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Geometric Partitioning of Complex
Surface Measurements

Axel von Freyberg and Andreas Fischer , Member, IEEE

Abstract— Dimensional inspection of microparts is challenging.
Optimized processes, such as microdeep-drawing with tailored
tools, even increase the requirements. While the development
of fast and precise data acquisition techniques is in progress
and various solutions already exist, the geometrical evaluation
of measuring data still shows open questions: 1) the evaluation
methods for freeform surfaces do not provide information in a
form that can be directly used to assess dimensional tolerances;
2) manual association of approximating geometric elements to
points is not suited for high inspection rates; and 3) partitioning
based on the nominal workpiece coordinate system is affected
by alignment uncertainties. An algorithm was developed for the
automated evaluation of surface measuring data composed of
geometric primitives, such as planes, cylinders, and tori, which
combines and optimizes the estimation of geometric parameters
together with the automatic partitioning of the measured points.
This article presents the extension of this holistic approximation
(HA) with root point iteration in order to evaluate more complex
geometric elements. The verification of the extended HA for a
2-D combination of lines and an ellipse shows no systematic error
and achievable uncertainties below 0.8 µm for the approximated
shape parameters of an ellipse for simulated surface data
with uniformly distributed noise in the range of 1.0 µm. The
validation in comparison with commercial metrology software
finally exhibits the full potential of the extended HA. As a result,
a fully automatic dimensional evaluation is possible, providing
geometric parameters that can directly be compared to nominal
specifications and tolerances.

Index Terms— Automatic partitioning, combined complex
geometries, holistic approximation (HA), orthogonal ellipse dis-
tance, root point iteration.

I. INTRODUCTION

THE manufacturing of high-quality products makes high
demands on quality inspection. In addition, the pre-

cise inspection of dimensional microfeatures requires high-
resolution data acquisition and tailored evaluation methods.
The motivation of the present contribution is driven by
microdeep-drawing, a sheet metal forming process for the
mass production of components (which are smaller than
1 mm in at least two dimensions) for electronic devices,
medical equipment, optoelectronics and sensor, or actuator
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technologies, such as high-precision microvalves, for use in
antilock braking systems. Both the workpiece quality and
the process efficiency strongly depend on the tool geometry.
Within the microdeep-drawing process, the torus-shaped cut-
ting edge was redesigned by an elliptic cross section shape,
for example [1], [2], to investigate correlations of process
parameters, wear mechanisms, and the product quality. The
aim is an automated and precise dimensional inspection of
microdeep-drawing tools. The focus lies on the quality inspec-
tion, and dimensional characterization of deep-drawing dies,
whose drawing edges deviate from a circular cross section
for process optimization reasons [1]. The tool quality is not
only molding to the workpieces but also defines the tool life.
While the precise measurement of deep-drawed microparts is
still challenging, the surface measurement of the tools can
be performed with sequential methods, either tactile with
coordinate measuring machines (CMMs) or contour/roughness
testers, or optically with point sensors. As these approaches are
very time consuming, various measurement principles, such as
triangulation, confocal sensors, or interferometric approaches
[3] are often used, as they offer the possibility to acquire line-
like (see [4]) or areal data (see [5], [6]) within short timing.

While several acquisition techniques exist for high-
resolution 3-D surface measurements, the focus of this article
was put on the evaluation of 3-D measurement data (according
to ISO 1101), which is a combination of several geometric ele-
ments or free-form surfaces. This task requires a partitioning of
the surface (ISO 17450). The evaluation of free-form surfaces,
on the one hand, consists of aligning the measurement data
to the nominal data of the computer-aided design [7] and to
calculate and visualize the deviations of each measurement
point. For this kind of quality inspection, several commercial
solutions exist. Partitioning of free-form surfaces usually fol-
lows one of the approaches summarized in [8]. Beyond that,
a model-based geometrical approach can be used to partition
surfaces combined of geometric elements (integral elements).
Like in other applications, such as the radius measurement
of rotating objects with underdetermined sensor systems [9],
using a priori knowledge to gather extra information out of the
measuring data can decrease the uncertainty of the evaluation.
Regarding the uncertainty of approximated features, the fol-
lowing relationships have to be considered during this task.

In the case of microfeatures or measurement data with a
low point density, the small number of measurement points
raises the uncertainty of the approximated features. The
uncertainty further increases if the geometric object cannot
be acquired completely. For instance, a circle segment with
decreased central angle leads to increased uncertainty of the
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Fig. 1. Dependence of circle diameter uncertainty on the central angle (angle
of arc) and the number of points [10].

approximated geometric parameters [11], [12]. Both effects
are visualized in Fig. 1. A coarse rule for central angles
below 80◦ is that the uncertainty of an approximated circle
radius increases by a factor of 4 when the central angle
is halved [10]. Therefore, as many points as possible per
object should be used for precise dimensional inspection.
However, a manual partitioning is time-consuming and not
suitable for an automated analysis within mass production.
Furthermore, the number of available points might be reduced
during a manual partitioning due to a doubtful association, e.g.,
by leaving out points, to which a certain geometric element
cannot be reliably associated. Only by an automated parti-
tioning of the measurement data, the corresponding elements
can be associated with the individual measuring points in
a reproducible and optimal way. Partitioning of dimensional
measurement data is very similar to the segmentation task
within image processing. The methods can be divided into
five classes [13]:

1) Edge (Contour) Based: Partitioning can take place based
on detecting edges using different measures on neigh-
boring pixels [14], [15] and defining them as transition
zones between the segmented elements. Edge-based par-
titioning is fast but also very sensitive against noisy data,
outliers, and uneven point densities [13]. Furthermore,
assessing normal vector direction differences between
neighboring points will not succeed in identifying tran-
sition borders, where two object surfaces have the same
tangent planes or surface normals [16].

2) Region Based: Region-based partitioning can be per-
formed either top-down (unseeded region) or bottom-
up (seeded region). Both variants are more accurate to
noise than edge-based methods, but tend to over or under
segmentation and have problems to determine the region
borders accurately [13].

3) Attribute Clustering: This method consists of two steps:
attribute computation and clustering the points based on
its attributes. Attribute clustering can be robust depend-
ing on the quality of the derived attributes [13].

4) Model Based: A problem in image segmentation is that
no model can be determined a priori [16]. The same
is valid for partitioning tasks in reverse engineering.
A possible solution was introduced with the random
sample consensus approach [17], which uses geometric

primitives (such as planes, spheres, or cylinders) to
group the measured points. In the field of quality
inspection, a geometric model exists in the form of
nominal data and the defined tolerances. In general,
the association of geometric elements to the measur-
ing points is based on the nominal geometry given
in the workpiece coordinate system (WCS) [10] and,
thus, requires a full definition of the nominal geometry
and the reference elements. During the measurement,
the WCS is aligned to reference elements, which con-
tain geometric deviations out of the production process
and which are acquired with a finite uncertainty. As a
result, these uncertainties of the WCS propagate to
the partitioning, leading either to a certain fraction of
wrong associations, or to transition zones, whose points
are not considered and, therefore, cannot contribute
to an evaluation with increased precision. In contrast,
a holistic approximation (HA) can evaluate a composed
set of data based on a geometric model in a single
approximation task [18], while an optimal association of
geometric elements to the corresponding measurement
points (partitioning) is carried out simultaneously. A
priori knowledge in the form of a parametric geometric
model is needed, but a full definition of the nominal
geometry is not required. Based on the first 2-D imple-
mentation, a 3-D application to evaluate the composition
of a cylinder, a torus, and a plane is presented in [19].

5) Graph Based: Many graph-based methods use a proba-
bilistic inference model and can be considered robust,
even for complex scenes with noisy data, but they
usually cannot run in real time [13]. Graph-based meth-
ods are widely used in robotics, but applications for
dimensional inspections are not reported.

A newer clustering approach defines only edge detection,
region growing, attribute clustering, and hybrid approaches [8],
which implies defining both the model and the graph-based
partitioning to be attribute clustering methods. In either way,
only the HA demonstrably offers the potential for an auto-
mated optimal partitioning which is the basis for evaluat-
ing microfeatures with low uncertainties, as the maximum
numbers of acquired points are associated by corresponding
approximating elements. It was proven that the HA with
automated partitioning is only little sensitive regarding the
initial values of the approximation and at the same time
converges reliably [19]. The HA is based on minimizing the
orthogonal distances, which is referred to as geometric fit-
ting, best-fit approximation or orthogonal distance regression.
This method was successfully tested for the evaluation of
micromeasurements [20], and it allows the automatic detection
of outliers by a combination with statistical methods [21].
The uncertainty for approximated 3-D features was recently
estimated for the HA of a combination of plane, torus, and
cylinder, and validation showed submicrometer deviations for
the form parameters approximated according to the geometric
boundary conditions [22]. However, the HA was developed for
combinations of geometric primitives, such as circles, planes,
cylinders, and tori, for which the orthogonal distances to the
measured points can be analytically calculated.
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Fig. 2. Cross section of a drawing die with an elliptical drawing edge.

The quality of the dies to be inspected is defined by toler-
ances in the technical drawing. Thus, the nominal geometry
is known and can be used for a model-based evaluation,
such as HA. But, until now, geometrical compositions which
contain more complex geometric elements, such as ellipses
and parables, cannot be analyzed with this method. Thus,
the extension of the HA with cascaded root point iteration (for
calculating the orthogonal point distances) will be presented
in this contribution in a 2-D application. Section II introduces
the microdeep-drawing process and the principle of the HA
with extended root point iteration. The verification results are
presented and discussed in Section III, and Section IV presents
the validation with experimental data. Section V closes this
article with a conclusion and an outlook.

II. METHOD AND APPLICATION

For an automated quality inspection of surface data with
higher order integral elements, the HA was extended by an
algorithm, which is able to calculate the orthogonal distances
of the measuring points to more complex geometric ele-
ments by an iterative determination of the root points on the
approximating geometric object. This article focuses on the
geometric evaluation of cross sections combined of lines and
ellipses. Sections II-A–II-C introduce the quality inspection
task, the HA and the embedded root point iteration for the
geometric combination in the addressed application.

A. Quality Inspection of Optimized Deep-Drawing Tools

Whereas deep drawing is a well-established mass produc-
tion technique in macrodimensions, size effects [23] are a
general challenge in microproduction. Especially the material
properties are changing with decreasing dimensions. In micro-
forming, for example, under certain boundary conditions,
the process forces increase with the grain size [24]. This is in
contrast to the theory of metal forming in macro dimensions
(Hall–Petch-relation) [25]. Therefore, not only the geometric
inspection of the produced parts is important but also the
dimensional characterization of microforming tools in order to
analyze process mechanisms and to optimize friction effects.

Fig. 2 shows a cross section of a microdeep-drawing die
with a hole diameter Dz ≈ 1 mm. Among others, the geo-
metric features of the drawing edge influence the process,
and therefore, the quality of the product. Circle-shaped cross
sections of the drawing edge can be automatically analyzed
with the HA. Further investigations with more complex shapes
[1] shall be geometrically analyzed with an extended HA,
which is introduced in Sections II-B and II-C.

This article considers a single cross section scanned by a
coordinate measuring system. Each cross section represents

Fig. 3. Excerpt from technical drawing with nominal data and tolerances of
the drawing-die. The diameter of the drawing borehole has a nominal datum
Dz = 1.06 mm and the two ellipse axes are defined to Rx = rx = 120 μm
and Ry = ry = 150 μm.

TABLE I

GCS OF THE HA MODEL

a combination of a line, a quarter ellipse, and another line.
The inspection task of this contribution was to characterize
the lengths of the ellipse semiaxes of the deep-drawing edge.
As presented in Fig. 3, the nominal values (rx = 120 μm
and ry = 150 μm) are defined parallel and orthogonal to
the axis of the die. Therefore, the ellipse was defined as a
slave element with the direction determined by the direction
of line 1. Furthermore, the lines of the measured cross section
are defined with certain position tolerances (see Fig. 3). Most
likely, the real workpiece is manufactured with deviations from
the perfect perpendicularity, which could be accounted for with
an additional degree of freedom in the HA model. However,
this degree of freedom was not implemented, because:

1) the tolerances are very narrow, and this datum was not
requested to be evaluated in this inspection task;

2) an increasing degree of freedom negatively affects the
performance of the approximation.

With these geometric constraints (GCs), which are summa-
rized in Table I, a geometric model is derived (see Fig. 4)
from the nominal geometry.

B. Holistic Approximation and Geometric Model

The HA [18], [19] combines a geometric approximation,
based on the minimization of the least squares sum

min
ap,ag

⎡
⎣ nl1∑

i=1

(di )
2 +

ne∑
j=1

(d j )
2 +

nl2∑
k=1

(dk)
2

⎤
⎦ (1)

of the orthogonal distances di , d j , and dk from the three
geometric elements (line, ellipse, and line), dependent on the
transformation parameters ap = [�x,�y, γ ] and the shape
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Fig. 4. Geometric model of the cross section of a drawing die as a
combination of a line (red solid line), an ellipse (green dotted line; with
form parameters rx and ry ) and another line (blue dashed line) in the MCS
(x ′, y′). The origin and the direction of the MCS are defined by a coordinate
transform (�x, �y, γ ) with respect to the measurement coordinate system
(x, y).

parameters ag = [rx , ry] with an optimal association of the
geometric elements to the N = nl1 + ne + nl2 measuring
points. While the orthogonal distance can be analytically
calculated for geometric primitives, such as lines, it requires
the iterative determination of the root point for more complex
objects, such as an ellipse. This increases the degree of
freedom (DOF) of the approximation task and influences the
algorithmic behavior, which is addressed in Section II-C.
Here, nl1, ne, and nl2 are the numbers of points to which
the first line, the ellipse, and the second line, respectively,
were associated. Note that these numbers change during the
approximation, but they are no optimization parameters by
definition. A single point has the index i, j , and k, and its
orthogonal distance to the associated geometric element d can
be calculated by means of the Hessian normal forms of the
lines and the parameter representation of the ellipse

di = y ′
i − ry

dk = x ′
k − rx

d j =
[

x ′
i − rx · cos(ϕi )

y ′
i − ry · sin(ϕi )

]
(2)

from the shape parameters ag = [rx , ry], the angles to the
ellipse root points ϕi and the measurement points x = (x, y)T

transformed to the model coordinate system (MCS)[
x ′
y ′

]
=

[
cos(γ ) sin(γ )

− sin(γ ) cos(γ )

]
·
([

x
y

]
−

[
�x
�y

])
(3)

dependent on the transformation parameters ap =
[�x,�y, γ ].

During the approximation, not only the free parameters are
optimized but also the association of the geometric elements
to the measurement points. That implies that the numbers of
elements in (1) are varying during the iterative calculation. The
geometric association itself is based on a geometric model,
which is presented in Fig. 4. It consists of a line parallel to
the x ′-axis, an ellipse with radii rx and ry , centered in the
origin of the MCS, and a second line parallel to the y ′-axis.
The model contains GCs derived from the workpiece design
(see Fig. 3, Table I). By definition, the lines are parallel to
the axes of the MCS, and the point of intersection of the two

Fig. 5. Decision rules for associating the geometric objects to the measured
points.

lines is shifted by rx and ry to the origin of the MCS, which
results in a coincidence of the origin and the center of the
ellipse. As a result, the DOF is the sum of 3 transformation
parameters ap, two shape parameters ag and ne additional root
point positions ϕi .

Out of the GCs, the decision rules shown in Fig. 5 are
derived and implemented in the algorithm. All transformed
points with a negative x ′-coordinate belong to line 1. The
remaining points are distinguished by their y ′-coordinate,
points with positive y ′ are associated by the ellipse, and the
residual points are associated by the second line.

C. Root Point Iteration

Calculating the orthogonal distance for geometric objects of
higher order, e.g., for an ellipse according to (2), the deter-
mination of the root points leads to ne additional degrees of
freedom. They can be calculated within the global approxima-
tion task, as proposed by Gander et al. [26]. However, as this
approach has a bulky and sparse Jacobian Matrix and shows
only a deteriorative convergence, Ahn and Rauh [27] propose
a cascaded iteration. In the MCS, a point (x ′, y ′) on the ellipse
can be described by

x ′2

r2
x

+ y ′2

r2
y

= 1

⇔ f1(x ′, y ′) = r2
x · y ′2 + r2

y · x ′2 − r2
x · r2

y = 0. (4)

The implicit differentiation of 4 with y ′ = f (x ′) reads

0 = d f1

dx ′ = ∂ f1

∂x ′ + ∂ f1

∂y ′ · ∂y ′

∂x ′ = −r ′2
y · x ′

r2
x · y ′ (5)

and determines the slope mt of the tangent at a point (x ′, y ′)
on the ellipse

mt = ∂y ′

∂x ′ = −r ′2
y · x ′

r2
x · y ′ . (6)

For a measuring point (x ′
k, y ′

k), the tangent line at the root
point on the ellipse and the connecting line of the two points
are perpendicular to each other (product of the slopes is −1)

mt · y ′
k − y ′

x ′
k − x ′ = −r ′2

y · x ′

r2
x · y ′ · y ′

k − y ′

x ′
k − x ′ = −1

⇔ f2(x ′, y ′) = r2
y · x ′ · (y ′

k − y ′)
− r2

x · y ′ · (
x ′

k − x ′) = 0. (7)

This nonlinear root point calculation was solved by the
generalized Newton method, according to [27]. As a result, this
cascaded iteration delivers the root points for the measuring
points associated by the ellipse, which are used by the superior
HA in order to calculate the remaining free parameters,
especially the shape parameters ag of the ellipse.
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Fig. 6. Mean deviations of approximated ellipse radii δrx = rx − r(x,0)
and δry = ry − r(y,0) with standard errors for 100 simulated point clouds
with uniformly distributed noise of different ranges ae .

III. VERIFICATION AND CHARACTERIZATION

For the characterization of the HA, the algorithm is assessed
against the following criteria.

1) Systematic Deviations: The HA can be considered ver-
ified if no systematic influences occur.

2) Random Deviations: How does noisy data influence the
algorithm?

3) Optimality of Partitioning: A decreased number of
measuring points or wrong associations increase the
measurement uncertainty. Only an optimal association
of approximating elements to the measuring points leads
to minimal uncertainty.

The geometry of the measured cross section was simu-
lated as a combination of a line, an ellipse, and another
line. The ellipse radii were defined to rx,0 = 373 μm
and ry,0 = 324 μm, according to the dimensions of the
application. The lateral point distance in the simulation was
chosen to 0.01 mm, which is a realistic value for CMM
measurements. Together with these settings, the boundaries
of the simulated profile were selected in a way that all
elements were formed by approximately 55 equidistant points
with a uniformly distributed noise in normal direction of
the nominal surface with different ranges [−ae/2, ae/2] in
five steps between ae = 0.0, . . . , 3.0 μm. Each case was
simulated n = 100 times and automatically evaluated by the
extended HA. The initial solutions for the initialization of the
minimization were randomly chosen some 10 μm away from
the defined values. The results are discussed in the following
sections.

A. Systematic Deviations

The results of the HA of the simulated data are presented
in Fig. 6. To analyze systematic deviations, an analysis of
variances (ANOVA) is performed with the hypothesis H0
that the approximated radii are equal to the simulated values
(δrx = rx − r(x,0) = 0 and δry = ry − r(y,0) = 0) for the
five simulated groups with different noise. The prerequisites
of independent evaluations and Gaussian distributed random
variables are fulfilled, but a Levene’s test revealed that equal

Fig. 7. Standard deviations of approximated ellipse radii σx and σy ,
normalized by the ranges of normal distributed noise ae for 100 simulated
point clouds.

variances could not be assumed. Therefore, a Welch ANOVA
was used to analyze systematic deviations. The Welch test
delivered Frx (4; 229) = 0.34 and Fry(4; 222) = 1.35. Both
values are below the critical values Fcrit (0.05; 4; 229) ≈
Fcrit (0.05; 4; 222) = 2.41. Thus, with a probability of error
of 5%, it can be assumed that no systematic influence within
the HA leads to significant deviations of both approximated
radii.

B. Random Deviations

The random deviations can be characterized by the standard
deviations of the calculated radii. Fig. 7 shows the standard
deviations of the approximated ellipse radii, σx and σy ,
respectively, normalized by the ranges of noise ae. Within the
boundary conditions of the simulations with approximately
55 points associated by the ellipse, the normalized standard
deviations are between 0.6 and 1.0. This nearly constant level
means the uncertainty of the algorithm is directly scaled by
the range of uniformly distributed noise. The level of random
deviations can be reduced if the number of measured points
increases or if complete elements are evaluated. This effect
can be observed in comparison with HA results in another
application [22]. The normalized standard deviation of the wall
radius of a partial torus, which was measured by approximately
100 000 points, was at a level of 0.4–0.5, whereas a level
of 0.002 could be reached for the radius of a complete cylinder
with 300 000 points.

C. Optimality of Partitioning

The benefit of the HA, in addition to an automated dimen-
sional evaluation, is the optimal partitioning of point clouds.
A nonoptimal partitioning leads to increased uncertainties.

1) Associating approximating elements to wrong points.
2) Ignoring points in the evaluation due to an uncertain

(manual) partitioning.

To analyze the effect of wrongly associated points, com-
bined measuring profiles were again simulated with uniformly
distributed noise (ae = 1.0 μm). The automated partitioning
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Fig. 8. Effects of wrongly associated points for 100 simulated point clouds with normal distributed noise (ae = 1.0 μm). (a) Mean deviations of approximated
ellipse radii δrx = rx − r(x,0) and δry = ry − r(y,0) with standard errors. (b) Normalized standard deviations of approximated ellipse radii σx,y/ae .

capability of the HA was disabled, and the ellipse approxi-
mation was performed with different numbers of additional
measuring points from one adjacent line in 100 repetitions in
each case. The characterization results are presented in Fig. 8.
It can be seen that this systematic effect increases the deviation
to the nominal values for both ellipse radii with an increasing
number of wrongly associated points. In this lateral measuring
resolution of 0.01 mm (resulting in approximately 55 points
on the ellipse), even single wrongly associated points already
lead to significant systematic deviations (Fig. 8(a)).

Omitting points in the evaluation have a similar effect,
which is presented in Fig. 8(b). At one end of the ellipse
profile, different numbers of points were omitted in the ellipse
approximation (negative number of wrong points). As a result,
the random deviations (represented by the normalized standard
deviation) increase for the radius rx . A decrease in 10%
(5 points) almost doubles the normalized standard deviation.

The simulation results in the preceded subsections show that
the HA is neither affected by systematic effects nor shows
varying dependencies on random influences. By that, it is
demonstrated that the HA determines the optimal partition,
which minimizes the uncertainties of the approximated geo-
metric parameters.

IV. VALIDATION AND APPLICATION

For validating the HA, measurement data acquired with
a CMM (Leitz Reference 10.7.6, MPEp = 0.9 μm) was
evaluated and compared with the results of a reference soft-
ware (Hexagon QUINDOS). The measurement was performed
with a 0.6-mm diameter ruby ball probe in scanning probing
mode with a lateral resolution of 1 μm (see Fig. 9). In total,
72 profiles were scanned per die in rotary steps of 5◦.

As initial solutions for the initialization of the HA, the nom-
inal values for the shape parameters were used and zero for the
position parameters. As a result, the difference to the resulting
values is in the order of some 10 μm (form deviation and
alignment error for the WCS). The results of the extended HA
were compared with values calculated with reference software,
which requires a manual partitioning of the measurement data.

Fig. 9. CMM measurement of die with a 0.6 mm diameter ball probe,
the profile to be inspected is the cross section of the central borehole.

An example of the validation is presented in Fig. 10. For direct
comparability, the automatically identified ellipse points of the
HA were also selected manually prior to the reference ellipse
approximation. It can be observed in Fig. 10(a) that different
ellipses are resulting. The reason is that in the HA, the direc-
tion of the major axis of the ellipse is defined by the geometric
model. Thus, the rotation of the ellipse (in relation to the lines)
as a DOF is locked in the HA. Nevertheless, in Fig. 10(b),
a certain similarity is evident between the residuals of the two
results. The characteristic runs of the curves result from shape
deviations of the workpiece. Furthermore, the slopes at both
ends indicate the transitions to the line parts of the measured
profile. For example, the root-mean-square deviations (RMSD)
of the HA is 0.89 μm, whereas it is 0.66 μm for the reference
evaluation. The smaller RMSD of the reference evaluation is
coherent with the additional degree of freedom, leading to a
better approximation of the ellipse points. However, for the
dimensional inspection according to the nominal workpiece
design, the ellipse radii have to be evaluated in the direction
specified in the geometric model. Here, only the values of the
HA lead to a function-oriented assessment of the workpiece.

In order to demonstrate the full potential of the HA, the ref-
erence software was used for repeated manual partitioning of a
measurement profile, without using the implicit partitioning of
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Fig. 10. Approximation results for CMM measurement data. (a) Visualization of the approximation results for HA and a manual reference evaluation for
the center coordinates of the probing ball (radius: 0.3 mm). (b) Mean residual distances (for ten repeated measurements) of the measurement points to the
approximating ellipses for the HA and for the reference evaluation, respectively. The confidence interval is twice the standard error.

the HA. Within ten repeated evaluations of the same measuring
data, the length of the major semi-axis rl was evaluated with
a standard deviation of 8.9 μm and a spread of 25.4 μm,
the length of the minor semi-axis rs with a standard deviation
of 14.9 μm and a spread of 47.6 μm. In contrast, for a repeated
partitioning of one set of data, the HA delivers idem results
each time. Thus, the HA shows a standard deviation of zero
with respect to this significant cause of uncertainty.

The propagation of uncertainties according to supplement
two of the guide to the expression of uncertainty in measure-
ment [28] is given by

Ud = C · Ua · CT (8)

where Ud is the covariance matrix associated with the calcu-
lated orthogonal distances, C is the sensitivity matrix or the
Jacobian matrix, respectively, and Ua is the covariance matrix
of the approximated parameter a = (ag, ap). For estimating
the uncertainties of the approximated parameters, which are
implicitly contained in (8), some assumptions have to be
assessed, first. The coordinates acquired with a CMM are
correlated, due to imperfections of the machine axes. How-
ever, by CMM calibration, these systematic influences can be
reduced to an extent that can be neglected in the following
considerations. Furthermore, as presented in Fig. 6, the model,
on average, represents the expected (true) value. Thus, it can
be assumed that:

1) the measurement data is uncorrelated;
2) the HA is an unbiased estimator.

Following the Gauß Theorem [29], also known as Gauß–
Markov Theorem [30], the HA as least squares estimator is
the best linear unbiased estimator. As a result, the covariance
matrix of the approximated parameters

Ua = C−1 · Ud · (CT )−1 = σ 2 · (CT · C)−1 (9)

can be calculated from the Jacobian matrix C of the least
squares approximation and the uncertainty σ of the calculated
orthogonal distances [31]. This method was also implemented
in [32] to calculate the uncertainties of approximated circle

parameters in a microwave application. For the experimental
results presented in Fig. 10, the empirical standard deviation
s of the residual distances δi of the ne measurement points to
the ellipse was used to estimate the uncertainty

σ ≈ s =
√∑ne

i=1 δi
2

ne − 1
. (10)

The estimated uncertainties of the HA for the ellipse shape
parameters rx and ry result in σrx = 1.21 μm and σry =
0.72 μm, respectively. These values are in good agreement
with the standard deviation of the HA for 100 repeated
evaluations of simulated measuring profiles (with uniformly
distributed noise in the range ae = 1.0 μm), which is below
0.8 μm. As a result, the uncertainty due to noise for the HA is
already more than one order of magnitude smaller than only
the effect of partitioning errors with the reference software.

V. CONCLUSION

For the evaluation of measuring point clouds combined of
different geometric objects, the HA offers an automated way to
perform an optimal partitioning of the point clouds and, at the
same time, approximate individual geometric parameters. The
evaluation of geometric deviations by HA so far was only
possible for combinations of geometric primitives, for which
an orthogonal point distance can be directly calculated. This
contribution presents an extension of the HA with an algorithm
for the root point iteration, which enables the evaluation of
higher order geometric objects, such as ellipses, for example.

Simulated data were used to characterize the extended
HA. The statistical analysis of repeated simulation results
with uniformly distributed noise showed that no systematic
effects influence the approximation results (unbiased estima-
tor). Furthermore, it was proven that random deviations of the
approximation results are scaled by the range of noise of the
input data and the number of measurement points. As a result,
the optimal data partitioning capability of the HA was verified.

The HA was finally validated by comparing its results for
CMM measurements to those of a reference software. The
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reference software does not offer an automated partitioning.
Therefore, the measurement data had to be partitioned manu-
ally prior to the approximation. Although the results are not
directly comparable due to the boundary conditions of the
HA’s geometric model, they visually showed a good agree-
ment, and the RMSD was in the same order of magnitude for
both evaluations. The uncertainty of the approximated ellipse
parameters was estimated to values smaller than 1.2 μm.
Finally, the validation also showed the benefit of the HA.
The reference software is not capable of automated evaluation
of combined surface data, and its results strongly depend on
the subjective partitioning of the measuring points based on
the visual assessment of the user. In contrast, the HA offers
an automated evaluation and provides optimal association
of the measuring points by the individual geometric objects
(partitioning).

Ongoing research focuses on the 3-D implementation of the
extended HA, which will provide a basis for the automated
evaluation of optically acquired surface data (with paramet-
rically defined integral geometry elements) with respect to
geometric tolerances.
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