
COMPLETE PROPERTY-ORIENTED TESTING

NIKLAS KRAFCZYK
M.Sc.

A THESIS SUBMITTED FOR THE DEGREE OF DR.-ING.

FACHBEREICH 3
UNIVERSITÄT BREMEN

2024



1st reviewer: Prof. Dr. Jan Peleska

2nd reviewer: Prof. Mohammad Reza Mousavi

Date of thesis defense: 2024-06-18



Abstract

This thesis presents novel approaches to property-oriented testing, focusing on
systems with finite internal state spaces while the domains for the inputs and
outputs of the systems may be of infinite size. We concentrate on properties
expressible in Linear Temporal Logic (LTL) and use Symbolic Finite State
Machines (SFSMs) to model the systems and define property satisfaction and
violations.

Our review of the literature reveals a lack of exhaustive property-oriented testing
approaches, except those run indefinitely. This thesis addresses this gap by
extending, improving, and optimising previous methods for the test of real-world
systems, identifying and addressing runtime performance challenges in both test
generation and test execution, and providing software implementations of the
discussed approaches.

We introduce two main methods: a variation of conformance testing for Finite
State Machines (FSMs) modified for property-oriented testing on SFSMs and
a complete property-oriented testing approach based on black box checking.
Here, "complete" means that all correct implementations are accepted and faulty
implementations are rejected, provided they fulfil certain hypotheses that can be
effectively checked for software testing by means of static code analysis.

The first method, a model-based testing approach, employs an SFSM as a reference
model and enables checking other SFSMs exhaustively for property violations.
The constructed test suites are potentially smaller than those for equivalence
checking. We analyse the complexity of this approach and demonstrate its efficacy
by automating test suite construction and subsequent performance evaluation on
provided examples.

The second method, based on black box checking, lifts the existing black box
checking approach to SFSMs, broadening its applicability. We enhance its
runtime performance by reducing the number of required equivalence checks and
incorporating fuzzing into the method. The efficacy of these modifications is
evaluated through experiments. Additional modifications, including the use of
the first approach for equivalence checks, potentially improving performance, are
discussed.

iii



Zusammenfassung

Diese Dissertation zeigt neuartige Ansätze für eigenschaftsorientiertes Testen,
speziell für Systeme mit endlichem internen Zustandsraum, während die Domänen
für die Eingaben und ausgaben der Systeme unendliche Mengen sein dürfen. Wir
beschäftigen uns dabei mit Eigenschaften, die sich in linearer temporaler Logik
(LTL) ausdrücken lassen und untersuchen Symbolische Endliche Automaten
(SFSMs) als Modelle für die zu testenden Systeme. Auf diesen SFSMs definieren
wir zu diesem Zweck die Erfüllung oder Verletzung von LTL-Eigenschaften.

Unsere Sichtung der Literatur zeigt einen Mangel an umfassenden eigenschaft-
sorientierten Testansätzen, also solchen, die eine Garantie für die fehlerfreiheit
eines getesteten Systems geben, wenn sie keinen Fehler aufzeigen. Diese Disser-
tation nimmt sich dieser Lücke, indem sie bestehende Testmethoden erweitert,
verbessert und optimiert, Laufzeitperformance-Herausforderungen sowohl in der
Testgenerierung als auch in der Testausführung identifiziert und angeht und
Software-Implementierungen der diskutierten Ansätze bereitstellt.

Wir führen zwei Methoden im Detail ein: Eine Variation von Konformitätsprüfver-
fahren für endliche Automaten (FSMs), welche wir für eigenschaftsorientiertes
Testen von SFSMs modifizieren und ein vollständiger Ansatz zum eigenschaft-
sorientierten Testen, welcher auf Black-Box-Checking basiert. Der Begriff "voll-
ständig" bedeutet hier, dass alle korrekten Implementierungen akzeptiert und
fehlerhafte Implementierungen abgelehnt werden, unter der Annahme, dass sie
gewisse Hypothesen erfüllen, welche sich durch statische Codeanalyse überprüfen
lassen.

Die erste Methode, ein modellbasierter Testansatz, nutzt eine SFSM als Referenz-
modell und erlaubt es, andere SFSMs umfassend auf Verletzung einer gegebenen
LTL-Eigenschaft zu überprüfen. Die dafür nötigen Testsuites können kleiner
sein als jene, welche für einen Test auf Äquivalenz der SFSMs nötig wären. Wir
analysieren die Komplexität dieses Ansatzes und demonstrieren seine Effizienz, in-
dem wir die Konstruktion der Testsuites automatisieren und auf Beispielsystemen
die Leistung dieser Implementierung messen.

Die zweite Methode, welche auf Black-Box-Checking basiert, passt den bereits
bestehenden Ansatz des Black-Box-Checkings für SFSMs an, wodurch dieser für
eine größere Menge an Problemen anwendbar ist. Wir verbessern die Laufzeitper-
formance dieses Ansatzes, indem wir die Anzahl der beim Black-Box-Checking
benötigten Äquivalenzchecks reduzieren. Die Effektivität dieser Modifikationen
prüfen wir durch Experimente. Weitere Modifikationen zur Verbesserung der
Leistungsfähigkeit des Ansatzes werden diskutiert.

iv



Acknowledgements

Firstly, I would like to express my sincere gratitude to my examiners, Prof. Dr.
Jan Peleska and Prof. Mohammad Reza Mousavi, for generously volunteering
their time and effort to review this dissertation. I would also like to express my
gratitude to Prof. Dr. Jan Peleska for suggesting that I pursue an academic
career, giving me the confidence to begin my PhD studies and offering me a
position in his group. My time in this group has been a joyous one, and I
would not have wanted to miss it. I am grateful for the fruitful discussions
and invaluable feedback provided by Prof. Dr. Jan Peleska, Dr. Wen-ling
Huang, and my colleagues and friends Dr. Aaron Lye and especially Dr. Robert
Sachtleben, who provided me with the most meticulous constructive criticism
for this dissertation. I would also like to thank Dr. Mario Gleirscher and Felix
Brüning for the amusing collaborations and office banter. Without the social
support from a multitude of people, I would not have been able to reach this
stage. My family, Siegmar, Harmine, Alina, and Johanna, have encouraged
me to pursue my interests to this extent, for which I am deeply grateful, and
often reassured me to believe in myself. I am extremely grateful to my friends,
Dana, Ralf, Aaron, Sebastian, Christopher, Sabrina, Henning, Wilm, Tom, Ines,
Arne, Jan-Marco, Julia, and Mark for their companionship throughout this time,
without which I may not have had the willpower to keep going. I would like to
thank God for giving me the talents and placing me in a position to pursue this
path. For the support that Sofie provided me during the challenging times of this
endeavour, I am forever grateful. Lastly, I would like to express my gratitude to
the Deutsche Forschungsgemeinschaft (DFG) for funding my thesis as part of
project number 407708394.

v



Contents

1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Overview 3
1.3 Running Examples 3

1.3.1 Example 1: Automated Braking System 3
1.3.2 Example 2: ABS & ESC System 4

2 Background 7
2.1 Valuation Functions 7
2.2 Sequences 9
2.3 Equivalence Class Partitionings 9

2.3.1 Definition 9
2.3.2 Construction of Equivalence Class Partitionings 11

2.4 Finite State Machines 14
2.4.1 Mealy Automata 15
2.4.2 Moore Automata 17
2.4.3 Recognizer Finite State Automata 19

2.5 Symbolic Finite State Machines 21
2.5.1 Definition 21
2.5.2 Equivalence Class Partitionings for SFSMs 25

2.6 Linear Temporal Logic 33
2.6.1 Definition 33
2.6.2 Abstraction for SFSM Computations 36

2.7 Büchi Automata 37
2.8 Runtime Monitors 39
2.9 Satisfiability Modulo Theories 39
2.10 Model Checking of FSMs 40

3 Complete Property Oriented Testing with SFSM Models 41
3.1 Motivation 42

3.1.1 Running Example: A Formal Model for BRAKE 43
3.1.2 Idea for an Approach 45

3.2 Approach 1: Fuzzing with a Runtime Monitor 45
3.3 Approach 2: Reduction Testing with Property Automata 46

3.3.1 Construction of Property Automata 47

vi



3.3.2 Testing with Property Automata 49
3.4 Approach 3: Equivalence Testing with Automata Abstractions 50
3.5 Approach 4: A Specialized Testing Approach 51

3.5.1 Test Suite Construction 52
3.5.2 Test Execution and Verdict 65

3.6 Complexity Considerations 66
3.7 Application to the BRAKE Example 68

3.7.1 Test Suite Derivation 69
3.7.2 Detecting Implementation Errors 76

3.8 Tool Support 77
3.8.1 Foundations for SMT Problem Expression 78
3.8.2 Input Output Equivalence Class Construction 79
3.8.3 Modelling Sequences Traversing an SFSM 80
3.8.4 Reachability Calculation 83
3.8.5 Distinguishing Sequence Calculation 84
3.8.6 Abstraction Calculation 87
3.8.7 Optimizations 88

3.9 Evaluation 90
3.9.1 Implementation and Setup 90
3.9.2 Parameters 90
3.9.3 Results 91

4 Complete Property Oriented White-Box Testing without a Reference
Model 94
4.1 Motivation and Overview 94
4.2 Idea 95
4.3 Running Example: ABS & ESC System Implementation 99
4.4 Approach 100

4.4.1 Overview 100
4.4.2 Detailed Approach Description 102

4.5 Evaluation 118
4.5.1 Implementation and Setup 118
4.5.2 Parameters 121
4.5.3 Results 121

4.6 Possible Optimisations & Potential Ways Forward 127
4.6.1 Equivalence Query Optimisiations 127
4.6.2 Property-Independent Learning 129
4.6.3 Complementary Approaches 129

5 Related Work 131
5.1 Model-Based Property-Oriented Test Generation 131



5.2 Property-Oriented Test Generation Based on Model-Learning 133

6 Conclusion & Future Work 135

Bibliography 137

Appendix A SMTLIB2 Transition Relation of BRAKE Example 152



Chapter 1
Introduction

1.1 Motivation and Objectives

This thesis is a contribution to safety-critical or mission-critical systems, where a failure,
malfunction, or outage can cost lives or cause significant ecological or economic damage.
The design process for such systems requires diligence in the design, implementation, and
verification phases. Due to this high criticality, certification authorities hold these safety-
critical systems and their development processes to high standards, requiring proof of the
application of certain best practices. One of the best practices for a safety-critical software
project is to draft a specification, which often comes in the form of a list of informal
descriptions of requirements on the software. Another part, checking that these requirements
are met, lies in the verification efforts of which testing is an integral part. According to
Myers [1], software testing is "[. . .] a process [. . .] designed to make sure computer code does
what it was designed to do and that it does not do anything unintended." In other words,
testing shall verify that the behaviour of a piece of software matches the specification and
that it is free of behaviour incompatible with the intent of the specification.

For good reason, certification authorities often require some reasoning for a requirement being
tested (see, e.g., DO-178C, ISO 26262, and IEC 61508). For each requirement, there has to
be a verification measure checking that it is met. The relationship between the requirements
and associated verification measures is known as requirement traceability. Testing is often the
preferred verification measure for behavioural requirements, and therefore, these requirements
must be traced to test cases, which are stimulations of the implementation under test (IUT)
aiming at exercising specific portions of its behaviour.

Not only does the number of components in software-controlled systems increase with their
complexity, but also the number of requirements and test cases. These can reach orders of
magnitude where automation of development processes becomes particularly attractive. We
call the automation of the development and execution of test cases, including the check of
the observed system behaviour against the associated specifications test automation.

One method for the systematic development of sets of test cases is model-based testing, where
a formal model for the intended behaviour of the system is constructed to be used as a basis

1



Chapter 1. Introduction 2

for automated test case development. From this model, sets of test cases called test suites
are derived. These are constructed with the aim of proving or disproving the constistency
between the implementation of the system and the formal model. While these test suites are
strong in detecting faults in the implementation (see, e.g., Hübner et al. [2]), the construction
of formal models is often difficult and costly, requiring the time and care of highly trained
personnel. Another challenge is the large test suite size required for the guarantees these
test suite construction techniques can offer, making them economically undesirable.

A second method for the automated construction of software test cases is fuzzing, where the
implementation is instrumented so that the execution path for single inputs to the software
can be tracked. An algorithm called a fuzzer then uses heuristics to try and find inputs
maximising the coverage of the source code of the implementation. While variants of this
method can often be used to cheaply cover large portions of the implementation and have
been shown to efficiently find bugs, they are unable to prove the absence of implementation
errors. Both model-based testing and fuzzing face the challenge of tracing requirements to
the test cases they produce.

Functional requirements in a reactive system specification can be expressed in Linear
Temporal Logic (LTL). The set of all executions that are in accordance with an LTL formula
is called an LTL property. If we observe an execution of a software-controlled system that is
not part of a given LTL property, we say that the system violates that property and the
corresponding formulas. We call a process that constructs and executes test cases suitable
for detecting the violation of a property property-oriented testing 1 , following the definition
of Machado et al. [5]. If an IUT is guaranteed to be free of property violations if it passes a
given test suite, the associated test suite generation method is called exhaustive. On the
other hand, if an IUT is guaranteed to violate a property it fails a test suite, the associated
method is sound. Property-oriented testing methods that are both sound and exhaustive are
called complete. While there exist some approaches to property-oriented testing for LTL
properties, to the best of our knowledge, there is none that is a complete property-oriented
testing approach suitable for real-world systems. The certification authorities usually do not
require complete testing methods, which we think is in part due to this lack of complete
testing methods feasible for these systems.

Having a property-oriented testing method for LTL properties allows for trivial requirements
traceability: For a functional requirement that can be expressed as an LTL formula, all test
cases constructed by a property-oriented testing method for the corresponding LTL property
can be traced to that requirement.

1The term property-based testing is also used for methods where the behaviour of a system is checked for
violations of a given property, which is not necessarily an LTL property. This term, however, is primarily
associated with the verification of programs written in functional programming languages. To set approaches
apart from that association, the term property-oriented testing is often used. For examples of property-based
testing approaches, see Hughes [3] or Goldstein [4].



Chapter 1. Introduction 3

In this thesis, we aim to tackle the problem of complete property-oriented testing from two
different angles. We will describe one model-based approach to complete property-oriented
testing and one that does not require a formal model.

1.2 Overview

The contents are presented as follows: First, we will introduce two running examples in
the remainder of this chapter that will be used to explain the concepts underlying this
thesis and the approaches we will present. Second, the concepts underlying this thesis will
be laid out in Chapter 2. Chapter 3 introduces a model-based property-oriented testing
approach that modifies existing complete model-based testing approaches, which test an
implementation for equivalence to some formal model. In Chapter 4, we build on Chapter 3
and a set of techniques described by other authors to present our optimised approach to
complete property-oriented testing that does not require a formal model. Chapter 5 provides
an overview of existing literature on property-oriented testing. Finally, we present some
concluding remarks in Chapter 6.

1.3 Running Examples

To illustrate the concepts presented in this thesis we will introduce two running examples.
The first one, described in Section 1.3.1, is a hypothetical automatic braking system. It is
simple and suitable to explain the basic concepts we will introduce on. To show that the
methods presented in this thesis are fit for use in an industrial context, we also introduce
an example of a Anti-lock braking and Electronic stability control system (ABS and ESC
system, respectively) in Section 1.3.2. As opposed to the simple braking system it is not
suitable to be discussed in all its details but serves as a more realistic use case.

1.3.1 Example 1: Automated Braking System

The automated braking system, from now on called BRAKE, is a controller partially managing
the velocity v of a vehicle. It compares v to a fixed maximum allowed velocity v. Here, both
v and v are velocities measured in kilometres per hour. For each velocity v, the controller
BRAKE produces a unitless output y, which controls the brakes of the vehicle. At y = 0, the
brakes shall not be engaged at all. Additionally, an interval of values [B0, B1] is defined for y.
If y is in that interval, the brakes are engaged a bit, like you would brake on a bike or a car
in ordinary non-emergency situations. Gradual increases in y between B0 and B1 shall result
in gradual increases in braking force. Finally, there is some value B2 above which the brakes
are engaged rather hard, akin to an emergency braking. Gradual increases of y above B2 also
result proportional increases in braking force. The behaviour of BRAKE, i.e. which value is
produced as an output y, depends on its internal state. BRAKE is designed to regulate the
velocity of the vehicle to stay at or below the maximum velocity v by controlling y.



Chapter 1. Introduction 4

Initially, BRAKE will output y = 0 and the vehicle will therefore not brake. However, if the
velocity v reaches v it can either let y at 0 or emit an output y in the interval [B0, B1]. In
this high level description we do not specify in which situations one or the other choice is
made, leaving this detail for later refinement steps. For example, one could consider looking
at the derivative of v and applying the brakes only if v has been approached too quickly,
making an overshoot likely. Furthermore, if the controller starts to brake (y ≠ 0) when
v = v, it shall continue to do so until v < v. Finally, if v exceeds v, a stronger braking
force proportional to v − v is applied with y ≥ B2. If this occurs, the controller continues to
brake with y > B1 not only until v is lower than v but also lower than v minus a constant δ,
showing a hysteresis effect in the amount of braking. This is to reduce the speed well below
v, guarding the vehicle from overspeeding right again.

Some requirements that one may want to verify for this system are as follows:

1. If the velocity v is always below v, the controller shall never brake. A driver never
reaching v shall never experience the controller to cause braking.

2. For velocities v below v− δ, the controller shall never brake. In any situation where the
velocity is below v − δ, no braking shall be performed by the controller. This differs
from the previous requirement in the sense that this describes a situation that is also
true even if previously, overspeeding occurred.

3. If the velocity v is always at most as high as v, the output y shall never exceed B1.
If there is never a situation where v exceeds v, no emergency braking shall ever be
performed by raising y to exceed B2.

4. Whenever v exceeds v, y shall exceed B2.

1.3.2 Example 2: ABS & ESC System

We now introduce an implementation that is more complex than the BRAKE controller in
most regards. It has been first described by Brüning et al. [6] but its description is listed
here for self-containedness.

The example implementation is a re-implementation of an anti-lock braking system (ABS),
including functionality for lane stability control. A description of the principles behind this
system has been published by Bosch GmbH [7]. The implementation is a controller for only
one wheel and only for road conditions. However, as we will show, this controller evaluates
the relevant state of the whole vehicle, which is a car in our case, and indirectly cooperates
with the controllers for the other wheels.

Essential to an ABS controller implementation is to avoid that its corresponding wheel locks
during braking, which can occur due to applying the brakes "too hard", causing the tyre
to loose traction, which therefore looses the guiding effect it has on the path of the car, a
state that is generally undesireable. This can cause the vehicle to either not react to steering



Chapter 1. Introduction 5

changes or break away. The common solution to this and in fact what we have implemented
is to reduce and increase the braking force in alternation.

In the previous decade, a related feature called electronic stability control (ESC) has become
a mandatory feature for new cars in Europe [8]. This control system shall prevent the loss
of steering control over the vehicle in case of emergencies or adverse road conditions. We
implement a partial ESC controller which can detect whether the car is rotating along its
vertical axis2 (yawing) during braking while the driver is maintaining a straight steering
angle. In case the vehicle yaws during braking while the steering angle β is small, we lower
the brake force on the side of the vehicle the front of the vehicle is rotating to and increase
it on the opposing side, if possible.

The controller has three output signals to the braking system per wheel: VI, VO and P. These
affect the state of the input and output valve of the hydraulic braking actuator and the
brake pump, respectively.

To be able to implement the functionality mentioned above, our implementation of such
a controller constantly processes measurements taken by sensors throughout the vehicle.
One of the most important values to determine the state of the vehicle with respect to our
controller is a value called slip which is calculated for each wheel, separately. Slip λ is a
dimensionless value that is directly related to the traction the tyre has on the ground. It is
calculated from the vehicle velocity vR and the velocity at the circumference of the tyre vU

by Equation (1.1).

λ = vU − vR

vR
(1.1)

Furthermore, the acceleration α of the circumference of the wheel is monitored and used to
detect a wheel’s tendency to lock. The control loop implemented in our controller compares
α to several thresholds. If α is below threshold a− < 0, i.e. there is a certain amount of slip
and it is negative, the wheel might be locking now or soon. To counter this, we close the
input and output valve and shut off the brake pump, effectively keeping the brake pressure
constant. Now, the wheel can only lock when the slip drops even further, possibly due
to reduced traction of the wheel caused by adverse road conditions. Should λ fall below
threshold ϕ < 0, we open the output valve to reduce the braking pressure, increasing α and
soon vU and λ. There are two other thresholds defined, 0 < a+ < A+. When α increases
after an intervention by the controller, it can surpass either of these until the brake pressure
is increased again. The goal is to have an oscillating acceleration, causing cycles of increasing
and reducing braking pressure, keeping λ near an optimum for maximum deceleration of the
vehicle. In the first iteration the controller aims for α to surpass A+ to quickly get the slip
back into a region where no loss of control is to be expected. When α exceeds A+, braking

2Or the axis that is its vertical axis during operation on level ground.



Chapter 1. Introduction 6

pressure is increased by opening the input valve, closing the output valve and activating the
brake pump. Now decreasing, α will first fall below A+, after which the braking pressure
is held constant, and a+. When decreasing below a+, the next iteration begins, increasing
the braking pressure until α reaches a−. However, in this and all subsequent iterations, the
braking pressure will not be held but decreased, then held until a+ is exceeded, after which
the braking pressure is immediately increased until α does not exceed a+ anymore and the
next iteration begins.

If the controller receives sensor inputs indicating significant yawing of the vehicle during
braking while the steering angle β is close to 0, asymmetric road conditions are detected.
Should the vehicle yaw with the controlled wheel be on the side of the vehicle the front
of the vehicle turns towards, the controller tries to facilitate the driver inputs by braking
slightly less on that side. It does so by executing the control loop as described above and
substituting constant a− by a slightly higher value a−

GMA, until the rotation is within a
specified threshold again.

There are four requirements we formulate for this controller, which we will refine later on:

1. When there is significant negative slip (λ < 0) during braking, the wheel circumference
is decelerating (α < 0) and the car is not yawing to either side, the brake pressure shall
be lowered. This describes the situation where the wheel is about to lock up. In that
case we want to lower the brake pressure.

2. When the car is yawing to the left while the driver is steering relatively straight and
braking, the brake pressure shall be lowered. In this situation the road conditions seem
to be asymmetric, providing decreased ability to brake effectively on the right side. We
want to avoid losing control over the steering direction, so we lower the brake pressure
on the left side.

3. When the brake pump is increasing the pressure slowly, it shall continue to do so if the
pressure is still to low. Clearly we want the pump to continue to increase the pressure
if the pressure is insufficient.

4. Whenever the acceleration of the wheel’s circumference is less than a− while the driver
is braking and steering straight ahead, the brake pressure shall not be increased at least
until these conditions change. If the brake pressure is high enough to cause deceleration
of the wheel lower than a−, it shall not be increased further.



Chapter 2
Background

In this section, we will introduce the concepts upon which we construct our approaches to
property-oriented testing. First, in Section 2.1, we will introduce the concept of valuation
functions for sets of variables and describe the related notation. Valuation functions serve as
the formalism upon which we base all observations of the systems we wish to test. Second,
we will introduce the notation for sequences of elements from some set in Section 2.2. In
this thesis, these elements will typically be individual observations, while the sequences will
model sequences of such observations. Third, the concept of equivalence class partitionings
will be described in Section 2.3. We will first describe their properties and then explain
how to derive them for sets of valuation functions. Subsequently, we will introduce several
related models of computation that define the sets of implementations and systems to which
we can apply our approaches. These models of computation are Finite State Machines
(Section 2.4) and Symbolic Finite State Machines (Section 2.5). Then, Section 2.6 will
introduce Linear Temporal Logic, a formalism used to describe sets of computations, usually
desired or undesired ones. In Section 2.7, we will present the definition of specific Büchi
Automata, a model of computation closely related to LTL formulas. From these, we will
introduce Runtime Monitors in Section 2.8, a concept used in runtime verification. To
describe the automation of the verification approaches in this dissertation, we will recall
some definitions of SMT Solving in Section 2.9. Finally, we will provide a brief overview of
Model Checking for Finite State Machines in Section 2.10.

2.1 Valuation Functions

In the following, we often use valuation functions to express concrete values for variables or
sets of variables. From here on, we will assume that all variables are typed. Given some set
of typed variables Var, we assume that each variable has a set of values it can hold. Given
some variable v we identify the set of values this variable can take as Dom(v). Given a set of
variables Var we identify the union of the sets of values all variables can take as Dom(Var).
For example, let Var = {a, b, c}, then Dom(Var) = Dom(a) ∪ Dom(b) ∪ Dom(c). We call
such a set of values the domain of Var. Given a set of variables Var and a corresponding
valuation domain Dom(Var) we call a function σ : Var→ Dom(Var) a valuation function or

7



Chapter 2. Background 8

valuation if and only if for each variable v ∈ Var, σ(v) ∈ Dv holds. We denote the set of all
possible valuation functions over Var as DVar and call it the valuation domain of Var.

For the remainder of this thesis, we fix a finite set of typed variables Var, a possibly infinite
domain Dom(Var) and a possibly infinite valuation domain DVar if not declared otherwise.

We say that two valuations σ, σ′ ∈ DVar are identical if and only if ∀v ∈ Var : σ(v) = σ′(v)
holds. Given some set of variables V ⊆ Var and some valuation function σ ∈ DVar there is a
valuation function σ′ ∈ DV such that ∀v ∈ V : σ(v) = σ′(v). We call σ′ the restriction of σ
to V , denote this as σ′ = σ|V and extend this notation to sets of valuation functions: Given a
set of valuation functions io, the restriction of io to V is defined as io|V = {σ|V ∈ DV | σ ∈ io}.
Given a first order logic formula ψ over free variables from the set Var and a valuation
function σ ∈ DVar we say that σ models ψ, denoted as σ |= ψ, if and only if replacing all
occurrences of all free variables from Var in ψ by the value associated via σ results in a true
statement.

Given two first order logic formulas ϕ and ψ over free variables from the set Var, we say
that ϕ and ψ are equivalent with respect to DVar, denoted as ϕ ≡Var ψ, if the set of valuation
functions that are models for ϕ and the set of valuation functions that are models for ψ are
equal:

ϕ ≡Var ψ ⇐⇒
{︂
σ ∈ DVar | σ |= ϕ

}︂
=
{︂
σ ∈ DVar | σ |= ψ

}︂

Examples As an example of a valuation, consider Var to be {v, y}, which are the input
and output variables from the example in Section 1.3.1. To restrict our domain of discourse
for the values of v and y, we could define

Dom(v) = {x ∈ R | 0 ≤ x ≤ 400}

and

Dom(y) = {x ∈ R | 0 ≤ x ≤ 400}.

The valuation domain DVar is therefore the set of all functions that map v to a value in
Dom(v) and y to a value in Dom(y).

Consider valuation functions σ1, σ2 with σ1(v) = σ2(v) = 200, σ1(y) = 2 and σ2(y) = 5.
Then σ1 ∈ DVar but σ2 ̸∈ DVar. To illustrate restrictions of valuation functions, let V1 = {v}
and V2 = {y} and note that σ1|V1 and σ2|V1 (both restricted to v) are identical but σ1|V2

and σ2|V2 (both restricted to y) are not.

Consider the formulas ϕ := y = 1 and ψ := y2 = 1. Although ϕ and ψ are not identical, they
are equivalent with respect to Var, i.e. ϕ ≡Var ψ. This is because there is only one valuation
for y in Dom(y) that satisfies ϕ, namely y = 1, which is also the only valuation that satisfies



Chapter 2. Background 9

ψ.

2.2 Sequences

We use the same notion of sequences as Huang et al. [9]. Let X be some set. The set
of finite sequences of elements of X is denoted as X∗ and the set of infinite sequences of
elements of X as Xω. The length of a sequence γ is denoted as |γ| and is an element of
the set N ∪ {0,∞}. The empty sequence is denoted as ε, i.e. |ε| = 0. The ith element of γ
is denoted as γ(i) while the suffix of γ starting at the ith element is denoted as γi. For a
given i, γi and γ(i) are only defined if 0 < i ≤ |γ| holds. For sequences over elements of a
set X, we define a function Pref : X∗ ∪Xω → X∗ ∪Xω with respect to set X as follows:

Pref(σ) =
{︁
σ′ ∈ X∗ ∪Xω | ∀0 < i ≤ |σ′| : σ(i) = σ′(i)

}︁
In other words, Pref(σ) returns the set of all prefixes of σ. Note that by this definition,
set Pref(σ) includes σ itself. Furthermore, Pref(σ) may contain an infinite sequence if and
only if σ is an infinite sequence, namely σ itself.

For the remainder of this thesis, identifiers with an overline are identifiers for a sequence.

Examples ConsiderDVar for Var = {v, y} as described in the previous section. Then (DVar)∗

is the set of all finite sequences of valuation functions in DVar. Imagine observing the BRAKE
system, writing down the values for v and y at discrete points in its execution. Every possible
finite sequence you could write down is contained in (DVar)∗. For infinite sequences, this set
is (DVar)ω. Let σ be some finite sequence from (DVar)∗ obtained by writing down observa-
tions about the BRAKE system. Then |σ| is the number of discrete points in the execution
at which observations were made, σ(1) is the first observation and σ2 is the sequence of
observations starting at the second observation.

2.3 Equivalence Class Partitionings

In this thesis, equivalence class partitionings are utilised to deal with infinite valuation
domains.

2.3.1 Definition

Formally, an equivalence relation ∼ is a symmetric, reflexive and transitive relation over
some set, i.e., given some set X over which we define some ∼ and elements a, b, c ∈ X, the
following hold: a ∼ a, a ∼ b =⇒ b ∼ a and a ∼ b ∧ b ∼ c =⇒ a ∼ c. This induces a
partitioning of X, i.e. a maximal set S ⊂ 2X of subsets of X with the following properties:



Chapter 2. Background 10

• ∀X ′, X ′′ ∈ S : X ′ ̸= X ′′ =⇒ X ′ ∩X ′′ = ∅, i.e. two elements of S are either equivalent
or disjunct.

• ∀X ′ ∈ S : ∀s, s′ ∈ X ′ : s ∼ s′, i.e. all elements of one element of S are equivalent
under ∼.

• ∀s ∈ X : ∃X ′ ∈ S : s ∈ X ′, i.e. all elements of X are contained in one element of S.

Here we will use equivalence relations and equivalence class partitionings on possibly infinite
sets of variable valuations DVar. We partition these sets of valuations such that all elements
in a partition satisfy some formula, i.e. given some partitioning S ⊂ 2DVar and some formula
ϕ from a set of formulas Σ, all formulas of a given element X ′ of S either satisfy ϕ or not:

∀s, s′ ∈ X ′ : s |= ϕ ⇐⇒ s′ |= ϕ.

Definition 1. Let Σ be a finite set of quantifier-free first-order logic formulas over variables
from Var. Furthermore, let σ be some element of DVar.

We call a set A ⊆ DVar an equivalence class of σ with respect to Σ if and only if

∀σ′ ∈ A : ∀f ∈ Σ: σ |= f ⇐⇒ σ′ |= f

holds. If Σ is obvious from the context, we simply call A the equivalence class of σ. If and
only if σ′ ∈ DVar belongs to an equivalence class of σ with respect to Σ, we write σ ∼Σ σ′.
Definition 2. Let Σ be a finite set of quantifier-free first order logic formulas over variables
from Var. We call a finite set A ⊆ 2(DV ar) with ∅ ̸∈ A an equivalence class partitioning of
DV ar with regards to Σ if and only if

∀A ∈ A : ∀σ, σ′ ∈ A : σ ∼Σ σ′

holds and each element of DV ar is included in exactly one element of A.

Example Again, consider Var = {v, y} as the set of variables of the BRAKE system and
DVar as the valuation domain introduced for these. Let ϕ1 := v = v, ϕ2 := v ≤ v, ϕ3 := v > v

and Σ = {ϕ1, ϕ2, ϕ3}. Then we can divide DVar into three equivalence classes A1, A2 and
A3 where A1 contains all those valuation functions where v is less than v, A2 those where v
equals v and A3 those where v is greater than v.

Note that while this at first might seem like these sets are just the sets of models for ϕ1, ϕ2

and ϕ3, there is no set containing all solutions to ϕ2. Consider such a set, then it would
contain both valuation functions satisfying v < v and v = v.

While valuation functions satisfying v = v are models for both ϕ1 and ϕ2, those satisfying
only v < v satisfy only ϕ2 and therefore must be in an equivalence class separate from those
also satisfying ϕ1.



Chapter 2. Background 11

2.3.2 Construction of Equivalence Class Partitionings

Now we demonstrate the construction of such equivalence class partitionings. First, we fix a
finite set Σ of quantifier-free first-order logic formulas over Var. Here, the set Σ represents
the set of predicates from which we select subsets. Given such a subset E, we check whether
there exist valuations that satisfy precisely those predicates that are in E and no others
from Σ. In principle, we could simply enumerate all subsets E ∈ 2Σ and check whether the
following formula ΦE has solutions in DVar:

ΦE ≡Var
⋀︂

e∈E

e ∧
⋀︂

e∈Σ\E

¬e (2.1)

A solution to ΦE in DVar is a valuation σ such that σ |= ΦE . Clearly, if ΦE for some E
has solutions in DVar, all these solutions belong to the same equivalence class. For this
equivalence class, we refer to ΦE as the defining formula. Furthermore, there are no elements
of DVar that are not solutions to some ΦE . This implies that the set of all ΦE that have
solutions in DVar defines an equivalence class partitioning.

A more efficient algorithm shown in Figure 2.1 calculating this input output equivalence
class partitioning is based on some of our previous work [10] and takes advantage of the
following observations:

1. Given two predicates p1, p2 where we know that p1 does not have any solutions within
the valuation domain of interest DVar, we also know that this is also the case for the
conjunction of p1 and p2:(︂

∄σ ∈ DVar. σ |= p1
)︂

=⇒ (∄σ. σ |= p1 ∧ p2) (2.2)

2. Given two predicates p1, p2 where we know that p1 does have solutions within the
valuation domain of interest DVar while p1 ∧ p2 does not, we also know that p1 ∧ ¬p2

does have solutions within DVar:(︂
∃σ ∈ DVar : σ |= p1

)︂
∧(︂

∄σ ∈ DVar : σ |= p1 ∧ p2
)︂

=⇒
(︂
∃σ ∈ DVar : σ |= p1 ∧ ¬p2

)︂

This facilitates a reduction in checks by iteratively selecting predicates e ∈ Σ and checking
whether solutions exist for the conjunctions of e with conjunctions of elements of Σ or their
negations, which have been found to have solutions in previous iterations. If no solution is
found, other conjunctions containing the current one as a subterm cannot have solutions
either. It is also known that the conjunction with ¬e has solutions, thus eliminating the



Chapter 2. Background 12

need for checks for solutions there.

Now, let P be the set of all formulas ΦE that have solutions in DVar. This P for a given Σ
and DVar describes a partitioning of DVar with respect to Σ:

∀σ ∈ DVar : ∃p ∈ P : σ |= p (2.3)

∀p, p′ ∈ P , σ ∈ DVar : p ̸= p′ ∧ σ |= p =⇒ σ ̸|= p′ (2.4)

Every σ ∈ DVar is a model for at least one p ∈ P (Equation (2.3)), and for two distinct
elements of P , an element of the valuation domain DVar is a model for at most one of them
(Equation (2.4)). Consequently, each σ ∈ DVar is a model for precisely one p ∈ P . We can
define a function io : P → 2DVar as follows:

io(p) =
{︂
σ ∈ DVar | σ |= p

}︂
(2.5)

This function maps each p ∈ P to the set of all valuations in DVar that are a model for p.
Finally, we can define the set A = {io(p) | p ∈ P } as the equivalence class partitioning of
the valuation domain DVar with respect to Σ. Now, the following statement holds:

∀σ, σ′ ∈ DVar :
(︁
σ ∼Σ σ′ ⇐⇒ ∀p ∈ Σ: σ |= p ⇐⇒ σ′ |= p

)︁
(2.6)

We can now also define an operator [·] : DVar → A mapping valuations to the set of equivalent
valuations as follows:

[σ] := {σ′ ∈ DV ar | σ ∼Σ σ′} (2.7)

Extending this to sequences of elements from the valuation domain and sets of such, we can
define [·] :

(︂
DVar

)︂∗
→ A∗ and [·] : 2(DVar)∗

→ 2A∗ as

∀σ ∈
(︂
DVar

)︂∗
: ∀0 < i ≤ |σ| : [σ](i) = [σ(i)]

and

∀X ∈ 2(DVar)∗
: [X] = {[σ] | ∃σ : σ ∈ X}

respectively.

Algorithm 2.1 establishes the set of formulas describing the partitioning by incrementally
dividing existing partitions into two parts. Given that each formula in the result shall
describe a subset of DVar, we initially aim for a set of formulas where the corresponding
partitioning comprises only one partition, which is the entirety of DVar. To achieve this, the
algorithm initialises the set of formulas that we will incrementally divide with a formula
fulfilled by all elements of DVar, specifically true (line 1). The formulas in this set are then



Chapter 2. Background 13

Algorithm 2.1: Algorithm calculating expressions defining an equivalence class
partitioning of the valuation domain of M .

Input: Set of quantifier free first order logic formulas Σ
Input: Set of variable valuations DV ar

Output: Set of expressions defining an equivalence class partitioning of the
valuation domain of M

1 partitions← {⊤}
2 foreach e ∈ Σ do
3 nextPartitions← ∅
4 foreach p ∈ partitions do
5 if ∃s ∈ DV ar : s |= e ∧ p then
6 nextPartitions← nextPartitions ∪ {e ∧ p}
7 if ∃s : s |= ¬e ∧ p then
8 nextPartitions← nextPartitions ∪ {¬e ∧ p}
9 end

10 else
11 nextPartitions← nextPartitions ∪ {¬e ∧ p}
12 end
13 end
14 partitions← nextPartitions

15 end
16 return partitions



Chapter 2. Background 14

incrementally refined as follows: For each formula e ∈ Σ, we evaluate for each formula
describing a partition p of the current partitioning whether e ∧ p and e ∧ ¬p are satisfiable
by any s ∈ DVar. Evidently, at least one of these is satisfiable by at least one s. The set of
formulas describing the refined partitioning will incorporate e ∧ p, e ∧ ¬p, or both if they
are satisfiable (line 6, line 8, and line 11). To save on computation time, the algorithm
first assesses whether e ∧ p is satisfiable and infers the satisfiability of e ∧ ¬p if e ∧ p is not
satisfiable.

Example Consider Var and DVar, as in the previous examples, and recall the formulas
ϕ1, ϕ2 and ϕ3. We commence Algorithm 2.1 with the set partitions as {⊤}, as depicted in
line 1. This corresponds to DVar being a single equivalence class, as all valuation functions
in it satisfy ⊤. We then consider ϕ1, ϕ2 and ϕ3 in any order. Firstly, we select ϕ1 and check
for each partition p in partitions whether there exist valuation functions in DVar that satisfy
both p and ϕ1 (line 5). This is evidently the case, hence we add p ∧ ϕ1 to nextPartitions.
We also check whether there exist satisfying valuations for p ∧ ¬ϕ1 (line 7), which is also
the case, extending nextPartitions by p ∧ ¬ϕ1. Subsequently, we assign nextPartitions to
partitions, empty nextPartitions and initiate the next iteration of the outer loop of the
algorithm in which we select ϕ3. In the inner loop, we first consider the partition ⊤ ∧ ϕ1,
which effectively simplifies to ϕ1. As ϕ1 is v = v and ϕ3 is v > v, their conjunction can have
no solution. Therefore, line 11 is executed, adding ϕ1 ∧ ¬ϕ3 to nextPartitions. Afterwards,
we inspect the next element from partitions, ¬ϕ1, for solutions with ϕ3 in DVar, which
exist, and finally for solutions with ¬ϕ3, which also exist, adding ¬ϕ1 ∧ ϕ3 and ¬ϕ1 ∧ ¬ϕ3

to nextPartitions. We proceed with the final iteration of the outer loop, considering ϕ2,
following the process described above. Ultimately, we end up with partitions being the
following set:

{ϕ1 ∧ ¬ϕ3 ∧ ϕ2,

¬ϕ1 ∧ ϕ3 ∧ ¬ϕ2,

¬ϕ1 ∧ ¬ϕ3 ∧ ϕ2}

This set partitions DVar exactly as described above into the three equivalence classes A1, A2

and A3.

2.4 Finite State Machines

Finite State Machines (FSMs) are utilised in a variety of contexts within computer science.
There are several specialisations of FSMs, all of which have in common that each FSM
instance possesses a finite number of states, hence their name, and can perform a set of
computations, a concept that will be introduced concurrently.



Chapter 2. Background 15

In this section, we will introduce definitions for the FSM specialisations employed throughout
this work.

2.4.1 Mealy Automata

The following definition introduces Mealy automata, which were first described by Mealy [11]:
Definition 3. A Mealy Automaton is an FSM defined as a tuple M = (Q, q0,ΣI ,ΣO, R)
where Q is the finite non-empty set of states, q0 ∈ Q is a singular initial state, ΣI and ΣO are
finite non-empty sets of input and output symbols, respectively, and R ⊆ (Q× ΣI × ΣO ×Q)
is a set of transitions called the transition relation.

For a given transition t = (q, x, y, q′) ∈ R, q is referred to as the source state and q′ as
the target state of t. Alternatively, we say that t emanates from q and reaches state q′.
Furthermore, t is enabled in q if and only if the input symbol x is applied in state q. An
output y can be produced by applying an input x in state q if and only if there exists a
transition in R with q as the source state, x as the input symbol, and y as the output symbol.

A Mealy automaton is deterministic if and only if for each state q ∈ Q and input symbol
x ∈ ΣI , there exists at most one transition in R where q is the source state and x is the
input symbol. If there are multiple transitions with q as the source state and x as the input
symbol, i.e. multiple transitions are enabled in a single state by the same input symbol, we
call the Mealy automaton non-deterministic.

A Mealy automaton is completely specified if and only if for each state q ∈ Q and input
symbol x ∈ ΣI , there exists at least one transition in R with q as the source state and x as
the input symbol.

A Mealy automaton is observable if and only if for each state q ∈ Q, input symbol x ∈ ΣI

and output symbol y ∈ ΣO, there exists at most one transition in R that emanates from q,
is enabled by x, and produces y.

Given a Mealy automaton M = (Q, q0,ΣI ,ΣO, R) and a state q ∈ Q, we call an infinite
sequence σ ∈ (Q× ΣI × ΣO ×Q)ω a computation of q only if for all i > 0 each element σ(i)
obeys the form (si−1, xi, yi, si) ∈ R where s0 = q. We call σ a computation of M if and
only if q = q0. We denote the set of all computations of q and M as Tr(q) and Tr(M),
respectively. We call a finite sequence σ ∈ (Q× ΣI × ΣO ×Q)∗ a trace of q only if there is
an infinite computation σ′ of q where σ ∈ Pref(σ′) and a trace of M if and only if q = q0.
We denote the set of all traces of q and M as Trfin(q) and Trfin(M), respectively. Given
a computation or trace σ of M we denote the projection to the source states as σ↓Q, the
projection to the input symbols as σ↓ΣI

, the projection to the output symbols as σ↓ΣO
and

the projection to the post states as σ↓Q′ .

Given a state q and an input symbol x, we define q-after-x as the set of target states of all



Chapter 2. Background 16

transitions enabled by x in q:

q-after-x =
{︂
q′ ∈ Q | ∃σ ∈ Trfin(q) : σ↓ΣI

(1) = x ∧ σ↓Q′(1) = q′
}︂

With slight abuse of notation we extend this to finite sequences of input symbols: Given
a state q and a finite sequence x = x1.x2 . . . xn of input symbols we construct a sequence
Q = Q1.Q2 . . . Qn of sets of states as Qj = ⋃︁

q′∈Qj−1

q′-after-xj . Then we define Q0 = {q} and

q-after-x as Qn:

q-after-x =

⎧⎨⎩
{︂
q′ ∈ Q | ∃σ ∈ Trfin(q) : σ↓ΣI

= x ∧ σ↓Q′(|x|) = q′
}︂

if x ̸= ε

{q} if x = ε

The intuition behind this operation is that we start in state q and apply the sequence of
inputs in order, for each state following the transitions in R to the target states where we
apply the next input. The final set of target states is then the result of this operation. We
call the set of sequences of output symbols produced during this process out(q, x):

out(q, x) =
{︂
y ∈ Σ∗

O | ∃σ ∈ Trfin(q) : σ↓ΣI
= x ∧ σ↓ΣO

= y
}︂

Given a sequence of input symbols x = x1.x2 . . . xn and a sequence of output symbols
y = y1.y2 . . . yn, we denote the sequence of pairs (x1, y1).(x2, y2) . . . (xn, yn) as x/y.

Given a state q, we define the language of q as

L(q) =
{︂
x/y ∈ (ΣI × ΣO)∗ | ∃σ ∈ Trfin(q) : σ↓ΣI

= x ∧ σ↓ΣO
= y

}︂
.

Given a Mealy automaton M = (Q, q0,ΣI ,ΣO, R), we define the language of M as the
language of its initial state q0. We call M initially connected if there exists at least one
sequence of input symbols x for each state q ∈ Q such that q ∈ q0-after-x. We call M
minimal if for all pairs of states q, q′ ∈ Q with q ̸= q′, L(q) ̸= L(q′) holds.

Let q, q′ be two states in Q where there exists at least one input sequence x such that
q′ ∈ q-after-x. Then, there is a shortest input sequence xmin such that q′ ∈ q-after-xmin and
∀x ∈ Σ∗

I : q′ ∈ q-after-x =⇒ |xmin| ≤ |x|. We refer to |xmin| as the distance of q′ from q.
For Mealy automaton M we refer to the longest distance between any pair of states from Q

as the diameter of M .



Chapter 2. Background 17

q0

start

q1

a/y

a/z

b/y b/y

Figure 2.1: An example of a Mealy automaton. States are represented by circles, whilst
transitions are depicted by arrows. State q0 is marked as the initial state by the arrow
labelled with start. Transitions are labelled with pairs of input and output symbols; for
instance, the transition from q0 to q1 is labelled with input symbol a and output symbol y.

Example We can define a simple Mealy automaton as M = (Q, q0,ΣI ,ΣO, R) with
Q = {q0, q1}, ΣI = {a, b}, ΣO = {y, z} and

R = {(q0, a, y, q1), (q0, b, y, q0),

(q1, a, z, q0), (q1, b, y, q1)}

This can be graphically represented as shown in Figure 2.1.

This Mealy automaton is deterministic, as for each pair of state from Q and input symbol
from ΣI , there is only one transition with that pair in R. It is also completely specified, as
for both q0 and q1, there is at least one outgoing transition with a and with b.

Consider the case where there is an additional transition (q0, b, y, q1). In this case, the
automaton is non-deterministic, as there are two transitions emanating from q0 with input
symbol b. Furthermore, it is also not observable, as we cannot judge from observing the
output y when applying b in q0 which state was reached.

In this non-deterministic case, q0-after-b is {q0, q1}, while q0-after-a.b is {q0}. The value for
out(q0, b.b) is { y.y }.

The language of the deterministic Mealy automaton is the set of all sequences of pairs from
ΣI and ΣO where every second input of a is met with an output of z while all other pairs
have an output of y.

The diameter of M is 1, as it takes only one transition to reach any state from any other
state.

2.4.2 Moore Automata

Tjhe following definition introduces Moore automata, which were first described by Moore [12]:

Definition 4. A Moore Automaton is an FSM defined as a tuple M = (Q, q0,ΣI ,ΣO, δ, λ)



Chapter 2. Background 18

where Q is the finite set of states, q0 ∈ Q is a singular initial state, ΣI and ΣO are finite
sets of input and output symbols, respectively, δ : Q × ΣI → 2Q is the transition function
and λ : Q→ ΣO is the output function.

Informally speaking, a Moore automaton is quite similar to a Mealy automaton, differing
only in how the output is specified. In a Mealy automaton, the output symbols are linked to
the transitions, whereas in a Moore automaton, the output symbols are associated with the
states of the automaton.

For a given state q ∈ Q, the associated output symbol y is determined using λ: y = λ(q).
Given input symbol x ∈ ΣI , we refer to the process of determining the set Q′ = δ(q, x)
applying input x in q. With a slight abuse of notation, we lift δ to sets of states Q′′

as δ(Q′′, x) = ⋃︁
q∈Q′′

δ(q, x), and then to sequences of inputs as follows: Given a set of

states Q0 and a sequence of inputs x = x1.x2 . . . xn, we obtain a sequence of sets of states
Q = Q1.Q2 . . . Qn where Qj = δ(Qj−1, xj). We define δ(Q0, x) = Qn. For singleton sets
containing a single state q, we write δ(q, x) instead of δ({q}, x). We also define the natural
lifting of λ to sequences of state sets, where the result is the set of all output symbol sequences
that can be observed when applying x.

We define the concepts of (non-)determinism, observability and of a Moore automaton being
completely specified, initially connected, minimal, of distance and diameter as above for Mealy
automata.

Given a state q ∈ Q we define the language of q as

L(q) = {x/y ∈ (ΣI × ΣO)∗ | y ∈ λ(δ(q, x))} .

Given the Moore automaton M = (Q, q0,ΣI ,ΣO, δ, λ), we define the language of M to be
the language of its initial state q0.

Example We adapt the example of the deterministic Mealy automaton M for the Moore
automaton. To represent an analogous Moore automaton, a third state, q2, is added to Q.
Each of these states is associated with an output by defining λ such that λ(q0) = λ(q1) = y

and λ(q2) = z. Finally, we define δ as follows:



Chapter 2. Background 19

q0
ystart

q1
y

q2
z

a a

a

b

b b

Figure 2.2: Example of a Moore automaton. States are depicted as circles and transitions
as arrows. State q0 is marked as the initial state by the arrow labelled with start. The
transitions are labelled by an input symbol while the states have an additional label for the
output symbol, e.g., the transition from state q0 to state q1 is labelled by input symbol a
and q1 is labelled by output symbol y.

δ(q0, a) = {q1}

δ(q0, b) = {q0}

δ(q1, a) = {q2}

δ(q1, b) = {q1}

δ(q2, a) = {q1}

δ(q2, b) = {q0}

For the non-deterministic Mealy automaton shown in the example above we define δ(q0, b)
instead as {q0, q1}.

The deterministic Moore automaton can be graphically represented as shown in Figure 2.2.

2.4.3 Recognizer Finite State Automata

Definition 5. A Recognizer Finite State Automaton (FSA) is an FSM defined as a tuple
M = (Q,Q0,Σ, δ, F ) where Q is the finite set of states, Q0 ⊆ Q is a set of initial states, Σ
is a finite set of symbols, δ : Q× Σ→ 2Q is the transition function and F ⊆ Q is the set of
accepting states.

Intuitively speaking, automata of this type specify a set of sequences that is a subset of
Σ. Unlike Mealy and Moore automata, which can be seen to specify a translation from
sequences of input symbols to sequences of output symbols, FSAs simply specify whether
they accept a sequence of symbols. They are typically used to specify formal languages.

We define the lifting of δ to sets of states and sequences of symbols analogous to the lifting
of δ for Moore automata.



Chapter 2. Background 20

q0start q1 q2

a a

a

b

b b

Figure 2.3: Example of a Recognizer Finite State Automaton. States are represented by
circles, whilst transitions are illustrated through arrows. Accepting states are marked with
double circles. The transitions are labelled with symbols; for instance, the transition from
state q1 to state q2 is labelled with symbol a and q2 is an accepting state.

Given some FSA M with transition function δ. We call M deterministic if and only if for
any pair (q, i) ∈ Q× Σ, |δ(q, i)| ≤ 1 holds and M has only a single initial state. We refer to
these as DFAs and to those where this does not hold as NFAs. Every NFA with n states can
be transformed into a DFA with at most 2n states that accepts the same set of sequences, as
first described by Rabin and Scott [13].

Given a state q we define the language of q as

L(q) = {x, x ∈ Σ∗ | δ(q, x) ∩ F ̸= ∅} .

Given FSA M = (Q,Q0,Σ, δ, F ), we define the language of M as the union of the languages
of its initial states.

We call an FSA minimal if ∀q, q′ ∈ Q : q ̸= q′ =⇒ L(q) ̸= L(q′) holds.

Example As an example for an FSA we define M = (Q,Q0,Σ, δ, F ) with Q = {q0, q1, q2},
Q0 = {q0}, Σ = {a, b}, F = {q2} and δ as follows:

δ(q0, a) = {q1}

δ(q0, b) = {q1}

δ(q1, a) = {q2}

δ(q1, b) = {q1}

δ(q2, a) = {q1}

δ(q2, b) = {q1}

The resulting automaton can be represented graphically as shown in Figure 2.3.

Its language is the set of all sequences that contain an even number of the symbol a and end
on a symbol a.



Chapter 2. Background 21

2.5 Symbolic Finite State Machines

A Symbolic Finite State Machine (SFSM) is a concept extending Mealy automata such that
the requirement for finite sets of inputs and outputs is lifted. It is the core formalism on
which we define property satisfaction. Throughout this thesis, we assume that the relevant
behaviour of the implementations we test can be modelled as an SFSM.

2.5.1 Definition

This is done by replacing input and output symbols with quantifier-free first order logic
formulas:
Definition 6. A Symbolic Finite State Machine is an FSM defined as a tuple M =
(S, s0, I, O,ΣI ,ΣO,DVar, R) where S is the finite set of states, s0 ∈ S is a singular initial
state, I is a set of primitively-typed input variables, O is a set of primitively-typed output
variables, ΣI and ΣO are finite sets of quantifier-free first order logic formulas over variables in
I and I∪O, respectively. Furthermore, DVar is the valuation domain, which is a set containing
all admissible valuations for the variables Var = I ∪O. Finally, R ⊆ (S ×ΣI ×ΣO × S) is a
set of transitions called transition relation.

For the remainder of this thesis and unless stated otherwise we fix M , S, s0, I, O, ΣI , ΣO

and R as in Definition 6.

We refer to the elements of ΣI guard conditions and the elements of ΣO output expressions.
Each element of DVar is a mapping that assigns every variable in Var to a value of its
respective type. Frequently, we wish to discuss only the valuations of the input variables.
We denote the set of restrictions of the elements in DVar to the set of input variables I as
DI , and refer to each element of DI as an input valuation.

For a given transition t = (s, i, o, s′) ∈ R, we refer to s as the source state and s′ the target
state of t. Alternatively, we say that t emanates from s and reaches state s′. Furthermore,
we say that t is enabled in s if and only if an input valuation σI |= i is applied in state s.
The application of an input valuation σI in state s can produce a valuation σ ∈ DVar if and
only if there exists a transition r ∈ R with s as the source state, i as the input symbol, o as
the output symbol, where (σI = σ|I) ∧ (σ |= i ∧ o) holds. We also say that r can produce σ.

We call an SFSM deterministic if and only if for each state s ∈ S and input valuation
σI ∈ DI , there exists at most one transition in R that can be enabled by σI in s and if the
application of σI can produce exactly one valuation σ ∈ DVar in s. If there are multiple
transitions in any s that can be enabled by some σI ∈ DI or if multiple valuations can be
produced by the application of σI , we call the SFSM non-deterministic.

We call an SFSM completely specified if and only if for each state s ∈ S and input valuation
σI ∈ DI , there exists at least one transition that is enabled by σI in s.

We call an SFSM observable if and only if for each state s and each valuation σ from DVar,



Chapter 2. Background 22

there exists at most one transition that can produce σ. Every non-observable SFSM can be
transformed into an equivalent observable one.

We call a sequence of first-order logic formulas from ΣI or pairs of such formulas from
ΣI ×ΣO a symbolic sequence. We call a sequence of valuations from DVar a concrete sequence.

Given an SFSM M = (S, s0, I, O,ΣI ,ΣO,DVar, R) and a state s ∈ S, we call an infinite
sequence σ ∈ (S × ΣI × ΣO × S)ω a symbolic computation of s only if for all i > 0, each
element σ(i) is of the form (qi−1, ϕi, ψi, qi) ∈ R where q0 = s and there is a valuation
σi ∈ DVar such that σi |= ϕi ∧ ψi. We call σ a symbolic computation of M if and only if
s = s0. We call a finite sequence σ ∈ (S × ΣI × ΣO × S)∗ a symbolic trace of s only if there
exists an infinite symbolic computation σ′ of s such that σ ∈ Pref(σ′), and a symbolic trace
of M if and only if s = s0. We denote the set of symbolic computations of s and M , and the
set of symbolic traces of s and M , as T r̂(s), T r̂(M), T r̂fin(s) and T r̂fin(M), respectively. We
call an infinite sequence (q0, σ1, q1). (q1, σ2, q2) . . . ∈

(︂
S ×DVar × S

)︂ω
a concrete computation

of s only if there exists a symbolic computation σ′ = (q0, ϕ1, ψ1, q1). (q1, ϕ2, ψ2, q2) . . . of s
such that for all i > 0, the relation vi |= ϕi ∧ ψi holds. We call it a concrete computation of
M if and only if q0 = s0. We call a finite sequence σ ∈

(︂
S ×DVar × S

)︂∗
a concrete trace of

s only if there exists a concrete computation σ′ of s with σ ∈ Pref(σ′). We call σ a concrete
trace of M if and only if there exists a concrete computation σ′ of M with σ ∈ Pref(σ′). We
denote the set of concrete computations of s and M , and the set of concrete traces of s
and M , as Tr(s), Tr(M), Trfin(s) and Trfin(M), respectively. We denote the projection of
the elements of a symbolic computation or trace σ to the source states, guard conditions,
output expressions and target states as σ↓S , σ↓ΣI

, σ↓ΣO
and σ↓S′ , respectively. We denote

the projection of the elements of a concrete computation or trace σ to the source states,
valuation functions and target states as σ↓S , σ↓Var and σ↓S′ , respectively. We denote the
projection of a concrete computation or trace σ to the restrictions of the valuation functions
to a subset of variables V ⊆ Var as σ|V . We extend this notation of projection to sets of
computations and traces.

Given a state s and an input valuation σI ∈ DI , we define s-after-σI as the set of target
states of all transitions enabled by σI in s:

s-after-σI =
{︁
s′ ∈ S | ∃σ ∈ Trfin(s) : σ|I(1) = σI ∧ σ|S′(1) = s′}︁

With a slight abuse of notation, we extend this to finite sequences of input valuations. Given
a state s and a finite sequence σI = σI,1.σI,2 . . . σI,n ∈ (DI)∗ of input valuations, we construct
a sequence S = S1.S2 . . . Sn of sets of states, where Sj = ⋃︁

s′∈Sj−1 s
′-after-σj . We then define

S0 = {s} and s-after-σI as Sn, where n = |σI |:



Chapter 2. Background 23

s-after-i =

⎧⎨⎩
{︁
s′ ∈ S | ∃σ ∈ Trfin(s) : σ|I = i ∧ σ|S′(|i|) = s′}︁ if i ̸= ε

{s} if i = ε

The intuition of this operation is that we start in state s and apply the sequence of inputs in
order, for each state following the transitions in R to the target states where we apply the
next input. The final set of target states is then the result of this operation. We call the set
of sequences of valuations produced during this process out(s, σI):

out(s, σI) =
{︂
σ ∈

(︂
DVar

)︂∗
| ∃σ′ ∈ Trfin(s) : σ′|Var = σ ∧ σ|I = σI

}︂

We call M initially connected if for each state s ∈ S \ s0, there exists at least one sequence
of input valuations σI such that state s ∈ s0-after-σI .

Given a state s we define the concrete language of s as

L(s) =
{︂
σ ∈

(︂
DVar

)︂∗
| ∃σI ∈

(︂
DI
)︂∗

: σ ∈ out(s, σI)
}︂
.

We call M minimal if for all pairs of states s, s′ ∈ S, L(s) ̸= L(s′).

Given an SFSM M = (S, s0, I, O,ΣI ,ΣO,DVar, R), we define the concrete language of M as
the concrete language of its initial state. While traditional FSMs can model only a finite set
of sequences of a certain length, the number of words of some fixed length in the language of
an SFSM is potentially infinite. This allows SFSMs to be used in cases where traditional
FSMs would require auxiliary constructs to handle the same application.

We call M well-formed if it is observable, minimal, initially connected and completely
specified.

We define the concepts distance and diameter as above for Mealy automata.

When given a non-deterministic SFSM M , we make the common complete testing assump-
tion [14, 15].
Definition 7. By the complete testing assumption, there exists some known k ∈ N such
that k applications of any input sequence σI to the IUT will reveal all behaviour the IUT can
show in response to σI .

Example Whilst SFSMs are the formalism we will base large portions of the approaches
presented in the coming chapters on, we will keep this example simple. In Chapter 3 we will
model the BRAKE system as an SFSM and use that as an example, which is more complex
than this one.

For this example, consider Var to be {v, y} again, with Dom(v) = {x ∈ R | 0 ≤ x ≤ 400}
and Dom(y) = {x ∈ R | 0 ≤ x ≤ 5}. Also, let v be an input and y an output variable,



Chapter 2. Background 24

Alphabet Name Formula

ΣI

ϕ1 v = v

ϕ2 v ≤ v

ϕ3 v > v

ϕ4 v < v

ΣO

ψ1 y = v/100

ψ2 y = 0

Table 2.1: Guard conditions and output expressions for the SFSM example

i.e. I = {v} and O = {y}. For the sets of guard conditions and output expressions we
use ΣI = {ϕ1, ϕ2, ϕ3} and ΣO = {ψ1, ψ2}, respectively, with those formulas as defined in
Table 2.1.

Finally, let S = {s0, s1} be a set of states and R a transition relation defined as follows:

R = {(s0, ϕ1, ψ2, s1),

(s0, ϕ3, ψ1, s0),

(s0, ϕ4, ψ2, s1),

(s1, ϕ2, ψ2, s1),

(s1, ϕ3, ψ1, s0)}

We then define our example SFSM as M = (S, s0, I, O,ΣI ,ΣO,DVar, R).

A graphical representation of M is shown in Figure 2.4.

This M is deterministic, as both in s0 and s1 there is no valuation that enables more than
one transition. This can easily be seen by trying to find conjunctions of pairs of guard
conditions of the outgoing transitions of a state: Neither for s0 nor for s1 can we find a pair
of guard conditions for which there is a valuation function that is a model for both.

Furthermore, M is completely specified. This can be easily seen by trying to find a valuation
function that is not a model for any of the guard conditions of the transitions emanating
from a single state. For M to not be completely specified we would need to find a valuation
function that satisfies either ¬ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ4 or ¬ϕ2 ∧ ¬ϕ3.

A sequence of guard conditions (e.g. ϕ1.ϕ2) or of pairs of guard conditions and output
expressions (e.g. (ϕ1/ψ1). (ϕ2/ψ2)) is a symbolic sequence, while a sequence of valuation
functions (e.g. (v ↦→ v, y ↦→ 0). (v ↦→ 0, y ↦→ 0)) is a concrete sequence. As an example of a



Chapter 2. Background 25

s0start s1

v = v/y = 0

v > v/y = v/100

v < v/y = 0

v ≤ v/y = 0

v > v/y = v/100

Figure 2.4: An example of a Symbolic Finite State Machine. States are depicted as
circles and transitions as arrows. The transitions are labelled with the corresponding guard
conditions and output expressions, e.g., one of the transitions from state s0 to state s1 is
labelled with the guard condition v = v and the output expression y = 0, corresponding to
ϕ1 and ψ2, respectively.

symbolic trace of M consider the following sequence:

(s0, ϕ1, ψ2, s1). (s1, ϕ3, ψ1, s0)

Such a symbolic sequence is just a sequence of elements of transition relation R. A matching
concrete trace of M , assuming v = 200, is the following:

(s0, (v ↦→ 200, y ↦→ 0), s1). (s1, (v ↦→ 201, y ↦→ 2.01), s0)

As all states in S are reachable from the initial state s0, M is initially connected. However,
it is not minimal, as the concrete languages of s0 and s1 are equal, albeit having a different
number of transitions over different guard conditions.

2.5.2 Equivalence Class Partitionings for SFSMs

When dealing with an infinite set of valuations, and given some set of first-order logic
formulas Σ, we often wish to determine which set of valuations A ⊆ DVar fulfills the same
subset Σ′ ⊆ Σ of formulas as some given valuation σ ∈ DVar, as described in Section 2.3. For
a fixed Σ, we refer to this set of valuations as the input output equivalence class of σ with
regard to Σ. For a finite Σ, there is a finite equivalence class partitioning of DVar. We refer to
this equivalence class partitioning as the input output equivalence class partitioning of DVar

with regard to Σ. Such a finite partitioning enables us to cover all behaviour of a system by
selecting a finite number of witnesses, rather than having to apply all of a potentially infinite
number of valuations. We can only apply a finite number of inputs and will only observe
a finite number of outputs. Assuming the behaviour of the IUT can be described by an



Chapter 2. Background 26

SFSM over formulas from Σ, we can, however, apply a set of input valuations AI such that
every input output equivalence class partition of DVar is hit. This allows the identification of
the subset Σ′ ⊆ Σ that the IUT fulfills on an outgoing transition in the current state. This
enables the deduction of the guard conditions and output expressions labelling the outgoing
transitions of a state, thereby allowing reasoning about all behaviour of the IUT, even if
actually executing it all in a finite amount of time is impossible.

Separation of Guard Conditions and Output Expressions In later chapters, it
becomes necessary to separate the formulas for input output equivalence class partitions
by guard conditions and output expressions. Let Φ be an element in the set P of formulas
describing an input output equivalence class partitioning, and let the set of variables over
which these formulas are defined be Var. Our objective is to derive formulas ϕ and ψ, where
ϕ is dependent on input variables exclusively and such that ϕ ∧ ψ ≡Var Φ.

Recall that any Φ is equivalent to a conjunction of some E ⊆ Σ and the conjunction of the
negation of the rest (see Equation (2.1)):

Φ ≡Var
⋀︂

e∈E

e ∧
⋀︂

e∈Σ\E

¬e

Suppose the set Σ for which P describes an equivalence class partitioning is defined as
Σ = ΣI ∪ ΣO ∪X, where X is some set of propositions not in ΣI and ΣO. Furthermore, let
XI and XO be the subsets of X containing the formulas only over input variables and the
formulas over input and output variables, respectively. Then we can write Σ as follows:

Σ = ΣI ∪XI ∪ ΣO ∪XO

To obtain the separated ϕ and ψ of Φ, we can separate the latter as follows:

ϕ =
⋀︂

e∈E∩(ΣI∪XI)
e ∧

⋀︂
e∈(ΣI∪XI)\E

¬e

ψ =
⋀︂

e∈E∩(ΣO∪XO)
e ∧

⋀︂
e∈(ΣO∪XO)\E

¬e

We abbreviate ϕ and ψ as constructed above as sepI(Φ) and sepO(Φ), respectively. The
combination of these can be denoted as (ϕ, ψ) = sepI,O(Φ).

Example Consider ΣI = {ϕ1} and ΣO = {ψ1} to be the sets of guard conditions and
output expressions containing only the formulas v < 200 and y = 0, respectively. Let
XI = {κ} be the singleton set containing the first order logic formula v > 50.

For Σ = ΣI ∪ΣO ∪XI we obtain an equivalence class partitioning containing an equivalence



Chapter 2. Background 27

class described by a formula Φ with Φ ≡Var v < 200 ∧ ¬(v > 50) ∧ y = 0.

Upon applying the process above, we obtain sepI(Φ) ≡Var (v ≤ 50) and sepO(Φ) ≡Var (y = 0).

Symbolic SFSM Language In later chapters, it will be useful to argue about finite
abstractions of possibly infinite sets of sequences, where sets of sequences are abstracted to
a single sequence if they are equivalent with regards to some equivalence relation. Recalling
the operator [·] from Section 2.3.2, which maps valuations to their equivalence class in a
given partitioning we can define symbolic languages for SFSMs:
Definition 8. Given an SFSM M = (S, s0, I, O,ΣI ,ΣO,DVar, R), some s ∈ S and some set
Σ with ΣI ∪ΣO ⊆ Σ, let A be the input output equivalence class partitioning of DVar with
regards to Σ and the operator [·] defined with respect to that A.

We call T (s) = [L(s)] and T (M) = [L(M)] the symbolic language of s with regards to Σ and
symbolic language of M with regards to Σ, respectively. If Σ is obvious from the context, we
simply call it the symbolic language of s and the symbolic language of M , respectively.

Note that T (s) ⊆ A∗ and T (M) ⊆ A∗.

Given a state s and an input output equivalence class partition io ∈ A, we define s-after-io
as the set of target states of all transitions in s for which io contains models:

s-after-io =
{︁
s′ ∈ S | ∃σ ∈ Trfin(s) : σ(1)↓Var |= io ∧ σ↓S′(1) = s′}︁

With a slight abuse of notation, we extend this to finite sequences of input output equivalence
class partitions. Given a state s and a finite sequence io = io1.io2 . . . ion ∈ A∗ of input
output equivalence class partitions we construct a sequence S = S1.S2 . . . Sn of sets of states
as Sj = ⋃︁

s′∈Sj−1

s′-after-ioj . Finally, with S0 = {s}, we define s-after-io as Sn where n = |io|:

s-after-io =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{s′ ∈ S | ∃π ∈ Trfin(s) :(︁
∀0 < i ≤ |io| : π↓Var(i) ∈ io(i)

)︁
∧ π↓S′(|io|) = s′}

if io ̸= ε

{s} if io = ε

SFSM Refinement Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be an SFSM and X be a set of
quantifier-free first-order logic formulas over variables from the set Var. By refining M with
respect to X, we obtain an SFSM M ′ = (S, s0, I, O,Σ′

I ,Σ′
O,DVar, R′) with L(M) = L(M ′),

where the transitions in R′ are at least as "fine-grained" as those in R. In other words, for
each transition (s, ϕ, ψ, s′) ∈ R, there exists at least one transition (s, ϕ′, ψ′, s′) ∈ R′ such
that ∀σ ∈ DVar : σ |= ϕ′ ∧ ψ′ =⇒ σ |= ϕ ∧ ψ. We perform this refinement by constructing
the input output equivalence class partitioning A with respect to Σ = ΣI ∪ ΣO ∪X. Let P



Chapter 2. Background 28

denote the set of formulas describing A. We then construct Σ′
I and Σ′

O as follows:

Σ′
I = {sepI(Φ) | Φ ∈ P }

Σ′
O = {sepO(Φ) | Φ ∈ P }

Obviously, the following holds:

∀Φ ∈ P : ∃ϕ ∈ Σ′
I : ∃ψ ∈ Σ′

O : Φ ≡Var ϕ ∧ ψ

Also, following from the equivalence class construction, we know that for each pair of guard
condition and output expression from ϕ ∈ Σ′

I and ψ ∈ Σ′
O, for which there exist models in

DVar, there is also an input output equivalence class in A. This input output equivalence
class is described by ϕ ∧ ψ.

We construct R′ from R by creating a set r′ of new transitions for each transition (s, ϕ, ψ, s′) ∈
R:

r′ =
{︂

(s, ϕ ∧ ϕ′, ψ ∧ ψ′, s′) | ϕ′ ∈ Σ′
I ∧ ψ′ ∈ Σ′

O ∧ ∃σ ∈ DVar : σ |= ϕ ∧ ϕ′ ∧ ψ ∧ ψ′
}︂

Then, R′ is the union of all r′ constructed for the transitions in R. It is evident that the ϕ′

and ψ′ of each new transition describe precisely one input output equivalence class from A.

This construction is a special case of the one described by Huang et al. [16]. Therefore, the
proof for L(M) = L(M ′) given by them also applies.

This construction enables the translation of two SFSMs with different alphabets into two
SFSMs over the same alphabets: Given SFSMs M1 = (S1, s0,1, I, O,ΣI,1,ΣO,1,DVar, R1) and
M2 = (S2, s0,2, I, O,ΣI,2,ΣO,2,DVar, R2), refining M1 by ΣI,2 ∪ ΣO,2 and M2 by ΣI,1 ∪ ΣO,1

results in two SFSMs M ′
1 and M ′

2, where M ′
1 is defined as (S1, s0,1, I, O,Σ′

I ,Σ′
O,DVar, R′

1)
and M ′

2 is defined as (S2, s0,2, I, O,Σ′
I ,Σ′

O,DVar, R′
2), both over alphabets Σ′

I = ΣI,1 ∪ ΣI,2

and Σ′
O = ΣO,1 ∪ ΣO,2.

Example Consider again ΣI = {ϕ1}, ΣO = {ψ1} and X = {κ} with ϕ1, ψ1 and κ defined
as v < 200, y = 0 and v > 50, respectively. Furthermore, let M be an SFSM with ΣI

as its set of guard conditions and ΣO as its set of output expressions. To refine M with
respect to X, we calculate the input output equivalence class partitioning A with respect
to Σ = ΣI ∪ ΣO ∪X.

As shown above, one of these input output equivalence classes is characterised by the formula
Φ1 with Φ1 ≡Var v < 200∧¬(v > 50)∧ y = 0 while another input output equivalence class is
characterised by the formula Φ2 with Φ2 ≡Var v < 200∧ v > 50∧ y = 0. These are separated
by input and output variables as sepI(Φ1) ≡Var v ≤ 50, sepI(Φ2) ≡Var 50 < v < 200 and



Chapter 2. Background 29

sepO(Φ1) = sepO(Φ2) ≡Var y = 0. Now consider a transition in M from some state s to
some state s′, with ϕ1 as its guard condition and ψ1 as its output expression: (s, ϕ1, ψ1, s

′).

In constructing the new transition relation R′ we come across this transition and create a
set of two new transitions to be contained in R′:

{(s, ϕ1 ∧ sepI(Φ1), ψ1 ∧ sepO(Φ1), s′),

(s, ϕ1 ∧ sepI(Φ2), ψ1 ∧ sepO(Φ1), s′)}

This corresponds to effectively splitting the original transition into two transitions, emanating
from the same source state and reaching the same target state, but with guard conditions
refined by κ: While the original transition was enabled by all valuation functions where
v < 200, one of the new ones is enabled by v ≤ 50, while the other is enabled by 50 < v < 200.
Performing this process for all equivalence classes and all transitions results in an SFSM
refined by X.

FSM Abstractions

At several points in this thesis, we require maps between SFSMs and Mealy automata. We
perform these mappings between infinite sets of valuations of SFSM M and finite sets of FSM
symbols using input output equivalence classes, assuming a finite input output equivalence
class partitioning A of the valuation domain DVar to be calculated. Furthermore, we utilise
a finite set of input valuations AI , which we refer to as an input cover:
Definition 9. Let A be a finite input output equivalence class partitioning of DVar. We call
a set of input valuations AI ⊆ DI an input cover of A if and only if the following holds: For
each input output equivalence class io ∈ A, there is an input valuation i ∈ AI such that there
is at least one σ ∈ io where σ|I = i. This means that for each input output equivalence class,
AI contains at least one input valuation that can be extended to a valuation in that input
output equivalence class.
Definition 10. Let A be a finite input output equivalence class partitioning of DVar. Fur-
thermore, let AI be an input cover of A. We call a function mapping from A to AI an
input cover map of AI , denoted as fAI

: A → AI , if and only if the following holds:
∀io ∈ A : ∃σ ∈ io : σ|I = fAI

(io). We denote the natural lifting of fAI
to sequences as fAI

.

Recall that all valuations in an input output equivalence class io satisfy the exact same set
of formulas E ⊆ Σ with ΣI ∪ ΣO ⊆ Σ:

∀σ ∈ io : σ |=
⋀︂

e∈E

e ∧
⋀︂

e′∈Σ\E

¬e′

From this, we can derive the fact that all valuations σ, σ′ of an input output equivalence



Chapter 2. Background 30

class io satisfy the same set of guard conditions:

σ |=
⋀︂

e∈E∩ΣI

e ∧
⋀︂

e′∈(Σ\E)∩ΣI

¬e′

⇐⇒ σ′ |=
⋀︂

e∈E∩ΣI

e ∧
⋀︂

e′∈(Σ\E)∩ΣI

¬e′

For this reason, and because ΣI contains all guard conditions of M , we can be sure that
there is at least one set of input valuations capable of triggering all guard conditions in M

and covering all input output equivalence classes in A. Given that ΣI and A are finite, we
know that this set can also be finite.

Any guard condition that is satisfiable by at least one element from DVar is guaranteed to
be satisfied by the elements of at least one input output equivalence class in A. This is a
consequence of the construction of the input output equivalence class partitioning. Therefore,
an input cover AI can be constructed by selecting input valuations from each set of the input
output equivalence class partitioning A, thereby enabling AI to trigger all guard conditions
in M .
Definition 11. Let A be a finite input output equivalence class partitioning of DVar. We
refer to a set of input valuations AI ⊆ DI as a minimal input cover of A if and only if the
following conditions are met:

• AI is an input cover of A

• There exists no input cover A′
I of A such that |A′

I | < |AI |.

The idea of minimal input covers is based on the fact that multiple input output equivalence
classes can contain valuations that agree on their input valuations.

Given the concepts of input output equivalence class partitionings and input covers, we can
construct an FSM abstraction for an SFSM.
Definition 12. Let M be an SFSM over a finite set of guard conditions ΣI , a finite set of
output expressions ΣO and a valuation domain DVar. Furthermore, let A be an input output
equivalence class partitioning of DVar regarding a set of expressions Σ with ΣI ∪ ΣO ⊆ Σ.
Finally, let AI be an input cover of A and Σ̂I be a finite set of symbols with |AI | = |Σ̂I |.

Then, we call a bijective function fI : AI → Σ̂I an input abstraction of M . We call its
inverse f−1

I : Σ̂I → AI an input concretisation to M . We denote the natural liftings of fI

and f−1
I to sequences as f I and f−1

I .

For simplicity’s sake, we can define Σ̂I to be AI , making the mapping fI trivial.
Definition 13. Let M be an SFSM over a finite set of guard conditions ΣI , a finite set of
output expressions ΣO and valuation domain DVar. Furthermore, let A be a finite input output
equivalence class partitioning of DVar regarding a set of expressions Σ with ΣI ∪ ΣO ⊆ Σ.
Finally, let Σ̂O be a finite set of symbols with |A| = |Σ̂O|.



Chapter 2. Background 31

Then, we call a bijective function fO : A → Σ̂O a value abstraction of M . We call its inverse
f−1

O : Σ̂O → A a value concretisation to M . We denote the natural liftings of fO and f−1
O to

sequences as fO and f−1
O .

Again, for simplicity’s sake we can define Σ̂O to be A, making the mapping fO also trivial.
Definition 14. Let M be an SFSM over a finite set of guard conditions ΣI , a finite set of
output expressions ΣO and valuation domain DVar. Furthermore, let A be a finite input output
equivalence class partitioning of DVar regarding a set of expressions Σ with ΣI ∪ ΣO ⊆ Σ.
Finally, let Σ̂I and Σ̂O be finite sets of symbols with |Σ̂I | = |AI | and |Σ̂O| = |A|. Let fAI

, fI ,
and fO be an input cover map, an input abstraction, and a value abstraction, respectively, as
defined above.

We call a Mealy automaton M ′ with set Σ̂I as input alphabet and Σ̂O as output alphabet the
FSM abstraction of M if and only if the following holds:

Tr(M ′)↓Σ̂I×Σ̂O
=
{︂
f I(i)/fO(o) | ∃σ ∈ Tr(M)↓Var : o = [σ] ∧ i = fAI

(o)
}︂

An alternative to this definition would be to simply define the mappings fI and fO from ΣI

and ΣO to Σ̂I and Σ̂O, respectively. However, as elements of DVar can be models for multiple
elements of ΣI and ΣO, a sequence of valuations could be mapped to multiple sequences in
the FSM abstraction, complicating the arguments we are to make on the abstraction.

Example Again, consider ΣI = {ϕ1} and ΣO = {ψ1} with ϕ1 and ψ1 being the formulas
v < 200 and y = 0.

The set of equivalence classes A is defined by the following set of formulas:

io ∈ A ΦE ∈ P

io1 v ≥ 200 ∧ y ̸= 0

io2 v ≥ 200 ∧ y = 0

io3 v < 200 ∧ y ̸= 0

io4 v < 200 ∧ y = 0

For these we can find the minimal input cover AI ⊆ DI as {(v ↦→ 200), (v ↦→ 0)}. The input



Chapter 2. Background 32

cover map fAI
is then defined as follows:

fAI
: A → AI

io1 ↦→ (v ↦→ 200)

io2 ↦→ (v ↦→ 200)

io3 ↦→ (v ↦→ 0)

io4 ↦→ (v ↦→ 0)

Let M be some SFSM with ΣI and ΣO as its set of guard conditions and output expressions,
respectively. We can then compute an FSM abstraction M ′ of M , with Σ̂I = AI and Σ̂O = A
being the input and output alphabets of M ′.

For each valuation σ observed on M , the corresponding input and output symbols of M ′

can be computed as follows: Firstly, the input output equivalence class io ∈ A where σ ∈ io
is identified. This is precisely [σ]. Utilising fAI

and fO, this can be mapped to AI and Σ̂O,
the former of which can be mapped to Σ̂I using fI .

This construction is sufficient for the purpose of this thesis, as an FSM abstraction is never
constructed directly from an SFSM, but only from observations on SFSMs.

Construction of a Minimal Input Cover The runtime complexity of our proposed
algorithms depends heavily on the number of input valuations we need to apply to cover
all input output equivalence classes.1 Obviously, for two distinct input output equivalence
classes io, io′ over the same valuation domain DVar, there are, by construction, two distinct
sets P, P ′ ⊆ Σ of formulas they satisfy. However, these may still satisfy the same set of guard
conditions. Only for these input output equivalence classes are there valuations σ ∈ io and
σ ∈ io′ with σ|I = σ′|I , allowing us to use input valuation σ|I to fulfil the first requirement
for a minimal input cover for both io and io′. Conversely, if P ∩ΣI ̸= P ′ ∩ΣI , we know that
io and io′ do not have any input valuations in common.

To construct a set of inputs satisfying the first of the two requirements for a minimal input
cover, we can restrict the elements of the input output equivalence classes to the input
variables and then pick input valuations from each restricted input output equivalence class.
To satisfy the second requirement, we want to pick as few input valuations as possible,
therefore trying to pick input valuations that are shared by as many input output equivalence
classes as possible.

Let AI be the set of input output equivalence classes restricted to the input variables:

AI := {io|I | io ∈ A}

1See Chapter 3.6 and Chapter 18.



Chapter 2. Background 33

Now, a hitting set AI for AI is an input cover for A while a minimal hitting set is a minimal
input cover for A. We use AI to query the responses of the IUT, guaranteeing that all
possible responses can be observed. Note that this only holds under the assumption that
the true behaviour of the IUT can be specified by an SFSM with ΣI as its set of guard
conditions.

2.6 Linear Temporal Logic

For verification purposes, the objective of individual verification measures checking the
behaviour of an FSM needs to be expressed in a formal manner. Our focus is on a subset of
properties, so called Linear-Time properties, which are a widely used formalism to specify
system behaviour in [17].

2.6.1 Definition

Linear-Time properties can be defined as follows [18]:
Definition 15. Given a set AP of atomic propositions, a linear-time property over AP is
a subset of

(︂
2AP

)︂ω
.

This means that a linear-time property is a set P of infinite sequences of elements from 2AP .
This set represents all permissible behaviours that a system may exhibit to conform to that
linear-time property. Note that the set

(︂
2AP

)︂ω
\P is then the set of all forbidden behaviour.

For the remainder of this thesis we fix the set AP as a set of atomic propositions where
all free variables are in Var. Moreover, we will presume that all linear-time properties are
linear-time properties over AP .

Clearly, no realistic system can be observed for an infinite duration or execution steps.
Before introducing a connection between the infinite sequences of linear-time properties and
the finite sequences observable in FSMs, we must first introduce additional concepts and
restrictions to the set of linear-time properties that we can test for.
Definition 16. Given a set of symbols Σ, we call a set X ⊆ Σω of infinite sequences over
these symbols an ω-regular language if and only if there exist sets E1, E2, . . . , En ⊆ Σ∗ and
sets F1, F2, . . . , Fn ⊆ Σ∗ of finite regular sequences2, with ϵ not in any Fi, such that for each
element σ ∈ X, there is one pair Ei, Fi of sets for which there are finite sequences a ∈ Ei

and b ∈ Fi with σ = a.bω [18].
Definition 17. Given a linear-time property P over the set AP of atomic propositions, we
call P an ω-regular property if P is an ω-regular language over the set of symbols 2AP .

According to Baier et al., most relevant properties in verification are ω-regular [18].

Pnueli argues that many useful properties can be stated with an even more restricted set

2Regular sequences are those that are a model for a regular expression or in the language of some FSM.



Chapter 2. Background 34

of languages [19]. These are defined by a formalism commonly known as Linear Temporal
Logic (LTL). It captures a subset of the ω-regular properties [20]. Assuming a set of atomic
propositions AP , each LTL formula can describe a property using the following grammar [21]:

ϕ ::= true | p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1 Uϕ2

Here, p is a member of AP and ϕ1 and ϕ2 are LTL formulas.

Models for LTL formulas are infinite sequences of elements from 2AP . Given such a model
σ and a formula ϕ, we denote the fact that σ is a model for ϕ as σ |= ϕ. Given a model
σ = σ1. σ2 . . . we denote the set of propositions from AP at position i as σi. We denote the
suffix of σ starting at position i to be a model for property ϕ as σ, i |= ϕ.

We define σ, i |= ϕ inductively as follows:

σ, i |= true

σ, i |= p where p ∈ AP ⇐⇒ p ∈ σi

σ, i |= ¬ϕ ⇐⇒ σ, i ̸|= ϕ

σ, i |= ϕ1 ∨ ϕ2 ⇐⇒ σ, i |= ϕ1 ∨ σ, i |= ϕ2

σ, i |= Xϕ ⇐⇒ σ, (i+ 1) |= ϕ

σ, i |= ϕ1 Uϕ2 ⇐⇒ ∃j ≥ i : σ, j |= ϕ2 ∧ ∀i ≤ k < j : σ, k |= ϕ1

Further commonly defined operators are F, G and W:

σ, i |= Fϕ ⇐⇒ true Uϕ

σ, i |= Gϕ ⇐⇒ ¬F¬ϕ

σ, i |= ϕ1 Wϕ2 ⇐⇒ (ϕ1 Uϕ2) ∨Gϕ1

Now we define σ |= ϕ ⇐⇒ σ, 1 |= ϕ.

The LTL property P for some LTL formula ϕ over the set AP of atomic propositions is the
set of all the models of ϕ:

P =
{︂
p ∈

(︂
2AP

)︂ω
| p |= ϕ

}︂

Furthermore, P is ω-regular [22, 20, 23]. There exist multiple classifications for linear-
time properties and LTL properties, the latter being closely linked to the structure of the
corresponding LTL formulas. These classifications hold relevance to testing, and we will
describe the most relevant here. A well-known classification scheme is the Safety-Liveness
dichotomy [24, 25], which we will utilise in this thesis. Another scheme is the Safety-Progress



Chapter 2. Background 35

classification [26, 27].

LTL Safety Properties A safety property is a property specifying that something (bad)
must never happen. Sistla characterises LTL safety properties syntactically [28] as those
that can be specified with the W and X LTL operators only. Furthermore, they introduce a
stronger subset of safety properties which can be expressed only using the G LTL operator.
They formally define safety formulas as follows: Every proposition from AP is a safety
formula and if ϕ1 and ϕ2 are safety formulas, then so are ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, Xϕ1, ϕ1 Wϕ2

and Gϕ1. According to Piterman and Pnueli [29], these are the most prevalent LTL formulas
used in specifications in practice. Examples of these are mutual exclusion of processes or
deadlock freedom [18]. Crucially, violations of safety properties can always be detected on
finite sequences [30], so called finite bad prefixes.

All properties specified for the example problems in Section 1.3 are safety properties. For
instance, a simplified version of the fourth property of the ABS/ESC system in Section 1.3.2
can be formalised in LTL as follows:

G(¬ϕ1 =⇒ (¬ϕ2 Wϕ1)),

where ϕ1 ≡Var α ≥ −a and ϕ2 ≡Var VI. This effectively means that whenever the acceleration
of the wheel’s circumference is less than a−, the brake pressure will not be increased at least
until the acceleration is greater than a− again.3

Although this property does not align with the syntactical characterisation of an LTL formula
for a safety property, it is equivalent to the following formula, which does:

G(ϕ1 ∨ (ϕ2 Wϕ1)).

LTL Liveness Properties A liveness property is a property specifying that something
(good) will eventually happen and that every finite sequence from

(︂
2AP

)︂∗
can be extended

to an infinite sequence from
(︂
2AP

)︂ω
that satisfies the liveness property. Examples of liveness

properties are "starvation freedom, termination and guaranteed service" [25]. Alpern and
Schneider show that any ω-regular property can be expressed as the conjunction of a safety
and a liveness property [31]. Crucially, violations of liveness properties cannot be observed
on finite sequences.

As an example, consider the following LTL formula, which specifies a liveness property for

3Later, the formalisation we will actually use is a bit more intricate, taking into account steering angle
and yaw rate.



Chapter 2. Background 36

the ABS example:

G(ϕ1 =⇒ Fϕ2)

where ϕ1 ≡Var VO and ϕ2 ≡Var ¬VO. Thus, the property states that whenever the output
valve of the brake is open, releasing brake pressure, it will eventually be closed again, allowing
brake pressure to increase once more.

2.6.2 Abstraction for SFSM Computations

Given that we want to relate SFSM computations to LTL properties, we need to define
how a sequence of valuations can be mapped to a sequence of sets of propositions. Let
M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be some SFSM and ϕ be some LTL formula over a set of
propositions AP which in turn are quantifier free first order logic formulas over the set of
variables Var = I ∪O. We then define the abstraction operators ω, ω and Ω for valuations,
sequences of valuations and sets of sequences of valuations, respectively.
Definition 18. The abstraction operator ω maps a valuation σ ∈ DVar from the valuation
domain to the set of those elements of AP for which σ is a model.

ω : DVar −→ 2AP

σ ↦−→ {p ∈ AP | σ |= p}

Moreover we define ω and Ω as the natural lifting of ω to infinite sequences of valuation
functions and sets thereof.

ω : (DVar)ω −→ (2AP )ω

∀0 < i : ω (σ) (i) = ω (σ (i))

Ω : 2(DVar)ω −→ 2(2AP )ω

X ↦−→
{︂
p ∈ (2AP )ω | ∃σ ∈ X : p = ω(σ)

}︂

With a slight abuse of notation we analogously define ω and Ω for finite sequences and sets
of finite sequences, respectively.
Definition 19. Let p be some sequence from (2AP )ω or (2AP )∗. We say that some valuation
sequence σ models p if and only if ω(σ) = p. We write this as σ |= p.
Definition 20. Let P be a subset of sequences from (2AP )ω or (2AP )∗. We say that a
valuation sequence σ models P if and only if ω(σ) ∈ P . We write this as σ |= P .

With this definition, we can define how a valuation sequence is a model for an LTL property
if we view the LTL property as the set of sequences that is its language.
Corollary 1. Let P be a set of sequences over 2AP . Furthermore, let σ, σ′ be sequences of



Chapter 2. Background 37

valuations from (DVar)ω or (DVar)∗. Then (ω(σ) = ω(σ′)) =⇒ (σ |= P ⇐⇒ σ′ |= P ).
Definition 21. Let M be some SFSM and ϕ be an LTL formula over AP . Let P be the
LTL property corresponding to ϕ. We say that M models ϕ if and only if Ω(Tr(M)|Var) ⊆ P .
We write this as M |= ϕ.

We lift the abstraction operators ω, ω and Ω to abstraction operators for input output
equivalence class partitions, sequences of input output equivalence class partitions, and sets
of sequences of input output equivalence class partitions. To this end, consider a set of
quantifier-free first-order logic formulas Σ with AP ⊆ Σ and a fixed LTL formula ϕ over AP .
Moreover, let A be the input output equivalence class partitioning of DVar with regards to Σ.
Definition 22. The abstraction operator ω maps an input output equivalence class io ∈ A
to the subset of AP that is in positive form in the defining formula of io:

ω : A −→ 2AP

io ↦−→ {p ∈ AP | ∃σ ∈ io : σ |= p}

Moreover we define ω and Ω as the natural lifting of ω to infinite sequences of input output
equivalence classes and sets thereof.

ω : Aω −→ (2AP )ω

∀0 < i : ω
(︁
io
)︁

(i) = ω
(︁
io (i)

)︁

Ω : 2(A)ω −→ 2(2AP )ω

X ↦−→
{︂
p ∈ (2AP )ω | ∃io ∈ X : p = ω(io)

}︂

Note that AP ⊆ Σ and therefore for a given io ∈ A, all σ, σ′ ∈ io fulfill ω(σ) = ω(σ′).
Corollary 2. Let φ be an LTL property over AP and M = (S, s0, I, O,ΣI ,ΣO,DVar, R)
some SFSM. Let Σ = AP ∪ ΣI ∪ ΣO and ω be defined with respect to that Σ. Two states
s, s′ ∈ S either both have only fulfilling sequences for φ in their language or both have a
violating sequence for φ in their language if their abstracted language is equivalent:

Ω (L (s)) = Ω
(︁
L
(︁
s′)︁)︁

=⇒
(︁
∃σ ∈ L(s) : σ ̸|= φ ⇐⇒ ∃σ′ ∈ L(s′) : σ′ ̸|= φ

)︁

2.7 Büchi Automata

There are several variants of finite state automata that accept ω-regular words. These are
the ω-automata, and their language is always an ω-regular language. Notable examples
include Nondeterministic Büchi Automata (NBAs), Rabin Automata, and Streett Automata.
We will use NBAs exclusively.



Chapter 2. Background 38

initstart

s1

s2

x
¬x ∧

¬y

¬x ∧ ¬y

x
¬x ∧ ¬y

¬y

Figure 2.5: A Büchi automaton for the formula G(¬ϕ1 =⇒ (¬ϕ2 Wϕ1)).

Definition 23. A Nondeterministic Büchi Automaton (NBA) is an FSM defined as a tuple
B = (Q,Q0,Σ, δ, F ), where Q is the finite set of states, Q0 ⊆ Q is a set of initial states, Σ
is a finite set of symbols, δ : Q× Σ→ 2Q is the transition function and F ⊆ Q is the set of
accepting states.

Note that this definition is equivalent to the definition of FSAs so far. The difference lies in
the acceptance condition. While an FSA accepts finite sequences of symbols from Σ if a run
of that word ends in an accepting state, an NBA accepts exactly those infinite words where
a computation of that word contains at least one state from F infinitely often.

Crucially, there are algorithms [32, 33] that can translate an LTL property P into an NBA
B with L(B) = P such that Σ = 2AP where AP is the set of atomic propositions in an LTL
formula describing P .

Given some SFSM M , some LTL formula ϕ and a Büchi automaton B for ϕ, we can check
whether M |= ϕ by checking whether Ω(Tr(M)|Var) ⊆ L(B). On the other hand, given a
Büchi automaton B′ for ¬ϕ we can perform this check by checking whether Ω(Tr(M)|Var) ∩
L(B′) = ∅. If that intersection is not empty, we have found a violation. This is a classic
technique of LTL model checking [18].

Example Consider this property from the ABS/ESC system example again, which we
described above:

G(¬ϕ1 =⇒ (¬ϕ2 Wϕ1))

where ϕ1 ≡Var α ≥ −a and ϕ2 ≡Var VI.

With Σ = {ϕ1, ϕ2} a Büchi automaton for this is as depicted in Figure 2.5.



Chapter 2. Background 39

2.8 Runtime Monitors

Runtime monitors are a lightweight construct used in runtime verification. In runtime
verification, individual executions are analysed for satisfaction or violation of a correctness
property [34]. It is often employed in conjunction with other verification techniques and
offers the possibility to react immediately to the detection of incorrect system behaviour [35].

Runtime monitors are devices that offer a verdict for individual executions of an implementa-
tion under test with regards to a specific property. If this property is an LTL property, they
face the problem that they can only ever judge finite executions while the words of an LTL
property are infinite. They must issue a verdict without having seen the full (infinite) run.
To this end, they need to issue a verdict over three truth values: PASS, FAIL and INCONC.
These then have the following meanings for a given observed execution σ:

PASS All (infinite) extensions of σ, i.e. all infinite sequences of which σ is a prefix, satisfy
the property under consideration.

FAIL All (infinite) extensions of σ violate the property under consideration.

INCONC Short for INCONCLUSIVE. Neither PASS nor FAIL can be issued, i.e. there are (infinite)
extensions of σ that satisfy the property under consideration while others violate it.

In Chapter 4, we will utilise a runtime monitor construction that has been described by
Bauer, Leucker and Schallhart [36, 37]. There, given an LTL property ϕ over a set of atomic
propositions AP , a runtime monitor is a Moore automaton over symbols from 2AP and offers
one of the verdicts PASS, FAIL or INCONC.

Example Once more, consider this property from the ABS/ESC system example:

G(¬ϕ1 =⇒ (¬ϕ2 Wϕ1))

where ϕ1 ≡Var α ≥ −a and ϕ2 ≡Var VI.

Figure 2.6 shows a runtime monitor for that property constructed by the method given by
Bauer et al.

2.9 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) can be characterised as follows: Given a first-order
logic formula, determine whether there exists a solution to this formula with respect to
combinations of a set of background theories [38]. Simply speaking, an SMT problem is a
first-order logic formula for which we aim to determine whether there exists a valuation of
the variables in the formula such that the formula evaluates to true.

There exist several tools capable of performing this task automatically for a given set of



Chapter 2. Background 40

q0

INCONC
start

q1

FAIL

∅

{ϕ1}

{ϕ1, ϕ2}

ϕ2

∅
{ϕ1}

{ϕ2}

{ϕ1, ϕ2}

Figure 2.6: A runtime monitor constructed for the LTL formula G(¬ϕ1 =⇒ (¬ϕ2 Wϕ1)).

background theories, such as Z3 [38], Yices [39] and CVC4 [40]. When presented with a
first-order logic formula from the set of decidable formulas for a particular solver, which
depends on the set of background theories supported, the solver determines whether there
exists a valuation for the variables in the formula such that it evaluates to true. Should this
be the case, the SMT solver can also produce such a valuation.

Solving SMT problems is often NP-hard, and, depending on the background theories, some
SMT problems may be undecidable.

2.10 Model Checking of FSMs

Model checking is a formal verification technique that allows for the verification of whether
the model of an implementation’s behaviour fulfils a given property [18]. While there are
many variants of model checking, this thesis will focus only on automata-based LTL model
checking for FSMs (and SFSMs). To this end, the Büchi automaton B for the negation of
the LTL formula ϕ for which we want to perform model checking is constructed, i.e. B

accepts all sequences satisfying property ¬ϕ. Then, the product automaton of B and the
model M to be model checked is checked for emptiness, i.e. we determine whether L(B×M)
is empty. Intuitively, the language of the product automaton is the set of sequences that are
in both L(B) and L(M). If it is not empty, a counterexample to ϕ has been found and M

is determined not to satisfy ϕ by all computations. Note that this product automaton is
not formally defined here and careful considerations must be made for the formal definition
to be well-formed. A general and sound description of this process for all variants of FSMs
(and SFSMs) is beyond the scope of this work. The interested reader is referred to Baier
et al. [18], where this is described for transition systems and Peled et al. [41], where this
is defined for FSAs, as an example. We perform the analogous process on the modelling
formalism at hand when discussing model checking in Chapter 4.



Chapter 3
Complete Property Oriented Testing with SFSM
Models

The problem of generating tests for a system has been approached from various angles over
the past few decades.1

In this chapter, we present a model-based, property-oriented test case generation method.
To be more precise, we assume the following specific circumstances:

• The behaviour to be tested has been modelled as an SFSM, which is completely specified,
observable, and initially connected. In a safety-critical context, these restrictions are
typically not difficult to fulfill.2

• There is a set of requirements in the specification that can be formulated as a set of
LTL safety properties. Functional safety-critical requirements can often be expressed
in LTL. Each LTL safety formula describes a set of safe executions (see Section 2.6),
i.e., executions that are deemed to be safe in the context in which the specified system
operates. All computations of the system shall be models for all specified LTL safety
properties, meaning that every possible execution of the system shall fulfill all safety
requirements.

• The SFSM specification model shall be free of violations of the LTL safety properties.
This can be ensured using model checking.

The presentation of our method is structured as follows: First, in Section 3.1, we outline the

1For examples, see Chapter 5 or surveys such as those conducted by Dorofeeva et al. [42], Papadakis et
al. [43], Machado et al. [5] or Araujo et al. [17]

2Note while the SFSM formalism is rather limiting, in the context of safety-critical systems, the restrictions
on the SFSM specification are not overly limiting. An SFSM that is not completely specified is usually an
error in the model, as a safety-critical system should be able to handle any input at any execution state.
An incomplete SFSM is therefore typically an unfinished model, i.e., a model where the modellers forgot
transitions. As stated in Section 2.5, an unobservable SFSM can be transformed into an observable one with
the same language, meaning that there is a transformation that creates an observable SFSM M ′ from an
unobservable SFSM M with L(M) = L(M ′). An SFSM that is not initially connected usually results from
modelling mistakes. The SFSM can be transformed into an initially connected one by removing all states
that are unreachable from the initial state. However, this modification of the SFSM might not be anticipated
by the modeller, and therefore a hint for them is warranted at the least.

41



Chapter 3. Complete Property Oriented Testing with SFSM Models 42

problem and provide a more detailed introduction to the BRAKE example from Section 1.3.1.
Then, in Section 3.2, Section 3.3, and Section 3.4, we present approaches to the problem
that were not considered and explain why we believe they are not practical. Our method
is described in Section 3.5, followed by an analysis of its complexity in Section 3.6 and its
application to the BRAKE example in Section 3.7. Finally, in Section 3.8, we describe how
we automated the test suite derivation.

3.1 Motivation

The previous research on the topic of model-based test suite generation has primarily
focused on checking either for language equivalence (L(M) = L(M ′)) or language inclusion
(L(M) ⊆ L(M ′)) of the implementation M and the model M ′ (see, for example, the work
by Soucha [44], Dorofeeva et al. [45], or Hierons [15]). The resulting test suites are provably
powerful in detecting implementation errors. However, these test suites often fail to reflect
reality, where language equivalence is often too strong a relation, and the test suites for
language inclusion are, due to the nature of the relation and the complexity to prove it,
impractically large to apply. Furthermore, correct and complete reference models are difficult
to create. Given the aforementioned circumstances, we aim to derive test suites that do not
test for language equivalence but test whether a system correctly implements a property.

The development of safety-critical systems typically involves the elaboration of a specification
as a set of requirements. The combination of all functional requirements among these
describes the valid and intended behaviour of the system. As described in Section 2.6,
those which can be specified as LTL formulas can be categorised into safety and liveness
properties or combinations thereof. For safety properties, we know that in the case of an
implementation violating them, there is a finite sequence of steps showing the violation. As
black-box and grey-box testing can only really demonstrate violations that can be reached
in finitely many steps but has been shown to be able to achieve strong error detection rates
for these kinds of errors, we are motivated to develop a test generation procedure for safety
properties.

Industry standards set the requirements for the development of safety-critical systems that
must be met for the implementation to be certified [46, 47, 48]. These usually include the
existence of a specification with a set of requirements, extensive testing of the implementation,
and that an argument for the safety of the implementation can be made from the set of test
cases. This often requires traceability between sets of test cases and requirements that are
supposed to be tested by these. For each requirement, it must be shown which test cases
are used to test it, and an argument must be presented as to why these test cases test the
fulfilment of the requirement with sufficient rigour.

Another area that can benefit from property-oriented testing of SFSMs can be found in
regression testing, where there may be a need for test suites that can detect changes in the



Chapter 3. Complete Property Oriented Testing with SFSM Models 43

s0start s1

s2

v = v/y ∈ [B0, B1]

v < v/y = 0

v >
v/
y

= B
2
+ (v −

v)/
c

v <
v −

δ/
y

= 0

v >
v/y =

B
2 + (v −

v)/c

v ≤ v/y = 0 v = v/y ∈ [B0, B1]

v ≥ v − δ/y = B2 + (v − v)/c

Figure 3.1: A non-deterministic observable SFSM model for the BRAKE system.

satisfaction of requirements when the implementation changes. Property-oriented testing can
be used to detect whether there are requirements violated by changes in the implementation
and, if so, which ones. This can help to assess whether implementation modifications influence
any safety-critical behaviour negatively, thus having to be dealt with on a higher priority, or
whether these changes have only caused less critical changes in the behaviour.

3.1.1 Running Example: A Formal Model for BRAKE

To demonstrate our approach, we use the BRAKE example described in Section 1.3.1.
Throughout this section we assume the velocity v to be in the interval [0, 400]. Additionally
to the parameters B0, B1, B2 and δ, which allow to modify the exact behaviour of the model,
we introduce a further parameter c which we will use to scale the proportional brake force
response to overspeeding.

The system is modelled as depicted in Figure 3.1. Initially, the system is in state s0. At this
point, only inputs greater than or equal to v can trigger a change of state; otherwise, the
system remains in state s0 and continues to apply no braking force (y = 0). In the case
where velocity v reaches v, the controller is modelled to nondeterministically either apply
no braking force and remain in state s0 or apply a moderate amount (y ∈ [B0, B1]) and
transition to state s1. This nondeterminism allows the implementation to exhibit a range of
different behaviours. If the model transitions to state s1, it will apply a moderate braking
force (y ∈ [B0, B1])3 as long as v equals v, attempting to maintain v equal to v or reduce it
below v. The model will remain in s1 as long as v = v. If the velocity at some point falls
below v again, a transition to s0 will be performed; otherwise, the model will remain in s1

3Note that y may still vary while v = v. It is only fixed to be greater than or equal to B0 and less than or
equal to B1.



Chapter 3. Complete Property Oriented Testing with SFSM Models 44

Constant Value

B0 0.9

B1 1.1

B2 2.0

v 200kph

c 100

δ 10kph

Table 3.1: Constant definitions for the example system BRAKE.

and continue applying a moderate braking force. The distinction between s0 and s1 is small
but significant: if v equals v in s0, the modelled outputs are either to apply no braking force
or some. However, if v equals v in s1, there is always at least some braking force. Should
the velocity of the vehicle drop below the desired maximum velocity while the model is in
state s1, the braking force is set to 0 and the system transitions to s0.

In both s0 and s1, the behaviour regarding vehicle velocities exceeding v is the same: a
stronger braking force than in the case where v equals v is applied, and a transition to s2

occurs. The stronger braking force is proportional to the amount the velocity v exceeds v:
y = B2 + (v − v)/c, where c is a scaling factor. State s2 models some hysteresis regarding
the braking, as s2 does not immediately switch to s0 as soon as the velocity falls just below
v. For the model to perform a transition to s0 and reduce braking force to zero, the velocity
must be less than v minus some constant velocity δ. In our example, the constants have
been set as in Table 3.1.

Now we can also translate all natural language requirements listed in Section 1.3.1 to LTL
formulas as follows, in the same order as described there:

G(v < v) =⇒ G(y = 0) (3.1)

G(v < v − δ =⇒ y = 0) (3.2)

G(v ≤ v) =⇒ G(y ≤ B1) (3.3)

G(v > v =⇒ y > B2) (3.4)

To be precise, these formulas describe the following requirements: property (3.1) describes
a requirement that stipulates every execution of the controller where v is always less than
v should never apply braking force. While seemingly similar, property (3.2) describes a



Chapter 3. Complete Property Oriented Testing with SFSM Models 45

superset of property (3.1), as it mandates a correct controller to refrain from braking in every
step of every execution where the velocity is less than v − δ. Property (3.3) stipulates that
for every execution where the velocity does not surpass v, moderate braking force should
be applied at most. Lastly, for every step in every execution, property (3.4) dictates that a
braking force greater than B2 is applied if the vehicle velocity exceeds v.

3.1.2 Idea for an Approach

For properties such as these, we aim to test whether they hold for an implementation, which
is the core idea of property-oriented testing. More specifically, we seek to develop test suites
that exhaustively test whether an implementation violates a given safety property. That
means: given some implementation and some safety property, we aim to compute a finite set
of test cases and a definition for determining whether the implementation passes a test case.
Moreover, we aim to identify the assumptions that must hold for the implementation to
unequivocally exhibit no behaviour under any circumstances that violates the safety property.
There are several approaches to this, some of which we will discuss here.

3.2 Approach 1: Fuzzing with a Runtime Monitor

The first and simplest approach to this problem combines two well-known techniques from
model checking and testing: Vardi and Wolper [22] propose specifying LTL properties
as automata, accepting every infinite execution sequence that fulfils the property under
consideration. These automata are constructed for the negation of some property to be
checked and modeled to be executed in parallel to the model. A model checking algorithm
would then search for computations that correspond to an accepting run of a Büchi automaton
for the negated property, resulting in a counterexample to the property to be checked. This
concept is described in further detail in Section 2.10. In Section 2.8, we described a concept
from the testing domain related to these automata, the runtime monitors, which accept finite
sequences and issue a verdict on whether the sequence observed so far satisfies or violates
the property they were constructed for.

In testing, there is the fuzzing approach to testing, also called fuzz testing[49]. Here, test
cases that are at least partially chosen at random are executed on the implementation
under test to reveal behaviour that has not been seen in the testing process, yet. This new
behaviour could then be checked for violations of some kind of relation.

The approach under discussion here combines these concepts: a runtime monitor is created
that models the negation of the safety property to be tested and is executed in parallel to the
implementation under test, while random or partially random test sequences are executed.
When the runtime monitor modelling the property reveals that the property under test is
violated for the current execution, an error has been revealed. There are multiple approaches
based on this idea (e.g. Fernandez et al. [50], Arcaini et al. [51]).



Chapter 3. Complete Property Oriented Testing with SFSM Models 46

While this approach is sound, it is not exhaustive, therefore giving no guarantees that
every error would be found. The fact that there could be arbitrary conditional branches of
execution and an arbitrary number of states makes statements about test coverage or any
kind of guarantees about the fulfilment or violation of the property under test impossible in
black-box testing. While coverage can be determined with ease in grey-box testing, it too
cannot guarantee that the property under test is never violated without further restrictions
or assumptions.

3.3 Approach 2: Reduction Testing with Property Automata

The second and most straightforward approach to the problem of complete property-oriented
testing stems from the idea found in model-based testing with FSMs: given some FSM
specification F and implementation F ′, F ′ is said to be included in F if the following
statement holds:

L(F ′) ⊆ L(F )

Informally speaking, F specifies the set of allowed traces or the allowed behaviour, and an
implementation conforms to F if and only if all its traces, its entire behaviour, are modelled
in F .

The idea here is to create an SFSM from a safety property ϕ in such a way that it is able to
perform all executions that fulfil the property ϕ and to develop a theory on how to check for
inclusion on SFSMs.
Definition 24. Let I and O be disjoint and non-empty sets of variables, and let Var be the
union of I and O. Let DVar be a valuation domain as defined in Section 2.1. Let AP and
ΣO be sets of quantifier-free first-order logic predicates over variables in Var, and let ΣI be
a set of quantifier-free first-order logic predicates over variables in I. Let ϕ be some LTL
safety formula over predicates in AP .

Now, let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be a well-formed SFSM. We call M a property
automaton for ϕ if and only if

L(M) = Pref({v ∈ (DV ar)ω | v |= ϕ}) (3.5)

holds.

As violations of a safety property can be detected on a finite sequence, and as the language of
this automaton contains all finite prefixes of computations satisfying the safety property, we
can check whether the language of some IUT contains a sequence that is not in the language
of this automaton, thereby checking for safety property violations.

As presented by Petrenko [52] and von Bochmann [53], the trivial approach to inclusion



Chapter 3. Complete Property Oriented Testing with SFSM Models 47

checking for FSMs is to enumerate all input sequences up to a certain length and check
for each whether the response of the implementation to that input sequence is part of the
language of the reference model. Let n be the size of the state space of some FSM reference
model and m be an assumed upper bound on the size of the state space of the implementation;
then the length up to which all input sequences must be explored would be m · n.

Generally, we cannot enumerate all input valuation sequences in M , not even for m · n = 1,
as the valuation domain of the input variables, DI , may be infinite. Therefore, we need to
find a way for a finite set of input valuation sequences to cover the entire input valuation
domain, i.e., how we can select a finite set of candidate input valuations that represent a
potentially infinite set of input valuations completely.

To this end, we will assume in the following that every implementation SFSM model uses
guard conditions only from the set ΣI and output expressions only from the set ΣO. Note
that an SFSM model does not need to be specified over all elements of ΣI and ΣO; that is,
not all elements of ΣI and ΣO need to occur in an SFSM as guard conditions and output
expressions, respectively. Therefore, the sets ΣI and ΣO can be made to contain additional
elements that could be used by whole sets of implementations, such as mutated guard
conditions or different expressions altogether.

3.3.1 Construction of Property Automata

LTL formulas, being an important part of the model-checking toolset, have been under
investigation for decades. The problem of creating automata that accept sequences that
satisfy some LTL formula is not at all new. Vardi and Wolper [22] propose a technique to
create a Büchi automaton for an LTL formula ϕ that accepts exactly those infinite sequences
that satisfy ϕ.

However, as explained in Section 2.6, during testing, the ability to check whether an observed
execution, which is inherently finite, along with all its infinite continuations, satisfy some
LTL formula is of great interest. Some approaches to property-oriented testing, for instance
the one by Fernandez et al. [50], construct an observer automaton that runs in parallel with
the test execution and checks whether the current execution is a prefix to a model for some
LTL formula. The checked formula is the negation of an LTL formula that is desired to
be true. Whenever the observer automaton in these cases accepts the current execution,
a property violation has been detected. Giannakopoulou et al. [54] and Bauer et al. [36]
describe the construction of runtime monitors for FSMs. Both approaches construct an
FSM Mϕ where the satisfaction of ϕ on some sequence of formulas or atomic propositions is
indicated by the automaton. Giannakopoulou et al. [54] describe a construction where the
automaton satisfies the following:

L(Mϕ) = {v ∈ D∗ | v |=F ϕ} (3.6)



Chapter 3. Complete Property Oriented Testing with SFSM Models 48

Here, D is the domain over which ϕ is defined, and |=F is the satisfaction of ϕ by v under some
finite semantics defined by the authors. By modifying the automaton slightly, Equation (3.5)
could be achieved for Mϕ. This, however, comes at the cost of a restricted set of LTL
formulas to which this is applicable: Their approach is only specified for LTL formulas that
are free of the Next operator.

Instead of defining finite semantics for LTL formulas, Bauer et al. [36] define a three-valued
logic for LTL formulas with an operator [· |= ·] :

(︂
2AP

)︂∗
× Φ → {⊤,⊥, ?} describing an

evaluation of some sequence of atomic propositions from AP under some LTL formula
from Φ.

Given an LTL formula ϕ and a sequence of atomic propositions a, [a |= ϕ] = ⊤ if and only if
there is no continuation a′ of a such that a′ ̸|= ϕ. In this case, a′ is called a good prefix of ϕ.
Analogously, [a |= ϕ] = ⊥ if and only if there does not exist a continuation a′ of a such that
a′ |= ϕ. In this case, a′ is a bad prefix for ϕ (see Section 2.6). Finally, [a |= ϕ] = ? if and
only if neither of the aforementioned cases apply. Clearly, with this method, the language of
our desired property automaton is precisely the set of valuation sequences that are models
for sequences of atomic propositions that evaluate either to ⊤ or to ? under [· |= ·], provided
that every sequence evaluating to ? can be extended to a sequence that evaluates to ⊤.
Whether this is the case depends on the property ϕ. We assume that property ϕ is a safety
property, which implies that every bad execution can be recognized on a finite sequence, i.e.,
a bad prefix.

From here on we will use the approach of Bauer et al. [36] and sketch the construction of a
property automaton from an automaton produced by their approach.

Construction of a Property Automaton Here we present a recipe for constructing a
Property Automaton for a property ϕ that can be represented by an LTL formula over a set of
quantifier-free first-order logic predicates AP . We assume that ϕ is given in negation normal
form [55] and that AP contains those expressions that can be used to construct ϕ purely by
composing LTL operators, conjunction and disjunction, i.e., the atomic propositions from
which ϕ can be constructed.4 Let the sets of variables I and O be given, with the set Var
denoting I ∪O and let DVar be the domain for the variables in Var.

Step 1: Construct the Moore automaton (s. Section 2.4.2) Aϕ = (Σ, Q, q0, δ, λ) as presented
by Bauer et al. [36], where Σ = 2AP , Q is the state space of Aϕ, q0 ∈ Q is the initial state,
δ : Q×Σ→ B is the transition function and λ : Q→ {⊤,⊥, ?} is a labeling function, labeling
the states as explained above.

4Note that the requirement for the negation normal form is not a restriction but may require some
transformations of ϕ to achieve.



Chapter 3. Complete Property Oriented Testing with SFSM Models 49

Step 2: Separate AP into API and APO where API contains those elements in AP that
only refer to variables from I and where APO = (AP \API).

Step 3: For each e ∈ Σ, q ∈ Q and q′ ∈ δ(q, e) where both λ(q) ̸= ⊥ and λ(q′) ̸= ⊥,
determine sets pi = e ∩ API , ni = API \ e, po = e ∩ APO, and no = APO \ e and insert
g = ⋀︁

p∈pi
p ∧

⋀︁
n∈ni
¬n and o = ⋀︁

p∈po
p ∧

⋀︁
n∈no

¬n into sets ΣI and ΣO respectively.
Furthermore, insert (q, g, o, q′) into set R.

Step 4: Create SFSM Mϕ as (Q, q0, I, O,DV ar,ΣI ,ΣO, R).

Mϕ contains all states of Aϕ. For transitions between pairs of states that are both not
labelled with ⊥ by λ in A

ϕ, there are corresponding transitions in Mϕ. However, these are
not labelled by symbols e ∈ 2AP , but by guard conditions and output expressions g and o.
These are constructed such that g ∧ o = ⋀︁

p∈e p ∧
⋀︁

n∈AP \e ¬n. Therefore, Mϕ is an SFSM
that allows all finite sequences that are not bad prefixes of ϕ. As we assume ϕ to be a
safety property, every violation of ϕ can be recognised on a finite sequence. Thus, if an
implementation violates ϕ, this can be recognised on a finite sequence. By checking whether
all finite sequences of an implementation, its language, are contained in the language of Mϕ,
we can test whether the implementation violates ϕ. If there exists a sequence in the language
of the implementation that is not in the language of Mϕ, this sequence represents a property
violation.

3.3.2 Testing with Property Automata

Given some property automaton Mϕ as constructed above for some LTL formula ϕ, we can
test, as described earlier, whether an implementation M ′ behaves in a way such that every
execution fulfils property ϕ by testing whether the following holds:

L(M ′) ⊆ L(Mϕ)

To this end, we assume that M ′ is modelled over a set of guard conditions Σ′
I and a set of

output expressions Σ′
O and that it is completely specified. We can then determine the set

Σ = ΣI ∪ ΣO ∪ Σ′
I ∪ Σ′

O and refine both M ′ and Mϕ by Σ.

The refined input alphabets of both M ′ and Mϕ are identical. Let ΣI,P be that refined input
alphabet. Let m be the size of the state space of M ′ and n be the size of the state space of
Mϕ. Then, we can construct a simple symbolic test suite T S:

T S =
mn⋃︂
i=0

(ΣI,P )i (3.7)

Remember that, per the construction of ΣI,P , it is fine enough such that it is an equivalence



Chapter 3. Complete Property Oriented Testing with SFSM Models 50

class partitioning of DI with regards to ΣI ∪ Σ′
I . Therefore, we know that we can exercise

every transition of every state in Mϕ and M ′ by applying one input valuation σ for each
e ∈ ΣI,P . By extension, we can use concrete sequences for all symbolic test cases in T S
to exercise all transitions in Mϕ and M ′. We define M ′ to pass the test suite T S, denoted
as M ′ pass T S, if and only if T (M ′) ∩ T S ⊆ T (Mϕ) ∩ T S. We for now only claim that
one can pick suitable concrete sequences for each test case in T S to check that relation of
symbolic languages and that one can derive T (M ′) ⊆ T (Mϕ) if M ′ passes T S. Given that,
the relation M ′ |= ϕ ⇐⇒ M ′ pass T S is rather obvious given the fact that L(Mϕ) does not
contain any violations of ϕ.

Obviously, the number of test cases in T S scales with complexity O(|ΣI,P |mn). More sophis-
ticated methods improving on inclusion testing still have the same worst-case complexity [56].
On the other hand, test generation procedures for equivalence testing for FSMs scale with
O(n̂3|Σ|m̂−n̂+1) for an input alphabet Σ applicable in that case [44, 57, 42] and where m̂ and
n̂ are the numbers of states of the FSMs tested for equivalence. For a fixed implementation,
the difference in complexity of equivalence testing and inclusion testing is such that inclusion
testing is practically infeasible. We therefore aimed for approaches based on equivalence
testing.

3.4 Approach 3: Equivalence Testing with Automata
Abstractions

Addressing the need for a testing approach with less test suite size explosion, one might
consider assuming the existence of a reference model M = (S, s0, I, O,ΣI ,ΣO,DVar, R) that
specifies the intended behaviour of the implementation under test.5 Suppose ϕ is the property
under test, again specified over a set of quantifier-free first-order logic propositions AP .
One can then introduce a symbolic language T (M) and abstraction operators ω, ω, and Ω
with respect to AP , as in Definition 8 and Section 2.6.2. These operators map valuations
from DV ar or symbols from A, or sequences of these and sets thereof, to subsets of AP or
sequences or sets thereof. As established by Corollary 1, two sequences of valuations from
DV ar satisfy the same properties over AP if and only if their abstractions with ω are equal.
Consequently, one might want to check that for each σ′ ∈ L(M ′) of the IUT M ′, there exists
at least one σ ∈ L(M) of the model such that ω(σ′) = ω(σ), and vice versa. This ensures
that for each execution of the IUT, there is an execution in the model that is equivalent
regarding ϕ, and that if the model has executions satisfying ϕ in a certain manner, the IUT
does so as well in the same manner. Here, "satisfying ϕ in the same manner" means that at
each step of an execution, both the model and the IUT satisfy the same elements of AP .
This relationship between the elements of the languages of M and M ′ can also be expressed

5A model such as the property automaton Mϕ from the previous approach is typically unsuitable, as it
allows all behaviour adhering to ϕ, which seldom represents the intended behaviour of a real-world system.



Chapter 3. Complete Property Oriented Testing with SFSM Models 51

more concisely:

Ω(L(M)) = Ω(L(M ′))

Testing for this relation involves creating an equivalence test suite with respect to M , but
where two states, s and s′, are considered equal if and only if their abstractions, Ω(L(s)) and
Ω(L(s′)), are equal. In practice, one would derive an FSM M̂ modelling the abstraction of
M , such that L(M̂) = Ω(L(M)), and would apply an established FSM equivalence testing
method with M̂ as the reference model. Note that two states of M may be considered
equal under abstraction, and therefore, the number of unique states in M̂ may be smaller
under this relation. As common test suite construction approaches for FSMs and SFSMs
rely on a minimal reference model [45, 58], this implies that, for a given reference model,
this approach could suffer from an exponential increase in test suite size in a black box
testing setting compared to a test suite for equivalence testing, at least with the currently
well-known test suite construction methods. To illustrate this, consider an M and AP such
that the resulting M̂ has only one internal state, meaning all states of M are equivalent
under abstraction. For the IUT M ′, we only know an upper bound on the number of internal
states, but we cannot make any assumptions about the number of internal states under
abstraction; all internal states of M ′ could be distinct under abstraction. Let n̂ be the size
of the state space of M̂ and m̂ be the upper bound on the number of internal states of M ′.
The equivalence test suites of established equivalence test suite construction methods would
scale with O(n̂3|Σ|m̂−n̂+1). Compared to simply computing an equivalence test suite for
M and M ′, the test suite size would be greatly exacerbated. For this reason, we do not
pursue this approach further, although we believe it would yield an approach for complete
property-oriented testing.

3.5 Approach 4: A Specialized Testing Approach

The approaches discussed above, while having the desirable properties of being simple,
complete or both, can all suffer from producing large test suites. This might not be of
concern when testing small systems, but it can incur large cost penalties when testing large
systems, e.g., during integration tests. Therefore, we present another approach, first proposed
in 2021 [59], that usually scales much better, as we will show. The test suites generated
with this method are guaranteed to uncover all violations of a given safety property but can
also uncover some language equivalence violations with regards to the specification model,
not actually violating that property. While this might seem like a downside at first, as
the produced test suite does not have the soundness property other test suite derivation
procedures presented here do, it is not as much of a disadvantage as one might think. In
contrast to the previously discussed approaches, using a reference model allows for potentially
smaller test suites, which are especially handy during integration tests as the complexity



Chapter 3. Complete Property Oriented Testing with SFSM Models 52

of the system makes for a significant increase in test suite execution time. At that point,
the implementation ideally should already be equivalent to the specification model. Even
when used for unit tests or tests for less complex systems, there usually is a plan for the
implementation to finally match the specification, which also requires language equivalence
between the specification model and the implementation. By checking whether an execution
is possible in the automaton for the safety property, we can check for each failing test case
whether it shows an actual property violation or whether it shows a violation of language
equivalence. Under these circumstances, an approach where relatively few test cases are
needed to be run, which may fail but where a fault revealed by a test case can be classified as
either a safety property violation or a language equivalence fault could be attractive. We will
show that for guaranteeing the implementation to be free from safety property violations, it
must pass all test cases. However, for a system under development, it might be attractive to
have a tool finding both kinds of faults and classifying them into obvious violations of safety
properties that can be analyzed for conceptual problems and language equivalence faults
that could be caused by the implementation development not having progressed enough yet.

The inspiration for this test suite generation approach stems from the Safety-H-Method [60,
61, 62] based on the H-Method [45].

3.5.1 Test Suite Construction

For this approach, the test suite derivation method proceeds as follows: Let M be the
specification SFSM model with |S| = n and ϕ some LTL formula for a safety property. Let
ϕ be constructed from a set of first order logic propositions AP free from quantifiers and
LTL operators. We assume M to be well-formed.

To fix the implementations we are able to test we define a set we call a fault domain
F(I,O,DVar,ΣI ,ΣO, n,m). This fault domain is the collection of all SFSMs with I as their
input variables, O as their output variables, DVar as their fault domain, ΣI and ΣO as
(super-)sets of their guard conditions and output expressions and m their number of internal
states with m ≥ n.

The general idea of the constructed test suite is as follows: First, we establish that the
implementation has at least the same amount of distinct states as the specification model,
reachable by the same set of valuation sequences as the states in the specification model.
From these states we check whether the implementation behaves the same as the specification
model regarding ϕ.

Construction of an Input Output Equivalence Class Partitioning of the Valuation
Domain

As a preliminary step to the construction of a test suite, we calculate an input output
equivalence class partitioning A of the valuation domain DV ar with respect to some Σ,



Chapter 3. Complete Property Oriented Testing with SFSM Models 53

with ΣI ∪ ΣO ∪AP ⊆ Σ. From our assumptions about the implementation, it follows that
this partitioning is fine enough such that the implementation behaves the same for each
input valuation of such an input output equivalence class. This means that every two
input valuations from an input output equivalence class fulfil the same guard condition, and
every two output valuations from an input output equivalence class fulfil the same output
expressions. Thus, applying any input valuation from some input output equivalence class,
we can be sure that it enables the same set of transitions that all other input valuations in
that input output equivalence class enable. Furthermore, as the input output equivalence
class partitioning covers the whole valuation domain, we can be sure that every input in the
valuation domain DI is in at least one input output equivalence class, therefore being able
to enable all transitions that can be enabled by some input in DI .

State Cover Construction

As a first step in the construction of an exhaustive test suite, we construct a state cover V ,
which is a set of symbolic sequences that reaches all states of M . We specifically require
the empty sequence ε reaching the initial state to be in V . More formally, the following is
required:

ε ∈ V ∧ S = {s ∈ s0-after-v | v ∈ V }

We also require that this set is minimal, i.e., there are no two v1, v2 ∈ V with s0-after-v1 =
s0-after-v2. As M is observable, each valuation sequence from

(︂
DVar

)︂∗
leads to exactly one

state in M . As M is minimal, we know there is no smaller set of valuation sequences that can
reach all states in an equivalent SFSM. If M has n distinct states, this leads to V reaching n
distinct states while |V | = n. During test suite construction we will add test cases that check
that V reaches n distinct states in any implementation, which is a core assumption to the
rest of the test suite construction. These test cases are constructed by adding distinguishing
sequences to sequences of the state cover, possibly after first appending a sequence from
a set ensuring that all states of the implementation are reached. The construction follows
the strategy of the H-method which is described in more detail below. Compared to the
well-known W-method, the H-method strategy leads to fewer test cases in the average case.

To give some examples, possible state covers for BRAKE are

V1 = {ε, (3.8)

[{v ↦→ 200, y ↦→ 1.1}] , (3.9)

[{v ↦→ 201, y ↦→ 2.01}]} (3.10)



Chapter 3. Complete Property Oriented Testing with SFSM Models 54

and

V2 = {ε, (3.11)

[{v ↦→ 200, y ↦→ 1.1}] , (3.12)

[{v ↦→ 200, y ↦→ 1.1}.{v ↦→ 201, y ↦→ 2.01}]} (3.13)

where ε is the empty sequence and [·] is the operator mapping valuation functions from DVar

to equivalence classes in A. In these examples, (3.8) and (3.11) reach s0, (3.9) and (3.12)
reach s1 and (3.10) and (3.13) reach s2.

Traversal Set Construction

After constructing a minimal state cover for M , we determine a traversal set. The purpose
of this set is to reach all initially connected additional states that we permit an erroneous
implementation to have by using all possible symbolic sequences up to a length at which we
can assume to have reached all states of the implementation. As argued in Section 3.5.1, by
applying one input valuation from each input output equivalence class of the input output
equivalence class partitioning of the valuation domain we can be sure to have enabled every
outgoing transition of a state in the implementation. By the complete testing assumption
(see Definition 7), this suffices to eventually traverse all transitions of that state in the
implementation, thus reaching all states of the implementation that are reachable from the
state the input valuations were applied in.

With V and input output equivalence class partitioning A at hand, we can construct this
traversal set that reaches all initially connected states of the implementation. Recall that
we assume that the implementation has at most m states, while our specification model M
has exactly n states. Therefore, assuming the implementation has exactly m states, there
are m− n additional states in the implementation. In the worst-case scenario, where one of
these states can only be reached by traversing all the other additional states in series, we
know that we can definitely reach all of them by taking all possible sequences of transitions
of length m − n from all states reached by V , assuming we have determined that V also
reaches n distinct states in the implementation. Therefore, the traversal set is defined as
follows:

Trav = {v.trav′ | ∃v ∈ V : ∃trav ∈ Am−n : trav′ ∈ Pref(trav)}

This means that the traversal set is the set of all sequences that have a prefix v that is in
the state cover V and where the remainder of the trace is made up of elements from A and
is at most m− n long.

An algorithm for the construction of the traversal set is given in Algorithm 3.1.
Lemma 1. Given a traversal set Trav as constructed by Algorithm 3.1, for reference SFSM



Chapter 3. Complete Property Oriented Testing with SFSM Models 55

Algorithm 3.1: Algorithm to construct a set of traversal sequences.

Input: State cover set V for SFSM M
Input: Upper bound m for the number of states in the IUT
Input: Input output equivalence class partitioning A for ΣI , ΣO from M and set

of propositions AP
Output: A traversal set Trav for M

1 n← |V |
2 Trav ← V
3 foreach idx ∈ [1; |m− n|] do
4 nextTrav ← ∅
5 foreach t ∈ Trav do
6 foreach io ∈ A do
7 nextTrav ← nextTrav ∪ {t.io}
8 end
9 end

10 Trav ← Trav ∪ nextTrav
11 end
12 return Trav

model M with n internal states and for an upper bound m for the number of states in
the implementation, Trav reaches every initially connected state of every implementation
M ′ ∈ F(I,O,D,ΣI ,ΣO, n,m) if V reaches n distinct states in M ′.

As such a set is part of several well-known test suite generation methods, we omit the proof
here. The proof idea is that, assuming V reaches n distinct states in the IUT, the distance
to one of the additional m− n states can be at most m− n from any of the states reached
by V . Therefore, they are all guaranteed to be reached by trying out all possible input
sequences from the states reached by V .

The traversal set Trav can be seen as a state cover for the additional states in the imple-
mentation. This becomes rather clear when we assume the implementation to have, at most,
the same number of states as the specification model. In that case, m− n = 0 holds and
Trav is identical to V , as every trace in V is only extended by the empty trace.

By applying Trav to the implementation, we can be sure to have visited every additional
state of the implementation, provided that the implementation fulfils all our assumptions
and no errors have been revealed when applying Trav. To be sure that we have observed
every transition of the implementation, we still need to create and apply a transition cover
T for the implementation. This can be defined as follows:

T = {v.trav.t | ∃v.trav ∈ Trav : ∃t : t ∈ A} (3.14)



Chapter 3. Complete Property Oriented Testing with SFSM Models 56

Given T , we can check an implementation for whether it produces any erroneous outputs
on states reachable by Trav. The argument is as follows: We assume that M ′ does indeed
have at least n distinct states and V reaches these n states. Then, by Lemma 1, we reach
every initially connected state of M ′ by applying Trav. As argued in Section 2.5.2, for each
transition of each reached state, there is at least one set of valuations in A that satisfies
both the guard condition and the output expression. Therefore, the set T , containing traces
reaching every state in the implementation and extended by a candidate for each element of
A, will enable every guard condition on every state in the implementation and thus exercise
every transition.

Distinguishing Sequences

Now whilst applying T to the implementation has exercised every transition in the im-
plementation, it allows us to check that it does not produce incorrect outputs and does
not have transitions individually violating some property (if possible). However, we have
not yet checked whether those transitions have reached the correct states. As described
in Section 2.5, each state in a minimal SFSM corresponds to a different language, i.e., a
different set of sequences. Reaching a different state than prescribed by the specification
model would allow continuations of the traces in T to deviate from the specification. These
deviations may be acceptable if the continuations fulfil the same elements of AP step by
step, as this implies that the same LTL formulas are still fulfilled. More formally, assume two
states s, s′ where s is in the state space of the specification model and s′ is in the state space
of the implementation and with L(s) ̸= L(s′). Furthermore, assume a valuation sequence
σ that leads to s in the specification model and to s′ in the implementation. For input
output equivalence testing, we would like to apply a valuation sequence that reveals that a
state unequal to s is reached in the implementation. However, in property-oriented testing,
σ reaching s′ and not s might be acceptable if the languages of s and s′ are equal in the
sense that for each sequence emanating from s there is a corresponding trace emanating
from s′ that fulfils the same propositions from AP in each step, thus fulfilling the same LTL
formulas, and if the same holds for all traces emanating from s′:

∀σ ∈ L(s) : ∃σ′ ∈ L(s′) : ∀0 < i ≤ |σ| : ∀p ∈ AP : σ(i) |= p ⇐⇒ σ′(i) |= p (3.15)

and

∀σ′ ∈ L(s′) : ∃σ ∈ L(s) : ∀0 < i ≤ |σ| : ∀p ∈ AP : σ′(i) |= p ⇐⇒ σ(i) |= p (3.16)

We utilise this fact to relax the equivalence relation for states on the specification model
compared to a test for language equivalence: Instead of checking each transition to have
reached the correct state, (or states in the nondeterministic case,) we verify that the reached
states satisfy the same LTL formulas. To accomplish this, we can use the abstraction operator



Chapter 3. Complete Property Oriented Testing with SFSM Models 57

ω.6 For states which are not equivalent in this sense, we aim to determine sequences that
distinguish these states, i.e., for some pairs of valuation sequences, we aim to determine
sequences of input valuations for which the specification model produces different sequences
of output valuations depending on which of the sequences in the pair one of the distinguishing
input sequences is applied after. To this end, we define function ∆, which determines exactly
that set for a given SFSM M .
Definition 25. Given two valuation sequences α, β ∈ L(M), the set of distinguishing
valuation sequences ∆(α, β) is defined as the set of sequences that extend α and β in such a
way that only one of the extended sequences is contained in L(M):

∆(α, β) :=
{︂
γ ∈ (DVar)∗ | α.γ ∈ L(M) ⇐⇒ β.γ ̸∈ L(M)

}︂
(3.17)

Definition 26. Given two symbolic sequences α, β ∈ T (M), where T (M) is the symbolic
language of M with respect to A, the set of symbolic distinguishing sequences ∆(α, β) is
defined as the set of sequences that extend α and β in such a way that only one of the
extended sequences is contained in T (M):

∆(α, β) :=
{︂
γ ∈ A∗ | α.γ ∈ T (M) ⇐⇒ β.γ ̸∈ T (M)

}︂
(3.18)

Similarly, we define distinguishing traces for the propositional abstractions of L(M) and
T (M):
Definition 27. Given two valuation sequences α, β ∈ L(M), the set of abstractly distin-
guishing valuation sequences ∆(ω(α), ω(β)) is defined as the set of sequences that extend α
and β in such a way that only one of the extended sequences is contained in Ω(L(M)):

∆(ω(α), ω(β)) :=
{︂
γ ∈ (DVar)∗ | ω(α.γ) ∈ Ω(L(M)) ⇐⇒ ω(β.γ) ̸∈ Ω(L(M))

}︂
(3.19)

Definition 28. Given two symbolic sequences α, β ∈ T (M), where T (M) is the symbolic
language of M with respect to A, the set of abstractly distinguishing symbolic sequences
∆(ω(α), ω(β)) is defined as the set of sequences that extend α and β in such a way that only
one of the extended sequences is contained in Ω(T (M)):

∆(ω(α), ω(β)) :=
{︂
γ ∈ A∗ | ω(α.γ) ∈ Ω(T (M)) ⇐⇒ ω(β.γ) ̸∈ Ω(T (M))

}︂
(3.20)

For all α, β, γ ∈ A∗, we can derive some statements from these definitions that will help in

6Note that this also explains how to construct test suites for language equivalence of SFSM models: If
we set AP = ΣI ∪ ΣO, the abstraction by ω preserves the concrete languages of all states of SFSMs defined
over ΣI and ΣO, therefore keeping states distinguishable if and only if their concrete languages are distinct.
With some constraints, the equivalence test suites can be optimised for size, for which Huang et al. [58] have
presented an approach.



Chapter 3. Complete Property Oriented Testing with SFSM Models 58

later proofs and in understanding the nature and meaning of distinguishing sequences:

s0-after-α = s0-after-β =⇒ ∆(α, β) = ∅ (3.21)

s0-after-α = s0-after-γ =⇒ ∆(α, β) = ∆(β, γ) (3.22)

∆(α, α) = ∅ (3.23)

∆(α, β) = ∆(β, α) (3.24)

∆(α, β) = ∆(β, γ) = ∅ =⇒ ∆(α, γ) = ∅ (3.25)

∆(α, β) = ∅ =⇒ (α ∈ T (M) ⇐⇒ β ∈ T (M)) (3.26)

∆(α, β) = ∅ =⇒ (∀γ : (α.γ ∈ T (M) ⇐⇒ β.γ ∈ T (M))) (3.27)

∆(α, β) = ∅ =⇒ ∆(α.γ, β.γ) = ∅ (3.28)

For the propositional abstraction with respect to a set AP , we can make these statements:

s0-after-α = s0-after-β =⇒ ∆(ω(α), ω(β)) = ∅ (3.29)

s0-after-α = s0-after-γ =⇒ ∆(ω(α), ω(β)) = ∆(ω(β), ω(γ)) (3.30)

∆(ω(α), ω(α)) = ∅ (3.31)

∆(ω(α), ω(β)) = ∆(ω(β), ω(α)) (3.32)

∆(ω(α), ω(β)) = ∆(ω(β), ω(γ)) = ∅ =⇒ ∆(ω(α), ω(γ)) = ∅ (3.33)

∆(ω(α), ω(β)) = ∅ =⇒ (ω(α) ∈ Ω(T (M)) ⇐⇒ ω(β) ∈ Ω(T (M))) (3.34)

∆(ω(α), ω(β)) = ∅ =⇒ (∀γ : (ω(α.γ) ∈ Ω(T (M)) ⇐⇒ ω(β.γ) ∈ Ω(T (M)))) (3.35)

∆(ω(α), ω(β)) = ∅ =⇒ ∆(ω(α.γ), ω(β.γ)) = ∅ (3.36)

Definition 29. Let AP be a set of quantifier-free first-order logic propositions, and let ω,
ω, and Ω be defined with respect to AP . Given an SFSM M , the abstraction introduced by
the abstraction operator ω is called state-preserving on M or to be preserving the states
of M if and only if for each pair of sequences α, β ∈ L(M) with ∆(α, β) = ∅, there is no
distinguishing sequence in Ω(L(M)):

∆(α, β) = ∅ =⇒ ∆(ω(α), ω(β)) = ∅ (3.37)

Later, we will require the abstraction operators induced by the property we test for to
preserve the states of the reference model M , which is a nontrivial restriction. Not all
combinations of SFSMs M and properties ϕ satisfy this, limiting the applicability of this
approach in some cases. We do not know how common it is to encounter such combinations
in practice. However, it is possible to add atomic propositions to the set AP such that the
resulting abstraction operators are state-preserving on M [9]. As this increases the size of
AP , it also increases the size of A and, as a result, the size of the test suites produced.
Definition 30. Let AP be some set of quantifier free first order logic propositions and ω, ω



Chapter 3. Complete Property Oriented Testing with SFSM Models 59

and Ω be defined with respect to AP . Given a pair α, β of valuation sequences reaching a
pair s, s′ of SFSM states, we call α and β as well as s and s′ safety-equivalent if and only
if ∆(ω(α), ω(β)) = ∅.

We utilise this propositional abstraction as a measure of whether we need to distinguish
two states. Following from Lemma 2, a transition fault will not cause a violation of ϕ if
and only if the faulty transition has a target state with an equivalent language abstraction
over AP . While it is essential to verify transition faults, specifically instances where the
implementation reaches a dissimilar target state from the specification model following a
transition, our method does not classify a transition reaching an alternate target state with
an equivalent language under ω-abstraction as a transition fault. Consequently, during test
suite construction, we do not need to consider test cases aimed at identifying these altered
transitions.

Given all this, we can define our test suite construction as follows:
Definition 31. Let ϕ be an LTL property over a set of quantifier free first order logic
propositions AP and M = (S, s0, I, O,ΣI ,ΣO,DVar, R) a well-formed SFSM specification
model. Let A be an input output equivalence class partitioning of DVar with respect to
Σ = ΣI ∪ ΣO ∪ AP and T be defined with respect to that A. Assume that the abstraction
operators ω, ω and Ω for AP are state preserving for M . A symbolic test suite T S for M
and for property ϕ is safety exhaustive with respect to AP if and only if

1. V is in the prefix closure of T S, i.e., V ⊆ Pref(T S).

2. T is in the prefix closure of T S, i.e., T ⊆ Pref(T S).

3. For each pair of distinct symbolic sequences α, β ∈ V , T S contains symbolic sequences
α.γ and β.γ, where γ is a distinguishing sequence for distinct symbolic sequences
α, β ∈ V .

4. T S contains symbolic sequences α.γ and β.γ where γ is a distinguishing sequence
for symbolic sequences α ∈ V and β ∈ T (M) ∩ (T \ V ) if and only if ω(α.γ) ∈
Ω(T (M)) ⇐⇒ ω(β.γ) ̸∈ Ω(T (M)) holds.

5. T S contains symbolic sequences α.γ and α.ξ.γ where γ is a distinguishing sequence
for symbolic sequences α ∈ T ∩ T (M) and α.ξ ∈ T ∩ T (M) if and only if ω(α.γ) ∈
Ω(T (M)) ⇐⇒ ω(α.ξ.γ) ̸∈ Ω(T (M)) holds.

Definition 32. Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be some well-formed SFSM reference
model with n states. Furthermore, let AP be a set of quantifier free first order propositions,
A be an input output equivalence class partitioning of DVar with regards to Σ = ΣI ∪ΣO∪AP
and T , i.e., the symbolic languages of SFSMs be defined with regards to that A. Moreover,
let T S be a test suite that satisfies Definition 31. Finally, let M ′ be a member of the fault
domain F(I,O,D,ΣI ,ΣO, n,m).



Chapter 3. Complete Property Oriented Testing with SFSM Models 60

We say that M ′ is T S-equivalent to M if and only if

T S ∩ T (M) = T S ∩ T (M ′) (3.38)

With these definitions laid out we can now show that the test suites described are strong
enough to only let implementations pass if they do not violate the property ϕ.
Theorem 1. Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be some well-formed SFSM reference
model with n states. Furthermore, let AP be a set of quantifier free first order propositions
and T S be a test suite derived from M that satisfies Definition 31 for some number of states
m ≥ n. Let A be the input output equivalence class partitioning of DVar with regards to
Σ = ΣI ∪ ΣO ∪AP and T , i.e., the symbolic languages of SFSMs, be defined with regards to
that A. Finally, assume that the abstraction operator ω regarding AP preserves the states of
M and let M ′ be a member of the fault domain F(I,O,D,ΣI ,ΣO, n,m).

Then, if M and M ′ are T S-equivalent, Ω(L(M ′)) ⊆ Ω(L(M)) is implied.

Proof. The proof, which we will lay out here, is a slight extension of the one that Huang et
al. published previously [9]. First, we define

Vk = (V.
k⋃︂

i=0
Ai) ∩ T (M) (3.39)

for all k ≥ 0. We conduct the proof in five steps.

Step 1. We can assume that T S ∩ T (M) = T S ∩ T (M ′) from the theorem statement.
As Vm−n+1 ⊆ T S by Definition 31 (2.), the statement Vm−n+1 ∩ T (M) = Vm−n+1 ∩ T (M ′)
follows. By the definition of Vk above, Vm−n+1 ⊆ T (M ′) follows.

Step 2. We show that for any (α, β) ∈ (V × Vm−n+1) ∪ (Vm−n × Vm−n+1) where α is a
prefix of β

∆′(α, β) = ∅ =⇒ ∆(ω(α), ω(β)) = ∅ (3.40)

holds, where ∆′(α, β) is the set of distinguishing sequences for α, β in M ′. To this end, note
that either (α, β) ∈ V × T or (α, β) ∈ T × T holds and suppose that ∆′(α, β) = ∅, that is,
suppose that

∀γ ∈ A∗ : α.γ ∈ T (M ′) ⇐⇒ β.γ ∈ T (M ′) (3.41)

holds. Furthermore, suppose that ∆(ω(α), ω(β)) ̸= ∅. From this and Definition 31 (4.)
we know that there is some γ ∈ ∆(α, β) such that α.γ, β.γ ∈ T S. From our assumption
that T S ∩ T (M) = T S ∩ T (M ′) follows that α.γ ∈ T (M) ⇐⇒ α.γ ∈ T (M ′) and



Chapter 3. Complete Property Oriented Testing with SFSM Models 61

β.γ ∈ T (M) ⇐⇒ β.γ ∈ T (M ′) and from the definition of ∆(α, β) we know that α.γ ∈
T (M) ⇐⇒ β.γ ̸∈ T (M). Therefore, α.γ ∈ T (M ′) ⇐⇒ β.γ ̸∈ T (M ′), which by
Definition 26 implies γ ∈ ∆′(α, β), contradicting our assumption that ∆′(α, β) = ∅ and
therefore proving Equation (3.40) by contradiction.

Step 3. For any α ∈ T (M ′), we prove that there exists some β ∈ Vm−n satisfying

∆′(α, β) = ∅ ∧∆(ω(α), ω(β)) = ∅ (3.42)

As β ∈ T S, this will show that for every symbolic sequence α in the language of M ′, there
is a sequence β in T S, such that α and β would reach safety-equivalent states in M and
that those sequences even reach the same state in M ′.

We conduct this proof step by splitting it into cases based on the length of α: Case 1 proves
our proof goal for α ∈ V.Ak, k ≤ m − n, Case 2 does so for α ∈ V.Am−n+1, and Case 3
deals with the rest, i.e., α ∈ V.Ak, k > m− n+ 1. Since ε ∈ V , there exists a k such that
α ∈ V.Ak.

Case 1. Suppose that α ∈ T (M ′) ∩ V.Ak for some k ≤ m − n. As V.Ak is in T S,
α ∈ T (M ′) ∩ T S holds and by our initial assumption T (M ′) ∩ T S = T (M) ∩ T S, α is also
in T (M), allowing us to choose β = α. With that, Equation (3.42) holds by Equation 3.23.

Case 2. Suppose that α ∈ T (M ′) ∩ V.Am−n+1. As V.Am−n+1 is in T S, α ∈ T (M ′) ∩ T S
holds and by our initial assumption T (M ′)∩T S = T (M)∩T S, α is also in T (M). However,
by our goal for this step, we want β to be in Vm−n, which α very clearly is not in. Therefore,
we cannot just choose β = α as in the previous case.

Let α = v.a1 . . . am−n+1 for some v ∈ V and ai ∈ A. Furthermore, let αi = v.a1 . . . ai for
1 ≤ i ≤ m− n+ 1. Since α ∈ T (M ′), all its prefixes αi are also in T (M ′). We can choose
v in such a way that no αi is in V : If for the chosen v, some αi is in V , we can choose
v′ = αi and α = v′.ai+1 . . . am−n+1 still holds. This can be performed until no αi is in V .
Now as V is assumed to be minimal and all αi are distinct and not contained in V , the
union U = V ∪ {αi | i = 1, . . . ,m − n + 1} contains m + 1 elements, as |V | = n and the
right hand side contains m − n + 1 elements. Therefore, since M ′ is assumed to contain
at most m states, at least two symbolic traces π ̸= τ ∈ U reach the same state in M ′, i.e.
s′

0-after-π = s′
0-after-τ . As A is also an input output equivalence class partitioning for M ′,

s′
0-after-π and s′

0-after-τ are well-defined states.

We know that V reaches n distinct states in M and we check that it does the same for M ′

by the test cases in T S that are specified in Definition 31 (3.), we can assume that either π
or τ can be in V but not both, since, if they were both in V , at least one of the test cases
specified in Definition 31 (3.) would fail and by our assumptions, not a single one does.
Consequently, there are without loss of generality two cases remaining for π and τ :



Chapter 3. Complete Property Oriented Testing with SFSM Models 62

• π ∈ V and τ ∈ {α1, . . . , αm−n+1}

• π, τ ∈ {α1, . . . , αm−n+1} with π ̸= τ and π ∈ Pref(τ)

In the first case, (π, τ) ∈ V × Vm−n+1 holds. Note that π can but does not need to be a
prefix of τ , as it can be any element of V , not just the v ∈ V of which τ is an extension. In
the second case, (π, τ) ∈ Vm−n × Vm−n+1 holds. Therefore, in both cases, we can apply the
result of Step 2: As π and τ reach the same states in M ′, ∆′(π, τ) = ∅ and Equation (3.40)
yields ∆(ω(π), ω(τ)) = ∅.

Let τ ′ ∈ A∗ be the suffix of α such that α = τ .τ ′, i.e., with τ = αj ∈ {α1, . . . , αm−n+1},
τ ′ = α(j + 1) . . . α(m− n+ 1). Since τ ∈ {α1, . . . , αm−n+1}, we know that |τ ′| ≤ m− n. As
π ∈ V , this implies that the following holds:

π.τ ′ ∈ V.
m−n⋃︂
i=0
Ai (3.43)

Above, we derived that

∆′(π, τ) = ∅ ∧∆(ω(π), ω(τ)) = ∅ (3.44)

holds. Plugging in Equalities (3.28) and (3.36), we obtain the following to be true:

∆′(π.τ ′, τ .τ ′) = ∅ ∧∆(ω(π.τ ′), ω(τ .τ ′)) = ∅ (3.45)

Furthermore, since τ .τ ′ = α ∈ T (M ′) and π reaches the same state as τ in M ′, we also know
that π.τ ′ ∈ T (M ′). From this and Equation (3.43) we obtain the following:

π.τ ′ ∈ T (M ′) ∩ V.
m−n⋃︂
i=0
Ai (3.46)

As

V.
m−n⋃︂
i=0
Ai ⊆ T S (3.47)

from Definition 31 (2.) and T (M ′) ∩ T S = T (M) ∩ T S by assumption, we also know that

π.τ ′ ∈ T (M) ∩ V.
m−n⋃︂
i=0
Ai (3.48)

holds and therefore π.τ ′ ∈ Vm−n. Now, we know that we can choose β = π.τ ′ and with
α = τ .τ ′ as stated above, we can replace terms in Equation (3.45) to obtain

∆′(α, β) = ∅ ∧∆(ω(α), ω(β)) = ∅ (3.49)



Chapter 3. Complete Property Oriented Testing with SFSM Models 63

which is the proof goal for this step, concluding this case.

Case 3. For the last case, which we prove by induction, we assume that α ∈ T (M ′)∩V.Ak,
with k > m − n + 1. Now suppose that for any π ∈ T (M ′) ∩ V.⋃︁k−1

i=0 Ai there is some
τ ∈ Vm−n such that

∆′(π, τ) = ∅ ∧∆(ω(π), ω(τ)) = ∅. (3.50)

holds. We have shown this in Case 2 for k − 1 = m− n+ 1.

Let α = α1.a, where α1 ∈ Pref(α) and a ∈ A, so |α| = |α1| + 1. Since α1 ∈ T (M ′) ∩
V.
⋃︁k−1

i=0 Ai, by our assumption, there is some β1 ∈ Vm−n such that ∆′(α1, β1) = ∅ and
∆(ω(α1), ω(β1)) = ∅. Therefore, by Equations (3.28) and (3.36) we obtain

∆′(α1.a, β1.a) = ∅ ∧∆(ω(α1.a), ω(β1.a)) = ∅. (3.51)

From ∆′(α1.a, β1.a) = ∅ and α = α1.a ∈ T (M ′) we know that

β1.a ∈ T (M ′) (3.52)

Since β1 ∈ Vm−n and a ∈ A, we know that β1.a ∈ Vm−n+1. From Case 2 we know that there
must be some β ∈ Vm−n, such that

∆′(β1.a, β) = ∅ ∧∆(ω(β1.a), ω(β)) = ∅ (3.53)

holds. From this, Equation (3.51) and Equalities (3.25) and (3.33) we can obtain

∆′(α1.a, β) = ∅ ∧∆(ω(α1.a), ω(β)) = ∅ (3.54)

which simplifies to

∆′(α, β) = ∅ ∧∆(ω(α), ω(β)) = ∅ (3.55)

which was to be shown in this step.

Step 4. We now show that Ω(T (M ′)) ⊆ Ω(T (M)). To this end, let α be any sequence
in T (M ′). As proven in the previous step, there is a β ∈ Vm−n such that ∆′(α, β) = ∅
and ∆(ω(α), ω(β)) = ∅ (Equation 3.42). Since β ∈ T (M), as any sequence in Vm−n,
ω(β) ∈ Ω(T (M)) holds by Definition 22. From this and ∆(ω(α), ω(β)) = ∅ follows by
Equation 3.34 that ω(α) ∈ Ω(T (M)). As α can be any sequence in T (M ′)

Ω(T (M ′)) ⊆ Ω(T (M)) (3.56)



Chapter 3. Complete Property Oriented Testing with SFSM Models 64

follows.

Step 5. Let α and α′ be symbolic sequences from T (M) and T (M ′) respectively. Further-
more, let κ and κ′ be concrete sequences that are witnesses for α and α′ respectively. As
AP ⊆ Σ the witnesses of a symbolic sequence have the same propositional abstraction as the
symbolic sequence itself (s. Definitions 1, 2, 8, 18 and 22), so ω(κ) = ω(α) and ω(κ′) = ω(α′).
Furthermore, we know that there is no κ′′ ∈ L(M ′) that is not a witness for any trace in
T (M ′) (s. Definition 8). Therefore, the result of Step 4, Ω(T (M ′)) ⊆ Ω(T (M)) implies
Ω(L(M ′)) ⊆ Ω(L(M)) which was to be shown. This concludes the proof.

We now show that this suffices to show that an implementation passing the test suite satisfies
the same LTL safety properties over AP as the reference model does.
Lemma 2. Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be a well-formed SFSM. Let AP be a set
of quantifier free first order logic predicates and ϕ be an LTL safety formula over atomic
propositions from AP . Finally, for a fixed m, let M ′ be a well-formed SFSM member of the
fault domain F(I,O,DVar,ΣI ,ΣO, n,m) and assume, that Ω(L(M ′)) ⊆ Ω(L(M)). Then

M |= ϕ =⇒ M ′ |= ϕ (3.57)

holds.

Proof. This is proven by contraposition, assuming that M ′ ̸|= ϕ and showing that M ̸|= ϕ.
As shown in Section 2.6, if a safety formula does not hold, this can be observed on some
finite sequence. Therefore, from M ′ ̸|= ϕ and Definition 21 must follow that there is some
α ∈ L(M ′) such that ω(α) ̸|= ϕ, i.e. ω(α) ̸∈ P where P is the language of ϕ. By assumption
Ω(L(M ′)) ⊆ Ω(L(M)), so ω(α) ∈ Ω(L(M)). From this, by Definition 21, M ̸|= ϕ holds,
which was to be shown.

This next corollary states the subject and aim of this chapter:
Corollary 3. Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be a well-formed SFSM. Let AP be a
set of quantifier free first order logic predicates and ϕ be an LTL safety formula over atomic
propositions from AP . Let T S be a test suite that satisfies Definition 31 for some fixed
number of states m ≥ n and derived from M . Finally, let M ′ be a well-formed SFSM member
of the fault domain F(I,O,DVar,ΣI ,ΣO, n,m) and assume, that M ′ is T S-equivalent to M .

Then

M |= ϕ =⇒ M ′ |= ϕ (3.58)

holds.

Proof. This follows from Theorem 1 and Lemma 2.



Chapter 3. Complete Property Oriented Testing with SFSM Models 65

3.5.2 Test Execution and Verdict

So far, we have only implied a method for using a test suite on an implementation and
determining a verdict for that implementation. In this section, we will outline a scheme for
applying a test suite that has been constructed as described in Section 3.5.1 and evaluating
the observed outputs on the implementation under test to determine whether the relation
we want to test for holds.

The relation between the model M and the implementation under test M ′ we want to test
for is, as shown before, the following:

Ω(L(M ′)) ⊆ Ω(L(M))

As shown by Theorem 1, this can be checked by determining whether M and M ′ are
T S-equivalent:

T S ∩ T (M) = T S ∩ T (M ′)

The test cases in our test suite are symbolic sequences. To execute a test case from T S on
the IUT, we need to apply concrete inputs, i.e., valuations for all input variables, and observe
concrete outputs, i.e., valuations of the output variables. The mapping from a symbolic test
case to a sequence of input variable valuations is relatively straightforward. Recall that a
symbolic test case t ∈ T S is simply a sequence of input output equivalence classes: t ∈ A∗.
Therefore, we can simply select one element of the corresponding input output equivalence
class for each step and restrict that element to the input variables. A concrete test case tc
for the symbolic test case t can be described as tc = t|I :

(∀0 < i ≤ |t| : tc(i) ∈ t(i)|I) ∧ (|t| = |tc|)

By applying this sequence of input valuations to the IUT, we observe a valuation sequence
σ′ ∈ L(M ′) where σ′|I = tc. In other words, the input portion of the observed valuation
sequence is the applied input, while the output portion is observed on the IUT’s outputs.
Note that in cases involving a non-deterministic model and IUT, multiple test case executions
are necessary. According to the complete testing assumption (see Definition 7), we know the
required number of executions, resulting in a finite set of observations, B ⊆ L(M ′), all of
which are responses to tc; that is, ∀σ ∈ B : σ|I = tc.

Given the set B for a given concrete test case tc, we can easily determine whether the
following holds by consulting the reference model M :

B ⊆ L(M)



Chapter 3. Complete Property Oriented Testing with SFSM Models 66

Using the assumption that the IUT can be modelled by an SFSM using the same guard
conditions and output expressions as the model M , we can map these sequences to a set B
of elements of the symbolic language of the IUT:

B = {[σ] | ∃σ : σ ∈ B}

Now, by performing this transformation back to symbolic sequences, we can then check parts
of the equation for T S-equivalence. If test case t is part of the symbolic language of M , for
the T S-equivalence relation to hold we want it to also be part of the symbolic language of
M ′. Therefore, we expect that t ∈ B. If on the other hand t ̸∈ T (M), we want t ̸∈ T (M ′) to
hold and therefore t ̸∈ B. Essentially, we need to check that B is exactly the set of symbolic
traces we would expect M to show if t↓ΣI

were applied. By checking this for all test cases in
T S, we can evaluate whether M and M ′ are T S-equivalent and therefore whether the IUT
passes the test suite T S or fails it.

3.6 Complexity Considerations

To provide an estimate of the costs of generating and applying such a test suite we will now
derive an upper bound on the length and number of test cases, following Huang et al. [62].

Test Case Length To determine the worst case test case length, we first derive the worst
case length of the individual segments of the test cases.

Recall that the test cases with the largest number of test steps are structured as follows:

v. trav
′
. t. γ

Here, v is an element of the minimal state cover V , v. trav′. t is an element of the traversal
set including one further transition t and γ is a distinguishing sequence.

The worst case minimal length of the elements of the state cover V is the diameter of the
SFSM reference model from the initial state. Assuming a reference SFSM with n states the
worst case for that is a sequence of length n − 1. While t is always just a single element
of A, trav′ is from Pref(Am−n) where m is the upper bound on the number of states an
implementation may have. Finally, in the worst case, a distinguishing sequence has to be at
most n− 1 steps long. Therefore, the worst case length of a test case is

(n− 1) + (m− n) + 1 + (n− 1)

= n+m− 1

The best case for test case length is achieved in the trivial scenario where the reference



Chapter 3. Complete Property Oriented Testing with SFSM Models 67

SFSM has precisely one state, the initial state, and when the upper limit on the number of
internal states m of the implementation is also 1. Then, every test case has length 1, which
equates to a transition cover of the reference model. In the structure of the test case depicted
above, both v and trav

′ are the empty trace ε, while t is any element of the input output
equivalence class partitioning. As no sequence can be distinguished from other sequences, as
they all reach the same state, γ is absent.

Test Suite Size For the number of test cases, there also is a lower and upper bound.
Both depend on the size |A| of the input output equivalence class partitioning, which in turn
depends on both the valuation domain DVar and the set Σ of first-order logic formulas for
which we construct the input output equivalence class partitioning.

Recall that equivalence classes are constructed by checking for satisfiable formulas

ΦE ≡Var
⋀︂

e∈E

e ∧
⋀︂

e∈Σ\E

¬e

where E ∈ 2Σ. In the worst case, all ΦE are satisfiable over DVar, (i.e. |A| = |2Σ|) while
there is only one satisfiable ΦE in the best case (i.e. |A| = 1).

The size of set T on which test suite T S is built depends on both the size of the state cover
V and the number of input output equivalence classes. Every trace in the state cover is
concatenated with every element of Pref(Am−n+1), which is why

|T | ≤ |V | · |A|m−n+1.

To find an upper bound on the number of test cases we examine the items in the definition
of T S individually.

Definition 31 (1) stipulates that T S must contain V , thereby adding |V | test cases. However,
all these are prefixes of test cases required by subsequent items, hence they can be disregarded
for the total count.

Definition 31 (2) necessitates that T S must contain T , contributing |T | test cases. However,
in the worst-case scenario, these are extended by distinguishing sequences in later items,
hence they can be overlooked here.

For Definition 31 (3), T S must contain a pair of sequences v.γ and β.γ with v, β ∈ V . The
size of this set of test cases is at most |V |·(|V |−1)

2 .

For Definition 31 (4), T S must contain sequences α.γ and β.γ for α ∈ V and β ∈ T \ V , but
only if α is distinguishable from β under abstraction using the ω operator. In the worst
case, all states are distinguishable under abstraction. Every element of T reaches a state
reached by exactly one element of V and therefore must be distinguished from the states



Chapter 3. Complete Property Oriented Testing with SFSM Models 68

reached by all other elements of V . Thus, the set of test cases β.γ generated here has
(|T | − |V |) · (|V | − 1) elements in the worst case and is empty in the best case. As we have
already added distinguishing sequences for all α for Definition 31 (3), there are no sequences
α.γ to be added. From the construction of T , we know that |T | ≤ |V | · |A|m−n+1. Therefore,
we add (|V | · |A|m−n+1 − |V |) · (|V | − 1) test cases, which is less than but in the order of
|V |2 · |Am−n+1| test cases.

Finally, for Definition 31 (5), we approximate the upper bound for the needed test cases where
we distinguish every element α.ξ ∈ T from some of its prefixes α. As we have handled these
cases when we examined the test cases for Definition 31 (4), we do not need to distinguish a
sequence in T from the prefixes that are at most as long as the longest prefix that is also
contained in V (i.e. only from sequences that are in T \ V ). The length of the segment after
the prefix in V is at most m− n+ 1. We also do not need to distinguish the sequences in
T from prefixes reaching the same state. Prefix α is, in the worst case, a prefix to |A|m−n

elements from T but will only reach |V | − 1 states which it is distinct from. However, in the
worst case, all of the sequences reaching these |V | − 1 states have already been added to the
test suite extended by a distinguishing sequence to satisfy Definition 31 (4).

The number of test cases in a test suite T S is therefore bounded by |V |2 · |A|m−n+1, a figure
which aligns with the results for the number of test cases for the H-method, upon which the
test suite generation procedure described here is based [42].

As a very weak over-approximation for the number of test steps, we can multiply this result
by the worst-case test case length, resulting in a bound of |V |2 · |A|m−n+1 · (n+m− 1) for
the number of test case steps. For non-deterministic implementations, we know that we have
made the complete testing assumption, where we know a fixed upper bound k to the number
of times we have to execute each test case to observe all behaviour of the implementation for
that test case, resulting in the following term for the number of executed test steps when
testing using the generated test suite:

|V |2 · |A|m−n+1 · (n+m− 1) · k

By substituting the known values for |V | and |A|, we arrive at

n2 ·
(︂
2|Σ|

)︂m−n+1
· (n+m− 1) · k.

3.7 Application to the BRAKE Example

Now that we have confidence in the test strength of our approach, we can proceed to
derive test suites for our running example. For the LTL property ϕ under test we select
Equation 3.1: ϕ = G(v < v) =⇒ G(y = 0). This yields a set of quantifier-free first-order
logic propositions AP = {(v < v), (y = 0)}.



Chapter 3. Complete Property Oriented Testing with SFSM Models 69

3.7.1 Test Suite Derivation

To calculate the input output equivalence class partitioning we name the elements in the
sets ΣI , ΣO and AP as follows:

Table 3.2: Guard conditions ΣI for the BRAKE example.

g1 v = v

g2 v < v

g3 v ≤ v

g4 v > v

g5 v ≥ v − δ

g6 v < v − δ

g7 v ≤ v − δ

Table 3.3: Output expressions ΣO for the BRAKE example.

o1 y = 0

o2 B0 ≤ y ≤ B1

o3 y = B2 + v−v
c

o4 y = B2 + (v−v)2

c

Note that we admit two mutations: Both the guard condition g7 and the output expression
o4 are not contained in the model but may appear in a potentially faulty implementation,
while this test suite remains exhaustive.

Table 3.4: Propositions AP for the BRAKE example.

p1 v < v

p2 y = 0

Now, beginning the test suite derivation with the state cover V , we obtain V as described
above:

V = {ε,

v = v ∧ y ∈ [B0, B1] ,

v > v ∧ y = B2 + v − v
c
}

When selecting concrete representatives for these, we can obtain the following set of valuation



Chapter 3. Complete Property Oriented Testing with SFSM Models 70

sequences:

Vr = {ε,

(v = 200, y = 1.1),

(v = 201, y = 2.01)}

We then construct the set P by employing Algorithm 2.1. Of the 1024 potentially unsatisfiable
formulas that can be constructed from ΣI ,ΣO and AP , we find that 27 are satisfiable, i.e.,
there is at least one element in DV ar that satisfies them. The elements of P are listed in
Table 3.5 and Table 3.6, along with the contributing formulas from ΣI ,ΣO and AP , and the
resulting condition characterising the partition of DV ar.

Given these input output equivalence classes, the construction of the set T is straightforward:
append every possible sequence of these input output equivalence classes up to length
m−n+ 1 to every element of V . For the test execution, we choose the representatives shown
in Table 3.8 for the input output equivalence classes in Table 3.5 and Table 3.6.

With this, we can now determine both Trav and T . Allowing for one additional state in the
models in the fault domain, i.e., choosing m such that m− n = 1, we calculate Trav as

Trav = V.
1⋃︂

i=0
Ai

The corresponding set of valuation sequences has 138 elements and is depicted in Figure 3.2.

As described in Section 3.5.1, set T is obtained by extending each sequence of Trav by each
element of A:

T = Trav.A

The resulting T has 3726 elements and is not shown here.

The definition of the test suite construction (Definition 31) now mandates that some sequences
are to be extended by distinguishing sequences for certain cases:

1. Distinguishing sequences are to be added for all pairs of sequences (α, β) ∈ (V × V )
with α ̸= β.

2. Distinguishing sequences are to be added for all pairs of sequences (α, β) ∈ (V × T ∩
T (M)) if the reached states are different under abstraction, i.e., if Ω(T (s0-after-α)) is
different from Ω(T (s0-after-β)).



Chapter 3. Complete Property Oriented Testing with SFSM Models 71

Table 3.5: Elements of set A and their corresponding formulas. The first column provides
names for the elements, the second column lists all elements from ΣI ,ΣO and AP used in
positive form to construct the corresponding element of A, with all other elements implied
to have been used in negated form. The third column presents an equivalent expression for
the resulting formula.

io e ∈ 2Σ ΦE ∈ P

io1 {g1, g3, g5, o1, p2} v = v ∧ y = 0

io2 {g1, g3, g5, o2} v = v ∧ y ∈ [B0, B1]

io3 {g1, g3, g5, o3, o4} v = v ∧ y = B2

io4 {g1, g3, g5} v = v ∧ y ̸= 0 ∧ y ̸∈ [B0, B1] ∧ y ̸= B2

io5 {g2, g3, g5, p1} v ∈ (v − delta, v) ∧ y ̸= 0 ∧ y ̸∈ [B0, B1] ∧
y ̸= B2 + v−v

c ∧ y ̸= B2 + (v−v)2

c

io6 {g2, g3, g5, o1, p1, p2} v ∈ (v − delta, v) ∧ y = 0

io7 {g2, g3, g5, o2, p1} v ∈ (v − delta, v) ∧ y ∈ [B0, B1]

io8 {g2, g3, g5, o3, p1} v ∈ (v − delta, v) ∧ y = B2 + v−v
c

io9 {g2, g3, g5, o4, p1} v ∈ (v − delta, v) ∧ y = B2 + (v−v)2

c

io10 {g2, g3, g5, g7, p1} v = v − delta∧ y ̸= 0∧ y ̸∈ [B0, B1]∧ y ≠
B2 + v−v

c ∧ y ̸= B2 + (v−v)2

c

io11 {g2, g3, g5, g7, o1, p1, p2} v = v − delta ∧ y = 0

io12 {g2, g3, g5, g7, o2, p1} v = v − delta ∧ y ∈ [B0, B1]

io13 {g2, g3, g5, g7, o3, p1} v = v − delta ∧ y = B2 + v−v
c

io14 {g2, g3, g5, g7, o4, p1} v = v − delta ∧ y = B2 + (v−v)2

c

io15 {g2, g3, g6, g7, p1} v ∈ [0, v−delta)∧y ̸= 0∧y ̸∈ [B0, B1]∧y ̸=
B2 + v−v

c ∧ y ̸= B2 + (v−v)2

c



Chapter 3. Complete Property Oriented Testing with SFSM Models 72

Table 3.6: Elements of set A and their corresponding formulas (continued). The first
column provides names for the elements, the second column lists all elements from ΣI ,ΣO

and AP used in positive form to construct the corresponding element of A, with all other
elements implied to have been used in negated form. The third column presents an equivalent
expression for the resulting formula.

io e ∈ 2Σ ΦE ∈ P

io16 {g2, g3, g6, g7, o1, p1, p2} v ∈ (0, v − delta) ∧ y = 0

io17 {g2, g3, g6, g7, o2, p1} v ∈ [0, v − delta) ∧ y ∈ [B0, B1] ∧ y ̸=
B2 + v−v

c

io18 {g2, g3, g6, g7, o3, p1} v ∈ (0, v − delta) \ [100 ·B0, 100 ·B1] ∧
y = B2 + v−v

c

io19 {g2, g3, g6, g7, o4, p1} v ∈ [0, v − delta) ∧ y = B2 + (v−v)2

c

io20 {g2, g3, g6, g7, o1, o3, p1, p2} v = 0 ∧ y = 0

io21 {g2, g3, g6, g7, o2, o3, p1} v ∈ [100 ·B0, 100 ·B1] ∧ y = B2 + v−v
c

io22 {g4, g5} v > v ∧ y ≠ 0 ∧ y ̸∈ [B0, B1] ∧ y ̸= B2 +
v−v

c ∧ y ̸= B2 + (v−v)2

c

io23 {g4, g5, o1, p2} v > v ∧ y = 0

io24 {g4, g5, o2} v > v ∧ y ∈ [B0, B1]

io25 {g4, g5, o3} v > v ∧ y = B2 + v−v
c ∧ y ̸= B2 + (v−v)2

c

io26 {g4, g5, o3, o4} v > v ∧ y = B2 + v−v
c ∧ y = B2 + (v−v)2

c

io27 {g4, g5, o4} v > v ∧ y = B2 + (v−v)2

c ∧ y ̸= B2 + v−v
c



Chapter 3. Complete Property Oriented Testing with SFSM Models 73

Table 3.8: Chosen representatives ior for the input output equivalence classes in Table 3.5
and Table 3.6

io v y

io1 200 0

io2 200 1

io3 200 2

io4 200 0.5

io5 191 0.5

io6 191 0

io7 191 1

io8 191 1.91

io9 191 2.81

io10 190 0.5

io11 190 0

io12 190 1

io13 190 1.9

io14 190 3

io15 1 0.5

io16 1 0

io17 1 1

io18 1 0.01

io19 186 3.96

io20 0 0

io21 91 0.91

io22 201 0.5

io23 201 0

io24 201 1

io25 202 2.02

io26 201 2.01

io27 202 2.04



Chapter 3. Complete Property Oriented Testing with SFSM Models 74

Travr =
{︁
ε, (200, 1.1) , (201, 2.01) , (200, 0) , (200, 1) , (200, 2) , (200, 0.5) , (191, 0.5) , (191, 0) ,
(191, 1) , (191, 1.91) , (191, 2.81) , (190, 0.5) , (190, 0) , (190, 1) , (190, 1.9) , (190, 3) ,
(1, 0.5) , (1, 0) , (1, 1) , (1, 0.01) , (186, 3.96) , (0, 0) , (91, 0.91) , (201, 0.5) , (201, 0) ,
(201, 1) , (202, 2.02) , (201, 2.01) , (202, 2.04) , (200, 1.1) . (200, 0) , (200, 1.1) . (200, 1) ,
(200, 1.1) . (200, 2) , (200, 1.1) . (200, 0.5) , (200, 1.1) . (191, 0.5) , (200, 1.1) . (191, 0) ,
(200, 1.1) . (191, 1) , (200, 1.1) . (191, 1.91) , (200, 1.1) . (191, 2.81) ,
(200, 1.1) . (190, 0.5) , (200, 1.1) . (190, 0) , (200, 1.1) . (190, 1) , (200, 1.1) . (190, 1.9) ,
(200, 1.1) . (190, 3) , (200, 1.1) . (1, 0.5) , (200, 1.1) . (1, 0) , (200, 1.1) . (1, 1) ,
(200, 1.1) . (1, 0.01) , (200, 1.1) . (186, 3.96) , (200, 1.1) . (0, 0) , (200, 1.1) . (91, 0.91) ,
(200, 1.1) . (201, 0.5) , (200, 1.1) . (201, 0) , (200, 1.1) . (201, 1) , (200, 1.1) . (202, 2.02) ,
(200, 1.1) . (201, 2.01) , (200, 1.1) . (202, 2.04) , (201, 2.01) . (200, 0) ,
(201, 2.01) . (200, 1) , (201, 2.01) . (200, 2) , (201, 2.01) . (200, 0.5) ,
(201, 2.01) . (191, 0.5) , (201, 2.01) . (191, 0) , (201, 2.01) . (191, 1) ,
(201, 2.01) . (191, 1.91) , (201, 2.01) . (191, 2.81) , (201, 2.01) . (190, 0.5) ,
(201, 2.01) . (190, 0) , (201, 2.01) . (190, 1) , (201, 2.01) . (190, 1.9) , (201, 2.01) . (190, 3) ,
(201, 2.01) . (1, 0.5) , (201, 2.01) . (1, 0) , (201, 2.01) . (1, 1) , (201, 2.01) . (1, 0.01) ,
(201, 2.01) . (186, 3.96) , (201, 2.01) . (0, 0) , (201, 2.01) . (91, 0.91) ,
(201, 2.01) . (201, 0.5) , (201, 2.01) . (201, 0) , (201, 2.01) . (201, 1) ,
(201, 2.01) . (202, 2.02) , (201, 2.01) . (201, 2.01) , (201, 2.01) . (202, 2.04)

}︁
Figure 3.2: The set Travr that is the set of valuation sequences corresponding to set Trav
for the BRAKE example. The notation (σi, σo) is short for (v ↦→ σi, y ↦→ σo).



Chapter 3. Complete Property Oriented Testing with SFSM Models 75

3. Distinguishing sequences are to be added for all pairs of sequences (α, α.ξ) ∈ (Trav ∩
T (M) × T ∩ T (M)) if the reached states are different under abstraction, i.e., if
Ω(T (s0-after-α)) is different from Ω(T (s0-after-α.ξ)).

Distinguishing Sequences for the State Cover As M is minimal, every state in M is
distinguishable from every other state in M . Furthermore, as V is a minimal state cover,
i.e., there are no two distinct sequences in V reaching the same state, every sequence in V

has to be distinguished from every other.

There are multiple ways to optimise test suite size, and choosing some distinguishing sequences
over others is one of them. Generally, this is a hard problem. In our investigations into
approaches for finding a test suite with a minimal number of test cases, we observed that
the problem can be reduced to the minimal hitting set problem, making solutions that
always return a minimal test suite too costly in most realistic use cases. Therefore, we use
heuristics in an attempt to create test suites with fewer test cases than a naive approach
could produce while keeping computation times comparably low. In our example, we build
the test suite T S incrementally, first constructing V and T before calculating distinguishing
sequences, which we also do incrementally. To distinguish the sequences in V , we can look
at the sequences in V and T : If there already is a pair of sequences α.γ, β.γ ∈ T S where
γ distinguishes s0-after-α and s0-after-β, we do not need to introduce two new sequences.
Similarly, if there already is one α.γ and we need a distinguishing sequence for α and β and
γ distinguishes s0-after-α and s0-after-β, we can just add the sequence β.γ to T S, thus only
adding one new test case.

In our example, T already contains distinguished sequences from V as shown in Table 3.9,
where we also list an element γ of A such that both v1.γ and v2.γ are elements of T and
such that only one of those two sequences is in T (M). Table 3.9 shows an example of
distinguishing sequences we can choose. Note that the first and second pair of sequences can
use the same sequence: While there is a transition from the initial state s0 that can set the
output y to 0 for an input of v = v, there is no such transition in both s1 and s2 that are
reached by the other two sequences. This illustrates the point made above where the choice
of distinguishing sequences can be crucial for the size of the test suite.

The symbolic and corresponding concrete distinguishing sequences are shown in Table 3.9
and Table 3.10, respectively.

As laid out in Section 3.5.1, the objective of this set of sequences is to ascertain whether the
states reached by V in the IUT are indeed distinct, which serves as one of the fundamental
assumptions for the proof of exhaustiveness.

Distinguishing Sequences Under Abstraction The remaining distinguishing sequences
required by Step 2 and Step 3 above, or in Definition 31 (4) and (5), are to be appended
to the pair of sequences α, β they distinguish and added to the test suite only if α and



Chapter 3. Complete Property Oriented Testing with SFSM Models 76

Table 3.9: Symbolic distinguishing sequences for pairs of elements v1, v2 ∈ V .

v1 v2 Distinguishing sequence

ε v = v ∧ y ∈ [B0, B1] io1 = (v = v, y = 0)

ε v > v ∧ y = B2 + v−v
c = B2 + (v−v)2

c io1 = (v = v, y = 0)

v = v ∧ y ∈ [B0, B1] v > v ∧ y = B2 + v−v
c = B2 + (v−v)2

c io2 = (v = v, y ∈ [B0, B1])

Table 3.10: Concrete distinguishing sequences for pairs of elements v1, v2 ∈ V .

v1 v2 Distinguishing sequence

ε (v = 200, y = 1.1) (v = 200, y = 0)

ε (v = 201, y = 2.01) (v = 200, y = 0)

(v = 200, y = 1.1) (v = 201, y = 2.01) (v = 200, y = 1)

β are distinguishable under abstraction. In our BRAKE example, the states s0 and s1,
reached by sequences ε and (v = v, y ∈ [B0, B1]), respectively, from the state cover, are
indistinguishable under abstraction, i.e., Ω(T (s0)) = Ω(T (s1)). Therefore, only those pairs
of sequences described in Step 2 and Step 3 where one reaches s2 and the other either s0 or
s1 need to be distinguished.

As an example, the sequences io2 reaching s1 and io26.io20 reaching s0 do not need to be
distinguished, whereas the sequences io2 and io26.io8 reaching s2 do.

Examples of resulting test suites are given by Krafczyk [63].

3.7.2 Detecting Implementation Errors

Given this test suite, we can demonstrate the error detection capabilities of this approach
by applying the test suite to some erroneous implementations. To this end, we modify the
original model to obtain an SFSM that is erroneous but within the fault domain. This is
achieved by either introducing transition faults or mutating the guard conditions or output
expressions.

One such mutated model is depicted in Figure 3.3. Here, compared to the BRAKE model
(see Figure 3.1), the guard condition of the transition from s2 to s0 has been changed from
v < v − δ to v ≤ v − δ. This is a mistake that a programmer could easily make [64, 43]
and is a mutation for which our approach is complete, as the mutated guard is part of ΣI .
Obviously, this error is detected by a test case that reaches s2 and applies an input that
does not satisfy the guard condition of the transition from s2 to s0 but satisfies the mutated



Chapter 3. Complete Property Oriented Testing with SFSM Models 77

s0start s1

s2

v = v/y ∈ [B0, B1]

v < v/y = 0

v >
v/
y

= B
2
+ (v −

v)/
c

v ≤
v −

δ/
y

= 0

v >
v/y =

B
2 + (v −

v)/c

v ≤ v/y = 0 v = v/y ∈ [B0, B1]

v ≥ v − δ/y = B2 + (v − v)/c

Figure 3.3: An SFSM model for the first mutant of the BRAKE system. The mutated
guard is underlined here.

guard, which is precisely the input v = v − δ = 190. The set T , which by Definition 31 (2),
is part of the test suite, contains the sequence

io26.io13 = v > v ∧ y = B2 + v − v
c
∧ y = B2 + (v − v)2

c
.

v = v − δ ∧ y = B2 + v − v
c

that is also in T (M). Therefore, we expect it to be in the implementation. However, our
implementation non-deterministically responds to the second input either with a correct
output y = B2 + v−v

c as produced by the looping transition from s2 to s2 or with y = 0 as
produced by the faulty transition. Applying the concrete input valuations we selected, the
observed sequence

(v = 201, y = 2.01) . (v = 190, y = 0)

is not part of L(M), thus revealing an error in the implementation. As described in
Section 3.5.2, we determine the corresponding symbolic sequences to be io26.io11, which is
not part of T (M).

3.8 Tool Support

Thus far, the description of our approach has been theoretical. While we have presented the
idea of our approach, outlined the construction of the test suite, proven its exhaustiveness,
and demonstrated its error-finding capabilities on an example, all calculations have been
performed manually. However, this approach is amenable to automation, as the sheer number
of sequences that would need to be handled for any realistic model, and even for our example



Chapter 3. Complete Property Oriented Testing with SFSM Models 78

model presented here, makes manual construction not only tedious but also rather error
prone. Moreover, formulas constructed during this process can quickly become large and
difficult to comprehend, making the process of finding solutions to these formulas even more
susceptible to human error. As stated in Section 3.7, even for our example, there were 1024
formulas that needed to be checked for solutions. Although we were able to reduce these
numbers using Algorithm 2.1, the formulas for which solutions needed to be found might
have looked like this:

v = v ∧ ¬v < v ∧ v ≤ v ∧ ¬v > v ∧ v ≥ v − δ ∧

¬v < v − δ ∧ ¬v ≤ v − δ ∧ ¬y = 0 ∧ ¬B0 ≤ y ≤ B1 ∧

y = B2 + (v − v)/c ∧ y = B2 + (v − v)2/c ∧ ¬v < v ∧ ¬y = 0

We argue that although it may be feasible to perform this task manually, it is not remotely
practicable for models exceeding the size of this example model.

Consequently, we have developed the software framework libsfsmtest7 that is capable
of parsing SFSM models and formulas from files, and performing computations on them.
For all formula satisfiability checking and selection of concrete values or witnesses for a
formula, we employ Z3 [38], an SMT solver. In the subsequent sections, we will elucidate the
inputs we generate for Z3 to solve, which we will refer to as SMT problems. We will further
demonstrate how these problems are derived from SFSM models and the data that can be
learned from them.

3.8.1 Foundations for SMT Problem Expression

As described in Section 2.9, SMT solving is a powerful tool to determine whether a first order
logic formula has any solutions, which we use extensively during test suite generation. To this
end we need to communicate with Z3, the SMT solver we chose to base our implementation
on. Z3 offers several different interfaces. We chose to spawn a Z3 process as a child process
of our test suite generation program in a way allowing us to pose SMT problems and receive
outputs from Z3 using pipes as the inter-process communication method. We pose the SMT
problems in SMTLIB2 syntax [65], which is largely based on S-expressions [66]. Stating first
order logic formulas as S-expressions comes down to first stating an operator, followed by
the operands. As an example, an S-expression for the addition of the whole number 2 to a
variable a could be stated as follows:

(+ a 2)

An S-expression basically is a parenthesised list where the first element of the list is an

7Repository URL: https://gitlab.informatik.uni-bremen.de/projects/29053, Snapshot: https://
doi.org/10.5281/zenodo.10655802

https://gitlab.informatik.uni-bremen.de/projects/29053
https://doi.org/10.5281/zenodo.10655802
https://doi.org/10.5281/zenodo.10655802


Chapter 3. Complete Property Oriented Testing with SFSM Models 79

operator or function and the rest are operands or function arguments. The SMTLIB2 format
builds on this, defining operators to declare or define variables and functions, specify first
order logic formulas and assertions and operators for more advanced use cases. The basic
data types we use are Bool, Int and Real. We can declare a function using the declare-fun

operator. With this, the function remains uninterpreted, allowing the SMT solver to find a
definition for the function. If we want to define the function, we can use the define-fun

operator. As an example, we could declare a function a2 and define an SMT problem as
follows:

( declare -fun a2 (Int) Int)

( assert (= (a2 0) 0))

( assert (= (a2 1) 1))

( assert (= (a2 2) 4))

In this example, the SMT problem states that the function a2 should be a function that
maps 0 to 0 and 1 to 1 while it maps 2 to 4. One model for this problem would be a function
that squares its argument:

( define -fun a2_def ((a Int )) Int

(* a a)

)

3.8.2 Input Output Equivalence Class Construction

To compute input output equivalence classes for an SFSM, we first declare functions using
the identifiers employed in the SFSM. Naturally, all formulas in the sets of guard conditions,
output expressions, and atomic propositions should reference only the identifiers of the
SFSM. Thus, we declare these identifiers as undefined functions, without parameters and of
the appropriate type.

Algorithm 2.1 describes the input output equivalence class calculation, which is carried out
incrementally. This involves selecting a formula from ΣI ∪ΣO ∪AP and checking whether it
holds in conjunction with some formula describing a previous partitioning of the valuation
domain DVar. The initial partitioning is

{︂
DVar

}︂
, i.e., the entire valuation domain as a single

partition or input output equivalence class.

In reference to our BRAKE model, for instance, the constraints on the variables in Var and
consequently the valuation domain DVar, could be modelled as follows:

0 ≤ v ≤ 400 ∧ 0 ≤ y ≤ 4

An SMT problem describing this could be expressed as follows:



Chapter 3. Complete Property Oriented Testing with SFSM Models 80

( declare -fun v () Real)

( declare -fun y () Real)

( assert (and (<= 0 v 400) (<= 0 y 4)))

Given this input, every solution to every problem given to Z3 after this is also required to be
a solution to the formula above. By iteratively picking one element from ΣI ∪ΣO ∪AP that
has not been picked before and creating a new SMT problem that describes a partition and
a potential refinement thereof, we construct the problems whose solutions are the elements
of the input output equivalence classes in the end.

For the BRAKE example, we could start by picking g1 ≡Var v = v and creating the following
SMT problem:

( declare -fun v () Real)

( declare -fun y () Real)

( assert (and (<= 0 v 400) (<= 0 y 4)))

( assert (= v 200))

This, obviously, is satisfiable and Z3 reports it as such. Following Algorithm 2.1, we then
have to also check whether the negation of the picked formula has solutions in DVar:

( declare -fun v () Real)

( declare -fun y () Real)

( assert (and (<= 0 v 400) (<= 0 y 4)))

( assert (not (= v 200)))

Again, this is satisfiable, and we have conducted the first iteration of the algorithm to
compute the input output equivalence classes. Proceeding in this manner will ultimately
yield SMT problems akin to the one in Figure 3.4, which is satisfiable by all solutions to
input output equivalence class io3 in Table 3.5 and no others within DVar.

Running Z3 with this single SMT problem on a moderately modern laptop returns a verdict
about the satisfiability of this SMT problem and values for v and y in approximately 40
milliseconds.

3.8.3 Modelling Sequences Traversing an SFSM

Other common problems to address during test suite calculation are the calculation of
distinguishing sequences and the check whether a sequence reaches specific states. Both
problems involve modelling valuation sequences of all model variables, where each new
valuation is admissible by the transition relation of the SFSM. We model these sequences as
described in the following.



Chapter 3. Complete Property Oriented Testing with SFSM Models 81

( declare -fun v () Real)
( declare -fun y () Real)
( assert (and (<= 0 v 400) (<= 0 y 4)))
( assert (= v 200)) ; g1
( assert (not (< v 200)) ; not g2
( assert (<= v 200)) ; g3
( assert (not (> v 200)) ; not g4
( assert (>= v (- 200 10))) ; g5
( assert (not (< v (- 200 10)))) ; not g6
( assert (not (<= v (- 200 10)))) ; not g7
( assert (not (= y 0))) ; not o1
( assert (not (<= 0.9 y 1.1))) ; not o2
( assert (= y (+ 2 (/ (- v 200) 100)))) ; o3
( assert (= y (+ 2 (/ (^ (- v 200) 2) 100)))) ; o4
( assert (not (< v 200))) ; not p1
( assert (not (= y 0))) ; not p2

Figure 3.4: Example of an SMT problem for an input output equivalence class for the
BRAKE example.

Firstly, we utilise the fact that uninterpreted functions are one of the core concepts of SMT
solvers. For each identifier a we add a function declaration to the SMT problem. This
function takes an integer index n and returns the value of a at index n of the sequence.
Modelling a valuation sequence for the variables v and y from the BRAKE example in an SMT
problem would look as follows:

( declare -fun v (Int) Real)

( declare -fun y (Int) Real)

As we also require a method to model a sequence of states, we need to encode the states of
an SFSM in an SMT problem. We choose to represent individual states by enumerating the
state set of the SFSM to model in the SMT problem and using the index of a state in that
enumeration as an identifier for that state. Sequences of states can then be modelled as a
sequence of integers, i.e., functions mapping from an index in the sequence to a state index.

( declare -fun state (Int) Int)

For the BRAKE example, we enumerate the states such that index i ∈ {0, 1, 2} corresponds to
state si.

Secondly, we require a method to express what valid valuation sequences for an SFSM are.
To achieve this, we first define a boolean function that evaluates to true if and only if a set



Chapter 3. Complete Property Oriented Testing with SFSM Models 82

of valuations for the variables of the SFSM before and after a step of the SFSM is permitted
by the outgoing transitions of a particular state of the SFSM. In other words, we require
a function that takes a state s and two valuations α, α′ for each identifier a of the model,
one before a step of the transition relation and one after, and evaluates to true if and only
if the change from α to α′ is permitted in state s by the transition relation of the SFSM.
To accomplish this, we can define a function Rt that maps single transitions t = (s, ϕ, ψ, s′)
from transition relation R : (S × ΣI × ΣO × S) to a formula over variables for pre-state spre,
the variable set Var and post-state spost. Furthermore, we define Rt such that it evaluates
to true if and only if the following holds:

Rt((s, ϕ, ψ, s′)) ≡Var spre = s ∧ ϕ ∧ ψ ∧ spost = s′

Transforming a single transition (s0, v = v, y ∈ [0.9, 3.1] , s1) from our BRAKE example results
in Rt ((s0, v = v, y ∈ [0.9, 1.1] , s1)) ≡Var spre = s0∧v = v∧y ∈ [0.9, 1.1]∧spost = s1. Naming
the pre-state s_pre and the post-state s_post we can state an equivalent formula in our
SMT problem as follows:

(and (= s_pre 0)

(= v vmax)

(<= 0.9 y 1.1)

(= s_post 1))

The disjunction of all transformed transitions then yields a formula RR for the transition
relation:

RR =
⋁︂
t∈R

Rt(t)

To model a proper sequence in an SMT problem, we can now use the functions declared
for sequences of states and variables and the function for the transition relation as follows:
Suppose that we have defined the transition relation constructed as described above as a
function transRel in our SMT problem. For the BRAKE example, this definition can be
sketched as shown in Figure 3.5.

The full transition relation definition for the BRAKE example is depicted in Appendix A.

We can then unroll this transition relation in the SMT problem, provided we can specify an
upper bound for the length of sequence we would like to model. For distinguishing sequences,
one can show that such an upper bound is defined by the number of states: |S| − 1. If two
states can be distinguished, there is a sequence of at most |S| − 1 steps that shows this. For
determining the target states of a sequence the upper bound is, trivially, the length of the
sequence. An SMT expression for step n of this transition relation unrolling generally looks



Chapter 3. Complete Property Oriented Testing with SFSM Models 83

( define -fun transRel (( s_pre Int) (v Real)
(y Real) ( s_post Int )) Bool

...
)

Figure 3.5: Sketch of a transition relation function definition.

( assert (and
( transRel (state 0) (v 0) (y 0) ( state 1))
(= (v 0) 131.24)
(= (y 0) 0)
(= ( state 0) 0)
(= ( state 1) 1)

)
)

Figure 3.6: Reachability calculation for state s1 from state s0 for valuation sequence
(v = 131.24, y = 0). If the assertion is satisfiable, s1 can be reached from s0 with the given
valuation sequence.

like this in the BRAKE example:

( transRel (state n) (v n) (y n) (state (+ n 1)))

3.8.4 Reachability Calculation

Assuming a function definition transRel for the transition relation as described above, we
can formulate SMT problems concerning the reachability of states. For instance, the answer
to such a problem can indicate whether a state is reachable by a fixed sequence or whether
it is reachable at all.

Firstly, we declare functions for the state sequence and the valuation sequence of each
variable within the model, as described earlier. This allows us to model a single valuation
sequence for the set of variables Var.

In addition to modelling a sequence σ for which we need to determine whether a certain state
ŝ′ is reached from a state ŝ, we unroll the transition relation |σ| times over the functions for
the state and variable sequences. We then constrain the variable valuations to σ and the
target state of the last unrolling of the transition relation to ŝ′. As a minimal example, we
could perform this for a valuation sequence with a single step (v = 131.24, y = 0) for ŝ = s0

and ŝ′ = s1 as shown in Figure 3.6.



Chapter 3. Complete Property Oriented Testing with SFSM Models 84

State ŝ′ is reachable from state ŝ by sequence σ if and only if the corresponding SMT problem,
constructed as described above, has a solution.

By omitting certain constraints, this SMT problem construction can also be used to solve
other problems. Leaving the output variables unconstrained allows us to check whether
a state is reachable by a specific input sequence, while leaving all but the first state ŝ

unconstrained allows us to check whether σ ∈ L(ŝ).

These checks could also be performed by calculating the set of transitions that are satisfied by
a step of σ and then checking whether there is a hitting set of transitions, i.e., one transition
for each of these sets, that result in a contiguous sequence of transitions through the model.
However, this approach requires either significantly more invocations of the SMT solver or
valuations for all variables at every step of the sequence, along with a method to evaluate
the satisfaction of first-order logic formulas. For the sake of simplicity, we did not implement
this specialised approach, opting instead for the simpler and more general SMT solver based
one.

3.8.5 Distinguishing Sequence Calculation

Determining whether there is a distinguishing sequence for two valuation sequences α and β
is one of the most common tasks during test suite generation. In Section 12, we define the
set of distinguishing sequences for α and β as follows:{︂

γ ∈ (DVar)∗ | α.γ ∈ L(M) ⇐⇒ β.γ ̸∈ L(M)
}︂

In other words, we aim to find a sequence that is possible after either α or β but not both.
Without loss of generality, we assume that the distinguishing sequence we find is possible
after α but not β, as we could simply swap the variables. We break this problem down as
follows: First, we define a fixed but unknown constant n as the smallest index at which some
sequence γ is possible after α but not β, i.e.

∀i < n : α.γi ∈ L(M) ∧ β.γi ∈ L(M) ∧

∀n ≤ j < |γ| : α.γj ∈ L(M) ∧ β.γj ̸∈ L(M)

We declare this n as a constant in the SMT problem:

( declare -fun n () Int)

Furthermore, we declare the indexes of the states reached by α and β as stateA and stateB:

( declare -fun stateA () Int)

( declare -fun stateB () Int)



Chapter 3. Complete Property Oriented Testing with SFSM Models 85

As before, when modelling valuation sequences, we model the distinguishing sequence by
creating sets of functions, one for each variable of the model and an additional one for the
state sequence. We then conditionally unroll the transition relation: the transition relation
only has to hold at some step i if i ≤ n. Obviously, we do not know n in advance and
may potentially need to unroll the transition relation up to the maximum length of |S| − 1.
However, if there is some n < |S| − 1, the solver does not need to explore further unrollings
beyond n.8 We enable this by adding constraints to the problem that only require the
transition relation to hold at a specific step if n is greater than that step. For the BRAKE

example, this is done as follows:

( declare -fun state (Int) Int)

( declare -fun v (Int) Real)

( declare -fun y (Int) Real)

( assert (and

( transRel ( state 0) (v 0)

(y 0) ( state 1))

(=> (>= n 1)

( transRel ( state 1) (v 1)

(y 1) (state 2)))

(=> (>= n 2)

( transRel ( state 2) (v 2)

(y 2) (state 3)))

(=> (>= n 3)

( transRel ( state 3) (v 3)

(y 3) (state 4)))

(>= n 0)

(<= n 3)

)

)

( assert (= (state 0) stateA ))

Now, up to index n, state, x and y model a sequence in the BRAKE model, starting in the
state corresponding to the index stateA.

The crucial step in this process is to require the sequence γ, which we have just modelled
to be possible after sequence α, to not be possible after sequence β. To achieve this, we
cannot simply state the inverse of the above. In that case, the SMT solver could select a γ

8Note that an SMT solver does not necessarily have to find a model where n is as low as possible over
all models for a given problem. Describing the problem like this simply allows for posing one problem with
the maximum unrolling up to |S| − 1 while also allowing the solver to pick sequences shorter than |S| − 1 as
models.



Chapter 3. Complete Property Oriented Testing with SFSM Models 86

( forall (( state1 Int) ( state2 Int) ( state3 Int) ( state4 Int ))
(not

(and
( transRel stateB (v 0) (y 0) state1 )
(=> (>= n 1)

( transRel state1 (v 1) (y 1) state2 ))
(=> (>= n 2)

( transRel state2 (v 2) (y 2) state3 ))
(=> (>= n 3)

( transRel state3 (v 3) (y 3) state4 ))
)

)
)

Figure 3.7: Distinguishing sequence calculation for the BRAKE example.

and a state sequence where that γ is not possible, while it may be entirely possible after
a different sequence of states. To exclude these possibilities, we need to argue about all
possible sequences of states evoked by the chosen γ. We need the sequence γ to not be
admitted by the transition relation after every possible sequence of states following β. To
formalise this in an SMT problem, we need to use the all-quantifier forall: For each step
in the distinguishing sequence, we introduce a bound variable. Using the forall quantifier,
we require some proposition to hold for all possible valuations for the bound variables. In
this case, the possible valuations are state indexes. For each i ≤ |S| − 1, we introduce a
bound variable statei that is the target state of the transition at step i. The source state of
the first step is the target state of β. We then pose a problem to the SMT solver where, in
addition to the sequence being possible after α, the sequence must not be possible for at
least one step i ≤ n after β for every sequence of states. For the BRAKE example, this is done
as shown in Figure 3.7.

This means, that for any sequence of states, starting from stateB, the distinguishing sequence
must not satisfy all transition relation function calls, meaning that at least one step in the
distinguishing sequence must not be possible per sequence of states.

Finally, we require that stateA is the state reached after α and stateB is the state reached
after β or vice versa. To achieve this, we determine the target states of α and β as described
in Section 3.8.4 and subsequently constrain stateA and stateB accordingly:

( declare -fun aIsAlpha () Bool)

( assert (and (= (ite aIsAlpha stateA stateB ) ...)

(= (ite aIsAlpha stateB stateA ) ...)))



Chapter 3. Complete Property Oriented Testing with SFSM Models 87

Note that for non-deterministic SFSMs, this is a significantly more complex problem: While
constraining stateA and stateB to be a set of states is not hard, we need to pose a problem
where a sequence that is possible for at least one value for stateA is not possible for any
value of stateB. To this end, we can introduce another forall operator, quantifying over
stateB and weakening the constraint in Figure 3.7 such that it does not need to hold if
stateB is not one of the states where the sequence must not be possible. Alternatively, we
can unfold the problem, resulting in a conjunction of several instances of this problem, one
for each value of stateB.

3.8.6 Abstraction Calculation

In Section 2.6.2 we introduce an abstraction operator ω in Definition 22 and use it during
test suite construction to determine whether two sequences need to be distinguished. This
decision can be made by checking whether two valuation sequences α, β are distinguishable
under ω, i.e., whether there is a continuation of some valuation sequence α that is not a
continuation of β under abstraction in Ω(L(M)):

∃γ : ω(α.γ) ∈ Ω(L(M)) ∧

ω(β.γ) ̸∈ Ω(L(M))
(3.59)

We can solve this problem by creating an SFSM Mabs whose language can be seen as the set
of all models for the elements of Ω(L(M)) as described in Definition 19.

L(Mabs) =
{︃
σ ∈

(︂
DVar

)︂∗ |∃σabs ∈ Ω(L(M)) : σ |= σabs

}︃

Now the existence of a distinguishing sequence as described by Definition 25 can be determined
as outlined in Section 3.8.5 by determining a distinguishing sequence for α and β in Mabs.
Let γ be such a distinguishing sequence. We assume, without loss of generality, that
α.γ ∈ L(Mabs) and therefore β.γ ̸∈ L(Mabs). By construction of Mabs, this means that

∃σabs ∈ Ω(L(M)) : α.γ |= σabs ∧

∀σabs ∈ Ω(L(M)) : β.γ ̸|= σabs.

By Definition 19 we get

∃σabs ∈ Ω(L(M)) : ω(α.γ) = σabs ∧

∀σabs ∈ Ω(L(M)) : ω(β.γ) ̸= σabs

which yields Equation 3.59.

Now that we have established that determining the existence of a distinguishing sequence on



Chapter 3. Complete Property Oriented Testing with SFSM Models 88

Mabs solves the problem of determining whether two sequences are distinguishable under
abstraction, we need to find a way to determine Mabs. We propose the following process:

1. Define the state space S of M as the state space of Mabs.

2. Define the initial state s0 of M as the initial state of Mabs.

3. Utilise Algorithm 2.1 to determine the input output equivalence class partitioning of
AP over DVar and let P be the set of formulas defining the input output equivalence
classes as described in Section 3.5.1.

4. For each transition t = (s, ϕ, ψ, s′) in the transition relation R of M , identify the set
Φ = {p ∈ P | ∃σ ∈ DVar : σ |= p ∧ ϕ ∧ ψ}. This is achieved by formulating appropriate
SMT problems and checking them using an SMT solver. Then, separate each p ∈ Φ
into guard condition ϕ′ and output expression ψ′ and insert transition (s, ϕ′, ψ′, s′) into
the transition relation of Mabs. The separation is performed through syntactic analysis
as described in Section 2.5.2.

5. Define the set of guard conditions Σ′
I and the set of output expressions Σ′

O of Mabs as
the sets of all guard conditions and output expressions, respectively, of the transitions
created in the previous step.

Creating and solving the SMT problem to finding a distinguishing sequence for an SFSM
can now be performed on Mabs as described in Section 3.8.5.

3.8.7 Optimizations

Naive implementations of the algorithms above can incur large time costs, SMT solver
time being the biggest factor. While the times to solve individual problems are sometimes
well-nigh imperceptible, the time to generate a test suite with our first, straight forward
implementation turned out to be magnitudes longer than test suite generation times for
comparable FSMs, largely due to the SMT solver. As described in Section 2.9, solving SMT
problems is often NP-hard and SMT problems can be undecidable even, depending on the
theories. This makes limiting the usage of an SMT solver and optimising the SMT problems
posed all the more important. To do so for the problems described above, we leverage the fact
that many problems for test suite generation have large portions of their SMT problems in
common: The transition relation of the SFSM and the set of sequences that appear multiple
times like the state cover or the elements of the traversal set. By reusing the same solver
instance on multiple problems while allowing the solver to learn conflicts between formulas,
we can speed up the solving process significantly. Furthermore, learning the targets reached
by specific sequences or distinguishing sequences for some pairs of states can reduce the
SMT problems or avoid posing them altogether in some cases.

The general aim is to pose the simplest possible SMT problems and as few SMT problems
as possible. To achieve this, we obviously do not want to pose the same SMT problem more



Chapter 3. Complete Property Oriented Testing with SFSM Models 89

than once and want to give as many hints to the SMT solver as possible. We achieve this
by memoization, using the results of previous computations to simplify some problems, if
possible. Furthermore, we allow the SMT solver to learn clauses for the formulas we have
posed as parts of some SMT problems. Some SMT solvers, including Z3, derive new formulas
from conflicts between some parts of previously posed problems. These formulas encode this
knowledge of a conflict, potentially making the search for a model for a problem easier by
helping the solver to avoid these conflicting assignments (see CDCL [67]).

Conflict Driven Clause Learning To facilitate clause learning by the SMT solver, we
aim to reuse the same SMT solver instance for similar problems. This is achieved through
the use of incremental solving, where we initially pose a partial SMT problem consisting
only of function declarations and definitions. This can be done for the identifiers and the
transition relation of the SFSM currently being processed, as neither the identifiers nor
the transition relation change throughout the test suite calculation process. Subsequently,
we pose the different SMT problems that need to be checked for solutions. To prevent
interactions between these SMT problems beyond the learning of clauses, we introduce what
are known as local scopes by utilising the instructions (push) and (pop). A sketch of such a
solving process might look as follows:

( declare -fun v () Real)

( declare -fun y () Real)

( define -fun transRel (( s_pre Int) (v Real)

(y Real) ( s_post Int )) Bool

... ; transition relation definition

)

(push)

... ; SMT problem referring to v, y and transRel

(pop)

(push)

... ; another SMT problem referring to v, y and transRel

(pop)

Memoization

As the SFSM used for test suite calculation remains unchanged during the process, the
results obtained from SMT problems also remain unchanged. We retain the information
concerning the set of reached states for every sequence during test suite generation, as well as
a distinguishing sequence for pairs of states or the fact that two states are indistinguishable.
A pair of states not being distinguishable does not occur on a minimal SFSM, which we
assume the model to be given as. However, the calculated SFSM abstraction may possess
indistinguishable states. We hypothesise, but have yet to verify, that maintaining a record



Chapter 3. Complete Property Oriented Testing with SFSM Models 90

of all discovered pairs of states that are indistinguishable under abstraction is cheaper and
straightforward than minimising the abstract SFSM. This approach benefits from the fact
that indistinguishability of states within an SFSM is transitive (see Equation (3.25)).

Application of Memoization for Reachability Calculation If we need to pose an
SMT problem to determine which set of states S′ is reachable from the initial state s0 with
a valuation sequence σ, we can check whether such a problem has already been proposed
and simply return that result. If not, we can conduct the same check for each prefix. If
there is at least one such prefix, we can utilise the result determined for the longest of these
prefixes, denoted as σ̂. Let Ŝ′ be the result for this problem and longest prefix, and σ′ be a
valuation sequence such that σ = σ̂.σ′. We can then modify the SMT problem described
in Section 3.8.4 by not restricting the initial state to s0, but to the states in Ŝ

′ and for the
remaining, shorter valuation sequence σ′.

3.9 Evaluation

To evaluate the approach described in this chapter for feasibility and whether it offers an
advantage over traditional equivalence testing, we implemented it and conducted experiments
using the described BRAKE and ABS/ESC examples.

3.9.1 Implementation and Setup

The approach has been implemented in the libsfsmtest as described in Section 3.8. We
packaged this implementation in Docker images, one to run the property-oriented test case
generation approach described in this chapter, and the other to run the analogous test case
generation approach for testing for equivalence. Using these images, we created Kubernetes
jobs to run on a Kubernetes cluster. Each job consisted of one run of the respective test case
generation method. All jobs were executed on a Kubernetes cluster, allocating one CPU
core and 16GiB of RAM for each job.

3.9.2 Parameters

The experiments were conducted for the BRAKE model and the ABS/ESC model9. For
each model, experiments were run for a range of additional numbers of states a permitted
in the implementation for the test suite to be complete. Experiments were run for a = 0,
a = 1, and a = 2. Moreover, for the property-oriented testing approach, the experiments
for the BRAKE model were conducted with one set of atomic propositions AP , while for
the ABS/ESC model, experiments were run with two sets of atomic propositions. For all
models, these sets of atomic propositions from LTL properties were sets with two elements,

9The ABS/ESC model has not been introduced in detail yet but will be in Chapter 4. For this evaluation,
just note that it has 11 internal states



Chapter 3. Complete Property Oriented Testing with SFSM Models 91

Table 3.11: Table illustrating the number of equivalence classes obtained in the experiments.
The first column identifies the model. The second column presents the number of equivalence
classes computed for the respective model and for the equivalence checking approach. The
third column shows the number of equivalence classes for the property-oriented testing
approach with the respective first (and in the case of the BRAKE model, the only) set of
atomic propositions. The fourth column displays the number of equivalence classes for the
property-oriented testing approach with the second set of atomic propositions.

Model #EQC #EQC1 #EQC2

BRAKE 20 25

ABS/ESC 195 195 199

potentially increasing the number of equivalence classes by a factor of four in comparison to
the equivalence testing case10. However, the actual increase in the number of equivalence
classes is much less severe. The numbers of equivalence classes for the models with and
without sets of atomic propositions from properties are shown in Table 3.11.

For the property-oriented testing approach, eight Kubernetes jobs were run per combination
of model, property and value for a. For the equivalence testing approach, eight Kubernetes
jobs were run per combination of model and value for a.

3.9.3 Results

For each test case generation run we tracked the number of generated test cases and its
runtime and determined the median value of these over the eight experiments run for each
combination of parameters. For the BRAKE model, these are shown in Table 3.12.

Evidently, for the BRAKE model and the property selected for the experiments, the property-
oriented testing approach produces significantly smaller test suites for the values of a we
experimented with. For a = 0, the test suite size is at 55.6% of the size of an equivalence test
suite, for a = 1 it is at 55.7%, and for a = 2 it is at 55.8%. While the number of required
test cases for the property-oriented approach seems to be getting closer to the required
equivalence test cases with larger a, the rate indicates that the property-oriented approach
will lose its advantage only at fairly large values for a. For the runtime, the property-oriented
approach appears to be at a disadvantage for low values of a. For a = 0 and a = 1, it
takes 2.2 and 1.9 times longer, respectively, than the equivalence test suite approach, while
for a = 2, its runtime is at 18% of the runtime of the equivalence testing approach. This
may indicate a larger fixed time cost, such as for the equivalence class calculation or the
abstraction construction, which can be made up for when generating test cases for a larger

10For the set of all experiment files and results, see Krafczyk [63]



Chapter 3. Complete Property Oriented Testing with SFSM Models 92

Table 3.12: Table showing the runtimes and test suite sizes, comparing the property-
oriented and the equivalence test case generation approach for the BRAKE example. The
first column indicates the number of additional states an implementation may have over the
reference model for the test suite to be complete. The second and third columns present the
number of test cases generated by the property-oriented approach and the duration required
for test case generation, respectively. The fourth and fifth columns display the equivalent
information for the equivalence test case generation approach. Bold numbers indicate where
one approach outperformed the other.

a PO EQ

#TC time [s] #TC time [s]

0 25 34.4 45 15.5

1 225 36.7 404 19.2

2 2025 54.6 3631 303.3

value of a.

For the ABS/ESC model, the median values for the numbers of test cases and runtimes are
presented in Table 3.13.

Here, for this larger model with its 11 internal states, we begin to observe the limitations of
these approaches. Both the property-oriented testing approach and the equivalence testing
approach can generate test suites for a = 0, but for larger values, both run out of memory.
Although this may be mitigated by offloading some of the data to other locations whilst it is
not immediately needed or by allowing for more RAM, it suggests that these approaches,
or at least our implementations, may not be practical for larger models. However, the
property-oriented approach appears advantageous from the outset at a = 0, generating
smaller test suites in less time, and can also complete test suite calculation for a = 1, where
the equivalence testing approach runs out of RAM. This suggests that property-oriented
testing may enable testing larger models where equivalence testing is infeasible. The test
suite size for the property-oriented approach for property 2 and a = 0 is 536, which is just
11% the size of the test suite for the equivalence tests of the ABS/ESC model for a = 0.
The runtime of the property-oriented testing approach is also superior. This may further
support the hypothesis proposed in the discussion of the results for the BRAKE model: the
property-oriented testing approach seems to have initial costs that do not grow with test
suite size and can therefore be recovered when test suite sizes are sufficiently smaller.



Chapter 3. Complete Property Oriented Testing with SFSM Models 93

Table 3.13: Table showing the runtimes and test suite sizes, comparing the property-
oriented and the equivalence test case generation approach for the ABS/ESC example. The
first column indicates the number of additional states an implementation may have over the
reference model for the test suite to be complete. The second and third columns present the
number of test cases produced by the property-oriented approach using the first set of atomic
propositions and the duration required for test case generation, respectively. The fourth
and fifth columns present the equivalent information for the property-oriented approach
for the second set of atomic propositions, while the sixth and seventh columns do so for
the equivalence test case generation approach. Bold numbers indicate where one approach
outperformed the other.

a PO1 PO2 EQ

#TC time [s] #TC time [s] #TC time [s]

0 569 1068.7 536 1062.7 4846 1122.9

1 20015 6472.0 17306 5276.0 N/A N/A

2 N/A N/A N/A N/A N/A N/A



Chapter 4
Complete Property Oriented White-Box Testing
without a Reference Model

4.1 Motivation and Overview

While the previous approach paved the way for complete property-oriented testing, its
reliance on a reference model may reduce its appeal to users. After all, there might not be
any model present during the testing phase. Reasons for this could be that no model has
been created as part of the specification, that it is not available to the people responsible
for testing, or that a model was developed but changes to the specification have left that
model in need of updating. Even if there is some form of model for the current version of the
specification, this model might be unfit for the previously mentioned approach. This could
be due to circumstances like the model being just a semi-formal model or existing only in a
formalism that is not trivially convertible to SFSMs.

In our experience, a testing team being supplied with a specification but no formal model
is not just a hypothetical occurrence but rather common. Currently, given model-based
test case generation approaches, testing teams can go the route of either crafting a model
themselves or choosing a different approach that is not model-based. While the creation of
a model can be a process of furthering one’s understanding of the specification, it is also
costly. Choosing a different approach to test case generation might be feasible and result
in cheaper test case generation. In property-oriented testing, however, the choice of test
case generation processes that are complete and do not require a model is limited. To the
best of our knowledge, only model learning approaches achieve this. These observe the IUT
behaviour during tests created without a model and learn a formal model for its behaviour.
When the learnt model is guaranteed to cover the whole behaviour, it can be checked for
property violations. This is, in some sense, the reverse approach to the previous one: While
in the previous approach, an existing model would be checked to fulfill a given property and
then used to generate test cases that determine whether the IUT deviates from the model
only in ways that do not violate the property, in this approach, the model is built from
executing the IUT and learning its behaviour, which can be seen as first executing sequences
from which a model is built that is then checked for property violations.

94



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 95

Here, we present an approach that aims to be complete without requiring a model and is also
based on model learning. However, we claim that learning a complete model is not always
necessary. In fact, our approach terminates as soon as either a violation of the property under
test has been found or the IUT is known to be free of property violations. Furthermore, we
argue that the latter can sometimes be determined before we know the model to be an exact
model of the IUT. Our approach is applicable in white-box module testing, where the source
code of the implementation is known, and a test case can be executed in a step-wise manner.
This involves applying stimulations to the IUT and observing outputs after the reaction to
the stimulus has ended and the control flow returned to the test execution environment. More
restricted grey-box testing settings, where not the whole source code but only certain parts
are known, are also possible, as will be clarified in subsequent sections. Section 4.2 describes
the general ideas for the approach presented in this chapter. In Section 4.3, we introduce
the example ABS & ESC system from Section 1.3.2 in more detail. Then, Section 4.4
provides a detailed description of our method, which we evaluate in Section 4.5. Finally,
Section 4.6 outlines some optimisations that could further improve this method but were not
implemented.

4.2 Idea

As mentioned in Section 3.3.1, Bauer et al. [36] describe a technique to generate a runtime
verification monitor for some given LTL property ϕ. This monitor is assumed to be executed
in parallel to some IUT and is supposed to indicate the satisfaction or violation of ϕ. The
output of the monitor is ⊤ if every possible continuation of the executed trace will not
violate the property and is ⊥ if there is no continuation of the currently executed trace that
will fulfill the property. In other words, if some trace σ is observed for which the monitor
outputs ⊤, all computations that are continuations of σ fulfill ϕ. If however, the monitor
outputs ⊥, σ is a so called bad prefix and all computations that are continuations of σ will
violate ϕ. The constructed monitor has a third output ? which signifies that there are both
satisfying and violating continuations of the current execution. These outputs map nicely
onto common verdicts during testing: pass, fail and inconclusive.

Executing this monitor in parallel with some IUT has several desirable properties. Firstly,
and most obviously, it allows for the assessment of whether the running system violates a
property or if a future violation of that property can be ruled out. This is its primary use in
the field of runtime verification. In testing, the monitor can be used to determine whether
further exploration of the IUT’s behaviour is necessary after some observed execution σ. If
the monitor evaluates to ⊥, the test case can be terminated early as in this case, a property
violation has been found, which usually prompts the halt of test case execution. Depending
on the purpose of the test campaign, the whole test suite execution can often be halted as
well, as usually the verdict fail can be determined from this.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 96

The monitor’s advantage lies in its ability to produce useful results for executions other than
test cases, such as those encountered in production environments and random or fuzz testing.

However, this approach is insufficient for checking the satisfaction or violation of arbitrary LTL
properties. The authors demonstrate that a subset of all LTL formulas cannot be monitored.
While the violation of LTL safety properties and the satisfaction of LTL cosafety properties
can be detected on finite sequences, there are formulas where the monitor constructed by
their approach cannot determine either outcome.

Peled et al. [41] describe an approach called black-box checking where the IUT is executed,
its behaviour learned, and the resulting behavioural model checked for violations of the given
LTL property ϕ. They learn an automaton describing a set of computations with symbols
from a finite set Σ, with the goal of determining whether any of these computations violate ϕ.

They assume a bounded number of internal states of the IUT and an upper bound m on
this number. Furthermore, there needs to be a finite and discrete set Σ of inputs, and the
IUT must be deterministic. The model for the IUT can be seen as a deterministic Mealy
automaton, where each state accepts a subset of symbols from Σ and where the output of
the automaton for a given symbol indicates whether the symbol is accepted in the state the
automaton is in. For symbols that are accepted in the current state, the model contains a
transition with the accepted symbol as input and a symbol signifying acceptance as output.
The target of this transition is some state in the model. For symbols that are not accepted
in the current state, the output indicates non-acceptance accordingly. This can be modelled
by a transition labelled by the symbol that is not accepted and with the current state as the
target.

For each input applied to the IUT, there must be an indication of whether the input was
accepted, i.e., whether the input was possible in the state the IUT was in when the input
was applied. This (non-)acceptance can be seen as the system’s output.

Peled et al. explore different paths to proceed: By applying sequences of input symbols
from Σ and observing whether the IUT accepts the inputs, a model describing the IUT’s
behaviour regarding acceptance and rejection of the elements of Σ in its states is learnt.
This is done by building a |Σ|-ary tree where each path from the root to a leaf is a sequence
of symbols from Σ accepted by the IUT. After constructing this tree to a depth of 2m− 1,
there is a unique FSA1 over alphabet Σ with at most m states for which this tree exactly
describes the set of all words up to length 2m− 1 in the language of this FSA. The language
of this FSA is equivalent to the language of the IUT. Given the Büchi automaton P for the
negated property ¬ϕ and one such FSA M , checking whether Tr(M)↓Σ ∩ L(P ) is empty
reveals whether the IUT implements behaviour violating ϕ. This is analogous to classical
model checking but with a model inferred from the IUT.

1up to isomorphism



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 97

Building the |Σ|-ary tree can require enormous amounts of runtime and memory resources for
large |Σ| or m, but is necessary before checking for violations of ϕ. The runtime complexity
is given as O(m|Σ|2m−1 + |Σ|bm), where b is the number of states in the Büchi automaton
corresponding to ¬ϕ. If ϕ is a safety formula, it is possible to stop the tree construction and
IUT exploration when a sequence violating ϕ is found, as discussed in Section 2.6. However,
this approach is not explored by Peled et al. [41] and is not generally useful. Therefore, they
propose another approach with a much better best-case runtime complexity. It is based on
the fact that the non-emptiness of Tr(M)↓Σ ∩ L(P ) can be inferred if a finite sequence of a
certain structure that is a prefix of a violating computation is found. This is due to LTL
properties being ω-regular properties where some suffix repeats infinitely often. Proving that
a finite automaton can perform such computations can be done by finding finite sequences
of a certain form executable by the IUT. Peled et al. describe how to exploit this fact by
enumerating all these finite sequences and testing whether the IUT can perform any of them.
While this approach can perform much better than the previous one if a violation of ϕ is
found in the IUT, the worst-case runtime complexity is exponentially worse if b > 1, given as
O(m2|Σ|2bmb). The worst case occurs if the IUT is free of violations of ϕ which, in a perfect
world, finally happens at the end of the development of the IUT.

Finally, they propose a third approach that can find violations of ϕ faster than the first
approach but performs better than the second if the IUT conforms to ϕ. They modify
the model learning algorithm L∗ proposed by Angluin [68], which models the learning
process as a game between a minimally adequate teacher and a learner. The learner poses
two types of queries to the teacher: membership queries asking whether some sequence of
symbols is an element of the IUT’s language, and equivalence queries asking whether some
model is equivalent to the IUT. They proceed as follows: They iteratively build FSAs that
are hypotheses for the behaviour of the black-box FSA B equivalent to the IUT, using
membership queries as proposed by Angluin. However, when there is a hypothesis automaton
Mi, a minimal FSA matching the behaviour observed so far, the minimally adequate teacher
required by Angluin, which would usually either confirm that L(Mi) = L(B) or return
a counterexample t from the symmetric difference of L(Mi) and L(B), is replaced by
a mechanical process. In a first step, they check whether Mi allows for any sequences
that violate ϕ as described in their second approach, trying to find σ1 and σ2 where
σ1. σ2 ∈ Tr(Mi)↓Σ ∩ L(P ) and checking whether σ1. σ

m+1
2 ∈ L(B). If this is the case, a

violation of ϕ has been found. However, if not, since σ1. σ
m+1
2 ∈ L(Mi), a counterexample

invalidating the hypothesis has been found. If Mi does not allow for such a sequence violating
ϕ, they perform an equivalence check as proposed by Chow [69] and Vasilevskii [70]. The
equivalence check by Chow and Vasilevskii, the W-method, is performed by calculating a
state cover Vi and a characterisation set Wi for Mi. The state cover Vi is equivalent to the
one described in Chapter 3. Characterisation set Wi is a set of sequences such that no two
distinct states in Mi show the same behaviour for all sequences in Wi. In this case, no two



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 98

states in Mi accept the same subset of Wi. The full test suite T S is then described as

T S = Vi.

⎛⎝m−n′+1⋃︂
k=0

Σk

⎞⎠ .Wi.

Here, n′ is the number of states of Mi. To limit this method in its complexity, they apply
this method incrementally. Defining

T Sm′ = Vi.

⎛⎝m′−n′+1⋃︂
k=0

Σk

⎞⎠ .Wi

where Vi and Wi are the state cover and charactersiation set of Mi, respectively, they first
perform an equivalence check for Mi and B with T Sn′ , where n′ is the size of the state
space of Mi, then with Wn′+1,Wn′+2, . . .Wm until an error is uncovered by the test suite.
Assuming that B actually has m̂ states with m̂ ≤ m, we know that we will either uncover
an error with test suite Wm̂ or find no error at all. As m̂ is unknown, we have to perform all
test suites up to Wm in case L(Mi) = L(B). Assuming Wm passes on B, it follows from the
assumption, that m̂ ≤ m. Furthermore, as these equivalence checks are only performed if
Mi does not violate ϕ, the fact that B does not violate ϕ follows.

Peled et al. give two runtime complexity formulas for this last approach:

• O(m̂3|Σ|m̂ + m̂2bm) if B violates ϕ

• O(m̂3|Σ|m̂ + m̂3|Σ|m−m̂+1 + m̂2bm) if B does not violate ϕ.

Comparing this to the worst-case runtime complexity of the other proposed approaches, this
one is more desirable for realistic systems, as the exponents for the alphabet size |Σ| are
significantly less than in the other approaches.

Upon further examination of the learning algorithm that contributes the term m̂3|Σ|m̂

to the runtime complexity, we observe that the process of exploring the IUT is at most
cubic in the number of states and quadratic in the size of the longest counterexample
returned by the minimally adequate teacher. Other approaches improving on the result of
Angluin [68] have even lower complexity [71, 72, 73, 74], stating that they need to apply
O(|Σ| · l · m̂2 + m̂ · l · logl) input symbols to the IUT to learn an automaton, where l is the
length of the longest counterexample provided by the minimally adequate teacher. The
increase in runtime complexity to m̂3|Σ|m̂ is due to the equivalence queries, which the
automata learning approaches mentioned above do not include in their complexity analysis.
During learning, these equivalence queries are typically performed at most m̂− 1 times.

To perform the equivalence queries, several methods to generate test suites suitable for
black-box testing of equivalence between two automata have been proposed, improving on
the W-method [42, 57, 75, 44]. However, while these methods tend to produce smaller test



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 99

suites, the runtime complexity of the produced test suites remains m̂3|Σ|m−m̂+1, the same as
with the W-method. Therefore, to learn a model efficiently, we rely on realistic estimations
of the state space size. By using expert knowledge or static code analysis, m can sometimes
be exactly m̂, significantly reducing the cost of equivalence queries. However, in general,
calculating a tight upper bound on the number of states may be hard or even undecidable,
making the complexity of the equivalence queries a potential threat to the feasibility of the
approach above.

One of the innovations in our approach is the idea that the number of times equivalence queries
are performed can be significantly reduced if we attempt to reach as many distinguishable
states as possible on our own, without relying on the minimally adequate teacher to provide us
with a counterexample. The technique of fuzzing has gained traction for several decades [76,
77] as a tool to quickly and efficiently execute an implementation and discover its behaviour,
often used to find undesirable behaviour. Böhme et al. [78] describe fuzzing as a process of
learning the behaviour of a program and optimising to learn as much as possible, as fast as
possible. Fuzzing is an incomplete learning technique, but the innovations and tool support it
has gained in recent years offer ways of rapid exploration of the behaviour of a fuzzing target.
Harnessing this power for a complete learning approach, supported by on-the-fly checks of
property violations, promises the feasibility of a complete approach to property-oriented
testing without a user-supplied model. Property-oriented testing driven by fuzzing has been
explored previously, for instance by Meng et al. [79]. However, to the best of our knowledge,
there is no complete approach to property-oriented testing without a user-supplied model,
let alone one driven by fuzzing.

4.3 Running Example: ABS & ESC System Implementation

While an implementation of the running example described in Section 3.1.1 would suffice
to explain our motivation and approach, that example is too simple to be interesting due
to the low number of internal states, the fact that every internal state is reachable from
the initial state with just one transition, and the relatively low number of guard conditions,
output expressions, and therefore input output equivalence classes. This makes discovery of
all states and potential property violations in just a few fuzzing iterations very likely.

We therefore use an implementation of the ABS & ESC system described in Section 1.3.2,
which is more complex in those regards.

Our C++ implementation of this controller has approximately 700 lines of code, processes 6
input variables of type double, and writes to the three output variables – VI, VO, and P – two
of which, VI and VO, are boolean, while P is three-valued. The module behaviour depends
on 11 internal control states.

Table 4.1 shows the LTL properties we derived from the requirements described in Sec-



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 100

tion 1.3.2, which were tested on the example implementation.

4.4 Approach

4.4.1 Overview

Inspired by the ideas described above, we published a novel procedure [6] to test an IUT
for violations of some property ϕ. As with model-based property-oriented testing described
in Chapter 3, we assume that the relevant portions of the behaviour of the IUT I can be
modelled as a completely specified and deterministic SFSM. This implies that there are finite
sets of input variables I and output variables O, with Var = I ∪O, a possibly infinite set
DV ar of valuations for these variables and sets ΣI and ΣO of guard conditions and output
expressions.

This contrasts the preconditions of the approach by Peled et al. [41], where the alphabet
was a finite set of discrete symbols and the implementation was assumed to be equivalent
to an FSA. Unlike their approach, we assume that the implementation always responds to
applied inputs with some output and admits changes of the internal state, i.e. every input is
defined in every internal state. Again, an input is applied by supplying valuations for the
variables in I to the IUT, while the outputs the IUT is assumed to produce for each input
are valuations of the variables in O.

Furthermore, we assume the existence of a finite set of guard conditions over variables from
I and a finite set of output expressions over variables from Var. We also assume that we
know supersets ΣI and ΣO, respectively, of these sets prior to testing. Given the source
code of the IUT, where sets I and Var relate to variables in the interface of this module, we
can determine ΣI and ΣO by static analysis of the source code. This involves extracting
branching conditions over variables in I and assignment expressions to variables from set O
as ΣI and ΣO. After obtaining sets ΣI and ΣO, we can calculate the input output equivalence
class partitioning A for Σ = ΣI ∪ ΣO as described in Section 2.5.2. From this, we can
determine an input cover AI that is suitable to execute every transition in the model of the
IUT. Using a fuzzer, we then explore the implementation. We allow the fuzzer to choose the
sequences of input valuations to apply and observe the outputs produced. Simultaneously,
we check the observed behaviour of the IUT for safety violations and store the sequences of
pairs of applied inputs and observed outputs for the model learning process. If ϕ is a safety
formula and the fuzzer finds a sequence of input valuations for which the implementation
violates ϕ, we abort the test with a FAIL verdict. However, if the fuzzer does not reach such
a violation after a number of input sequences specified a priori, we stop the fuzzing process
and switch to learning the implementation. Initially, we use the sequences observed during
fuzzing as a baseline dataset for the learning process. We proceed to learn a model for the
implementation until either a violation of ϕ is found or the learnt model is determined to
be equivalent to the implementation. While learning the model, we check the intermediate



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 101

Table 4.1: The LTL properties tested for on the example ABS and ESC implementation.
The first column states the LTL formula while the second gives a textual description.

LTL formula Description

G((driverBrakes ∧ vR ≥ vmin ∧
λ ≤ ϕ ∧ α ≤ a− ∧
|yaw| ≤ θ ∧ |β| ≤ ξ)
=⇒ (¬VI ∧ VO ∧ ¬P))

Whenever the driver brakes while the
velocity is above the minimum activation
velocity vmin and when there is negative slip
that is less than threshold ϕ,
the wheel circumference is decelerating
and the car is not yawing to either side
more than θ radians per second while
the driver is not steering more than ξ radians
to either side, then valve VI shall be closed,
VO opened, and the brake pump P shall be off
to release brake pressure.

G((driverBrakes ∧ vR ≥ vmin ∧
yaw < −θ ∧ |β| < ξ)
=⇒ (¬VI ∧ VO ∧ ¬P))

Whenever the driver brakes while the
velocity is above the minimum activation
velocity vmin, the car is yawing to the left
more than θ radians per second while
the driver is steering relatively straight (not more
than ξ radians to either side), then valve VI
shall be closed, VO opened, and the brake pump
P shall be off to release brake pressure.

G(P = SLOW ∧
X(driverBrakes ∧ vR ≥ vmin ∧
α > a− ∧ |β| < ξ ∧ yaw ≥ −θ)

=⇒
X(P = SLOW))

Whenever the brake pump is increasing the
pressure slowly, it will continue to do so
if the pressure is still too low
for the acceleration α of the wheel’s circum-
ference to be below a− and if the driver contin-
ues braking and steering straight ahead, the road
conditions stay symmetric and the vehicle is mov-
ing fast enough for the system to be active.

G((α < −a ∧ driverBrakes ∧
vR ≥ vmin ∧
|β| < ξ ∧ yaw ≥ −θ)
=⇒

((¬VI)
W

¬(α < a− ∧ driverBrakes ∧
vR ≥ vmin ∧
|β| < ξ ∧ yaw ≥ −θ)))

Whenever the acceleration of the wheel’s circum-
ference is less than a− while the driver is braking,
the vehicle velocity is above the minimum activa-
tion velocity, the driver is steering relatively
straight ahead (no more than ξ radians to either
side), and the vehicle is not turning to the left
more than θ radians per second, the brake pres-
sure will not be increased until any of these con-
ditions change.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 102

results for violations of ϕ by finite state automata model checking as described in Section 2.10,
following the idea of Peled et al. to improve the runtime of the algorithm.

4.4.2 Detailed Approach Description

We divide our approach into three different phases – initialisation, fuzzing and learning –
which are run in that order and will be described in detail in the following. The parameters
for these phases are the following:

I A set of primitively-typed input variables that can be manipulated
on the IUT.

O A set of primitively-typed output variables that can be observed on
the IUT.

DVar A possibly infinite set of allowed valuations for the variables in Var =
I ∪O.

ϕ An LTL property under test over variables in Var

ΣI A (not necessarily strict) superset of the set of guard conditions of
the IUT. They can be extracted from the code of the IUT via static
analysis.

ΣO A (not necessarily strict) superset of the set of output expressions of
the IUT. They can be extracted from the code of the IUT via static
analysis.

m An upper bound on the number of internal states the IUT has.

rmax An upper bound on the number of fuzzing rounds.

We show an overview of the proposed method in Algorithm 4.1.

The details of this approach will be discussed in the remainder of this section, discussing the
three phases of the algorithm shown in Algorithm 4.1 in order.

In the following, we use the fact that before applying input valuations to some SFSM I,
we have obtained a corresponding input cover AI and we restrict the application of input
valuations to said SFSM to elements of AI . The idea is to only apply inputs from AI during
testing, abstract these to FSM input symbols, and abstract the valuation observed on the
SFSM to an FSM output symbol. From these symbols, we can later deduce SFSM transitions
corresponding to the observation.

As discussed above, we later want to create test suites for an FSM with alphabets Σ̂I and
Σ̂O. These are the images of the input and value abstractions of the SFSM we test. For any
test case in these test suites, we can obtain an input sequence for the SFSM I by performing



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 103

Algorithm 4.1: White box module testing strategy.

Input: Implementation I
Input: Set of guard conditions ΣI

Input: Set of output expressions ΣO

Input: LTL property ϕ
Input: Set of valuations DVar

Input: Maximal number m of states in I
Input: Maximum number of rounds of fuzzing rmax
Output: Verdict PASS or FAIL

1 function fuzzingBlackBoxLearner(I, ΣI , ΣO, ϕ, DVar, m, rmax) begin
// Phase 1: Initialisation
// Compute set of input output equivalence classes A, input cover

AI, runtime monitor P and Büchi automaton B¬ϕ

2 (A, AI , P,B
¬ϕ)← initPhase(ΣI ,ΣO, ϕ,DVar);

// Phase 2: Fuzzer guided exploration
// Yields either violation or observation tree T of sequences

observed on I
3 (violation, T )← fuzzPhase(I, rmax, AI ,A, P,m);

// If the fuzzer found a property violation
4 if violation then
5 return FAIL; // Terminate testing with verdict FAIL
6 end

// Phase 3: Learning and checking
7 conforms← learningPhase(I, AI ,A, T, P,B¬ϕ);
8 if conforms then

// If there was no property violation found during learning
9 return PASS; // Conclude testing with verdict PASS

10 else
// If there was a property violation found during learning

11 return FAIL; // Conclude testing with verdict FAIL
12 end
13 end



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 104

an input concretisation to said SFSM.

We will now prove that violations of ϕ can be detected on the FSM abstraction. To this end,
we first introduce notation for computations of an FSM abstraction being a model for an
LTL formula.
Definition 33. Let ϕ be an LTL formula over atomic propositions in set AP and A an
input output equivalence class partitioning of a valuation domain DVar with respect to a set
Σ with AP ⊆ Σ. Furthermore, let Σ̂O be an alphabet of size |A| and fO be defined with
respect to this Σ̂O and A (s. Definition 13). Finally, let σ be a sequence in (DVar)ω and σ′

in Σ̂ω
O with fO([σ]) = σ′. Then we say that σ′ is a model for ϕ, denoted as σ′ |= ϕ if and

only if σ |= ϕ.

One can show that all valuation sequences which operator [·] maps to the same infinite
sequence a of input output equivalence classes satisfy the same LTL properties, as AP ⊆ Σ.
Thus, as fO is bijective, the definition of LTL formula satisfaction for elements of Σ̂O is
rather natural.
Lemma 3. Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be an SFSM, ϕ be an LTL formula over
atomic propositions in set AP and A an input output equivalence class partitioning of DVar

with respect to set Σ = ΣI ∪ ΣO ∪AP . Furthermore, let AI be an input cover of A and M ′

be an FSM abstraction of M with fI and fO as defined in Definitions 12 and 13.

Now assume there is a computation σ ∈ Tr(M) such that σ|Var |= ¬ϕ. Then there is a
computation σ′ ∈ Tr(M ′) such that σ′|Σ̂O

= fO([σ|Var]) and σ′|Σ̂O
|= ¬ϕ.

Proof. We assume that there is a σ ∈ Tr(M) such that σ|Var |= ¬ϕ. We can then derive the
sequence i/o with o = [σ|Var] ∧ i = fAI

(o) and from this the sequence σ′ = f I(i)/fO(o) for
which we know that it is in Tr(M ′) by construction. By Definition 33, fO(o) |= ¬ϕ.

From Lemma 3 we now know that if there is a computation in an SFSM that is a violation of
some LTL property, we can also detect it in the FSM abstraction of the SFSM. We can also
show the reverse direction, which, together with Lemma 3 shows that an FSM abstraction
violates a property if and only if the SFSM violates it.
Lemma 4. Let M = (S, s0, I, O,ΣI ,ΣO,DVar, R) be an SFSM, ϕ be an LTL formula over
atomic propositions in set AP and A an input output equivalence class partitioning of DVar

with respect to set Σ = ΣI ∪ ΣO ∪AP . Furthermore, let AI be an input cover of A and M ′

be an FSM abstraction of M with fI and fO as defined in Definitions 12 and 13.

Now assume there is a computation σ′ ∈ Tr(M ′) such that σ′|Σ̂O
|= ¬ϕ. Then there is a

computation σ ∈ Tr(M) such that σ′|Σ̂O
= fO([σ|Var]) and σ|Var |= ¬ϕ.

Proof. We assume there is a computation σ′ ∈ Tr(M ′) such that σ′|Σ̂O
|= ¬ϕ. From σ′|Σ̂O

we can construct a sequence from Aω using f−1
O . Let o be this sequence. Then fO(o) = σ′|Σ̂O

.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 105

As M ′ is an FSM abstraction of SFSM M , we know that there must be a computation
σ ∈ Tr(M) with o = [σ|Var]. From Definition 33 we know that σ|Var |= ¬ϕ.

Büchi Automaton Usage for Model Checking of FSM Abstractions

To be able to perform the model checking of the intermediate FSM hypotheses produced
during learning, we need to construct a cross product between the FSM to be checked and
a Büchi automaton for formula ¬ϕ, as described in Section 2.10. When constructing a
Büchi automaton B for LTL property ¬ϕ ⊆

(︂
2AP

)︂ω
, the alphabet Σ of the resulting Büchi

automaton is equivalent to the set 2AP . The intermediate FSMs produced during learning
are FSMs over the alphabets Σ̂I and Σ̂O, which are in a bijective relation with input cover
AI and input output equivalence class partitioning A, respectively. As motivated above, we
want to judge whether any of these FSMs violates ϕ (or models ¬ϕ). Assuming that AP ⊆ Σ
over which the input output equivalence classes are computed, we can cleanly map each
input output equivalence class from A to an element of 2AP using the ω abstraction operator
introduced in Definition 22. Observing valuation sequences on I stimulated by sequences
over the input cover, we collect a set of sequences in the FSM hypothesis by abstracting the
valuation sequences using f I and fO. From this set of sequences, we construct an FSM H
that is a hypothesis for the FSM abstraction of I. To check H for violations of ϕ, we can
translate the output symbols of H, which are in Σ̂O, to input output equivalence classes
from A, which in turn can be translated to a set in 2AP using ω. This allows for a definition
of the cross product H×B of the hypothesis and the Büchi automaton:
Definition 34. Let H = (Q, q0, Σ̂I , Σ̂O, R) be a hypothesis for an FSM abstraction and
B = (Q′, Q′

0,Σ, δ, F ) a Büchi automaton for LTL property ¬ϕ. The cross product H × B
of a hypothesis H and a Büchi automaton B is a Büchi automaton B̂ = (Q × Q′, {q0} ×
Q′

0,Σ, δ̂, Q× F ). The transition function δ̂ is defined as

δ̂ : (Q×Q′)× Σ→ (Q×Q′)

((q, qb), p) ↦→ {q′ | ∃(q, x, y, q′) ∈ R : ω(f−1
O (y)) = p} × δ(qb, p)

This definition allows for checking whether there are sequences in the FSM abstraction, and
by extension in the SFSM, that reach an accepting state in the Büchi automaton.

Obviously, checking whether the hypothesis violates ϕ amounts to checking whether L(B̂)
is empty. As mentioned in Section 2.10, this is an instance of automata-based LTL model
checking. With this tool at hand, we can start describing the details of the approach, which
incorporate the use of this model checking technique.

Initialisation Phase

In the initialisation phase, we calculate the input output equivalence classes A of DVar with
regard to Σ = ΣI ∪ ΣO ∪ AP , where AP is a set of propositions containing the atomic



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 106

propositions in ϕ. Also, we construct a minimal set of input valuations AI , which is an input
cover for A, the FSM alphabets Σ̂I and Σ̂O as described in Section 2.5.2, a runtime monitor
P for ϕ, and a Büchi automaton B¬ϕ. This automaton accepts all sequences of FSM output
symbols from Σ̂O, where the valuations in the sequence of valuations in Σ̂O violate ϕ. The
set AP can be extracted from ϕ as the set of subformulas that can be composed to form ϕ

using only LTL operators, including logical operators. An overview of all actions performed
is given in Algorithm 4.2.

Algorithm 4.2: Pseudo code for the initialisation phase.

Input: Set of guard conditions ΣI

Input: Set of output expressions ΣO

Input: LTL property ϕ
Input: Set of valuations DVar

Output: Set of input output equivalence classes A
Output: Set of input valuations AI

Output: Runtime monitor P
Output: Büchi automaton B¬ϕ for LTL property ¬ϕ

1 function initPhase(ΣI , ΣO, ϕ, DVar) begin
2 AP ← atomic propositions of ϕ;
3 A ← input output equivalence classes over DVarbased on ΣI ∪ ΣO ∪AP ;
4 AI ← input cover for A;
5 Σ̂I ← set of FSM symbols with |Σ̂I | = |AI |;
6 Σ̂O ← set of FSM symbols with |Σ̂O| = |A|;
7 P ← construct a runtime monitor for ϕ;
8 B¬ϕ ← construct a Büchi automaton accepting violations of ϕ;
9 return (A, AI , P,B

¬ϕ);
10 end

Runtime Monitor Construction Let ϕ be an LTL formula over a set of symbols
AP . Bauer et al. [36] describe the construction of a runtime monitor for LTL properties.
This runtime monitor uses three-valued semantics, where the monitor evaluates every
sequence of inputs to a value of type B3, which contains the three values ⊤, ⊥ and ?. The
construction of a runtime monitor for ϕ is as follows: First, nondeterministic Büchi automata
Bϕ =

(︂
Σϕ, Q

ϕ, Qϕ
0 , δ

ϕ, F ϕ
)︂

and B¬ϕ =
(︂
Σϕ, Q

¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ

)︂
are constructed that accept

all infinite sequences of sets of symbols from Σϕ = 2AP satisfying ϕ and ¬ϕ, respectively.
These are then used to define nondeterministic finite automata Âϕ =

(︂
Σϕ, Q

ϕ, Qϕ
0 , δ

ϕ, F̂
ϕ
)︂

and Â¬ϕ =
(︂
Σϕ, Q

¬ϕ, Q¬ϕ
0 , δ¬ϕ, F̂

¬ϕ
)︂

over Σϕ, that share the set of states, initial states
and transition relation with their respective Büchi automaton, differing only in the set of
accepting states and their semantics. The accepting states for Âϕ and Â¬ϕ are defined as



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 107

follows:

F̂
ϕ =

{︂
q ∈ Qϕ | L(Bϕ(q)) ̸= ∅

}︂
and

F̂
¬ϕ =

{︂
q ∈ Q¬ϕ | L(B¬ϕ(q)) ̸= ∅

}︂
.

This means that Âϕ accepts those finite sequences over Σϕ that can be extended to infinite
sequences accepted by Bϕ, and that Â¬ϕ accepts those finite sequences from Σϕ that can be
extended to infinite sequences accepted by B¬ϕ.

From these, using the powerset construction described by Rabin et al. [13], we can construct
equivalent deterministic finite automata Ãϕ and Ã¬ϕ, respectively. Here, Ãϕ has a single
initial state qϕ

0 , and Ã¬ϕ has a single initial state q¬ϕ
0 .

With these, we can define a Moore machine Aϕ =
(︂
Σϕ, Q, q0, δ, λ

)︂
where Q = Qϕ × Q¬ϕ

and q0 =
(︂
qϕ

0 , q
¬ϕ
0

)︂
is the pair of initial states of the deterministic automata. The transition

relation δ is defined as follows:

Given a pair of states (q, q′) ∈ Q and some symbol a ∈ Σϕ, the result of δ((q, q′), a) is the
pair of states that is obtained by applying δϕ and δ¬ϕ to q and q′, respectively:

∀(q, q′) ∈ Q : ∀a ∈ Σϕ : δ
(︁(︁
q, q′)︁, a)︁ =

(︂
δϕ (q, a) , δ¬ϕ (︁q′, a

)︁)︂
.

The output function λ : Q → B3, assigning the three values ⊤, ⊥ and ? to states of the
runtime monitor and thus to finite sequences over Σϕ, is defined as follows:

λ
(︁(︁
q, q′)︁)︁ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⊤ if q′ ̸∈ F̃¬ϕ

⊥ if q ̸∈ F̃ ϕ

? else.

This means that if a finite sequence u over symbols from Σϕ reaches an accepting state in Ãϕ

but not in Ã¬ϕ, indicating that there are infinite continuations of u which satisfy ϕ but no
infinite continuations of u violating ϕ, the monitor output is ⊤, indicating that all infinite
continuations of u satisfy ϕ. Conversely, if u reaches an accepting state in Ã¬ϕ but not in Ãϕ,
indicating that there are infinite continuations of u violating ϕ but no infinite continuations
of u satisfying ϕ, the monitor output is ⊥, indicating that all infinite continuations of u
violate ϕ. As infinite continuations of u always either satisfy or violate ϕ, u is guaranteed to
reach an accepting state in at least one of the two automata Ãϕ and Ã¬ϕ. Therefore, there is
only one case remaining, where u reaches accepting states in both Ãϕ and Ã¬ϕ. In this case,



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 108

the monitor output is ?, indicating that both satisfying and violating infinite continuations
of ϕ are possible.

We use Aϕ to determine whether an observed execution only has continuations violating
ϕ, thereby being a bad prefix for ϕ. As an observed execution is a sequence of valuations
from DVar and the runtime monitor takes subsets of AP as input symbols, we still need to
transform each observed valuation into such a set. However, for every valuation σ, this set is
simply the set

{p ∈ AP | σ |= p}

which can be determined by replacing all occurrences of variables from Var in each p ∈ AP
with the value assigned by σ and checking whether the resulting formula is true.

Fuzzing Phase

Having performed the initialization phase described above, we can start exploring the
behaviour of the IUT. While classical learning approaches usually explore the behaviour
in a systematic way, we initially use libfuzzer2, a coverage-guided fuzzer, which optimises
the exploration of the IUT. It does so by analysing the coverage achieved by the test cases
executed so far, trying to cover as much of the IUT’s control flow graph (CFG) [80] as
possible.

The interface the fuzzer uses to execute some behaviour of the IUT is independent of the
interface the IUT exposes. The fuzzer merely supplies a string of bytes which we interpret as
a sequence of indices into the input cover AI (s. Section 2.5.2). As shown above, AI is able to
cover all guard conditions in ΣI and all input output equivalence classes of the input output
equivalence class partitioning by construction. By our assumption that the relevant portions
of the behaviour of the IUT I can be modelled as an SFSM and that ΣI is a superset of
all guard conditions in that model, we know that AI can be used to cover all transitions in
the SFSM representation of the IUT. The fuzzer never directly deals with guard conditions
or states of the SFSM interpretation of the behaviour of the IUT but instead tries to cover
as much of the CFG as possible. When transitions in the SFSM representation depend on
the control-flow at least to some degree, the fuzzer helps discovering new states in trying to
cover the CFG.

We assume that the IUT offers an interface which accepts a single valuation in DI and
returns a single valuation in DV ar, and a single function resetting the state of the IUT to
the initial state. This can be achieved for arbitrary IUTs by wrapping it in a module doing
this, translating between applied valuations and stimulations as well as between outputs and

2https://llvm.org/docs/LibFuzzer.html with the current version archived at https://web.archive.
org/web/20240208182910/https://llvm.org/docs/LibFuzzer.html

https://llvm.org/docs/LibFuzzer.html
https://web.archive.org/web/20240208182910/https://llvm.org/docs/LibFuzzer.html
https://web.archive.org/web/20240208182910/https://llvm.org/docs/LibFuzzer.html


Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 109

returned valuations. From here on we assume any existing wrapper to be part of the IUT.

For each stimulation, some of the IUT’s code is executed and therefore a part of its CFG is
traversed. For IUTs with multiple internal states, some or all nodes of the CFG cause the
IUT to perform a change in its internal state, affecting its behaviour with regards to future
inputs. The fuzzer detects which parts of the CFG are executed due to instrumentation
inserted into the IUT during compilation. By maximising coverage of the CFG, the fuzzer
can find input sequences that lead to states of the IUT for which the systematic input
application of the learning approaches could take a lot longer to reach.

To stimulate the IUT and cover some part of the CFG, the fuzzer supplies a sequence of
integers, which we interpret as a sequence of indices over AI . First, we reset the IUT and
the runtime monitor, starting the application and observation of a new sequence. Then we
translate each index into the corresponding input valuation, stimulate the IUT with that
valuation, and observe the occurring output before continuing with the next integer in the
sequence provided by the fuzzer. We do this until all integers in the sequence of integers
have been translated into inputs and have been applied, or until we observe a violation of
ϕ. Borrowing terminology from learning algorithms like L∗ and L# [74], this process is
equivalent to an output query as described later. To avoid confusion, we will only talk about
input sequences applied to the IUT, where one input sequence application is equivalent to
one output query. Later, the sequences of applied inputs and observed outputs will be used
to construct an FSM.

When executing the IUT, we note all sequences of applied inputs and observed outputs in
an observation tree T . This data structure has been used in learning algorithms [44, 74] and
it is the same data structure that is used during the learning phase. It is used to efficiently
store the prefix closed set of all observed valuation sequences. To our knowledge, starting
a learning approach with a non-empty observation tree partially filled by a fuzzer has not
been investigated before.

Each node in the observation tree represents a fixed sequence of input valuations and output
valuations that were observed in response to the inputs. The root node represents the empty
sequence, and every edge that emanates from some node in the observation tree represents
the application of a single input and the observation of a single output. See Figure 4.1 for
an example.

We fill this tree by extending a designated current node, making the root node the current
node every time a reset of the IUT is performed. Every time an input σ is applied to the
IUT, a step is performed, and a valuation τ is observed. When the current node q does not
have an outgoing edge labelled with fI(σ) and some output, a child node q′ is created for
the current node. Then, a transition from q to q′ is inserted into the transition relation,
labelled with input symbol fI(σ) and output symbol fO(τ). If the current node q does have
an outgoing edge labelled with fI(σ) and some output, the child node at the other end of



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 110

q0

start

q1 q2

q3 q4

a/
y b/y

a/
y b/z

Figure 4.1: Example of an observation tree. An IUT for which this is an observation tree
generates an output symbol of y in the initial state for input symbols a and b. After applying
input symbol a in the initial state, the IUT answers with y to another application of input
symbol a but with z to an input symbol of b.

that edge becomes the current node for the next step. The process is shown in Algorithm 4.3.

Central to the learning algorithm introduced later is the concept of apartness [74], where
we can distinguish the internal state the IUT was in at some point for some applied input
sequence from the states reached by other input sequences. Informally, two input sequences
reach states in T that are apart from each other if these states exhibit different behaviour
in T for the same input sequences, i.e., behaviour distinguishing the states. We utilize this
concept to potentially halt the fuzzing phase early. If we detect that there is a subset S of
nodes in the observation tree where each pair of nodes from that set corresponds to a pair of
internal states that are apart from each other, and if |S| = m, i.e. the assumed upper bound
on the number of internal states, we can stop the fuzzing as we have discovered all states
we can reasonably expect to discover. However, since finding the largest of these subsets
reduces to the clique cover problem, which is NP-complete [81], we approximate the solution
and only calculate a lower bound ℓT for the number of discovered states.

In parallel to building the observation tree, the runtime monitor is executed, monitoring
whether the observed execution since the last reset violates the LTL property the monitor
was created for. Upon each reset of the IUT, the runtime monitor is reset to its initial state,
and with each input sequence application, the monitor processes the sequence of applied
input valuations and observed output valuations. This may result in an update to its internal
state and the provision of a runtime monitor output for the execution observed up to that
point. If the monitor output is ⊥, the whole test approach can be aborted as a property
violation has been found. However, if the runtime monitor output is ⊤ or ?, the test and the
execution of the current sequence of input valuations continue. Pseudo-code for the process
performed for each input sequence application is given in Algorithm 4.4.

The fuzzing phase can be parameterised. Firstly, we do not wish to continue fuzzing



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 111

Algorithm 4.3: Pseudo code for inserting a sequence into the observation tree.

Input: Observation tree T
Input: Sequence of observed valuations s

1 function insertInObservationTree(T , s) begin
2 q ← root node of T ; // start at root node of tree
3 while |s| > 0 do

// decompose s into head element and the rest
4 s0 ← s(1); // Head of s
5 s← s1; // The remainder of s

// Decompose first element into input and output valuations
6 σ ← s0|I ; // Input valuation of s0
7 τ ← s0|O; // Output valuation of s0
8 if q does not have child node q′ for fI(σ) then
9 insert child node q′;

10 lable edge from q to q′ with (fI(σ), fO(τ));
11 end
12 q ← q′; // Traversing the tree
13 end
14 end

indefinitely. Our aim is to argue that we have explored the IUT completely, which ultimately
requires a learning approach to learn an FSM abstraction of an SFSM model equivalent to
the IUT. This model can then be checked for violations of ϕ. If this check does not find any
violations, we have verified the IUT to satisfy ϕ. To terminate the fuzzing phase and utilise
the observations gained so far as a basis for the learning phase, we assume an upper bound
rmax to the number of input sequences applied by the fuzzer to be given. This, of course, is
only necessary if we neither find a violation of ϕ nor find m distinct states in the IUT.

A second parameter is seed, an integer that the fuzzer uses to initialise the pseudo-random
number generator it uses to pseudo-randomly generate and mutate the input sequences it
applies. Obviously, this can change the set of input sequences applied, which in turn changes
the initial observation tree the learning approach starts with.

The third parameter is the frequency of the calculation of the aforementioned approximation
ℓT of the clique cover. While we only calculate an approximation instead of solving an
instance of an NP-complete problem, the calculation is still rather expensive and scales with
the number of nodes in the observation tree. We specify this frequency with the number of
input sequences robs we apply between two calculations.

In summary, this phase of the approach runs as follows: The fuzzer initialises its pseudo-
random number generator with seed and generates a pseudo-random sequence of integers b.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 112

Algorithm 4.4: Pseudo code for applying an input sequence on the IUT and storing
the observations in the observation tree.

Input: Implementation I
Input: Observation tree T
Input: Runtime monitor P for LTL property ϕ
Input: Sequence x of input valuations from AI

Output: Verdict PASS or FAIL
1 function outputQuery(I, T , P , x) begin
2 reset I; // Reset the IUT
3 reset P ; // Reset the runtime monitor
4 y ← ε; // Initialise an empty sequence to store the observed

valuation sequence
5 while |x| > 0 do

// decompose x into head element and the rest
6 σ ← x(1); // First element of x
7 x← x1; // Suffix of x starting at the second element
8 τ ← step(I, σ); // Apply input σ to IUT and observe output τ
9 y ← y.(fI(σ), fO(τ)); // Append symbols for input and observation

valuation to y
10 monitorVerdict ← apply (σ, τ) to P ;
11 if monitorVerdict = ⊥ then
12 return FAIL;
13 end
14 end
15 insertInObservationTree(T , y);
16 return PASS;
17 end



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 113

We reset the IUT and runtime monitor, translate this sequence of integers to a sequence
of input valuations x and apply these, step by step, to the IUT while observing the output
valuations. Due to the IUT instrumentation, the fuzzer can detect which parts of the IUT’s
CFG are covered. It then pseudo-randomly mutates the sequence of integers, resulting in a
different sequence of input valuations to apply in the next IUT invocation. In practice, the
mutation of the integer sequences is more elaborate, with the fuzzer maintaining a list of
integer sequences that reached previously unreached nodes in the CFG, assigning a weight
to each which reflects an estimate of the probability that mutations of the given sequence
will cover previously uncovered parts of the CFG and selecting a sequence to mutate based
on these weights [78]. This process of mutating integer sequences, applying input valuations
and observing the IUT output is performed until rmax input sequences have been applied
or when we know to have reached m states or found a violation of ϕ. To know whether
we have reached m states, after every robs applied input sequences we calculate a lower
bound ℓT on the number of distinct states discovered so far. This procedure is also shown in
Algorithm 4.5.

Learning Phase

After the initial exploration of the system, we attempt to learn a model of the IUT’s
behaviour. During the fuzzing runs, we constructed an observation tree. While we may not
have observed any violations of ϕ, we cannot be certain that the IUT is free of such violations.
To this end, we employ a learning approach to build an SFSM that is equivalent to the IUT’s
behaviour and check that SFSM for violations of ϕ. For this purpose, we utilise the L#
learning algorithm described by Vaandrager et al. [74], which employs an observation tree as
its intermediate data structure. It is similar to L*, a well-known FSM learning algorithm
described by Angluin [68], but improves upon it by being more efficient.

As with L*, L# formulates the learning process as a game between a learner and a minimally
adequate teacher: The learner can pose two types of queries to the teacher, called Output
Queries and Equivalence Queries.
Definition 35. Output queries are queries to the teacher where a sequence of inputs is
given to the teacher which responds with the sequence of outputs the hidden Mealy machine
Ĥ that is to be learned produces.
Definition 36. Equivalence queries are queries to the teacher where a Mealy machine is
given to the teacher. The teacher either replies with yes if the given Mealy machine is
equivalent to the hidden Mealy machine Ĥ or with a sequence of inputs where the given Mealy
machine produces different outputs than Ĥ. We call this sequence of inputs a counterexample.

L# operates on an observation tree containing all output queries and their respective results
performed so far. Furthermore, for each equivalence query performed, if the response was a
counterexample, an output query is subsequently performed. Both the counterexample and
the result of the output query for the counterexample are then also stored in the observation



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 114

Algorithm 4.5: White box module testing strategy.

Input: Implementation I
Input: Maximum number of fuzzing rounds rmax
Input: Set of input output equivalence classes A
Input: Runtime monitor P for LTL property ϕ
Input: Maximal number m of internal states of I
Output: Boolean indicating the detection of a violation of ϕ or a set of all

sequences observed on I
1 function fuzzPhase(I, rmax, A, AI , P , m) begin
2 r ← 0; // Number of performed fuzzing iterations
3 T ← {ε}; // Initialise set of observed valuation sequences
4 ℓT ← 1; // Lower bound on the number of distinct states already

observed
5 while r < rmax ∧ ℓT < m do
6 reset I;
7 reset P ;
8 b← non-empty sequence of integers obtained from fuzzer;
9 x← map each element bto an element of AI ; // e.g. by selecting

the (b mod |AI |+ 1)th element of AI

10 verdict← outputQuery(I, T, P, x); // Apply x to I and update T
with observed output verdict is FAIL if P observes a
violation of ϕ

// End testing if P observed a property violation
11 if verdict = FAIL then
12 return FAIL;
13 end
14 r ← r + 1;
15 ℓT ← |approximateMaximalPairwiseDistinguishableSubsetOf(T )|;
16 end
17 return T ;
18 end



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 115

tree.
Definition 37. An observation tree is a Mealy machine T = (Q, q0, Σ̂I , Σ̂O, δ, λ) where
there is a unique sequence σ ∈ Σ̂∗

I for each state q ∈ Q, such that δ(q0, σ) = q. We define
access(q) = σ as the function mapping states of Q to their unique sequence of inputs.

An observation tree for a hidden Mealy machine Ĥ is an observation tree where for each state
q ∈ Q, access(q) is defined in Ĥ and the output queries for access(q) on T and Ĥ agree.

The L# algorithm maintains an apartness relation on the nodes of the observation tree.
Definition 38. An apartness relation # ⊆ Q×Q on a set of states Q of a Mealy machine
M = (Q, q0, Σ̂I , Σ̂O, δ, λ) is an irreflexive and symmetric relation containing (q, q′) ∈ Q×Q
for which there is a sequence of inputs σ ∈ Σ̂∗

I , such that λ(q, σ) and λ(q′, σ) are defined and
λ(q, σ) ̸= λ(q′, σ) holds.

In other words, two states are apart if and only if there is an input sequence distinguishing
them.

In L#, the set of states Q in an observation tree T = (Q, q0, Σ̂I , Σ̂O, δ, λ) is divided into
three subsets:

1. The basis S is the set of states that have been identified as distinct states. From
output queries, we know that all pairs of these states behave differently for at least
one previously applied sequence of inputs. This means that the apartness relation #
contains all pairs (q, q′) ∈ S × S where q ̸= q′. Initially, only the initial state q0 is in S.
L# extends S in such a way that the states in S are a subtree of T .

2. The frontier F is the set of states in Q from which the next state to be added to
the basis is picked. Having the basis as a subtree of T requires that the states in the
frontier are immediate successors of the states in the basis.

F =
{︂
q ∈ Q \ S | ∃qs ∈ S : ∃σ ∈ Σ̂I : access(q) = access(qs).σ

}︂

3. The rest R of Q, i.e. R = Q \ (S ∪ F ).

From the observation tree L# constructs Mealy machines that are a conjecture on the hidden
Mealy machine Ĥ for which the learner shall learn an equivalent model. We call each of
these Mealy machines H a hypothesis. The states of the hypothesis are the states that are
in the basis at the point where the hypothesis is constructed. The states in F and R are
not apart from all states in the basis. To account for these states in the hypothesis, they
are mapped to some state of the basis they are not apart from. It is sufficient to have a
map h : F → S from frontier states to the basis states, as this also induces a mapping of
the states in R. Transitions in the hypothesis Mealy machine are constructed such that this
mapping is respected. This means that for some transition from state q to state q′, both
in the basis, there is an identical transition in the hypothesis, while for some transition



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 116

from state q to state q′′ with input σ and output τ , where q is in the basis and q′′ in the
frontier, there is a transition in the hypothesis from q to h(q′′) with input σ and output τ .
The resulting hypothesis may be inconsistent with the observation tree, meaning that the
observation tree could not be an observation tree for the hypothesis. This inconsistency can
be used to find a counterexample to the hypothesis without performing an equivalence query.
If however the hypothesis is consistent with the observation tree, the L# algorithm poses
an equivalence query for the hypothesis to the teacher, either confirming the hypothesis or
resulting in a counterexample. Either way, a counterexample contains information on which
state q of F was mapped incorrectly to some state q′ in S, giving a new member (q, q′) for
the apartness relation #.

Core to L# is an algorithm that systematically constructs the observation tree and another
that processes the counterexamples. The construction of the observation tree is performed
by iteratively executing one of four rules:

Rule 1 Given some state q ∈ F that is apart from all states in S, move q from F to S.

Rule 2 Given some state q ∈ S for which there is no outgoing transition with input σ ∈ Σ̂I ,
perform an output query for access(q).σ.

Rule 3 Given some state q ∈ F for which there are at least two states q′, q′′ ∈ S from
which it is not apart, determine a sequence σ for which q′ and q′′ behave differently and
perform and output query for access(q).σ.3

Rule 4 If F has no state that is apart from all states in S and all states in S have
an outgoing transition for each element in Σ̂I , construct a hypothesis H and check it for
inconsistencies. If there is an inconsistency, derive a counterexample for H from that;
otherwise perform an equivalence query. If that detects non-conformance of the IUT to
H, obtain a counterexample from that, otherwise terminate. If a counterexample has been
obtained, process it4, resulting in some frontier state being apart from a basis state it was
not apart from before.

These rules can be executed at any point in the process of observation tree construction
as long as their preconditions are fulfilled. Note that at least one rule can be executed at
any time. The authors of L# also introduce strategic L#, which avoids execution of rule 4
unless no other rule can be executed. This is due to the usually costly equivalence queries
and relatively costly5 processing of the counterexamples.

3This results in q being apart from either one or both states q′, q′′.
4The algorithm to perform this processing is described by Vaandrager et al. [74]
5In comparison to the execution of the other rules.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 117

In this setting, posing equivalence queries to the minimally adequate teacher can be reduced
to performing an equivalence check between an implementation and a Mealy machine. The
checking of whether an implementation conforms to some Mealy machine is a well-studied
problem, and there is ongoing research in the field. Soucha [44] gives the worst-case number
of generated test cases and, therefore, the worst-case number of output queries until we find
a counterexample as O(n3|ΣI |m−n+1), where n is the number of states in the hypothesis and
m is the upper bound on the number of internal states of the IUT. The authors of L# provide
O(m̂2|ΣI | + m̂logl) for an asymptotic number of output queries and O(m̂2l|ΣI | + m̂llogl)
input symbols for learning a Mealy machine for the IUT, excluding the input symbols used
for equivalence queries. Here, m̂ is the actual number of internal states of the IUT, and l is
the length of the longest counterexample obtained for any of the constructed hypotheses. For
a minimal Mealy machine of n states, any two states can be distinguished by a sequence of
at most n− 1 input symbols. We therefore assume the length of the longest counterexample
to be at most 2m̂− 1. The number of input sequences to be applied for the whole approach
is therefore dominated by the number of input sequences for equivalence queries. Thus,
reducing the number of equivalence queries is key to performing L# and, as a consequence,
this approach efficiently.

We potentially reduce the number of these equivalence queries in several ways:

1. All output query results are checked by the runtime monitor, potentially detecting
violations of ϕ that are safety violations.

2. We perform the aforementioned fuzzing phase before the learning phase. This can
help reduce the number of equivalence queries in several ways: first, the fuzzer tries to
maximise the coverage of the CFG of the implementation, which can help to quickly
find many states. While these will not be in the basis at the start of the learning phase,
the fuzzer might have already executed sequences distinguishing some of them, which
can cause inconsistencies in the hypotheses, therefore producing counterexamples that
could have required an equivalence query to obtain otherwise.6 Second, the fuzzer
might already have executed prefixes of infinite sequences violating ϕ for which the
runtime monitor can decide that all continuations will violate ϕ. In this case, we can
abort the test and not even start the learning phase.

3. We perform model-checking on the consistent hypotheses for violations of ϕ and perform
sequences detecting the presence of loops in Ĥ violating ϕ first. Either the IUT does
indeed violate ϕ, or the hypothesis is wrong. To this end, we modify rule 4 of L#.

Rule 4 (modified) If F has no state that is apart from all states in S and all states in
S have an outgoing transition for each element in ΣI , construct a hypothesis H and check

6If the fuzzer has found k distinct states, no hypothesis with fewer than k states can be consistent with
the observation tree.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 118

it for inconsistencies. If there is an inconsistency, derive a counterexample for H from it;
otherwise, check H for violations of ϕ. If there is a computation σϕ in H that model checking
reveals to be a violation of ϕ, identify subsequences σ1 and σ2 such that σ1.σ

ω
2 = σϕ and σ1

and σ1.σ2 reach the same accepting state in a Büchi automaton for ¬ϕ. Perform an output
query for σ1.σ

n+1
2 . If this reveals that σϕ can indeed be performed by the IUT, terminate the

entire approach with the verdict FAIL. Otherwise, σϕ is a counterexample for H. If there is
no violation of ϕ in H and H is consistent with the observation tree, we pose an equivalence
query, conducting conformance testing. If this detects non-conformance of the IUT to H,
derive a counterexample from it; otherwise, terminate. If a counterexample for H has been
obtained, process it, which results in some frontier state being apart from a basis state it was
not apart from before.

As this modified rule adds additional ways to either conclude testing with a FAIL verdict or
to obtain a counterexample to hypotheses, the argument for termination and correctness
given by Vaandrager et al. [74] still holds. Every rule application increases our knowledge of
the behaviour of the IUT and the algorithm will finally terminate, either showing a violation
of ϕ or returning a PASS verdict for the IUT. This concludes the presentation of this approach.
The pseudo code for this phase as described here is depicted in Algorithm 4.6.

4.5 Evaluation

To evaluate the approach described in this chapter for feasibility, we partially implemented
it and conducted experiments using the described ABS/ESC example7.

4.5.1 Implementation and Setup

The implementation is based on the libsfsmtest, libfsmtest, and the LTL3 Tools.

Given an LTL formula ϕ, we utilised the LTL3 Tools to generate a DOT representation of a
runtime monitor for ϕ. We parsed this and generated a runtime monitor object from the
libsfsmtest. Additionally, we read a file listing the admissible guard conditions ΣI , output
expressions ΣO, valuation domain DVar, and the number of states m, all of which we assume
to describe the general framework of the IUT. Furthermore, we determined the set of atomic
propositions AP as the atomic propositions in ϕ. Using ΣI , ΣO, and AP , we determined
the set of input output equivalence classes A over DVar.

We encapsulated the IUT in a module we refer to as the IUT wrapper, which translates
the input valuations to apply to the IUT to actual stimulations of the IUT, then reads all
outputs and translates those to a valuation in DVar. Furthermore, it translates reset requests
issued by our algorithm to resets of the IUT.

7For the set of all experiment files, the software and all results, see Krafczyk [82]



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 119

Algorithm 4.6: Pseudo code for the learning phase.

Input: Implementation I
Input: Set of input output equivalence classes A
Input: Input cover AI for A
Input: Observation tree T of I
Input: Runtime monitor P for LTL property ϕ
Input: Büchi automaton B¬ϕ for LTL property ¬ϕ
Output: Verdict PASS or FAIL

1 function learningPhase(I, A, AI , T , P , B¬ϕ) begin
// Phase 3: Learning using L#
// Let L# produce a first hypothesis

2 M1 ← L#(I, AI ,A, T, P, ε); // start learning using input alphabet AI,
output alphabet A, and the observations T observed during
fuzzing

3 i← 1;
4 while true do
5 X ←Mi ×B¬ϕ; // Product of machine learnt so far and BA

accepting ¬ϕ
6 if L(X) = ∅ then

// Mi does not violate ϕ
7 n′ ← number of states of Mi;
8 (conforms, π)← H(I,Mi, T, n

′,m); // apply an online H-Method
9 if conforms then

10 return PASS; // Implementation conforms to Mi, and Mi

fulfills ϕ

11 end
12 else

// current model Mi violates ϕ
13 πX ← some x ∈ L(X); // this word violates ϕ
14 π1. π

ω
2 ← πX such that π1 and π1. π2 reach the same accepting state of

B¬ϕ;
15 if I can execute π1π

m+1
2 then

16 return FAIL;
17 else
18 π ← shortest prefix of πX where s(π) ̸∈ L(I);
19 end
20 end
21 Mi+1 := L#(I, AI ,A, T, P, π); // learn more elaborate model, based

on counterexample π
22 i := i+ 1;
23 end
24 end



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 120

The wrapped IUT is then wrapped by a module we refer to as the test harness, which
orchestrates the testing. It implements all phases of the approach and is called by the fuzzer
with input data, which the test harness then either translates to an input valuation to apply
to the IUT or, if we have already applied rmax input sequences, initiates the learning phase.
The learning phase is implemented in the libfsmtest, where we have implemented L# and
an online H-method. The online H-method is used to generate a test suite for equivalence
between the hypotheses and the implementation but does not generate the entire test suite
upfront. Instead, it generates one test case after another, allowing us to save time if the
hypothesis contains an error that is easy to find. For hypotheses with a large difference
between m and the number of states of the hypothesis, this can make the approach feasible,
as the entire test suite might not fit into the RAM of the computer executing the algorithm.

Our implementation deviates from the description above in the model checking of the
hypotheses and the construction of AI . We do not construct a Büchi automaton and do
not compute the cross product of the Büchi automaton and the hypotheses. Consequently,
we can only detect safety violations. This may favour fuzzing in the performance results,
as learning is performed with the unmodified rule 4 of L#, leaving fewer ways to obtain
a counterexample. Furthermore, we do not construct AI as a minimal input cover, but as
an approximation of a minimal input cover, which is generally faster to compute but still
complete, as it is still an input cover.

For each LTL property listed in Table 4.1, we constructed a mutant of the ABS controller
described in Section 4.3 violating that property. One mutant violated two LTL properties,
which is why we have one reference implementation and three faulty mutants. Table 4.2
shows which property was violated by which mutant. We verified by inspection that the
mutants did not violate any of the properties we did not intend for them to violate. For
each of the mutants, we generated an executable file, which, when executed, performs the
approach described above on the corresponding mutant. Additionally to the file listing the
general framework of the IUT (ΣI , ΣO, DVar, m), each executable file took a file describing
the LTL property to test for as an argument. The final arguments were the number of
fuzzing rounds rmax and the seed for the fuzzer to use to initialise its pseudo-random number
generator.

We created a Docker container image for each mutant and for the reference implementation.
Using these images, we created Kubernetes jobs to run on a Kubernetes cluster. Each job
executed either a single mutant or the reference implementation with a fixed number of
fuzzing cycles, a specific property, and one seed for the fuzzer. These jobs were executed on
a Kubernetes cluster, allocating one CPU core and 16GiB of RAM for each job.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 121

Table 4.2: Association of properties and mutants these properties are violated by.

Property Mutant

Property 1 mutant-3

Property 2 mutant-1 and mutant-2

Property 3 mutant-2

Property 4 mutant-3

4.5.2 Parameters

The experiments were performed with the number of fuzzing rounds picked from the set
{0, 100, 1000, 5000, 10000, 15000} and with eight fixed seeds for the fuzzer that were selected
at random. Given 4 implementations, 4 properties, 6 values for rmax and 8 seeds we ran each
combination of these, resulting in 768 experiments. The exact parameters, model files, and
properties are given by Krafczyk [82].

4.5.3 Results

For each experiment, we recorded whether the algorithm completed. If it did, we recorded
the verdict (PASS or FAIL); if it did not, we recorded the reason for its abortion. Reasons
for experiment abortion were either the experiment running out of memory or time. An
experiment could run out of time if it spent too much time in a single fuzzing cycle, specifically,
if it spent more than 20 minutes in a single fuzzing cycle. Due to the way our test harness
is implemented around limitations of the libFuzzer, the learning phase was implemented
in a fuzzing cycle. In all cases where an experiment ran out of time, this occurred in
the learning phase while performing equivalence queries. For an experiment to run out of
memory, it needed to reserve more than 16 GiB of RAM. We observed this to happen in the
learning phase when performing equivalence queries. This was due to our implementation
also recording the behaviour of the IUT observed for equivalence queries in the observation
tree instead of only recording the observations on output queries. For large differences
between m and the number of states of the hypothesis, the observation tree grew too large
to be contained in 16 GiB of RAM.

For each experiment that was not aborted, i.e. for which we obtained a verdict, we recorded
the following metrics:

• The number of input output equivalence classes.

• The time it took to calculate the input output equivalence class partitioning.

• The size of AI .



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 122

• The time it took to calculate AI .

• The time spent in the fuzzing phase, as well as the number of input valuation sequences
and individual input valuations applied during fuzzing.

• The time spent in the learning phase, as well as the number of input valuation sequences
and individual input valuations applied during the learning phase, excluding those
applied for equivalence queries.

• The number of input valuation sequences and individual input valuations applied for
equivalence queries.

As the input output equivalence classes depend on the set of first-order logic formulas in set
Σ, which depends on the guard conditions, output expressions and property ϕ, the number
of input output equivalence classes depends solely on the combination of IUT and LTL
property. In fact, for a given LTL property, the number of input output equivalence classes
was the same across all implementations, as the mutants did not introduce significantly
different guard conditions or output expressions. Table 4.3 lists the number of input output
equivalence classes and the average time it took to compute these.

Table 4.3: Number of input output equivalence classes and average time it took to compute
these in our experiments.

Number of input output equivalence classes Calculation time

Property 1 600 163.25s

Property 2 600 169.02s

Property 3 784 181.28s

Property 4 714 186.65s

From these sets of input output equivalence classes, an approximation for AI was calcu-
lated. This approximation varied between pairs of implementations and properties. As the
performance of the approach potentially depends on the size of (the approximation of) AI ,
Table 4.4 lists the size of all minimal input cover approximations. The calculation of these
approximations took a maximum of 52ms with an average of approximately 20ms.

Regarding whether the approach terminates or whether experiments are aborted due to the
exhaustion of memory or time resources, we propose the hypothesis that fuzzing aids in
swiftly and relatively inexpensively exploring the IUTs, discovering states and behaviour
that lead to inconsistencies in hypotheses, thereby avoiding equivalence queries. We test this
by comparing the ratio of completed experiments where the fuzzing phase was omitted to
the completed experiments where the fuzzing phase was executed for a certain number of
cycles rmax. We distinguish the observations between those where a violation was present
and those where there was none, as the latter presents greater difficulty in terms of runtime



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 123

Table 4.4: Size of the approximation of AI .

Ref. impl. mutant-1 mutant-2 mutant-3

Property 1 120 120 116 114

Property 2 117 125 117 111

Property 3 138 134 147 136

Property 4 124 130 118 113

Table 4.5: Number and Percentage of completed experiments where a property violation
was to be found for different rmax. The number of total experiments for each rmax was 40.

#completed Percentage

0 29 72.5%

100 25 62.5%

1000 33 82.5%

5000 40 100%

10000 40 100%

15000 40 100%

complexity.

In case there were property violations to be found, more experiments terminated than in
the case where no violation was present in the IUT. This was most apparent when skipping
the fuzzing phase or performing only rmax = 100 fuzzing cycles. The ratio of experiments
on property-violating IUTs that finished with a verdict was about 13 times larger than for
those not violating the property. For larger rmax values, this ratio significantly decreased,
suggesting that fuzzing reduces the frequency of prohibitively costly equivalence queries,
allowing more experiments to reach a conclusion. Furthermore, in both cases, the ratio
of experiments that completed before running out of time or memory increased with rmax,
except for a slight dip at rmax = 100, where fewer experiments finished than with rmax = 0.
This suggests that too few fuzzing cycles may do more harm than good. We suspect that
100 fuzzing cycles do not explore the given IUTs to a meaningful degree while obstructing
the learning approach in a way we do not yet understand.

Peled et al. [41] state that the runtime complexity is lower if the IUT contains a property
violation. The approach description above also suggests this. For the safety properties
used for evaluation here, we observed the same: In case of a FAIL verdict, the approach



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 124

Table 4.6: Number and Percentage of completed experiments where no property violation
was to be found for different rmax. The number of total experiments for each rmax was 88.

#completed Percentage

0 5 5.7%

100 4 4.5%

1000 26 29.5%

5000 64 72.7%

10000 75 85.2%

15000 83 94.3%

terminated far earlier than in case of a PASS verdict on average, though with a large variance.
The average runtime for experiments terminating with a PASS verdict was 90.3 seconds
(standard deviation: 67.6) in the fuzzing phase and 100.8 seconds (standard deviation: 255.7)
in the learning phase, while the average runtime for experiments terminating with a FAIL

verdict was 11.3 seconds (standard deviation: 18.3) in the fuzzing phase and 12.9 seconds
(standard deviation: 87) in the learning phase. Although not statistically significant yet,
especially with this limited set of IUTs, this is in line with the complexity considerations for
the approach.

Finally, we compute the Vargha and Delaney effect size, comparing pairs of sets of experiments
where all experiments operated on the same IUT and LTL property while the experiments in
one set skip the fuzzing phase and those in the other did not. Sampling a pair of experiments,
one from each set, we record whether the experiments completed and, if both did, which one
was faster. Vargha and Delaney [83] generalized a method developed in response to the claim
that some "effect size statistics are not well-suited for ’communicating effect size to audiences
untutored in statistics’". Informally, the computed effect size is the probability that one
of two samples picked from different populations is superior to the other. Their approach
requires an ordinally scaled variable. We define such a variable X for each experiment.
Given the samples X1, X2 for two experiments, we define X1 > X2 if and only if either only
the experiment for X1 terminated with a verdict or both terminated with a verdict but the
experiment for X1 terminated earlier. Furthermore, we define X1 = X2 if and only if either
both experiments did not terminate with a verdict or both terminated with a verdict and in
the same amount of time.

First, we calculate the effect sizes for the reference implementation and the first LTL property.
The effect sizes measure how advantageous it is to pick one value for rmax over another for
this IUT and property. These cannot be used as a tool to determine an optimal rmax a priori
for any given IUT and property. However, this will at least show whether any of the values



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 125

Table 4.7: Vargha-Delaney effect sizes for the experiments on the reference implementation
and LTL property 1. The rows describe the effect of the reference rmax while the columns
are the rmax experiments the reference rmax is compared against.

0 100 1000 5000 10000 15000

0 - 0.45 0.44 0.21 0.07 0.00

100 0.55 - 0.47 0.23 0.08 0.00

1000 0.56 0.53 - 0.31 0.19 0.13

5000 0.79 0.77 0.69 - 0.65 0.63

10000 0.93 0.92 0.81 0.35 - 0.88

15000 1.00 1.00 0.88 0.36 0.13 -

for rmax is better than the others for this IUT and property. Table 4.7 lists the effect sizes
for the different rmax combinations.

Given this table, we can determine that skipping the fuzzing phase is not advantageous for
the given combination of IUT and LTL property across all seeds we experimented with. For
all amounts of fuzzing tested, fuzzing has a higher probability of terminating with a verdict
and does so faster than learning. Performing 15000 fuzzing cycles is always advantageous
over skipping the fuzzing phase: all experiments with rmax = 15000 terminated with a
verdict and did so in less time than those that terminated with a verdict when skipping
the learning phase. This table furthermore shows that when comparing the experiments
with 15000 fuzzing cycles with those with 1000 fuzzing cycles, 15000 fuzzing cycles cease to
be absolutely superior: one of the experiments that terminated with a verdict after having
performed only 1000 fuzzing cycles did so faster than those in the 15000 set. As a final
aspect, we highlight the fact that in these experiments, 5000 fuzzing cycles were generally at
least slightly advantageous. While only 5 out of the 8 experiments terminated with a verdict,
they did so with an average of 55.6 seconds, compared to the 116.3 and 184.1 seconds for
10000 and 15000 fuzzing cycles, respectively. Furthermore, when looking at 1000 fuzzing
cycles, only 2 out of 8 experiments terminated with a verdict, although one did so with
a total runtime significantly lower than the average of the experiments with 5000 fuzzing
cycles.

Next, we examine the same statistics for the experiments with mutant-1 and LTL property
2, which is violated by mutant-1.

Here, the experiments incorporating fuzzing outperformed those without. Notably, any
amount of fuzzing from the fixed set of values for rmax performed better than a pure learning
approach. In fact, the latter required at least 305 milliseconds while the former needed no



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 126

Table 4.8: Vargha-Delaney effect sizes for the experiments on mutant-1 and LTL property 2.
The rows describe the effect of the reference rmax while the columns are the rmax experiments
the reference rmax is compared against.

0 100 1000 5000 10000 15000

0 - 0.00 0.00 0.00 0.00 0.00

100 1.00 - 0.80 0.89 0.52 0.68

1000 1.00 0.20 - 0.45 0.20 0.34

5000 1.00 0.12 0.55 - 0.11 0.36

10000 1.00 0.48 0.80 0.89 - 0.67

15000 1.00 0.32 0.66 0.64 0.33 -

Table 4.9: Vargha-Delaney effect sizes for the experiments on mutant-3 and LTL property 4.
The rows describe the effect of the reference rmax while the columns are the rmax experiments
the reference rmax is compared against.

0 100 1000 5000 10000 15000

0 - 0.64 0.66 0.50 0.50 0.50

100 0.36 - 0.52 0.25 0.25 0.25

1000 0.34 0.48 - 0.28 0.38 0.36

5000 0.50 0.75 0.72 - 0.72 0.80

10000 0.50 0.75 0.63 0.28 - 0.63

15000 0.50 0.75 0.64 0.20 0.38 -

more than 31 milliseconds. This suggests that the property violation was relatively easy to
find such that even only 100 fuzzing cycles could reliably detect it. The best performing
number of fuzzing cycles appears to be rmax = 100 due to slightly shorter average runtimes
compared to the other values, measured at 6.6 milliseconds in comparison to 6.8 milliseconds
average runtime for the experiments with rmax = 10000. The differences in time are small
enough for us to assume runtime noise to be the cause of the apparently superior performance
of the experiments with rmax = 100.

In contrast, when examining the data for mutant-3 and LTL property 4, the picture is less
clear, as shown in Table 4.9.

Here, learning appears to perform equally or, in some instances, even superior to fuzzing:
For low values of rmax, not performing the fuzzing phase is slightly advantageous. For



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 127

larger values, fuzzing followed by learning seems to be as effective as only learning. Upon
examining the underlying data, 4 out of the 8 experiments employing a pure learning approach
terminated with a verdict, with a median runtime of 2.9 seconds. Out of the 16 experiments
with rmax = 100 and rmax = 1000, only 6 produced a verdict, with median runtimes of
8.1 and 10.5 seconds, respectively. Beginning with the experiments with rmax = 5000, all
experiments terminated and produced a verdict, all with longer runtimes. This explains
why omitting the learning phase seems advantageous or at least not worse than any other
option here: while all experiments with at least 5000 fuzzing cycles terminated with a
verdict, only half of all experiments with a pure learning approach did so. However, that
half consistently outperformed the experiments including fuzzing. Nevertheless, if one
prioritises experiment termination over runtime, rmax = 5000 seems optimal in these specific
circumstances, outperforming all other values for rmax in our experiments.

4.6 Possible Optimisations & Potential Ways Forward

In this section, we will present several potential optimisations for this approach. These
proposals are founded on the insights we acquired during the evaluation of the aforementioned
approach. Some of these pertain to enhancements of our implementation, which could be
beneficial for future implementation attempts, whereas others are of a general nature.
Furthermore, we list some complementary approaches that promise to increase applicability
in practice.

4.6.1 Equivalence Query Optimisiations

The main culprit we found for long runtimes of the approach was, as previously stated, the
execution of equivalence queries. Consequently, most optimisation ideas address the problem
of achieving faster execution of these queries. Even when the learned hypothesis was not
equivalent to the implementation, i.e. there were inconsistencies to be found, we noticed
that finding these often proved to be rather challenging. As discussed in Section 4.5, this
was in fact so challenging that it was the sole cause of timeouts in our experiment setup.
We considered an experiment to have timed out after 40 minutes.

We see at least two potential improvements to the equivalence queries. The first aims to find
inconsistencies earlier in the execution of a test suite, should there be any inconsistencies, by
ordering test cases in a certain way. The second aims to reduce the overall number of test
cases.

Finding Errors Earlier – Entropy Considerations A test suite suitable for complete
equivalence testing usually must be executed up to the last test case to determine that an
IUT conforms to the specification from which the test suite was constructed. The approach
presented above does not lift or circumvent this requirement. However, if the IUT does not



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 128

conform to the specification, there is at least one test case in the test suite that reveals this
non-conformance. In theory, this could even be the first test case, in which case the cost for
the test suite execution and, in the context of the approach presented above, the equivalence
query is negligible. Obviously, there is no way of knowing which test case that is, but we
can try to maximise the knowledge we potentially gain from each test case.

When building the H-method test suite systematically, which is what we did in our online
H-method, one often encounters situations where there are clusters of test cases sharing
rather long common prefixes. Examining the H-method, this would occur when constructing
the set

T = V.

(︄
m−n+1⋃︂

i=1
Ai

I

)︄

as an ordered list and then generating test cases from that. One could systematically build
this set as shown in Algorithm 4.7

Algorithm 4.7: Pseudo code for the traversal set construction.

1 T ← V ;
2 for i ∈ [1,m− n+ 1] do
3 for t ∈ T do
4 for a ∈ AI do
5 T ← T ∪ t.a;
6 end
7 end
8 end

Obviously, when storing this set in an ordered list, after completion of the inner loop, there
is a cluster of size |AI | at the end of the list that shares the prefix t and only differs in the
last symbol. If one later iterates over this list to generate test cases by distinguishing the
sequences of this set from other sequences, these clusters still appear close together in the
final test suite.

When executing these similar test cases, the common prefix does not reveal new information
about the IUT, as it is executed repeatedly, only to have a single new symbol appended at the
end. From an information theoretic perspective, one might say that, given the observations
of previous test cases with long prefixes common with some test case x to be executed, x has
low entropy compared to a test case that executes a sequence of symbols that has not been
observed before, not even partially. Not even having common suffixes or parts of suffixes in
close proximity within a test suite can also have some benefits, as different prefixes could
lead to the same state, which would not reveal any new information at all if these prefixes
are followed by the same sequence of symbols.



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 129

While we do need to execute the whole test suite for the equivalence queries to be complete,
it might be advantageous to consider test suite permutations that appear random in the
hope of finding erroneous outputs earlier than in a systematic approach.

Reducing Test Suite Sizes As shown in Section 3.5, we can potentially reduce test suite
sizes by using a specialized approach to conformance testing for property-oriented testing.
Given some reference SFSM, some LTL property and some IUT, this approach allows for
smaller test suites by not having to distinguish states that reach states that are equal under
abstraction with regards to the given property.

For the equivalence queries for the approach described in this chapter, this test strength
suffices: In the end, we do not care whether the learnt model is equivalent to the IUT. All
we care about is that the IUT does not violate a property the learnt SFSM fulfils. As we
perform model checking on each hypothesis and do not perform equivalence queries if there
is a violation of the given property in the learnt model, we can assume that the learnt model
does not violate the given property. Assuming that the IUT passes the conformance test,
then Theorem 1 shows that it is free of violations of the given property, which is all we care
about.

4.6.2 Property-Independent Learning

Often, a module must be checked to satisfy multiple properties. Relearning a model for
each of these is inefficient, as knowledge about the behaviour of the module is discarded.
Retaining a learnt model and reusing it for other properties by means of model checking is
therefore desirable. To this end, the set of input output equivalence classes and therefore the
learnt FSM abstraction may need to be refined. Brüning et al. [84] have explored learning a
model for the IUT independently from any properties and describe how to refine this model
for every property to test for.

4.6.3 Complementary Approaches

While observing the IUT in our approach we assume that we observe a single SFSM. In
practice, the observed behaviour could be the product of multiple interleaving parallel
components. Labbaf et al.[85] have presented an approach to learn the structure of these
interleaving parallel components and demonstrated that it can offer a significant reduction
in output queries.

Some studies, like those by Dierl et al. [86], Foster et al. [87], Garhewal et al. [88] and
Isberner et al. [89] discuss learning algorithms for more complex formalisms. While the
SFSMs we used are an extension of FSMs to infinite input and output alphabets, these
approaches show how to learn register automata or EFSMs, which extend the FSM model by
a possibly infinite state space. While the SFSMs we use limit our approach to systems with



Chapter 4. Complete Property Oriented White-Box Testing without a
Reference Model 130

a finite set of internal states, extending it to learn register automata would greatly increase
its applicability in practice.

Damasceno et al. [90] presented an approach allowing the reuse of learned models. While
the learning algorithm we employ assumes that the implementation does not change, they
present a learning algorithm that can incorporate changes in the behaviour of the IUT into a
preexisting model. This allows them to learn iterations of an implementation without having
to re-learn it every time. Implementing a similar approach in our method would allow for
the property-oriented testing to be performed in parallel to the development with much
less effort, as a learned model only has to be updated for new behaviour instead of being
discarded for a new model.



Chapter 5
Related Work

Other approaches to property-oriented testing have been published. We will list a sample of
the surveyed approaches here. Our analysis is divided into two sections. We first discuss the
approaches related to Chapter 3, then those related to Chapter 4.

5.1 Model-Based Property-Oriented Test Generation

Regarding the general concept of property oriented testing Machado et al. published an
overview of approaches on property oriented testing for reactive systems in 2007 [5]. They
focused on property oriented testing with labelled transition systems (LTS) and symbolic
transition systems.

The tool TGV published by Jard et al. [91] receives a model for the desired behaviour
of the IUT, i.e. a specification model, and a so called test purpose, which in this case
and for our purposes is a model for the property under test in the same formalism the
model for the system behaviour is in. They can be constructed to model desired behaviour
so one could model every finite prefix of all good executions for a safety-property. TGV
operates on LTS models, so both the model for the specification and the property are LTS
models. In their approach, the test purpose is annotated with states to accept or reject
some behaviour, similar to the runtime monitors described in Section 2.8 and used in the
approach in Chapter 4. Then, the product of the specification model and the test purpose
is examined for sequences that could be stimulated on the specification model and lead to
accepting states in the test purpose. TGV generates sound test cases, i.e. a failing test
case always uncovers a fault in the implementation. The test suites they generate are also
exhaustive but only with a possibly infinite number of test cases. In our setting, where we
assume that the specification does not violate the property we are testing for, the product
of the specification model and the test purpose would be equivalent to the specification
model, where the resulting test suite would then just enumerate all finite sequences of the
specification model. One could modify the test purpose to only accept sequences which are
non-vacuous with regards to the property we test for, if possible. In general however, this
approach is unsuitable for our aims. Furthermore, this approach would only be possible for
safety properties, as no argument for freedom of future violations could be made from the

131



Chapter 5. Related Work 132

finite test cases.

Similar to this previous approach, the paper by Fernandez et al. [50] presents an approach
where they assume a behavioural specification and an ω-regular linear time property to be
given. Here, the specification model is assumed to be given as an IOLTS and the property as
a deterministic Rabin automaton that accepts all sequences in the negation of property to
test for. Test generation is performed as follows: First, the longest possible sequences that
could be performed both in the specification model and the Rabin automaton are extracted.
Assuming that the specification model does not violate the property we are testing for, there
is no infinite sequence in this set, as that would be accepted by the Rabin automaton, which
would indicate a violation of the property by the specification model. The sequences in this
set are then extended to be accepted by the Rabin automaton, i.e. to violations. As infinite
test cases are obviously not executable, they employ parameterised Rabin automata that
accept finite sequences. As outlined above, the number of these test cases is still rather large
and no completeness argument can be made. Also, this approach only gives guarantees up
to a certain test depth as no argument for infinite execution sequences can be made from
the parameterised Rabin automata.

Also similar to TGV is the approach named STG by Clarke et al. [92], where a specification
model and a test purpose are assumed to be given as an Input-Output Symbolic Transition
System (IOSTS), which essentially is an LTS extended by a set of typed variables and guard
conditions and output assignments as first order logic formulas over that set of variables [93].
Again, the product of the specification model and the test purpose is constructed, resulting
in an IOSTS modelling a set of test cases. This IOSTS is then transformed to generate a
test case, which is another, more restricted IOSTS. The test cases are sound, i.e. if the IUT
does not conform to the test case, it does not conform to the specification. However, while
the test cases cover all potentially faulty behaviour, there is no argument for completeness.
To guarantee fault detection regarding a specific test purpose, all feasible sequences in the
product of the specifcation model and the test purpose have to be executed, which again is
a potentially infinite set of sequences.

Rather similar to this previous approach albeit a bit less concrete is the approach by Frantzen
et al. [94] which defines a formalism rather similar to IOSTSs called Symbolic Transition
System (STS). They do not explicitly define or use test purposes. Instead, they assume a set
F of sequences of interest to be given, which is a subset of the sequences of the specification
STS model. Their test cases are tree-like structures with the verdicts pass and fail as leaves.
These are similar to adaptive test cases in FSM conformance testing [15, 95]. For test
execution, the tree-like structure is executed in parallel to the IUT, where the next input to
be applied is obtained from the test case and the output of the IUT determines the subtree
to be considered for the next test step. This approach can be used for property oriented
testing. For complete property oriented testing, the approach is not sufficient.



Chapter 5. Related Work 133

In 2012, Xue et al. [96] published their approach on property oriented testing which they base
on Petri nets. They assume a behavioural model to be given as a specification. Furthermore,
they define sequences of pairs of inputs and outputs for Petri nets and assume a set of of
these sequences to be given which acts as the specification of the property. Each sequence in
that set is a witness for the property they are testing for. They then generate test cases as
execution sequences of the Petri net that cover elements of the property specification. This
does not result in a complete approach as at most one test case is generated for each pair of
inputs and outputs, while there could be multiple paths in the reachability graph reaching
that node. In our setting, their approach is roughly analogous to executing the transition
cover of the product automaton of some specification model and the Büchi automaton derived
from the property.

Dadeau et al. [97] describe an approach where they derive automata for properties described
in the language TOCL, which can be used to describe temporal properties. These automata
are then used to judge whether a given test suite sufficiently covers the property. Furthermore,
they can derive scenario descriptions from these automata which in turn can be used to
generate further tests covering the property.

5.2 Property-Oriented Test Generation Based on
Model-Learning

Peled [98] describes further approaches that are related to the one we describe in Chapter 4.
While we extend their approach of black box checking [41], they also describe adaptive model
checking [99], originally presented by Groce et al. Adaptive model checking is in itself a
modification of black box checking. They assume to have some finite state model that is
not necessarily equivalent to the actual behaviour of the IUT. From this model they derive
sequences that are executed on the IUT before the learning phase is started. The closer
the given finite state model is to the actual behaviour of the IUT the more the runtime is
improved. This idea of this approach is complementary to our ideas presented in Chapter 4:
We could initialise the observation tree with these sequences before the fuzzing phase. Given
a fuzzer that supports this we could also record the CFG coverage for these sequences so
that the fuzzing phase could benefit from that information. This could be benefitial for
combinations of models and IUTs where the model describes the IUTs behaviour relatively
accurately. In that case the derived sequences would guide the execution to most or all of
the internal states of the IUT so that only few or no additional states have to be discovered
during the fuzzing and learning phase. This reduces the number of equivalence queries,
which in turn reduces the runtime of the algorithm. However, the downside to this approach
is that for it to perform well, the differences between the model and the IUT need to be
modest [98], which requires sufficient model construction by an expert or by previous unaided
and therefore costly runs of a model learning approach.



Chapter 5. Related Work 134

Meijer et al. [100, 101] describe further modifications to the black box checking approach
by Peled et al. They experiment with different learning algorithms and isolate the safety
component of the given LTL formula such that it can be checked for counterexamples using a
monitor. They assume to be able to tell whether the internal state the IUT is in is equivalent
to a previously observed state. Using this assumption they modify the model checking
algorithm such that no upper bound on the number of internal states of the IUT needs to be
known for the method to be sound. If model checking a hypothesis reveals a counterexample
they execute it some number of times on the IUT. Should a lasso-shaped path violating the
property be revealed by the fact that some state is encountered twice, they can report the
IUT to be violating the property. Their approach is sound but incomplete.

Meng et al. [79] have used fuzzing to find violations of LTL properties in software. They use
a fuzzing framework that is capable of taking snapshots of the program state. By comparing
two snapshots of program states they can determine whether they are the same internal
state. While we deduce from observations that a pair of states reached at certain points in
the program execution are distinct, they can determine which states are equal. Furthermore,
they modify the fuzzer to prioritise inputs that are more likely to advance the execution in
the Büchi automaton relating to the property under test towards accepting states. Their
approach gives no completeness guarantees and can be used as an effective bug finder.

Pferscher et al. [102] also combine model learning and fuzzing. However, they first employ a
model learning algorithm to construct an abstract model for the IUT and then use a fuzzer
to find concrete inputs that reveal discrepancies between the learned model and the IUT.
Due to this order of operations they do not need to construct the input output equivalence
classes, which can save significant amounts of time. However, this approach is not exhaustive,
e.g. the fuzzer is not guaranteed to find inputs for which the abstraction is too coarse.

Waga [103] adapt and optimise black box checking for Cyber-Physical Systems (CPS) and
for properties specified in Signal Temporal Logic (STL). They abstract these CPS to Mealy
automata. In comparison to our approach, the construction of this abstraction is left to the
user. In contrast to us, however, they discuss how multiple properties can be checked for
simultaneously.



Chapter 6
Conclusion & Future Work

In this dissertation, we presented a definition for property-oriented testing, stating that it
applies to any testing process that generates and executes test cases suitable for detecting
the violation of a property. We then introduced concepts that allowed us to describe
property-oriented testing approaches for properties expressible in linear temporal logic and
for implementations that have a finite internal state space but may have domains of infinite
size for their inputs and outputs. In practice, LTL is probably one of the most well-known
and widely used specification formalisms for describing temporal properties, making the
approaches described in this dissertation applicable to a wide range of properties one might
encounter in the field. Implementations having an internal state space small enough for
the approaches presented here to be applicable are certainly rarer. However, we provided
examples of systems where these approaches are applicable and demonstrated their efficacy.

The first approach to property-oriented testing we presented is a modification of well-known
conformance testing methods for checking equivalence of Mealy automata. This modification
is defined on Symbolic Finite State Machines. It can check two SFSMs for equivalence. We
demonstrated how to weaken the construction in a way that, on one hand, the constructed
test suites are not exhaustive for equivalence of two SFSMs but, on the other hand, can
be significantly smaller and are still exhaustive for property violations. We automated the
construction of these weaker test suites and evaluated their performance on the examples
we provided earlier, including their savings on test suite size compared to equivalence test
suites.

The second method presented is for complete property-oriented testing and is based on the
existing black box checking approach, which is also complete for property-oriented testing.
This black box checking is lifted to SFSMs, making it applicable to a larger domain of
problems. As the runtime performance of black box checking crucially depends on the
number of equivalence checks to be performed, further reducing this number was paramount
to the success of our modifications. We demonstrated that preceding the learning algorithm
used in black box checking by a phase of fuzzing has a significant impact on the feasibility
and performance of the approach. Other modifications allowing for performance gains were
also given, including the use of the first, exhaustive approach to property-oriented testing

135



Chapter 6. Conclusion & Future Work 136

as a replacement for the equivalence checks required in the learning phase of black box
checking. We evaluated the performance of one automated variant of our approach on an
example, showing that for this example the addition of fuzzing alone made black box checking
significantly faster.

We concluded this thesis with a sample of the literature on property-oriented testing, which
was a fraction of the surveyed literature. Overall, we did not find other exhaustive approaches
to property-oriented testing other than those that are exhaustive if run for infinity.

Overall, our contributions improve the state of the art for complete property-oriented testing.
We adapted previous approaches to be able to argue about real-world systems, identified
the major challenges to runtime performance, and provided software implementations of the
main property-oriented testing approaches we discussed. We used these implementations
to conduct performance measurements, both of the approaches – by measuring the number
of test cases – and of the implementations, by measuring runtime. We are certain that
the implementations can be optimized to perform better. The property-oriented testing
methods still have to be integrated into the testing and certification workflow, which also
offers opportunities for optimizations. For example, we did not discuss how pre-existing
test suites could be analysed for being suitable to detect property violations or how the test
suites generated by our approaches could be re-used.



Bibliography

[1] Glenford J. Myers. The Art of Software Testing (2. Ed.) Wiley, 2004. isbn: 978-
0-471-46912-4. url: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-

0471469122.html (cited on page 1).
[2] Felix Hübner, Wen-ling Huang, and Jan Peleska. “Experimental Evaluation of a Novel

Equivalence Class Partition Testing Strategy”. In: Software & Systems Modeling 18.1
(Feb. 2019), pages 423–443. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-017-

0595-8. url: http://link.springer.com/10.1007/s10270-017-0595-8 (visited
on 02/19/2024) (cited on page 2).

[3] John Hughes. “Software Testing with QuickCheck”. In: Central European Functional
Programming School. Edited by Zoltán Horváth, Rinus Plasmeijer, and Viktória Zsók.
Volume 6299. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pages 183–223.
isbn: 978-3-642-17684-5 978-3-642-17685-2. doi: 10.1007/978-3-642-17685-2_6.
url: http://link.springer.com/10.1007/978-3-642-17685-2_6 (visited on
08/14/2024) (cited on page 2).

[4] Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C. Pierce.
“Do Judge a Test by Its Cover: Combining Combinatorial and Property-Based Testing”.
In: Programming Languages and Systems. Edited by Nobuko Yoshida. Volume 12648.
Cham: Springer International Publishing, 2021, pages 264–291. isbn: 978-3-030-
72018-6 978-3-030-72019-3. doi: 10.1007/978-3-030-72019-3_10. url: https:

//link.springer.com/10.1007/978-3-030-72019-3_10 (visited on 08/14/2024)
(cited on page 2).

[5] Patricia D.L. Machado, Daniel A. Silva, and Alexandre C. Mota. “Towards Property
Oriented Testing”. In: Electronic Notes in Theoretical Computer Science 184 (July
2007), pages 3–19. issn: 15710661. doi: 10.1016/j.entcs.2007.06.001. url:
https://linkinghub.elsevier.com/retrieve/pii/S157106610700432X (visited
on 09/29/2023) (cited on pages 2, 41, 131).

[6] Felix Brüning, Mario Gleirscher, Wen-ling Huang, Niklas Krafczyk, Jan Peleska,
and Robert Sachtleben. “Complete Property-Oriented Module Testing”. In: Testing
Software and Systems. Edited by Silvia Bonfanti, Angelo Gargantini, and Paolo
Salvaneschi. Volume 14131. Cham: Springer Nature Switzerland, 2023, pages 183–201.
isbn: 978-3-031-43239-2 978-3-031-43240-8. doi: 10.1007/978-3-031-43240-8_12.
url: https://link.springer.com/10.1007/978-3-031-43240-8_12 (visited on
12/31/2023) (cited on pages 4, 100).

137

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471469122.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471469122.html
https://doi.org/10.1007/s10270-017-0595-8
https://doi.org/10.1007/s10270-017-0595-8
http://link.springer.com/10.1007/s10270-017-0595-8
https://doi.org/10.1007/978-3-642-17685-2_6
http://link.springer.com/10.1007/978-3-642-17685-2_6
https://doi.org/10.1007/978-3-030-72019-3_10
https://link.springer.com/10.1007/978-3-030-72019-3_10
https://link.springer.com/10.1007/978-3-030-72019-3_10
https://doi.org/10.1016/j.entcs.2007.06.001
https://linkinghub.elsevier.com/retrieve/pii/S157106610700432X
https://doi.org/10.1007/978-3-031-43240-8_12
https://link.springer.com/10.1007/978-3-031-43240-8_12


Bibliography 138

[7] Karl-Heinz Dietsche and Konrad Reif. Kraftfahrtechnisches Taschenbuch. 29., überar-
beitete und erweiterte Auflage. Studium und Praxis. Wiesbaden [Heidelberg]: Springer
Vieweg, 2018. 1780 pages. isbn: 978-3-658-23583-3 (cited on page 4).

[8] Regulation (EC) No 661/2009 of the European Parliament and of the Council of 13
July 2009 Concerning Type-Approval Requirements for the General Safety of Motor
Vehicles, Their Trailers and Systems, Components and Separate Technical Units
Intended Therefor. url: http://data.europa.eu/eli/reg/2009/661/oj (cited on
page 5).

[9] Wen-ling Huang, Niklas Krafczyk, and Jan Peleska. “Exhaustive Property Oriented
Model-based Testing With Symbolic Finite State Machines”. In: Science of Com-
puter Programming 231 (Jan. 2024), page 103005. issn: 01676423. doi: 10.1016/

j.scico.2023.103005. url: https://linkinghub.elsevier.com/retrieve/pii/

S0167642323000874 (visited on 10/09/2023) (cited on pages 9, 58, 60).
[10] Niklas Krafczyk and Jan Peleska. “Effective Infinite-State Model Checking by Input

Equivalence Class Partitioning”. In: Testing Software and Systems. IFIP International
Conference on Testing Software and Systems. Lecture Notes in Computer Science.
Springer, Cham, Oct. 9, 2017, pages 38–53. isbn: 978-3-319-67548-0 978-3-319-67549-
7. doi: 10.1007/978-3-319-67549-7_3. url: https://link.springer.com/

chapter/10.1007/978- 3- 319- 67549- 7_3 (visited on 12/04/2017) (cited on
page 11).

[11] George H. Mealy. “A Method for Synthesizing Sequential Circuits”. In: The Bell
System Technical Journal 34.5 (Sept. 1955), pages 1045–1079. issn: 0005-8580. doi:
10.1002/j.1538-7305.1955.tb03788.x. url: https://ieeexplore.ieee.org/

document/6771467 (visited on 11/03/2023) (cited on page 15).
[12] Edward F Moore. “Gedanken-Experiments on Sequential Machines”. In: Automata

studies 34 (1956), pages 129–153 (cited on page 17).
[13] Michael O Rabin and Dana Scott. “Finite Automata and Their Decision Problems”. In:

IBM journal of research and development 3.2 (1959), pages 114–125. issn: 0018-8646
(cited on pages 20, 107).

[14] Gang Luo, G. von Bochmann, and A. Petrenko. “Test Selection Based on Commu-
nicating Nondeterministic Finite-State Machines Using a Generalized Wp-method”.
In: IEEE Transactions on Software Engineering 20.2 (Feb./1994), pages 149–162.
issn: 00985589. doi: 10.1109/32.265636. url: http://ieeexplore.ieee.org/

document/265636/ (visited on 10/17/2023) (cited on page 23).
[15] Rob M. Hierons. “Testing from a Nondeterministic Finite State Machine Using

Adaptive State Counting”. In: IEEE Transactions on Computers 53.10 (Oct. 2004),
pages 1330–1342. issn: 0018-9340. doi: 10 . 1109 / TC . 2004 . 85. url: http : / /

ieeexplore . ieee . org / document / 1327582/ (visited on 10/17/2023) (cited on
pages 23, 42, 132).

http://data.europa.eu/eli/reg/2009/661/oj
https://doi.org/10.1016/j.scico.2023.103005
https://doi.org/10.1016/j.scico.2023.103005
https://linkinghub.elsevier.com/retrieve/pii/S0167642323000874
https://linkinghub.elsevier.com/retrieve/pii/S0167642323000874
https://doi.org/10.1007/978-3-319-67549-7_3
https://link.springer.com/chapter/10.1007/978-3-319-67549-7_3
https://link.springer.com/chapter/10.1007/978-3-319-67549-7_3
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://ieeexplore.ieee.org/document/6771467
https://ieeexplore.ieee.org/document/6771467
https://doi.org/10.1109/32.265636
http://ieeexplore.ieee.org/document/265636/
http://ieeexplore.ieee.org/document/265636/
https://doi.org/10.1109/TC.2004.85
http://ieeexplore.ieee.org/document/1327582/
http://ieeexplore.ieee.org/document/1327582/


Bibliography 139

[16] Wen-ling Huang, Niklas Krafczyk, and Jan Peleska. Model-Based Conformance Testing
and Property Testing with Symbolic Finite State Machines - Technical Report. Zenodo,
Nov. 2022 (cited on page 28).

[17] Hugo Araujo, Mohammad Reza Mousavi, and Mahsa Varshosaz. “Testing, Validation,
and Verification of Robotic and Autonomous Systems: A Systematic Review”. In:
ACM Transactions on Software Engineering and Methodology 32.2 (Apr. 30, 2023),
pages 1–61. issn: 1049-331X, 1557-7392. doi: 10.1145/3542945. url: https://dl.

acm.org/doi/10.1145/3542945 (visited on 07/23/2024) (cited on pages 33, 41).
[18] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. 2008. url:

http://is.ifmo.ru/books/_principles_of_model_checking.pdf (visited on
12/08/2017) (cited on pages 33, 35, 38, 40).

[19] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on
Foundations of Computer Science (Sfcs 1977). 18th Annual Symposium on Foun-
dations of Computer Science (Sfcs 1977). Providence, RI, USA: IEEE, Sept. 1977,
pages 46–57. doi: 10.1109/SFCS.1977.32. url: http://ieeexplore.ieee.org/

document/4567924/ (visited on 09/06/2023) (cited on page 34).
[20] Moshe Y. Vardi and Pierre Wolper. “Reasoning about Infinite Computations”. In:

Information and Computation 115.1 (Nov. 1994), pages 1–37. issn: 08905401. doi:
10.1006/inco.1994.1092. url: https://linkinghub.elsevier.com/retrieve/

pii/S0890540184710923 (visited on 09/07/2023) (cited on page 34).
[21] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,

editors. Handbook of Model Checking. Cham: Springer International Publishing, 2018.
isbn: 978-3-319-10574-1 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8. url:
http://link.springer.com/10.1007/978-3-319-10575-8 (visited on 09/07/2023)
(cited on page 34).

[22] Moshe Y. Vardi and Pierre Wolper. “An Automata-Theoretic Approach to Automatic
Program Verification (Preliminary Report)”. In: Proceedings of the Symposium on
Logic in Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18,
1986. 1986, pages 332–344 (cited on pages 34, 45, 47).

[23] Wolfgang Thomas. “Languages, Automata, and Logic”. In: Handbook of Formal
Languages. Edited by Grzegorz Rozenberg and Arto Salomaa. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pages 389–455. isbn: 978-3-642-63859-6 978-3-642-
59126-6. doi: 10.1007/978-3-642-59126-6_7. url: http://link.springer.com/

10.1007/978-3-642-59126-6_7 (visited on 09/08/2023) (cited on page 34).
[24] Leslie Lamport. “Proving the Correctness of Multiprocess Programs”. In: IEEE

Transactions on Software Engineering SE-3.2 (Mar. 1977), pages 125–143. issn: 0098-
5589. doi: 10.1109/TSE.1977.229904. url: http://ieeexplore.ieee.org/

document/1702415/ (visited on 09/08/2023) (cited on page 34).
[25] Bowen Alpern and Fred B. Schneider. “Defining Liveness”. In: Information Process-

ing Letters 21.4 (Oct. 1985), pages 181–185. issn: 00200190. doi: 10.1016/0020-

https://doi.org/10.1145/3542945
https://dl.acm.org/doi/10.1145/3542945
https://dl.acm.org/doi/10.1145/3542945
http://is.ifmo.ru/books/_principles_of_model_checking.pdf
https://doi.org/10.1109/SFCS.1977.32
http://ieeexplore.ieee.org/document/4567924/
http://ieeexplore.ieee.org/document/4567924/
https://doi.org/10.1006/inco.1994.1092
https://linkinghub.elsevier.com/retrieve/pii/S0890540184710923
https://linkinghub.elsevier.com/retrieve/pii/S0890540184710923
https://doi.org/10.1007/978-3-319-10575-8
http://link.springer.com/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-59126-6_7
http://link.springer.com/10.1007/978-3-642-59126-6_7
http://link.springer.com/10.1007/978-3-642-59126-6_7
https://doi.org/10.1109/TSE.1977.229904
http://ieeexplore.ieee.org/document/1702415/
http://ieeexplore.ieee.org/document/1702415/
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0


Bibliography 140

0190(85)90056- 0. url: https://linkinghub.elsevier.com/retrieve/pii/

0020019085900560 (visited on 09/08/2023) (cited on pages 34, 35).
[26] Zohar Manna and Amir Pnueli. “A Hierarchy of Temporal Properties (Invited Paper,

1989)”. In: Proceedings of the Ninth Annual ACM Symposium on Principles of
Distributed Computing. PODC90: 9th Annual ACM Symposium in Principles of
Distibuted Computing. Quebec City Quebec Canada: ACM, Aug. 1990, pages 377–
410. isbn: 978-0-89791-404-8. doi: 10.1145/93385.93442. url: https://dl.acm.

org/doi/10.1145/93385.93442 (visited on 09/08/2023) (cited on page 35).
[27] Edward Chang, Zohar Manna, and Amir Pnueli. “Characterization of Temporal

Property Classes”. In: Automata, Languages and Programming. Edited by W. Kuich.
Redacted by G. Goos and J. Hartmanis. Volume 623. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1992, pages 474–486. isbn: 978-3-540-55719-7 978-3-540-47278-0.
doi: 10.1007/3-540-55719-9_97. url: http://link.springer.com/10.1007/3-

540-55719-9_97 (visited on 09/08/2023) (cited on page 35).
[28] A. Prasad Sistla. “Safety, Liveness and Fairness in Temporal Logic”. In: Formal

Aspects of Computing 6.5 (Sept. 1, 1994), pages 495–511. issn: 0934-5043, 1433-299X.
doi: 10.1007/BF01211865. url: http://link.springer.com/article/10.1007/

BF01211865 (visited on 07/16/2014) (cited on page 35).
[29] Nir Piterman and Amir Pnueli. “Temporal Logic and Fair Discrete Systems”. In:

Handbook of Model Checking. Edited by Edmund M. Clarke, Thomas A. Henzinger,
Helmut Veith, and Roderick Bloem. Cham: Springer International Publishing, 2018,
pages 27–73. isbn: 978-3-319-10574-1 978-3-319-10575-8. doi: 10.1007/978-3-319-

10575-8_2. url: http://link.springer.com/10.1007/978-3-319-10575-8_2

(visited on 09/08/2023) (cited on page 35).
[30] Orna Kupferman and Moshe Y. Vardi. “Model Checking of Safety Properties”. In:

Formal Methods in System Design 19.3 (2001), pages 291–314. issn: 09259856. doi:
10 . 1023 / A : 1011254632723. url: http : / / link . springer . com / 10 . 1023 / A :

1011254632723 (visited on 09/08/2023) (cited on page 35).
[31] Bowen Alpern and Fred B. Schneider. “Recognizing Safety and Liveness”. In: Dis-

tributed Computing 2.3 (Sept. 1987), pages 117–126. issn: 0178-2770, 1432-0452. doi:
10.1007/BF01782772. url: http://link.springer.com/10.1007/BF01782772

(visited on 09/08/2023) (cited on page 35).
[32] Paul Gastin and Denis Oddoux. “Fast LTL to Büchi Automata Translation”. In:

Computer Aided Verification. Edited by Gérard Berry, Hubert Comon, and Alain
Finkel. Redacted by Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen. Vol-
ume 2102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pages 53–65. isbn:
978-3-540-42345-4 978-3-540-44585-2. doi: 10.1007/3-540-44585-4_6. url: http:

//link.springer.com/10.1007/3-540-44585-4_6 (visited on 09/25/2023) (cited
on page 38).

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://linkinghub.elsevier.com/retrieve/pii/0020019085900560
https://linkinghub.elsevier.com/retrieve/pii/0020019085900560
https://doi.org/10.1145/93385.93442
https://dl.acm.org/doi/10.1145/93385.93442
https://dl.acm.org/doi/10.1145/93385.93442
https://doi.org/10.1007/3-540-55719-9_97
http://link.springer.com/10.1007/3-540-55719-9_97
http://link.springer.com/10.1007/3-540-55719-9_97
https://doi.org/10.1007/BF01211865
http://link.springer.com/article/10.1007/BF01211865
http://link.springer.com/article/10.1007/BF01211865
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
http://link.springer.com/10.1007/978-3-319-10575-8_2
https://doi.org/10.1023/A:1011254632723
http://link.springer.com/10.1023/A:1011254632723
http://link.springer.com/10.1023/A:1011254632723
https://doi.org/10.1007/BF01782772
http://link.springer.com/10.1007/BF01782772
https://doi.org/10.1007/3-540-44585-4_6
http://link.springer.com/10.1007/3-540-44585-4_6
http://link.springer.com/10.1007/3-540-44585-4_6


Bibliography 141

[33] Tomáš Babiak, Mojmír Křetínský, Vojtěch Řehák, and Jan Strejček. “LTL to Büchi
Automata Translation: Fast and More Deterministic”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Edited by Cormac Flanagan and Barbara
König. Redacted by David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu
Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe
Y. Vardi, and Gerhard Weikum. Volume 7214. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pages 95–109. isbn: 978-3-642-28755-8 978-3-642-28756-5. doi:
10.1007/978-3-642-28756-5_8. url: http://link.springer.com/10.1007/978-

3-642-28756-5_8 (visited on 09/25/2023) (cited on page 38).
[34] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,

Dario Della Monica, and Anna Ingólfsdóttir. “A Foundation for Runtime Monitoring”.
In: Runtime Verification. Edited by Shuvendu Lahiri and Giles Reger. Volume 10548.
Cham: Springer International Publishing, 2017, pages 8–29. isbn: 978-3-319-67530-5
978-3-319-67531-2. doi: 10.1007/978- 3- 319- 67531- 2_2. url: http://link.

springer.com/10.1007/978-3-319-67531-2_2 (visited on 09/26/2023) (cited on
page 39).

[35] Martin Leucker and Christian Schallhart. “A Brief Account of Runtime Verification”.
In: The Journal of Logic and Algebraic Programming 78.5 (May 2009), pages 293–303.
issn: 15678326. doi: 10.1016/j.jlap.2008.08.004. url: https://linkinghub.

elsevier.com/retrieve/pii/S1567832608000775 (visited on 09/26/2023) (cited
on page 39).

[36] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Monitoring of Real-Time
Properties.” In: FSTTCS 2006: Foundations of Software Technology and Theoretical
Computer Science, 26th International Conference, Kolkata, India, December 13-15,
2006, Proceedings. 2006, pages 260–272. doi: 10.1007/11944836_25. url: https:

//doi.org/10.1007/11944836_25 (cited on pages 39, 47, 48, 95, 106).
[37] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Runtime Verification for

LTL and TLTL”. In: ACM Transactions on Software Engineering and Methodology
20.4 (Sept. 2011), pages 1–64. issn: 1049-331X, 1557-7392. doi: 10.1145/2000799.

2000800. url: https://dl.acm.org/doi/10.1145/2000799.2000800 (visited on
03/06/2023) (cited on page 39).

[38] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Edited by C. R.
Ramakrishnan and Jakob Rehof. Redacted by David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum. Volume 4963.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pages 337–340. isbn: 978-3-
540-78799-0 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3_24. url: http:

https://doi.org/10.1007/978-3-642-28756-5_8
http://link.springer.com/10.1007/978-3-642-28756-5_8
http://link.springer.com/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-319-67531-2_2
http://link.springer.com/10.1007/978-3-319-67531-2_2
http://link.springer.com/10.1007/978-3-319-67531-2_2
https://doi.org/10.1016/j.jlap.2008.08.004
https://linkinghub.elsevier.com/retrieve/pii/S1567832608000775
https://linkinghub.elsevier.com/retrieve/pii/S1567832608000775
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://dl.acm.org/doi/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24


Bibliography 142

//link.springer.com/10.1007/978-3-540-78800-3_24 (visited on 09/26/2023)
(cited on pages 39, 40, 78).

[39] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Verification. Edited by Armin Biere
and Roderick Bloem. Redacted by David Hutchison, Takeo Kanade, Josef Kittler, Jon
M. Kleinberg, Alfred Kobsa, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Demetri Terzopoulos, Doug Tygar,
and Gerhard Weikum. Volume 8559. Cham: Springer International Publishing, 2014,
pages 737–744. isbn: 978-3-319-08866-2 978-3-319-08867-9. doi: 10.1007/978-3-319-

08867-9_49. url: http://link.springer.com/10.1007/978-3-319-08867-9_49

(visited on 09/26/2023) (cited on page 40).
[40] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Computer
Aided Verification. Edited by Ganesh Gopalakrishnan and Shaz Qadeer. Volume 6806.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pages 171–177. isbn: 978-3-
642-22109-5 978-3-642-22110-1. doi: 10.1007/978-3-642-22110-1_14. url: http:

//link.springer.com/10.1007/978-3-642-22110-1_14 (visited on 09/26/2023)
(cited on page 40).

[41] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. “Black Box Checking”. In:
Formal Methods for Protocol Engineering and Distributed Systems: FORTE XII /
PSTV XIX’99 IFIP TC6 WG6.1 Joint International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols (FORTE XII)
and Protocol Specification, Testing and Verification (PSTV XIX) October 5–8, 1999,
Beijing, China. Edited by Jianping Wu, Samuel T. Chanson, and Qiang Gao. IFIP
Advances in Information and Communication Technology. Boston, MA: Springer US,
1999, pages 225–240. isbn: 978-0-387-35578-8. doi: 10.1007/978-0-387-35578-8_13.
url: https://doi.org/10.1007/978-0-387-35578-8_13 (visited on 03/23/2023)
(cited on pages 40, 96, 97, 100, 123, 133).

[42] Rita Dorofeeva, Khaled El-Fakih, Stephane Maag, Ana R. Cavalli, and Nina Yev-
tushenko. “FSM-based Conformance Testing Methods: A Survey Annotated with
Experimental Evaluation”. In: Information and Software Technology 52.12 (Dec.
2010), pages 1286–1297. issn: 09505849. doi: 10.1016/j.infsof.2010.07.001. url:
https://linkinghub.elsevier.com/retrieve/pii/S0950584910001278 (visited
on 06/29/2023) (cited on pages 41, 50, 68, 98).

[43] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. “Mutation Testing Advances: An Analysis and Survey”. In: Advances in
Computers. Volume 112. Elsevier, 2019, pages 275–378. isbn: 978-0-12-815121-1. doi:
10.1016/bs.adcom.2018.03.015. url: https://linkinghub.elsevier.com/

retrieve/pii/S0065245818300305 (visited on 10/23/2023) (cited on pages 41, 76).

http://link.springer.com/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://link.springer.com/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-22110-1_14
http://link.springer.com/10.1007/978-3-642-22110-1_14
http://link.springer.com/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1016/j.infsof.2010.07.001
https://linkinghub.elsevier.com/retrieve/pii/S0950584910001278
https://doi.org/10.1016/bs.adcom.2018.03.015
https://linkinghub.elsevier.com/retrieve/pii/S0065245818300305
https://linkinghub.elsevier.com/retrieve/pii/S0065245818300305


Bibliography 143

[44] Michal Soucha. “Testing and Active Learning of Resettable Finite-State Machines”.
PhD thesis. University of Sheffield, Jan. 2019. url: https://etheses.whiterose.

ac.uk/24370/ (visited on 06/03/2021) (cited on pages 42, 50, 98, 109, 117).
[45] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. “An Improved Conformance

Testing Method”. In: Formal Techniques for Networked and Distributed Systems -
FORTE 2005. International Conference on Formal Techniques for Networked and
Distributed Systems. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
Oct. 2, 2005, pages 204–218. isbn: 978-3-540-29189-3 978-3-540-32084-5. doi: 10.1007/

11562436_16. url: https://link.springer.com/chapter/10.1007/11562436_16

(visited on 12/27/2017) (cited on pages 42, 51, 52).
[46] Stephen Jacklin. “Certification of Safety-Critical Software under DO-178C and DO-

278A”. In: Infotech@Aerospace 2012. June 2012, page 2473 (cited on page 42).
[47] Rami Debouk. “Overview of the Second Edition of ISO 26262: Functional Safety—

Road Vehicles”. In: Journal of System Safety 55.1 (Mar. 1, 2019), pages 13–21. issn:
0743-8826. doi: 10.56094/jss.v55i1.55. url: https://jsystemsafety.com/

index.php/jss/article/view/55 (visited on 09/28/2023) (cited on page 42).
[48] CENELEC EN50128. “Railway Applications-Communication, Signalling and Process-

ing Systems-Software for Railway Control and Protection Systems”. In: European
Committee for Electrotechnical Standardization (2001) (cited on page 42).

[49] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. “Evaluating
Fuzz Testing”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18: 2018 ACM SIGSAC Conference on Computer
and Communications Security. Toronto Canada: ACM, Oct. 15, 2018, pages 2123–2138.
isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3243804. url: https://dl.acm.

org/doi/10.1145/3243734.3243804 (visited on 07/23/2024) (cited on page 45).
[50] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. “Property Oriented Test

Case Generation”. In: Formal Approaches to Software Testing. Edited by Alexandre
Petrenko and Andreas Ulrich. Redacted by Gerhard Goos, Juris Hartmanis, and
Jan van Leeuwen. Volume 2931. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pages 147–163. isbn: 978-3-540-20894-5 978-3-540-24617-6. doi: 10.1007/978-3-540-

24617-6_11. url: http://link.springer.com/10.1007/978-3-540-24617-6_11

(visited on 10/02/2023) (cited on pages 45, 47, 132).
[51] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “Online Testing of LTL

Properties for Java Code”. In: Hardware and Software: Verification and Testing.
Edited by Valeria Bertacco and Axel Legay. Redacted by David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni
Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum. Volume 8244.
Cham: Springer International Publishing, 2013, pages 95–111. isbn: 978-3-319-03076-0
978-3-319-03077-7. doi: 10.1007/978- 3- 319- 03077- 7_7. url: http://link.

https://etheses.whiterose.ac.uk/24370/
https://etheses.whiterose.ac.uk/24370/
https://doi.org/10.1007/11562436_16
https://doi.org/10.1007/11562436_16
https://link.springer.com/chapter/10.1007/11562436_16
https://doi.org/10.56094/jss.v55i1.55
https://jsystemsafety.com/index.php/jss/article/view/55
https://jsystemsafety.com/index.php/jss/article/view/55
https://doi.org/10.1145/3243734.3243804
https://dl.acm.org/doi/10.1145/3243734.3243804
https://dl.acm.org/doi/10.1145/3243734.3243804
https://doi.org/10.1007/978-3-540-24617-6_11
https://doi.org/10.1007/978-3-540-24617-6_11
http://link.springer.com/10.1007/978-3-540-24617-6_11
https://doi.org/10.1007/978-3-319-03077-7_7
http://link.springer.com/10.1007/978-3-319-03077-7_7
http://link.springer.com/10.1007/978-3-319-03077-7_7


Bibliography 144

springer.com/10.1007/978-3-319-03077-7_7 (visited on 10/03/2023) (cited on
page 45).

[52] Alexandre Petrenko. “Nondeterministic State Machine in Protocol Conformance
Testing”. In: Protocol Test Systems (1994), pages 363–378 (cited on page 46).

[53] Gregor V. Bochmann and Alexandre Petrenko. “Protocol Testing: Review of Meth-
ods and Relevance for Software Testing”. In: Proceedings of the 1994 International
Symposium on Software Testing and Analysis - ISSTA ’94. The 1994 International
Symposium. Seattle, Washington, United States: ACM Press, 1994, pages 109–124.
isbn: 978-0-89791-683-7. doi: 10.1145/186258.187153. url: http://portal.acm.

org/citation.cfm?doid=186258.187153 (visited on 10/19/2023) (cited on page 46).
[54] Dimitra Giannakopoulou and Klaus Havelund. “Automata-Based Verification of Tem-

poral Properties on Running Programs”. In: Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). 16th Annual Interna-
tional Conference on Automated Software Engineering (ASE 2001). San Diego, CA,
USA: IEEE Comput. Soc, 2001, pages 412–416. isbn: 978-0-7695-1426-0. doi: 10.

1109/ASE.2001.989841. url: http://ieeexplore.ieee.org/document/989841/

(visited on 03/27/2020) (cited on page 47).
[55] Uwe Egly, Martina Seidl, and Stefan Woltran. “A Solver for QBFs in Negation Normal

Form”. In: Constraints 14.1 (Mar. 2009), pages 38–79. issn: 1383-7133, 1572-9354.
doi: 10.1007/s10601-008-9055-y. url: http://link.springer.com/10.1007/

s10601-008-9055-y (visited on 10/16/2023) (cited on page 48).
[56] Robert Sachtleben and Jan Peleska. “Effective Grey-Box Testing with Partial FSM

Models”. In: Software Testing, Verification and Reliability n/a.n/a (2022), e1806.
issn: 1099-1689. doi: 10.1002/stvr.1806. url: https://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.1806 (visited on 01/18/2022) (cited on page 50).
[57] Adenilso Simão, Alexandre Petrenko, and Nina Yevtushenko. “On Reducing Test

Length for FSMs with Extra States”. In: Software Testing, Verification and Reli-
ability 22.6 (Sept. 2012), pages 435–454. issn: 09600833. doi: 10.1002/stvr.452.
url: https://onlinelibrary.wiley.com/doi/10.1002/stvr.452 (visited on
06/29/2023) (cited on pages 50, 98).

[58] Wen-ling Huang, Niklas Krafczyk, and Jan Peleska. “An Optimised Complete Strategy
for Testing Symbolic Finite State Machines”. In: Fundamentals of Software Engineer-
ing. Edited by Hossein Hojjat and Erika Ábrahám. Volume 14155. Cham: Springer
Nature Switzerland, 2023, pages 55–71. isbn: 978-3-031-42440-3 978-3-031-42441-0.
doi: 10.1007/978-3-031-42441-0_5. url: https://link.springer.com/10.

1007/978-3-031-42441-0_5 (visited on 10/16/2023) (cited on pages 51, 57).
[59] Niklas Krafczyk and Jan Peleska. “Exhaustive Property Oriented Model-Based Testing

with Symbolic Finite State Machines”. In: Software Engineering and Formal Methods.
Edited by Radu Calinescu and Corina S. Păsăreanu. Volume 13085. Cham: Springer
International Publishing, 2021, pages 84–102. isbn: 978-3-030-92123-1 978-3-030-

http://link.springer.com/10.1007/978-3-319-03077-7_7
http://link.springer.com/10.1007/978-3-319-03077-7_7
http://link.springer.com/10.1007/978-3-319-03077-7_7
https://doi.org/10.1145/186258.187153
http://portal.acm.org/citation.cfm?doid=186258.187153
http://portal.acm.org/citation.cfm?doid=186258.187153
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1109/ASE.2001.989841
http://ieeexplore.ieee.org/document/989841/
https://doi.org/10.1007/s10601-008-9055-y
http://link.springer.com/10.1007/s10601-008-9055-y
http://link.springer.com/10.1007/s10601-008-9055-y
https://doi.org/10.1002/stvr.1806
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1806
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1806
https://doi.org/10.1002/stvr.452
https://onlinelibrary.wiley.com/doi/10.1002/stvr.452
https://doi.org/10.1007/978-3-031-42441-0_5
https://link.springer.com/10.1007/978-3-031-42441-0_5
https://link.springer.com/10.1007/978-3-031-42441-0_5


Bibliography 145

92124-8. doi: 10.1007/978-3-030-92124-8_5. url: https://link.springer.com/

10.1007/978-3-030-92124-8_5 (visited on 02/12/2024) (cited on page 51).
[60] Wen-ling Huang and Jan Peleska. “Safety-Complete Test Suites”. In: Testing Software

and Systems. Edited by Nina Yevtushenko, Ana Rosa Cavalli, and Hüsnü Yenigün.
Volume 10533. Cham: Springer International Publishing, 2017, pages 145–161. isbn:
978-3-319-67548-0 978-3-319-67549-7. doi: 10.1007/978-3-319-67549-7_9. url:
https://link.springer.com/10.1007/978- 3- 319- 67549- 7_9 (visited on
10/16/2023) (cited on page 52).

[61] Wen-ling Huang, Sadik Özoguz, and Jan Peleska. “Safety-Complete Test Suites”. In:
Software Quality Journal 27.2 (June 2019), pages 589–613. issn: 0963-9314, 1573-1367.
doi: 10.1007/s11219-018-9421-y. url: http://link.springer.com/10.1007/

s11219-018-9421-y (visited on 10/16/2023) (cited on page 52).
[62] Wen-ling Huang and Jan Peleska. Complete Requirements-based Testing with Finite

State Machines. May 25, 2021. arXiv: 2105.11786 [cs]. url: http://arxiv.org/

abs/2105.11786 (visited on 10/16/2023). Pre-published (cited on pages 52, 66).
[63] Niklas Krafczyk. Experiments for a Model-Based Approach to Complete Property-

Oriented Testing. [object Object], Mar. 20, 2024. doi: 10.5281/ZENODO.10844669.
url: https://zenodo.org/doi/10.5281/zenodo.10844669 (visited on 03/20/2024)
(cited on pages 76, 91).

[64] John A. Clark, Haitao Dan, and Robert M. Hierons. “Semantic Mutation Testing”. In:
Science of Computer Programming 78.4 (Apr. 2013), pages 345–363. issn: 01676423.
doi: 10.1016/j.scico.2011.03.011. url: https://linkinghub.elsevier.com/

retrieve/pii/S0167642311000992 (visited on 10/23/2023) (cited on page 76).
[65] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.6 (cited on page 78).
[66] Gary D. Knott. “S-Expressions”. In: Interpreting LISP. Berkeley, CA: Apress, 2017,

pages 17–18. isbn: 978-1-4842-2706-0 978-1-4842-2707-7. doi: 10.1007/978-1-4842-

2707-7_5. url: http://link.springer.com/10.1007/978-1-4842-2707-7_5

(visited on 10/21/2023) (cited on page 78).
[67] Nikolaj Bjørner and Lev Nachmanson. “Navigating the Universe of Z3 Theory Solvers”.

In: Formal Methods: Foundations and Applications. Edited by Gustavo Carvalho and
Volker Stolz. Volume 12475. Cham: Springer International Publishing, 2020, pages 8–
24. isbn: 978-3-030-63881-8 978-3-030-63882-5. doi: 10.1007/978-3-030-63882-5_2.
url: https://link.springer.com/10.1007/978-3-030-63882-5_2 (visited on
10/19/2023) (cited on page 89).

[68] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”. In: In-
formation and Computation 75.2 (Nov. 1, 1987), pages 87–106. issn: 0890-5401.
doi: 10 . 1016 / 0890 - 5401(87 ) 90052 - 6. url: https : / / www . sciencedirect .

com / science / article / pii / 0890540187900526 (visited on 08/24/2022) (cited
on pages 97, 98, 113).

https://doi.org/10.1007/978-3-030-92124-8_5
https://link.springer.com/10.1007/978-3-030-92124-8_5
https://link.springer.com/10.1007/978-3-030-92124-8_5
https://doi.org/10.1007/978-3-319-67549-7_9
https://link.springer.com/10.1007/978-3-319-67549-7_9
https://doi.org/10.1007/s11219-018-9421-y
http://link.springer.com/10.1007/s11219-018-9421-y
http://link.springer.com/10.1007/s11219-018-9421-y
https://arxiv.org/abs/2105.11786
http://arxiv.org/abs/2105.11786
http://arxiv.org/abs/2105.11786
https://doi.org/10.5281/ZENODO.10844669
https://zenodo.org/doi/10.5281/zenodo.10844669
https://doi.org/10.1016/j.scico.2011.03.011
https://linkinghub.elsevier.com/retrieve/pii/S0167642311000992
https://linkinghub.elsevier.com/retrieve/pii/S0167642311000992
https://doi.org/10.1007/978-1-4842-2707-7_5
https://doi.org/10.1007/978-1-4842-2707-7_5
http://link.springer.com/10.1007/978-1-4842-2707-7_5
https://doi.org/10.1007/978-3-030-63882-5_2
https://link.springer.com/10.1007/978-3-030-63882-5_2
https://doi.org/10.1016/0890-5401(87)90052-6
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://www.sciencedirect.com/science/article/pii/0890540187900526


Bibliography 146

[69] Tsun S. Chow. “Testing Software Design Modeled by Finite-State Machines”. In:
IEEE Transactions on Software Engineering SE-4.3 (Mar. 1978), pages 178–186 (cited
on page 97).

[70] M. P. Vasilevskii. “Failure Diagnosis of Automata”. In: Kibernetika (Transl.) 4 (July–
Aug. 1973), pages 98–108 (cited on page 97).

[71] Ronald Linn Rivest and Robert Elias Schapire. “Inference of Finite Automata Using
Homing Sequences”. In: Information and Computation 103.2 (Apr. 1993), pages 299–
347. issn: 08905401. doi: 10.1006/inco.1993.1021. url: https://linkinghub.

elsevier.com/retrieve/pii/S0890540183710217 (visited on 06/29/2023) (cited
on page 98).

[72] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT Algorithm: A Redundancy-
Free Approach to Active Automata Learning”. In: Runtime Verification. Edited by
Borzoo Bonakdarpour and Scott A. Smolka. Volume 8734. Cham: Springer Interna-
tional Publishing, 2014, pages 307–322. isbn: 978-3-319-11163-6 978-3-319-11164-3.
doi: 10.1007/978-3-319-11164-3_26. url: http://link.springer.com/10.

1007/978-3-319-11164-3_26 (visited on 06/29/2023) (cited on page 98).
[73] Markus Theo Frohme. Active Automata Learning with Adaptive Distinguishing Se-

quences. Feb. 4, 2019. arXiv: 1902.01139 [cs, stat]. url: http://arxiv.org/

abs/1902.01139 (visited on 06/29/2023). Pre-published (cited on page 98).
[74] Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann. “A New

Approach for Active Automata Learning Based on Apartness”. Oct. 15, 2021. arXiv:
2107.05419 [cs]. url: http://arxiv.org/abs/2107.05419 (visited on 01/27/2022)
(cited on pages 98, 109, 110, 113, 116, 118).

[75] Michal Soucha and Kirill Bogdanov. “SPYH-Method: An Improvement in Testing of
Finite-State Machines”. In: 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). Vasteras: IEEE,
Apr. 2018, pages 194–203. isbn: 978-1-5386-6352-3. doi: 10.1109/ICSTW.2018.00050.
url: https://ieeexplore.ieee.org/document/8411753/ (visited on 06/29/2023)
(cited on page 98).

[76] Barton P Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the Reliability
of UNIX Utilities”. In: Communications of the ACM 33.12 (1990), pages 32–44. issn:
0001-0782 (cited on page 99).

[77] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. “Grammar-Based Whitebox
Fuzzing”. In: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’08: ACM SIGPLAN Conference on
Programming Language Design and Implementation. Tucson AZ USA: ACM, June 7,
2008, pages 206–215. isbn: 978-1-59593-860-2. doi: 10.1145/1375581.1375607. url:
https://dl.acm.org/doi/10.1145/1375581.1375607 (visited on 10/30/2023)
(cited on page 99).

https://doi.org/10.1006/inco.1993.1021
https://linkinghub.elsevier.com/retrieve/pii/S0890540183710217
https://linkinghub.elsevier.com/retrieve/pii/S0890540183710217
https://doi.org/10.1007/978-3-319-11164-3_26
http://link.springer.com/10.1007/978-3-319-11164-3_26
http://link.springer.com/10.1007/978-3-319-11164-3_26
https://arxiv.org/abs/1902.01139
http://arxiv.org/abs/1902.01139
http://arxiv.org/abs/1902.01139
https://arxiv.org/abs/2107.05419
http://arxiv.org/abs/2107.05419
https://doi.org/10.1109/ICSTW.2018.00050
https://ieeexplore.ieee.org/document/8411753/
https://doi.org/10.1145/1375581.1375607
https://dl.acm.org/doi/10.1145/1375581.1375607


Bibliography 147

[78] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. “Boosting Fuzzer Efficiency:
An Information Theoretic Perspective”. In: Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ESEC/FSE ’20: 28th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
Virtual Event USA: ACM, Nov. 8, 2020, pages 678–689. isbn: 978-1-4503-7043-1. doi:
10.1145/3368089.3409748. url: https://dl.acm.org/doi/10.1145/3368089.

3409748 (visited on 05/02/2023) (cited on pages 99, 113).
[79] Ruijie Meng, Zhen Dong, Jialin Li, Ivan Beschastnikh, and Abhik Roychoudhury.

“Linear-Time Temporal Logic Guided Greybox Fuzzing”. In: Proceedings of the 44th
International Conference on Software Engineering. ICSE ’22: 44th International
Conference on Software Engineering. Pittsburgh Pennsylvania: ACM, May 21, 2022,
pages 1343–1355. isbn: 978-1-4503-9221-1. doi: 10.1145/3510003.3510082. url:
https://dl.acm.org/doi/10.1145/3510003.3510082 (visited on 03/16/2023)
(cited on pages 99, 134).

[80] Frances E. Allen. “Control Flow Analysis”. In: ACM SIGPLAN Notices 5.7 (July
1970), pages 1–19. issn: 0362-1340, 1558-1160. doi: 10.1145/390013.808479. url:
https://dl.acm.org/doi/10.1145/390013.808479 (visited on 02/11/2024) (cited
on page 108).

[81] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complex-
ity of Computer Computations: Proceedings of a Symposium on the Complexity of
Computer Computations, Held March 20–22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, and Sponsored by the Office of Naval
Research, Mathematics Program, IBM World Trade Corporation, and the IBM Re-
search Mathematical Sciences Department. Edited by Raymond E. Miller, James
W. Thatcher, and Jean D. Bohlinger. Boston, MA: Springer US, 1972, pages 85–
103. isbn: 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9. url: https:

//doi.org/10.1007/978-1-4684-2001-2_9 (cited on page 110).
[82] Niklas Krafczyk. Experiments for an Approach to Complete Property-Oriented Testing

Based on Black Box Checking. [object Object], Mar. 20, 2024. doi: 10.5281/ZENODO.

10844867. url: https://zenodo.org/doi/10.5281/zenodo.10844867 (visited on
03/20/2024) (cited on pages 118, 121).

[83] András Vargha and Harold D. Delaney. “A Critique and Improvement of the CL
Common Language Effect Size Statistics of McGraw and Wong”. In: Journal of
Educational and Behavioral Statistics 25.2 (June 2000), pages 101–132. issn: 1076-9986,
1935-1054. doi: 10.3102/10769986025002101. url: http://journals.sagepub.

com/doi/10.3102/10769986025002101 (visited on 08/24/2023) (cited on page 124).
[84] Felix Brüning, Mario Gleirscher, Wen-ling Huang, Niklas Krafczyk, Jan Peleska, and

Robert Sachtleben. “Efficient Gray Box Checking for C/C ++ Modules - Technical
Report”. In: (Mar. 25, 2024). doi: 10.5281/ZENODO.10867922. url: https://

https://doi.org/10.1145/3368089.3409748
https://dl.acm.org/doi/10.1145/3368089.3409748
https://dl.acm.org/doi/10.1145/3368089.3409748
https://doi.org/10.1145/3510003.3510082
https://dl.acm.org/doi/10.1145/3510003.3510082
https://doi.org/10.1145/390013.808479
https://dl.acm.org/doi/10.1145/390013.808479
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.5281/ZENODO.10844867
https://doi.org/10.5281/ZENODO.10844867
https://zenodo.org/doi/10.5281/zenodo.10844867
https://doi.org/10.3102/10769986025002101
http://journals.sagepub.com/doi/10.3102/10769986025002101
http://journals.sagepub.com/doi/10.3102/10769986025002101
https://doi.org/10.5281/ZENODO.10867922
https://zenodo.org/doi/10.5281/zenodo.10867922
https://zenodo.org/doi/10.5281/zenodo.10867922


Bibliography 148

zenodo.org/doi/10.5281/zenodo.10867922 (visited on 04/07/2024) (cited on
page 129).

[85] Faezeh Labbaf, Jan Friso Groote, Hossein Hojjat, and Mohammad Reza Mousavi.
“Compositional Learning for Interleaving Parallel Automata”. In: Foundations of
Software Science and Computation Structures. Edited by Orna Kupferman and Pawel
Sobocinski. Volume 13992. Cham: Springer Nature Switzerland, 2023, pages 413–435.
isbn: 978-3-031-30828-4 978-3-031-30829-1. doi: 10.1007/978-3-031-30829-1_20.
url: https://link.springer.com/10.1007/978-3-031-30829-1_20 (visited on
08/12/2024) (cited on page 129).

[86] Simon Dierl, Paul Fiterau-Brostean, Falk Howar, Bengt Jonsson, Konstantinos Sag-
onas, and Fredrik Tåquist. “Scalable Tree-based Register Automata Learning”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Edited by Bernd
Finkbeiner and Laura Kovács. Volume 14571. Cham: Springer Nature Switzerland,
2024, pages 87–108. isbn: 978-3-031-57248-7 978-3-031-57249-4. doi: 10.1007/978-3-

031-57249-4_5. url: https://link.springer.com/10.1007/978-3-031-57249-

4_5 (visited on 08/12/2024) (cited on page 129).
[87] Michael Foster, Roland Groz, Catherine Oriat, Adenilso Simao, Germán Vega, and Neil

Walkinshaw. “Active Inference of EFSMs Without Reset”. In: Formal Methods and
Software Engineering. Edited by Yi Li and Sofiène Tahar. Volume 14308. Singapore:
Springer Nature Singapore, 2023, pages 29–46. isbn: 978-981-9975-83-9 978-981-9975-
84-6. doi: 10.1007/978-981-99-7584-6_3. url: https://link.springer.com/10.

1007/978-981-99-7584-6_3 (visited on 08/12/2024) (cited on page 129).
[88] Bharat Garhewal, Frits Vaandrager, Falk Howar, Timo Schrijvers, Toon Lenaerts,

and Rob Smits. “Grey-Box Learning of Register Automata”. In: Integrated Formal
Methods. Edited by Brijesh Dongol and Elena Troubitsyna. Volume 12546. Cham:
Springer International Publishing, 2020, pages 22–40. isbn: 978-3-030-63460-5 978-3-
030-63461-2. doi: 10.1007/978-3-030-63461-2_2. url: http://link.springer.

com/10.1007/978-3-030-63461-2_2 (visited on 08/12/2024) (cited on page 129).
[89] Malte Isberner, Falk Howar, and Bernhard Steffen. “Learning Register Automata:

From Languages to Program Structures”. In: Machine Learning 96.1-2 (July 2014),
pages 65–98. issn: 0885-6125, 1573-0565. doi: 10.1007/s10994-013-5419-7. url:
http://link.springer.com/10.1007/s10994-013-5419-7 (visited on 08/12/2024)
(cited on page 129).

[90] Carlos Diego N. Damasceno, Mohammad Reza Mousavi, and Adenilso Da Silva
Simao. “Learning to Reuse: Adaptive Model Learning for Evolving Systems”. In:
Integrated Formal Methods. Edited by Wolfgang Ahrendt and Silvia Lizeth Tapia
Tarifa. Volume 11918. Cham: Springer International Publishing, 2019, pages 138–156.
isbn: 978-3-030-34967-7 978-3-030-34968-4. doi: 10.1007/978-3-030-34968-4_8.
url: http://link.springer.com/10.1007/978-3-030-34968-4_8 (visited on
08/12/2024) (cited on page 130).

https://zenodo.org/doi/10.5281/zenodo.10867922
https://zenodo.org/doi/10.5281/zenodo.10867922
https://zenodo.org/doi/10.5281/zenodo.10867922
https://doi.org/10.1007/978-3-031-30829-1_20
https://link.springer.com/10.1007/978-3-031-30829-1_20
https://doi.org/10.1007/978-3-031-57249-4_5
https://doi.org/10.1007/978-3-031-57249-4_5
https://link.springer.com/10.1007/978-3-031-57249-4_5
https://link.springer.com/10.1007/978-3-031-57249-4_5
https://doi.org/10.1007/978-981-99-7584-6_3
https://link.springer.com/10.1007/978-981-99-7584-6_3
https://link.springer.com/10.1007/978-981-99-7584-6_3
https://doi.org/10.1007/978-3-030-63461-2_2
http://link.springer.com/10.1007/978-3-030-63461-2_2
http://link.springer.com/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/s10994-013-5419-7
http://link.springer.com/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-030-34968-4_8
http://link.springer.com/10.1007/978-3-030-34968-4_8


Bibliography 149

[91] Claude Jard and Thierry Jéron. “TGV: Theory, Principles and Algorithms: A Tool for
the Automatic Synthesis of Conformance Test Cases for Non-Deterministic Reactive
Systems”. In: International Journal on Software Tools for Technology Transfer 7.4
(Aug. 2005), pages 297–315. issn: 1433-2779, 1433-2787. doi: 10.1007/s10009-004-

0153-x. url: http://link.springer.com/10.1007/s10009-004-0153-x (visited
on 10/02/2023) (cited on page 131).

[92] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. “STG: A Symbolic
Test Generation Tool”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Edited by Joost-Pieter Katoen and Perdita Stevens. Redacted by Gerhard
Goos, Juris Hartmanis, and Jan van Leeuwen. Volume 2280. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pages 470–475. isbn: 978-3-540-43419-1 978-3-540-
46002-2. doi: 10.1007/3-540-46002-0_34. url: http://link.springer.com/10.

1007/3-540-46002-0_34 (visited on 10/03/2023) (cited on page 132).
[93] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. “An Approach to Symbolic Test

Generation”. In: Integrated Formal Methods. Edited by Wolfgang Grieskamp, Thomas
Santen, and Bill Stoddart. Redacted by Gerhard Goos, Juris Hartmanis, and Jan
van Leeuwen. Volume 1945. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pages 338–357. isbn: 978-3-540-41196-3 978-3-540-40911-3. doi: 10.1007/3-540-

40911-4_20. url: http://link.springer.com/10.1007/3-540-40911-4_20

(visited on 10/03/2023) (cited on page 132).
[94] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. “Test Generation Based

on Symbolic Specifications”. In: Formal Approaches to Software Testing. Edited
by Jens Grabowski and Brian Nielsen. Volume 3395. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pages 1–15. isbn: 978-3-540-25109-5 978-3-540-31848-4. doi:
10.1007/978-3-540-31848-4_1. url: http://link.springer.com/10.1007/978-

3-540-31848-4_1 (visited on 10/03/2023) (cited on page 132).
[95] Alexandre Petrenko and Nina Yevtushenko. “Adaptive Testing of Deterministic

Implementations Specified by Nondeterministic FSMs”. In: Testing Software and
Systems. Edited by Burkhart Wolff and Fatiha Zaïdi. Lecture Notes in Computer
Science 7019. Springer Berlin Heidelberg, Jan. 1, 2011, pages 162–178. isbn: 978-
3-642-24579-4 978-3-642-24580-0. url: http://link.springer.com/chapter/10.

1007/978-3-642-24580-0_12 (visited on 12/12/2014) (cited on page 132).
[96] Yu Xue, Yi Xing, Hua Li, and Xinming Ye. “Research on the Interactive Property

Testing Based on Petri Net”. In: 2012 International Conference on Systems and
Informatics (ICSAI2012). 2012 International Conference on Systems and Informatics
(ICSAI). Yantai, China: IEEE, May 2012, pages 2466–2470. isbn: 978-1-4673-0199-2
978-1-4673-0198-5 978-1-4673-0197-8. doi: 10.1109/ICSAI.2012.6223553. url:
http://ieeexplore.ieee.org/document/6223553/ (visited on 10/02/2023) (cited
on page 133).

https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/s10009-004-0153-x
http://link.springer.com/10.1007/s10009-004-0153-x
https://doi.org/10.1007/3-540-46002-0_34
http://link.springer.com/10.1007/3-540-46002-0_34
http://link.springer.com/10.1007/3-540-46002-0_34
https://doi.org/10.1007/3-540-40911-4_20
https://doi.org/10.1007/3-540-40911-4_20
http://link.springer.com/10.1007/3-540-40911-4_20
https://doi.org/10.1007/978-3-540-31848-4_1
http://link.springer.com/10.1007/978-3-540-31848-4_1
http://link.springer.com/10.1007/978-3-540-31848-4_1
http://link.springer.com/chapter/10.1007/978-3-642-24580-0_12
http://link.springer.com/chapter/10.1007/978-3-642-24580-0_12
https://doi.org/10.1109/ICSAI.2012.6223553
http://ieeexplore.ieee.org/document/6223553/


Bibliography 150

[97] Frédéric Dadeau, Elizabeta Fourneret, and Abir Bouchelaghem. “Temporal Property
Patterns for Model-Based Testing from UML/OCL”. In: Software & Systems Modeling
18.2 (Apr. 2019), pages 865–888. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-

017-0635-4. url: http://link.springer.com/10.1007/s10270-017-0635-4

(visited on 10/04/2023) (cited on page 133).
[98] Doron Peled. “Model Checking and Testing Combined”. In: Automata, Languages

and Programming. Edited by Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow,
and Gerhard J. Woeginger. Redacted by G. Goos, J. Hartmanis, and J. van Leeuwen.
Volume 2719. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pages 47–63.
isbn: 978-3-540-40493-4 978-3-540-45061-0. doi: 10.1007/3-540-45061-0_5. url:
http://link.springer.com/10.1007/3-540-45061-0_5 (visited on 10/04/2023)
(cited on page 133).

[99] Alex Groce, Doron Peled, and Mihalis Yannakakis. “Adaptive Model Checking”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Edited by Joost-
Pieter Katoen and Perdita Stevens. Redacted by Gerhard Goos, Juris Hartmanis,
and Jan van Leeuwen. Volume 2280. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pages 357–370. isbn: 978-3-540-43419-1 978-3-540-46002-2. doi: 10.1007/3-

540-46002-0_25. url: http://link.springer.com/10.1007/3-540-46002-0_25

(visited on 01/08/2024) (cited on page 133).
[100] Jeroen Meijer and Jaco van de Pol. “Sound Black-Box Checking in the LearnLib”. In:

NASA Formal Methods. Edited by Aaron Dutle, César Muñoz, and Anthony Narkawicz.
Volume 10811. Cham: Springer International Publishing, 2018, pages 349–366. isbn:
978-3-319-77934-8 978-3-319-77935-5. doi: 10.1007/978-3-319-77935-5_24. url:
http://link.springer.com/10.1007/978- 3- 319- 77935- 5_24 (visited on
01/15/2024) (cited on page 134).

[101] Jeroen Meijer and Jaco van de Pol. “Sound Black-Box Checking in the LearnLib”.
In: Innovations in Systems and Software Engineering 15.3-4 (Sept. 2019), pages 267–
287. issn: 1614-5046, 1614-5054. doi: 10.1007/s11334-019-00342-6. url: http:

//link.springer.com/10.1007/s11334-019-00342-6 (visited on 10/05/2023)
(cited on page 134).

[102] Andrea Pferscher and Bernhard K. Aichernig. “Stateful Black-Box Fuzzing of Blue-
tooth Devices Using Automata Learning”. In: NASA Formal Methods. Edited by
Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2022, pages 373–392. isbn:
978-3-031-06773-0. doi: 10.1007/978-3-031-06773-0_20 (cited on page 134).

[103] Masaki Waga. “Falsification of Cyber-Physical Systems with Robustness-Guided
Black-Box Checking”. In: Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control. HSCC ’20. New York, NY, USA: Association
for Computing Machinery, Apr. 22, 2020, pages 1–13. isbn: 978-1-4503-7018-9. doi:

https://doi.org/10.1007/s10270-017-0635-4
https://doi.org/10.1007/s10270-017-0635-4
http://link.springer.com/10.1007/s10270-017-0635-4
https://doi.org/10.1007/3-540-45061-0_5
http://link.springer.com/10.1007/3-540-45061-0_5
https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1007/3-540-46002-0_25
http://link.springer.com/10.1007/3-540-46002-0_25
https://doi.org/10.1007/978-3-319-77935-5_24
http://link.springer.com/10.1007/978-3-319-77935-5_24
https://doi.org/10.1007/s11334-019-00342-6
http://link.springer.com/10.1007/s11334-019-00342-6
http://link.springer.com/10.1007/s11334-019-00342-6
https://doi.org/10.1007/978-3-031-06773-0_20


Bibliography 151

10.1145/3365365.3382193. url: https://dl.acm.org/doi/10.1145/3365365.

3382193 (visited on 07/13/2023) (cited on page 134).

https://doi.org/10.1145/3365365.3382193
https://dl.acm.org/doi/10.1145/3365365.3382193
https://dl.acm.org/doi/10.1145/3365365.3382193


Appendix A
SMTLIB2 Transition Relation of BRAKE Example

( define -fun __transRel (( __sfsmState Int)

( __sfsmState_post Int)

(x Real) (y Real)

( __preStateOf_y Real)

(max Real) (delta Real) (B0 Real)

(B1 Real) (B2 Real) (c Real )) Bool

(and (or (or (and (= __sfsmState 0) (<= x max)

(= y 0) (= __sfsmState_post 0)

)

(and (= __sfsmState 0) (= x max)

(<= B0 y B1) (= __sfsmState_post 1)

)

(and (= __sfsmState 0) (> x max)

(= y (+ B2 (/ (- x max) c)))

(= __sfsmState_post 2)

)

)

(or (and (= __sfsmState 1) (< x max) (= y 0)

(= __sfsmState_post 0)

)

(and (= __sfsmState 1) (= x max)

(<= B0 y B1) (= __sfsmState_post 1)

)

(and (= __sfsmState 1) (> x max)

(= y (+ B2 (/ (- x max) c)))

(= __sfsmState_post 2)

)

)

(or (and (= __sfsmState 2)

(< x (- max delta ))

152



Appendix A. SMTLIB2 Transition Relation of BRAKE Example 153

(= y 0)

(= __sfsmState_post 0)

)

(and (= __sfsmState 2)

(>= x (- max delta ))

(= y (+ B2 (/ (- x max) c)))

(= __sfsmState_post 2)

)

)

)

(and (= B0 0.9) (= B1 1.1) (= B2 2)

(= c 100) (= max 200) (= delta 10)

(>= y 0) (>= x 0) (<= x 400) (<= y 4)

)

)

)


	Introduction
	Motivation and Objectives
	Overview
	Running Examples
	Example 1: Automated Braking System
	Example 2: ABS & ESC System


	Background
	Valuation Functions
	Sequences
	Equivalence Class Partitionings
	Definition
	Construction of Equivalence Class Partitionings

	Finite State Machines
	Mealy Automata
	Moore Automata
	Recognizer Finite State Automata

	Symbolic Finite State Machines
	Definition
	Equivalence Class Partitionings for SFSMs

	Linear Temporal Logic
	Definition
	Abstraction for SFSM Computations

	Büchi Automata
	Runtime Monitors
	Satisfiability Modulo Theories
	Model Checking of FSMs

	Complete Property Oriented Testing with SFSM Models
	Motivation
	Running Example: A Formal Model for BRAKE
	Idea for an Approach

	Approach 1: Fuzzing with a Runtime Monitor
	Approach 2: Reduction Testing with Property Automata
	Construction of Property Automata
	Testing with Property Automata

	Approach 3: Equivalence Testing with Automata Abstractions
	Approach 4: A Specialized Testing Approach
	Test Suite Construction
	Test Execution and Verdict

	Complexity Considerations
	Application to the BRAKE Example
	Test Suite Derivation
	Detecting Implementation Errors

	Tool Support
	Foundations for SMT Problem Expression
	Input Output Equivalence Class Construction
	Modelling Sequences Traversing an SFSM
	Reachability Calculation
	Distinguishing Sequence Calculation
	Abstraction Calculation
	Optimizations

	Evaluation
	Implementation and Setup
	Parameters
	Results


	Complete Property Oriented White-Box Testing without a Reference Model
	Motivation and Overview
	Idea
	Running Example: ABS & ESC System Implementation
	Approach
	Overview
	Detailed Approach Description

	Evaluation
	Implementation and Setup
	Parameters
	Results

	Possible Optimisations & Potential Ways Forward
	Equivalence Query Optimisiations
	Property-Independent Learning
	Complementary Approaches


	Related Work
	Model-Based Property-Oriented Test Generation
	Property-Oriented Test Generation Based on Model-Learning

	Conclusion & Future Work
	Bibliography
	Appendix SMTLIB2 Transition Relation of BRAKE Example

