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Summary 

II. Summary 
 

Astrocytes play a pivotal role in brain metabolism and in neuroprotection. These cells are 

considered as very glycolytic, consuming large amounts of glucose that is mainly converted 

into lactate. The α-keto acid pyruvate is a key player of cellular metabolism that links 

cytosolic and mitochondrial metabolism as the end product of glycolysis. Pyruvate can also 

be exported from astrocytes and is in brain believed to have neuroprotective functions. In 

order to elucidate the pathways involved in astrocytic pyruvate metabolism, primary rat 

astrocyte cultures were used as model systems to investigate pyruvate consumption and 

release. 
 

Of the different substrates tested (pyruvate, lactate, β-hydroxybutyrate, alanine and 

acetate) that are known to be metabolized in mitochondria, pyruvate was consumed most 

efficiently by cultured astrocytes incubated in the absence of glucose. Astrocytes exhibited 

a nearly time-proportional, concentration-dependent consumption of extracellular 

pyruvate with apparent Michaelis-Menten kinetic [KM = 0.6 ± 0.1 mM, Vmax = 5.1 ± 0.8 

nmol/(min x mg protein)]. Lactate and alanine generated and released in pyruvate-fed 

astrocytes accounted for approximately 60 % and 10 %, respectively, of the pyruvate 

consumed within 3 h. The presence of AR-C155858, a monocarboxylate transporter 1 

(MCT1)-inhibitor, or the application of 10-fold excess of the MCT1 substrates lactate and β-

hydroxybutyrate strongly impaired the astrocytic consumption of extracellular pyruvate. 

Inhibition of the mitochondrial pyruvate carrier (MPC) by UK5099, as well as inhibition of 

the respiratory chain by the complex III inhibitor Antimycin A also prevented pyruvate 

consumption. In contrast, BAM15, a mitochondrial uncoupler, strongly accelerated pyruvate 

consumption in glucose-deprived astrocytes. 
 

In the presence of glucose, astrocytes established a transient extracellular steady-state 

concentration of pyruvate between 150 µM and 300 µM, while lactate in contrast was 

continuously released and accumulated to millimolar concentrations. In DMEM culture 

medium, the extracellular pyruvate concentration remained almost constant for days. In 

amino acid-free incubation buffer, this almost constant extracellular pyruvate level was 

established within 5 h, with an initial pyruvate release rate of around 60 nmol/(h x mg), and 

was maintained for several hours. By consumption of excess extracellular pyruvate in the 

presence of glucose, astrocytes established similar extracellular pyruvate concentrations. 

Furthermore, pyruvate release was observed in glucose-free incubation buffer after 
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application of mannose, lactate, fructose, sorbitol or alanine. MCT1 inhibition by AR-

C155858 decreased the extracellular pyruvate concentration, while MPC inhibition by 

UK5099 strongly increased the release of glycolytically derived pyruvate. Both antimycin A 

and BAM15 application resulted in a complete loss of extracellular pyruvate accumulation. 
 

The data presented demonstrate that MCT1 is the main transporter involved in pyruvate 

consumption and release. Modulation of mitochondrial processes revealed a strong 

involvement of the mitochondrial metabolism in pyruvate utilization. Overall, alterations 

of pyruvate metabolism presumably modify the intracellular pyruvate concentration, 

thereby influencing pyruvate consumption and release, as astrocytes seem to establish an 

equilibrium between their extracellular and intracellular pyruvate concentration. 
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III. Zusammenfassung 
 

Astrozyten spielen eine zentrale Rolle im Hirnstoffwechsel und in der Neuroprotektion. 

Diese Zellen gelten als sehr glykolytisch und verbrauchen große Mengen an Glukose, welche 

hauptsächlich in Laktat umgewandelt wird. Die α-Ketosäure Pyruvat ist ein 

Schlüsselmolekül des zellulären Stoffwechsels, welches den cytosolischen und 

mitochondrialen Stoffwechsel als Endprodukt der Glykolyse verbindet. Pyruvat kann auch 

aus Astrozyten exportiert werden und es wird angenommen, dass es im Gehirn 

neuroprotektive Funktionen hat. Um die am astrozytären Pyruvat-Stoffwechsel beteiligten 

Wege aufzuklären, wurden primäre Ratten-Astrozytenkulturen als Modellsysteme 

verwendet, um Pyruvat-Verbrauch und Freisetzung zu untersuchen. 
 

Von den verschiedenen getesteten Substraten (Pyruvat, Laktat, β-Hydroxybutyrat, Alanin 

und Acetat), die bekannterweise in Mitochondrien verstoffwechselt werden können, wurde 

Pyruvat am effizientesten von den in Abwesenheit von Glukose inkubierten kultivierten 

Astrozyten konsumiert. Astrozyten zeigten einen nahezu zeitproportionalen, 

konzentrationsabhängigen Verbrauch von extrazellulärem Pyruvat mit scheinbarer 

Michaelis-Menten-Kinetik [KM = 0,6 ± 0,1 mM, Vmax = 5,1 ± 0,8 nmol/(min x mg Protein)]. 

Laktat und Alanin, welche von mit Pyruvat gefütterten Astrozyten erzeugt und freigesetzt 

wurden, machten etwa 60 % bzw. 10 % des innerhalb von 3 Stunden verbrauchten Pyruvats 

aus. Die Anwesenheit von AR-C155858, einem Monocarboxylat-Transporter 1 (MCT1)-

Inhibitor, oder die Applikation eines 10-fachen Überschusses der MCT1-Substrate Laktat 

und β-Hydroxybutyrat verringerten den astrozytären Verbrauch von extrazellulärem 

Pyruvat stark. Die Hemmung des mitochondrialen Pyruvatcarriers (MPC) durch UK5099 

sowie die Hemmung der Atmungskette durch den Komplex-III-Inhibitor Antimycin A 

inhibierten ebenfalls den Pyruvatverbrauch. Im Gegensatz dazu beschleunigte BAM15, ein 

mitochondrialer Entkoppler, den Pyruvatverbrauch in glukose-deprivierten Astrozyten 

stark. 
 

In Gegenwart von Glukose stellten Astrozyten eine vorübergehende extrazelluläre Steady-

State-Konzentration von Pyruvat zwischen 150 µM und 300 µM ein, während Laktat im 

Gegensatz dazu kontinuierlich freigesetzt wurde und sich zu millimolaren Konzentrationen 

anreicherte. In DMEM-Kulturmedium blieb die extrazelluläre Pyruvatkonzentration über 

Tage hinweg nahezu konstant. In aminosäurefreiem Inkubationspuffer wurde dieses nahezu 
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konstante extrazelluläre Pyruvatlevel innerhalb von 5 Stunden mit einer anfänglichen 

Pyruvatfreisetzungsrate von etwa 60 nmol/(h x mg) erreicht und über mehrere Stunden 

aufrechterhalten. Durch den Verbrauch von überschüssigem extrazellulärem Pyruvat in 

Gegenwart von Glukose stellten Astrozyten ähnliche extrazelluläre Pyruvatkonzentrationen 

ein. Ebenso wurde die Pyruvatfreisetzung in glukosefreiem Inkubationspuffer nach Gabe 

von Mannose, Laktat, Fruktose, Sorbit oder Alanin beobachtet. Die Inhibition von MCT1 

durch AR-C155858 verringerte die extrazelluläre Pyruvatkonzentration, während eine MPC-

Inhibition durch UK5099 die Freisetzung von glykolytisch gewonnenem Pyruvat stark 

erhöhte. Sowohl die Applikation von Antimycin A als auch von BAM15 führte zu einem 

vollständigen Verschwinden der extrazellulären Pyruvatakkumulation. 
 

Die vorgelegten Daten zeigen, dass MCT1 der wichtigste Transporter des 

Pyruvatverbrauches als auch der Pyruvatfreisetzung ist. Die Modulation mitochondrialer 

Prozesse zeigte eine starke Beteiligung des mitochondrialen Stoffwechsels an der 

Pyruvatverwertung. Insgesamt modifiziert eine Veränderung des Pyruvat-Stoffwechsels 

vermutlich die intrazelluläre Pyruvat-Konzentration und beeinflusst damit den Pyruvat-

Verbrauch sowie die Freisetzung, da Astrozyten offenbar ein Gleichgewicht zwischen ihrer 

extrazellulären und intrazellulären Pyruvat-Konzentration herstellen. 
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IV. Abbreviations 
 

ADP   Adenosine diphosphate 

ALAT   Alanine aminotransferase 

AMP   Adenosine monophosphate 

AMPK   AMP-activated protein kinase 

AQP   Aquaporin 

AST   Aspartate aminotransferase 

ATP   Adenosine triphosphate 

BBB   Blood brain barrier 

CNS   Central nervous system 

CoA   Coenzyme A 

CPT   Carnitine palmitoyltransferase 

CSF   Cerebrospinal fluid 

DHAP   Dihydroxyacetonephosphate 

DMEM   Dulbecco’s modified Eagle’s medium 

DNA   Deoxyribonucleic acid 

EAAT   Excitatory amino acid transporters 

e.g.   exempli gratia, for example 

FAD   Flavin adenine dinucleotide (oxidized) 

FADH2   Flavin adenine dinucleotide (reduced) 

Fig.   Figure 

g   Gram 

GABA   γ-Aminobutyric acid 

GAP   Glyceraldehyde 3-phosphate 

GAT   GABA transporter 

GC   Gas chromatography 

GDH   Glutamate dehydrogenase 

GFAP   Glial fibrillary acidic protein 

GLAST   Glutamate/aspartate transporter 

GLT   Glutamate transporter 

GLUT   Glucose transporter 

GPT   Glutamate pyruvate transaminase 

GR   Glutathione reductase 

GSH   Glutathione 

GSSG   Glutathione disulfate 

GST   Glutathione-S-transferase 

GTP   Guanosine triphosphate 

h   Hour(s) 

HEPES   2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethane-1-sulfonic acid 

IB   Incubation buffer 
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IC50   Half maximal inhibitory concentration 

i.e.   id est, that is 

IMM   Inner mitochondrial membrane 

Ki   Inhibitory constant 

KM   Michaelis-Menten constant 

LDH   Lactate dehydrogenase 

MAS   Malate-aspartate-shuttle 

MCT   Monocarboxylate transporter 

ME   Malic enzyme 

mg   Milligram 

min   Minute 

mL   Milliliter 

mM   Millimolar  

MPC   Mitochondrial pyruvate carrier 

MRI   Magnetic resonance imaging 

mRNA   Messenger ribonucleic acid 

MS   Mass spectrometry 

NAD+   Nicotinamide adenine dinucleotide (oxidized) 

NADH   Nicotinamide adenine dinucleotide (reduced) 

NADP+   Nicotinamide adenine dinucleotide phosphate (oxidized) 

NADPH  Nicotinamide adenine dinucleotide phosphate (reduced) 

NBCe   Electrogenic Na+/HCO3
- cotransporter 

NMR   Nuclear magnetic resonance 

PC   Pyruvate carboxylase 

PDH   Pyruvate dehydrogenase complex 

PDK   Pyruvate dehydrogenase kinase 

PDP   Pyruvate dehydrogenase phosphatase 

PEP   Phosphoenolpyruvate 

PEPCK   Phosphoenolpyruvate carboxykinase 

PFK   6-Phosphofructokinase 

PFKFB   6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 

3PG   3-Phosphoglycerate 

PKM   Pyruvate kinase muscle isoform 

PPP   Pentose phosphate pathway 

SOD   Superoxide dismutase 

ROS   Reactive oxygen species 

TCA   Tricarboxylic acid 

TNF   Tumor necrosis factor 
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1 Introduction 

 

1.1 The cells of the brain 
 

1.1.1 Neurons and glial cells 
 

As our brain determines who we are as humans, it is probably the most fascinating but also 

complex organ. Even though it only accounts for approximately 2 % of our whole-body mass, 

the brain metabolizes around 20 % of the total glucose consumed at rest (5.6 ± 1.26 mg 

glucose per 100 g human brain tissue per minute, or 4.7 ± 1.0 g glucose per hour for the 

whole brain), and is thereby one of our top energy consumers (Wang et al. 2012). 
 

The brain is part of the central nervous system (CNS), which also includes the spinal cord 

(Rua and McGavern 2018). The CNS is surrounded by three layers of connective tissues, the 

meninges (from out to inside: dura mater, arachnoid mater, pia mater), and a watery liquid 

that fills the subarachnoid space, the cerebrospinal fluid (CSF) (Rua and McGavern 2018). 

Since the CNS develops from a neural tube during embryonic development, the brain is a 

cavity-containing organ, with hollow spaces known as ventricles, also filled with CSF 

(Greene and Copp 2009, Sweetman and Linninger 2011).  
 

No development of a cell system is as complicated as that of the nervous system. The brain 

consists of various highly specialized cell types (Fig. 1-1). Adjacent cells in the brain can 

substantially differ in shape, function, and metabolism, resulting in a beneficial but required 

cooperation between cells (Bonvento and Bolanos 2021, Borst et al. 2021, Roumes et al. 

2023). The most prominent cells in the CNS are neurons, the crucial cells for information 

processing and signal transduction (Herculano-Houzel 2012, Arendt 2020, Ma et al. 2023). 

With roughly 86 billion neurons in a human brain, they account for around half of the total 

number of brain cells and are highly specialized and heterogenous (Herculano-Houzel 2012), 

although fairly vulnerable to changes in their extracellular environment (Verma et al. 2022). 

Neurons differ in their neurotransmitters, morphology, receptor expression, myelination, 

and many other features, depending on their location, surrounding, and function (Armand 

et al. 2021, Rizo 2022). Neurons are postmitotic. After they have differentiated from 

proliferating precursor cells into still immature neuroblasts, they no longer divide (Urbach 

and Witte 2019). Furthermore, the maturing of neurons from immature neuroblasts is 
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susceptible to disruption, as correct tissue migration, synapse formation, and an ideal 

environment are crucial for their development, and there is a generation of an excess of 

immature neuroblasts to compensate for potential cell loss (Lüllmann-Rauch and Asan 

2015). Nonetheless, impaired or dying neurons cannot be easily replaced by cell division. 

Studies have shown the existence of adult neuronal stem cells and neurogenesis, that 

partially contributes to replacement of damaged neurons (Eriksson et al. 1998, Chareyron et 

al. 2021, Guo et al. 2022, Petrelli et al. 2023). However, this replacement is limited to the 

hippocampus and the lateral ventricles, and it is insufficient to replace large quantities of 

neurons (Arzate and Covarrubias 2020). Thus, a stable and suitable environment for healthy 

neurons is crucial to maintain brain function and to prevent neurodegenerative disease. 
 

 
Figure 1-1: Schematic illustration of cell types in the brain. The different cell types of the brain and their 
connections are shown with no intention to depict real proportions. Blue = neurons, green = astrocytes, 
grey = oligodendrocytes, ependymal cells = orange, microglia = yellow. Created with Biorender. 

 

This local environment in the brain is provided by glial cells. In general, glial cells can be 

divided into two groups, microglia and macroglia (Rowitch and Kriegstein 2010). Microglia 

are the innate immune system of the CNS, and widely spread and evenly distributed (Borst 

et al. 2021). In contrast to neurons and macroglial cells, they are not derived from the 

neuroepithelium, but immigrated to the CNS during embryonic development (Hattori 2022). 

Additionally to their immune functions, microglia also mediate synapse remodeling, 

oligodendrocyte maturing and myelin formation, and contribute to glial scar formation 

(Borst et al. 2021, Zhang et al. 2022a). Under homeostatic conditions, microglia have long 

lifetimes and low proliferation rates that increase upon activation by pro-inflammatory 

cytokines (Füger et al. 2017, Qin et al. 2023). Extensive pro-inflammatory activation has 
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been associated with neurodegenerative disease (Cherry et al. 2014, Aldana 2019, Perea et 

al. 2022, Qin et al. 2023). 
 

Macroglia are subdivided into three different cell types: Ependymal cells, oligodendrocytes, 

and astrocytes (Wolburg et al. 2009, Rowitch and Kriegstein 2010). Ependymal cells, 

columnar macroglial cells that create thin epithelia-like boundary structures, line the 

ventricular surface and the central canal of the spinal cord (Wolburg et al. 2009). They are 

connected solely by gap junctions or leaky tight junctions, thereby enabling exchange 

between brain tissue and CSF (Wolburg et al. 2009). Specialized ependymal cells form the 

blood-CSF barrier by connections via strong tight junctions in the choroid plexus, 

circumventricular organs and in the hypothalamus-hypophyseal system. This barrier is 

essential as the blood vessels in these areas are permeable, e.g., to facilitate the production 

of CSF in the choroid plexus or to exchange signals from blood to brain and vice versa 

(Wolburg et al. 2009). Ependymal cells bear microvilli and kinocilia to sustain CSF 

movement and thus CSF homeostasis (Wolburg et al. 2009, Liu et al. 2014, Nelles and Hazrati 

2022). Impairment of ependymal cells is associated with a variety of neurodegenerative 

disease (Nelles and Hazrati 2022). 
 

Oligodendrocytes, the myelinating cells of the CNS, are crucial for the fast forwarding of 

neuronal signals (Kuhn et al. 2019). They are mainly found in the axon-rich white matter, 

their side of action (Kuhn et al. 2019). With protrusions of their plasma membrane, 

oligodendrocytes connect to neurons and form multiple compact layers around the neuronal 

axon, myelin (Chen et al. 2022), which is highly enriched in lipids in an unusual cholesterol-

rich composition (Nave and Werner 2014). Furthermore, oligodendrocytes may also 

contribute to the nutrition of axons (Nave and Werner 2014). The rapid signal transduction 

along myelinated axons (saltatory conduction) is facilitated by the nodes of Ranvier, narrow 

unmyelinated areas in between myelin sheaths that are enriched in voltage-controlled Na+ 

and K+ channels (Eshed‐Eisenbach et al. 2023). 
 

The last large group of non-neuronal cells in the brain are astrocytes. They play crucial roles 

in many important processes including brain development (De Majo et al. 2020, Lopez‐Ortiz 

and Eyo 2023), (ion) homeostasis (Theparambil et al. 2020, Van Putten et al. 2021, Lopez‐

Ortiz and Eyo 2023), protection against oxidative stress and toxins (Dringen et al. 2015, 

Chen et al. 2020, Matoba et al. 2022), signal transduction (Oliveira and Araque 2022, 

Andersen and Schousboe 2023b), or brain energy metabolism (Rose et al. 2020, Beard et al. 
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2021, Bonvento and Bolanos 2021, Dienel et al. 2023, Roumes et al. 2023, Rae et al. 2024). 

Their many functions will be described below in more detail. 

 

1.1.2 Astrocytes 
 

Astrocytes were first described in 1891 (von Lenhossék 1891) and named for their star-like 

shape. Already two years later, the diverse morphology of astrocytes was highlighted 

(Andriezen 1893). Like neurons and oligodendrocytes, astrocytes develop from 

neuroepithelial stem cells (Kessaris et al. 2008). Astrogenesis starts towards the end of 

neurogenesis, where different immature progenitors are distributed throughout the brain 

and develop into distinct mature astrocytes. It is interesting to note that this predominantly 

happens after previous infiltration by microglia (Reemst et al. 2016). Even though astrocytes 

appear quite late during brain development, they play crucial roles in distribution and 

stabilization of blood vessels, blood-brain barrier formation, neuronal stem cell migration 

and proliferation, guidance of axons, synaptogenesis, synapse elimination, and overall 

neuronal survival (Fig. 1-2) (Reemst et al. 2016, De Majo et al. 2020, Lopez‐Ortiz and Eyo 

2023). Later in life, astrocytes also participate in memory formation by, e.g., modulating 

signal transmission and synaptic plasticity (Fig. 1-2) (Bohmbach et al. 2023, Marty-Lombardi 

et al. 2024). Superficially, astrocytes can be divided into two groups (Zhang and Barres 2010). 

Fibrous astrocytes, which possess a few long and rather straight processes, and are mainly 

found in the white matter. Secondly, protoplasmic astrocytes, which are bushy with many 

branched processes, and are more frequently found in the grey matter, the area enriched 

with neuronal cell bodies (Zhang and Barres 2010). 
 

1.1.2.1 Role in distribution and clearance processes 
 

Astrocytes play an important role in the distribution of peripheral substrates into the brain 

as they cover blood vessels with their end feet (Daneman and Prat 2015, Cheslow and Alvarez 

2016). Astrocytic processes or end feet connect astrocytes among themselves, other glial 

cells, neurons, synapses or capillary endothelial cells. By gap junctions, intercellular 

channels that consist of two connected hemichannels with six oligomerized connexins each, 

astrocytes are connected with adjacent astrocytes or oligodendrocytes (Orthmann-Murphy 

et al. 2008). This tight network of glia cells allows an easy, fast, and widespread distribution 

of signals and metabolic substrates (Fig. 1-2), forming an extensive functional network (Rose 

et al. 2020). Astrocytes play a pivotal role particularly for the provision of energy substrates 
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to neurons, as neurons have only limited storage capacities and limited access to energy-

providing compounds (Weber and Barros 2015, Bonvento and Bolanos 2021, Roumes et al. 

2023). As cells with high energy demand, neurons need a fast, sufficient and continuous 

energy supply, which is among others facilitated by astrocytes (Vergara et al. 2019, Roumes 

et al. 2023). Overall, astrocytes and their metabolism play a central role in the brain energy 

metabolism (Bonvento and Bolanos 2021, Dienel et al. 2023, Rae et al. 2024). 
 

 

Figure 1-2: Visualization of crucial functions and processes involving astrocytes in the brain. Created 
with Biorender. 

 

Astrocytes play an important role in the establishing and maintenance of the blood-brain 

barrier (BBB; Fig. 1-2) (Kadry et al. 2020, Pociute et al. 2024). Their end feet form the outer 

barrier (glia limitans), and outline a tunnel-shaped perivascular space in which blood vessels 

are located (Daneman and Prat 2015). These blood vessels consist of endothelial cells 

connected by tight junctions, and are surrounded by a thin basal lamina consisting of 

extracellular matrix components such as laminin, collagen IV, fibronectin, and heparan 

sulphate proteoglycan (Liebner et al. 2000, Halder et al. 2022). Pericytes, cells that are 

necessary for correct BBB formation and function, are embedded in this basal lamina (Bell 

et al. 2010, Daneman et al. 2010). Astrocytes do not only provide structure, but also regulate 

the size of blood vessels, the number of junctional proteins between endothelial cells, and 

the permeability and function of the BBB in general (Cheslow and Alvarez 2016). 
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In addition to their contribution to the BBB (Kadry et al. 2020), astrocytes play a vital role 

in the brain’s waste clearance system for macromolecules (Fig. 1-2) (Jessen et al. 2015, 

Rasmussen et al. 2022). This system, known as the glymphatic system, is crucial due to the 

absence of the traditional lymphatic system in the brain (Jessen et al. 2015). CSF, 

penetrating into the brain parenchyma alongside the blood vessels in the relatively loose 

basal lamina driven by arterial wall pulsatility, can pass the astrocytes and enter the 

parenchyma via aquaporin-4 (AQP4), a water channel known to be involved in water and ion 

homeostasis (Hubbard et al. 2015, Jessen et al. 2015, Rasmussen et al. 2022). The surplus of 

interstitial fluid created by the CSF inflow into parenchyma is drained via paravenous routes 

established by astrocyte end feet covering veins, thereby creating a flow which passively 

clears the brain of macromolecules (Iliff et al. 2012, Rasmussen et al. 2022). Consequently, 

AQP4 is highly expressed in astrocytes adjacent to arteries, veins, ventricle, and the 

subarachnoid space (Hubbard et al. 2015). Furthermore, the flux and clearance of solutes 

was severely impaired in mice lacking AQP4 (Iliff et al. 2012). During sleep or anesthesia, 

clearance by the glymphatic flow is enhanced due to an increased extracellular space in 

consequence of reduced noradrenergic signaling (Xie et al. 2013). In contrast, astrocytic 

swelling upon inflammatory stimuli (Goshi et al. 2020) or AQP4 increase after, e.g., 

traumatic brain injury (Kapoor et al. 2013) leads to impaired CSF and interstitial fluid flow 

(Plog and Nedergaard 2018). This could lead to a reduced clearance of released cytokines, 

enhancing inflammation and pathophysiological changes (Rasmussen et al. 2022). In 

addition to waste clearance, the glymphatic system contributes to paracrine signaling and 

distribution of nutrients or therapeutic agents throughout the brain (Plog and Nedergaard 

2018). 
 

1.1.2.2 Involvement in neurotransmission 
 

With its fine processes, a single astrocyte was estimated to interact with an impressive 

number of up to 600 dendrites and around 140,000 synapses (Bushong et al. 2002, Halassa 

et al. 2007). Particularly at glutaminergic synapses, astrocytes perform protective and 

regulatory tasks, actively contribute to information processing of the brain, which 

consolidated the concept of a “tripartite synapse” (Fig. 1-2) (Lalo et al. 2021). Glutamate, 

the most abundant excitatory neurotransmitter in the brain, can overstimulate neurons if 

not scavenged properly from the synaptic cleft, leading to excitotoxicity and cell death 

(Zhou and Danbolt 2014, Andersen et al. 2021). Compared to astrocytes, neurons express 

relatively little glutamate transporters (Todd and Hardingham 2020). They rely on 
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astrocytes to take up excessive glutamate via excitatory amino acid transporters (EAAT) and 

maintain a non-toxic, homeostatic environment (Brown 1999, Mahmoud et al. 2019, Todd 

and Hardingham 2020). Those high affinity transporters facilitate the unfavourable 

glutamate import by simultaneous import of one H+, three Na+, and antiport of one K+ (Todd 

and Hardingham 2020). According to their need, EAATs are enriched in astrocytic processes 

connected to glutaminergic synapses (Zhou and Sutherland 2004, Todd and Hardingham 

2020). By glutamate uptake, astrocytes not only protect neurons, but also actively regulate 

and modulate the signal transmission (Fig. 1-2) (Lalo et al. 2021). Furthermore, astrocytes 

express different ionotropic and metabotropic glutamatergic receptors (Lalo et al. 2021). 

The activation of these receptors has been shown to modulate EAAT activities (Lalo et al. 

2021), and to result in a Ca2+-mediated rapid increase in EAATs in the extracellular 

membrane that are integrated from intracellular EAAT clusters (Al Awabdh et al. 2016). To 

a smaller extent, astrocytes also contribute to γ-aminobutyric acid (GABA) homeostasis, the 

brain's most abundant inhibitory neurotransmitter, via specific GABA transporters (GATs) 

(Schousboe et al. 2013, Andersen et al. 2020). Furthermore, astrocytes play an important 

role in the recycling and maintenance of both, the neuronal glutamate and GABA pools 

(Hertz and Rothman 2016, Andersen et al. 2020, Andersen et al. 2021, Andersen and 

Schousboe 2023b). 
 

In the recent past, astrocytes were revealed to release so-called “gliotransmitters” upon 

neuronal activation through a variety of neurotransmitters (Oliveira and Araque 2022). In 

contrast to neurons, astrocytes lack electrical excitability, but waves of Ca2+ can be observed 

propagating from one astrocyte to another upon neuronal activation (Schipke and 

Kettenmann 2004). As a consequence, gliotransmitters are released (Lalo et al. 2021, Wang 

et al. 2023). Additionally, Ca2+-independent mechanism have also been described (Wang et 

al. 2023). Those small neuroactive molecules such as adenosine, ATP, D-serine, or even 

GABA or glutamate can enable bidirectional communication, shape synaptic activity, and 

were shown to stimulate axonal regeneration (Goenaga et al. 2023, Wang et al. 2023). For 

instance, the release of purinergic gliotransmitters by astrocytes increased the excitation of 

sleep-promoting neurons via a stimulation of synaptic adenosine A1 receptors (Choi et al. 

2022). 
 

To ensure ongoing neuronal firing, regulation of extracellular ion concentrations is crucial. 

Astrocytes play a central role in maintaining brain K+ homeostasis, which is released by 

neurons to reestablish the resting membrane potential (Larsen et al. 2016, Bataveljic et al. 
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2024). Astrocytes express a multitude of transporters through which the K+ influx against 

the concentration gradient is mediated (Olsen et al. 2015, Bataveljic et al. 2024). Two main 

contributors for the K+ uptake are discussed: The ATP-dependent Na+/K+-ATPase, one of the 

cell’s most energy-consuming structures (Harris et al. 2012), facilitates K+ influx and Na+ 

efflux against their concentration gradients to maintain the transmembrane ion gradient 

(Larsen et al. 2016). Furthermore, at high extracellular K+ concentrations, the glia-specific 

K+-channel Kir4.1 contributes to K+ influx, and is thought to use the hyperpolarized resting 

membrane potential for K+ import since it does not rely on ATP for transport (Larsen et al. 

2014, Olsen et al. 2015). Impairment of both, astrocytic Na+/K+-ATPase and Kir4.1, was 

connected to elevated extracellular K+ concentrations, impaired glutamate uptake, neuronal 

hyperactivity, and ultimately to pathologies such as epilepsy, neurodegenerative disease, or 

neurodevelopmental disorders (Albrecht and Zielińska 2017, Kahanovitch et al. 2018, Sun 

et al. 2022). 
 

1.1.2.3 Defense in oxidative stress and inflammation 
 

Astrocytes contribute to the flux-mediated clearance of potential toxic waste (Rasmussen et 

al. 2022). Further, they locally protect the surrounding tissue against toxins and oxidative 

stress caused by reactive oxygen species (ROS) (Fig. 1-2) (Chen et al. 2020). ROS, which 

include the superoxide anion radical (O2
.-), hydrogen peroxide (H2O2), peroxides in general 

(R-O-O-H (or R)), and the highly active hydroxyl radical (.OH) (Fridovich 1999), are 

continuously produced in the brain at high rate due to brains high energy demand and 

resulting high metabolic activity (Lee et al. 2021). Particularly during oxidative 

phosphorylation, ROS is formed, as single electrons are transported in several steps of the 

respiratory chain, which increases the likelihood of superoxide formation (Fridovich 1999). 

High ROS levels can damage macromolecules such as DNA, lipids, and proteins, thereby 

impairing cellular functions (Lee et al. 2021), and an imbalance between oxidative stress and 

defense mechanisms has been shown to play a crucial role in many neurodegenerative 

disorders (Kim et al. 2015). Astrocytes, that are less vulnerable to oxidative stress than 

neurons (Schmuck et al. 2002), were shown to effectively scavenge H2O2, and to protect 

neurons from ROS induced cell toxicity (Dringen and Hamprecht 1997, Wang and Cynader 

2001, Watts et al. 2005, Bell et al. 2011). As a primary defense mechanism, astrocytes express 

high levels of superoxide dismutase (SOD) and catalase (Copin et al. 1992, Dringen and 

Hamprecht 1997). These enzymes detoxify O2
.- to H2O2 and oxygen, and H2O2 to water and 

oxygen, respectively (Hodgson and Fridovich 1975, Glorieux and Calderon 2017). 
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Furthermore, astrocytes have been shown to express glutathione peroxidase (GPx) and 

glutathione reductase (GR), as well as glutathione-S-transferase (GST) for the defense 

against oxidative stress and xenobiotics (Copin et al. 1992, Dringen and Hamprecht 1997, 

Matoba et al. 2022). Glutathione (GSH), a tripeptide consisting of glycine, cysteine and 

glutamate, is present in astrocytes in millimolar concentrations (Dringen et al. 2015), and 

acts as a strong nucleophile (Mayer and Ofial 2019). It can either covalently conjugate to 

electrophiles, e.g. reactive aldehydes, donate electrons to radicals, or serve as a cofactor or 

substrate for enzymatic detoxification (Dringen et al. 2015, Mayer and Ofial 2019). GPx and 

GR take part in the GSH-GSSG redox cycle, were GPx mediates the GSH-dependent peroxide 

reduction generating glutathione disulfide (GSSG), and GR reduces GSSG back to GSH in a 

NADPH-dependent reaction (Dringen et al. 2015). The phase-II enzyme GST mediates the 

covalent coupling of GSH to endogenous substrates or xenobiotics, that are usually 

detoxified as a result, and transported out of the cells by multidrug resistance proteins 

(Mrp’s) (Dringen et al. 2015, Arend et al. 2024), which are ATP-binding cassette (ABC) 

transporters (Cole 2014). Not only GSH-conjugates, but also GSSG and GSH itself are 

released by astrocytes, mainly mediated by Mrp1 (Hirrlinger and Dringen 2005, Arend et al. 

2024), but also by hemichannels under pathophysiological conditions (Rana and Dringen 

2007). In the extracellular space, GSH can be broken down into its components, which can 

be taken up by neurons, fueling their neuronal GSH synthesis and thereby enhancing their 

resilience against oxidative stress (Dringen et al. 2001, Ruedig and Dringen 2004, Pérez-Sala 

and Pajares 2023). 
 

Nonetheless, it is important to emphasize that reactive species, especially H2O2, are not only 

toxic by-products of metabolism, but also important signaling molecules (Rampon et al. 

2018, Tauffenberger and Magistretti 2021, Vicente-Gutierrez et al. 2021). Signaling H2O2 is 

believed to be mainly produced by membrane-bound NADPH oxidase complexes (NOX), of 

which several isoforms are expressed in astrocytes (Reinehr et al. 2007, Rampon et al. 2018). 

Furthermore, astrocytic derived mitochondrial ROS was shown to modulate astrocytic 

metabolism, and even overall behavior and cognitive functions in mice (Vicente-Gutierrez 

et al. 2019). 
 

Astrocytes do not only play an essential role in the healthy brain. Upon tissue damage or 

inflammation, nearby astrocytes can undergo a complex process called “astrogliosis” (Fig. 

1-2), that is characterized by diverse changes in gene expression, morphology, and function 

(Sofroniew 2015, Liddelow et al. 2024). Those “reactive astrocytes” can be regulated by a 
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variety of extracellular effector molecules like cytokines, transmitters, or serum proteins 

released from damaged blood vessels, whereby they themselves respond by releasing 

effectors (Sofroniew 2015, Liddelow et al. 2024). It depends on the context whether the 

changes are advantageous or disadvantageous (Liddelow et al. 2024). In mouse models of 

spinal cord injury, an impaired astrogliosis lead to increased inflammation and neuronal 

malfunction (Okada et al. 2006). In contrast, cytokines released by astrocytes can induce 

damage to the surrounding tissue. Cultured astrocytes were shown to release TNFα, a pro-

inflammatory cytokine, upon stimulation by the microglial pro-inflammatory cytokines 

(Schlotterose et al. 2023). Furthermore, severe injury has been shown to lead to a strong 

astrogliosis with astrocytic proliferation and formation of densely packed cell layers and, 

under contribution of microglia, non-neuronal cells, and extracellular matrix components, 

even to the formation of a glial scar (Sofroniew and Vinters 2010, Perez et al. 2021). 

Although this glial scar shields the CNS from potential danger such as an escalating immune 

response or toxins, its compact form also prevents axon regrowth and impacts functional 

recovery (He et al. 2020). 

 

1.1.3 Astrocyte cultures as model systems to study the brain 
 

To investigate the properties of a specific brain cell type, complex systems like whole brains 

or cell organoids may prove unsuitable due to challenges in distinguishing individual cells. 

Cell culture systems offer a solution by providing cell type enriched (Tulpule et al. 2014), or 

even single cell type (Yeh and Hsu 2019) cultures, thereby reducing system complexity and 

highlighting the characteristics of a given cell type. This focused approach offers the 

opportunity to analyze differences in metabolic pathways and to make initial assessments 

of their implications in cell networks (Andersen et al. 2021, Qi et al. 2021, Morant-Ferrando 

et al. 2023). In the presented thesis, rat primary astrocyte cultures, derived from neonatal 

Wistar rats, were used to study the pyruvate metabolism of astrocytes. Briefly, the cells were 

harvested within a maximum of 24 h postnatal, and were plated with a density of 

approximately 300,000 viable cells per mL and well of a 24-well plate (Tulpule et al. 2014). 

The cell culture medium (DMEM containing 25 mM glucose and 10 % fetal calf serum) was 

changed every seventh day and one day prior to experiments to guarantee standardized 

conditions. These cultures contain mainly glial fibrillary acidic protein (GFAP)-positive 

astrocytes (Fig. 1-3), but also minor contaminations of oligodendrocytes, microglia and 

ependymal cells (Hamprecht and Löffler 1985, Petters and Dringen 2014, Tulpule et al. 
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2014). If not stated otherwise, cells were maintained for at least 14 days to ensure confluence 

(Fig. 1-3), but were not used for more than 28 days after seeding. Aspects of the pyruvate 

metabolism of primary rat astrocytes were shown to vary with culture age (see Chapter 2.2),. 

Efforts were made to minimize variations in the culture age within an experiment in order 

to prevent inaccuracies. 
 

 
Figure 1-3: GFAP staining of maturing or confluent rat astrocyte cultures. Cultured astrocytes were fixes 
and stained for glial fibrillary acidic protein (GFAP; green) after 7 d (a) and 14 d (b) of seeding with a GFAP 
antibody (diluted 1:500) and a Cy2 conjugated secondary antibody (diluted 1:200). Cell nuclei (blue) were 
stained with DAPI (1 µg/ml). The primary antibody was purchased from Agilent (Santa Clara, USA), the 
secondary antibody from BIOZOL (Eching, Germany), and DAPI was purchased from Sigma-Aldrich 
(Darmstadt, Germany). 

 

Various types of astrocyte cultures are frequently used as astrocyte models, e.g., primary 

cultures, immortalized astrocytes from a primary origin, or C6 cells from rat glioma (Galland 

et al. 2019). In direct comparison with immortalized cell cultures, primary astrocytes have 

been demonstrated to be the favorable model system, as their features correlated more 

closely to in vivo findings (Galland et al. 2019). In general, primary cultures are enriched in 

the respective cell type of interest. There are different protocols to produce primary 

astrocyte cultures, but all seem to result in a purity of around 95 % (Tulpule et al. 2014, 

Galland et al. 2019). Impurities, primarily consisting of small quantities of glial cells like 

oligodendrocytes, microglia, and ependymal cells (Hamprecht and Löffler 1985, Tulpule et 

al. 2014), must be considered. These impurities can render these cell cultures unsuitable for 

certain experimental approaches. Furthermore, the origin of the cell culture must be taken 

into consideration, since, e.g., human astrocytes from neocortex are 2.6-fold larger in 

diameter and more complex compared to their rodent analogue, suggesting that human 

astrocytes are able to envelop more synapses (Oberheim et al. 2009). 
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Since astrocytes develop and mature rather late (Reemst et al. 2016), their maturation is not 

fully complete when harvested from newborn rats (Lange et al. 2012). The artificial 

maturation via addition of fetal calf serum ensures the expression of important astrocytic 

enzymes, but cannot fully compensate the diverse signals caused by different extracellular 

milieus in vivo (Lange et al. 2012). Moreover, as different astrocytes might originate from 

different progenitors prior to harvesting (Reemst et al. 2016), there could already be a 

mixture of differently primed astrocytes with different gene expression. Nonetheless, 

several observations made for astrocytes on cell cultures could be transferred in vivo (Hertz 

et al. 2017, Schousboe et al. 2019, Theparambil et al. 2020). Especially with regard to 

metabolic questions, primary astrocytes seem to be a good model, since their gene 

expression of metabolic enzymes closely resemble that of freshly isolated astrocytes (Hertz 

et al. 2007, Lovatt et al. 2007, Lange et al. 2012). Moreover, primary cultures have proven to 

be important for studying the mechanisms of astrocytic involvement in various pathologies 

(Lange et al. 2012). 
 

Astrocytic proliferation in astrocyte mono-cultures, or in co-cultures with oligodendrocytes 

was shown to be contact-inhibited when cell density increased (Nakatsuji and Miller 1998). 

Regulatory membrane proteins, as well as a changed composition of cell-cycle proteins were 

proposed to be involved in this contact inhibition in astrocytes (Nakatsuji and Miller 2001, 

Lanosa and Colombo 2008). Non-proliferating astrocyte cultures seem to be good models to 

investigate the metabolism of adult brain cells rather than proliferating cell cultures, as 

mature astrocytes do not proliferate if not triggered (Nakatsuji and Miller 2001, Sofroniew 

and Vinters 2010). Furthermore, non-proliferating cultures are more homogeneous in their 

protein composition (Nakatsuji and Miller 2001), hence the results obtained are less 

disturbed by inter-individual differences in the proliferation stage.  
 

Even though astrocyte cultures are great to study individual aspects and underlying 

mechanism, it is an isolated system and the obtained findings have to be verified in the 

broader context. Co-cultures might partially help to overcome that obstacle (Goshi et al. 

2020), but are still far from in vivo. Nevertheless, if these limitations are considered, cell 

cultures are powerful and relatively easy-to-use tools for investigations of special features 

of cell types. 
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1.2 Pyruvate: Chemistry and metabolism 
 

Pyruvate, the deprotonated form of pyruvic acid (German: “Brenztraubensäure”, 2-

Oxopropanoic acid; Fig. 1-4a), was first isolated 1834 by the French chemist Théophile-Jules 

Pelouze, and a year later discovered by the Swedish chemist Jöns Jacob Berzelius (Berzelius 

1835). Berzelius named it after his first method of isolation: Dry distillation of tartaric acid 

or its racemate (German: “Wein-“ or “Traubensäure”(racemate); Fig. 1-4b), where pyr  is 

derived from ancient Greek for fire (German: “Feuer”, maybe “Brennen”), and uva from Latin 

for grape (German: Traube) (Berzelius 1835). In this method, dry tartaric acid was distilled 

at around 200°C. The resulting product was then distilled a second time in a water bath, 

fractioning into two parts, leaving the pyruvic acid in the second yellowish, viscous fraction 

(Fig. 1-4c) (Berzelius 1835). 
 

 

Figure 1-4: Pyruvic acid was first isolated and discovered from tartaric acid. While pyruvic acid (a) with its 
α-keto function has no chiral center, tartaric acid (b) has two. The chiral centers are marked with *. During 
dry distillation, tartaric acid pyrolyzes under heat and forms a compound that can exhibit keto-enol 
tautomerism (c). This β-ketoacid decarboxylates to pyruvic acid (c) Reaction mechanism after Moldoveanu 
(Moldoveanu 2010). Created with ChemSketch. 

 
In its pure form, pyruvic acid (Molecular weight: 88.06) is a transparent liquid with an acetic 

acid-like smell that is miscible with water, alcohol, and ether (O'Neil et al. 2006). With a pKS 

(25°C) value of 2.49 (O'Neil et al. 2006), over 99.99 % of pyruvic acid at neutral pH is present 

in its deprotonated form, pyruvate. 
 

For a greater yield of pyruvic acid, tartaric acid can be distilled at 220°C in the presence of 

potassium hydrogen sulphates as dehydrating agents, followed by separation under vacuum 

(Li et al. 2001). But as this is quite costly, pyruvic acid today is produced mostly 

biotechnologically, typically by yeast or Escherichia coli  (Li et al. 2001, Yuan et al. 2022). 

As pyruvate has a carboxyl as well as a keto group, it can be used as a precursor molecule for 
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the synthesis of a variety of compounds by industry, e.g. the drug L-DOPA (Park et al. 1998) 

or the essential amino acid L-tryptophan (Li et al. 2001). 
 

In many living organisms, pyruvate is as the end product of glycolysis a key metabolic 

intermediate that links cytosolic and mitochondrial metabolism (Fig. 1-5), with several 

unique beneficial biological properties including antioxidative and anti-inflammatory 

effects. One glucose that enters glycolysis yields two pyruvates, and a net profit of 2 ATP 

(Dienel 2019a). After uptake into mitochondria, pyruvate can be completely oxidized to CO2. 

In a first pyruvate dehydrogenase complex (PDH)-mediated step, pyruvate is 

decarboxylated, and acetyl-CoA is formed (Stacpoole 2017). Subsequently, acetyl-CoA 

enters the tricarboxylic acid (TCA) cycle, where the two remaining carbons are oxidized to 

CO2 (Borkum 2023). The reducing agents (NADH, FADH2) formed in the TCA cycle enable 

proton transport over the inner mitochondrial membrane via the respiratory chain, and the 

established proton gradient is used for ATP formation via ATP synthase (Rich and Marechal 

2010). Aerobic mitochondrial energy production is more efficient than glycolysis, producing 

around 15 times more ATP (Dienel 2019a). 
 

 

Figure 1-5: Enzymatic and spontaneous formation and conversion of pyruvate. Unidirectional arrows 
indicate irreversible reactions, while bidirectional arrows indicate reversible reactions. The blue, green, 
and orange arrows represent enzymatically catalyzed reactions. The green arrow denotes a reaction 
present only in plants and microorganisms. The orange arrows and texts represent reactions present only 
in microorganisms. The red arrow indicates the spontaneous decarboxylation of the β-keto acid 
oxaloacetate to pyruvate. P = phosphate. Created with Biorender. 

 

Under anaerobic conditions, pyruvate undergoes reduction to lactate by lactate 

dehydrogenase (LDH) with simultaneous oxidation of NADH to NAD+ to ensure the 

continuation of glycolysis (Pineda et al. 2007). In highly active and proliferating cells, e.g., 

cancer cells, metabolism is shifted to a more glycolytic state, and the pyruvate reduction 
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also takes place to a greater extent in an oxygen-rich environment (aerobic glycolysis) 

(Barros et al. 2021). 
 

However, pyruvate is not just a metabolic intermediate that enables energy production. In 

mitochondria, pyruvate can also be carboxylated to oxaloacetate via pyruvate carboxylase 

(PC), and oxaloacetate can enter the TCA cycle to replenish intermediates that have been 

used elsewhere for biosynthesis (Utter and Keech 1963, Schousboe et al. 2019). Furthermore, 

pyruvate is the starting point of gluconeogenesis, a process that mainly takes place in the 

liver and kidneys (Sahoo et al. 2023), but also in astrocytes (Dringen et al. 1993b, Yip et al. 

2016). Depending on the tissue, gluconeogenesis serves to locally refill glycogen levels 

(Dringen et al. 1993b), or to maintain stable blood glucose concentrations in situations of 

deficiency (Yip et al. 2016). 
 

Pyruvate can not only be derived from glucose, but also from alternative energy substrates, 

such as mannose or fructose, which can be converted into intermediates of glycolysis 

(Dringen et al. 1994, Bergbauer et al. 1996). In the liver, pyruvate can even be produced from 

glycerol that was derived from lipolysis and channeled into glycolysis (Jin et al. 2023). Upon 

protein degradation or utilization of amino acids from food, some glucogenic amino acids 

can be transformed into pyruvate. In a reversible transamination mediated by the alanine 

amino transferase (ALAT), also named glutamate pyruvate transaminase (GPT), alanine is 

transaminated to pyruvate while α-ketoglutarate is converted to glutamate (Bröer et al. 

2007). Conversely, alanine is also formed from pyruvate, a reaction that is used by muscle 

cells, e.g., to remove excess ammonium produced by a breakdown of amino acids during 

increased activity (Sarabhai and Roden 2019). Ammonium is continuously fixed by 

amidation of α-ketoglutarate to glutamate, and the alanine formed from subsequent 

glutamate transamination by ALAT is transported to the liver for further processing 

(Sarabhai and Roden 2019). Serine in turn can be converted to pyruvate by ammonium 

release in a reaction catalyzed by serine dehydratase (Foltyn et al. 2005). Other amino acids 

that were reported to provide pyruvate include cysteine, and glycine (Yu et al. 2019, McBride 

et al. 2024). Via oxaloacetate production, pyruvate contributes to aspartate generation, and 

downstream of the TCA cycle also to glutamate production via α-ketoglutarate (Schousboe 

et al. 2013, Schousboe et al. 2019). By gluconeogenesis, pyruvate is even linked to the 

synthesis of serine, glycine, and cysteine via 3-phosphoglycerate (Maugard et al. 2021). 
 

Additionally, pyruvate provides carbon for cytosolic fatty acid synthesis. Acetyl-CoA derived 

from pyruvate in mitochondria leaves mitochondria as citrate, which was derived from 
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acetyl-CoA and oxaloacetate in the TCA cycle. In the cytosol, acetyl-CoA is again formed, 

and can enter fatty acid synthesis (Szutowicz and Lysiak 1980, Rose et al. 2020). The 

simultaneously released oxaloacetate can be reduced to malate, and this malate could 

facilitate efflux of another citrate from mitochondria via the citrate/malate-exchanger (Rose 

et al. 2020). Furthermore, pyruvate can be derived from malate by reversible oxidative 

decarboxylation catalyzed by cytosolic or mitochondrial NAD+- or NADP+-dependent malic 

enzyme (ME), yielding NADH or NADPH, of which the latter could be used for fatty acid 

synthesis (Chang and Tong 2003). 
 

In general, metabolic pathways like glycolysis and energy producing processes that utilize 

pyruvate are highly conserved between species (Peregrín-Alvarez et al. 2009). Nevertheless, 

some individuals have additional metabolic pathways that use pyruvate. For example, the 

yeast Saccharomyces cerevisiae produces acetaldehyde and subsequently ethanol from 

pyruvate during alcoholic fermentation (Rieger et al. 1983), or produces cytosolic acetyl-

CoA via a pathway involving a cytosolic pyruvate decarboxylase (Pronk et al. 1994). 

Interestingly, the pathway of alcoholic fermentation can even be present in obligate aerobe 

species (Lockington et al. 1997). In different microorganisms, pyruvate is oxidized to acetyl-

phosphate to facilitate a subsequent ATP production by an acetate kinase (Hertzberger et 

al. 2013, Lian et al. 2014). In plants adapted to hot, sunny, and/or dry weather, pyruvate is 

part of the C4-pathway that allows increased CO2 fixation and accumulation near active 

chloroplasts by upstream binding and local release of CO2 (Gowik and Westhoff 2011). In 

this context, pyruvate can be directly phosphorylated to phosphoenolpyruvate (Gowik and 

Westhoff 2011). 
 

 
Figure 1-6: Chemical decarboxylation of pyruvate by hydrogen peroxide (H2O2). Pyruvate and H2O2 react 
under physiological conditions to acetate, CO2 and H2O. The α-carbonyl group is labeled with α and the 
nucleophilic attack by H2O2 is indicated by the gray dashed arrow. Created with ChemSketch. 

 

Pyruvate as an α-keto acid is able to detoxify hydrogen peroxide by chemical 

decarboxylation (Fig. 1-6) (Guarino et al. 2019). The nucleophilic attack of an oxygen of 

hydrogen peroxide at the α-carbonyl group of pyruvate forms an unstable intermediate, 
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which decomposes to acetate, CO2, and water (Fig. 1-6) (Guarino et al. 2019). This H2O2-

scavanging effect is not specific to pyruvate, but was also shown for other α-keto acids (Nath 

et al. 1995). Pyruvate is also able to reduce the strong oxidizing agent peroxynitrite, the 

reaction product of nitric oxide and superoxide anion. Here, two acetate and CO2 are formed, 

and nitrite is formed instead of water (Vásquez-Vivar et al. 1997). In cell culture medium, 

pyruvate is often added as a protective antioxidant, which seems to be especially important 

for cells plated in low density (O'Donnell-Tormey et al. 1987, Giandomenico et al. 1997). 

Additionally, application of pyruvate has been shown to have various positive effects on cell 

cultures or in vivo (Table 1-1), demonstrating its beneficial properties, in addition to its clear 

crucial functions in cellular metabolism. 
 

Table 1-1: Exemplary list of pathological conditions, disease or other circumstances that are positively 
improved by externally supplied pyruvate. 

Biological system  
Conditions improved by 
externally supplied pyruvate 

 Reference 

Central nervous system 

 Ischemia  (Lee et al. 2001, Ryou et al. 2012) 

 Leigh syndrome  (Koga et al. 2012) 

 Neuronal survival  (Selak et al. 1985) 

 Oxidative stress  
(Desagher et al. 1997, Wang and 
Cynader 2001) 

Cardio vascular system 

 Dilated cardiomyopathy  (Hermann et al. 1999) 

 Failing myocardium  (Hasenfuss et al. 2002) 

 Haemorrhagic shock  
(Mongan et al. 1999, Mongan et al. 
2001, Koustova et al. 2003, Hu et al. 
2013) 

 Hypoxic cardiac event  (Zabielska et al. 2018) 

 Ischemia  
(Petrat et al. 2011, Mallet et al. 
2018) 

 Oxidative stress  (Plotnikov et al. 2019) 

Renal system  Diabetic nephropathy  (Zhang et al. 2020) 

Overall system 
 Athletic endurance  (Jäger et al. 2008) 

 Systemic inflammation  (Effenberger-Neidnicht et al. 2019) 

Non-mammal systems 

 Lifespan in fly  (Xu et al. 2024) 

 Oxidative stress in fungi   
 

 (Zhang et al. 2018) 

 
Resistance against water 
deficiency in sugarcane 

 (Dias et al. 2024) 
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1.3 Pyruvate metabolism in astrocytes 
 

1.3.1 Cytosolic pyruvate formation and metabolism 
 

In astrocytes as a rather glycolytic cell type, pyruvate is primarily derived via glycolysis from 

glucose, the brain's main energy substrate (Dienel 2019a, Beard et al. 2021, Bonvento and 

Bolanos 2021, Rae et al. 2024). Per mol glucose consumed, glycolysis yields 2 mol pyruvate, 

2 mol ATP and 2 mol NADH (Fig. 1-7) (Dienel 2019a). In astrocytes, glycolysis is described 

to be highly active due to the high expression of phosphofructo-2-kinase/fructose-2,6-

bisphosphatase 3 (PFKFB3) (Fig. 1-7), an isoform of PFKFB with high kinase activity 

(Bonvento and Bolanos 2021). This enzyme facilitates the phosphorylation of fructose-6-

phosphate to fructose-2,6-bisphosphate. Fructose-2,6-bisphosphate increases the activity 

of 6-phosphofructokinase-1 (PFK1), a pivotal regulatory enzyme of glycolysis, being its most 

potent allosteric activator (Bonvento and Bolanos 2021). Glycolytic pyruvate production by 

astrocytes was shown to be upregulated by extracellular ATP application in a Ca2+-

dependent manner, and by glutamate application in a Na+-dependent manner (Juaristi et al. 

2019). The extracellular application of both, ATP and glutamate, caused a drop of the 

cellular ATP/ADP ratio, and resulted in a rapid increase in cytosolic pyruvate levels as well 

as in increased respiration (Juaristi et al. 2019). Furthermore, cultured astrocytes were 

shown to increase their intracellular pyruvate concentration upon inhibition of oxidative 

phosphorylation (Sotelo-Hitschfeld et al. 2015), and in response to extracellular K+ 

stimulation (Fernández-Moncada et al. 2018). In the context of the presented thesis, 

astrocyte cultures were shown to release pyruvate (Selak et al. 1985, Wang and Cynader 

2001, Kala and Hertz 2005), and pyruvate was shown to have neuroprotective functions (see 

Table 1-1).  
 

Moreover, astrocytes are capable of metabolizing glucose-6-phosphate via the pentose-

phosphate pathway (PPP), although this pathway is less active than glycolysis under 

physiological conditions (Bonvento and Bolanos 2021, TeSlaa et al. 2023, Watermann et al. 

2023). The PPP's main function is the provision of 5-carbon sugar phosphates for 

biosynthesis, and of NADPH for oxidative defence and biosynthesis (TeSlaa et al. 2023). But, 

unused carbons can re-enter glycolysis via fructose-6-phosphate and glycerinealdehyde-3-

phosphate, which are generated in the non-oxidative branch of PPP (Bolaños 2016, TeSlaa 

et al. 2023), thus yielding pyruvate. 
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In addition to consuming externally supplied glucose, astrocytes have been shown to 

contain glucose stores in the form of glycogen (Markussen et al. 2023), which undergo 

constant degradation and regeneration even in the presence of glucose (Petit et al. 2021, 

Markussen et al. 2023). Thus, pyruvate can also be derived from glycogen mobilized in the 

presence or absence of glucose (Dienel 2019b, Markussen et al. 2023). Indeed, astrocyte 

cultures were proven to release lactate from glycogen under glucose deprivation (Dringen et 

al. 1993a), which is an indicator for pyruvate production. 
 

 

Figure 1-7: Important aspects of cytosolic and mitochondrial pyruvate metabolism in astrocytes. Acetyl-CoA 
= acetyl coenzyme A; Ala = alanine; ALAT = alanine amino transaminase; Asp = aspartate; CoA = coenzyme 
A; DHAP = dihydroxyacetone phosphate; Fructose-6P = fructose-6-phosphate; Fructose-1,6-BP = fructose 
1,6-bisphosphate; Fructose-2,6-BP = fructose-2,6-bisphosphate; GABA = γ-aminobutyric acid; GAT-1/3 = 
GABA transporter 1/3; GA3P = glyceraldehyde 3-phosphate; GLAST = glutamate/aspartate transporter; Glu 
= glutamate; GLT-1 = glutamate-transporter 1; Glucose-6P = glucose-6-phosphate; GLUT1 = glucose 
transporter 1; Ile = isoleucine; α-KG = α-ketoglutarate; LAT2 = L-type amino acid transport 2; LDH = lactate 
dehydrogenase; Leu = leucine; ME = malic enzyme; MCT1 = monocarboxylate transporter 1; MCT4 = 
monocarboxylate transporter 4; MPC = mitochondrial pyruvate carrier; OAA = oxaloacetate; PC = pyruvate 
carboxylase; PDH = pyruvate dehydrogenase complex;  PEP = phosphoenolpyruvate; PFKFB3 = 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; 3PG = 3-phosphoglycerate; Pi = inorganic 
phosphate; PKM2 = pyruvate kinase M2; PPP = pentose phosphate pathway; Suc = succinate; Val = valine. 
To simplify the illustration, protons as well as ions involved in transport processes were not shown. The 
pink arrows mark the irreversible steps of glycolysis. The red question marks highlight the currently 
unclear cellular distribution of ME. Created with Biorender. 
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The production of lactate by astrocytes can be considered a sign of pyruvate production, 

given that the two compounds are in a direct equilibrium with one another via the 

oxidoreductase LDH (Fig. 1-7) (Dienel 2019a). Pyruvate can be generated through the 

oxidation of lactate catalyzed by LDH using NAD+ as cofactor (Dienel 2019a). Lactate can 

also serve as an alternative energy substrate (Arend et al. 2019, Harders et al. 2024). 

However, the thermodynamic equilibrium of the LDH reaction strongly favors lactate 

production (Bak and Schousboe 2017), facilitating the simultaneous re-oxidation of NADH 

to NAD+ important for enabling an ongoing glycolysis. Accordingly, a high lactate/pyruvate 

ratio has been described for cultured mouse astrocytes, that was demonstrated to increase 

by application of NH4
+ (Kala and Hertz 2005). In general, LDH is present in high activity in 

astrocytes (Tulpule et al. 2014), and total LDH purified from primary astrocyte cultures 

revealed a KM value for pyruvate of 84 µM (O’Brien et al. 2007). Both subunits of LDH, M and 

H, have been reported to be expressed and all isoforms (tetramers, LDH-1 - LDH-5) are 

present in astrocytes (Bittar et al. 1996, O’Brien et al. 2007). Cultured astrocytes (Pellerin 

and Magistretti 1994, Kala and Hertz 2005, Arend et al. 2019), as well as astrocytes in vivo  

(Sotelo-Hitschfeld et al. 2015) were shown to release large amounts of lactate from glucose. 

Furthermore, astrocyte cultures were shown to be able to directly produce, and release 

lactate from consumed extracellular pyruvate (Hamprecht and Dringen 1994). Astrocytic 

lactate production has been extensively studied (Rae et al. 2024). It has been proposed that 

astrocytic lactate may serve as an alternative neuronal energy substrate, which production 

by astrocytes can be enhanced locally in brain by neuron-astrocyte interactions (Pellerin 

and Magistretti 1994, Bonvento and Bolanos 2021, Roumes et al. 2023). The results obtained 

for astrocytic lactate production offer insights into the astrocytic pyruvate production, given 

the exclusive lactate production by pyruvate reduction. 
 

Alanine may serve as another source for pyruvate formation in astrocytes (Waagepetersen 

et al. 2002b). Astrocytes have been described to express alanine aminotransferase (ALAT), 

also known as glutamate pyruvate transaminase (GPT), which catalyzes the reversible 

transamination of alanine to pyruvate, whereby α-ketoglutarate serves as an amino group 

acceptor, and glutamate is derived (Fig. 1-7) (Rose et al. 2020, Rae et al. 2024). Astrocytes 

were shown to express both the cytosolic GPT1 and mitochondrial GPT2 isoforms (Baytas et 

al. 2022). Consequently, astrocyte cultures have been demonstrated to consume 13C-labeled 

alanine, and subsequently release labeled lactate (Zwingmann et al. 2001), which has to be 

produced via pyruvate. Under those experimental conditions, the activity of mitochondrial 

glutamate dehydrogenase (GDH) was enhanced, presumable to provide sufficient α-
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ketoglutarate as the amino acceptor for transamination (Zwingmann et al. 2001). Due to its 

ability to supply pyruvate for mitochondrial energy production, extracellularly applied 

alanine was shown be able to maintain high ATP levels in glucose-deprived astrocytes 

(Harders et al. 2024). The reversible nature of the transamination was demonstrated by the 

production and release of alanine from metabolized pyruvate by astrocyte cultures 

(Hamprecht and Dringen 1994). 
 

Pyruvate could also be derived from malate catalyzed by malic enzyme (ME), either from 

extracellularly applied malate (McKenna et al. 1990) or in a process termed "pyruvate 

recycling" (Cerdan 2017). The latter is described in detail later. ME facilitates the reversible 

oxidative decarboxylation of malate to pyruvate (Cerdan 2017), whereby NADP+ is 

predominantly used as a cofactor rather than NAD+ (Bukato et al. 1995). But, whether 

functional ME is expressed in the cytosol and in mitochondria of astrocytes, or in just one 

compartment is a topic of controversial debate (McKenna et al. 1995, Vogel et al. 1998a, 

Vogel et al. 1998b, Alves et al. 2000, Cerdan 2017). Even though the decarboxylation of 

malate to pyruvate is reversible (Cerdan 2017), to my knowledge no astrocytic ME-mediated 

malate production from pyruvate has been reported so far in the literature. 

 

1.3.2 Mitochondrial pyruvate metabolism 
 

Pyruvate as the end product of glycolysis links cytosolic and mitochondrial metabolism (Fig. 

1-7). Therefore, it must be transported into mitochondria. In contrast to the outer 

mitochondrial membrane, pyruvate cannot freely pass the inner mitochondrial membrane 

(Tavoulari et al. 2023). Here, the proton-coupled import is mediated by the mitochondrial 

pyruvate carrier (MPC; Fig. 1-7), a heterodimer composed of MPC1 and MPC2 (McCommis 

and Finck 2015, Xu et al. 2021, Tavoulari et al. 2023). MPC has been shown to be functionally 

expressed in astrocytes (Arce-Molina et al. 2020). Pyruvate import into astrocytic 

mitochondria was demonstrated to be lowered by acidification of the mitochondrial matrix 

by extracellular application of high concentrations of NH4
+, thus abolishing the proton 

gradient, which resulted in increased lactate production (Lerchundi et al. 2015). Moreover, 

NO was shown to decrease the rate of mitochondrial pyruvate consumption by impairment 

of mitochondrial respiration (San Martín et al. 2017). Interestingly, even though ATP-

induced Ca2+ signalling increased the intracellular pyruvate concentration in astrocytes 

(Juaristi et al. 2019), it did not increase the mitochondrial pyruvate import (San Martín et al. 
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2014). Using genetically-encoded pyruvate sensors, cytosolic and mitochondrial steady-

state concentrations in astrocytes were found to be in the low micromolar range; however, 

the values varied considerable between individual cells (Arce-Molina et al. 2020). The 

median mitochondrial pyruvate concentration (21 µM) was thereby found to be lower than 

the median cytosolic concentration (33 µM) (Arce-Molina et al. 2020). 
 

In mitochondria, pyruvate can be oxidatively decarboxylated and connected to CoA, yielding 

acetyl-CoA and NADH (Fig. 1-7) (Rose et al. 2020). This acetyl-CoA formation is mediated 

by the pyruvate dehydrogenase complex (PDH) (Rose et al. 2020), a multienzyme complex 

comprised of three enzymes involved in pyruvate oxidation and acetyl-CoA formation plus 

regulatory enzymes (Stacpoole 2017). Among the regulatory enzymes, the expression of all 

four pyruvate dehydrogenase kinase (PDK) isoforms, and both pyruvate dehydrogenase 

phosphatase (PDP) isoforms known has been demonstrated in astrocytes (Halim et al. 2010). 

However, inactivation of the PDH by phosphorylation was shown to be relatively high in 

astrocytes (Halim et al. 2010). Single cell analysis revealed high expression levels of PDK4 

mRNA, a regulatory kinase associated with high PDH phosphorylation (Zhang et al. 2014). 

Thus, PDH activity is believed to be relatively low in astrocytes (Halim et al. 2010, Rose et 

al. 2020). Nonetheless, 15 to 20 % of the total pyruvate metabolism in astrocytes was 

estimated to be pyruvate dehydrogenase-mediated (Schousboe et al. 2019). 
 

Acetyl-CoA derived from pyruvate can enter the TCA cycle, where acetyl-CoA combines with 

oxaloacetate to form citrate (Fig. 1-7) (Rose et al. 2020, Rae et al. 2024). The pyruvate-

derived acetyl-CoA can be fully oxidized to CO2, or serves, when transported as citrate into 

the cytosol, as a major precursor for fatty acid synthesis (Rose et al. 2020, Rae et al. 2024). 

Additionally, mitochondrial pyruvate utilization seems to be connected to mitochondrial 

fatty acid β-oxidation, even in conditions of adequate nutrition. Astrocytes lacking carnitine 

palmitoyltransferase 1a (CPT1a), a transferase facilitating the transport of long-chain fatty 

acids into mitochondria (Rose et al. 2020, Rae et al. 2024), demonstrated increased 

mitochondrial pyruvate utilization and respiration even in the presence of glucose (Morant-

Ferrando et al. 2023). 
 

Per mol pyruvate oxidized in mitochondria via PDH and TCA cycle, 3 moles of CO2, 4 moles 

of NADH and 1 mol of GTP are formed (Dienel 2019a, Rose et al. 2020). Additionally, when 

succinate is oxidized to fumarate in the TCA cycle by the mitochondrial membrane-

anchored succinate dehydrogenase, its covalently bound prosthetic group FAD is reduced to 

FADH2 (Rose et al. 2020). Those energy-rich electrons carried by NADH and FADH2 can be 
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utilized by the respiratory chain to form the proton-gradient over the inner mitochondrial 

membrane (IMM), which is subsequently used for ATP production (Fig. 1-7). Glucose-

deprived astrocytes have been demonstrated to sufficiently utilize pyruvate for energy 

production (Harders et al. 2023, Harders et al. 2024). Around 15 moles of ATP are formed 

per mol pyruvate oxidized in the mitochondrion (Dienel 2019a). In addition, electrons from 

cytosolic NADH derived in glycolysis might be transported into mitochondria by shuttle 

systems such as the malate-aspartate shuttle (McKenna et al. 2006) or glycerol-3-phosphate 

shuttle (Juaristi et al. 2017). Their activity in astrocytes remains a controversial topic 

(McKenna et al. 2006, Berkich et al. 2007, Li et al. 2012, Juaristi et al. 2017, Liu et al. 2021). 

But, for astrocytes to metabolize pyruvate in mitochondria, cytosolic NAD+ regeneration 

from NADH for an ongoing glycolysis has to be facilitated by other means than pyruvate 

reduction to lactate (Rose et al. 2020). In summary, with the addition of 2 moles of ATP 

formed during glycolysis and taking into account a proton-leaking IMM, it was estimated 

that approximately 32 moles of ATP are formed per mole of glucose consumed (Dienel 

2019a). 
 

Furthermore, pyruvate can be carboxylated to oxaloacetate in mitochondria through an 

ATP-dependent reaction facilitated by pyruvate carboxylase (PC; Fig. 1-7), a key anaplerotic 

enzyme that is in brain almost exclusively expressed in astrocytes (Shank et al. 1985, Cesar 

and Hamprecht 1995, Sonnewald and Rae 2010). It has been observed that elevated 

extracellular K+ levels, but not glutamate levels, induce increased carbon fixation via 

enhanced PC activity (Kaufman and Driscoll 1992). Moreover, AMP-activated protein kinase 

(AMPK) activation in astrocytes has been found to augment glycolysis and pyruvate 

carboxylation by PC, thus increasing the capacity of the TCA cycle (Voss et al. 2020). 

Approximately 10 to 20 % of the brain’s total pyruvate metabolism is estimated to be 

accounted for by astrocytic pyruvate carboxylation (Hertz and Hertz 2003, Schousboe et al. 

2019). This oxaloacetate produced via PC is crucial for the maintenance of TCA cycle 

function, as oxaloacetate derived from pyruvate replenishes carbons lost in biosynthesis 

pathways utilizing TCA cycle intermediates (Rose et al. 2020). 
 

In addition to entering the TCA cycle, pyruvate-derived oxaloacetate can in astrocytes be 

decarboxylated to phosphoenolpyruvate (PEP) by mitochondrial phosphoenolpyruvate 

carboxykinase (PEPCK), using GTP as phosphate donor (Fig. 1-7) (Schmoll et al. 1995, Yip et 

al. 2016). PEP in turn can be transported out of mitochondria into the cytosol, where it can 

be utilized to maintain or replenish cellular glycogen stores by de novo glucose synthesis 
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(Rose et al. 2020). In the brain, this process known as gluconeogenesis, is specific to 

astrocytes (Rose et al. 2020). Correspondingly, astrocyte cultures were demonstrated to 

incorporate labeled lactate into their glycogen stores (Dringen et al. 1993b), which must first 

be oxidized to pyruvate. Furthermore, brain tissue was shown to produce glucose from 

pyruvate precursors, which could even be enhanced by application of the gluconeogenic 

hormone glucagon (Bhattacharya and Datta 1993). 

 

1.3.3 Pyruvate in glutamate, glutamine and GABA metabolism 
 

One example of the importance of anaplerotic pyruvate metabolism by PC is the de novo 

glutamate/glutamine synthesis, that in brain contributes to the maintenance of glutamate 

and GABA neurotransmitter pools (Andersen and Schousboe 2023b). For this purpose, α-

ketoglutarate exits the TCA cycle for glutamate and subsequent glutamine synthesis (Fig. 1-

7) (Andersen and Schousboe 2023b). It has been demonstrated that α-ketoglutarate derived 

from oxaloacetate, produced from pyruvate via PC, directly contributes to the synthesis of 

glutamate and glutamine (Voss et al. 2020, Andersen and Schousboe 2023b). In the final step 

converting α-ketoglutarate to glutamate, pyruvate is in turn produced, as α-ketoglutarate is 

in part transaminated to glutamate by ALAT utilizing alanine (Westergaard et al. 1996). 

Other amino group donors are branched chain amino acids (Cole et al. 2012) and aspartate 

(Westergaard et al. 1996). 
 

Conversely to de novo glutamate synthesis, glutamate taken up by astrocytes by high-

affinity electrogenic transporters can undergo transamination to form α-ketoglutarate, 

which can enter the TCA cycle (Todd and Hardingham 2020, Andersen and Schousboe 

2023b). This reaction can be mediated by ALAT, simultaneously converting pyruvate to 

alanine, thus lowering cellular pyruvate levels (Westergaard et al. 1996). However, this 

transamination only plays a minor role under physiological conditions, where glutamate is 

predominately deaminated to α-ketoglutarate and NH4
+ by glutamate dehydrogenase (GDH) 

(Westergaard et al. 1996). For glutamate to be fully oxidized and utilized as an energy 

substrate, its carbon backbone must leave the TCA cycle and it has to be converted to 

pyruvate (Andersen and Schousboe 2023b). This reverse production of pyruvate from 

glutamate or other TCA cycle intermediates and precursors was demonstrated for the 

mammalian brain, and termed “pyruvate recycling” (Cerdan et al. 1990). Facilitated by the 

combined action of PEPCK and pyruvate kinase (PK), or malic enzyme (ME), pyruvate can be 

derived from oxaloacetate or malate, respectively (Cerdan et al. 1990, Hertz and Hertz 2003, 
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Cerdan 2017, Andersen and Schousboe 2023b). The presence of glutamate in a label pattern 

that can only be derived by pyruvate recycling was shown for cultured astrocytes 

(Waagepetersen et al. 2002a). It was argued that, due to higher ME activity compared to 

PEPCK activity, pyruvate is mainly recycled from malate, and not from oxaloacetate 

(Waagepetersen et al. 2002a). However, the methods applied to date do not allow for the 

distinction of the extent to which pyruvate originates from either of these pathways 

(Waagepetersen et al. 2002a, Cerdan 2017, Andersen and Schousboe 2023b). 
 

In addition to the full oxidation of pyruvate derived from glutamate, parts of pyruvate were 

also shown to be converted to lactate upon application of glutamate (Sonnewald et al. 1996, 

Westergaard et al. 1996). In this case the pyruvate generation from TCA cycle intermediates 

or precursors is referred to as partial pyruvate recycling (Andersen and Schousboe 2023b). 

Given that glutamate deamination to α-ketoglutarate is primarily facilitated by GDH, it has 

been observed that lactate production through pyruvate recycling from glutamate is reduced 

in astrocytes with decreased GDH activity (Nissen et al. 2015). Furthermore, in those 

astrocytes lacking GDH activity to degrade glutamate, transamination of glutamate and 

oxaloacetate to α-ketoglutarate and aspartate via aspartate aminotransferase (AST) was 

increased, and pyruvate carboxylation was augmented to compensate for the increased 

oxaloacetate withdrawal from this reaction (Nissen et al. 2015). 
 

In addition to glutamate, astrocytes also take up GABA (Andersen and Schousboe 2023a). 

To be metabolized in the TCA cycle, GABA is converted to succinate in two steps (Fig. 1-7) 

catalysed by GABA transaminase and succinate semialdehyde dehydrogenase (Andersen et 

al. 2020, Andersen and Schousboe 2023b). The reaction mediated by GABA transaminase 

yields succinate semialdehyde with α-ketoglutarate as the amino group acceptor (Andersen 

et al. 2020). ALAT can facilitate a subsequent transamination of derived glutamate, using 

pyruvate as the amino group acceptor, regenerating α-ketoglutarate. Labelled nitrogen of 

[15N]GABA was detected in alanine in brain slices, in which oxidative metabolism of GABA 

was shown to be mainly facilitated by astrocytes. However, most GABA nitrogen was utilized 

for glutamine synthesis (Andersen et al. 2020).  

 

1.3.4 Pyruvate transport over the plasma membrane 
 

Short-chain monocarboxylates such as pyruvate, but also lactate and ketone bodies, are 

mainly imported and exported over the outer cell membrane by passive transport facilitated 
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by proton-coupled monocarboxylate transporters (MCTs) (Nguyen et al. 2022). Astrocytes 

express two isoforms of those transporters, MCT1 (SLC16A1) (Bröer et al. 1997) and MCT4 

(SLC16A3) (Dimmer et al. 2000). Astrocytic pyruvate is believed to be transported mainly by 

the ubiquitous MCT1 (Fig. 1-7), which exhibits a KM of around 1 mM for pyruvate (Nguyen 

et al. 2022). In contrast to its relatively high affinity for pyruvate, MCT1 shows lower affinity 

for lactate (KM= 3.5 mM) and ketone bodies (KM β-hydroxybutyrate= 12.5 mM, KM 

acetoacetate = 5.5 mM) (Carpenter and Halestrap 1994, Bröer et al. 1998). Indeed, astrocytes 

derived from MCT1 knockout mice showed a strong decrease in pyruvate uptake (Philips et 

al. 2022). Moreover, cultures astrocytes demonstrated a KM value of around 1 mM and an 

apparent Vmax of around 7.5 nmol / (min * mg protein) for pyruvate uptake (Hamprecht and 

Dringen 1994). Interestingly, MCTs have been reported to undergo cross-stimulation, 

triggered by an increased activation of the transporter in response to the presence of another 

ligand on the opposing side (Dimmer et al. 2000, Mächler et al. 2016). Accordingly, 

astrocytes were shown to accelerate their lactate release upon pyruvate application, likely 

due to this trans-acceleration (Mächler et al. 2016). Given that substantially lower KM values 

have been documented for MCT4 for lactate transport than for pyruvate transport 

(Contreras-Baeza et al. 2019, Felmlee et al. 2020), this transporter is not considered in the 

context of pyruvate transport (Nguyen et al. 2022). 

 

1.4 Pharmacological modulation of astrocytic metabolism 
 

As astrocytes and astrocytic metabolism play an important role in brain functions, 

homeostasis, or in diseases, it is highly important to get a better insight into the involved 

pathways. One method to elucidate the role of a certain pathway is to study the resulting 

consequences of either inhibition or enhancement of this pathway. Since genetical knockout 

approaches can be costly and inadequate due to, e.g., insufficient transfection of all target 

cells or strong off-target effects (Zhang et al. 2022b), pharmacological modulation can be 

the appropriate course of action to study metabolic questions. In cell culture approaches, 

pharmacological modulators can be easily applied at any time for various time frames and 

in various concentrations. This brings the opportunity to even study potentially fatal 

situations for at least a short period of time (Steinmeier et al. 2020, Harders et al. 2023). 

However, solubility (Thapa et al. 2017), stability (Yang et al. 2008), the transport to the side 

of action (Ovens et al. 2010), and mechanism of action of the compounds (Ovens et al. 2010) 

have to be taken into consideration to ensure functionality, and to prevent false-negative 
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results. For example, pure chemical reactions of the pharmacological modulator and a 

cellular component could severely lower the concentration available (Yang et al. 2008). 

Moreover, potential side effects due to additional targets have to be considered (Gottfried 

et al. 2013), as they might lead to the generation of inaccurate results. The latter can often 

be easily prevented by application of a different inhibitor concentration that correlates with 

only the specific effect rather than the side effect (Carpenter and Halestrap 1994, Yang et al. 

2014). 

 

1.4.1 Modulation of transport processes 
 

In astrocytes, transport of pyruvate, lactate, and ketone bodies is mainly facilitated by 

proton-coupled MCTs. Astrocytes express the isoforms MCT1 and MCT4, which exhibit 

different kinetic properties (Bröer et al. 1998, Dimmer et al. 2000, Contreras-Baeza et al. 

2019). To elucidate the role of the individual transporters for pyruvate consumption and 

release, MCT1 and MCT4 can be inhibited by AR-C155858 (Ovens et al. 2010) and AZD0095 

(Goldberg et al. 2023), respectively. 
 

 

Figure 1-8: Pharmacological inhibitors of astrocytic metabolism. This illustration shows the target points 
of the inhibitors (highlighted in red) AR-C155858 (MCT1 inhibitor), AZD0095 (MCT4 inhibitor), UK5099 
(MPC inhibitor), etomoxir (CPT1a inhibitor), and antimycin A (complex III inhibitor). The green arrow 
indicates the action of BAM15, a mitochondrial uncoupler (highlighted in green). Created with Biorender. 
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The specific MCT1 (and MCT2) inhibitor AR-C155858 (Fig. 1-8), a pyrrolopyrimidinedione 

derivate (Fig. 1-9a), was first developed as an immunomodulator targeting hyperactive T-

cells by suppressing cell proliferation due to feedback inhibition of accelerated glycolysis by 

intracellular lactate accumulation (Guile et al. 2006). The kinetic properties of AR-C155858 

inhibition were characterized in inhibition studies performed on erythrocytes (Ovens et al. 

2010), a glycolytic cell type without mitochondria that relies on MCT1 for lactate export 

(Poole and Halestrap 1994, Siems et al. 2000). MCT1-mediated lactate transport was shown 

to be inhibited by AR-C155858 with a low Ki of 2.3 nM (Ovens et al. 2010). But, the inhibition 

of lactate transport by AR-C15585 in Xenopus oocytes expressing MCT1 was shown to be 

delayed, and MCT1 was also blocked after microinjection of AR-C155858 into the oocytes, 

suggesting that AR-C155858 has to enter the cell to reach its intracellular site of action 

(Ovens et al. 2010). Later, it was shown that AR-C155858 itself serves as a substrate for 

MCT1 (Guan et al. 2019). Thus, care must be taken not to inhibit the uptake of AR-C155858. 

The inhibitor binds to the transmembrane helices 7 – 10, and its specificity seems to be 

explained by amino acids that are conserved in-between MCT1 and MCT2 (Nancolas et al. 

2015). The use of AR-C155858 administration as an anticancer therapeutic is still under 

active investigation (Choi et al. 2023, Lopez et al. 2023). 
 

For astrocytes, inhibition of MCT1 by AR-C155858 was shown to be as efficient as a MCT1 

knockout (Philips et al. 2022). Acetoacetate, β-hydroxybutyrate as well as lactate uptake into 

cortical astrocytes derived from mice fed with an either carbohydrate-rich, or ketogenic diet 

was almost completely inhibited by 1 µM AR-C155858, even though the ketogenic diet was 

shown to increase MCT1 expression levels (Forero-Quintero et al. 2017). Interestingly, AR-

C155858 was also applied to astrocytes expressing an intracellular pyruvate sensor to 

determine the rate of mitochondrial pyruvate consumption. Therefore, following the 

establishment of a constant intracellular pyruvate concentration by application of 

extracellular pyruvate in a glucose-free environment, AR-C155858 was applied to inhibit 

MCT1-mediated pyruvate uptake into astrocytes, and thus the mitochondrial pyruvate 

consumption rate was measured based on the reduction of intracellular pyruvate (San 

Martín et al. 2014, Lerchundi et al. 2015, San Martín et al. 2017). A similar approach was 

used to access differences in rates of intracellular lactate accumulation upon MCT1-

inhibition by AR-C155858 in a glucose-rich milieu (Lerchundi et al. 2015). 
 

Specific MCT4 inhibitors have just recently been described. Formerly, diclofenac or 

phloretin, that inhibit MCT4 but also lots of other targets (Gottfried et al. 2013, Elmetwalli 



29 
 

 

Introduction 

et al. 2023), were used due to a lack of appropriate specific alternatives (Dimmer et al. 2000, 

Sasaki et al. 2016). MCT4 is upregulated in highly glycolytic cells under hypoxic conditions 

(Ullah et al. 2006), e.g. in cancer cells, that adapt to such an environment by increased 

glycolytic flux with a higher production rate of lactate (Warburg effect) (Vaupel and 

Multhoff 2021). AZD0095 (Fig. 1-9b) was developed under the premise of exploiting this 

circumstance, and originates from a high throughput screening in which around 200,000 

substances were tested for their usability as clinical candidates for cancer therapy (Goldberg 

et al. 2023). It exhibited the most favorable pharmacokinetic properties and low in vitro-

tested side effects (Goldberg et al. 2023). With an IC50 of 1.3 nM and a demonstrated more 

than 1000 times selectivity for MCT4 over MCT1, AZD0095 was shown to be a high affinity 

inhibitor for MCT4 (Fig. 1-8) (Goldberg et al. 2023). To my knowledge, AZD0095 application 

on astrocytes has not been described in the literature thus far. 
 

 
Figure 1-9: Structural formulas of inhibitors applied. Pictured are the chemical structural formulas of the 
MCT1 inhibitor AR-C155858 (a), the MCT4 inhibitor AZD0095 (b), the MPC inhibitor UK5099 (c), the 
complex III-inhibitor antimycin A1 (d), and of the mitochondrial uncoupler BAM15 (e). Created with 
ChemSketch. 

 

Pyruvate is taken up into mitochondria via the proton-coupled MPC, a heterodimer protein 

complex located in the inner mitochondrial membrane (Papa et al. 1971, Tavoulari et al. 

2023). UK5099 (2-Cyano-3-(1-phenyl-1H-indol-3-yl)-2-propenoic acid; Fig. 1-9c), a well-

established inhibitor of the MPC (Fig. 1-8), was already in use before the mechanism of 

pyruvate transport into mitochondria was elucidated (Halestrap 1975). It inhibits the MPC 

in a non-competitive, but reversible way with a half maximal inhibition concentration of 5 

to 50 nM (Halestrap 1975, Shearman and Halestrap 1984). It is important to note that at high 

concentrations, UK5099 has been reported to exhibit some inhibitory potential on MCTs 

(Yang et al. 2014). Nevertheless, the Ki value of UK5099-mediated MCT inhibition is two to 
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three orders of magnitude higher than that for MPC (Carpenter and Halestrap 1994). The α-

cyanopropionate group of UK5099 as well as the attached aromatic structure appear crucial 

for inhibition, as such analogs of UK5099 similarly prevented pyruvate uptake (Halestrap 

1975). However, UK5099 exhibited the highest potency among the derivates used (Halestrap 

1975). The crystal structure of the MPC has not yet been resolved, but computational 

simulations revealed that UK5099 was trapped in the center of the transporter and stably 

occupied some of the amino acids that are crucial for pyruvate transport (Xu et al. 2021). 

Thereby, the long-held theory of reversible covalent binding to a cysteine residue of the 

carrier could be disproved (Tavoulari et al. 2023). 
 

UK5099 was shown to efficiently inhibit mitochondrial pyruvate transport in astrocytes 

(Arce-Molina et al. 2020). In glucose-deprived astrocytes, inhibition of the MPC by UK5099 

and simultaneous inhibition of the carnitine palmitoyltransferase 1A (CPT1a) by etomoxir 

(Fig. 1-8) resulted in depletion of cellular ATP stores within 5 h, whereas inhibition by 

UK5099 alone did not affect the cellular ATP levels for 8 h (Harders et al. 2023). In contrast, 

acetyl-CoA and TCA cycle intermediate levels were lowered when mitochondrial pyruvate 

uptake was blocked in astrocytes by UK5099 (Chow et al. 2021). Besides elucidating the role 

of MPC-mediated pyruvate transport for specific compounds, UK5099 was used to access the 

dependency of astrocytes on mitochondrial oxidation of glycolytically-derived  pyruvate, as 

well as the flexibility of this pathway (Qi et al. 2021). By measuring the oxygen consumption 

rate in the absence of inhibitors or in the presence of UK5099 without or with the addition 

of glutaminase and CPT1a inhibitors, this study revealed that astrocytes do not depend on 

mitochondrial oxidation of glucose-derived pyruvate in the presence of other metabolic 

pathways. However, this glucose oxidation pathway via pyruvate holds a high reserve 

capacity for when other pathways are impaired (Qi et al. 2021). 

 

1.4.2 Modulation of mitochondrial metabolism 
 

Once pyruvate has entered the astrocytic mitochondrion, it can be further metabolized. For 

example, pyruvate can be decarboxylated to acetyl-CoA and fuel the TCA cycle, which in 

turn produces reduction equivalents for ATP production via the respiratory chain. There are 

two potential ways to prevent mitochondrial oxidative ATP production. On one hand, it 

could be indirectly inhibited by a depletion of the proton gradient over the inner 

mitochondrial membrane by a mitochondrial uncoupler. On the other hand, the electron 

transport chain and thereby the electron flow could be directly inhibited. 
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BAM15, a mitochondrial uncoupler (Fig. 1-8) first described in 2013, is a good candidate to 

study the influence of depletion of the mitochondrial proton gradient, as it has no off-target 

effects on plasma membranes, a common problem of most other uncouplers (Kenwood et al. 

2013). In general, the term “mitochondrial uncoupler” addresses compounds that enable 

oxidative phosphorylation-independent re-entry of protons into the mitochondrial matrix 

and thus separate the oxidation of the reduction equivalents from ATP production 

(Kenwood et al. 2013). There are physiologically occurring uncouplers, mitochondrial 

uncoupling proteins (UCPs), that are capable of returning protons to the mitochondrial 

matrix and seem to play a role in controlling oxidative stress by the decrease in 

mitochondrial membrane potential that is accompanied by an improved electron transport 

(Cadenas 2018). Pharmacological uncouplers are weak lipophilic bases like BAM15 (Fig. 1-

9e), and act as protonophores (Kenwood et al. 2013). Those compounds are protonated on 

the outer side of the inner mitochondrial membrane and are, due to their chemical 

properties, able to diffuse through the inner mitochondrial membrane in their protonated 

and unprotonated form (Nagumune et al. 1993). Uncoupling by BAM15 strongly increases 

electron transport chain-dependent oxygen consumption (Kenwood et al. 2013). This is 

accompanied by increased energy expenditure, which exhibited beneficial effects like 

improved glucose utilization or a decreased body weight in mouse models of general or 

sarcopenic obesity (Axelrod et al. 2020, Dantas et al. 2022). 
 

In glucose-deprived astrocytes, application of BAM15 led to a complete depletion of the 

total cellular ATP content within 2 h (Harders et al. 2023). Interestingly, glucose-fed 

astrocytes were able to maintain in the presence of BAM15 their cellular ATP stores at 

around 60 % of the initial ATP content (Harders et al. 2023). Furthermore, BAM15 was 

demonstrated to lower the glucose-dependent reduction of water-soluble tetrazolium salt 1 

by 40 % (Watermann and Dringen 2023). Since this reduction is facilitated by cytosolic 

reduction equivalents, BAM15 is discussed to lower the availability of those reduction 

equivalents by increased utilization of cytosolic NADH in mitochondria (Watermann and 

Dringen 2023). 
 

To study the effects of direct inhibition of the electron transport chain, the complex III 

inhibitor antimycin A (Fig. 1-8) is frequently used. Antimycin A was first discovered by 

Leben and Keitt in 1948 from an unidentified species of Streptomyces, when they obtained 

isolates that showed fungicidal properties (Leben and Keitt 1948). A year later, it was further 

analyzed and a name that reflected it’s antimycotic and -biotic effect was assigned, 
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antimycin A (Dunshee et al. 1949). Antimycin A describes not one substance but rather a 

mixture of compounds with the same backbone but different side chains (Labs et al. 2016). 

Main components are antimycin A1 (Fig. 1-9e), A2, A3, and A4, but many more have been 

described (Xu et al. 2011, Liu et al. 2016). Antimycin A acts as a high-affinity inhibitor of 

complex III (ubiquinol-cytochrome c oxidoreductase) in a one to one stoichiometry in the 

cytochrome b-c1 region (Slater 1973). Specifically, it inhibits the re-oxidation of cytochrome 

bH and thereby the regeneration of QH2 via the Qi site (Gabellini et al. 1989). 
 

A possible advantage of the inhibition of complex III compared to the inhibition of complex 

I by rotenone is the inhibition of the transfer of electrons not only from NADH but also from 

succinate via FADH2 by complex II and thus a more pronounced blockade of the electron 

flow (Ragan and Heron 1978). Antimycin A was shown to increase ROS production and 

deplete GSH levels in different cell types (Park and You 2016, Guan et al. 2017), and the 

oxidative stress was shown to induce apoptosis (Yu et al. 2020). There have been attempts 

to utilize the antimycin A-mediated respiratory inhibition and ROS production for 

anticancer studies, and some interesting results have been obtained regarding the 

specificity of antimycin A or its derivates as anti-cancer drugs (Chevalier et al. 2016, Yu et 

al. 2020, Liu et al. 2023). But, implementation might be problematic as antimycin A still is a 

mitochondrial poison with high affinity for complex III. 
 

The application of antimycin A to astrocytes results in a strong increase of lactate 

production by 3 to 3.5-fold (Pauwels et al. 1985, Arend et al. 2019), accompanied by 

increased glucose consumption (Arend et al. 2019). This increaseed glycolytic flux was able 

to maintain ATP levels for 5 h in antimycin A-treated astrocytes at approximately 40 % of 

the initial levels (Harders et al. 2023). Such a decrease of ATP levels was demonstrated to be 

accompanied by a reversible inhibition of gap junction permeability (Vera et al. 1996). 

Interestingly, creatine phosphate was lowered by antimycin A by 80 % within 30 min even 

in the presence of glucose (Karger et al. 2024). In the absence of glucose, antimycin A treated 

astrocytes were depleted of their creatine phosphate and ATP (Karger et al. 2024) within 5 

min and 30 min, respectively. Furthermore, inhibition of the respiratory chain by antimycin 

A was shown to decreased astrocytic glutamate uptake by approximately 30 % (Swanson 

1992). The metabolic attenuation of astrocytes by antimycin A was shown to be 

accompanied by a reversible depolarization of the cell membrane potential (Harold and Walz 

1992). 
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1.5 Aim of this thesis 
 

While the astrocytic metabolism has gathered increasing interest in research over the past 

40 years, there is relatively little work published specifically focusing on the metabolite 

pyruvate. This thesis aims to gain a deeper insight into the processes involved in the 

consumption and release of pyruvate by astrocytes using primary rat astrocyte cultures as a 

model system. 
 

First, this study will focus on characterizing astrocytic pyruvate consumption. Hence, the 

kinetic properties underlying pyruvate consumption, as well as the transport processes 

involved, will be investigated. Furthermore, pyruvate derived products will be identified, 

and mitochondrial involvement in pyruvate consumption will be studied. 
 

Subsequently, pyruvate release by cultured rat astrocytes will be examined. Therefore, the 

capacity of astrocytes to produce pyruvate from glucose and other potential precursors and 

to export pyruvate will be investigated. The transporters and transport processes involved, 

as well as the influence of mitochondrial metabolism, will also be elucidated in relation to 

glucose-mediated pyruvate release. Finally, a potential influence of ROS on the extracellular 

pyruvate accumulation will be assessed. 
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3 Summarizing discussion 

 

The data presented in this thesis demonstrate that astrocytes are able to consume and 

release pyruvate. Despite pyruvate being a potent substrate for astrocytic energy production 

(Harders et al. 2023, Harders et al. 2024), it appears that glucose-fed astrocyte cultures 

release pyruvate dependent on their intracellular pyruvate concentration and establish an 

equilibrium between the intracellular and extracellular pyruvate concentrations. Similarly, 

glucose-deprived astrocytes showed an accelerated or repressed consumption of 

extracellularly applied pyruvate depending on their capacity to utilize cellular pyruvate 

which was also dependent on the intracellular pyruvate concentration. The intracellular 

concentration is likely to be influenced by the availability of other metabolic substrates, 

either for pyruvate or for energy production, by the redox status of the cells (especially by 

the NAD+/NADH ratio), as well as by intracellular compartmentation between cytosol and 

mitochondria (Fig. 3-1). 

 

3.1 Astrocytes and pyruvate 
 

Astrocytes that are provided with pyruvate as exclusive energy substrate consume all 

extracellular pyruvate. In contrast, astrocytes that are maintained in a glucose-containing 

environment establish a transient extracellular steady state concentration of around 150 - 

300 µM pyruvate, depending on the incubation medium. This concentration is probably 

dependent on the intracellular pyruvate concentration and is established as the external 

pyruvate concentration adjusts to the cytosolic pyruvate concentration. In accordance with 

this observation, it was demonstrated that astrocytes incubated with varying extracellular 

volumes established similar extracellular steady-state concentrations in low and in high 

incubation volumes due to a prolonged release of a greater absolute quantity of pyruvate in 

larger volumes (Figure S1). 
 

When comparing rates of pyruvate consumption and release, the maximal pyruvate 

consumption rate (300 nmol / h x mg protein) was found to be 5 times higher than the 

maximal pyruvate release rate (60 nmol / h x mg protein) for astrocyte cultures in HEPES-

buffered incubation buffer. However, it is important to consider that the high consumption  
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Figure 3-1: Pyruvate consumption and glucose-dependent pyruvate release of primary astrocytes cultures 
under control conditions (HEPES-buffered incubation buffer). This figure illustrates important pathways 
and processes involved in pyruvate consumption (a) and release (b). To emphasize the subordinate role of 
glycolysis in glucose-deprived astrocytes (a), the reactions involved are colored gray. In orange, additional 
substrates that resulted in extracellular pyruvate accumulation are indicated. Acetyl-CoA = acetyl 
coenzyme A; ALAT = alanine amino transaminase; CoA = coenzyme A; CPT1a = carnitine 
palmitoyltransferase 1A; DHAP = dihydroxyacetonephosphate; Glu = glutamate; GLUT1 = glucose 
transporter 1; α-KG = α-ketoglutarate; LAT2 = L-type amino acid transport 2; LD = lipid droplet LDH = 
lactate dehydrogenase; MCT1 = monocarboxylate transporter 1; MPC = mitochondrial pyruvate carrier; 
OAA = oxaloacetate; PC = pyruvate carboxylase; PDC = pyruvate dehydrogenase complex;  3PG = 3-
phosphoglycerate; Pi = inorganic phosphate; PKM2 = pyruvate kinase M2; Suc = succinate; Created with 
Biorender. 
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rate was measured for glucose-deprived astrocytes and that pyruvate was the only 

extracellular energy substrate added for such incubations. Although astrocytes cultures 

have been demonstrated to maintain their cellular energy stores even in the absence of 

glucose over the investigated 5 h time period (Harders et al. 2023, Karger et al. 2024), such 

malnutrition quickly depletes intracellular pyruvate levels (San Martín et al. 2014) and 

alternative endogenous energy substrate reservoirs (Dringen et al. 1993, Cabodevilla et al. 

2013). Consequently, astrocytes favor a rather rapid uptake of the substrate pyruvate in 

glucose-free conditions, eventually consuming all available pyruvate as nutrient source. The 

importance of externally applied pyruvate as a mitochondrial energy substrate was 

emphasized by the finding that both MPC inhibition by UK5099 as well as complex III 

inhibition by antimycin A strongly impaired pyruvate consumption. 
 

The different velocities for consumption and release are likely also related to the varying 

pyruvate concentrations present for import and export. Maximal pyruvate consumption 

occurs at extracellular pyruvate concentrations exceeding 2 mM, whereas the intracellular 

pyruvate concentration in glucose-fed astrocytes is likely to be significantly lower, 

approximating that of the extracellular steady-state concentration. This may suggest the 

existence of residual velocity capacity for pyruvate export at higher intracellular pyruvate 

concentrations. Accordingly, inhibition of mitochondrial pyruvate consumption by UK5099, 

which increases the intracellular pyruvate concentration by blocking mitochondrial 

pyruvate utilization (Arce-Molina et al. 2020), did increase the initial rate of pyruvate 

release in glucose-fed astrocytes by around 60 %, which persisted for at least 10 h (Table 3-

1; Fig. S2). This increased pyruvate release supports the view that export might not be at 

maximal capacity under control conditions in HEPES-buffered glucose-containing 

incubation buffer. Whether different import and export kinetics of pyruvate transport 

contribute to the different velocities, analog to how it was reported for lactate import and 

export based on intracellular and extracellular 13C-lactate pools produced by prostate cancer 

cells from 13C-pyruvate (Breukels et al. 2015), cannot be assessed as the intracellular 

pyruvate concentration remains to be elucidated. But, an inhibition of pyruvate export by 

the estimated 30 - 40-fold higher intracellular lactate concentration (6 mM) is likely to also 

affect the export rate of pyruvate by MCT1, analogous to the impairment by a two-fold and 

ten-fold extracellular lactate concentration shown for pyruvate import (Table 3-1). 
 

Furthermore, a modification of the extracellular environment by altering the incubation 

buffer composition to the more complex pyruvate-free DMEM or/and by substituting HEPES 
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Table 3-1: Comparison of important results on pyruvate consumption and release by primary astrocyte 
cultures. This table highlights the effects of various pharmacological modulators or incubation conditions 
on pyruvate consumption and pyruvate release compared to the respective control condition (astrocytes 
incubated in incubation buffer containing 20 mM HEPES, 145 mM NaCl, 5.4 mM KCl, 1,8 mM CaCl2, 1 mM 
MgCl2, 0,8 mM Na2HPO4, pH 7.4; containing either 0.5 mM pyruvate or 5/10 mM glucose). The pyruvate 
consumption rate in control conditions (100 %) ranged between 110 - 180 nmol/h x mg protein (mean = 
138 nmol/h x mg protein). The extracellular pyruvate concentration of glucose-fed astrocytes (100 %) 
ranged between 120 µM - 190 µM (mean = 142 µM) and the release rate of pyruvate (100 %) was around 
70 nmol/ h x mg protein. Pyruvateextra = extracellular pyruvate; lactateextra = extracellular lactate. 
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AR-C155858  
(MCT1 inhibitor) 

 20 % 
(Chapter 2.1 - Fig.3) 

20 % 
(Chapter 2.2 - 

Fig. 6) 
- 

UK5099 
(MPC inhibitor) 

 30 % 
(Chapter 2.1 - Fig.5) 

220 % 
(Chapter 2.2 - 

Fig. 6) 

160 %  
(Chapter 4 -    

Fig. S2) 

Antimycin A 
(Complex III inhibitor) 

 0 % (time-delayed) 
(Chapter 2.1 - Fig. 7) 

0 % 
(Chapter 2.2 - 

Fig. 7) 
- 

BAM15 
(mitochondrial 

uncoupler) 

 280 % 
(Chapter 2.1 - Fig. 7) 

10 % 
(Chapter 2.2 - 

Fig. 7) 
- 

Etomoxir 
(CPT1a inhibitor) 

 accelerated 
(preliminary, data not shown) 

50 % 
(Chapter 4 -    

Fig. S6) 
- 

5 mM lactateextra  20 % 
(Chapter 2.1 - Fig.3) 

120 % 
(Chapter 2.2 - 

Fig. 5) 
- 

Bicarbonate-buffered 
incubation buffer 

 no effect 
(preliminary, data not shown) 

160 % 
(Chapter 2.2 - 

Fig. S3) 

130 % 
(Chapter 2.2 - 

Fig. S3) 

HEPES-buffered  
pyruvate-free DMEM 

 no effect 
(preliminary, data not shown) 

170 % 
(Chapter 2.2 - 

Fig. S3) 

160 % 
(Chapter 2.2 - 

Fig. S3) 

Bicarbonate-buffered 
pyruvate-free DMEM 

 180 % 
(Chapter 4 - Fig. S3) 

170 % 
(Chapter 2.2 - 

Fig. S3) 

160 % 
(Chapter 2.2 - 

Fig. S3) 
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by bicarbonate as an alternative buffer substance increased the astrocytic pyruvate release 

rate as well as the extracellular pyruvate accumulation after 5 h (Table 3-1). However, the 

equilibration process leading to the extracellular steady-state pyruvate concentration, that 

is each approximately 2.5- to 3-fold higher than in HEPES-buffered medium, appeared to 

take longer, with a minimum of 10 h required (see Chapter 2. - Fig. S3). The extracellular 

pyruvate level appears to be slightly more elevated when bicarbonate is present, relative to 

data from similar incubations in an amino acid and vitamin-containing but bicarbonate-free 

medium. Interestingly, also pyruvate consumption was accelerated when astrocytes were 

presented with pyruvate in bicarbonate-buffered DMEM (Fig. S3). However, unlike pyruvate 

release, pyruvate consumption did not appear to be altered by changing only the buffer 

substance (HEPES to bicarbonate) or the buffer complexity (physiological salt solution to 

DMEM) (Table 3-1). Possibly, employing a physiological bicarbonate buffering system may 

enhance the capacity of the intracellular buffering system, since bicarbonate can enter 

astrocytes, mainly facilitated by the electrogenic Na+/HCO3
- cotransporter (NBCe1) that 

enables the bidirectional symport of bicarbonate and Na+ (Deitmer et al. 2019). Additionally, 

astrocytes were shown to express cytosolic carbonic anhydrase II that facilitates a fast 

conversion of bicarbonate to CO2 (Deitmer et al. 2019), thereby trapping protons (Fig. 3-2). 
 

 
Figure 3-2: Reversible spontaneous and carbonic anhydrase (CA)-mediated conversion of bicarbonate (HCO3

-

) and CO2. Created with ChemSketch. 

 

An elevated cellular buffering capacity has the ability to more efficiently prevent cellular 

acidification that can occur from pyruvate and subsequent lactate production via glycolysis 

(Barros et al. 2021, Daverio et al. 2023). The activity of the glycolytic enzyme 6-

phosphofructokinase-1 (PFK1) depends on the intracellular pH, and is inhibited by high 

proton concentration (Fig. 3-1) (Trivedi and Danforth 1966, Erecińska et al. 1995). 

Therefore, astrocytes incubated in a bicarbonate-containing buffer might utilize glucose 

more efficiently in glycolysis and consequently increase their pyruvate production and 

release. However, it is important to note that intracellular alkalization by bicarbonate might 

also slow pyruvate export by limiting proton availability for export via MCT1, a proton co-

transporter (Bröer et al. 1998). In contrast, this increased intracellular buffer capacity by 

bicarbonate might contribute to an increased pyruvate consumption. Because of the proton-

coupled import, an intracellular interception of protons by an improved buffer capacity may 
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improve the transport efficiency. Supporting this hypothesis, it has been demonstrated that 

astrocytes derived from human induced pluripotent stem cells cultured in bicarbonate-

containing medium exhibit a higher intracellular pH compared to astrocytes in HEPES-

containing medium (Yao et al. 2016). However, given that the exclusive alteration of the 

buffer system did not result in a change of pyruvate consumption, or alternatively, that the 

single change of the complexity of the buffer system exerted an influence on the pyruvate 

release, it can be postulated that the underlying mechanisms are likely to be more 

multifaceted. DMEM contains a variety of amino acids and vitamins, with glutamine being 

the most abundant. Astrocytes in culture have been shown to contain glutaminase (Cardona 

et al. 2015), which enables them to deaminate glutamine to glutamate. Astrocytes have been 

shown to produce lactate from glutamine and glutamate via pyruvate recycling (Sonnewald 

et al. 1996, Westergaard et al. 1996). Consequently, pyruvate derived from glutamine could 

also contribute to the increased extracellular pyruvate concentration for the experimental 

conditions applied, although this remains to be elucidated. Overall these findings highlight 

the fascinating complexity of cellular mechanisms, and the importance to thoroughly 

evaluate the experimental conditions used, as both pyruvate release and consumption seem 

to be influenced by the extracellular environment. 
 

Since glucose is the preferred energy substrate of the brain (Dienel 2019), astrocyte cultures 

incubated in glucose-rich medium produced lactate from glycolytically-derived pyruvate 

and released, as expected, millimolar concentrations of lactate, whereas glucose- and 

pyruvate-deprived astrocytes released lactate only to low micromolar concentrations. This 

lactate likely originates from glycogen, which is known to be present in astrocytes and to 

quickly degrade under glucose deprivation (Dringen et al. 1993, Markussen et al. 2023). 

Potentially, there is an additional contribution of lactate derived from residual free 

intracellular glucose present at the onset of the incubation (Blumrich et al. 2016), since the 

cells come from a high glucose environment (DMEM, 25 mM glucose). It could be shown that 

astrocytes also produce a substantial amount of lactate from pyruvate consumed in the 

absence of glucose (Chapter 2.1). This is striking, as the glycolytic NADH production 

necessary for pyruvate reduction by LDH (Dienel 2019) is limited with only pyruvate as 

extracellularly applied substrate. Nonetheless, as expected, this lactate production was 

significantly lower compared to glucose-rich conditions. As discussed in Chapter 2.1, the 

reversible malate-aspartate shuttle (MAS) might facilitate the provision of cytosolic NADH 

from mitochondrially derived NADH. Unfortunately, attempts to elucidate the role of the 

MAS in LDH-mediated lactate production from pyruvate by applying the inhibitor aminooxy 
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acetate were unsuccessful. Aminooxy acetate, a non-specific inhibitor of aminotransferases 

(John and Charteris 1978), that is often used to elucidate a potential contribution of the 

malate-aspartate shuttle (Chen et al. 2015, Wang et al. 2016), severely lowered the pyruvate 

concentration present in the incubation medium cell-independently (data not shown). This 

observed disappearance of pyruvate is most likely caused by quick formation of 

methoxamate adducts of aminooxy acetate with pyruvate (Yang et al. 2008). 
 

By application of the antioxidative enzymes SOD and catalase, it was demonstrated that the 

established extracellular pyruvate levels are not influenced by cell-derived H2O2, that 

chemically oxidizes pyruvate to acetate (Guarino et al. 2019). For astrocytes fed with 

pyruvate, no extracellular acetate release was measurable. Given the one to one 

stoichiometry of the reaction of pyruvate to acetate induced by H2O2 (Fig. S4), it is also 

unlikely for pyruvate oxidation by H2O2 to substantially contribute to the disappearance of 

pyruvate from the extracellular medium. 

 

3.2 Plasma membrane pyruvate transport 
 

Astrocytes have been shown to express the high affinity proton-coupled monocarboxylate 

transporter 1 (Bröer et al. 1997), as well as the low affinity proton-coupled monocarboxylate 

transporter 4 (Dimmer et al. 2000). Pyruvate transport by MCT1 expressed in Xenopus laevis 

oocytes was found to exhibit a KM value of 1 mM (Bröer et al. 1998), and this value fits well 

with kinetic data obtained for initial transport of 14C-labelled pyruvate by astrocyte cultures 

(Hamprecht and Dringen 1994). By inhibiting MCT1 with the specific inhibitor AR-C155858 

(Ovens et al. 2010), it was shown that MCT1 is indeed the main transporter involved in 

pyruvate transport over the plasma membrane (Fig. 3-1). For both consumption and release 

of pyruvate, inhibition of MCT1 by AR-C155858 resulted in a strong inhibition by around 

80 %, highlighting that MCT1 is the main transporter involved in both processes. In 

contrast, AZD0095-mediated inhibition of MCT4, for which a KM value of around 4 mM for 

pyruvate has recently been described (Contreras-Baeza et al. 2019), had, as expected, no 

effect on the pyruvate release (Fig. S5), since the estimated intracellular pyruvate 

concentration (around 150 µM) is far below this KM value of MCT4 (Contreras-Baeza et al. 

2019).  
 

Despite a reduction in glucose consumption resulting from MCT1 inhibition, likely due to a 

cytosolic acidification and subsequent inhibition of glycolysis (Trivedi and Danforth 1966, 
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Erecińska et al. 1995), a considerable amount of lactate was still released. Intracellular 

lactate accumulation has been demonstrated for MCT1-inhibited glucose-fed astrocytes 

(Lerchundi et al. 2015). Astrocytic MCT4 is considered a transporter with reserve capacity 

for lactate export upon intracellular lactate accumulation (Halestrap 2013, Contreras-Baeza 

et al. 2019). Accordingly, while inhibition of MCT1 and MCT4 did not have an additive 

inhibitory effect on pyruvate export, simultaneous inhibition further decreased but yet did 

not abolish lactate export (Fig. S6), indicating a compensatory effect of MCT4 for inhibited 

lactate, but not pyruvate export by astrocyte cultures. This fits well to the proposed better 

kinetic parameters for lactate transport by MCT4 (Contreras-Baeza et al. 2019, Felmlee et 

al. 2020), as well as to the estimated substantially higher intracellular lactate concentration. 

In contrast, exclusive MCT4 inhibition also did not alter the lactate release, further 

indicating that both pyruvate and lactate compete for export via MCT1 under normal 

conditions. Residual import and export of lactate and of those small amounts of pyruvate 

released under MCT1 and MCT4 inhibition might be facilitated by connexin hemichannels. 

These have been described to contribute to astrocytic lactate and gliotransmitter release 

(Karagiannis et al. 2016, Linsambarth et al. 2022), and to physiologically form gap junctions 

for substrate distribution throughout the brain (Orthmann-Murphy et al. 2008). 

Furthermore, anion channels, that have been described to release lactate upon K+-mediated 

cell depolarization (Sotelo-Hitschfeld et al. 2015), might contribute to residual lactate 

export. However, given that the astrocytes were incubated in a buffer containing a 

physiological salt composition, it can be concluded that these play at best a minor role in 

the MCT independent lactate release under the conditions used in the current study. 
 

A two-fold excess of extracellular lactate lowered pyruvate consumption of glucose-

deprived cells by 30 %, while a ten-fold excess had a strong impact and lowered the pyruvate 

consumption by 80 % (Table 3-1). In contrast, application of 5 mM lactate in the presence or 

in the absence of glucose only increased the extracellular pyruvate accumulation by 20 %. 

In the case of pyruvate uptake, it is likely that the inhibition occurs via classic competition 

for import by MCT1, as it has also been demonstrated for a 500-fold excess of pyruvate over 

lactate (Bröer et al. 1997). With regard to export, the transporters involved might have been 

cross-stimulated (Dimmer et al. 2000, Mächler et al. 2016), resulting in the acceleration of 

pyruvate export by a directly preceding import of extracellularly presented lactate. However, 

this effect could not be demonstrated for astrocytes in a glucose-rich but initially lactate-

free environment, where extracellular lactate concentration reached 5 mM after 

approximately 7.5 h. Nonetheless, lactate export possibly still dominated at this time (Fig. 
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3-1). Therefore, a genuine comparison with a situation in which lactate is predominantly 

taken up is challenging. Furthermore, the increased pyruvate accumulation under lactate 

administration is more likely to be explained by an altered intracellular pyruvate 

concentration, as pyruvate and lactate are in a direct equilibrium with each other via LDH. 

While this equilibrium is clearly on the side of reduction (Dienel 2017), i.e., lactate 

production, intracellular lactate concentrations were shown for various cell types to 

increase after lactate administration (Contreras-Baeza et al. 2019). Assuming a constant 

NAD+/NADH ratio and intracellular pH (Christensen et al. 2014), a higher intracellular 

lactate concentration should also result in a higher intracellular pyruvate concentration. 

Given the establishment of an equilibrium between the intracellular and extracellular 

pyruvate concentration, this higher intracellular pyruvate concentration in turn results in a 

higher extracellular pyruvate level. 

 

3.3 Mitochondrial pyruvate transport and metabolism 
 

Impairment of the plasma membrane transport of pyruvate by inhibition of MCT1 almost 

completely abolished both pyruvate consumption and release. In contrast, inhibition of 

mitochondrial pyruvate uptake by the MPC-inhibitor UK5099 strongly decreased pyruvate 

consumption, while it strongly accelerated pyruvate release of glucose-fed astrocytes (Table 

3-1, Fig 3-3). Since UK5099 presumably increases the cytosolic pyruvate concentration by 

blocking mitochondrial pyruvate uptake (Arce-Molina et al. 2020), both phenomena can be 

explained by this mechanism. On the one hand, it is reasonable to conclude that the 

cytosolic pyruvate accumulation resulting from the inability of astrocytes to metabolize 

extracellularly applied pyruvate in mitochondria decreased additional pyruvate uptake. On 

the other hand, due to the increased intracellular concentration and constant further 

production of pyruvate from glucose, it is probable that this caused the significantly 

increased linear export of pyruvate (Fig. S2), as discussed above. The sustained high 

extracellular pyruvate concentration as well as the markedly elevated pyruvate release both 

demonstrate the pivotal role of mitochondrial pyruvate utilization in pyruvate metabolism 

of astrocytes. 
 

Glucose consumption and lactate release, in contrast, were not influenced by low UK5099 

concentrations that specifically inhibit MPC (Fig. 3-3b) (Halestrap 1975, Carpenter and 

Halestrap 1994, Hildyard et al. 2005), indicating that the cellular energy charge is not 
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impaired by an inhibited mitochondrial pyruvate uptake, as seen by the absence of 

accelerated glycolytic flux (Almeida et al. 2004, Voss et al. 2020). Accordingly, the 
 

 
Figure 3-3: The postulated effect of the MPC inhibitor UK5099 on astrocytic pyruvate and energy 
metabolism. This figure illustrates the effect of UK5099, an MPC inhibitor, on different pathways and 
metabolites involved in pyruvate and energy metabolism. Pyruvate consumption (a) and pyruvate release 
(b) are shown separately. For glucose-deprived astrocytes(a), the reactions involved in glycolysis are 
colored in grey to highlight their subordinate role under these circumstances. The green arrows indicate 
an increase of concentrations of metabolites and transport compared to control conditions (without 
inhibitor), while the red arrows indicate a decrease of transport and enzyme activities. The red crosses 
symbolize a block of transport and the depletion of mitochondrial pyruvate. The grey squares indicate 
unchanged conditions. Created with Biorender. 
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application of UK5099 was confirmed to have no influence on the ATP level of glucose-fed 

astrocytes (Fig. S6). Even in the absence of glucose and in the presence of UK5099, astrocytes 

have been demonstrated to maintain their high cellular ATP concentration for a remarkably 

long time (Harders et al. 2023). Astrocytes were shown to be able to utilize other internally 

stored substrates such as fatty acids (Cabodevilla et al. 2013, Harders et al. 2023, Morant-

Ferrando et al. 2023), that likely contribute to maintenance of ATP content under UK5099-

mediated MPC inhibition. Conversely, astrocytes incubated with glucose in the presence of 

etomoxir, a CPT1a inhibitor and thus an inhibitor of fatty acid utilization in mitochondria, 

released around 50 % less pyruvate within 5 h (Fig. S7), confirming the use of both pyruvate 

and fatty acids for mitochondrial ATP production. Nonetheless, astrocytes incubated with 

pyruvate and UK5099 released slightly less lactate (Fig. S8), indicating a decreased 

availability of cytosolic NADH for LDH-mediated pyruvate reduction. Whether this results 

from a reduced mitochondrial NADH production, that does not affect cellular ATP 

concentration, or/and a reduced MAS activity remains to be elucidated. 
 

The inhibition of mitochondrial pyruvate utilization by UK5099 was shown to have a strong 

impact on pyruvate consumption and release. Accordingly, an indirect modulation of 

mitochondrial pyruvate utilization by manipulation of the respiratory chain by the complex 

III inhibitor antimycin A or the uncoupler BAM15 also significantly influenced both 

processes. 
 

By inhibiting the re-oxidation of cytochrome bH of complex III (Gabellini et al. 1989), 

antimycin A is supposed to interrupt the electron flow and block the respiratory chain 

completely (Fig. 3-4). This is supported by the observed complete inhibition of oxygen 

consumption by antimycin A (Kenwood et al. 2013). As a result, mitochondria are unable to 

re-oxidize NADH formed in the TCA cycle (Ragan and Heron 1978), which is likely to bring 

the TCA cycle to a halt. Consequently, acetyl-CoA and oxaloacetate derived from pyruvate 

in astrocytes via PDH and PC, respectively (Rose et al. 2020), cannot be metabolized in the 

TCA cycle, which likely reduces overall mitochondrial pyruvate metabolism. Furthermore, 

an increased PDH phosphorylation and thus inactivation induced by the decrease of 

NAD+/NADH ratio in mitochondria, which was shown for PDH in HeLa cells (Titov et al. 

2016), is believed to contribute to a decreased mitochondrial pyruvate utilization. 

Consequently, astrocytes likely lose the capacity to metabolize pyruvate in mitochondria. In 

astrocyte cultures incubated with antimycin A and extracellular pyruvate, this resulted in a 

time-delayed but complete inhibition of pyruvate uptake (Fig. 3-4a, Table 3-1), whereas no 
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pyruvate release was observed in cells that were treated with antimycin A and glucose (Fig. 

3-4b, Table 3-1). Yet, the absence of extracellular pyruvate accumulation does not imply 
 

 
Figure 3-4: The postulated effect of the complex III inhibitor antimycin A on astrocytic pyruvate and energy 
metabolism. In this figure, the effects of the complex III inhibitor antimycin A on different pathways and 
metabolites involved in pyruvate and energy metabolism are illustrated. Pyruvate consumption (a) and 
pyruvate release (b) are demonstrated separately. To emphasize the subordinate role of glycolysis in 
glucose-deprived astrocytes (a), the reactions involved are colored in grey. The green arrows indicate an 
increase compared to control conditions (no inhibitor), while the red arrows and red crosses indicate a 
decrease or block of transport processes, enzyme activities or substance concentration. Created with 
Biorender. 
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that pyruvate was consumed in mitochondria under this condition. Instead, a markedly 

elevated glycolytic flux was observed, characterized by a pronounced increase in glucose 

consumption and lactate release. Likely, the loss of energy charge by mitochondrial 

impairment through antimycin A leads to an activation of the cellular energy sensor AMP-

dependent protein kinase (AMPK), which was shown to be activated in astrocytes by 

inhibition of respiration (Almeida et al. 2004). Activated AMPK in turn could phosphorylate 

and thereby activate astrocytic 6-phosphofructo-2-kinase/fructo-2,6-bisphosphatase 3 

(PFKFB3) (Almeida et al. 2004). PFKFB3 is known to enhance glycolysis in astrocytes by 

favorably facilitating the production of the strong allosteric activator of PFK1, fructose-2,6-

bisphosphate (Bonvento and Bolanos 2021), thus this likely contributes to the accelerated 

glycolytic flux induced by antimycin A. In this line, antimycin A was shown to induce the 

phosphorylation and thereby activation of AMPK in hamster lung cells (Ohkubo et al. 2024). 

Furthermore, the ratio of glucose consumption to lactate release was found to be altered in 

general by application of antimycin A (see Chapter 2.2 - Fig. 7), from approximately 1.3 

under control conditions to a ratio of nearly 2. This reflects that under antimycin A 

treatment, nearly all glycolytically derived pyruvate is quickly reduced to lactate, which is 

then released to prevent intracellular acidification. Thereby, also NADH is rapidly re-

oxidized to NAD+ (Luengo et al. 2021), likely to facilitate ongoing enhanced glycolysis. 

Eventually, while astrocytes incubated with pyruvate and antimycin A were fully depleted 

of ATP, those incubated with glucose demonstrated the capacity to maintain cellular ATP 

levels of about 50 % (Harders et al. 2023) through enhanced glycolysis, which abolished 

pyruvate release due to an almost complete conversion of glycolytically derived pyruvate to 

lactate. 
 

While antimycin A directly inhibits the respiratory chain (Gabellini et al. 1989), the 

uncoupler BAM15 indirectly impairs oxidative phosphorylation by depleting the proton 

gradient over the inner mitochondrial membrane (Kenwood et al. 2013). Under this 

condition, the electron transport chain and mitochondrial respiration are not impaired and 

likely strongly accelerated to counteract the decrease of cellular ATP levels that occurs even 

in the presence of glucose (Harders et al. 2023). In line with this, it was demonstrated that 

the application of BAM15 significantly increases oxygen consumption in various cell types 

(Kenwood et al. 2013, Axelrod et al. 2020, Taylor et al. 2024). To facilitate the increased need 

of electrons by the electron transport chain, more succinate and NADH have to be oxidized 

(Dienel 2019). As a result, it can be postulated that the velocity of the TCA cycle will also 
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increase (Fig. 3-5). Indeed, such an acceleration of the oxidative TCA cycle by BAM15 has 

been demonstrated for neuroblastoma cell lines (Jiang et al. 2023). Ultimately, in order to 
 

 
Figure 3-5: The postulated effect of the mitochondrial uncoupler BAM15 on astrocytic pyruvate and energy 
metabolism. The illustration pictures the effects of the uncoupler BAM15 on different pathways and 
metabolites involved in pyruvate and energy metabolism. Pyruvate consumption (a) and pyruvate release 
(b) are illustrated separately. The reactions involved in glycolysis are colored in grey in the absence of 
glucose (a) to emphasize the subordinate role in this context. The green arrows indicate an increase, while 
the red arrows and red crosses indicate a decrease or block of transport processes, enzyme activities or 
substance concentration compared to control conditions (no uncoupler). Created with Biorender. 
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ensure that sufficient quantities of acetyl-moieties are available for oxidation in the TCA 

cycle, more pyruvate has to be oxidized by PDH (Jiang et al. 2019). Indeed, the mitochondrial 

pyruvate utilization was significantly accelerated by BAM15, as evidenced by a strong 3-fold 

acceleration of pyruvate consumption (Table 3-1) that could be stopped by inhibition of 

mitochondrial pyruvate uptake, as well as by a decrease in lactate and alanine production. 

In accordance with this observations, application of an alternative uncoupler, FCCP, was 

shown to increase mitochondrial pyruvate utilization in astrocytes also by 300 % (Arce-

Molina et al. 2020), further demonstrating that the mitochondrial pyruvate oxidation is the 

main pathway involved in accelerated pyruvate consumption. For glucose-fed astrocytes, 

the extracellular pyruvate accumulation was also almost abolished in the presence of BAM15 

(Table 3-1; Fig. 3-5). But, in contrast to pyruvate-fed astrocytes, where the majority of 

pyruvate is likely to be oxidized in mitochondria, a substantial fraction of the glycolytically 

derived pyruvate is reduced to lactate. In addition, the glycolytic flux, hence the glucose 

consumption and lactate release, is generally higher for glucose-fed BAM15-treated 

astrocytes than for cultures incubated under control condition. Similarly to the inhibition 

of respiration by antimycin A, the depletion of the mitochondrial membrane potential also 

induced a decrease in cellular ATP levels even in the presence of glucose (Harders et al. 

2023), which is probably the cause of the accelerated glycolysis. An activation of glycolysis 

by AMPK might play a role, as also BAM15 was shown to activate AMPK in various cell types 

(Tai et al. 2018, Axelrod et al. 2020). However, the ratio of lactate release to glucose 

consumption is lower for BAM15-treated astrocytes (1.6) compared to antimycin A-treated 

cells (1.9). Consequently, also in glucose-fed astrocytes a large quantity of pyruvate appears 

to be metabolized within the mitochondria, as nearly as much glucose was consumed as 

under antimycin A treatment, yet less lactate was released.  

 

3.4 Future Perspectives 
 

The extracellular pyruvate concentration could be successfully established as an indicator 

for alterations of the cellular pyruvate metabolism, but unfortunately, it was not possible to 

measure the corresponding intracellular pyruvate concentrations with the available 

resources. To thoroughly understand the astrocytic pyruvate metabolism, it would be very 

beneficial to close this gap, which could potentially be accomplished by culturing in the 

presence of 13C-enriched substrates. Such a method for a measurement of intracellular 

metabolite concentrations has been established using human fibroblasts, but is described to 
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be suitable for other mammalian cell cultures if the intracellular volume is known (Bennett 

et al. 2008). This is the case for cultured astrocytes (4.1 µL/mg protein) (Dringen and 

Hamprecht 1998). Briefly, in order to ensure an abundant labeling of metabolites at the time 

of sample extraction, dividing cells are incubated in DMEM containing U-13C-glucose and U-

13C-glutamine for a period of at least two cell doublings (Bennett et al. 2008). Therefore, 

treatment of astrocytes would have to be initiated early after seeding before they become 

confluent. After harvesting cell samples in solutions containing known concentrations of 

unlabeled metabolites as internal standards, intracellular concentrations can be calculated 

from ratios of labeled to unlabeled metabolites determined by liquid chromatography (LC)-

mass spectrometry (MS) (Bennett et al. 2008). Therefore, by solubilizing astrocytes in 

solutions containing unlabeled pyruvate, intracellular pyruvate concentrations could be 

measured. Unlabeled metabolites, which may occur if the incubation medium still requires 

adjustment such as an addition of further labeled substrates, can be detected by collecting 

and analyzing the lysed sample without addition of unlabeled internal standards (Bennett 

et al. 2008). 
 

An alternative method to elucidate the intracellular fate of pyruvate is the use of 

intracellularly expressed fluorescence-based pyruvate sensors, which have previously been 

employed in astrocytes (San Martín et al. 2014, Arce-Molina et al. 2020). For intracellular 

expression, these genetically encoded sensors, or more precisely their DNA sequences, are 

incorporated into vectors suitable for transfection of eukaryotic cells. Transfection of these 

vectors into astrocytes was reported to be carried out at 60 % confluence (San Martín et al. 

2014, Arce-Molina et al. 2020). During transfections of a vector encoding a lactate sensor 

into astrocytes, an efficiency of 20 % was observed using the transfection reagent 

Lipofectamine 2000. Additionally, a transfection rate exceeding 90 % was achieved using a 

customized recombinant adenovirus (San Martín et al. 2013). Given that these sensors have 

already been successfully expressed in astrocytes, it is reasonable to believe that the method 

could be adapted for the astrocyte cultures used in this study. Moreover, as the process 

primarily involves microscopic observation of individual cells, it should not be problematic 

if not all cells are successfully transfected. 
 

Expression of pyruvate sensors allows real-time imaging and can therefore be valuable to 

study the effects of pharmacological modulators on the intracellular pyruvate 

concentration. For instance, a FRET sensor for pyruvate was used in combination with the 

MCT1-inhibitor AR-C155858 to characterize mitochondrial pyruvate utilization of 
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stimulated neurons and astrocytes (San Martín et al. 2014). Dependent on the type of 

fluorophore, sensor use may be time-limited by photobleaching (Verma et al. 2023). 

However, existing pyruvate sensors are based on fluorescent proteins (San Martín et al. 

2014, Arce-Molina et al. 2020), whose signals are relatively stable (Verma et al. 2023). Thus, 

pyruvate sensors could be a great way to study acute as well as long term effects of 

modulation of the astrocytic cellular pyruvate metabolism. Furthermore, quantitative 

measurements of cellular steady-state pyruvate concentrations have already been 

performed using fluorescence-based sensors (Arce-Molina et al. 2020). Therefore, 

expression of sensors provides another opportunity to resolve the for our primary astrocyte 

cultures unknown intracellular pyruvate concentration without and with pharmacological 

modulation. Interestingly, also variances in pyruvate consumption among mitochondria 

located in different regions within the same astrocyte were observed (Arce-Molina et al. 

2020), which offers the possibility to investigate even intra-individual differences in 

mitochondrial metabolism. Especially for astrocytes, that can in brain be particularly large 

and extensively branched with long processes (Zhang and Barres 2010), such investigations 

could be of great interest. Precisely manipulating a small extracellular area could provide a 

valuable insight into the mitochondrial pyruvate metabolism following neurotransmission 

of, e.g., different astrocytic regions of an astrocyte that is part of a tripartite synapse. 

Moreover, dysfunctional astrocytic mitochondria appear to gain interest in the context of 

pathologies such as the neurodegenerative Parkinson’s disease, whose phenotypic 

characteristics like locomotor deficits could be induced by impairment of the astrocytic 

mitochondrial membrane potential within the substancia nigra pars compacta of mice (Li et 

al. 2024). Investigating mitochondrial pyruvate utilization in cell culture disease models 

may enhance our understanding of metabolic abnormalities associated with various 

(neurodegenerative) disease (Mulica et al. 2021, Anderson 2022, Yu and Martins 2024, Zhang 

et al. 2024). 
 

Beyond the measurement of intracellular concentrations, application of 13C-enriched 

pyruvate in general might be a great way to further investigate the intracellular fate of 

extracellularly applied pyruvate. The application of 13C-enriched substrates has been 

successfully applied on numerous occasions to elucidate other aspects of the astrocytic 

metabolism in the physiological and pathophysiological context (Zwingmann and Leibfritz 

2003, Nissen et al. 2015, Cerdan 2017, Andersen et al. 2020, Salcedo et al. 2024). To elucidate 

the fate of cellular pyruvate, astrocytes could be incubated with stable 13C isotope-enriched 

pyruvate alone, or in the presence of unlabeled glucose or other additional substrates, and 
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isotope enrichment of cellular metabolites could be determined by gas chromatography 

(GC)-MS (Walls et al. 2014). Through analysis with nuclear magnetic resonance (NMR) 

spectroscopy, in addition to isotope enrichment, labelling patterns could be obtained, but 

more sample is needed as NMR is less sensitive than MS (Westi et al. 2023). Incubations with 

stable 13C isotope-enriched metabolites have, e.g., recently been used to elucidate the 

metabolism of the neurotransmitter GABA (Andersen et al. 2020), or the metabolism of 

medium chain fatty acids (Andersen et al. 2021) in brain slices. After a correction for 

naturally occurring 13C nuclei (Walls et al. 2014) following an incubation with 13C enriched 

pyruvate, the measured labelled metabolites should only be derived from this pyruvate. 

Therefore, isotope tracing would bring the great opportunity to determine the cellular fate 

of pyruvate by directly measuring products of pyruvate in cultured astrocytes. Through the 

addition of a combination of labeled pyruvate and unlabeled substrates such as glucose, the 

intracellular labeled pyruvate pool might be diluted by the production of unlabeled pyruvate 

from the other substrate applied (Westi et al. 2023). But, since the labeled metabolites in 

cells incubated with an additional unlabeled energy substrate will still be derived from the 

applied labeled pyruvate, this would be an adequate approach to analyze differences of 

pyruvate metabolism of astrocytes in different environments such as less or more complex 

incubation media. For example, application of labelled pyruvate and labelled pyruvate 

precursors to cortical neurons revealed different labelling patterns of metabolites 

dependent on the applied mixture of substrates (Cruz et al. 2001). 
 

An advancement of the rather insensitive 13C NMR spectroscopy (Walls et al. 2014), 13C 

hyperpolarized magnetic resonance imaging (MRI), offers the fascinating possibility of 

conducting live in vivo measurements (Miller et al. 2018). This technique provides a 

powerful tool to elucidate the fate of pyruvate in brain in vivo (Miller et al. 2018). For this 

procedure, 13C-enriched substrates are hyperpolarized prior to their application to living 

subjects, mainly by a method called dissolution Dynamic Nuclear Polarization (dDNP) 

(Miller et al. 2018, Wodtke et al. 2023). Briefly, the substrate, mixed with free radicals, 

undergoes polarization in a strong magnetic field (3.35 - 7 T) at cryogenic temperatures 

(~ 1 K). Under these circumstances, the electron spins of the added free radicals align with 

the magnetic field, and this polarization is then transferred to the 13C nuclei through 

application of a specific microwave frequency, inducing a transient increase in nuclear 

polarization (Wodtke et al. 2023). After rapid dissolution of the polarized substance in a 

heated liquid and subsequent cooling to physiological temperature, it must be injected 

immediately into a subject for MRI due to the transient nature of the polarization (Wodtke 
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et al. 2023). This pretreatment drastically enhances the signal in MRI, enabling direct and 

non-invasive in vivo measurements of a hyperpolarized substance and its products (Miller 

et al. 2018, Wodtke et al. 2023). [1-13C]-pyruvate is thereby the most commonly used 

substrate (Wodtke et al. 2023), and is already being tested in clinical studies for clinical 

application (Grist et al. 2019, Hackett et al. 2020, Rider et al. 2020). 
 

Given the extensive experience especially with [1-13C]-pyruvate, 13C-hyperpolarized MRI 

presents an excellent opportunity to get an insight into the brains’ pyruvate metabolism in 

physiological or pathophysiological conditions. E.g., studies on healthy humans injected 

with hyperpolarized [1-13C]-pyruvate revealed in brain a faster incorporation of label into 

lactate than into the bicarbonate pool, indicating that pyruvate in the brain is faster reduced 

than oxidized (Grist et al. 2019). Furthermore, intravenous applied hyperpolarized pyruvate 

was shown to be an indicator of an increased BBB permeability in a rat brain metastasis 

model and a porcine mannitol osmotic shock model by measurements of the appearance of 

[1-13C]-pyruvate and [1-13C]-lactate in the brain parenchyma (Miller et al. 2018). In a LPS-

induced neuroinflammation model, the [1-13C]-lactate to pyruvate ratio was shown to be 

increased in the area of LPS injection (Le Page et al. 2019). However, this commonly used 

approach of pyruvate, lactate and bicarbonate measurements is to date not able to 

distinguish between cell types directly. Moreover, the results obtained are presented as 

metabolic ratios and conversion rates (Wodtke et al. 2023). Nonetheless, correlating results 

with cell type specific pathways could suggest the activity of specific cells. For instance, 

pyruvate carboxylase is in brain predominantly expressed in astrocytes (Cesar and 

Hamprecht 1995, Sonnewald and Rae 2010). Therefore, carboxylation of hyperpolarized [1-

13C]-pyruvate by PC should result in the production of [1-13C]-, and subsequently [4-13C]-

oxaloacetate almost specifically by astrocytes. Measurements of this oxaloacetate could 

increase our knowledge of basic brain metabolism by assessing the activity of PC in the brain 

in vivo. Hyperpolarized oxaloacetate, which is a rather unstable β-ketoacid (Pollack 1978), 

could nonetheless be measured in mouse liver (Lee et al. 2013). In general, the highly 

interesting approach to measure hyperpolarized metabolites and their conversion rates 

non-invasive in vivo will possibly bring an important insight into brains’ metabolism, and 

the application of hyperpolarized [1-13C]pyruvate will likely advance the diagnostic methods 

for diverse disease (Miller et al. 2018, Choi et al. 2019, Hackett et al. 2020, Anderson et al. 

2021, Andelius et al. 2024). 
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Externally supplied pyruvate was shown to have neuroprotective functions in vitro (Selak et 

al. 1985, Desagher et al. 1997, Lee et al. 2001, Wang and Cynader 2001, Ryou et al. 2012) and 

in vivo (Lee et al. 2001, Ryou et al. 2012). Besides serving as an additional energy substrate 

(Lee et al. 2001), pyruvate was discussed to exert neuroprotective effects through its 

antioxidative capacity (Desagher et al. 1997, Wang and Cynader 2001, Ryou et al. 2012). To 

elucidate the contribution of pyruvate derived from astrocytes in vivo, one could try to 

manipulate metabolism in astrocytes specifically, e.g., by MCT1 inhibition. One approach 

used antisense oligonucleotides to study the impact of MCT1 and MCT4 knockdown in 

astrocytes within the rat dorsal campus, focusing on memory impairment. Administration 

of pyruvate thereby restored the memory formation impaired by MCT1 and MCT4 

knockdown (Descalzi et al. 2019). The local administration of antisense oligonucleotides 

results in effective distribution in the brain parenchyma, targeting RNA transcripts to 

reduce protein production (Schoch and Miller 2017). But, since MCT1 is in brain not 

exclusively expressed in astrocytes, but also in oligodendrocytes, microglia and even some 

neurons (Felmlee et al. 2020), more specific methods are needed to accurately assess 

astrocytic pyruvate release in vivo. In a mouse mutant model, mitochondrial respiration in 

astrocytes could be selectively disabled by tamoxifen administration. These mice remained 

viable without apparent cell death (Supplie et al. 2017). Using such mouse models, one could 

investigate whether pyruvate concentrations within the interstitial fluid diver between 

conditions with and without functional mitochondrial respiration. This approach may help 

clarify the influence of astrocytic mitochondrial and pyruvate metabolism on overall brain 

pyruvate dynamics. However, fully abolishing pyruvate metabolism is likely not feasible due 

to the critical importance of these metabolic pathways. 
 

Overall, the findings presented provide insights into the multifaceted nature of astrocytic 

pyruvate metabolism and contributes to laying the groundwork for future research in the 

field of brain pyruvate metabolism. By shedding light on the metabolic fate of pyruvate in 

astrocytes, these findings offer valuable insights into the intricate mechanisms underlying 

brain pyruvate metabolism, ultimately helping to advance our understanding of brain 

pyruvate functions. Furthermore, this knowledge could pave the way for future studies 

aimed to elucidate the role of mismatched pyruvate metabolism in neurological disease, 

which is particularly important as defective metabolism is increasingly recognized as a 

contributing factor in pathophysiology (Mocking et al. 2018, Aldana 2019, Westi et al. 2023, 

Hanin et al. 2024). 
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Figure S1 
 

 
 

Figure S1: The transient extracellular steady-state concentration of pyruvate establishes independently of 
the extracellular volume. Astrocyte cultures were incubated in 250 µL or 500 µL incubation buffer (IB-
HEPES) containing 5 mM glucose. For the given time points, the extracellular concentrations of glucose 
(a), pyruvate (b) and lactate (c) as well as the extracellular LDH activity (d) were determined. The initial 
LDH activity (100%) of the cultures was 144 ± 5 nmol/(min x well) and the initial protein content was 130 
± 8 µg/well. The data shown represents means ± SD of three experiments that had been performed on 
independently prepared cultures. The significance of differences (paired t-test) of data obtained for 
experiments with the two incubation volumes is indicated by *p<0.05, **p<0.01 and ***p<0.001. 
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Figure S2: Time-dependent effect of the MPC inhibitor UK5099 on glucose consumption and release of 
lactate and pyruvate. Primary rat astrocyte cultures were incubated in glucose-free incubation buffer or 
incubation buffer containing 10 mM glucose without or with 1 µM UK5099, an inhibitor of the 
mitochondrial pyruvate carrier, for up to 24 h. After the indicated timepoints, the extracellular 
concentrations of glucose (a, e), lactate (b, f), and pyruvate (c, g) were determined. Extracellular LDH 
activity (d, h) was measured as a marker for decreased cell viability. The initial cellular LDH activity (100 
%) was 141 ± 33 nmol/(mg x protein), and the initial protein content of the cultures was 115 ± 18 µg/well. 
The data represents means ± SD of values obtained from three experiments performed using 
independently prepared cultures. The significance of difference (paired t-test) between values obtained 
for glucose-containing incubation buffer without and with UK5099 is indicated by *p<0.05 and **p<0.01, 
and that between glucose-free incubation buffer without and with UK5099 by #p<0.05 and ##p<0.01. 
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Figure S3: Pyruvate consumption by primary astrocyte cultures is altered in different incubation media. For 
up to 5 h, the cultures were incubated in glucose-free IB-HEPES (a, b, c; this data is already shown in 
Chapter 2.1, Figure 2 and is illustrated here again for direct comparison) or glucose-free DMEM-
Bicarbonate (d, e, f) supplemented with the indicated pyruvate concentrations. The extracellular pyruvate 
concentrations (a, d), as well as the extracellular LDH activity (b, e) as an indicator of loss in cell viability 
were measured for the time periods given. The initial LDH activity (100 %) of the cultures was 116 ± 9 
nmol/(min x well) and the initial protein content was 122 ± 7 µg/well. The specific pyruvate consumption 
rates were calculated using the almost linear decline of extracellular pyruvate during the first 3 h of 
incubation (c, f). By using the Michaelis-Menten equation, the concentration of half-maximal pyruvate 
consumption (KM) and the maximal pyruvate consumption rate (vmax) were calculated for both incubation 
media. The data shown are means ± SD of values obtained from three experiments performed on 
independently prepared cultures. 

  



122 
 

Appendix 

Figure S4 
 

 
 

Figure S4: Quantitative chemical decarboxylation of pyruvate to acetate by H2O2. Samples of glucose-free 
incubation buffer containing the indicated concentrations of pyruvate were incubated for 30 min at room 
temperature with 10 mM H2O2 to decarboxylate pyruvate to acetate. Afterwards, 1040 U/mL catalase was 
added to deplete residual H2O2. The pyruvate concentrations before (grey bars) and after (blue bars) H2O2 
treatment as well as the acetate formed (green bars) were determined. The data shown are means ± 
difference to the individual values of values obtained from two experiments. 
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Figure S5: The influence of inhibition of different monocarboxylate transporters on astrocytic pyruvate and 
lactate release. Primary astrocyte cultures were incubated in incubation buffer (IB-HEPES) containing 10 
mM glucose without or with 10 µM of the MCT1 inhibitor AR-C155858 or/and with the MCT4 inhibitor 
AZD0095 (purchased from MedChemExpress (Monmouth Junction, USA) in the indicated µmolar 
concentrations. After the indicated timepoints, extracellular pyruvate (a), lactate (c), and LDH (d) as an 
indicator of loss in cell viability were determined. Glucose consumption (b) after 10 h of incubation was 
calculated as the difference between the initial and the remaining extracellular glucose concentration 
after 10 h. The initial cellular LDH activity (100 %) was 206 ± 43 nmol/(min x well), and the initial protein 
content was 137 ± 16 µg/well. The data presented are means ± SD of results from three individual 
experiments performed on three individually prepared cultures. The significance of difference (ANOVA) 
compared to the control condition without inhibitors is indicated by *p<0.05, **p<0.01, and ***p<0.001. 
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Figure S6: Concentration-dependent effects of the mitochondrial pyruvate carrier inhibitor UK5099. 
Astrocyte cultures were incubated in incubation buffer (IB-HEPES) containing 10 mM glucose and the MPC 
inhibitor UK5099 in the indicated concentrations. Extracellular pyruvate (a, b) and lactate (d, e) 
concentration, as well as the specific intracellular ATP content (c) were determined at the specified time 
points. Extracellular LDH activity (f), serving as an indicator of a potential loss in cell viability, was 
measured, with an initial cellular LDH activity (100 %) of 173 ± 31 nmol/(mg x protein). The initial protein 
content was 145 ± 18 µg/well and the initial ATP content was 28 ± 5 nmol/(mg x protein). The data shown 
are means ± SD of values obtained in three experiments performed on independently prepared cultures. 
The significance of difference (ANOVA) compared to the values determined for the control condition (no 
inhibitor) is indicated by *p<0.05, **p<0.01, and ***p<0.001. P-values above 0.05 were considered as not 
significant. 
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Figure S7 
 

 
 

Figure S7: Modulation of extracellular pyruvate and lactate concentrations by inhibition of mitochondrial 
utilization of pyruvate or/and fatty acids. Astrocyte cultures were incubated with IB-HEPES containing 
5 mM glucose in the absence or the presence of 1 µM of the MPC inhibitor UK5099 or/and the carnitine 
palmitoyltransferase 1 (CPT1) inhibitor etomoxir (purchased from Merck (Darmstadt, Germany) in the 
indicated µmolar concentrations. After an incubation period of 5 h, glucose consumption (a), the 
extracellular concentrations of pyruvate (b) and lactate (c), as well as the extracellular LDH activity (d) 
were determined. The initial protein content was 130 ± 7 µg/well and the initial cellular LDH activity (100 
%) was 172 ± 5 nmol/(min x well). The data shown are means ± SD of three experiments performed on 
three individually prepared cultures. The significance of difference (ANOVA) compared to the control 
condition (no inhibitors) is indicated by *p<0.05, **p<0.01, and ***p<0.001. The significance of difference 
(paired t-test) between the control condition and incubation buffer containing etomoxir is indicated by 
#p<0.05 and ##p<0.01. 
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Figure S8 
 

 
 

Figure S8: While pyruvate release is strongly inhibited by the MPC inhibitor UK5099, lactate release is only 
minimally impacted. Cultured astrocytes were incubated with IB-HEPES containing 0.5 mM pyruvate in 
the absence or presence of the MPC inhibitor UK5099. After the indicated timepoints, extracellular 
pyruvate (a; this data has already been shown in Chapter 2.1, Figure 8) and lactate (b) were measured. The 
initial cellular LDH activity of the cultures was 167 ± 26 nmol/(min x well) and the initial protein content 
was 134 ± 21 µg/well. The data shown are means ± SD of three experiments performed on three 
individually prepared cultures. The significance of difference (paired t-test) between the control condition 
and incubation buffer containing 1 µM UK5099 is indicated by *p<0.05 and **p<0.01. 
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