
Fish Age Reading and Otolith

Analysis Using Deep Learning

Arjay Cayetano

Dissertation

2024



Fish Age Reading and Otolith Analysis
Using Deep Learning

Arjay Cayetano

Dissertation zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

Dr. rer. nat.

Universität Bremen

Fachbereich 2

August 2024



Summary

Fish age reading is a crucial step in the proper management of fisheries. To determine
the fish age, several methods have been developed making use of fish structures that give
clues on fish growth throughout the different seasons. Supported by years of extensive
research and validation efforts, the use of otoliths (ear stones) has become the standard
approach.

Within otoliths, there are growth rings (annuli) that form patterns through uneven
calcium carbonate deposition influenced mainly by seasonal factors affecting the fish
growth. Hence, the traditional age reading methodology works by visual inspection
and manual counting of these rings to derive the fish age. However, certain cases make
the process problematic and error-prone. As these errors have big impact on fisheries
management, it is important to explore ways on how these can be prevented.

The field of computer vision provides a means to make the process of age reading less
reliant on subjective interpretations. Using otolith images, many studies applied classical
image processing techniques that take advantage of the changes on image intensity when
traversing the otolith from the center to the outer edge.

With the progress in artificial intelligence (AI), computer vision methods have taken a
new level of sophistication. Using machine learning algorithms, AI models are trained
to learn the patterns of growth on the otolith. Early approaches in this direction utilized
classical algorithms such as Support Vector Machines (SVMs) and Artificial Neural Net-
works (ANNs) and some also employed feature engineering in order to create meaningful
feature sets (e.g., intensity signals) to be used by the algorithms.

Recently, deep learning (DL) algorithms such as Convolutional Neural Networks
(CNNs) have gain substantial popularity as they outperform those classical machine
learning methods. Early works on DL-based fish age reading have shown excellent accu-
racy on estimating the fish age based on otolith images. However, the main drawback is
that they are formulated as classification or regression making them incompatible with
traditional ring counting protocols.

In this thesis project, a different perspective for using deep learning on the task of fish
age reading was explored. The methods applied were designed to specifically detect
and annotate the annuli which are then counted to derive the fish age. Two different
object detection and segmentation algorithms were used namely, Mask R-CNN and U-
Net. In this thesis, the effectiveness of the two methods was demonstrated along with
the tools developed to make the approaches widely accepted by the community. In
addition, the study elucidated advanced techniques to improve the accuracy further and
also highlighted additional related tasks for general otolith analysis that both algorithms
managed to perform effectively.
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Zusammenfassung

Alterslesungen von Fischen sind ein entscheidender Schritt für die effektive Bewirtschaf-
tung der Fischerei. Zur Bestimmung des Fischalters wurden mehrere Methoden entwickelt,
die sich Fischstrukturen zunutze machen, die Hinweise auf das Wachstum der Fische im
Laufe der verschiedenen Jahreszeiten geben. Unterstützt durch jahrelange, umfangre-
iche Forschungs- und Validierungsbemühungen hat sich die Verwendung von Otolithen
(Gehörsteinen) zum Standardansatz entwickelt.

In den Otolithen befinden sich Wachstumsringe (Annuli), die durch ungleichmäßige
Kalziumkarbonatablagerungen Muster bilden, die hauptsächlich durch saisonale Faktoren
beeinflusst werden, die das Fischwachstum beeinflussen. Die traditionelle Methode
zur Altersbestimmung beruht daher auf der visuellen Inspektion und dem manuellen
Zählen dieser Ringe. In bestimmten Fällen ist dieses Verfahren jedoch problematisch und
fehleranfällig. Da diese Fehler große Auswirkungen auf die Fischereiverwaltung haben,
ist es wichtig, Wege zu finden, wie solche Fehler verhindert werden können.

Der Bereich der Computervision bietet eine Möglichkeit, den Prozess der Altersbes-
timmung weniger abhängig von subjektiven Interpretationen zu machen. Bei der Ver-
wendung von Otolithenbildern wurden in vielen Studien klassische Bildverarbeitung-
stechniken angewandt, die sich die Änderungen der Bildintensität beim Durchlaufen des
Otolithen von der Mitte zum äußeren Rand zunutze machen.

Mit den Fortschritten in der künstlichen Intelligenz (KI) haben die Methoden der
Computer-Vision eine neue Stufe der Raffinesse erreicht. Mithilfe von Algorithmen des
maschinellen Lernens werden KI-Modelle trainiert, um die Wachstumsmuster auf dem
Otolithen zu lernen. Frühe Ansätze in dieser Richtung nutzten klassische Algorithmen
wie Support Vector Machines (SVMs) und Artificial Neural Networks (ANNs), und einige
setzten auch Feature Engineering ein, um aussagekräftige Feature-Sets (z. B. Intensitätssig-
nale) zu erstellen, die von den Algorithmen verwendet werden.

In letzter Zeit haben Algorithmen des Deep Learning (DL), wie z. B. Convolutional
Neural Networks (CNNs), erheblich an Popularität gewonnen, da sie diese klassischen
Methoden des maschinellen Lernens übertreffen. Frühe Arbeiten zur DL-basierten Alters-
bestimmung von Fischen haben eine ausgezeichnete Genauigkeit bei der Schätzung des
Fischalters auf der Grundlage von Otolithenbildern gezeigt. Der größte Nachteil besteht
jedoch darin, dass sie als Klassifizierungs- oder Regressionsverfahren formuliert sind, was
sie mit traditionellen Ringzählungsprotokollen inkompatibel macht.

In dieser Arbeit wurde eine andere Perspektive für den Einsatz von Deep Learning bei
der Altersbestimmung von Fischen erforscht. Die angewandten Methoden wurden so
konzipiert, dass sie Wachstumsringe erkennen und beschriften, die dann gezählt werden,
um das Fischalter abzuleiten. Es wurden zwei verschiedene Algorithmen zur Objekterken-
nung und -segmentierung verwendet, nämlich Mask R-CNN und U-Net. In dieser Arbeit
wurde die Effektivität der beiden Methoden demonstriert, und es wurden Werkzeuge
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entwickelt, um die Ansätze in der Community zu verbreiten. Darüber hinaus wurden in
der Studie fortgeschrittene Techniken zur weiteren Verbesserung der Genauigkeit erläutert
und zusätzliche verwandte Aufgaben für die allgemeine Otolithenanalyse hervorgehoben,
die beide Algorithmen effektiv durchführen konnten.
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Chapter 1

General Introduction

1.1 Stock Assessments and Fish Age

Determining the age of fish is one of the most basic yet important steps in the accurate
assessment of fish stocks, which plays a vital role in fisheries management and monitoring
as well as in the analysis of fish population dynamics. The age variable along with
the corresponding year-class determination is required in the calculations regarding
growth and mortality rates (Campana and Thorrold, 2001) as well as in the multitude of
mathematical equations/statistical methods (e.g., catch curves and age-at-length keys)
involved in the stock assessment as basis of sustainable fisheries (Martin and Cook, 1990;
Thorson and Prager, 2011; Campana, 2001).

Hence, both over- and under-estimation of this biological variable can lead to detri-
mental effects, with the latter error appearing to be more common (Campana, 2001). One
notable example is the ageing error (van den Broek, 1983; Smith et al., 1995) involving
orange roughy (Hoplostethus atlanticus) in New Zealand where the age was underesti-
mated by a wide margin (i.e. initially thought to attain an age limit of 20-30 years, but was
found later to reach around 100 years). This has caused their population to be projected
erroneously which led to mismanagement. Other reported ageing errors include those
involving Sebastes spp in eastern and western Canada (Chilton and Beamish, 1982), and
walleye pollock in Central Bering Sea (Beamish and McFarlane, 1995), which also have
caused problems related to overfishing resulting to their declining biomasses in a relatively
short periods of time. Erroneous estimates of the growth rate, age structures, maturity
and lifespan of various fish species and stocks can cause too optimistic projections when
it comes to their population productivity, causing mismanagement by setting too high
fishing quotas (Campana, 2001).

Obtaining the age of a fish is not a simple process. The most straightforward yet highly
inaccurate method is to get the correlation between the length of the fish and age. For
example, the so-called Petersen method (Lux and Service, 1971) has been widely applied
as a simple way of estimation which works quite well for shorter-lived fish. The idea is to
get the frequency of fish in a particular sample having a specific length range to obtain a
frequency plot. Figure 1.1 shows a typical plot of fish age versus length that highlights

1
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the limitation of this estimation method. As it can be immediately seen, the main problem
occurs at higher age values where there is a significant overlap between their lengths,
depicted in the plot as the plateauing of length values after reaching certain age.

Figure 1.1: A plot of fish age versus length along with a curve-fitting procedure (extracted
from Nichols and DeMartini (2008)).

It is therefore important to come up with a more scientifically sound and accurate
approach to obtain the fish age. Throughout the decades, many effective approaches have
already been employed for fish ageing and it still continuously being improved year after
year (Campana, 2001). Moreover, there has been a lot of refinements/improvements in
the age reading protocols used which have been disseminated through various events,
seminars, workshops and exchanges (Vitale et al., 2019). Also, quality control procedures
have been implemented such as having expert-trainee pairs, in a form of apprenticeship
where a new reader can be sufficiently guided by the experienced reader. Lastly, it is
also sometimes encouraged, whenever possible, to have multiple readers per fish species
to help maintain a good quality checking scenario/environment. In the age of artificial
intelligence, it would be very interesting to see how it can still be further improved
especially with the modern tools that AI provides.

1.2 Otoliths and Traditional Age Reading

Fundamentally, the process of fish age reading has its inspiration from the field of den-
drochronology (VanderKooy et al., 2020), where growth patterns among trees are being
studied. The cross-section of tree trunks turned out to contain periodic patterns that
indicate the number of years of a particular tree. Similarly, researchers tried to find if
there is also a fish structure that can also provide reliable patterns that is indicative of the
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changing seasons.

The notion that there could be body structures in fish that can indicate periodic/seasonal
patterns has been conceptualized even during the early centuries (Jackson, 2007). Anton
van Leewenhook through the use of early microscopy have studied different parts of
fish that would reveal the fish age. Scales and fins are prime candidates for these season-
induced growth pattern formations. First, they have the advantage of easy extraction as
they do not require dissecting the fish. However, this also comes with some problems
such as the potential to be destroyed in the wild environment of the fish. In this case, these
structures will be reabsorbed and regrow causing errors in the age estimate (Campana
and Thorrold, 2001).

Due to these problems with external structures, the importance of alternative fish
structures which are more stable and do not experience resorption (Campana and Thorrold,
2001) has been greatly highlighted. Focus has then shifted towards internal structures,
particularly otoliths, and through the various validation studies (Campana, 2001), it
became eventually clear that it gives the most accurate estimate among all the alternatives.

Hence, in recent years, the use of otoliths has then become the standard practice. While
it has the primary disadvantage of having to kill and dissect the fish, it makes up for its
many useful characteristics. These include continual growth and relative isolation from
external conditions as well as the absence of any possibility of resorption (Campana and
Thorrold, 2001) .

As part of the inner ear, otoliths are responsible for the balance, movement, and the
hearing sense of a fish (Schulz-Mirbach et al., 2019; Campana, 1999). Inside the inner ear,
there are three pairs of otoliths situated namely the sagittae, lapilli and the asterisci. As the
largest of the three pairs, the sagittae are the commonly used otoliths for age reading. The
other two can also be used albeit to a lesser degree. Figure 1.2 shows a simple illustration
showing the general structure of the fish inner ear and where the three pairs of otoliths
are located inside it.

Figure 1.2: An illustration of the the inner ear structure of fish along with the relative
locations of the otoliths (extracted from VanderKooy et al. (2020)).
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Otolith Preparation

As mentioned earlier, one of the main drawbacks of using otoliths for fish age reading is
the fact that one needs to kill and dissect the fish in order to extract the otoliths. Also, the
whole sequence of steps is not straightforward and certain specific steps and specialized
tools are required. The next subsections enumerate the major steps for the otolith image
preparation and some extra considerations taken for proper handling (Bernreuther and
Wilhelms, 2013).

• Dissection of the Fish

Here the fish is cut along the ventral side starting from the pelvic fin up until the
head region. Using a scalpel or pair of scissors, the head area is split into two and
then the obstructing structures are removed (e.g., gills and other tissues). After this
step, the otoliths will then become visible.

Inside the concavity containing the fish brain, otoliths can be found located
around the area underneath or near the eye socket. In most fishes, the largest otolith,
the sagitta, can be located easily along the vicinity of the skull. Using forceps, the
sagitta can then be easily taken out without much resistance.

Figure 1.3: Preparation and dissection of fish.

• Extraction of Otoliths

After extraction, the otoliths are then collected, cleaned and organized into groups
for the next step. For species such as herring, the collected whole otoliths can be
used directly for analysis and microscopy and the steps related to sectioning can
be skipped. For other species such as cod, it is common to perform sectioning first
before analysis can be done. The core or nucleus of the otolith is marked using a
pencil so that upon sectioning, the slice will be made in the portion where the centre
of the otolith is represented fully.
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Figure 1.4: Extraction and cleaning of otoliths

• Embedding

Next comes the embedding of the otoliths to a resin so that they can stay in place for
easy sectioning. In this step, the otoliths are placed in a container to be filled with
polyester resin to be poured in two separate stages. Extra care is needed so that the
formation of bubbles will be prevented which may interfere with the microscopy
and image analysis. The first batch of resin poured on the empty container takes
about half an hour to solidify. Then, the collected otoliths can be placed on top of the
resin with an aligned placements and uniform orientations. Afterwards, the second
batch of resin is poured which takes longer (days) to solidify fully. It is important
to make sure that every portion has already dried up before proceeding to the next
steps.

Figure 1.5: Embedding of otoliths on a polyester resin.
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• Cutting or Sectioning

After the resin dries up, the otoliths can now be subjected to sectioning. Using the
marked portions of the otoliths, a diamond-coated double sawing blade is positioned
to cut the otoliths into sections passing through the nucleus or core. The thin sections
can then be mounted flat on a glass slide (i.e., in some laboratories, the glass slide is
guided by a piece of spaghetti noodle which is having the same thickness as the thin
otolith section). Care must be taken such that the placement of the otolith sections
on the slide is secure and stable.

Figure 1.6: Otolith sectioning using specialized tool.

• Viewing

Finally, viewing of the sectioned otoliths can then be performed with a digital camera
directly connected to the microscope eyepiece/viewport that can take pictures with
the help of bundled imaging software. Here, certain adjustments to the image can be
done such as increasing the brightness or exposure, zooming in or out as necessary
and some other image preprocessing which might be specific to the reader or the
laboratory. Once the images are captured, they are saved and organized properly in
a folder while at the same time, the reader records the relevant metadata such as the
fish identifier, trip number and other important information. Optionally, this is also
the step in which the age reader makes the manual reading which can be recorded
right away on the metadata.

At this point, it would be good to emphasize that this is the step where the
AI-based methods developed so far are designed to be engaged (i.e., can be of help
or assistance). As pointed by Moen et al. (2018), the bulk of the processing is actually
spent on the other steps and the time-saving benefit of AI-based approaches are not
really amounting to a significant proportion. Nevertheless, this is the most important
part since it is the step where errors are made which have big consequences, as
highlighted in the earlier sections. Hence, this will be the crucial stage in which
AI-based approaches can be of great utility.
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Figure 1.7: Microscopy and viewing of otolith image.

1.3 Workshops and Exchanges

In order to provide reliable estimate, extensive training of age readers is required which
can take several years. Sometimes, the protocols can be highly specific to a given species
and can even be contradictory to the guidelines for other species. Lastly, workshops
and exchanges are needed which create an avenue for age readers to cross-check each
other’s methodologies and to come up with consistent and comprehensive guidelines. An
example of an output from a workshop is shown in Figure 1.8.

Figure 1.8: Sample result of a workshop measuring the values for percent agreement,
standard deviation and coefficient of variation (CV) among age readers for North Sea cod.
(extracted from ICES (2008)).
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It can be seen from the sample workshop results (ICES, 2008) that there can be a wide
range of disagreements among the age readers. For deciding the accuracy, the modal
age (i.e., the most common) is often taken as the accepted value of the age from which
evaluation can be done. In addition to the percent agreement, another important metric
computed from the workshops is the so-called Coefficient of Variation (CV) which is
basically a measure of the standard deviation over the mean of the age readings. This will
indicate the degree in which the readings differ from each other and hence will be a good
measure of the overall agreement among the age readers.

1.4 Age Validation

As mentioned in the previous section, the modal age among the readers can be considered
as the proper age in the absence of actual validated age value. However, this has a major
problem when it happens to be inaccurate due to some mis-interpretation of certain ring
features. Hence, it is important to have a reference collection of validated images in order
to check for the possibility that the guidelines for manual age reading being followed
by most readers correspond to the actual age of the fish. Unfortunately, the process of
validation is a very tedious process and can only be done in some selected circumstances.
Also, there are several types of validation techniques that can be applied depending on
the scenario and often there is no methodology that works for all fish species. These are
discussed on the next subsections as derived from the review by Campana (2001).

Carbon Dating/Bomb Radiocarbon

This method is particularly useful for long-lived fish species (Campana, 2001). This
method makes use of the nuclear testing that was conducted around 1958-1965 that cause
the release of atmospheric 14C which were eventually incorporated into the structures in
fish, corals and other animals in the sea. The radioactive decay rate for this isotope can
then be used to age the fish and validate whether the number of periodic patterns from
otoliths correspond to this computed age value.

Radiochemical Dating

This method has some similarity to the one involved with bomb radiocarbon. In this
method, however, the radioactive decay of naturally occurring radioisotopes such as
210Pb, 226Ra and 228Th are being monitored and analyzed in order to derive the fish age
(Campana, 2001). The resulting values from this analysis can then be used to validate
the age values that were derived from the traditional ring counting approach involving
otoliths or some other relevant structures.
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Mark-Recapture

In this process, certain fish cohorts of known age are tagged with a special marker (e.g.
OTC) and then are released in the wild (Campana, 2001). After certain periods of time,
these are then recaptured and studied in order to verify whether the added growth rings
in the otolith correspond to the time period they are released. This analysis is often done in
conjunction with other analyses such as age-length analysis in order to study the growth
rates and age structure of a fish stock (McQueen et al., 2018).

Marginal Increment Analysis

For this method, the underlying assumption is that, for a growth pattern to be valid,
there should be some periodicity when it comes to the formation of the pattern in pro-
portion to the time duration spent on a given partial time period (e.g. annual or even
daily) Campana (2001). Then by measuring and plotting the growth of these potential
patterns, a sinusoidal curve could be observed indicating that indeed the formation occurs
periodically. Unfortunately, although this is the most common validation technique, it has
some subjective aspects (e.g., quantifying the partial growth of a particular ring) and is
also known to be affected by the microscopy aberrations inherent in the observation of the
marginal edges.

1.5 Image Analysis and Automation

Researchers have been trying to automate ways to derive age estimates based from
otoliths. The review by Fisher and Hunter (2018) provides an interesting overview of
the different attempts for automation proposed throughout the years involving classical
image processing and traditional computer vision. The fundamental working premise of
these approaches is that the winter and summer rings will be manifested in the otolith
image as alternating dark and light bands that can be easily quantified and analyzed.
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Figure 1.9: An example of image intensity bands on a small strip of otolith along with the
corresponding intensity curve with peaks and troughs.

Several attempts in this direction (Troadec, 1991; Formella et al., 2007; Fisher and Hunter,
2018) have been tested which date back to the early days of the field of computer vision.
In this approach, the alternating band of opaque and translucent rings can be directly
measured through the changing intensity values similar to the one shown in Figure 1.9.
In this figure, the peaks and troughs of the intensity curve are counted by a variety of
peak counting algorithms or even transformed into a different space (e.g. Fourier space)
from which the counting can be done automatically. This approach has shown promising
results especially with fish species that have near consistent concentric rings such as
plaice (Fablet, 2006). However, this method suffers a lot when the growth rings are not
consistent throughout the otolith and when the outer otolith shape no longer aligns with
the curvature of the rings.

1.6 Arti�cial Intelligence and Deep Learning

The field of artificial intelligence has grown substantially over the recent decades. Some
of the famous classical algorithms include Support Vector Machines (SVMs), Random
Forests and Artificial Neural Networks (ANNs). During this classical machine learning
period, there is a separate subject area known as feature engineering (Mahony et al., 2019;
Dzieżyc et al., 2020) which involves developing methods to find the best feature sets to use
as inputs of the algorithms. Although this additional step seems tedious and complicated,
at least, there is somehow a control on the features that the algorithms will use for the
prediction, making them semi-explainable in certain ways. Also, the domain knowledge
(Dzieżyc et al., 2020) of the feature engineer is highly relevant for this part as it greatly
aids in designing the best feature sets.



SECTION 1.6. ARTIFICIAL INTELLIGENCE AND DEEP LEARNING 11

Figure 1.10: An example of convolutional neural network architecture showing the large
number of layers and the multiple operations involved.

With the introduction of deep learning, the practice of feature engineering already be-
came obsolete as the network itself can already perform the feature extraction step (Bengio
et al., 2013). In addition, the network connecting inputs and outputs became enormous
and mathematically complicated which again further contributed to its somewhat “black
box” characteristics.

In a way, most deep learning algorithms can be fundamentally compared to the clas-
sical machine learning algorithm which is the Artificial Neural Network (ANN). In this
algorithm, inputs in the form of “feature sets” are connected into nodes organized into
several layers (O’Shea and Nash, 2015). The nodes from one layer are fully-connected to
the other nodes of the next layer and so on. Most ANNs are designed with only around
3-4 layers as adding more layers greatly increases the processing time with minimal gains.
Although effective in some problems, in the early years of computing, the computational
power was too insufficient for it to work effectively with reasonable training duration.

During this classical machine learning era, there were already some ground-breaking
works from LeCun et al. (2015), which are now considered pioneering studies paving
the way for deep learning. In their deviation from the design of the artificial neural
network, they removed certain inefficient components and created various operations that
create more meaningful and computationally efficient connections and weight updates.
As a result, the Convolutional Neural Network (CNN) was developed that has certain
operations like Convolution and Pooling which transforms the original feature space into
one where the relevant and important features can be emphasized. Figure 1.10 shows
these operations and how they fit in the overall design. It can be seen that this network is
“deeper” than the classical neural network formulation as it can now contain arbitrarily
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large number of layers.

A lot of studies followed afterwards where it became clear how CNNs can perform ex-
cellently in the task of image classification. In 2012, Krizhevsky et al. (2012) demonstrated
the capability of this architecture on ImageNet dataset and outperformed the algorithms
that are considered best for the task. Since then, there were a lot of subsequent further
applications of CNN on image classification that it became the state-of-the-art when it
comes to such task.

1.7 Mask R-CNN

Region-based CNN got their name from focusing on a region of the image instead of the
entire image (He et al., 2017). Earlier algorithms utilizing this concept have undergone
incremental improvements throughout the years starting with the basic Fast R-CNN
(Girshick, 2015), which was optimized further to become Faster R-CNN (Ren et al., 2015)
then later improved to pave the way to Mask R-CNN. All of these algorithms work on a
common framework which has two basic network branches: one to detect the bounding
box of a particular region of interest (ROI) and another to predict the class (classify) of
that detected region. The main addition of Mask R-CNN to this family of algorithms is
that there is a third network branch that predicts the segmentation mask hence making it
able to accomplish both detection and segmentation tasks simultaneously (He et al., 2017).
Figure 1.11 shows the simplified architecture of Mask R-CNN.

Figure 1.11: Network design of Mask R-CNN showing the multiple branches of the
architecture(extracted from He et al. (2017)).



SECTION 1.8. U-NET 13

1.8 U-Net

As another widely popular algorithm based on CNN, the U-Net got its name from the
“U” shaped architecture which was designed primarily for the purpose of medical image
segmentation (Ronneberger et al., 2015). There are two distinctive phases for the algorithm.
The first phase involves a contracting path (a common CNN design) where series of
downsampling operations are applied reducing the feature dimensions but increasing
the feature channels. The second phase is the expansive path where the operations are
made for upsampling and the dimensions are increased (until it gets back to the original
image dimension) while the feature channels are reduced. Figure 1.12 shows the U-shaped
architectural design of this algorithm.

Figure 1.12: Network design of U-Net showing the typical encoder-decoder architecture
(extracted from Ronneberger et al. (2015)).

1.9 Ground-Truth Labeling

As supervised algorithms, both U-Net and Mask R-CNN require ground-truth labels for
their training. Using these labels, the algorithms can compute, during each iteration of the
training, how far their current predictions are to the expected value (i.e., the ground-truth).
In contrast to classification or regression tasks, the labels are not just categories or numeric
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values. Instead, certain regions of the image are marked in a way that describes the
location of the object of interest (i.e., object to be detected or segmented).

Naturally, the object of interest is in the form of otolith regions or specific portions of the
otoliths that are intended to be detected. For this study, the ground-truth labeling follows
the usual manual age reading practice where age readers make use of two major axes (left
and right), whichever contains the complete set of rings. When there are obstructions and
microscopic aberrations within these axes, the readers can sometimes use some other axes
such as the central axis or even along the sulcus edges. In this thesis, however, we limit
the readings only on the two major axes (i.e. dorsal (left) and ventral (right) axes), see
Figure 1.13.

Figure 1.13: Different parts and regions of an otolith, including preferred age reading axes
(extracted from MacLellan (1997)).

Visual Geometry Group Image Annotation (VIA) Tool

There are several image annotation toolkits available. Some are even commercial software
tools while others are free and also open source. Despite being of the latter category, VIA
(Dutta and Zisserman, 2019) contains all the necessary features needed for the study. In
addition, due to its public license, there are certain modifications that can be added onto it
such that the ground-truth creation becomes much simpler and faster.

By default, VIA contains several default tools that are already very convenient for
annotating images. One can create bounding boxes or circles easily through its default
shape options. For regional CNN algorithms that performs only bounding box detection
without segmentation, these typical drawing tools are already sufficient.
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In case of irregular shapes, one can use its point-by-point drawing facility to draw any
arbitrary shape that covers the object of interest. This was perfectly applicable to the case
of otolith rings although this step can become tedious and time-consuming. Hence, as part
of the project, a new feature in the form of a brush tool was incorporated and customized
into the VIA toolkit. This makes the annotation of the rings significantly easier and faster.

In addition, we edited that code so that it can be integrated into our own web-based
application. As a result, apart from the efficient brush toolkit, exporting the annotations
can be done without having to organize manually the folders as it is already connected to
the main application’s database and folder structure.

Training Loss Computation from Ground-Truth Values

During training, in simplified terms, learning is accomplished by the assignment and
updating of weights on the network depending on the computed value of the loss functions
implemented, a process known as backpropagation (O’Shea and Nash, 2015). In other
words, fine-tuning the network weights will follow (the gradient) from the computed
difference between the expected output and the predicted value.

One basic loss function is the so-called Mean Squared Error (MSE) where it computes
the average of the squared difference between the predicted and expected values. This has
been used in some widely used deep learning implementations for fish age determination
(Moen et al., 2018; Martinsen et al., 2022).

The formulation of the loss functions for the two algorithms, Mask R-CNN and U-Net,
varies significantly due to the differences in their overall designs. The Mask RCNN have
multiple loss functions due to the different tasks it is trying to accomplish. It aims to detect
the bounding box while also creating segmentations before finally trying to classify the
detected object of interest into the appropriate class.

For the U-Net, the usual formulation is in the form of single task where the network is
made to detect individual pixels of an image and classify each one whether it is a part of
the background or the actual object of interest. However, depending on certain tasks and
experiments, these loss functions can be customized and modified accordingly.

1.10 Dataset Overview

We obtained image datasets from two sources, namely, North Sea dataset and Baltic Sea
dataset. The North Sea dataset has been captured and processed by the otolith age reading
group from the Thünen Institute of Sea Fisheries. The Baltic dataset, on the other hand,
was obtained from the Thünen Institute of Baltic Sea Fisheries. Below is a figure showing
the sampling locations of the otoliths followed by paragraphs describing the details based
on the report from ICESFIshMap (2005) regarding the species involved in the study.
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Figure 1.14: General sampling locations from which large proportions of otolith images
are obtained in the study. The Baltic location is represented via zoomed-in map (extracted
from McQueen et al. (2018)).

North Sea Cod

Abundant in ICES Divisions 4a, 4b, and 2a, the North Sea cod, a stock of the Atlantic cod
(Gadus morhua), is a commercially and biologically important fish stock that comprises
a large proportion of the overall catch among several surrounding countries namely
Germany, Denmark, Norway, the UK, Belgium and the Netherlands (Horwood et al., 2006;
ICESFIshMap, 2005). Historically, the biomass of this fish stock is very high. However,
in recent years, it has undergone a substantial decline, making it a target of extensive
management and monitoring efforts.

Baltic Cod

As another subgroup of the Atlantic cod, the Baltic cod is also a subject of extensive
monitoring efforts due to its substantial decline in recent decades. In fact, there is a recent
ICES advice indicating a total ban on targeted fishing of this fish stock (Birgersson et al.,
2022; ICESFIshMap, 2005). In recent decades, in addition to high fishing pressure, the
Baltic cod has also been greatly affected by several environmental and climate factors
which is also somehow linked to the geography of the Baltic Sea.
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Saithe

As another commercially important species in this study, saithe (Pollachius virens) have
been one of the fish stocks that are abundant in the North Sea that also comprises a huge
portion of the overall catch of the German fishing fleet (Edebohls et al., 2022). This makes
it a very important fish stock to study and to properly employ accurate ageing methods.

Whiting and Haddock

Other species included in this study that are also known to be commercially important are
the whiting (Merlangius merlangus) and the haddock (Melanogrammus aeglefinus). Both of
these species also comprise a major part of the total catch in German fisheries (Edebohls
et al., 2022). Compared to the cod and saithe, these groups are not in rapid decline and it
is projected that they maintain a sustainable population (ICESFIshMap, 2005).

1.11 Research Questions

• How can the advances in the field of artificial intelligence be used to effectively
perform automated fish age reading and annotation of the annuli or growth rings?

• How can the AI based approach be designed such that it can easily gain the trust
and wide acceptance of the community?

• How will the approach hold when it comes to various datasets?

• How will it hold against different tasks involved in general otolith analysis?

• What are other important advantages of the AI-based methods and implications of
the study that can facilitate the adoption of AI for routine age reading tasks?

1.12 Thesis Structure and Publication List

The remaining chapters of the thesis are organized in the following sequence along with
the relevant publications and papers under review or in preparation.

• Chapter 2 includes the first paper (published) which involves proving the effec-
tiveness of the proposed approaches and performing benchmarks against existing
methods.

Cayetano, A., Stransky, C., Birk, A., and Brey, T. (2024). Fish Age Reading Using
Deep Learning Methods for Object Detection and Segmentation. ICES Journal Of

Marine Science 81: 687-700

• Chapter 3 includes the second paper (under review) where the topic is on extending
the algorithms further with advanced techniques as well as looking for ways to
increase the usage and adoption of the approaches for general use.
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Cayetano, A., Stransky, C., Birk, A., and Brey, T. (2024). An Interactive AI-driven
Platform for Fish Age Reading. PLOS ONE (under review)

• Chapter 4 includes the third paper (in preparation), where both methods, Mask
R-CNN and U-Net, are used not only for age reading but also for some other tasks.
Here we demonstrate their adaptability for different tasks under a multi-stage
framework.

Cayetano, A., Stransky, C., Birk, A., and Brey, T. (2024). Multi-stage Framework for
Otolith Analysis. in prep.

• Chapter 5 includes the synthesis where the findings from the different papers are
summarized and presented in ways that answers the underlying research questions
formulated for this PhD thesis.
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2.1 Abstract

Determination of individual age is one essential step in the accurate assessment of fish
stocks. In non-tropical environments, the manual count of ring-like growth patterns in
fish otoliths (ear stones) is the standard method. It relies on visual means and individual
judgement and thus is subject to bias and interpretation errors. The use of automated
pattern recognition based on machine learning may help to overcome this problem. Here,
we employ two deep learning methods based on Convolutional Neural Networks (CNNs).
The first approach utilizes the Mask R-CNN algorithm to perform object detection on
the major otolith reading axes. The second approach employs the U-Net architecture to
perform semantic segmentation on the otolith image in order to segregate the regions of
interest. For both methods, we applied a simple postprocessing to count the rings on the
output masks returned which corresponds to the age prediction. Multiple benchmark
tests indicate promising performance of our implemented approaches comparable to
recently published methods based on classical image processing and traditional CNN
implementation. Furthermore, our algorithms showed higher robustness compared to the
existing methods, while also having the capacity to extrapolate missing age groups and to
adapt to a new domain or data source.

Keywords: fish age reading, otoliths, artificial intelligence, deep learning, object detection,

segmentation

2.2 Introduction

Individual age is an essential parameter in the analysis of fish population dynamics and
thus a precondition for both sustainable management and a thorough understanding of
the ecological role of a fish stock. The common approach in estimating the age of a fish is to
make use of patterns along calcified structures such as scales and otoliths (ear stones) and
observe the appearance of the annual growth zones (or annuli) (Panfili et al. (2002)). These
growth zones are formed by the uneven deposition of calcium carbonate and proteins as
the fish experiences seasonal changes. Correspondingly, each single alternating opaque
and translucent ring formation represents a period of one year (Campana, 1999; Panfili
et al., 2002). Hence, in traditional age reading, human experts perform manual counting of
these ring patterns which require individual judgement especially if the rings are hardly
distinguishable.

The pattern of ring formations can be distinct for each fish species, hence making the
task of annual growth zone detection extremely challenging. Moreover, due to known
environmental effects on otolith growth (Campana, 1999), even different stocks of the
same species can also have different ring patterns (Williams et al., 2005). In some cases,
false rings and double rings can occur which may lead to over-estimation of fish ages.
Likewise, some rings can also be very faint and ambiguous, leading to under-estimated
age values (Campana, 1999; Carbonara and Follesa, 2019).

As otolith images and age data are collected in large quantities by various institutions
as part of routine stock assessment, it is necessary to make the process of age reading
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scalable and less error-prone. In addition, the lack of age readers for a given species
can also be a limitation due to the extensive nature of training required. Even an expert
on one species needs to be trained again for another species due to the differences in
guidelines and protocols. Hence, it is not surprising that over the recent decades, a lot
of attempts have been made to explore the possibility of automating the process. The
first approaches were based on classical image processing techniques coupled with signal
processing methods (Troadec, 1991; Formella et al., 2007; Fisher and Hunter, 2018). This
usually involves reading the intensity peaks within a specific sector of the otolith starting
from the core (nucleus) down to the outer edge.

As the field of artificial intelligence (AI) has become more and more advanced, automa-
tion efforts shifted towards the use of approaches based on machine learning. Fablet and
Josse (2005) designed one of the earliest studies utilizing machine learning algorithms to
classify otolith images according to age groups. They explored the use of Support Vector
Machines (SVM) and Artificial Neural Network (ANN) coupled with some elements of
classical image processing as part of feature engineering. The work done by Bermejo et al.
(2007) is another classical machine learning approach involving the use of hand-crafted
morphological features combined with principal component analysis (PCA) and SVM.

Recently, with the emerging popularity of deep learning, the practice of feature engi-
neering becomes obsolete due to the fact that this process is incorporated in the learning
network itself (Bengio et al., 2013). Moen et al. (2018) became one of the earliest adopters
of this technology when they used Convolutional Neural Network (CNN) and regression
to obtain good age estimates for Greenland halibut (Reinhardtius hippoglossoides) otoliths.

One main issue with this existing deep learning formulation, however, is the seemingly
black-box nature of the process. It is able to give age estimates but it provides no direct
information on how it derived such predictions. The follow-up studies by Ordoñez et al.
(2020) and Martinsen et al. (2022) aimed to find some potential clues and explanation
in the form of heatmaps indicating individual pixel relevance. While they managed to
show the focal regions considered by the algorithm, some doubts still remain as these
highlighted parts are not the usual areas associated with manual age reading process.

Another argument against the above-mentioned traditional CNN approaches is that
they are known to require a large amount of training data in order to avoid overfitting.
Hence, given a limited set of image data, it is possible that the implemented deep learning
algorithm can only handle datasets that are very similar to those used during training.
Consequently, it is very likely that the resulting deep learning model will not be robust
enough to generalize and extrapolate on seemingly unfamiliar data. Recently, there have
been several new studies implementing novel methods not covered in this study such as
the use of Transformers by Sigurdardóttir et al. (2023) and Ensemble Learning by Moen
et al. (2023) which potentially can address the mentioned shortcomings of traditional CNN
while the issues of explainability remain.

In our study, we propose to overcome these limitations by reformulating the problem
and approaching it from the perspective of object detection and segmentation. That is,
we directly adopt how the manual age reading process is done by explicitly performing
detection and/or segmentation of annual rings which will then be automatically counted
to derive the age estimates. To accomplish this, we utilize two deep learning algorithms,
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namely Mask R-CNN (He et al., 2017) and U-Net (Ronneberger et al., 2015), which are
known for their effectiveness in detecting or segmenting, respectively, any specified region
of interest on a given image.

In this proposed reformulation of the problem, we aim to reduce the level of abstraction
inherent in the process and increase the explainability of the deep learning-based approach
by making the procedure directly compatible with the traditional ring counting method
used by humans. Also, we hypothesize that the number of required images for training
will be considerably less as each image is already composed of multiple training instances
in the form of labeled annual rings which are treated as individual regions of interest.
To demonstrate the plausibility of the approach, we performed several benchmarking
tests that compare the overall performance of the proposed approaches against published
methods based on deep learning as well as traditional signal processing. In addition,
we also evaluate and compare the robustness of the methods as well as their capacity to
extrapolate and adapt to new datasets.

2.3 Methods

Otolith images and their corresponding age readings were provided by the Thünen
Institute of Sea Fisheries and the Thünen Institute of Baltic Sea Fisheries. The image
collection can be divided into two sets: 1) the North Sea dataset (https://doi.org/10.5281/
zenodo.8341092) and 2) the Baltic Sea dataset (https://doi.org/10.5281/zenodo.8341149).
The North Sea dataset consists of images from several demersal species including North
Sea cod (Gadus morhua), saithe (Pollachius virens), haddock (Melanogrammus aeglefinus) and
whiting (Merlangius merlangus). To achieve higher statistical power, we only used the
otolith images with ages 1-11, as this range contains enough data for both training and
testing. For the Baltic Sea dataset, the otoliths are composed purely of Baltic cod (Gadus

morhua). Likewise, we only used those with ages ranging from 1 to 5 as these age groups
contain a sufficient number of images for the analyses. It is important to note that, in
contrast to the North Sea set, the manual age readings from the Baltic Sea dataset are all
validated using tetracycline markings ((Krumme et al., 2020)). For more details on both
datasets, a table is included (Table 2.5) under the Supplementary Materials.

Table 2.1: A summary of the number of images available per species along with the
sampling area and abbreviations used in this study. For species-wise experiments and
analyses, both the N-haddock and N-whiting were not used as they have insufficient
quantities.

Species Area Number of Images

Gadus morhua (N-cod) North Sea 194
Pollachius virens (N-saithe) North Sea 351

Melanogrammus aeglefinus (N-haddock) North Sea 78
Merlangius merlangus (N-whiting) North Sea 37

Gadus morhua (B-cod) Baltic Sea 1155
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Figure 2.1: The number of images for each age group for both datasets. A total of 660
otolith images (ages 1-11) were included for the North Sea dataset while there were 1155
images in the Baltic Sea dataset (ages 1-5). For a detailed tabular summary of each age
group, please refer to the Supplementary Material.

Preliminary manual checks were done on the two image datasets to ensure that no
duplicates are taken and that all images are unambiguously named. Also, there were cases
where some otolith images have artifacts that obscure a significant portion of the otolith.
For our purposes, it is important that those were not included. Lastly, since the methods
require at least one annual ring for the ground-truth preparation, images with age 0 were
also excluded.

For obtaining the North Sea otolith images, it is a common practice to apply some image
filters via an imaging software to make the rings more visible. Hence, for this dataset, all
the images have already gone through some preprocessing for image enhancement. The
Baltic images, on the other hand, were utilized in their raw states.
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Data Preparation and Con�guration of the Methods

For each dataset, we used randomized subsampling to create the training set and con-
sequently segregate the test set with the remaining out-of-sample images. As shown in
Figure 2.1, the raw number of images for each age group varies considerably. To avoid a
prediction bias towards the age groups with more data, the subsampling was done such
that there is a rebalancing of age groups after every randomized selection (i.e., given a
certain quantity, excess training images on some age groups were removed while those
with fewer images were refilled).

As shown in Table 2.2, the partitioning of the datasets was done for multiple experi-
ments. Each age group contains the same number of training images with the exception of
species-wise experiments. Lastly, apart from splitting the data into training and test set,
there is also a need to select the validation set that determines the training checkpoints
(i.e., for saving the model state in each epoch whenever there is an improvement in the
loss computed). Instead of further dividing the training set to create the validation set, we
opted to construct it via data augmentation involving horizontal flipping of the training
images.

Table 2.2: The number of images used for each data split along with the number of runs or
subsampling replicates done in each experiment. The validation data is derived entirely
by data augmentation of training images via horizontal flipping operation; it hence has
the same quantity as the training set.

Experiment Type Training and Validation Testing Runs

132-North Sea images 528-North Sea images 20
Basic Evaluation 150-Baltic Sea images 1005-Baltic Sea images 4

132-North Sea images 528-North Sea images 20
Robustness Test 150-Baltic Sea images 1005-Baltic Sea images 4

84-North Sea images 188-North Sea images 8
Age Extrapolation 120-Baltic Sea images 42-Baltic Sea images 4

132-North Sea images 1155-Baltic Sea images 8
Interchanging Domains 150-Baltic Sea images 660-North Sea images 4

132-N-cod images 351-N-saithe images 8
Trained with N-Cod 1155-B-cod images 8

132-N-saithe images 194-N-cod images 8
Trained with N-Saithe 1155-B-cod images 8

The next step was to conduct ground-truth labeling which is required as part of the
supervised learning process. In the next four subsections, we describe separately each
algorithm involved in the study to highlight their differences and some simplifications
adopted for our purposes. The first two algorithms, namely Classical Image Processing
and CNN Regression represent the methods that are already existing in the literature and
which serve as baseline for comparison. Then, we describe our proposed approaches
based on Mask R-CNN and U-Net and elaborate the way these methods can perform age
estimation totally compatible with traditional ring counting methods. To facilitate the
understanding of the entire process, our source code (written in Python 3.8 (Van Rossum
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and Drake, 2009) with machine learning libraries such as Keras 2.2.4 (Chollet et al., 2018)
and Tensorflow 1.15 (Abadi et al., 2015) is available on Github (https://github.com/arj
aycc/ai_otolith/tree/v1.2). Also, a schematic diagram outlining the main steps for the
proposed deep learning approaches is given as a supplementary material (Figure 2.12).

Classical Image Processing

For the image processing approach, we chose to explore mainly the methods that uses
intensity peak counting as this approach is quite popular and straightforward to use as
reviewed by Fisher and Hunter (2018). Simplifying the ideas from the literature (Troadec,
1991; Formella et al., 2007), the method we finally implemented was to simply create a
polar transformation of the sector slices from otolith images and convert them into square
tiles using the relative distances of the pixels starting from the otolith nucleus or core
down to the outer edge. A schematic diagram of the process is given in Figure 2.15 in the
Supplementary Materials.

Figure 2.2: a) A set of image strips that were transformed from otolith sector slices along a
reading axis. b) The resulting intensity plot when the row-wise average was taken for a
single strip with the resulting peak count at the top.

As a preliminary step, we needed to first identify the outer otolith contour and the nu-
cleus from the images. A simple application of the watershed algorithm (from the python
skimage library (van der Walt et al., 2014)) isolates most otoliths from their corresponding
background with great accuracy from which the outer contour can be obtained. There are
few cases which appear to generate erratic contours, especially if the outer otolith edges
are not clearly distinguishable. For our purposes, we simply identified and manually
corrected these erratic contours by using a standard image annotation tool. We opted
to use the Visual Geometry Group (VGG) Image Annotation tool abbreviated as VIA
(Dutta and Zisserman, 2019) due to its simplicity and extensibility. In fact, we managed to
incorporate our own code into this tool where we created a brush feature to facilitate the
annotation as it is also needed for the ground-truth preparation of the other methods.
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For identifying the nucleus of the otoliths, several classical image processing techniques
are also widely popular (Cao and Fablet, 2006; Harbitz, 2009). We chose a simple heuristic
based on ellipse approximation (Harbitz, 2009) to locate the approximate nucleus position
which worked quite well for the Baltic Sea dataset. However, for North Sea images, some
nucleus coordinates were missed so we had to do manual adjustments using the same
annotation tool so as not to introduce another source of error and to focus only on the
steps involving annual rings.

Overall, the entire process relies on the assumption that there is a proportionality among
the growth of the rings on a certain local portion of the otolith (Fablet and Josse, 2005).
Hence, it is expected that when the otolith sectors are sliced and divided into small enough
pieces, the transformed rings will be approximately aligned (Figure 2.2-a). With these
transformed images, it is straightforward to generate a good intensity signal plot by taking
either the mean or median of pixel rows from top to bottom across multiple slices along
the major axes (Figure 2.2-b). To derive the age reading, we performed a peak counting
procedure using a peak detection algorithm based on a standard implementation available
from the literature (Billauer, 2009).

CNN Regression

Convolutional Neural Networks (CNNs) are one of the most widely used algorithms to
deal with image datasets (Krizhevsky et al., 2012). The core idea is roughly inspired by the
biological neural network where the concept of neurons is represented using mathematical
interconnected nodes (O’Shea and Nash, 2015). The information propagation is made
through a process of weight updates along these interconnected nodes using intricate
mathematical operations with the goal of making the predictions be as close as possible to
the actual or expected value through the evaluation of one or more loss functions during
each training epoch. These nodes are typically grouped into layers and each node can
have multiple connections into other nodes located at the next layer. What primarily
differentiates CNNs from traditional artificial neural networks is the number of layers; for
the former, it is several orders of magnitude higher (i.e., the layers go deeper) than for the
latter.

The most basic use of a CNN is in a supervised manner which could be formulated
as either classification or regression (Martinsen et al., 2022; Moen et al., 2018; Ordoñez
et al., 2020; Politikos et al., 2021). That is, a discrete or continuous value will be returned
as prediction which directly corresponds to the probable category or measurement that it
learned from the labeled training data. In the case of regression, a basic loss function for
these types of CNNs is usually in the form of mean squared error (MSE) (Martinsen et al.,
2022; Moen et al., 2018) which is given in the following equation:

Loss =
1
N

N

∑
i=1

(yi − ŷi)
2

For the CNN regression method used by Moen et al. (2018), they chose to use regression,
where the age estimates are turned into a continuous value. Also, they used another
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useful concept of CNN known as transfer learning, where a pre-trained model, primarily
InceptionV3 (Szegedy et al., 2015), was reused by preloading its weight into the network
prior to training.

To use this approach, mainly as a benchmark reference, we obtained the exact imple-
mentation from Moen et al. (2018) available from https://doi.org/10.21335/NMDC-1949
633559. It only involves a simple data loading step where a list of image paths and their
corresponding age labels are placed in a comma-separated file. This file will then be taken
by the algorithm to start the supervised training. One minor issue, however, is their use
of otolith pairs (left and right otoliths) which is not applicable in our study. Therefore,
as a simple workaround, we flipped each otolith image horizontally to somehow have a
pseudo-pairing and make the implementation compatible.

Mask R-CNN

Likewise, as implied by its name, Mask R-CNN is also a deep learning algorithm based on
Convolutional Neural Networks (He et al., 2017). The main output, however, is primarily
in the form of detection masks and bounding box coordinates of the object of interest
as found within the image. That is, detection masks are pixel markings that indicate
the spots occupied by the object of interest while the bounding box consists of numeric
coordinates within the image that contains this object of interest. This feature of the Mask
R-CNN algorithm allows it to perform both object detection and instance segmentation
simultaneously

For this algorithm, there is an implementation from Matterport (Abdulla, 2017) contain-
ing the entire learning workflow starting from the data loading step up to the training as
well as the testing. To utilize the code, we first need to provide its needed inputs, namely
the image and its ground-truth annotations. As discussed above, we selected the VIA tool
(Dutta and Zisserman, 2019) for annotating the images due to its simplicity. We marked
the parts of the images along the left and right major axes which represent a portion of the
winter annuli to be treated as the objects of interest for detection. Figure 2.3 shows an
example of the annotation using the VIA tool.

As mentioned above, there can be different ways to implement loss functions for each
algorithm. For Mask R-CNN, instead of the basic MSE, it needs to have multiple loss
functions in order to check how far the predicted masks are from the actual regions while
also computing the errors for the predicted bounding boxes (He et al., 2017). In the study
by Zimmermann and Siems (2019), they further added another loss function related to
the edges of the contours generated from the predicted masks. We used this version since
it was demonstrated to learn faster and more efficiently (Zimmermann and Siems, 2019).
Also, for this implementation, transfer learning was involved where an existing model
(Matterport, 2017) trained from the COCO dataset (Lin et al., 2014) was pre-loaded instead
of training from scratch.

The output of Mask R-CNN still needs to undergo a post-processing step in order
to derive the age estimates. A schematic diagram was included in the Supplementary
Materials (Figure 2.16) that summarizes the process. The core idea is to scan the masks
and to find their alignment towards the center which indicates that they belong in the
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same reading axis. The process starts by locating the nucleus and measuring the distances
of the masks to this reference point. Then, each mask is visited from the nearest to farthest
to label their positions. To perform labeling, the angle (in radians with respect to the
nucleus) of a mask is measured through its endpoints. Two masks are aligned if their
angles overlap. To label a mask, increment by 1 the label of the most recently visited
mask that aligns to it. If there is none, then label it as 1. Once all the masks are visited,
sort the labels then find the highest value which will indicate the highest ring count
(corresponding to the age reading).

Figure 2.3: An example of ground-truth preparation made using the VIA annotation tool
showing the annotations (yellow) that mark the regions of interest within an otolith image.

U-Net

U-Net also makes use of the CNN architecture (Ronneberger et al., 2015) similar to the
two previously presented deep learning algorithms. The main difference, however, is that
for U-Net, the final output is composed only of a segmentation mask for the entire image
corresponding to the pixels detected representing the object of interest. Because of this,
U-Net is usually utilized for problems involving semantic segmentation of images.

To train the algorithm, ground-truth masks are likewise needed to mark the regions
to be segmented by the U-Net. In this study, two ways of ground-truth labeling were
followed. One method involved masking the entire concentric annuli and the other
involved masking only a certain portion of the annuli along the reading axes. For the
former, new sets of ground-truthing has to be created using the VIA annotation tool. For
the latter, we reused the same reading axes annotations made previously for Mask R-CNN.

In contrast to Mask R-CNN, only the segmentation masks are returned by U-Net and
no bounding boxes are generated. Hence, there is usually only one loss function involved
which determines whether each pixel of the image was properly marked either 1 or 0
depending on whether they are part of the object of interest or not, respectively. The
basic loss function can be the MSE of these per-pixel differences but it can be modified
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as needed. In fact, for this study, we used the extension proposed by Ronneberger et al.
(2015) where more weights are given on the pixels in-between the objects of interest. That
is, the algorithm has to be more careful when marking those pixels between each annulus
because the errors from these portions weigh more than the rest. Otherwise, without
weighted loss, the U-Net has the tendency to return overlapping contours, especially
when the rings are near each other, which is particularly happening at the edges.

Similar to Mask R-CNN, the segmentations cannot be readily isolated from the rest
of the pixels. Hence, it is therefore also necessary to perform a post-processing step in
order to remove noise and easily count the proper segmentations where age estimates are
derived. This process is summarized in Figure 2.16 of the Supplementary Materials. As
there are no detection scores like the ones from Mask R-CNN, we applied a simple noise
filter based on the size and relative position of the segmentation. That is, if a segmentation
is found, it is first checked whether it is just a random noise before including it in the ring
count. This is similar to the criteria also applied in peak detection methods where certain
peaks are eliminated according to their relative sizes and positions.

In this study, we explored different configurations for this algorithm in order to identify
the best performing variant. First, two different ground-truth methods were tested: one
annotation set marks only the portion along the major axes while the other annotation
covers as many annuli as visible in the image. Secondly, we also compared the performance
of implementing U-Net with transfer learning using pre-trained VGG weights (Simonyan
and Zisserman, 2015), similar to the implementation of Abdellatif (2021), against the
default implementation, which is trained from scratch. At this point, it is worth mentioning
that for all the pre-trained models used in each deep learning method explored in this
study, the training set from which they were originally trained on are all composed of
images from common objects and not specifically for otolith.

Benchmarking

There are three basic benchmark tests that we conducted in order to thoroughly assess
and compare the overall performance of the algorithms which we measured in terms
of percentage agreement. For the first test, we performed the usual training, validation
and testing, using images from the same data source. This test also involved identifying
initially the best hyperparameters and configurations of each algorithm that will be used
for subsequent experiments. For the CNN-regression method, we used the default or
suggested hyper-parameters taken from the study of Moen et al. (2018). For the other
algorithms, we implemented a simplified grid-search on the different configurations and
hyperparameters and evaluated their performance on a subset of the test data.

For the second test, we performed some variations of the first test to evaluate two
criteria: 1) the robustness of the algorithms when slight changes/perturbations on the
images are introduced and 2) the ability of the algorithms to extrapolate (higher) age
groups when they are explicitly removed from the training data. The former involved
simple background removal with increased brightness on the test images to see whether
the algorithms have taken cues on unreliable features such as background artifacts or even
the differences in lighting. The latter involved complete removal of any training data from
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higher age groups (ages 8-11 for North Sea dataset, age 5 for Baltic Sea dataset) to see if
the algorithms can extrapolate these higher age ranges without encountering them during
training.

Lastly, for the third batch of tests, we checked for inter-dataset and inter-species perfor-
mance to assess how adaptable the models are when analyzing new sets of data from a
completely unfamiliar species or domain. For the basic case, we interchanged the test sets
for North Sea and Baltic Sea otoliths and assessed the new performance (i.e., the models
trained from North Sea images were tested against Baltic Sea test images and vice versa).
For the other case, we segregated the images further into different species to see whether
training them on a specific species makes the algorithms completely unable to generalize
on the other species. Conversely, we also aimed at finding out whether training the
algorithms on a given species allows them to handle the same species from a completely
different source. For simplicity, in this experiment, we use the term inter-species loosely
despite also treating the North Sea cod and Baltic Sea cod as separate groups.

Coe�cient of Variation Analysis

In the context of age reading evaluation, apart from percentage agreement, another
important metric is the so-called coefficient of variation (CV) which is especially useful
during age reading workshops where readers from various institutions gather to cross-
check the possible differences in the way they perform age readings. This value can be
computed using the following formula (Campana, 2001):

CV =
σ

µ
· 100

where σ = standard deviation, µ = mean of age estimates from the readers

For reference, we used two separate ICES workshops- one for North Sea cod (ICES,
2008) and another for Baltic Sea cod (ICES, 2020), where participating readers performed
age estimation on cod images using their own methodologies. It was reported that for
both the North and Baltic Sea workshops, the readers had a significant disagreement
indicated by the computed CV of about 40% (39.8% to be precise) and 15%, respectively.
Optionally, for the North Sea workshop, we may exclude the values contributed by broken
otoliths and refer only to the result for sectioned otoliths which is around 22.5%. Hence,
for this study, similar to the formula used by Moen et al. (2018), we also computed the CV
by treating the automated and manual readings as individual readers and assess whether
the age estimate variations fall within the same range attained by human readers.

Statistical Analysis

To check for the statistical significance of the comparisons, we used the standard pairwise
t-test available in the R programming language (R Core Team, 2023) along with the
correction proposed by Nadeau and Bengio (2003) which is implemented in the correctR
package (Henderson, 2023). We carefully considered the fact that some assumptions
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of the standard t-test are violated by the data partitioning used to create the training
and test splits. As mentioned earlier, we employed a small variation of the randomized
subsampling for creating the training and test sets which means that the images used
for each run are not completely independent (i.e., the training and test sets of one run
could have images that were also included in the other runs). This leads to a high
probability of type I error causing a problematic rejection of the null hypothesis in pairwise
comparison of algorithms (Dietterich, 1998). Fortunately, the ground-breaking study made
by Nadeau and Bengio (2003) suggests that a simple correction of the standard t-test can
overcome this limitation. Therefore, for the main test involving general performance
comparisons, this corrected resampled t-test is used as it satisfies the conditions needed
for the statistical analysis. For the other test cases which deviate greatly from standard
randomized subsampling (e.g., age-wise and species-wise test), we used the standard
t-test while taking into account the potential pitfalls mentioned.

2.4 Results

One straightforward advantage of the CNN-regression algorithm used by Moen et al.
(2018) is that the age readings are readily available and directly outputted in the model pre-
dictions. For all the other methods, however, an intermediate output has to be generated
first before the actual age reading can be derived.

For the classical image processing approach, the intermediate results are in the form of
signals that indicate the image intensity values from the nucleus to the outer edge of the
otoliths as shown in Figure 2.2-b.

For the Mask R-CNN, the final detections need to be post-processed first as described
in the Methods Section in order to directly appear on the image as shown in Figure 2.4.
Apart from the colored masks, it can be seen that there are bounding boxes that are also
depicted containing the prediction scores. These values range from 0.0 to 1.0 and directly
correlate with the model’s confidence on the predictions.

For the U-Net algorithm, the intermediate result also needs to undergo post-processing
before the age estimates can be derived. Figure 2.5 shows an example of a raw mask output
of the U-Net as well as the resulting image masks after the post-processing procedure
similar to the one performed for the Mask R-CNN output.
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Figure 2.4: Mask R-CNN object detections with the corresponding bounding boxes and
scores. Higher scores indicate higher model confidence which can be used to filter out
those predictions which do not surpass a certain detection threshold (i.e., a hyperparameter
that can be adjusted as needed).

Figure 2.5: The raw U-Net output alongside a sample end-result after the post-processing
step. The direct output of a U-Net model is a mask indicating the regions it segmented (a)
that can be post-processed to generate the ring count (b).

After the post-processing stage for each algorithm, the derived age estimates are then
plotted against the manual age readings, as shown in Figure 2.6. It can be seen that
there is a diagonal trend that becomes apparent with these plots indicating the relative
agreement between the automated and the manual readings. The plot also shows how far



SECTION 2.4. RESULTS 37

the under- and over-estimates are from the diagonal indicating the biases of each method.
For illustration, only the test results of a single run with North Sea images are shown in
the figure. For the plots of all the runs including those of the Baltic Sea images, refer to the
Supplementary Material.

Figure 2.6: The plots of automated age estimates against the manual age readings on a test
set involving North Sea images using the various approaches, namely a) Image Processing,
b) CNN-Regression (rounded off), c) Mask R-CNN and d) U-Net.

Figure 2.7 provides a clearer comparison of the performance of the different algorithms
tested. The resulting trend is different for the North Sea dataset and the Baltic Sea dataset.
The CNN-regression has a clear edge with 55% and 87% mean accuracy for North Sea and
Baltic Sea images, respectively. The Mask R-CNN has a slightly poorer performance on
North Sea images (46%) but it has a decent mean accuracy on Baltic Sea images (72%).
On the other hand, the U-Net algorithm manages to be competitive with 54% mean
accuracy on the North Sea dataset and 72% mean accuracy for the Baltic Sea dataset.
Lastly, the traditional automation method using classical image processing attains the
poorest performance, showing only 26% and 54% mean accuracy for North Sea and Baltic
Sea datasets, respectively. Hence, this approach was no longer used for further analysis to
focus more on the deep learning algorithms.
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Table 2.3: The coefficient of variation (CV) of the different methods against the manual
readings. The reference value is 40% for the North Sea dataset and 15% for the Baltic Sea
dataset, which correspond to the CVs from a group of readers during two ICES workshops
on cod otoliths.

Method North Sea Dataset Baltic Sea Dataset

ImgProc 19.1% 16.4%
CNN-Reg 7.4% 3.8%
M-RCNN 10.9% 10.1%

U-Net 10.5% 9.6%

Figure 2.7: Overall performance of the different algorithms on North Sea and Baltic
Sea datasets across multiple runs with randomly subsampled test sets (n=20 for North
Sea Dataset, n=4 for Baltic Sea Dataset). Applying the corrected resampled t-test to
compare each proposed deep-learning method (M-RCNN and U-Net) to the published
CNN-regression method yields corresponding p-values = 0.14 and 0.43 (> 0.05) for North
Sea images and p-values = 0.003 and 0.048 (< 0.05) for Baltic Sea images.

Using the corrected resampled t-test, the null hypothesis that CNN-regression results
do not differ from the results of both the proposed methods has failed to be rejected in
the North Sea dataset (p-values > 0.05), while it was rejected for the Baltic Sea dataset
(p-values < 0.05). This indicates that the proposed methods have a similar performance to
the CNN-regression on the North Sea images but fail to attain the same competence on
the Baltic Sea images where the CNN-regression shows its clear advantage.

To assess if an automated method is good enough to be treated like an individual human
reader, we also computed the CV for each method as shown in Table 2.3. With a reference
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value of 40% and 15% taken from the North Sea and Baltic Sea workshops, respectively, it
can be seen that the computed CVs for the deep learning methods fall significantly below
these thresholds indicating that they are indeed already at the level of human readers. It
is important to note that for the North Sea workshop, we may only consider the result
for sectioned otoliths and ignore the values for broken otoliths which is not relevant in
this study. Hence, even if the reference value is adjusted to 22.5%, the same conclusion is
still valid. That is, the CV results from this study still fall below the workshop reference
values. This means that theoretically, if the AI-based methods are included in a workshop
with human readers, the readings they provide will deviate within the same range as the
ones from the human readers.

The next set of experiments evaluates the robustness of the different methods when
the test images are subjected to slight variations (i.e., involving background removal and
increased brightness). Figure 2.8 reveals one surprising disadvantage of the published
CNN-regression method compared to the proposed methods. Just with the mentioned
image perturbations, a very drastic change in performance is seen for the CNN-regression
in both North and Baltic datasets. Only slight degradation of performance is observed for
Mask R-CNN and U-Net.

Figure 2.8: Degradation of predictive performance of each algorithm when the background
of the otoliths on the test images is removed while subsequently increasing the image
brightness. Comparing the changes in accuracy of the proposed methods against that of
the CNN-regression yields p-values < 0.05 using standard t-test (n=20 for North Sea, n=4
for Baltic Sea).

Another interesting experimental setup was designed to measure the ability of the
methods to extrapolate on data they have not encountered before. In this experiment,
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we removed the training images with high age values and limited the range to ages 1-7
for North Sea dataset and ages 1-4 for Baltic Sea dataset. Then, we tested the resulting
models on a test set containing only images with age values greater than those used during
training. Figure 2.9 summarizes the result and demonstrates the extrapolation ability of
the different methods.

Figure 2.9: Performance of each deep learning algorithm on higher age groups that were
excluded during training. For the North Sea runs (n=8), images with ages 8-11 were used
for testing as they were excluded from training. For the Baltic Sea runs (n=4), only age 5
images were left out during training and were consequently used for testing. The standard
t-test gives p-values < 0.05 for the pair-wise comparison against CNN-regression.

It can be immediately seen that the published CNN-regression fails almost completely
in getting any correct estimate for higher age groups that were not included during
training. In contrast, both the proposed algorithms manage to attain a decent accuracy
level, showing their ability to extrapolate on unknown data.

For the last test, we further highlighted this capacity of each algorithm to handle datasets
that were not introduced during training. For the first case, we interchanged the test
images of both datasets and re-tested the previously trained models without re-training on
the new set. That is, the existing models trained from the North Sea dataset were tested on
the Baltic Sea test images and vice versa. Figure 2.10 demonstrates yet another advantage
of our proposed algorithms compared to the published CNN-regression method.
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Figure 2.10: Performance of the deep learning models trained on one dataset and tested
against the other dataset and vice versa. For the Baltic Sea test case (n=20), standard t-test
show significant difference (p < 0.05) when comparing the CNN-regression against the
proposed methods.

Overall, it can be seen that the CNN-regression algorithm attains the worst performance
when given a new and unfamiliar data source or domain. This means that it learned
features too specific on the dataset it was trained on resulting to its failure to generalize on
the other dataset with seemingly new otolith characteristics, different microscopy lighting
and image capture technique. In fact, this concept, referred to as domain adaptation, has
also been explored in the study by Ordoñez et al. (2022), where they also evaluated this
capacity on a similar standard CNN implementation but with classification instead of
regression. They used images of the same species (Greenland halibut) from two different
sources: one dataset came from the Norwegian laboratory while the other dataset was
taken from their counterpart in Iceland. Similar to what we have observed, they also
reported that this standard CNN formulation performed poorly when tested across the
two different data sources. Hence, they proposed certain modifications to the default
implementation, but this is beyond the scope of our study.

To elaborate on this observation further, we conducted another test focusing mainly on
inter-species performance. For this setup, we explicitly trained the algorithms using only
one specific species and performed tests on the other species. Figure 2.11-a shows the
comparison of test performance across species when the training involves only North Sea
cod images while Figure 2.11-b shows the results if only North Sea saithe images were
included.
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Figure 2.11: Performance of the methods across species (and stock) when the training
involves a) only North Sea cod images. b) only North Sea saithe images. The standard
t-test (n=8) shows high significance (p < 0.05) on the Baltic cod test case for both Mask
R-CNN and U-Net after pairwise comparison against the previously published method.

There are some interesting observations worth emphasizing for this batch of results.
First, it can be immediately seen from both plots that the overall inter-species accuracy of
the proposed methods surpasses that of the previously published CNN-regression method
indicating that the proposed methods have more generalization capacity. Specifically,
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the performance discrepancy is quite large when it comes to the Baltic test images. This
is somehow surprising when comparing to the result from the previous experiment. It
seems that purely using North Sea cod images for training makes the performance of the
published CNN-regression method to become even worse compared to using a mixed set
(Figure 2.9) or even pure North Sea saithe images (Figure 2.11-b). This result is directly
in contrast to the results from the two proposed methods where the accuracy values for
predicting a new set of images coming from a different source (e.g. Baltic dataset of purely
cod) becomes higher when the training set involved the same species (i.e. North Sea Cod
in Figure 2.11-a) compared to a completely difference species (i.e. North Sea saithe in
Figure 2.11-b). This implies that there could be species-specific patterns utilized by the
proposed algorithms to help in the prediction of a new set of the same species.

In summary, from Figures 2.9, 2.10 and 2.11, it can be concluded that the CNN-
regression method exhibited the least adaptability when it is subjected to a completely
unfamiliar dataset. This means that to use this algorithm for each new species or even
just a new age group, a new batch of training has to be performed to update the model or
in the worst case, a complete retraining has to be conducted to create a totally different
model. In contrast, for the two new algorithms proposed, the previous knowledge they
had on one species can potentially still be usable for another species.

2.5 Discussion

Various studies have already shown that the standard CNN classification or regression
performs satisfactorily when it comes to age estimation of various fish species (Martinsen
et al., 2022; Moen et al., 2018; Politikos et al., 2021). Apart from the predictive power,
another big advantage of their approach is the training simplicity where minimal ground
truth preparation is needed. However, to be widely accepted, this formulation has one big
issue and that is, its black-box nature. The follow-up study done by Ordoñez et al. (2022)
tried to find a way to explain the decisions for this type of CNN but it still leads to more
questions and counter-intuitive observations.

In the work presented here, we have shown that the use of object detection and segmen-
tation algorithms can be a good alternative formulation when it comes to automating the
fish age reading process. In addition to having a comparable performance on multiple test
sets, we demonstrated that it also has several advantages compared to multiple methods
that can be found in the literature. In particular, we showed that the resulting models
are more robust even when some perturbations are introduced into the images. Also,
we demonstrated its ability to extrapolate and generalize on datasets which were not
introduced during the training phase especially those coming from a completely different
source. Lastly and maybe most importantly, this new way of applying deep learning
on automated age reading makes the overall process more explainable due to its direct
compatibility with traditional manual methods.

One major drawback is the seemingly tedious process of doing data preparations
especially the ground-truth labeling. While this may be true, it is important to note that
this will only be the case if we need to train a new model with each new dataset that
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we obtain. However, as demonstrated by the results, there is a potential for the object
detection and segmentation models to be reusable with a completely new dataset. This
means that the ground-truth preparation will eventually become less and less required
as retraining becomes unnecessary in some instances. In contrast, the standard CNN
regression formulation will always need to be trained with each new dataset due to its
lack of adaptability.

It is important to note, however, that all these observations involving the CNN regres-
sion formulation is only tested using the implementation from the study conducted by
Moen et al. (2018). It is possible that with newer designs and architecture, these limitations
may no longer be true. Also, there are already novel approaches that exist in literature
which seem promising when it comes to handling the known limitations of older deep
learning designs such as the use of Transformers (Sigurdardóttir et al., 2023) and Ensemble
Learning (Moen et al., 2023). It will indeed be interesting to conduct further benchmarking
with these new approaches to see if the advantages of our proposed methods remain
valid. Also, it is worth mentioning that the statistical tests performed in this study namely
standard t-test and corrected resampled t-test, have limitations with respect to reducing
type I and type II statistical errors (Bouckaert and Frank, 2004; Nadeau and Bengio, 2003)
so more repetitions are needed to make stronger claims. It is hence an option to explore
other statistical methods apart from a t-test which will ensure that both the type I and
type II errors are minimized during benchmarking.

Lastly, one important concept of CNN which is widely used in this study is the concept
of transfer learning. For all the deep learning approaches we tested, we took advantage
of this facility and preloaded some pre-trained models. Therefore, there is an apparent
future direction where the process of reusing a newly trained model can be improved
further and training can be done using a base pre-trained otolith model (instead of VGG16
or InceptionV3). Also, for U-Net and Mask R-CNN, this base model can possibly aid on
generating new ground-truth labels for future datasets and then enables a self-sustaining
loop where each updated model will be reused to generate annotations for newer datasets
and so on. In this way, creation of annotations will be AI-assisted and not entirely done
from scratch needing only a simple manual correction if necessary.

2.6 Conclusion and Future Outlook

With the growing size of the otolith image datasets that are being collected and processed
by various institutions, it is becoming apparent that the advances in the field of big data
analytics, computer vision and machine learning can be of great use. This study is another
step towards scalable otolith analysis and it successfully demonstrated how one can utilize
the well-known techniques in object detection and segmentation to automatically perform
age reading on otolith images.

As the age estimates of AI-based methods match closer and closer to those from manual
age readings, it becomes clearer that the predictive performance is not the only criterion
towards their general acceptance. Features such as robustness, adaptability, and in par-
ticular explainability are also important considerations which were all exhibited by the
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proposed approaches in this study.

With an automated system for age estimation, the process of analyzing a large number
of images can be highly efficient, scalable and less susceptible to logistic and subjective
limitations. Using the proposed algorithms, we aim to create a framework or a system
(i.e., a web application) that can be used as a platform for high-speed processing of large
datasets. As a general toolkit for otolith image analysis, it can be made to provide not only
age information but also other relevant measurements such as otolith radius and annulus
distances, which are useful parameters for certain biological and ecological models. Lastly,
we also hope that this future framework can be an avenue for a more collaborative effort
within the community where models, images and even annotation data can be shared
efficiently and even allow continuous enhancements of existing models and techniques.
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2.8 Supplementary Materials

Table 2.4: The number of images for each age group in the North Sea dataset as well as
the Baltic Sea Dataset.

Age Group North Sea Baltic Sea

Age 1 26 226
Age 2 37 277
Age 3 56 343
Age 4 63 267
Age 5 74 42
Age 6 58 -
Age 7 53 -
Age 8 57 -
Age 9 47 -

Age 10 41 -
Age 11 16 -
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Figure 2.12: Schematic diagram of the entire process involved for the two proposed deep
learning methods. Despite their differences, the same ground-truth labels can be used for
both algorithms depending on the configuration being tested.

Figure 2.13: Plot of the automated age estimates against the manual readings for all runs
(n=20) using the North Sea dataset.
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Figure 2.14: Plot of the automated age estimates against the manual readings for all runs
(n=4) using the Baltic Sea dataset.

Table 2.5: Details regarding the images contained in both North Sea and Baltic Sea datasets.
It is important to note that despite the name, the North Sea dataset contains few images of
otoliths sampled outside the North Sea. They are, however, prepared in the same manner
as all other North Sea otolith images justifying their inclusion in the set.

Imaging Information North Sea Baltic Sea

Otolith Preparation Sectioned Sectioned
Lighting Transmitted Transmitted

Magnification Varying/Scaled-to-Fit Varying/Scaled-to-Fit
Microscope and Camera Leica system Olympus + Zeiss

File Formats TIFF -> PNG CZI -> PNG
Sampling Dates mostly 2016 to 2021 2016 to 2020

Sampling Locations mostly 4a, 4b, 2a, 2b, 3a 3.c.22
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Figure 2.15: The process of polar-to-Cartesian mapping to create a square image (4x4)
based from an otolith radial slice. If we specify higher values for the height/width of the
resulting square image, then the number of corresponding points from the otolith also
increases creating a transformed image with higher quality.

Figure 2.16: Schematic diagram for the post-processing step for both Mask R-CNN and
U-Net.
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3.1 Abstract

Fish age is an important biological variable required as part of routine stock assessment
and analysis of fish population dynamics. Age estimates are traditionally obtained by
human experts from the count of ring-like patterns along calcified structures such as
otoliths. To automate the process and minimize human bias, modern methods have been
designed utilizing the advances in the field of artificial intelligence (AI). While many
AI-based methods have been shown to attain satisfactory accuracy, there are concerns
regarding the lack of explainability of some early implementations. Recently, we have de-
veloped explainable AI-based approaches based on U-Net and Mask R-CNN having direct
compatibility with traditional ring counting procedures. We further extend this approach
by creating an interactive website housing these explainable AI methods allowing age
readers to be directly involved in the AI training and development. An important aspect
of the platform presented in this article is that it allows the additional use of different
advanced concepts of Machine Learning (ML) such as transfer learning, ensemble learning
and continual learning, which are all shown to be effective in this study.

Keywords: fish age reading, otoliths, artificial intelligence, deep learning, object detection,

segmentation

3.2 Introduction

Computer-assisted annotation of image data is a standard tool in marine biology since
quite a while (Schlining and Stout, 2006) with increasing amounts of automated processing
over the years (Gomes-Pereira et al., 2016). The progress in Artificial Intelligence (AI), or
more precisely in Machine Learning (ML) in the form of deep neural networks (LeCun
et al., 2015) has provided a further boost to this trend (Rubbens et al., 2023; Radeta et al.,
2015; Katija et al., 2022). This also holds for the application area which motivates the work
presented in this article, namely the field of fish age reading.

Stock assessments rely heavily on fish age data which is primarily derived from the
so-called otoliths or ear stones. These are calcified structures that form ring-like patterns
influenced by the changing seasons (Campana, 1999) similar to the pattern of ring for-
mation found in tree trunks as used for dendrochronological studies (VanderKooy et al.,
2020). Hence, in the same manner, age readers count the number of such otolith rings
(annuli) in order to derive the fish age estimates (Panfili et al., 2002).

Often, otolith rings are not straightforward to identify or to detect. Consequently, human
readers need to undergo extensive training and even attend a number of workshops with
other age readers with the goal of standardizing and minimizing the subjective aspects
of the process. As part of these workshops, inter-reader agreements are measured by
allowing them to read a selected set of otolith images. Based on these workshops (ICES,
2008, 2020), it was observed that there can be a concerning degree of disagreement among
age estimates even for otoliths with simple patterns such as those of cod. It is therefore
important to find a definitive and unbiased solution to this problem in order to prevent
miscalculations involving such important biological parameter.
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Hence, there has been a growing interest in recent years regarding the use of AI in age
reading. Some early attempts in this endeavor dates back from the years where classical
machine learning algorithms were popular along with the practice of feature engineering.
These include the works of Fablet and Josse (2005) as well as from Bermejo et al. (2007)
where classical neural networks and support vector machines were explored.

With the progress in deep learning, the number of studies applying AI-based methods
for otolith age reading increased substantially. A lot of these studies made use of Convolu-
tional Neural Networks (CNN) with either classification or regression formulation (Moen
et al., 2018; Ordoñez et al., 2020, 2022; Martinsen et al., 2022; Politikos et al., 2021). Recently,
a new batch of approaches emerged using more recent concepts such as Transformers
(Sigurdardóttir et al., 2023) and Ensemble Learning (Moen et al., 2023), indicating the
continued pursuit to further improve AI-based approaches for otolith age reading.

There are some concerns, however, when it comes to the black-box nature of many
of these implementations. This is primarily due to their lack of compatibility with the
traditional manual methodology in which the rings are explicitly counted to derive the age
values. Hence, newer designs were recently developed with the goal of making the process
as compatible as possible with the ring-counting procedure. Bojesen et al. (2024) applied
a novel method involving generative models to specifically mimic the ring annotations
often made by readers especially during workshops serving as visual guides for easier
ring identification. That is, certain markings (dots) are placed by the AI-method within
the image indicating the ring portions it detected. Likewise, in own work, Cayetano et al.
(2024) successfully created automated ring annotations using Mask R-CNN (He et al.,
2017) and U-Net (Ronneberger et al., 2015), which are popular methods for object detection
and segmentation. These methods are shown to satisfactorily create masks of the rings at
certain reading axes from which age estimates are derived through a simple automated
counting procedure. In this way, a human can easily comprehend the way the fish age
was determined and validate the result if needed.

To further increase the acceptance and trust in AI-based approaches for age reading, we
extend the use of explainable methods by creating a platform which enables the readers to
directly participate in the development and training of such AI models, similar to the idea
behind DeepOtolith (Politikos et al., 2022). In this study, we developed an interactive web-
based application that houses both Mask R-CNN and U-Net algorithms and makes them
accessible for age readers via an intuitive user interface. An important scientific aspect
introduced in this work is that this approach allows using additional, more advanced
Machine Learning concepts, which boost the performance as shown in this article.

From the perspective of an AI-based fish-age-reading tool, the idea is to provide a
mixed collection of AI models composed of user-trained models, along with the models
we developed (Cayetano et al., 2024) as well as those generic models trained from common
objects such as VGG (Simonyan and Zisserman, 2015) and Mrcnn-Coco (Abdulla, 2017;
Lin et al., 2014). This opens up additional options to use advanced ML concepts to further
improve the performance. Concretely, the following three contributions are presented in
this article. First, transfer learning is incorporated where existing models are reused to
initiate a new round of training on a new set of otolith images. Second, multiple models
can be consolidated during the testing/prediction stage using an ensemble method to
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create an aggregate prediction, which is significantly better than the individual model
predictions. Third, continual learning is used, i.e., the user can build an initial model from
a specific dataset which will be trained repeatedly each time a new dataset comes without
completely forgetting the original dataset it was trained on.

3.3 Materials and Methods

Implementation and Design

We provide here a short overview of the technical details of the platform as background
information. This also includes information on the basic ML methods that we build upon
before the main conceptual contributions of this article are presented in the succeeding
sections.

The platform is implemented as a web application which is currently hosted at Thünen
Institute on a Linux server with high-performance graphics cards for deep learning and
using a docker setup for Tensorflow-GPU/Keras library (Abadi et al., 2015; Chollet et al.,
2018). Currently, the website access is limited within the Thünen local network but a
portable standalone version (Windows only) can be downloaded for testing, exploring
and trying out some selected useful features. The implementation (DOI 10.5281/zen-
odo.8341297) is based on Python and the Django web framework (Django Software Foun-
dation, 2019). The portable version (DOI 10.5281/zenodo.10954470) is packaged in a
zip file, containing all the necessary libraries for starting the webserver and can even be
configured to allow other local machines to connect.

Similar to the previous work (Cayetano et al., 2024), preliminary image processing steps
were included such as outer contour detection and selected image adjustments. For in-
stance, the watershed algorithm (Pedregosa et al., 2011) can be employed for automatically
segmenting the otoliths from its background. In case of errors in the contour detection, an
annotation toolkit is integrated for the end-user, namely VIA or Visual Geometry Group
Image Annotation tool (Dutta and Zisserman, 2019).

Likewise, the web application also provides the two deep learning methods for fish age
reading that we previously developed (Cayetano et al., 2024), which are based on Mask
R-CNN (He et al., 2017) and U-Net (Ronneberger et al., 2015). These two methods were
demonstrated to be accurate and robust in estimating the fish age while at the same time,
creating image annotations of the otolith rings (i.e., image masks or markings showing
the identified otolith annuli). Both algorithms are supervised methods requiring ground
truth labels. The labels are in the form of mask annotations within an image indicating the
region of interest to be detected or segmented, respectively, by Mask R-CNN and U-Net.

As mentioned before, VIA is integrated, which can be used to create ground-truth
annotations using its drawing tool sets. Furthermore, we augmented VIA and integrated
our own custom brush tool, which makes the creation of annotations for this specific
application case faster and easier. Fig 3.1 shows an example of an irregular shape created
using the brush tool which will be otherwise tedious to draw using the default VIA
drawing toolkits.
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Figure 3.1: Improved VIA annotation toolset. Sample annotation accomplished using the
brush tool we implemented within the integrated VIA toolkit.

As another modification of the VIA tool to ease the annotation process, we also utilize
existing pre-trained otolith models from own work (Cayetano et al., 2024) that can perform
reasonable initial annotations on new sets of images to be edited/corrected by end-users
as necessary. That is, this feature serves as an AI-assistant that helps the users create the
ground-truth labels for new images they upload. The process is illustrated in Fig 3.2.

Training Functionalities and Transfer Learning

After creating the annotations, the next step is to use them for training. First, the validation
data needs to be created which will be used for measuring the performance of the model
during training so that the best-so-far state can be saved and retrieved accordingly. In
this study, the validation data was derived simply by using horizontal flipping of the
training data. The test data, however, will be different for each set of training and testing
experiment we conduct which is illustrated in Fig 3.3.

The next step is to choose the type of training to initiate which can either be from scratch
or from reusing previous models. The former trains a model from the ground up using the
default random weight initializations of the CNN. The latter takes advantage of transfer
learning to load existing model weights during network initialization from which the
training can continue. This will be elaborated in the following subsection.

Transfer Learning

There are essentially three ways by which the user can select existing models for transfer
learning. First is the basic case involving existing models published by the AI community
which are trained from common objects such as VGG (Simonyan and Zisserman, 2015)
and Mrcnn-Coco (Abdulla, 2017; Lin et al., 2014). The second case involves reusing models
trained from application specific data, here otolith images, such as the ones we already
provided (Cayetano et al., 2024) which can be reused for any otolith image dataset even
with different species or domains. The last case is the use of highly domain-specific
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Figure 3.2: With AI assistance. The AI-assisted annotation we implemented where the
users can edit the initial annotation given by the AI which can be saved and utilized in the
platform.

models, i.e., training involves images with the same application specific data and the same
characteristics (e.g. lighting, orientation), which hence potentially requires only a simple
model update.

Fig 3.3-B shows how we divided the current datasets in order to explore the concept of
transfer learning and utilize the existing otolith models which are taken from the previous
study we conducted (Cayetano et al., 2024). The details of our datasets (North Sea and
Baltic Sea datasets) along with additional information on how we trained our existing
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Figure 3.3: Training-testing splits. The partitioning of the dataset for the different
experiments we conducted namely (A) basic training done from the previous study (B)
transfer learning (C) ensemble learning (D) continual learning. The training set is marked
in blue while the test set is marked in green. In addition, the green colored arrows point
to the previous test sets that will eventually become training sets for the succeeding stages
of the relevant experiments.

models are described in our previous article and summarized in Fig 3.3-A.

As depicted in the figure, a small subset of the images (1/5 for the North Sea dataset
and around 1/10 for the Baltic Sea dataset) was used for training our existing models and
a larger subset was used for testing. These models are domain-specific which means that
there are separate models created for the North Sea dataset and the Baltic Sea dataset.

To fully utilize our image collection, we have to reuse the larger subset (i.e., the previous
test set shown in green in Fig 3.3-A) in order to conduct new rounds of training with the
different scenarios mentioned in this study. To evaluate the use of transfer learning, we
conduct a 3-fold cross-validation experiment (Fig 3.3-B) where this subset is divided into
three parts. Then, following the usual procedure, each round of cross-validation uses one
of the three folds as test set from which the performance of the scenarios can be evaluated.

Testing Functionalities and Ensemble Learning

In this section, we present the options for performing predictions on a separate set of
images. In the basic case, the trained model created by the user is tested individually on a
different set of images prepared for testing. The application’s output are the predicted
annotations within the image itself along with the estimate of the age value.

In the more advanced scenario, the predictions of the models can be combined to create
one aggregate prediction using ensemble learning. This will be elaborated in the next
section.
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Ensemble Learning

Ensemble Learning is a machine learning technique in which multiple models are com-
bined into a single aggregate model having a prediction which is computed or even
learned from the individual predictions of its constituents (Ganaie et al., 2022). For sim-
plicity, we can describe it as a form of meta-analysis or meta-learning where patterns
are derived from the individual model predictions. For this experiment, the constituent
models we used are the models trained in the previous experiment involving transfer
learning. The following three types are considered here:

• Model Averaging

This is the simplest method for creating an ensemble model. It only involves simple
averaging of the predictions of the individual models. As reviewed by Ganaie et al.
(2022), there are cases in which this can be a reasonable choice compared to some
other more complex ensemble approaches.

• Linear Regression

In this method, an additional round of training is required using linear regression as
the meta-learner and using the deep learning model predictions as the inputs. As
illustrated in Fig 3.3-C, this training is performed on the out-of-sample predictions
from the 3-fold cross-validation conducted in the transfer learning experiment. Then,
the testing of the ensemble can be performed on the original training set from the
previous study (Cayetano et al., 2024), which we now designate as the test set.
This means, however, that for this experiment, we have to exclude the use of some
transfer learning models having base weights that were trained previously on this
specified test set.

• Random Forest

Random forest is a classical ML algorithm which by definition, also functions as an
ensemble model for classification and regression (Breiman, 2001). For our purposes,
we treat is as a typical classifier that can learn patterns from the predictions of the
deep learning models. Likewise, as shown in Fig 3.3-C, we train it from the test
predictions of the individual models from the transfer learning experiment and test
it on the original training images used in our previous study (Cayetano et al., 2024).
Hence, we will also exclude any model containing pretrained weights that has been
derived from this currently designated test set.

Continual Learning

In this section, we present the use of continual learning. As mentioned in the previous
section on AI-assisted annotation, this is a more advanced feature that can be used for
creating ground-truth annotations where the user can choose to retrain the existing model
that performs the initial annotation with the new annotated images assisted by the model
itself.
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In this functionality, users will be able to perform training in batches of data and with
each batch, the model from the previous batch will be reloaded to annotate the new batch
(with corrections from the user if necessary) and then subsequently, conduct training using
the same set. This workflow loop is summarized in Fig 3.4.

Figure 3.4: Continual learning workflow. The self-sustaining loop for continual learning
where the model predictions on a new dataset can be edited, corrected and approved by
the user so that it can be used to conduct retraining to utilize the new labeled images.

The main hurdle, however, is the so-called catastrophic forgetting or catastrophic
interference (French, 1999; Parisi et al., 2019) where the model will eventually not recognize
the previous dataset it has learned while it is currently being trained on a completely
new dataset. Here, we investigate this phenomenon by observing the deterioration of
prediction on the original dataset or source domain (North Sea dataset, in this case), as
the model undergoes retraining using different training sets containing images from a
new domain (i.e., Baltic Sea dataset). In addition, we explore the commonly proposed
solution for catastrophic forgetting which involves rehearsal (Ratcliff, 1990; Robins, 1995).
We employ the basic rehearsal method in which we include some images from the original
domain and mix it on each new batch of images from the new domain to be used for
further training. In this manner, the model has the chance to “review” or “rehearse” its
original domain while also learning from the new set.
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3.4 Results and Discussion

Fig 3.5 shows the website page containing a sample set of images with the corresponding
predictions and annotations of the AI models that can be created using the web application.
As shown in the figure, color markings of otolith rings are directly placed within the image
making it easy to interpret and verify by the age reader.

Figure 3.5: Webpage showing predictions. Automated image annotations created by the
two different AI methods, U-Net and Mask R-CNN, as shown on the web application.

Transfer Learning

In Fig 3.6, the result of the experiments with the different types of transfer learning is
shown. The evaluation of performance was conducted via 3-fold cross-validation as
described in the Methods section.

It can be seen that for both algorithms (Mask R-CNN and U-Net), the model without any
type of transfer learning has consistently attained the least accuracy. In addition, it can be
seen that, in the case of the North Sea dataset, the model with pretrained weights based on
North Sea images attained the highest accuracy for both Mask R-CNN (53.2%) and U-Net
(62.5%). In the case of the Baltic Sea dataset, the model with pretrained weights based on
Baltic Sea images also performed excellently attaining the second highest accuracy (73.3%)
for Mask R-CNN and the highest accuracy (77.8%) for U-Net.

In addition, we further elaborate the performance of the best models created with
transfer learning to see the distribution of their predictions on each age classes as shown in
Fig 3.6(C-D). It can be seen from the violin plot, that the predictions of the best models are
excellent from ages 1-8 and start to decline from ages 9 onwards. Nevertheless, the overall
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Figure 3.6: Cross-validation performance. The performance of the different models tested
using 3-fold cross-validation (3 repeats using 3 different otolith base weights creating a
total of 9 runs). All Mask R-CNN models start with “M” while all U-Net models start with
“U”. The models tagged with “-O” refer to those without transfer learning while the rest
indicates the identifier of the pre-existing base models (-CO refers to the Coco model, -NO
refers to the North Sea-trained model, -BA refers to the Baltic-trained models, and -VG
refers to the VGG model).

performance can still be considered satisfactory despite using an imbalanced training set,
which is a consequence of cross-validation, in contrast to the one used in the previous
study (Cayetano et al., 2024) where each age group contains the same number of images
(random sampling with rebalancing).

With these results, the advantage of transfer learning has been demonstrated and shown
to be superior compared to training from scratch without any pretrained weights. This
aligns with the results of various AI-based age reading studies such as the works of Moen
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et al. (2018), Martinsen et al. (2022) and Ordoñez et al. (2020), where they previously
demonstrated the effectiveness of pretrained Inception, Xception and VGG, respectively.
In addition, our results also indicate that, in some cases, the use of base models pretrained
from otolith images obtains better performance compared to using typical generic models
pretrained from common objects. Hence, in this study, we present another future perspec-
tive to obtain further improvements by encouraging the development of more otolith base
models that can be reused by the community using the concept of transfer learning.

Ensemble Learning

As mentioned, the ensemble approach is a meta-learning process requiring the model
predictions as inputs for training and testing. Hence, we require sufficiently diverse
models that can be combined accordingly. For this, we have reused the models trained
using the transfer learning experiment from the previous section.

The training set of the ensemble would be the predictions of each individual model on
the out-of-sample test set created via 3-fold cross-validation from the previous section.
Then, for testing and proper analysis, we need to evaluate the performance of the ensemble
on the training set used in the previously published study (Cayetano et al., 2024), which
is now currently designated as the test set. In order for this to work, however, it was
necessary to exclude the models containing weights trained from that set because they
will naturally be familiar with it, making the results too optimistic. Hence, in Fig 3.7, it can
be seen that we evaluate six models per dataset instead of eight as done in the previous
section. The accuracy values for these selected models are plotted in a bar chart which we
will use to compare with the combined/ensemble models.

In Fig 3.8, the three types of ensemble approaches are evaluated. Fig 3.8(A-C) show the
distribution of predictions on each age classes produced by the three ensemble methods. It
can be observed that the ensemble using Model Averaging produced the worst distribution
among the three methods. When it comes to the distribution across all age groups, the
Linear Regression produced the best trend where the age-wise median values were located
on the expected position with the exception of age 11. For the Random Forest method,
both age 5 and age 11 otolith images were heavily under-estimated but the rest of the age
groups are excellently predicted. To know which one is superior, we also plotted their
corresponding accuracy values (Fig 3.8-D). It can be seen that Random Forest (RF) attains
the highest accuracy values for both North Sea and Baltic Sea images. Moreover, for both
datasets, it surpasses the performance of its best constituent model which is depicted in the
plot as dashed blue and orange lines, respectively. This means that the use of an ensemble,
particularly in form of a Random Forest, can be used to further improve predictions. These
results complement the findings from Moen et al. (2023), where they showed how simple
averaging ensemble already provides a decent increase in accuracy. In our study, we
explored additional ensemble types apart from model averaging and showed that further
improvements can be obtained with other more sophisticated ensemble methods.
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Figure 3.7: Performance of constituent models. Performance of each individual model
used to create the ensemble models (n=3). In compliance with standard practice, all
models from the cross-validation experiments are discarded. To measure the performance
of the methods, i.e., those starting with M- represents Mask R-CNN and U- for U-Net,
a final training was done where all images from the three folds of cross-validation were
included. Then, evaluation was done on an unused set, i.e., the set which was used for
training in the previous study (Cayetano et al., 2024) which is now designated as the test
set.

Continual Learning

In this section, we first investigate the phenomenon known as catastrophic forgetting
in which a trained model tends to forget its original training set once retrained with a
completely new dataset. In Fig 3.9(A-D), we illustrate this behavior by reusing an existing
U-Net model previously trained from the North Sea images and retraining it in four
different ways.

To see how well it remembers the original training set, we use a validation set composed
of the exact images it was previously trained on. We then plot the training loss (blue)
and the validation loss (orange) as the model undergoes retraining under four different
scenarios. In Fig 3.9-A, we run a baseline scenario where the training set is composed
of the exact images from the original training without introducing new images. This
represents the case where the model is still completely familiar with the validation set
resulting to the expected highly optimistic loss plot. Afterwards, we perform additional



66 CHAPTER 3. AN INTERACTIVE AI-DRIVEN PLATFORM FOR FISH AGE READING

Figure 3.8: Ensemble performance. Distribution of age predictions (n=3) using the three
ensemble methods namely (A) Model Averaging (AVG) (B) Linear Regression (LR) (C)
Random Forest (RF). The overall accuracy of the three methods is summarized in a bar
chart (D) along with the accuracy of the best constituent model (from previous experiment)
indicated by dashed lines.

experiments where we add new domain images into the training set. In Fig 3.9-B, we create
a mixed training set composed of 33.3% new images and 66.7% old images. It can be seen
how the model still manages to have improvements in both training and validation loss
albeit in a more unstable manner compared to the baseline scenario. Next, we increase the
proportion of the new images (66.7%) for training and plot the resulting loss in Fig 3.9-C.
Here, the improvement is now heavily leaning towards the training while the validation
loss is maintained (i.e., neither improves nor deteriorates). Finally, we explore the case
where all training images are from the new domain. In Fig 3.9-D, it can be seen that the
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Figure 3.9: Catastrophic forgetting. The effect of catastrophic forgetting investigated (n=3)
using four different training scenarios involving images from original domain (North
Sea) and the new domain (Baltic Sea). (A) training set with purely old domain images (B)
mixed training set with 33.3% new and 66.7% old images (C) mixed set with 66.7% new
and 33.3% old images (D) training set consisting purely of new domain images.

validation loss gets worse while the training loss improves indicating that the model’s
familiarity with the old training images deteriorates as the model learns the new domain
images. This deterioration of the validation loss represents the catastrophic forgetting
phenomenon as the model encounters increasing proportion of unfamiliar images during
training.

In the next experiment, we investigate the most common solution proposed for handling
catastrophic forgetting which is the rehearsal method (Ratcliff, 1990; Robins, 1995). For
this, we evaluate a scenario with and without rehearsal. This is done separately for Mask
R-CNN and U-Net using pretrained weights based on North Sea images. Hence, similar to
the previous experiment, we consider the North Sea dataset as the original domain while
the Baltic Sea dataset serves as the new domain. For rehearsal, we use a mixed training set
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where the number of original domain images is 50% of the new domain images. These old
images are reintroduced in each subsequent training stage as described in the Methods
section (Fig 3.3-D).

The accuracy plots in Fig 3.10 show the effectiveness of the rehearsal approach in
preventing catastrophic forgetting. The models with rehearsal, shown in green lines, are
able to maintain good accuracy values for the original domain as well as for the new
domain that they are currently learning from. This observation is true for both Mask R-
CNN and U-Net. The models without rehearsal are only good for the current domain and
they become completely unfamiliar with the original domain they were previously trained
on. Similar to the previous experiment, the performance of the models on the original
domain deteriorates drastically as they learn from the new domain without rehearsing on
the old images.

Figure 3.10: Performance with- and without rehearsal. The accuracy values for the
continuously learning models at six stages of retraining. The green lines indicate the
models with rehearsal while the blue lines indicate those without rehearsal (normal
training). The continuous lines (with triangle markers) represent the accuracy for the
original domain while the dashed lines (with circular markers) represent the accuracy
for the current/new domain. In both algorithms, the models with rehearsal are able to
maintain good accuracy for both the original domain and the current domain. The models
without rehearsal only performed satisfactorily for the current domain and drastically
became unfamiliar with the original domain it was previously trained on.

As a final comparison, we present confusion matrices showing the prediction accuracy
of the models with- and without rehearsal evaluated on the current domain. As seen
from Fig 3.11, all models have comparable performance, i.e., they are all excellent in
predicting ages 2-4 but performed slightly worse for ages 1 and 5. For each algorithm,
the two variations of training (with- and without rehearsal) performed similarly as seen
by the age-wise accuracy values along the diagonal of the corresponding matrix. This
observation indicates that with rehearsal, the performance of the models on the new
domain remains unaffected even when the training is conducted on a mixed set composed
of both the old and the new images.
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Figure 3.11: Age-wise accuracy. Confusion matrices containing the age-wise accuracy
values of the models without rehearsal (Normal) and with rehearsal (Rehearsal) when
evaluated on the current domain. Despite the inclusion of old images from the original
domain via rehearsal, the performances of the rehearsal models are not affected for the
new domain; this is indicated by the similar accuracy values attained by both model
variants. The negligible percentage of predictions outside age range 1-5 are not shown.

3.5 Conclusions

We presented work on using higher-level Machine Learning strategies in the context of
automated fish age reading based on images of otoliths. This is a highly relevant scientific
and economical problem as fish age is an important biological variable required as part of
routine stock assessment and analysis of fish population dynamics.

The presented work is grounded in an easy to use, web-based tool-chain targeted at
human age-readers as end-users without a background in Artificial Intelligence. The
tool-chain provides methods the end-users are already familiar with, e.g., standard image
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processing and annotation tools, but also explainable AI in form of ring segmentations
and automated counting.

An important aspect of the presented approach is that higher-level ML concepts such
as transfer learning, ensemble learning and continual learning can be employed. It has
been shown in this article that these techniques lead to improved performance which can
be highly beneficial and timely especially with the recent growing interest in the use of
AI for fish age reading. First, it was demonstrated here how transfer learning increased
the overall accuracy especially when otolith base models are used instead of the generic
base models trained from common objects. Second, it has been shown that, with ensemble
learning especially using a Random Forest meta-learner, there is a further improvement in
accuracy compared to just the individual performance of the constituent models. Lastly,
using continual learning coupled with a basic rehearsal approach, it has been shown
that one can create a single model which has an excellent accuracy for different datasets
(or domains) making it unnecessary to train separate models for each set. In this study,
not only that these concepts were explored in detail but also, they were packaged into a
web-based platform where they can be easily utilized by end-users, even those without
coding or programming background.
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4.1 Abstract

Fish otolith is a structure that provides a wide array of biological information having
great importance in fisheries science. Primarily, it has been used extensively for fish
age determination where the patterns of its ring (or annulus) formation are traditionally
counted manually to derive the fish age. Moreover, various studies involving the general
otolith morphology have been conducted giving clues regarding the fish stock along with
some essential biological details. Recently, the use of artificial intelligence (AI) for otolith
analysis has increased substantially. As a step in this direction, we previously showed
how deep learning algorithms for object detection and segmentation, namely U-Net and
Mask R-CNN, can be used to automatically estimate the fish age and create annotations of
the annuli. We then packaged the approach into a web-based application where advanced
concepts such as transfer learning, ensemble learning and continual learning can be used
in conjunction with the base methods. In this study, we present a multi-stage framework in
which both U-Net and Mask R-CNN can be utilized further for the overall otolith analysis
to obtain not only the age information but also other properties and measurements such
as the otolith contour, nucleus position, and annuli distances. Here we elucidate the
effectiveness of these methods to perform these tasks while creating more ways to make
the methods accessible to the age reading community.

Keywords: fish age reading, otoliths, artificial intelligence, deep learning, object detection,

segmentation

4.2 Introduction

Otolith is the structure responsible for the balance and sound detection of fish (Campana,
1999). It is formed by the deposition of calcium carbonate which has been found to
be highly linked to the geographic and environmental conditions (Stransky, 2005; Van-
derKooy et al., 2020). Specifically, it was observed that the ring-like formations within the
otolith correspond to the seasonal variations in non-tropical environments (i.e., winter
and summer seasons produce different ring patterns within the otolith). Consequently, the
manual identification and count of these rings have been a valuable source of information
for determining the fish age (Proctor et al., 2021).

In addition, various studies have shown that other morphological properties of the
otolith can be utilized for further analyses. For instance, the works of Campana and
Casselman (1993), Stransky et al. (2008), and Hüssy et al. (2016) showed how the outer
otolith shape can be used for distinguishing between different stocks. This has a particular
importance, for instance, in determining the fish diet of sea mammals (Enoksen et al.,
2016) and sea birds (Polito et al., 2011), where mixed otoliths are obtained from their
gastrointestinal contents. Also, the study by Denechaud et al. (2020) has shown that
the growth patterns inherent with the annuli formation can serve as proxy for studying
environmental conditions affecting specific fish stocks.

Due to its biological importance, the otolith has been a subject of many studies involving
computer vision and image processing techniques. For instance, there are studies that
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have utilized classical image processing to determine the fish age as reviewed by Fisher
and Hunter (2018) along with the extraction of the outer shape (Stransky, 2014) and the
localization of the nucleus (Harbitz, 2009; Cao and Fablet, 2006).

Recently, with the progress in AI, particularly deep learning, otolith datasets have
been subjected to various studies utilizing different sophisticated AI algorithms. For
instance, the study of Stock et al. (2021) showed how one can utilize Convolutional Neural
Networks (CNNs) and raw otolith images for species identification which is traditionally
done with shape analysis. Furthermore, a large of number of studies have also shown
the effectiveness of different AI approaches to determine the fish age (Moen et al., 2018;
Ordoñez et al., 2022; Politikos et al., 2021; Sigurdardóttir et al., 2023; Moen et al., 2023). In
response to the criticism regarding the lack of explainability of initial approaches, some
studies even showed techniques to demystify the inner workings or mechanisms of AI
predictions (Ordoñez et al., 2020; Martinsen et al., 2022). Lastly, other studies created web
applications (Politikos et al., 2022) and frameworks (İşgüzar et al., 2024) that facilitate the
wider useability of these modern approaches.

More recently, newer studies focused on ways to make the age reading process directly
compatible with traditional ring counting. For instance, Bojesen et al. (2024) showed the
use of generative models for creating dot-based annotations of the rings. Likewise, in own
work, Cayetano et al. (2024b) showed the capabilities of U-Net (Ronneberger et al., 2015)
and Mask R-CNN (He et al., 2017) to create another form of annotations within the rings
from which age can be derived. As another step towards wider acceptance, the follow-up
study by Cayetano et al. (2024a) packaged the methods into a web-based toolchain that
enables easy-to-use access while at the same time, integrating advanced ML concepts that
can be used to boost the performance further.

The importance of software tools to help in otolith analysis cannot be overstated. For
instance, the ICES (2023) SmartDots have played a very important role for the age reading
community especially during otolith workshops and exchanges. The tool provides an
intuitive visual aid to the age readers in order to mark or annotate the rings forming
the basis of their estimates that can be easily verified and studied to identify erroneous
assessments (Pinto et al., 2018). This reduces the ambiguity of the process and lessens
the subjective aspect which will eventually contribute to its standardization. Some other
essential features are also included in the ICES SmartDots such as a measuring tool along
with an image intensity visualization which facilitate efficient otolith analysis (ICES, 2023).

In this study, we present a multi-stage framework embedded within the existing web-
based application we developed where both the AI methods presented can be utilized
further, not only for the task of fish age reading but also as a toolkit for general otolith
analysis. First, we show how the methods can be employed to perform morphological
processing such as the detection of outer otolith shape or contour as well as the localization
of the otolith core or nucleus. Next, we show how the annotation toolsets added into
the existing web application can complement software tools such as ICES SmartDots by
allowing the use of dot-based annotations for both the input and output of the software.
Then, with these annotations, we provide a way to perform measurements of annuli
distances in order to detect patterns of growth among different species in our datasets.
This is in addition to the usual process in which the annotations are used to derive age
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estimates. Lastly, we compile all the approaches in order to perform end-to-end analysis
using a completely new set of unprocessed otolith images to highlight its effectiveness to
perform the different tasks involved.

4.3 Methods

Multi-stage Framework Design and Implementation

A summary of the overall stages of the framework is depicted in Figure 4.1. It starts
with otolith contour extraction which isolates the otolith of interest from its background.
Next comes the otolith nucleus localization where the approximate area surrounding
the core is highlighted by the appropriate method. Lastly, the third stage follows where
the otolith rings/annuli are identified and marked. For this last part, there are two post-
processing final steps that can be done: one in which the markings are counted to obtain
the age information (Cayetano et al., 2024b) and another involving measuring the distances
between the marked annuli to check for growth patterns which will be explored in this
study.

The platform is coded in python and the codebase is available in Github (https://gi
thub.com/arjaycc/ai_otolith/). The application can either be deployed as a webserver
where multiple machines can connect or can also be used as local software tool with the
available standalone portable version (https://doi.org/10.5281/zenodo.10954471). For
the webserver running at Thuenen Institute of Sea Fisheries, a docker setup is involved
which is deployed on a Linux machine containing the libraries for Tensorflow-GPU/Keras
(Abadi et al., 2015; Chollet et al., 2018). As the extension of the previous two studies,
further details of the setup can be found elsewhere which will not be elaborated here.

Outer Contour Detection

In this section, we present the facility that allows contour detection using deep learning.
This step is particularly important for three main reasons: 1) when age readers take otolith
images, multiple otoliths are sometimes present in the same slide along with the one being
captured; 2) to make AI training more robust, it is generally helpful to remove unreliable
information such as the apparent sizes of the otoliths which can depend on the manner of
image capture (i.e., readers can have their own custom magnification which may not be
consistent); 3) detecting the otolith outer shape is the preliminary input of many studies
involving stock discrimination using shape analysis (Stransky, 2014).

First, we need to determine which algorithm is better suited for this task. We utilize
all the images of the Baltic Sea dataset used in the previous studies and conduct 3-fold
cross validation to evaluate the performance of the two methods for detecting the otolith
outer shape or contour. For the ground-truth labels, we utilize a semi-automated approach
where we initially apply the watershed algorithm from scikit-learn (Pedregosa et al., 2011)
on the images, in conjunction with the opencv library (Bradski, 2000). This algorithm is
a well-known classical computer vision technique for background isolation. After this
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Figure 4.1: Overview of the multi-stage framework.

approach, there will be a set of proper contours for most of the images. Similar to the
previous study (Cayetano et al., 2024b), in the case of erratic contours, we perform manual
contour corrections with the use of an annotation toolkit known as VIA or Visual Geometry
Group Image Annotation (Dutta and Zisserman, 2019) software.

As a way to simplify the use of VIA, we previously integrated it in our web application
so that it can be called as needed and that its output can be saved following our file-naming
and database structure. In addition, we also previously modified the codebase of this tool
such that certain features like brush tool can be utilized as part of it.

To evaluate the models, we need to define certain metrics utilized in this study. In the
context of image segmentation, where predictions are evaluated pixel-wise, we define
four prediction categories namely true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). These are summarized in Table 4.1.

With these four values, we can compute the following metrics (Alouini, 2021; Huynh,
2023) and create a tally of the testing instances in which one algorithm is better than the
other. These five metrics are popular evaluation methods for comparing and benchmark-
ing algorithms that perform image segmentation.



80 CHAPTER 4. MULTI-STAGE FRAMEWORK FOR OTOLITH ANALYSIS

Table 4.1: Different types of per-pixel prediction outcomes/categories (against the ground-
truth labels) as the image is segmented by the AI-methods.

Ground-Truth

Otolith Region Background
AI Prediction Otolith Region TP FP
(pixel-wise) Background FN TN

Precision =
TP

(TP + FN)

Recall =
TP

(TP + FP)

Pixel Accuracy =
(TP + TN)

(TP + TN + FN + FP)

F1 Score =
2TP

(2TP + FP + FN)

Jaccard Score/IOU =
TP

(TP + FP + FN)

Nucleus Detection

For this stage, we also need to determine which of the two algorithms is best suited for
the task. Likewise, we perform a 3-fold cross-validation experiment where we utilize all
the images from the North Sea dataset used in the previous studies we conducted.

Similarly, the ground-truth labeling of the nucleus is done using the integrated VIA
toolkit which is made even easier with the brush tool we implemented. Also, we perform
the evaluation using the metrics mentioned in the previous section and create a tally
comparing the two algorithms.

It is important to note that, for our purposes, we characterize the nucleus as the central
region of the otoliths, inside the first annulus ring and under the sulcus. Figure 4.2 shows
an illustration of this relative location along with some other important terminologies
regarding otolith regions and axes.

Annuli Annotation

In own work (Cayetano et al., 2024b), we showed how the use of two AI methods, namely
Mask R-CNN and U-Net, can be an effective approach to perform age reading and to



SECTION 4.3. METHODS 81

Figure 4.2: Some of the important regions/axes of the otolith relevant for this study along
with a sample annotation of the nucleus location.

generate annotations of the rings. This makes the process explainable and can be directly
verified by the age readers.

In this section, we briefly discussed how the old ground-truth annuli annotations were
created in the previous studies and how the process differs to the one we explored here,
which will be elaborated on the next section.

Similar to the other stages, we utilized the VIA toolkit to mark the portions of the annuli
along the major reading axes. In addition, in certain subsets, we also employed AI-assisted
annotation where we used existing models to create preliminary annotations which were
manually corrected as needed. In this way, ground-truth labeling does not start from
scratch and we only need to work on the erroneous initial annotations made by the AI
method.

ICES SmartDots Compatibility of the New Method of Annotation

As mentioned earlier, ICES (2023) SmartDots is a popular software commonly used by
age readers for annotating the otolith rings which is especially useful during age reading
workshops and exchanges (Pinto et al., 2018). Using this tool, they are able to create dot
annotations of the annuli as a visual aid for the manual age reading process. It is therefore
necessary that the tools we are developing are compatible with this standard practice so
that it can be easily adapted by the community. Also, with this approach, there is also a
potential to reuse the data from otolith workshops and exchanges for training the AI-based
methods.

In line with this, we further increase the useability of our own toolchain by incorporating
a way to represent the annotations with dots instead of the wider default masks of the
annuli that we initially implemented. There are two ways by which we supported the ICES
SmartDots concept. For the first one, we simply take the centroid of the output/prediction
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masks of the AI methods from which the central point can be eventually derived which is
represented by a dot. For the second adaptation, we create a new annotation tool method
where, instead of the usual ground-truth masks created from our previous studies, we
allow the users to simply mark the rings using dots in VIA. Then, we perform background
processing of these dots in order to create the appropriate masks needed by the algorithms.
We investigate the feasibility of this approach by comparing the performance using this
ground-truth labeling approach to the results from our previous study.

Measurements of Growth Patterns

Another advantage of age reading methods that generate ring annotations is that further
downstream analyses can still be done. For instance, we perform a completely new
experiment in which we measure the annuli distances in order to study the different
growth patterns that may exist among the selected species and stocks in this study. For
species-wise experiments, we focus on distinguishing the growth patterns between saithe
(Pollachius virens) and cod (Gadus morhua). For the stock-wise analysis, we discriminate
between the North Sea cod (abbrev. as N-Cod) and the Baltic Sea cod (abbrev. as B-Cod).

Multi-stage Otolith Analysis

We perform a final experiment using a completely new set of unprocessed images which
were not used in any way in the previous studies. This new set is a randomly segregated
subset of the total collected Baltic Sea images from surveys which we specifically allocate
for this multi-stage experiment. In contrast with the previously used Baltic Sea dataset,
the images are in their unprocessed and uncropped state which means that they are at the
original dimension and magnification. This also means that there could be the presence
of other surrounding otoliths and background artifacts which we aim to handle and
overcome with the multi-stage framework.

Using the appropriate methods selected by the previous experiments, we subject this
new set of images following a stage-by-stage procedure. First, we segment the otoliths and
create the outer contours which will be used to automatically re-scale and crop the images
in order to remove the surrounding artifacts. Then, we locate the otolith core or nucleus
region and mark the central point accordingly. Lastly, the otolith rings are annotated
which will serve as the input for two postprocessing steps namely, age estimation and
annuli distance measurements.

4.4 Results

For the first stage, we elucidate the capabilities of the two algorithms to generate the
outer shape or contours of the otoliths. Some examples of the masks generated by the two
methods for this task are shown in Figure 4.3-a (Mask R-CNN) and Figure 4.3-b (U-Net).

To evaluate their performance, we obtained the values of the different metrics we
discussed in the methods section namely pixel accuracy, recall, precision, F1 score and
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Figure 4.3: a) Mask R-CNN detection of the otolith. b) U-Net segmentation and extraction
of the contour. c) Percentage of instances in which one method is better than the other and
vice versa.

Jaccard score. To avoid any outlier test image from bringing down the overall values of
the metrics, we simply tallied each test image instance where one method performs better
than the other and vice versa. The resulting plot (in percentage of all test instances) is
shown in Figure 4.3-c. In can be seen how the U-Net outperforms the Mask R-CNN for
this task.

For the second stage, some examples of the output of the two algorithms are also shown
in Figure 4.4-a (Mask R-CNN) and Figure 4.4-b (U-Net). Likewise, we perform evaluation
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using the metrics and tallied the total image samples where one method surpasses the
other and vice versa. This is shown in Figure 4.4-c. For this stage, it can be seen that Mask
R-CNN has the advantage compared to the U-Net.

Figure 4.4: a) Mask R-CNN detection of the nucleus b) U-Net segmentation of the nucleus.
c) Comparison of the two algorithms based on the metrics.

For the third stage, we first need to check the effectiveness of dot annotations as
potential replacements of the wider and more complex mask annotations from previous
study. Naturally, these dots cannot be immediately used as inputs of the algorithm due
to the fact that each dot covers only one pixel within the entire image dimension. Hence,
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we create a pre-processing step using a simple heuristic that converts these dots into
wider representations which satisfy the requirements of the algorithms. Figure 4.5 shows
the difference in performance with these dot-based starting annotations compared to the
original ground-truth masks from previous studies we conducted.

Figure 4.5: The accuracy of age estimates when using the different methods of annotations.
Normal refers to the old method used in previous study (Cayetano et al., 2024b) while
Dots annotations are the ones explored here.

After establishing the feasibility of the dot-based annotations, we then proceed to
investigate whether there is indeed a trend regarding the growth of the annuli among the
different species in our dataset. To do this, we reuse the dot annotations from the previous
experiment serving as the central point representation of each ring having a single pixel
coordinate. Using this point/dot, we measure the distances of the annuli focusing along
a single reading axis, i.e., the axis which, most of the time, contains the complete set of
rings. Figure 4.6 shows the resulting trend.

Finally, we conduct the multi-stage analysis by using a different set of unprocessed
images which are all from the Baltic Sea dataset. The trained models from each stage
performs their corresponding tasks which will be taken as inputs to the next stage and
so on. Finally, the final performance evaluation is done by taking accuracy of the age
predictions on this new set of images along with measuring the annuli distances to see if
they align with the expected trend discussed above. The results are presented in Figure
4.7 and Table 4.2.

It can be seen that for the age reading task, the two methods managed to successfully
attain satisfactory agreement with the manual age reading values as shown in Figure 4.7-a
and Table 4.2. The box plots show useful information regarding the manner by which the
predictions are distributed for each age class. The orange marker represents the median
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Figure 4.6: The annuli distances (% w.r.t. otolith radius) among the different species and
stocks explored in this study indicating the differences in their growth patterns. For ring 2
to 5 (i.e., D2-D5), the distances are with respect to the preceding ring. For ring 1 (D1), the
distance is measured from nucleus.

values of the predictions while the boxes indicate the predictions within the 1st and 3rd
Quartile (Inter-Quartile Range or IQR). The apparent small sizes of these boxes indicate
that the predictions of both methods are within a satisfactory narrow range. Moreover,
in Table 4.2, the mean overall accuracy values in terms of percent agreement with the
manual readings are also worth highlighting. Both Mask R-CNN and U-Net attained
satisfactory agreement percentages with values equal to 70.8% and 68.6%, respectively. In
addition, if we consider predictions which are off by just one unit, the percentages become
more impressive reaching as high as 97.8% and 96.6%, respectively.

For the task of finding growth patterns via annuli distance measurements, the line plots
in Figure 4.7-b also show some interesting trends. For both methods, a distinctive pattern
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Figure 4.7: Result of the final stage for the multi-stage experiment involving a completely
new batch of Baltic cod otolith images. a) Age-wise distribution of predictions of Mask
R-CNN and U-Net b) Growth patterns measured using the distances of the centroid points
of the predicted annulus rings generated by the two methods.

became apparent in which the distance initially increases (D1-D2) then goes downwards
after the second annulus (D2-D5). This is the same growth trend that was observed when
manual dot annotations were measured and shown in Figure 4.6. Hence, this means that
the pattern remains consistent even with the purely automated AI-based approach and
with an entire new set of Baltic cod images. Given that the pattern for North Sea saithe
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(Pollachius virens) shown in Figure 4.6 is completely different, the AI-generated growth
patterns for Baltic cod (Gadus morhua) can be theoretically used for distinguishing between
the two species. This is particularly useful for applications involving analysis of the diet
of sea birds and mammals where mixed sets of otoliths are obtained from their stomach
contents or faeces samples (Enoksen et al., 2016; Polito et al., 2011).

Table 4.2: Overall accuracy of the age estimates generated by the two methods on a
new set of Baltic cod images. In addition to the exact agreement, we also included the
percentages when predictions are within 1 unit of error.

Mask R-CNN U-Net
Exact Agreement 70.8% 68.8%

Off-by-one 97.8% 96.6%

4.5 Discussion

In this study, we managed to show how the different methods are capable of performing
other important tasks apart from their previously published effectiveness in age estimation.
The results give a strong case of employing a multi-stage approach when it comes to
otolith analysis especially when handling raw and unprocessed images. Such multi-stage
approach has already been elucidated by the work of İşgüzar et al. (2024) when they
managed to use Faster R-CNN to isolate the otoliths before employing Gaussian process
regression model to estimate the age. Here we provide another perspective regarding the
multi-stage approach where we used the same set of algorithms for both the preliminary
stages (contour extraction and nucleus detection) and the main stage (age determination
and annuli distance measurement).

For the first stage, the task of contour detection has been handled well by the two
algorithms. In Figure 4.3, we showed that U-Net is generally better than Mask RCN for
this task as far as the overall tally of effectiveness is concern. However, it might also be
good to highlight at this point that there seems to be a negligible difference in values when
the absolute values of the metrics are considered. Hence, using the Mask R-CNN for this
stage could still work.

In the context of this study, the use of this contour extraction is limited to the image pre-
processing steps such as background isolation as well as in cropping the otolith away from
other surrounding otoliths and artifacts. However, for the purpose of stock discrimination
using the otolith shape/contour (Stransky, 2014), having images of sectioned otoliths
limits this possibility since the shape can be affected by the angle or manner of otolith
cutting which cannot be guaranteed consistently. Nevertheless, the results still serve as
valid showcasing of the capability of the algorithm for this type of task. The exploration
of its usage in shape analysis will be an excellent future direction especially with the use
of the proper type of otolith images (i.e., whole otoliths).

Similarly, for the second stage, we compare the two methods by relying on the overall
tally of the instances where one method is better than the other. The results (Figure
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4.4) show that Mask R-CNN outperforms the U-Net for the task of nucleus localization.
However, in terms of the score values, the difference is actually minimal such that even
the use of U-Net for this task will be sufficient.

As noted by Cao and Fablet (2006), detecting the nucleus is a pre-requisite for several
downstream morphological analysis in which a central reference point is needed. In our
study, the position of the nucleus is highly relevant to the other steps performed on the
next stage of the framework (i.e., age estimation and measurement of annuli distances).
In both cases, the central point of the reading axes has to be located first before the post-
processing steps can be initiated. In Cayetano et al. (2024b), the nucleus coordinates were
obtained using the heuristic proposed by Harbitz (2009) which involves approximation
of the coordinate based on the ellipse fitted following the otolith shape. In this study, we
obtain the nucleus coordinates without the need for other algorithms and we have shown
that the same methods for annuli detection can also work on the task of localizing the
nucleus or even other otolith regions (i.e., as a future direction for this study).

On the final stage, the creation of annuli annotations take place where there are two
different post-processing steps that can be done. For the first one, the goal is to derive the
age estimates which has been already highlighted in our previous works (Cayetano et al.,
2024b). It was previously elucidated that both the methods perform this task effectively
and that, with the help of advanced concepts such as transfer learning, ensemble learning
and continual learning, the performance of the algorithms can be boosted further. In
this study, we give another perspective to this task by showing that even with the use
of simplified dot annotations, high accuracy of age prediction can still be attained. This
was elucidated in Figure 4.5 where the difference in accuracy for dot-based and normal
(wider) annotation methods is minimal. Therefore, this is another step towards making
AI development and training even easier. Also, as the otolith workshops and exchanges
already make use of these dot annotations via ICES (2023) SmartDots, there is also another
possibility that the datasets from such events can be reused to train the relevant AI
algorithms.

For the second post-processing in the final stage, the alternative objective is to measure
the distances between the annuli to see if there are growth patterns that can be extracted.
As discussed in the study by Denechaud et al. (2020), such patterns can serve as proxy for
studying the fish growth which can reflect the underlying environmental conditions of the
fish habitat. In this study, we utilize the annuli growth patterns to distinguish between
species and stocks. It was observed that for discriminating between species (saithe vs
cod), such patterns can indeed be useful and effective as shown by the very distinct trend
in Figure 4.6. However, using it for stock discrimination will not be possible due to the
similarity between the observed growth patterns for the North Sea cod and Baltic cod.

To summarize, we enumerate below the general contributions and findings of this
study:

1. Contour/Outer Shape Extraction

U-Net is excellent in 4 out of 5 evaluation metrics for the task of outer contour
extraction which can be used to isolate the otolith from its background especially
when handling images captured from a slide of otoliths adjacent to each other.
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2. Nucleus Detection

Mask R-CNN performs better on 4 out of 5 metrics for the task of nucleus localization
which is a pre-requisite of the post-processing steps to be performed on the next
stages of the framework.

3. Annuli Growth Measurements

There is a noticeable trend when it comes to the patterns of annuli growth within the
otolith which enables differentiation of species (i.e., saithe and cod) but not sufficient
for discriminating between stocks of the same species (i.e., North Sea cod and Baltic
Sea cod).

4. ICES SmartDots Compatibility

It is highly feasible to use dots as initial ring annotation which can be easily con-
verted to the proper masks needed by the AI methods allowing the possibility that
annotation data from existing tools such ICES SmartDots can be reused.

5. Multi-stage Age Reading

The use of multi-stage approach is highly effective in handling unprocessed and
uncropped images and that, both the two methods are sufficient to utilize for all
the stages starting from contour extraction, nucleus localization as well as annuli
detection and segmentation.

4.6 Conclusion

The study is another step towards the continued pursuit to improve the overall process of
otolith analysis and age reading while making the AI-based methods accessible to the age
reading community. The multi-stage framework and platform we developed is designed
to be compatible with existing tools such as the ICES SmartDots making it familiar and
intuitive to use. In addition, the output of the AI methods we presented, namely U-Net
and Mask R-CNN, is in the form which is compatible with the traditional ring counting
methodology contributing greatly to its explainability and trustworthiness.

Aside from the web-based tool we developed, there is also a future direction or next
stage in this endeavor where we aim to connect the AI-based toolchain directly into the
imaging software for microscopy such that it can be initiated on-the-fly as the otolith
image is being captured. In this way, it can easily assist the age reader regarding the
imaging aspect in real-time contributing further to its useability.

Ultimately, as the use of these software toolchains becomes popular and widely adapted,
there will more collection of training datasets (i.e., images with annotations) which will
further increase the accuracy and effectiveness of the AI-based approaches for otolith age
reading and analysis.
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Chapter 5

Synthesis

5.1 Summary and Overview

This section summarizes and recapitulates the papers included as different chapters of the
thesis while the next sections deal with the specific ways in which the research questions
were resolved by the relevant results in each paper.

In the first paper (Chapter 2), the fish age reading capabilities of the two algorithms,
Mask R-CNN and U-Net, were demonstrated and shown to be effective. Several bench-
marking tests were done in order to show how the algorithms compare against the
state-of-the-art CNN-regression formulation from Moen et al. (2018) as well as against
the classical image analysis approach. Apart from excellent overall accuracy, the methods
were also shown to be robust and adaptive even with a heavily modified or completely
new dataset under a new domain. More importantly, the methods were shown to be highly
explainable as they are compatible with the traditional age reading process involving
annuli counts.

For the second paper (Chapter 3), advanced machine learning techniques namely
transfer learning, ensemble learning and continual learning, were implemented on top
of the two methods and were demonstrated to further boost their accuracy and even
their ability to handle changing datasets. In addition, a web-based platform housing the
algorithms was developed with the goal of making the adoption or wider usage easier for
the age reading community. The web-based application is aimed to serve as an AI-assistant
where readers can use it for image analysis with its proven capacity to automatically mark
the growth rings, serving as visual guides or even providing a second opinion regarding
some grey areas involving the identification of growth rings.

Lastly, in the third paper (Chapter 4), it has been shown that both methods can also be
used effectively for general otolith analysis which is not only limited to fish age reading.
A multi-stage framework was presented such that both methods are utilized in three
different stages namely contour extraction, nucleus localization and annuli counting and
distance measurements.

95
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5.2 Fish Age Reading E�ectiveness

• How can the advances in the field of artificial intelligence be used to effectively
perform automated fish age reading and annotation of the annuli or growth rings?

This research question deals with demonstrating the overall effectiveness of the two
approaches employed in the study on the task of fish age reading. All three papers
managed to answer this question and the next paragraphs present the relevant results and
findings that elaborate in detail this capability.

First, in Chapter 2, Figures 2.7 to 2.11 showed how it is accurate, robust, and adaptive to
different datasets, in addition to its advantage regarding the explainability aspect. Figure
2.7 compared the performance of the methods with the widely referenced published
method (Moen et al., 2018) along with the typical formulation of classical image processing
approach. In addition, the coefficient of variation (CV) of the methods was compared to
some of the results of some age reading workshops (Table 2.3). Based on these, the overall
performance of the readings can be considered satisfactory and within the range expected
for human error. In fact, in most workshops, the discrepancy among the readers could
even be greater as evident in the larger coefficient of variation reported indicating the
subjective limitations of the traditional approach.

In Chapter 3, the base methods were extended further by using even more advanced
concepts in order to boost the performance and accuracy of the AI models. Figures
3.6, 3.8 and 3.10 showed the effectiveness of transfer learning, ensemble learning and
continual learning to handle domain shift scenarios. The results indicate that there could
still be further improvements in the overall performance by employing these advanced
techniques on the base models.

Lastly, in Chapter 4, fish age reading was again performed effectively which is elucidated
using a box-plot in Figure 4.7. In this study, the context is under a multi-stage framework
where images are coming from their raw states that were sequentially processed and taken
into the final state where they can be ready for age reading. In practice, such multi-stage
framework will be handy in actual applications as the workflow normally starts from the
basic raw images without the pre-processing.

5.3 General Acceptance and AI Assistant

• How can the AI based approach be designed such that it can easily gain the trust
and wide acceptance of the community?

This research question is another important consideration that was heavily taken into
account in this PhD thesis, particularly during the conceptualization phase and the selec-
tion of the appropriate algorithm to use. It is not enough to have a working and accurate
method for automated fish age reading. It must also be easy to explain and be as close as
possible to the traditional approach (i.e. ring counting) in order to easily build the trust
and acceptance of the age reading community.
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Initially, one of the earlier approaches designed for the thesis is a hybrid of the modern
and classical machine learning. As mentioned in the General Introduction, one advantage
of the classical machine learning is the use of feature engineering (Mahony et al., 2019;
Dzieżyc et al., 2020) where one has a degree of control on the feature set to use making it
inherently partially explainable. Hence, the initial thought process is to utilize this concept
of feature engineering but use deep learning algorithms instead of classical ones such as
SVMs or fully-connected artificial neural networks (ANNs). Figure 5.1 shows the basic
idea of the feature engineering we initially implemented.

Figure 5.1: Initial experiments involving feature engineering of otolith radial strips to be
used by CNN.

In the figure, the alternating intensity bands of the growth rings are used as inputs
to the CNN which will be used to perform regression to estimate the fish age. This
method, however, was eventually discarded as there can still be difficulties explaining
the predictions based from the input strips and that it was not able to attain convincing
performance.

As discussed in Chapter 2, the state-of-the-art approach by Moen et al. (2018) also
suffered from this problem regarding explainability. Their model can only give results
in the form of numeric estimates hence will not be able to provide clarifications on
the predictions making it hard to verify. Also, despite the further extensions (Ordoñez
et al., 2020; Martinsen et al., 2022) to give light to the mechanism of this typical CNN
formulation, more questions and doubts are still left to be answered. For instance, the
Layer-wise Relevance Propagation (LRP) method (Alber et al., 2018) they used gave
potential explanation in the form of heatmaps (Ordoñez et al., 2020) but it can be seen that
the focal regions shown are not the relevant regions considered by age readers during
traditional age reading.

In Bojesen et al. (2024), it was implied that there is a general lack of trust and acceptance
in the community for any approach that is not compatible with the traditional ring
counting methods. The ultimate goal, therefore, is to map the approaches in such a way
that it can be directly attributed to the existing knowledge about otolith structure and ring
patterns. In their study, they were indeed able to develop a method that annotates and
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counts the rings which have been verified by age readers within their group.

Similar to the method from Bojesen et al. (2024), this thesis project formulated the
problem in a way that has direct compatibility with the traditional approach. The ring
patterns give immediate clues on how the age readings are derived making it explainable
and verifiable, which in turn, increases the trust and general acceptance by the age reading
community.

Moreover, in Chapter 3, another innovation was presented for easier adoption of the
AI-based approaches. We created a web-application that gives importance to the expertise
of the age readers by providing a facility for them to also take part in the development of
the AI models. That is, the website makes it easier for them to get involved in the training
of the AI models via the interactive interface that takes their inputs and the corrections
they make on the current model predictions in order to conduct further iterations of
training and model development.

As discussed in Fisher and Hunter (2018), Mahe et al. (2009) as well as in Moen et al.
(2018), the bulk of the processing in any age reading workflow is on the preparation of the
otoliths. Therefore, human age readers will still be involved in the process. In the last step
of the workflow, however, AI could definitely provide some assistance especially when
dealing with species having ambiguous protocols.

5.4 E�ectiveness on other domains/data sources

• How will the approach hold when it comes to various datasets?

This research question concerns the usual problem observed in deep learning studies
wherein certain AI models are only good for the specific domain they are exposed to. This
behavior of AI systems can be attributed to the problem of domain adaptation (Ben-David
et al., 2010; Ordoñez et al., 2022). The effect can be manifested even with just simple
change in the image characteristics e.g., change in image tone or general lighting.

In this study, it was demonstrated that both approaches are less susceptible to the
problem of domain shift and that there are effective ways to further handle the changes on
the image domains. Specifically, in the first paper (Chapter 2), both methods were shown
to have less performance deterioration when tested against data sources or domains
which are different from the initial domain they were trained on. Moreover, even without
higher age values in the training set, the AI methods are observed to be capable of
extrapolating the missing age groups, a feature that was completely missing from the
standard formulation adopted from the works of Moen et al. (2018).

In the second paper (Chapter 3), this facility was elaborated further and there are several
ways provided to handle the potential dataset changes. First, it was shown that using
otolith-derived base weights for transfer learning, the performance of the AI models on a
new dataset is better compared to the ones using generic object weights such as VGG or
Coco or even those Imagenet weights such as ResNet, Inception and Xception, which is a
typical design of many AI-based otolith studies (Moen et al., 2018; Politikos et al., 2021;
Ordoñez et al., 2020; Martinsen et al., 2022; Moen et al., 2023). Secondly, with the use of
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continual learning, we can further effectively handle a change in dataset. With the use of
basic rehearsal approaches, the training of AI methods can be done in a way that prevents
the “catastrophic forgetting” of the old/original dataset while undergoing training on a
new dataset.

In the study of Ordoñez et al. (2022), they tried a simple experiment to test the possible
effects of this domain shift on the predictions of existing AI models. In their study, they
showed how the simple CNN formulation (i.e., classification) was not able to adapt
properly with the different nature of the other dataset they used. Without modifications,
both Mask R-CNN and U-Net methods are already adaptive and hence are less affected
by the problem of changing domains or data sources.

From a completely different perspective, the creation of the web-based application
can also be considered an alternative indirect solution to the problem of ever-changing
datasets. With the web application, there will be a repertoire of trained models which
are collected and stored for easier retrieval. When one of the models is familiar with the
current dataset being analyzed (i.e. it was previously trained on that stock or species),
one can easily reload and use it accordingly for that particular context. Furthermore, the
selection of appropriate model to reload can be done automatically given certain datasets
without needing user inputs. Figure 5.2 shows the web-based retrieval of specific models
which will facilitate the processing and analysis of different datasets.

Figure 5.2: Retrieval of different models via web-based interface.

5.5 General Otolith Analysis

• How will it hold against different tasks involved in general otolith analysis?

This is an even broader objective that encompasses not only the task of age reading
but also other tasks such as contour detection, nucleus localization and other necessary
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processing performed as part of general otolith analysis. In this PhD thesis, this objective
has been addressed in several ways.

The first non-age-reading task performed successfully by both algorithms is the task of
contour detection. Its most basic use is on removing the background of the otolith (back-
ground subtraction) depending on the requirement of an experiment. More importantly,
obtaining the outer shape or contour of an otolith is a pre-requisite of another related
field which is otolith shape analysis (Campana and Casselman, 1993; Stransky et al., 2008;
Hüssy et al., 2016). A lot of studies have been conducted in this area such as those that
are able to classify or discriminate the fish species or even fish stocks based on the otolith
shape (Stransky, 2014).

In most cases, contour extraction is done using some proprietary software and with
dedicated staff performing image analysis. In this study, it was shown that there is a
potential for this step to be done automatically and even on a per-batch basis. In this
way, the tedious manual process can be skipped and the results can be immediately be
generated for the whole set containing large quantities of otolith images.

Similarly, for the task of nucleus localization, the two methods are also capable of
correctly identifying the location of otolith core. Identifying the central region of the
otolith is a very important initial step in many image-based otolith analyses (Harbitz,
2009; Cao and Fablet, 2006). For instance, to measure the annuli radius, one needs to start
measuring from a central reference point (i.e., due to the irregular shape of otoliths, taking
the half of the diameter will not be accurate). Moreover, for the image processing-based
automated approaches, the central region will dictate the starting point of any intensity-
based measurements used for peak-counting. Alternatively, one can also localize the
sulcus instead of the nucleus and based on its geometry, derive the location of the core.
This is depicted in Figure 5.3-a.

Figure 5.3: a) A sample AI annotation of the sulcus region b) A specialized AI model that
detects only the first-annulus.

The flexibility of the ground-truth labels for training allows the methods to handle
many task variations. For instance, one might be curious to know the effectiveness of
using central reading axes, or even "full" ring annotations which covers as much portion of
annuli as possible. In some cases, it is also beneficial to mark the central axis or even just
the first annulus (i.e., the ring that often causes issues due to occurrence of false or double
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rings). An example of this highly specific or special-purpose detection task is shown in
Figure 5.3-b.

In other words, the users are free to explore and try out different labels that they think
would be relevant for the particular fish species that they are currently working on. All of
these give a strong case that the methods used in the study have the capacity to handle
many different tasks.

5.6 Other Important Implications

• What are other important advantages of the AI-based methods and implications of
the study that can facilitate the adoption of AI for routine age reading tasks?

Avenue for Collaboration

The study aims to promote further the collaboration among the different institutes in order
to tackle the problem of fish age reading. The exchanges and workshops are already an
existing manifestation of the willingness of the community to work together to improve
the process. In this "big data" era, collaboration is all the more relevant and beneficial in
so many ways. Firstly, the datasets collected by various institutions can be used to further
enhance the training of the different AI models. Secondly, the models can also be shared
to everyone in the community so that concepts such as transfer learning and continual
learning can be utilized whenever applicable. Lastly, sharing of knowledge and expertise
is essential as the progress in AI accelerates at a pace where not everybody can keep up
right away.

With the findings in this study, particularly in Chapter 3, the use of an otolith base
model for transfer learning was found to boost the accuracy further, even when used on
a completely different dataset. Hence, collaboration will be a big advantage to properly
conduct age reading studies with higher accuracy, especially with the useful concept of
transfer learning, where one does not have to start from scratch (i.e., there is no need to
re-invent the wheel).

In addition, the idea of creating a web-based application is to eventually provide wide
access to the different models developed and shared by the community. Of course, certain
licensing and copyright should be clarified first and there should be a collaborative effort
to maintain the server, in order for this idea to work. At the moment, the current webserver
is hosted with limited access within the Thünen Institute of Sea Fisheries but it is readily
deployable for public access if granted the permission and the resources.

Compatibility with ICES SmartDots

The introduction of the ICES SmartDots tool (Pinto et al., 2018; ICES, 2023) has been a
game-changer when it comes to conducting the otolith workshops and exchanges. Since
then, the age reading community has become familiar with its use and the different
functionalities it can offer. It is therefore ideal that for any new software tool developed
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for otolith analysis, it should be somehow compatible with the ICES SmartDots platform.
In this way, the immediate usage and adoption of the new toolkit can be facilitated.

Hence, for this thesis, the compatibility to the ICES SmartDots platform has been one of
the most important design considerations. As the ability to mark the rings using dots has
been the central feature of ICES SmartDots, the web-based application was conceptualized
and developed in a way that can take advantage of this facility.

In Chapter 4, the effectiveness of this compatibility consideration has been carefully
elucidated. As input, the dots can be used to create the ground-truth labels which will be
used to train the AI models. As output, the predicted otolith masks can be converted to
dots from which certain typical processes (e.g., distance measurements) can be performed
easily. At this stage, the compatibility of the webapp to the ICES SmartDots is still on the
prototype phase. It is hope that, as future direction, the connection between the web-based
application developed in this thesis project and the ICES SmartDots will be seamless and
that they can interact with each other smoothly.

It would really be helpful for AI developers to be able to directly use the annotations
from ICES SmartDots in order to improve their models further and which can also be
shared with everyone. The ultimate goal is for ICES SmartDots to be the go-to software for
otolith analysis and other relevant biological parameters. As such, it should be updated
with all the latest progress in AI by allowing contributions from AI developers directly
which can facilitate further the exchange of data (images + annotations), models and even
methods between the different participating institutions. In this way, the progress in
AI-based otolith analysis can be greatly accelerated and will eventually be at par with the
sophisticated technologies applied on other fields such as medicine or even that of natural
language.

Downstream Applications

One major advantage of a method that generates the mask of annual rings is that several
downstream applications can be conducted using the model outputs. For instance, we
showed in Chapter 4 that there can be some useful patterns embedded on the growth of
annuli that can be used to distinguish between fish species. Such distance measurements
are even applicable in ecological and environmental studies. For instance, in the study by
Denechaud et al. (2020), it was observed that the growth of the rings can be used as proxy
for studying the growth of fish given certain environmental conditions. Hence, the ability
to mark the annulus rings and measure their distance will be very handy for this purpose.
In other studies, the otolith has been found to record certain biochronologies (Smoliński
and Gutkowska, 2024; Campana, 2001). In fact, one of the age validation methods make
use of the occurrence of these certain events which will be indirectly manifested on the
annuli or growth rings (Campana, 2001).

In addition, from the multi-stage perspective, having the capability to detect and mea-
sure/quantify any part of the otolith will also be valuable for data archiving efforts where
the images are stored is a consistent manner for easier documentations. Figure 5.4 is an
example of multiple tasks done in one-go which can be useful in some miscellaneous
purposes. For instance, using this capacity, an AI system can be programmed to auto-
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matically detect the orientation of otolith images and perform the necessary adjustments
before saving and archiving the image. Aside from that, this will also allow the removal of
certain imaging artifacts like air bubbles and other surrounding otoliths or even purposely
zoom in-and-out in order to make the view uniform for easier analysis.

Figure 5.4: Multiple different tasks for different applications.

Lastly, there is an increasing number of studies making use of annuli measurements to
perform certain categorizations. For instance, in the study of McQueen et al. (2018), annuli
diameters were used as a solution to the problem of detecting lower age fish groups. In
their study, they performed measurements on validated cod otoliths and elucidated that
the annuli diameters can be used to distinguish juvenile cod images. This is another area
where the automatic annuli detection can be of great use especially for bulk processing of
these types of images.

5.7 Limitations and Future Outlook

Here the limitations of the study and common errors encountered are presented along
with the potential solutions which are beyond the scope of the thesis. Hence, these further
steps are listed as future directions in which the project can be continued forward.

Margin Errors and False or Double Rings

Upon closer inspection of the most common types of errors by the algorithms, it became
immediately apparent that a great part of it has something to do with the marginal edge
as illustrated in Figure 5.5. That is, if there is an indication of an annulus at the outer
edge of the otolith, then it is automatically counted by the AI models. In theory, this is
the desired behavior as the number of annuli corresponds roughly to the age of a fish.
However, certain guidelines that have been formulated through the decades worth of
validation efforts have suggested that in some cases, it is not accurate to count the last
visible ring on the otolith due to the findings regarding marginal annulus (Proctor et al.,
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2021). There is a threshold annulus width to consider and there is also a need to take
into account the date of capture (Proctor et al., 2021; McQueen et al., 2018). Figure 5.6
summarizes this margin rule.

Figure 5.5: Common error involving the marginal annuli along the otolith edge.

Figure 5.6: An age reading guideline for marginal rings which was not implemented in
this study (extracted from Proctor et al. (2021)).

In this thesis, the date of capture of the otoliths has not been considered due to the
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absence of this metadata in certain subsets of the images. Moreover, to measure the
given threshold of annulus width, there should also be a zoom/scale metadata which is
unfortunately absent in some sets of images. Hence, as a simplification, we assume that
majority of the time, the age estimate will correspond to the count of annuli.

As a future step, however, especially with new batch of images, it would be better in
the long run to have full support regarding this margin rule (both manual and AI-based)
and that the required metadata to implement this will be consistently available and taken
into consideration during the entire process.

Another common error in estimating the age of the otolith images is the occurrence
of split and double rings (Panfili et al., 2002). This type of error is also a common error
even with manual readings. There are corresponding guidelines (Carbonara and Follesa,
2019) for figuring this out systematically which are not elaborately configured in this
study. Therefore, there is a future direction where the use of these special guidelines
can be incorporated into the AI-based approaches so that age estimates can be adjusted
accordingly.

Too Speci�c Imaging Requirements

Another primary limitation of the thesis project is that the focus is in the use of sectioned
otolith images with transmitted light where the winter rings are shown as light zones and
the summer rings are shown as dark zones. There are few initial experiments where the
ground-truth labels are focused on the dark zones but due to the convention used for the
manual process, these were not considered further. Figure 5.7 is an example showing the
initial results from such experiments. Such preliminary result is a good indication that if
one has to use reflected light (the light and dark bands are reversed), then potentially, the
algorithms can still work satisfactorily.

Figure 5.7: Prediction of the AI (Mask R-CNN) on the summer rings.

As another showcasing of this capability, in Figure 5.8-a, a sample result of an initial
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experiment using reflected light on a whole otolith, was shown. It would be good to
explore more on this type of study to see if there are changes needed to the methods or if
it would be sufficient to just provide a different kind of ground-truth labels.

These proto-typical results provide a good starting point for the future direction involv-
ing the further extension of the application to accommodate a different light condition
and even an entirely different type of otolith preparation (e.g., whole otoliths and broken
otoliths).

The other limitation of the study is related to having the need to orient the image in
certain upright way. The solution to this was partly covered in the third paper (Chapter 4).
For instance, one can detect the nucleus or even sulcus and re-orient the image accordingly
as part of the multi-stage workflow. The actual implementation of such heuristic is not
covered in the study and could be a good future work.

Lastly, there is also a limitation regarding the use of only the major axes for counting
and marking the rings. To handle this, there are initial attempts conducted such the one
shown in Figure 5.8-b that marks the full rings which worked quite well as an alternative
configuration. Similarly, another potential solution initially designed was to create a new
set of ground-truth labels along an alternative axis (e.g., central axis or along the sulcus
edges). Within the scope of the study, however, both of these methods were not thoroughly
explored.

Figure 5.8: Sample AI annotations on whole (a) otoliths and the annotation involving full
(b) rings.

Detecting Age 0 Otoliths

One of the major drawbacks of algorithms relying on region-based detection or segmenta-
tion is that if a certain subset of the training images does not have the object of interest,
then that subset can no longer be used for training. Such is the case for otolith images of
age 0. It is not possible to effectively use the “empty” images as training images for the
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algorithm as it tends to dilute the number of pixels with actual positive labels. As a result,
the model will lean towards marking every pixel as zero or background as it gets heavily
penalized once it tries to create masks on age 0 images.

With that said, there are certain modifications to the design of the algorithms such that
we can do as future steps to take into account the existence of these “empty” images. In the
version that was partially explored in this study, the design of the network (U-Net only)
was changed to accommodate two simultaneous tasks, one to classify images into age
categories (including age 0) and another task to perform the segmentation in the case the
image has been classified as having non-zero age. This multi-task formulation has actually
been explored in the study of Politikos et al. (2021) where they used similar multi-task
approach for improving the accuracy of the AI models by incorporating another task
involving predicting the fish length (i.e., in addition to the task of predicting the fish age).
In some studies, such multi-task design has been known to even reduce overfitting and
increases the generalization capacity of the AI models (Chen et al., 2019).

As a future direction, one can explore further the same multi-task approach and create
a new task for the algorithm to first detect the existence of the object of interest before
allowing the algorithm to mark any region within the image. In this way, only those
predicted to contain annuli will undergo the detection stage. Otherwise, there is a tendency
of the algorithm to mark parts of the images or to have all regions marked as background
depending on the proportion of these age 0 images used as part of the training.

Further Exploration of Hyperparameters

During the development, in addition to the different ground-truth labeling possibilities,
there are also certain algorithm hyper-parameter choices that need to be resolved before
proceeding to one experiment and the next. Some of these hyper-parameters can be easily
investigated through the use of systematic approaches such as grid-search as conducted in
Chapter 2. There are some hyperparameters, however, that can be better resolved through
manual inspection of certain “trial” runs to make it easier to assess whether it would be
worth it to spend some time optimizing such parameters.

One of the hyperparameters that can be further explored is the number of epochs for
the training. Figure 5.9 shows the typical curve of the loss values (both training and
validation) as the training epoch increases. In the first case, it can be observed that the
training epoch has been cut prematurely and that further improvement could have been
attained if the training was allowed to continue. For the second case, the optimal validation
loss has been reached early and that no matter how long the training is conducted, it
can no longer be improved further. In this thesis, there is a balancing that was done to
asses properly the appropriate number of epochs. That is, the priority is to achieve a good
enough loss value but at the same time, it is also necessary that runs will not consume
considerably longer time for a miniscule improvement. Hence, for simplicity, few trial
runs have been conducted just to balance this trade-off between computing time and loss
improvement. Through these initial runs, it was decided to go with a consistent epoch
equal to 200. Naturally, for future directions, it would be nice to have a more systematic
way of deciding this hyper-parameter which could be more optimal than the one used in
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this study.

Figure 5.9: The plot of training and validation loss with increasing number of epochs.

Updated Implementations and Data Augmentation

In line with the exploration of hyper-parameters and algorithm configurations, there is
also a future direction to explore the new updates regarding the implementation of certain
algorithms.

The recent boom in AI resulted to many new types of algorithms and implementations
that further increases the performance of the base methods. In Chapter 3, we somehow had
a glimpse on these improvements with the use of advanced techniques such as ensemble
learning and continual learning. There are still a whole lot of new add-ons to the base
methods that were not explored in this study.

With the progress in the field of deep learning, in short periods of time, there are many
modifications of the base algorithms developed that can make it even more accurate.
This is the case for both Mask RCNN and U-Net. For instance, there exists already the
so-called Attention- and Transformer-based versions (Vaswani et al., 2017) of these two
algorithms that are shown to be effective in certain benchmarks. Also, a new batch of
alternative network representations are available with the recent studies regarding the use
of Kolmogorov-Arnold Networks or KANs (Liu et al., 2024).

Another modification that can bring out potential improvements would be the im-
plementation of improved data augmentations. For the thesis project, the current data
augmentations used is based from the default implementation from Keras library (Chollet
et al., 2018) which is sufficient for most purposes. For more improvements in this aspect,
there are several far advanced methods to use recently that make use of the latest progress
in the field of artificial intelligence, particularly in the field of generative AI (Ramesh et al.,
2021; Saharia et al., 2022). For example, the generative models have become the state of the
art in terms of image generation and even natural language processing. Hence, one can
leverage these new approaches in order to create even better synthetic images for training
the algorithms especially when there is not enough actual otolith image data available.
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Improved Useability and Microscopy Integration

The web-based application is only the start of the ongoing endeavor to make the use
of AI-based approaches in fish age reading be widely accepted. Having it setup as a
webserver will allow connection to other machines in a seamless manner. One can connect
from a client machine using a browser to upload the images for processing using the AI
methods hosted in the webserver.

Alternatively, as a future step, there will also be client-side application that can load
directly the images from microscopes via appropriate libraries then programmatically
connect to the webserver on the background to finally return an annotated image. In
this way, there is no need to take an extra step creating folders of processed images. The
software is intended to already perform the necessary saving and pre-processing such
that it can be directly uploaded into the server via some background processes.

Lastly, for those that are intending to use the stand-alone application (i.e. portable app
presented in Chapter 3), there is also a plan to improve the useability further. Currently,
the models are utilizing CPU which will take considerably slower training time. As future
steps, further instructions and setups will be available such that if the machine contains the
necessary graphics card specifications, the app can be upgraded by the user accordingly
such that the GPU-based version will be in use.

The ultimate goal is to make the use of AI be as easy as any other software tool such as
ICES SmartDots. Hence, it should be simplified as much as possible. Creating intuitive
user interface takes considerable effort and will require constant back and forth between
the end-users and the developers. Hence this is planned as part of the next steps which
will involve many user feedback and interactions.
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