only on
imaging data. A recent review (Kattenborn, Leitloff, et al. 2021) of deep learning applications
for tree crown segmentation noted the potential of instance segmentation applications, hindered
mainly due to the insufficient training data. The development of instance segmentation work-
flows of high resolution RGB images acquired from consumer-grade UASs is critical to be used
as validation for global Earth-observation efforts and as preparation for improved resolution in
future satellite sensors.

In this work, we develop and present a complete workflow to delineate individual trees of the
Pelliciera rhizophorae mangrove species and calculate inventory measurements (i.e., tree height,
crown shape and size, geo-location, etc.), as well as map the land cover for other classes: Rhi-
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zophora mangle, water and mud (see Figure 4.1). The input data were a set of orthomosaics
and DSMs created from images captured with consumer-grade UASs in three mangrove forest
stands located in the Utría National Park on the Colombian Pacific coast (Figure 4.2). We
implement two separate deep learning networks: (i) a semantic segmentation neural network to
identify area coverage of the two mangrove species, mud and water classes and (ii) an instance
segmentation neural network to delineate individual Pelliciera rhizophorae mangrove trees. We
present a novel tiling/untiling algorithm (from here onwards, we refer to stitching or merging
tiles together as “untiling”) for the correct preservation of predicted tree instances located at the
edges of tiles of large orthomosaics. We also provide a comparison of three different semantic
segmentation untiling techniques to resolve the overlapping borders of tiles. We automate the
calculation of a CHM, created from a Digital Elevation Model (DEM) using the classified ground
pixels and compare it to a DEM created from manually selected ground areas. Finally, using the
delineated trees and the CHM, we provide an inventory of the trees in the mangrove forest with
their specific height, crown size and crown shape as well as area cover and height distribution
values for the other tree classes.

Figure 4.1 From airborne images to a detailed tree inventory: we present a workflow that creates
a tree inventory for 35 hectares of a mangrove forest. The workflow starts with
data acquisition using UASs flown over the mangrove forests. We then build top-
down orthomosaic and DSM with SfM software. We implement a tiling and a novel
untiling process of the orthomosaics and DEM images. Instance segmentation neural
networks were used for detecting individual trees and semantic segmentation networks
were used to map land cover. Using the classified ground regions, we created and
interpolated the digital terrain model (DTM) into a DEM. Subtracting the DEM
from the DSM yielded a comprehensive canopy height model. For each automatically
segmented tree instance, the tree height was derived from the CHM. This creates an
inventory of trees with their heights and crown areas, even in a dense forest canopy,
and enables the calculation of Above Ground Biomass, an important measure for
monitoring and carbon stock assessments.
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4.3 Materials and Methods
The complete workflow, from data tiling to tree inventory, was developed in the Python pro-
gramming language, using Snakemake (Mölder et al. 2021) to manage the analytical workflow.

4.3.1 Study Site and Input Data Structure
We focused on three mangrove forest sites of the Utría National Park: La Chunga North (LCN),
Terron Colorado (TC) and Estero Grande Shore (EGS) (see Table 4.1 for area sizes). These
mangrove forests are mainly comprised of two mangrove species: Pelliciera rhizophorae and
Rhizophora mangle. P. rhizophorae is endemic to the East Pacific and Caribbean regions and is
listed as vulnerable in the International Union for Conservation of Nature (IUCN) Red List
for endangered species (Polidoro et al. 2010). It lives in intermediate to upstream estuarine
environments with medium to high tidal ranges. The R. mangle species is more widespread
across the Atlantic/East Pacific bio-geographic region and is listed as of “least concern” in the
IUCN Red List for endangered species. It is found in downstream to intermediate estuarine
environments with low to medium intertidal shifts.
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Figure 4.2 Surveying a dense canopy in a remote forest area: we used a consumer-grade UAS to
survey a mangrove forest located in the Utría national park in the Colombian Pacific
coast. Three surveyed plots of mangrove forests were used. For each plot large ortho-
mosaic images were created, with fine spatial resolution (e.g., 3.64 cm/pixel) of the
underlying mangrove trees. The two dominant species of mangrove trees are the Pel-
liciera rhizophorae species and the Rhizophora mangle species. Each of the three plots
provide unique challenges for canopy segmentation, given that their conditions differ
in ground composition, exposure, tidal level during the survey and lighting/blurring
in the images.

The aerial footage of the sites was captured in 2019 (19–22 February) using two consumer-
grade UASs the DJI Phantom 4 and DJI Mavic Pro (SZ DJI Technology Co., Ltd – Shenzhen,
Guangdong, China). The DJI Phantom 4 has an integrated photo camera, the DJI FC330, which
has a 1/2.3′′ CMOS sensor with 12.4 M effective pixels, a focal length of 4 mm, a pixel size of
1.56×1.56 µm and a resolution of 4000×3000 pixels (px). The DJI Mavic Pro was equipped with
the integrated DJI FC220 camera with 4000× 3000 px resolution, 12.35 M effective pixels and
26 mm wide-angle lens. The flights were programmed to follow the trajectories in an automated
mode by means of the commercial app “DroneDeploy”. Ground control points (GCPs) were
positioned in the field, and their geographic location was acquired. We used two single-band
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Table 4.1 Mangrove forest study sites and digital products details.

La Chunga Terron Estero Grande
North (LCN) Colorado (TC) Shore (EGS)

UAS images

Quantity 289 346 106

Areas

Surveyed 367,806 m2 241,752 m2 425,851 m2

Mangrove forest 223,456 m2 120,726 m2 110,960 m2

Annotated 50,347 m2 28,410 m2 —

Resolutions

Ortho. image 19, 855× 21, 068 px 16, 375× 18, 923 px 10, 478× 24, 485 px

Ortho. pixel 3.64 cm/px 3.27 cm/px 5.83 cm/px

DSM image 15, 145× 15, 377 px 13, 148× 13, 454 px 6759× 15, 468 px

DSM pixel 7.29 cm/px 6.55 cm/px 11.7 cm/px

GCPs

Quantity 3 2 4

RMSE * 0.011 m 0.0097 m 1.13 m

Tiles **

Total 3304 2438 2070

Annotated 196 168 —
* Root-mean-square error (RMSE) for ground control points (GCP) over all (X,Y,Z) coordinates. ** Tiles of size
512× 512 pixels with 30% overlap.

global navigation satellite system (GNSS) receivers: an Emlid Reach RS+ single-band real-time
kinematics (RTK) GNSS receiver (Emlid Tech Kft. – Budapest, Hungary) as a base station,
and a Bad Elf GNSS Surveyor handheld GPS (Bad Elf, LLC – West Hartford, Arizona, USA).
RINEX static data from the base station was processed with the Precise Point Positioning Service
(PPP) of the Natural Resources of Canada (https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/
tools-outils/ppp.php, accessed on 26th June 2023), while rover position was processed using the
RTKLib software (https://rtklib.com/, accessed on 26th June 2023) through a post processed
kinematics (PPK) workflow. The final absolute positional accuracy of the products is below
one meter because the results of the PPP workflow has a positional accuracy between 0.2 m
and 1 m. The acquired images and GCPs were analyzed and used as inputs in the software
Agisoft Metashape Professional 1.6.2 (https://www.agisoft.com/, accessed on 26th June 2023).
With this SfM-MVS (structure from motion-multi-view stereo reconstruction) method we created
an orthomosaic and a digital surface model for each site, similar to a previous study in the same
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geographic region (Castellanos-Galindo, Casella, et al. 2019). Table 4.1 shows more details about
the photogrammetric products.

4.3.2 Annotations
The preparation of the image data for machine learning started with the annotation of classes
of interest. The LCN and TC sites were used for training and testing the deep neural networks;
the EGS site was used as an out-of-distribution dataset. In the created orthomosaics it was easy
to visually distinguish the regions of mangrove forest from the surrounding terrestrial forest. We
delimited the area of the mangrove forest to only use this region during the prediction by the
machine learning process (see orange outline in Figure 4.3 and Table 4.1 for area sizes). In LCN,
61% of the area is covered by mangrove forest, in TC 50% is covered by mangrove forest and in
EGS 26% of the area is covered in mangrove forest. Inside the mangrove forest stands of LCN
and TC, we selected three subplots per site to annotate the classes manually, specifically for the
machine learning training process (see red outline in Figure 4.3; see Table 4.1 for the area sizes).
In LCN, 22% of the mangrove forest area was annotated and in TC 24% was annotated.

Inside these subplots, different types of annotations were made for training semantic segmenta-
tion and instance segmentation CNNs (Figure 4.3). For semantic segmentation networks, pixel
annotations were required. We selected P. rhizophorae, R. mangle, short-sized R. mangle, water
and mud as our target classes (see Table 4.2A for annotation numbers). It was possible to vi-
sually differentiate between P. rhizophorae and R. mangle species in most cases. In some areas,
distinct short-sized and shrub-like tree patches were visible. After comparing to on-ground im-
ages it was clear that these patches were comprised of short-sized R. mangle. Water pixels were
also manually annotated. After these annotations were finished, the remaining non-annotated
pixels were labeled as mud.

Tree instances were only marked for the P. rhizophorae species. Each tree was visually identified
on the orthomosaic images and delineated using shapes in QGIS v3.12 (https://www.qgis.org,
accessed on 26 June 2023). In total, 4611 P. rhizophorae trees were annotated, 2855 in LCN
and 1756 in TC (Table 4.2B). Individual R. mangle trees were difficult to visually delineate, and
therefore areas of contiguous canopy of this species were annotated.

4.3.3 Data tiling
The large sizes of the orthomosaic files (i.e., 21, 068 × 19, 855 pixels for LCN, 1.3 GB) are not
directly suited for supervised learning with neural networks due to computational restrictions.
In machine learning pipelines, the large orthomosaics are processed by taking smaller tiles as the
processing unit. We implemented tiling with windows of a fixed size of 512× 512 pixels (around
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Figure 4.3 Annotating and tiling for AI: within the orthomosaics, working regions were marked,
inside which the mangrove forests were considered for further classification (see or-
ange lines). Inside sub-regions (red polygons), annotations were created for 5 classes
(Pelliciera rhizophorae, Rhizophora mangle, short-sized R. mangle, water and mud).
The areal annotations were used for semantic segmentation and the individual P.
rhizophorae tree annotations were used in instance segmentation. The large orthomo-
saic images and their corresponding annotations were tiled using different strategies
and allowed to downsize the classification problem to fit within the constraints of our
computational resources. Different combinations of input signals from the plots were
used by merging color pixels and the height information from the DSM.

17× 17 m), which allows for an average of 30 trees of the P. rhizophorae species inside each tile.
The tiling can be done with or without overlap between adjacent tiles to reduce uncertainties
of predictions around tile borders by the CNNs. Using overlap also requires us to merge tree
instances that are split between the borders of 2 or more tiles. We selected 30% overlap between
tiles (154× 512 pixels), allowing P. rhizophorae tree masks to maintain their complete shape in
at least one tile. Identical tiling procedures were applied to all four linked layers of each study
site: the orthomosaic, the elevation image (DSM), the class annotation regions and the tree
annotations (Figure 4.3).
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Table 4.2 (A) Pixel-wise and (B) tree-wise annotation details per site.

(A) Pixel-wise annotations for semantic segmentation

Label La Chunga North Terron Colorado Total

24,304 m2 10,268 m2 34,572 m2

17,753,335 px 9,429,282 px 27,182,617 px
Pelliciera
rhizophorae

(48%) (35%) (42%)

7998 m2 6637 m2 14,635 m2

5,842,042 px 6,094,429 px 11,936,471 px
Rhizophora
mangle

(16%) (22%) (19%)

3716 m2 629 m2 4345 m2

2,714,167 px 577,334 px 3,291,501 px
Short-sized

Rhizophora mangle
(8%) (2%) (5%)

2214 m2 1239 m2 3453 m2

1,617,468 px 1,137,770 px 2,755,238 pxWater

(4%) (4%) (5%)

12,115 m2 9637 m2 21,752 m2

8,849,536 px 10,020,035 px 18,869,571 pxMud

(24%) (37%) (29%)

(B) Tree-wise annotations for instance segmentation

Label La Chunga North Terron Colorado Total

Pelliciera rhizophorae 2855 trees 1756 trees 4611 trees
* Pixel-wise annotation percentages are relative to the total annotated area in each plot.

4.3.4 Deep Learning: Semantic and Instance Segmentation Networks

We used two separate CNNs: a semantic segmentation network for dense pixel-wise predictions
and an instance segmentation for delineation of P. rhizophorae trees (Figure 4.4). As input for
both networks, we used the RGB tiles extracted from the orthomosaic images and the elevation
tiles extracted from the DSM. We also ran the process with RGB + height tiles but a preliminary
analysis showed no real benefit to considering the height information for the deep learning process.
Thus, for the data experiments and final predictions, we only considered RGB tiles.

We implemented the DeepLabV3+ (Chen et al. 2018) semantic segmentation network with the
Detectron2 Python library (Wu et al. 2019), which is build on the PyTorch machine learning
library (Paszke et al. 2019). This algorithm has been successfully applied towards pixel-wise
segmentation of natural habitats in top-down images (Alonso et al. 2019; Pavoni, Corsini, Callieri,
et al. 2020). A recent study (La Rosa et al. 2021) used a modified version of DeepLab for

115



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
4.3. MATERIALS AND METHODS

Figure 4.4 Two networks to rule them all: our workflow uses AI to convert orthomosaics of
the mangrove forests into habitat maps and a tree inventory. The input of an RGB,
height or RGB+height tile goes through a series of convolutional filters to extract deep
features. The instance segmentation network CenterMask2 uses a spatial attention
module to suggest prediction masks inside bounding boxes, which potentially delineate
the canopy of individual P. rhizophorae trees. The semantic segmentation network
uses an encoder and decoder framework to assign one of five semantic labels (see
Figure 4.3) to each pixel. The network architecture illustrations are adapted from (Lee
and Park 2020) for CenterMask2 and from (Chen et al. 2018) for DeepLabV3+.

semantic segmentation of hyperspectral images in Brazilian forests. We selected the ResNet-101
backbone for the DeepLabV3+ architecture, which also uses separate atrous convolutional layers
to ensure higher-resolution outputs and reduce execution time. Starting from network weights
from training with the ImageNet dataset, we retrained the whole network parameters with our
image data. For training, we used 300 tiles in batches of 4, and employed 15,000 iterations
in total. For the optimizer, we used a learning rate scheduler with polynomial decay (weight
decay of 0.001) and warm-up period of 1000 iterations, developed for the DeepLab network. We
use an initial learning rate of 0.01, a “hard pixel mining” loss function, and a loss weight of 1.
The DeepLab network was trained on two NVIDIA RTX 2080 Ti GPUs (NVIDIA, Inc. – Santa
Clara, California, USA) with 12 GB of memory each. The annotation input for the training of the
network were densely annotated tiles (see Figure 4.3). The outputs of the semantic segmentation
network were vectors of five class probabilities for each pixel in a tile. The highest probability
value was selected as the class prediction in each pixel.

For instance segmentation, we implemented the CenterMask2 network on the Detectron2 frame-
work, an improved version of the CenterMask instance segmentation network (Lee and Park
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2020). The authors show that CenterMask2 outperforms the more commonly used MaskRCNN
(mask region-based convolutional neural network), which has been recently used in tree segmen-
tation studies (Chiang et al. 2020; G. Braga et al. 2020; Hao et al. 2021). CenterMask2 is an
anchor-free one-stage instance segmentation network that implements a spatial attention-guided
mask. The pretrained backbone (on the ImageNet dataset) we used was the VoVNetV2-99 net-
work (Lee, Hwang, et al. 2019), and its stem and first residual module parameters were frozen.
The network ran for 15,000 iterations with batches of 16 images. It used a warm-up multi-step
learning rate scheduler, with 0.001 weight decay, 1000 warm-up iterations and steps at 10,000
and 13,000 iterations. The CenterMask2 network ran on two NVIDIA RTX 3090 Ti GPUs
with 24 GB memory each. The annotation input for the training of the network were common
objects in context (COCO)-style JSON files with tree shape descriptions and locations on the
annotated tiles (see Figure 4.3). The output of the instance and segmentation networks were P.
rhizophorae tree instance descriptions with bounding boxes, locations, masks and mask predic-
tion scores (prediction confidence). On average, the training of the network took 3 h and 20 min
for each experiment.

Given the low number of total training tiles (364) across sites, we used augmentations for both
networks, with random flips of the images, cropping and rotations with the Detectron2 training
pipeline. We analyzed the amount of data (before augmentation) needed for a better performance
of the instance segmentation network. After separating 10% of the tiles as a testing dataset, we
created several training datasets using 50%, 60%, 70%, 80% and 90% of the remaining tiles, thus
ensuring a consistent testing dataset with no overlap with the training datasets (Figure 4.5a). We
also compared the performance when considering “empty” tiles in the training set, in which no P.
rhizophorae instance was present, to not over-fit the network. As a measure of performance for
instance segmentation we used the mean Average Precision (AP) as defined by the COCO dataset
(https://cocodataset.org/#detection-eval, accessed on 26 June 2023). This index measures the
percentage of predicted instance masks for which the IoU (intersection over union) with the
ground-truth annotation is larger than a list of 10 different thresholds. The thresholds go from
50% to 95% in steps of 5%, and then the percentages of masks with an IoU larger than the
threshold at each step are averaged to get the final AP.

We trained the semantic segmentation network on 90% of the tiles and 10% testing tiles. We
measured the performance of the network (Figure 4.5c) with precision (user’s accuracy) and recall
(producer’s accuracy) confusion matrices and with the Cohen’s Kappa score, overall accuracy,
overall recall, overall precision and the F1-score (the harmonic mean of overall recall and precision
values).

Additionally, we measured the agreement between P. rhizophorae and R. mangle predictions
between the instance and semantic segmentation networks (Figure 4.5b). For this we calculated
the area fraction inside instance predictions that is predicted as P. rhizophorae or R. mangle by
the semantic segmentation network.
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(a) (b)

(c)

Figure 4.5 Evaluation of training modality: we trained the networks with 6 different classification
regions annotated on 2 separate plots, looking for an optimal mix of annotation effort
and generalization performance from the networks. The higher the number of tiles
used in training the network the better the performance of the prediction (a). The best
performance (33.1% instance Average Precision) was achieved with 80% of the training
tiles (267), using datasets with empty tiles (tiles were no P. rhizophorae instance is
found). In (b), we compared the agreement (or error) between predictions of instance
and semantic segmentation networks. Agreement of P. rhizophorae predictions for
both training and testing instances in both sites had a median of 97%. The error
between P. rhizophorae instances and R. mangle areas was very low, with a mean
of 2.6% overlap for training instances and 4.5% for testing instances. In (c), we
show the semantic segmentation performance. All classes had a precision of over 80%
and all classes except the short-sized R. mangle class had high recall scores (>87%).
The low recall score of short-sized R. mangle (28%) shows a large confusion with the
P. rhizophorae class.

4.3.5 Untiling Strategies

The predictions of the network on individual tiles had to be untiled back together to recover a
consistent prediction over the complete mangrove forest area. Given that the tiling process was
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done with overlap between the tiles, different strategies had to be applied to accurately recover
and resolve the predictions in overlapping regions. The untiling process had to be implemented
independently for instance segmentation and semantic segmentation predictions.

4.3.5.1 Untiling Instance Segmentation Tiles
Untiling the predicted instance tiles was done with a novel developed algorithm (see Algorithm
1 for the pseudo-code) to control the preservation of tree instances in border regions across tiles.
The algorithm is controlled by two thresholds: one for the minimum predicted mask score and
one for the overlap between two or more predicted instances, which intersect in the prediction.
A schematic of the untiling steps is shown in Figure 4.6.

Figure 4.6 Instance untiling algorithm and parameters. We provide a heuristic algorithm for
untiling the predicted instance segmentation within overlapping tiles. The algorithm
works by filtering low-scoring predicted tree masks and handling overlapping tile
sections with an overlap threshold to merge overlapping instances. In the illustration
we show the process of merging two or more instances into one or more instance, such
that a coherent shape and tree count is preserved. We calculated the ideal minimal
mask score threshold and overlap threshold to preserve the original count of trees in
annotated areas. For the overall scene reconstruction we found that a 0.62 minimum
mask confidence threshold, together with a 0.5 overlap threshold predicted the same
tree count as the original annotation count. Any change in minimum mask confidence
needs an adjustment in the overlap threshold (error shown in shaded regions).

We first filter the tiles that do not have instances predicted in them. Then, we filter instances
that have a prediction score (confidence) under a given threshold mask_minimum_score in
the range [0.0 − 1.0]. We create an empty matrix the same size as the original orthomosaic
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Algorithm 1 Tree instances untiling algorithm
1: tiles←M(tile_width× tile_height× num_tiles× instances_per_tile) ▷ M is a Matrix
2: mask_minimum_score← α
3: overlap_threshold← β
4: tiles← RemoveT ilesWithoutInstances(tiles)
5: tiles← RemoveInstancesWithLowScores(tiles,mask_minimum_score)
6: untiled_map←M0(orthomosaic_width× orthomosaic_height) ▷ A matrix filled with

zeroes
7: new_instance_id← 0
8: for tile in tiles do
9: for instance in tile.instances do

10: new_instance_id← new_instance_id+ 1
11: temp_tile← Crop(untiled_map, tile.coordinates)
12: intersected_instances← temp_tile ∩ instance.mask
13: merge_to_instance← NULL
14: intersected_instance← NULL
15: for intersected_instance in intersected_instances do
16: intersection← intersected_instance.mask ∩ instance.mask
17: if intersection.size > (instance.size× overlap_threshold) then
18: if !merge_to_instance ∥ intersected_instance > merge_to_instance then
19: merge_to_instance← intersected_instance
20: end if
21: temp_tile[intersection]← intersected_instance.id
22: instance.mask[intersection]← False
23: else
24: if intersection.size > (intersected_instance.size × overlap_threshold)

then
25: intersection← intersected_instance
26: temp_tile[intersection.mask]← new_instance_id
27: instance.mask[intersection]← True
28: end if
29: end if
30: end for
31: if merge_to_instance ̸= NULL & intersected_instance ̸= NULL then
32: temp_tile[instance.mask]← merge_to_instance.id
33: intersected_instance.size+ = intersection.size
34: Delete(instance)
35: else
36: temp_tile[instance.mask]← new_instance_id
37: end if
38: untiled_map[tile.coordinates]← temp_tile
39: end for
40: end for

image (untiled_map). We iterate over all remaining instances in all remaining tiles, creating a
unique ID for any new instance that we keep. We crop the region corresponding to the tile in the
large orthomosaic image and save it to temp_tile. We then calculate the overlap between the
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new instance and every intersected_instance. We iterate over the overlapping instances and
calculate the intersection size with the current instance. We compare this overlap with mask size
of the current instance times a given overlap_threshold in the range [0.0–1.0] (Algorithm 1 line
17–23). If the overlap size is larger than this value, we assign the current instance pixels to one
of the overlapping instances in temp_tile. To decide into which instance to merge, we first check
that no merge_to_instance variable was set or that the intersected_instance size is larger than
the previously saved instance in merge_to_instance (Algorithm 1 line 18–20). We then replace
the intersection location in temp_tile with the ID of the current intersected_instance. We also
remove the intersected area from the current instance. Otherwise, in case the intersection.size

is larger than (intersected_instance.size×overlap_threshold), we assign the intersection to the
current instance in temp_tile (Algorithm 1 line 24–28). Afterwards, if merging_to_instance

is set, we assign all pixels in temp_tile of the current instance to that instance in temp_tile and
delete the current instance (Algorithm 1 line 31–35), or else we just add the (remaining) parts
of the current instance to its location in temp_tile. Finally, we merge the updated temp_tile

back to the larger untiled_map, which after all iterations will contain tree instances without any
overlap and clear crown boundaries. The algorithm’s execution time is bound to the number of
tiles (tile size and overlap) and number of instances predicted in each tile.

We measured the effects of the predicted mask score and overlap threshold variables by looking
at which values make the count of trees closest to the original annotations in the annotation
regions (Figure 4.6).

4.3.5.2 Untiling Semantic Segmentation Tiles
The predicted semantic tiles were untiled following three different strategies: overlaying, clipping
and averaging (schematic in Figure 4.7). Overlaying simply places each new tile in its original
position without considering any overlapped tile in that region. We overlaid tiles starting in
the top left corner of the orthomosaic image, going from top to bottom, and moving to the
subsequent column until the last tile is reached in the bottom right corner. This gives preference
to predictions in tiles that are further down the list, where only the last tile to be untiled
maintains its complete area and all other tiles maintain 49% of it (given a 30% overlap example).
Clipping means that the half of the overlap region is clipped off the border of tiles and then
placed in its original location on the orthomosaic. In a 30% overlap example, corner tiles retain
72% of their central area, tiles at the edge of the orthomosaic retain 60% and every other tile
retains 49%. Averaging means taking the mean of network softmax values in the overlapping
regions before the argmax function is used to select the predict class. In a 30% overlap example,
corner tiles will have 28% of its area averaged, border tiles 40% and all other tiles 51%.

We measured the accuracy for each untiling strategies by dividing the total number of predicted
pixels of every class (inside the annotation regions in each site) by the total number of pixels for
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Figure 4.7 Semantic tile-merging strategies. For the semantic segmentation tiles we tried 3 dif-
ferent untiling strategies to recover the predicted habitat map: overlaying, clipping
and averaging. We compared them to the ground truth densely annotated tiles and
calculated their accuracies. No clear advantage was detected for any of the untiling
strategies, which hints at the good prediction confidence of state-of-the-art semantic
segmentation networks, even around borders of images.

that class in the manual annotation (Figure 4.7).
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4.3.6 Digital Terrain Model, Digital Elevation Model and Canopy Height Model

After creating the untiled orthomosaics of semantic and instance segmentation predictions we
created a digital terrain model, Digital Elevation Model and a canopy height model. In this
study we reference DTM as a model only showing terrain features (i.e., mud and water pixels),
selected from the DSM, which is the raw elevation model that considers all natural and artificial
features on the map. The DEM is the result of interpolating the DTM to describe the elevation
of the terrain below natural and built/artificial features. A CHM is the subtraction of a DEM
from the DSM. In this study, we selected ground points in the orthomosaics to create a DTM
and then interpolated the empty areas with smoothing, to generate a DEM (Miraki et al. 2021;
Navarro et al. 2020).

We compared 2 strategies to select ground points and generate the DTMs. The first strategy
was manually selecting ground points (in QGIS) that visually looked like mud or water region
close to the mangrove trees. We corroborated that the selected region did not contain any higher
elevation pixels in the DSM (corresponding to the surrounding trees), given that the initial
resolutions of the orthomosaic and DSM were not identical. The manual selection of points took
around 2 h for the TC site and 3 h for LCN.

The second strategy used our semantic segmentation predictions as they also contain ground
pixels (mud and water classes). We use those regions to select the relevant points to interpolate
into a DEM. Given that the predictions might contain errors, we used a threshold of 95% network
confidence of the ground predictions to select pixels. This yields a very small number of ground
predicted regions (under 0.5% of pixels). Finally, to remove residual pixels that may contain
high elevation values in the DSM, we convolve a window of 2000× 2000 pixels across the entire
DSM and select pixels with elevation under a parameterized percentile value. The pixels that
passed through this filtering were very likely to be only the ground level regions and were used
as ground points for the DTM interpolation.

For both strategies, we use the Geo-spatial Data Abstraction Library’s (GDAL)
fill_no_data function to interpolate and smooth out the DTM into a DEM. This function
uses the inverse distance weighting (IDW) algorithm to interpolate missing values in a raster,
followed by 3 smoothing passes with a 3×3 kernel. We then subtract the DSM elevation from the
DEM elevation to obtain a CHM. We calculated the height of a tree by selecting the maximum
elevation inside its contoured shape from the CHM.

We illustrate the complete process in Figure 4.8. We compared the resulting elevation of the trees
using both strategies by plotting them against each other, and by comparing the bias of the mean
and the 95% limit of agreement using Bland–Altman (or mean-difference) plots (Figure 4.8). We
use the first “manual” ground pixel selection strategy as control for the second “automatic”
ground pixel detection strategy.
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Figure 4.8 Digital Elevation Model (DEM) and canopy height model (CHM) strategy compari-
son: we illustrate our automatic ground selection and interpolation process. From the
semantic segmentation predictions we select and filter high confidence ground pixels,
which we then use to interpolate the DSM values in the corresponding ground loca-
tions. We subtract the DSM values from the DEM to generate a CHM. Finally we
“cookie-cut” the predicted tree instances on the CHM to calculate height statistics
of the tree crown. We check if the automatically extracted DEM is correlated to a
DEM generated from manually selected ground regions in the plot. The tree heights
from both methods did not show a significant bias for either technique as shown in
the regression plots and mean-difference plots for both LCN and TC sites. Outliers
can be caused by imperfections in the original DSM.

4.3.7 Forest Inventory

We summarize the attributes of the automatically delineated trees, such as crown shapes and
heights, into an inventory of the forest (Figure 4.9). We calculate mean and maximum pixel
heights inside predicted tree crown shapes for both DEM creation strategies. We also calculate
and plot the tree crown diameter from the major axis of the ellipsis with the same second moment
as the crown polygon. Other metrics calculated from the instance contour are the tree crown
eccentricity, which is the ratio of the focal distance (distance between focal points on the ellipsis
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covering the tree crown shape) over the major axis length (a value of 0 means the shape is a
perfect circle), and tree crown area in square meters. We also plot the tree height in meters
against the canopy area in square meters using a linear regression plot. These measurements
were extracted with the “regionprops” function of the “scikit-image” Python library (Walt et al.
2014).

Finally, having the trained pipeline, we tile, predict the semantic and instance segmentation
outputs and untile the out-of-distribution EGS site. In order to measure the scalability of the
method, we then compare P. rhizophorae tree heights and tree crown areas for all three sites. We
also compare the area cover of the R. mangle and the P. rhizophorae species as well as that of the
short-sized R. mangle class from the semantic segmentation predictions. Finally, we calculate
the pixel-wise height distributions in the CHMs for area-wise predictions of the three tree classes.

4.4 Results
The presented workflow allows for automatic delineation of individual P. rhizophorae trees and
the segmentation of R. mangle canopy areas, as well as other land cover classes (mud and water).
We review the accuracy of both instance and semantic segmentation networks, as well as of the
untiling of the predicted tiles, and finally of the automatic calculation of tree measurements,
such as height from the generated CHM.

4.4.1 Deep Learning Performance

We measured the performance of both instance and semantic segmentation networks separately
but also compared their agreement on predictions for the P. rhizophorae class and overlap with
the R. mangle class.

In Figure 4.5a, we show the performance of the CenterMask2 network when both tiles with P.
rhizophorae instances and tiles without P. rhizophorae instances were considered in the training
procedure. For both cases, the performance peaked with 80% of the training tiles (228 tiles
without and 267 with empty tiles). When considering empty tiles, the AP was 33.2% and
without the empty tiles it was 32.6%. With the 90% training fraction, the performance reduced
by 1.2% when considering empty tiles and only by 0.3% when not. The best performing network
was used for the final tile predictions.

The performance metrics for the semantic segmentation network are shown in
Figure 4.5c. The overall precision for the network was 89%, the overall recall 88%, the F1-
score was 87%, the overall accuracy was 88%, and the Kappa score was 82%. The precision
confusion matrix also shows the per-class performance, where R. mangle has the highest score
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Figure 4.9 Combined inventory of the La Chunga North and Terron Colorado mangrove forest
plots. We measured the (a) mean height and (b) maximum height in predicted P.
rhizophorae instances as well as (d) tree crown diameter, (e) eccentricity and (f)
area. We plotted (c) tree height against tree crown area. We compare (g) the tree
heights and (h) tree crown areas of P. rhizophorae from the training sites LCN and
TC with the out-of-distribution site Estero Grande Shore. We also compare the (i)
area coverage of P. rhizophorae, R. mangle and short-sized R. mangle across the
three sites.

(97%), followed by water (96%), mud (89%) and short-sized R. mangle (89%) and finally P.
rhizophorae (83%). In the recall matrix, the highest value was for P. rhizophorae with 96%,
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while by far the lowest was the short-sized R. mangle, with 28%. The major confusion that
affected the recall values was between P. rhizophorae, mud and short-sized R. mangle. Other
minor confusions occurred between water and mud and between short-sized R. mangle and R.
mangle.

The two networks showed good overlap between their P. rhizophorae predictions, with median
values of 98% for training instances and 97% for testing instances. Nonetheless, some P. rhi-
zophorae tree crown instances in the testing tiles had fewer pixels predicted as P. rhizophorae
by the semantic segmentation network inside their area (lower 25% quartile of 85% overlap).
Similarly, there seemed to be little confusion between predictions of the two mangrove species.
We found a median of 0.05% of all training and testing instances and a mean of 2.6% for training
instances and 4.5% for testing instances. The instances in testing tiles showed higher overlap
with up to 12% overlap for the upper 75% quartile.

4.4.2 Untiling Accuracy: Tree Instances
Our novel instance untiling algorithm (Algorithm 1) for tree crown masks can be modulated by
two parameters: the mask prediction score and the overlap (IoU) threshold. To understand the
interplay between the two parameters, we plot the mask score threshold value against the P.
rhizophorae tree count after the untiling algorithm has been applied (Figure 4.6). The forest
area used in this experiment is the sum of all the annotated regions in each site; hence, the
dotted “ground truth” lines show the total number of manually annotated P. rhizophorae trees.
The error, shown in shaded areas, corresponds to the different values obtained from changing the
overlap threshold (from 10% to 90% overlap). For the LCN site, the ideal minimum mask score
threshold was at 67% and an overlap threshold of 50%. For TC, the mask threshold was at 56%
confidence and the overlap threshold at 50%. When combining both sites, the ideal mask score
was 62% and an overlap threshold of 50%. The minimum mask score changed between 59% and
65% when the overlap threshold was changed from 10% to 90%, respectively. We used the ideal
value of a 62% mask score threshold and 50% overlap threshold for the final predictions of the
complete mangrove forest sites.

4.4.3 Untiling Accuracy: Semantic Labeling
Similar to the instance segmentation network, we measured the accuracy of untiling the results of
semantic segmentation prediction on tiles with overlap while employing three different merging
strategies (Figure 4.7). For each strategy and site, we calculate the accuracy by comparing the
labeled pixels of each annotated regions against the labels in the untiled prediction. The accuracy
variability was negligible for all strategies. In LCN the accuracy was 86.4% for the overlay and
clip strategy and 86.6% for average, while in TC, it was 91.5%, 91.6% and 91.7%, respectively.

127



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
4.4. RESULTS

These accuracy values for the final untiled areas correlate with the accuracy reported for the
testing tiles in the confusion matrices (Figure 4.5c). This portrays the great generalization
capabilities of the semantic segmentation network, even in image borders.

4.4.4 Automatic Creation of Digital Elevation Model and Canopy Height Model

After untiling as described, we compared two ways to generate the needed DEM to accurately
calculate the CHM: manually selecting ground pixels versus machine-predicted (semantic seg-
mentation network) mud and water pixels. In Figure 4.8, we show that for a vast majority of
the P. rhizophorae trees, the heights calculated from the CHMs from both DEMs correspond
by staying close to the one-to-one line in the regression plots (Figure 4.8). We predicted and
compared 12,572 P. rhizophorae trees in the LCN site and 4574 P. rhizophorae trees in TC.
The Bland–Altman (mean-difference) plots show little bias in tree height predictions both in
LCN (−0.72 m of mean difference) as in TC (−0.18 m of mean difference) from the automatic
ground detection against the manual ground selection technique. In LCN, a small number of
outliers were found outside of the −3.4 lower 95% limit of agreement (−1.96 SD line) standard
deviation, where some trees were predicted as taller when using the automatic ground detection.
Inversely, in TC, some trees were predicted as taller when using the manual ground selection
strategy DEM, pushing the upper 95% limit of agreement (the +1.96 SD line) to 1.7, but the
lower 95% limit was higher at 2.1.

4.4.5 Tree Inventory and Area Coverage

In Figure 4.9, we summarize the tree-level description of the forest stands created by our workflow.
This includes the P. rhizophorae tree inventory and the area coverage of the R. mangle mangrove
species and short-sized R. mangle. For the automatic ground detection CHM, the mean pixel
height in P. rhizophorae predicted masks had a mean value of 7.58 m and the mean of maximum
height values was 9.33 m (Figure 4.9a). The height values in the 25% and 75% quantile range
were 5.35 m to 9.5 m for the automatic CHM, and 20.48% of trees had a maximum height over
10 m (Figure 4.9b).

We also calculated the tree crown diameter (major axis of ellipse), eccentricity and areas in
square meters (Figure 4.9d–f). The mean of the crown diameters was 3.9 m. The distribution
of eccentricity of the tree crowns tended towards 1.0 with a mean of 0.67, meaning that their
shapes were more elongated and less circle shaped. The mean of tree crown areas was 6.77
m2. The largest crowns measured up to 20 m2. For the P. rhizophorae trees, we checked the
correlation of tree height with the canopy areas (Figure 4.9c). We noticed that shorter trees did
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not have larger crown areas (Figure 4.9c). The opposite was not the case, since we find small
canopy areas with large heights.

We compared tree heights and tree crown areas of the two in-distribution sites (LCN and TC)
with the out-of-distribution EGS site (Figure 4.9g,h). The calculated heights show an almost
identical distribution, with very similar means and with 50% of the trees in the 5–10 m range.
The tree crown areas present similar distributions between LCN and TC, with means around 7
m2 and most trees having an area under 10 m2. Trees in the EGS site show a wider distribution
with a similar mean than the other two sites but with 40% of trees in the 10–20 m range.

Finally, we calculated the area coverage for P. rhizophorae, R. mangle and short-sized R. mangle
from the semantic segmentation predictions. In LCN, the P. rhizophorae species was the most
common class with 12.79 ha, followed by R. mangle with 2.8 ha and short-sized R. mangle with
0.6 ha. In TC, the difference was not as pronounced, with P. rhizophorae covering 3.49 ha and R.
mangle covering 1.41 ha and short-sized R. mangle with 0.34 ha. In the out-of-distribution site,
EGS, P. rhizophorae covered 3.63 ha and R. mangle covered 4.1 ha, and short-sized R. mangle
covered 1.1 ha. The average height of R. mangle areas over the three sites had a range of 6–12
m with a mean of 10 m. The heights of short-sized R. mangle areas was lower, mostly in the
3.3–5.4 meter range.

4.5 Discussion
In this study, we propose a novel method for creating an inventory of mangrove forests and their
surroundings. We also provide a technique for the automatic creation of a DEM and CHM,
to calculate heights of individual trees and tree areas. We show that machine learning with deep
neural networks has the potential to greatly increase the throughput and precision of surveys of
hard-to-access forest areas. Furthermore, by detecting the contour of individual tree crowns and
their respective heights, valuable information is obtained for allometric analysis. We show that
the workflow can be scaled to handle large mangrove forest regions and generalizes well to new
survey data that were not in the training dataset.

4.5.1 Effort Reduction of On-Ground Work and Annotation

Mangrove forests present difficult conditions for on-ground field surveys, given their complex
root systems, tidal regimens and remote locations. The use of airborne imaging systems can
alleviate the effort by covering large distances in a short time and not being hindered by the
complex setting of the forest floor. UASs, in particular, provide a controllable platform for
high resolution imaging of target areas from above. In this study, we used the photogrammetric
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products (orthomosaic and DSM) constructed from aerial imagery captured with consumer-grade
UASs in a remote and inaccessible area of Utría National Park on the Colombian Pacific coast.
We used UASs with their default RGB cameras because this technology is easily accessible for
local park authorities. Other studies, in contrast, have used more expensive sensors, such as
multispectral or hyperspectral cameras, as well as LiDAR sensors (La Rosa et al. 2021; Yin et al.
2019).

We set out to establish that state-of-the-art deep learning techniques can enable even consumer-
grade imagery to deliver information-rich survey output at the scale of entire mangrove forests.
Given the large extent (103 hectares; Table 4.1) of the forests captured in the orthomosaics,
we annotated subplots that would approximately represent 20% of the total mangrove area
(Figure 4.3). To capture the variability in the sites, we used the following criteria when selecting
annotation subplots: presence of both mangrove species, mud and water presence, location in the
plot and height differences in the DSM. To train the semantic segmentation network, we densely
annotated large areas such that no pixel was left un-annotated. To measure the performance
of the untiling algorithms, we also selected rather larger regions to annotate (three per site)
instead of directly annotating smaller-sized tiles that would fit in the network. The contouring
of individual P. rhizophorae trees in QGIS was the most time consuming part of the process,
but this time can be reduced by using novel annotation software designed for supervised learning
with large orthomosaic images, such as TagLab (Pavoni, Corsini, Ponchio, et al. 2022).

The decision to not include the R. mangle species in the instance segmentation process was made
due to the difficulty for the human annotators to visually identify individual tree crowns from
each other. This could be overcome by using more specialized sensors that capture higher spatial
and spectral resolutions and UASs with steadier flight control, considering the cost trade-off.
Even so, the uneven growth patterns of mangrove crowns can be a limiting factor in comparison
to other types of forests, where individual trees are easily distinguishable or where forest canopies
have more spaced patterns (Schiefer et al. 2020).

We also included the short-sized R. mangle class, given that some parts of the forest had a
shrub-like aspect that differed from surrounding trees. Most of these areas were exposed to
incoming tide, and a smaller fraction were found in-between patches of P. rhizophorae trees.
After comparing with on-ground images, we determined that those areas were covered in short-
sized R. mangle trees. Given that it was not possible to visually identify individual tree crowns
in the aerial images, we annotated area patches that covered one or more trees.

4.5.2 Instance and Semantic Segmentation

Using two deep neural networks that produce different outputs helped us achieve three distinct
goals. First, the instance segmentation network CenterMask2 was trained to identify individual
tree crowns for the P. rhizophorae mangrove species. Instance segmentation networks were
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developed for detecting everyday objects in urban settings but have been successfully transferred
to a variety of other fields, such as natural environments (Hafiz et al. 2020; Hoeser et al. 2020).
Our implementation achieved an AP of 33% using over 80% of our annotated regions for training.
This a good performance considering some quality artifacts in the orthomosaics of the images,
such as blurring and the reduced training samples. Another source of error was the contour
of annotations, given that mangrove canopies were not always 100% distinguishable between
species and between trees of the same species. Furthermore, AP is a very stringent metric of
performance as it heavily penalizes small errors in the mask overlap.

The second goal that our automation pipeline achieved was to annotate R. mangle areas with
recall of 87% and precision of 97% (Figure 4.5c). We were not able to annotate individual
trees for this species but were able to describe the area cover. In such cases, where individual
trees cannot be detected, area cover and its height distribution can be used to monitor the
species AGB (Urbazaev et al. 2018). By using the detected trees from instance segmentation
and the areas from the semantic segmentation, we can account for every species in the mangrove
forest. In Figure 4.5b, we show that P. rhizophorae and R. mangle have little to no overlap
between the semantic and instance segmentation predictions, indicating a robust separation of
these two classes.

The third goal of our workflow was to retrieve ground pixels (i.e., mud and water) to produce a
DTM and a subsequent interpolated DEM. The semantic segmentation network predicted areas
of the mud and water classes with high precision (89% and 96%, respectively), allowing for
accurate detection of ground areas surrounding the mangrove trees.

4.5.3 Automating the Canopy Height Model
The creation of a DEM from accurately detected ground areas allowed us to extract a consistent
CHM, from where individual tree heights could be estimated. The automatization reduces the
time effort of manually selecting ground pixels by 3 h per plot. In the created DEM, nonethe-
less, we found small imperfections noticeable in the outliers of the mean-difference comparison
in Figure 4.8. This was the result of artefacts from the difference in resolution of the DSM and
orthomosaic. For example, some pixels in the bordering regions of mangrove trees and ground
pixels were predicted as ground but had an elevation value in the DSM that corresponded to
the trees. We reduced these errors by selecting only predicted ground pixels with high confi-
dence (>95%) and further filtering pixels under a certain elevation in tiles along the scene (see
Methods). After this filtering, the error in the heights of P. rhizophorae trees between the two
methods was not significant. The outliers can be further corrected by checking and correct-
ing small imperfections in the automatically generated DEM, which still takes only a couple of
minutes compared to hours of selecting ground pixels for a manual DEM. Furthermore, in long-
time monitoring settings, the time gain of automating CHM creation is additive. Finer CHM
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calculations with closer-to-ground sensing techniques can be used for global-scale canopy height
estimation studies (Simard et al. 2019).

4.5.4 From Pixels to Tiles to Trees
In our workflow, we propose a novel instance untiling algorithm that minimizes errors on tile
borders (Algorithm 1; Figure 4.6). By tiling the forest plots with overlap, we enhance the prob-
ability that trees in border regions will be recovered correctly. Nonetheless, it also complicates
the untiling process since the decision has to be made if two or more overlapping masks represent
the same or different trees. The two settable parameters in our algorithm allow for adjusting
the untiling process to match available on ground data (count of trees). The mask prediction
score threshold reduces the number of trees considered for the final prediction by discarding low-
confidence predictions such that less overlap occurs in the borders. Then, the overlap threshold
parameter handles the case when two or more instances do overlap, and depending on the sizes
of their masks and their intersection, we consider merging or dividing the masks. The algorithm
gives preference for the already existing tiles in the final prediction because it checks first the
existing instances for their size versus the intersection size. The algorithm also works if multiple
instances are overlapping with the incoming instance, and each is merged into, merged together
or split accordingly. In our study case, we utilize an overlap of 30% between tiles, but this
algorithm works on any overlap sizes.

Similarly, for the semantic segmentation predictions, we combine the tiles using different strate-
gies (Figure 4.7). In contrast to the large size of the mangrove forest plots, the benefits of
different strategies seem negligible, but it can be relevant if the overlap is larger. We found that
averaging was the best way to reconstruct the underlying scene more accurately, similar to what
is recommended in (Huang et al. 2018). If the overlap is larger (over 50%) and tile sizes smaller,
this strategy is also better suited to combine tiles (La Rosa et al. 2021). Nonetheless, with newer
state-of-the-art semantic segmentation CNNs, tiling with overlap might no longer be required,
given their high confidence predictions, even in border-adjacent pixels.

4.5.5 Seeing the Forest for the Trees: An Inven(s)tory
The final output of our workflow was an inventory of individual P. rhizophorae trees and area
cover and height distribution for R. mangle and short-sized R. mangle (Figure 4.9). The distri-
bution of heights of P. rhizophorae trees in our automated inventory fell within the range found
in the literature, with most trees in the 5–10 m range and 15–20% larger trees in the 10–20 m
range (Fuchs 1970). The regions classified as R. mangle trees had slightly taller values (6–12
m), with a larger Section (38%) of trees surpassing 10 m, which also correlates to literature de-
scriptions of the species’ height (Allen 2002). Our decision to separate the short-sized R. mangle
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regions to another category was confirmed to be helpful for the class predictions, given the lower
height (3.3–5.4 m) for regions of this category. As mentioned previously, these regions hold
shorter trees of the R. mangle species, which grow like shrubs compared to taller R. mangle trees
in more protected areas. Separating these two growth forms of the R. mangle species could help
tailor the allometric equations for calculating AGB to be more precise.

Describing tree crown shapes and sizes from aerial imagery is a complicated task that has been
tried with different methods (Suhardiman et al. 2016). By using instance segmentation networks
on well-defined training data, the task can be seemingly simplified (Kattenborn, Leitloff, et al.
2021). Our workflow allows for individual tree crown predictions, and the possible descriptions
go beyond tree crown diameters. We calculate tree crown areas and eccentricity, which are
parameters that can be used for further understanding growth patterns of mangrove tree species
in response to environmental factors (e.g, tide shifts, terrain rugosity, wind direction and speed,
etc.).

The semantic segmentation prediction also enables us to study the gaps between trees or those
separating forest stands. This helps to understand the growth patterns of the whole mangrove
forest and the species distributions, depending on environmental variables, such as distance to
shore, tidal locations, forest cover loss and water channel formation (Lassalle and Souza Filho
2022). It can also aid in detecting deforestation incidents or other disturbances in the environ-
ment.

4.5.6 Scaling Up: Limitations and Future Work

Our dual-network workflow was able to create a detailed inventory of large mangrove area plots.
We show that it can scale and be applied onto new large mangrove forest plots (see height
comparison plots in Figure 4.9), with the only condition being that the potential mangrove
forest area in the new plot is delineated. In future work, our workflow will be applied onto seven
large mangrove plots in the Utría National Park to analyze patterns in the forests. We extract
critical information from medium-quality data and show that with consumer-grade technology
(UAS and RGB images), complex analyses of forests can be supported for short-term studies or
long-term monitoring.

Nonetheless, with better spatial and spectral resolution in the orthomosaics and better spatial
and height precision in the DSM, the errors in the predictions could be improved. For ex-
ample, the use of multi/hyper-spectral cameras mounted on low-flying platforms can improve
class separability (La Rosa et al. 2021), and the use of LiDAR sensors can improve the CHM
precision (Alon et al. 2020; Wannasiri et al. 2013; Yin et al. 2019). This richer data improves pre-
dictions in natural environments, even when more complex communities are targeted (La Rosa
et al. 2021; Schürholz et al. 2023). Additionally, advancements in earth-observation technologies
are allowing us to apply instance segmentation networks on satellite imagery (Lassalle, Ferreira,
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et al. 2022). Research on imagery from low-flying platforms can, in the short-term, be used as
detailed monitoring tools and validation information for global studies and, in the long-term,
prepare the data-pipelines for enhanced satellite imagery.

The exponential improvement in machine learning platforms also promises to improve the perfor-
mance of automated monitoring workflows. Both instance and semantic segmentation networks
are constantly improving, and as more computational resources are made available, larger and
more capable models will be used routinely. Furthermore, the current development of panoptic
segmentation networks will allow us to simplify workflows such as ours by classifying foreground
and background objects/classes at the same time, removing the need for inter-network compar-
isons (Cheng et al. 2020).

We use two networks to describe parts of a mangrove forest scene in different ways: pixel-wise
and object-wise. We did not include ground measured data in this study, both due to the
inaccessibility of the location and to establish the possibility for a quick aerial survey to support
rich survey output. Additionally, the scale of the forest area predicted compared to the area
that could be manually measured was very large. By comparing the two networks’ predictions
to each other, we can assure that the underlying scene was consistently described. For the
application on new sites, the community composition of the forest must be assessed, and the
prediction classes must be adapted accordingly. This constitutes a known drawback of multi-
class supervised learning. Nonetheless, the backbone weights of the networks can be reused for
training given that top-down forest features do not change significantly between mangrove trees,
providing a starting point for new forest surveys using aerial data.

Our workflow provides a blueprint for automatic forest inventory creation, facilitating rapid
automated assessments of large areas of mangrove forests with consumer-grade technology. It
benefits from the advancements in UAS technology and artificial intelligence, enabling unprece-
dented detail in forest-wide inventories, especially in inaccessible areas such as remote mangrove
forests.
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Chapter 5

Removing the turbid veil: are turbid reefs a
refugia for corals in an adverse future?
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5.1 Abstract
In recent decades, evidence has pointed to turbid reefs as possible refugia for scleractinian corals
to weather the adverse conditions of the Anthropocene. Rapid human population expansion in
coastal urban settlements has increased the negative impact from human activity on coral reefs.
As one of the consequences, elevated turbidity and sedimentation levels are repeatedly being
measured in shallow coral reefs located close to large urban settlements and agricultural land.
Investigating the coral community shifts that are triggered by the these environmental changes,
is key to understand the future trajectories of these ecosystems, and to provide evidence about
the role of turbid reefs as a haven for scleractinian corals. This study focuses on the Spermonde
Archipelago in South Sulawesi - Indonesia, located within the Coral Triangle, the region with
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the highest taxonomic diversity of scleractinian corals worldwide. Coral reefs in Spermonde are
found in a steep turbidity gradient. Extreme eutrophication and sedimentation levels have been
measured in the islands close to the metropolis of Makassar and the agricultural land north of
it. Turbidity decreases towards the outer-shelf, where corals live in clear oligotrophic waters. It
is believed that scleractinian corals living in clear waters are more susceptible to bleaching as a
consequence of increasingly warmer water temperatures, given that they also have to withstand
high incident UV light.

Figure 5.1 Overview of study site and acquired data products. The Spermonde Archipelago is
located in front of the city of Makassar in South Sulawesi, Indonesia, and experiences
a steep turbidity gradient correlated to the distance to the main land. 13 coral reef
plots (∼ 15×20m) across 6 islands at 3 different depth levels (reef flat/crest, reef slope
middle & reef slope deep) were surveyed by acquiring color and multispectral images
with the HyperDiver device. Color images were then used to produce orthomosaic
and digital surface models of the reefs with SfM software. A co-registration between
color- and multispectral orthomosaics is planed for future work. The multispectral
images capture 8 spectral bands (wavelengths between 448 nm and 708 nm) and 1
panchromatic band.

We surveyed benthic communities in 13 coral reef plots (∼ 15 × 20m) in 6 islands across the
turbidity gradient, and locally at each island, across a depth gradient from (approx. 3–12 m
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depth). The HyperDiver device was used to capture high-resolution spatial and spectral images
of the benthic environment from an altitude of ∼ 1.5 meters from the seafloor. One multi-
spectral and one hyperspectral camera (with 8 and 480 spectral bands respectively) were used
to capture fine spectral detail. Two stereo color cameras were used to capture overlapping
images with high spatial resolution. The color and multi-spectral images were used to create
orthomosaic- and digital surface models of the seafloor. These photogrammetric models were
geo-referenced with a handheld Garmin eTrex GPS device, that marked 6 ground control points
from the surface. To produce training data for AI workflows, six coral reef biologists annotated
over 1600 polygons of interest on the 3 of the color-image orthomosaics. In total, 577 individual
scleractinian coral colonies were contoured and labeled with one of 34 genera. Other biotic
elements like sponges, soft corals, sea urchins, macroalgae, coralline algae and anemones were
annotated to the finest taxonomic level possible. Substrate elements were also annotated as
cyanobacterial mats, sediment, turf algae or coral rubble.

A preliminary analysis of the annotated sites suggests that reefs closer to the city of Makassar
have experienced more deterioration, showing only scattered small-sized coral colonies, with most
of the area covered by abundant macro- and turf algae, due to high eutrophication levels. Reefs in
the mid-turbidity zones (Zone 3,4) show the healthiest reefs, with dense patches of Acroporid and
Porites colonies and high coral diversity. Reefs on the outer-shelf present smaller patches of large
colonies, with large stretches of bare sediment in-between. This suggests that a moderate level
of turbidity may protect scleractinian corals from high radiation levels and help them withstand
increased water temperatures. Further correlative analysis must be done to separate turbidity
and sedimentation from other possible stressors present in the region, such as blast fishing, over-
fishing and tourism. The detailed spatial and spectral data facilitates manual and automatic
classification of benthic communities in coral reefs capturing the high taxonomic diversity of the
region and with individual biotic organisms delineated. Scaling up the classification to larger
coral reef areas with the same spatial and thematic detail, will allow to unveil more fine-grained
patterns in the coral community distribution across a turbid gradient.

5.2 Author contributions
Conceptualization: D.S., A.C.; Data Curation: D.S., A.M.A.P, G.S., P.L.K., E.E., D.A.R.; Inves-
tigation: D.S., A.M.A.P, G.S., P.L.K., E.E., D.A.R.; Methodology: D.S., A.C.; Formal analysis:
D.S., A.C.; Software: D.S.; Supervision: A.C.; Validation: D.S., A.C.; Visualization: D.S.;
Project Administration: D.S.. A.C.; Resources: A.C.; Funding acquisition: A.C.; Writing—
original draft: D.S., Writing—review and editing: A.C. All authors have read and agreed to the
publication of this abstract.
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Figure 5.2 Scleractinian coral colonies annotations overview. (a) Example of manually delineated
and labelled coral colonies, which were selected in stratified manner across subplots
and covered as much taxonomic diversity as identifiable from the images (generally to
genus level). The annotations are suitable for training of AI workflows. (b) The site
Kondingarenkeke (KK) is located in Zone 4 of the turbidity gradient (see Figure 5.1).
The sampled plot was located between 4 and 8 meters of depth. The number of
coral colonies was the highest in this reef. It was the most taxonomically diverse
community, dominated by Porites, Galaxea and Acropora colonies (Figure C.1). KK
presented the largest coral colonies. Site Gusung Talang (GU) is located in Zone 1
with high levels of turbidity. The sampled plot was located on the reef flat almost
entirely at 3 meters depth. The coral count and diversity were the second highest
(dominated by small Favia and Fungia colonies), but most colonies were small in size
and scattered. Finally, Lankai (LA) is located in Zone 5 with clear waters. The
sampled plot was located on the deep end of the reef slope (5.5–8.5 meters). The
coral count was the lowest, but some larger colonies were located. The diversity was
the lowest as well (dominated by small Acropora and Pocillopora colonies).
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Chapter 6

Discussion and Outlook

6.1 Discussion
Shallow coastal ecosystems play a critical role in global and local natural processes. They pro-
vide invaluable services to the coastal human populations and other adjacent ecosystems, as well
as helping to regulate the global climate. In recent decades, coral reefs and mangrove forests
have been under constant stress, due to direct and indirect consequences of anthropogenic ac-
tivities. Thus, protecting and restoring these environments has become a central focus of many
international and domestic regulatory efforts. This has prompted an urge to understand the
baselines and current states of these remote and under-researched ecosystems, to be able to con-
tinue monitoring them through time (Muldrow et al. 2020). However, for conservation efforts to
be effective, our scientific knowledge of these ecosystems has to be constantly updated through
consistent and scalable monitoring (Lecours 2017; Sparrow et al. 2020).

Recent monitoring efforts are providing constant surveillance of shallow coastal ecosystems at
a global scale, by using Earth observation systems (B. Lyons et al. 2020; Goldberg et al. 2020;
Kennedy et al. 2021). Their use of satellite imagery enables coverage of large areas, but the
distance to the targets and the atmospheric and aquatic interfaces, limit the spatial and thematic
detail that can be extracted from their data products. Relying only on broad-scale analyses of
these ecosystems, which often times have not been locally validated, can mask important small-
scale processes and miss-inform management efforts (Brito-Millán et al. 2019; Hochberg et al.
2021). Thus, standardised field methods need to be available as validation for these global efforts,
whilst also targeting testable hypotheses over defined areas to determine the causes of changes
in ecosystem community composition and configuration (Riitters 2019; Sparrow et al. 2020).
This entails that survey methodologies should output products that can be scaled spatially and
abstracted thematically to meet the specifications of both global surveillance efforts and local
ecological investigations.
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6.1.1 Scaling-up and refining survey products with proximal sensing and AI

Proximal sensing technologies, such as the HyperDiver and UAS platforms, provide the perfect
scale for detailed monitoring of shallow coastal ecosystems through fine-grain spatial and spectral
imaging (Chennu et al. 2017; Joyce et al. 2023). On the spatial scale these platforms can cover
several hectares of an ecosystem during a survey campaign with millimeter pixel resolution. This
allows for easy visual identification of biotic targets to detailed taxonomic levels, and for the
discernability between different substrate types. On the spectral scale, hyper- and multi-spectral
sensors can be used to add richness to the data. However, to truly scale up the annotation of
terabytes of raw image data, human expert effort rapidly becomes the bottleneck, prompting the
need for the automation of ecosystem mapping.

In this doctoral project, end-to-end AI workflows are designed, developed and validated, to
automate ecosystem mapping processes. The developed workflows were designed to cover the
requirements of each shallow coastal ecosystem that was the target of the mapping process. In
(Chapter 2 & Chapter 3), the mapping targets are 8 coral reefs on an island-wide survey. Coral
reefs generally have biotic communities that are taxonomically and morphologically very diverse.
In the surveyed reef 42 biotic and abiotic labels were identified, with 19 coral species/genera, 10
sponge species, 4 soft coral species/genera, 3 macroalgae species/genera and 3 substrate types,
among other classes. For ML algorithms to automatically and accurately classify the variability
in the mapping targets, rich spatial and spectral data was required. Thus, the underwater
diver-operated HyperDiver device was used, which can capture hyperspectral transects with 480
spectral bands and centimeter pixel resolution (∼ 2.5cm2/pixel).

To automatically classify these rich datasets, a spectral-spatial deep learning algorithm for re-
mote sensing work with hyperspectral data from satellite observations was selected (Zhong et
al. 2018). The algorithm was optimized and adapted to underwater hyperspectral transects of
coral reef habitats. In (Chapter 2) a detailed inspection of the performance of the algorithm
was explained, even comparing to another traditional ML algorithm. More importantly, a de-
tailed assessment of the resulting habitat maps was executed, to determine the fidelity of the
mapping products to the true reef community composition and configuration. In (Chapter 3)
the AI workflow was optimized using ensemble network techniques to provide more robust and
unbiased classification (Wyatt et al. 2022). The resulting predictions were very accurate with
90% prediction accuracy for 48 labels, an unprecedented level of automatically predicted the-
matic detail in underwater mapping. Recently, a mapping effort in an Indo-Pacific coral reef, has
used underwater hyperspectral transects and AI workflows and achieved even higher thematic
detail (91 benthic classes) (Mills et al. 2023). The authors expanded on the same deep learning
algorithm as the one used in (Chapter 2) and produced a similar prediction reliability analysis
as presented in (Chapter 3) (Figure 3.5 & Figure B.1). Automated hyperspectral mapping of
underwater habitats is a recent field of study, and thus it requires detailed inspection of the
mapping products and applied AI models. This doctoral project adds valuable information with
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detailed mapping product assessment, the comparison to traditional methods and CNN predic-
tion reliability analyses. As the costs of hyperspectral cameras sinks and they become more
accessible (Teague, Day, et al. 2023), emerging users will have good understanding and guide-
lines to produce automated mapping workflows with AI, providing a valuable tool for detailed
mapping of shallow coastal ecosystems.

Current hyperspectral imagers provide enough detail for detailed thematic mapping, but they
lack enough spatial resolution to allow for accurate individual-organism detection. Organism de-
tection is an important tool for automatic inventorization of ecosystems, as it can provide detail
accounting for very large habitats, while relieving managers and researchers from arduous in-situ
tasks (Tucker et al. 2023). Organism detection has been achieved on satellite imagery and from
UAS platforms, but it has usually been applied only in ecosystems that present a sparse config-
uration of the target individuals (Lassalle et al. 2022; Otero et al. 2018; Tucker et al. 2023). In
contrast, certain mangrove forests present very dense canopies and bush-like morphologies that
make individual tree crowns hard to identify. (Chapter 4) presents an end-to-end AI workflow
that uses a consumer-grade UAS and instance segmentation CNNs to segment individual man-
grove trees in a forests with dense canopies. The spatial detail from photogrammetric models
built with SfM software from color images is detailed enough to allow the AI model to delin-
eate individual trees. Furthermore, the workflow automatically categorizes surrounding forest,
mud and water areas, providing habitat context to the targeted and detected organisms. These
predicted mud and water areas are used to build a DTM and a DEM that subtracted from the
photogrammetric DSM allows to automatically create a CHM. The resulting tree-wise predic-
tions are supplemented with accurate height information and tree crown size and shape, enabling
the use of allometric equations for carbon stocks accounting of whole mangrove ecosystems. As
UASs become more accessible and relevant in coastal ecosystem monitoring (Joyce et al. 2023),
the novel automated inventorization tool presented in (Chapter 4) promises to allow for regular
surveillance monitoring of large stretches of mangrove forests, facilitating accurate blue carbon
accounting (Macreadie et al. 2019; Song et al. 2023).

As mentioned in the “Limitations and outlook” section of (Chapter 2), it is imperative that
the original images and annotations of habitat mapping efforts be made publicly available so
that they can be re-evaluated independently, to disentangle the effects of changes in AI methods
and data. Observing this recommendation, the complete source code for the AI workflow for
detailed coral reef classification (Chapter 2) has been published in an open repository (Schürholz
and Chennu 2022b) (Appendix D.1). In parallel, the raw input data and finalized habitat maps
have been published in an open data repository (Schürholz and Chennu 2022a) (Appendix D.2).
Similarly, the raw input data products and finalized inventories of mangrove forests (Chapter
4) have been published in a separate repository (Schürholz, Castellanos-Galindo, et al. 2023)
(Appendix D.3). Furthermore, in this last repository the AI workflow was applied on 4 new
mangrove forest plots and these are included in the data repository, providing predictions for
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over 40 hectares of these remote habitats.

6.1.2 Ecological insights

The unprecedented thematic detail achieved in the underwater habitat maps with dense sampling
provided abundant evidence for the current state of reef communities and dynamics in coral reefs
on the Caribbean island of Curaçao. By densely mapping 20 hectares in 8 sites distributed along
the leeward coast of the island, a clear gradient in coral reef community compositions emerged
(Chapter 3). The comparisons with an array of previous studies of Curaçaoan reefs confirmed
the validity of the maps and the community composition and configuration that they depicted.
The ability to detect and map substrate classes such as benthic cyanobacterial mats (BCMs),
turf algae and bare sediment proved to be very helpful in determining the states of these reefs.
As shown in previous temporal studies on reefs in Curaçao (Bak et al. 2005; De Bakker et
al. 2017), the reef communities close to urban settlements and aggro-industrial land were very
deteriorated and had started shifting towards BCM and turf algae dominated environments.
Other reefs in the north of the island, and under intense diving and fishing pressures, had also
started deteriorating and shifting towards macroalgae and turf algae dominated habitats. Reefs
in the south showed the healthiest communities, still dominated by scleractinian, soft and hydro-
corals. Another benefit of dense sampling is the statistical power provided by having millions of
samples. The environmental correlation and co-occurrence analyses (using GLLVMs) provided
a clear pattern of deteriorated vs. healthy reefs on the island’s reefs, and the possible drivers
of community shifts. Sewage output, trash presence and over-fishing were the most prominent
drivers of community shifts towards BCM and turf algae dominance.

The thematic detail in the habitat maps also allowed for reporting clearer biodiversity indexes
and community composition plots. When diversity indexes are reported on abstracted or incom-
plete labelsets and sparse samples, true diversity is masked (Cao et al. 2002; Hochberg et al.
2021). (Table 3.3) provides a view of biodiversity indices produced by using an abstracted reef-
groups labelset, a coral community subset, and a detailed labelset. Only the latter represents
a biodiversity view that is consistent with the environmental gradient along the 8 sites. The-
matic detail also facilitates focusing on intra-group communities, such as the scleractinian coral
community depicted in (Figure 3.7). Although many of the reefs in the mid-southern side of
Curaçao’s leeward coastline show high abundance of corals, only one is not dominated by the
opportunistic Madracis auretenra species. Neglecting this fact, by abstracting every species/-
genera to a single Coral class, would disregard the issue of low functional redundancy present in
many Caribbean reefs. The low structural complexity of Madracis species, for example, reduces
the available hideouts and nursery space for reef invertebrates and fish, producing a decline in
fisheries output, besides reducing the coastal protection from wave energy (Carlot et al. 2023;
Graham 2014; Rogers et al. 2014). Only one site in the southern most tip of the island showed
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higher complexity with large coverage of Acroporids and Orbicella complexes. These insights are
only possible if classifications are done to deep taxonomic levels and with enough sampling to
give statistical weight to predictions and reduce uncertainty. Furthermore, as shown in (Chap-
ter 2) the ability to abstract to a reefgroups labelset also provides the ability to compare and
validate global monitoring efforts, that usually use broad-groups labelsets (B. Lyons et al. 2020;
Hochberg et al. 2021).

Moving from pixel-wise towards organism-focused predictions, further improves the possible in-
sights attainable with ecosystem mapping products. In (Chapter 4) individual trees of the
endemic Pelliciera rhizophorae mangrove species are delineated and their heights calculated.
This provides a detailed geo-referenced inventory of mangrove forests, that can enable temporal
tracking of individual trees, and more precise ecosystem accounting through allometric equa-
tions. Using the finalized predictions and data products, collaborators in the Universidad del
Valle in Colombia are calculating the AGB and above ground carbon stocks for these valuable
shallow coastal ecosystems, similar to a process done for other more sparse mangrove forests
(Jones et al. 2020; Navarro et al. 2020; Wirasatriya et al. 2022). Previous studies used to rely on
extrapolation methods, from sparse in-situ measurements to large satellite predicted mangrove
areas, generating large uncertainty in the final calculations. Proximal sensing with effective AI
workflows promise to reduce uncertainty by densely sampling forests and producing consistent
inventories through time.

Providing the combination of thematic detail and organism-focused predictions is the next step
in ecosystem mapping on the proximal sensing scale. (Chapter 5) presents an initial setup for
this scenario. Merging spatially detailed color- and spectrally rich multi-spectral images, the
acquired dataset promises to provide enough detail to enable organism detection (e.g., coral
colonies) and thematic detail (e.g., classification of detected organism to genus/species). The
type of habitat description attainable is shown in (Figure 5.2b), depicting what would be possible
from detailed inventories of coral colonies in 3 reefs in the Coral Triangle, a region known for
its vast biodiversity. The ability to connect coral reef community distributions with organism
phenotypes on a large scale can elucidate key ecological questions, for example, the response of
coral species reproduction strategies and phenotype plasticity to external stressors throughout
their life-cycle. These hypothesis have been tested in focused studies done in a controlled settings
with subsets of representative samples (Brito-Millán et al. 2019; Drury et al. 2022; Durante et
al. 2019), but could benefit from the statistical backing of large thematic and spatial scales.
With an initial and reduced annotation set, an example analysis of the deterioration status and
adaptation of corals to turbidity and sedimentation was possible in (Chapter 5). Developing an
AI workflow that can scale automated dense and detailed mapping up to the 13 surveyed sites
in the turbid reefs of the Spermonde Archipelago would facilitate the gain of deeper ecological
insights.
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6.1.3 Methodological features and limitations

Spatial and thematic detailed mapping was performed through the acquisition of rich spatial
and spectral data, with the use of proximal sensing platforms and novel AI workflows. The
automation capabilities of these workflows allow to allocate the human expert effort to more
meaningful tasks (i.e., ecological analyses), relieving them from tedious and repetitive work (i.e.,
annotating or measuring whole ecosystems) (Beijbom et al. 2015). Trained AI models can be used
again in the same surveyed region with no extra effort required, facilitating temporal studies with
consistent and comparable mapping products. The consistency of the predictions is maintained,
given that if a bias was introduced into the AI model at training time, it will carry this bias
throughout every application on new datasets, making products comparable. The true benefit
of automation thus becomes palpable when spatial and temporal scales are extended. Also, by
using AI for classification and a carefully designed protocol for creating the training set, the bias
of human annotators can be substantially reduced and generalization improved (Hänsch et al.
2017). The human effort is reduced and focused to the initial stage of the mapping process,
and the trained models can then be applied to larger areas and out-of-distribution sets. In
contrast, human bias is more volatile, as experts are usually replaced throughout the life-cycle
of monitoring efforts. With the advancements in AI methods and image-sensing technologies a
widespread adoption of automated approaches is expected in ecological studies (Pichler et al.
2023; Xu et al. 2021).

Despite their rapid adoption, there are some limitations for current proximal sensing technologies.
Imaging sensors with advanced capabilities, such as hyperspectral imagers, can have prohibitive
costs for monitoring efforts. Even multispectral snapshot cameras are still very expensive. Some
studies are making spectral technologies available through ad-hoc modifications to regular color
cameras, but the capabilities of these sensors are limited (Teague, Day, et al. 2023; Teague,
Willans, et al. 2019). Certain proximal sensing platforms are also very costly (e.g., AUVs or
underwater rovers) and only large projects with sufficient funding can access such resources.
Some UASs have become accessible to a broader audience (such as the ones used in Chapter 4),
but as more carrying capacity is required for heavier and more advanced sensors, the price and
complexity of the platforms rise.

Similarly to sensing platforms, AI workflows can be inaccessible for certain monitoring efforts.
Specially, when using complex deep learning networks that are computationally demanding and
can require expensive CPU, disk, memory and GPU settings to process large quantities of data
in reasonable time. Cloud computing provides a cost-efficient alternative, but carries its own
caveats, such as the need for an internet connection, expensive subscription plans and out-of-
house data hosting. Further technological advancements in all these areas will be required for a
true democratization of automated environmental mapping.

The thematic detail that can be attained with current technologies for automated mapping is
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also limited, simply because of the visual discernability of biotic organisms. Since ML algorithms
are trained from human annotations, it follows that if the human expert cannot identify an or-
ganism in an image to the most detailed taxonomic level possible, then the AI algorithm will not
achieve this either. Molecular and/or spectroscopic methods could be used to identify organisms,
but annotating on a large scale is still not possible due to logistical and time constraints. The-
matic detail also varies across biogeographic regions and hinders interoperability of AI models.
Scleractinian coral diversity in the Caribbean, for example, is far lower than in the Indo-Pacific.
A method, such as the one presented in (Chapter 2) could not be applied “out-of-the-box” to
a coral reef in another region. The parameters in the CNN can be reused, but the model has
to be retrained with training data from the target region. Current advances in ML algorithms
are allowing for smoother transitions between datasets, but human annotations are still always
required.

Despite the current limitations, the production of detailed maps of ecosystem communities with
their composition and configuration portrayed is a valuable tool in most monitoring/survey
efforts. The effort of planning a mapping product to cater to a broad audience, by designing
abstractable thematic and spatial scales, facilitates the effective reuse of data products in different
contexts. The focus of future mapping workflows should be aimed at detailed and dense products,
that use standardized labelsets and are publicly available.

6.2 Outlook

6.2.1 Future ecosystem community descriptions

Proximal sensing tools and AI workflows can be further expanded to provide more thematically
detailed dense habitat maps, with ecosystem features described.

6.2.1.1 Future proximal sensing platforms
(Chapter 5) provides a glimpse into the future of ecosystem mapping. Complex shallow coastal
ecosystems, such as Indo-Pacific coral reefs, can be mapped to great detail, using spectral and
color imaging sensors in unison. The final goal is to delineate individual organisms (i.e., corals)
and classify them to the most detailed taxonomic level possible (i.e., genus). As part of this
doctoral project, and to achieve spatial and spectral detail, the HyperDiver device ((Chennu
et al. 2017)) was expanded with two stereo color-imagers and one multi-spectral camera, in
preparation for the survey described in (Chapter 5). The high spatial detail from the color
sensors allows for organism segmentation, while spectral detail from the multi-spectral camera
boosts the class-separation capabilities of AI workflows. Multi-spectral cameras were preferred to
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hyperspectral ones, because as shown in (Chapter 2), far less spectral bands than those provided
in hyperspectral imagers (10–25 instead of >100) are required for accurate thematically detailed
predictions (Figure 2.3). Furthermore, the selected multi-spectral imager has the added benefit of
capturing snapshot images (instead of images generated by stitching single-line scans) allowing for
SfM software to produce photogrammetric models. This eases the co-registration to the spatially
detailed color photogrammetric models. The co-registered orthomosaic model will contain 3 color
bands from regular RGB-imagers, added to the 9 spectral bands from the multi-spectral imager,
providing enough spatial and spectral detail to facilitate dense and detailed inventorization of
coral reefs (Figure 5.1).

Other photogrammetric models, that were not directly used in any of the studies presented in
this doctoral project, are 3D-models, such as triangular meshes and point clouds. Many studies
have used these models to measure the structural complexity of ecosystems (Casella et al. 2017;
D’Urban Jackson et al. 2020; Fukunaga et al. 2019; Lepczyk et al. 2021), to predict benthic
community composition and configuration (Hopkinson et al. 2020), to measure individual coral
colony growth (Lange et al. 2020) and to elucidate the cover of cryptic sessile fauna in reefs
(Kornder et al. 2021). To have a complete habitat description, 3D complexity has to be described,
and due to the spatially detailed dataset available through the expanded HyperDiver setting, such
descriptions are achievable.

6.2.1.2 Future AI workflows for ecosystem mapping
The core of future AI workflows for shallow coastal ecosystem inventorization should be in-
stance segmentation networks, as they provide the necessary tools to do both segmentation and
classification tasks. Nowadays, open source libraries and publicly available software with great
segmentation capabilities exist, such as Segment Anything Model (SAM)1 and the TagLab an-
notation tool (Pavoni et al. 2022). (Figure 6.1) presents an example of applying the SAM model
on the coral reef data presented in (Chapter 5) and (Figure 5.2) an example of semi-automatic
annotations done with the TagLab tool. Many coral colonies were accurately delineated. These
masks can be used in an AI workflow to train another ML classifier or to prompt human experts
that can classify them semi-automatically.

In (Chapter 4) two deep learning CNNs build the core of the AI workflow, one network is
used for instance segmentation (tree delineation) and one is used for semantic segmentation
(pixel-wise classification). In recent years, networks that can do both tasks simultaneously have
been developed, and are called panoptic segmentation networks (Cheng et al. 2020). These
networks provide the benefits of segmenting individuals for a given class, while densely mapping
background or contextual classes. In the dataset shown in (Chapter 5) for example, corals and
sponges could be marked to be individually segmented, while substrate classes, such as BCMs

1A product of Meta – Inc, Available on https://segment-anything.com/, (visited on: 27/12/2023)
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Figure 6.1 Example of coral reef instance segmentation using the Segment Anything Model
(SAM) from Meta, Inc. Many coral colonies are perfectly segmented, without any pre-
vious training on the dataset. Branching corals are sometimes erroneously segmented
or incomplete. Nonetheless, it provides good data points for further classification, by
human experts or automated classifiers.

and turf algae, would be classified on a per-pixel basis. These networks show promising results,
but further development is still required for them to be applicable to complex settings such as
shallow coastal ecosystems (Kattenborn et al. 2021).
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6.2.2 Future research

This doctoral project has attempted to provide evidence that shallow coastal ecosystem mapping
should consider dense sampling and thematic detail on a proximal sensing scale to produce
valuable analysis tools and to elucidate critical mechanisms of biotic and abiotic communities
in these habitats. Through a few applications of AI-enabled automated and scalable ecosystem
mapping, the benefits of detailed descriptions of these complex ecosystems were shown. However,
great scope for further development and improvement remains. A great avenue of study, that was
not explored in this body of work, is the validation of global monitoring reports on shallow coastal
ecosystems (e.g., (B. Lyons et al. 2020; Goldberg et al. 2020)) through survey-scale mapping
efforts (e.g., Chapter 3). There has been effort done in this direction in terrestrial applications
(Tsendbazar et al. 2021), but local surveys in coastal ecosystems have lacked the coverage,
sampling resolution and precise geo-referencing (in underwater surveying), to accurately compare
the two scales of measurement. Further research is required to provide good mechanisms to
compare both methods, and specially to geo-reference underwater habitat maps. As image
resolution from satellite platforms becomes finer, many of the methodologies applied in the
examples of this doctoral project could be applied on this emerging image data. For example,
mangrove canopy mapping with tree instance segmentation has already been achieved using high-
resolution satellite imagery (Lassalle et al. 2022). Given that satellites can revisit the same site
frequently, this would allow for detailed organism tracking through time. In turn, these prompts
interesting research possibilities, to determine the changes and the location of organisms across
two or more time points.

One of the aims of the studies in this doctoral thesis has been the creation of detailed habitat maps
through the use of spectrally rich data. A complementary application of spectral information is
photopigment analysis. Further research can focus on the role of relevant photopigments (e.g.,
Chlorophyll) and their distribution across environmental gradients within the biotic communities
in shallow coastal ecosystems. The availability of detailed thematic maps would even allow to
carry out this analysis on a per-species or per-genera level, elucidating the drivers for community
composition and configuration across gradients. Photopigment analysis could also determine the
health of organisms and identify stages of deterioration, for example during coral bleaching or
coral band-diseases (Fabricius 2006; Kuta et al. 2002).

In conclusion, shallow coastal ecosystem ecology and detailed ecosystem mapping through proxi-
mal sensing and AI workflows are active fields of research, undergoing rapid improvement leading
to astounding new insights. Improvements in proximal sensing platforms and AI algorithms will
help gather large datasets of shallow coastal ecosystem biotic communities, allowing to set base-
lines in remote under-studied habitats and to provide much needed consistency for accurate
temporal studies. Spatial and thematic scales that were not possible to achieve in the near past,
can elucidate patterns that were not considered before, providing new knowledge and challenging
previous beliefs. The automated and scalable analysis of composition, configuration, structure
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and function of biotic and abiotic elements in ecosystems further deepens our understanding of
natural and anthropogenic processes, that affect coral reefs and mangrove forests, facilitating
more informed protection and restoration efforts to be taken, for the benefit of these valuable
habitats and the populations depending on them.

159



Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
REFERENCES

References
B. Lyons, Mitchell, Chris M. Roelfsema, Emma V. Kennedy, Eva M. Kovacs, Rodney Bor-

rego‐Acevedo, Kathryn Markey, Meredith Roe, Doddy M. Yuwono, Daniel L. Harris, Stuart
R. Phinn, Gregory P. Asner, Jiwei Li, David E. Knapp, Nicholas S. Fabina, Kirk Larsen, Di-
mosthenis Traganos, and Nicholas J. Murray (2020). “Mapping the world’s coral reefs using a
global multiscale earth observation framework”. In: Remote Sensing in Ecology and Conserva-
tion. Ed. by Nathalie Pettorelli and Vincent Lecours, rse2.157. doi: 10.1002/rse2.157.

Bak, Rolf P. M., Gerard Nieuwland, and Erik H. Meesters (2005). “Coral reef crisis in deep and
shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire”. In: Coral
Reefs 24.3, pp. 475–479. doi: 10.1007/s00338-005-0009-1.

Beijbom, Oscar, Peter J. Edmunds, Chris Roelfsema, Jennifer Smith, David I. Kline, Benjamin
P. Neal, Matthew J. Dunlap, Vincent Moriarty, Tung-Yung Fan, Chih-Jui Tan, Stephen Chan,
Tali Treibitz, Anthony Gamst, B. Greg Mitchell, and David Kriegman (2015). “Towards Auto-
mated Annotation of Benthic Survey Images: Variability of Human Experts and Operational
Modes of Automation”. In: PLOS ONE 10.7, e0130312. doi: 10.1371/journal.pone.0130312.

Brito-Millán, Marlene, Mark J. A. Vermeij, Esmeralda A. Alcantar, and Stuart A. Sandin (2019).
“Coral reef assessments based on cover alone mask active dynamics of coral communities”. In:
Marine Ecology Progress Series 630, pp. 55–68. url: https://www.jstor.org/stable/26920540
(visited on 12/10/2023).

Cao, Yong, D. Dudley Williams, and David P. Larsen (2002). “Comparison of Ecological Com-
munities: The Problem of Sample Representativeness”. In: Ecological Monographs 72.1, pp. 41–
56. doi: 10.1890/0012-9615(2002)072[0041:COECTP]2.0.CO;2.

Carlot, Jérémy, Michalis Vousdoukas, Alessio Rovere, Theofanis Karambas, Hunter S. Lenihan,
Mohsen Kayal, Mehdi Adjeroud, Gonzalo Pérez-Rosales, Laetitia Hedouin, and Valeriano Par-
ravicini (2023). “Coral reef structural complexity loss exposes coastlines to waves”. In: Scientific
Reports 13.1, p. 1683. doi: 10.1038/s41598-023-28945-x.

Casella, Elisa, Antoine Collin, Daniel Harris, Sebastian Ferse, Sonia Bejarano, Valeriano Par-
ravicini, James L. Hench, and Alessio Rovere (2017). “Mapping coral reefs using consumer-
grade drones and structure from motion photogrammetry techniques”. In: Coral Reefs 36.1,
pp. 269–275. doi: 10.1007/s00338-016-1522-0.

Cheng, Bowen, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam,
and Liang-Chieh Chen (2020). “Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for
Bottom-Up Panoptic Segmentation”. In: arXiv:1911.10194 [cs]. arXiv: 1911.10194. url: http:
//arxiv.org/abs/1911.10194 (visited on 02/18/2021).

Chennu, Arjun, Paul Färber, Glenn De’ath, Dirk de Beer, and Katharina E. Fabricius (2017).
“A diver-operated hyperspectral imaging and topographic surveying system for automated
mapping of benthic habitats”. In: Scientific Reports 7.1, pp. 1–12. doi: 10.1038/s41598-017-
07337-y.

160

https://doi.org/10.1002/rse2.157
https://doi.org/10.1007/s00338-005-0009-1
https://doi.org/10.1371/journal.pone.0130312
https://www.jstor.org/stable/26920540
https://doi.org/10.1890/0012-9615(2002)072[0041:COECTP]2.0.CO;2
https://doi.org/10.1038/s41598-023-28945-x
https://doi.org/10.1007/s00338-016-1522-0
https://arxiv.org/abs/1911.10194
http://arxiv.org/abs/1911.10194
http://arxiv.org/abs/1911.10194
https://doi.org/10.1038/s41598-017-07337-y
https://doi.org/10.1038/s41598-017-07337-y


Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
CHAPTER 6. DISCUSSION AND OUTLOOK

D’Urban Jackson, Tim, Gareth J. Williams, Guy Walker-Springett, and Andrew J. Davies (2020).
“Three-dimensional digital mapping of ecosystems: a new era in spatial ecology”. In: Proceed-
ings of the Royal Society B: Biological Sciences 287.1920, p. 20192383. doi: 10.1098/rspb.
2019.2383.

De Bakker, Didier M., Fleur C. Van Duyl, Rolf P. M. Bak, Maggy M. Nugues, Gerard Nieuwland,
and Erik H. Meesters (2017). “40 Years of benthic community change on the Caribbean reefs
of Curaçao and Bonaire: the rise of slimy cyanobacterial mats”. In: Coral Reefs 36.2, pp. 355–
367. doi: 10.1007/s00338-016-1534-9.

Drury, Crawford, Jenna Dilworth, Eva Majerová, Carlo Caruso, and Justin B. Greer (2022).
“Expression plasticity regulates intraspecific variation in the acclimatization potential of a
reef-building coral”. In: Nature Communications 13.1, p. 4790. doi: 10.1038/s41467- 022-
32452-4.

Durante, Meghann K., Iliana B. Baums, Dana E. Williams, Sam Vohsen, and Dustin W. Kemp
(2019). “What drives phenotypic divergence among coral clonemates of Acropora palmata?”
In: Molecular Ecology 28.13, pp. 3208–3224. doi: 10.1111/mec.15140.

Fabricius, Katharina E. (2006). “Effects of irradiance, flow, and colony pigmentation on the
temperature microenvironment around corals: Implications for coral bleaching?” In: Limnology
and Oceanography 51.1, pp. 30–37. doi: 10.4319/lo.2006.51.1.0030.

Fukunaga, Atsuko, John H. R. Burns, Brianna K. Craig, and Randall K. Kosaki (2019). “In-
tegrating Three-Dimensional Benthic Habitat Characterization Techniques into Ecological
Monitoring of Coral Reefs”. In: Journal of Marine Science and Engineering 7.2, p. 27. doi:
10.3390/jmse7020027.

Goldberg, Liza, David Lagomasino, Nathan Thomas, and Temilola Fatoyinbo (2020). “Global
declines in human-driven mangrove loss”. In: Global Change Biology 26.10, pp. 5844–5855. doi:
10.1111/gcb.15275.

Graham, Nicholas A. J. (2014). “Habitat Complexity: Coral Structural Loss Leads to Fisheries
Declines”. In: Current Biology 24.9, R359–R361. doi: 10.1016/j.cub.2014.03.069.

Hänsch, R., A. Ley, and O. Hellwich (2017). “Correct and still wrong: The relationship between
sampling strategies and the estimation of the generalization error”. In: 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS). 2017 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), pp. 3672–3675. doi: 10.1109/IGARSS.2017.
8127795.

Hochberg, Eric J. and Michelle M. Gierach (2021). “Missing the Reef for the Corals: Unexpected
Trends Between Coral Reef Condition and the Environment at the Ecosystem Scale”. In:
Frontiers in Marine Science 8, p. 1191. doi: 10.3389/fmars.2021.727038.

Hopkinson, Brian M., Andrew C. King, Daniel P. Owen, Matthew Johnson-Roberson, Matthew
H. Long, and Suchendra M. Bhandarkar (2020). “Automated classification of three-dimensional
reconstructions of coral reefs using convolutional neural networks”. In: PLOS ONE 15.3,
e0230671. doi: 10.1371/journal.pone.0230671.

161

https://doi.org/10.1098/rspb.2019.2383
https://doi.org/10.1098/rspb.2019.2383
https://doi.org/10.1007/s00338-016-1534-9
https://doi.org/10.1038/s41467-022-32452-4
https://doi.org/10.1038/s41467-022-32452-4
https://doi.org/10.1111/mec.15140
https://doi.org/10.4319/lo.2006.51.1.0030
https://doi.org/10.3390/jmse7020027
https://doi.org/10.1111/gcb.15275
https://doi.org/10.1016/j.cub.2014.03.069
https://doi.org/10.1109/IGARSS.2017.8127795
https://doi.org/10.1109/IGARSS.2017.8127795
https://doi.org/10.3389/fmars.2021.727038
https://doi.org/10.1371/journal.pone.0230671


Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
REFERENCES

Jones, Alice R., Ramesh Raja Segaran, Kenneth D. Clarke, Michelle Waycott, William S. H.
Goh, and Bronwyn M. Gillanders (2020). “Estimating Mangrove Tree Biomass and Carbon
Content: A Comparison of Forest Inventory Techniques and Drone Imagery”. In: Frontiers in
Marine Science 6. url: https://www.frontiersin.org/articles/10.3389/fmars.2019.00784
(visited on 12/27/2023).

Joyce, Karen E., Kate C. Fickas, and Michelle Kalamandeen (2023). “The unique value propo-
sition for using drones to map coastal ecosystems”. In: Cambridge Prisms: Coastal Futures 1,
e6. doi: 10.1017/cft.2022.7.

Kattenborn, Teja, Jens Leitloff, Felix Schiefer, and Stefan Hinz (2021). “Review on Convolutional
Neural Networks (CNN) in vegetation remote sensing”. In: ISPRS Journal of Photogrammetry
and Remote Sensing 173, pp. 24–49. doi: 10.1016/j.isprsjprs.2020.12.010.

Kennedy, Emma V., Chris M. Roelfsema, Mitchell B. Lyons, Eva M. Kovacs, Rodney Borrego-
Acevedo, Meredith Roe, Stuart R. Phinn, Kirk Larsen, Nicholas J. Murray, Doddy Yuwono,
Jeremy Wolff, and Paul Tudman (2021). “Reef Cover, a coral reef classification for global
habitat mapping from remote sensing”. In: Scientific Data 8.1, p. 196. doi: 10.1038/s41597-
021-00958-z.

Kornder, Niklas A., Jose Cappelletto, Benjamin Mueller, Margaretha J. L. Zalm, Stephanie J.
Martinez, Mark J. A. Vermeij, Jef Huisman, and Jasper M. de Goeij (2021). “Implications
of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef
communities”. In: Coral Reefs 40.4, pp. 1137–1153. doi: 10.1007/s00338-021-02118-6.

Kuta, K. and L. Richardson (2002). “Ecological aspects of black band disease of corals: relation-
ships between disease incidence and environmental factors”. In: Coral Reefs 21.4, pp. 393–398.
doi: 10.1007/s00338-002-0261-6.

Lange, Ines D. and Chris T. Perry (2020). “A quick, easy and non‐invasive method to quantify
coral growth rates using photogrammetry and 3D model comparisons”. In: Methods in Ecology
and Evolution. Ed. by Natalie Cooper, pp. 2041–210X.13388. doi: 10.1111/2041-210X.13388.

Lassalle, Guillaume, Matheus Pinheiro Ferreira, Laura Elena Cué La Rosa, and Carlos Roberto
de Souza Filho (2022). “Deep learning-based individual tree crown delineation in mangrove
forests using very-high-resolution satellite imagery”. In: ISPRS Journal of Photogrammetry
and Remote Sensing 189, pp. 220–235. doi: 10.1016/j.isprsjprs.2022.05.002.

Lecours, Vincent (2017). “On the Use of Maps and Models in Conservation and Resource Man-
agement (Warning: Results May Vary)”. In: Frontiers in Marine Science 4, p. 288. doi: 10.
3389/fmars.2017.00288.

Lepczyk, Christopher A, Lisa M Wedding, Gregory P Asner, Simon J Pittman, Tristan Goulden,
Marc A Linderman, Jeanne Gang, and Rosalie Wright (2021). “Advancing Landscape and
Seascape Ecology from a 2D to a 3D Science”. In: BioScience 71.6, pp. 596–608. doi: 10.1093/
biosci/biab001.

Macreadie, Peter I., Andrea Anton, John A. Raven, Nicola Beaumont, Rod M. Connolly, Daniel
A. Friess, Jeffrey J. Kelleway, Hilary Kennedy, Tomohiro Kuwae, Paul S. Lavery, Catherine E.

162

https://www.frontiersin.org/articles/10.3389/fmars.2019.00784
https://doi.org/10.1017/cft.2022.7
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1038/s41597-021-00958-z
https://doi.org/10.1038/s41597-021-00958-z
https://doi.org/10.1007/s00338-021-02118-6
https://doi.org/10.1007/s00338-002-0261-6
https://doi.org/10.1111/2041-210X.13388
https://doi.org/10.1016/j.isprsjprs.2022.05.002
https://doi.org/10.3389/fmars.2017.00288
https://doi.org/10.3389/fmars.2017.00288
https://doi.org/10.1093/biosci/biab001
https://doi.org/10.1093/biosci/biab001


Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
CHAPTER 6. DISCUSSION AND OUTLOOK

Lovelock, Dan A. Smale, Eugenia T. Apostolaki, Trisha B. Atwood, Jeff Baldock, Thomas S.
Bianchi, Gail L. Chmura, Bradley D. Eyre, James W. Fourqurean, Jason M. Hall-Spencer,
Mark Huxham, Iris E. Hendriks, Dorte Krause-Jensen, Dan Laffoley, Tiziana Luisetti, Núria
Marbà, Pere Masque, Karen J. McGlathery, J. Patrick Megonigal, Daniel Murdiyarso, Bayden
D. Russell, Rui Santos, Oscar Serrano, Brian R. Silliman, Kenta Watanabe, and Carlos M.
Duarte (2019). “The future of Blue Carbon science”. In: Nature Communications 10.1, p. 3998.
doi: 10.1038/s41467-019-11693-w.

Mills, Matthew S., Mischa Ungermann, Guy Rigot, Joost den Haan, Javier X. Leon, and Tom
Schils (2023). “Assessment of the utility of underwater hyperspectral imaging for surveying and
monitoring coral reef ecosystems”. In: Scientific Reports 13.1, p. 21103. doi: 10.1038/s41598-
023-48263-6.

Muldrow, Milton, Edward C. M. Parsons, and Robert Jonas (2020). “Shifting baseline syndrome
among coral reef scientists”. In: Humanities and Social Sciences Communications 7.1, pp. 1–8.
doi: 10.1057/s41599-020-0526-0.

Navarro, Alejandro, Mary Young, Blake Allan, Paul Carnell, Peter Macreadie, and Daniel Ierodia-
conou (2020). “The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground
biomass of mangrove ecosystems”. In: Remote Sensing of Environment 242, p. 111747. doi:
10.1016/j.rse.2020.111747.

Otero, Viviana, Ruben Van De Kerchove, Behara Satyanarayana, Columba Martínez-Espinosa,
Muhammad Amir Bin Fisol, Mohd Rodila Bin Ibrahim, Ibrahim Sulong, Husain Mohd-
Lokman, Richard Lucas, and Farid Dahdouh-Guebas (2018). “Managing mangrove forests from
the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the
Matang Mangrove Forest Reserve, peninsular Malaysia”. In: Forest Ecology and Management
411, pp. 35–45. doi: 10.1016/j.foreco.2017.12.049.

Pavoni, Gaia, Massimiliano Corsini, Federico Ponchio, Alessandro Muntoni, Clinton Edwards,
Nicole Pedersen, Stuart Sandin, and Paolo Cignoni (2022). “TagLab: AI-assisted annotation
for the fast and accurate semantic segmentation of coral reef orthoimages”. In: Journal of Field
Robotics 39.3, pp. 246–262. doi: 10.1002/rob.22049.

Pichler, Maximilian and Florian Hartig (2023). “Machine learning and deep learning—A review
for ecologists”. In: Methods in Ecology and Evolution 14.4, pp. 994–1016. doi: 10.1111/2041-
210X.14061.

Riitters, Kurt (2019). “Pattern metrics for a transdisciplinary landscape ecology”. In: Landscape
Ecology 34.9, pp. 2057–2063. doi: 10.1007/s10980-018-0755-4.

Rogers, Alice, Julia L. Blanchard, and Peter J. Mumby (2014). “Vulnerability of Coral Reef
Fisheries to a Loss of Structural Complexity”. In: Current Biology 24.9, pp. 1000–1005. doi:
10.1016/j.cub.2014.03.026.

Schürholz, Daniel, Gustavo Adolfo Castellanos-Galindo, Elisa Casella, Juan Carlos Mejía-Rentería,
and Arjun Chennu (2023). Detailed tree inventory and area coverage of remote mangrove

163

https://doi.org/10.1038/s41467-019-11693-w
https://doi.org/10.1038/s41598-023-48263-6
https://doi.org/10.1038/s41598-023-48263-6
https://doi.org/10.1057/s41599-020-0526-0
https://doi.org/10.1016/j.rse.2020.111747
https://doi.org/10.1016/j.foreco.2017.12.049
https://doi.org/10.1002/rob.22049
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1007/s10980-018-0755-4
https://doi.org/10.1016/j.cub.2014.03.026


Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
REFERENCES

forests (species: Pelliciera rhizophorae and Rhizophora mangle) in the Utría National Park in
the Colombian Pacific Coast. doi: 10.1594/PANGAEA.962229.

Schürholz, Daniel and Arjun Chennu (2022a). Dense and taxonomically detailed habitat maps of
coral reef benthos machine-generated from underwater hyperspectral transects in Curaçao. doi:
10.1594/PANGAEA.946315.

– (2022b). Digitizing the coral reef: a complete workflow for dense taxonomic mapping of benthic
habitats with machine learning of underwater hyperspectral images. doi: 10 .5281/zenodo .
7185108.

Song, Shanshan, Yali Ding, Wei Li, Yuchen Meng, Jian Zhou, Ruikun Gou, Conghe Zhang,
Shengbin Ye, Neil Saintilan, Ken W. Krauss, Stephen Crooks, Shuguo Lv, and Guanghui Lin
(2023). “Mangrove reforestation provides greater blue carbon benefit than afforestation for
mitigating global climate change”. In: Nature Communications 14.1, p. 756. doi: 10.1038/
s41467-023-36477-1.

Sparrow, Ben D., Will Edwards, Samantha E.M. Munroe, Glenda M. Wardle, Greg R. Guerin,
Jean-Francois Bastin, Beryl Morris, Rebekah Christensen, Stuart Phinn, and Andrew J. Lowe
(2020). “Effective ecosystem monitoring requires a multi-scaled approach”. In: Biological Re-
views 95.6, pp. 1706–1719. doi: 10.1111/brv.12636.

Teague, Jonathan, John C. C. Day, Michael J. Allen, Thomas B. Scott, Eric J. Hochberg, and
David Megson-Smith (2023). “A Demonstration of the Capability of Low-Cost Hyperspectral
Imaging for the Characterisation of Coral Reefs”. In: Oceans 4.3, pp. 286–300. doi: 10.3390/
oceans4030020.

Teague, Jonathan, Jack Willans, Michael J. Allen, Thomas B. Scott, and John C. C. Day (2019).
“Hyperspectral imaging as a tool for assessing coral health utilising natural fluorescence”. In:
Journal of Spectral Imaging 8. doi: 10.1255/jsi.2019.a7.

Tsendbazar, N., M. Herold, L. Li, A. Tarko, S. de Bruin, D. Masiliunas, M. Lesiv, S. Fritz, M.
Buchhorn, B. Smets, R. Van De Kerchove, and M. Duerauer (2021). “Towards operational val-
idation of annual global land cover maps”. In: Remote Sensing of Environment 266, p. 112686.
doi: 10.1016/j.rse.2021.112686.

Tucker, Compton, Martin Brandt, Pierre Hiernaux, Ankit Kariryaa, Kjeld Rasmussen, Jen-
nifer Small, Christian Igel, Florian Reiner, Katherine Melocik, Jesse Meyer, Scott Sinno, Eric
Romero, Erin Glennie, Yasmin Fitts, August Morin, Jorge Pinzon, Devin McClain, Paul Morin,
Claire Porter, Shane Loeffler, Laurent Kergoat, Bil-Assanou Issoufou, Patrice Savadogo, Jean-
Pierre Wigneron, Benjamin Poulter, Philippe Ciais, Robert Kaufmann, Ranga Myneni, Sassan
Saatchi, and Rasmus Fensholt (2023). “Sub-continental-scale carbon stocks of individual trees
in African drylands”. In: Nature 615.7950, pp. 80–86. doi: 10.1038/s41586-022-05653-6.

Wirasatriya, Anindya, Rudhi Pribadi, Sigit Bayhu Iryanthony, Lilik Maslukah, Denny Nugroho
Sugianto, Muhammad Helmi, Raditya Rizki Ananta, Novi Susetyo Adi, Terry Louise Kepel,
Restu N. A. Ati, Mariska A. Kusumaningtyas, Rempei Suwa, Raghab Ray, Takashi Naka-
mura, and Kazuo Nadaoka (2022). “Mangrove Above-Ground Biomass and Carbon Stock in

164

https://doi.org/10.1594/PANGAEA.962229
https://doi.org/10.1594/PANGAEA.946315
https://doi.org/10.5281/zenodo.7185108
https://doi.org/10.5281/zenodo.7185108
https://doi.org/10.1038/s41467-023-36477-1
https://doi.org/10.1038/s41467-023-36477-1
https://doi.org/10.1111/brv.12636
https://doi.org/10.3390/oceans4030020
https://doi.org/10.3390/oceans4030020
https://doi.org/10.1255/jsi.2019.a7
https://doi.org/10.1016/j.rse.2021.112686
https://doi.org/10.1038/s41586-022-05653-6


Doctoral Thesis Proximal Sensing For Scalable Mapping Of Shallow Coastal Ecosystems
CHAPTER 6. DISCUSSION AND OUTLOOK

the Karimunjawa-Kemujan Islands Estimated from Unmanned Aerial Vehicle-Imagery”. In:
Sustainability 14.2, p. 706. doi: 10.3390/su14020706.

Wyatt, Mathew, Ben Radford, Nikolaus Callow, Mohammed Bennamoun, and Sharyn Hickey
(2022). “Using ensemble methods to improve the robustness of deep learning for image classi-
fication in marine environments”. In: Methods in Ecology and Evolution 13.6, pp. 1317–1328.
doi: 10.1111/2041-210X.13841.

Xu, Yongjun, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen Liu, Yanjun
Wu, Fengliang Dong, Cheng-Wei Qiu, Junjun Qiu, Keqin Hua, Wentao Su, Jian Wu, Huiyu
Xu, Yong Han, Chenguang Fu, Zhigang Yin, Miao Liu, Ronald Roepman, Sabine Dietmann,
Marko Virta, Fredrick Kengara, Ze Zhang, Lifu Zhang, Taolan Zhao, Ji Dai, Jialiang Yang,
Liang Lan, Ming Luo, Zhaofeng Liu, Tao An, Bin Zhang, Xiao He, Shan Cong, Xiaohong
Liu, Wei Zhang, James P. Lewis, James M. Tiedje, Qi Wang, Zhulin An, Fei Wang, Libo
Zhang, Tao Huang, Chuan Lu, Zhipeng Cai, Fang Wang, and Jiabao Zhang (2021). “Artificial
intelligence: A powerful paradigm for scientific research”. In: The Innovation 2.4, p. 100179.
doi: 10.1016/j.xinn.2021.100179.

Zhong, Zilong, Jonathan Li, Zhiming Luo, and Michael Chapman (2018). “Spectral–Spatial
Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework”.
In: IEEE Transactions on Geoscience and Remote Sensing 56.2, pp. 847–858. doi: 10.1109/
TGRS.2017.2755542.

165

https://doi.org/10.3390/su14020706
https://doi.org/10.1111/2041-210X.13841
https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/10.1109/TGRS.2017.2755542
https://doi.org/10.1109/TGRS.2017.2755542




Part IV

Appendix

167





Appendix A

Supplementary material for Chapter 2: Dig-
itizing The Coral Reef

A.1 Spectral-spatial neural network parameters and machine
learning libraries

The parameters used for training the spectral-spatial neural network were: a batch size of 32, a
number of epochs of 32 and an input patch size of 13×13 pixels. Cross entropy loss with weight
balancing based on class abundance was used as the loss function during network training. The
optimizer was a rectified Adam function with a weight decay value of 1.5 and had a β of 0.999
(Liu et al. 2021). The learning rate value was adjusted by a cyclic learning rate scheduler,
oscillating from 1e−8 to 1e−3 in triangular ramps with a step of 250 batches of data samples.
The whole network training workflow was built with the PyTorch library (Paszke et al. 2019), the
Skorch machine learning workflow management library (https://github.com/skorch-dev/skorch)
and the Mlflow training visualization tool (https://github.com/mlflow/mlflow/). Training was
performed on a machine with two Nvidia RTX2080 GPUs, each with 12Gb of dedicated memory.

The principal component analysis done for the segmented method was implemented using the
scikit-learn library (Pedregosa et al. 2011). Furthermore, the watershed algorithm from the scikit-
image library was used (Walt et al. 2014). Dense conditional random fields (DCRF) were imple-
mented with the pyDenseCRF python library (https://github.com/lucasb-eyer/pydensecrf).
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A.2 Supplementary Figures

Figure A.1 Class distributions of detailed annotations. The dataset shows a large class imbalance
in annotation regions in learning and validation transects. Classes such as Sediment
and Turf algae are abundant in almost every transect with over 200 regions and
covering around one million pixels. Rare classes such as Lobophora variegata and
Zoanthid have only 2 and 3 regions respectively, covering only around 2000 pixels.
The annotations across classes were of similar sizes in term of number of pixels
contained, except for rare species.
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Figure A.2 Class distributions of reefgroups annotations. The reefgroups dataset less class im-
balance than the detailed labelspace learning and validation transects. Classes such
as Coral, Sediment and Turf algae are abundant in almost every transect with over
200 regions and covering around one million pixels. Rare classes such as Zoanthid
have only 2 and 3 regions respectively, covering only around 2000 pixels. The anno-
tations across classes were of similar sizes in term of number of pixels contained.

Figure A.3 Detailed and reefgroups labelspaces. (A) Detailed labelspace consisting of 43 classes,
representing the deepest possible taxonomic definition of targets in visual annotation
of underwater transects. (B) Reefgroups labelspace consisting of 11 labels for broad
reef groups and abiotic elements. Some of the reefgroups classes are divided into
two or more classes in the detailed labelspace. Shapes within the color boxes are
provided for easier identification between labelspaces.
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Figure A.4 Recall confusion matrix for patched classifier predicting into the detailed labelspace
from radiance images.
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Figure A.5 Recall confusion matrix for patched classifier predicting into the detailed labelspace
from reflectance images.
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Figure A.6 Recall confusion matrix for segmented classifier predicting into the detailed la-
belspace from radiance images.
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Figure A.7 Recall confusion matrix for segmented classifier predicting into the reefgroups la-
belspace from radiance images.

Figure A.8 Recall confusion matrix for patched classifier predicting into the reefgroups labelspace
from reflectance images.
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Figure A.9 Classification consistency for combinations of ML methods and labelspaces as in
Figure 2.4, but using reflectance data.
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Figure A.10 Habitat maps montage with workflow patched+detailed+radiance. Middle section
of 23 learning transects. Size of each section is 640x19920 pixels.
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Figure A.11 Habitat maps with workflow segmented+detailed+reflectance. Middle section of 23
learning transects. Size of each section is 640x19920 pixels.
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Figure A.12 Habitat maps montage with workflow patched+reefgroups+radiance. Middle sec-
tion of 23 learning transects. Size of each section is 640x19920 pixels.
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Figure A.13 Habitat maps montage with workflow segmented+reefgroups+radiance. Middle
section of 23 learning transects. Size of each section is 640x19920 pixels.
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Figure A.14 Correlation and mean-difference (Bland-Altmann) plots of percent coverage from
22 transects for 5 dominant reef classes (see Figure 2.6 for Coral and Sediment
plots). The coralline algae cover correlation plot (A) shows good correlation of
both methods in transects with low coralline algae coverage and disagreement on
transects with more than 15% coverage. The mean-difference plot (B) show no
bias towards any of the methods, with only two transects showing high differences
between the methods. The turf algae cover correlation plot (C) shows a slight
over-estimation by the patched method in almost all transects, which is confirmed
by a bias of 10% in the in the mean-difference plot (D). The Macroalgae cover
correlation plot (E) shows agreement between the methods in all 21 transects,
and the mean-difference plot (E) shows no bias towards any of the methods. The
cyanobacterial mat cover correlation plot (G) shows slight over-estimation of cover
from the segmented method, but overall good alignment of the methods. The
mean-difference plot (H) shows the bias of 4% towards the segmented method.
The sponge cover correlation plot (I) shows disagreement between the methods,
specially in transects with higher sponge cover. From visual inspection of the maps,
it appears that the segmented classifier predicted darkened areas of the transects
(which have much lower prediction confidence) as sponges. Due to the low overall
cover of the sponge class in the dataset, the mean-difference plot (J) does not show
a big bias towards any of the two methods.
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Figure A.15 Configurational similarity assessed using the Jaccard index between the reefgroups
and detailed-to-reefgroups habitat maps for all dominant classes, expanding on
panel F of Figure 2.6. The patched method produces more spatially congruent
predictions between the two labelspaces for most of the dominant classes (as shown
by the median values): Cyanobacterial mat, Coral, Macroalgae, Materials, Soft
coral, Hydrozoa and Coralline algae. Maps produced with the segmented method
showed higher configurational similarity between both labelspaces for the remaining
classes: Sediment, Turf algae, Zoanthid and Sponge.
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Supplementary material for Chapter 3: Cu-
raçao reefs under the hyperspectral lens

B.1 Supplementary figures
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Appendix C

Supplementary material for Chapter 5: Re-
moving the turbid veil to count corals

C.1 Supplementary figures

Figure C.1 Scleractinian coral community across the turbidity and depth gradient of 3 coral reefs
in the Spermonde Archipelago.
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Appendix D

Published source code and datasets

D.1 (Source code) Digitizing the coral reef: a complete work-
flow for dense taxonomic mapping of benthic habitats
with machine learning of underwater hyperspectral images
(1.0.0)

Published as Schürholz, Daniel & Chennu, Arjun. (2022). Digitizing the coral reef: a complete
workflow for dense taxonomic mapping of benthic habitats with machine learning of underwater
hyperspectral images (1.0.0). Zenodo. DOI: 10.5281/zenodo.7185108

D.1.1 Source code repository description
This repository contains the source code to reproduce the work presented in ”Digitizing the
coral reef: machine learning of underwater spectral images enables dense taxonomic mapping
of benthic habitats”, written and developed by Daniel Schürholz and Arjun Chennu. The work
describes the survey scale mapping of hyperspectral data acquired in the coral reefs of Curacao
island in the Caribbean. The repository contains the complete workflow for the creation of
habitat maps of benthic communities from underwater hyperspectral scans, and can be adapted
to new survey sites.
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D.2 (Dataset) Dense and taxonomically detailed habitat maps
of coral reef benthos machine-generated from underwater
hyperspectral transects in Curaçao

Published as Schürholz, Daniel & Chennu, Arjun (2022). Dense and taxonomically detailed
habitat maps of coral reef benthos machine-generated from underwater hyperspectral transects
in Curaçao. PANGAEA. DOI: 10.1594/PANGAEA.946315

D.2.1 Dataset description

This dataset contains 248 benthic habitat maps, that were created from 31 underwater hyper-
spectral images captured with the HyperDiver device in 8 reef sites across the western coastline
of Curacao (see https://doi.org/10.3390/data5010019 for information on the acquisition of the
transects). The maps were produced by 8 combinations of two semantic labelspaces (detailed and
reefgroups), two machine learning classifiers (patched and segmented), and two spectral signals
(radiance and reflectance). Maps in the detailed labelspace have each pixel assigned to one of 43
labels, which are taxonomic labels at family, genus and species levels for biotic components of
the reef (corals, sponges, macroalgae, etc.), as well as substrate labels (sediment, cyanobacterial
mats, turf algae) and survey material labels (transect tape, reference board, etc.). The set of
maps in the reefgroups labelspace cluster the labels in the detailed labelspace into 11 classes that
describe reef functional groups (i.e. corals, sponges, algae, etc.). All habitat maps were produced
with high accuracy (Fbeta 87%), by two different machine learning methods: a random forest
ensemble classifier (segmented method) and a deep learning neural network classifier (patched
method). The maps are further divided by the signal type from the hyperspectral image that
was used, either radiance or reflectance (the latter was calculated with a reference board located
at the beginning and end of each transect). These benthic habitat maps can be used to obtain
accurate descriptions of the benthic community and habitat structure of coral reef sites in Cura-
cao. The dataset also contains: an assessment of the accuracy and data efficiency of the machine
learning methods, a consistency assessment of the mapped regions, a comparison of habitat met-
rics (class coverage, biodiversity indices, composition and configuration) between habitat maps
produced by each method, and an effort-vs-error analysis of sparse sampling techniques on the
densely classified maps.
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D.3 (Dataset) Detailed tree inventory and area coverage of
remote mangrove forests (species: Pelliciera rhizophorae
and Rhizophora mangle) in the Utría National Park in the
Colombian Pacific Coast

Published as Schürholz, Daniel; Castellanos-Galindo, Gustavo Adolfo; Casella, Elisa; Mejía-
Rentería, Juan Carlos; Chennu, Arjun (2023). Detailed tree inventory and area coverage of
remote mangrove forests (species: Pelliciera rhizophorae and Rhizophora mangle) in the Utría
National Park in the Colombian Pacific Coast. PANGAEA. DOI: 10.1594/PANGAEA.962229

D.3.1 Dataset description
This dataset contains detailed inventories of 7 large plots of mangrove forests in the Utría Na-
tional Park in the Colombian Pacific Coast. The inventory consists of individual geo-referenced
tree masks for the endemic Pelliciera rhizophorae species, and area coverages for the Rhizophora
mangle species, as well as Mud and Water areas. For each individual tree of the Pelliciera rhi-
zophorae species we provide the predicted height, crown diameter and crown area. We also
provide the cover area of the other predicted classes. The inventories were automatically pro-
duced with trained Artificial Intelligence (AI) algorithms. The algorithms were trained with
orthomosaic images and digital surface models (DSMs) produced from Unoccupied Aerial Sys-
tem (UAS) imagery with Structure-from-Motion software, both paired with expert annotations
of the trees and areas. In this dataset we provide all the input data for the algorithms, as well
as the predicted geo-referenced data products, such as: predicted Pelliciera rhizophorae tree
masks, Rhizophora mangle areas, Water areas, Mud areas, canopy height models (CHM), digital
elevation models (DEM), digital terrain models (DTM) and various ancillary images. We also
provide the initial orthomosaic files and the DSM files, that were produced with SfM software
Agisoft Metashape v1.6.2 from the aerial footage captured in 2019 (19–22 February) using two
consumer-grade UASs: the DJI Phantom 4 and DJI Mavic Pro (SZ DJI Technology Co., Ltd—
Shenzhen, China). The DJI Phantom 4 has an integrated photo camera, the DJI FC330 and the
DJI Mavic Pro was equipped with the integrated DJI FC220. The flights were programmed to
follow the trajectories in an automated mode by means of the commercial application ”DroneDe-
ploy”. Ground control points (GCPs) were positioned in the field, and their geographic location
was acquired. We used two single-band global navigation satellite system (GNSS) receivers: an
Emlid Reach RS+ single-band real-time kinematics (RTK) GNSS receiver (Emlid Tech Kft.—
Budapest, Hungary) as a base station, and a Bad Elf GNSS Surveyor handheld GPS (Bad Elf,
LLC—West Hartford, AZ, USA). RINEX static data from the base station was processed with
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the Precise Point Positioning Service (PPP) of the Natural Resources of Canada, while rover
position was processed using the RTKLib software through a post processed kinematics (PPK)
workflow. The final absolute positional accuracy of the products is below one meter because the
results of the PPP workflow has a positional accuracy between 0.2 m and 1 m.
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