
Monadically Stable and Monadically
Dependent Graph Classes

Characterizations and Algorithmic Meta-Theorems

Nikolas Mählmann

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)

1. Gutachter: Prof. Dr. Sebastian Siebertz
2. Gutachter: Dr. habil. Patrice Ossona de Mendez

Datum der Verteidigung: 5. September 2024

Universität Bremen
Fachbereich 3 - Mathematik und Informatik



Abstract

A graph class is monadically stable if it does not encode the class of all linear orders using first-
order logic and vertex colors. This includes many sparse classes like planar graphs, bounded
degree, bounded tree-width, and nowhere dense classes, but also dense classes like map graphs.
More generally, a class is monadically dependent (also known as monadically NIP) if it does not
encode the class of all graphs. This includes the aforementioned monadically stable classes, and
also classes of bounded clique- or twin-width. Originating in model theory, monadic stability and
dependence have predominantly been studied on infinite structures. In this thesis we combine
tools from combinatorics and logic, to develop a theory for monadically stable and monadically
dependent classes of finite graphs that is well suited for their algorithmic treatment.

We obtain the following structure/non-structure dichotomy. On the structure side, we char-
acterize monadic stability and monadic dependence by two Ramsey-theoretic properties called
flip-flatness and flip-breakability. This gives rise to a larger framework: natural restrictions of
flip-flatness and flip-breakability characterize nowhere denseness, bounded clique- and tree-width,
and shrub- and tree-depth. On the non-structure side, we characterize monadic stability and
monadic dependence by explicitly listing few families of forbidden induced subgraphs.

We show the algorithmic applicability of our characterizations by proving new tractability
and hardness results for the first-order model checking problem. Given a graph G and a first-order
formula φ, we want to check whether G satisfies φ. It is conjectured that a hereditary graph
class admits fixed-parameter tractable model checking if and only if it is monadically dependent.
Building on flip-flatness, we prove a game characterization of monadic stability called Flipper
game. Using the game tree of the Flipper game as a decomposition of the input graph, we show
that first-order model checking is fixed-parameter tractable on every monadically stable graph
class. This confirms an important case of the tractability side of the model checking conjecture.
Using the forbidden induced subgraph characterization for monadically dependent classes, we
completely resolve the hardness side: we show that first-order model checking is AW[∗]-hard on
every hereditary graph class that is not monadically dependent.

i



Zusammenfassung

Eine Graphklasse ist monadisch stabil, wenn sie nicht die Klasse aller linearen Ordnungen mithilfe
von Prädikatenlogik und Knotenfarben kodiert. Viele Graphklassen sowohl mit geringer als
auch mit hoher Kantendichte haben diese Eigenschaft. Beispiele sind Klassen in denen der
Maximalgrad oder die Baumweite beschränkt ist. Auch planare Graphen, Map Graphen, und
nowhere dense Klassen sind monadisch stabil. Darüber hinaus ist eine Graphklasse monadisch
abhängig (oder auch monadisch NIP), wenn sie nicht die Klasse aller Graphen kodiert. Alle
monadisch stabilen Klassen und auch Klassen mit beschränkter Cliquen- oder Zwillingsweite
sind monadisch abhängig. Monadische Stabilität und monadische Abhängigkeit haben ihren
Ursprung in der Modelltheorie und wurden bisher hauptsächlich auf unendlichen Strukturen
untersucht. In dieser Arbeit kombinieren wir Werkzeuge aus der Kombinatorik und der Logik, um
eine algorithmische Theorie für monadisch stabile und monadisch abhängige Klassen endlicher
Graphen zu entwickeln.

Wir beweisen die folgende strukturelle Dichotomie. Auf der einen Seite charakterisieren
wir monadische Stabilität und monadische Abhängigkeit durch zwei Ramsey-theoretische Eigen-
schaften, die wir Flip-Flatness und Flip-Breakability nennen. Wir präsentieren diesen Zusam-
menhang als Teil eines größeren Frameworks: Natürliche Varianten von Flip-Flatness und Flip-
Breakability charakterisieren Nowhere Denseness und beschränkte Cliquenweite, Baumweite,
Strauchtiefe, und Baumtiefe. Auf der anderen Seite beschreiben wir minimale Familien von in-
duzierten Subgraphen, die zu monadischer Instabilität und monadischer Unabhängigkeit führen.

Wir zeigen, dass unsere neuen Charakterisierungen sich gut für algorithmische Anwendungen
eignen, indem wir neue obere und untere Komplexitätsschranken für das Model Checking Problem
der Prädikatenlogik beweisen. In diesem Problem sollen wir für einen gegebenen Graphen G
und Satz φ in Prädikatenlogik entscheiden, ob φ wahr auf G ist. Es wird vermutet, dass Model
Checking fixed-parameter tractable auf einer hereditären Graphklasse ist, genau dann, wenn diese
Klasse monadisch abhängig ist. Aufbauend auf Flip-Flatness charakterisieren wir monadische
Stabilität durch das sogenannte Flipper Spiel. Indem wir den Spielbaum des Flipper Spiels als
Zerlegung für den Eingabegraphen benutzen, können wir zeigen, dass Model Checking fixed-
parameter tractable auf allen monadisch stabilen Graphklassen ist. Damit etablieren wir die
obere Komplexitätsschranke für einen wichtigen Spezialfall der Model Checking Vermutung.
Mithilfe unserer Charakterisierung durch induzierte Subgraphen können wir die untere Kom-
plexitätsschranke sogar im allgemeinen Fall beweisen: Wir zeigen, dass Model Checking auf jeder
hereditären, monadisch unabhänigen Graphklasse AW[∗]-schwer ist.

ii



Acknowledgements

First, I want to thank my supervisor Sebastian Siebertz for his support and guidance. You
introduced me to this field of research and gave me all the freedom and opportunities needed to
pursue it. These three years of being a PhD student in your group have been a fantastic journey!

Many thanks go to Jan Dreier and Szymon Toruńczyk who quickly became close collaborators,
mentors, and friends. I always look forward to our meetings, where discovery is right around the
corner. I also want to thank Michał Pilipczuk for hosting my stay at the University of Warsaw.
This gratitude extends to the whole group in Warsaw for welcoming me so warmly. I had a great
time and want to return soon.

I thank Patrice Ossona de Mendez for reviewing this thesis. I thank my co-authors Édouard
Bonnet, Jan Dreier, Ioannis Eleftheriadis, Jakub Gajarský, Stephan Kreutzer, Rose McCarty, Amer
Mouawad, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek
Sokołowski, Szymon Toruńczyk, and Alexandre Vigny. Working with all of you was a pleasure.
Special thanks go to Édouard, Jan, Jakub, Stephan, and Szymon, for “adopting” me at the Dagstuhl
sparsity workshop when I just started my PhD. Writing our LICS paper together, I learned a lot
from you, and it led to my first conference travel.

Next I want to thank the present and past members of our group in Bremen. Special thanks
go to Mario for being the best office mate; to Nicole, for her great pastries and our chaotic but fun
journey to Montpellier; and to Alex, for his excellent teaching during my master’s studies.

Last but not least, this thesis would not have been possible without the most important people
in my life: I thank my friends for keeping my spirits up, my sisters Franziska and Emily for putting
up with me, my parents Teresa and Dirk for their encouragement and support, and Lisa for her
love and patience.

iii



Contents

I Prelude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Bibliographic Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II Monadic Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Flip-Breakability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Forbidden Induced Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7 Model Checking Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

III Monadic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8 Flip-Flatness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9 Forbidden Induced Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10 Flipper Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11 Neighborhood Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

IV The Breakability Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
13 Nowhere Denseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
14 Bounded Clique-Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
15 Bounded Tree-Width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
16 Bounded Shrub-Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
17 Bounded Tree-Depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
18 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

iv



Part I

Prelude

1



Chapter 1

Motivation

Given a graphG and a sentence φ in first-order logic, the (first-order) model checking problem asks
whether G satisfies φ (written as G |= φ). Here, the graph G is represented as a structure whose
universe consists of the vertices of G and where the edges of G are modeled by a symmetric
and irreflexive binary relation E(x, y). Using this representation, many parameterized graph
problems can be elegantly formulated as first-order sentences. For example, the sentences

∃x1 . . . ∃xk
⋀︂

i ̸=j∈[k]

E(xi, xj) and ∃x1 . . . ∃xk∀y
⋁︂
i∈[k]

E(xi, y) ∨ xi = y

ask whether the graph G contains a clique or dominating set of size k, respectively. An algorithm
for the first-order model checking problem can therefore solve k-Cliqe, k-Dominating-Set,
and every other problem definable in first-order logic. Instead of solving a single algorithmic
problem, model checking algorithms provide a uniform way to solve whole classes of problems.
For this reason, they are often referred to as algorithmic meta-theorems [46, 47, 54].

This flexibility comes at a price. A naive branching algorithm solves the first-order model
checking problem in time nO(q), where n is the number of vertices of G and q is the quantifier
rank of φ. Assuming the exponential time hypothesis (ETH) [52, 53], this running time cannot be
improved: the k-Cliqe problem is first-order definable with k quantifiers, but cannot be solved
in time f(k) ·no(k) for any function f [11]. Here we assume the input graph is an arbitrary graph
for which no further structure is known. In other words, the hardness result only concerns the
model checking problem on the class of all graphs1. However, graphs arising from real world
applications are often highly structured [19]. It is therefore natural to consider the model checking
problem where the domain is restricted to graph classes where better runtimes are possible. This
raises the following question.

Which graph classes admit fixed-parameter tractable model checking?

We say the model checking problem is fixed-parameter tractable2 on a graph class C if it can be
solved in time f(|φ|) ·nc for some function f and constant c, on every n-vertex graph from C and
sentence φ. Hence, we demand the dependence of the running time on the size of the graph to be
a fixed polynomial that is independent of the input sentence. Note that the naive nO(q) algorithm
does not meet this criterion.

Tree- and Clique-Width. The prototypical examples of algorithmic meta-theorems are the
results of Courcelle et al. stating that the model checking problem for the more expressive

1A graph class is a (usually infinite) set of graphs. We identify isomorphic graphs.
2We discuss further variants of fixed-parameter tractability in Section 12.4.

2



Chapter 1. Motivation

monadic second-order logic is fixed-parameter tractable on every class of bounded tree- or clique-
width [13, 14]. The tree-width of a graph measures how similar it is to a tree: the lower the
tree-width, the more tree-like the graph and the better its decomposability. A graph class C has
bounded tree-width, if there is a bound k such that every graph in C has tree-width at most k.
Clique-width generalizes the concept of tree-width, by introducing suitable decompositions for
dense graphs. Tree- and clique-width are expected to characterize tractable monadic second-order
model checking on monotone3 and hereditary4 graph classes [42, 56]. As we will see next, the less
expressive first-order logic allows model checking on a much wider range of graph classes. A
hierarchy of graph classes where first-order model checking is conjectured to be fixed-parameter
tractable is depicted in Figure 1.1. We will discuss the various graph classes in the following.

Nowhere Denseness

Structurally
Bounded Expansion

Bounded Tree-Width Structurally
Bounded Tree-Width

Bounded Tree-Depth Bounded Shrub-Depth

Monadic Stability Monadic Dependence

Bounded Sparse
Twin-Width

Structurally Bounded
Sparse Twin-Width

Bounded Expansion

Bounded Clique-Width

Bounded Twin-Width

Bounded Flip-Width

Figure 1.1: The hierarchy of class properties for which the first-order model checking problem is conjectured
to be fixed-parameter tractable. An arrow P1 → P2 between two properties means that every graph class
that has property P1 also has property P2. In particular, bounded tree-depth is the most restricted class
property in this hierarchy and monadic dependence is the most general one. Sparse twin-width [6, 41],
bounded expansion [65], and flip-width [83] are not discussed in this thesis. We still include them in this
hierarchy for completeness. We discuss the “hole” in the bottom right corner of the hierarchy in Chapter 17.

Nowhere Denseness. A long line of research [77, 33, 35, 17, 31] has culminated in the result of
Grohe, Kreutzer, and Siebertz, who showed that first-order model checking is fixed-parameter
tractable on every nowhere dense graph class [48]. Nowhere dense classes were introduced
by Nešetřil and Ossona de Mendez [61] as a general framework for characterizing sparsity of
graph classes. In particular, nowhere dense classes include all classes that have bounded degree,
have bounded tree-width, are planar, exclude a minor, or have bounded expansion. The model
checking result for nowhere dense classes marks the exact limit of tractability in monotone graph
classes, as first-order model checking is AW[∗]-hard on every monotone class that is not nowhere
dense [31, 54].

A monotone graph class admits fixed-parameter tractable model checking if and
only if it is nowhere dense (assuming FPT ̸= AW[∗]). [48, 31, 54]

Here, FPT ̸= AW[∗] is a standard complexity assumption, equivalent to the assumption that the
class of all graphs does not admit fixed-parameter tractable model checking.

3A graph class is monotone if it is closed under taking subgraphs, i.e., deleting vertices and edges.
4A graph class is hereditary if it is closed under taking induced subgraphs, i.e., deleting vertices.

3



Chapter 1. Motivation

While nowhere denseness is well suited to capture tractability on sparse classes, it fails to
do so on dense classes: model checking is tractable on every class of bounded clique-width, but
already the simple class of all cliques (which has clique-width 1) is not nowhere dense. Here we
see that, in the statement above, the focus on monotone classes is very restrictive. The class of all
cliques is not monotone and the only monotone class which contains all cliques is the class of all
graphs. In order to establish tractability on more general graph classes, we must therefore relax
the monotonicity restriction, which gives rise to the following question.

Which hereditary graph classes admit fixed-parameter tractable model checking?

The restriction to hereditary classes is well suited for the study of dense graphs. The class of all
cliques is hereditary, and taking the hereditary closure of a class does not increase its clique-width.

Twin-Width. For a long time, not many significant examples of dense classes with tractable
model checking apart from classes of bounded clique-width were known. This changed with the
introduction of the graph parameter twin-width [8]. Classes of bounded twin-width generalize
classes of bounded clique-width and classes excluding a minor. There is a fixed-parameter tractable
model checking algorithm for classes of bounded twin-width, that requires as additional input a
contraction sequence witnessing that the input graph has low twin-width [8]. As of June 2024, it is
not known how to efficiently compute or approximate suitable contraction sequences in general,
but they can be efficiently computed in classes of ordered graphs5. There, twin-width forms the
exact tractability limit for the model checking problem.

A hereditary class of ordered graphs admits fixed-parameter tractable model check-
ing if and only if it has bounded twin-width (assuming FPT ̸= AW[∗]). [7]

For classes of unordered graphs, bounded twin-width is incomparable to nowhere denseness and
fails to characterize tractability in hereditary classes of (unordered) graphs. This is witnessed by
the class of graphs with maximum degree 3. This class is nowhere dense and therefore admits
efficient model checking, but it has unbounded twin-width [6]. Towards characterizing tractable
model checking on hereditary graph classes, we ask:

Which notion generalizes both nowhere denseness and bounded twin-width?

Structural Nowhere Denseness. In order to generalize nowhere denseness we introduce
transductions, a notion that originates from model theory. A transduction Tφ is an operation that
is specified by a symmetric, irreflexive, binary first-order formula φ(x, y) over the signature of
colored graphs. It maps an input graph G to a set of output graphs Tφ(G) obtained by

1. coloring G,
2. replacing the edge relation of G by the relation defined by φ in G,
3. taking an induced subgraph.

See Figure 1.2 for an example. A formal definition is given in the preliminaries (Chapter 4).
Transductions provide a flexible way to define graph transformations using logic. For example

the formulas φ1(x, y) := ¬E(x, y) and φ2(x, y) := dist(x, y) ⩽ 2 specify the transductions that
produce the complement and the square of a graph, respectively. Let C,D, E be graph classes.
We say C transduces D (or D is transducible in C) if there exists a transduction Tφ such that
D ⊆ Tφ(C), where Tφ(C) :=

⋃︁
G∈C Tφ(G). This relation is transitive: if C transduces D and D

transduces E , then also C transduces E .
5Ordered graphs are graphs equipped with an additional relation that expresses a linear order on the vertex set and

is accessible in first-order logic. Adding an order to a graph can increase both the twin-width of the graph and the
expressiveness of first-order logic on this graph.

4



Chapter 1. Motivation

coloring
defining a new
edge relation

taking an
induced subgraph

Figure 1.2: Depiction of a transduction. On the very left: the graphG. On the very right: A graph contained
in Tφ(G) for the formula φ(x, y) = (dist(x, y) = 3) ∨ (Red(x) ∧ Red(y)).

The class property6 of having bounded twin-width is transduction-closed: Every class trans-
ducible in a class of bounded twin-width again has bounded twin-width [8]. Transduction-closed
class properties are very robust as they are preserved under all operations expressible by trans-
ductions. In particular, as each graph class transduces its hereditary closure (i.e. the closure under
taking induced subgraphs), transduction-closed properties are well suited for studying hereditary
graph classes. Nowhere denseness is not a transduction-closed class property. For example the
nowhere dense class of edgeless graphs transduces the class of all cliques that is not nowhere
dense. To generalize nowhere dense classes, we define structurally nowhere dense classes as graph
classes transducible from nowhere dense classes [38, 63]. Structural nowhere denseness is a
transduction-closed class property due to the transitivity of the transduction relation. It vastly
generalizes nowhere denseness: While nowhere dense classes are necessarily sparse, structurally
nowhere dense classes can also be dense. For example the class of map graphs is transducible from
the class of planar graphs [12]. It has been conjectured that the fixed-parameter tractable model
checking can be lifted from nowhere dense classes to structurally nowhere dense classes [37].
However, until now, not even special cases like k-Independent-Set could be solved.

Monadic Stability. Is structural nowhere denseness the sought after generalization of nowhere
denseness and bounded twin-width? The answer to this question is “no”. To obtain this answer
we have to find a class H satisfying the following two conditions.

H is not transducible from a nowhere dense class and H has bounded twin-width.

It is already non-obvious that there exists a class that is not transducible from any nowhere dense
class. Note that if no such class would exist, then every class would be structurally nowhere dense
and this class property would be trivial. A suitable class H is provided by a result of Podweski
and Ziegler [72] and Adler and Adler [1], who built a bridge between structural graph theory and
model theory by showing that nowhere dense graph classes are monadically stable. A class is
monadically stable if it does not transduce the class of all half-graphs (see Figure 1.3).

Figure 1.3: The half-graph of order n consists of vertices a1, . . . , an and b1, . . . , bn such that for all i, j ∈ [n],
ai is adjacent to bj if and only if i ⩽ j. Depicted: the half-graph of order 4.

6Formally, a class property is a (usually infinite) set of graph classes. Examples discussed so far include 1. nowhere
denseness: the set of all nowhere dense classes, 2. bounded twin-width: the set of all classes with bounded twin-width.

5



Chapter 1. Motivation

Monadic stability was first studied by Baldwin and Shelah [4] in the context of stability
theory, a branch of model theory pioneered by Shelah [79]. One can think of monadically stable
classes as “orderless”: It is not hard to show from the definition of a half-graph, that we can
equivalently characterize monadically stable classes as those that do not transduce the class of all
linear orders. The definition of monadic stability exemplifies that transductions can not only be
used in constructive way, but also in a restrictive way:

• Constructive: a class is simple (e.g., structurally nowhere dense) if it is transducible from
something simple (e.g., nowhere dense classes).

• Restrictive: a class is simple (e.g., monadically stable) if it does not transduce something
complicated (e.g., the class of all half-graphs, the class of all linear orders).

By transitivity of the transduction relation and [72, 1], monadic stability is a transduction-closed
non-trivial class property that includes all structurally nowhere dense classes. It is an open
question whether there exist classes that are monadically stable but not structurally nowhere
dense, and it is conjectured, that both notions coincide [68, 41]. It is easy to prove that the (by
definition not monadically stable) class of all half-graphs has bounded twin-width (and even
bounded clique-width). This shows that monadically stable and bounded twin-width classes are
also incomparable.

Monadic Dependence. We have seen that monadic stability is a transduction-closed class
property that generalizes (structural) nowhere denseness but is incomparable to bounded twin-
width. It is now time to introduce monadic dependence7 as a common generalization of both
monadic stability and bounded twin-width. A graph class is monadically dependent if it does
not transduce the class of all graphs. By definition, monadic dependence is the most general
transduction-closed class property that is not trivial. It generalizes both monadic stability and
bounded twin-width:

• Monadically stable classes are monadically dependent, because they do not transduce the
class of all half-graphs (by definition).

• Bounded twin-width classes are monadically dependent, because they do not transduce the
class of graphs with maximum degree 3 (by transduction-closure).

As previously discussed, monadic stability can be seen as the “orderless” fragment of monadic
dependence. A graph class has bounded twin-width if and only if its graphs can be ordered such
that the resulting class of ordered graphs is still monadically dependent [7]. Hence, bounded
twin-width can be seen as the “orderable” fragment of monadic dependence. Note that the two
notions are not mutually exclusive: for example classes of bounded tree-width or the class of
planar graphs are both monadically stable and also have bounded twin-width.

Like monadic stability, monadic dependence originates in stability theory [4]. It was recently
shown by Braunfeld and Laskowski that on hereditary classes of structures, monadic stability and
monadic dependence coincide with respectively stability and dependence, two important dividing
lines in stability theory used to separate tame from wild structures [9]. Remarkably, in both cases
where the tractability limit of the first-order model checking problem has been determined, it is
precisely captured by monadic dependence. Monadic dependence . . .

• . . . is equivalent to nowhere denseness on monotone classes [1].
• . . . is equivalent to bounded twin-width on classes of ordered graphs [7].

7Monadic dependence is also known as monadic NIP where NIP stands for “not the independence property”.

6



Chapter 1. Motivation

Based on these connections between monadic dependence and structural graph theory, the
following conjecture has been posed (see for example [2, 37, 7, 5]) and is now the central open
question in the area.

Conjecture 1.1. A hereditary graph class admits fixed-parameter tractable model checking if and
only if it is monadically dependent (assuming FPT ̸= AW[∗]).

Both directions of this conjecture have been open, with the tractability side being unsolved
even for structurally nowhere dense and monadically stable classes. Originating in model theory,
both monadic stability and monadic dependence are defined in terms of logic and have mostly
been studied on infinite structures. The biggest issue blocking the progress of Conjecture 1.1 is a
missing combinatorial understanding of monadic stability and monadic dependence in classes of
finite graphs.

7



Chapter 2

Contribution

In this thesis we build a bridge between model theory and structural graph theory, by providing
several combinatorial characterizations of monadic stability and monadic dependence. Our
characterizations are well suited for the algorithmic treatment of classes of finite graphs. We utilize
them to make significant progress on both the tractability and hardness side of Conjecture 1.1.
On the tractability side, we greatly extend the state of the art by showing that all monadically
stable classes admit fixed-parameter tractable first-order model checking. We completely resolve
the hardness side by showing that first-order model checking is AW[∗]-hard on every hereditary
class that is monadically independent (i.e., not monadically dependent). Additionally, we reveal
striking conceptual similarities between monadic dependence and many other well known class
properties from structural graph theory. We systematically study these similarities under the
name “breakability framework”. We first state our main theorems and then explain the statements
in detail in the remainder of the chapter.

Combinatorial Characterizations of Monadic Stability

Theorem 2.1. For every graph class C, the following are equivalent.

(1) C is monadically stable.

(2) C is flip-flat.

(3) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graphs of order k.

(4) For every r ∈ N there exists ℓ ∈ N such that Flipper wins the radius-r budget-2 Flipper game
in at most ℓ rounds on every graph from C.

Model Checking on Monadically Stable Classes

Theorem 2.2. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.

For every monadically stable class C, there exists a function f : N × R → N such that on any
n-vertex graph G ∈ C and sentence φ the algorithm runs in time f(|φ|, ε) · n6+ε for every ε > 0.

8



Chapter 2. Contribution

Combinatorial Characterizations of Monadic Dependence

Theorem 2.3. Let C be a graph class. Then the following are equivalent.

(1) C is monadically dependent.

(2) C is flip-breakable.

(3) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k.

(4) The hereditary closure of C does not efficiently interpret the class of all graphs.

Model Checking Hardness on Monadically Independent Classes

Theorem 2.4. The first-order model checking problem is AW[∗]-hard on every hereditary, monadi-
cally independent graph class.

The Breakability Framework

Theorem 2.5. For every graph class C, the following holds.

(1) C is flip-breakable if and only if it is monadically dependent.

(2) C is flip-flat if and only if it is monadically stable.

(3) C is deletion-breakable if and only if it is nowhere dense.

(4) C is deletion-flat if and only if it is nowhere dense.

(5) C is dist.-∞ flip-breakable if and only if it has bounded clique-width.

(6) C is dist.-∞ flip-flat if and only if it has bounded shrub-depth.

(7) C is dist.-∞ deletion-breakable if and only if it has bounded tree-width.

(8) C is dist.-∞ deletion-flat if and only if it has bounded tree-depth.

It is correct that both deletion-breakability and -flatness correspond to nowhere denseness.
In rest of the chapter, we explain the above statements in detail.

9



Chapter 2. Contribution

2.1 Flip-Flatness and Flip-Breakability

Our first characterization of monadic stability and monadic dependence is by two Ramsey-
theoretic properties called flip-flatness and flip-breakability. These two properties are natural
generalizations of uniform quasi-wideness, a property that characterizes nowhere denseness.

Definition 2.6 (Uniform Quasi-Wideness). A graph class C is uniformly quasi-wide if for every
radius r ∈ N there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N,
G ∈ C and W ⊆ V (G) with |W | ⩾ Nr(m) there exist sets S ⊆ V (G) with |S| ⩽ kr and
A ⊆W \ S with |A| ⩾ m such that for every two distinct vertices u, v ∈ A:

distG−S(u, v) > r.

Here G− S denotes the induced subgraph of G, where the vertices S have been removed.
Intuitively, uniform quasi wideness states that in every huge set W , after the removal of a small
set of vertices S, we find a still large subset A of W whose vertices have pairwise distance
greater than r. For growing values of r, S may grow and A may shrink. An example is depicted
in Figure 2.3 on page 13. Uniform quasi-wideness is a variant of the quasi-wideness property
introduced by Dawar in the context of homomorphism preservation theorems [16]. Nešetřil and
Ossona de Mendez showed that uniform quasi-wideness characterizes nowhere denseness [61, 60].

Fact 2.7 ([61, 60]). A graph class is nowhere dense if and only if it is uniformly quasi-wide.

Since then, uniform quasi-wideness has become one of the main tools in algorithm design for
nowhere dense classes [18, 48, 55].

Flip-Flatness

In order to capture also dense classes, we need a more powerful operation than vertex deletion.
For two graphs G and H on the same vertex set, we say H is a k-flip of G if it can be obtained by
partitioning the vertices of G into at most k parts and complementing the edge relation between
some pairs of parts. See Figure 2.1 for an example and Chapter 4 for a formal definition.

P1 P2 P3 P1 P2 P3

is a 3-flip of

Figure 2.1: Two graphs that are 3-flips of each other. This is witnessed by the flip partition {P1, P2, P3}
where we flip the pairs (P1, P2), (P2, P3), and (P3, P3). In particular, we allow a part to be flipped with
itself.

The flip operation is powerful enough to simplify many dense graphs. For example a biclique
is a 2-flip of an edgeless graph. However, it is still a very tame operation. It is reversible in the
sense that if H is a k-flip of G, then also G is a k-flip of H . Moreover, the edge relation of H is
first-order definable in a k-coloring of G, where the colors mark the parts of the flip partition. In
particular every graph class transduces the class of all its k-flips.

The following definition was suggested by Jakub Gajarský and Stephan Kreutzer (private
communication). It generalizes uniform quasi-wideness, by replacing vertex deletions by flips.

10



Chapter 2. Contribution

Definition 2.8 (Flip-Flatness). A graph class C is flip-flat if for every radius r ∈ N there exists
a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G)
with |W | ⩾ Nr(m) there exist a subset A ⊆W with |A| ⩾ m and a kr-flip H of G such that for
every two distinct vertices u, v ∈ A:

distH(u, v) > r.

An example is depicted in Figure 2.3. Every uniformly quasi-wide graph class is also flip-flat1:
instead of deleting a vertex set S in a graph G, we can isolate it in the 2|S|-flip of G that flips
each vertex of S with its neighborhood. As one of the main results of this thesis we show that
flip-flatness characterizes monadic stability.

Theorem 2.9. A graph class is monadically stable if and only if it is flip-flat.

This characterization is the (to the best of our knowledge) first purely combinatorial character-
ization of monadic stability. Similar to how uniform quasi-wideness plays a key role in algorithm
design for nowhere dense classes, flip-flatness and the techniques developed to prove it are key
ingredients of our model checking algorithm for monadically stable graph classes.

Flip-Breakability

Since flip-flatness characterizes monadic stability, the class of all half-graphs cannot be flip-flat.
In particular if H is a k-flip of a half-graph and A ⊆ V (H) a size 8k set, then at least two vertices
of A have distance at most 2 to each other. However, for every half-graph there is a 3-flip that
breaks it into two large connected components, as shown in Figure 2.2.

P1

P2

P1

P2

is a 3-flip of

Figure 2.2: A half-graph and one of its 3-flips where we have flipped between the parts P1 and P2. The
remaining vertices belong to the part P3 that is not drawn.

This shows that while we cannot produce a large set of vertices that have pairwise high
distance in half-graphs, we can instead produce two large sets that are at high distance from each
other. Based on this observation, we introduce the following generalization of flip-flatness that
we call flip-breakability.

Definition 2.10 (Flip-Breakability). A graph class C is flip-breakable if for every radius r ∈ N
there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and
W ⊆ V (G) with |W | ⩾ Nr(m) there exist subsetsA,B ⊆W with |A|, |B| ⩾ m and a kr-flipH
of G such that:

distH(A,B) > r.

Here distH(A,B) > r means that distH(a, b) > r for all a ∈ A and b ∈ B. As one of the
main result of this thesis, we show that this notion precisely captures monadic dependence.

Theorem 2.11. A graph class is monadically dependent if and only if it is flip-breakable.
1Another reasonable name for flip-flatness would be flip-wideness. We avoided this name to prevent confusion with

the recently introduced graph parameter flip-width [83], which is studied in the same context.

11



Chapter 2. Contribution

This characterization is the (to the best of our knowledge) first purely combinatorial char-
acterization of monadic dependence. Due to the similarity to uniform quasi-wideness and flip-
flatness, we believe that flip-breakability is an important step towards establishing fixed-parameter-
tractable model checking on monadically dependent classes.

The Breakability Framework

The definitions of uniform quasi-wideness, flip-flatness, and flip-breakability all follow a similar
pattern. We modify the graph using either (1) flips or vertex deletions and demand that the resulting
subset is either (2) flat or broken, that is, either pairwise separated or separated into two large
sets. We now introduce the type of separation as an additional parameterization for this pattern.
The type of separation can be either (3) distance-r or distance-∞. While distance-r separation
demands that the vertices or sets have distance at least r from each other (as seen in Definitions 2.6,
2.8 and 2.10), distance-∞ separation demands the vertices or sets to be in different connected
components of the graph. This is formalized by the following definition.

Definition 2.12. A graph class C is distance-∞ flip-breakable, if there exists a functionN : N → N
and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m) there
exist subsets A,B ⊆W with |A|, |B| ⩾ m and a k-flip H of G such that in H , no two vertices
a ∈ A and b ∈ B are in the same connected component.

We show that each of the eight possible combinations of (1), (2) and (3) characterizes a well-
studied class property. The results are summarized in the following Table 2.1. We refer to Part IV
for formal definitions.

flatness breakability

dist-r flip- monadic stability (Thm. 2.1) monadic dependence (Thm. 2.3)
deletion- nowhere denseness [16, 61] nowhere denseness (Thm. 13.2)

dist-∞ flip- bd. shrub-depth (Thm. 16.2) bd. clique-width (Thm. 14.2)
deletion- bd. tree-depth (Thm. 17.2) bd. tree-width (Thm. 15.2)

Table 2.1: Variants of flip-breakability.

Notably, the right column of Table 2.1 consists of the conjectured tractability limits of the
model checking problem, where the distance-r and distance-∞ variants correspond to first-order
and monadic second-order logic, and the flip and deletion variants correspond to hereditary and
monotone classes. This further indicates the importance of flip-breakability in the context of model
checking. It is interesting to see that the seemingly more general deletion-breakability collapses to
deletion-flatness (i.e., uniform quasi-wideness), as both properties characterize nowhere denseness.

12



Chapter 2. Contribution

delete

Uniform quasi-wideness:

Flip-flatness:

Flip-breakability:

W

W

W

flip

flipflip

flip

delete

Figure 2.3: Examples for uniform quasi-wideness, flip-flatness, and flip-breakability for radius r = 7.
Uniform quasi-wideness: After deleting a few vertices (marked with red circles), a large subset of W
(marked with green circles) has pairwise distance greater than 7.
Flip-flatness: After flipping between few sets of vertices (marked with red circles and blue diamonds), a
large subset of W (marked with green circles) has pairwise distance greater than 7.
Flip-breakability: After flipping between few sets of vertices (marked with red circles and blue diamonds),
two large subsets of W (marked with green circles and yellow diamonds) have distance greater than 7
from each other.

13



Chapter 2. Contribution

2.2 Forbidden Induced Subgraphs and Hardness

Our second characterization of monadic stability and monadic dependence is by explicitly listing
few families for forbidden induced subgraphs.

Forbidden Patterns

Before stating our characterizations, we first introduce the necessary definitions.

Flipped Crossings. For r ⩾ 1, the star r-crossing of order n is the r-subdivision of Kn,n (the
biclique of order n). More precisely, it consists of roots a1, . . . , an and b1, . . . , bn together with
r-vertex paths {πi,j : i, j ∈ [n]} that are pairwise vertex-disjoint (see Figure 2.4). We denote
the two endpoints of a path πi,j by start(πi,j) and end(πi,j). We require that roots appear on
no path, that each root ai is adjacent to {start(πi,j) : j ∈ [n]}, and that each root bj is adjacent
to {end(πi,j) : i ∈ [n]}. The clique r-crossing of order n is the graph obtained from the star
r-crossing of order n by turning the neighborhood of each root into a clique. Moreover, we define
the half-graph r-crossing of order n similarly to the star r-crossing of order n, where each root ai
is instead adjacent to {start(πi′,j) : i′, j ∈ [n], i ⩽ i′}, and each root bj is instead adjacent to
{end(πi,j′) : i, j′ ∈ [n], j ⩽ j′}. Each of the three r-crossings contains no edges other than the
ones described.

a1 a2 a3

b1 b2 b3

s

t

Figure 2.4: From left to right: the star/clique/half-graph 4-crossing of order 3 and the comparability grid of
order 4. In the star crossing, the vertices start(π1,3) and end(π1,3) are marked s and t. In the clique and
half-graph crossing, the edges differing from the star crossing are highlighted.

We also need to consider flipped versions of the above patterns. To this end, we partition the
vertices of star, clique, and half-graph r-crossings into layers: The 0th layer consists of the vertices
{a1, . . . , an}. The lth layer, for l ∈ [r], consists of the lth vertices of the paths {πi,j : i, j ∈ [n]}
(that is, the 1st and rth layer, respectively, are {start(πi,j) : i, j ∈ [n]} and {end(πi,j) : i, j ∈ [n]}).
Finally, the (r + 1)th layer consists of the vertices {b1, . . . , bn}. A flipped star/clique/half-graph
r-crossing is a graph obtained from a star/clique/half-graph r-crossing by performing a flip where
the parts of the flip partition are the layers of the r-crossing. Note that while there is only one
star/clique/half-graph r-crossing of order n, there are multiple flipped star/clique/half-graph
r-crossings of order n. Their number is however bounded by 2(r+2)2 : an upper bound for the
number of possible flips for a fixed flip partition of size (r + 2).

Flipped Half-Graphs. Recall that the half-graph of order k is the graph on vertices a1, . . . , ak
and b1, . . . , bk where ai and bj are adjacent if and only if i ⩽ j. A flipped half-graph of order k
is a 2-flip of a half-graph of order k, where the flip partition has parts P1 = {a1, . . . , ak} and
P2 = {b1, . . . , bk}. See Figure 2.5 for an example.

14



Chapter 2. Contribution

Figure 2.5: The flipped half-graphs of order 4.

Comparability Grids. At last, the comparability grid of order n consists of vertices {ai,j :
i, j ∈ [n]} and edges between vertices ai,j and ai′,j′ if and only if either i = i′, or j = j′, or
i < i′ ⇔ j < j′. See Figure 2.4 for an example. The reader might wonder why we do not define a
flipped variant of the comparability grid. This is due to the fact that any huge flipped comparability
grid contains a still large non-flipped comparability grid as an induced subgraph.

Characterizations

We are now ready to present our characterizations by forbidden induced subgraphs. For compari-
son, we fist state a similar characterization of nowhere denseness by forbidden (not necessarily
induced) subgraphs.

Fact 2.13 ([61]). Let C be a graph class. Then C is nowhere dense if and only if for every r ⩾ 1 there
exists k ∈ N such that C excludes as a subgraph

• the star r-crossing of order k.

For monadically stable classes, we obtain the following characterization.

Theorem 2.14. Let C be a graph class. Then C is monadically stable if and only if for every r ⩾ 1
there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graphs of order k.

In monadically dependent classes, we obtain the following characterization.

Theorem 2.15. Let C be a graph class. Then C is monadically dependent if and only if for every
r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k.

The flip-flatness and flip-breakability characterizations tell us which structure can be found in
monadically stable and dependent classes. They are therefore useful to obtain tractability results.
The forbidden induced subgraph characterizations complement this result. They show us which
induced subgraphs are contained in classes that are not monadically stable or dependent. They
are therefore useful to obtain hardness results.

Hardness

We have seen that classes containing arbitrarily large flipped crossings or comparability grids are
not monadically dependent. It is instructive to show that for every fixed r > 1, the class of all
star r-crossings transduces the class of all bipartite graphs.

15



Chapter 2. Contribution

tranduces

a1

a2

a3

b1 b2 b3 b4

a4

Figure 2.6: Transducing an arbitrary bipartite graph of order 4 from the star 3-crossing of order 4. A
suitable transduction would be φ(x, y) = “x and y are connected by a path of length 4 that contains a blue
vertex”.

In Figure 2.6 a star-crossing is presented in a grid-like layout. This layout is the origin of the
name “crossing”. Using this layout, it is easy to see that the star r-crossing of order n transduces
every bipartite graph of order n: we mark the paths we want to keep or remove by colors. A
suitable transduction would be

φ(x, y) := “x and y are connected by a path of length r + 1 containing a blue vertex”.

As this formula only depends on r (and not on n), the class of all star-r crossings transduces
the class of all bipartite graphs. As the class of all bipartite graphs transduces the class of all
graphs and by transitivity, we have shown that the class of all star-r crossings is not monadically
dependent. Similarly, also flipped star/clique/half-graph crossings as well as comparability grids
admit grid-like encodings of bipartite graphs using first-order logic. In particular, a transduction
can reverse the flips.

In Figure 2.6, instead of using colors, one can encode bipartite graphs by removing vertices
from the source graph: we delete paths between vertices that should not be connected in the target
graph. Using our forbidden induced subgraphs characterization, we generalize this observation
to all monadically independent classes as follows.

Theorem 2.16. A hereditary graph class is monadically independent if and only if it efficiently
interprets the class of all graphs.

Here an interpretation is a more restrictive version of a transduction. In particular, interpre-
tations do not include a coloring step. Moreover, a graph class C efficiently interprets a graph
class D, if there is a polynomial time algorithm that calculates for any graph G ∈ D a suitable
preimage H ∈ C. Intuitively the result shows that in hereditary graph classes, where one can
take induced subgraphs, the power of vertex coloring is not needed to encode arbitrary graphs in
first-order logic. As a corollary, we obtain the hardness side of Conjecture 1.1.

Theorem 2.4. The first-order model checking problem is AW[∗]-hard on every hereditary, monadi-
cally independent graph class.

Our results also reprove the following result by Braunfeld and Laskowski.

16



Chapter 2. Contribution

Fact 2.17 ([9]). Let C be a hereditary graph class.

• C is monadically stable if and only if it is stable.

• C is monadically dependent if and only if it is dependent.

Here, stability and dependence are notions from model theory that generalize monadic stability
and monadic dependence. The proof by Braunfeld and Laskowski is much more general. They show
a collapse of the monadic and non-monadic variants of stability and dependence on all hereditary
classes of relational structures (and not just graphs). Similarly to our induced subgraphs, the proof
of Braunfeld and Laskowski also exhibits grid-like configurations (called pre-coding configurations)
in classes that are monadically independent. As pre-coding configurations are defined in terms
of formulas with tuples of free variables, they have a rather logical than combinatorial flair. In
particular, it is not clear how to obtain algorithmic hardness results like Theorem 2.4 from them.

2.3 Model Checking and the Flipper Game

As a main contribution of this thesis, we show that first-order model checking is fixed-parameter
tractable on every monadically stable graph class.
Theorem 2.2. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.
For every monadically stable class C, there exists a function f : N × R → N such that on any
n-vertex graph G ∈ C and sentence φ the algorithm runs in time f(|φ|, ε) · n6+ε for every ε > 0.

We point out that the algorithm above is a single algorithm that works for every graph class,
but it is only guaranteed to be efficient on monadically stable classes. It was shown in [64], and also
follows from our characterizations, that monadic stability and monadic dependence are equivalent
on edge-stable2 classes. Hence, our tractability and hardness result for monadically stable and
monadically independent classes can be combined to yield another fragment of hereditary classes
where tractability precisely coincides with monadic dependence.
Theorem 2.18. A hereditary and edge-stable graph class admits fixed-parameter tractable3 model
checking if and only if it is monadically stable (assuming FPT ̸= AW[∗]).

Note that in this result, the edge-stable fragment of hereditary graph classes strictly generalizes
the monotone fragment, for which nowhere denseness was shown to be the tractability limit.
This is due to the easy fact that any monotone, non-edge-stable graph class contains all bipartite
graphs, and therefore does not admit tractable model checking.

A main ingredient for the proof of Theorem 2.2, which is of independent interest, is the Flipper
game. The Flipper game is a game characterization of monadic stability. As with our previous
characterizations, the Flipper game bears strong resemblance to a characterization of nowhere
denseness by a game called the Splitter game. The radius-r budget-k Splitter game is played by
two players Splitter and Localizer on a graph G called the arena. Intuitively, Splitter wants to
show that G is simple, by decomposing it through vertex deletions. In each round of the game,
Splitter deletes at most k vertices from the arena and then Localizer restricts the arena to an
r-neighborhood: Localizer chooses a center vertex v and all vertices at distance greater than r
from v are removed from the arena. Splitter wins the game once the arena contains at most one
vertex. With every vertex deletion, the distances in the arena may grow. Therefore, deleting few
vertices in Splitters move may result in the deletion of many vertices in Localizers move. See
Figure 2.7 for an example play.

2A graph class C is edge-stable if and only if there exists k ∈ N such that C contains no flipped half-graph of order
k as an induced subgraph.

3We discuss different variants of fixed-parameter tractability in Section 12.4.

17



Chapter 2. Contribution

flip fliplocalize

localizedelete deleteSplitter game:

Flipper game:

Figure 2.7: On the top: an example play of the radius-1 budget-1 Splitter game. On the bottom: an example
play of the radius-1 budget-3 Flipper game. For Flippers moves, two parts of the size 3 flip partition are
marked by red circles and blue diamonds. The third part consists of the remaining unmarked vertices.

Splitter wins on any finite graph, given the game is played for sufficiently many rounds.
Grohe, Kreutzer, and Siebertz showed that in nowhere dense classes Splitter can always win in a
constant number of rounds, independent of the size of the graph.

Fact 2.19 ([48]). A graph class C is nowhere dense if and only if for every r ∈ N there is ℓ ∈ N such
that Splitter wins the radius-r budget-1 Splitter game in at most ℓ rounds on every graph from C.

Just as flip-flatness was obtained from uniform quasi-wideness by replacing vertex deletions
with flips, we obtain the Flipper game from the Splitter game, by replacing Splitter with the player
Flipper who, instead of deleting k vertices, performs a k-flip on the arena in every round. See
Figure 2.7 for an example play. (The rules of the game are formally defined in Chapter 10.) We
show that the Flipper game characterizes monadic stability.

Theorem 2.20. A graph class C is monadically stable if and only if for every r ∈ N there is ℓ ∈ N
such that Flipper wins the radius-r budget-2 Flipper game in at most ℓ rounds on every graph from C.

In the model checking algorithm, we use the game-tree of the Flipper game as a bounded
depth decomposition of the input graph into r-neighborhoods. We use locality of first-order
logic to show that the r-neighborhoods preserve sufficient information to evaluate first-order
sentences. As another important ingredient of the algorithm, we prove that monadically stable
classes admit sparse neighborhood covers that can be used to cluster neighborhoods and thereby
keep the size of the game-tree small.

18



Chapter 3

Bibliographic Remark
The content of this thesis is based on the following publications. All results should be considered
equal contributions between the authors.

(P1) Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes [27]
joint work with Jan Dreier, Sebastian Siebertz, Szymon Toruńczyk
presented at ICALP 2023

(P2) Flipper Games for Monadically Stable Graph Classes [39]
joint work with Jakub Gajarský, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech
Przybyszewski, Sebastian Siebertz, Marek Sokołowski, Szymon Toruńczyk
presented at ICALP 2023

(P3) First-Order Model Checking on Structurally Sparse Graph Classes [26]
joint work with Jan Dreier, Sebastian Siebertz
presented at STOC 2023

(P4) First-Order Model Checking on Monadically Stable Graph Classes [24]
joint work with Jan Dreier, Ioannis Eleftheriadis, Rose McCarty, Michał Pilipczuk, Szymon
Toruńczyk
accepted at FOCS 2024

(P5) Flip-Breakability: A Combinatorial Dichotomy for Monadically Dependent Graph Classes [28]
joint work with Jan Dreier, Szymon Toruńczyk
presented at STOC 2024

Parts of this thesis therefore correspond to or are identical to parts of the above publications:

• Part I: Prelude is based on (P1) - (P5).
• Part II: Monadic Dependence is based on (P5).
• Part III: Monadic Stability is based on (P1) - (P5).

– Chapter 8: Flip-Flatness is based on (P1) and (P5).
– Chapter 9: Forbidden Induced Subgraphs is based on (P4) and (P5).
– Chapter 10: Flipper Game is based on (P2).
– Chapter 11: Neighborhood Covers is based on (P4).
– Chapter 12: Model Checking is based on (P3).

• Part IV: The Breakability Framework is based on (P5).

Results of publication (P4) may also appear in the future PhD thesis of Ioannis Eleftheriadis.
Note that the publications are listed in order of their first preprint publication date, which roughly
corresponds to the order in which the results where discovered. The presentation in this thesis

19



Chapter 3. Bibliographic Remark

follows a different order. The more general monadically dependent classes are explored first. Some
results for the more restricted monadically stable classes can then be obtained as corollaries.

20



Chapter 4

Preliminaries

We write N for the set of natural numbers {0, 1, 2, . . .}. For m ∈ N we let [m] = {1, . . . ,m}. We
write x̄, ȳ, . . . for tuples of variables and ā, b̄, v̄, w̄, . . . for tuples of elements and usually leave it to
the context to determine the length of a tuple. We access the elements of a tuple using subscripts,
that is, x̄ = x1x2 . . . x|x̄|.

Sequences

To address and order the combinatorial objects of this thesis, we use indexing sequences. These
are sequences (usually denoted by I, J ) of elements without duplicates. We denote the sequence
(1, . . . , n) also sometimes by [n]. We write I ⊆ J if I is a subsequence of J . We use the
usual comparison operators <,> to indicate the order of elements within a sequence. Given
a sequence I , and an element i ∈ I , we denote by predI(i) and succI(i) the predecessor and
successor of i in I . Moreover, if I = (a1, . . . , an), we define tail(I) := (a2, . . . , an).

Graphs

All graphs in this thesis are simple and undirected. Unless a graph G is considered to be an input
to an algorithm, we do not need to assume that G is a finite graph. The length of a path equals
its number of edges. The distance between two vertex vertices a and b in a graph G, denoted by
distG(a, b), is the length of a shortest path with endpoints a and b and ∞ if no such path exists.
The distance between two vertex sets A and B in a graph G is defined as

distG(A,B) := min
a∈A,b∈B

distG(a, b).

We drop the subscripts if the graph G is clear from the context. Two vertex sets A and B are non-
adjacent if dist(A,B) > 1. A set or tuple is distance-r independent if all its vertices have pairwise
distance greater than r. The (closed) r-neighborhood and open r-neighborhood of a vertex v are
denoted by

NG
r [u] := {v ∈ V (G) : distG({u}, {v}) ⩽ r}, and NG

r (u) := NG
r [u] \ {u}.

More generally, for a tuple (or set) ā we let NG
r [ā] =

⋃︁
a∈āN

G
r [a]. Again we drop the graph

from the notation if it is clear from the context, and we drop the subscript if r = 1. We also
call Nr[v] the r-ball around v. We call two distinct vertices u and v twins in a graph G if
NG(u) \ {v} = NG(v) \ {u}. The complement graph of a graph G is denoted by G. By default,
graphs have no colors, but we speak of colored graphs when we allow vertex-colors. In this case
we treat the colors as a fixed set of unary predicates which partition the vertex set, that is, each
vertex has exactly one color. We call G+ an s-coloring of G, if G+ is obtained by coloring G with

21



Chapter 4. Preliminaries

s many colors. A graph class is a (usually infinite) set of graphs. For a set of vertices X ⊆ V (G),
we write G[X] for the subgraph of G induced by X , and G−X for the subgraph of G induced by
V (G)−X . A graph class is monotone if it is closed under taking subgraphs. It is hereditary if it is
closed under taking induced subgraphs. For a graph G and two disjoint subsets U and V of its
vertices, we say the bipartite graph with vertices U and V and edgesE(G)∩

(︁
(U×V )∪(V ×U)

)︁
is a semi-induced subgraph of G.

We call the bipartite graph with sides a1, . . . , aℓ and b1, . . . , bℓ
• a matching of order ℓ if ai and bj are adjacent if and only if i = j for all i, j ∈ [ℓ],
• a co-matching of order ℓ if ai and bj are adjacent if and only if i ̸= j for all i, j ∈ [ℓ],
• a half-graph of order ℓ if ai and bj are adjacent if and only if i ⩽ j for all i, j ∈ [ℓ].

The powerset graph of order ℓ is the bipartite graph with sides {aS : S ⊆ [ℓ]} and b1, . . . , bℓ such
that aS and bi are adjacent if and only if i ∈ S for all i ∈ [ℓ] and S ⊆ [ℓ]. See Figure 4.1 for
examples.

Figure 4.1: From left to right: the matching of order 4, the co-matching of order 4, the half-graph of order 4,
and the powerset graph of order 3.

Flips

Fix a graph G and a partition K of its vertices. We will think of K as a coloring of the vertices
of G. For every vertex v ∈ V (G) we denote by K(v) the unique color X ∈ K satisfying v ∈ X .
Let F ⊆ K2 be a symmetric relation. The flip G⊕ F of G is defined as the (undirected) graph
with vertex set V (G), and edges defined by the following condition, for distinct u, v ∈ V (G):

uv ∈ E(G⊕ F ) ⇔

{︄
uv /∈ E(G) if (K(u),K(v)) ∈ F,

uv ∈ E(G) otherwise.

We call G ⊕ F a K-flip of G. If K has at most k parts, we say that G ⊕ F a k-flip of G. A
crucial property of flips is that they are reversible using first order-logic. We can recover the edges
of the original graph in a coloring of its flip as follows. Let H := G⊕ F and H+ be the coloring
of H where each part of K is assigned its own color. Define the symmetric binary formula

φK,F (x, y) := x ̸= y ∧
⋁︂

X,Y ∈K
x ∈ X ∧ y ∈ Y ∧

(︁
E(x, y) XOR (X,Y ) ∈ F

)︁
.

We now have G |= E(u, v) ⇔ H+ |= φK,F (u, v).

Lemma 4.1. Given a graph G and a k-flip H of G, we can compute in time O(k · |V (G)|2) a
partition P of V (G) of size at most k and a symmetric relation F ⊆ P2 such that H = G⊕ F .

Proof. Construct the graph G⊕ with vertices V (G) and edges

uv ∈ E(G⊕) ⇔
(︁
uv ∈ E(G) XOR uv ∈ E(H)

)︁
.

This means two vertices are adjacent in G⊕ if and only if the adjacency between them was flipped
in H . Let P be the partition of V (G) where two vertices u and v are in the same part of P if and
only if they are twins in G⊕ (i.e., if NG⊕(u) \ {v} = NG⊕(v) \ {u}).

22



Chapter 4. Preliminaries

Claim 4.2. |P| ⩽ k.

Proof. Assume towards a contradiction that |P| > k. Let Q be the partition of size at most k
witnessing that H is a k-flip of G. By the pigeonhole principle, there are two distinct vertices u
and v that are in distinct parts of P but in the same part of Q. Being in different parts of P , u and v
are not twins in G⊕. By symmetry, we can therefore assume the existence of a third vertex w
whose adjacency with u was flipped in H but whose adjacency with v was not flipped in H . A
contradiction to u and v being in the same part of Q. ■

By the above claim, P can be constructed in time O(k · |V (G)|2): we iteratively classify the
vertices into parts by comparing each vertex with one representative of each of the at most k
parts created so far.

We observe that every two distinct parts P,Q ∈ P are either non-adjacent or fully adjacent
in G⊕. Moreover, every single part P ∈ P either forms a clique or an independent set in G⊕. We
define F ⊆ P2 as follows. For distinct parts P,Q ∈ P we set (P,Q) ∈ F if and only if P and Q
are fully adjacent in G⊕ and (P, P ) ∈ F if and only if P is a clique in G⊕. It is now easy to verify
that H = G⊕ F .

Lemma 4.3 (Transitivity of Flips). Let G be a graph, H1 be a k1-flip of G and H2 be a k2-flip of
H1. Then H2 is a (k1 · k2)-flip of G.

Proof. Let P1, |P1| ⩽ k1, F1 ⊆ P2
1 and P2, |P2| ⩽ k2, F2 ⊆ P2

2 be witnesses such that H1 =
G⊕ F1 and H2 = H1 ⊕ F2. Let P be the common refinement of P1 and P2. Define the relation
F ⊆ P2 as follows. For parts P,Q ∈ P let P1, Q1 ∈ P1 and P2, Q2 ∈ P2 be the unique parts
containing P and Q. We set

(P,Q) ∈ F ⇔
(︁
(P1, Q1) ∈ F1 XOR (P2, Q2) ∈ F2

)︁
.

It is easy to verify that H2 = G⊕ F .

Logic

We use standard terminology from model theory and refer to [50] for extensive background.
Every formula in this thesis will be a first-order formula over the signature of (possibly colored)
graphs. We will often not explicitly write down the formulas if the properties they express are
obviously expressible. For example, x ∈ Nr[ȳ] stands for the first-order formula expressing that x
is contained in the r-neighborhood of ȳ. Also, for a color predicate P , we often write ∃x ∈ P φ
as a shorthand for ∃x P (x)∧φ and ∀x ∈ P φ as a shorthand for ∀x P (x) → φ. For a formula φ,
we write free(φ) for the set of free variables appearing in φ, and we write φ(x̄) to indicate that
the free variables of φ are in x̄.

Every formula η(x, y) on a graph G defines the relation η(G) := {(u, v) ∈ V (G)2 : G |=
η(u, v)}. Similarly, a formula ν(x) defines the set {v ∈ V (G) : G |= φ(v)}. We call a for-
mula η(x, y) symmetric and irreflexive if on all graphs the relation it defines is symmetric and
irreflexive. Let α(x; y1, . . . , yk) be a formula, with free variables partitioned into x and y1, . . . , yk ,
as indicated by the semicolon. Given a graph G, vertices v1, . . . , vk, and a set U ⊆ V (G), we
denote

α(U ; v1, . . . , vk) := {u ∈ U : G |= α(u; v1, . . . , vk)}.

Let G+ be a graph with colors U1, . . . , Ul. The atomic type of a tuple v̄ = (v1, . . . , vk) of
vertices inG+ is the quantifier-free formula α(x1, . . . , xk) defined as the conjunction of all literals
β(x1, . . . , xk) (that is, formulas xi = xj , E(xi, xj), U1(xi), . . . , Ul(xi), or their negations) such
that G+ |= β(v̄). We write atpG+(v1, . . . , vk) to denote the atomic type of v̄ in G+.

23



Chapter 4. Preliminaries

Normalization

For every finite signature Σ, quantifier rank q, and tuple of free variables x̄, up to equivalence
there only exist a finite number of distinct formulas φ(x̄) over Σ with quantifier rank at most q.
Testing equivalence of first-order formulas is undecidable. However, given a formula we can
compute an equivalent normalized formula of the same quantifier rank, such that again there
only exist a finite number of distinct normalized formulas φ(x̄) over Σ with quantifier rank at
most q. In particular, the length of a normalized formula φ(x̄) with quantifier rank q over Σ only
depends on |x̄|, q, and Σ. The normalization process works by renaming quantified variables,
reordering boolean combinations into conjunctive normal form, and deleting duplicates from
conjunctions and disjunctions. We will assume throughout this thesis that all appearing formulas
are normalized. This also includes formulas which we construct ourselves: normalization is
always performed implicitly as the last step of a construction.

Interpretations

The interpretation I is specified by two first-order formulas δ(x) and φ(x, y), where φ is sym-
metric and irreflexive, and defines an operation that maps an input graph G to the output graph
I(G) := H such that:

V (H) := {v ∈ V (G) : G |= δ(v)} and E(H) :=
{︁
uv ∈ V (H)2 : G |= φ(u, v)

}︁
.

We write Iδ,φ for the interpretation specified by δ(x) andφ(x, y) and Iφ if δ(x) = “true” leaves the
domain unchanged. We say a graph class C interprets a graph class D, if there is an interpretation I
such that for every graph G ∈ D there is a preimage H ∈ C with I(H) = G. Additionally, we
say C efficiently interprets D, if there is a polynomial time algorithm that given a graph G ∈ C
computes a suitable preimage H ∈ C. In particular, we require the size of H to be polynomial in
the size of G.

First-order formulas can be naturally combined with interpretations. More precisely, given an
interpretation I := Iδ,φ and a formula ψ(x̄), we define I(ψ)(x̄) to be the formula obtained by
recursively rewriting ψ where we replace each

• atomic subformula E(x, y) with φ(x, y),
• existential quantification ∃z : α(x̄, z) with ∃z : δ(z) ∧ α(x̄, z), and
• universal quantification ∀z : α(x̄, z) with ∀z : δ(z) → α(x̄, z).

We have the following standard fact.

Fact 4.4 (see, e.g., [50, Theorem 4.3.1]). For every interpretation I , formula ψ(x̄), graphs G and H
satisfying G = I(H), and tuple ā ∈ V (G)|x̄|,

G |= ψ(ā) if and only if H |= I(ψ)(ā).

We deduce two corollaries.

Corollary 4.5 (Transitivity). Let C,D, E be classes of graphs such that C (efficiently) interprets D
and D (efficiently) interprets E . Then also C (efficiently) interprets E .

Corollary 4.6 (Reduction). Let C be a graph class that efficiently interprets the class of all graphs.
Then the first-order model checking problem is AW[∗]-hard on C.

The second corollary additionally uses the fact that the first-order model checking problem is
AW[∗]-hard on the class of all graphs [22].

24



Chapter 4. Preliminaries

Transductions

A transduction T is specified by a first-order formula φ(x, y) over the signature of k-colored
graphs for some k ∈ N and defines an operation that maps an input graph G to the set of output
graphs T (G) that is the hereditary closure of the set

⋃︁
{Iφ(G+) : G+ is a k-coloring of G}. This

means each graph in T (G) is obtained by

1. Coloring G. 2. Applying the interpretation Iφ. 3. Taking an induced subgraph.

Again we write Tφ for the transduction specified by φ. We say a class C transduces a class D if
there is a transduction T such that D ⊆

⋃︁
G∈C T (G). By refining colors and a small modification

of Fact 4.4, this notion is transitive.

Stability and Dependence

We refer to the textbooks [3, 71, 79, 81, 80] for extensive background on classical stability theory.
While we already defined monadic stability and dependence in terms of transductions in the
introduction, let us also give the equivalent original definitions (restricted to graph classes). A
formula φ(x̄, ȳ) over the signature of (possibly colored) graphs has the k-order property on a class
of (possibly colored) graphs C if there are G ∈ C and two sequences (āi)i∈[k], (b̄j)j∈[k] of tuples
of vertices of G, such that for all i, j ∈ [k]

G |= φ(āi, b̄j) ⇔ i ⩽ j.

The formula φ has the order property on C if it has the k-order property on C for all k ∈ N. The
class C is stable if no formula has the order-property on C. A graph class C is monadically stable if
for every ℓ ∈ N the class of all ℓ-colorings of graphs from C is stable.

Similarly, a formula φ(x̄, ȳ) has the k-independence property on a class C if there are G ∈ C, a
size k set A ⊆ V (G)|x̄| and a sequence (b̄J)J⊆A of tuples of vertices of G such that for all J ⊆ A
and for all ā ∈ A

G |= φ(ā, b̄J) ⇔ ā ∈ J.

We define the independence property, dependent classes, and monadically dependent classes as
expected. Note that every (monadically) stable class is (monadically) dependent. Baldwin and
Shelah proved that in the definitions of monadic stability and monadic dependence, one can
alternatively rely on formulas φ(x, y) with just a pair of singleton variables, instead of a pair of
tuples of variables.

Fact 4.7 ([4, Lemma 8.1.3, Theorem 8.1.8]). A graph class C is monadically stable (monadically
dependent) if and only if for every k ∈ N every binary formula φ(x, y) over the signature of k-colored
graphs is stable (dependent) on the class of all k-colorings of graphs from C.

As a corollary we obtain the definition of monadic stability and dependence by transductions
that was used in the introduction.

Corollary 4.8. A graph class is monadically stable (monadically dependent) if and only if it does
not transduce the class of all half-graphs (the class of all graphs).

Locality of First-Order Logic

Two formulas φ(x̄) and ψ(x̄) are equivalent if for every graph G and every tuple ā ∈ V (G)|x̄|

G |= φ(ā) ⇔ G |= ψ(ā).

25



Chapter 4. Preliminaries

A first-order formulaφ(x̄) is r-local if every quantifier appearing inφ(x̄) is of the form ∀y ∈ Nr[x̄]
or ∃y ∈ Nr[x̄]. Intuitively: whether the formula holds on a tuple, depends only on the r-
neighborhood of the tuple. In particular, for every graph G and for all ā ∈ V (G)|x̄|

G |= φ(ā) ⇔ G
[︁
Nr[ā]

]︁
|= φ(ā).

A sentence ψ is basic r-local if there is r′ ⩽ r such that ψ is of the form

∃x1, . . . , xk
⋀︂

1⩽i<j⩽k

dist(xi, xj) > 2r′ ∧
⋀︂

1⩽i⩽k

φ(xi)

for an r-local formula φ.

Fact 4.9 (Gaifman’s Locality Theorem [36]). Every first-order formula φ(x̄) of quantifier rank q is
equivalent to a computable formula φloc(x̄) that is boolean combination of basic 7q-local sentences
and 7q-local formulas.

For an introduction to Gaifman’s locality theorem see for example [46, Sec. 4.1]. We will need
the following folklore consequence of Gaifman’s locality theorem.

Lemma 4.10. There exists a computable function p : N2 → N, such that for every quantifier rank q
formula φ(x, y) over the signature of k-colored graphs and every k-colored graph G, there exists a
p(q, k)-coloring of G that for any two vertices u, v ∈ V (G) with distG(u, v) > 2 · 7q + 1, whether
G |= φ(u, v) depends only on the colors of u and v.

We provide a proof for completeness. We first prove the following auxiliary statement.

Lemma 4.11. For every r-local formulaφ(x̄) we can compute a formulaφ′(x̄) of the same quantifier
rank that is boolean combination of r-local formulas with single free variables from x̄, such that for
every graph G and tuple ā ∈ V (G)|x| that is distance-(2r + 1) independent in G, we have

G |= φ(ā) ⇔ G |= φ′(ā).

Proof. Every quantifier appearing in φ(x̄) is of the form ∀y ∈ Nr[x̄] or ∃y ∈ Nr[x̄]. Using the
two equivalences

∀y ∈ Nr[x̄] ψ(x̄, y) ≡
⋀︂
x∈x̄

∀y ∈ Nr[x] ψ(x̄, y)

∃y ∈ Nr[x̄] ψ(x̄, y) ≡
⋁︂
x∈x̄

∃y ∈ Nr[x] ψ(x̄, y)

we can assume that each quantifier is of the form ∀y ∈ Nr[x] or ∃y ∈ Nr[x] for some x ∈ x̄. Up
to renaming, we can assume each variable is quantified only once. Then, there is a function f
that maps each variable y appearing in φ to a variable f(y) ∈ x̄ such that y ∈ Nr[f(y)] (we
have f(x) = x for each x ∈ x̄). We inductively rewrite φ into a boolean combination φ′ of
formulas ψ such that for all y1, y2 ∈ var(ψ) we have f(y1) = f(y2) where var(ψ) is the set of
variables appearing in ψ. The rewriting replaces atoms (y1 = y2) and E(y1, y2) by “false” if
f(y1) ̸= f(y2) and leaves them unmodified otherwise. This preserves the truth value of the atoms
for any distance-(2r + 1) independent valuation ā of x̄: If ā is distance-(2r + 1) independent
then y1 and y2 are non-equal and non-adjacent in G, because

1. f(y1) and f(y2) have distance greater than 2r + 1 in G, and
2. y1 ∈ Nr[f(y1)] and y2 ∈ Nr[f(y2)].

The inductive step is trivial and it is easy to check that φ′ has the desired properties.

26



Chapter 4. Preliminaries

Proof of 4.10. Let Φt
q,k be the set of normalized formulas over the signature of k-colored graphs,

with arity t and quantifier rank at most q. The size of Φt
q,k is bounded and computable. There-

fore, there exists a computable function f : N2 → N such that for every normalized formula
φ(x, y) ∈ Φ2

q,k the corresponding formula φloc(x, y) obtained from Gaifman’s locality theorem
(Fact 4.9) has quantifier rank at most f(q, k). We argue that we can set p(q, k) := 2m where
m := |Φ1

f(q,k),k|.
Let φ(x, y) and G be a formula and graph as in the statement of the lemma. We can assume φ

is normalized. By Fact 4.9, φloc(x, y) is a boolean combination of basic 7q-local sentences and 7q-
local formulas, such that φloc(x, y) is equivalent to φ(x, y) and has quantifier rank at most f(q, k).
We obtain φ′(x, y) from φloc(x, y) by replacing in this boolean combination

• each basic local sentence ψ with the “true” or “false” atom, depending on whether G |= ψ,
• each local formula ψ(x, y) with the boolean combination ψ′(x, y) obtained by applying

Lemma 4.11 to ψ.
Let Ψ := Φ1

f(q,k),k. Now φ′(x, y) is a boolean combination of formulas from Ψ with single free
variables. For all u, v ∈ V (G) with distG(u, v) > 2 · 7q + 1, we have

G |= φ(u, v) ⇔ G |= φ′(u, v).

Let G+ be the p(q, k)-coloring of G, where every vertex v is colored by the set col(v) ⊆ Ψ that
contains exactly those formulas α(x) ∈ Ψ with G |= α(v). It is now easy to see that this coloring
has the desired properties: There is a relation R ⊆ 2Ψ × 2Ψ such that or all u, v ∈ V (G) with
distG(u, v) > 2 · 7q + 1, we have

G |= φ(u, v) ⇔ G |= φ′(u, v) ⇔
(︁
col(u), col(v)

)︁
∈ R.

Asymptotic Notation

As an analogue to the O-notation, we introduce two new notations that simplify our statements
and proofs:

• const(p1, . . . , pk) denotes a natural number, only depending on the parameters p1, . . . , pk.
• Up1,...,pk(n) denotes an anonymous function that is monotone, non-negative, and un-

bounded in n, and only depends on the parameters p1, . . . , pk.
More precisely, the ith occurrence of the notation Up1,...,pk(n) in the text should be interpreted
as f ip1,...,pk(n), for some fixed unbounded function f ip1,...,pk : N → N that depends only on the
parameters p1, . . . , pk and i. We allow parameters of any kind, in particular, graph classes. We
writeOp1,...,pk(n) as a shorthand for const(p1, . . . , pk) ·n. To illustrate the use, we state Ramsey’s
theorem with this notation.

Example 4.12. For every k-coloring of the edges of the complete graph on vertex set [n], there
exists a set X ⊆ [n] of size Uk(n) which induces a monochromatic clique.

RamseyTheory

For ℓ ∈ N and a set I , let I(ℓ) denote the set of subsets J ⊆ I of size ℓ.

27



Chapter 4. Preliminaries

Fact 4.13 (Ramsey’s Theorem, [74]). For all k, ℓ, n ∈ N there exists N ∈ N such that for every

c : [N ](ℓ) → [k]

there is some I ∈ [N ](n) such that c(J) = c(J ′) for all J, J ′ ∈ I(ℓ).
Moreover, there is a function f : N3 → N such that for every k, ℓ ∈ N the function m ↦→ f(k, ℓ,m)
is computable, monotone, and unbounded, and there is an algorithm that, given numbers k, ℓ,m ∈ N
and a function c : [m](ℓ) → [k], computes in time Ok,ℓ(m

ℓ) a set I ⊆ [m] of size f(k, ℓ,m) such
that c(J) = c(J ′) for all J, J ′ ∈ I(ℓ).

See, e.g., [74, Thm. C] or [44, Thm. 5.4] for a (standard) proof of Fact 4.13. The “moreover”
part of the statement above follows by tracing the construction, which proceeds by induction
on ℓ, where in each stage of the construction we iterate over some subset of [m].

For a pair (a, b) of elements of a linearly ordered set (A,⩽), let otp(a, b) ∈ {<,=, >} indicate
whether a < b, a = b, or a > b holds. For ℓ ⩾ 1 and an ℓ-tuple of elements a1, . . . , aℓ of a
linearly ordered set (A,⩽), define the order type of (a1, . . . , aℓ), denoted otp(a1, . . . , aℓ) as the
tuple (otp(ai, aj))1⩽i<j⩽ℓ.

We now reformulate Ramsey’s theorem using the U -notation, and also so that it talks about
ℓ-tuples, rather than ℓ-element subsets.

Fact 4.14 (Reformulation of Ramsey’s Theorem). For every k, ℓ, n and coloring

c : [n]ℓ → [k]

there is a subset I ⊆ [n] of size Uk,ℓ(n) such that c(a1, . . . , aℓ) depends only on otp(a1, . . . , aℓ), for
all (a1, . . . , aℓ) ∈ Iℓ.
Moreover, there is an algorithm that, given c, computes I in time Ok,ℓ(n

ℓ).

The conclusion of the lemma means that there is a function f such that

c(a1, . . . , aℓ) = f(otp(a1, . . . , aℓ)),

for all (a1, . . . , aℓ) ∈ Iℓ.

Lemma 4.15 (Bipartite Ramsey Theorem). For every k, ℓ1, ℓ2, n ∈ N and coloring

c : [n]ℓ1 × [n]ℓ2 → [k]

there are subsets I1, I2 ⊆ [n] of size Uk,ℓ1,ℓ2(n) such that c(ā, b̄) depends only on otp(ā) and otp(b̄),
for all ā ∈ Iℓ11 and b̄ ∈ Iℓ22 .

The conclusion of the lemma means that there is a function f such that

c(ā, b̄) = f(otp(ā), otp(b̄)),

for all ā ∈ Iℓ11 and b̄ ∈ Iℓ22 .

Proof. Set ℓ = ℓ1 + ℓ2. The coloring c can be viewed as a coloring c : [n]ℓ → [k]. By Lemma 4.14,
there is a subset I ⊆ [n] of size Uk,ℓ(n) such that the restriction of c to I is homogeneous, that is,
c(ā) depends only on otp(ā) for ā ∈ Iℓ. We can assume that |I| is even. Let I1 be the first |I|/2
elements of I ⊆ [n], and I2 be the remaining |I|/2 elements of I . Then |I1| = |I2| ⩾ Uk,ℓ(n).
Let (ā, b̄), (ā′, b̄′) ∈ Iℓ11 × Iℓ22 be two pairs such that otp(ā) = otp(ā′) and otp(b̄) = otp(b̄′). Then
otp(ā, b̄) = otp(ā′, b̄′), since otp(a, b) = < for all a ∈ I1 and b ∈ I2. Therefore, c(ā, b̄) = c(ā′, b̄

′
),

by homogeneity of c restricted to I .

28



Part II

Monadic Dependence

29



Outline Part II

In this part we prove various characterizations of monadically dependent graph classes as sum-
marized in Theorem 2.3, which we restate here for convenience. The definitions of crossings and
comparability grids can be found in Section 2.2.

Theorem 2.3. Let C be a graph class. Then the following are equivalent.

(1) C is monadically dependent.

(2) C is flip-breakable.

(3) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k.

(4) The hereditary closure of C does not efficiently interpret the class of all graphs.

We first prove the equivalence (1) ⇔ (2) ⇔ (3) in Chapters 5 and 6. The proofs are effective,
giving us the following algorithmic version of flip-breakability.

Theorem 4.16. For every monadically dependent graph class C and radius r ∈ N, there exists an
unbounded function fr : N → N, a constant kr ∈ N, and an algorithm that, given a graph G ∈ C
and W ⊆ V (G), computes in time OC,r(|V (G)|2) two subsets A,B ⊆W with |A|, |B| ⩾ fr(|W |)
and a kr-flip H of G such that:

distH(A,B) > r.

The equivalence with (4) is proven in Chapter 7. There we also obtain our hardness result for
the first-order model checking problem.

Theorem 2.4. The first-order model checking problem is AW[∗]-hard on every hereditary, monadi-
cally independent graph class.

30



Chapter 5

Flip-Breakability

In this chapter we define three tameness conditions for graph classes:
• Prepattern-freeness: the absence of certain combinatorial obstructions called prepatterns.
• Insulation property: the ability to guard any vertex set using so-called insulators.
• Flip-breakability: the ability to break any vertex set into two distant parts using few flips.

We show that for any graph class the following implications hold:

prepattern-free ⇒ insulation-property ⇒ flip-breakable ⇒ mon. dependent

We later close the circle of implications in Chapter 6, where we show:

¬prepattern-free ⇒ large flipped crossings/comparability grids ⇒ mon. independent

5.1 Grids and Insulators

Definition 5.1 (Grids). Fix a non-empty sequence I and an integer h ⩾ 1. A grid A indexed by I
and of height h in a graph G is a collection of pairwise disjoint sets A[i, r] ⊆ V (G), for i ∈ I and
r ∈ [h], called cells. Each grid is either tagged as orderless or ordered.

To facilitate notation, we often assume, up to renaming, the indexing sequence to be I =
(1, . . . , n). We do so in the following. For subsets J ⊆ I and R ⊆ [h], we write A[J,R] =⋃︁

i∈J,r∈RA[i, r]. We often use implicitly defined sets via wildcards and comparisons. For example
A[⩽i, ∗] stands forA

[︁
{1, . . . , i}, [h]

]︁
. In particular, we useA[i, ∗] :=

⋃︁
r∈[h]A[i, r] andA[∗, r] :=⋃︁

i∈I A[i, r], and refer to those sets as to columns and rows of A, respectively. In slight abuse
of notation, we often write A instead of A[∗, ∗] to denote the set of all elements inside the grid.
We define the interior of A as int(A) := A \ (A[1, ∗] ∪ A[n, ∗] ∪ A[∗, h]). It is intentional and
will later be important that the cells A[2, 1], . . . , A[n − 1, 1] of the bottom row are part of the
interior. Moreover, we say two columns A[i, ∗] and A[j, ∗] are close, if |i− j| ⩽ 1 and two rows
A[∗, r] and A[∗, t] are close, if |r− t| ⩽ 1. Two cells are close if their respective columns and rows
are close. Note that unlike standard matrix notation, to highlight the hierarchical relationship
between columns and rows, our notation A[i, r] first mentions the column index i ∈ I and then
the row index r ∈ [h].

Insulators. The following notion of insulators serves a twofold purpose. On the one hand,
insulators enforce the necessary structure to obtain flip-breakability (see Section 5.4). On the
other hand, in Chapter 6, we use insulators to build the patterns presented in Chapter 2.

31



Chapter 5. Flip-Breakability

Definition 5.2 (Insulators). An insulator A = (A,K, F,R) indexed by a sequence I of height h
and cost k in a graph G consists of

• a grid A indexed by I and of height h,
• a partition K of V (G) into at most k color classes,
• a symmetric relation F ⊆ K2 specifying a flip G′ := G⊕ F ,
• a relation R ⊆ K2.

We furthermore say that A is orderless (ordered), if A is orderless (ordered).

If A is orderless, we demand:

(U.1) For all i ∈ I there exists ai ∈ V (G) such that

A[i, 1] = {ai} and A[i,⩽r] = NG′
r−1[ai] for all r ∈ [h].

▶ In particular, a column of an orderless insulator is just the (h−1)-ball in the k-flipG′

around a single vertex sitting in the bottom cell of that column.

If A is ordered, we demand:
(O.1) If two vertices are in different rows of A, then they have different colors in K.

▶ This technical property ensures that the rows of the insulator are sufficiently distin-
guishable. We will use this to argue that certain modifications on the insulator can be
performed without increasing its cost.

(O.2) Every vertex v ∈ A[i, r] with r > 1, i ∈ I has a neighbor in the cell A[i, r − 1] in G′.
▶ The mandatory downward edge, together with (O.4.2) and (O.5), ensures that each
column is cohesive: we will later observe that the columns of the insulator are first-order
definable. This property is crucial to obtain hardness results.

(O.3) For every v /∈ A[∗, ∗] and X ∈ K we require that v is homogeneous to X ∩ int(A) in G
(that is, either all or no vertices in X ∩ int(A) are adjacent to v).
▶ The inside of the insulator is “insulated” from its outside: the adjacencies between
the two are described using only colors.

(O.4) For every u ∈ A[i, r] with r < h, i ∈ I and v ∈ A we have the following:
(Up to renaming, we assume I = (1, . . . , n).)

(O.4.1) If u and v are in rows that are not close and u ∈ int(A),
then they are non-adjacent in G′.

(O.4.2) If v ∈ A[<i, r − 1] ∪A[>i, r + 1], then u and v are non-adjacent in G′.
(O.4.3) If v ∈ A[>i+ 1, {r, r − 1}], then G |= E(u, v) ⇔ (K(u),K(v)) ∈ R.
(O.4.4) If v ∈ A[<i− 1, {r, r + 1}], then G |= E(u, v) ⇔ (K(v),K(u)) ∈ R.

Otherwise, we make no claims regarding the adjacency of u and v.
▶ Properties (O.4.1), (O.4.3), and (O.4.4) provide vertical and horizontal insulation inside
the insulator. Property (O.4.2) helps to keep each column cohesive. See Figure 5.1 for
an illustration.

(O.5) There exists a bound r < h and a k-flip H of G such that for every two distinct
vertices u, v ∈ A[∗, 1] we have NH

r [u] ∩ NH
r [v] = ∅. Moreover, there are vertices

{b(v) ∈ NH
r [v] : v ∈ A[∗, 1]} and {ci ∈ V (G) : i ∈ I} and a symbol ∼ ∈ {⩽,⩾} such

that for every i, j ∈ I , v ∈ A[j, 1] and G |= E(ci, b(v)) if and only if i ∼ j.
▶ This property orders the columns. It will later be used to first-order define the columns
as intervals in the order.

32



Chapter 5. Flip-Breakability

u

A[1, 1]

A[n, h]

depends on
R(K(u), ◦)

non-adjacent

depends on
R(◦,K(u))

non-adjacent

Figure 5.1: Illustration of how (O.4) controls the adjacency of a vertex u within the insulator.

Observation 5.3. Every orderless insulator A = (A,K, F,R) where F = R also satisfies the
properties (O.2), (O.3), and (O.4) of an ordered insulator. Since the requirements of an orderless
insulator put no restrictions on R, in the orderless case we can always assume F = R.

Two example insulators are depicted in Figure 5.2.

Figure 5.2: On the left: an orderless insulator. Each column is just the ball (in a flip) around the single vertex
of its bottom cell. Apart from the boundary, there are no connections in between columns. On the right: an
ordered insulator. It contains connections between columns, but they are well controlled by property (O.4).
Property (O.5) is witnessed by the highlighted vertices. The purple b(·) vertices are contained in disjoint
1-balls around the vertices of the bottom cell. They are preordered by the yellow c(·) vertices.

We will often identify an insulator A and its underlying grid A, and write, for example v ∈ A
to indicate that v ∈ A[∗, ∗]. We start by observing basic properties of insulators. The following
property will be crucial to obtain the model checking hardness result.

Lemma 5.4. The columns of an insulator are definable in first-order logic in a coloring of G.

More precisely: Let A be an insulator with grid A of cost k and height h indexed by I in a graph G.
There exists a formula α(x, y) (depending only on k and h), a const(k, h)-coloring G+ of G, and
vertices {ai : i ∈ I} such that for each i ∈ I

A[i, ∗] = {v ∈ V (G) : G+ |= α(v, ai)}.

We do not rely directly on this lemma, as we will later further process insulators before
proving hardness. However, we sketch a proof for instructive purposes.

Proof sketch for Lemma 5.4. All the formulas we write will work in a const(k, h)-coloring G+

of G, but we omit the details of the coloring to streamline the presentation. If A is orderless we
use property (U.1). The ai vertices are the singleton vertices in the bottom row of A and the
formula α(x, y) is defined as

33



Chapter 5. Flip-Breakability

“x and y are at distance at most h− 1 in the flip G′ of G”.

If A is ordered, we use (O.5). There is a formula β(x, y) that defines b(v) for each v ∈ A[i, ∗]:

“x is a b-vertex and contained in the r-ball around y in the flip H of G”.

Building on β, there is a formula γ(x, y) that, given v ∈ A[j, ∗], defines {ci : R(i, j), i ∈ I}:

“x is a c-vertex and adjacent to b(y) in G”.

As R ∈ {⩽,⩾}, we can now define a preorder ≺ on the vertices of the bottom row A[∗, 1] which
respects the column order by comparing their γ-neighborhoods:

x ≺ y := ∃z : γ(z, x) ∧ ¬γ(z, y) or x ≺ y := ∃z : ¬γ(z, x) ∧ γ(z, y)

depending on the choice of R. We choose an arbitrary vertex ai of each cell A[i, 1] of the bottom
row. Using the preorder, we can write a formula α1(x, y) that defines A[i, 1] from ai as its
equivalence class in the preorder. For 1 < r ⩽ h, we can now inductively write a formula αr(x, y)
that definesA[i,⩽r] from ai as all the vertices that are already inA[i, <r], or adjacent toA[i, <r]
but not to A[i − 1, <r] in G′. Here we again use the preorder to define A[i − 1, <r] from ai.
The correctness for vertices inside A follows from the properties (O.2) and (O.4.2). Vertices
from outside A can be marked in the coloring and ignored. Setting α := αh finishes the proof
sketch.

Definition 5.5 (Subgrids and subinsulators). Let A be a grid indexed by a sequence J and
of height h in a graph G. For every subsequence I ⊆ J of length at least two we define the
subgrid A|I as the grid indexed by tail(I) and of height h, containing the following cells. For all
i ∈ tail(I) and r ∈ [h], depending on whether A is orderless or ordered, we respectively set

A|I [i, r] := A[i, r] or A|I [i, r] :=
⋃︂

{A[m, r] : m ∈ I and predI(i) < m ⩽ i}.

A|I is ordered (orderless) if and only if A is ordered (orderless). See Figure 5.3 for a depiction.
For every insulator (A|I ,K, F,R) indexed by J , we moreover define the subinsulator A|I :=
(A|I ,K, F,R). The upcoming Lemma 5.9 will prove the validity of this definition.

Figure 5.3: On the left/right: a subgrid of an orderless/ordered grid. The original grid A is depicted in
gray. The dots at the bottom represent the sequence J indexing A. The subsequence I ⊆ J is marked with
circles. The subgrid A|I is overlaid in red. It is indexed by tail(I).

For an ordered insulator A, in the definition of a subinsulator A|I , it is necessary that the
indexing sequence tail(I) of A|I excludes the first element of I : each i ∈ I represents the interval
(predI(i), i] that is undefined for the first element of I . In orderless insulators this problem does
not arise, but we choose to also exclude the first element of I to allow for uniform proofs which
do not distinguish between the two. The following observation about subgrids is crucial to their
definition and will later be used to build well-behaved subgrids using Ramsey-arguments.

34



Chapter 5. Flip-Breakability

Lemma 5.6. LetA be a grid indexed by J and of height h in a graphG. For every subsequence I ⊆ J
of length at least two, in the subgridA|I , the content of the columnA|I [i, ∗] depends only onA, i and
predI(i), instead of the whole sequence I . More precisely, there exists a functionMA : J×J → 2V (G)

such that for every I ⊆ J and i ∈ tail(I) we have

A|I [i, ∗] =MA(predI(i), i).

Proof. We define the function µA : J × J × [h] → 2V (G) as follows. For all i < j ∈ J and every
r ∈ [h], depending on whether A is orderless or ordered, we respectively set

µA(i, j, r) := A[j, r] or µA(i, j, r) :=
⋃︂

{A[m, r] : m ∈ I and i < m ⩽ j}.

We can now define for all i < j ∈ J

MA(i, j) :=
⋃︂
r∈[h]

µA(i, j, r).

Observation 5.7 (Transitivity). Let A be a grid indexed by I0, I1 be a subsequence of I0, and I2
be a subsequence of tail(I1). If B = A|I1 and C = B|I2 then C = A|I2 .

Observation 5.8 (Monotonicity and Coverability). LetA be a grid indexed by J of height h and I
be a subsequence of J . For all i ∈ tail(I) and r ∈ [h] we have

A[i, r] ⊆ A|I [i, r] ⊆
⋃︂

{A[m, r] : m ∈ I and predI(i) < m ⩽ i}.

We finally show that taking a subinsulator preserves its good properties without increasing
its cost.

Lemma 5.9. LetA = (A,K, F,R) be an insulator indexed by J on a graphG. For every subsequence
I ⊆ J also A|I := (A|I ,K, F,R) is an insulator on G.

Proof. Up to renaming, we assume J = (1, . . . , n). Let B := A|I and G′ := G ⊕ F . In the
orderless case, as the graph G′ remains the same and B is obtained from A by just dropping
columns, it is easy to see that (U.1) still holds. It remains to check the ordered case.

• To prove (O.1) and (O.4), we observe that for every i ∈ I and r ∈ [h]

B[∗, r] ⊆ A[∗, r] and B[<i, r] ⊆ A[<i, r] and B[>i, r] ⊆ A[>i, r].

Property (O.1) follows directly. To prove, for example, (O.4.4), assume u ∈ B[i, r] and
v ∈ B[<i−1, {r, r+1}]. Then also u ∈ B[> predI(i), r] and v ∈ B[< predI(i), {r, r+1}].
As argued above, u ∈ A[> predI(i), r] and v ∈ A[< predI(i), {r, r + 1}]. By property
(O.4.4) of A, we have G |= E(u, v) ⇔ (K(v),K(u)) ∈ R, as desired. The remaining
statements of (O.4) follow similarly.

• To prove (O.2), let u ∈ B[i, r] for r > 1 and let us show that u has a neighbor in B[i, r− 1]
in G. By construction, we have u ∈ A[i′, r] for some predI(i) < i′ ⩽ i. By (O.2) of A, u
has a neighbor v in A[i′, r − 1] in G′. Again by construction, A[i′, r − 1] ⊆ B[i, r − 1], so
also v ∈ B[i, r − 1].

• For (O.3) to hold we must check, for every u /∈ B and X ∈ K, that u is homogeneous to
XB := X ∩ int(B) in G. As G′ is a K-flip of G, we can check the property in G′ instead. If
u /∈ A this holds as XB ⊆ int(A) and (O.3) was already true in A.
Assume now u ∈ A[i, r] \B for some i ∈ J and r ∈ [h]. As we already established (O.1),
we know that all vertices fromXB are in the same rowB[∗, r′] ⊆ A[∗, r′] for some r′ ∈ [h].

35



Chapter 5. Flip-Breakability

If |r − r′| > 1 then u and XB are non-adjacent in G′ as A satisfies (O.4). Now assume
|r − r′| ⩽ 1. Let i0, i1, . . . , in be the continuous subsequence of J where i0 and in are the
first and last elements of I . By construction, we have

B[∗, ∗] = A[{i1, . . . , in}, ∗] and int(B) = A[{i2, . . . , in−1}, <h].

Since u /∈ B we have i < i1 or in < i. Assume i < i1. Then we have XB ⊆ A[⩽i1, r′] ⊆
A[>i, r′], and we can again use (O.4) of A. Now if r′ = r+1 then u is non-adjacent to XB

in G′. If r′ ∈ {r, r − 1} then u is adjacent to all of XB if (K(u), X) ∈ R and non-adjacent
to all of XB otherwise. In each case u is homogeneous to XB . The case where in < j
follows by a symmetric argument.

• The property (O.5) of A is witnessed by
– a symbol ∼ ∈ {⩽,⩾},
– a k-flip H , and
– vertices {b(v) ∈ V (G) : v ∈ A[∗, 1]} and {ci ∈ V (G) : i ∈ J}.

To witness (O.5) of B, we use ∼, H , {b(v) ∈ V (G) : v ∈ B[∗, 1]}, and
– {ci′ : i′ = succJ(predI(i)), i ∈ tail(I)} if (∼) = (⩽), or
– {ci : i ∈ tail(I)} if (∼) = (⩾).

5.2 Prepatterns

Throughout the following sections, we will either make progress constructing large insulators,
or will obtain the following kind of preliminary patterns, which are then processed further in
Chapter 6.

Definition 5.10. Let A be an insulator indexed by a sequence K with grid A in a graph G. Say
that G contains a bi-prepattern of order t on A if there exist

• index sequences I, J ⊆ K of size t and with |I| = |J | = t,
• vertices ci,j ∈ V (G) for all i ∈ I, j ∈ J ,
• quantifier-free formulas α1(x; y, s1) and α2(x; y, s2) with parameters s1, s2 ∈ V (G),
• symbols ∼1,∼2∈ {=, ̸=},

such that for all i ∈ I, j ∈ J ,

i = min
{︁
i′ ∈ I : α1(A[i

′, ∗]; ci,j , s1) ∼1 ∅
}︁
,

j = min
{︁
j′ ∈ J : α2(A[j

′, ∗]; ci,j , s2) ∼2 ∅
}︁
.

Let us give some intuition for the above definition. The bi-prepattern consists of two sequences
of columns indexed by I and J . For each pair of columns (i, j) ∈ I × J , there exists a private
vertex ci,j pairing them up in the following sense. Column i is the first column in I , in which

• ci,j has no α1-neighbor (if ∼1 is =), or
• ci,j has an α1-neighbor (if ∼1 is ̸=).

Similarly, j is the first column in J in which has an α2-neighbor (resp. no α2-neighbor). Figure 5.4
(left) illustrates this column pairing.

This pairing aspect will be used later to argue that large bi-prepatterns witness monadic
independence (or equivalently: they are obstructions for monadic dependence). By Lemma 5.4,
each column of the insulator can be first-order defined from a single representative vertex. Bi-
prepatterns therefore logically resemble 1-subdivided bicliques, where the column representatives

36



Chapter 5. Flip-Breakability

J

II

J

Figure 5.4: Schematic depiction of a bi-prepattern (left) and mono-prepattern (right).

are the principal vertices and the vertices ci,j form the subdivision vertices. Subdivided bicliques
of unbounded size are witnesses for monadic independence: they encode arbitrary bipartite graphs
by coloring the subdivision vertices. Therefore, bi-prepatterns may be thought of as obstructions
to monadic dependence. Moreover, by the strong structure properties of insulators and since α1

and α2 are quantifier-free, we can use bi-prepatterns to later extract from them our concrete
forbidden induced subgraph characterization.

In addition to the bi-prepatterns, our analysis produces a second kind of obstruction called a
mono-prepattern.

Definition 5.11. Let A be an insulator indexed by a sequence K with grid A in a graph G. Say
that G contains a mono-prepattern of order t on A if there exist

• index sequences I, J with I ⊆ K and |I| = |J | = t,
• vertices cj ∈ V (G) for all j ∈ J ,
• vertices bi,j ∈ A[i, ∗] for all i ∈ I, j ∈ J ,
• a symbol ∼ ∈ {=, ̸=,⩽, <,⩾, >},

such that for all i ∈ I and j, j′ ∈ J ,

G |= E(cj , bi,j′) ⇔ j ∼ j′.

As in a bi-prepattern, in a mono-prepattern the cj vertices can be used to pair up columns
(i, j) ∈ I × I . While the bi-prepattern logically resembles a subdivided biclique (we pair elements
from two sequences I and J ), the mono-prepattern corresponds to a subdivided clique (we pair
elements from the same sequence I). Figure 5.4 (right) illustrates mono-prepatterns.

Definition 5.12. G contains a prepattern of order t on an insulator A if it either contains a
bi-prepattern of order t on A or a mono-prepattern of order t on A.

Definition 5.13. A graph class C is prepattern-free, if for every k, r ∈ N, there exists t ∈ N such
that every graph G ∈ C does not contain prepatterns of order t on insulators of cost at most k
and height at most r in G.

We later show in Proposition 6.47 that these obstructions are exhaustive: prepattern-freeness
is equivalent to monadic dependence. In the following sections, we start by deriving structural
properties of prepattern-free classes.

5.3 The Insulation Property

Towards proving that prepattern-free classes are flip-breakable, we first show that they have a
more fine-grained structure property that we call the insulation property.

37



Chapter 5. Flip-Breakability

Definition 5.14. Let A be an insulator with grid A indexed by a sequence I in a graph G and let
W ⊆ V (G). We say that A insulates W if there is a bijection f :W → I , such that for all v ∈W

v ∈ A[f(v), 1].

A set W is (r, k)-insulated in G if there is an insulator A of height r and cost k that insulates W .

Definition 5.15. A graph class C has the insulation property, if for every radius r ∈ N there exist
a function Nr : N → N and a constant kr ∈ N such that for every m ∈ N, G ∈ C, W ⊆ V (G)
with |W | ⩾ Nr(m), there is a subset W⋆ ⊆W of size at least m that is (r, kr)-insulated in G.

More briefly: C has the insulation property if for every r ∈ N, G ∈ C and W ⊆ V (G) there is
a subset W⋆ ⊆W of size UC,r(|W |) that is (r, const(C, r))-insulated in G.

The goal of this section is to prove the following.

Proposition 5.16. Every prepattern-free graph class has the insulation property.

We first notice that insulation for radius r = 1 is trivial.

Lemma 5.17. Fix a graph G. Every set W ⊆ V (G) is (1, 1)-insulated in G.

Proof. Fix any enumeration (a1, . . . , an) of W . Let A be the orderless grid indexed by the
sequence I := (1, . . . , n) and of height 1 such that A[i, 1] := {ai} for all i ∈ I . Now A :=
(A, {V (G)}, ∅, ∅) is an orderless insulator with cost and height 1 that insulates W .

In order to insulate sets with higher radii, we will grow insulators in height.

Definition 5.18 (Row-Extensions). Let A be a grid indexed by I and of height h. We say a grid B
is a row-extension of A, if it satisfies the following properties.

• B is indexed by I and has height h+ 1.
• For all i ∈ I and j ∈ [h] we have B[i, j] = A[i, j].
• Either A and B are both orderless or both ordered.

Similarly, we say an insulator B is a row-extension of an insulator A, if the grid of B is a row-
extension of the grid of A.

Depending on whether the insulator at hand is orderless or ordered, we will create row-
extensions using one of the following two insulator growing lemmas. To keep the presentation
streamlined, the (quite technical) proofs of the two lemmas are deferred to Section 5.7.

Lemma 5.19 (Orderless Insulator Growing). Fix k, t ∈ N. For every graph G and orderless
insulator A indexed by J of cost k in G, we can compute a subsequence I ⊆ J of length Ut(|J |)
such that either

• G contains a prepattern of order t on A|I ,

• A|I is orderable, or

• there exists a row-extension of A|I of cost const(k, t) in G.

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the three
outcomes (a prepattern, witnesses for A|I being orderable, or a row-extension) in timeOk,t(|V (G)|2).

The definition of an orderable insulator will be given shortly after the following lemma.

38



Chapter 5. Flip-Breakability

Lemma 5.20 (Ordered Insulator Growing). Fix k, t ∈ N. For every graphG and ordered insulator A
with cost k, indexed by J in G, we can compute a subsequence I ⊆ J of length Ut(|J |) such that
either

• G contains a prepattern of order t on A|I , or

• G contains a row-extension of A|I with cost const(k, t).
Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the two
outcomes (a prepattern or a row-extension) in time Ok,t(|V (G)|2).

Both insulator growing lemmas follow the same scheme. Given an insulator we find a large
subinsulator that either witnesses a lot of non-structure (in form of a prepattern), or improves
the structural guarantees of the original insulator (in form of a row-extension). In the orderless
case a third outcome may appear: the subinsulator may be orderable. Orderable insulators are
orderless insulators which can be converted into ordered ones, as made precise by the following
definition and lemma.

Definition 5.21 (Orderable Insulators). Let A be an orderless insulator with grid A indexed
by I in a graph G. We say that A is orderable if there exist vertices {bi ∈ A[i, ∗] : i ∈ I} and
{ci ∈ V (G) : i ∈ I} and a symbol ∼ ∈ {⩽,⩾} such that for all i, j ∈ I

G |= E(ci, bj) if and only if i ∼ j.

Lemma 5.22. Let A be an orderless insulator of cost k and height h in a graph G that insulates a
set W ⊆ V (G). If A is orderable, then there exists an ordered insulator B of cost k · h and height h
that also insulates W .

Moreover, there is an algorithm that, given G and A, computes B in time Ok,h(|V (G)|).

Proof. Let A = (A,K, F, F ) be as in the statement. Let B be the grid obtained by changing the
tag of the gridA from orderless to ordered. Towards ensuring (O.1), let K⋆ be the size k ·h coloring
obtained by taking the common refinement of the k-coloring K and an h-coloring that assigns
vertices from different rows in A different colors. Let F⋆ ⊆ K2

⋆ be the corresponding refinement
of F such that G ⊕ F = G ⊕ F⋆. We check that B := (B,K⋆, F⋆, F⋆) is the desired ordered
insulator. The insulator property (O.1) holds by construction. By Observation 5.3, (O.2), (O.3),
and (O.4) carry over from A. Finally, (U.1) ensures for the k-flip H := G⊕F and v ∈ A[i, 1] that
NH

h−1[v] = A[i, ∗]. As A moreover is orderable (cf. Definition 5.21), property (O.5) follows. The
bound on the running time is trivial.

As we know how to grow orderless insulators, turn orderless, orderable insulators into ordered
ones, and grow ordered insulators, we can now grow arbitrarily high insulators. This yields a
proof of Proposition 5.16, which we restate below with an added algorithmic conclusion.

Proposition 5.23. Every prepattern-free graph class C has the insulation property.

Moreover, there is an algorithm that, given a radius r, a graph G ∈ C and a set W , computes the
subset W⋆ ⊆W and a witnessing insulator in time OC,r(|V (G)|2).

Proof. Fix a prepattern-free class C and r ⩾ 1. We prove that for every G ∈ C and W ⊆ V (G)
there is a subset Wr ⊆ W of size UC,r(|W |) that is (r, kr)-insulated in G, for some kr ⩽
const(C, r). This statement is proved by induction on r ⩾ 1. The base case of r = 1 follows
immediately from Lemma 5.17.

In the inductive step, assume the statement holds for some r ⩾ 1; we prove it for r + 1. Let
kr ⩽ const(C, r) be the value obtained by inductive assumption. As C is prepattern-free, there is

39



Chapter 5. Flip-Breakability

some number t = const(C, r) such that no graphG ∈ C contains a pattern of order t on insulators
of cost at most kr · r and height at most r in G.

Let G ∈ C and W ⊆ V (G). By the inductive assumption, there is a subset Wr ⊆ W
of size UC,r(|W |) and an insulator Ar of height r and cost const(C, r) which insulates Wr.
Let J denote the indexing sequence of Ar. We prove that there is a subset Wr+1 ⊆ Wr of
size UC,r(|Wr|) ⩾ UC,r(|W |) and an insulator Ar+1 of height r + 1 and cost const(C, r) that
insulates Wr+1. We consider two cases, depending on whether Ar is orderless or ordered.

Assume first that Ar is orderless. We apply Lemma 5.19 to Ar . This yields a sequence I ⊆ J
of length Ut(|J |) such that one of the following three cases applies.

1. G contains a prepattern of order t on Ar|I .
2. G contains a row-extension Ar|I with cost const(kr, t) ⩽ const(C, r).
3. Ar|I is orderable.
We set W ′ := A[∗, 1] where A is the grid of Ar|I . By the definition of an orderless subgrid

we have W ′ ⊆Wr ⊆W and

|W ′| = |tail(I)| = |I| − 1 ⩾ Ut(|J |).

As Ar is of height r and cost kr , the same holds for Ar|I . By our choice of t, the first case cannot
apply. In the second case, the row extension of Ar|I witnesses that W ′ is (r + 1, const(C, r))-
insulated, and we conclude by setting Wr+1 :=W ′. It remains to handle the third case. We apply
Lemma 5.22 to the orderable insulator Ar|I , yielding an ordered insulator B of cost kr · r and
height r that also insulates W ′. Up to renaming, we can assume that B is indexed by tail(I),
the same sequence that also indexes Ar|I . We apply Lemma 5.20 to B with k := kr · r and t.
This yields a sequence K ⊆ tail(I) with |K| = Ut(|J |) such that one of the following two cases
applies.

1. G contains a prepattern of order t on B|K .
2. G contains a row-extension of B|K with cost const(k, t) ⩽ const(C, r).

By our choice of t, the first case cannot apply. In the second case, by definition of an ordered
subgrid, there exists a set Wr+1 ⊆W ′ ⊆W that is insulated by a row extension of B|K and has
size at least

|Wr+1| = |tail(K)| = |K| − 1 ⩾ Ut(|J |).

Now Wr+1 is the desired (r + 1, k)-insulated set. This concludes the case where Ar is orderless.
If Ar is ordered we can directly apply Lemma 5.20, which just improves the bounds. This completes
the inductive proof.

The induction can be easily turned into an algorithm. The trivial insulator from Lemma 5.17
can be computed in time O(|V (G)|). The running time of the inductive step follows from the
running times of Lemma 5.19, Lemma 5.22, and Lemma 5.20.

5.4 Insulation Property Implies Flip-Breakability

We recall the definition of flip-breakability.

Definition 2.10 (Flip-Breakability). A graph class C is flip-breakable if for every radius r ∈ N
there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and
W ⊆ V (G) with |W | ⩾ Nr(m) there exist subsetsA,B ⊆W with |A|, |B| ⩾ m and a kr-flipH
of G such that:

distH(A,B) > r.

40



Chapter 5. Flip-Breakability

In this section we prove the following.

Proposition 5.24. Every graph class C with the insulation property is flip-breakable.

Moreover, if C is also prepattern-free, then there is an algorithm that, given a radius r, graph G,
and set W , computes in time OC,r(|V (G)|2) subsets A,B ⊆ W , partition K⋆, and relation
F⋆ ⊆ K2

⋆ witnessing flip-breakability. (This means |A|, |B| ⩾ UC,r(|W |), |K⋆| ⩽ const(C, r),
and distH(A,B) > r in the flip H defined by K⋆ and F⋆.)

Let W be a set of vertices in a graph G. We call W (r, k)-flip-breakable, if there exist two
disjoint sets A,B ⊆W , each of size at least 1

3 |W |, and a k-flip H of G, such that

NH
r (A) ∩NH

r (B) = ∅.

Proposition 5.24 will be implied by the following.

Lemma 5.25. Let W be a (2r + 1, k)-insulated set of at least 18r vertices in a graph G. Then W is
(r, 248r

2k)-flip-breakable in G.

Moreover, there is an algorithm that, given a radius r, graph G, set W , and an insulator witnessing
thatW is (2r+1, k)-insulated, computes in timeOr,k(|V (G)|) the subsetsA,B ⊆W , partition K⋆,
and relation F⋆ ⊆ K2

⋆ that witness the (r, 248r
2k)-flip-breakability of W .

Proof. Let A = (A,K, F,R) be the insulator of cost k and height 2r + 1 that insulates W . Since
we will only be using the insulator properties (O.3) and (O.4) and by Observation 5.3, we do not
have to distinguish whether A is orderless or ordered. Up to renaming, we can assume that A
is indexed by a sequence I = (1, . . . , n) for some n ∈ N. Let l1, l2, r1, r2 ∈ I be the indices
such that (l1, l1 + 1, . . . , l2) and (r1, r1 + 1, . . . , r2) are the sequences containing the first and
last 2r elements of I respectively. Since A insulates W , we can choose indices m1 > ℓ2 and
m2 < r1 such that (m1,m1 + 1, . . . ,m2) contains 2r elements and there are two disjoint sets
W1 :=W ∩M1 ∩A[∗, 1] and W2 :=W ∩M2 ∩A[∗, 1], where

M1 :=
⋃︂

l2<i<m1

A[i, ∗] and M2 :=
⋃︂

m2<i<r1

A[i, ∗],

such that W1 and W2 each contain at least 1
2(|W | − 6r) ⩾ 1

3 |W | vertices. The sets W1 and W2

will play the role of the sets A and B in the flip-breakability statement. We define a new grid B
of height h indexed by J := (1, . . . , 3 · 2r + 2) on the same vertex set as A. The rows of B are
the same as the rows of A. The columns of B are in order

A[l1, ∗], . . . , A[l2, ∗]⏞ ⏟⏟ ⏞
2r columns

, M1, A[m1, ∗], . . . , A[m2, ∗]⏞ ⏟⏟ ⏞
2r columns

, M2, A[r1, ∗], . . . , A[r2, ∗]⏞ ⏟⏟ ⏞
2r columns

.

See Figure 5.5 for a visualization. We observe that B coarsens the columns of A in the following
sense.

Observation 5.26. Let u ∈ B[j, t] and v ∈ B[j′, t′] such that j < j′ for some j, j′ ∈ J and
t, t′ ∈ [h]. Then also u ∈ A[i, t] and v ∈ A[i′, t′] for some i < i′ ∈ I .

Additionally, the construction ensures that
• B has (3 · 2r + 2) · (2r + 1) ⩽ 24r2 cells,
• W1 ⊆ B[2r + 1, 1] and W2 ⊆ B[4r + 2, 1], and
• int(A) = int(B).

41



Chapter 5. Flip-Breakability

Figure 5.5: An example of a coarsening for radius r = 2. The coarsening B (in bold red) overlays the grid A
(in gray). The sequence W is located in the bottom row. The two subsequences W1 and W2 are marked
with circles and squares, respectively.

We build K⋆ as a refinement of K by encoding into the color of every vertex v ∈ V (G) for
every color X ∈ K and for every cell B[i, j] of B the information

(C.1) whether v ∈ X ,
(C.2) whether v ∈ B[i, j],
(C.3) whether v is adjacent in G to a vertex from X ∩ int(B).

K⋆ has at most 2k·24r2·2 colors. By (C.1), we can define for every X ∈ K⋆ a color K(X) ∈ K
such that for all v ∈ X we have v ∈ K(X). We define F⋆ ⊆ K2 via the following four rules.

(F.1) If X ⊆ B[j, t] and Y ⊆ B[j′, t′] and j < j′ and t′ ∈ {t, t− 1}, then

(X,Y ) ∈ F⋆ ⇔
(︁
K(X),K(Y )

)︁
∈ R.

(F.2) If X ⊆ B[j, t] and Y ⊆ B[j′, t′] and j > j′ and t′ ∈ {t, t+ 1}, then

(X,Y ) ∈ F⋆ ⇔
(︁
K(Y ),K(X)

)︁
∈ R.

(F.3) If X ̸⊆ B and Y ⊆ int(B), or vice versa, then

(X,Y ) ∈ F⋆ ⇔ there is an edge between X and Y in G.

(F.4) Otherwise, (X,Y ) ∈ F⋆ ⇔
(︁
K(X),K(Y )

)︁
∈ F .

By construction, F⋆ is symmetric and therefore describes a valid flip. Let G′ := G ⊕ F and
G⋆ := G⊕ F⋆.

Claim 5.27. Let u ∈ int(B) and v ∈ B be vertices from rows that are not close in B. Then u and v
are non-adjacent in G⋆.

Proof. Let u and v be as in the claim. Then case (F.4) applies and u and v are adjacent in G⋆ if
and only if they are adjacent in G′. By construction of B, we have also u ∈ int(A) and v ∈ A
and u and v are in rows that are not close in A. It follows by property (O.4.1) of A that u and v
are non-adjacent in both G′ and G⋆. ■

Claim 5.28. Let u ∈ int(B) and v ∈ B be vertices from columns that are not close in B. Then u
and v are non-adjacent in G⋆.

Proof. Let u ∈ B[j, t] and v ∈ B[j′, t′] be as in the claim for some j, j′ ∈ J and t, t′ ∈ [h]. If u
and v are in rows that are not close, then we are done by Claim 5.27. We can therefore assume
t′ ∈ {t− 1, t, t+ 1}.

Assume first that j < j′. Since B[j, ∗] and B[j′, ∗] are not close, we even have j + 1 < j′. If
t′ = t+ 1, then case (F.4) applies and u and v are adjacent in G⋆ if and only if they are adjacent
in G′. By Observation 5.26, the adjacency between u and v in G′ can be determined using the
insulator property (O.4.2) of A: u and v are non-adjacent as desired. If t′ ∈ {t, t − 1}, then
by (C.2), case (F.1) applies and the following are equivalent. Let X := K⋆(u) and Y := K⋆(v).

42



Chapter 5. Flip-Breakability

1. The adjacency between u and v was flipped when going from G to G⋆.
2.

(︁
K(X),K(Y )

)︁
∈ R. (by (F.1))

3. u and v are adjacent in G. (by Observation 5.26 and (O.4.3))
The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆, as desired.

The proof for j > j′ works symmetrically. If t′ = t− 1, then case (F.4) applies, and we argue
using (O.4.2). If t′ ∈ {t, t+ 1}, then case (F.2) applies, and we argue using (O.4.4). ■

Claim 5.29. Let u ∈ int(B) and v be a vertex not in B. Then u and v are non-adjacent in G⋆.

Proof. Let X := K⋆(u) and Y := K⋆(v) be the colors of u and v in K⋆. By (C.2), we have
Y ∩ A = ∅ and X ⊆ int(A). It follows from property (O.3) of A that every vertex from Y is
homogeneous to X in G. Moreover, by (C.3), either every or no vertex in Y has a neighbor in X
in G. It follows that the connection between X and Y is homogeneous in G. Also, by (C.3), case
(F.3) applies, and the following are equivalent.

1. The adjacency between u and v was flipped when going from G to G⋆.
2. There is an edge between X and Y in G. (by (F.3))
3. There is an edge between u and v in G. (by homogeneity of X ∋ u and Y ∋ v in G)

The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆, as desired. ■

Combining Claim 5.27, Claim 5.28, and Claim 5.29 yields the following crucial observation.

Observation 5.30. In G⋆, if vertices u ∈ int(B) and v ∈ V (G) are adjacent, then they are in
cells that are close in B.

A straightforward induction now yields that the 2r-neighborhood of every vertex u ∈W1 ⊆
B[2r + 1, 1] in G⋆ satisfies NG⋆

2r (u) ⊆ B[⩽4r + 1, ∗]. In particular, it contains no vertex from
W2 ⊆ B[4r + 2, 1]. We therefore have NG⋆

r (W1) ∩NG⋆
r (W2) = ∅ as desired. This finishes the

proof of the flip-breakability of W . To bound the running time, note that W1, W2, K⋆, and F⋆

can all be computed in time Or,k(|V (G)|).

We can now prove Proposition 5.24.

Proof of Proposition 5.24. The non-algorithmic part of the statement immediately follows from
Lemma 5.25. For the algorithmic part, assume that C is also prepattern-free. Given any set W , we
can compute an insulated subset W ′ ⊆W and a witnessing insulator A using Proposition 5.23.
Applying the algorithm given by Lemma 5.25 to W ′ and A yields the desired result.

5.5 Flip-Breakability Implies Monadic Dependence

We prove the second main implication of the section.

Proposition 5.31. Every flip-breakable graph class is monadically dependent.

Let φ(x, y) be a formula over the signature of colored graphs, G+ be a colored graph, and W
be a set of vertices in G+. We say that φ shatters W in G+, if there exists vertices (aR)R⊆W such
that for all b ∈ P and R ⊆W ,

G+ |= φ(aR, b) ⇔ b ∈ R.

43



Chapter 5. Flip-Breakability

Let G be an (uncolored) graph, and W be a set of vertices in G. We say that φ monadically
shatters W in G, if there exists a coloring G+ of G in which φ shatters W .
Fact 5.32 ([4]). A graph class C is monadically dependent if and only if for every formula φ(x, y)
over the signature of colored graphs, there exists a bound m such that φ monadically shatters no set
of size m in any graph of C.

Proposition 5.31 is implied by the following.
Lemma 5.33. Let φ(x, y) be a formula and k ∈ N. There exist rφ,mφ,k ∈ N, where rφ depends
only on φ, such that no graph G contains a set of at least mφ,k vertices W such that

• φ monadically shatters W in G, and

• W is (rφ, k)-flip-breakable in G.

Proof. Let q be the quantifier rank of φ. We set rφ := 2 · 7q + 1. Let s be the number of colors
used by φ and let t := p(q, s · k) be the number of colors from Lemma 4.10, that are needed to
determine the truth value of formulas in the signature of (s · k)-colored graphs that have the
same quantifier-rank as φ(x, y). Let mφ,k := 3(t+ 1).

Assume now towards a contradiction the existence of an (rφ, k)-flip-breakable in set W in G
of size mφ,k such that φ monadically shatters W in G. Then there exists an s-coloring G+ of G in
which φ shatters W . We apply flip-breakability, which yields a k-flip H of G together with two
disjoint sets A,B ⊆W each of size at least t+ 1, such that NH

r (A) ∩NH
r (B) = ∅. By using k

colors to encode the flip, we can rewrite φ to a formula ψ with the same quantifier-rank as φ,
such that there exists an (s · k)-coloring H+ of H where for all u, v ∈ V (G),

G+ |= φ(u, v) ⇔ H+ |= ψ(u, v).

In particular, ψ shatters W in H+. Since ψ has the same quantifier-rank as φ and is a formula
over the signature of (s · k)-colored graphs, by Lemma 4.10 there exists a coloring of H+ with t
colors such that the truth of ψ(u, v) inH+ only depends on the colors of u and v for all vertices u
and v with distance greater than r in H+. Recall that A and B each have size t + 1. By the
pigeonhole principle, there exist two distinct vertices a1, a2 ∈ A that are assigned the same color
and two distinct vertices b1, b2 ∈ B that are assigned the same color. Since ψ shatters W in H+,
there exists a vertex v ∈ V (G) such that

H+ |= ψ(v, a1) ∧ ¬ψ(v, a2) ∧ ψ(v, b1) ∧ ¬ψ(v, b2).

By Lemma 4.10, v must be contained in NH
r (A) ∩NH

r (B), as the truth of ψ is inhomogeneous
among both v and {a1, a2} and among v and {b1, b2}; a contradiction to NH

r (A)∩NH
r (B) = ∅.

Combining the results of Section 5.3 and Section 5.4 yields the desired chain of implications.

prepattern-free ⇒ insulation-property ⇒ flip-breakable ⇒ mon. dependent

In the remaining two sections of Chapter 5, we provide the deferred proofs of the two insulator
growing lemmas (Lemmas 5.19 and 5.20).

5.6 Sample Sets

We work towards proving Lemmas 5.19 and 5.20, which grow the height of an insulator. In
this section we show that in prepattern-free classes, given an insulator A, we can extract a
subinsulator B and a small sample set of vertices which can be used to approximately represent
the connections of all the vertices in the graph towards B. We give some notation to make this
statement precise.

44



Chapter 5. Flip-Breakability

Definition 5.34. Given a graphG, a vertex v ∈ V (G), and a setA ⊆ V (G), we define the atomic
type of v over A as

atp(v/A) := {(R, a) : G |= R(v, a), R ∈ {E,=}, a ∈ A}.

Observation 5.35. Let G be a graph, u, v ∈ V (G), and A ⊆ B ⊆ V (G). Then

atp(u/A) ̸= atp(v/A) ⇒ atp(u/B) ̸= atp(v/B).

Definition 5.36. Let G be a graph containing an insulator A with grid A indexed by I . Let
v, s<, s> be vertices from G, i ∈ I , and m ∈ N. We say v is (m, i, s<, s>)-sampled on A if

atp(v/A[<i, ∗]) = atp(s</A[<i, ∗]) and atp(v/A[⩾i+m, ∗]) = atp(s>/A[⩾i+m, ∗]).

We call m the margin, i the exceptional index, s< the left-sample, and s> the right-sample.

Definition 5.37. Fix p ∈ N. Let G be a graph containing an insulator A indexed by I and let
S ⊆ V (G). We say S samples G on A with margin m if there exists functions ex : V (G) → I
and s<, s> : V (G) → S such that every v ∈ V (G) is

(︁
m, ex(v), s<(v), s>(v)

)︁
-sampled on A.

We are now ready to state the main result of this section.

Lemma 5.38. Fix t ∈ N. For every graphG and insulatorA indexed by J inG, there is a subsequence
I ⊆ J of size Ut(|J |) such that either

• G contains a prepattern of order t on A|I , or

• there is a set S ⊆ V (G) \ A|I of size const(t) that samples G on A|I with margin 2.

Moreover, there is an algorithm that, given G and A, computes I and one of the two outcomes (a
prepattern or a sampling set S) in time Ot(|V (G)|2).

We will build the set S iteratively by extracting single sampling vertices one by one.

5.6.1 Extracting Single Sample Vertices

Before we show how to extract a new sample vertex, we state some auxiliary lemmas about
subinsulators and sampling sets.

Lemma 5.39. Let A be an insulator indexed by J in a graph G. Let I be a subsequence of J ,
u, v ∈ V (G), and i ∈ tail(I). Let A and B be the grids of A and A|I respectively. Then

atp(u/A[i, ∗]) ̸= atp(v/A[i, ∗]) ⇒ atp(u/B[i, ∗]) ̸= atp(v/B[i, ∗]).

Proof. Follows from Observation 5.35 and Observation 5.8. ■

Lemma 5.40. Let A be a grid indexed by a sequence J of length at least four in a graph G and let
v ∈ V (G). There exists a subsequence I ⊆ J of length |I| ⩾ 1

2 |J | such that v /∈ A|I .

Moreover, there is an algorithm that, given G and A, computes I in time O(|V (G)|).

Proof. Up to renaming, assume J = (1, . . . , n). If v /∈ A|I , we can just set I := J . Otherwise,
let i ∈ J be such that v ∈ A[i, ∗] where A is the grid of A. We choose I as the larger of the two
sequences (1, . . . , i− 1) and (i, . . . , n). Since I has length at least two, this defines a subinsulator.
By Observation 5.8, v ̸∈ A|I . The bound on the running time is obvious.

45



Chapter 5. Flip-Breakability

Lemma 5.41. Fix m ∈ N. Let G be a graph containing an insulator A indexed by J and S ⊆ V (G)
be a set that samples G on A with margin m. For every I ⊆ J , S also samples G on A|I with
margin m.

Proof. Let B := A|I be the grid of A|I . As in the first item in the proof of Lemma 5.9, we observe
for every i ∈ I

B[<i, ∗] ⊆ A[<i, ∗] and B[>i, ∗] ⊆ A[>i, ∗].
Hence, by contrapositive of Observation 5.35, for all vertices u, s<, s>,

atp(v/A[<i, ∗]) = atp(s</A[<i, ∗]) ⇒ atp(v/B[<i, ∗]) = atp(s</B[<i, ∗]),

atp(v/A[>i, ∗]) = atp(s>/A[>i, ∗]) ⇒ atp(v/B[>i, ∗]) = atp(s>/B[>i, ∗]).
The lemma now follows from Definition 5.37.

We will now show how to extract a new sample vertex. We start with a given set of sample
vertices S. In the absence of large prepatterns, we either find a subinsulator on which S samplesG,
or find a new vertex v by which we will later use to extend the sample set.

Lemma 5.42. Fix k, t ∈ N. For every graph G and insulator A indexed by J , and every vertex set S
of size at most k, there is a subsequence I ⊆ J of size Uk,t(|J |) such that either

• G contains a bi-prepattern of order t on A|I , or

• S samples G on A|I with margin 2, or

• there is a vertex v /∈ A|I , such that for all s ∈ S and every column C in A|I
atp(v/C) ̸= atp(s/C).

Moreover, there is an algorithm that, givenG, A, and S, computes the sequence I and one of the three
outcomes (a bi-prepattern, the conclusion that S samples G, or a vertex v) in time Ok,t(|V (G)|2).

Proof. We first show how to construct a sequence I with the desired properties. Afterwards we
analyze the running time. Getting the desired bounds will then require a small preprocessing that
reduces the size of J . The proof is split into multiple paragraphs.

Notation. For vertices v, s ∈ V (G) and a set U ⊆ V (G), we say v is s-connected to U if

atp(v/U) = atp(s/U).

We generalize this to sets S⋆ ⊆ S and say v is S⋆-connected to U if

{s ∈ S : v is s-connected to U} = S⋆.

Ramsey. We start by defining some coloring to which we will apply Ramsey’s theorem. Let A
be the grid of A and MA be the function from Lemma 5.6. For t′ ∈ {6, 4t} and S1, . . . , St′−1 ⊆ S,
we label all t′-tuples i1 < · · · < it′ ∈ J with a color indicating whether

∃v
⋀︂

l=1,...,t′−1

v is Sl-connected to MA(il, il+1). (5.1)

Applying Ramsey’s Theorem (Fact 4.13) to this coloring gives us a subsequence I ′ ⊆ J such
that for all t′ ∈ {8, 6t} and S1, . . . , St′−1 ⊆ S, the above equation (5.1) either holds for all or no
t′-tuples i1 < · · · < it′ ∈ I ′. Note that the number of colors is bounded by const(k, t), which
guarantees |I ′| ⩾ Uk,t(|J |). We can assume without loss of generality that I := tail(I ′) has
length at least 24t. In order to simplify notation, we assume up to renaming that I ′ = (0, . . . , n)
and I = (1, . . . , n). Let B := A|I′ be the grid of B := A|I′ . By Lemma 5.6, we observe the
following.

46



Chapter 5. Flip-Breakability

Observation 5.43. For all i ∈ I we have B[i, ∗] =MA(i− 1, i).

We say a subsequence of a sequence K is 1-spaced if it contains no consecutive elements
from K .

Claim 5.44. Let s ∈ S and w̄ ∈ {0, 1}2t. If there is a 1-spaced subsequence i1 < · · · < i2t of I
such that

∃v
⋀︂

l=1,...,2t

v is s-connected to B[il, ∗] if and only if wl = 1,

then the above holds for all such 1-spaced subsequences of the same length.

Proof. By Observation 5.43, the claim holds for a 1-spaced subsequence i1 < · · · < i2t if and only
if equation (5.1) holds for the corresponding 4t-tuple

i1 − 1 < i1 < i2 − 1 < i2 < · · · < i2t − 1 < i2t ∈ I ′

of distinct elements and some S1, . . . , S4t−1 ⊆ S with s ∈ S2l−1 ⇔ wl = 1. Note that we use
1-spacedness to guarantee that all elements in the 4t-tuple are distinct.

Assume there is a 1-spaced subsequence satisfying the claimed statement, and let the sets
S1, . . . , S4t−1 ⊆ S be witnesses of the truth of equation (5.1) for the corresponding 4t-tuple. By
Ramsey’s theorem, equation (5.1) with S1, . . . , S4t−1 ⊆ S holds for all 4t-tuples, and thus, the
claimed statement holds for all 1-spaced subsequences. ■

Claim 5.45. If there is i, j ∈ I with i + 2 < j and sets Pi, Qi, Pj , Qj ⊆ S with Pi ̸= Qi and
Pj ̸= Qj such that

∃v v is Pi-connected to B[i, ∗]
∧ v is Qi-connected to B[i+ 1, ∗]
∧ v is Pj-connected to B[j, ∗]
∧ v is Qj-connected to B[j + 1, ∗]

then the above holds for all i, j ∈ I with i+ 2 < j.

Proof. We again use Observation 5.43. Thus, the statement of the claim holds for a given i, j ∈ I
if and only if equation (5.1) holds for the corresponding 6-tuple

i− 1 < i < i+ 1 < j − 1 < j < j + 1 ∈ I ′

of distinct elements and some S1, . . . , S5 ⊆ S with S1 = Pi and S2 = Qi and S4 = Pj and
S5 = Qj . The rest follows as in Claim 5.44. ■

Constructing a Prepattern. We say an index i ∈ I is an alternation point of a vertex v on B
if v is P -connected to B[i, ∗] and Q-connected to B[i+ 1, ∗] for distinct sets P ̸= Q ⊆ S.

Claim 5.46. One of the following two conditions holds.

1. For every vertex v ∈ V (G) with alternation points i, j ∈ I , we have |i− j| ⩽ 2.

2. G contains a bi-prepattern of order t on B.

47



Chapter 5. Flip-Breakability

Proof. Assume the first condition fails and let v ∈ V (G) be a vertex with alternation points
i, j ∈ I such that i+ 2 < j. By Claim 5.45, we can assume without loss of generality that v has
alternation points 6t and 19t. In the following, we find two 1-spaced subsequences of I

I⋆ = i1 < · · · < it⏞ ⏟⏟ ⏞
⊆(1,...,4t)

< i⋆⏞⏟⏟⏞
∈{6t,6t+1}

< it+1 < · · · < i2t⏞ ⏟⏟ ⏞
⊆(9t,11t)

,

J⋆ = j1 < · · · < jt⏞ ⏟⏟ ⏞
⊆(13t,...,17t)

< j⋆⏞⏟⏟⏞
∈{19t,19t+1}

< jt+1 < · · · < j2t⏞ ⏟⏟ ⏞
⊆(22t,...,24t)

and vertices s1, s2 ∈ S satisfying the following property: Either
• i⋆ is the first index among I⋆, such that v is s1-connected to B[i⋆, ∗], or
• i⋆ is the first index among I⋆, such that v is not s1-connected to B[i⋆, ∗],

and moreover, either
• j⋆ is the first index among J⋆, such that v is s2-connected to B[j⋆, ∗], or
• j⋆ is the first index among J⋆, such that v is not s2-connected to B[j⋆, ∗].

We start by choosing s1 ∈ S to be an arbitrary vertex witnessing the alternation point 6t of v,
that is,

v is s1-connected to B[6t, ∗] ⇔ v is not s2-connected to B[6t+ 1, ∗].

By a simple majority argument, we can choose i1, . . . , it to be a 1-spaced subsequence of
(1, . . . , 4t) such that v is s1-connected either to none or to all of B[i1, ∗], . . . , B[it, ∗]. In the first
case (respectively last case) we set i⋆ to be the index from {6t, 6t+1} such that v is s1-connected
to B[i⋆, ∗] (respectively not s1-connected to B[i⋆, ∗]). We can now choose it+1, . . . , i2t to be an
arbitrary 1-spaced subsequence of (9t, 11t). This concludes the construction of I⋆. We further
choose s2 ∈ S to be an arbitrary vertex witnessing the alternation point 19t of v and construct J⋆
analogously as a 1-spaced subsequence of (13t, . . . , 24t).

For every i ∈ [t] let Ii be a subsequence of I⋆ of length t such that i⋆ is the ith element
of Ii. Such a sequence exists, since i⋆ has both t successors and t predecessors in I⋆. Similarly,
for every j ∈ [t] let Jj be a subsequence of J⋆ of length t such that j⋆ is the jth element
of Jj . For every i, j ∈ [t], by concatenating Ii and Jj , we obtain a 1-spaced subsequence
Ii,j = (p1, . . . , pt, q1, . . . , qt) of I of length 2t such that

• the s1-connection from v to B[p1, ∗], . . . , B[pi−1, ∗] is homogeneous
but switches at B[pi, ∗],

• the s2-connection from v to B[q1, ∗], . . . , B[qj−1, ∗] is homogeneous
but switches at B[qj , ∗].

By Claim 5.44 and witnessed by v and all the Ii,j , we can fix an arbitrary 1-spaced subsequence
(p1, . . . , pt, q1, . . . , qt) of I of length 2t and there exist vertices {ci,j : i, j ∈ [t]} such that either

• ∀i, j ∈ [t]: ci,j is not s1-connected to B[p1, ∗], . . . , B[pi−1, ∗]
but s1-connected to B[pi, ∗], or

• ∀i, j ∈ [t]: ci,j is s1-connected to B[p1, ∗], . . . , B[pi−1, ∗]
but not s1-connected to B[pi, ∗],

and similarly either
• ∀i, j ∈ [t]: ci,j is not s2-connected to B[q1, ∗], . . . , B[qj−1, ∗]

but s2-connected to B[qj , ∗], or
• ∀i, j ∈ [t]: ci,j is s2-connected to B[q1, ∗], . . . , B[qj−1, ∗]

but not s2-connected to B[qj , ∗].

48



Chapter 5. Flip-Breakability

Let α1(y;x, s1) be the quantifier-free formula checking whether atp(x/{y}) ̸= atp(s1/{y}).
Whenever v is not s1-connected to a column B[i, ∗], then this is witnessed by an element u ∈
B[i, ∗] such that G |= α1(u; v, s1). If v is s-connected to B[i, ∗], then no such element exists in
B[i, ∗]. Among p1, . . . , pt, we have that either

• ∀i, j ∈ [t]: pi is the first index such that α1(B[pi, ∗]; ci,j , s1) is empty
(this happens in the case where the ci,j are s1-connected to B[pi, ∗]), or

• ∀i, j ∈ [t]: pi is the first index such that α1(B[pi, ∗]; ci,j , s1) is non-empty
(this happens in the case where the ci,j are not s1-connected to B[pi, ∗]).

Similarly, there is a quantifier-free formula α2(y, x, s2) checking whether

atp(x/{y}) ̸= atp(s2/{y}).

Among q1, . . . , qt, we have that either
• ∀i, j ∈ [t]: qj is the first index such that α2(B[qj , ∗]; ci,j , s2) is empty, or
• ∀i, j ∈ [t]: qj is the first index such that α2(B[qj , ∗]; ci,j , s2) is non-empty.

This proves thatG contains a bi-prepattern of order t onB witnessed by the sequences (p1, . . . , pt),
(q1, . . . , qt), the ci,j vertices, the parameters s1, s2, and the formulas α1 and α2. ■

Extracting a Sample Vertex. If the second condition of Claim 5.46 holds, then G contains a
bi-prepattern of order t on A|I′ , so I ′ can play the role of the sequence I in the statement of the
lemma, and we are done. We therefore assume from now on that the first condition of Claim 5.46
holds.

Claim 5.47. One of the following two conditions holds.

1. For every vertex u ∈ V (G), that is ∅-connected to columns B[i, ∗] and B[j, ∗] for i, j ∈ I , we
have |i− j| ⩽ 1. In particular each vertex is ∅-connected to at most two columns in B.

2. There is a sequence K of length at least 1
6 |I| and a vertex v /∈ A|K , such that v is ∅-connected

to every column of A|K .

Proof. Assume the first condition fails. We have a vertex u that is ∅-connected to columns B[i, ∗]
and B[j, ∗] for i+ 1 < j ∈ I . In order to show the second condition, we will first find a vertex v
together with a sequence K ′ ⊆ I of length at least 1

3 |I|, such that v is ∅-connected to every
column B[p, ∗] with p ∈ K . As (i, j) is a 1-spaced subsequence of I , Claim 5.44 yields a vertex v
that is ∅-connected to B[m, ∗] and B[m+ 2, ∗] where m := ⌊12 |I|⌋. Assume v has at least one
alternation point on B and its earliest alternation point q satisfies m ⩽ q. Then u has the same
connection type to every B[p, ∗] with 1 ⩽ p ⩽ m. As v is ∅-connected to B[m, ∗], we can set
K ′ := (1, . . . ,m). Otherwise, either v has no alternation points on B, or the latest alternation
point q of v satisfies q ⩽ m+ 1, by Claim 5.46. Then u has the same connection type to every
B[p, ∗] withm+2 ⩽ p ⩽ n. As v is ∅-connected toB[m+2, ∗], we can setK ′ := (m+2, . . . , n).
This finishes the construction of v and K ′. We use Lemma 5.40 to obtain a sequence K ⊆ K ′ of
length |K| ⩾ 1

2 |K
′| ⩾ 1

6 |I| with v /∈ A|K . By Lemma 5.39, v is ∅-connected to every column
of A|K . ■

Establishing the Sampling Property. If the second condition of Claim 5.47 holds, then there
exists a sequence K that can play the role of I in the statement of the lemma, and we are done.
We therefore assume from now on that the first condition of Claim 5.47 holds.

Claim 5.48. S samples G on A|K with margin 2 for K := (2, . . . , n− 2) ⊆ I .

49



Chapter 5. Flip-Breakability

Proof. We have to choose for every vertex v ∈ V (G) an exceptional index i ∈ tail(K) =
(3 . . . , n − 2) and two vertices s<, s> ∈ S such that v is s<-connected to A|K [<i, ∗] and s>-
connected to A|K [>i+ 1, ∗]. By Observation 5.7, we have A|K = B|K . Thus, by Observation 5.8,
we have

A|K [<i, ∗] ⊆ B[{3, . . . , i− 1}, ∗] and A|K [>i+ 1, ∗] ⊆ B[{i+ 2, . . . , n− 2}, ∗].

Take any vertex v. By Claim 5.46, there exist successive indices i1 ∈ I and i2 := i1 + 1, and
sets S1, S2 ⊆ S, such that v is S1-connected to all columns B[<i1, ∗] and S2-connected to all
columns B[>i2, ∗].

Assume S1 ̸= ∅ ≠ S2. Then we can arbitrarily choose s< ∈ S1 and s> ∈ S2 and set

i :=

⎧⎪⎨⎪⎩
3 if i1 < 3,

n− 2 if i1 > n− 2,

i1 otherwise.

Now v is s<-connected to B[{3, . . . , i − 1}, ∗] and s>-connected to B[{i + 2, . . . , n − 2}, ∗],
proving the claim.

AssumeS1 = ∅ ≠ S2. If i1 > 3, then v is ∅-connected to the first three columns ofB, contradicting
Claim 5.47. So we have i1 ⩽ 3. We set i := 3 and choose an arbitrary s> ∈ S2. As desired, v is
s>-connected to B[{i + 2, . . . , n − 2}, ∗]. As B[{3, . . . , i − 1}, ∗] is empty any vertex from S
can take the role of s<.

Assume S1 ̸= ∅ = S2. The proof is symmetric to the previous case.

Assume S1 = ∅ = S2. Since |I| > 8, we either find left of i1 or right of i2 at least three columns
of B to which v is ∅-connected. This is a contradiction to Claim 5.47. ■

We have successfully established the sampling property which proves that K (I in the
statement) has the desired properties.

Running Time. In the previous paragraphs, we have proven the existence of a sequence I
with the desired properties. Let us redefine n := |V (G)|. To show that I can be constructed
in time Ok,t(n

2), we first consider the following preprocessing routine. Let t⋆ := max(6, 4t)
and choose a subsequence J0 ⊆ J of size ⌊|J |1/t⋆⌋. Note that |J0| ⩽ n1/t⋆ . By applying the
construction to A|J0 and J0 instead of A and J , we obtain a subsequence I ⊆ J0 ⊆ J with the
desired properties that still has size |I| ⩾ Uk,t(|J0|) ⩾ Uk,t(|J |). By this argument, and as we
can build J0 and A|J0 in time Ok,t(n), we can from now on assume without loss of generality
that |J | ⩽ n1/t⋆ .

Towards computing the coloring needed for the Ramsey application, we first compute for
each v ∈ V (G), S⋆ ⊆ S, and i ∈ J , whether v is S⋆-connected to the column A[i, ∗] of A. As the
columns of A are disjoint and |S| ⩽ k, this takes a total time of O(2k · n2). Moreover, for each
vertex v ∈ V (G), subset S⋆ ⊆ S and pair i < i′ ∈ J we calculate whether v is S⋆-connected to
MA(i, i

′). By Lemma 5.6, if A is orderless this amounts to checking whether v is S⋆-connected
to A[i′, ∗], which we have already computed in the previous step. If A is ordered, we instead
check whether v is S⋆-connected to each of A[m, ∗] for i < m ⩽ i′. As |J | ⩽

√
n and with the

data from the previous step we can do this check in time O(
√
n) for a single vertex v, set S⋆

and pair i, i′. Since |J | ⩽ n1/4, there are at most
√
n pairs i, i′ that need to be checked. It

follows that we can compute the desired data for all vertices v, sets S⋆, and pairs i, i′ in total time
O(2k · n ·

√
n ·

√
n) = O(2k · n2). We recall the construction of the coloring for the Ramsey

50



Chapter 5. Flip-Breakability

application: For t′ ∈ {6, 4t} and S1, . . . , St′−1 ⊆ S, the t′-tuples i1 < · · · < it′ ∈ J are labeled
with a color indicating whether

∃v
⋀︂

l=1,...,t′−1

v is Sl-connected to MA(il, il+1).

Using our precomputed information, for a single t′-tuple, we can compute its colors in timeOk,t(n)
by iterating over all vertices v ∈ V (G). As |J | ⩽ n1/t⋆ , there are at most nmany t′-tuples from J ,
so we can compute the coloring in timeOk,t(n

2). Due to the size bounds on J , applying Ramsey’s
Theorem (Fact 4.14) to the coloring runs in time Ok,t(n). This yields the sequence I .

Having constructed I , we obtain the insulator B = A|I′ . By Observation 5.43, our precom-
puted information can also be used to check whether a vertex v ∈ V (G) is S⋆-connected to a
column B[i, ∗] of B for some S⋆ ⊆ S and i ∈ I . Let us now show how to compute one of the
three outcomes: a bi-prepattern, a new sample vertex v, or a large subsequence of I on which S
samples G.

• We can check for every vertex, whether it contains two alternation points with distance
bigger than 2 on B in time Ok(n · |I|) ⩽ Ok(n

2). If such a vertex exists, the proof of
Claim 5.46 yields that there is a bi-prepattern on B of size t on every 1-spaced subsequence
of length 2t of columns ofB. We can choose any such sequence and search for the witnessing
vertices in time Ok,t(n).

• If the previous case does not apply, we can again search in time Ok(n · |I|) ⩽ Ok(n
2) for a

new sample vertex v and a corresponding subsequence of I (cf. Claim 5.47).
• If none of the two previous cases apply, we immediately find the sampled subsequence by

dropping the first and two last elements of I (cf. Claim 5.48).

We have shown that each step of the construction can be carried out in time Ok,t(n
2). This

concludes the proof of Lemma 5.42.

5.6.2 Extracting Small Sample Sets

We use the following Ramsey-type result for set systems due to Ding, Oporowski, Oxley, and
Vertigan [20, Cor. 2.4] (see also [45, Thm. 2]). Recall two distinct vertices u and v are twins in a
graph G if N(u) \ {v} = N(v) \ {u}.

Fact 5.49 ([20, Cor. 2.4] [45, Thm. 2]). There exists a computable function Q : N → N such that
for every ℓ ∈ N and for every bipartite graph G = (L,R,E), where L has size at least Q(ℓ) and
contains no twins, contains a matching, co-matching, or half-graph of order ℓ as an induced subgraph.

Moreover, there is an algorithm that, given G, computes the induced subgraph in time O(|V (G)|2).

The computability of Q is made explicit in [45, Thm. 2]. While the construction of [20] is
algorithmic, no running time is stated for Fact 5.49. To be self-contained, we instead deduce an
algorithm a posteriori.

Proof of the running time of Fact 5.49. Let Q be the function given by the non-algorithmic part of
Fact 5.49. To prove an algorithmic version of the statement we weaken the bounds by demandingL
to have size at least f−1(Q(ℓ)) instead, where f(x) = ⌊

√︁
log(x)/2⌋.

We first compute an induced subgraph G′ of G on sets L′ ⊆ L and R′ ⊆ R. To this end,
choose L′ as an arbitrary subset of L of size ⌊

√︁
log(|L|)/2⌋. Choose R′ ⊆ R of size at most

|L′|2 ⩽ log(|L|)/2 by picking for each pair of distinct vertices u, v ∈ L′ a vertex from the
symmetric difference of the neighborhoods of u and v in R. Since L contains no twins in G, such
a vertex always exists. G′ has size at most log(|L|) and can be constructed in time O(|V (G)|2).

51



Chapter 5. Flip-Breakability

By our choice of f , we observe that L′ has size at least Q(ℓ). By construction, L′ contains no
twins in G′. By the non-algorithmic version of Fact 5.49, we know that G′ contains a matching,
co-matching, or half-graph of order ℓ. Since G′ has at most log(|L|) vertices, we can perform a
brute force search in timeO(|V (G)|2). AsG′ is an induced subgraph ofG, the computed solution
also applies to G.

We can now prove Lemma 5.38, which we restate for convenience.

Lemma 5.38. Fix t ∈ N. For every graphG and insulatorA indexed by J inG, there is a subsequence
I ⊆ J of size Ut(|J |) such that either

• G contains a prepattern of order t on A|I , or

• there is a set S ⊆ V (G) \ A|I of size const(t) that samples G on A|I with margin 2.

Moreover, there is an algorithm that, given G and A, computes I and one of the two outcomes (a
prepattern or a sampling set S) in time Ot(|V (G)|2).

Proof. We will inductively compute subsequences I0, I1, . . . of J and subsets S0, S1, . . . of V (G)
using the following procedure. For the base case we set I0 := J and S0 := ∅. In the inductive step
we are given Ii and Si and apply Lemma 5.42 on t, A|Ii , and Si. This yields the subsequence Ii+1

of size U|Si|,t(|Ii|) and the insulator (A|Ii)|Ii+1 = A|Ii+1 such that either
(C.1) G contains a prepattern of order t on A|Ii+1 , or
(C.2) Si samples G on A|Ii+1 with margin 2, or
(C.3) there is a vertex si+1 /∈ A|Ii+1 , such that for all s ∈ Si and every column C in A|Ii+1

atp(si+1/C) ̸= atp(s/C).

In the first two cases, we stop the construction and set I := Ii+1 and S := Si. In the third case,
we continue the construction with Si+1 := Si ∪ {si+1}.

Claim 5.50. For every i we have

(P.1) all vertices of Si have a pairwise different atomic type over every column of A|Ii ,
(P.2) no s ∈ Si is contained in A|Ii ,
(P.3) |Si| = i, and

(P.4) Ii has size Ui,t(J).

Proof. We prove the properties by induction on i. The base cases hold trivially. The properties (P.1)
and (P.2) hold on Si and A|Ii by induction, on Si and A|Ii+1 by Lemma 5.39, and finally on Si+1

and A|Ii+1 by the choice of si+1 in (C.3). By (P.1), all elements of Si are distinct. As we only add
one element per turn, this proves (P.3). It follows that Ii+1 has size U|Si|,t(|Ii|) = Ui,t(|Ii|) and
by induction Ii+1 has size Ui,t(J), which proves (P.4). ■

Let k := Q3t(t), where Q is the function given by Fact 5.49. We have k = const(t).

Claim 5.51. If the construction runs for k steps, then G contains a prepattern of order t on A|Ik .

Proof. By Claim 5.50, the set Sk consists of k vertices which have pairwise different atomic types
with respect to every column of the grid A of A|Ik . Since no vertex of Sk is contained in A, we
know that these vertices all have the same type with regard to the equality relation and must
therefore have a pairwise different type with regard to the edge relation, that is, in the graph G,
the vertices of Sk have pairwise different neighborhoods in every column of A. Therefore, in
the semi-induced bipartite graph between any subset L ⊆ Sk and any column R := A[i, ∗] of A,
there are no twins in L and the preconditions of Fact 5.49 are met. We iterate Fact 5.49 a total

52



Chapter 5. Flip-Breakability

number of 3t times between Sk and 3t columns of A, which we can choose arbitrarily. Finally, we
apply the pigeonhole principle. This yields a size t subset S⋆ ⊆ Sk and columns C1, . . . , Ct of A
containing subsets R1, . . . , Rt such that the semi-induced bipartite graph between S⋆ and Ri

• is a matching for all i ∈ [t], or
• is a co-matching for all i ∈ [t], or
• is a half-graph for all i ∈ [t].

This witnesses a mono-prepattern of order t on A|Ik . ■

We can now finish the proof. By Claim 5.51, if the construction runs for k steps, we set
I := Ik and G contains a prepattern of order t on A|I . By Claim 5.50, Ik has size Uk,t(|J |). Since
k = const(t), this is equivalent to Ut(|J |), as desired.

Otherwise, the construction terminates with I := Ii and S := Si for some i ⩽ k, as either
(C.1) or (C.2) holds. By the same reasoning as before, we have |I| ⩾ Ut(|J |). By Claim 5.50, we
have |S| ⩽ k and S ⊆ V (G) \ A|I . In case (C.1), we have a prepattern of order t on A|I and in
case (C.2) S samples G on A|I with margin 2.

As k = const(t), the running time of Ot(|V (G)|2) for the construction follows easily from
the running times of Lemma 5.42 and Fact 5.49.

5.6.3 Sample Sets for Orderless Insulators

For orderless insulators we want to strengthen Lemma 5.38 by improving the guarantees given
by the sampling set. For convenience, we restate the definition of a sampling set.
Definition 5.36. Let G be a graph containing an insulator A with grid A indexed by I . Let
v, s<, s> be vertices from G, i ∈ I , and m ∈ N. We say v is (m, i, s<, s>)-sampled on A if

atp(v/A[<i, ∗]) = atp(s</A[<i, ∗]) and atp(v/A[⩾i+m, ∗]) = atp(s>/A[⩾i+m, ∗]).

We call m the margin, i the exceptional index, s< the left-sample, and s> the right-sample.
Definition 5.37. Fix p ∈ N. Let G be a graph containing an insulator A indexed by I and let
S ⊆ V (G). We say S samples G on A with margin m if there exists functions ex : V (G) → I
and s<, s> : V (G) → S such that every v ∈ V (G) is

(︁
m, ex(v), s<(v), s>(v)

)︁
-sampled on A.

We say S symmetrically samples G on A, if we can choose s< = s> in the above definition.
For orderless insulators, we want to decrease the sampling margin to 1 and make the sampling
symmetric.
Lemma 5.52. LetG be a graph containing an orderless insulator A indexed by J , and let S ⊆ V (G)
be a set that samples G on A with margin 2. Let I ⊆ J be obtained by removing every second
element of J . S samples G on A|I with margin 1.

Proof. The exceptional indices of each vertex are successive. By only keeping every second column,
we reduce the number of exceptional indices to at most 1, which corresponds to margin 1.

Lemma 5.53. Fix t ∈ N. For every graph G and orderless insulator A indexed by J in G, we can
compute a subsequence I ⊆ J of size Ut(|J |) and a set S ⊆ V (G) \ A|I of size const(t) such that
either

• G contains a prepattern of order t on A|I , or

• A|I is orderable, or

• S symmetrically samples G on A|I with margin 1.

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the three
outcomes (a prepattern, witnesses for A|I being orderable, or a set S) in time Ot(|V (G)|2).

53



Chapter 5. Flip-Breakability

Proof. We first apply Lemma 5.38 to A and J , which yields a sequence I0 of length Ut(J) and a
set S ⊆ V (G) \ A|I0 of size const(t) such that either

• G contains a prepattern of order t on A|I0 , or
• S samples G on A|I0 with margin 2.

In the first case we are done by setting I := I0, so assume the second case. Lemma 5.52 yields
a sequence I1 ⊆ I0 of length Ut(|I0|) = Ut(|J |) such that S samples G on A|I1 with margin 1.
Let B be the grid of B := A|I1 . We color every element i ∈ tail(I1) by a color that encodes for
all s1, s2 ∈ S the information whether

N(s1) ∩B[i, ∗] ⊆ N(s2) ∩B[i, ∗]. (5.2)

This requires |S|2 = const(t) many colors. Inducing tail(I1) on the largest color class yields a
monochromatic subsequence I2 ⊆ tail(I1) of length Ut(|I1|) = Ut(|I0|) = Ut(|J |), where we
can interpret monochromaticity as follows.

Fact 5.54. For every s1, s2 ∈ S, if N(s1) ∩B[i, ∗] ⊆ N(s2) ∩B[i, ∗] for one i ∈ I2, then it holds
for every i ∈ I2. In particular, if two vertices s1, s2 ∈ S have the same neighborhood in one column
B[i, ∗] for some i ∈ I2 then they have the same neighborhood in every column B[i, ∗] with i ∈ I2.

By definition, A|I2 consists of the columns {Bi,∗ : i ∈ tail(I2)}. By Lemma 5.41, S also
samples G on A|I2 with margin 1. Whenever we have two vertices in S that have the same
neighborhood in every column of A|I2 we can remove one of them from S while still preserving
that S samples G on A|I2 with margin 1. Thus, by Fact 5.54, for distinct vertices s1, s2 ∈ S and
for every i ∈ I2 we have N(s1) ∩B[i, ∗] ̸= N(s2) ∩B[i, ∗]. Together with Fact 5.54 we obtain
the following.

Fact 5.55. For distinct vertices s1, s2 ∈ S, either

• for all i ∈ I2:
(︁
N(s1) ∩B[i, ∗]

)︁
̸⊆

(︁
N(s2) ∩B[i, ∗]

)︁
, or

• for all i ∈ I2:
(︁
N(s1) ∩B[i, ∗]

)︁
̸⊇

(︁
N(s2) ∩B[i, ∗]

)︁
.

Recall that a vertex v ∈ V (G) is s-connected to a set U ⊆ V (G) if atp(s/U) = atp(v/U).
In the next step we color every 4-element subsequence ῑ = (ι1, . . . , ι4) ⊆ I2. In order to apply
Ramsey’s theorem, we encode for every 4-tuple s̄ = s1 . . . s4 ∈ S4 the information whether

∃v
⋀︂
i∈[4]

v is si-connected to B[ιi, ∗]. (5.3)

Ramsey’s Theorem (Fact 4.13) yields a monochromatic subsequence I3 ⊆ I2 of length Ut(|J |),
where we can interpret monochromaticity as follows.

Fact 5.56. For every s̄ ∈ S4, whenever there exists a 4-element subsequence ῑ of I3 that satisfies (5.3),
then every 4-element subsequence ῑ of I3 satisfies (5.3).

By Lemma 5.41, S still samples G on A|I3 with margin 1. Therefore, we can choose for every
vertex v ∈ V (G) two samples s<(v), s>(v) ∈ S and an exceptional index ex(v) such that

• v is s<(v)-connected to all B[i, ∗] with i ∈ I3 and i < ex(v), and
• v is s>(v)-connected to all B[i, ∗] with i ∈ I3 and i > ex(v).

We remove the first and last two elements of I3 to obtain I4. If for every vertex v with ex(v) ∈ I4
we have s<(v) = s>(v), then S symmetrically samplesG on A|I4 , and we can complete the proof
by setting I := I4. Assume therefore, there is a vertex v⋆ with ex(v⋆) ∈ I4 and s<(v⋆) ̸= s>(v⋆).
Let s1 := s<(v⋆) and s2 := s>(v⋆).

54



Chapter 5. Flip-Breakability

Claim 5.57. For every i ∈ I4 there exists a vertex ci such that

• ci is s1-connected to all B[j, ∗] with j ∈ I3 and j < i, and

• ci is s2-connected to all B[i, ∗] with j ∈ I3 and j > i.

Proof. Let ι1, ι2 and ι3, ι4 be the two immediate predecessors and successors of ex(v⋆) in I3. Those
are distinct indices, and they exist, since ex(v⋆) ∈ I4 and I4 was obtained from I3 by removing
the first and last two elements. Therefore, ῑ := (ι1, ι2, ι3, ι4) is a 4-element subsequence of I3.
Additionally, v⋆ is s1-connected to B[ι1, ∗], B[ι2, ∗] and s2-connected to B[ι3, ∗], B[ι4, ∗]

Pick i ∈ I4, and let ι′1, ι′2 and ι′3, ι′4 be the two immediate predecessors and successors of i
in I3. It follows by Fact 5.56 that there is a vertex ci that is s1-connected to B[ι′1, ∗], B[ι′2, ∗]
and s2-connected to B[ι′3, ∗], B[ι′4, ∗]. Since S samples G on A|I3 with margin 1, we have that
ex(ci) ∈ {ι′2, i, ι′4}. Since ci is s1-connected to B[ι′1, ∗], it is s1-connected to all B[j, ∗] with
j ∈ I3 and j ⩽ ι′1. A symmetric statement holds for s2 and j ⩾ ι′4. This proves that ci has the
desired properties. ■

Consider Fact 5.55 for s1 and s2. We can assume ∀i ∈ I2 :
(︁
N(s1) ∩ B[i, ∗]

)︁
̸⊇

(︁
N(s2) ∩

B[i, ∗]
)︁
, as the alternative case will follow by a symmetric argument. It follows that for every

i ∈ I2 there exists a vertex bi ∈ B[i, ∗] such that bi ∈ N(s2) \N(s1). Now by Claim 5.57, we
have that for all i, j ∈ I4

• ci is non-adjacent to bj if j < i, and
• ci is adjacent to bj if j > i.

By a simple majority argument we find a subsequence I5 ⊆ I4 of length at least 1
2 |I4| = Ut(|J |)

such that either
• ci and bj are adjacent if and only if j ⩾ i for all i, j ∈ I5, or
• ci and bj are adjacent if and only if i > j for all i, j ∈ I5.

By possibly dropping the first element from I5 and shifting the indices of the ci by one, we can
always assume the first case applies. Now (bi)i∈I5 and (ci)i∈I5 witness that A|I5 is orderable as
desired, so we can set I := I5.

Running Time. Let n := |V (G)|. Using the same preprocessing as in the run time analysis
of Lemma 5.42, we can assume that |J | ⩽ n1/4. We first apply Lemma 5.38, which runs in
time Ot(n

2). Coloring of the elements of tail(I1) and building I2 can be done in time Ot(n). We
then color the 4-tuples of the resulting sequence. Similarly to the proof of Lemma 5.42, this can
be done in time Ot(n

2). As we have ensured |J | ⩽ n1/4, applying Ramsey to this coloring takes
time Ot(n). For the resulting sequence we can search for the ci-vertices of Claim 5.57. We do
this by testing for every vertex v ∈ V (G) the role of which of the ci it can take. For a single
vertex this can be done in time Ot(n) by checking its connections to each column of the insulator.
An exhaustive search over all vertices in G therefore takes time Ot(n

2). If we find a suitable
candidate for every i ∈ I4, we can compute I5 in time Ot(n), which yields the desired orderable
insulator. If we cannot find suitable candidates for all ci, we can conclude that S has the desired
sampling property. The overall running time is Ot(n

2) as desired.

5.7 Extending Insulators

We are now ready to prove the insulator growing lemmas. We first prove the orderless and then
the ordered case.

55



Chapter 5. Flip-Breakability

5.7.1 Extending Orderless Insulators

Lemma 5.19 (Orderless Insulator Growing). Fix k, t ∈ N. For every graph G and orderless
insulator A indexed by J of cost k in G, we can compute a subsequence I ⊆ J of length Ut(|J |)
such that either

• G contains a prepattern of order t on A|I ,

• A|I is orderable, or

• there exists a row-extension of A|I of cost const(k, t) in G.

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the three
outcomes (a prepattern, witnesses for A|I being orderable, or a row-extension) in timeOk,t(|V (G)|2).

Proof. Let A = (A,K, F, F ). Apply Lemma 5.53 to A, which yields a subsequence I ⊆ J of size
Ut(|J |) and a set S ⊆ V (G) \ A|I of size const(t) such that either

• G contains a prepattern of order t on A|I , or
• A|I is orderable, or
• S symmetrically samples G on A|I with margin 1.

In the first two cases we are done, so we assume the last case: there exist functions s : V (G) → S
and ex : V (G) → tail(I) such that every v ∈ V (G) is (1, ex(v), s(v), s(v))-sampled on A|I .
Let A and B := A|I be the grids of A and B := A|I . Let I⋆ := tail(I) be the sequence indexing
B and let h be the height of A and B.

Defining the Grid. We build a row-extension C of B. By definition of a row-extension, we
have C[i, j] := B[i, j] for all i ∈ I⋆ and j ∈ [h]. It remains to define the row C[∗, h + 1]. For
every i ∈ I⋆, we define C[i, h+ 1] to contain every vertex v that

• is not contained in B, and
• disagrees with its sample in the cell below, that is, atp(v/C[i, h]) ̸= atp(s(v)/C[i, h]).

As every vertex v is sampled with margin 1 in B, v can disagree with s(v) in at most one column
of B, so no vertex gets assigned into multiple columns. Furthermore, we only assign vertices
to C[∗, h+ 1] which were not in B, so the cells of C are pairwise disjoint and C is a valid grid.
Thus, C is a row-extension of B.

Claim 5.58. For every i ∈ I⋆ and v ∈ C[i, ∗], we have ex(v) = i.

Proof. As v is (1, ex(v), s(v), s(v))-sampled on B, we have

atp(v/B[i, ∗]) ̸= atp(s(v)/B[i, ∗]) ⇒ ex(v) = i.

If v ∈ C[i, h+ 1], then the premise is satisfied by construction. If v ∈ C[i,⩽ h] = B[i, ∗], then,
since s(v) /∈ B[i, ∗], the premise is again satisfied as we have

(=, v) ∈ atp(v/B[i, ∗]) \ atp(s(v)/B[i, ∗]). ■

The rest of the proof will be devoted to constructing K⋆ and F⋆ such that the row-extension
C := (C,K⋆, F⋆, F⋆) is an insulator of cost const(k, t) in G.

Defining the Insulator. We build K⋆ as a refinement of K by encoding into the color of every
vertex v ∈ V (G) for every color X ∈ K and sample vertex s ∈ S the information

(C.1) whether v ∈ X ,
(C.2) whether v ∈ C ,

56



Chapter 5. Flip-Breakability

(C.3) whether v ∈ C[∗, h],
(C.4) whether v ∈ C[∗, h+ 1],
(C.5) whether v ∈ N(s),
(C.6) whether s(v) = s.

As |K| = k and |S| = const(t), we have |K⋆| = const(k, t). By (C.6), (C.5), and (C.1), we can
assign to every color X ∈ K⋆

• a sample vertex s(X) ∈ S, such that s(v) = s(X) for all v ∈ X ,
• sample neighbors S(X) ⊆ S, such that N(v) ∩ S = S(X) for all v ∈ X , and
• a color K(X) ⊆ K, such that K(v) = K(X) for all v ∈ X .

In order to show that C is an insulator in G, it remains to define the symmetric relation F⋆ ⊆ K2
⋆

such that property (U.1) is satisfied. We define F⋆ via the following four cases. Let X,Y ∈ K⋆.
(F.1) If X ⊆ C[∗, h] and Y ⊆ C[∗, h], then (X,Y ) ∈ F⋆ ⇔

(︁
s(Y ) ∈ S(X) ∨ s(X) ∈ S(Y )

)︁
.

(F.2) If X ̸⊆ C[∗,⩽h] and Y ⊆ C[∗, h], then (X,Y ) ∈ F⋆ ⇔ s(X) ∈ S(Y ).

(F.3) If X ⊆ C[∗, h] and Y ̸⊆ C[∗,⩽h], then (X,Y ) ∈ F⋆ ⇔ s(Y ) ∈ S(X).

(F.4) Otherwise, (X,Y ) ∈ F⋆ ⇔
(︁
K(X),K(Y )

)︁
∈ F .

By construction, F⋆ is symmetric and therefore describes a valid flip. Let G′ := G ⊕ F and
G⋆ := G⊕ F⋆.

Proving Properties of Insulator. We have to show (U.1): for all i ∈ I⋆ there exists ai ∈ V (G)
such that for all r ∈ [h+ 1]

C[i, 1] = NG⋆
0 [ai] = {ai} and C[i,⩽r] = NG⋆

r−1[ai]. (5.4)

We first show that our flip conserves this property for r ∈ [h], and handle r = h+ 1 later.

Claim 5.59. For all i ∈ I⋆ and r ∈ [h], we have

C[i,⩽r] = B[i,⩽r] = NG′
r−1[ai] = NG⋆

r−1[ai].

Proof. The first two equalities follow by construction and property (U.1) of B. It remains to prove
NG′

r−1[ai] = NG⋆
r−1[ai]. We prove the claim by induction on r. The base case is trivial. For the

inductive step, assume the property holds for r ∈ [h− 1] and we want to show it for r + 1. We
show that for every vertex u we have u ∈ NG⋆

r [ai] if and only if u ∈ NG′
r [ai]. We can assume

u /∈ NG⋆
r−1[ai] = NG′

r−1[ai], as we would be done by induction otherwise. With these prerequisites,
the following are equivalent.

1. u ∈ NG⋆
r [ai].

2. u has a neighbor in NG⋆
r−1[ai] in G⋆. (as u /∈ NG⋆

r−1[ai])
3. u has a neighbor in C[i,⩽r] in G⋆. (by induction)

Let v be a vertex in C[i,⩽r] ⊆ C[i, <h]. By (C.2), (C.3), and (C.4), we have K⋆(v) ⊆ C[i, <h]
and case (F.4) applies: v has the same neighborhood in G⋆ as in G′. Hence, the following are
equivalent to the above.

4. u has a neighbor in C[i,⩽r] in G′.
5. u has a neighbor in NG′

r−1[ai] in G′. (by induction)
6. u ∈ NG′

r [ai]. (as u /∈ NG′
r−1[ai])

■

57



Chapter 5. Flip-Breakability

Having proved Claim 5.59, in order to establish (U.1), it remains to prove

C[i, h+ 1] = NG⋆
h [ai] \NG⋆

h−1[ai].

We show the equivalence of the two sets by proving containment in both directions separately.

Claim 5.60. For all i ∈ I⋆ we have C[i, h+ 1] ⊆ NG⋆
h [ai] \NG⋆

h−1[ai].

Proof. Let u ∈ C[i, h+1]. As u /∈ C[i,⩽ h], we have by Claim 5.59 that u /∈ NG⋆
h−1[ai]. It remains

to show u ∈ NG⋆
h [ai]. By construction, we have

atp(u/C[i, h]) ̸= atp(s(u)/C[i, h]).

As neither u nor s(u) is contained in B, the difference in their atomic type must be witnessed
by a vertex v ∈ C[i, h] in the symmetric difference of their neighborhoods. We want to argue
that u and v are adjacent in G⋆. Let X := K⋆(u) and Y := K⋆(v). By (C.4) and (C.3), we have
X ⊆ C[i, h+ 1] and Y ⊆ C[i, h]. Hence, case (F.2) from the construction of F⋆ applies and the
following are equivalent.

1. The adjacency between u and v was flipped when going from G to G⋆.
2. s(X) ∈ S(Y ). (by (F.2))
3. s(u) ∈ N(v) ∩ S. (by definition)
4. s(u) is a neighbor of v in G. (by definition)
5. u is a non-neighbor of v in G. (v is in the sym. diff. of N(s(u)) and N(u))

The equivalence between the first and the last item establishes that u and v are adjacent in G⋆.
By Claim 5.59, we have v ∈ NG⋆

h−1[ai], so u ∈ NG⋆
h [ai] and the claim is proved. ■

Claim 5.61. For all i ∈ I⋆ we have C[i, h+ 1] ⊇ NG⋆
h [ai] \NG⋆

h−1[ai].

Proof. Let u be a vertex in NG⋆
h [ai] \NG⋆

h−1[ai]. By Claim 5.59, this is witnessed by a vertex

v ∈ NG⋆
h−1[ai] = NG′

h−1[ai] = C[i, h]

that is adjacent to u in G⋆. We prove that u ∈ C[i, h+ 1] by ruling out all other possibilities.
• Assume that u ∈ C[j,⩽ h− 1] for some j ∈ I⋆. By Claim 5.59, we have

u ∈ NG⋆
h−2[aj ] = NG′

h−2[aj ].

As we assumed that u /∈ NG⋆
h−1[ai], we have that j ̸= i. Additionally, case (F.4) applies and

u has the same neighborhood in G′ and G⋆. Hence, u is adjacent to v also in G′. Now
v ∈ NG′

h−1(aj) = C[j,⩽h], but still v ∈ C[i, h]. This is a contradiction to C[i, h] and
C[j,⩽h] being disjoint.

• Assume that u /∈ C or u ∈ C[j, h+ 1] for some j ̸= i ∈ I⋆. We first show

atp(u/C[i, h]) = atp(s(u)/C[i, h]). (5.5)

If u /∈ C , we deduce (5.5) from the construction of C . If u ∈ C[j, h + 1], we apply
Claim 5.58, which yields j = ex(u) ̸= i. We then deduce (5.5) by the sampling property.

58



Chapter 5. Flip-Breakability

Let X := K⋆(u) and Y := K⋆(v). By our choice of u and v, we know their adjacency in
G⋆ was determined by case (F.2) and the following are equivalent.

1. The adjacency between u and v was flipped when going from G to G⋆.
2. s(X) ∈ S(Y ). (by (F.2))
3. s(u) ∈ N(v) ∩ S. (by definition)
4. v is adjacent to s(u) in G. (by definition)
5. v is adjacent to u in G. (by (5.5))

The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆, a contradiction.

• Finally, we assume that u ∈ C[j, h] for some j ∈ I⋆. As we know that u /∈ NG⋆
h−1[ai],

Claim 5.59 yields i ̸= j. Then Claim 5.58 applied to u ∈ C[j, h] and v ∈ C[i, h] yields

j = ex(u) ̸= i = ex(v),

which together with the sampling property gives

atp(u/C[i, h]) = atp(s(u)/C[i, h]) and atp(v/C[j, h]) = atp(s(v)/C[j, h]). (5.6)

Let X := K⋆(u) and Y := K⋆(v). By our choice of u and v, we know their adjacency in
G⋆ was determined by case (F.1) and the following are equivalent.

1. The adjacency between u and v was flipped when going from G to G⋆.
2. s(Y ) ∈ S(X) or s(X) ∈ S(Y ). (by (F.1))
3. s(v) ∈ N(u) ∩ S or s(u) ∈ N(v) ∩ S. (by definition)
4. u is a neighbor of s(v) in G or v is a neighbor of s(u) in G. (by definition)
5. u is a neighbor of v in G or v is a neighbor of u in G. (by (5.6))
6. u is a neighbor of v in G.

The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆, a contradiction.

Having exhausted all other possibilities, we conclude that u ∈ C[i, h + 1], which proves the
claim. ■

The combination of Claim 5.59, Claim 5.60, and Claim 5.61 proves property (U.1). Hence,
C := (C,K⋆, F⋆, F⋆) is an insulator of cost const(k, t) in G. This proves that C is the desired row
extension. It remains to analyze the running time.

Running Time. Let n := |V (G)|. The application of Lemma 5.53 runs in time Ot(n
2). In the

case where a sample set S is returned, we can calculate the witnessing function s in time Ot(n
2)

by comparing each vertex v ∈ V (G) with each of the const(t) many vertices from S over every
column of A|I . With the function s at hand, we can also build the row-extension C of B in
time Ot(n

2). The construction of K⋆ and F⋆ runs in time Ok,t(n). This yields an overall running
time of Ok,t(n

2).

59



Chapter 5. Flip-Breakability

5.7.2 Extending Ordered Insulators

Lemma 5.20 (Ordered Insulator Growing). Fix k, t ∈ N. For every graphG and ordered insulator A
with cost k, indexed by J in G, we can compute a subsequence I ⊆ J of length Ut(|J |) such that
either

• G contains a prepattern of order t on A|I , or

• G contains a row-extension of A|I with cost const(k, t).
Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the two
outcomes (a prepattern or a row-extension) in time Ok,t(|V (G)|2).

Proof. We first apply Lemma 5.38 to A, which yields a subsequence I ⊆ J of size Ut(|J |) and a
set S ⊆ V (G) \ A|I of size const(t) such that either

• G contains a prepattern of order t on A|I , or
• S samples G on A|I with margin 2.

In the first case we are done, so assume the second case. By possibly taking a subsequence and
applying Lemma 5.41, we can assume the following.

Property 5.62. I does not contain the first and last two elements of J .

Let B be the grid of B := A|I and let I⋆ := tail(I) be the sequence indexing B. As S
samples G on B with margin 2, there exist functions ex : V (G) → I⋆ and s<, s> : V (G) → S,
such that every v ∈ V (G) is (2, ex(v), s<(v), s>(v))-sampled in B. We can assume ex is chosen
maximal in the following sense: for every vertex v ∈ V (G) and index i ∈ I⋆, if atp(v/B[⩽i, ∗]) =
atp(s<(v)/B[⩽i, ∗]), then ex(v) ⩾ i.

Defining the Grid. We will build a row-extension C of B. By definition of a row-extension
we have C[i, r] := B[i, r] for all i ∈ I⋆ and r ∈ [h]. It remains to define the row C[∗, h+ 1]. For
every i ∈ I⋆, we set C[i, h+ 1] to contain every vertex v such that

• v is not contained in B, and
• atp(v/B[i, h]) ̸= atp(s<(v)/B[i, h]) and i is the minimal index in I⋆ with this property.

It is easy to see that cells of C are pairwise disjoint and C is a valid grid. Furthermore, we have
the following property.

Claim 5.63. For every i ∈ I⋆ and v ∈ C[i, ∗], we have ex(v) ∈ {i− 1, i}.

Proof. If v ∈ C[i,⩽ h] = B[i, ∗], then, since B[i, ∗] contains v but neither s<(v) nor s>(v),
the atomic type of v differs from the atomic types of both s<(v) and s>(v) over B[i, ∗]. By the
sampling property with margin 2, we have that i = ex(v) or i = ex(v) + 1.

If v ∈ C[i, h + 1], then by construction the atomic type of v differs from the atomic type
of s<(v) over B[i, ∗]. This yields ex(v) ⩽ i. As we have chosen i minimal, we have

atp(v/B[⩽i− 1, ∗]) = atp(s<(v)/B[⩽i− 1, ∗]).

As we have chosen ex maximal, we have ex(v) ⩾ i− 1. ■

The rest of the proof will be devoted to constructingK⋆,F⋆, andR⋆ such that the row-extension
C := (C,K⋆, F⋆, R⋆) is an insulator of cost const(k, t) in G.

60



Chapter 5. Flip-Breakability

Defining the Insulator. We build K⋆ as a refinement of K by encoding into the color of every
vertex v ∈ V (G) for every color X ∈ K and sample vertex s ∈ S the information

(C.1) whether v ∈ X ,
(C.2) whether v ∈ C ,
(C.3) whether v ∈ C[∗, h],
(C.4) whether v ∈ C[∗, h+ 1],
(C.5) whether v ∈ N(s),
(C.6) whether v ∈ int(B),
(C.7) whether s<(v) = s,
(C.8) whether s>(v) = s,
(C.9) whether v has a neighbor in X ∩ int(B).

As K has size k and S has size const(t), we have |K⋆| = const(k, t). By (C.7), (C.8), (C.5), and
(C.1), we can define for every color X ∈ K⋆

• a left sample s<(X) ∈ S, such that for all v ∈ X we have s<(v) = s<(X),
• a right sample s>(X) ∈ S, such that for all v ∈ X we have s>(v) = s>(X),
• sample neighbors S(X) ⊆ S, such that for all v ∈ X we have N(v) ∩ S = S(X), and
• a color K(X) ∈ K, such that for all v ∈ X we have K(v) = K(X).

We define F⋆ ⊆ K2
⋆ via the following four cases. Let X,Y ∈ K⋆.

(F.1) If X ⊆ C[∗, h+ 1] and Y ⊆ C[∗, h], then (X,Y ) ∈ F⋆ ⇔ s<(X) ∈ S(Y ).

(F.2) If X ⊆ C[∗, h] and Y ⊆ C[∗, h+ 1], then (X,Y ) ∈ F⋆ ⇔ s<(Y ) ∈ S(X).

(F.3) If X ⊆ C[∗, h+ 1] and Y ⊆ C[∗, <h], or vice-versa, then

(X,Y ) ∈ F⋆ ⇔ there is an edge between X and Y in G.

(F.4) Otherwise, (X,Y ) ∈ F⋆ ⇔
(︁
K(X),K(Y )

)︁
∈ F .

In order for F⋆ to define a valid flip, F⋆ has to be symmetric. This is satisfied by our definition.
The cases (F.1) and (F.2) are dual and for (F.3) and (F.4) the symmetry follows from the symmetry
of their conditions and the symmetry of the edge relation and F .

We define R⋆ ⊆ K2
⋆ via the following three cases.

(R.1) If X ⊆ C[∗, h+ 1] and Y ⊆ C[∗,⩽h], or
(R.2) if X ⊆ C[∗, h] and Y ⊆ C[∗, h], then

(X,Y ) ∈ R⋆ ⇔ s>(X) ∈ S(Y ).

(R.3) Otherwise, (X,Y ) ∈ R⋆ ⇔
(︁
K(X),K(Y )

)︁
∈ R.

Proving Properties of the Insulator. Let G′ := G ⊕ F and G⋆ := G ⊕ F⋆. We prove the
required insulator properties.

Claim 5.64 ((O.1)). Every two vertices in different rows of C have different colors in K⋆.

Proof. If none of the two vertices is in C[∗, h+ 1], then the property holds as K⋆ is a refinement
of K, which satisfied this property inB. Otherwise, exactly one of them is contained inC[∗, h+1],
and we can distinguish them using (C.4). ■

Claim 5.65 ((O.2)). Every vertex u ∈ C[i, r] with r > 1 has a neighbor in the cell C[i, r− 1] in G⋆.

61



Chapter 5. Flip-Breakability

Proof. If r ⩽ h, then by (O.2) of B, there is a vertex v ∈ C[i, r − 1] that is adjacent to u in G′. By
(F.4), u and v are also adjacent in G⋆.

It remains to check the case where u ∈ C[i, h + 1]. By construction there exists a vertex
v ∈ C[i, h] in the symmetric difference of N(u) and N(s<(u)). By (C.4) and (C.3), we have
K⋆(u) ⊆ C[∗, h+ 1] and K⋆(v) ⊆ C[∗, h]. Case (F.1) applies, and the following are equivalent.

1. The adjacency between u and v was flipped from G to G⋆.
2. s<(K(u)) ∈ S(K(v)). (by (F.1))
3. s<(u) ∈ N(v) ∩ S. (by definition)
4. s<(u) is adjacent to v in G. (by definition)
5. u is non-adjacent to v in G. (v is in the sym. diff. of N(s<(u)) and N(u))

The equivalence between the first and the last item establishes that u and v are adjacent inG⋆. ■

Claim 5.66 ((O.3)). For every v /∈ C and X ∈ K⋆, v is homogeneous to X ∩ int(C) in G.

Proof. Let XC := X ∩ int(C). As C is an extension of B, we also have v /∈ B. By construction
of C and (C.6) and (C.3), we have either XC ⊆ int(B) or XC ⊆ C[∗, h] = B[∗, h]. In the first
case we conclude by (O.3) of B. In the second case, since v did not get sorted into C , we know by
construction

atp(v/C[∗, h]) = atp(s<(v)/C[∗, h]).

By (C.5), s<(v) is homogeneous to X , and so is v. ■

In the following claims we prove (O.4). For this purpose let u ∈ C[i, r] for some i ∈ I⋆ and
r < h+ 1, and let v ∈ C . Up to renaming, we additionally assume I⋆ = (1, . . . , n).

Claim 5.67 ((O.4.1)). If u ∈ int(C) and u and v are in rows that are not close, then they are
non-adjacent in G⋆.

Proof. Assume first v ∈ C[∗, h+ 1]. Then u ∈ C[∗, <h], as u and v are in rows that are not close.
By construction of C this yields u ∈ int(B) and v /∈ B. Using the properties of our coloring, we
conclude the following. Let X := K⋆(u) and Y := K⋆(v).

• X ⊆ K(X) ∩ int(B). (by (C.1) and (C.6))
• No vertex of Y is contained in B. (by (C.2))
• Every or no vertex in Y has a neighbor in K(X) ∩ int(B). (by (C.9))

Combining the above with (O.3) of B, we know that the connection between X and Y is homo-
geneous in G. Additionally, X ⊆ C[∗, <h] and Y ⊆ C[∗, h + 1] so case (F.3) applies and the
following are equivalent.

1. The adjacency between u and v was flipped from G to G⋆.
2. There is an edge between X and Y in G. (by (F.3))
3. There is an edge between u and v in G. (as X ∋ u and Y ∋ v are homogeneous)

The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆.

If v /∈ C[∗, h + 1], then since also u /∈ C[∗, h + 1], case (F.4) applies and u and v have the
same adjacency in G⋆ as in G′. Note that in this case, by construction and Observation 5.8, u
and v are both contained in both grids A and B and in both grids, they are in rows that are
not close. If v ∈ C[∗, h], then again u ∈ int(B) and u and v non-adjacent in G′ by (O.4.1) of B.
Otherwise, v ∈ C[∗, <h] and by Property 5.62 and Observation 5.8 we have v ∈ int(A). Now u
and v non-adjacent in G′ by (O.4.1) of A. ■

62



Chapter 5. Flip-Breakability

Claim 5.68 ((O.4.2)). If v ∈ C[<i, r − 1] ∪ C[>i, r + 1], then u and v are non-adjacent in G⋆.

Proof. If at least one of u and v is contained in C[∗, <h] = B[∗, <h], then case (F.4) applies and u
and v have the same adjacency in G⋆ as in G′. Possibly exchanging the roles of u and v, we can
apply (O.4.2) of B to deduce that u and v are non-adjacent in G′.

In the remaining case we have u ∈ C[i, h] = B[i, h] and v ∈ C[>i, h+1] and by construction
of C :

atp(v/B[i, h]) = atp(s<(v)/B[i, h]).

Also, K⋆(u) ⊆ C[∗, h] and K⋆(v) ⊆ C[∗, h+ 1] by (C.3) and (C.4). Hence, case (F.2) applies, and
the following are equivalent.

1. The adjacency between u and v was flipped from G to G⋆.
2. s<(K⋆(v)) ∈ S(K⋆(u)). (by (F.2))
3. s<(v) ∈ N(u) ∩ S. (by definition)
4. u and s<(v) are adjacent in G. (by definition)
5. u and v are adjacent in G. (by atp(v/B[i, h]) = atp(s<(v)/B[i, h]))

The equivalence of the first and the last item establishes that u and v are non-adjacent in G⋆.
■

Claim 5.69 ((O.4.3)). If v ∈ C[>i+ 1, {r, r − 1}], then G |= E(u, v) ⇔ (K⋆(u),K⋆(v)) ∈ R⋆.

Proof. If either u ∈ C[∗, < h] or v ∈ C[∗, < h], then case (R.3) applies, we have

(K⋆(u),K⋆(v)) ∈ R⋆ ⇔ (K(u),K(v)) ∈ R,

and it remains to establish

G |= E(u, v) ⇔ (K(u),K(v)) ∈ R.

If u ∈ C[∗, <h], we argue using (O.4.3) of B. Otherwise, we have v ∈ C[∗, <h] and argue using
(O.4.4) of B, where we exchange the roles of u and v.

We can now assume u, v ∈ C[∗, h]. By (C.3), also K⋆(u),K⋆(v) ⊆ C[∗, h], and case (R.2)
applies. By assumption, we have v ∈ C[i′, h] for i + 1 < i′. By Claim 5.63, we have that
ex(u) + 1 < i′, and the following are equivalent.

1. u and v are adjacent in G.
2. s>(u) and v are adjacent in G. (by the sampling property)
3. s>(u) ∈ N(v) ∩ S. (by definition)
4. s>(K⋆(u)) ∈ S(K⋆(v)). (by definition)
5. (K⋆(u),K⋆(v)) ∈ R⋆. (by (R.2))

■

Claim 5.70 ((O.4.4)). If v ∈ C[<i− 1, {r, r + 1}], then G |= E(u, v) ⇔ (K⋆(v),K⋆(u)) ∈ R⋆.

Proof. If either
• one of u and v is contained in C[∗, <h], or
• both u and v are contained in C[∗, h],

63



Chapter 5. Flip-Breakability

then we can exchange u and v and the property follows from the already established property
(O.4.3). It remains to prove the case where u ∈ C[i, h] and v ∈ C[<i − 1, h + 1]. We have
K⋆(u) ⊆ C[∗, h] and K⋆(v) ⊆ C[∗, h+1], and case (R.1) applies for X = K⋆(v) and Y = K⋆(v).
By assumption, we have v ∈ C[i′, h+1] for i′+1 < i. By Claim 5.63, we have that ex(v)+1 < i,
and the following are equivalent.

1. u and v are adjacent in G.
2. u and s>(v) are adjacent in G. (by the sampling property)
3. s>(v) ∈ N(u) ∩ S. (by definition)
4. s>(K⋆(v)) ∈ S(K⋆(u)). (by definition)
5. (K⋆(v),K⋆(u)) ∈ R⋆. (by (R.1))

■

This proves property (O.4). Finally, property (O.5) only concerns the first rowC[∗, 1] = B[∗, 1],
so its truth carries over from B. Having proven all properties, it follows that C is an insulator. Its
cost is |K⋆| = const(k, t). This proves that C is the desired row extension. It remains to analyze
the running time.

Running Time. Let n := |V (G)|. Lemma 5.38 runs in time Ot(n
2). Similarly, as in the proof

of Lemma 5.19, we can build the row-extension C of B in time Ot(n
2). The construction of K⋆,

F⋆, and R⋆ runs in time Ok,t(n). This yields an overall running time of Ok,t(n
2).

Having proven the insulator growing lemmas, this concludes Chapter 5.

64



Chapter 6

Forbidden Induced Subgraphs

In Chapter 5, we have shown that for any graph class the following implications hold:

prepattern-free ⇒ insulation-property ⇒ flip-breakable ⇒ mon. dependent

In this chapter, we close the circle by showing the following two remaining implications:

¬prepattern-free ⇒ large flipped crossings/comparability grids ⇒ mon. independent

This amounts to showing the equivalence (1) ⇔ (2) ⇔ (3) of our characterizations of monadically
dependent graph classes (Theorem 2.3). The biggest part of the work will be to prove the first
remaining implication as made explicit in the following proposition. The definition of crossings
and comparability grids can be found in Section 2.2.

Proposition 6.1. Let C be a graph class that is not prepattern-free. Then there exists r ∈ N such
that for every k ∈ N, C contains as an induced subgraph either

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k, or

• a comparability grid of order k.

We prove this proposition in Section 6.1 and 6.2. In Section 6.3 we prove the second remaining
implication: classes exhibiting the patterns listed in Proposition 6.1 are monadically independent.
There we also summarize the results obtained so far (Proposition 6.47).

6.1 Transformers

As a first step, in Section 6.1, starting from large prepatterns, we will extract well-structured, but
rather abstract objects called transformers. After that, in Section 6.2, transformers will be analyzed
in detail, and crossings will be extracted from them.

6.1.1 Meshes and Transformers

Definition 6.2. A mesh in a graph G is an injective function M : I × J → V (G), where I and J
are two non-empty indexing sequences of the same length. We denote V (M) := {M(i, j) : i ∈
I, j ∈ J}. For a mesh M as above, by MT denote the mesh MT : J × I → V (G) such that
MT(i, j) =M(j, i) for all i ∈ I, j ∈ J . A mesh M has order m if |I| = |J | = m. For I ′ ⊆ I and
J ′ ⊆ J , by M |I′×J ′ we denote the mesh obtained by restricting M to I ′ × J ′. We call M |I′×J ′ a
submesh of M .

65



Chapter 6. Forbidden Induced Subgraphs

Definition 6.3. Let M : I × J → V (G) be a mesh in a (possibly colored) graph G. Then M is
vertical in G if |I| = |J | ⩽ 3, or if there is a function a : I → V (G) such that

• atpG(M(i, j), a(i′)) depends only on otp(i, i′) for all i, i′ ∈ I and j ∈ J , and
• atpG(M(i, j), a(i′)) is not the same for all i, i′ ∈ I and j ∈ J .

We say that M is horizontal in G if MT is vertical in G. Note that a mesh can be both horizontal
and vertical.

Remark 6.4. We often write that some property or function P (x̄) “is the same for all tuples x̄
from a given domain.” This means that for all x̄, ȳ (from a specified domain) P (x̄) = P (ȳ).

Definition 6.5. Let M,M ′ : I × J → V (G) be meshes in a (possibly colored) graph G. We say
that in G the pair (M,M ′) is

• regular if atpG(M(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′)
for all i, i′ ∈ I and j, j′ ∈ J ,

• homogeneous if atpG(M(i, j),M ′(i′, j′)) is the same
for all i, i′ ∈ I and j, j′ ∈ J ,

• conducting if either |I| = |J | ⩽ 3 or (M,M ′) is regular but not homogeneous in G.

Lemma 6.6. Let (M,M ′) be a regular pair of meshes in a colored graph G. Then all vertices in M
have the same color and all vertices in M ′ have the same color.

Proof. Let M,M ′ : I × J → V (G) be as in the statement. The colors of M(i, j) and M ′(i, j) are
encoded in atp(M(i, j),M ′(i, j)) which only depends on otp(i, i) and otp(j, j) by regularity. As
both order types are always = for all i ∈ I and j ∈ J , the lemma follows.

Definition 6.7. A conductor of order n and length h is a sequence M1, . . . ,Mh : I × J → V (G)
of meshes of order n, such that each pair (Ms,Ms+1) is conducting for s = 1, . . . , h− 1.

We now define the central notion of Section 6.1.

Definition 6.8. A transformer of order n and length h is a conductor M1, . . . ,Mh of order n and
length h, such that M1 is vertical, and Mh is horizontal.

The main result of Section 6.1 is the following.

Proposition 6.9. Let G be a graph containing a prepattern of order n on an insulator of height h
and cost k. Then G contains a transformer of order Uh,k(n) and length at most 4h− 1.

We start with some simple observations.

Observation 6.10. Let M be a mesh in a graph G. If M is horizontal/vertical in G, then this also
holds for every submesh of M .

Observation 6.11. LetM1,M2 : I×J → V (G) be meshes in a graphGwhere the pair (M1,M2)
is conducting. For all I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| the pair (M1|I′×J ′ ,M2|I′×J ′) is also
conducting in G.

Lemma 6.12. LetG be a graph andG+ be a coloring ofG. If a pair of meshes (M,M ′) is conducting
in G+, then it is also conducting in G.

Proof. Obviously the pair (M,M ′) is also regular in G. Via contrapositive, it remains to assume
that (M,M ′) is homogeneous in G, and show that it also is homogeneous in G+. To this end, ob-
serve that the atomic type atpG+(M(i, j),M ′(i′, j′)) depends only on atpG(M(i, j),M ′(i′, j′))
as well as the colors of M(i, j) and M ′(i′, j′). The former has the desired properties by homo-
geneity in G, and the latter by Lemma 6.6.

66



Chapter 6. Forbidden Induced Subgraphs

Lemma 6.13. Let G be a graph and G+ be a coloring of G. If a mesh M is vertical in G+ then it is
also vertical in G.

Proof. Let a(·) be the function witnessing that M is vertical in G+. We argue as in the proof of
Lemma 6.12. Here, instead of regularity, we use verticality to argue that all vertices in the range
of a (respectively all vertices in the range of M ) have the same atomic type in G+.

6.1.2 From Prepatterns to Transformers

In this subsection, we prove Proposition 6.9, extracting transformers from prepatterns. Let us first
give an overview of the proof in the case where G contains a bi-prepattern. The mono-prepattern
case later falls out as a subcase. The bi-prepattern in G is witnessed by an insulator A whose
columns are indexed by a sequence K containing two subsequences I and J . Every pair of
columns (i, j) ∈ I × J is “matched up” by an element ci,j through quantifier-free formulas (cf.
Definition 5.10).

♣1/♣2

♦

♦

♦

♠

M0 = M ′T
0

M1

M2

Mt

M ′
1

M ′
2

M ′
t

A

Figure 6.1: Constructing a transformer from a bi-prepattern.

Figure 6.1 is a schematic depiction of how the transformer will embed into the insulator A.
The transformer will be assembled from two conductors C =M0, . . . ,Mt and C ′ =M ′

0, . . . ,M
′
t .

The columns of the meshes of C and C ′ are contained in the columns of the insulator A indexed
by I and J , respectively. The structure of A imposes that Mt and M ′

t are both vertical. The
meshes M0 and M ′

0 are chosen from the vertices ci,j such that M0 = M ′
0
T. It follows that we

can glue the conductor C to the transposed meshes from C ′ yielding the desired transformer

Mt,Mt−1, . . . ,M1,M0 =M ′T
0 ,M

′T
1 , . . . ,M

′T
t−1,M

′T
t ,

where Mt is vertical and M ′T
t is horizontal.

The construction of C and C ′ is implemented by Lemma 6.19 or Lemma 6.21 (♣1 or ♣2 in the
picture) depending on the choice of ∼1 and ∼2 in the definition of a bi-prepattern. Lemma 6.19
iteratively extends the conductor by “stepping down” the insulator. A single step is performed

67



Chapter 6. Forbidden Induced Subgraphs

using Lemma 6.15 (♦), which creates meshes embedded into descending rows of the insulator (cf.
Definition 6.14). The structure of the insulator is used to establish conductivity between successive
meshes/rows. This process continues until either a vertical mesh is produced or we reach the
bottom row of the insulator. If we reach the bottom row, we use Lemma 6.18 (♠) to further extend
the conductor to reach a vertical mesh. Here we use the special structure of the bottom row: In
the unordered case, the cells how the bottom row contain only a single vertex each, which implies
that the mesh in the bottom row is already vertical. In the ordered case the mesh in the bottom
row is connected through short parts to a vertical mesh and we can bridge those short paths by a
conductor. This finishes the sketch of Lemma 6.19 (♣1). Lemma 6.21 (♣2) is a rather technical
case distinction, which reduces the construction of the conductor to some previously established
subcase.

This concludes the overview of the proof of Proposition 6.9. We now give a detailed proof.

Definition 6.14. Let G be a graph containing an insulator A of height h with grid A and indexed
by a sequence K . Let M : I × J → V (G) be a mesh of order n in G with I ⊆ K . Let r ∈ [h].
We say that M embeds into row r of A if for all i ∈ I and j ∈ J .

M(i, j) ∈ A[i, r].

Lemma 6.15 (♦ in Figure 6.1). Let G be a graph containing an insulator A of height h with grid
A and indexed by a sequence K . Let M : I × J → V (G) be a mesh of order n in G with I ⊆ K .
Let α(x, y) be a quantifier-free formula in a k-coloring G+ of G, and let r ∈ [h] be such that for
all i ∈ I, j ∈ J

i = min{i′ ∈ I : ∃v ∈ A[i′,⩽r] : G+ |= α(v,M(i, j))}. (6.1)

Then there are meshes M1,M2 of order Uk,h(n) such that

• M1 is a submesh of M , and

• the pair (M1,M2) is conducting in G, and

• M2 is vertical in G or M2 embeds into some row r′ ⩽ r of A.

Proof. Note that by Lemma 6.12 and Lemma 6.13, it does not matter whether we show conductivity
and verticality inG orG+. For every i ∈ I and j ∈ J , pick a vertexM ′(i, j) ∈ A[i,⩽ r] such that
G+ |= α(M ′(i, j),M(i, j)). Note that M is not necessarily a mesh, as it may not be injective.

Claim 6.16. There are sequences I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| ⩾ Uk,h(|I|) = Uk,h(n), and
a row number r′ ∈ [r] such that

(R.1) atpG+(M(i, j),M(i′, j′),M ′(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′)
for i, i′ ∈ I ′ and j, j′ ∈ J ′, and

(R.2) M ′(i, j) ∈ A[i, r′] for all i ∈ I ′.

The proof of the claim is a straightforward application of Bipartite Ramsey (Lemma 4.15).
Readers experienced in Ramsey theory are invited to skip it. However, due to the importance of
Ramsey type arguments for this section, we include the details of an exemplary application here.

Proof of Claim 6.16. Up to renaming we can assume I = J = [n]. Let Π be the set of possible
atomic types of four tuples in k-colored graphs. There exists a constant k∗ ⩽ const(k, h) such
that there is a bijection b : Π× [r] → [k∗]. We now define the coloring c : [n]2 × [n]2 → [k∗] as

c
(︁
(i, i′), (j, j′)

)︁
:= b

(︂
atpG+

(︁
M(i, j),M(i′, j′),M ′(i, j),M ′(i′, j′)

)︁
, r′

)︂

68



Chapter 6. Forbidden Induced Subgraphs

where r′ is the unique row such thatM ′(i, j) ∈ A[i, r′]. Applying Bipartite Ramsey (Lem. 4.15) to
the defined coloring yields sequences I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| ⩾ Uk,h(|I|) = Uk,h(n)
such that c

(︁
(i, i′), (j, j′)

)︁
depends only on otp(i, i′) and otp(j, j′) for i, i′ ∈ I ′ and j, j′ ∈ J ′. By

the construction of the coloring, this proves (R.1). To see that the row containing M ′(i, j) is the
same for all i ∈ I and j ∈ J , notice that

c
(︁
(i, i), (j, j)

)︁
= c

(︁
(i′, i′), (j′, j′)

)︁
for all i, i′ ∈ I ′ and j, j′ ∈ J ′.

Therefore, M(i, j) and M(i′, j′) are in the same row, which proves (R.2). ■

Let I ′, J ′, and r′ be as from the previous claim. We set M1 :=M |I′×J ′ and M2 :=M ′|I′×J ′ .

Claim 6.17. Either M1 is vertical, or M2 is a mesh (that is, M2 is injective).

Proof. Assume |I ′| > 3, as otherwiseM1 is vertical by definition. Assume thatM2 is not injective.
Then there exist distinct pairs (i, j), (i′, j′) ∈ I ′ × J ′ such that M2(i, j) = M2(i

′, j′). Since
M2(i, j) (equivalently M2(i

′, j′)) is from the ith (equivalently i′th) column of A, we have i = i′.
Hence, j ̸= j′.

By (R.1) we have a(i) :=M2(i, j) =M2(i, j
′) for all i ∈ I ′ and j, j′ ∈ J ′. Now also by (R.1),

atpG+(M1(i, j), a(i
′)) depends only on otp(i, i′) for all i, i′ ∈ I and j ∈ J ′. Finally, by (6.1) and

|I ′| > 3, atpG+(M1(i, j), a(i
′)) is not the same for all i, i′ ∈ I and j ∈ J ′. In summary: a(·)

witnesses that M1 is vertical. ■

Assume now the mesh M1 is vertical. By (R.1), the pair (M1,M1) is regular. As witnessed
by the equality type, the pair is not homogeneous and therefore conducting. We can return
(M1,M1).

Otherwise, M2 is a mesh and embeds into the row r′ of A by (R.2). Furthermore, the pair
(M1,M2) is conducting: regularity follows from (R.1) and non-homogeneity from (6.1).

Lemma 6.18 (♠ in Figure 6.1). Let G be a graph containing an insulator A of cost k and height h
and let M be a mesh of order n that embeds into row 1 of A. There exists a conductor M1, . . . ,Mt

for t ⩽ h of order Uk,h(n) such that M1 is a submesh of M and Mt is vertical.

Proof. Let I, J be the sequences indexing the mesh M . Let A be the grid of A. Assume first
that A is orderless. Then by the insulator property (U.1), each cell in row 1 of A contains only a
single vertex. As M embeds into this row, it has order 1. Then M is vertical and the conductor
consisting only of M satisfies the conditions of the lemma.

Assume now that A is ordered. By (O.5), there exists a k-flip H of G and some radius r < h
such that the r-balls around the vertices in A[∗, 1] are pairwise disjoint. Moreover, there are
vertices {b(v) ∈ NH

r [v] : v ∈ A[∗, 1]} and {ci ∈ V (G) : i ∈ I} and a symbol ∼ ∈ {⩽,⩾} such
that for all i, j ∈ I and v ∈ A[j, 1]

G |= E(ci, b(v)) if and only if i ∼ j.

Let G+ be the k-coloring of G in which the edge relation of the flipped graph H can be expressed
by a quantifier-free formula. For each i ∈ I and j ∈ J let π(i, j) be the tuple of vertices forming a
shortest path from M(i, j) to b(M(i, j)) in H . By (O.5), these paths have equal length for all i, j
and consist of at most h vertices. By Bipartite Ramsey (Lemma 4.15), there exist sequences I ′ ⊆ I
and J ′ ⊆ I of length at least Uk,h(n) such that

atpG+(π(i, j), c(i), π(i′, j′), c(i′)) depends only on otp(i, i′) and otp(j, j′)
for all i, i′ ∈ I ′ and j, j′ ∈ J ′.

69



Chapter 6. Forbidden Induced Subgraphs

For distinct pairs (i, j) and (i′, j′) in I ′×J ′, π(i, j) and π(i′, j′) have no vertex in common, as they
stem from two disjoint balls inH . Therefore, each of the functionsM1, . . . ,Mh : I

′×J ′ → V (G),
where Mt(i, j) is defined as the tth component of π(i, j), is injective and forms a mesh. By
construction, M1 is a submesh of M . By Ramsey and (O.5), Mh is vertical. We next show that
M1, . . . ,Mh is a conductor in G+. By Ramsey, any pair of successive meshes (Mt,Mt+1) in
the sequence is regular in G+. It remains to show that (Mt,Mt+1) is not homogeneous in G+.
Consider two distinct pairs (i, j), (i′, j′) ∈ I ′ × J ′. As π(i, j) and π(i′, j′) are constructed
via paths through disjoint balls in H , we have that Mt(i, j) is adjacent to Mt+1(i, j) and non-
adjacent to Mt+1(i

′, j′) in H . It follows that (Mt,Mt+1) is not homogeneous in G+. Therefore,
(Mt,Mt+1) is conducting in G+. Hence, M1, . . . ,Mh is a conductor in G+, and by Lemma 6.12
and Lemma 6.13 also in G.

Lemma 6.19 (♣1 in Figure 6.1). Let G be a graph containing an insulator A of cost k and height
h with grid A and indexed by a sequence K . Let M : I × J → V (G) be a mesh of order n in G
with I ⊆ K . Let α(x, y) be a quantifier-free formula in a k-coloring G+ of G such that for all
i ∈ I, j ∈ J

i = min{i′ ∈ I : ∃v ∈ A[i′, ∗] : G+ |= α(v,M(i, j))}.
Then there is a conductor M1, . . . ,Mt of order Uk,h(n) and length at most 2h in G such that M1 is
a submesh of M and Mt is vertical in G.

Proof. Note that by Lemma 6.12 and Lemma 6.13, it does not matter whether we show conductivity
and verticality in G or G+. Denote M0 := M and r0 := h + 1. We inductively construct a
sequence of meshes M1,M2, . . . ,Mt where for each s = 1, 2, . . . , t, the mesh Ms satisfies the
following conditions:

• Ms has order Us,k,h(n),
• there is a row rs ∈ [rs−1 − 1] such that Ms embeds into row rs of A,
• there is a submesh M ′

s−1 of Ms−1 such that the pair (M ′
s−1,Ms) is conducting.

To construct M1, we apply Lemma 6.15 to the mesh M0 and the formula α(x, y) to obtain a
conducting pair of meshes (M ′

0,M1) of order Uk,h(n) where M ′
0 is a submesh of M0. If M1

is vertical then M ′
0,M1 is the desired conductor, and we conclude the proof of the lemma.

Otherwise, M1 embeds into some row r1 ∈ [h] of A and satisfies the induction hypothesis.
Suppose the sequence M1, . . . ,Ms has been constructed for some s ⩾ 1. Below we either

extend the sequence by one, or terminate the process.
Assume first rs > 1. As the sequence r1, r2, . . . , rs is strictly decreasing we have s < h.

Let β(x, y) be the formula expressing adjacency in the flip G′ associated to A. As G′ is a k-flip
of G, β is expressible in a k-coloring of G. Let Is and Js be the sequences indexing Ms. For every
i0 < i ∈ Is and j ∈ Js, we have that Ms(i, j) has a β-neighbor in A[i, rs − 1] but no β-neighbor
in A[i0, rs − 1]. This is by the insulator property (U.1) if A is orderless and by (O.2) and (O.4.2)
if A is ordered. Hence, we can apply Lemma 6.15 to the mesh Ms, the row number rs− 1, and the
formula β(x, y). We obtain a conducting pair of meshes (M ′

s,Ms+1) of order Us,k,h(n) whereM ′
s

is a submesh of Ms. If Ms+1 is vertical then we conclude the proof of the lemma returning the
conductor

M0|I′×J ′ ,M1|I′×J ′ , . . . ,Ms|I′×J ′ ,Ms+1

of length at most h+ 1, where I ′ ⊆ I and J ′ ⊆ J are the indexing sequences of Ms+1. Other-
wise, Ms+1 embeds into some row rs+1 ∈ [rs − 1] of A and satisfies the induction hypothesis.
We continue the process.

Assume now rs = 1. Note that s ⩽ h. Then Ms embeds into the first row of A, and we can
apply Lemma 6.18. This yields a conductor M⋆

1 , . . . ,M
⋆
t⋆ of length t⋆ ⩽ h indexed by sequences

70



Chapter 6. Forbidden Induced Subgraphs

I ′ ⊆ I and J ′ ⊆ J of length Us,k,h(n) such that M⋆
1 is a submesh of Ms, and M⋆

t⋆ is vertical.
Now we conclude the proof of the lemma returning the following conductor of length at most 2h:

M0|I′×J ′ , . . . ,Ms−1|I′×J ′ ,M⋆
1 , . . . ,M

⋆
t⋆ .

Lemma 6.20. Assume G contains a mono-prepattern of order n on an insulator A of cost k and
height h. Then G contains a transformer of order Uk,h(n) and length at most 2h.

Proof. Let (cj : j ∈ J) and (bi,j : i ∈ I, j ∈ J) form a mono-prepattern of order n = |I| = |J |
on the insulator A. Define the function M : I × J → V (G) where M(i, j) = bi,j . By definition
of a mono-prepattern, all the bi,j are distinct, so M is a mesh. By Bipartite Ramsey (Lemma 4.15)
and Definition 5.11, there exist sequences I ′ ⊆ I and J ′ ⊆ I of length at least U(n) such that
atpG(M(i, j), cj′) depends only on otp(j, j′) for all i ∈ I ′ and j, j′ ∈ J ′. Since atpG(M(i, j), cj′)
is not the same for all i ∈ I ′ and j, j′ ∈ J ′, the submesh M |I′×J ′ is horizontal.

We apply Lemma 6.19 to the mesh M |I′×J ′ and formula α(x, y) := (x = y). This yields a
conductor M1, . . . ,Mt of length at most 2h and order Uh,k(n) such that M1 is a submesh of
M |I′×J ′ , andMt is vertical. AsM |I′×J ′ is horizontal, the same holds forM1, and thusMt, . . . ,M1

is the desired transformer.

Lemma 6.19 is complemented by the following more technical Lemma 6.21. Together, these
two lemmas accommodate the two possible choices for the symbols ∼1,∼2∈ {=, ̸=} in the
definition of a bi-prepattern (Definition 5.10).

Lemma 6.21 (♣2 in Figure 6.1). LetA be an insulator of cost k and height h indexed by a sequenceK ,
let I, J be indexing sequences with I ⊆ K , let M : I × J → V (G) be a mesh of order n, and let α
be a quantifier-free formula in a k-coloring G+ of G, such that for all i ∈ I, j ∈ J

i = min{i′ ∈ I : ¬∃v ∈ A[i′, ∗] : G+ |= α(v,M(i, j))}.

Then there is a conductor M1, . . . ,Mt of order Uk,h(n) and length at most 2h such that either

• M1 is a submesh of M and Mt is vertical in G, or

• M1, . . . ,Mt is a transformer in G.

Proof. For all i∗, i ∈ I with i∗ < i and j ∈ J , fix a vertex F (i∗, i, j) ∈ A[i∗, ∗] such that

G+ |= α(F (i∗, i, j),M(i, j)).

By Bipartite Ramsey (Lemma 4.15), there are sets I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| ⩾ U(|I|),
such that for all i∗, i, i′ ∈ I ′ with i∗ < i, i′, and for all j, j′ ∈ J ′,

atpG+(F (i∗, i′, j′),M(i, j)) depends only on otp(i, i′) and otp(j, j′). (∗)

In particular this holds for the fact whether G+ |= α(F (i∗, i′, j′),M(i, j)). For an exemplary
application of Bipartite Ramsey that illustrates how to obtain (∗), see the proof of Claim 6.16.
Denote

• imin := min(I ′),
• imax := max(I ′),
• i′max := max(I ′ \ imax),

• jmin := min(J ′),
• jmax := max(J ′),
• j′max := max(J ′ \ jmax).

For convenience, we redefine I := I ′ \ {imin, imax, i
′
max}, and J := J ′ \ {imin, imax, i

′
max}.

We do so to ensure that all elements in I and J have the same order type with respect to the
previously chosen extremal elements.

71



Chapter 6. Forbidden Induced Subgraphs

M |I×J

a(4) = F (imin, 4, jmax)
A

jmax

imin

Figure 6.2: A depiction of Case 1. On top: the desired vertical submesh of M . On the bottom: the insulator
A, whose columns contain the F (i∗, i, j) vertices (depicted as •). Here, the outermost columns correspond
to i∗-coordinates of F (i∗, i, j), and within each outermost column, the inner columns and rows correspond
to i- and j-coordinates, respectively. The F (i∗, i, j) vertices are only defined for indices i∗ < i, thus going
rightwards the columns are filled up with placeholders (depicted as ◦).

Case 1: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J
with i∗ < i, i′ and j < j′ (here j < j′ is the crucial assumption). In this case, we work towards
proving that M contains a large vertical submesh. The situation is depicted in Figure 6.2. We
set a(i′) := F (imin, i

′, jmax) for all i′ ∈ I . Let us now argue that atpG+(a(i′),M(i, j)) is not the
same for all i, i′ ∈ I and j ∈ J .

By assumption, there exist indices
• i∗1, i1, i′1 ∈ I and j1, j′1 ∈ J with i∗1 < i1, i

′
1 and j1 < j′1, and

• i∗2, i2, i′2 ∈ I and j2, j′2 ∈ J with i∗2 < i2, i
′
2 and j2 < j′2

such that
atpG+(F (i∗1, i

′
1, j

′
1),M(i1, j1)) ̸= atpG+(F (i∗2, i

′
2, j

′
2),M(i2, j2)).

As we removed the extremal elements from I and J , we have
• otp(i∗1, i1, i′1) = otp(imin, i1, i

′
1) and otp(j1, j′1) = otp(j1, jmax), as well as

• otp(i∗2, i2, i′2) = otp(imin, i2, i
′
2) and otp(j2, j′2) = otp(j2, jmax).

Now applying (∗), we get

atpG+(F (imin, i
′
1, jmax⏞ ⏟⏟ ⏞

a(i′1)

),M(i1, j1)) ̸= atpG+(F (imin, i
′
2, jmax⏞ ⏟⏟ ⏞

a(i′2)

),M(i2, j2)).

Thus, atpG+(a(i′),M(i, j)) is not the same for all i, i′ ∈ I and j ∈ J . Additionally, as j < jmax

for all j ∈ J , we have that atpG+(a(i′),M(i, j)) only depends on otp(i, i′) and no longer on j,
for all i, i′ ∈ I and j ∈ J . It follows that MI×J is vertical and forms the desired conductor (in
this case of length one).

Case 2: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J
with i∗ < i, i′ and j > j′ (here j > j′ is the crucial assumption). We proceed as in the previous
case, but with jmin instead of jmax.

Case 3: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J
with i∗ < i′ < i (here i′ < i is the crucial assumption). Now let

c(j) :=M(imax, j) and b(i∗, j′) := F (i∗, i′max, j
′) ∈ A[i∗, ∗] for all i∗ ∈ I and j ∈ J .

Our goal is to show that the ranges of b(·, ·) and c(·) form a mono-prepattern on A. The situation
is depicted in Figure 6.3. As in Case 1, we argue via (∗) that for all i∗ ∈ I and j, j′ ∈ J

72



Chapter 6. Forbidden Induced Subgraphs

M

A

c(4) = M(imax, 4)

b(3, 4) = F (3, i′max, 4)

i′max

imax

Figure 6.3: A depiction of the mono-prepattern we discover in Case 3. In this example, we have that
G |= E(b(i∗, j′), c(j)) ⇔ j = j′.

(A.1) atpG+(b(i∗, j′), c(j)) depends only on otp(j, j′), and
(A.2) atpG+(b(i∗, j′), c(j)) is not the same.

We claim that for all i∗ ∈ I and j, j′ ∈ J then also
(E.1) G |= E(b(i∗, j′), c(j)) depends only on otp(j, j′), and
(E.2) G |= E(b(i∗, j′), c(j)) is not the same.

By definition of an atomic type, (A.1) implies (E.1). To show (E.2) we argue similarly to the proof
of Lemma 6.12: We know that there are indices i∗1, i∗2 ∈ I and j1, j′1, j2, j′2 ∈ J and atomic types τ1
and τ2 such that

τ1 = atpG+(b(i∗1, j
′
1), c(j1)⏞ ⏟⏟ ⏞
ū

) ̸= atpG+(b(i∗2, j
′
2), c(j2)⏞ ⏟⏟ ⏞
v̄

) = τ2.

By (∗), all b(·, ·) elements have the same atomic type in G+ and all c(·) elements have the same
atomic type in G+. This means that the difference in the atomic types of v̄ and v̄′ must be caused
by either a difference in their equality or adjacency type. If the difference is witnessed in the
equality type, then by symmetry we can assume that

b(i∗1, j
′
1) = c(j1) and b(i∗2, j

′
2) ̸= c(j2).

It follows that b(i∗, j′1) = c(j1) for all i∗ ∈ I , since all of these pairs have the same order type
otp(j′1, j1). This is a contradiction to the columns of A being disjoint. Therefore, the difference in
the types of ū and v̄ must be witnessed by their adjacency type and we have

G |= E(b(i∗1, j
′
1), c(j1)) if and only if G ̸|= E(b(i∗2, j

′
2), c(j2)),

which proves (E.2).
Having proven (E.1) and (E.2) it is easily verified that the ranges of b(·, ·) and c(·) form

a mono-prepattern on A. Applying Lemma 6.20 to this mono-prepattern yields the desired
transformer.

Case 4: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J
with i∗ < i < i′ (here i < i′ is the crucial assumption). We argue as in the previous case,
exchanging the role of imax and i′max. This means we define

c(j) :=M(i′max, j) and b(i∗, j′) := F (i∗, imax, j
′) ∈ A[i∗, ∗] for all i∗ ∈ I and j ∈ J .

As in Case 3, the ranges of b(·, ·) and c(·) form a mono-prepattern on A and we conclude by
Lemma 6.20.

73



Chapter 6. Forbidden Induced Subgraphs

Case 5: If none of the previous cases hold, then atpG+(F (i∗, i′, j′),M(i, j)) and in particular
G+ |= α(F (i∗, i′, j′),M(i, j)) is the same for all i∗, i, i′ ∈ I and j, j′ ∈ J with (i, j) ̸= (i′, j′)
and i∗ < i, i′. By (∗), this also holds for the extremal elements that are in I ′ and J ′, but not in I
and J . Let hence γ ∈ {true, false} be such that

G+ |= α(F (i∗, i′, j′),M(i, j)) ⇔ γ

for all i∗, i, i′ ∈ I ′ and j, j′ ∈ J ′ with (i, j) ̸= (i′, j′) and i∗ < i, i′.

A

¬α

M |I×J

α

A[i, ∗]

i

Figure 6.4: Illustration for Case 5.1. Depicted is the insulator A, whose columns contain the F (i∗, i, j)
vertices. The F (i∗, i, j) vertices are only defined for indices satisfying i∗ < i, so going rightwards, the
columns are filled up with placeholders (depicted as ◦). The vertices in the ith column of the submesh
M |I×J are α-connected to all the F (i∗, i, j) vertices in A[<i, ∗] (marked in red), but ¬α-connected to all
the F (i∗, i, j) vertices in A[i, ∗] (marked in blue).

Case 5.1: Assume γ = true . At the beginning of the proof, we chose F such that G+ |=
α(F (i∗, i, j),M(i, j)). Therefore,

G+ |= α(F (i∗, i′, j′),M(i, j)) for all i∗, i, i′ ∈ I ′ with i∗ < i, i′ and j, j′ ∈ J ′. (6.2)

Our goal is to reduce to Lemma 6.19 (♣1). The situation is depicted in Figure 6.4. Let P =
{F (i∗, i, j) : i∗, i ∈ I ′, j ∈ J ′ with i∗ < i} and let G++ be the coloring of G+ where the vertices
of P are marked with an additional fresh color predicate. (By the definition of colored graphs
given in the preliminaries, we are technically required to give every vertex exactly one color, and
it would of course be trivial, though more cumbersome, to take this into account.) Define the
quantifier-free formula β(x, y) := x ∈ P ∧ ¬α(x, y) in the signature of G++. Let us now verify
that

i = min{i′ ∈ I : ∃v ∈ A[i′, ∗] : G++ |= β(v,M(i, j))} (6.3)
for all i ∈ I, j ∈ J . As all elements in I are smaller than imax, for every i ∈ I , we have that
the column A[i, ∗] contains at least one element, say, F (i, imax, jmax) ∈ P . By the assumption
of the lemma, M(i, j) is not α-connected to any element in A[i, ∗] and therefore β-connected
to F (i, imax, jmax). By (6.2) and definition of P , M(i, j) is α-connected (and therefore not β-
connected) to all elements from P in columns to the left of I , as desired. Having verified (6.3), we
conclude by Lemma 6.19.

Case 5.2: Assume γ = false . For all i, i′, i∗ ∈ I ′ with i∗ < i, i′ and j, j′ ∈ J ′, as G+ |=
α(F (i∗, i, j),M(i, j)), it follows that

G+ |= α(F (i∗, i′, j′),M(i, j)) if and only if (i, j) = (i′, j′).

Let c(j) := M(imax, j) and b(i∗, j′) := F (i∗, imax, j
′) for all i∗ ∈ I and j, j′ ∈ J . Then by (∗),

and as G+ |= α(b(i∗, j′), c(j)) if and only if j = j′, we have that

74



Chapter 6. Forbidden Induced Subgraphs

• atpG+(b(i∗, j′), c(j)) depends only on otp(j, j′), and
• atpG+(b(i∗, j′), c(j)) is not the same

for all i∗ ∈ I and j, j′ ∈ J . As in Case 3, the ranges of b(·, ·) and c(·) form a mono-prepattern on
A and we conclude by Lemma 6.20.

Having exhausted all cases, this proves the lemma.

We can now prove Proposition 6.9, which we restate for convenience.

Proposition 6.9. Let G be a graph containing a prepattern of order n on an insulator of height h
and cost k. Then G contains a transformer of order Uh,k(n) and length at most 4h− 1.

Proof. If the prepattern is a mono-prepattern, we conclude by Lemma 6.20. Therefore, suppose
that the prepattern is a bi-prepattern. Let the sequences I, J , vertices (ci,j : i ∈ I, j ∈ J), vertices
s1, s2, quantifier-free formulas α1(x; y, z1), α2(x; y, z1), and symbols ∼1,∼2 ∈ {=, ̸=} be as in
the definition of a bi-prepattern (see Definition 5.10).

Let G+ be the expansion of G by four unary predicates, representing the sets {s1}, {s2},
NG(s1), and NG(s2). Then there are quantifier-free formulas β1(x, y) and β2(x, y) such that for
all u, v ∈ V (G) and i ∈ {1, 2}, we have G+ |= αi(u, v, si) ⇔ βi(u, v).

Define the mesh M : I × J → V (G) with M(i, j) = ci,j for i ∈ I, j ∈ J . Then M with
the formula β1 satisfies the assumptions of Lemma 6.19 if ∼1 is ̸=, and the assumptions of
Lemma 6.21 if ∼1 is =. We apply the appropriate lemma. In case of Lemma 6.21, this might yield
a transformer and we are done. Otherwise, we obtain a conductor M1, . . . ,Mt : I

′ × J ′ → V (G)
with |I ′| = |J ′| = Uh,k(n), t ⩽ 2h, where Mt is vertical, and M1 =M |I′×J ′ .

Denote M ′ :=MT
1 : J ′ × I ′ → V (G). Then M ′ with the formula β2 satisfy the assumptions

of Lemma 6.19 (with the roles of I ′ and J ′ swapped) if ∼2 is ̸=, and the assumptions of Lemma 6.21
if ∼2 is =. We again apply the appropriate lemma. Either this yields a transformer and we are
done, or we obtain a conductor M ′

1, . . . ,M
′
u : J

′′ × I ′′ → V (G) with |J ′′| = |I ′′| = Uh,k(|I ′|),
u ⩽ 2h, where M ′

u is vertical and M ′
1 =M ′|J ′′×I′′ . Notice that

M ′
u|J ′′×I′′ , . . . ,M

′
1|J ′′×I′′ =MT

1 |J ′′×I′′ , . . . ,M
T
t |J ′′×I′′

is a conductor of order Uh,k(n) and length u+ t− 1 ⩽ 4h− 1. Observe that M ′
u and Mt are both

vertical, and that MT
t is horizontal. Thus, the sequence forms a transformer.

6.1.3 Regular and Minimal Transformers

In this subsection, we normalize the transformers derived in Section 6.1.2.

Definition 6.22. A transformer T = (M1, . . . ,Mh) in a graph G is regular if for all s, t ∈ [h],
the pair (Ms,Mt) is a regular pair of meshes (in particular also for s = t). We say that T is
minimal if it is regular and for all s, t ∈ [h] the following conditions hold:

• Ms is vertical if and only if s = 1,
• Ms is horizontal if and only if s = h,
• Ms ̸=Mt if s ̸= t (that is, no two meshes are identical),
• the pair (Ms,Mt) is conducting if |s− t| = 1,
• the pair (Ms,Mt) is homogeneous if |s− t| > 1.

In particular, in a minimal transformerM1, . . . ,Mh, we have that either h = 1 andM1 =Mh

is both horizontal and vertical, or h > 1 and M1 is vertical and not horizontal, Mh is horizontal
and not vertical, and M2, . . . ,Mh−1 are neither horizontal nor vertical.

75



Chapter 6. Forbidden Induced Subgraphs

Lemma 6.23. If G contains a transformer of length h and order n then G contains a regular
transformer of length h and order Uh(n).

Proof. Let M1, . . . ,Mh be a transformer of length h in G. We can assume I, J = [n]. For all
i, j ∈ [n], let πi,j ∈ V (M)h be the h-tuple

πi,j := (M1(i, j), . . . ,Mh(i, j)).

By Bipartite Ramsey (Lemma 4.15), there are sets I ′, J ′ ⊆ [n] with |I ′| = |J ′| ⩾ Uh(n) such that
atp(πi,j , πi′,j′) depends only on otp(i, i′) and otp(j, j′), for all i, i′ ∈ I ′ and j, j′ ∈ J ′. It follows
that for all s, t ∈ [h], the meshes Ms|I′×J ′ and Mt|I′×J ′ form a regular mesh pair. Thus, the
sequence M1|I′×J ′ , . . . ,Mh|I′×J ′ is a regular transformer.

Lemma 6.24. If G contains a transformer of length h and order n then G contains a minimal
transformer of length at most h and order Uh(n).

Proof. By Lemma 6.23, there is a regular transformer M1, . . . ,Mh of length h and order Uh(n)
in G. Consider the graph G whose vertices are the meshes M1, . . . ,Mh, and edges are pairs
MiMj such that the pair (Mi,Mj) is conducting. Clearly, G contains a path of length h that starts
in a vertical mesh and ends in a horizontal mesh. Let π :=Mi1 , . . . ,Mip be a shortest path in G
that starts in a vertical mesh and ends in a horizontal mesh. Then the path π is an induced path of
length at most h in G, which means that a pairMis ,Mit , for distinct s, t ∈ [p] is conducting if and
only if |s− t| = 1. As every pair Mis ,Mit is regular, it follows that Mi1 , . . . ,Mip is a minimal
transformer of length p ⩽ h and order Uh(n).

6.2 Converters and Crossings

Our next goal is to analyze the structure of minimal transformers in graphs. We will arrive at
a notion of a converter, which is similar to a crossing. Finally, from converters, we will obtain
crossings.

6.2.1 Regular Pairs of Meshes

We study the structure of regular pairs of meshes in graphs. We introduce the following notions.

Definition 6.25. Let M,M ′ : I × J → V (G) be two meshes in a graph G. We say that the pair
(M,M ′) is

• disjoint if V (M) ∩ V (M ′) = ∅,
• matched if for all i, i′ ∈ I and j, j′ ∈ J ,

G |= E(M(i, j),M ′(i′, j′)) if and only if (i, j) = (i′, j′).

• co-matched if the pair (M,M ′) is matched in the complement graph G,
• non-adjacent if V (M) and V (M ′) are non-adjacent in G,
• fully adjacent if uv ∈ E(G) for all u ∈ V (M) and v ∈ V (M ′).

We prove some preliminary observations regarding regular pairs of meshes.

Lemma 6.26. Let M,M ′ : I × J → V (G) be a regular pair of meshes of order n > 2 in a graph G.
Then M and M ′ are either identical, or disjoint.

76



Chapter 6. Forbidden Induced Subgraphs

Proof. We show that if M(i, j) =M ′(i′, j′) for some i, i′ ∈ I and j, j′ ∈ J , then (i, j) = (i′, j′).
By regularity of the pair (M,M ′), this implies that M(i, j) = M ′(i, j) for all i, j ∈ [n], so M
and M ′ are identical. So suppose that M(i, j) =M ′(i′, j′) for some i, i′ ∈ I and j, j′ ∈ J with
(i, j) ̸= (i′, j′). Up to reversing the order of I and up to exchanging the role of I and J , we can
assume that i < i′. Pick i1 < i2 < i3 ∈ I . Then by regularity we have that M(i1, j) =M ′(i2, j

′)
and M(i1, j) =M ′(i3, j

′). Thus, M ′(i2, j
′) =M ′(i3, j

′), contradicting injectivity of M ′.

Lemma 6.27. Let M,M ′ : I × J → V (G) be a regular pair of meshes of order n in a graph G.
Suppose that G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I , j, j′ ∈ J with j < j′, or
is not the same for all i, i′ ∈ I , j, j′ ∈ J with j > j′. Then there exist subsequences I ′ ⊆ I and
J ′ ⊆ J of order U(n) such that the submeshes M |I′×J ′ and M ′|I′×J ′ are both vertical.

Proof. We define jmin := min(J), jmax := max(J), J ′ := J − {jmin, jmax}, I ′ := I −
{min(I),max(I)}. We show the argument for M , while the case for M ′ follows by symme-
try. Suppose the first case holds, that is, G |= E(M(i, j),M ′(i′, j′)) is not the same for all
i, i′ ∈ I , j, j′ ∈ J with j < j′. The other case proceeds by the same argument, exchanging the
roles of jmax and jmin.

Let a(i′) =M ′(i′, jmax) for i′ ∈ I ′. Then by regularity, atp(M(i, j), a(i′)) depends only on
otp(i, i′), for i, i′ ∈ I ′ and j ∈ J ′. Furthermore, G |= E(M(i, j), a(i′)) is not the same for all
i, i′ ∈ I ′ and j ∈ J ′, by the assumption and by regularity. Hence, M |I′×J ′ is vertical.

Lemma 6.28. Let M,M ′ : I × J → V (G) be a regular pair of meshes of order n in a graph
G. Suppose that G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with
(i, j) ̸= (i′, j′). Then there exist subsequences I ′ ⊆ I and J ′ ⊆ J of order U(n) such that the
submeshes M |I′×J ′ and M ′|I′×J ′ are either both vertical, or both horizontal.

Proof. It follows from the assumption that one of the following cases holds:
• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I , j, j′ ∈ J with j < j′,
• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I , j, j′ ∈ J with j > j′,
• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I , j, j′ ∈ J with i < i′,
• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I , j, j′ ∈ J with i > i′.

In the first two cases we conclude by Lemma 6.27. In the last two cases we conclude by applying
the same lemma to MT and M ′T.

Lemma 6.29. Let M,M ′ : I × J → V (G) be a conducting pair of disjoint meshes of order n in G.
Then there exist subsequences I ′ ⊆ I and J ′ ⊆ J of order U(n) such that M |I′×J ′ and M ′|I′×J ′

are either 1. both vertical, 2. both horizontal, 3. matched, or 4. co-matched.

Proof. Since M and M ′ are conducting, the pair is regular but not homogeneous. For all i, i′ ∈ I
and j, j′ ∈ J we have that

(1) G |= E(M(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′), (by regularity)
(2) atpG(M(i, j),M ′(i′, j′)) is not always the same, (by non-homogeneity)
(3) the equality type of M(i, j) and M ′(i′, j′) is always ( ̸=), and (by disjointness)
(4) the adjacency between M(i, j) and M ′(i′, j′) is not always the same. (by (2) and (3))

Assume G |= E(M(i, j),M ′(i′, j′)) is the same for all i, i′ ∈ I , j, j′ ∈ J with (i, j) ̸= (i′, j′).
Up to replacing G with G, by (4) we have that for all i, i′ ∈ I , j, j′ ∈ J ,

G |= E(M(i, j),M ′(i′, j′)) if and only if (i, j) = (i′, j′).

Thus, M and M ′ are matched or co-matched.

77



Chapter 6. Forbidden Induced Subgraphs

Otherwise, G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I , j, j′ ∈ J with (i, j) ̸=
(i′, j′), and we conclude that M and M ′ are both vertical or both horizontal by Lemma 6.28.

Lemma 6.30. Let G contain a minimal transformer of order n and length h. Then G contains
a minimal transformer M1, . . . ,Mh′ of order Uh(n) and length h′ ⩽ h such that the following
conditions are satisfied for s, t ∈ [h′]:

1. If s ̸= t, then Ms and Mt are disjoint.

2. If |s− t| > 1 then Ms and Mt are either non-adjacent or fully adjacent.

3. If |s− t| = 1 then Ms and Mt are either matched or co-matched.

Proof. If n ⩽ 3, as the minimal transformer we take any transformer of order 1 and length 1,
so assume n > 3. The first two properties hold in any minimal transformer T of order n > 3.
Indeed, as all meshes of T are pairwise distinct and regular, by Lemma 6.26 they are pairwise
disjoint. Also, any pair of non-consecutive meshes is regular and not conducting, hence (as n > 3)
homogeneous.

We argue that we can find a minimal transformer satisfying additionally the last property. Let
T = (M1, . . . ,Mh) be a minimal transformer of order n.

Applying Lemma 6.29 to every pair of consecutive meshes in T (and each time reducing the
order of the transformer to Uh(n)) we may assume that for every pair (Ms,Ms+1) of consecutive
meshes in T , the pair is either matched, or co-matched, or both meshes are vertical, or both are
horizontal. Let Ms, . . . ,Mt be a subsequence of M1, . . . ,Mh of shortest length such that Ms is
vertical and Mt is horizontal. It follows that every two consecutive meshes in T ′ are matched or
co-matched, and that T ′ = (Ms, . . . ,Mt) is a minimal transformer. Thus, the last property in the
statement is satisfied.

6.2.2 Regular Meshes

We now analyze the structure of single meshes, depending on whether they are horizontal and/or
vertical. We introduce some notation.

Definition 6.31. A single mesh M : I × J → V (G) is regular in a graph G, if the pair (M,M)
is. That is, atpG(M(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′) for all i, i′ ∈ I and
j, j′ ∈ J .

Note that every mesh in a regular/minimal transformer is regular.

Definition 6.32. A mesh pattern is a subset P of the four lines in the following diagram:

All 24 possible mesh patterns are depicted below (including the empty pattern ).

Let P be a mesh pattern. A regular mesh M : I × J → V (G) with |I|, |J | ⩾ 2 is a P -mesh in a
graphG if for all (i, j), (i′, j′) ∈ I×J with i ⩽ i′, the verticesM(i, j) andM(i′, j′) are adjacent
in G if and only if one of the following conditions holds:

• i = i′ and j ̸= j′ and ∈ P ,
• i < i′ and j < j′ and ∈ P ,
• i < i′ and j = j′ and ∈ P ,
• i < i′ and j > j′ and ∈ P .

78



Chapter 6. Forbidden Induced Subgraphs

For example, M is a -mesh if and only if V (M) induces an independent set, and if M is
a -mesh, then V (M) induces a rook graph in G, and if M is a -mesh, then V (M) induces
a comparability grid in G. (Recall that the comparability grid of order n consists of vertices
{ai,j : i, j ∈ [n]} and edges between vertices ai,j and ai′,j′ if and only if either i = i′, or j = j′,
or i < i′ ⇔ j < j′.)

Definition 6.33. A generalized grid in a graph G is a regular mesh M : I ×J → V (G) satisfying
the following conditions:

• G |= E(M(i, j),M(i′, j′)) does not depend only on otp(i, i′), for i, i′ ∈ I and j, j′ ∈ J
with (i, j) ̸= (i′, j′), and

• G |= E(M(i, j),M(i′, j′)) does not depend only on otp(j, j′), for i, i′ ∈ I and j, j′ ∈ J
with (i, j) ̸= (i′, j′).

Observe that a P -mesh M is a generalized grid if and only if P is not among { , , } or their
complements { , , }.

Lemma 6.34. Let M : I × J → V (G) be a regular mesh in a graph G. Then M is vertical, or is
horizontal, or is a -mesh in G or in G.

Proof. Suppose that G |= E(M(i, j),M(i′, j′)) is the same for all i, i′ ∈ I , j, j′ ∈ J with
(i, j) ̸= (i′, j′). Then V (M) forms an independent set or a clique in G. Otherwise, the statement
follows by Lemma 6.28, applied to M =M ′.

Lemma 6.35. Let M : I × J → V (G) be a regular mesh in a graph G, and assume G |=
E(M(i, j),M(i′, j′)) is the same for all i, i′ ∈ I and j, j′ ∈ J with i < i′. Then either in G or in G,
M is a -mesh or a -mesh.

Proof. Replacing G with G if needed, we may assume that G |= ¬E(M(i, j),M(i′, j′)) for all
i, i′ ∈ I and j, j′ ∈ J with i < i′. By symmetry of the edge relation, we have that

G |= ¬E(M(i, j),M(i′, j′))

holds for all i, i′ ∈ I and j, j′ ∈ J with i ̸= i′. If G |= E(M(i, j),M(i, j′)) for some i ∈ I and
distinct j, j′ ∈ J , then M is a -mesh. Otherwise, M is a -mesh.

Lemma 6.36. Let M be a regular mesh in a graph G which is not horizontal. Then either in G or
in G, M is a -mesh or a -mesh.

Proof. As MT is not vertical, we can apply the contrapositive of Lemma 6.27 to MT and MT. We
conclude that G |= E(M(i, j),M(i′, j′)) is the same for all i, i′ ∈ I and j, j′ ∈ J with i < i′.
The conclusion follows from Lemma 6.35.

Definition 6.37. A mesh M : I × J → V (G) is capped if there is a function a : I ′ → V (G),
where I ′ = I − {min(I),max(I)}, such that one of the following conditions holds in G or in G:
(=) for all i, i′ ∈ I ′ and j ∈ J , M(i, j) is adjacent to a(i′) if and only if i = i′, or
(⩽) for all i, i′ ∈ I ′ and j ∈ J , M(i, j) is adjacent to a(i′) if and only if i ⩽ i′.
More precisely, a capped mesh M is α-capped, for α ∈ {=,⩽}, if the above condition α holds.

Lemma 6.38. Let M : I × J → V (G) be a vertical mesh in a graph G with |J | > 1. Then M is
capped.

Proof. Since M is vertical, there is an a : I → V (G) such that, for J ′ = J − {min(J),max(J)},

79



Chapter 6. Forbidden Induced Subgraphs

• atp(M(i, j), a(i′)), depends only on otp(i, i′), for all i, i′ ∈ I and j ∈ J ′, and
• atp(M(i, j), a(i′)) is not the same for all i, i′ ∈ I and j ∈ J ′.
First observe that the ranges of the functions a and M are disjoint. Assume otherwise, that is,

that a(i′) =M(i, j) for some i, i′ ∈ I and j ∈ J . Pick j′ ∈ J distinct from j, which exists since
we assume that |J | > 1. Then we have that a(i′) = M(i, j′), by the first defining condition of
the function a. This contradicts the fact that M is an injective function.

Let p<, p=, p> ∈ {0, 1} be such that for each R ∈ {<,=, >},

G |= E(M(i, j), a(i′)) ⇔ pR = 1 for all j ∈ J ′, i, i′ ∈ I with i R i′.

By the assumption on a, the values p<, p=, p> are not all equal. ReplacingGwithG if needed,
we can assume that p> = 0. Thus, one of three cases occurs:

1. (p<, p=, p>) = (0, 1, 0),
2. (p<, p=, p>) = (1, 1, 0),
3. (p<, p=, p>) = (1, 0, 0).
Let I ′ = I−{min(I),max(I)} and let a|I′ be the restriction of a to the domain I ′. In the first

case, (M,a|I′) is a =-capped mesh. In the second case, (M,a|I′) is a ⩽-capped mesh. Suppose
the third case occurs, and let b : I ′ → V (G) be such that b(i) = a(i+) where i+ is the successor
of i in I . Then (M, b) is a ⩽-capped mesh.

Lemma 6.39. Let M : I × J → V (G) be a regular mesh of order n > 1 in a graph G. Then the
following hold.

1. If M is not horizontal and not vertical, then M forms a -mesh in G or in G.

2. If M is vertical and not horizontal, then one of two cases occurs in G or in G:

(a) M is a -mesh, or

(b) M is a -mesh and capped.

3. If M is both horizontal and vertical, then one of four cases occurs in G or in G:

(a) M is a generalized grid,

(b) M is a -mesh and MT is capped,

(c) M is a -mesh and M is capped, or

(d) M is a -mesh and both M and MT are capped.

Proof. The first item is by Lemma 6.34.
We prove the second item. By Lemma 6.36, either in G or in G, M is a -mesh or a -mesh.

In the first case we are done. In the second case, Lemma 6.38 yields the conclusion.
Finally, we prove the third item. Assume that M is both vertical and horizontal. Then, by

Lemma 6.38, both M and MT are capped. Suppose M is not a generalized grid, as otherwise
condition (a) holds, and we are done. Then either G |= E(M(i, j),M(i′, j′)) depends only on
otp(i, i′), or it depends only on otp(j, j′), for all distinct (i, j), (i′, j′) ∈ I×J . Suppose it depends
only on otp(i, i′), while the other case follows by replacing M with MT. By Lemma 6.35 we have
that either in G or in G, M is a -mesh or a -mesh. If M is a -mesh, condition (b) holds. If M
is a -mesh, condition (d) holds.

This concludes the lemma.

Lemma 6.40. Let G be a graph and M be a regular mesh of order n in G which is a generalized
grid. Then M is a -mesh or -mesh, or G contains a comparability grid of order ⌊

√
n⌋ as induced

subgraph.

80



Chapter 6. Forbidden Induced Subgraphs

Proof. Let M be a regular mesh of order m in G, and let P be the pattern of M . Note that if P
is among { , , } or their complements { , , }, then M is not a generalized grid. So assume
that P is not among those patterns. We can exclude P ∈ { , }, so assume that P is among the
remaining patterns, that is, P ∈ { , , , , , , , }.

Up to symmetries that swap the two coordinates and invert their orders, it is enough to
consider the cases P ∈ { , , }. If P = , then V (M) induces a comparability grid of order m
in G. It remains to show that if G has a P -mesh of order m = n2, for some P ∈ { , }, then G
contains a comparability grid of order n.

Let I = [n] × [n], and let ⩽lex denote the lexicographic order on [n] × [n]. To declutter
notation, below we write ij for a pair (i, j) ∈ I .

Assume G has a P -mesh of order n2. By reindexing ([n2],⩽) as (I,⩽lex), we can view it
as a P -mesh M : I × I → V (G) in G. Then for all i1, i2, i′1, i′2 ∈ I and j1, j2, j′1, j′2 ∈ I with
(i1i2, j1j2) ̸= (i′1i

′
2, j

′
1j

′
2) we have that

• if P = , then M(i1i2, j1j2) and M(i′1i
′
2, j

′
1j

′
2) are adjacent if and only if

(i1i2 <lex i
′
1i

′
2 and j1j2 <lex j

′
1j

′
2)⏞ ⏟⏟ ⏞

edges from M(i1i2, j1j2) to the top right

or (i′1i
′
2 <lex i1i2 and j′1j′2 <lex j1j2),⏞ ⏟⏟ ⏞
edges from M(i1i2, j1j2) to the bottom left

(6.4)

• if P = , then M(i1i2, j1j2) and M(i′1i
′
2, j

′
1j

′
2) are adjacent if and only if

(i1i2 = i′1i
′
2)⏞ ⏟⏟ ⏞

edges in the same column

or (i1i2 <lex i
′
1i

′
2 and j1j2 <lex j

′
1j

′
2)⏞ ⏟⏟ ⏞

edges from M(i1i2, j1j2) to the top right

or (i′1i
′
2 <lex i1i2 and j′1j′2 <lex j1j2).⏞ ⏟⏟ ⏞
edges from M(i1i2, j1j2) to the bottom left

The adjacencies are depicted in Figure 6.5. Note that the cases P = and P = differ only if
(i1i2 = i′1i

′
2).

= f(2, 3)
((2, 3), (3, 2))

Figure 6.5: A P -mesh indexed by ([4]2, <lex)× ([4]2, <lex). The neighbors of ((2, 3), (3, 2)) are (red ∪ blue)
if P = and (red ∪ blue ∪ purple) if P = . In solid black: the vertices in the range of f which form the
comparability grid of order 4.

Consider the function f : [n]× [n] → I × I , such that

f(i, j) = (ij, ji) for i, j ∈ [n].

The range of this function is depicted in Figure 6.5. We verify thatM ′ :=M ◦f : [n]×[n] → V (G)
is a -mesh. Let (i, j), (i′, j′) ∈ [n] × [n] be distinct, with i ⩽ i′. We need to show that
M ′(i, j) = M(ij, ji) and M ′(i′, j′) = M(i′j′, j′i′) are adjacent in G if and only if i = i′ or
j ⩽ j′. Note that (ij) ̸= (i′j′), as (i, j) ̸= (i′, j′) are distinct, so the distinction between P =
and P = is irrelevant. We can therefore assume P = , and we will argue using (6.4) for

i1i2 := ij, i′1i′2 := i′j′, j1j2 := ji, and j′1j′2 := j′i′.

81



Chapter 6. Forbidden Induced Subgraphs

Assume first that i = i′. In this case we want to show that M ′(i, j) and M ′(i′, j′) are adjacent.
As ij and i′j′ are distinct, we either have j < j′ or j′ < j. If j < j′ then ij <lex i

′j′ and
ji <lex j

′i′, and we conclude using the first disjunct of (6.4). If j′ < j then i′j′ <lex ij and
j′i′ <lex ji, and we conclude using the second disjunct of (6.4).

Assume now that i ̸= i′, so i < i′. In this case we want to show that M ′(i, j) and M ′(i′, j′)
are adjacent if and only if j ⩽ j′. As ij <lex i

′j′, by (6.4) we have that M ′(i, j) and M ′(i′, j′) are
adjacent if and only if ji <lex j

′i′, which is the case if and only if j ⩽ j′, as desired.
Having exhausted all cases, we conclude that M ′ is a -mesh of order n, and therefore, G

contains an induced comparability grid of order n.

6.2.3 Converters

The following notion is aimed at providing a low-level description of minimal transformers.

Definition 6.41. Fix h, n ⩾ 1 and a graphG. A converter of length h and order n inG consists of
• meshes M1, . . . ,Mh : [n]× [n] → V (G) in G,
• two functions a, b : [n] → V (G); we denote the range of these functions by V (a), V (b),

such that the following conditions hold:
(G.1) the sets V (M1), . . . , V (Mh) are pairwise disjoint,
(G.2) for s, t ∈ {1, . . . , h}, if |s− t| = 1, then Ms is matched or co-matched with Mt,
(G.3) for s, t ∈ {1, . . . , h}, if |s − t| > 1, then V (Ms) is fully adjacent or non-adjacent to

V (Mt),
(G.4) for s ∈ {2, . . . , h− 1}, V (Ms) is an independent set or a clique,
(G.5) Let (M,f) ∈ {(M1, a), (M

T
h , b)}. Then one of the following three conditions holds

in G or in G:
(C) M is a -mesh, or h = 1 and M is a -mesh. Moreover, M(i, j) is adjacent to f(i′)

if and only if i = i′, for all i, i′, j ∈ [n],
(S) M is a -mesh, or h = 1 and M is a -mesh. Moreover, M(i, j) is adjacent to f(i′)

if and only if i = i′, for all i, i′, j ∈ [n],
(H) M is a -mesh, or h = 1 and M is a -mesh. Moreover, M(i, j) is adjacent to

f(i′) if and only if i′ ⩽ i, for all i, i′, j ∈ [n].
Say that (M,f) as above has kind C,S, or H respectively, if it satisfies the corresponding
condition above (which stand for clique, star, and half-graph, respectively). A converter has kind
(α, β), where α, β ∈ {C,S,H}, if (M1, a) has kind α and (MT

h , b) has kind β.
A converter is proper if the following hold:
• the sets V (a), V (M1), . . . , V (Mh), V (b) are pairwise disjoint,
• the sets V (a) and V (Mt) are homogeneously connected for all 1 < t ⩽ h,
• the sets V (b) and V (Mt) are homogeneously connected for all 1 ⩽ t < h,
• the sets V (a) and V (b) are homogeneously connected,
• each of the sets V (a) and V (b) induces an independent set or a clique.

Lemma 6.42. LetG contain a converter of length h and order n. Then, for some numberm ⩾ Uh(n),
either G contains a proper converter of length at most h and order m, or m = 1.

Proof. Let M1, . . . ,Mh : [n] × [n] → V (G) and a, b : [n] → V (G) form a converter. For every
pair i, j ∈ [n] let πi,j denote the sequence (a(i),M1(i, j), . . . ,Mh(i, j), b(j)). Apply Bipartite
Ramsey (Lemma 4.15) to get sets I ⊆ [n] and J ⊆ [n] of size m = Uh(n), so that atp(πi,jπi′,j′)

82



Chapter 6. Forbidden Induced Subgraphs

only depends on otp(i, i′) and otp(j, j′) for i ∈ I and j ∈ J . Observe that if a(i) = Ms(i
′, j)

for some i, i′ ∈ I , j ∈ J , and s ∈ [h], then also a(i) = Ms(i
′, j′) for some other j′, which

implies Ms(i
′, j) =Ms(i

′, j′) and contradicts injectivity of Ms, unless |J | = m = 1. Similarly,
if a(i) = b(j) for some i ∈ I and j ∈ J , then we conclude that a(i) = a(i′) for all i, i′ ∈ I ,
which implies that |I| = m = 1, since the conditions C,S,H imply that a is injective. A similar
argument can be made for b.

The tuple M ′
1 := M1|I×J , . . . ,M

′
h := Mh|I×J , a

′ := a|I , b′ := b|J , with I and J both
reindexed to [m], forms a converter of order m. As discussed above and by (G.1), we observe the
sets V (a′), V (b′), V (M ′

1), . . . , V (M ′
h) to be pairwise disjoint. Further note that V (a′) and V (b′)

each induce an independent set or a clique by construction. Lastly, to have a proper converter, we
have to ensure that V (M ′

t) and V (b′) are homogeneous for all 1 ⩽ t < h, and that V (M ′
t) and

V (a′) are homogeneous for all 1 < t ⩽ h.
We only sketch this last argument. Suppose for example that V (b′) and V (M ′

t) are not
homogeneous, for some 1 ⩽ t < h. Then M ′

t is either horizontal, or is vertical, as witnessed by b′.
We can therefore obtain a converter of the same order and smaller length. Thus, by replacing
the converter a′,M ′

1, . . . ,M
′
h, b

′ by a shorter one if needed, we arrive at a proper converter of
order m.

Lemma 6.43. Let G contain a transformer of length h and order n. Then there is a number
m ⩾ Uh(n) such that, G contains a converter of length at most h and order m, or contains a
comparability grid of order m as an induced subgraph.

Proof. By Lemma 6.24 and Lemma 6.30,G contains a minimal transformerM1, . . . ,Mh′ : I×J →
V (G) of order Uh(n) and length h′ ⩽ h, such that:

• the sets V (M1), . . . , V (M ′
h) are pairwise disjoint,

• for s, t ∈ [h′] with |s− t| = 1, Ms and Mt are matched or co-matched,
• for s, t ∈ [h′] with |s− t| > 1, Ms and Mt are fully adjacent or fully non-adjacent.
Let I ′ = I − {min(I),max(I)} and J ′ = J − {min(J),max(J)}.
Suppose first that h′ = 1. Then M1 is both vertical and horizontal. By Lemma 6.39, one of the

following holds for M :=M1 in either G or G:
(a) M is a generalized grid,
(b) M is a -mesh and MT is α-capped for some α ∈ {=,⩽},
(c) M is a -mesh and M is α-capped for some α ∈ {=,⩽}, or
(d) M is a -mesh and there are some α1, α2 ∈ {=,⩽} such that M is α1-capped and MT is

α2-capped.
In case (a), M is by definition a generalized grid in both G and G. By Lemma 6.40, M is a
P -mesh with P ∈ { , } in G, or G contains or a comparability grid of order Uh(n) as an
induced graph. If M is a P -mesh, then M |I′×J ′ together with a, b has kind (C,C), where
a : I ′ → V (G) is defined by a(i) =M(i,min(J)) for i ∈ I ′, and where b : J ′ → V (G) is defined
by b(j) =M(min(I), j) for j ∈ J ′. In either case, the statement holds.

Suppose we are in case (b). Let b : J ′ → V (G)witness thatMT isα-capped. Let a : I ′ → V (G)
be defined by a(i) = M(i,min(J)). Then M |I′×J ′ , a and b form a converter of kind (C,S)
if α is =, and a converter of kind (C,H) if α is ⩽. The case (c) is symmetric.

Finally, suppose we are in case (d). Let a : I ′ → V (G) witness that M is α1-capped, and
b : J ′ → V (G) witness that MT is α2-capped. Then M |I′×J ′ , a, and b form a converter of kind
(τ1, τ2), where τi = S if αi is =, and τi = H if αi is ⩽, for i = 1, 2.

This concludes the case of length h′ = 1. Suppose now that h′ > 1. Then, by the minimality
assumption (Definition 6.22),

83



Chapter 6. Forbidden Induced Subgraphs

• M1 is vertical and not horizontal,
• Mh′ is horizontal and not vertical, and
• M2, . . . ,Mh′−1 are neither vertical nor horizontal.
By Lemma 6.39, we conclude that each of M2, . . . ,Mh′−1 is a -mesh in either G or G. By

Lemma 6.39 applied to M1, one of two cases holds in either G or G:
(a) M1 is a -mesh, or
(b) M1 is a -mesh and is α-capped for some α ∈ {=,⩽}.

In the first case, M1|I′×J ′ together with a has kind C, where a : I ′ → V (G) is defined by
a(i) = M(i,min(J)) for i ∈ I ′. In the second case, let a : I ′ → V (G) witness that M1 is
α-capped. Then M1|I′×J ′ together with a has kind S if α is =, and has kind H if α is ⩽.

Similarly, by Lemma 6.39 applied to MT
h′ , we conclude that MT

h′ |J ′×I′ together with some
b : J ′ → V (G) has kind C,S or H. We thus conclude that M1, . . . ,Mh′ induced on I ′ × J ′,
together with a : I ′ → V (G) and b : J ′ → V (G), form a converter of length h′.

6.2.4 Crossings

The last step is to go from converters to crossings, whose definition we recall for convenience. For
r ⩾ 1, the star r-crossing of order n is the r-subdivision ofKn,n. More precisely, it consists of roots
a1, . . . , an and b1, . . . , bn together with r-vertex paths {πi,j : i, j ∈ [n]} that are pairwise vertex-
disjoint (see Figure 6.6). We denote the two endpoints of a path πi,j by start(πi,j) and end(πi,j).
We require that roots appear on no path, that each root ai is adjacent to {start(πi,j) : j ∈ [n]},
and that each root bj is adjacent to {end(πi,j) : i ∈ [n]}. The clique r-crossing of order n is the
graph obtained from the star r-crossing of order n by turning the neighborhood of each root into a
clique. Moreover, we define the half-graph r-crossing of order n similarly to the star r-crossing of
order n, where each root ai is instead adjacent to {start(πi′,j) : i′, j ∈ [n], i ⩽ i′}, and each root
bj is instead adjacent to {end(πi,j′) : i, j′ ∈ [n], j ⩽ j′}. Each of the three r-crossings contains
no edges other than the ones described.

b1

b2

b3

b4

a1 a2 a3 a4

b1

b2

b3

b4

a1 a2 a3 a4

b1

b2

b3

b4

a1 a2 a3 a4
start(π1,4)

end(π1,4)

Figure 6.6: (i) star 4-crossing of order 4. (ii) clique 4-crossing of order 4. (iii) half-graph 4-crossing of order
4. In (iii), the roots are adjacent to all vertices in the encircled area.

We partition the vertex sets of the r-crossings into layers: The 0th layer consists of the vertices
{a1, . . . , an}. The lth layer, for l ∈ [r], consists of the lth vertices of the paths {πi,j : i, j ∈ [n]}
(that is, the 1st and rth layer, respectively, are {start(πi,j) : i, j ∈ [n]} and {end(πi,j) : i, j ∈ [n]}).
Finally, the (r + 1)th layer consists of the vertices {b1, . . . , bn}. A flipped star/clique/half-graph
r-crossing is a graph obtained from a star/clique/half-graph r-crossing by performing a flip where
the parts of the specifying partition are the layers of the r-crossing.

In Figure 6.6, we present the crossings in a grid-like layout, as opposed to the biclique-like
layout shown in Chapter 2, to stress the similarity to converters. We observe that a flipped

84



Chapter 6. Forbidden Induced Subgraphs

r-crossing is the same as a proper converter of kind (α, α) for some α ∈ {C,S,H}. So the goal
is to show that from a converter of kind (α, β) we can extract a converter with α = β. This is
achieved in the next lemma.

Lemma 6.44. Let G be a graph containing proper converter C of length h and order n. Then G
contains as an induced subgraph either

• a flipped star r-crossing, or

• a flipped clique r-crossing, or

• a flipped half-graph r-crossing,

of order ⌊
√
n⌋, for some 1 ⩽ r ⩽ 2h+ 1.

Proof. Suppose the meshesM1, . . . ,Mh : [n]×[n] → V (G) and functions a, b : [n] → V (G) form
a proper converter of kind (α, β) and order n inG. If (α, β) ̸= (H,H), then either α ∈ {C,S} or
β ∈ {C,S}. By replacing M1, . . . ,Mh with the converter MT

h , . . . ,M
T
1 of kind (β, α) if needed,

we may assume that either β ∈ {C,S}, or α = β = H.
Let P = {V (a), V (M1), . . . , V (Mh), V (b)}. By taking an induced subgraph if needed, we

may assume that V (G) =
⋃︁
P . It follows from the definition of a proper converter that there is a

unique P-flip G′ of G with the following properties:
• the meshes Ms and Mt are non-adjacent if |t− s| > 1 and are matched if |t− s| = 1,
• for 1 < s ⩽ h, V (Ms) is non-adjacent to V (a),
• for 1 ⩽ s < h, V (Ms) is non-adjacent to V (b),
• V (a) and V (b) are non-adjacent,

ai := a(i) bi′ := a(m+ i′)

b(f(i, i′))

ai := a(i) bi′ := a(m+ i′)

b(f(i, i′))

Figure 6.7: Construction of the path πi,i′ between ai and bi′ in a proper converter of kind (H, β). On the
left: the case where β = S. On the right: the case where β = C.

In the case α = β = H we construct a flipped half-graph h-crossing of order n in G. For this,
we choose the roots a1 := a(1), . . . , an := a(n) on one side, and b1 := b(1), . . . , bn := b(n) on
the other side, and connect them via the paths πi,j with πi,j [s] = M1(i, j) for s = 1, . . . , h. It
follows that G contains a flipped half-graph h-crossing of order n as an induced subgraph.

Consider now the case where β ∈ {C,S}. We observe that
• for all i, j, j′ ∈ [n], Mh(i, j) is adjacent to b(j′) if and only if j = j′.

Set ℓ := 2h if β = C and ℓ := 2h+ 1 if β = S. We construct an ℓ-crossing. For all i, i′, j ∈ [n]
with i ̸= i′ consider the unique ℓ-vertex path σi,i′,j in G′ from M1(i, j) to M1(i

′, j) with the
following properties:

85



Chapter 6. Forbidden Induced Subgraphs

• σi,i′,j has length ℓ,
• σi,i′,j [d] =Md(i, j) for d = 1, . . . , h,
• σi,i′,j [ℓ+ 1− d] =Md(i

′, j) for d = 1, . . . , h,
• if β = S then σi,i′,j [h+ 1] = b(j).

Note that σi,j,j′ is an induced path in G′. Let m = ⌊
√
n⌋ and pick any injective function

f : [m] × [m] → [n]. For i, i′ ∈ [m], let πi,i′ := σi,i′+m,f(i,i′). Observe that there are no edges
in G between any pair of paths πi,i′ , i, i′ ∈ [m]. We construct a flipped star/clique/half-graph
ℓ-crossing in G, corresponding to the cases α = S,C,H, respectively. For this, we choose the
roots a1 := a(1), . . . , am := a(m) on one side, and b1 := a(m + 1), . . . , bm := a(2m) on
the other side and connect them via the paths πi,i′ for i, i′ ∈ [m]. Note that if α = H, then
{ai : i ∈ [m]} is fully connected to {end(πi,i′) : i, i′ ∈ [m]}. The construction is illustrated in
Figure 6.7. It follows that G contains a flipped ℓ-crossing of order m as an induced subgraph.

6.2.5 From Prepatterns to Flipped Crossings and Comparability Grids

We finally prove the main non-structure result.

Proposition 6.45. Let G be a graph containing a prepattern of order n on an insulator of height h
and cost k. Then G contains as an induced subgraph either

• a flipped star r-crossing of order m, or

• a flipped clique r-crossing of order m, or

• a flipped half-graph r-crossing of order m, or

• the comparability grid of order m,

for some m ⩾ Uh,k(n) and 1 ⩽ r < 8h.

Proof. By Proposition 6.9, G contains a transformer of order Uk,h(n) and length at most 4h− 1.
By Lemma 6.43, G contains a comparability grid of order Uk,h(n) as an induced subgraph, or
a converter of length at most 4h − 1 and order Uk,h(n). In the latter case, we can make the
converter proper by Lemma 6.42. By Lemma 6.44, we obtain the required flipped r-crossing of
order Uk,h(n) for some r ⩽ 2 · (4h− 1) + 1 = 8h− 1.

As a corollary, we obtain the desired Proposition 6.1 which we restate for convenience.

Proposition 6.1. Let C be a graph class that is not prepattern-free. Then there exists r ∈ N such
that for every k ∈ N, C contains as an induced subgraph either

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k, or

• a comparability grid of order k.

86



Chapter 6. Forbidden Induced Subgraphs

6.3 Monadic Independence

So far, we have established that each graph class satisfies the following chain of implications.

no large flipped crossings/comparability grids
⇒ prepattern-free
⇒ insulation property
⇒ flip-breakable
⇒ monadically dependent

This corresponds to the implications (3) ⇒ (2) ⇒ (1) of Theorem 2.3, with prepattern-freeness and
the insulation property added as extra steps. We now close the circle of implications by showing
¬(3) ⇒¬(1).

Proposition 6.46. Let C be a graph class and r ⩾ 1, such that for every k ∈ N, C contains as an
induced subgraph

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k, or

• a comparability grid of order k.

Then C is monadically independent.

Proof. Our goal is to show that every graph class exhibiting the listed patterns transduces the
class of all graphs. We will be brief, as a more detailed proof of a stronger statement is later given
in Proposition 7.3, where we show that the hereditary closure of C interprets the class of all graphs.
We use the fact that transductions are transitive: if C transduces D and D transduces E , then
already C transduces E . We transduce the class of all graphs from C by concatenating multiple
simpler transductions, each of which depends only on r (and not on C or k).

As there is a transduction that produces from C all its induced subgraphs, we can assume
that C is hereditary. Additionally, for every fixed r there is a fixed transduction that turns flipped
r-crossings into their non-flipped versions (or more generally: a transduction that maps C to all
of its (r + 2)-flips). Now by the pigeonhole principle, we can assume that C is either the class of
all (non-flipped) star/clique/half-graph r-crossings or the class of all comparability grids.

• Star crossings: To show that the class of all star r-crossings transduces the class of all
bipartite graphs, we describe a transduction that, when given a star r-crossing with roots A
and B, creates a bipartite graph (A,B,E) with arbitrary edges E. The transduction colors
the roots in A and B with colors CA and CB respectively, and the vertices on the paths
between a ∈ A and b ∈ B with color C+ if {a, b} ∈ E and color C− otherwise. It is then
trivial to connect a ∈ A with b ∈ B by a first-order formula checking if there is a path of
color C+ between them.

• Clique crossings: We reduce to the case of star crossings by showing that there is a transduc-
tion that turns each clique r-crossing with roots A and B into a star r-crossing of the same
order. This is easy to do: For each root a ∈ A ∪B, it suffices to turn its open neighborhood
N(a) into an independent set.

• Half-graph crossings: We reduce to the case of star crossings by showing that there is a
transduction that turns each half-graph r-crossing with rootsA andB into a star r-crossing
of the same order. Focusing on the side A = {a1, . . . , an} first, we observe for ai, aj ∈ A
that i ⩽ j if and only if N(ai) ⊇ N(aj). The latter condition is expressible in first-order

87



Chapter 6. Forbidden Induced Subgraphs

logic. Therefore, a transduction can remove all edges from a vertex ai ∈ A to
⋃︁

i<j N(aj).
Proceeding similarly for B, yields the desired star crossing.

• Comparability grids: We reduce to the case of half-graph crossings. We obtain the half-graph
1-crossings of order n− 1 with roots A and B from the comparability grid of order n on
vertex set V := {ai,j : i, j ∈ [n]} by a transduction as follows.

1. Delete the vertex a1,1.
2. Clear all the edges with both endpoints in A := {ai,1 : 1 < i ⩽ n}.
3. Clear all the edges with both endpoints in B := {a1,i : 1 < i ⩽ n}.
4. Clear all the edges with both endpoints in V \ (A ∪B).

We have shown that C transduces the class of all bipartite graphs. This class easily transduces the
class of all graphs, so C is monadically independent.

We summarize the result obtained so far. The following proposition corresponds to the
equivalence (1) ⇔ (2) ⇔ (3) of Theorem 2.3.

Proposition 6.47. Let C be a graph class. The following are equivalent.

(1) C is monadically dependent.

(2) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k.

(3) C is prepattern-free.

(4) C has the insulation property.

(5) C is flip-breakable.

Proof. We have already proven all the necessary implications:
• (1) ⇒ (2): Proposition 6.46
• (2) ⇒ (3): Proposition 6.1
• (3) ⇒ (4): Proposition 5.23
• (4) ⇒ (5): Proposition 5.24
• (5) ⇒ (1): Proposition 5.31

We obtain the following algorithmic version of flip-breakability by combining Proposition 6.47
and Proposition 5.24.

Theorem 4.16. For every monadically dependent graph class C and radius r ∈ N, there exists an
unbounded function fr : N → N, a constant kr ∈ N, and an algorithm that, given a graph G ∈ C
and W ⊆ V (G), computes in time OC,r(|V (G)|2) two subsets A,B ⊆W with |A|, |B| ⩾ fr(|W |)
and a kr-flip H of G such that:

distH(A,B) > r.

88



Chapter 7

Model Checking Hardness

In this chapter we prove the following hardness result.

Theorem 2.4. The first-order model checking problem is AW[∗]-hard on every hereditary, monadi-
cally independent graph class.

The above theorem will follow easily, once we have completed our characterization theorem
for monadically dependent graph classes, which we restate here for convenience.

Theorem 2.3. Let C be a graph class. Then the following are equivalent.

(1) C is monadically dependent.

(2) C is flip-breakable.

(3) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k.

(4) The hereditary closure of C does not efficiently interpret the class of all graphs.

In Proposition 6.47 we have already shown the equivalences (1) ⇔ (2) ⇔ (3). By Corollary 4.6,
the remaining equivalence (1) ⇔ (4) of Theorem 2.3 implies the hardness result Theorem 2.4. The
direction ¬(4) ⇒¬(1) is easy to prove.

Lemma 7.1. Let C be a graph class such that the hereditary closure of C efficiently interprets the
class of all graphs. Then C is not monadically dependent.

Proof. Every class transduces its own hereditary closure. As transductions are more expressive
than interpretations, the hereditary closure of C in particular transduces the class of all graphs.
The lemma now follows by transitivity of transductions.

In particular, if a graph class C interprets the class of all graphs, then it is not even dependent:
the formula that witnesses the interpretation has the independence property on C. We therefore
obtain the following result by Braunfeld and Laskowski [9] as a corollary of Theorem 2.3.

Corollary 7.2. A hereditary graph class is monadically dependent if and only if it is dependent.

We spend the remainder of this chapter showing ¬(3) ⇒¬(4) which completes Theorem 2.3.

89



Chapter 7. Model Checking Hardness

Proposition 7.3. Let C be a hereditary graph class and r ⩾ 1, such that for all k ∈ N, C contains

• a comparability grid of order k, or

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k.

Then C efficiently interprets the class of all graphs.

Note that it is rather straightforward to prove that, under the assumptions of Proposition 7.3,
some class C+ of colored graphs from C efficiently interprets the class of all graphs, by analyzing
the proof of Proposition 6.46. This, however, would yield a significantly weaker statement than
Theorem 2.4: that the first-order model checking problem on colored graphs from C is AW[∗]-hard,
for every hereditary, monadically independent class C.

7.1 Crossings and Comparability Grids

Since we explicitly refer to the individual vertices of our r-crossing patterns in this section, let us
restate their definition in greater detail and explicitly name their vertex sets.

Definition 7.4 (r-crossings). For every radius r ⩾ 1 we define the star, clique, and half-graph
r-crossing of order n as the graph whose vertex set

{ai : i ∈ [n]} ∪ {bi : i ∈ [n]} ∪ {pi,j,t : i, j ∈ [n], t ∈ [r]}

is partitioned into l := r + 2 layers L := {L0, . . . , Lr+1} with
• L0 := {ai : i ∈ [n]},
• Lt := {pi,j,t : i, j ∈ [n]} for all t ∈ [r],
• Lr+1 := {bj : j ∈ [n]},

and whose edges are defined as follows. The vertices (ai, pi,j,1, . . . , pi,j,r, bj) form a path for all
i, j ∈ [n]. Each of the three types enforces separate additional edges.

• The star r-crossing contains no additional edges.
• For the clique r-crossing,

– pi,j,1 and pi,j′,1 are adjacent for all j ̸= j′ ∈ [n], and
– pi,j,r and pi′,j,r are adjacent for all i ̸= i′ ∈ [n].

• For the half-graph r-crossing,
– ai is adjacent to pi′,j,1 for all i ⩽ i′ ⩽ n and for all j ∈ [n], and
– bj is adjacent to pi,j′,r for all i ∈ [n] and for all j ⩽ j′ ⩽ n.

For every r ⩾ 1, let B⋆
r , B•

r , B◀
r be the hereditary closure of the class of all star, clique, and

half-graph r-crossings, respectively. The definition of layers naturally generalizes to the induced
subgraphs contained in B⋆

r , B•
r , B◀

r . As we have explicitly named the vertices, their partition into
layers is unique.

Lastly, recall that the comparability grid of order n consists of vertices {ai,j : i, j ∈ [n]} and edges
between vertices ai,j and ai′,j′ if and only if either i = i′, or j = j′, or i < i′ ⇔ j < j′. Denote
by B the hereditary closure of the class of all comparability grids.

90



Chapter 7. Model Checking Hardness

7.2 Twins

Two vertices u and v are twins in a graph G, if NG(u) \ {u, v} = NG(v) \ {u, v}. This relation
is transitive and definable in first-order logic:

twins(x, y) := ∀z : (z ̸= x ∧ z ̸= y) → (E(z, x) ↔ E(z, y)).

The twin classes of a graph G are the equivalence classes of the twin-relation of G. For every
fixed k ∈ N, the formulas

#twins⩾k(x) := ∃z1, . . . , zk :
⋀︂

(i,j)∈(k2)

zi ̸= zj ∧ zi ̸= x ∧ twins(zi, x),

#twins=k(x) := #twins⩾k(x) ∧ ¬(#twins⩾k+1(x))

express that x has at least or exactly k twins, respectively (equivalently, the twin class containing x
has at least or exactly k + 1 elements).

7.3 Reversing Flips

Combining hereditariness and the pigeonhole principle, we observe the following.

Observation 7.5. Let C be a hereditary graph class and r ⩾ 1, such that for all k ∈ N, C contains
• a comparability grid of order k, or
• a flipped star r-crossing of order k, or
• a flipped clique r-crossing of order k, or
• a flipped half-graph r-crossing of order k.

Then C contains either B or there is B ∈ {B⋆
r ,B•

r ,B◀
r }, such that C contains a layer-wise flip of

each graph in B.

Recall that the class B⋆
r contains all induced subgraphs of all star r-crossings. A layer-wise

flip of a graph G in B⋆
r is an L-flip of G: the flip respects the layered structure of the class B⋆

r (cf.
Definition 7.4). We define layer-wise flips of graphs in B•

r and B◀
r in the same way.

In this subsection we use interpretations to undo the flips and recover the graphs from B.
However, we only recover graphs without twins and without isolated vertices. Let T be the class
of all graphs containing twins. Let I be the class of all graphs containing isolated vertices.

Lemma 7.6. Fix r ⩾ 1 and B ∈ {B⋆
r ,B•

r ,B◀
r }. Let C be a hereditary class containing a layer-wise

flip of each graph from B. Then C efficiently interprets B \ (T ∪ I).

Proof. The class C contains a layer-wise flip of each graph from B. By hereditariness of C and the
pigeonhole principle, we can assume that the layers in all those graphs are flipped “in the same
way”. Formally, there exists an integer k ⩽ r + 2, a mapping lc : {0, . . . , r + 1} → [k] (for layer
color), and a symmetric relation R ⊆ [k]2 with the following property.

For every G ∈ B the graph flip(G) := G⊕R|G is contained in C.

Here the relation R|G is defined as follows. Let L = {L0, . . . , Lr+1} be the layers of G as in
Definition 7.4. Let KG = {C1, . . . , Ck} be the unique k-coloring of V (G) satisfying Li ⊆ Clc(i)
for all Li ∈ L. Each layer is monochromatic, but some layers may have the same color. We define
R|G ⊆ K2

G such that (Ci, Cj) ∈ R|G if and only if (i, j) ∈ R for all i, j ∈ [k]. Without loss of
generality, we can assume k is chosen minimal in the following sense.

91



Chapter 7. Model Checking Hardness

• Every color is used: the map lc is surjective.
• No two colors can be merged: for all i ̸= j ∈ [k] there exists d ∈ [k] such that

(i, d) ∈ R⇔ (j, d) ̸∈ R.

From now on, we assume that each graph G ∈ B is implicitly k-colored according to the
coloring KG defined above. We next use twin classes to uniquely quantify representative vertices
of each color class. The representatives are added as follows. For any k-colored graph G, let
prep(G) be the graph obtained from G by adding, for each color i ∈ [k], (i+ 1) many isolated
vertices si,1, . . . , si,(i+1) of color i to G.

Claim 7.7. If G ∈ B, then also prep(G) ∈ B.

Proof. For every n ∈ N let Bn denote the star/clique/half-graph r-crossing of order n. As G ∈ B,
there exists an embedding f from G to Bn, for some n ∈ N. Let l := r + 2 be the number of
layers in an r-crossing. We define c := r · (l + 1) and m := n + 2c. We show how to embed
prep(G) into Bm. First note that the function

g(·) :=
⋃︂

i,j∈[n],t∈[r]

{ai ↦→ ai+c, bj ↦→ bj+c, pi,j,t ↦→ pi+c,j+c,t}

is an embedding from Bn to Bm. It follows that h(·) := g ◦ f is an embedding from G to Bm.
Let h(G) := {h(v) : v ∈ V (G)}. Importantly, every vertex ai, bj , or pi,j,t in h(G) satisfies

i, j ∈ {c+ 1, . . . , c+ n} and t ∈ [k].

We next choose a set S(L) of (l + 1) vertices from each layer L ∈ {L0, . . . , Lr+1} as follows.
• S(L0) := {ac+n+i : i ∈ [l + 1]},
• S(Lt) := {pi′+i,i′+i,t : i ∈ [l + 1]} for every t ∈ [r] and i′ := (t− 1) · (l + 1),
• S(Lr+1) := {bc+n+j : j ∈ [l + 1]}.

See Figure 7.1 for a visualization.
We define I := S(L0) ∪ . . . ∪ S(Lr+1). By construction, I and h(G) are disjoint. Let us now

argue that every vertex from I is isolated in the induced subgraph B′
m := Bm[h(G) ∪ I].

• Let ai ∈ I . Then i > c+ n. All the neighbors of ai in Bm are of the form pi′,j,t for some
i′ ⩾ i. All vertices pi′,j,t in B′

m satisfy i′ ⩽ c+ n, so they are non-adjacent to ai.
• Let bj ∈ I . The same reasoning as in the previous case applies.
• Let pi,j,t ∈ I . Then i ⩽ c and j ⩽ c. By the same reasoning as before, pi,j,t is non-adjacent

to all vertices of the form ai′ or bj′ in B′
m. Furthermore, any neighbor of pi,j,t of the form

pi′,j′,t′ in Bm must satisfy i′ = i or j′ = j. By construction, B′
m contains no vertex pi′,j′,t′

satisfying i′ = i or j′ = j, apart from pi,j,t itself.
This proves that the set I is indeed isolated in B′

m. We want to stress that our argument works
for each of the three classes B ∈ {B⋆

r ,B•
r ,B◀

r }.
We finally embed prep(G) into B′

m. The vertices of G are embedded using h. The additional
vertices si,1, . . . , si,(i+1) that are added to prep(G) for each color i ∈ [k] can now be mapped to
distinct vertices from a set S(L) to which the layer coloring lc assigns color i. As desired, they
have color i and are isolated. ■

92



Chapter 7. Model Checking Hardness

S(L0)

S(L1)

S(L2)

S(L3)

S(L4)

a3

b5

p2,6,1

Figure 7.1: A visualization of how the sets S(L) are embedded into Bm for the case r = 3. To preserve
readability in the visualization, each set S(L) has size 3 instead of l+1 = 6. The black vertices correspond
to the embedding of Bn into Bm.

93



Chapter 7. Model Checking Hardness

Claim 7.8. Let G ∈ B \ (T ∪ I). The twin classes of flip(prep(G)) consist exactly of

• the singleton twin class {v} for every vertex v ∈ V (G), and

• the twin class Ti := {si,1, . . . , si,i+1} for every color i ∈ [k].

Proof. The following is easy to see.

For all vertices u, v with the same color:
u and v are twins in prep(G) if and only if they are twins in flip(prep(G)).

(7.1)

Additionally, we argue the following.

For all vertices u, v with different colors: u and v are not twins in flip(prep(G)). (7.2)

Let i ̸= j be the colors of u and v. By the assumed minimality of the coloring, there exist a color
d ∈ [k] such that (i, d) ∈ R ⇔ (j, d) ̸∈ R. There exists at least one vertex sd ∈ {sd,1, sd,2}
that has color d and is non-adjacent and non-equal to both u and v in prep(G). It follows that
in flip(prep(G)) exactly one of u and v will be adjacent to sd. Thus, u and v are no twins in
flip(prep(G)).

Combining (7.1) and (7.2), we have that every two vertices u and v which are no twins in
prep(G) are also no twins in flip(prep(G)). Since G /∈ T ∪ I , in prep(G) the vertices of V (G)
neither have twins among V (G) nor among the isolated vertices added to build prep(G) from G.
It follows that each vertex from V (G) is contained in a singleton twin class of flip(prep(G)) as
desired. Finally, by (7.1), for every color i ∈ [k] there is a twin class Ti containing the set of isolated
vertices {si,1, . . . , si,i+1}. As argued before, Ti contains no vertices from V (G). By (7.2), Ti is
disjoint from Tj for every other color j ̸= i. Then Ti is exactly {si,1, . . . , si,i+1}, as desired. ■

Claim 7.9. For every color i ∈ [k] there exists a formula coli(x) such that for everyG ∈ B\ (T ∪I)
and every vertex v in prep(G) we have

v has color i ⇔ flip(prep(G)) |= coli(x).

Proof. We argue that the following formula does the job.

coli(x) := ∃z1, . . . , zk :
⋀︂
j∈k

x ̸= zj ∧#twins=j(zj) ∧
(︁
E(x, zj) ↔ (i, j) ∈ R

)︁
The formula quantifies vertices z̄ = z1 . . . zk containing for each color j ∈ [k] a vertex zj such
that

• zj is not equal to x,
• zj is from a twin class of size exactly j + 1,
• zj is adjacent to x if and only if (i, j) ∈ R.

Let v be a vertex in prep(G). To prove the forwards direction of the claim, assume v has color i.
We can choose a satisfying valuation w̄ of z̄ as follows. By Claim 7.8, for each color j ∈ [k] the
twin class Tj has size exactly j + 1 and all its vertices are isolated in prep(G) and have color j.
As |Tj | ⩾ 2, we can pick a vertex wj ∈ Tj that is not equal to v. As v and wj are non-adjacent
in prep(G) and of color i and j respectively, we have flip(prep(G)) |= E(v, wj) ⇔ (i, j) ∈ R as
desired.

For the backwards direction, assume towards contradiction that v has color i′ ̸= i and there
exists a satisfying valuation w̄ of z̄. By the assumed minimality of the coloring of prep(G), there
exist a color d ∈ [k] such that

(i′, d) ∈ R⇔ (i, d) /∈ R.

94



Chapter 7. Model Checking Hardness

Again wd has color d and is non-adjacent to v in prep(G). By definition of flip(prep(G)) we have

flip(prep(G)) |= E(v, wd) ⇔ (i′, d) ∈ R.

However, for w̄ to be a satisfying valuation of z̄ we must have

flip(prep(G)) |= E(v, wd) ⇔ (i, d) ∈ R.

Combining the three equivalences gives the desired contradiction. ■

Claim 7.10. For every formula φ(x̄) we can compute a formula flip(φ)(x̄) such that for every graph
G ∈ B \ (T ∪ I) and every tuple ā ∈ V (G)|x|,

prep(G) |= φ(ā) ⇔ flip(prep(G)) |= flip(φ)(ā).

Proof. Using Claim 7.9, it is easy to see that for all graphs G ∈ B \ (T ∪ I) and vertices u and v
in prep(G),

prep(G) |= E(u, v) ⇔ flip(prep(G)) |= E(u, v) XOR
⋁︂

i,j∈[k]

coli(x) ∧ colj(y) ∧ (i, j) ∈ R.

For every φ(x̄), let flip(φ)(x̄) be the formula obtained by replacing every occurrence of E(x, y)
with the formula on the right side of the above equivalence. It now easily follows by structural
induction that flip(φ)(x̄) has the desired properties. ■

Let δ(x) := flip(hasNeighbor)(x) and φ(x, y) := flip(E)(x, y), where hasNeighbor(x) is the
formula checking that x is not an isolated vertex. Using Claim 7.10, we have

Iδ,φ
(︁
flip(prep(G))

)︁
= G

for every graph G ∈ B \ (T ∪ I). As flip(prep)(G) is contained in C and can be computed in
polynomial time from G, we have that C efficiently interprets B \ (T ∪ I).

7.4 Encoding Bipartite Graphs

Having undone the flips, we interpret all bipartite graphs (without isolated vertices) from our
intermediate classes {B⋆

r ,B•
r ,B◀

r ,B }. Targeting this class of bipartite graphs does not restrict
the general case, as the following lemma shows.
Lemma 7.11. The class of all bipartite graphs without isolated vertices efficiently interprets the class
of all graphs.

Proof. Let δ(x) be the formula stating that x has degree at least three and φ(x, y) be the formula
stating that x and y are at distance exactly two. For every graph G, we build the graph BG as
follows. For every vertex v ∈ V (G) we create a star with three leaves and center cv . For every
edge (u, v) ∈ E(G), we add a new vertex adjacent to both cu and cv . It is easy to see that BG is
bipartite, without isolated vertices, and Iδ,φ(BG) = G.

The following notation will be convenient. For every bipartite graph H there exists at least
one bipartite representation of H , that is, a tuple

H ′ = (U ′ ⊆ N, V ′ ⊆ N, E(H ′) ⊆ U ′ × V ′),

such that there exist
• a bipartition of V (H) into two independent sets U and V , and
• two bijections f : U → U ′ and g : V → V ′,

such that for all u ∈ U and v ∈ V : (f(u), f(v)) ∈ E(H ′) ⇔ (u, v) ∈ E(H). Note that U ′ and
V ′ do not have to be disjoint and E(H ′) is not necessarily symmetric.

95



Chapter 7. Model Checking Hardness

Encoding Bipartite Graphs in Star and Clique r-Crossings

Lemma 7.12. For every r ⩾ 1 and B ∈ {B⋆
r ,B•

r},

B \ (T ∪ I) efficiently interprets the class of all bipartite graphs.

Proof. First assume B = B⋆
r . Let δ(x) be the formula checking whether x has degree at least

three, and let φ(x, y) be the formula checking whether the distance between x and y is exactly
r + 1. To prove the lemma, we show that for every bipartite graph H , we can construct a graph
BH ∈ B \ (T ∪ I) such that Iδ,φ(BH) = H . Let

H ′ = ([n], [m], E(H ′) ⊆ [n]× [m])

be a bipartite representation ofH for some n,m ∈ N. We build the graphBH as follows. For every
i ∈ [n] we create a 1-subdivided star with three leaves consisting of: a center ci and for every
s ∈ {0, 1, 2} a subdivision vertex ci,s,1 and a leaf ci,s,2 such that (ci, ci,s,1, ci,s,2) form a path. We
do the same for every j ∈ [m], giving us vertices dj , dj,s,1, dj,s,2 for every s ∈ {0, 1, 2}. Finally,
for every edge (i, j) ∈ E(H ′) we add vertices {qi,j,t : t ∈ [r]} and connect (ci, qi,j,1, . . . , qi,j,r, dj)
to form a path of length r + 1. It is easy to see that Iδ,φ(BH) = H and that BH contains neither
twins nor isolated vertices. It remains to show thatBH is an induced subgraph of a star r-crossing.

Let N := 3(n + m) and BN be the star r-crossing of order N . We give an embedding
h : V (BH) → V (BN ) of BH into BN . Let f(i) := 3i− 2 and g(j) := 3n+ 3j − 2. We define h
as follows for all i ∈ [n], j ∈ [m], s ∈ {0, 1, 2}, and t ∈ [r].

• h(ci) := af(i)

• h(ci,s,1) := pf(i),f(i)+s,1

• h(ci,s,2) :=
{︄
pf(i),f(i)+s,2 if r > 1

bf(i)+s if r = 1

• h(qi,j,t) := pf(i),g(j),t

• h(dj) := bg(j)

• h(dj,s,1) := pg(j)+s,g(j),r

• h(dj,s,2) :=
{︄
pg(j)+s,g(j),r−1 if r > 1

ag(j)+s if r = 1

See Figure 7.2 for a visualization of the embedding. It is easily checked that h is an embedding.
This finishes the case B = B⋆

r .
For the case B = B•

r , we take the same edge formula φ and update the domain formula to
state

δ(x) := “x has degree at least three and the neighborhood of x is a clique”.

We build BH as in the previous case but add additional edges. For every i ∈ [n] we turn the set⋃︂{︁
{ci,s,1, ci,s,2, qi,j,1} : j ∈ [m], (i, j) ∈ E(H ′), s ∈ {0, 1, 2}

}︁
that contains exactly the neighborhood of ci into a clique. Symmetrically, we do the same for
every j ∈ [m] with the set⋃︂{︁

{dj,s,1, dj,s,2, qi,j,r} : i ∈ [n], (i, j) ∈ E(H ′), s ∈ {0, 1, 2}
}︁

of all neighbors of dj . Again Iδ,φ(BH) = H , BH contains neither twins nor isolated vertices,
and h is an embedding of BH into the clique r-crossing of order 3(n+m).

96



Chapter 7. Model Checking Hardness

h(d2)

h(c1)

h(q2,3,3) h(d3,1,1)

h(c2,3,2)

Figure 7.2: A visualization of how BH embeds into BN for the case where r = 3 and H is the biclique of
order 3.

97



Chapter 7. Model Checking Hardness

Encoding Bipartite Graphs in Half-Graph r-Crossings and in Comparability
Grids

Lemma 7.13. For every r ⩾ 1 and B ∈ {B◀
r ,B },

B \ (T ∪ I) efficiently interprets the class of all bipartite graphs without isolated vertices.

Proof. We first prove the statement for B = B◀
r . For every n ∈ N, we define JnK := [n]\{1, n} =

{2, . . . , n− 1}. Let H be an arbitrary bipartite graph without isolated vertices and let

H ′ = (JnK, JmK, E(H ′) ⊆ JnK × JmK)

be a bipartite representation of H for some n,m ∈ N. We define BH to be the subgraph of the
half-graph r-crossing of order max(n,m) induced by the vertices

• A := {ai : i ∈ JnK} corresponding to the left vertices of H ,
• B := {bj : j ∈ JmK} corresponding to the right vertices of H ,
• P := {pi,j,t : (i, j) ∈ E(H ′), t ∈ [r]} corresponding to the edges of H ,
• {an, pn,1,1} and {bm, p1,m,r} which we use as auxiliary vertices.

See the left side of Figure 7.3 for a visualization.

f(p1,m,1)

f(a2)

f
(a

n
)

f
(p

n
,1
,1
)

f(a3)

f(b2)

f(b3)

f(p3,4,1)

an

bm

pn,1,1

p1,m,r

f(bm)

m

n

m
n

a2

b2

Figure 7.3: On the left: a visualization of the vertices of BH where H is the half-graph of order 4 and r = 3.
The vertices in A, B, and P are colored red, blue, and black respectively. On the right: a visualization of
the embedding of BH into a comparability grid, where again H is the half-graph of order 4.

Our goal is to interpret H from BH . Let

A⋆ := A ∪ {an}, B⋆ := B ∪ {bm}, P⋆ := P ∪ {pn,1,1, p1,m,r}.

Claim 7.14. NBH
(pn,1,1) = A⋆ and NBH

(p1,m,r) = B⋆.

Proof. The claim follows by the definition of the adjacencies in half-graph crossings. A⋆ is included
in the neighborhood of pn,1,1 because i ⩽ n for all i ∈ JnK ∪ {n}. All neighbors of B⋆ are of
the form pi,j,t for some j ⩾ 2, so no vertex of B⋆ is included in the neighborhood of pn,1,1. The
vertex pn,1,2 is not contained in P⋆, so no vertex of P⋆ is included in the neighborhood of pn,1,1.
We argue symmetrically to determine the neighborhood of p1,m,r . ■

Observation 7.15. NBH
(an) = {pn,1,1} and NBH

(bm) = {p1,m,r}.

98



Chapter 7. Model Checking Hardness

Claim 7.16. Except for an and bm, all vertices have degree at least two.

Proof. All vertices in A are adjacent to pn,1,1 and at least one other pi,j,1 vertex since H contains
no isolated vertices. A symmetric statement holds for B and p1,m,r . The vertices in P are inner
vertices of paths from A to B, so they have degree at least two. The vertices pn,1,1 and p1,m,r

have high degree by the previous claim. ■

Observation 7.17. BH contains no isolated vertices.

Claim 7.18. BH contains no twins.

Proof. The vertices in A⋆ can be distinguished from the vertices in B⋆ and P⋆ by their adjacency
to pn,1,1. Two vertices ai and ai′ from A⋆ with i < i′ ⩽ n can be differentiated by a vertex pi,j,1
for some j ∈ JmK which is adjacent to ai but not to ai′ . This j exist since no vertex in H is
isolated. It follows that A⋆ contains no twins and by a symmetric argument, neither does B⋆.

It remains to distinguish the vertices inside P⋆. The auxiliary vertices pn,1,1 and p1,m,r each
have a private neighbor in an and bm, so we can focus our attention on the set P . Let pi,j,t and
pi′,j′,t′ be two distinct vertices from P . By symmetry, we can assume that either i < i′ or j < j′

or t < t′. If i < i′ or t < t′ then the vertex

d :=

{︄
pi,j,t−1 if t > 1,

ai if t = 1,

is adjacent to pi,j,t but non-adjacent to pi′,j′,t′ . If j < j′ we argue symmetrically using either
pi,j,t+1 or bj if t = r. We want to stress that the argument works also for the case of r = 1. ■

We have proven that BH ∈ B◀
r \ (T ∪ I). Let us continue to show that BH interprets H .

Combining Observation 7.15, Claim 7.14, Claim 7.16, we have that the formula

δ(x) := “x has degree at least 2 and is at distance exactly 2 from a degree 1 vertex”

is true exactly on the vertices from A ∪ B. It can therefore act as the domain formula of our
interpretation. It remains to define the edge relation. First notice that the formula

sameSide(x, y) := ∃z : “z has degree 1 and is at distance exactly 2 from both x and y”

distinguishes A⋆ and B⋆: for all vertices u and v

BH |= sameSide(u, v) ⇔ {u, v} ∈ A⋆ ∨ {u, v} ∈ B⋆.

We next construct a formula that resolves the half-graphs between A and P⋆ and between B
and P⋆ in the following sense.

Claim 7.19. There exists a formula E0(x, y) such that for all i ∈ JnK,

{v ∈ V (BH) : BH |= E0(ai, v)} = {pi,j,1 : (i, j) ∈ E(H ′), j ∈ JmK},

and for all j ∈ JmK,

{v ∈ V (BH) : BH |= E0(bj , v)} = {pi,j,r : (i, j) ∈ E(H ′), i ∈ JnK}.

Proof. The formula

x ≺ y := sameSide(x, y) ∧ “N(y) is a strict subset of N(x)”

orders A⋆ and B⋆ respectively: for all ai ∈ A⋆ and bj ∈ B⋆ we have

99



Chapter 7. Model Checking Hardness

•
(︁
BH |= ai ≺ a

)︁
⇔

(︁
a ∈ {ai′ : i < i′ ⩽ n}

)︁
, and

•
(︁
BH |= bj ≺ b

)︁
⇔

(︁
b ∈ {bj′ : j < j′ ⩽ m}

)︁
.

Now the following formula

E0(x, y) := E(x, y) ∧ ¬
(︁
∃x′ : x ≺ x′ ∧ E(x′, y)

)︁
has the desired properties. ■

We can finally construct the formula interpreting the edges of H

φ(x, y) := ¬sameSide(x, y) ∧ ∃z1, . . . , zr : E0(x, z1) ∧ E0(y, zr) ∧
⋀︂
t<r

E(zt, zt+1),

which states that x and y are from different sides and connected by a path containing r+ 1 edges
and whose first and last edge are E0-edges. The formula defines a bipartite graph with sides A
and B: it is symmetric, and we have BH ̸|= φ(u, v) for all vertices u and v such that {u, v} ⊆ A
or {u, v} ⊆ B.

Claim 7.20. For all i ∈ JnK and j ∈ JmK: BH |= φ(ai, bj) ⇔ (i, j) ∈ E(H ′).

Proof. Assume (i, j) ∈ E(H ′). Then pi,j,1, . . . , pi,j,r is a valuation of z1, . . . , zr witnessing
that BH |= φ(ai, bj). For the backwards direction assume a satisfying valuation p1, . . . , pr of
z1, . . . , zr. By Claim 7.19 we have p1 = pi,j′,1 and pr = pi′,j,r for some j′ ∈ JmK \ {j} and
i′ ∈ JnK\{i}. The existence of p2, . . . , pr−1 implies i = i′ and j = j′. Hence, (i, j) ∈ E(H ′). ■

It follows that Iδ,φ(BH) = H . Since the definition of δ andφ does not depend onH , andH was
chosen to be an arbitrary bipartite graph without isolated vertices, we have that this interpretation
interprets all such H from their corresponding preimage BH ∈ B◀

r \ (T ∪ I). Furthermore, for
every H the preimage BH can be computed in polynomial time, so the interpretation is efficient.
This finishes the case of B = B◀

r .

We next show that the interpretation that we constructed for the previous case, where r = 1 and
B = B◀

1 , also works for the case B = B . In the previous case, we constructed for every bipartite
graph without isolated vertices H , a graph BH ∈ B◀

1 such that Iδ,φ(BH) = H . In this case, since
r = 1, the formula φ collapses to

φ(x, y) := ¬sameSide(x, y) ∧ ∃z1 : E0(x, z1) ∧ E0(y, z1)

and the graph BH consists of vertices

{ai : i ∈ JnK}⏞ ⏟⏟ ⏞
=A

∪{bj : j ∈ JmK}⏞ ⏟⏟ ⏞
=B

∪{pi,j,1 : (i, j) ∈ E(H ′)}⏞ ⏟⏟ ⏞
=P

∪{an, pn,1,1} ∪ {bm, p1,m,1}

where H ′ is again the bipartite representation of H . We now build a new graph BH from BH

by adding additional edges as follows. We connect each vertex pi,j,1 ∈ P with all the vertices
pi′,j′,1 ∈ P such that i ⩽ i′ and j ⩽ j′ (but not with itself). It is easily checked that all the
previous claims for BH , still hold true for BH :

• We only modified adjacencies inside P , so Claim 7.14 and Observation 7.15 also hold in BH .
• The degree of vertices in P only increased, so Claim 7.16 and Observation 7.17 also hold in
BH .

• As r = 1, P is pairwise distinguished using only A and B, so BH contains no twins
(Claim 7.18).

100



Chapter 7. Model Checking Hardness

• The construction of the formulas sameSide(x, y) andE0(x, y) only depends on the previous
claims and the neighborhoods of A and B, so the formulas still work as intended in BH .

It follows that BH contains neither isolated vertices nor twins and that

Iδ,φ(BH) = Iδ,φ(BH) = H.

It remains to show that BH ∈ B . We do this by showing that BH is an induced subgraph of the
comparability grid GN of order N := (n +m − 1) whose vertex set is {ai,j : i, j ∈ [N ]}. We
witness this fact by constructing an embedding f of BH into GN as follows:

• f(ai) := am+i−1,n−i+1 for all ai ∈ A⋆,
• f(bj) := am−j+1,n+j−1 for all bj ∈ B⋆,
• f(pi,j,1) := am+i−1,n+j−1 for all pi,j,1 ∈ P⋆.

See the right side of Figure 7.3 for a visualization of the embedding. Using this visualization, it is
easy to check that f is indeed an embedding of BH into GN . This finishes the case for B = B
and concludes the proof.

7.5 Proof of Proposition 7.3

We can finally prove Proposition 7.3, which completes the proof of Theorem 2.3.

Proposition 7.3. Let C be a hereditary graph class and r ⩾ 1, such that for all k ∈ N, C contains

• a comparability grid of order k, or

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k.

Then C efficiently interprets the class of all graphs.

Proof. We first show that C efficiently interprets the class of all bipartite graphs without isolated
vertices. By Observation 7.5, we distinguish three cases.

• Either C contains a layer-wise flip of each graph from B, for B ∈ {B⋆
r ,B•

r}, and we can
apply Lemma 7.6 and Lemma 7.12,

• or C contains a layer-wise flip of each graph from B◀
r , and we can apply Lemma 7.6 and

Lemma 7.13,
• or C contains B and we can apply Lemma 7.13.

From there, Lemma 7.11 brings us to the class of all graphs.

101



Part III

Monadic Stability

102



Outline Part III

In this part we prove several characterizations of monadically stable graph classes and establish
tractable first-order model checking.

Theorem 2.1. For every graph class C, the following are equivalent.

(1) C is monadically stable.

(2) C is flip-flat.

(3) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graphs of order k.

(4) For every r ∈ N there exists ℓ ∈ N such that Flipper wins the radius-r budget-2 Flipper game
in at most ℓ rounds on every graph from C.

The first two characterizations (1) ⇔ (2) ⇔ (3) are shown in Chapters 8 and 9 and mostly
follow easily from our characterizations for monadically dependent class from Part II. The Flipper
game characterization (1) ⇔ (4) builds on (a strengthening of) flip-flatness and is presented in
Chapter 10. The remainder of this part is devoted to model checking.

Theorem 2.2. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.

For every monadically stable class C, there exists a function f : N × R → N such that on any
n-vertex graph G ∈ C and sentence φ the algorithm runs in time f(|φ|, ε) · n6+ε for every ε > 0.

The model checking algorithm utilizes the game-tree of the Flipper game as a bounded depth
decomposition of the r-neighborhoods of the input graph. We use locality of first-order logic to
show that the r-neighborhoods preserve sufficient information to evaluate first-order sentences.
As another important ingredient of the algorithm, we prove that monadically stable classes admit
sparse neighborhood covers that can be used to cluster neighborhoods and thereby keep the size of
the game-tree small. The existence and computability of suitable neighborhood covers is shown
in Chapter 11 and the model checking algorithm is presented in Chapter 12.

103



Chapter 8

Flip-Flatness

In this chapter we characterize monadically stable graph classes by the combinatorial property
dubbed flip-flatness, to obtain the equivalence (1) ⇔ (2) of Theorem 2.1. We recall the definition
of flip-flatness.

Definition 2.8 (Flip-Flatness). A graph class C is flip-flat if for every radius r ∈ N there exists
a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G)
with |W | ⩾ Nr(m) there exist a subset A ⊆W with |A| ⩾ m and a kr-flip H of G such that for
every two distinct vertices u, v ∈ A:

distH(u, v) > r.

Definition 8.1. A graph class C is edge-stable, if there is a bound k, such that C contains no
half-graph of order k as a semi-induced subgraph.

The above condition is equivalent to the edge relation E(x, y) being stable on C.

Observation 8.2. Every monadically stable graph class is edge-stable.

Lemma 8.3. Every monadically dependent, edge-stable graph class C is flip-flat.

Proof. Fix a radius r ∈ N. Let G be a graph from C and let W ⊆ V (G). To prove the proposition
we have to find a const(C, r)-flip of G in which a size UC,r(|W |) subset A of W is distance-r
independent.

By Proposition 6.47, C has the insulation property (cf. Definition 5.15). This means there is a
subsetA ⊆W of size UC,r(|W |) that is (r+1, const(C, r))-insulated inG: there is an insulator A
of height r + 1 and cost const(C, r) that insulates A, and each element of A is in a different cell
of the bottom row of A.

Assume towards a contradiction that A is an ordered insulator. By the insulator property (O.5),
G contains a semi-induced half-graph of order at least |A|. As A has unbounded size, this yields
a contradiction to the stability of C.

Then A must be an orderless insulator. By the insulator property (U.1), this means there
is a const(C, r)-flip of G in which the r-neighborhoods of the vertices in A are disjoint. In
particular, A is distance-r independent, as desired.

Lemma 8.4. Every flip-flat graph class is monadically stable.

Proof. Assume towards a contradiction that there exists a class C that is not monadically stable but
flip-flat. By definition of monadic stability there exists a formula σ(x, y) defining arbitrarily large
orders in a coloring of C, that is, for every n ∈ N there exists a graph G ∈ C and a coloring G+

104



Chapter 8. Flip-Flatness

such that we find a sequence (a1, . . . , an) in G+ with G+ |= σ(ai, aj) if and only if i < j for all
i, j ∈ [n].

Let q be the quantifier rank of σ. We set r := 2 · 7q + 1. Let s be the number of colors
used by σ. Let Nr and kr be the size function and flip-budget we obtain from C being flip-flat
with radius r. As stated in Lemma 4.10, let tr := p(q, s · kr) be the number of colors needed to
determine the truth value of formulas in the signature of (s · kr)-colored graphs that have the
same quantifier-rank as σ(x, y). Let n := Nr(tr + 1) and fix a graph G ∈ C such that in G+ we
find a sequence I of length n ordered by σ.

We apply flip-flatness to I and find a subsequence J ⊆ I of length tr + 1 together with
a kr-flip H of G in which J is r-independent in H . By using kr colors to encode the flip,
we can rewrite σ to a formula σr with the same quantifier-rank as σ, such that there exists a
(s · kr)-coloring H+ of H where for all u, v ∈ V (G),

G+ |= σ(u, v) ⇔ H+ |= σr(u, v).

Hence, σr still orders J in H+. As σr has the same quantifier-rank as σ and is a formula over
the signature of (s · kr)-colored graphs, by Lemma 4.10 there exists a tr-coloring of H+ such that
the truth of σr(u, v) only depends on the colors of u and v for all u, v ∈ J . By the pigeonhole
principle there exist two distinct vertices u, v ∈ J that are assigned the same color. We therefore
have H+ |= σr(u, v) ⇔ σr(v, u), which is a contradiction to σr ordering J in H+.

Combining Lemma 8.3 and Lemma 8.4 yields the following.

monadically dependent and edge stable ⇒ flip-flat ⇒ monadically stable

We close the circle of implications by the easy observation that every monadically stable class
is monadically dependent and edge stable. We obtain the following proposition, which proves
the equivalence (1) ⇔ (2) of Theorem 2.1. It also reproves the result from [64] that monadically
dependent edge-stable graphs are monadically stable.

Proposition 8.5. For every graph class C the following are equivalent.

• C is monadically stable.

• C is flip-flat.

• C is monadically dependent and edge-stable.

As in the dependent case, we obtain the following result by Braunfeld and Laskowski [9] as a
corollary of Theorem 2.3.

Corollary 8.6. A hereditary graph class is monadically stable if and only if it is stable.

Proof. Every monadically stable class is also stable. Let C be a hereditary graph class that is not
monadically stable. By Proposition 8.5, it is either not monadically dependent or not edge-stable.
If C is not monadically dependent then, by Corollary 7.2, C is not dependent so in particular not
stable. If C is not edge-stable then the edge relation has the order property on C, so again C is not
stable.

Since we can extract insulators efficiently (Proposition 5.23), the proof of Lemma 8.3 yields
the following algorithmic version of flip-flatness as a corollary.

Corollary 8.7. For every monadically stable graph class C and radius r ∈ N, there exists an
unbounded function fr : N → N, a constant kr ∈ N, and an algorithm that, given a graph G ∈ C
and W ⊆ V (G), computes in time OC,r(|V (G)|2) a subset A ⊆ W with |A| ⩾ fr(|W |) and a
kr-flip H of G such that for all distinct u, v ∈ A:

distH(u, v) > r.

105



Chapter 9

Forbidden Induced Subgraphs

In this chapter we characterize monadically stable graph classes by forbidden induced subgraphs.
The following proposition proves the equivalence (1) ⇔ (3) of Theorem 2.1. The definitions of the
crossings can be found in Section 2.2.

Proposition 9.1. A graph class C is monadically stable if and only if for every r ⩾ 1 there exists
k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graphs of order k.

Proof. For the forward direction, we assume that C is monadically stable and conclude as follows.
1. As C is monadically dependent, the characterization of monadically dependent classes via

excluded induced subgraphs (Proposition 6.47) applies and C excludes the flipped star and
clique crossings.

2. As C is edge-stable, it excludes all flipped half-graphs of sufficiently large order.
For the backwards direction, assume C excludes the induced subgraphs as stated. Now notice the
following.

1. Every comparability grid of order k contains a flipped half-graph of order k as a subgraph
induced by any two rows of its rows.

2. For every r ⩾ 1, every flipped half-graph crossing of order k contains a flipped half-graph
of order k as a subgraph induced between the roots {ai : i ∈ [k]} and {start(πi,k) : i ∈ [k]}.

Hence, C excludes also large comparability grids and flipped half-graph crossings. Then by
Proposition 6.47, C is monadically dependent. As C excludes flipped half-graphs, it is also edge-
stable and Proposition 8.5 yields that C is monadically stable, as desired.

106



Chapter 10

Flipper Game

In this chapter we characterize monadically stable graph classes via the Flipper game. This
corresponds to the last remaining equivalence (1) ⇔ (4) of Theorem 2.1. We formally define the
rules of the game.

Definition 10.1 (Flipper game). Fix r, k ∈ N. The radius-r budget-k Flipper game is played by
two players, Flipper and Localizer, on a graph G as follows. At the beginning, set G0 := G. In the
ith round, for i > 0, the game proceeds as follows.

• If |Gi−1| = 1, then Flipper wins.
• Localizer chooses Gloc

i−1 as a subgraph of Gi−1 induced by a (non-empty) subset of an
r-neighborhood in Gi−1.

• Flipper chooses Gi as a k-flip of Gloc
i−1.

The goal is to prove that in every monadically stable graph classes C, Flipper has a strategy to
win the game in a constant number of rounds, independent of the size of the graph: for every
radius r there exists a constant ℓ ⩽ const(C, r) such that Flipper wins the radius-r budget-2
Flipper game in at most ℓ rounds on every graph G ∈ C. Moreover, we want Flippers winning
moves to be computable in polynomial time. We introduce the necessary definitions to make a
formal statement.

10.1 Preliminaries

Strategies are commonly represented by functions mapping the history of the game to a new
(played) position. In our context, it will be convenient to use the following equivalent abstraction,
which will fit better to our algorithmic perspective. Fix radius r ∈ N. Graphs considered in
consecutive rounds of the Flipper game will often be called arenas, for brevity. A radius-r Localizer
strategy is a function

loc : (Gi) ↦→ (Gloc
i )

that maps the arena Gi at round i to Localizer’s next move: a graph Gloc
i that is an induced

subgraph of the r-ball around some vertex v in Gi.
A budget-k Flipper strategy flip is an algorithm that computes a function

flip : (Gloc
i , Ii) ↦→ (Gi+1, Ii+1)

that maps the graph Gloc
i obtained from Localizer’s move to Flipper’s response: a k-flip of Gloc

i .
Additionally, we allow Flipper to keep an auxiliary memory: the strategy takes, as the second
argument, an internal state Ii from the previous round, and outputs an updated internal state Ii+1.

107



Chapter 10. Flipper Game

The initial state I0 := G consists just of the initial graph at the beginning of the game. The
internal states will be used as memory and to precompute flips for future turns, which makes
them convenient from an algorithmic point of view. Strategies operating with game histories
instead of internal states can simulate the latter in the following sense: knowing the game history,
Flipper can compute the current internal state by replaying the entire game up to the current
round. Note that since we are interested in Flipper strategies that work against any behavior of
Localizer, it is not necessary to equip Localizer strategies with memory as well.

Let loc and flip be Localizer and Flipper strategies, and let G be a graph. We define the run
R(loc, flip, G) to be the infinite sequence of positions

R(loc, flip, G) := (G0, I0), (G1, I1), (G2, I2), (G3, I3), . . .

such that G0 = I0 = G, and for all i ⩾ 0 we have (Gi+1, Ii+1) = flip(loc(Gi), Ii).
A winning position is a tuple (Gi, Ii) whereGi contains only a single vertex. A Flipper strategy

flip is ℓ-winning in the radius-r game on a graph class C, if for every G ∈ C and for every radius-r
Localizer strategy loc, the ℓth position of R(loc, flip, G) is a winning position. Note that while
R(loc, flip, G) is an infinite sequence, once a winning position is reached, it is only followed by
winning positions.

Definition 10.2 (Runtime of a Flipper strategy). Let flip be a Flipper strategy. For a function
f : N → N, a radius r ∈ N, and a graph G we say that

flip has runtime f in the radius-r game on G

if for every radius-r Localizer strategy loc and i ∈ N

the computation of flip(loc(Gi), Ii) takes time at most f(|V (G)|)

where (Gi, Ii) is the ith position of the run R(loc, flip, G). For a graph class C, flip has runtime f
in the radius-r game on C if it has runtime f in the radius-r game on G for every G ∈ C.

We remark that the time complexity is allowed to depend on the original graph G, which is
possibly much larger than the current arena Gi.

The following definition will be useful to reproducibly pick representatives from vertex sets.

Definition 10.3. A well-ordered graph is a graph equipped with a well-order of its vertex set.
Given a well-ordered graph G, for every subset A ⊆ V (G), we denote by minGA the smallest
element of A according to the well-order on V (G). For a graph class C, we write σ(C) for the
class of all well-ordered graphs, whose underlying (unordered) graph is from C.

10.2 Flipper’s Strategy

Having established the necessary definitions, we can now state the main result of this chapter.

Theorem 10.4. There is a budget-2 Flipper strategy flip⋆ with the following property.

For every monadically stable graph class C and radius r ∈ N there is ℓ ∈ N such that flip⋆ is
ℓ-winning and has runtime OC,r(n

2) in the radius-r game on C.

The proof of Theorem 10.4 will rely on a strengthening of the flip-flatness characterization,
which we call predictable flip-flatness. We first state a simplified version.

108



Chapter 10. Flipper Game

Proposition 10.5 (Predictable flip-flatness, simplified). For every monadically stable graph class C
and radius r ∈ N, there is a bound kC,r ∈ N and functions FlipC,r , FlatC,r and PredictC,r , such that
for all well-ordered graphs G ∈ σ(C) and sets X,Z ⊆ V (G) we have

• FlipC,r(G,X) is a kC,r-flip of G,

• FlatC,r(G,X) is a size UC,r(|X|) subset of X ,

• FlatC,r(G,X) is distance-r independent in FlipC,r(G,X),

• PredictC,r(G,Z) is a kC,r-flip of G, and

• if Z is a size 5 subset of FlatC,r(G,X) then PredictC,r(G,Z) = FlipC,r(G,X).

The properties of the functions FlipC,r and FlatC,r mirror the guarantees given by the flip-
flatness property of monadically stable graph classes that we have established in Chapter 8. The
new ingredient is the function PredictC,r. This function allows to “predict” the flip in which
the set FlatC,r(G,X) is r-independent, just by knowing a size 5 subset Z of FlatC,r(G,X). It is
instructive to observe the following corollary.

Corollary 10.6. For every monadically stable class C, r ∈ N, G ∈ σ(C), and X1, X2 ⊆ V (G):

|FlatC,r(G,X1) ∩ FlatC,r(G,X2)| ⩾ 5 ⇒ FlipC,r(G,X1) = FlipC,r(G,X2).

Proof. We have PredictC,r(G,Z) = FlipC,r(G,X1) = FlipC,r(G,X2), whereZ is any size 5 subset
of FlatC,r(G,X1) ∩ FlatC,r(G,X2).

Intuitively, the flip PredictC,r can be used to “flatten” many different sets. We will use this
property to win the Flipper game: Flipper will play flips predicted by PredictC,r that will help to
win the game regardless of how Localizer reacts to them.

As we have mentioned earlier, Proposition 10.5 presents predictable flip-flatness in a slightly
simplified form. To construct a Flipper strategy with an efficient runtime, we additionally want to
be able to efficiently compute the values of PredictC,r . While the proof of PredictC,r is effective,
the following issue arises during the computation. PredictC,r needs to return a flip of small budget
(i.e. a kC,r-flip) for all inputs Z , even for those sets Z which are not subsets of some flat set X .
In order to always return kC,r-flips, the algorithm for PredictC,r needs to know the bound kC,r,
so that it can detect when a computed flip exceeds the budget, and instead return a trivial flip
of small budget. (Exceeding the budget only happens if Z is not a subset of some flat set X ; a
case where returning a trivial flip is ok.) As for some monadically stable classes, the bound kC,r is
not computable, it has to be hardwired into the algorithm, creating a different algorithm for each
class C and radius r. This is problematic as we strive to obtain a single Flipper strategy that works
for all classes and radii, so that we can ultimately derive a single model checking algorithm which
runs fast on every monadically stable graph class C and for every formula φ (whose quantifier
rank determines the radius of the Flipper game).

To sidestep this issue and get a single uniform algorithm, we give an additional input k ∈ N
to the predictable flip-flatness algorithm that estimates kC,r. With k as input, it is easy for
the algorithm to only produce k-flips. We then only demand the prediction to be accurate if a
sufficiently large k ⩾ kC,r was given as input. Even though we do not know the appropriate value
of kC,r , a parameterizable algorithm will enable us to “guess” the value by dovetailing. We next
state the algorithmic predictable flip-flatness statement.

109



Chapter 10. Flipper Game

Proposition 10.7 (Predictable flip-flatness). There is an algorithm that takes as input r, k ∈ N, a
well-ordered graph G, and a size five set Z ⊆ V (G), and computes in time Or,k(|V (G)|2) a k-flip
Predict(r, k,G, Z) of G with the following properties:

For every monadically stable graph class C and radius r ∈ N there is a bound kC,r ⩽ const(C, r)
and functions FlipC,r and FlatC,r such that for all well-ordered graphs G ∈ C, sets X,Z ⊆ V (G)
and integers k ⩾ kC,r we have

• FlipC,r(G,X) is a kC,r-flip of G,

• FlatC,r(G,X) is a size UC,r(|X|) subset of X ,

• FlatC,r(G,X) is distance-r independent in FlipC,r(G,X), and

• if Z is a size 5 subset of FlatC,r(G,X) then Predict(r, k,G, Z) = FlipC,r(G,X).

The proof of Proposition 10.7 is deferred to Section 10.4, and we continue with our proof of
Theorem 10.4. We first present a Flipper strategy, where Flipper is allowed to use an arbitrary but
finite budget k in every round and later improve the budget to 2 a posteriori.

Lemma 10.8. There is a parameterizable algorithm flip[·, ·] with the following properties.

1. For all parameters r ∈ N and k ⩾ 3:

• flip[r, k] is a budget-k Flipper strategy, and

• flip[r, k] has runtime Or,k(n
2) in the radius-r game on the class of all graphs.

2. For each monadically stable graph class C and radius r ∈ N, there is a constant k∗C,r ∈ N, such
that for each k ∈ N with k ⩾ k∗C,r :

• flip[r, k] is const(C, r)-winning in the radius-r game on C.

Again the algorithm is parameterized to later allow for a uniform algorithm that works on all
classes and radii. The non-uniform variant is simpler to state and follows as a corollary.

Corollary 10.9. For every monadically stable graph class C and r ∈ N, there are ℓ, k ∈ N and an
ℓ-winning budget-k Flipper strategy with runtime OC,r(n

2) in the radius-r game on C.

Proof. The strategy flip[r, k∗C,r] has the desired properties.

We continue with the proof of Lemma 10.8

Proof of Lemma 10.8. We first explain the strategy flip[·, ·] in natural language and prove its
properties afterwards. The easy translation to the formal layer of strategies with internal states, is
left to the reader.

Description of the Strategy. Fix any r, k ∈ N. The radius-r Flipper game is played on an
n-vertex graph G on which we fix an arbitrary well-order.

At the micro level, Flipper will always play his moves in move pairs. A move pair is defined by
a k-flip H of G as follows. We assume the current arena Gi is an induced subgraph of G.

1. Localizer localizes yielding an induced subgraph Gloc
i of Gi (and also of G).

2. Flipper plays the k-flip Gi+1 := H[V (Gloc
i )] of Gloc

i .
3. Localizer localizes yielding an induced subgraph Gloc

i+1 of Gi+1 (and also of H).
4. Flipper reverts his flip setting Gi+2 := Gloc

i [V (Gloc
i+1)] = G[V (Gloc

i+1)].
It is easy to see that, assuming we start with an arena Gi that is an induced subgraph of G,
Flippers moves are valid k-flips and we end up with an induced subgraph of G again.

110



Chapter 10. Flipper Game

At the macro level, Flipper proceeds in a sequence of eras, each consisting of multiple move
pairs. Along the way, he keeps track of a growing chain of vertex subsets

X0 ⊊ X1 ⊊ X2 ⊊ X3 ⊊ . . . ,

where X0 = ∅ and Xi is obtained from Xi−1 by adding one vertex that was removed from the
arena during era i. Up until Flipper wins the game, we will ensure that such a vertex always
exists, and therefore |Xi| = i for every i ∈ N until the game concludes.

We now describe Flipper’s moves in era i (i = 1, 2, 3, . . .). For every Z ⊆ Xi−1 with |Z| = 5,
we use the algorithm from Proposition 10.7 to compute the k-flip HZ := Predict(2r, k,G, Z)
of G. Note that, instead of the current arena, the original graph G is used to compute HZ . First,
Flipper performs

(︁|Xi−1|
5

)︁
move pairs, each defined by HZ for a different Z as above. To conclude

the era, Flipper picks an arbitrary vertex x that is still in the arena. Let Hx be the subgraph
of G obtained by removing all edges incident to x. This graph is a 3-flip of G and the reason we
demand k ⩾ 3. Flipper plays the move pair defined by Hx. Let B be the (subset of a) r-ball played
by Localizer after Flipper played (an induced subgraph of) Hx during the concluding move pair
defined by Hx. If B contains the vertex x, then, since x is isolated in Hx, we have B = {x} and
Localizer looses at the beginning of the next round. Otherwise, we have x /∈ B and x is removed
from the arena during era i. We setXi := Xi−1∪{x} and proceed to the next era. This concludes
the description of flip[r, k].

Budget Bound. Fix any r, k ∈ N and graph G. Flipper only plays move pairs defined by k-flips
of G. Moreover, after every move pair, the current arena is an induced subgraph of G. It follows
by induction that each subsequent arena is an induced subgraph of a k-flip of the previous arena
(and of G). Therefore, flip[r, k] is a valid budget-k Flipper strategy.

Runtime Bound. Fix any r, k ∈ N and graph G. In era i, flip[r, k] plays
(︁|Xi−1|

5

)︁
many move

pairs, each of which is computed by the algorithm of Proposition 10.7 in time Or,k(n
2). Note

that Flipper does not need to compute all move pairs at once. Instead, Flipper can compute a
single move pair, execute it during the next rounds, and continue computing the next move pair
afterwards. This way, with negligible bookkeeping overhead, Flipper needs to call the algorithm
of Proposition 10.7 at most once per round. Since we have imposed no restrictions on G, this
means flip[r, k] has runtime Or,k(n

2) on the class of all graphs.

Duration Bound. Fix any monadically stable class C and radius r ∈ N. We choose k∗C,r := kC,2r
to be the bound obtained for the class C and radius 2r from Proposition 10.7. Fix any k ⩾ k∗C,r.
We want to show that it is ℓ-winning in the radius-r game on C for some ℓ ⩽ const(C, r) which
we will define later.

Let FlipC,2r and FlatC,2r be the functions provided by Proposition 10.7 for the class C. Let t be
the least integer such that |FlatC,2r(G,X)| ⩾ 7 for every G ∈ σ(C) and every set X ⊆ V (G) of
size at least t. This value depends on C and r.

Claim 10.10. If Flipper follows flip[r, k], the game concludes within at most t eras.

Proof. For contradiction, suppose the game enters era t+1 without termination. DenoteX := Xt

with |X| = t and let Y := FlatC,2r(G,X). By our choice of t and by Proposition 10.7, we have
|Y | ⩾ 7 and Y is distance-2r independent in FlipC,2r(G,X). Let y1, . . . , y7 be any seven distinct
vertices of Y , where yi was added earlier toX than yj for all i < j. LetZ := {y1, . . . , y5} and let s
be the index of the era that concluded with adding y6 to X . (That is, we have Xs = Xs−1 ∪ {y6}
and in particularXs−1∩{y6, y7} = ∅.) Note thatZ ⊆ Xs−1, hence within era s, Flipper played the

111



Chapter 10. Flipper Game

move pair defined by Predict(2r, k,G, Z). This means that during the execution of that move pair,
Localizer restricted the arena to (an induced subgraph of) some r-ball B⋆ in Predict(2r, k,G, Z).
As k ⩾ k∗C,r, by Proposition 10.7, we have Predict(2r, k,G, Z) = FlipC,2r(G,X), which means
that y6 and y7 have distance greater than 2r in Predict(2r, k,G, Z). It follows that B⋆ contains
at most one of y6 and y7. This contradicts the assumption that both y6 and y7 were later added
to X , which requires them to both be contained in the arena at the end of era s. ■

Note that in era i, Flipper applies exactly
(︁|Xi−1|

5

)︁
+ 1 =

(︁
i−1
5

)︁
+ 1 move pairs. Hence, by

Claim 10.10, the game terminates within at most

ℓ :=
t∑︂

i=1

2 ·
(︃(︃

i− 1

5

)︃
+ 1

)︃
⩽ const(C, r) rounds.

We conclude that flip[r, k] is ℓ-winning in the radius-r game on C, as promised. This concludes
the proof of the lemma.

Next we show how to simulate a k-flip by a series of 2-flips.

Lemma 10.11. Given a graph G = G0 and a k-flip H of G, we can compute in time Ok(|V (G)|2)
a sequence of graphs G1, . . . , Gt with Gt = H , where t ⩽ 3k2 and Gi is a 2-flip of Gi−1 for i ∈ [t].

Proof. We compute a partition P ⊆ 2V (G) and symmetric relation F ∈ P2 witnessing that H is
a k-flip of G in time Ok(|V (G)|2) using Lemma 4.1.

We simulate flipping a single pair of parts (P,Q) ∈ F in G by the sequence of 2-flips

G1 := G⊕ {(P ∪Q,P ∪Q)}, G2 := G1 ⊕ {(P, P )}, G3 := G2 ⊕ {(Q,Q)}.

Chaining this procedure for all the at most k2 pairs in F proves the lemma.

Lemma 10.12. There is a budget-2 Flipper strategy flip2[·, ·] with the following properties.

1. For all parameters r ∈ N and k ∈ N:

• flip2[r, k] has runtime Or,k(n
2) in the radius-r game on the class of all graphs.

2. For each monadically stable graph class C and radius r ∈ N, there is a constant k∗C,r ∈ N, such
that for each k ∈ N with k ⩾ k∗C,r :

• flip2[r, k] is const(C, r, k)-winning in the radius-r game on C.

Proof. We rename the input parameter k to k′ to free up the name and set k := max(k′, 3). We
describe flip2[r, k′] by showing how to wrap the budget-k Flipper strategy flip[r, k] into a budget-2
strategy, while maintaining its good properties. In round i, using flip[r, k], we calculate a k-flip
Gi of Gloc

i−1. We simulate playing Gi by playing (at most) 3k2 many rounds of 2-flips as follows.
Applying Lemma 10.11 to Gloc

i−1 and Gi yields a sequence

Hi, Hi+1, . . . ,Ht

of (t − i + 1) ⩽ 3k2 many 2-flips where Ht = Gi. In round j (with i ⩽ j ⩽ t), Flipper
plays Gj := Hj [V (Gloc

j−1)]. Using the guarantees of Lemma 10.11, it is easy to check that the
described moves form a valid play for Flipper in the budget-2 game. Moreover, Localizers move
Gloc

t is an induced subgraph of an r-ball in Gi. It follows by induction that, if flip[r, k] is ℓ-
winning in the radius-r game on a class C, then flip2[r, k] is (3k2ℓ)-winning on the same class. In
particular for every monadically stable class C and k′ ⩾ k∗C,r , we have also k ⩾ k∗C,r so flip2[r, k]

is (3k2 · const(C, r))-winning on C. Here k∗C,r has the same value as in Lemma 10.8.

112



Chapter 10. Flipper Game

Again we obtain the following corollary by considering the strategy flip2[r, k
∗
C,r].

Corollary 10.13. For every monadically stable graph class C and r ∈ N, there is ℓ ∈ N and an
ℓ-winning budget-2 Flipper strategy with runtime OC,r(n

2) in the radius-r game on C.

The corollary already proves the implication (1) ⇒ (4) of Theorem 2.1, but it gives a different
strategy for each class C and radius r, as we do not know the value of k∗C,r. We finally use
dovetailing to guess k∗C,r and obtain a single strategy that works for every monadically stable
class and every radius.

Theorem 10.4. There is a budget-2 Flipper strategy flip⋆ with the following property.
For every monadically stable graph class C and radius r ∈ N there is ℓ ∈ N such that flip⋆ is
ℓ-winning and has runtime OC,r(n

2) in the radius-r game on C.

Proof. We fix an enumeration N of N3
+ by joining enumerations of the sets

[1]3, [2]3 \ [1]3, [3]3 \ [2]3, [4]3 \ [3]3, . . .

Crucially, every triple (r, k, ℓ) ∈ N3
+ appears among the first max(r, k, ℓ)3 elements of N . The

Flipper strategy flip⋆ again proceeds in eras. Let Gi be the current arena at the start of era i. We
will maintain the invariant that Gi is an induced subgraph of G, which holds for G1 = G. Let
(r, k, ℓ) ∈ N3

+ be the tuple at the ith position of the enumeration N . In era i, Flipper plays 2ℓ
many rounds. Flipper first plays ℓ many rounds according to the strategy flip2[r, k] given by
Lemma 10.12, starting on the graph Gi. After those ℓ rounds, Flipper plays the same ℓ flips again
in reverse order (and restricted to the current arena). This reverses the flips: after the 2ℓ rounds
the arena is again an induced subgraph of Gi and therefore also of G. Flipper continues with the
era i+ 1. This finishes the description of flip⋆.

As Flipper only plays flips generated by the budget-2 strategy flip2[·, ·], it is clear that flip⋆ is
itself a budget-2 strategy.

Now fix a monadically stable class C and a radius r ∈ N. We first argue that there is a bound
ℓ ⩽ const(C, r) such that flip⋆ is ℓ-winning in the radius-r game on C. By Lemma 10.12, there
is a bound k∗C,r ⩽ const(C, r) such that flip2[r, k∗C,r] is ℓ∗-winning in the radius-r game on C
for some ℓ∗ ⩽ const(C, r). Let i be the position of the triple (r, k∗C,r, ℓ

∗) in N . By construction
of N , we have i ⩽ max(r, k∗C,r, ℓ

∗)3 ⩽ const(C, r). Let G ∈ C be the graph on which the game is
played. In era i, Flipper played according to flip2[r, k

∗
C,r] for ℓ∗ rounds on an induced subgraph Gi

of G. Without loss of generality we can assume C is hereditary and Gi ∈ C. Since flip2[r, k
∗
C,r] is

ℓ∗-winning in the radius-r game on C, this means Flipper must have reached a winning position
at the end of era i. Again by construction ofN , each era j lasts at most 2j many rounds. It follows
that flip⋆ wins the radius-2 Flipper game on G in at most

ℓ :=
∑︂
j∈[i]

2j ⩽ 2i2 ⩽ const(C, r)

many rounds. As G ∈ C was chosen arbitrary, we have shown that flip⋆ is ℓ-winning in the
radius-r game on C, as desired.

For the running time, note that flip⋆ wins in era i ⩽ const(C, r). This means in each round
only a single query to flip2[r, k] for values r, k both of size at most i is made. By Lemma 10.12,
each of these calls runs in time Oi(n

2). This is bounded by OC,r(n
2) as desired.

10.3 From Flipper Game To Monadic Stability

We complete the equivalence (1) ⇔ (4) of Theorem 2.1, by proving the remaining implication
¬(1) ⇒¬(4). This finishes the proof of Theorem 2.1.

113



Chapter 10. Flipper Game

Proposition 10.14. Let C be a monadically unstable class. Then there exists an r ∈ N such that
for every k ∈ N and ℓ ∈ N, there exists a graph G ∈ C in which Localizer can survive the radius-r
budget-k Flipper game for at least ℓ rounds.

To prove this proposition we will utilize the characterization of monadically stable graph
classes by forbidden induced subgraphs, which we recall here.

Proposition 9.1. A graph class C is monadically stable if and only if for every r ⩾ 1 there exists
k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graphs of order k.

The first crucial observation is that, for each of the unstable patterns, a large part of the pattern
survives in every k-flip.

Lemma 10.15. Fix r, k ∈ N and G ∈ {star r-crossing, clique r-crossing, halfgraph}. LetG contain
as an induced subgraph a flipped G of order n. Every k-flip H of G contains as an induced subgraph
a flipped G of order Ur,k(n).

Proof. Let P be the size k partition of V (G) witnessing that H is a k-flip of G. By Bipartite
Ramsey (Lemma 4.15), G contains an induced subgraph G′ isomorphic to a flipped G of order
Ur,k(n) where the partition P respects the layering of G: whenever two vertices of G′ are in the
same layer, then they are in the same part of P . It follows that H[V (G′)] is a layer-wise flip of a
flipped G. By definition this is again a flipped G.

The second crucial observation is that, in each of the unstable pattern, there exists a neighbor-
hood which contains a large part of the pattern.

Lemma 10.16. Fix r ∈ N and G ∈ {star r-crossing, clique r-crossing, halfgraph}. Let G contain a
flipped G of order n as an induced subgraph. There exists a vertex v ∈ V (G) such that G[N2r+2[v]]
contains a flipped G of order U(n) as an induced subgraph.

Proof. In the case of flipped star and clique crossings, any vertex of the flipped crossing can take
the role of v. In the case of flipped half-graphs, there might be up to two isolated vertices which
are part of the flipped half-graph. Here every non-isolated vertex which is part of the flipped
half-graph does the job.

We can now prove Proposition 10.14.

Proof of Proposition 10.14. By Proposition 9.1, there exists r′ ∈ N such that C contains unstable
patterns (flipped star r′-crossings, flipped clique r′-crossings, or flipped half-graphs) of arbitrary
large order as induced subgraphs. We choose r := 2r′ + 2 and show that for every ℓ, k ∈ N,
there exists G ∈ C on which Flipper cannot win the radius-r budget-k Flipper game in ℓ rounds.
Fix ℓ, k ∈ N. Lemma 10.15 and Lemma 10.16 yields functions f1, f2 : N → N, such that
for every m ∈ N in every arena that contains an unstable pattern of order at least f(m) :=
max(f1(m), f2(m)) the following holds.

• For each possible Flipper move, an unstable pattern of size m remains in the arena.
• There exists a Localizer move that keeps an unstable pattern of size m in the arena.

Let G ∈ C be a graph which contains an unstable pattern of order f2ℓ(2). An easy induction
shows that Localizer has a strategy such that, no matter how Flipper plays, after ℓ rounds the arena
will still contain at least two vertices. This means Flipper cannot win in ℓ turns as desired.

This completes proof of the equivalence (1) ⇔ (4) of Theorem 2.1.

114



Chapter 10. Flipper Game

10.4 Predictable Flip-Flatness

We use the remainder of the chapter to give the missing proof of predictable flip-flatness (Proposi-
tion 10.7). We say a vertex s is adjacent to a vertex set B if N(s) ∩B ̸= ∅.

Definition 10.17. A classifier in a graph G is a quadruple B = (B, S, ex, rep), where B is a
family of pairwise disjoint vertex subsets of G, called further blobs, S is a non-empty subset
of vertices of G, and ex : V (G) → B ∪ {⊥} and rep : V (G) → S are mappings satisfying the
following properties:

(C.1) S ∩
⋃︁
B = ∅; that is, no vertex of S belongs to any blob.

(C.2) Every s ∈ S is adjacent either to all the blobs in B or to no blob in B.
(C.3) For all distinct s, s′ ∈ S and each blob B ∈ B, N(s) ∩B ̸= N(s′) ∩B.
(C.4) For each v ∈

⋃︁
B, we have ex(v) ̸= ⊥ and v ∈ ex(v).

(C.5) For all v ∈ V (G) and B ∈ B \ {ex(v)}, we have N(v) ∩B = N(rep(v)) ∩B.
The size of a classifier (B, S, ex, rep) is |B|, and its order is |S|.

Let us give some intuition. In a classifier we have a family of disjoint blobs B and a set
of representative vertices S. Further, with every vertex v we can associate its exceptional blob
ex(v) ∈ B and its representative rep(v) ∈ S. The key condition (C.5) says the following: every
vertex v behaves in the same way as its representative rep(v) with respect to all the blobs in B,
except for a (single) exceptional blob ex(v). We allow ex(v) to be equal to ⊥, which indicates
that v has no exceptional blob (this will be convenient in notation). Condition (C.4) says that if v is
contained in some blob B ∈ B, then in fact B must be the exceptional blob of v. Conditions (C.1),
(C.2), and (C.3) are technical assertions that expresses that the representative set S is reasonably
chosen.

A classifier naturally partitions the vertex set of the graph, as formalized below.

Definition 10.18. For a classifier B = (B, S, ex, rep), the partition raised by B is the partition
ΠB of the vertex set of G defined as follows:

ΠB := {rep−1(s) : s ∈ S}.

For s ∈ S, we write ΠB(s) := rep−1(s) to indicate the part of ΠB associated with s.

The following observation is easy, but will be the key to our use of classifiers.

Observation 10.19. Let B = (B, S, ex, rep) be classifier of size at least five in a graph G. Then
for every pair of vertices u, v of G, the following conditions are equivalent.

1. u and v are in the same part of ΠB.
2. u and v have the same neighborhood in at least three blobs from B.
3. u and v have different neighborhoods in at most two blobs from B.

Proof. Implication (1)→(3) follows by observing that since rep(u) = rep(v), u and v must have
exactly the same neighborhood in every blob, possibly except for ex(u) and ex(v). The implica-
tion (3)→(2) is immediate due to |B| ⩾ 5.

Finally, for implication (2)→(1), observe that u and rep(u) have the same neighborhood in
all but at most one blob from B, and similarly for v and rep(v). Since u and v have the same
neighborhood in at least three blobs from B, it follows that rep(u) and rep(v) have the same
neighborhood in at least one blob from B. By condition (C.3) of Definition 10.17, this means that
rep(u) = rep(v), so u and v belong to the same part of ΠB.

115



Chapter 10. Flipper Game

From Observation 10.19 we can derive a canonicity property for classifiers: whenever two
classifiers share at least five blobs in common, the associated partitions are the same. In the next
lemma we show an even stronger property: (efficient) predictability for classifiers.

Lemma 10.20. For every graph G and family B◦ consisting of five pairwise disjoint subsets of
V (G), there is a unique partition Π◦ of V (G) with the following property:

for every classifier B = (B, S, ex, rep) in G with B◦ ⊆ B, we have Π◦ = ΠB. (∗)

There is an algorithm that given G and B◦ and an integer k ∈ N in time O(k · |V (G)|2) either

• computes a partition Π◦ of size at most k that satisfies (∗), or

• concludes that there is no classifier B = (B, S, ex, rep) in G with B◦ ⊆ B and |ΠB| ⩽ k.

Proof. We first present the construction of Π◦. Along the way we also construct a set of represen-
tatives S, and at each point vertices s ∈ S are in one-to-one correspondence with parts Π◦(s)
of Π◦. We start with Π◦ = ∅ and S = ∅. Then we iterate through the vertices of G in any order,
and when considering the next vertex v we include it in the partition as follows:

• If there exists s ∈ S such that v and s have the same neighborhood in at least three of the
blobs of B◦, select such s that was added the earliest to S and add v to Π◦(s).

• Otherwise, if no s as above exists, add v to S and associate with v a new part Π◦(v) = {v}.
If at any point the size of S exceeds k, we abort the execution, as we have found a witness for
the fact that there is no classifier B = (B, S, ex, rep) in G with B◦ ⊆ B and |ΠB| ⩽ k: the set S
contains k + 1 vertices that pairwise have a different neighborhood on at least three blobs B◦, so
no two of them can be in the same part of ΠB.

It is straightforward to implement the algorithm to work in time O(k · |V (G)|2). Assume
now the execution was not aborted, so Π◦ has size at most k and is a partition of V (G). We verify
that Π◦ constructed in this manner satisfies (∗). Let then B = (B, S, ex, rep) be any classifier
with B◦ ⊆ B; we need to argue that Π◦ = ΠB. Consider any pair u, v of vertices of G. We need
to prove that u, v are in the same part of Π◦ if and only if they are in the same part of ΠB.

For the forward implication, suppose u and v belong to the same part of Π◦, say Π◦(s) for
some s ∈ S. By construction, u and s have the same neighborhood in at least three of the blobs
of B◦. By Observation 10.19, this implies that u and s are in the same part of ΠB. Similarly, v
and s are in the same part of ΠB. By transitivity, u and v are in the same part of ΠB.

For the other direction, suppose u ∈ Π◦(s) and v ∈ Π◦(s′) for some s ̸= s′. By symmetry,
we may assume that s′ was added to S later than s. Since v was included in Π◦(s′) instead
of Π◦(s), by construction it follows that v and s must have different neighborhoods in at least
three different blobs of B◦. So by Observation 10.19, v and s belong to different parts of ΠB.
Since u and s belong to the same part of Π◦, by the forward implication they also belong to the
same part of ΠB. Hence, u and v belong to different parts of ΠB.

We next observe that, at the cost of a moderate loss on the size of a classifier, we may choose
the representatives quite freely.

Lemma 10.21. Let B = (B, S, ex, rep) be a classifier in a graph G and let S′ be any set such
that rep is a bijection from S′ to S. Then there is a classifier B′ = (B′, S′, ex′, rep′) in G such that
B′ ⊆ B and |B′| ⩾ |B| − |S|.

Proof. Let B′ be obtained from B by removing ex(s′) for each s′ ∈ S′. Note that by condition
(C.4) of Definition 10.17, S′ is disjoint from

⋃︁
B′. Next, for each vertex u set ex′(u) := ex(u),

except for the case when ex(u) ∈ B \ B′; then set ex′(u) := ⊥. Since rep is a bijection from S′

116



Chapter 10. Flipper Game

to S, for every vertex u there exists exactly one vertex s′ ∈ S′ satisfying rep(u) = rep(s′), and
we set rep′(u) := s′.

We claim that B′ := (B′, S′, ex′, rep′) is a classifier. For this, observe that for every s′ ∈ S′,
since ex(s′) has been removed when constructing B′, we in fact haveN(rep(s′))∩B = N(s′)∩B
for every B ∈ B′. With this observation in mind, all conditions of Definition 10.17 for B′ follow
directly from those for B.

Let G be a well-ordered graph (cf. Definition 10.3). We shall say that a classifier B =
(B, S, ex, rep) in G is canonical if the following condition holds: each s ∈ S is the minimum
element of ΠB(s) according to the well-order of G. We note the following.

Corollary 10.22. Let G be a well-ordered graph, and B = (B, S, ex, rep) be a classifier in G.
Then there is also a canonical classifier B′ = (B′, S′, ex′, rep′) such that |S′| = |S|, B′ ⊆ B,
|B′| ⩾ |B| − |S|.

Proof. It suffices to apply Lemma 10.21 to S′ := {minGΠB(s) : s ∈ S}.

We use the insulator framework of Part II to extract large canonical classifiers.

Lemma 10.23. Fix a monadically stable graph class C and r ∈ N. For every well-ordered graph
G ∈ σ(C) and family B0 of pairwise disjoint r-balls in G, there exists a canonical classifier B =
(B ⊆ B0, S, ex, rep) of size UC,r(|B0|) and order const(C, r) in G.

Proof. We first build an orderless insulator (Definition 5.2.) from B0. Fix an arbitrary enumeration
a1, . . . , an of the centers of the balls in B0. Let A0 be the orderless grid of height r+ 1 defined as

A0[i, 1] = {ai} and A0[i,⩽t] = NG
t−1[ai] for all t ∈ [r + 1].

Hence, for every i ∈ [n], the column A0[i, ∗] is exactly the r-ball centered at ai. It is easy to
verify that A0 := (A0, {V (G)}, ∅, ∅) is an orderless insulator of height r + 1 and cost 1. As C is
monadically stable it is in particular monadically dependent and therefore also prepattern-free.
Then there exists a bound t ⩽ const(C, r) such that G contains no prepattern of order t on any
subinsulator of A0. Applying Lemma 5.53 to the insulator A0 and the bound t yields

• a subinsulator A of A0 that is indexed by a sequence of length UC,r(|B0|), and
• a set S ⊆ V (G) \ A of size at most const(C, r),

such that either
1. G contains a prepattern of order t on A, or
2. A is orderable, or
3. S symmetrically samples G on A with margin 1.

By prepattern-freeness of C we rule out the first outcome. As A being orderable (Definition 5.21)
requires the existence of a large semi-induced half-graph, monadic stability of C rules out the
second outcome. We are therefore guaranteed the third outcome. We next build a classifier from
the sampling set S.

Let B be the set of columns of A. By definition of an orderless subinsulator (Definition 5.5)
and construction of A0, B is a subset of B0 with |B| ⩾ UC,r(|B0|). Since S is a sampling set
(Definition 5.37), for every vertex v ∈ V (G) there exists a representative rep(v) ∈ S and an
exceptional ball ex(v) ∈ B such that for every ball B ∈ B with B ̸= ex(v) we have

atpG(v/B) = atpG(rep(v)/G).

Let us verify the classifier conditions for B := (B, S, ex, rep).

117



Chapter 10. Flipper Game

• Conditions (C.1) and (C.5) are satisfied by construction.
• Condition (C.4) states that any vertex v ∈ B ∈ B has satisfies ex(v) = B. This is the case

as we have (=, v) ∈ atpG(v/B) but (=, v) /∈ atpG(rep(v)/B).
To also satisfy conditions (C.2) and (C.3) we have to slightly modify B.

• Condition (C.2) states that each vertex in S is either adjacent to all balls of B or non-adjacent
to all balls of B. By iterating the pigeonhole principle we can pass to a subset of B of size
|B|/2|S| ⩾ UC,r(|B0|) where this condition holds. This requires updating ex(v) := ⊥ for
every vertex v whose exceptional ball was dropped from B.

• Condition (C.3) states that every two distinct vertices from S have a different neighborhood
on every ball of B. By Ramsey’s theorem we can pass to a subset of B of size U|S|(|B|) ⩾
UC,r(|B0|) such that every two distinct vertices from S either

– have the same neighborhood on every ball of B, or
– have a different neighborhood on every ball of B.

By pruning “duplicates” from S, we can assume the latter. We omit the easy details on how
to update ex(·) and rep(·).

Having constructed the classifier B we finish the proof by making it canonical using Corol-
lary 10.22.

We are finally ready to prove Proposition 10.7 which we restate for convenience.

Proposition 10.7 (Predictable flip-flatness). There is an algorithm that takes as input r, k ∈ N, a
well-ordered graph G, and a size five set Z ⊆ V (G), and computes in time Or,k(|V (G)|2) a k-flip
Predict(r, k,G, Z) of G with the following properties:
For every monadically stable graph class C and radius r ∈ N there is a bound kC,r ⩽ const(C, r)
and functions FlipC,r and FlatC,r such that for all well-ordered graphs G ∈ C, sets X,Z ⊆ V (G)
and integers k ⩾ kC,r we have

• FlipC,r(G,X) is a kC,r-flip of G,

• FlatC,r(G,X) is a size UC,r(|X|) subset of X ,

• FlatC,r(G,X) is distance-r independent in FlipC,r(G,X), and

• if Z is a size 5 subset of FlatC,r(G,X) then Predict(r, k,G, Z) = FlipC,r(G,X).

Proof. The proof proceeds by induction on r.

Case 1: Base Case. For r = 0, we may simply set

FlipC,0(G,X) := G and FlatC,0(G,X) := X.

Case 2: Inductive Case. We first define the functions FlipC,r and FlatC,r. For this, let us
consider any well-ordered graph G ∈ σ(C) and set X ⊆ V (G). Let H := FlipC,r−1(G,X) be
the const(C, r)-flip of G in which the size UC,r(|X|) set Yr−1 := FlatC,r−1(G,X) is (r − 1)-
independent. There is a monadically stable graph class D that depends only on C and r such that
H ∈ σ(D). For convenience, we denote

r′ := ⌈r/2⌉ − 1.

Let B0 be the family of r′-balls in H whose centers are the vertices of Yr−1. Note that the balls
of B0 are pairwise disjoint. We apply Lemma 10.23 to radius r′, graph H ∈ σ(D), and family of
r′-balls B0, thus obtaining a canonical classifier B = (B, S, ex, rep) with

|B| ⩾ UD,r′(|A|) ⩾ UC,r(|A|) = UC,r(|Yr−1|) ⩾ UC,r(|X|)

118



Chapter 10. Flipper Game

and similarly
|S| ⩽ const(D, r′) ⩽ const(C, r).

Up to applying Ramsey’s theorem, we can assume that: either the centers of the balls in B are
pairwise at distance greater than r in H , or they are pairwise at distance exactly r in H . We
define Y to be the set of centers of the balls in B and set FlatC,r(G,X) := Y .

It remains to construct a const(C, r)-flip FlipC,r(G,X) of G in which Y is distance-r inde-
pendent. As H is already a const(C, r)-flip of G, it suffices to construct a const(C, r)-flip of H
with this property instead (cf. Lemma 4.3).

Case 2.1: The vertices ofY are pairwise at distance greater than r inH. Then Y is already
distance-r independent, and we simply set FlipC,r(G,X) := H .

Case 2.2: The vertices ofY are pairwise at distance exactly r inH. We may assume that
|Y | ⩾ 5, as otherwise there is a trivial 24-flip of G in which every vertex of Y is isolated. In what
follows, whenever speaking about adjacencies or distances, we mean adjacencies and distances in
H .

Recall that B is canonical hence

s = minGΠB(s) for every s ∈ S.

By definition, every vertex of S is adjacent either to all the balls in B, or to none. Further, since
vertices of S have pairwise different neighborhoods in every ball B ∈ B, there is at most one
vertex of S that is not adjacent to any ball of B. Let S+ ⊆ S consist of those vertices of S that
are adjacent to every ball in B; thus either S+ = S or |S \ S+| = 1. Let

W :=
⋃︂

s∈S+

ΠB(s).

We observe that the vertices of W are the ones that keep the vertices of Y at close distance, in
the following sense.

Claim 10.24. For every vertex v ∈ V (G), the following conditions are equivalent:

1. v belongs to W ;

2. v is at distance exactly r′ + 1 from all the vertices of Y , possibly except for one;

3. v is at distance at most r′ + 1 from at least two vertices of Y .

Proof. Implication (2)→(3) is trivial due to |Y | ⩾ 5.
For implication (1)→(2) we use that B is a classifier. Let s ∈ S+ be such that v ∈ ΠB(s). By

definition, s is adjacent to all the balls in B. Therefore, v is adjacent to all the balls in B, possibly
except for ex(v). Recalling that v ∈ ex(v) in case v ∈

⋃︁
B, we conclude that v is at distance

exactly r′ + 1 from the centers of all the balls in B, that is, vertices of Y , possibly except for one
— the center of ex(v).

We are left with implication (3)→(1). Let s ∈ S be such that v ∈ ΠB(s). As v is at distance
at most r′ + 1 from the centers of two balls in B, at least one of them, say B, is different from
ex(v). In particular v /∈ B, so v being at distance r′ + 1 from the center of B means that v has
to be adjacent to B. As B ̸= ex(v), we infer that s is also adjacent to B. It follows that s ∈ S+,
implying that v ∈W . ■

119



Chapter 10. Flipper Game

Next, we make a case distinction depending on whether r is odd or even. In both cases, we
use the following notation. For s ∈ S and U ⊆ S, we write

Qs,U := {v ∈ ΠB(s) : NH(v) ∩ S = U}.

Further, we let
Q := {Qs,U : s ∈ S,U ⊆ S}. (10.1)

Note that Q is a partition of the vertex set of H into at most |S| · 2|S| ⩽ const(C, r) parts, and the
definition of Q only depends on the graph H , partition ΠB, and set S. We set FlipC,r(G,X) :=

H ⊕ F to be the Q-flip of H specified by the symmetric relation F ⊆ Q2 which we define in the
following. In order to later prove the predictability property, it will be crucial that, in both of the
following two cases, the definition of F only depends on the partition Q (and therefore on H ,
ΠB, and S) and the set S+.

Case 2.2.1: r is odd. We define F as the set of all pairs (Qs1,U1 , Qs2,U2) ⊆ Q2 satisfying the
following conditions:

• s1, s2 ∈ S+;
• Qs1,U1 ̸= ∅ and Qs2,U2 ̸= ∅; and
• s1 ∈ U2 or s2 ∈ U1.

As desired, F is symmetric and depends only on Q and S+. The following claim explains the flip
set F in more friendly terms.

Claim 10.25. For any u1, u2 ∈ V (G), the adjacency between the two is flipped in H ⊕ F if and
only if u1, u2 ∈W and

(︁
u2 ∈ NH(rep(u1)) or u1 ∈ NH(rep(u2))

)︁
.

Proof. Let s1, U1, s2, U2 be such that u1 ∈ Qs1,U1 and u2 ∈ Qs2,U2 ; in particular Qs1,U1 ̸= ∅ and
Qs2,U2 ̸= ∅. The adjacency between u1 and u2 was flipped if and only if (Qs1,U1 , Qs2,U2) ∈ F ,
which in turn is equivalent to the conjunction of conditions s1, s2 ∈ S+ and (s1 ∈ U2 or s2 ∈ U1).
It now remains to note that condition s1, s2 ∈ S+ is equivalent to u1, u2 ∈ W , and condition
(s1 ∈ U2 or s2 ∈ U1) is equivalent to (u2 ∈ NH(rep(u1)) or u1 ∈ NH(rep(u2))). ■

Further, we note that the vertices of W may only lie outside the balls of B or on their
boundaries.

Claim 10.26. If v ∈W , then for every y ∈ Y we have distH(v, y) ⩾ r′.

Proof. Suppose distH(v, y) ⩽ r′− 1 for some y ∈ Y . As v ∈W , by Claim 10.24 there exists some
other y′ ∈ Y , y′ ̸= y, such that distH(v, y′) = r′ + 1. Hence, distH(y, y′) ⩽ 2r′ = r − 1. This is
a contradiction with the assumption that Y is (r − 1)-independent in H . ■

We are now ready to argue the following: Y is distance-r independent in H ⊕ F . See
Figure 10.1 for an illustration. For contradiction, suppose in H ⊕ F there exists a path P of
length at most r connecting some distinct y1, y2 ∈ Y . Let B1, B2 ∈ B be the r′-balls with centers
y1, y2, respectively. Since the flips of F only affect the adjacency between the vertices of W , and
these vertices have to be at distance at least r′ = r−1

2 from y1, y2 due to Claim 10.26, we infer the
following: P can be written as

P = (y1, . . . , v1, v2, . . . , y2),

where (y1, . . . , v1) and (v2, . . . , y2) are paths of length r′ in H that are entirely contained in B1

and in B2, respectively. In particular, P has length exactly 2r′ + 1 = r and v1v2 is the only edge
on P that might have been flipped in H ⊕ F .

120



Chapter 10. Flipper Game

Observe that if the edge v1v2 appeared when applying the flip F , then we necessarily have
v1, v2 ∈ W . Otherwise, if v1v2 was present in H , then path P witnesses that already in H ,
both v1 and v2 are at distance at most r′ + 1 from both y1 and y2. By Claim 10.24, this implies
that v1, v2 ∈W . So in any case, we have v1, v2 ∈W .

Let s1 := rep(v1) and s2 := rep(v2). Since v1 ∈ B1 and v2 ∈ B2, we have ex(v1) = B1 and
ex(v2) = B2, hence

NH(s1) ∩B2 = NH(v1) ∩B2 and NH(s2) ∩B1 = NH(v2) ∩B1.

In particular,

v1, v2 are adjacent in H ⇔ v1, s2 are adjacent in H ⇔ v1 ∈ NH(s2),

and similarly

v1, v2 are adjacent in H ⇔ s1, v2 are adjacent in H ⇔ v2 ∈ NH(s1).

Therefore,
v1, v2 are adjacent in H ⇔ (v1 ∈ NH(s2) or v2 ∈ NH(s1)).

As v1, v2 ∈W , by Claim 10.25 we conclude that v1 and v2 are adjacent in H if and only if their
adjacency gets flipped in H ⊕ F . So v1 and v2 are non-adjacent in H ⊕ F , a contradiction with
the existence of the edge v1v2 on P .

y1 v1

B1

y2v2

B2

s1 = rep(v1)

v2

s = rep(u)

y2

B2

y1 v1

B1

u

Figure 10.1: The left side depicts Case 2.2.1: v1 has the same adjacency to B2 as s1, hence the edge v1v2 is
flipped away when applying F if and only if it was present in H .
The right side depicts Case 2.2.2: up to symmetry u has the same adjacency to B1 as s, hence the edge uv1
is flipped away when applying F if and only if it was present in H .

Case 2.2.2: r is even. This time, F is defined as the set of all pairs (Qs1,U1 , Qs2,U2) ∈ Q2

satisfying the following conditions:
• Qs1,U1 ̸= ∅ and Qs2,U2 ̸= ∅; and
• (s1 ∈ S+ and s1 ∈ U2) or (s2 ∈ S+ and s2 ∈ U1).

Again, F is symmetric and depends only on Q and S+. Also, we may similarly explain flipping
according to F as follows.

Claim 10.27. For any u1, u2 ∈ V (G), applying F flips the adjacency between u1 and u2 if and
only if

(︁
u1 ∈W and u2 ∈ NH(rep(u1))

)︁
or

(︁
u2 ∈W and u1 ∈ NH(rep(u2))

)︁
.

Proof. Analogous to the proof of Claim 10.25, we leave the details to the reader. ■

Note that Claim 10.25 implies in particular that whenever the adjacency between two vertices
is flipped in H ⊕ F , at least one of them belongs to W . (However, contrary to the odd case, there
might be vertices outside W that are affected by the flip.) In this vein, the following observation
will be convenient.

121



Chapter 10. Flipper Game

Claim 10.28. W ∩
⋃︁
B = ∅.

Proof. For contradiction, suppose there exists B ∈ B and v ∈ B such that v ∈ W . Letting
y be the center of B, we have distH(v, y) ⩽ r′. By Claim 10.24, there exists another y′ ∈ Y ,
y′ ̸= y, such that distH(v, y′) ⩽ r′ + 1. Hence, distH(y, y′) ⩽ 2r′ + 1 = r − 1, contradicting the
distance-(r − 1) independence of Y in H . ■

As in the odd case, we are left with arguing that Y is distance-r independent in H ⊕ F . See
Figure 10.1 for an illustration. For contradiction, suppose that there exist distinct y1, y2 ∈ Y and
a path P of length at most r that connects y1 and y2 in H ⊕ F . As before, let B1, B2 ∈ B be the
balls with centers y1, y2, respectively.

By Claim 10.27, only the vertices of W ∪
⋃︁

s∈S+
NH(s) are affected by the flip H ⊕ F . By

Claim 10.28 and as S+ is disjoint with
⋃︁
B, all vertices of W ∪

⋃︁
s∈S+

NH(s) are at distance
(in H) at least r′ from all the vertices of Y . Since r = 2r′ + 2, similarly as in Case 2.2.1 it follows
that P has length 2r′ + 1 = r − 1 or 2r′ + 2 = r and can be written as

P = (y1, . . . , v1, v2, . . . , y2) or P = (y1, . . . , v1, u, v2, . . . , y2),

where (y1, . . . , v1) and (v2, . . . , y2) are paths of length r′ in H entirely contained in B1 and B2,
respectively.

In the first case, P has length r − 1 and is of the form (y1, . . . , v1, v2, . . . , y2). Observe
that edge v1v2 cannot be present in H , because then P would be entirely contained in H , a
contradiction with distance-(r − 1) independence of Y in H . On the other hand, note that
v1, v2 /∈W due to Claim 10.28, so by Claim 10.27 the adjacency between v1 and v2 is not flipped
in H ⊕ F . We conclude that v1 and v2 remain non-adjacent in H ⊕ F , a contradiction with the
presence of the edge v1v2 on P .

In the second case, P has length r and is of the form (y1, . . . , v1, u, v2, . . . , y2). Let us first
argue that u ∈W . If u is adjacent both to v1 and to v2 in H , then u is at distance at most r′ + 1
from both y1 and y2 in H , hence that u ∈ W follows directly from Claim 10.24. On the other
hand, if u is non-adjacent in H to one of v1 or v2, say to v1, then the adjacency between u and v1
must get flipped when applying F . By Claim 10.27 this means that at least one of u and v1 belongs
to W , but it cannot be v1 due to Claim 10.28. So u ∈W in this case as well.

Let s := rep(u). By symmetry, we may assume that B1 ̸= ex(u). This means that

v1, u are adjacent in H ⇔ v1, s are adjacent in H ⇔ v1 ∈ NH(s).

Since u ∈ W and v1 /∈ W (due to Claim 10.28), by Claim 10.27 we conclude that u and v1 are
adjacent inH if and only if their adjacency gets flipped when applying F . So in any case, u and v1
are non-adjacent in H ⊕ F . This is a contradiction with the presence of the edge uv1 on P .

This concludes the construction of the const(C, r)-flip FlipC,r(G,X) = H ⊕ F . Hence, we
can choose kC,r ⩽ const(C, r) such that FlipC,r(G,X) is a kC,r of G.

The prediction algorithm. It remains to provide the algorithm Predict(r, k,G, Z). We follow
the definition of FlipC,r and FlatC,r and define the algorithm by induction on r. For the base case
we can set

Predict(0, k,G, Z) := G

for all k,G,Z , which matches the base case of FlipC,0. In the inductive case, for all well-ordered
graphs G, sets Z ⊆ V (G) with |Z| = 5, and k ∈ N, we compute the k-flip Predict(r, k,G, Z)
of G as follows.

122



Chapter 10. Flipper Game

1. By induction, we compute the flip H◦ := Predict(r − 1, k,G, Z) of G.
2. If Z is not distance-(r − 1) independent in H◦, return the original graph G.
3. If Z is distance-r independent in H◦, return H◦.
4. Otherwise, let B◦ consist of the five r′-balls in H◦ with centers in vertices of Z . Note

that the balls of B◦ are pairwise disjoint. Apply the algorithm of Lemma 10.20 to the
graph G, family B◦, and parameter k. If the algorithm concludes that there is no classifier
B = (B, S, ex, rep) in G with B◦ ⊆ B and |ΠB| ⩽ k: abort and return the original graph
G. Otherwise, we obtain a partition Π◦.

5. Let S◦ := {minGA : A ∈ Π◦} and let S◦
+ be the subset of vertices of S◦ that are adjacent

to every ball of B◦.
6. Compute the partition Q◦ of V (G) from H◦, Π◦, and S◦ exactly as Q was computed from
H , ΠB, and S in (10.1) above.

7. Compute the relation F ◦ ⊆ Q◦ ×Q◦ from Q◦ and S◦
+ exactly as F was computed from Q

and S+ in Cases 2.2.1 and 2.2.2 above.
8. We check if H◦ ⊕ F ◦ is a k-flip of G using the algorithm from Lemma 4.1. If this is the

case, we return H◦ ⊕ F ◦, otherwise we return the original graph G.

By construction the algorithm only returns k-flips of G, as desired. (In particular the original
graph G is a k-flip of itself.) We now argue that provided Y = FlatC,r(G,X), Z ⊆ Y is a set of
size 5, and k ⩾ kC,r, we have FlipC,r(G,X) = Predict(r, k,G, Z). We adopt the notation from
the definition of FlipC,r and FlatC,r and argue by induction on r. The base case r = 0 holds by
construction.

For the inductive step we revisit the case distinction above. Without loss of generality, we
can assume kC,r ⩾ kC,r−1, so also k ⩾ kC,r−1. Then, by the induction assumption, we have

H◦ = Predict(r − 1, k,G, Z) = FlipC,r−1(G,X) = H.

In particular, as Z ⊆ Y is distance-(r− 1) independent in H , the termination in the second point
above cannot happen. Also, if the Y is distance-r independent in H , then the same holds for Z ,
and we have Predict(r, k,G, Z) = H◦ (termination in the third point above). In the definition of
FlipC,r(G,X), Case 2.1 applies, yielding FlipC,r(G,X) = H , as required.

We are left with Case 2.2: the vertices of Y are pairwise at distance exactly r in H . Let
B = (B, S, ex, rep) be the canonical classifier provided by Lemma 10.23 in the construction of Y ,
whose blobs B are the r′-balls inH with centers Y . AsZ ⊆ Y andH◦ = H , we have that B◦ ⊆ B.
As witnessed by |ΠB| ⩽ kC,r ⩽ k, in the fourth point above, the algorithm of Lemma 10.20 must
yield a partition Π◦ = ΠB. Since B is canonical, we have

S = {minGA : A ∈ ΠB} = {minGA : A ∈ Π◦} = S◦.

Similarly, as B is a classifier in H = H◦, we have that a vertex from S = S◦ is adjacent to
every ball of B if and only if it is adjacent to every ball of B◦, and we conclude that S+ = S◦

+.
As now H◦ = H , Π◦ = ΠB, S◦ = S, and S◦

+ = S+, both in the definition of FlipC,r and
Predict(r, k,G, Z), we construct the same partition Q = Q◦. Again |Q◦| = |Q| ⩽ kC,r ⩽ k
so termination in the sixth point above does not happen. Then the construction presented in
Cases 2.2.1 and 2.2.2 provides the same relation for Q◦ and S◦

+, as for Q and S+: we have F ◦ = F .
We conclude that

Predict(r, k,G, Z) = H◦ ⊕ F ◦ = H ⊕ F = FlipC,r(G,X).

This graph is a kC,r-flip of G and, as kC,r ⩽ k, it is not rejected in the last step. Hence, we have
Predict(r, k,G, Z) = FlipC,r(G,X), as desired.

123



Chapter 10. Flipper Game

We finally argue that the graph Predict(r, k,G, Z) can be computed in time Or,k(|V (G)|2).
For this, it is enough to observe that the procedure presented above executes r inductive calls,
each of which consists of internal computation that is easy to implement in time Or,k(|V (G)|2),
one call to the algorithm of Lemma 10.20 to compute Π◦ in time O(k · |V (G)|2), and one call to
the algorithm of Lemma 4.1 which also runs in time Ok(|V (G)|2). For the runtime bound of the
algorithm from Lemma 4.1, we note the following. The algorithm runs in time O(k · |V (G)|2) if a
k-flip of G is supplied as input. While we cannot guarantee that for all values of Z we always
give a k-flip to the algorithm, we can guarantee that we only ever supply it with const(k)-flips.
This is due to the fact that H◦ is a k-flip by induction, and we have ensured that Π◦ also has size
at most k, too. Hence, the running time of Lemma 4.1 is still bounded by Ok(|V (G)|2) and the
total algorithm runs in time Or,k(|V (G)|2).

The proof of predictable flip-flatness concludes the chapter.

124



Chapter 11

Neighborhood Covers

In the previous chapters we have shown several combinatorial characterizations for monadic sta-
bility (Theorem 2.1). We now work towards the model checking algorithm (Theorem 2.2). Having
proved a winning strategy for the Flipper game, we have already established one main ingredient
for the algorithm. In this chapter, supply the second ingredient, that is sparse neighborhood
covers for monadically stable classes.

For a graph G and vertex subset X , the weak diameter of X in G is the maximum distance
in G between members of X : diamG(X) := maxu,v∈X distG(u, v).

Definition 11.1. Let G be a graph and r be a positive integer. A family K of subsets of vertices
of G is called a distance-r neighborhood cover of G if for every vertex u of G there exists C ∈ K
such that Ballr[u] ⊆ C . The diameter of K is the maximum weak diameter among the sets of K,
while the overlap of K is the maximum number of sets of K that intersect at a single vertex:

diam(K) := max
C∈K

diamG(C) and overlap(K) := max
u∈V (G)

|{C ∈ K : u ∈ C}|.

Elements of a neighborhood cover K will often be called clusters.

The main result of this chapter will be the following.

Theorem 11.2. There is an algorithm that, given an n-vertex graphG and a radius r ∈ N, computes
a distance-r neighborhood cover ofG with diameter at most 4r in timeO(n5). For every monadically
stable class C containing G and every ε > 0, the overlap of the cover is bounded by OC,r,ε(n

ε).

11.1 Neighborhood Complexity

As an important ingredient of Theorem 11.2 and as a result of independent interest, we prove the
following theorem.

Theorem 11.3. Let C be a monadically stable graph class and ε > 0. Then for every G ∈ C and
A ⊆ V (G),

|{NG[v] ∩A : v ∈ V (G)}| ⩽ OC,ε(|A|1+ε).

Given a class C, define the neighborhood complexity of C as the function νC : N → N such that

νC(n) := sup
G∈C,A⊆V (G),|A|=n

|{N [v] ∩A : v ∈ V (G)}|.

Note that for every graph class C we have νC(n) ⩽ 2n for alln ∈ N. It is an immediate consequence
of the Sauer-Shelah lemma [76, 78, 84] that for every graph class of bounded VC dimension (in

125



Chapter 11. Neighborhood Covers

particular, every monadically dependent or monadically stable class) there is some constant c
such that νC(n) ⩽ O(nc) for all n ∈ N. Theorem 11.3 states that every monadically stable graph
class C has almost linear neighborhood complexity, that is, νC(n) ⩽ OC,ε(n

1+ε) for all ε > 0. This
result is a generalization of an analogous result of Eickmeyer et al. [32] for nowhere dense classes,
stated below.

Fact 11.4 ([32]). Let C be a nowhere dense graph class and ε > 0. Then for every G ∈ C and
A ⊆ V (G),

|{N [v] ∩A : v ∈ V (G)}| ⩽ OC,ε(|A|1+ε).

A similar result holds for all structurally nowhere dense classes, that is, classes that can be
transduced from a nowhere dense class [70]. However, Theorem 11.3 is incomparable with the
statement from [70], as the latter also allows defining neighborhoods using a formula φ(x̄, ȳ)
involving tuples of free variables.

In order to prove Theorem 11.3, we will gradually simplify a monadically stable class — while
preserving monadic stability, and without decreasing its neighborhood complexity too much
— until we arrive at a Kt,t-free graph class. The next theorem states that monadically stable,
Kt,t-free classes are nowhere dense, so we will be able to conclude using Fact 11.4. The Fact 11.5
below follows from a result of Dvořák [30] (see [66, Corollary 2.3]) and we reprove it in Chapter 13
(Theorem 13.2).

Fact 11.5 (follows from [30]). Let C be a monadically stable graph class, and suppose that C excludes
some biclique Kt,t as a subgraph. Then C is nowhere dense.

Our simplification process will decrease a parameter we call branching index, which was
introduced by Shelah in model theory and is sometimes referred to as “Shelah’s 2-rank”. For a
bipartite graph G = (A,B,E) and vertex a ∈ A, we denote NG(a) := B −NG(a).

Definition 11.6. Let G = (A,B,E) be a bipartite graph. The branching index of a set U ⊆ B,
denoted brG(U), is defined as

brG(U) :=

{︄
−1 if U = ∅,
1 + maxa∈Amin(brG(N(a) ∩ U), brG(N(a) ∩ U)) if U ̸= ∅.

Note that for U ⊆ B we have that brG(U) = 0 if and only if U is nonempty and all vertices
in U have the same neighborhoods in A. In other words: every vertex in A is either fully adjacent
or non-adjacent to U . In particular |U | = 1 implies brG(U) = 0.

For higher values of the branching index, the following perspective might be helpful. Say that
U ⊆ B is split into sets P,Q by a vertex a ∈ A if P = U ∩NG(a) and Q = U ∩NG(a) are both
nonempty. Say that U can be split into P and Q if P,Q are nonempty and there is some a ∈ A
which splits U into P and Q. Informally, the value brG(U) tells us for how many steps we can
repeatedly split U into two, four, eight, etc. sets, where in each step, we are required to split each
set produced in the previous step into two parts.

A bounded branching index characterizes edge-stable graph classes (Definition 8.1) as made
explicit in the following fact proved by Shelah [79, (3) ⇔ (7) in Thm. 2.2 of Chapter II] (see also
[49, Lem. 6.7.9] for a presentation that is closer to our use case).

Fact 11.7 ([79], [49, Lem. 6.7.9]). Let C be a class of bipartite graphs. C is edge-stable if and only if
there is a number d ∈ N such that brG(B) ⩽ d for all G = (A,B,E) ∈ C.

More precisely, if C contains no half-graph of order k as a semi-induced half-graphs, then we can
choose d < 2k+2 − 2.

126



Chapter 11. Neighborhood Covers

In particular, the branching index is bounded in all monadically stable graph classes. We will
use the following statement about definability of the branching index, which can be easily proved
by induction on d.

Lemma 11.8. For every d ∈ N there is a first-order sentence βd over the signature consisting of a
binary relation symbol E and unary relation symbols A,B, such that, given a bipartite graph G =
(A,B,E), the structure G (where A,B,E are interpreted as the appropriate relations) satisfies βd if
and only if brG(B) ⩽ d.

The following proposition, together with Facts 11.4 and 11.5, will later easily yield Theo-
rem 11.3.

Proposition 11.9. Fix d ∈ N. There is a transduction Td with the following properties. Given
a bipartite graph G = (A,B,E) with n := |A| ⩾ 2 such that no vertices in B have equal
neighborhoods and brG(B) ⩽ d, there is a bipartite graphG′ = (A′, B′, E′) ∈ Td(G) withA′ ⊆ A
and B′ ⊆ B such that:

(A.1) |B′| ⩾ |B|
(600 lnn)d

,

(A.2) every vertex b ∈ B′ has at most d neighbors in A′ in the graph G′,

(A.3) all vertices in B′ have distinct neighborhoods in A′ in the graph G′.

The following technical sampling lemma will be used as an ingredient in the proof of Proposi-
tion 11.9.

Lemma 11.10. Let G = (A,B,E) be a bipartite graph such that |A| ⩾ 2 and every vertex in B
has some neighbor in A. Then there are sets X ⊆ A and B′ ⊆ B with |B′| ⩾ |B|

150 ln |A| such that
every vertex b ∈ B′ has exactly one neighbor in X .

We first give some probabilistic preliminaries. Let X be a random variable which takes values
from a1, . . . , an. We denote by P[X = ai] the probability that X takes the value ai. The expected
value of X is defined as

E[X] =
∑︂
i∈[n]

ai · P[X = ai].

The probabilistic method will be used to show the existence of setsX andB′ from Lemma 11.10, as
follows. Instead of directly constructing X and a large viable set B′, we show that for a randomly
chosen X , the expected value of the size of a viable set B′ is large. By definition of the expected
value, this is sufficient to prove the existence of a set X and a large viable set B′ (but does not
show how to construct these sets). To impose bounds on the expected values, the following two
standard facts from probability theory will come in handy.

Fact 11.11 (Linearity of expectation). For random variables X1, . . . , Xn we have

E

⎡⎣∑︂
i∈[n]

Xi

⎤⎦ =
∑︂
i∈[n]

E [Xi] .

Fact 11.12 (Markov’s inequality). For every non-negative random variable X and real a > 0,

P[X > a] ⩽ E[X]/a.

We are now ready to prove Lemma 11.10.

127



Chapter 11. Neighborhood Covers

Proof of Lemma 11.10. Fix a real α > 1 to be specified later and denote n := |A|. Consider all
intervals of the form [αi, αi+1) for some integer 0 ⩽ i ⩽ logα n. For each b ∈ B, the degree of b
belongs to exactly one such interval. Therefore, there is some i as above and a set B0 ⊆ B with

B0 ⩾ |B|/(1 + logα n)

such that all vertices in B0 have degree in the interval [αi, αi+1). Set d = αi. Thus, all vertices
in B0 have degree between d and αd.

PickX ⊆ A by including each vertex ofA uniformly at random with probability 1/d. Consider
b ∈ B0. The expected size of X ∩N(b) is

E[|X ∩N(b)|] = E
[︂∑︁

v∈N(b) |{v} ∩X|
]︂

=
∑︁

v∈N(b) E[|{v} ∩X|] (by Fact 11.11)
=

∑︁
v∈N(b) 1 · P[|v ∩X| = 1] + 0 · P[|v ∩X| = 0] (by definition of E)

=
∑︁

v∈N(b) 1/d (P[v ∈ X] = 1/d)
= |N(b)| · 1/d.

Since d ⩽ |N(b)| ⩽ αd, we have 1 ⩽ E[|X ∩N(b)|] ⩽ α. By Markov’s inequality (Fact 11.12),

P
[︁
|X ∩N(b)| ⩾ 2

]︁
⩽ E

[︁
|X ∩N(b)|

]︁
/2 ⩽ α/2.

On the other hand,
P
[︁
|X ∩N(b)| = 0

]︁
⩽ (1− 1/d)d ⩽ 1/e.

This means that

P
[︁
|X ∩N(b)| = 1

]︁
= 1− P

[︁
|X ∩N(b)| = 0

]︁
− P

[︁
|X ∩N(b)| ⩾ 2

]︁
⩾ 1− 1/e− α/2 =: β.

We set α := 1.1 and verify that β = 1− 1/e− α/2 ⩾ 1
150 lnα . Again by linearity of expectation,

the expected number of vertices b ∈ B0 such that |X ∩ N(b)| = 1 is at least β|B0|. By the
probabilistic method, there exists an assignment to X reaching the expected value, so let us
fix X according to this assignment. We then set B′ to be those elements of B0 with exactly one
neighbor in X . Since n ⩾ 2, we have 1 + logα n < 2 logα n. Therefore,

|B′| ⩾ β · |B0| ⩾ β · |B|
1 + logα n

>
1

150 lnα
· |B|
2 logα n

=
|B|

150 lnα · 2 · lnn
lnα

⩾
|B|

300 lnn
.

This concludes the proof.

The next lemma is the main engine of the proof of Proposition 11.9, and hence of Theorem 11.3.
The central definitions of this lemma are also depicted in Figure 11.1.

128



Chapter 11. Neighborhood Covers

Bk

AkX1
. . . Xk

edges Ek of Gk

B0
B1
B2

(defined by φk)

X0 = ∅

P

(b) distinct neighborhoods in Ak

(a) branching index ≤ d− k

A

B

Figure 11.1: Illustration of central definitions in Lemma 11.13

Lemma 11.13. Fix d ∈ N. For every 0 ⩽ k ⩽ d there is a formula φk(x, y) in the signature consist-
ing of a binary relation symbol E and unary relation symbols A, B, X0, . . . , Xk−1, B0, . . . , Bk−1,
such that the following holds. Given a bipartite graphG = (A,B,E) with n := |A| ⩾ 2 such that no
two vertices of B have equal neighborhoods and brG(B) ⩽ d, there exist sets B = B0 ⊇ . . . ⊇ Bk,
pairwise disjoint sets X0, . . . , Xk ⊆ A, and a bipartite graph Gk =

(︁
A,B,E(Gk)

)︁
such that:

(B.1) |Bk| ⩾ |B|
(600 lnn)k

;

(B.2) E(Gk) = {ab ∈ A×B : (G,A,B,X0, . . . , Xk−1, B0, . . . , Bk−1) |= φk(a, b)};

(B.3) every b ∈ Bk has at most k neighbors in X0 ∪ · · · ∪Xk in the graph Gk; and

(B.4) for every P ⊆ Bk such that all b ∈ P have the same neighborhood in X0 ∪ · · · ∪Xk in the
graph Gk,

(a) brGk
(P ) ⩽ d− k, and

(b) no two distinct vertices in P have equal neighborhoods in A− (X0 ∪ · · · ∪Xk) in the
graph Gk.

Proof. We proceed by induction on k. For k = 0 the formula φ0(x, y) := E(x, y) satisfies the
required conditions. Namely, for a given graph G = (A,B,E) we define B0 := B, G0 := G,
X0 := ∅, and the required conditions trivially hold.

Assuming the statement holds for some value k ⩾ 0, we prove it for k + 1 ⩽ d. Let φk(x, y)
be as in the statement. Consider a bipartite graph G = (A,B,E) and let B = B0 ⊇ . . . ⊇ Bk,
X0, . . . , Xk ⊆ A, andGk be given by the induction assumption. DenoteAk := A−(X0∪· · ·∪Xk).

By a k-class we mean an inclusion-wise maximal set P ⊆ Bk of vertices in b ∈ Bk which
have equal neighborhoods in X0 ∪ · · · ∪Xk in the graph Gk. By assumption, brGk

(P ) ⩽ d− k
for every k-class P . Therefore, for every vertex a ∈ A and k-class P , we have

min
(︁
brGk

(NGk
(a) ∩ P ), brGk

(NGk
(a) ∩ P )

)︁
< d− k. (11.1)

Define a relation E0 ⊆ Ak ×Bk ⊆ A×B as

E0 :=
⋃︂{︁

{a} × P
⃓⃓
a ∈ Ak, P is a k-class with brGk

(NGk
(a) ∩ P ) = d− k

}︁
=

{︁
ab

⃓⃓
a ∈ Ak and b ∈ P for some k-class P with brGk

(NGk
(a) ∩ P ) = d− k

}︁
.

Let Gk+1 := (A,B,E(Gk)△E0), where △ denotes the symmetric difference. So for a pair ab
with a ∈ A and b ∈ B, we have that ab ∈ E(Gk+1) if and only if ab belongs to exactly one of
the sets E(Gk) and E0. The relation E(Gk+1) is definable by a first-order formula, as stated in
the next claim.

Claim 11.14. There is a first-order formula φk+1(x, y), which is independent of G, such that for all
a ∈ A and b ∈ Bk we have

(G,A,B,X0, . . . , Xk, B0, . . . , Bk) |= φk+1(a, b) ⇔ ab ∈ E(Gk+1).

129



Chapter 11. Neighborhood Covers

Here φk+1(x, y) is over the signature {E,A,B,X0, . . . , Xk, B0, . . . , Bk}.

Proof. By induction, the edge relation ofGk is definable by the formulaφk(x, y) over the signature

{E,A,B,X0, . . . , Xk−1, B0, . . . , Bk−1}.

Adding the predicates Ak and Bk lets us define the equivalence relation stating whether two
vertices from Bk belong to the same k-class. Combining this with the formula βd−k obtained
in Lemma 11.8, we construct a formula ψ(x, y) defining the relation E0 as defined above. Then
φk+1(x, y) is defined as the XOR of the formulas ψ and φk. We omit the easy details. ■

Next, we note that the construction of Gk+1 from Gk did not affect the neighborhoods in
X0 ∪ · · · ∪Xk, nor the branching indices of subsets of k-classes.

Claim 11.15. If b ∈ B, then the neighborhood of b in X0 ∪ · · · ∪Xk is the same when considered
in Gk, and when considered in Gk+1.

Proof. We have that E(Gk+1) = E(Gk)△E0, with E0 ⊆ Ak × Bk and Ak disjoint from
X0 ∪ · · · ∪Xk. ■

Claim 11.16. Let P ⊆ Bk be a k-class and Q ⊆ P . Then brGk+1
(Q) = brGk

(Q).

Proof. We show that

{NGk
(a) ∩Q,NGk

(a) ∩Q} = {NGk+1
(a) ∩Q,NGk+1

(a) ∩Q} for every a ∈ A. (11.2)

So, the two parts into which a splits Q are the same in Gk as in Gk+1 (where the neighborhood
is possibly swapped with the non-neighborhood). Claim 11.16 then follows from (11.2) by a
straightforward induction.

Towards (11.2), fix a ∈ A. If a ∈ X0 ∪ · · · ∪Xk , the statement follows from Claim 11.15. Now,
suppose a ∈ A− (X0 ∪ · · · ∪Xk) = Ak. Then the set {a} × P is either disjoint from E0, or is
contained in E0. In the first case, we have that NGk

(a) ∩ P = NGk+1
(a) ∩ P , while in the latter

case, we have that NGk
(a) ∩ P = NGk+1

(a) ∩ P . Either way, (11.2) follows. ■

Let B− ⊆ Bk be the set of those vertices b ∈ Bk such that b has no neighbor in Ak in the
graph Gk+1, and let B+ := Bk − B−. We consider two cases, depending on which of the sets
B+, B− is larger.

Case 1: |B+| ⩾ |Bk|/2. Apply Lemma 11.10 to Gk+1[Ak, B+], obtaining sets Bk+1 ⊆ B+ ⊆
Bk and Xk+1 ⊆ Ak such that |Bk+1| ⩾ |B+|

300 lnn ⩾ |Bk|
600 lnn and every vertex in Bk has exactly

one neighbor in Xk+1 in Gk+1. We check the required properties of Ak+1 and Bk+1. We
have |Bk+1| ⩾ |Bk|

600 lnn ⩾ |B|
(600 lnn)k+1 by the induction assumption, so condition (B.1) holds.

Condition (B.2) holds by Claim 11.14.
To verify condition (B.3), let b ∈ Bk+1. We show that b has at most k + 1 neighbors in

X0∪. . .∪Xk∪Xk+1 in the graphGk+1. By Claim 11.15, the adjacency between b andX0, . . . , Xk

in the graph Gk+1 is the same as in the graph Gk. Therefore, b has at most k neighbors in
X0 ∪ . . . ∪Xk in the graph Gk+1, as it does so in the graph Gk by assumption. Furthermore, b
has exactly one neighbor in Xk+1 by construction. This verifies condition (B.3).

Finally, we verify condition (B.4). Let P ′ ⊆ Bk+1 be a (k+ 1)-class. By Claim 11.15 and since
every vertex inBk+1 has exactly one neighbor inXk+1, we can write P ′ = NGk+1

(a0)∩P ∩Bk+1

for some k-class P ⊆ Bk and some a0 ∈ Xk+1. We need to show that (a) brGk+1
(P ′) ⩽ d−k−1,

and that (b) P ′ does not contain distinct vertices with equal neighborhoods in Ak+1 in the
graph Gk+1.

130



Chapter 11. Neighborhood Covers

We first verify (a), that is, brGk+1
(P ′) < d− k. For all b ∈ P we have that (a0, b) ∈ E0 if and

only if brGk
(NGk

(a0) ∩ P ) = d− k. Suppose first that

brGk
(NGk

(a0) ∩ P ) < d− k. (11.3)

Then (a0, b) /∈ E0 for all b ∈ P . As E0 = E(Gk)△E(Gk+1), it follows that the neighborhood
of a0 in P is the same when evaluated in Gk and when evaluated in Gk+1. Therefore,

NGk
(a0) ∩ P ∩Bk+1 = NGk+1

(a0) ∩ P ∩Bk+1 = P ′.

In particular P ′ ⊆ NGk
(a0) ∩ P , so brGk

(P ′) < d − k by (11.3) and the monotonicity of the
branching index. Then also brGk+1

(P ′) < d−k by Claim 11.16. This confirms (a) in the considered
case. Now suppose that

brGk
(NGk

(a0) ∩ P ) ⩾ d− k. (11.4)

Then brGk
(NGk

(a0) ∩ P ) < d − k holds by (11.1). Dually to the previous case, we have that
(a0, b) ∈ E0 for all b ∈ P . By a reasoning dual to the one above,

NGk
(a0) ∩ P ∩Bk+1 = NGk+1

(a0) ∩ P ∩Bk+1 = P ′.

Again, we conclude that brGk+1
(P ′) < d− k, confirming (a).

We now verify (b), that is, we show that P ′ does not contain any pair of distinct vertices with
equal neighborhoods in Ak+1 in the graph Gk+1. Let b, b′ ∈ P ′ be distinct. Then b, b′ ∈ P , so by
assumption, b and b′ have distinct neighborhoods in Ak in the graph Gk . Let a ∈ Ak be such that

(a, b) ∈ E(Gk) ⇔ (a, b′) /∈ E(Gk).

Since b, b′ ∈ P it follows that

(a, b) ∈ E0 ⇔ (a, b′) ∈ E0.

As E(Gk+1) = E(Gk)△E0, it follows that (a, b) ∈ E(Gk+1) ⇔ (a, b′) /∈ E(Gk+1). Since a0 is
the unique neighbor of both b and b′ in Xk+1 in the graph Gk+1, and a is adjacent in Gk+1 either
to b or b′, we conclude a ̸∈ Xk+1. Therefore, awitnesses that b and b′ have distinct neighborhoods
in Ak+1 = Ak \Xk+1 in the graph Gk+1.

Thus, we verified condition (B.4), and completed Case 1.

Case 2: |B−| > |Bk|/2. LetBk+1 := B− ⊆ Bk consist of the vertices with no neighbors inAk

in the graph Gk+1. Set Xk+1 := ∅. We verify the required conditions for this choice of Bk+1

and Xk+1.
Condition (B.1) holds as |Bk+1| ⩾ |Bk|/2 ⩾ |B|

2·(600 lnn)k
⩾ |B|

(600 lnn)k+1 , condition (B.2) holds
by Claim 11.14, and condition (B.3) holds by Claim 11.15. To prove condition (B.4), we show the
following

Claim 11.17. No two distinct vertices of Bk+1 have equal neighborhoods in X0 ∪ · · · ∪Xk in Gk+1.

Proof. Suppose that distinct b, b′ ∈ Bk+1 have equal neighborhoods in X0 ∪ · · · ∪Xk in Gk+1.
Using Claim 11.15, let P be the k-class such that b, b′ ∈ P . By condition (B.4).(b), we have
that b and b′ have different neighborhoods in Ak in Gk. Let a ∈ Ak be adjacent to exactly
one of b, b′ in Gk. As b and b′ belong to the same k-class P , it follows by definition of E0 that
ab ∈ E0 ⇔ ab′ ∈ E0. As E(Gk) = E(Gk+1)△E0, we observe that a is adjacent to exactly
one of b, b′ in Gk+1. Moreover, as b, b′ ∈ B−, and vertices in B− have no neighbors in Ak in
the graph Gk, it follows that a /∈ Ak, so a ∈ X0 ∪ · · · ∪ Xk. Therefore, b and b′ have distinct
neighborhoods in X0 ∪ · · · ∪Xk in Gk+1, a contradiction which completes the proof. ■

131



Chapter 11. Neighborhood Covers

As X0 ∪ · · · ∪Xk = X0 ∪ · · · ∪Xk+1 and by Claim 11.17, we have that each (k + 1)-class P
in Gk+1 contains only a single vertex. This means we have brGk+1

(P ) = 0 which satisfies
condition (B.4).(a). Moreover, (B.4).(b) is vacuously true. This completes Case 2, and the proof of
the lemma.

Next, we proceed to Proposition 11.9, which is obtained by setting k = d in Lemma 11.13 and
studying the consequences of condition (B.4) in this case. We repeat the statement.

Proposition 11.9. Fix d ∈ N. There is a transduction Td with the following properties. Given
a bipartite graph G = (A,B,E) with n := |A| ⩾ 2 such that no vertices in B have equal
neighborhoods and brG(B) ⩽ d, there is a bipartite graphG′ = (A′, B′, E′) ∈ Td(G) withA′ ⊆ A
and B′ ⊆ B such that:

(A.1) |B′| ⩾ |B|
(600 lnn)d

,

(A.2) every vertex b ∈ B′ has at most d neighbors in A′ in the graph G′,

(A.3) all vertices in B′ have distinct neighborhoods in A′ in the graph G′.

Proof. Apply Lemma 11.13 to k = d, obtaining a formula φd(x, y) involving the edge relation E
and some unary predicates. Let Td be the transduction that first assigns these unary predicates,
then applies φd(x, y), and finally takes an arbitrary subgraph. Given a bipartite graph G =
(A,B,E), letB0, . . . , Bd, X0, . . . , Xd andGd = (A,B,E′) be as in the statement of Lemma 11.13.
Set A′ := X0 ∪ · · · ∪Xd, B′ := Bd. Let G′ := Gd[A

′, B′] be the bipartite graph induced on A′

and B′. Then G′ ∈ Td(G).
The conditions (A.1) and (A.2) follow immediately from Lemma 11.13. We verify condition

(A.3). Suppose b, b′ ∈ B′ have equal neighborhoods in A′ in the graph G′. By condition (B.4).(a)
in Lemma 11.13 applied to P = {b, b′}, we have that brGd

(P ) = 0. Hence, b and b′ have
equal neighborhoods in Gd. By condition (B.4).(b), we get b = b′. This completes the proof of
Proposition 11.9.

The next lemma combines Proposition 11.9 with Fact 11.4 and Fact 11.5.

Lemma 11.18. Fix ε > 0 and let C be a monadically stable class of bipartite graphs. Then for every
G = (A,B,E) ∈ C such that no two vertices in B have equal neighborhoods in A, we have that

|B| ⩽ OC,ε(|A|1+ε).

Proof. Let d be as in Fact 11.7, so that brG(B) ⩽ d for all G = (A,B,E) ∈ C, Let Td be as
in Proposition 11.9. Without loss of generality, we may assume |A| ⩾ 2 and that B has no
two vertices with equal neighborhoods in A, for all (A,B,E) ∈ C. We associate with every
G ∈ C a bipartite graph F (G) ∈ Td(G) satisfying the conditions listed in Proposition 11.9. Let
D = {F (G) : G ∈ C}. Then D is monadically stable, as D ⊆ Td(C) and C is monadically
stable. Moreover, the class D avoids Kd+1,d+1 as a subgraph, by condition (A.2). Therefore,
Fact 11.5 implies that D is nowhere dense. By (A.3), for every graph (A′, B′, E′) ∈ D, there is
no pair of vertices in B′ with equal neighborhoods in A′. Consider G = (A,B,E) ∈ C and
F (G) = (A′, B′, E′) ∈ D. By Fact 11.4 we have for δ := ε/2 that

|B′| ⩽ OD,δ

(︂
|A′|1+δ

)︂
.

On the other hand, by condition (A.1) we infer that

|B′| ⩾ |B|/(600 ln |A|)d.

As |A′| ⩽ |A|, we obtain

|B| ⩽ |B′| · (600 ln |A|)d ⩽ (600 ln |A|)d ·OD,δ

(︂
|A|1+δ

)︂
⩽ OC,d,ε

(︁
|A|1+ε

)︁
.

132



Chapter 11. Neighborhood Covers

Theorem 11.3, restated for convenience, now follows easily.

Theorem 11.3. Let C be a monadically stable graph class and ε > 0. Then for every G ∈ C and
A ⊆ V (G),

|{NG[v] ∩A : v ∈ V (G)}| ⩽ OC,ε(|A|1+ε).

Proof. Define the following class of bipartite graphs B:

B := {G[A,B] : G ∈ C, A,B ⊆ V (G), A ∩B = ∅}.

As C is monadically stable, it follows that B is as well. By Lemma 11.18, for all (A,B,E) ∈ B
such that no two vertices in B have equal neighborhoods we have:

|B| ⩽ OB,ε
(︁
|A|1+ε

)︁
.

Let G ∈ C and A ⊆ V (G). Choose an inclusion-maximal set B ⊆ V (G)− A such that no
two vertices of B have equal neighborhoods in A, in the graph G. Then no two vertices of B
have equal neighborhoods in A in the bipartite graph G[A,B] ∈ B. Therefore:

|{N [v] ∩A : v ∈ V (G)}| ⩽ |{N [v] ∩A : v ∈ A}|+ |{N [v] ∩A : v ∈ B}|
⩽ |A|+ |B| ⩽ |A|+OB,ε

(︁
|A|1+ε

)︁
⩽ OC,ε

(︁
|A|1+ε

)︁
.

11.2 Neighborhood Covers via Welzl Orders

We first reduce the problem of finding a distance-r cover in a graph G, to finding a distance-1
cover in an interpretation of G. Let the rth power of G, denoted Gr, be the graph on the same
vertex set as G where vertices u, v are adjacent if and only if the distance between u and v in G
is at most r. Note that for every fixed r, Gr can be easily interpreted in G using a formula that
checks whether the distance between u and v is at most r. The next lemma shows that finding a
distance-1 neighborhood cover in Gr immediately yields a distance-r neighborhood cover in G
with the same overlap.

Lemma 11.19. Let G be a graph, r be a positive integer, and K be a distance-1 neighborhood cover
of Gr of diameter d. Then K is also a distance-r neighborhood cover of G of diameter at most d · r.

Proof. That K is a distance-r neighborhood cover of G follows immediately from the observation
that for every vertex u, NGr

1 [u] = NG
r [u]. That the weak diameter of K is at most d · r follows

immediately from the triangle inequality and the definition of the graph Gr .

In this section we provide a construction of neighborhood covers with small overlap for
monadically stable graph classes. Formally, we prove the following result.

Theorem 11.2. There is an algorithm that, given an n-vertex graphG and a radius r ∈ N, computes
a distance-r neighborhood cover ofG with diameter at most 4r in timeO(n5). For every monadically
stable class C containing G and every ε > 0, the overlap of the cover is bounded by OC,r,ε(n

ε).

We note that the algorithm of Theorem 11.2 does not depend on the class C or the value of ε:
it is a single algorithm that, when supplied with a graph G ∈ C and radius r ∈ N, will always
output a neighborhood cover of G with diameter and overlap bounded as asserted.

The main ingredient towards proving Theorem 11.2 will be a tool introduced by Welzl [85] in
the context of geometric range queries, called spanning paths with low crossing number, which

133



Chapter 11. Neighborhood Covers

we will call Welzl orders. To introduce them, we need some definitions. We remark that for
convenience, our terminology slightly differs from that of Welzl.

Consider a set system S = (U,F), where U is a finite universe and F is a family of subsets
of U . We call the elements of U and F the points and ranges in S . The (primal) shatter function
of S is the function πS(·) that assigns each positive integer n the value

πS(n) := max
A⊆U,|A|⩽n

|{X ∩A : X ∈ F}|.

In other words, πS(n) is the largest number of traces that the sets from F leave on a subset
A ⊆ U of size n, where the trace left by X ∈ F on A is X ∩A. For example, the Sauer-Shelah
Lemma states that if the VC dimension of S is d, then πS(n) ⩽ O(nd). On the other hand, from
Theorem 11.3 we immediately obtain the following.

Corollary 11.20. Let C be a monadically stable graph class and D be the class of set systems of
closed neighborhoods of graphs in C, that is,

D :=
{︁(︁
V (G), {NG[u] : u ∈ V (G)}

)︁
: G ∈ C

}︁
.

Then for every S ∈ D, we have πS(n) ⩽ OC,ε(n
1+ε) for all ε > 0.

Given a set system S = {U,F}, we define its dual to be the set system S∗ := {F , U∗} where

U∗ :=
⋃︂
u∈U

Ru with Ru := {F ∈ F : u ∈ F}.

The dual shatter function π∗S(·) := πS∗(·) of S is the shatter function of its dual S∗. In general set
systems the primal and dual shatter function bound each other by polynomial factors. For set
systems arising from neighborhoods in undirected graphs, this link is much stronger, due to the
symmetry of the edge relation.

Lemma 11.21. For every graph G, set system S =
(︁
V (G), {NG[u] : u ∈ V (G)}

)︁
, and n ∈ N, we

have
π∗S(n) ⩽ πS(n).

We remark that, again for graphs, the reverse direction also holds: π∗S(·) = πS(·). However,
we will only use the bound stated above, which we prove below.

Proof. Using the symmetry of the edge relation, for every u ∈ V (G) and range Ru in S∗ we have

Ru = {NG[v] : u ∈ NG[v], v ∈ V (G)} = {NG[v] : v ∈ NG[u]}. (11.5)

Consider vertices v1, . . . , vn ∈ V (G) and u1, . . . , um ∈ V (G) witnessing that π∗S(n) ⩾ m. This
means A∗ = {NG[v1], . . . , NG[vn]} is a set of n points in S∗ and B∗ := {Ru1 , . . . , Rum} is a set
ofm ranges in S∗ with pairwise different traces onA∗. By (11.5), we haveNG[ui] ̸= NG[uj ] for all
i ̸= j ∈ [m]. Then A := {v1, . . . , vn} is a set of n points in S and B := {NG[u1], . . . , NG[um]}
is a set of m ranges in S .

To prove πS(n) ⩾ m, it remains to show that the ranges in B have pairwise different traces
in A. Consider two distinct ranges NG[u] and NG[v] from B. Then Ru and Rv have pairwise
different traces on A∗. This is witnessed by a vertex d ∈ A such that NG[d] ∈ Ru△Rv , where △
denotes the symmetric difference. By (11.5), we have d ∈ NG[u]△NG[v], which proves that
NG[u] and NG[v] have different traces on A.

Next, for a set system S = (U,F) and a total order ≼ on U , we define the crossing number
of ≼ as follows. For X ∈ F , the crossing number of X with respect to ≼ is the number of pairs
(u, u′) of elements of U such that

134



Chapter 11. Neighborhood Covers

• u′ is the immediate successor of u in ≼, and
• exactly one of u and u′ belongs to X .

Note that this is equivalent to the following: the crossing number of X is the least k such that ≼
can be partitioned into k + 1 intervals so that every interval is either contained in or disjoint
from X . Then the crossing number of ≼ is the maximum crossing number of any X ∈ F with
respect to ≼. The following statement was proved in [85].

Fact 11.22 (Thm. 4.2 and Lem. 3.3 of [85], see also Thm. 4.3 of [10]). Suppose S = (U,F) is a set
system with dual shatter function π∗S(n) ⩽ O(nd), where d > 1 is a real. Then there exists a total
order ≼ on U with crossing number bounded by O(|U |1−1/d · log |U |).

The proofs of Fact 11.22 given in [85] and [10] are constructive, but no precise runtime analysis
is given. In Section 11.3, we analyze the construction and give a runtime bound:

Lemma 11.23. There is an algorithm that given a set system S = (V (G), {N [v] : v ∈ V (G)})
arising from an n-vertex graph G, computes an order as in Fact 11.22 in time O(n5).

We note that the construction of Fact 11.22 does not need to be supplied with the value of d:
it is a single algorithm that, given S , computes a total order ≼, and the guarantee on the crossing
number of ≼ follows from the assumption on the growth function of S .

Next, we show that, given a total order with a low crossing number, we can construct a
neighborhood cover with a small overlap and constant diameter using a relatively easy greedy
construction.

Lemma 11.24. Suppose G = (V,E) is a graph, S := (V, {N [u] : u ∈ V }) is the set system of
closed neighborhoods in G, and ≼ is a total order on V with crossing number k (with respect to S).
Then G admits a distance-1 neighborhood cover with diameter at most 4 and overlap at most k + 1,
and such a neighborhood cover can be computed, given G and ≼, in time O(|V |3).

Proof. We need some auxiliary definitions about the order ≼. An interval is a set I ⊆ V that is
convex in ≼: u ≼ v ≼ w and u,w ∈ I entails v ∈ I . A prefix of an interval I is an interval J
such that u, v ∈ I , u ≼ v and v ∈ J entails u ∈ J . An interval I is compact if I ⊆ N [u] for some
u ∈ V . We perform the following greedy construction of a partition I of V into intervals:

• Start with I := ∅.
• As long as V \

⋃︁
I ≠ ∅, let I be the largest prefix of V \

⋃︁
I that is compact. Then add I

to I .
Thus, I consists of compact nonempty intervals. A straightforward implementation of the
procedure presented above computes I in time O(|V |3).

We claim that K := {N [I] : I ∈ I} is a neighborhood cover of G of diameter at most 4 and
overlap at most k + 1. That K is a neighborhood cover is clear: if u is a vertex and I ∈ I is such
that u ∈ I , then N [u] ⊆ N [I]. Also observe that the compactness of every I ∈ I implies that
N [I] has weak diameter at most 4. We are left with proving the claimed bound on the overlap.

Fix any vertex v ∈ V . Call a vertex u ∈ V a crossing for v if u has a successor u′ in ≼ and
N [v] contains exactly one of the vertices u and u′. Since S has crossing number k, there are at
most k distinct crossings for v. We claim the following:

for every interval I ∈ I such that v ∈ N [I],
I contains a crossing for v or I contains the ≼-largest element of V .

Since there can be at most k crossings for v and at most one interval can contain the ≼-largest
element, this claim will conclude the proof: it implies that v belongs to at most k + 1 clusters
of K.

135



Chapter 11. Neighborhood Covers

To show the claim, first note that v ∈ N [I] implies that I ∩N [v] ̸= ∅. If also I \N [v] ̸= ∅
then clearly I contains a crossing for v, so assume otherwise: I ⊆ N [v]. Let u be the largest
element of I in the ≼ order. Unless u is actually the ≼-largest element of V , u has a successor u′
and u′ ∈ I ′ ∈ I for some I ′ ̸= I . Also, unless u itself is a crossing for v, we have u′ ∈ N [v]. We
now observe that I ∪ {u′} is an interval that is compact, as witnessed by the vertex v, and is
strictly larger than I . This contradicts the construction of I : in the round when I was added to I ,
we could have added the larger interval I ∪ {u′} instead. This concludes the proof of the claim
and of the lemma.

We may now combine all the gathered tools and prove Theorem 11.2.

Proof of Theorem 11.2. Let G ∈ C be the input graph. By Lemma 11.19, it suffices to compute
a distance-1 neighborhood cover with diameter 4 for the rth power Gr = (V,E) ∈ Cr of G,
where Cr is the class that contains the rth power of every graph in C. As C interprets Cr , the latter
class is still monadically stable. The graphGr can be computed in timeO(r · |V |2) fromG, and we
can assume r ⩽ |V | without loss of generality. Let S := (V, {N [u] : u ∈ V }) be the set system
of closed neighborhoods in Gr . By Lemma 11.21 and Corollary 11.20, we have π∗S(n) ⩽ πS(n) ⩽
OC,r,ε(n

1+ε) for every ε > 0. Apply the algorithm of Fact 11.22 to S , to obtain a total order ≼
on V such that the crossing number of ≼ is bounded by OC,r,ε(|V |1−

1
1+ε · log |V |) ⩽ OC,r,ε(|V |ε)

for every ε > 0. By Lemma 11.23, this application takes time O(|V |5). It now suffices to apply
the algorithm of Lemma 11.24 to Gr and ≼.

11.3 Computing Welzl Orders

Fact 11.22 (Thm. 4.2 and Lem. 3.3 of [85], see also Thm. 4.3 of [10]). Suppose S = (U,F) is a set
system with dual shatter function π∗S(n) ⩽ O(nd), where d > 1 is a real. Then there exists a total
order ≼ on U with crossing number bounded by O(|U |1−1/d · log |U |).

Lemma 11.23. There is an algorithm that given a set system S = (V (G), {N [v] : v ∈ V (G)})
arising from an n-vertex graph G, computes an order as in Fact 11.22 in time O(n5).

Proof. Fix a set system S = (U = V (G),F = {N [v] : v ∈ V (G)}) arising from an n-vertex
graphG. We summarize the construction given in [10, Thm. 4.3] and analyze its running time. The
source uses slightly different notation. The goal is to produce a spanning path with low crossing
number. A spanning path for a subset X ⊆ U is a symmetric, irreflexiv relation P ⊆ X2 such
that the graph with verticesX and edges P is a path. A rangeR ∈ F crosses an edge (u, v) ∈ P if
|{u, v} ∩R| = 1. Given a spanning path P and a range R ∈ F , we denote by cn(R) the number
of edges crossed by R in P . The crossing number of P is defined as maxR∈F cn(R). It is easy
to see that a spanning path for X with low crossing number naturally corresponds to a total
order of X with low crossing number, as defined in Chapter 11. We analogously say that P is a
spanning tree (forest) for X if the graph (X,P ) forms a tree (forest).

The first observation is that any spanning tree T for a set X can be converted into a spanning
path P for the same set, whose crossing number is at most twice that of T ([10, Lem. 3.1]). P is
obtained from T by a simple depth-first traversal that can be executed in time O(n). This reduces
the problem to computing a spanning tree with low crossing number.

The spanning tree is constructed in [10, Thm. 4.3]. The edges of the spanning tree are inserted
iteratively. In each iteration a subalgorithm computes 1

2 |U | edges that form a forest. The edges
are inserted between the elements of U . Then U is pruned by keeping only one vertex of each
tree of the forest and the next iteration starts. After O(log(n)) rounds a complete spanning tree
has been constructed.

136



Chapter 11. Neighborhood Covers

We next describe the subalgorithm [10, Lem. 4.2] that constructs a forest. This algorithm runs
on a system (U1,F1) where U1 ⊆ U and F1 contains the ranges from F , each augmented with
a weight that is initially set to 1. The algorithm starts with an edgeless forest. In each step of
the algorithm, we pick an edge (u, v) ∈ U2

i where the sum of the weights of the ranges from Fi

crossing it is minimal. We add (u, v) to the forest, obtain Ui+1 from Ui by removing either u
or v, and obtain Fi+1 from Fi by doubling the weights of all the ranges that cross (u, v). The
procedure is repeated until the forest contains at least 1

2 |U1| edges. This finishes the description
of the algorithm to build a spanning path with low crossing number.

Let us now bound the running time of the algorithm. During the ith iteration of the subalgo-
rithm [10, Lem. 4.2], we maintain a data structure in which

• each range in Fi is linked to all edges from U2
i it crosses, and

• each edge from U2
i stores the summed weight of all the ranges that cross it.

Recall that both Ui and Fi have size at most n. Assuming we can test adjacency between two
vertices of G in constant time, an initial data structure for U1 and F1 can be constructed in time
O(n3). Now in a single iteration:

1. We sort the edges from U2
i by their summed weights to find an edge ei with minimum

summed weight. This requires O(n2 · log(n)) weight comparisons.
2. We add ei to the forest, remove it from Ui+1, double the weight of every range R that

crosses ei and update the summed weights of each edge that R crosses. This requires a total
of O(n3) weight additions.

Due to the doubling, the weights can get quite large. However since the number of iterations is
bounded by n, the weights can be represented by bit arrays of lengthO(n), on which comparisons
and summations can be carried out in time O(n). The running time to insert a single edge can
therefore be bounded by O(n4). Each inserted edge becomes an edge of the spanning tree, which
has a total of n − 1 edges. We can therefore bound the running time of all the calls to the
subalgorithm by O(n5). This dominates the total running time.

We remark that the running time of the algorithm could be improved, for example by intro-
ducing a rounding mechanism to avoid large weights (see e.g. [59, Sec. 5]).

137



Chapter 12

Model Checking

In this chapter we present the model checking algorithm for monadically stable graph classes.

12.1 Preliminaries

We introduce some additional definitions.

Unary expansions. In this chapter, we allow graphs to be expanded by unary predicates. More
precisely, a graph G is as relational structure with a finite universe V (G) over a finite signature Σ
consisting of the binary, irreflexive edge relation E and a finite number of unary predicates. Most
of the time, the signature Σ will be clear from the context and we will not mention it explicitly.
For a graph G and a unary predicate P in the signature of G, we say that P is interpreted by
{v ∈ V (G) : G |= P (v)}. This definition of a graph is similar to the definition of a coloring of a
graph, that was used in previous chapters. However, we do not require that the unary predicates
from Σ partition the vertex set: Instead of being assigned exactly one color, a vertex may satisfy
multiple unary predicates (or also none at all). In order to not confuse the two notions, this
chapter will only use the above definition of a graph and never use colorings.

We will commonly construct unary expansions, that is, we expand graphs with additional
unary predicates. We introduce some convenient notation for this task. For a graph G over
the signature Σ and a subset of its vertices W ⊆ V (G), we write G⟨X ↦→ W ⟩ for the graph G
over the signature Σ ∪ {X} where the predicate X is interpreted as W . We write G⟨W ⟩ as a
shorthand for G⟨W ↦→ W ⟩, where (by slight abuse of notation) we identify a relation symbol
with its interpretation. For a family U = {U1, . . . , Ut} of subsets of V (G), we write G⟨U⟩ or
G⟨U1, . . . , Ut⟩ as a shorthand for G⟨U1⟩ . . . ⟨Ut⟩.

Types. Let G be a graph and ā ∈ V (G)|ā| be a tuple in G. We denote by tpq(G, ā) the finite set
of all normalized formulas φ(x̄) with |x̄| = |ā| and quantifier rank at most q over the signature
of G such that G |= φ(ā). We write tpq(G) := tpq(G, ∅) for the set of all normalized sentences
of quantifier rank at most q that hold in G.

12.2 Guarded Formulas and Local Types

12.2.1 Guarded Formulas

Given a set of unary predicates U , we say a formula is U-guarded if every quantifier is of the
form ∃x ∈ U or ∀x ∈ U for some U ∈ U . Our model checking algorithm crucially builds on the

138



Chapter 12. Model Checking

simple observation that when evaluating guarded sentences, we can ignore all vertices outside
the guarding sets.

Observation 12.1. Given a graph G and a family U = {U1, . . . , Ut} of subsets of V (G). Inter-
preting each set from U as a unary predicate, we have for every U-guarded sentence φ that

G⟨U1, . . . , Ut⟩ |= φ ⇔ G⟨U1, . . . , Ut⟩[U1 ∪ . . . ∪ Ut] |= φ.

Our goal is to compute a representative set of guards U = {U1, . . . , Ut} such that we can
translate our input formula φ into an equivalent U-guarded formula. Here, crucially, the size t
of U shall depend only on φ (and eventually the depth of the recursion on C). Assume for now that
we have recursively computed a large set of candidate guards {V1, . . . , Vm}. Then the selection
of the set U is based on the following key theorem that we prove in the remainder of this section.

Theorem 12.14. Let G be a graph and let A,B ⊆ V (G) be vertex sets such that dist(A,B) > 2k

and tpk(G⟨X ↦→ A⟩
[︁
N2k−1−1[A]

]︁
) = tpk(G⟨X ↦→ B⟩

[︁
N2k−1−1[B]

]︁
). Let w̄ ∈ V (G)|ȳ| be

vertices with dist(w̄, A ∪B) ⩾ 2k . Then for every formula φ(ȳ, x) of quantifier rank at most k − 1
in the signature of G we have G⟨A⟩ |= ∃x ∈ A φ(w̄, x) ⇔ G⟨B⟩ |= ∃x ∈ B φ(w̄, x).

Intuitively, the theorem states the following. Given a graph G and two sets A and B whose
neighborhoods look alike and which are far from each other. If we find an element a ∈ A
satisfying a first-order property φ(x), then we also find an element b ∈ B satisfying the same
property, which will allow us to restrict quantification to appropriately chosen guard sets.

Note that the locality radius in the theorem naturally corresponds to distances that can
be expressed with k − 1 quantifiers. The proof of the theorem is based on the notion of local
types, which were introduced in [40]. Local types over graphs capture the locality properties of
first-order logic by identifying the semantic restriction to 2k−1-neighborhoods with the ability
of first-order logic to syntactically make these restrictions. We remark that the results of this
section do not directly translate to structures with relations of arity greater than 2, since defining
distances in (the Gaifman graph of) such structures may require the use of additional quantifiers.
Some of the results we prove here were proved in a different notation already in [40] and in the
lecture notes of Szymon Toruńczyk [82], while some lemmas and in particular the main theorem
of this section, Theorem 12.14, is new. We provide all proofs for consistency and completeness.

Our proof of Theorem 12.14 proceeds as follows. In Section 12.2.2 we recall the notion of
Ehrenfeucht-Fraı̈ssé games (short EF-games), which are a classical tool of finite model theory to
understand the expressiveness of first-order logic. We introduce a local variant of the games in
Section 12.2.3, where all moves are restricted to the local neighborhoods of elements that were
played before. Classically, EF-games can be played on two different structures. In Section 12.2.4
we show that, when playing on the same graph, local games determine global games. We relate
local games with local types in Section 12.2.5. Up to this point, most of the results were provided in
a similar form already in [40]. Towards the proof of Theorem 12.14 we now extend the framework
and incorporate guards into local games in Section 12.2.6.

12.2.2 Games

The EF-game is played by two players called Spoiler and Duplicator on two structures. It is Spoiler’s
goal to distinguish the two structures, while Duplicator wants to show that the structures cannot
be distinguished. The connection with first-order logic is as follows: Duplicator has a winning
strategy in the q-round EF-game on two structures if and only if the two structures satisfy the
same sentences of quantifier rank at most q. In this work, we consider only games that are played
on a single graph with different distinguished vertices ā and b̄. We refer to the literature for
extensive background on EF-games, for example, to the textbook [57].

139



Chapter 12. Model Checking

Each position of the game is a tuple (G, ā, b̄, k) consisting of a graphG that is fixed throughout
the game, two non-empty tuples of vertices ā, b̄ of equal length, and a counter k ∈ N that keeps
track of the number of rounds that are still to play. The game starts in some position (G, ā0, b̄0, q).
If we are currently at a position (G, ā, b̄, k), one round of the game proceeds as follows.

• Spoiler selects a vertex of G as ak (he makes an a-move) or as bk (he makes a b-move).
• If Spoiler made an a-move, then Duplicator has to reply with a b-move, that is, select a

vertex of G as bk, or if he made a b-move, then she has to reply with an a-move, that is,
select a vertex of G as ak.

• The game continues at position (G, āak, b̄bk, k − 1).
The game terminates when k = 0. Assume that a final position (G, aℓ, . . . , a1, bℓ, . . . , b1, 0)

is reached (ℓ = k + |ā|). We say this is a winning position for Duplicator if (aℓ, . . . , a1, bℓ, . . . , b1)
defines a partial automorphism on G if for all 1 ⩽ i, j ⩽ ℓ,

• ai = aj ⇔ bi = bj ,
• ai and bi satisfy the same unary predicates in G, and
• (ai, aj) ∈ E(G) ⇔ (bi, bj) ∈ E(G).

In the language of types: atpG(aℓ . . . a1) = atpG(bℓ . . . b1).
We say that Duplicator has a winning strategy from a position if she can play such that she

reaches – no matter how Spoiler plays – a winning position for Duplicator. Otherwise, we say
Spoiler has a winning strategy. We write (G, ā) ∼=k (G, b̄) if Duplicator has a winning strategy
from position (G, ā, b̄, k). The proof of the following classical result can be found, for example, in
[57, Theorem 3.9].

Lemma 12.2. (G, ā) ∼=k (G, b̄) if and only if tpk(G, ā) = tpk(G, b̄).

12.2.3 Local Games

It is well known that first-order logic can express only local properties of graphs. In particular,
for every k and d ⩽ 2k there exists a formula of quantifier rank k that can determine if the
distance between two elements is exactly d, while there is no formula with k quantifiers that can
distinguish between distances strictly greater than 2k. This fact motivates our next definition of
local games. The key observation is that in a position (G, ā, b̄, k) when an element ak at distance
at most 2k−1 from ā is chosen by Spoiler, then Duplicator must respond with an element bk at
the exactly same distance to b̄, (and vice versa) as otherwise Spoiler can change his strategy to
simply point out the difference in distances. On the other hand, these locality properties imply
that Spoiler will never select an element at distance greater than 2k−1 from both ā and b̄, as this
element could simply be copied by Duplicator.

At a position (G, ā, b̄, k), we say that a move (by Spoiler or Duplicator) is local if it is an
a-move and contained in N2k−1 [ā] or if it is a b-move and contained in N2k−1 [b̄]. We define
the local EF-game as the EF-game where we require that both players are only allowed to play
local moves. We call the regular EF-game global to distinguish it from the local game. We
write (G, ā) ∼=local

k (G, b̄) if Duplicator has a winning strategy for the local game from position
(G, ā, b̄, k).

12.2.4 Local Games Determine Global Games

We will argue that the local and global EF-games are equivalent when we start from positions
(G, ā, b̄, k) such that ā and b̄ are at distance greater than 2k+1. Towards this goal, we formally
prove the above observations. First, we observe that Duplicator has to respond to a local move of
Spoiler with her own local move.

140



Chapter 12. Model Checking

Lemma 12.3 (see Lemma 9.2 of [82]). Consider the global game at a position (G, ā, b̄, k). Assume
Spoiler made a local a-move ak ∈ N2k−1 [ā], say ak ∈ N2k−1 [aj ] for aj ∈ ā and Duplicator answers
with a b-move bk ̸∈ N2k−1 [b̄j ], or symmetrically, Spoiler made a local b-move bk ∈ N2k−1 [b̄], say
bk ∈ N2k−1 [bj ] for some bj ∈ b̄ and Duplicator answers with an a-move ak ̸∈ N2k−1 [āj ]. Then
Spoiler has a winning strategy for the remaining global game from position (G, āak, b̄bk, k − 1). In
particular, if Duplicator answers with a non-local move to a local move, she loses the game.

Proof. We prove the statement by induction on k. By symmetry, we may assume that Spoiler
makes an a-move. For k = 1 the claim is true, as a1 ∈ N1[aj ] ⇔ b1 ∈ N1[bj ] is necessary for
(āa1, b̄b1) to be a partial automorphism.

Now assume k > 1. As ak ∈ N2k−1 [aj ], Spoiler can play ak−1 ∈ N2k−2 [ak] ∩ N2k−2 [aj ]
as his next move. As bk ̸∈ N2k−1 [bj ], no matter which bk−1 Duplicator plays as a response,
either bk−1 ̸∈ N2k−2 [bk] or bk−1 ̸∈ N2k−2 [bj ]. If bk−1 ̸∈ N2k−2 [bk], then by induction hypothesis
applied to position (G, ak, bk, k − 1), Spoiler wins from position (G, akak−1, bkbk−1, k − 2). If
bk−1 ̸∈ N2k−2 [bj ], then by induction hypothesis applied to position (G, aj , bj , k−1), Spoiler wins
from position (G, ajak−1, bjbk−1, k−2). Since adding more preselected vertices only helps Spoiler,
he would win in particular the remaining game from position (G, āakak−1, b̄bk, b̄k−1, k− 2).

Lemma 12.4 (see Lemma 3.5 of [40]). Consider tuples of vertices ā, ā′, b̄, b̄′ in a graph G such
that dist(ā, ā′) > 2k and dist(b̄, b̄′) > 2k. Then (G, āā′) ∼=local

k (G, b̄b̄
′
) if and only if both

(G, ā) ∼=local
k (G, b̄) and (G, ā′) ∼=local

k (G, b̄
′
).

Proof. We prove the statement by induction on k. For k = 0, observe that

dist(ā, ā′), dist(b̄, b̄′) > 20 = 1,

and thus there are no edges between ā and ā′ or between b̄ and b̄′ in G. This means (āā′, b̄b̄′) is a
partial automorphism if and only if both (ā, b̄) and (ā′, b̄

′
) are partial automorphisms. This proves

the statement for k = 0. Next, assume the statement holds for k − 1 and we will prove it for k.
Assume (G, ā) ∼=local

k (G, b̄) and (G, ā′) ∼=local
k (G, b̄

′
). Note that in particular (G, ā′) ∼=local

k−1

(G, b̄
′
). We consider the local game at position (G, āā′, b̄b̄

′
, k) and show that Duplicator has

a winning strategy. By symmetry, without loss of generality, Spoiler starts with an a-move
ak ∈ N2k−1 [ā]. Duplicator responds according to the winning strategy for the local game at
position (G, ā, b̄, k) yielding bk ∈ N2k−1 [b̄] such that (G, āak) ∼=local

k−1 (G, b̄bk). By assumption,
dist(ā, ā′) > 2k and dist(b̄, b̄′) > 2k, and thus dist(āak, ā′) > 2k−1 and dist(b̄bk, b̄

′
) > 2k−1. By

induction, since (G, āak) ∼=local
k−1 (G, b̄bk) and (G, ā′) ∼=local

k−1 (G, b̄
′
), we have (G, āakā

′) ∼=local
k−1

(G, b̄bk b̄
′
). Since we made no assumptions on Spoiler’s local move, this implies (G, āā′) ∼=local

k

(G, b̄b̄
′
).

Conversely, assume (G, ā) ̸∼=local
k (G, b̄) or (G, ā′) ̸∼=local

k (G, b̄
′
). Without loss of generality,

(G, ā) ̸∼=local
k (G, b̄). We consider the local game at position (G, āā′, b̄b̄

′
, k). Spoiler chooses ak ∈

N2k−1 [ā] according to his winning strategy at position (G, ā, b̄, k). By Lemma 12.3, Duplicator
responds with bk ∈ N2k−1 [b̄], which is a valid turn in the local game on position (G, ā, b̄, k).
As Spoiler played according to his winning strategy on that position, we have (G, āak) ̸∼=local

k−1

(G, b̄bk). Again we have dist(āak, ā′) > 2k−1 and dist(b̄bk, b̄
′
) > 2k−1 and, by induction, we

have (G, āakā′) ̸∼=local
k−1 (G, b̄bk b̄

′
). Since we made no assumptions on Duplicator’s local move this

implies (G, āā′) ̸∼=local
k (G, b̄b̄

′
).

Theorem 12.5 (see Lemma 9.4 of [82]). Consider a graph G with tuples ā, b̄ such that dist(ā, b̄) >
2k+1. Then

(G, ā) ∼=k (G, b̄) ⇔ (G, ā) ∼=local
k (G, b̄).

141



Chapter 12. Model Checking

Proof. The forward direction is easy. Duplicator’s winning strategy for the global game when
Spoiler makes only local moves is also a winning strategy for the local game, since by Lemma 12.3
her winning strategy responds locally to local moves.

We prove the backward direction by induction on k. For k = 0 the global and local game are
the same, hence the statement is true. Assume it holds for k − 1 and we will prove that it also
holds for k. We first prove the following claim.

Claim 12.6. If Duplicator a winning strategy for the game from position (G, ā, b̄, k) where the first
round is local and the remaining rounds are global, then she also has a winning strategy for the
global game from position (G, ā, b̄, k).

Proof. We will give a winning strategy for Duplicator for the global game at position (G, ā, b̄, k).
Without loss of generality, we can assume Spoiler starts the game with an a-move. If Spoiler opens
with a local move, then Duplicator can respond according to her given first-local-then-global
winning strategy for the position and win the game.

Thus, we may assume that Spoiler opens with a non-local move ak ̸∈ N2k−1 [ā]. We start
by arguing that there exists an element bk ̸∈ N2k−1 [b̄] with (G, ak) ∼=local

k−1 (G, bk): if ak ̸∈
N2k−1 [b̄], then we can choose bk = ak and are done. Thus assume ak ∈ N2k−1 [b̄]. We will use
a role-swapping argument: if Spoiler had played the local element ak ∈ N2k−1 [b̄] as a b-move
(under the name bk), then Duplicator’s winning strategy of the first-local-then-global game
would have replied by Lemma 12.3 with an element bk ∈ N2k−1 [ā] as an a-move (under the
name ak). Duplicator would win the remaining (k − 1)-round global game, or in other words
(G, b̄ak) ∼=k−1 (G, ābk). By the forward direction of the theorem, which was already proved
above, also (G, b̄ak) ∼=local

k−1 (G, ābk). In particular, we also have (G, ak) ∼=local
k−1 (G, bk). Since

bk ∈ N2k−1 [ā] and dist(ā, b̄) > 2k+1 > 2k we have bk ̸∈ N2k−1 [b̄]. This yields the desired
bk ̸∈ N2k−1 [b̄] with (G, ak) ∼=local

k−1 (G, bk).
Duplicator now responds to Spoiler’s move ak with bk. Since Duplicator has a k-round

winning strategy for the game with preselected tuples ā, b̄ where the first round is local and the
remaining rounds are global, she in particular has a (k − 1)-round winning strategy for these
tuples, that is, (G, ā) ∼=k−1 (G, b̄), and hence (G, ā) ∼=local

k−1 (G, b̄) by the forward direction of the
theorem. Since ak ̸∈ N2k−1 [ā], bk ̸∈ N2k−1 [b̄], we have dist(ā, ak) > 2k−1 and dist(b̄, bk) > 2k−1.
We can thus apply Lemma 12.4 for k− 1 to the tuples ā, ak, b̄, bk: Since (G, ak) ∼=local

k−1 (G, bk) and
(G, ā) ∼=local

k−1 (G, b̄), it follows that (G, āak) ∼=local
k−1 (G, b̄bk). By induction hypothesis we have

(G, āak) ∼=k−1 (G, b̄bk). Since we made no assumptions on Spoiler’s first move, Duplicator has a
winning strategy in the global game from position (G, ā, b̄, k). ■

We are ready to prove the backwards direction of the statement. Assume (G, ā) ∼=local
k (G, b̄).

By the previous claim it suffices to show that Duplicator has a winning strategy for the game from
position (G, ā, b̄, k) where the first round is local and the remaining rounds are global. Hence, let
ak ∈ N2k−1 [ā] be a local a-move of Spoiler. We let bk ∈ N2k−1 [b̄] be Duplicator’s response that
she would play as a winning move in the local game, that is, we have (G, āak) ∼=local

k−1 (G, b̄bk).
Since dist(ā, b̄) > 2k+1, and ak ∈ N2k−1 [ā], bk ∈ N2k−1 [b̄], it follows that dist(āak, b̄bk) > 2k

(see Figure 12.1).
By induction hypothesis we have (G, āak) ∼=k−1 (G, b̄bk). As the first move was an arbitrary

local a-move, this yields a winning strategy of Duplicator for the game at position (G, ā, b̄, k)
where the first round is local and the remaining rounds are global. By the previous claim,
(G, ā) ∼=k (G, b̄).

While we do not prove, whether the distance requirement dist(ā, b̄) > 2k+1 in Theorem 12.5
is tight, the example in Figure 12.2 illustrates that some form of distance requirement is necessary
for the theorem to hold. Let k = 1. Then (G, a) ∼=local

k (G, b). However, (G, a) ̸∼=k (G, b) as in

142



Chapter 12. Model Checking

>2k+1︷ ︸︸ ︷︸ ︷︷ ︸
>2k+1−2·2k−1=2k

︸ ︷︷ ︸
2k−1

︸ ︷︷ ︸
2k−1

ā b̄

ak

bk
N2k−1 [ā] N2k−1 [b̄]

Figure 12.1: Bounding dist(āak, b̄bk) from below.

the global game, Spoiler can choose the uppermost red element as a global b-move. Duplicator
cannot reply with a red element that is not adjacent to a, and hence loses the game.

a b

Figure 12.2: An example illustrating the need for a distance constraint in Theorem 12.5.

12.2.5 Local Games and Local Types

We now establish the connection between local games and local first-order logic. Unlike in
Gaifman’s Locality Theorem, we do not increase the quantifier rank when localizing formulas.

LetG be a graph and ā be a tuple of vertices ofG. It is well known that tpq(G, ā) = tpq(G, b̄) if
and only if (G, ā) ∼=q (G, b̄). The localization of a formula φwith free variables is the formula with
the same free variables as φ that replaces every subformula ∃x ψ(x, ȳ) with ∃x∈N2k [ȳ] ψ(x, ȳ)
(or more precisely ∃x x∈N2k [ȳ] ∧ ψ(x, ȳ)), where k is the quantifier rank of ψ. Likewise, every
subformula ∀x ψ(x, ȳ) is replaced with ∀x∈N2k [ȳ] ψ(x, ȳ) (or more precisely ∀x x∈N2k [ȳ] →
ψ(x, ȳ)).

We call a formula local if it is the localization of some formula. As the following lemma shows,
localizing a formula does not change its quantifier rank.

Lemma 12.7. There exists a formula with quantifier rank k and free variables xȳ expressing that
x ∈ N2k [ȳ].

Proof. We can check whether x ∈ N20 [ȳ] using the quantifier-free formula⋁︂
y∈ȳ

E(x, y) ∨ x = y.

For k > 0, we note that x ∈ N2k [ȳ] if and only if ∃z(z ∈ N2k−1 [x] ∧ z ∈ N2k−1 [ȳ]).

LetG be a graph and ā ∈ V (G)|ā| be a tuple inG. We partition the finite set of all (normalized)
local formulas φ(x̄) with |x̄| = |ā| and quantifier rank at most q over the signature of G into

143



Chapter 12. Model Checking

the sets tplocal
q (G, ā) and tplocal

q (G, ā) such that φ(x̄) ∈ tplocal
q (G, ā) if and only if G |= φ(ā) and

conversely φ(x̄) ∈ tplocal
q (G, ā) if and only if G ̸|= φ(ā). We call tplocal

q (G, ā) the local q-type of ā
in G.

We next relate local types and local games.

Lemma 12.8. If tplocal
k (G, ā) = tplocal

k (G, b̄), then (G, ā) ∼=local
k (G, b̄).

Proof. We prove the claim by induction on k. For k = 0, tplocal
k (G, ā) and tplocal

k (G, b̄) are known
as the atomic types of ā and b̄. These are equal if and only if the mapping ā ↦→ b̄ is a partial
isomorphism, which in turn is equivalent to (G, ā) ∼=local

0 (G, b̄).
Let us assume that the statement holds for k − 1 and show that it also holds for k. Consider

the local game at position (G, ā, b̄, k). Without loss of generality, Spoiler starts the game by an
a-move ak ∈ N2k−1(ā). Let

τ(ȳ, x) =
⋀︂

φ(ȳx)∈tplocal
k−1(G,āak)

φ(ȳx) ∧
⋀︂

φ(ȳx)∈tplocal
k−1(G,āak)

¬φ(ȳx)

be the local formula that exactly captures tplocal
k−1(G, āak). More precisely, for every tuple ā′a′k ∈

V (G)|a|+1 we have tplocal
k−1(G, ā

′a′k) = tplocal
k−1(G, āak) if and only if G |= τ(ā′, a′k).

The formula ψ(ȳ) = ∃x ∈ N2k−1 [ȳ] τ(ȳx) is a local formula with quantifier rank k, and is
therefore contained in tplocal

k (G, ā) as witnessed by instantiating x with ak. By assumption on
equality of local k-types we then also have that ψ(ȳ) ∈ tplocal

k (G, b̄) and hence there exists an
element bk ∈ N2k−1(b̄) such that tplocal

k−1(G, b̄bk) = tplocal
k−1(G, āak). Duplicator chooses bk as her

response. The remaining game continues from position (G, āak, b̄bk, k−1). Since tplocal
k−1(G, b̄bk) =

tplocal
k−1(G, āak) Duplicator wins by induction hypothesis.

It is not difficult to prove that also the converse of the lemma is true, however, we refrain
from giving the proof as it is not needed for our further argumentation.

12.2.6 Games and Types with Guards

Theorem 12.5 and Lemma 12.8 together already show that for tuples of sufficiently large distance
equality of local types implies equality of global types. We will need a stronger statement for
graphs where a specific set of vertices is highlighted. To this end, we introduce special starting
positions (G,A,B, k), whereA,B ⊆ V (G) are sets of vertices (for the global and local EF-game),
which we call guards. Spoiler and Duplicator select elements ak and bk in the usual way with the
constraints ak ∈ A and bk ∈ B, and afterwards the (global or local) game continues at position
(G, ak, bk, k − 1) as usual. Hence, both for the global and the local game, the role of the sets A
and B is merely to constrain (guard) the choices for the first round. We write (G,A) ∼=k (G,B)
or (G,A) ∼=local

k (G,B) if Duplicator has a winning strategy for the global or local game starting
from position (G,A,B, k).

First, we extend Lemma 12.8 to our new starting positions. Note that the following theorem no
longer mentions local types, but global types of neighborhoods. Recall that G⟨X ↦→W ⟩ denotes
the graph G with the additional unary predicate X interpreted as the vertex set W ⊆ V (G).

Lemma 12.9. If tpk(G⟨X ↦→ A⟩
[︁
N2k−1−1[A]

]︁
) = tpk(G⟨X ↦→ B⟩

[︁
N2k−1−1[B]

]︁
), then

(G,A) ∼=local
k (G,B).

Proof. Fix G, A and B with tpk(G⟨X ↦→ A⟩
[︁
N2k−1−1[A]

]︁
) = tpk(G⟨X ↦→ B⟩

[︁
N2k−1−1[B]

]︁
).

For brevity, let GA := G⟨X ↦→ A⟩ and GB := G⟨X ↦→ B⟩. To prove the statement, we need the
following observation about local formulas.

144



Chapter 12. Model Checking

Claim 12.10. Let φ(x) be a local formula with quantifier rank at most k − 1. Then

GA |= ∃x ∈ X φ(x) if and only if GB |= ∃x ∈ X φ(x).

Proof. Since GA

[︁
N2k−1−1[A]

]︁
and GB

[︁
N2k−1−1[B]

]︁
have the same k-type, they agree in their

evaluation of the sentence ∃x ∈ X φ(x) with quantifier rank at most k.
Sinceφ(x̄) is local and has quantifier rank k−1, all the quantified variables inφ(x) can only lie

within distance at most
∑︁k−1

i=1 2i−1 =
∑︁k−2

i=0 2i = 2k−1−1 from x. Hence, all variables quantified
in ∃x ∈ X φ(x) must lie within distance at most 2k−1 − 1 from X . Therefore, evaluating it on
GA

[︁
N2k−1−1[A]

]︁
and GA yields the same answer. The same holds for GB

[︁
N2k−1−1[B]

]︁
and GB .

Hence, also GA and GB agree in their evaluation of ∃x ∈ X φ(x). ■

Consider the local game at position (G,A,B, k). Without loss of generality, Spoiler starts
the game by an a-move ak ∈ A. Let

τ(x) =
⋀︂

φ(x)∈tplocal
k−1(GA,ak)

φ(x) ∧
⋀︂

φ(x)∈tplocal
k−1(GA,ak)

¬φ(x)

be the local formula that defines tplocal
k−1(GA, ak).

The sentence ∃x ∈ X τ(x) holds on GA, as witnessed by instantiating x with ak. By
Claim 12.10, as τ(x) has quantifier rank k − 1, ∃x ∈ X τ(x) is also true on GB . Hence,
there exists an element bk ∈ B such that tplocal

k−1(GA, ak) = tplocal
k−1(GB, bk). Then in particu-

lar tplocal
k−1(G, ak) = tplocal

k−1(G, bk). Duplicator chooses bk as his next element. Then by Lemma 12.8
we have (G, ak) ∼=local

k−1 (G, bk). Since we made no assumptions on Spoiler’s first move ak ∈ A, and
Duplicator’s response always yields a bk ∈ B, we now have (G,A) ∼=local

k (G,B) as desired.

Since for starting positions (G,A,B, k), the local and global game allow the same first moves,
we get the following simple consequence of Theorem 12.5.

Lemma 12.11. Consider a graph G with sets A,B ⊆ V (G) such that dist(A,B) > 2k. Then
(G,A) ∼=k (G,B) if and only if (G,A) ∼=local

k (G,B).

We can use these new starting positions to determine the truth values of formulas in graphs
where the starting sets are highlighted.

Lemma 12.12. Assume (G,A) ∼=k (G,B). Then for every formula φ(x) of quantifier rank at most
k − 1 in the signature of G we have G⟨A⟩ |= ∃x ∈ A φ(x) ⇔ G⟨B⟩ |= ∃x ∈ B φ(x).

Proof. Assume G⟨A⟩ |= ∃x ∈ A φ(x), that is, there exists ak ∈ A with G |= φ(ak). Spoiler
chooses ak ∈ A and Duplicator responds with bk ∈ B such that (G, ak) ∼=k−1 (G, bk). Hence,
tpk−1(G, ak) = tpk−1(G, bk), and in particularG |= φ(bk). We haveG⟨B⟩ |= ∃x ∈ B φ(x). The
converse holds by symmetry.

We combine Lemma 12.9, Lemma 12.11 and Lemma 12.12 into the following statement.

Lemma 12.13. Assume dist(A,B) > 2k and

tpk(G⟨X ↦→ A⟩
[︁
N2k−1−1[A]

]︁
) = tpk(G⟨X ↦→ B⟩

[︁
N2k−1−1[B]

]︁
).

Then for every formula φ(x) of quantifier rank at most k − 1 in the signature of G we have
G⟨A⟩ |= ∃x ∈ A φ(x) ⇔ G⟨B⟩ |= ∃x ∈ B φ(x).

145



Chapter 12. Model Checking

Again, Figure 12.2 illustrates that the distance constraint is necessary. For k = 2, A = {a}
and B = {b}, we have that both G⟨X ↦→ A⟩

[︁
N2k−1−1[A]

]︁
and G⟨X ↦→ B⟩

[︁
N2k−1−1[B]

]︁
have

the same type: both are a star, whose center is marked X and whose leaves are marked red.
However, for φ(x) := ∀y Red(y) → E(x, y) we have

G⟨A⟩ |= ∃x ∈ A φ(x) and G⟨B⟩ ̸|= ∃x ∈ B φ(x).

Extending the statement to accommodate for further free variables in φ, will yield Theo-
rem 12.14, which we restate for convenience.

Theorem 12.14. Let G be a graph and let A,B ⊆ V (G) be vertex sets such that dist(A,B) > 2k

and tpk(G⟨X ↦→ A⟩
[︁
N2k−1−1[A]

]︁
) = tpk(G⟨X ↦→ B⟩

[︁
N2k−1−1[B]

]︁
). Let w̄ ∈ V (G)|ȳ| be

vertices with dist(w̄, A ∪B) ⩾ 2k . Then for every formula φ(ȳ, x) of quantifier rank at most k − 1
in the signature of G we have G⟨A⟩ |= ∃x ∈ A φ(w̄, x) ⇔ G⟨B⟩ |= ∃x ∈ B φ(w̄, x).

Proof. Assume w̄ = w1, . . . , wℓ. We define G′ to be the unary expansion of G with 2ℓ new
predicatesWi andNi for 1 ⩽ i ⩽ ℓ. We interpretWi = {wi} andNi = N [wi]\{wi} for 1 ⩽ i ⩽ ℓ.
We define φ′(x) to be the formula obtained from φ(ȳ, x) by replacing all atoms E(wi, z) and
E(z, wi) with Ni(z) and all atoms (wi = z) and (z = wi) with Wi(z). Then for every v ∈ V (G)
we have G |= φ(w̄, v) ⇔ G′ |= φ′(v). Thus, it is sufficient to show G′⟨A⟩ |= ∃x ∈ A φ′(x) ⇔
G′⟨B⟩ |= ∃x ∈ B φ′(x). Since dist(w̄, A) ⩾ 2k, we have G

[︁
N2k−1−1[A]

]︁
= G′ [︁N2k−1−1[A]

]︁
.

The same holds forB and thus tpk(G′[N2k−1−1(A)]⟨A ↦→ X⟩) = tpk(G′[N2k−1−1(B)]⟨B ↦→ X⟩).
The statement then follows from Lemma 12.13.

12.3 The Algorithm

In this section, we present our model checking theorem for monadically stable graph classes.

12.3.1 Setup

Let us recall the main result about the Flipper game. See Chapter 10 for definitions.

Theorem 10.4. There is a budget-2 Flipper strategy flip⋆ with the following property.

For every monadically stable graph class C and radius r ∈ N there is ℓ ∈ N such that flip⋆ is
ℓ-winning and has runtime OC,r(n

2) in the radius-r game on C.

We will use the strategy flip⋆ for our model checking algorithm. For every monadically stable
graph class C and r ∈ N, we define game-depth(C, r) to be the bound on the number of rounds
needed for Flipper to win the radius-r budget-2 Flipper game on any graph from C while following
flip⋆. We call a sequence of positions H = (G0, I0), . . . , (Gℓ, Iℓ) a (C, ρ)-history of length ℓ, if it
is a prefix of the Flipper run R(loc, flip⋆, G0) for some radius-ρ Localizer strategy loc and some
graph G0 ∈ C.

Our model checking algorithm will use recursion guided by the strategy flip⋆. Playing the
Flipper game for many game-depth(C, ρ) rounds, we reach the last position in a (C, ρ)-history of
length game-depth(C, ρ). This position is guaranteed to be a winning position for Flipper, that is,
a single vertex graph. Here, model checking is trivial. By induction, we assume an algorithm for
graphs resulting from ℓ+ 1 rounds of play (with the precise definition given by the following
Definition 12.15), and use it to also do model checking on for graphs with only ℓ rounds played.
Repeating this procedure gives us an algorithm for graphs on which zero rounds have been played,
that is, a model checking algorithm for all graphs from C. The choice ρ := (16q(2q) + 1)(2q + 1)
for the radius of the game emerges from the details of our proofs.

146



Chapter 12. Model Checking

Definition 12.15. Let C be a monadically stable graph class and let q, ℓ, c ∈ N. We choose a
radius ρ := (16q(2q) + 1)(2q + 1) for the Flipper game. Note that ρ depends only on q. Consider
an algorithm that, given as input

• a (C, ρ)-history (G0, I0), . . . , (Gℓ, Iℓ) of length ℓ from the Flipper game,
• a unary expansion G of Gℓ with a signature of at most c unary predicates, and
• a sentence φ with quantifier rank at most q,

decides whether G |= φ. We say this is an efficient MC(C, q, ℓ, c)-algorithm, if there exists a
function fMC bounding the runtime for every ε > 0 by

fMC(q, ℓ, c, ε) · |V (G)|((1+ε)d) · |V (G0)|5,

where d := game-depth(C, ρ) − ℓ bounds the number of rounds needed to win the remaining
Flipper game.

12.3.2 Computing Guarded Formulas

As the central building block of our algorithm, the following theorem converts sentences into
guarded sentences, assuming we already have an efficient model checking algorithm for graphs
where the game has progressed by one extra round.

Theorem 12.16. There is an algorithm with the following property. For every monadically stable
graph class C and ρ = (16q(2q) + 1)(2q + 1), given as input

• a
(︁
C, ρ)-history H = (G0, I0), . . . , (Gℓ, Iℓ) of length ℓ,

• a unary expansion G of Gℓ with a signature of at most c unary predicates,

• a sentence φ with quantifier rank at most q, and

• an efficient MC(C, q, ℓ+ 1, c+ 3)-algorithm,

the algorithm computes sets U1, . . . , Ut ⊆ V (G), for some constant t ⩽ const(q, c), as well as
a (U1, . . . , Ut)-guarded sentence ξ of quantifier rank q. Each Ui is contained in an (8q · 2q)-
neighborhood of G and

G |= φ ⇔ G⟨U1, . . . , Ut⟩ |= ξ.

For every class C, there exists a function f(q, c, ℓ, ε) such that for every ε > 0, the running time
of this procedure is bounded by

f(q, c, ℓ, ε) · |V (G)|((1+ε)d) · |V (G0)|5,

where d := game-depth(C, ρ)− ℓ bounds the number of rounds needed to win the remaining Flipper
game.

Instead of guarding all quantifiers at once, we start with guarding only one outermost quantifier.
The following theorem will be the central step of our construction.

147



Chapter 12. Model Checking

Theorem 12.17. There is an algorithm with the following property. For every monadically stable
graph class C and ρ = (16q(2q) + 1)(2q + 1), given as input

• a
(︁
C, ρ

)︁
-history H = (G0, I0), . . . , (Gℓ, Iℓ) of length ℓ,

• a unary expansion G of Gℓ with a signature of at most c unary predicates,

• a formula ∃x φ(ȳ, x) of quantifier rank at most q,

• sets W1, . . . ,W|ȳ|, each contained in an r-neighborhood of G, and

• an efficient MC(C, q, ℓ+ 1, c+ 3)-algorithm,

the algorithm computes sets U1, . . . , Ut ⊆ V (G), for some constant t ⩽ const(q, c, |ȳ|). Each Ui is
contained in an (r + 8(2q))-neighborhood of G and for all tuples w̄ ∈W1 × . . .×W|y|, we have

G |= ∃x φ(w̄, x) ⇔
t⋁︂

i=1

G⟨Ui⟩ |= ∃x ∈ Ui φ(w̄, x).

For every class C, there exists a function f(q, c, ℓ, ε, |ȳ|) such that for every ε > 0, the running
time of this procedure is bounded by

f(q, c, ℓ, ε, |ȳ|) · |V (G)|((1+ε)d) · |V (G0)|5,

where d := game-depth(C, ρ)− ℓ bounds the number of rounds needed to win the remaining Flipper
game.

Proof. Let n be the number of vertices of G. Our goal is to compute the set of guards U =
{U1, . . . , Ut}.

Neighborhood Cover Computation. As G0 is from a monadically stable class C and G is
obtained from G0, by performing ℓ many 2-flips, we know that G is also from a monadically
stable class Cℓ depending only on C and ℓ. We use Theorem 11.2 to compute a 2q-neighborhood
cover of diameter 4 · 2q . For every ε > 0 the overlap of the cover is bounded by OC,ℓ,q,ε(n

ε)
and the procedure takes time O(n5). Let {C1, . . . , Cm} be the computed cover. Without loss of
generality, we can assume m ⩽ n, since otherwise redundant sets can be removed. We partition
the vertices of G into sets V1, . . . , Vm such that for all v ∈ Vi, N2q [v] ⊆ Ci. Ties are broken
arbitrarily.

Splitting the ExistentialQuantifier. It will be useful to partition the existential quantification
of x in our input formula ∃x φ(ȳ, x) into a quantification over sets that are near and that are
far from W1, . . . ,W|ȳ|. To this end, let V ′

i := Vi \N2q

[︂⋃︁|ȳ|
k=1Wk

]︂
. Since every vertex of G is in

some Vi, for all tuples w̄ ∈W1 × . . .×W|y|

G |= ∃x φ(w̄, x) ⇔
|ȳ|⋁︂
i=1

G⟨N2q [Wi]⟩ |= ∃x ∈ N2q [Wi] φ(w̄, x) ∨
m⋁︂
i=1

G⟨V ′
i ⟩ |= ∃x ∈ V ′

i φ(w̄, x). (12.1)

Remember that the size of our solution U may depend only on q, c, and |ȳ|. Adding the sets
N2q [W1], . . . , N2q [W|ȳ|] to U would respect this size constraint. However, since m may depend
on n, we are not allowed to add all sets V ′

1 , . . . , V
′
m to U . In the remainder of this proof, we

will use Theorem 12.14 and the fact that each V ′
i is sufficiently far away from W1, . . . ,W|y| to

construct a set S ⊆ [m] with the following property.

148



Chapter 12. Model Checking

Property 12.18. The size ofS ⊆ [m] depends only on q and c and for all tuples w̄ ∈W1×. . .×W|y|

m⋁︂
i=1

G⟨V ′
i ⟩ |= ∃x ∈ V ′

i φ(w̄, x) ⇒
⋁︂
i∈S

G⟨X ↦→ N5(2q)[V
′
i ]⟩ |= ∃x ∈ X φ(w̄, x).

After we found such a set S, we set

U = {N2q [W1], . . . , N2q [W|ȳ|]} ∪ {N5(2q)[V
′
i ] : i ∈ S}.

Note that |U| depends only on q, c, and |ȳ|. Combining (12.1) and Property 12.18, it holds for all
tuples w̄ ∈W1 × . . .×W|y| that

G |= ∃x φ(w̄, x) ⇒
⋁︂
U∈U

G⟨U⟩ |= ∃x ∈ U φ(w̄, x).

The backwards implication of this statement holds obviously, since the right-hand side merely
restricts the quantification of x. This yields the central statement

G |= ∃x φ(w̄, x) ⇔
⋁︂
U∈U

G⟨U⟩ |= ∃x ∈ U φ(w̄, x).

Since each Wi is contained in an r-neighborhood of G, each N2q [Wi] is contained in an
(r + 2q)-neighborhood. Each set N2q [V

′
i ] is contained in Ci, which by construction is contained

in an 4(2q)-neighborhood of G. It follows that N5(2q)[V
′
i ] = N4(2q)[N2q [V

′
i ]] is contained in a

8(2q)-neighborhood in G. Hence, each U ∈ U is contained in an (r + 8(2q))-neighborhood of G.
To finish the proof, we have to compute a small representative set S with Property 12.18.

Flip and Type Computation. As a first step towards computing S, we show how to use
our given efficient MC(C, q, ℓ+ 1, c+ 3)-algorithm to compute tpq(G[N2q−1−1[V

′
i ]]⟨X ↦→ V ′

i ⟩)
for all i ∈ [m]. To this end, we do for every i ∈ [m] the following computations. Let Gloc

ℓ :=
G[N2q−1−1[V

′
i ]]. Note that this corresponds to a Localizer move in the radius-4(2q) ⩽ ρ Flipper

game. We apply the Flipper strategy flip⋆ to the graph Gloc
ℓ and internal state Iℓ, yielding a

2-flip Gℓ+1 of Gloc
ℓ and a new internal state Iℓ+1. By Theorem 10.4, this takes time

g2(q) · |V (G0)|2,

for some function g2(q) depending on C. We can now extend H to a (C, ρ)-history of length
ℓ+ 1 by appending the new pair (Gℓ+1, Iℓ+1). Using Lemma 4.1, we can recover a partition P
and relation F ⊆ P2 witnessing that Gℓ+1 is a 2-flip of Gloc

ℓ in time O(|V (G)|2). We spend 3
additional unary predicates to construct G+

ℓ+1 by marking in Gℓ+1 the parts of P and the vertices
from V ′

i . Next, we enumerate the set Φ of normalized first-order sentences with quantifier rank
at most q over the signature of G+

ℓ+1. Recall that |Φ| is bounded by a function of q and c. We use
the given efficient MC(C, q, ℓ+ 1, c+ 3)-algorithm to evaluate every formula from Φ on G+

ℓ+1

and therefore compute tpq(G
+
ℓ+1) in time

g3(q, c) · fMC(q, ℓ+ 1, c+ 3, ε) · |V (G+
ℓ+1)|

((1+ε)d−1) · |V (G0)|5,

for some function g3(q, c). Let us now argue how to derive tpq(G[N2q−1−1[V
′
i ]]⟨V ′

i ⟩) from
tpq(G

+
ℓ+1). This is easy to do by observing that for every sentence ψ, we have

ψ ∈ tpq(G[N2q−1−1[V
′
i ]]⟨V ′

i ⟩) if and only if ψ′ ∈ tpq(G
+
ℓ+1),

149



Chapter 12. Model Checking

where ψ′ is obtained from ψ by substituting every occurrence of the edge relation E(x, y) with

E(x, y) XOR

⎛⎝ ⋁︂
(A,B)∈F

x ∈ A ∧ y ∈ B

⎞⎠ .

Similarly, we can derive tpq(G[N2q−1−1[V
′
i ]]⟨X ↦→ V ′

i ⟩).

Computing a Representative Set. Now we use the previously computed q-types to pick S as
a minimal subset of [m] such that

{tpq(G[N2q−1−1[V
′
i ]]⟨X ↦→ V ′

i ⟩) : i ∈ [m]} = {tpq(G[N2q−1−1[V
′
i ]]⟨X ↦→ V ′

i ⟩) : i ∈ S}.

The size of S is at most the number of possible q-types on graphs with c+3 unary predicates,
and thus can be bounded as a function of q and c. In order to show that S satisfies Property 12.18,
let us fix w̄ ∈W1 × · · · ×W|ȳ| and argue that

m⋁︂
i=1

G⟨V ′
i ⟩ |= ∃x ∈ V ′

i φ(w̄, x) ⇒
⋁︂
i∈S

G⟨X ↦→ N5(2q)(V
′
i )⟩ |= ∃x ∈ X φ(w̄, x).

AssumeG⟨V ′
i ⟩ |= ∃x ∈ V ′

i φ(w̄, x) for some i. If V ′
i ⊆

⋃︁
j∈S N5(2q)[V

′
j ] for some j ∈ S, then

the right-hand side follows immediately, so we can assume V ′
i ̸⊆

⋃︁
j∈S N5(2q)[V

′
j ] for all j ∈ S.

Fix some j ∈ S and let us show that dist(V ′
i , V

′
j ) > 2q and dist(w̄, V ′

i ∪ V ′
j ) > 2q . Since we have

V ′
i ̸⊆

⋃︁
j∈S N5(2q)[V

′
j ], there exists a vertex in V ′

i that has distance greater than 5(2q) from every
vertex in V ′

j . Since V ′
i embeds in a subgraph of G with diameter at most 4(2q), every vertex in V ′

i

has distance greater than 2q from every vertex in V ′
j . This means dist(V ′

i , V
′
j ) > 2q . We finally

establish dist(w̄, V ′
i ∪ V ′

j ) > 2q by combining

V ′
i := Vi \N2q

[︃ |ȳ|⋃︂
k=1

Wk

]︃
, V ′

j := Vj \N2q

[︃ |ȳ|⋃︂
k=1

Wk

]︃
, w̄ ∈W1 × · · · ×W|ȳ|.

The set S was chosen representative in the sense that there is some j ∈ S with

tpq(G[N2q−1−1[V
′
i ]]⟨V ′

i → X⟩) = tpq(G[N2q−1−1[V
′
j ]]⟨V ′

j → X⟩).

Since G⟨V ′
i ⟩ |= ∃x ∈ V ′

i φ(w̄, x), by Theorem 12.14, also G⟨V ′
j ⟩ |= ∃x ∈ V ′

j φ(w̄, x) and the
right-hand side holds. Hence, S satisfies Property 12.18.

Running Time Analysis. At first, we analyze the running time spent for the computations in
the paragraph Flip and Type Computation. As stated there, the run time is (using m ⩽ n) bounded
by ∑︂

i∈[m]

g2(q) · |V (G0)|2 ⩽ n · g2(q) · |V (G0)|2 (12.2)

for computing the flips, plus∑︂
i∈[m]

g3(q, c) · fMC(q, ℓ+ 1, c+ 3, ε) · |N2q [V
′
i ]|((1+ε)d−1) · |V (G0)|5

for computing the q-types. Note that for all α ⩾ 1 and non-negative numbers n1, . . . , nm we
have

∑︁
i∈[m] n

α
i ⩽ (

∑︁
i∈[m] ni)

α, bounding the running time for the q-type computation by

g3(q, c) · fMC(q, ℓ+ 1, c+ 3, ε) ·
(︂ ∑︂

i∈[m]

|N2q [V
′
i ]|

)︂((1+ε)d−1)
· |V (G0)|5.

150



Chapter 12. Model Checking

For every i ∈ m, we have N2q [V
′
i ] ⊆ N2q [Vi] ⊆ Ci, yielding∑︂

i∈[m]

|N2q [V
′
i ]| ⩽

∑︂
i∈[m]

|Ci| ⩽ g1(q, ε, ℓ) · n1+ε,

where the last bound follows from the fact that we have n vertices, each occurring in at most
g1(q, ε, ℓ) · nε clusters of the cover {C1, . . . , Cm}. Combining the previous two inequalities
bounds the running time of the type computation by

g3(q, c) · fMC(q, ℓ+ 1, c+ 3, ε) ·
(︂
g1(q, ε, ℓ) · n1+ε

)︂((1+ε)d−1)
· |V (G0)|5,

which is equal to

g3(q, c) · fMC(q, ℓ+ 1, c+ 3, ε) · g1(q, ε, ℓ)((1+ε)d−1) · n((1+ε)d) · |V (G0)|5. (12.3)

The total running time spent in this paragraph, as given by the sum of (12.2) and (12.3) can be
bounded by g4(q, ε, ℓ) · n((1+ε)d) · |V (G0)|5, for some function g4(q, ε, ℓ).

The computation in the paragraph Neighborhood Cover Computation takes time O(n5). Since
the size of the representative set is bounded by a function of q and c, we can bound the computation
time for the paragraphs Splitting the Existential Quantifier and Computing a Representative Set
by g5(q, c, |ȳ|) · n2, for some function g5(q, c, |ȳ|). Since n ⩽ |V (G0)|, we can choose a function
f(q, c, ℓ, ε, |ȳ|) such that the total running time is bounded by

f(q, c, ℓ, ε, |ȳ|) · n((1+ε)d) · |V (G0)|5.

Now we obtain Theorem 12.16 by simply applying Theorem 12.17 repeatedly, once for each
quantifier. This will require no new insights, but will be a bit tedious to analyze. To help our
inductive proof, we prove the following stronger statement. Then Theorem 12.16 follows as a
special case when φ has no free variables, p = q and r = 0.

Lemma 12.19. There is an algorithm with the following property. For every monadically stable
graph class C and ρ = (16q(2q) + 1)(2q + 1), given as input

• a
(︁
C, ρ

)︁
-history H = (G0, I0), . . . , (Gℓ, Iℓ) of length ℓ,

• a unary expansion G of Gℓ with a signature of at most c unary predicates,

• a formula φ(ȳ) with quantifier rank at most p ⩽ q,

• sets W1, . . . ,W|ȳ|, each contained in an r-neighborhood of G, and

• an efficient MC(C, q, ℓ+ 1, c+ 3)-algorithm,

the algorithm computes sets U1, . . . , Ut ⊆ V (G), for some constant t ⩽ const(p, q, c, |ȳ|), as
well as a (U1, . . . , Ut)-guarded formula ξ(ȳ) of quantifier rank p. Each Ui is contained in an
(r + q · 8(2q))-neighborhood of G and for all tuples w̄ ∈W1 × . . .×W|y| we have

G |= φ(w̄) ⇔ G⟨U1, . . . , Ut⟩ |= ξ(w̄).

For every class C, there exists a function f(p, q, c, ℓ, ε) such that for every ε > 0, the run time of
this procedure is bounded by

f(p, q, c, ℓ, ε) · |V (G)|((1+ε)d) · |V (G0)|5,

where d := game-depth(C, ρ)− ℓ bounds the number of rounds needed to win the remaining Flipper
game.

151



Chapter 12. Model Checking

Proof. Let ε > 0. We prove the lemma by induction on p. For p = 0, note that every quantifier-free
formula is ∅-guarded, and thus we can set ξ(ȳ) := φ(ȳ) and there is nothing more to show. Thus
assume p > 0 and that the statement holds for p− 1. We will construct an algorithm for p using
the assumed algorithm for p− 1 as a subroutine.

By normalization, |φ| depends only on p, c and |ȳ|. Furthermore,φ(ȳ) is a boolean combination
of formulas of the form ∃x ψ(ȳ, x) of quantifier rank at most p. Thus, it is sufficient to prove the
theorem for a single such formula ∃x ψ(ȳ, x).

We apply Theorem 12.17 giving it as input
• the history H = (G0, I0), . . . , (Gℓ, Iℓ),
• a unary expansion G of Gℓ with a signature of at most c unary predicates,
• the formula ∃x ψ(ȳ, x) of quantifier rank at most p ⩽ q,
• the sets W1, . . . ,W|ȳ|, each contained in an r-neighborhood of G, and
• the given MC(C, q, ℓ+ 1, c+ 3)-algorithm.
In time

f ′(q, c, ℓ, ε, |ȳ|) · |V (G)|((1+ε)d) · |V (G0)|5 (12.4)

this yields sets R1, . . . , Rt′ ⊆ V (G) for some constant t′ depending only on q, c, and |ȳ|. Each Ri

is contained in an (r + 8(2q))-neighborhood of G, such that for all tuples w̄ ∈W1 × . . .×W|y|,
we have

G |= ∃x ψ(w̄, x) ⇔
t′⋁︂
i=1

G⟨Ri⟩ |= ∃x ∈ Ri ψ(w̄, x). (12.5)

For each i ∈ [t′] we apply the algorithm for p− 1 given by the induction hypothesis on
• the history H, graph G, and MC(C, q, ℓ+ 1, c+ 3)-algorithm,
• the formula ψ(ȳ, x) of quantifier rank at most p− 1 ⩽ q − 1,
• the sets W1, . . . ,W|y|, Ri ⊆ V (G), each contained in an (r + 8(2q))-neighborhood of G.
In time

f(p− 1, q, c, ℓ, ε, |ȳ|+ 1) · |V (G)|((1+ε)d) · |V (G0)|5 (12.6)

this yields a family of guarding sets Ui with |Ui| depending on p − 1, q, c, and |ȳ|, as well as a
Ui-guarded formula ξi(ȳ) of quantifier rank q − 1. Each U ∈ Ui is contained in an

(︁
r + 8(2q) +

(q − 1) · 8(2q−1)
)︁
-neighborhood of G (and thus in an (r + q · 8(2q))-neighborhood of G). For all

tuples w̄v ∈W1 × . . .×W|ȳ| ×Ri we have

G |= ψ(w̄, v) ⇔ G⟨Ui⟩ |= ξi(w̄, v).

Since the above statement holds no matter how v ∈ Ri is chosen, existentially quantifying
v ∈ Ri preserves the equivalence. Hence, for all tuples w̄ ∈W1 × . . .×W|y|

G⟨Ri⟩ |= ∃x ∈ Ri ψ(w̄, x) ⇔ G⟨Ri⟩⟨Ui⟩ |= ∃x ∈ Ri ξi(w̄, x). (12.7)

Combining (12.5) and (12.7) yields for every w̄ ∈W1 × . . .×W|y|,

G |= ∃x ψ(w̄, x) ⇔
t′⋁︂
i=1

G⟨Ri⟩⟨Ui⟩ |= ∃x ∈ Ri ξi(w̄, x),

which is equivalent to

G⟨R1⟩⟨U1⟩ . . . ⟨Rt′⟩⟨Ut′⟩ |=
t′⋁︂
i=1

∃x ∈ Ri ξi(w̄, x).

152



Chapter 12. Model Checking

Thus, we can define our guarding sets U = {U1, . . . , Ut} as U := {R1, . . . , Rt′} ∪
⋃︁t′

i=1 Ui.
The running time is bounded by the bound (12.4) for the invocation of Theorem 12.17, plus t′

times the bound (12.6) for the recursive calls with p− 1, plus some minor bookkeeping overhead.
We can choose f(p, q, c, ℓ, ε) such that this is at most

f(p, q, c, ℓ, ε) · |V (G)|((1+ε)d) · |V (G0)|5.

12.3.3 Reducing the Evaluation Radius

Our overall goal is to evaluate a sentence with quantifier rank q on a graph G. In the previous
section, we have rewritten the sentence into an equivalent U-guarded sentence of the same
quantifier rank using guards U = {U1, . . . , Ut}. Each of the sets Ui ⊆ V (G) is contained in
an r := q · 8(2q)-neighborhood of G and thus the induced graph G[U1 ∪ · · · ∪ Ut] consists of
components, which are contained in neighborhoods with radius at most (2r + 1)t in G.

One could imagine evaluating the U-guarded sentence on G by recursing into each of these
components and to compute flips using the strategy for the radius-(2r + 1)t Flipper game. Let us
argue that this cannot work. The radius of the Flipper game is not allowed to grow over time,
since otherwise the game is not guaranteed to terminate in a fixed number of rounds. In our
construction, however, the number t of guards depends on the number c of unary predicates
added over time and thus grows with the number of rounds of the Flipper game played so far.
Thus, we are not allowed to recurse into components with radius (2r + 1)t. We have to choose a
fixed radius ρ for the Flipper game, depending only on q and C.

In this section, we show that we can evaluate the U-guarded sentence by only looking at
subgraphs of G that are contained in neighborhoods of radius ρ := (2r + 1)(2q + 1), a quantity
that depends only on q and C and does not grow over time. This is a consequence of the following
Proposition 12.20. Remember that, to avoid lengthy additional notation, U will refer both to unary
predicates guarding a formula and to the corresponding vertex sets in a graph G that interpret
these predicates. It will be clear from the context which one is meant.

Proposition 12.20. For a given U -guarded sentence φ with quantifier rank at most q and symmetric
relation R ⊆ U × U , one can compute a sentence φR such that for every graph G and set U ⊆
P(V (G)) satisfying

R = {(U,W ) ∈ U × U : U and W share a vertex or a connecting edge in G},

we have
G⟨U⟩ |= φ ⇔ G⟨U⟩ |= φR.

Moreover, φR is a boolean combination of sentences with quantifier rank at most q and each
sentence mentioned in φR is U ′-guarded for some U ′ ⊆ U such that the graph (U ,R)[U ′] has
diameter at most 2q .

In particular, if each set of U ⊆ P(V (G)) is contained in an r-neighborhood of G, then
⋃︁
U ′ is

contained in a subgraph of G with diameter at most (2r + 1)(2q + 1).

To see that the final “In particular, . . . ” part follows from the central part of the statement,
assume each set of U ⊆ P(V (G)) is contained in an r-neighborhood of G. For a U ′-guarded
sentence ξ in ψR, the graph (U ,R)[U ′] has diameter at most 2q and all (U1, U2) ∈ R share a
vertex or a connecting edge in G. As can be seen in the figure below,

⋃︁
U ′ is contained in a

subgraph of G with diameter at most (2r + 1)(2q + 1).
We prove the central part of Proposition 12.20 inductively using a stronger statement involving

formulas with free variables.

153



Chapter 12. Model Checking

r · · ·

diameter ≤ 2q, ≤ 2q + 1 balls︷ ︸︸ ︷
1 1 1 1r r r r r r r

Lemma 12.21. For a given U-guarded formula φ(ȳ) with quantifier rank at most q, symmetric
relation R ⊆ U × U and sequence U1, . . . , U|ȳ| ∈ U one can compute a formula φR(ȳ) such that
for every graph G, set U ⊆ P(V (G)) associated with the predicates U satisfying

R = {(U,W ) ∈ U × U : U and W share a vertex or a connecting edge in G},

and every w̄ ∈ U1 × · · · × U|ȳ| we have

G⟨U⟩ |= φ(w̄) ⇔ G⟨U⟩ |= φR(w̄).

Moreover, φR(ȳ) is a boolean combination of formulas with quantifier rank at most q and for
each formula ξ mentioned in φR there exists U ′ ⊆ U such that ξ is U ′-guarded, (U ,R)[U ′] has
diameter at most 2q , and {Ui : yi ∈ free(ξ)} ⊆ U ′.

Proof. We consider an arbitrary graph G and U ⊆ P(V (G)) associated with the predicates U
such that for all U,W ∈ U we have (U,W ) ∈ R if and only if U,W share a vertex or a connecting
edge in G. Let us also fix a sequence U1, . . . , U|ȳ| ∈ U . We prove the claim by induction over the
structure of φ.

Atoms. Sinceφ is an atom, it is ∅-guarded and has either one or two free variables. Assumeφ(y1)
has a single free variable. We set φR := φ and U ′ := {U1}. Then φR itself is U ′-guarded and
(U ,R)[U ′] is the single vertex graph that has diameter 0 ⩽ 20. Assume now φ(y1, y2) is a binary
atom, that is, without loss of generality either E(y1, y2) or (y1 = y2). If (U1, U2) ∈ R we set
φR := φ and U ′ := {U1, U2}. Again, φR is U ′-guarded and (U ,R)[U ′] has diameter 1 = 20.
Otherwise, (U1, U2) ̸∈ R and U1, U2 neither share a vertex nor a connecting edge in G. This
implies G ̸|= E(w1, w2) and G ̸|= (w1 = w2) for all w1 ∈ Ux, w2 ∈ Uy . We set φR to be the
false atom ⊥ and U ′ = ∅.

Boolean Combinations. If φ is of the form ψ1 ∧ ψ2 or ¬ψ1 the construction is obvious: We
obtain φ1

R and φ2
R via induction and set either φR := ψ1

R ∧ ψ2
R or φR := ¬ψ1

R.

Existential Quantifiers. Assume φ(ȳ) = ∃x ∈ U ψ(ȳx). We apply the statement inductively
on ψ(ȳx) (extending the sequenceU1, . . . , U|ȳ| withU ) and obtain a boolean combination ψR(ȳx)
of formulas with quantifier rank at most q − 1 such that for every w̄v ∈ Uy1 × · · · × Uy|ȳ| × U

G⟨U⟩ |= ψ(w̄v) ⇔ G⟨U⟩ |= ψR(w̄v).

For each formula ξ mentioned in ψR(ȳx) we have, by induction, a set Uξ ⊆ U such that
ξ is Uξ-guarded and (U ,R)[Uξ] has diameter at most 2q−1. The additional crucial property we
obtain by induction is that x ∈ free(ξ) implies U ∈ Uξ . We partition the formulas mentioned in

154



Chapter 12. Model Checking

ψR(ȳx) into sets X and X , where X contains all formulas ξ with x ∈ free(ξ), and X contains
all formulas ξ with x ̸∈ free(ξ). The formulas in X are independent of x and we can thus write

∃x ∈ U ψR(ȳx) ≡
⋁︂

t:X→{⊥,⊤}

(︃(︂⋀︂
ξ∈X

(︁
ξ(ȳ) ↔ t(ξ)

)︁)︂
∧ ∃x ∈ U ψR(ȳx)

)︃
.

Now on the right-hand side, every occurrence of ψR is in a scope where the truth value of
every ξ ∈ X is determined. Thus, we can replace every occurrence of ξ in ψR with said truth
value t(ξ) ∈ {⊥,⊤}. Let ψt

R be the formula obtained from ψR by replacing each occurrence of
ξ ∈ X with t(ξ). We obtain the equivalence

∃x ∈ U ψR(ȳx) ≡ φR(ȳ) :=
⋁︂

t:X→{⊥,⊤}

(︃(︂⋀︂
ξ∈X

(︁
ξ(ȳ) ↔ t(ξ)

)︁)︂
∧ ∃x ∈ U ψt

R(ȳx)

)︃
.

Hence, for every w̄ ∈ Uy1 × · · · × Uy|ȳ|

G⟨U⟩ |= φ(w̄) ⇔ G⟨U⟩ |= φR(w̄).

We observe that φR(ȳ) is a boolean combination of old formulas from X and new formulas
of the form ∃x ∈ U ψt

R. All these formulas have quantifier rank at most q.
Consider now a new formula ω := ∃x ∈ U ψt

R and let Uω :=
⋃︁

ξ∈X Uξ . Since ψt
R eliminated

all formulas from X , we know that ω is Uω-guarded. For all ξ ∈ X we have x ∈ free(ξ) and thus,
as noted previously, U ∈ Uξ . By induction, each graph (U ,R)[Uξ] has diameter at most 2q−1.
This means (U ,R)[Uω] is covered by graphs that all overlap in U and have diameter at most 2q−1,
implying that (U ,R)[Uω] has diameter at most 2q . Since free(ω) ⊆

⋃︁
ξ∈X free(ξ), we also have

{Ui : yi ∈ free(ω)} ⊆ Uω .

12.3.4 Main Result

By induction on the length of the Flipper game, we combine the observations from the previous
two subsections into a single algorithm.

Proposition 12.22. There is an algorithm that is an efficient MC(C, q, ℓ, c)-algorithm for every
monadically stable class C and every q, ℓ, c ∈ N.

Proof. Fix any monadically stable class C and q, ℓ, c ∈ N and let ρ := (16q(2q) + 1)(2q + 1). The
algorithm mc we construct gets as input a (C, ρ)-history H = (G0, I0), . . . , (Gℓ, Iℓ), a unary
expansion G of Gℓ with at most c unary predicates, and a sentence φ with quantifier rank q.
The goal is to decide whether G |= φ. We define mc recursively and prove its correctness and
efficiency by induction on ℓ.
Base Case: If G contains only a single vertex, we trivially decide whether G |= φ in time Oq,c(1).
This base case already establishes that mc is an efficient MC(C, q, ℓ′, c′)-algorithm for all ℓ′, c′ ∈ N
with ℓ′ ⩾ game-depth(C, ρ): By the guarantees of flip⋆, the last graph in every (C, ρ)-history of
length at least game-depth(C, ρ) is a winning position for Flipper and therefore only contains a
single vertex, which is handled by this base case.
Inductive Case: If G is not a single vertex graph, we must have ℓ < game-depth(C, ρ). We
can now assume, by induction on ℓ, that for all ℓ′, c′ ∈ N with ℓ′ > ℓ the algorithm mc is an
efficient MC(C, q, ℓ′, c′)-algorithm which we can recursively call. We make use of this fact by
calling the algorithm of Theorem 12.16 on H, G, and φ, where we supply mc as an efficient
MC(C, q, ℓ+1, c+3)-algorithm. We obtain a U -guarded sentence ξ of quantifier rank q such that

G |= φ ⇔ G⟨U⟩ |= ξ. (12.8)

155



Chapter 12. Model Checking

Here, U ⊆ P(V (G)) is a set with |U| depending only on q, c, such that each U ∈ U is contained
in an (8q · 2q)-neighborhood of G.

In time O(|U|2 · |V (G)|2), compute the relation

R := {(U,W ) ∈ U × U : U and W share a vertex or a connecting edge in G}

Next, we invoke Proposition 12.20. This gives us a boolean combination ξ∗ of sentences ξ1, . . . , ξk
with quantifier rank at most q such that

G⟨U⟩ |= ξ ⇔ G⟨U⟩ |= ξ∗. (12.9)

Each sentence ξi is Ui-guarded for some Ui ⊆ U such that
⋃︁
Ui is contained in a subgraph ofG

with diameter at most ρ = (16q(2q) + 1)(2q + 1), and thus also in a ρ-neighborhood of G. The
running time of Proposition 12.20 is insignificant compared to the running time of Theorem 12.16.
The time spent so far is bounded by

f(q, c, ℓ, ε) · |V (G)|((1+ε)d) · |V (G0)|5 (12.10)

for some function f(q, c, ℓ, ε) and every ε > 0, where d := game-depth(C, ρ) − ℓ bounds the
number of rounds needed to win the remaining Flipper game.

Now for every i ∈ [k], we proceed similarly as in the paragraph Flip and Type Computation of
Theorem 12.17 to decide whether G⟨U⟩ |= ξi. Let Gloc

ℓ := G[
⋃︁
Ui] and as ξi is Ui-guarded, we

have
G⟨U⟩ |= ξi ⇔ Gloc

ℓ ⟨U⟩ |= ξi. (12.11)

Note that since
⋃︁
Ui is contained in a ρ-neighborhood ofG, the restriction toGloc

ℓ corresponds
to a Localizer move in the radius-ρ Flipper game. We apply the Flipper strategy flip⋆ to the
graph Gloc

ℓ and internal state Iℓ, yielding a 2-flip Gℓ+1 of Gloc
ℓ and a new internal state Iℓ+1. By

Theorem 10.4, this takes time
g2(q) · |V (G0)|2, (12.12)

for some function g2(q) depending on C. Using Lemma 4.1, we compute in time O(k · |V (G)|2) a
partition P and a symmetric relation F ⊆ P witnessing thatGℓ+1 is a 2-flip ofGloc

ℓ . LetG+
ℓ+1⟨U⟩

be the monadic expansion of Gℓ+1⟨U⟩ with two unary predicates marking the parts of P . We
construct ξ′i from ξi by substituting every occurrence of the edge relation E(x, y) with

E(x, y) XOR

⎛⎝ ⋁︂
(A,B)∈F

x ∈ A ∧ y ∈ B

⎞⎠ .

Then
Gloc

ℓ ⟨U⟩ |= ξi ⇔ G+
ℓ+1⟨U⟩ |= ξ′i. (12.13)

We now extend H to a (C, ρ)-history of length ℓ+ 1 by appending the new pair (Gℓ+1, Iℓ+1).
We use a recursive call to mc (which is an efficient MC(C, q, ℓ + 1, c + 2 + |U|)-algorithm by
induction) to decide in time

f2(q, ℓ+ 1, c+ 2 + |U|, ε) · |V (G+
ℓ+1)|

((1+ε)d−1) · |V (G0)|5 (12.14)

whether G+
ℓ+1⟨U⟩ |= ξ′i, for some function f2 and every ε > 0. By (12.11) and (12.13), this decides

whether G⟨U⟩ |= ξi.
Since we decided G⟨U⟩ |= ξi for all i, we can plug the truth values into the boolean combina-

tion ξ∗, telling us the answer to whether G⟨U⟩ |= ξ∗. By (12.8) and (12.9), this finally gives us the
answer whether G |= φ.

156



Chapter 12. Model Checking

The total running time is bounded by (12.10) plus k times (12.12) and (12.14). Since both k
and |U| are bounded by a function of q and c, we can choose fMC(q, ℓ, c, ε) such that for every
ε > 0, the total running time is bounded by

fMC(q, ℓ, c, ε) · |V (G)|((1+ε)d) · |V (G0)|5.

We obtain the final model checking result, by controlling the run time by choosing ε > 0
dependent on the game depth.

Theorem 2.2. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.
For every monadically stable class C, there exists a function f : N × R → N such that on any
n-vertex graph G ∈ C and sentence φ the algorithm runs in time f(|φ|, ε) · n6+ε for every ε > 0.

Proof. As input for the algorithm, we are given the graph G and a sentence φ. Let H :=
(G0 := G, I0 := G) be the (C, ρ)-history of length 0, for any monadically stable graph class
C ∋ G and any ρ ∈ N. We call the algorithm from Proposition 12.22 on the history H, the
graph G, and the formula φ and return the result. This concludes the description of the algorithm.

We now show that for every monadically stable graph class C, there exists a function f :
N× R → N such that on any n-vertex graph G ∈ C and sentence φ the above algorithm runs in
time f(|φ|, ε) · n6+ε for every ε > 0.

Let q be the quantifier rank of φ and let ρ := (16q(2q) + 1)(2q + 1). By Proposition 12.22
and the definition of an efficient MC(C, q, 0, |Σ|)-algorithm, the call to the algorithm from Propo-
sition 12.22 runs in time

fMC(q, 0, |Σ|, ε) · |V (G)|((1+ε)game-depth(C,ρ)) · |V (G)|5

for some function fMC that depends only on C, and for any ε > 0. For any ε′ > 0, we can choose
ε := (1 + ε′)1/game-depth(C,ρ) − 1 > 0 in the above and get a running time of

fMC(q, 0, |Σ|, ε′) · |V (G)|1+ε′ · |V (G)|5 ⩽ fMC(q, 0, |Σ|, ε′) · |V (G)|6+ε′ .

As our choice of ε and all other parameters of fMC depends only on |φ| and C, this means for every
class C there is a function f(|φ|, ε) such that the runtime is bounded by f(|φ|, ε) · |V (G)|6+ε for
every ε > 0.

Finally, note that this algorithm decides whetherG |= φ on any graphG: it always terminates
and gives no wrong answers. This is due to the fact that each graphG is contained in the singleton
class CG := {G} that only contains G. As this class only contains a single finite graph, it is
trivially monadically stable and the algorithm works. However, in this case where no stronger
properties for the graph class CG are assumed, the function f , that bounds the runtime, depends
on G. This means the total running time can have an arbitrarily bad dependence on the number
of vertices in G.

12.4 Strongly Uniform Fixed-Parameter Tractability

The textbook [21] classifies a parameterized problem as uniform fixed-parameter tractable, if it can
be solved in time f(k) · nc for every instance of size n with parameter k, where f is an arbitrary
function and c is a constant. Here “uniform” refers to the fact that a single algorithm works for
every value of the parameter k. Using this notation, Theorem 2.2 implies the following.

The first-order model checking problem (parameterized by formula length) is uniform
fixed-parameter tractable on every monadically stable graph class.

157



Chapter 12. Model Checking

We note that the above statement is strictly weaker than Theorem 2.2: It allows a different
algorithm for each class C, while the algorithm from Theorem 2.2 works for every class. In the same
book [21], a second, stronger variant of fixed-parameter tractability is defined: a parameterized
problem is strongly uniform fixed-parameter tractable if it is uniform fixed-parameter tractable
and the function f is computable. This second definition is often used synonymous with the term
fixed-parameter tractable (see e.g. the textbooks [21, 15, 34]).

We point out that our Theorem 2.2 does not establish strongly uniform fixed-parameter
tractability for all monadically stable classes. The algorithm crucially exploits the fact that in
every monadically stable class C for every radius r there is a bound game-depth(C, r) on how
long it takes for Flipper to win the Flipper game. However, there are monadically stable classes C,
where there is no computable upper bound for the function game-depth(C, ·), as the following
example shows.

Example 12.23. Consider the class CΣ containing for every k ⩾ 1 the k-subdivided clique of
order Σ(k), where Σ(·) is the busy beaver function: Σ(k) is the maximum number of 1s a Turing
machine with k states and alphabet {0, 1} can write and still halt [73]. The class CΣ is monadically
stable (and even nowhere dense). However, there is no computable function which upper bounds
Σ(·), and one can verify that the same holds for the game-depth(CΣ, ·).

The given example is quite artificial. Indeed, for all natural monadically stable classes C we
know of, game-depth(C, ·) can be bounded by a computable function. In this case we also want
the runtime of the algorithm to be bounded by a computable function. We take inspiration from
Grohe, Kreutzer, and Siebertz, who faced the same issue in their model checking algorithm for
nowhere dense classes. Their solution was to tie the computability of the runtime bound for
their algorithm to the computability of certain nowhere denseness parameters. In order to do
so, they introduced effectively nowhere dense classes [48]. We define those classes and contribute
corresponding definitions for the stable and dependent case.

Definition 12.24. Let f : N → N be a function. A graph G is
• f -nowhere-dense if for every k ∈ N:

the k-subdivided clique of size f(k) not a subgraph of G;
• monadically f -stable if for every formula φ(x, y):

the half-graph of order f(|φ|) is not contained in Tφ(G);
• monadically f -dependent if for every formula φ(x, y):

the powerset graph of order f(|φ|) is not contained in Tφ(G).
We call f a nowhere denseness / stability / dependence function of G. A graph class C is f -
nowhere-dense / monadically f -stable / monadically f -dependent if every graph in C is. In this
case we say C is effectively nowhere-dense / effectively monadically stable / effectively monadically
dependent, if the function f can be chosen to be computable.

It is easy to see that these parameterized definitions match the unparameterized ones in the
following sense: A graph class is nowhere dense if and only if it is f -nowhere-dense for some
function f . The same equivalence holds for the stable and the dependent case. The goal of this
section is to prove following extension of Theorem 2.2.

Theorem 12.25. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.

For every monadically stable graph class C, there exists a function f : N× R → N such that on any
n-vertex graph G ∈ C and sentence φ the algorithm runs in time f(|φ|, ε) · n6+ε for every ε > 0. If
C is effectively monadically stable, then f is computable.

158



Chapter 12. Model Checking

The statement implies strongly uniform fixed-parameter first-order model checking for every
effectively monadically stable graph class.

We can simplify notation and avoid conditionals by extending our asymptotic notation. Let
p1, . . . , pk be (not necessarily computable) functions on the rationals1 with arbitrary arity. For
each t ∈ N, we denote by Ct

p1,...,pk the set of functions f : Qt → Q computable by a Turing
machine with oracle access to p1, . . . , pk. We write

• Up1,...,pk(·) to denote an anonymous, monotone, and unbounded function

f : N → N with f ∈ C1
p1,...,pk ,

• const(p1, . . . , pk) to denote an anonymous natural number c ∈ C0
p1,...,pk ,

• Op1,...,pk(·) to denote an anonymous function f : N → N upper bounded by

h(x) := const(p1, . . . , pk) · x+ const(p1, . . . , pk).

Using this notation, we strengthen Theorem 12.25 as follows.

Theorem 12.26. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.

For every monadically f -stable graph G and sentence φ, the algorithm runs in time Of,|φ|,ε(n
6+ε)

for every ε > 0 and n := |V (G)|.

It follows from our asymptotic notation that if in the above f is computable, then the anony-
mous function bounding the factor of the runtime of the algorithm is also computable.

To prove Theorem 12.26, we have to show that the running time of the model checking
algorithm depends in a computable way on the stability function f of the input graph. This is
mostly straightforward but requires tracing the whole construction of this thesis (and additionally
a few sources that were used). It would have been possible to do this analysis “in place”. However,
due to the notational overhead involved, we have decided to confine this finer-grained analysis of
the construction to this section, where we will only sketch the process.

Computable Bounds for the Flipper Game

In this subsection we relate the bounds of the Flipper game winning strategy (Theorem 10.4) to
the stability function of the graph on which the game is played, as follows.

Proposition 12.27. There is a budget-2 Flipper strategy flip⋆ with the following property.

For every monadically f -stable graph G and radius r ∈ N, flip⋆ is const(f, r)-winning and has
runtime Of,r(n

2) in the radius-r game on G.

By definition, every monadically f -stable class is also monadically f -dependent. The bounds
proven for the Flipper game in Chapter 10 crucially use the fact that monadically dependent
classes have the insulation property. To preserve the dependence on f , we need a parameterized
definition of the insulation property, similar to the definition of monadic f -stability.

1We restrict ourselves to rationals instead of reals, to ensure that every number has a finite representation that can
be handled by a Turing machine.

159



Chapter 12. Model Checking

Definition 12.28. Fix functions f : N2 → N and g : N → N and a graph G. We say:
• G is g-pattern-free, if for every r ⩾ 1, G excludes as induced subgraphs

– all flipped star r-crossing of order g(r), or
– all flipped clique r-crossing of order g(r), or
– all flipped half-graph r-crossing of order g(r), or
– the comparability grid of order g(r).

• G is f -prepattern-free, if for every h, k ∈ N, G contains no prepattern of order f(h, k) on
an insulator of cost at most k and height at most h in G.

• G has the (f, g)-insulation-property, if for every r,m ∈ N,W ⊆ V (G) with |W | ⩾ f(r,m),
there is a subset W⋆ ⊆W of size at least m that is (r, g(r))-insulated in G.

• G is (f, g)-flip-breakable, if for every r,m ∈ N,W ⊆ V (G) with |W | ⩾ f(r,m), there exist
subsets A,B ⊆W with |A|, |B| ⩾ m and a g(r)-flip H of G such that distH(A,B) > r.

We show that the parameters for (almost) all the characterizations of monadic dependence
given in Part II, are computable from each other. We leave out the characterization by efficient
interpretations.
Lemma 12.29. We have the following:

1. Every monadically f -dependent graph is g-pattern-free,
for some g ∈ C1

f depending only on f .

2. Every f -pattern-free graph is g-prepattern-free,
for some g ∈ C2

f depending only on f .

3. Every f -prepattern-free graph has the (g, h)-insulation-property,
for some g ∈ C2

f and h ∈ C1
f depending only on f .

4. Every graph with the (f, g)-insulation-property is (h, i)-flip-breakable,
for some h ∈ C2

f,g and i ∈ C1
f,g depending only on f and g.

5. Every (f, g)-flip-breakable graph is monadically h-dependent,
for some h ∈ C1

f,g depending only on f and g.

Proof. We revisit the proofs from Part II.
1. We show that every monadically f -dependent graph is g-pattern-free for some g ∈ C1

f

depending only on f . It follows from the proof of Proposition 6.46 that there is a constant c
such that for every r ∈ N, there is a formula φr(x, y) of length at most c · r with the
following property. For every graphG containing a flipped r-crossing or comparability grid
of order at least n, Tφr(G) contains all bipartite graphs with sides of size at most n− 1. We
can therefore set g(r) := 2f(c·r) + 1 ∈ C1

f . Suppose G is monadically f -dependent but not
g-pattern-free. Then there exists some r ∈ N for which G contains a flipped r-crossing or
comparability grid of order at least 2f(c·r) + 1. This means a formula of length at most c · r
transduces all bipartite graphs of size 2f(c·r) + 1− 1 from G. This includes the powerset
graph of order f(c · r); a contradiction.

2. We show that every f -pattern-free graph is g-prepattern-free for some g ∈ C2
f depending

only on f . By Proposition 6.45, there is a function p : N3 → N such that every graph
containing a prepattern of order p(h, k,m) on an insulator of height h and cost k contains an
r-crossing or comparability grid of orderm for some r ⩾ 8h. It follows that every f -pattern-
free graph must be g-prepattern-free for g(h, k) := p(h, k, f(8h)). Inspecting the proofs
of Chapter 6 reveals that the function p is computable: the crossings and comparability
grids are extracted by repeatedly applying Bipartite Ramsey (Lemma 4.15), which yields
computable bounds. We therefore have g ∈ C1

f .

160



Chapter 12. Model Checking

3. We show that every f -prepattern-free graph has the (g, h)-insulation-property for some
g ∈ C2

f and h ∈ C1
f depending only on f . The proof of Proposition 5.23 shows that g

and h can be recursively constructed using f and the functions that bound the length and
cost of the orderless and ordered insulator growing lemmas (Lemmas 5.19 and 5.20). An
analysis of these lemmas (and their dependencies) reveals these functions to be computable.
In particular, all the tools we use yield computable, bounds including Ramsey’s Theorem
(Fact 4.13), the Ramsey-type result for matchings, co-matchings, and half-graphs (Fact 5.49),
and the pigeonhole principle. We therefore have g ∈ C2

f and h ∈ C1
f .

4. Follows directly by Lemma 5.25.
5. Follows from the proof of Lemma 5.33 and the computable bounds from Lemma 4.10.

We obtain the following corollary.

Corollary 12.30. Every monadically f -stable graph has the (g, h)-insulation-property, for some
g ∈ C2

f and h ∈ C1
f depending only on f .

Using this corollary in the proof of Lemma 10.23, we obtain the following parameterized
version of Lemma 10.23.

Lemma 12.31. For every well-ordered, monadically f -stable graph G, r ∈ N, and family B0 of
pairwise disjoint r-balls in G, there exists a canonical classifier B = (B ⊆ B0, S, ex, rep) of size
Uf,r(|B0|) and order const(f, r) in G.

Similarly, we obtain a parameterized version of predictable flip-flatness (Proposition 10.7).

Lemma 12.32. There is an algorithm that takes as input r, k ∈ N, a well-ordered graph G, and a
size five set Z ⊆ V (G), and computes in time Or,k(|V (G)|2) a k-flip Predict(r, k,G, Z) of G with
the following properties:

For every function f : N → N and radius r ∈ N there is a bound kf,r ⩽ const(f, r) and functions
Flipf,r and Flatf,r such that for every well-ordered, monadically f -stable graphG, setsX,Z ⊆ V (G)
and parameter k ⩾ kf,r we have

• Flipf,r(G,X) is a kf,r-flip of G,

• Flatf,r(G,X) is a size Uf,r(|X|) subset of X ,

• Flatf,r(G,X) is distance-r independent in Flipf,r(G,X), and

• if Z is a size 5 subset of Flatf,r(G,X) then Predict(r, k,G, Z) = Flipf,r(G,X).

It is now straightforward to derive Proposition 12.27, which we restate here for convenience.

Proposition 12.27. There is a budget-2 Flipper strategy flip⋆ with the following property.

For every monadically f -stable graph G and radius r ∈ N, flip⋆ is const(f, r)-winning and has
runtime Of,r(n

2) in the radius-r game on G.

Computable Overlap for Neighborhood Covers

In this subsection we relate the overlap of the neighborhood covers to the stability function of
the graph as follows.

Proposition 12.33. There is an algorithm that, given an n-vertex graph G and a radius r ∈ N,
computes a distance-r neighborhood cover of G with diameter at most 4r in time O(n5).

If G is monadically f -stable, then the overlap of the cover is bounded by Of,r,ε(n
ε) for every ε > 0.

161



Chapter 12. Model Checking

In the proof of Theorem 11.2, the overlap of the neighborhood cover depends in a computable
way on the neighborhood complexity of the rth power Gr of the input graph G. As the rth power
of a graph is generated by a transduction of length O(r), the following lemma can be used to lift
the computability of the bound on the neighborhood complexity from G to Gr .

Lemma 12.34. For every monadically f -stable (f -dependent) graph G and formula φ(x, y), every
graph in Tφ(G) is monadically g-stable (g-dependent) for some g ∈ C1

f,|φ| which depends only on f
and |φ|.

Proof. Follows by the construction of Fact 4.4, which shows that transductions are transitive.

Therefore, in order to prove Proposition 12.33, it suffices to link the neighborhood complexity
to the stability function of G as follows.

Lemma 12.35. For every monadically f -stable G, ε > 0, and A ⊆ V (G), we have

|{N [v] ∩A : v ∈ V (G)}| ⩽ Of,ε(|A|1+ε).

We first consult the literature to verify that the neighborhood complexity bounds of a graphG
depends on the nowhere denseness function of G in a computable way. The following is a
parameterized version of Fact 11.4.

Lemma 12.36. For every f -nowhere-dense graph G, ε > 0, and A ⊆ V (G), we have

|{N [v] ∩A : v ∈ V (G)}| ⩽ Of,ε(|A|1+ε).

Proof. It is proven in [23, Lem 4.7] that we have

|{N [v] ∩A : v ∈ V (G)}| ⩽ fnei(ε) · |A|1+ε

for some function fnei constructed from
• the aforementioned nowhere density function f (denoted as fω in [23]),
• a function f∇ : N×Q → N bounding the edge density of shallow minors, and
• a function fwcol : N×Q → N bounding the weak coloring numbers of G.

By inspecting the proofs of [61, Thm. 3.2] and [29, Thm. 3.15] we conclude that f∇ ∈ C2
f . From

[86, Lem. 3.4 and Cor. 3.5] we get that fwcol ∈ C2
f∇

⊆ C2
f . Hence, fnei ∈ C1

f .

To make use of this statement, we also need the following:

Lemma 12.37. Every monadically f -dependent graph that excludes a biclique of size k as a subgraph,
is g-nowhere-dense for some g ∈ C1

f,k depending only on f and k.

Proof. By the proof of the upcoming Lemma 13.7 and Lemma 12.29.

Using Lemmas 12.34, 12.36 and 12.37 in Section 11.1, we obtain the parameterized almost linear
neighborhood complexity for monadically f -stable graphs (Lemma 12.35). As we argued before,
this is sufficient to prove the existence of the desired neighborhood covers (Proposition 12.33).

162



Chapter 12. Model Checking

Computable Bounds for the Model Checking Algorithm

We have linked the bounds of the Flipper game (Proposition 12.27) and the overlap of the neigh-
borhood covers (Proposition 12.33) to the stability function of the input graph.

By tracing the algorithm presented in Section 12.3, it is now straightforward to prove Theo-
rem 12.26, which we restate here for convenience.

Theorem 12.26. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.

For every monadically f -stable graph G and sentence φ, the algorithm runs in time Of,|φ|,ε(n
6+ε)

for every ε > 0 and n := |V (G)|.

In particular, for every monadically f -stable graph and formula φ with quantifier rank q,
the recursion depth of the algorithm is bounded by const(f, q). Note that during the algorithm,
neighborhood covers are constructed for flips of the input graph G. Again, as flips are expressible
by transductions, the computability of the bounds can be lifted from G using Lemma 12.34.

This concludes the sketch of the proof of Theorem 12.25, which we restate here.

Theorem 12.25. There is an algorithm that, given a graph G and a first-order sentence φ, decides
whether G |= φ, and has the following property.

For every monadically stable graph class C, there exists a function f : N× R → N such that on any
n-vertex graph G ∈ C and sentence φ the algorithm runs in time f(|φ|, ε) · n6+ε for every ε > 0. If
C is effectively monadically stable, then f is computable.

163



Part IV

The Breakability Framework

164



Outline Part IV

In this part, we show that natural restrictions of flip-flatness and flip-breakability can be used
to characterize nowhere denseness, bounded clique- and tree-width, and bounded shrub- and
tree-depth. The following theorem summarizes our results.

Theorem 2.5. For every graph class C, the following holds.

(1) C is flip-breakable if and only if it is monadically dependent.

(2) C is flip-flat if and only if it is monadically stable.

(3) C is deletion-breakable if and only if it is nowhere dense.

(4) C is deletion-flat if and only if it is nowhere dense.

(5) C is dist.-∞ flip-breakable if and only if it has bounded clique-width.

(6) C is dist.-∞ flip-flat if and only if it has bounded shrub-depth.

(7) C is dist.-∞ deletion-breakable if and only if it has bounded tree-width.

(8) C is dist.-∞ deletion-flat if and only if it has bounded tree-depth.

In Parts II and III, we have already shown the equivalences (1) and (2) (Theorems 2.1 and 2.3).
In Chapter 13 we study nowhere dense classes and show equivalence (3). Additionally, we show
that many of the known results connecting nowhere denseness and monadic dependence can
now easily be proved from our results in Parts II and III. In particular, we give a new proof of the
uniform quasi-wideness characterization [16, 61, 60] that uses flip-flatness as a black box. This
corresponds to the equivalence (4) in the above theorem.

The remaining equivalences (5) to (8) are shown in Chapters 14 to 17.

165



Chapter 13

Nowhere Denseness

Definition 13.1. A graph class C is nowhere dense if for every radius r ∈ N, there exists a bound
Nr ∈ N such that no graph from C contains an r-subdivided clique of order Nr as a subgraph.

Nowhere dense classes act as the appropriate restriction of monadic stability and dependence
to sparse graph classes. They have been extensively studied and many different characterizations
are known. Building on our characterizations for monadic stability and dependence, we (re)prove
the following characterizations of nowhere dense classes that highlight their connection with
stability and dependence.

Theorem 13.2. Let C be a graph class. The following are equivalent.

(1) C is nowhere dense.

(2) C is monadically stable and weakly sparse.

(3) C is monadically dependent and weakly sparse.

(4) The monotone closure of C is stable.

(5) The monotone closure of C is dependent.

(6) C is deletion-flat (i.e. uniformly quasi-wide).

(7) C is deletion-breakable.

The equivalence (1) ⇔ (2) ⇔ (3) is implied by [30, Thm. 6]. For the sake of completeness,
we give a standalone proof here. The equivalence (1) ⇔ (4) ⇔ (5) was proven in [72, 1]. We
show that it also follows from our characterizations of monadic stability and dependence. The
notion of deletion-flatness was introduced in [16] under the name uniform quasi-wideness, and
the equivalence (1) ⇔ (6) was proven in [60, 61]. We give a new proof, which remarkably uses
the flip-flatness characterization for monadically stable classes as a black box. We introduce
the new notion of deletion-breakability as a sparse counterpart to flip-breakability and show the
equivalence (1) ⇔ (7). We define the involved notions.

Definition 13.3 (Deletion-Flatness). A graph class C is deletion-flat if for every radius r ∈ N
there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and
W ⊆ V (G) with |W | ⩾ Nr(m) there exist sets S ⊆ V (G) with |S| ⩽ kr and A ⊆W \ S with
|A| ⩾ m such that for every two distinct vertices u, v ∈ A:

distG−S(u, v) > r.

166



Chapter 13. Nowhere Denseness

Definition 13.4 (Deletion-Breakability). A graph class C is deletion-breakable, if for every radius
r ∈ N there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C
and W ⊆ V (G) with |W | ⩾ Nr(m) there exist a set S ⊆ V (G) with |S| ⩽ kr and subsets
A,B ⊆W \ S with |A|, |B| ⩾ m such that

distG−S(A,B) > r.

Definition 13.5 (Weakly sparse classes). A graph class C is weakly sparse, if there exists a bound
k, such that no graph from C contains the biclique of order k as a subgraph.

We show the equivalences (1) ⇔ (2) ⇔ (3) and (1) ⇔ (4) ⇔ (5) and (1) ⇔ (6) ⇔ (7) separately.

Weakly Sparse Monadic Stability and Dependence

Lemma 13.6. Every nowhere dense class C is weakly sparse and monadically stable.

Proof. It is easy to see that C is weakly sparse. Assume towards a contradiction that C is not
monadically stable. Then by Theorem 2.1, there is some r ∈ N such that C contains as induced
subgraphs flipped star r-crossings / clique r-crossings / half-graphs of arbitrarily order n for any
n ∈ N. For the last two patterns we get a contradiction, as they contain bicliques of order U(n)
as subgraphs, and are therefore not weakly sparse. For the flipped star r-crossings of order n,
there are three cases:

• No layers of the star r-crossings were flipped: Then it contains a (2r+1)-subdivided clique
of order ⌊

√
n⌋ as an induced subgraph; a contradiction to C being nowhere dense.

• A layer of the star r-crossings was flipped with itself: Then the layer forms a clique of size
at least n; a contradiction to C being weakly sparse.

• Two distinct layers of the star r-crossings were flipped with each other: We find a biclique
of order at least ⌊n/2⌋ as a subgraph between the two layers; a contradiction to C being
weakly sparse.

Lemma 13.7. Every weakly sparse, monadically dependent graph class is nowhere dense.

The lemma will follow easily from the following Ramsey-type result.

Lemma 13.8. Every graph G that contains an r-subdivided biclique of order n as a subgraph
contains either a (non-subdivided) biclique order Ur(n) as a subgraph, or an r′-subdivided biclique
of order Ur(n) for some r′ ∈ [r] as an induced subgraph.

Proof. If r = 0, then we trivially have a biclique of order n as a subgraph. So assume r ⩾ 1. Let
{ai : i ∈ [n]} and {bi : i ∈ [n]} be the principal vertices of the r-subdivided biclique in G and let
{pi,j,k : i, j ∈ [n], k ∈ [r]} be the subdivision vertices, such that p̄i,j = (ai, pi,j,1, . . . , pi,j,r, bj) is
an (r + 2)-vertex path in G and the inner vertices of all the pi,j are distinct. By Bipartite Ramsey
(Lemma 4.15), there exists sets I, J ⊆ [n] of size Ur(n) such that for all i, i′ ∈ I and j, j′ ∈ J

atpG(p̄i,j , p̄i′,j′) depends only on otp(i, i′) and otp(j, j′). (∗)

Both {ai : i ∈ I} and {bj : j ∈ J} are either a clique or an independent set. In the absence of
large semi-induced bicliques, we can therefore assume.

Both {ai : i ∈ I} and {bj : j ∈ J} are independent sets. (X)

167



Chapter 13. Nowhere Denseness

If there is an edge between ai and bj for any i ∈ I and j ∈ J , then by (∗), G contains a large
semi-induced biclique on the vertices {ai : i ∈ I} and {bj : j ∈ J} and we are done. Otherwise,
there exist r′ ∈ [r] and numbers 1 ⩽ k1 < . . . < kr′ ⩽ r such that for all i ∈ I and j ∈ J

q̄i,j = (ai, qi,j,1 := pi,j,k1 , . . . , qi,j,r′ := pi,j,kr′ , bj)

is a shortest path between ai and bj in G[p̄i,j ]. The vertices
⋃︁

i∈I,j∈J q̄i,j form a (supergraph of)
an r′-subdivided biclique in G with the following property.

q̄i,j is an induced path in G for all i ∈ I , j ∈ J . (X)

Now assume there are indices i, i′ ∈ I , j, j′ ∈ J , k, k′ ∈ [r′] with (i, j) ̸= (i′, j′) such that qi,j,k
and qi′,j′,k′ are adjacent. By symmetry and up to swapping the roles of I and J , we can assume
that i < i′. Let I< and I> be the first and last ⌊|I|/2⌋ elements of I , and define J< and J> in
the same way for J . By (∗), the vertices {qi,j,k : i ∈ I<} and {qi,j,k′ : i ∈ I>} form a large
semi-induced biclique in G, and we are done. We can therefore assume the following.

qi,j,k and qi′,j′,k′ are non-adjacent ∀i, i′ ∈ I , j, j′ ∈ J , k, k′ ∈ [r′] with (i, j) ̸= (i′, j′). (X)

In the same way, we can show that in the absence of large bicliques we have the following.

ai and qi′,j′,k′ are non-adjacent ∀i, i′ ∈ I , j′ ∈ J , k′ ∈ [r′] with i ̸= i′. (X)

bj and qi′,j′,k′ are non-adjacent ∀i′ ∈ I , j, j′ ∈ J , k′ ∈ [r′] with j ̸= j′. (X)

Combining the facts marked with (X) proves that, in the absence of a large semi-induced biclique,
there is a large induced r′-subdivided biclique with principal vertices {ai : i ∈ I} and {bj : j ∈ J}
in G. This concludes the proof.

Monotone Stability and Dependence

Lemma 13.9. Let C be a graph class that is not nowhere dense. Then the monotone closure of C is
independent.

Proof. By Lemma 13.7, C is either not weakly sparse or monadically independent. In the first case,
the monotone closure of C contains all bipartite graphs and is therefore independent. Otherwise, C
is monadically independent, and already the hereditary closure of C interprets the class of all
graphs by Theorem 2.3, and is therefore independent.

Deletion-Flatness and Deletion-Breakability

Lemma 13.10. Every weakly sparse, flip-flat graph class C is deletion-flat.

Proof. Since C is weakly sparse, there is ℓ ∈ N such that no graph from C contains a biclique
of order ℓ as a subgraph. Let G ∈ C and W ⊆ V (G). By flip-flatness, there is a k-flip H for
some k ⩽ const(C, r) and a set A ⊆W of size UC,r(|W |) whose vertices have pairwise disjoint
r-neighborhoods in H . We will show that there is an induced subgraph G′ of G, obtained by
deleting at most k · ℓ vertices, in which the r-neighborhoods of the vertices in A are pairwise
disjoint, too. Since there are no restrictions on the choice of G and W , this will prove the lemma.

Let P ⊆ 2V (G) and F ⊆ P2 be the partition of size k and symmetric relation witnessing
that H is a k-flip of G. We can assume |A| ⩾ 2ℓ and additionally by the pigeonhole principle:

1. Every part P ∈ P intersects Nr−1[v] either for all or for no v ∈ A.
2. There is a single part in P that contains all of A.

168



Chapter 13. Nowhere Denseness

Claim 13.11. Let (P,Q) ∈ F be a pair of flipped parts, such that P overlaps with NH
r−1[v] for

some vertex v ∈ A. Then Q has size less than ℓ.

Proof. As argued before, P overlaps with NH
r−1[v] for every v ∈ A. We choose a set P ′ ⊆ P to

contain exactly one vertex from NH
r−1[v] for every v ∈ A. Assume towards a contradiction that Q

has size at least ℓ. Because the r-neighborhoods around A in H are disjoint, each vertex in Q
can be adjacent to at most one vertex from P ′ in H . Since (P,Q) ∈ F this means that in G, each
vertex in Q is adjacent to all but at most one vertex from P ′ in G. Let Q⋆ be a size ℓ subset of Q.
Let P⋆ ⊆ P ′ be the set obtained by removing for each v ∈ Q⋆ the at most one vertex in P ′ that
is not adjacent to v in G. Since |P ′| ⩾ 2ℓ, we have |P⋆| ⩾ ℓ. As Q⋆ and P⋆ are fully adjacent
in G, G must contain a biclique of order ℓ as a subgraph; a contradiction. ■

Let G′ be the induced subgraph of G obtained by deleting every part Q ∈ P of size at most ℓ.
In total, we delete at most k · ℓ vertices, as desired. Note that no vertex fromAwas deleted sinceA
is completely contained inside a single part of size greater than ℓ. For a graph G, v ∈ V (G),
i ∈ N, we denote by XG

i (v) the set of vertices of distance exactly i from v in G.

Claim 13.12. XG′
i (v) ⊆ XH

i (v) for every v ∈ A and 0 ⩽ i ⩽ r.

Proof. We prove the claim by induction on i. The base case r = 0 is vacuously true. For
the inductive step with 0 < i ⩽ r, assume towards a contradiction that there is a vertex
u ∈ XG′

i [v] − XH
i [v]. This is witnessed by an edge uw ∈ E(G′) ⊆ E(G) with w ∈ XG′

i−1[v].
By induction also w ∈ XH

i−1[v], but uw /∈ E(H). This means there exists a flipped pair of parts
(P,Q) ∈ F with w ∈ P and u ∈ Q. As P overlaps with NH

i−1(v) in i, the part Q must have size
less than ℓ by Claim 13.11. The part Q was therefore deleted during the construction of G′. A
contradiction to the assumption that u is contained in G′. ■

The claim implies that the r-neighborhoods of the vertices in A are disjoint in G′.

Proof of Lemma 13.7. Assume C is monadically dependent and weakly sparse. Suppose C is not
nowhere dense. Then there is some r ∈ N such that C contains arbitrarily large r-subdivided
cliques as subgraphs. It is easy to see that C must also contain arbitrarily large r-subdivided
bicliques as subgraphs. Then by Lemma 13.8 (and the pigeonhole principle) C also contains
arbitrarily large bicliques as subgraphs or arbitrarily r′-subdivided as induced subgraphs. In
the first case, we get a contradiction to the assumption that C is weakly sparse. In the second
case, we get a contradiction to the assumption that C is monadically dependent: r′-subdivided
cliques are the same as star r′-crossings, which are forbidden in monadically dependent classes
by Theorem 2.3.

Lemma 13.13. Every deletion-flat class is deletion-breakable.

Proof. By deletion-flatness, in every huge set, we find a large set of vertices pairwise of distance
greater than r after removing few vertices. We can partition them into two halves A and B to
obtain deletion-breakability.

Lemma 13.14. Every deletion-breakable class is nowhere dense.

Proof. Assume towards a contradiction that C is not nowhere dense but deletion-breakable with
bounds Nr(·) and kr for every r ∈ N. By definition, there exists a radius r > 1 such that C
contains arbitrarily large (r−1)-subdivided cliques as subgraphs. LetG ∈ C be a graph containing
an (r − 1)-subdivided clique of size Nr(kr + 1), whose principal vertices we denote with W . By
deletion-breakability, W contains two subsets A and B, each of size kr + 1, such that

distG−S(A,B) > r

169



Chapter 13. Nowhere Denseness

for some vertex set S of size at most kr . Since W is an (r− 1)-subdivided clique in G, there exist
kr + 1 disjoint paths of length r, that each start in A and end in B. As |S| ⩽ kr , at most one of
those paths must survive in G− S, witnessing that distG−S(A,B) ⩽ r; a contradiction.

Wrapping Up

We are finally ready to prove Theorem 13.2, which we restate for convenience.

Theorem 13.2. Let C be a graph class. The following are equivalent.

(1) C is nowhere dense.

(2) C is monadically stable and weakly sparse.

(3) C is monadically dependent and weakly sparse.

(4) The monotone closure of C is stable.

(5) The monotone closure of C is dependent.

(6) C is deletion-flat (i.e. uniformly quasi-wide).

(7) C is deletion-breakable.

Proof. We collect the lemmas proven so far.
The implications (1) ⇒ (2) ⇒ (3) ⇒ (1) are given by Lemma 13.6, the fact that monadic stability
implies monadic dependence, and Lemma 13.7.
The implications (1) ⇒ (4) ⇒ (5) ⇒ (1) are proven as follows. If C is nowhere dense, then by
definition, also the monotone closure of C is nowhere dense. By the previously shown implications,
this monotone closure is also monadically stable and in particular stable. Stability then implies
dependence. Finally, if the monotone closure of C is dependent, then C must be nowhere dense by
Lemma 13.9.
The implications (1) ⇒ (2) ⇒ (6) ⇒ (7) ⇒ (1) are given by Lemmas 13.6, 13.10, 13.13 and 13.14,
where we additionally use the fact that monadically stable classes are flip-flat (Theorem 2.1).

170



Chapter 14

Bounded Clique-Width

Definition 14.1. A graph class C is distance-∞ flip-breakable, if there exists a functionN : N → N
and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m) there
exist subsets A,B ⊆W with |A|, |B| ⩾ m and a k-flip H of G such that in H , no two vertices
a ∈ A and b ∈ B are in the same connected component.

The goal of this chapter is to prove the following.

Theorem 14.2. A graph class has bounded clique-width if and only if it is distance-∞ flip-breakable.

To prove the theorem, we work with rank-width, a parameter that is functionally equivalent
to clique-width. A graph G has rank-width at most k if there is a tree T whose leaves are the
vertices of G, and inner nodes have degree at most 3, such that for every edge e of the tree, the
bipartition A ⊎ B of the leaves of T into the leaves on either side of e, has cut-rank at most k.
The cut-rank of a bipartition A ⊎B of the vertex set of a graph G, denoted rkG(A,B), is defined
as the rank, over the two-element field, of the (0, 1)-matrix with rows A and columns B, where
the entry at row a ∈ A and column b ∈ B is 1 if ab ∈ E(G) and 0 otherwise.

Fact 14.3 ([51, Proposition 6.3]). A graph class has bounded clique-width if and only if it has
bounded rank-width.

Lemma 14.4. Let T be a rooted subtree of a binary tree and let W be a subset of the leaves of T .
There exists an edge e ∈ E(T ) such that the two subtrees T1 and T2 obtained by removing e from T
each contain at least 1

4 |W | vertices from W .

Proof. For a vertex v ∈ V (T ), denote by T (v) the subtree rooted at v. Let (v1, . . . , vm) be a
root-to-leaf path in T such that for all 1 ⩽ i < m, the vertex vi+1 is the child of vi whose subtree
contains the most elements from W , where ties are broken arbitrarily. Let i ∈ [m] be the largest
index such that T (vi) contains at least 1

4 |W | vertices from W . By construction, T (v2) contains at
least 1

2 |W | elements from W , and therefore i > 1, i.e. vi has a parent vi−1. T (vi) contains less
than 1

2 |W | vertices from W , as both of its at most two children contain less than 1
4 |W | elements

from W . Therefore, the edge connecting vi and vi−1 is the desired edge.

Lemma 14.5. Every graph class with bounded rank-width is distance-∞ flip-breakable.

Proof. Fix a number k and let C be a graph class of rank-width at most k. We will show that C is
distance-∞ flip-breakable for N(m) := 4m using 2k + 22

k flips. For every graph G ∈ C there
is a rooted subtree T of a binary tree with leaves V (G), such that for every edge e ∈ E(T ),
the bipartition X ⊎ Y of the leaves of T into the leaves on either side of e, has cut-rank at
most k. Let W ⊆ V (G) be a set of size 4m. By Lemma 14.4, there exists an edge e such that

171



Chapter 14. Bounded Clique-Width

in the corresponding bipartition X ⊎ Y of V (G), both X and Y each contain at least m many
vertices of W . Observe that since rkG(X,Y ) ⩽ k, X induces at most 2k distinct neighborhoods
over Y . Then there is a (2k + 22

k
)-flip H of G in which there are no edges between X and Y :

the corresponding partition of V (G) partitions the vertices of X into 2k parts depending on their
neighborhood in Y and partitions the vertices of Y in 22

k parts depending on their neighborhood
in X .

A set W of vertices of G is well-linked, if for every bipartition A ⊎B of V (G), the cut-rank
of A ⊎B satisfies rkG(A,B) ⩾ min(|A ∩W |, |B ∩W |). We use the following two facts.

Fact 14.6 ([51, Thm. 5.2]). Every graph of rank-width greater than k contains well-linked set of
size k.

Fact 14.7 ([83, Lem. D.2]). LetG be a graph andA⊎B a bipartition of V (G) with rkG(A,B) > k.
Then for every k-flip H of G there is some edge ab ∈ E(H) with a ∈ A and b ∈ B.

Lemma 14.8. Every graph class with unbounded rank-width is not distance-∞ flip-breakable.

Proof. Let C be a graph class with unbounded rank-width. Assume towards a contradiction that C
is distance-∞ flip-breakable with bounds N(·) and k. By Fact 14.6, there exists a graph G ∈ C
that contains a well-linked set W of size at least N(k + 1). By distance-∞ flip-breakability, there
exists a k-flip H of G and two sets A,B ⊆W of size k+1 each, such that no two vertices a ∈ A
and b ∈ B are in the same component in H . We can therefore find a bipartition of X ⊎ Y of the
connected components of H , such that X contains all the components containing a vertex of A
and Y contains all the components containing a vertex of B. Components containing neither a
vertex ofA nor ofB can be distributed arbitrarily among X and Y . LetX :=

⋃︁
X and Y :=

⋃︁
Y .

Then X ⊎ Y is a bipartition of V (H), and there is no edge between X and Y in H . Since W is
well-linked we have that the cut-rank X ⊎ Y satisfies

rkG(X,Y ) ⩾ min(|X ∩W |, |Y ∩W |) ⩾ min(|A|, |B|) = k + 1.

By Fact 14.7, there must be an edge ab ∈ E(H) with a ∈ X and b ∈ Y ; a contradiction.

Combining Fact 14.3, Lemma 14.5, and Lemma 14.8 now yields Theorem 14.2.

172



Chapter 15

Bounded Tree-Width

Definition 15.1. A graph class C is distance-∞ deletion-breakable, if there exists a function
N : N → N and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with
|W | ⩾ N(m) there exist a set S ⊆ V (G) with |S| ⩽ k and subsets A,B ⊆ W \ S with
|A|, |B| ⩾ m such that in G− S, no two vertices a ∈ A and b ∈ B are in the same connected
component.

The goal of this chapter is to prove the following.

Theorem 15.2. A graph class has bounded tree-width if and only if it is distance-∞ deletion-
breakable.

We start with the forward direction. We assume familiarity with tree-width and (nice) tree
decompositions. See for example [15] for an introduction.

Lemma 15.3. Every graph class with bounded tree-width is distance-∞ deletion-breakable.

Proof. Let C be a graph class of tree-width at most k − 1. We show that C is distance-∞ deletion-
breakable with bounds N(m) := 4(m+ k) and k := k.

Consider a graph G ∈ C of tree-width at most k − 1 and a subset W containing at least
N(m) = 4(m+ k) vertices of G. We fix a nice tree decomposition of G of width k, and associate
with every bag t the set V (t) ⊆ V (G) consisting of all vertices that are contained either in t or in
a descendant of t. We consider a walk that starts at the root of the nice tree decomposition and
walks downwards towards the leaves. Whenever the walk reaches a join node, it proceeds towards
the child t that maximizes |V (t) ∩W |. As each node has at most two children, the cardinality
|V (t) ∩W | of the current node t of the walk can decrease at most by a factor 1

2 with each step.
Hence, as in the proof of Lemma 14.4, we reach at some point a node t with

m+ k ⩽
1

4
|W | ⩽ |V (t) ∩W | < 1

2
|W | ⩽ 2(m+ k).

Let S ⊆ V (G) be the vertices in this bag t and choose A = (V (t) ∩W ) \ S and B =W \ V (t).
Note that |S| ⩽ k and |A|, |B| ⩾ m. By the definition of tree decompositions, the vertices S act
as a separator in the desired sense: In G− S, no two vertices a ∈ A and b ∈ B are in the same
connected component.

The backwards direction will follow easily from the Grid-Minor theorem by Robertson and
Seymour. First some notation. A graph H is a minor of a graph G if there exists a minor model µ
ofH inG. A minor model is a map µ that assigns to every vertex v ∈ V (H) a connected subgraph
µ(v) of G and to every edge e ∈ E(H) an edge µ(e) ∈ E(G) satisfying

173



Chapter 15. Bounded Tree-Width

• for all u, v ∈ V (H) with u ̸= v: V (µ(u)) ∩ V (µ(v)) = ∅;
• for every (u, v) ∈ E(H): µ((u, v)) = (u′, v′) for vertices u′ ∈ V (µ(u)) and v′ ∈ V (µ(v)).

Possibly deviating from our notation in previous sections, in this section the k-grid is the graph
on the vertex set [k]× [k] where two vertices (i, j) and (i′, j′) are adjacent if and only if |i− i′|+
|j − j′| = 1. We can now state the Grid-Minor theorem.

Fact 15.4 ([75, Thm. 1.5]). Let C be a graph class with unbounded tree-width. Then for every k ∈ N,
C contains a graph which contains the k-grid as a minor.

Lemma 15.5. Every graph class with unbounded tree-width is not distance-∞ deletion-breakable.

Proof. Assume towards a contradiction that C has unbounded tree-width but is distance-∞
deletion-breakable with bounds N(·) and k. Let t := N(2k + 2). By Fact 15.4, there is a graph
G ∈ C such that there exists a minor model µ of the t-grid in G. Let W := {v1, . . . , vt} ⊆ V (G)
be a set representing the bottom row of the t-grid: we pick one vertex vi from the subgraph
µ((i, 1)) for each i ∈ [t]. We apply distance-∞ flip-breakability to the set W in G, which yields a
set S ⊆ V (G) of size k and disjoint sets A,B ⊆W \ S, each of size 2k + 2, such that in G− S
there is no path from a vertex in A to a vertex in B. Let iA ∈ [t] be an index such that each of the
sets

A1 := {v1, . . . , viA} ∩A and A2 := {viA+1, . . . , vt} ∩A

contains k + 1 elements of A. Pick iB , B1, and B2 symmetrically. Assume first iA ⩽ iB . Then
i < j for all vi ∈ A1 and vj ∈ B2. Let A⋆ := {(i, 1) : vi ∈ A1} be the vertices from the bottom
row of the t-grid represented by A1 and likewise let B⋆ := {(j, 1) : vj ∈ B1}. In Figure 15.1 it is
easy to see that the vertices from A⋆ and B⋆ can be matched by k + 1 disjoint paths in the t-grid.

A⋆ B⋆

(t,1)

(t,4)

Figure 15.1: Pairing the vertices of A⋆ and B⋆ with disjoint paths in the t-grid.

By the definition of minor, also A1 and B1 can be matched by k + 1 disjoint paths in G. We
now reach the desired contradiction, as we assumed that no paths run betweenA andB inG−S,
but removing the at most k vertices from S can destroy at most k paths.

In the case where iA > iB , we have i < j for all vi ∈ B1 and vj ∈ A2 and argue symmetrically.

Combining Lemma 15.3 and Lemma 15.5 now yields Theorem 15.2.

174



Chapter 16

Bounded Shrub-Depth

Definition 16.1. A graph class C is distance-∞ flip-flat, if there exists a function N : N → N and
a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m) there exists
a subset W⋆ ⊆W with |W⋆| ⩾ m and a k-flip H of G such that in H , no two vertices u, v ∈W⋆

are in the same connected component.

The goal of this chapter is to prove the following.

Theorem 16.2. A graph class has bounded shrub-depth if and only if it is distance-∞ flip-flat.

To prove that bounded shrub-depth implies distance-∞ flip-flatness, we work with flip-depth,
a parameter that is functionally equivalent to shrub-depth. It is defined as follows. The single
vertex graph K1 has flip-depth 0. For k > 0, a graph G has flip-depth at most k, if it is a 2-flip of
a disjoint union of (arbitrarily many) graphs of flip-depth at most k − 1.

Fact 16.3 ([43, Thm. 3.6]). A graph class has bounded shrub-depth if and only if it has bounded
flip-depth.

More precisely, [43, Thm. 3.6] shows the functional equivalence of shrub-depth and the graph
parameter SC-depth. The definition of SC-depth is obtained from the definition of flip-depth by
replacing the 2-flip with a set complementation, that is, the operation of complementing all the
edges in an arbitrary subset of the vertices. 2-flips generalize set complementations, but any 2-flip
can be simulated by performing at most three set complementations. Therefore, flip-depth and
SC-depth are functionally equivalent.

Lemma 16.4. For every graph G of flip-depth at most k and every set W ⊆ V (G), there exists a
subset W⋆ ⊆W with |W⋆| ⩾ |W |

1

2k and a 4k-flip H of G, such that in H , no two vertices from W⋆

are in the same connected component.

Proof. We prove the lemma by induction on k. If k = 0, we have G = K1 where the statement
holds. For the inductive step assume G has flip-depth at most k+1. Then G is 2-flip of a graph H
that is a disjoint union of graphs of flip-depth at most k. If in H at least |W |

1
2 vertices of W are

in pairwise different components, we are done. Otherwise, there exists a component C of H
which contains at least |W |

1
2 vertices of W . By assumption, H[C] has flip-depth at most k. By

induction there is a 4k-flip H⋆ of H[C] and a set W⋆ ⊆W of size at least |W⋆| ⩾ |W |
1
2
· 1

2k such
that all vertices from W⋆ are in pairwise different components in H⋆. Refining

• the size 2 partition of the flip that produced H from G,
• the size 2 partition which marks the component C in H ,
• the size 4k partition of the flip that produced H⋆ from H[C],

175



Chapter 16. Bounded Shrub-Depth

yields a partition witnessing a 4k+1-flip ofG in which all vertices fromW⋆ are in pairwise different
components as desired.

Corollary 16.5. Every class of bounded shrub-depth is distance-∞ flip-flat.

We will use the following proof strategy for the other direction.

Fact 16.6 ([69, Thm. 1.1]). Every class of unbounded shrub-depth transduces the class of all paths.

Lemma 16.7. Let C be a graph class that is distance-∞ flip-flat. Every class that is transducible
from C is also distance-∞ flip-flat.

Lemma 16.8. The class of all paths is not distance-∞ flip-flat.

It is easy to see that combining Fact 16.6, Lemma 16.7, Lemma 16.8 yields the following.

Lemma 16.9. Every graph class with unbounded shrub-depth is not distance-∞ flip-flat.

Together with Corollary 16.5, the above lemma proves Theorem 16.2. It remains to prove
Lemma 16.7 and Lemma 16.8. The former is an immediate consequence of the following fact
where φ(x, y) is a formula in the language of colored graphs and φ(G) denotes the graph with
vertex set V (G) and edge set {uv : G |= φ(u, v) ∨ φ(v, u)}.

Fact 16.10 ([83, Lem. H.3]). For every formula φ(x, y) and k ∈ N there exists s, ℓ ∈ N such that
for every colored graph G and for every k-flip G′ of G, there exists an ℓ-flip H ′ of H := φ(G) such
that for every two vertices u and v adjacent in H ′ we have that distG′(u, v) ⩽ s.

Proof of Lemma 16.7. Assume the class C is distance-∞ flip-flat with bounds N(·) and k and
transduces the class D using the formula φ(x, y). We will show that also D is flip-flat with bounds
N(·) and ℓ, where ℓ is the bound obtained from Fact 16.10 for φ and k. Let H ∈ D, m ∈ N, and
W ⊆ V (G) be a set of size at least N(m). Since C transduces D, we have H = φ(G)[V (H)]
for some colored graph G ∈ C. By distance-∞ flip-flatness, there is a k-flip G′ of G and a
subset W⋆ ⊆W of size at least m whose vertices are pairwise in different components in G′. By
Fact 16.10, there is also an ℓ-flip H ′ of φ(G) in which the vertices of W⋆ are in pairwise different
components. It follows that H ′[V (H)] is the desired ℓ-flip of H .

Proof of Lemma 16.8. Assume towards a contradiction that the class of all paths is distance-∞
flip-flat with boundsN(·) and k. LetG be the path containingN(8k+2) vertices. By flip-flatness
there exists a k-coloring K of G and F ⊆ K2 such that G⊕ := G⊕ F contains at least 8k + 2
components. Let B := {C ∈ K : |C| ⩾ 5} be the big color classes and W :=

⋃︁
(K \ B) be the

at most 4k vertices contained in small color classes. Let G′ be the subgraph of G obtained by
isolating W and let F ′ := F ∩ B2 be the restriction of F to B. G′

⊕ := G′ ⊕ F ′ is a subgraph
of G⊕: every edge uv in G′

⊕ has no endpoint in W and is therefore also present in G⊕. Since G′
⊕

and G⊕ share the same vertex set, G′
⊕ has at least as many components as G⊕. In order to arrive

at the desired contradiction, it remains to bound the number of components in G′
⊕. Towards this

goal, we first bound the number of components in G′. As G′ is obtained from a path by isolating
at most 4k vertices, G′ contains at most 8k + 1 components: the path is cut in at most 4k places
leading to 4k + 1 components plus the additional at most 4k isolated vertices.

Claim 16.11. If two vertices u and v are adjacent in G′, then they are connected in G′
⊕.

Proof. Since u and v are adjacent, they are from big color classes K(u) and K(v). Assume the
adjacency between K(u) and K(v) was flipped, as otherwise we are done. As G′ has maximum
degree two, we have |NG′

1 [u] ∪NG′
1 [v]| ⩽ 4. If K(u) = K(v) then there exists a vertex in that

176



Chapter 16. Bounded Shrub-Depth

class that is adjacent to none of u and v in G′ and therefore adjacent to both of them in G′
⊕ and

we are done. Otherwise, there are three vertices U ⊆ K(u) non-adjacent to v in G′ and three
vertices V ⊆ K(v) non-adjacent to u. Again using the fact that G′ has maximum degree two,
we find u′ ∈ U and v′ ∈ V that are non-adjacent in G′. It follows that (u, v′, u′, v) is a path
in G′

⊕. ■

It follows that G′
⊕ (and also G⊕) contains at most 8k + 1 components; a contradiction.

177



Chapter 17

Bounded Tree-Depth

Definition 17.1. A graph class C is distance-∞ deletion-flat, if there exists a function N : N → N
and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m) there
exists a set S ⊆ V (G) with |S| ⩽ k and a subsetW⋆ ⊆W \S with |W⋆| ⩾ m such that inG−S,
no two vertices u, v ∈W⋆ are in the same connected component.

In this chapter we relate distance-∞ deletion-flatness to the graph parameter tree-depth. The
single vertex graph K1 has tree-depth 1. For k > 1, a graph G has tree-depth at most k if
there exists a vertex whose deletion splits G into a disjoint union of (arbitrarily many) graphs of
tree-depth at most k − 1.

Theorem 17.2. A graph class has bounded tree-depth if and only if it is distance-∞ deletion-flat.

Proof. Essentially, the definitions of tree-depth and distance-∞ deletion-flatness are obtained
from the definitions of flip-depth and distance-∞ flip-flatness by replacing flips with vertex
deletions. Proving that every class of bounded tree-depth is distance-∞ flip-flat is therefore
analogous to the proof of Lemma 16.4. The other direction follows by combining the following
easy facts.

1. If a class has bounded tree-depth, then so does its closure under taking subgraphs.
2. Every class of unbounded tree-depth contains all paths as subgraphs. [62, Prop. 6.1]
3. The class of all paths is not distance-∞ flip-flat.

Discussing Dense Versions of Bounded Tree-Depth

For convenience, we reproduce the overview of graph classes from the motivational Chapter 1
in Figure 17.1. Recall that a class property is a set of graph classes. The reader might wonder
whether there is a class property that fits into the empty bottom right corner of the hierarchy.
The answer depends on what restrictions we impose on the rightmost column. One reasonable
demand is that every class property P in the right column satisfies the following three conditions:
(C1) P is transduction-closed,
(C2) the restriction of P to weakly sparse classes is equivalent to the leftmost property in the

same row as P ,
(C3) P is not subsumed by monadic stability.

Under these constraints, the bottom right corner should remain empty. Every property P that is
transduction closed but not monadically stable contains the class of all paths, which is weakly
sparse but has unbounded tree-depth.

178



Chapter 17. Bounded Tree-Depth

Nowhere Denseness

Structurally
Bounded Expansion

Bounded Tree-Width Structurally
Bounded Tree-Width

Bounded Tree-Depth Bounded Shrub-Depth

Monadic Stability Monadic Dependence

Bounded Sparse
Twin-Width

Structurally Bounded
Sparse Twin-Width

Bounded Expansion

Bounded Clique-Width

Bounded Twin-Width

Bounded Flip-Width

Figure 17.1: A hierarchy of the class properties discussed in this thesis.

A different point of view is given by Gajarský, Pilipczuk, and Toruńczyk in [41], where they
provide an in depth discussion about the relations between the columns of (a variant of) the
hierarchy in Figure 17.1. Regarding the rightmost column, they argue to drop condition (C3) and
conjecture that the rightmost can be defined from the leftmost column as the largest properties
that are transduction-closed and whose restriction to weakly sparse classes yields the leftmost
column. We illustrate this conjecture in the case of monadic dependence. Monadic dependence
is transduction-closed and weakly sparse monadic dependence is equivalent to nowhere dense-
ness. Moreover, the only class property that is transduction-closed but contains monadically
independent classes is the trivial class property that contains all graph classes. Its weakly sparse
restriction is the property of being weakly sparse, which strictly generalizes nowhere denseness.
Therefore, monadic dependence is exactly the largest transduction-closed class property whose
restriction to weakly sparse classes is equivalent to nowhere denseness. Adopting this point of
view, the fitting property to put into the bottom right corner of Figure 17.1 is again bounded
shrub-depth, which can be easily argued using the results from [69].

179



Chapter 18

Conclusion

In this thesis we have presented several characterizations of monadically stable and monadically
dependent graph classes, that bridge the gap between structural graph theory and model theory.
One of the driving forces behind the study of monadic stability and monadic dependence is their
conjectured relation to the first-order model checking problem [2, 7].

Conjecture 1.1. A hereditary graph class admits fixed-parameter tractable model checking if and
only if it is monadically dependent (assuming FPT ̸= AW[∗]).

Building on our characterizations, we have resolved the hardness side of this conjecture, by
showing that model checking is AW[∗]-hard on every hereditary, monadically independent graph
class. On the tractability side we have made strong progress by developing a fixed-parameter
tractable first-order model checking algorithm for monadically stable graph classes. Whether
model checking is fixed-parameter tractable also on the more general monadically dependent
classes remains an open question. How should one approach this question? Our model checking
algorithm for monadically stable classes builds on two main ingredients: the Flipper game and
sparse neighborhood covers. The Flipper game has a qualitative character. For every radius r, the
length of the Flipper game is bounded by a constant. Flip-flatness and the characterization by
forbidden induced subgraphs also fall into this category. On the other hand, the neighborhood
covers have a quantitative character. Instead of constant bounds, we have bounds of the form nε or
n1+ε for the overlap of the cover and the neighborhood complexity. Our model checking algorithm
combines both the qualitative and the quantitative aspect of monadic stability. We predict that
model checking monadically dependent classes requires further advancements in both directions.
On the qualitative side, we made initial progress with our flip-breakability characterization. The
obvious next question is the following.

Question 18.1. Is there a game characterization for monadically dependent classes?

The quantitative theory of monadic dependence is less developed. A first step here would be
to prove the following conjecture stated in [24].

Conjecture 18.2. Every monadically dependent class has almost linear neighborhood complexity.

For monadically stable classes, the following conjecture [68, 41] still remains open.

Conjecture 18.3. Every monadically stable graph class is structurally nowhere dense (i.e., trans-
ducible from a nowhere dense class).

This conjecture is currently open even for classes of bounded local shrub-depth. A graph class C
has bounded local shrub-depth if there is a function f : N → N such that every graph induced by

180



Chapter 18. Conclusion

an every r-neighborhood in C has shrub-depth at most f(r). Using the Flipper game, it can be
easily shown that these classes are monadically stable. However, it is not known whether they
are transducible from nowhere dense classes. Could they even be transducible from classes of
bounded local tree-depth?

While we have shown that all first-order definable problems are fixed-parameter tractable on
monadically stable classes, a finer grained analysis of the parameterized complexity is missing.

Question 18.4. Do monadically stable (monadically dependent) classes admit polynomial kernels
for k-Independent-Set and k-Dominating-Set?

For some subclasses this question has been answered positively in [25]. Here, a possible angle
of attack is to use the fact that flip-flatness yields distance-r independent sets of polynomial
size [27]. These bounds are obtained by replacing the bounds from Ramsey’s theorem with the
polynomial bounds from [58]. Recent results for graphs of bounded VC dimension [67] suggest
that polynomial bounds can also be obtained for flip-breakability.

181



Bibliography

[1] Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion
of model theory. European Journal of Combinatorics, 36:322–330, 2014.

[2] Algorithms, Logic and Structure Workshop in Warwick. Open Problems. https://warwick.
ac.uk/ fac/ sci/maths/people/ staff/daniel kral/alglogstr/openproblems.pdf , 2016. [Online; ac-
cessed 10-Jun-2024].

[3] John T Baldwin. Fundamentals of stability theory, volume 12. Cambridge University Press,
2017.

[4] John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories.
Notre Dame Journal of Formal Logic, 26(3):229–303, 1985.

[5] Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre
Simon, and Szymon Toruńczyk. Model checking on interpretations of classes of bounded local
cliquewidth. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 54:1–54:13.
ACM, 2022.

[6] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: Small classes. Combinatorial Theory, 2(2), 2022.

[7] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width iv: Ordered graphs and matrices. J. ACM, 71(3), jun
2024.

[8] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width i:
Tractable fo model checking. J. ACM, 69(1), nov 2021.

[9] Samuel Braunfeld and Michael C. Laskowski. Existential characterizations of monadic nip.
arXiv preprint arXiv:2209.05120, 2022.

[10] Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in space of finite VC-
dimension. Discret. Comput. Geom., 4:467–489, 1989.

[11] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006.

[12] Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar map graphs.
In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 514–523. ACM, 1998.

182

https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf


Bibliography

[13] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

[14] Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

[15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publish-
ing Company, Incorporated, 1st edition, 2015.

[16] Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010.

[17] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007), pages 270–279. IEEE, 2007.

[18] Anuj Dawar and Stephan Kreutzer. Domination Problems in Nowhere-Dense Classes. In
Ravi Kannan and K. Narayan Kumar, editors, IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 4 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 157–168, Dagstuhl, Germany, 2009. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[19] Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath Sikdar,
and Blair D. Sullivan. Structural sparsity of complex networks: Bounded expansion in random
models and real-world graphs. Journal of Computer and System Sciences, 105:199–241, 2019.

[20] Guoli Ding, Bogdan Oporowski, James G. Oxley, and Dirk Vertigan. Unavoidable minors of
large 3-connected binary matroids. J. Comb. Theory, Ser. B, 66(2):334–360, 1996.

[21] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, London, 2013.

[22] Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The parameterized complexity
of relational database queries and an improved characterization of w[1]. In International
Conference on Discrete Mathematics and Theoretical Computer Science, 1996.

[23] Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov,
Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Saket Saurabh, Fernando Sánchez Villaamil,
and Somnath Sikdar. Kernelization and sparseness: the case of dominating set. CoRR,
abs/1411.4575, 2014.

[24] Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose M. McCarty, Michał Pilipczuk,
and Szymon Toruńczyk. First-order model checking on monadically stable graph classes.
arXiv preprint arXiv:2311.18740, 2023.

[25] Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny.
Combinatorial and Algorithmic Aspects of Monadic Stability. In Sang Won Bae and Heejin
Park, editors, 33rd International Symposium on Algorithms and Computation (ISAAC 2022),
volume 248 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:17,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[26] Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In Proceedings of the 55th Annual ACM Symposium on

183



Bibliography

Theory of Computing, STOC 2023, pages 567–580, New York, NY, USA, 2023. Association for
Computing Machinery.

[27] Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles
and flatness in monadically stable and monadically NIP classes. In Kousha Etessami, Uriel
Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages,
and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs,
pages 125:1–125:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[28] Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk. Flip-breakability: A combinatorial
dichotomy for monadically dependent graph classes. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, STOC 2024, page 1550–1560, New York, NY, USA, 2024.
Association for Computing Machinery.

[29] Zdeněk Dvořák. Asymptotical structure of combinatorial objects. PhD thesis, Charles Univer-
sity, Faculty of Mathematics and Physics, 2007.

[30] Zdeněk Dvořák. Induced subdivisions and bounded expansion. European Journal of Combi-
natorics, 69:143–148, 2018.

[31] Zdeněk Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013.

[32] Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernel-
ization for nowhere dense classes of graphs. In 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 63:1–63:14. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, 2017.

[33] Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM Journal on Computing, 31(1):113–145, 2001.

[34] Jörg Flum and Martin Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg, 2006.

[35] Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM (JACM), 48(6):1184–1206, 2001.

[36] Haim Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium,
volume 107 of Stud. Logic Found. Math., pages 105 – 135. Elsevier, 1982.

[37] Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Daniel Lokshtanov, and M. S. Ramanujan. A
new perspective on FO model checking of dense graph classes. ACM Trans. Comput. Logic,
21(4), July 2020.

[38] Jakub Gajarský, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona De Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. ACM Transactions on Computational Logic (TOCL), 21(4):1–41, 2020.

[39] Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk,
Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk.
Flipper Games for Monadically Stable Graph Classes. In Kousha Etessami, Uriel Feige,
and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics

184



Bibliography

(LIPIcs), pages 128:1–128:16, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[40] Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Twin-
Width and Types. In 49th International Colloquium on Automata, Languages, and Program-
ming, pages 123:1–123:21, 2022.

[41] Jakub Gajarský, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded twin-
width. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 1–12, 2022.

[42] Robert Ganian, Petr Hliněný, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and
Somnath Sikdar. Lower bounds on the complexity of mso1 model-checking. Journal of
Computer and System Sciences, 80(1):180–194, 2014.

[43] Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, Patrice Ossona de Mendez,
and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1. In Branislav Rovan,
Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer
Science 2012, pages 419–430, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[44] William Gasarch, Andy Parrish, and Sandow Sinai. Three proofs of the hypergraph ramsey
theorem (an exposition). arXiv preprint arXiv:1206.4257, 2012.

[45] Sylvain Gravier, Frédéric Maffray, Jérôme Renault, and Nicolas Trotignon. Ramsey-type
results on singletons, co-singletons and monotone sequences in large collections of sets.
European Journal of Combinatorics, 25(5):719–734, 2004.

[46] Martin Grohe. Logic, graphs, and algorithms. Logic and Automata, 2:357–422, 2008.

[47] Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. Model Theoretic
Methods in Finite Combinatorics, 558:181–206, 2011.

[48] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. Journal of the ACM (JACM), 64(3):1–32, 2017.

[49] Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1993.

[50] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[51] Sang il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006.

[52] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

[53] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[54] Stephan Kreutzer. Algorithmic meta-theorems, pages 177–270. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2011.

[55] Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and
wideness properties of nowhere dense graph classes. ACM Transactions on Algorithms
(TALG), 15(2):1–19, 2018.

185



Bibliography

[56] Stephan Kreutzer and Siamak Tazari. Lower bounds for the complexity of monadic second-
order logic. In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages 189–198.
IEEE, 2010.

[57] Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004.

[58] Maryanthe Malliaris and Saharon Shelah. Regularity lemmas for stable graphs. Transactions
of the American Mathematical Society, 366(3):1551–1585, 2014.

[59] Jiřı́ Matoušek. Spanning trees with low crossing number. RAIRO - Theoretical Informatics
and Applications - Informatique Théorique et Applications, 25(2):103–123, 1991.

[60] Jaroslav Nešetřil and Patrice Ossona de Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(3):868–887, 2010.

[61] Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European
Journal of Combinatorics, 32(4):600–617, 2011.

[62] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: graphs, structures, and algorithms,
volume 28. Springer Science & Business Media, 2012.

[63] Jaroslav Nešetřil and Patrice Ossona de Mendez. Structural sparsity. Russian Mathematical
Surveys, 71(1):79, 2016.

[64] Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and Se-
bastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2014–2033. SIAM, 2021.

[65] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion i.
decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.

[66] Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian Siebertz.
Classes of graphs with low complexity: The case of classes with bounded linear rankwidth.
European Journal of Combinatorics, 91:103223, 2021. Colorings and structural graph theory
in context (a tribute to Xuding Zhu).

[67] Tung Nguyen, Alex Scott, and Paul Seymour. Induced subgraph density. vi. bounded vc-
dimension. arXiv preprint arXiv:2312.15572, 2023.

[68] Patrice Ossona de Mendez. First-order transductions of graphs (invited talk). In 38th
International Symposium on Theoretical Aspects of Computer Science, STACS 2021, volume 187
of LIPIcs, pages 2:1–2:7. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2021.

[69] Patrice Ossona de Mendez, Michał Pilipczuk, and Sebastian Siebertz. Transducing paths in
graph classes with unbounded shrubdepth. European Journal of Combinatorics, page 103660,
2022.

[70] Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. On the number of types in
sparse graphs. In 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
pages 799–808. ACM, 2018.

[71] Anand Pillay. An introduction to stability theory. Courier Corporation, 2008.

[72] Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathematicae,
100(2):101–107, 1978.

186



Bibliography

[73] Tibor Radó. On non-computable functions. The Bell System Technical Journal, 41(3):877–884,
1962.

[74] Frank P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical
Society, s2-30(1):264–286, 01 1930.

[75] Neil Robertson and Paul D Seymour. Graph minors. v. excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986.

[76] Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972.

[77] Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

[78] Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

[79] Saharon Shelah. Classification theory: and the number of non-isomorphic models. Elsevier,
1990.

[80] Pierre Simon. A Guide to NIP Theories. Lecture Notes in Logic. Cambridge University Press,
2015.

[81] Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in Logic. Cambridge
University Press, 2012.

[82] Szymon Toruńczyk. Lectures on finite model theory. https://duch.mimuw.edu.pl/∼szymtor/
fmt.pdf , 2022. [Online; accessed 10-Jun-2024].

[83] Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 663–700, Santa Cruz, CA, USA,
nov 2023. IEEE Computer Society. Full version available at https://arxiv.org/abs/2302.00352.

[84] Vladimir Naumovitch Vapnik and Alexei Iakovlevitch Červonenkis. On the uniform conver-
gence of relative sequences of events to their probabilities. Theory Probab. Appl., 16:264–280,
1971.

[85] Emo Welzl. Partition trees for triangle counting and other range searching problems. In
Fourth Annual Symposium on Computational Geometry, SoCG 1988, pages 23–33. ACM, 1988.

[86] Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete
Mathematics, 309(18):5562–5568, 2009. Combinatorics 2006, A Meeting in Celebration of
Pavol Hell’s 60th Birthday (May 1–5, 2006).

187

https://duch.mimuw.edu.pl/~szymtor/fmt.pdf
https://duch.mimuw.edu.pl/~szymtor/fmt.pdf
https://arxiv.org/abs/2302.00352

	I Prelude
	Motivation
	Contribution
	Bibliographic Remark
	Preliminaries

	II Monadic Dependence
	Flip-Breakability
	Forbidden Induced Subgraphs
	Model Checking Hardness

	III Monadic Stability
	Flip-Flatness
	Forbidden Induced Subgraphs
	Flipper Game
	Neighborhood Covers
	Model Checking

	IV The Breakability Framework
	Nowhere Denseness
	Bounded Clique-Width
	Bounded Tree-Width
	Bounded Shrub-Depth
	Bounded Tree-Depth
	Conclusion


