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Abstract

Cancer screening affects cancer-related outcomes by detection at an early — possibly even
pre-cancerous — stage, thereby enabling timely treatment initiation or removal of precurs-
ors. Ideally, efficacy of cancer screening programs should be assessed in randomized
controlled trials before population-wide implementation. In the absence of trial evidence,
or when interest lies in real-world effectiveness, observational data must be used to as-
sess the effectiveness of existing programs. However, limitations of observational study

designs and data sources must be addressed.

Issues relating to unclear research questions or incorrect temporal alignment of study
design elements have been identified as a common source of major bias in non-interven-
tional research in recent years. Target trial emulation has been proposed as a framework
to formulate clear and precise estimands by defining the study protocol of a hypothetical
target trial that would answer the research question at hand and emulating said target trial

as best as possible using observational data.

As part of this thesis, I developed a detailed study design for the evaluation of the German
mammography screening program regarding its effect on breast cancer-related mortality.
Furthermore, I conducted an extensive, realistic simulation study to assess the potential of
residual immortal time bias due to the coarse granularity of discrete time available in the
underlying database. Next, | emulated a target trial to assess the causal effect of screening
colonoscopy on the incidence of colorectal cancer. Differing effectiveness by site of the
tumor was reported in previous observational studies on screening colonoscopy. I showed
in the present thesis that previous observational studies overestimated the effect of screen-
ing colonoscopy and that the difference by site was largely a result of design-induced bias.
I extended the initial study design to more complex settings with a sustained no screening
strategy and to strategies incorporating the quality of colonoscopy. Finally, I conducted
substantive sensitivity analyses tailored to the specific study design and research ques-
tion, e.g. concerning residual confounding bias, strengthening confidence in the validity

of findings.




Zusammenfassung

Krebsscreening zielt darauf ab, inzidente Tumorerkrankungen in einem moglichst frithen
Stadium zu entdecken, damit eine Behandlung begonnen werden kann so lange die Pro-
gnose giinstig ist, oder aber bereits Vorstufen zu erkennen und direkt zu entfernen. Vor
Einflihrung eines Krebsscreening Programmes sollte dessen Wirksamkeit in randomisier-
ten kontrollierten Studien (RCT) nachgewiesen werden. Ist dies nicht geschehen, oder soll
die Wirksamkeit existierender Programme unter realen Bedingungen in der Bevolkerung
untersucht werden, miissen dafiir i.d.R. Beobachtungsdaten genutzt werden. Dies geht mit
einer sorgfiltigen Abwigung eventueller Limitationen nichtinterventioneller Studiende-

signs und Datenquellen einher.

In den vergangenen Jahren wurden Probleme im Design von Beobachtungsstudien als
Quelle starker Verzerrungen identifiziert. Hierbei sind insbesondere eine unklare Definiti-
on der Forschungsfrage und Selektionseffekte durch eine unlogische zeitliche Anordnung
von Elementen des Studiendesigns zu nennen. Als Losung bietet sich das Emulieren von
Target Trials an, wobei zunéchst das Studienprotokoll eines hypothetischen RCTs inklu-
sive einer klar formulierten Forschungsfrage entwickelt wird, welches dann so exakt wie

moglich mit Beobachtungsdaten umgesetzt oder emuliert wird.

Die vorgelegte Dissertation besteht aus mehreren eigenen Forschungsleistungen. Im Rah-
men meiner Dissertation habe ich ein detailliertes Studienprotokoll zur Effektivititsevalu-
ierung des deutschen Mammographie Screening Programms bzgl. der Brustkrebsmortali-
tat erarbeitet. Weiterhin habe ich in einer umfangreichen Simulationsstudie untersucht, ob
die vergleichsweise starke Vergroberung diskreter Zeit in der verfiigbaren Datengrundlage
zu residualem Immortal Time Bias fithren kann. Dariiber hinaus habe ich einen Target Tri-
al zur Beurteilung des kausalen Effekts der Screening Koloskopie auf die Darmkrebsinzi-
denz emuliert. Frithere Beobachtungsstudien hatten auf einen deutlich groeren Effekt im
distalen Teil des Kolons hingewiesen. Ich konnte hingegen zeigen, dass das Studiendesign
dieser friiheren Berichte zu Verzerrungen gefiihrt hat, wodurch die Effektivitdt von Scree-

ning Koloskopien insgesamt iiberschétzt wurde. Die unterschiedlichen Effektschétzer fiir

Vi
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den distalen und proximalen Teil des Kolons sind auf diese Verzerrungen zuriickzufiihren.
In Folgestudien konnte ich das urspriingliche Design der Emulierung auf komplexere Ex-
positionen ausweiten. Insbesondere habe ich den Effekt einer anhaltenden Nichtteilnahme
modelliert, aber auch die Qualitit der Koloskopie in die Expositionsdefinition einbezogen.
Die Target Trial Emulierung habe ich mit vielfdltigen und auf die Fragestellung, Daten-
quelle und Studiendesign mallgeschneiderten Sensitivitdtsanalysen untermauert, um die
Gefahr durch z.B. ungemessene Storgro3en beurteilen zu konnen. Die Ergebnisse dieser

Sensitivititsanalysen deuteten auf eine hohe Robustheit der Ergebnisse hin.

Vii



CHAPTER 1

Introduction

Health claims data and other routinely collected real-world data (RWD) provide a rich
source of individual-level health information. These data cover diagnoses, medications
and operations or other treatments [Haug and Schink, 2021; Pigeot and Ahrens, 2008].
Using them to assess the causal effect of exposures on health outcomes, however, poses

unique challenges to study design and statistical methods [Schneeweiss and Avorn, 2005].

In the context of RWD and causal inference, a special focus must be put on the intersection
of applied knowledge and statistical methods. In many cases it is not immediately clear
how a subject matter question can be translated into statistical language and off-the-shelf
methods may be inadequate. Collaboration between subject-matter experts and statisti-
cians is required to clearly define the research question. Next, bespoke study designs and
statistical solutions need to be tailored to fit to the target of inference.

1.1 Defining the target of inference

The first step in any causal analysis must be to define the target of inference, i.e. the es-
timand [Faries et al., 2020]. In the following, the estimand will refer to the unknown
quantity which is to be estimated and the estimate will refer to the effect estimate pro-
duced by the statistical estimation procedure. Any systematic difference between the es-
timator and estimand will be referred to as bias. Specifying the estimand entails several
steps, first of which is a clear and precise definition of an exposure of interest, correspond-
ing to a realistic — possibly hypothetical — intervention, which must be represented in the
available data [Hernan and Robins, 2020]. It must be defined whether the exposure is a
once-only event, or is sustained over time. In the latter case, a strategy on how to address

non-adherence during follow-up must be defined [Hernan and Robins, 2020]. Artificial
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censoring for non-adherence might be required, but is generally informative and leads
to bias, which makes adjustment for time-varying confounders necessary [Joffe, 2001;
Hernan and Robins, 2020]. Besides non-adherence, the definition of the estimand must
also consider other intercurrent events, such as competing events. While these are often
treated as censoring events in applied studies, this might not correspond to a meaningful
causal effect given that it corresponds to a hypothetical scenario under which competing
events can be eliminated. Instead, approaches that do not treat competing events as cen-
soring events, but incorporate the effect of the exposure on the outcome mediated by the
competing event in the estimand may be preferable [ Young et al., 2020].

After the exposures of interest have been defined succinctly, the outcome and contrast of
interest must be defined. The effect of interest can be expressed as an absolute effect such
as the absolute risk reduction (ARR), or as a relative effect such as the relative risk (RR).
Generally, contrasts based on risks should be preferred to contrasts of hazards for causal
inference, since hazards are always conditional on the event of interest (and competing
events) not having occurred yet and, thereby, have a "built-in” selection bias [Hernan,
2010; Aalen et al., 2015].

The above-described choices must be made explicit. This can be achieved using the target
trial emulation (TTE) framework, which aims at applying design elements of a randomized
controlled trial (RCT) to observational studies. In this approach, the study protocol of the
ideal randomized trial — the target trial — is defined first and then emulated using obser-
vational data [Hernan and Robins, 2016]. The study protocol contains information on the
most important design elements of the target trial, such as eligibility, treatment strategies,
follow-up, outcome variable, contrast of interest, and the statistical analysis. When spe-
cifying the emulated trial, any deviations from the target trial become immediately appar-
ent and any impact on the estimates can be discussed or assessed in appropriate sensitivity
analyses [Didelez, 2016]. Furthermore, the resulting study protocol for the emulated trial
must contain information on which confounding variables are required to emulate ran-
domization. While the TTE framework is a useful tool for causal inference in general, it
also provides a structured template for applied researchers and statisticians to speak the

same language.

1.2 Estimation of causal effects

Some features of the TTE framework need special emphasis. First, the concept of cloning
is introduced to maximize statistical efficiency. While one person can only be included

in an RCT once and be randomized into only one treatment arm, the same person can be
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included in an emulated trial repeatedly. For instance, sequential trials may be emulated
over time to best use the information contained in a longitudinal database and individu-
als may be included in more than one emulated trial if they are eligible at the respective
baseline. Furthermore, the exposure status at the baseline of an emulated trial might be
consistent with more than one exposure strategy, in which case information from these
individuals is copied and cloned into all exposure strategies that are consistent with the
observed exposure. To distinguish identical individuals who were included in more than
one emulated trial or under more than one exposure strategy, the terms person-trial and
clone are used, respectively [Hernan et al., 2016; Garcia-Albéniz et al., 2020; Danaei et al.,
2013].

Next, artificial censoring and appropriate adjustment (e.g. via inverse probability of cen-
soring weighting (IPCW)) may be used to adjust for non-adherence during follow-up, if
the target of interest is a per-protocol (PP) effect. Since censoring is informative in the
presence of time-varying covariates that affect both adherence and the outcome variable,
appropriate confounder adjustment needs to be carried out. When using IPCW for ad-
justment, propensity scores (PSs) for the probability of adhering to the exposure strategy
are estimated for each time point and weights are constructed by taking the inverse of
the cumulative product of these PSs [Robins et al., 2000]. Alternatively, the parametric
g-formula may be used to adjust for time-varying confounding, albeit at higher computa-
tional cost [Robins, 1986].

Regarding the type of outcome variable, TTE analyses most commonly feature time to
event variables. As mentioned above, contrasts based on hazards are not ideal for causal
inference purposes. As an alternative, pooled logistic regression is useful to estimate flex-
ible functions of risk [D’Agostino et al.,, 1990]. This approach also allows estimation
of contrasts at any point during follow-up, so that time-varying treatment effects can be

visualized easily.

Another difficulty in causal inference from observational data is the selection of a suf-
ficient set of confounders, i.e. a set of covariates that, when adjusted for appropriately,
allows identification of the causal effect. While data-driven causal-discovery exists, the
preferred way for covariate selection is via subject matter knowledge [Witte and Didelez,
2019]. When the causal relations between variables are known, confounders can be se-
lected without further assumptions regarding any data-driven method. A tool to help with
subject matter-motivated variable selection is the use of directed acyclic graphs (DAGs)
[Pearl, 1995].

Finally, when cloning individuals and including them in the analysis dataset repeatedly,
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confidence intervals must be estimated using robust methods. For this, individual level
bootstrapping is commonly used. It is important to note that samples must be drawn at
the level of individuals and not at the level of clones to ensure that the assumption of ran-
dom sampling with equal weights per individual is fulfilled [Efron, 1979]. Furthermore,
the procedure of estimating inverse probability weights and obtaining marginal effect es-
timates must be repeated for each bootstrap sample [Murray et al., 2021]. The fact that
bootstrapping is a computationally heavy procedure in combination with the large datasets
commonly used for RWD studies poses further challenges to the statistical programming.
For instance, a random subsample might be used instead of the entire study population
to reduce the computational cost, if sample size allows it (see, e.g. Garcia-Albéniz et al.
[2017a] and Braitmaier et al. [2022b]).

1.3 Potential sources of bias

Several potential sources of bias must be considered carefully when planning a causal
analysis of observational data. The most frequently discussed source of bias stems from a
violation of the exchangeability assumption, i.e. from confounding. Relevant confounders
need to be identified, preferably via subject matter knowledge about the causal structure
between variables. Furthermore, these confounders need to be measured in the data. The
so-called healthy screenee bias deserves special emphasis when evaluating cancer screen-
ing programs [ Weiss and Rossing, 1996; Shrank et al., 2011]. Health-conscious individu-
als are both more likely to undergo voluntary screening and less likely to develop cancer,
due to a healthier lifestyle. Health consciousness and related health factors are, therefore,
important confounders. However, health consciousness itself is not an easily measured or
quantifiable variable, and is not available in routinely collected data and, therefore, needs

to be approximated as best as possible using proxy codes.

Besides confounding, great consideration should be given to self-inflicted biases result-
ing from inappropriate study design. In particular, time-related biases occur when basic
elements of the study, particularly the assessment of eligibility, treatment assignment and
start of follow-up are not aligned at a clear time zero. For example, immortal time bias res-
ults when the exposure assessment uses information from after baseline, since individuals
assigned to the exposed strategy due to an exposure long after baseline cannot have died
before their exposure, leading to an accumulation of early deaths in the control strategy.
Bias also results when exposure assessment uses information from before baseline [Hernan
et al., 2016]. For instance, if an analysis on the effectiveness of colonoscopy screening

were to count individuals who underwent screening before baseline as exposed, but at
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the same time excluded individuals who had a colorectal cancer (CRC) diagnosis before
baseline from the study, there would be a depletion of ill individuals among the screened
but not the unscreened [Garcia-Albéniz et al., 2017b].

1.4 Aim of this thesis

The thesis addresses methodological problems in the context of assessing the effectiveness
of cancer screening programs. The German Pharmacoepidemiological Research Database
(GePaRD) [Pigeot and Ahrens, 2008; Haug and Schink, 2021] was used to emulate target

trials from observational data. The main and original contributions are:

1. Idesigned and conducted an emulated target trial on the site-specific effect of screen-

ing colonoscopy on CRC incidence (see Braitmaier et al. [2022b] and Chapter 4)

2. Icarried out an extensive set of assumption checks and sensitivity analyses to assess

validity of study results (see Section 4.4)

3. I extended the initial study design to a per-protocol analysis with sustained non-

exposure (see Section 4.5)

4. T demonstrated that differences in site-specific effectiveness reported in previous
work were a result of design-induced biases (see Braitmaier et al. [2024] and Section
4.6)

5. Textended the initial study design to include more than two exposure categories to
contrast low and high quality colonoscopy (see Schwarz et al. [2024] and Section
4.7)

6. I developed a study protocol for an emulated target trial assessing the effectiveness

of the German mammography screening program (see Braitmaier et al. [2022a])

7. 1 conducted a simulation study to quantify the potential of residual immortal time
bias due to coarse granularity of discrete time in the context of the emulated trial on

screening mammography (see Section 5.1)

1.5 Structure of this thesis

The thesis is structured as follows: Chapter 2 gives background on estimation of causal
effects from observational data, with some general explanation of the estimation proced-

ures used in the context of this thesis. Furthermore, some common sources of bias - such
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as confounding - are introduced in the chapter. Chapter 3 is an introduction to target trial
emulation. The original contributions of the present work are covered in Chapters 4 and
5, with Chapter 4 focusing on work related to the evaluation of screening colonoscopy
and Chapter 5 focusing on screening mammography. A discussion and outlook is given in
Chapter 6. Finally, the publications contributing to this thesis are printed in Chapter 7.

1.6 Funding and competing interests

The studies relating to colonoscopy screening that are presented in this thesis were funded
by BIPS intramural funds. The study protocol for the evaluation of the German mam-
mography screening project was funded by the Federal Office for Radiation Protection
from funds of the Federal Ministry for the Environment, Nature Conservation and Nuclear
Safety, the Federal Ministry of Health and the Kooperationsgemeinschaft Mammographie
(supported by the National Association of Statutory Health Insurance Funds and the Na-
tional Association of Statutory Health Insurance Physicians), grant numbers 3617542402
and 3617542410.

There are no conflicts of interest to declare.




CHAPTER 2

Estimation of causal effects from ob-
servational data

2.1 What is a causal effect?

In an interventionist understanding of causal effects, the occurrence of Y can be partially
controlled by intervening on A when A causes Y [Hernan, 2004]. One can imagine two
alternative scenarios for an individual ¢ in which A, is either set to 1 or to 0. When A4, is set
to 0, the potential outcome is given by Y;A=°, while the potential outcome in the opposite
scenario is given by Y;*=!. An individual-level causal effect is present if Y;A=1 #£ Y;A=0,

Only one potential outcome can be observed in one individual [Hernan and Robins, 2020].

Medical research generally aims to estimate group-level rather than individual-level causal
effects. The average potential outcome had the entire study population (or some subgroup
of interest) been exposed is compared to the average potential outcome had the entire
study population not been exposed, i.e. a causal effect of A on Y is present, if E [YAZl} =+
E [YAZO} . The challenge arises to estimate causal effects from observed data, as only one
potential outcome is observable per person. Since exposed and unexposed individuals
might differ in variables other than exposure, tools are needed to disentangle the causal
effect of exposure from non-causal associations due to confounding or inappropriate study
design. This is the objective of causal inference and the fundamental assumptions required

for the most frequently used methods will be laid out in this chapter.
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2.2 Directed acyclic graphs

Directed acyclic graphs (DAGs) are used to visually illustrate the (assumed) causal struc-
ture between variables [Pearl, 1995]. See Figure 2.1 for a simple DAG with three nodes.
DAGs are a valuable tool to reach clarity regarding the causal relations between vari-
ables and enable the identification of bias sources due to confounding or design-induced
selection effects. This latter property was exploited in this thesis when exploring design-
induced biases in the context of screening colonoscopy (see Sections 4.6 and 7.6). DAGs
do not display information on the strength of associations, but give a qualitative repres-
entation of causal relationships. A DAG consists of nodes and directed edges or arrows
connecting these nodes. While the presence of a directed edge between nodes indicates
that one directly causes the other, the absence of edges is equally relevant for the analyst,
as it indicates (conditional) independence and absence of direct causation (by the causal
Markov property) between these nodes. The causal Markov property states that a node
is independent of any node that is not its descendant, if conditioned on all of its direct
causes [Hernan and Robins, 2020]. Undirected or bidirected edges are sometimes used
to illustrate the presence of further, unmeasured variables that have a causal relationship

with both nodes connected by the edge.

Some nomenclature is required: In the graph ¢ : A — Y, A is a parent to the child
Y. Any node A that precedes a node Y on a directed path is called an ancestor to Y,
while Y is a descendant of A. On a path containing node C' with arrows converging in it

(... > C « ...),node C'is called a collider.
/ ) \

Figure 2.1: Basic DAG showing the relations between an exposure A, an outcome Y
and a confounding variable X.

A

Y

An important concept to read off conditional independence from graphs is d-separation.
If a graph contains the nodes A and Y and a set Z is considered, A is d-separated from Y’
by Z if a node w fulfilling one of the two following criteria exists on every path from A
to Y

1. Node w is a collider, meaning that it has converging arrows into it and neither w nor

its descendants are contained in Z.

2. Node w is not a collider and w is contained in Z.
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If the criteria for d-separation and the causal Markov property are fulfilled, A is independ-
ent of Y conditional on Z,i.e. A 1L Y|Z.

Based on a DAG and using the concept of d-separation, a valid adjustment set Z can be
identified. In this context, the so-called backdoor criterion becomes relevant: A set Z
is said to fulfill the backdoor criterion regarding the causal effect of A on Y, if Z does
not contain descendants of A and if all paths between A and Y with an arrow into A are
blocked by Z [Pearl, 1995; Peters et al., 2017].

2.3 Clear definition of exposure, outcome and intercur-
rent events

While seemingly obvious, it is important to stress that the target of inference, i.e. the causal
estimand, needs to be specified before any effect estimation can be conducted. The esti-
mand is defined as that which is to be estimated [Hernan and Robins, 2020; Rubin, 2005].
Any ambiguity in the definition of the estimand potentially leads to inappropriate analyses
or misinterpretation. The complexity of clearly defining the estimand received more at-
tention in the biostatistics community after the addendum to the ICH E9 (R1) guideline
on estimands was published, requiring great care to define estimands in clinical research
[ICH E9 (R1), 2020], although the concepts contained in the guideline have been known
for a much longer time. The guideline mentions several aspects of estimands that need to
be clearly specified at the planning stage of a study, namely the treatment strategy under
investigation, the population to which the clinical question relates, the clinical endpoint
of interest, intercurrent events and how they are incorporated in the research question and,

lastly, the effect measure to be assessed.

Relating to the definition of treatment or exposure under investigation it is important to
note that beyond specifying the medicinal product or potential health hazard itself, one
must also define in what way study participants shall be exposed to it. Exposure could,
for instance be the mere offer of receiving a medicinal product, uptake of at least one dose
at baseline or sustained exposure over a certain amount of time. Both the interpretation of
results and the statistical methodology appropriate for the study will differ depending on

the exact definition of the exposure of interest [Goetghebeur et al., 2020].

Next, the population of interest must be defined. This has two-fold relevance: On the one
hand, at the planning stage of the study individuals must be recruited into the study so as
to be representative of this target population. On the other hand, if some patient groups

cannot be included in the study for any reason and the trial eligible group differs from
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the target population, the latter needs to be clearly defined to assess under which circum-

stances study results apply to the target population. Ifthe study population and the eligible
population do not substantially differ, it is reasonable to assume that the study results can
easily be applied to the entire eligible population, i.e. the study results are likely to be
generalizable [Dahabreh et al., 2019]. If, furthermore, study eligible population and tar-
get population are identical, the study results are directly relevant to the target population.
When transporting (referring to transportability as opposed to mere generalizability) study
results beyond the trial eligible population, additional statistical care is needed [Dahabreh
et al., 2019].

While the ICH E9 (R1) guideline relates to RCTs, further specifications regarding the
estimand are generally required in observational studies. For instance, when obtaining
marginal, population-level effect estimates, the population of interest needs to be spe-
cified. If marginal estimates are obtained in relation to the covariate distribution of the
entire sample, these estimates relate to the average treatment effect (ATE). If, however,
marginal estimates are obtained in relation to the covariate distribution of the subset of
individuals who received treatment, these estimates relate to the average treatment effect
on the treated (ATT). In an RCT without differential non-compliance, ATE and ATT are
not expected to differ due to the randomization process, but in observational studies they
are likely to differ [Li et al., 2022]. Similarly, the marginal effect in the population of
untreated individuals, i.e. the average treatment effect on the untreated (ATU) might be

relevant in many settings as well [Wang et al., 2017].

Next, an intercurrent event occurs after treatment initiation and possibly affects the oc-
currence or observability of the outcome of interest. As such, the term intercurrent event
describes a wide variety of events, such as exposure to drugs other than the one being stud-
ied, treatment discontinuation due to adverse events, development of contraindications,
experience of competing events and many more. Given that the occurrence of intercur-
rent events may be affected by exposure and may in turn affect the outcome of interest,
careful consideration is required when defining the target of inference. Different strategies

of treating intercurrent events yield answers to different causal questions.

The ICH addendum, which was specifically developed for randomized trials, was pre-
ceded by a rich literature on causal inference from observational data, one fruit of which
is target trial emulation. In this framework, estimands are clearly defined by explicitly
specifying the ideal randomized trial with corresponding intervention and then emulat-
ing this target trial as closely as possible using available observational data. Sometimes,
the available observational data is not sufficient for reliable estimation, necessitating the

choice of a different estimand. Target trial emulation will be covered in depth in Chapter
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2.4 ldentifying assumptions

Some strong and often unverifiable assumptions are needed in order for the causal effect
to be identifiable from the available data. While different methods require different as-
sumptions, the below identifying assumptions need to be fulfilled when using the methods
described in e.g. Braitmaier et al. [2022a] and Braitmaier et al. [2022b].

Under consistency the exposure of interest is well-defined, is observed in the data and can
be intervened upon. More formally, if the observed exposure of an individual is A = «a,
then the consistency assumption states that Y4~ = Y, i.e. the potential outcome under
the exposure value that was indeed observed is consistent with the realized outcome value
observed in the data. If the exposure of interest is a static strategy sustained over multiple
time points k£ € {1, ..., K'}, consistency assumes that YA=@ — Y for individuals with the
observed exposure history A = a. The term “well-defined” in the context of consistency
also means that the exposure observed in the data does not consist of different versions.
When studying the effect of a reduction in body mass index (BMI) without defining which
intervention leads to this reduction, problems in the interpretation arise. Some individuals
might achieve the reduction by means of bariatric surgery, while others do so via lifestyle
changes. The results of an analysis assessing this poorly defined exposure would not be
informative, since it is unclear how much of the effect was achieved via which version of
exposure. Consistency, then, can be achieved by careful and diligent planning of the study
[Hernén and Robins, 2020].

The aspect of consistency relating to multiple versions of treatment also relates to the as-
sumption of no interference, which states that the potential outcome of one individual is
not affected by the treatment of another [ VanderWeele and Hernan, 2013]. If we assume
that the no interference assumption does not hold, there is a near-infinite number of altern-
ative versions of treatment for each individual, depending on the exposure values observed
in the rest of the study population. In most settings, it is implicitly assumed that no in-
terference is present and no explicit mention of it is made. However, in some particular
settings this might not be the case. In studies on the effectiveness of vaccines, vaccination
of other members of the study population affects an unvaccinated persons risk of infection

via increased herd immunity.

Positivity describes the assumption that all levels of exposure are observed in all strata of
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covariates used for confounder adjustment, or more precisely

P[A=a|X]>0

for all @ in all strata of the covariate vector X observed in the data (i.e. all x with positive

probability density f(z) > 0). For exposures sustained over time,
P [Ak = ak|/_1k_1,)_(k} >0

for all a;_; and Z;. Unlike with consistency, positivity can be empirically verified using
the data. For instance, the occurrence of any level of a covariate can be assessed in each
exposure group. Furthermore, overlap of the PS distributions should be checked (more
details on PSs will be given below) [Hernan and Robins, 2020].

Exchangeability is formally defined as
YA=* 1l A

for all a, i.e. the potential outcome had exposure A been set to a is independent from the
observed value of A. This form of exchangeability, sometimes referred to as full” ex-
changeability, is achieved via randomization in an RCT with A being assignment to treat-
ment (rather than treatment received). It is usually not fulfilled in observational studies,
assuming that both outcome and exposure are affected by covariates X. In an observa-
tional setting, conditional exchangeability holds, if X forms a sufficient adjustment set,
1.e.
yA=e 1l AIX

holds for all a. If covariates other than X exist that are not observed in the data and that
confound the relationship between Y and A, this assumption is violated. The conditional
exchangeability assumption, therefore, is sometimes referred to as the “no unobserved
confounding” assumption [Hernan and Robins, 2020]. If the exposure is sustained over
time, adjustment for time-varying covariates is typically necessary. In this setting, ex-
changeability is extended to the time-varying setting and is referred to as sequential ex-
changeability, since conditional exchangeability must hold at every time point. First, the
time-varying exposure strategies under investigation must be clearly defined. Exposure at
time £ might depend on past exposure and past and concurrent covariates, i.e. a strategy

g might be defined as A = g(flk_l, X k), where the overbar represents the history of a
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variable. Then, the sequential exchangeability assumption states that

YO=9 AL Ay|Ap1 = g(Ar_a, X1), X

holds for all g and k£ [Hernan and Robins, 2020]. Exchangeability cannot be tested using
the observed data, since the key assumption of no unobserved confounding refers to things
that are not available to the analyst. Instead, the plausibility of this assumption being ful-
filled needs to be judged on subject matter knowledge regarding potential confounders
and outcome predictors. Additionally, sensitivity analyses such as negative control ana-
lysis can detect violations of this assumption (see Section 2.7.1). It is noteworthy that
methods such as instrumental variable analysis exist that do not make the conditional ex-
changeability assumption. These methods, however, make other strong and unverifiable

assumptions.

2.5 Estimation procedures

In contrast to RCTs, in observational studies one must generally assume that at least some
variables that predict the outcome of interest are not distributed equally across comparison
groups. In this case, a naive estimator that does not appropriately adjust for the confound-
ing influence of covariates will be biased. While methods exist to obtain unbiased estim-
ators when (some) confounders are not observed in the data (e.g. instrumental variable
methods), most approaches assume that sufficient confounder information is measured so
as to adjust for confounding in the analysis. Methods that use observed covariates for
adjustment, relying on the exchangeability assumption described above, can be broadly
divided into methods that model the outcome, such as regression adjustment, and meth-
ods that model the exposure, i.e. propensity score methods. Doubly or multiply robust

methods that combine the two approaches exist [Goetghebeur et al., 2020].

Regression adjustment is arguably the most commonly taught method of confounder ad-
justment and follows the philosophy of outcome modeling. Covariates are included in
the model equation of a parametric model and their influence on the outcome is modeled
jointly with the effect of exposure [Goetghebeur et al., 2020]. For a binary outcome vari-

able Y, consider the following logistic model

P[Y = 1]A, X] = logit (8o + afa + fx). 2.1)

The above model represents the simplest case without interactions between covariates and
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exposure, in which 34 is an effect measure for exposure A.

An alternative approach to adjusting for unbalanced covariates is the use of PS methods,
such as PS matching or inverse probability weighting (IPW). The PS is defined as the
probability of an individual in the study population, conditional on their observed covari-

ates, to experience the exposure [Rosenbaum and Rubin, 1983], i.e.

PS=P[A=1|X]. (2.2)

It is important to note that the goal of the PS is not to perfectly predict the observed expos-
ure. Instead, it has a dual property as a balancing score, meaning that conditional on the
PS, the distribution of baseline covariates X will be balanced between exposure categor-
ies, i.e., X 1l A|PS. If the PS is estimated via a misspecified model, it might not fulfill
this balancing criterion [Wyss et al., 2014]. To the contrary, Imai and Ratkovic [2014]
note that even mild misspecification of the propensity model can lead to substantial bias
and the propensity model should be selected so as to maximize covariate balance. The
performance of the PS needs to be assessed, e.g. via balance checks using the absolute
standardized mean difference [Zhang et al., 2019]. If the PS does not balance covari-
ates, a different model specification must be chosen [Wyss et al., 2014]. While the PS is
commonly estimated via logistic regression, other approaches including machine learning
methods have been proposed [Lee et al., 2010; Pirracchio and Carone, 2018], each with

their own strengths and limitations.

Many methods for confounder adjustment based on the propensity score have been de-
veloped. Propensity score matching gained particular popularity in applied work, presum-
ably because of its ease of use. In 1:n PS matching, one exposed individual is matched
to n unexposed individuals based on their PS. Since no exact match based on the real-
numbered PS is to be expected, matching is either done on PS strata (e.g. quintiles) or
uses a caliper width [Austin, 2011]. Both optimal and greedy matching algorithms are
available, but given that optimal matching usually does not perform substantially better
than greedy matching and that optimal matching can become computationally prohibit-
ive, greedy matching is used in most real-life studies [Austin, 2014; Rosenbaum, 1989].
A limitation of PS matching is that data from some of the study population will not (or
only to a small extend) be considered in the analysis, if no or few corresponding matches
can be found. More than that, the covariate structure of the matched population will cor-
respond to the covariate structure of the treated population, since matches are selected for
all exposed individuals, but not necessarily for all unexposed individuals. Because of this,
PS matching is often used to estimate the ATT, but estimation of the ATE requires further
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methodological considerations.

An alternative PS method that uses data from all individuals in the study population is

IPW. When adjusting for baseline confounding, inverse weights are constructed as

1
P[A = 1]|X]
for the treated and .
1-P[A =1|X]

for the untreated. In this approach, data from all individuals in the study population is
considered and estimation of the ATE, among others, becomes straightforward. IPW can
be extended to adjust for time-varying confounding in sustained or time-dependent expos-
ures whereas PS matching is applicable to point exposures only. Furthermore, trimming
of weights at the extremes or use of stabilized weights, especially when adjusting for time-

varying confounding, limits instability due to extreme weights [Goetghebeur et al., 2020].

Outcome models using inverse probability of treatment weights are also called marginal
structural models (MSMs). They are considered “marginal” in that they model the mar-
ginal distribution of potential outcomes. While MSMs can be used to model point expos-
ures, they are especially useful when modeling exposures sustained over or varying with

time, in which time-dependent confounding plays a role [Robins et al., 2000].

One example in which time-varying confounding is particularly relevant is a per-protocol
study design for sustained exposures, where artificial censoring is used to adjust for non-
adherence during follow-up, i.e. individuals are artificially censored if and when they stop
adhering to their assigned exposure strategy. If, however, a covariate that affects both
exposure or treatment adherence and the outcome of interest changes during follow-up,
this covariate affects both the probability to be artificially censored from the dataset due
to non-adherence and the probability of experiencing the outcome. This leads to time-
dependent confounding. Let Cens,; be the censoring status at time ¢t € {1,...,T}. Then,
a time-varying inverse weight, which considers observed, time-dependent covariates, is

given by
1

- [T._, P [Cens; = 0|Cens;—y = 0, ;]

(2.3)

Wy

Given that these weights, which build the inverse of a cumulative product of probabilities,

can become very large, the resulting weighted models may become unreliable. Therefore,
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stabilized weights are usually used instead. These are defined as

[T._, P [Cens; = 0|Cens;_; = 0]
SWt =

_ d ke . (2.4)
[T,—, P [Cens; = 0|Cens;_; = 0, X]

These weights are easily obtained using standard software by generating a modified data-
set with one entry per individual and time point and then applying e.g. pooled logistic
regression to this modified dataset [Robins et al., 2000], i.e. time is included in the model
applied to the longitudinal dataset. Furthermore, separate models are often fitted for each
exposure level, which allows covariates to affect the censoring probability in different
ways (see e.g. Murray et al. [2021] for a tutorial and Dickerman et al. [2023] for an ex-

ample of this).

2.6 Time-to-event analysis

Assume a study in which time 7" to an event of interest Y € {0, 1} is measured in days,
i.e. T'eN. For now, also assume that no other event can prevent the event of interest, e.g. in
a study on overall mortality. However, individuals may drop out of the study prematurely
or still be event-free at the end of the study period, in which case they are censored at the
end of their available follow-up. This is called administrative censoring and is a form of
right-censoring [Joffe, 2001]. The censoring status is indicated using a binary variable
Cens € {0, 1}. To explain the analysis of right-censored data, we assume for simplicity’s
sake that individuals in the study are randomly assigned at baseline to either one of two
arms, i.e., A € {0, 1}.

Let ¢ be the observed realization of the random variable 7', with the cumulative distribution

function, also called cumulative incidence function (CIF), as

F(t)=P[T <1. (2.5)

The survival function is simply the complement of the cumulative distribution function,

1.€.,

S(t)=1—F(t). (2.6)

If no loss to follow-up occurred, F'(¢) is simply estimated by dividing the number of indi-

viduals who experience the outcome event by time ¢, by the number of individuals at risk
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attime 0, where h e {1,2, ..., u} indicates the ordered survival times. However, since loss

to follow-up does occur in realistic studies, methods to account for this type of censoring
need to be used. These methods usually assume that censoring is independent, meaning
that individuals censored at time ¢ should not be systematically different from individu-
als not censored regarding the risk of experiencing the outcome event [Andersen et al.,
2012]. Under the assumption of independent censoring, the Kaplan-Meier estimator is

used to estimate the survival function as

S(t) =TT 2= | 2.7)

n
th <t h

In equation 2.7, n;, is the number of individuals at risk at time ¢, and d}, is the number of
events at time ¢;,. While direct adjustment for baseline confounders by including covariate
information in a model equation is only applicable to (semi-)parametric models, adjusted
or standardized non-parametric Kaplan-Meier curves can be obtained by IPW [Cole and
Hernan, 2004]. However, non-parametric estimates of survival curves tend to become
unstable especially at later time points, because only few or no events are observed per
time point and the resulting step function is often constant over some time points before
substantially changing when events are observed at a subsequent time point. Parametric
models, such as the pooled logistic regression approach described below, have the advant-

age of smoothing survival curves over time [Hernan and Robins, 2020].

The discrete-time hazard is

h(t) =P[T =T > 1]. (2.8)

In the absence of competing events, the survival probability is a function of the discrete-
time hazards [Suresh et al., 2022] and is defined as

S(t) = f[ 1— h(t). (2.9)

Non-parametric, semi-parametric and fully parametric methods exist to estimate hazards
and survival probability. (Semi-)parametric methods have the advantage that they allow
incorporating various confounder adjustment methods for scenarios in which random as-
signment is not given, such as regression adjustment where covariates are included in the

outcome model itself. The most common semi-parametric method to model the hazard
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function is the proportional hazards Cox model. It consists of an infinite-dimensional,

non-parametric part (the baseline hazard) and of a p-dimensional, parametric part, with p

being the number of variables in the covariate matrix X [Tsiatis, 2006].

Even though the proportional hazards Cox model is popular, hazard ratios (HRs) are diffi-
cult to interpret causally due to a built-in selection of individuals who did not experience
the outcome by time point ¢ [Hernan, 2010]. Complications arising in the context of hazard

ratios are discussed more in depth in Section 2.8.

An alternative approach that circumvents the built-in selection bias of the hazard ratio
is to estimate and contrast CIFs. By assessing the time-specific cumulative risk, time-
varying effects become apparent. Pooled logistic regression is a parametric method of
estimating discrete-time hazards, which in turn can be transformed into an estimate of CIFs
[D’Agostino et al., 1990]. For the pooled logistic regression to approximate discrete-time
hazards well, one must assume that less than 10 % experience the outcome at any given

time point [Murray et al., 2021].

A modified dataset is generated in which every individual has one row per observed time
point. If, for instance, individual © = 1 experienced the outcome at time point five, the

modified dataset for this individual would contain five entries:

i t A Y Cens
1 1 1 0 0
1 2 1 0 0
1 3 1 0 0
1 4 1 0 0
I 5 1 1 0

The pooled logistic model is fitted on this modified dataset and time ¢ is included in the

model equation. A simple model can be defined as

P[Y; = 0|Y; 1 = 0, A] = logit™" (Bt + Boa + Psta) . (2.10)

From the above we obtain the cumulative risk by building the cumulative product

t

1-][P =0y =04].
=1

By including various transformations of ¢ and possibly interaction terms with the ex-

posure variable A or other variables, this approach allows to model dynamic CIFs (see
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e.g. Braitmaier et al. [2022b] for crossing CIFs). Furthermore, the flexibility achieved

by including various transformations of time is needed to compensate for the lack of a
non-parametric baseline hazard, which is one aspect that makes Cox models appealing
[Murray et al., 2021].

The above pooled logistic regression model is not adjusted for confounding by X. To do
so, baseline covariates X are either included in the model itself or confounder adjustment
is achieved by IPW.

Note that the reason for censoring individuals when they drop out of the study is that
researchers want to make inferences about a real-life population in which ”drop-out” does
not exist. This same rationale does not apply when dealing with competing events, as

discussed in the next section.

2.6.1 Competing events

A competing event is any event that prevents the event of interest from happening. That is,
if a competing event occurs, the event of interest is not only not observed, it is not defined.
Different approaches have been proposed to conduct statistical analyses in the presence
of competing events with some authors recommending cause-specific hazard ratios when
interested in etiology [Lau et al., 2009]. In the remainder of this thesis, the term “event-
specific” will be used instead of ”cause-specific” to avoid confusion with causal inference
terminology. Young et al. [2020] proposed a framework that formalizes causal estimands

in a competing events setting.

In studies on non-mortality outcomes, death is a necessary competing event. Let 7" > 0
be the event time and F an indicator for the type of event (e.g. £ = 1 for the event of
interest and £/ = 2 for competing death). Various approaches are available in competing
events settings, with two being described in depth in Young et al. [2020]: When estimat-
ing the controlled direct effect, one aims at estimating the effect of exposure on the out-
come event under a hypothetical scenario in which the competing event was eliminated,
1.e. under which the competing event cannot occur. Methodologically, this elimination is
achieved by treating competing events as censoring events, which corresponds to setting
the event-specific hazard to zero. This is the default in many applied fields. If, however,
the competing event is death and given that most inference aims at answering questions
in real-world populations, this makes the controlled direct effect difficult to interpret for
most settings, because death cannot be eliminated. The total effect, on the other hand, de-
notes the effect of exposure on the event of interest, while allowing for competing events

to occur. This means that the total effect also includes the effect of exposure on the out-
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come that is mediated by the competing event. Therefore, caution is also required when

interpreting the total effect: If the exposure has a strong negative effect on the competing
event, the total effect might indicate a spurious beneficial effect on the event of interest,
as seen with the example whether smoking can prevent dementia [Rojas-Saunero et al.,
2023]. Hypothetically, cancer screening would appear overly beneficial regarding cancer
occurrence, if it had a strongly harmful effect on death. It is recommended to assess the

total effect on both the event of interest and the competing event [[Latouche et al., 2013].

The total effect is defined as a contrast of potential outcomes, where Y;? denotes the po-
tential outcome by time ¢ had all study participants been unexposed and Y;! had all study
participants been exposed [ Young et al., 2020]. A relevant contrast could then be the risk
difference based on event-specific cumulative incidence functions, given under random-

ization as

PY,=1|A=1] - P[Y; = 1|4 = 0]. (2.11)

In this case, two approaches are available: One using the event-specific hazard [Putter
et al., 2020; Lau et al., 2009], the other using the subdistribution hazard [Fine and Gray,
1999; Lau et al., 2009].

Let F(t) be the event-specific cumulative incidence for experiencing the outcome of in-
terest (i.e. £ = 1) before time ¢ and, accordingly, let F5(¢) be the event-specific cumu-
lative incidence of experiencing the competing event (i.e. £ = 2) before time ¢. The
event-specific hazard for event type £ = 1 (in discrete time) is given by the conditional

probability

h(t)=P[T=t,E=1|T >t]. (2.12)

The event-specific hazard for the competing event, hs(t), is defined accordingly as

ho(t) =P[T =t,E=2|T >1]. (2.13)

There is no one-to-one relationship between a single event-specific hazard and cumulative
incidence in the presence of competing events. The event-specific cumulative incidence
for the outcome of interest is a function of both event-specific hazards h,(¢) and hs(t) and

is given by
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t

Fi(t)=> hi(s)S(s —1). (2.14)

s=1

In Equation 2.14, S(t) = []._, (1 — h(t)) is the overall survival function, which depends
on the overall hazard h(t), which in turn is a function of all event-specific hazards and is
defined as

h(t)= ) he(t). (2.15)

Accordingly, the event-specific hazards of all event types are needed to estimate the event-
specific CIF [Schmid and Berger, 2021]. When treating competing events as censoring
events instead (i.e. for the controlled direct effect), the resulting cumulative incidence

function will always be larger than or equal to F} ().

An alternative method of estimating the event-specific cumulative incidence function does
not require information on the event-specific hazard of all event types: Individuals who
experience the competing event are not censored, but remain in the risk set and are as-
signed a virtual end of their observation period, e.g. the end of the study period if only
administrative censoring occurs [Putter et al., 2007]. The so-called subdistribution hazard
[Fine and Gray, 1999; Lau et al., 2009; Schmid and Berger, 2021] for event type E =1 is
then given by the conditional probability

MO =PT=t,E=1(T>tNE=1)U(T <tnE #1)]. (2.16)

The event-specific CIF for event type . = 1 as a function of the subdistribution hazard
(see e.g. Putter et al. [2020]) 1s defined as

t

Fi(t)=1-[](s). (2.17)

s=1

The advantage of the subdistribution approach is that only one hazard function needs to
be estimated. In cases were computation takes a long time (e.g. big data), the lower com-
putational burden is particularly appealing, even though it is best practice to also assess

the effect of exposure on the competing event [Latouche et al., 2013].
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2.7 Confounding bias

If f(z) is an estimator for the estimand 6, then it is considered biased if |E [f(x)] — 6] > 0.
If an experiment were repeated many times, a biased estimator would return estimates that
are systematically different from the estimand. Importantly, bias can arise from a multitude
of issues such as the definition of the estimator, the data itself or the study design, among

others.

The most frequently discussed source of bias in observational studies is confounding due to
the lack of baseline randomization. When speaking of confounding, one must first define
what is meant by the term “confounder”. Often, a confounder is defined as a variable
that is associated with both exposure and outcome. However, this simplistic definition is
not sufficient. For example, if an exposure affects an outcome solely through a mediator,
the mediator would be associated with both exposure and outcome, but we would not
generally wish to control for the mediator as this would mask the effect. Throughout
this dissertation, a confounder is defined as a variable that reduces confounding bias when
adjusted for appropriately. More formally, a confounder is a variable on an open backdoor
path from exposure to outcome which blocks this backdoor path when controlled for (see

section 2.2 for definition of d-separation).

While elaborate methods exist to identify sufficient adjustment sets from the data (under
various assumptions, see e.g. Witte and Didelez [2019]), the choice of confounding vari-
ables to be included in the adjustment set commonly relies on subject-matter knowledge.
If the true DAG of the causal relationships between exposure, outcome and any other vari-
ables is known, a sufficient adjustment set can be read off from the DAG without the need
for data-driven selection. While the assumption of no unmeasured confounding cannot be
tested directly, sensitivity analyses are commonly used to collect evidence regarding the

plausibility of this assumption, given the observed data.

2.7.1 Negative control outcome analysis

The underlying idea of negative control outcome analyses [Lipsitch et al., 2010] is to apply
the data analysis framework of the study’s main analysis, but to substitute the outcome
variable with one that is known to be causally unaffected by the exposure of interest.
After adjusting for observed confounders, the analysis should return a null-effect. If, in
contrast, the analysis returns a non-null effect estimate for the negative control outcome,

unobserved confounding may be at play.

In Figure 2.2, let A be the exposure, X the observed confounder, U the unobserved
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Figure 2.2: DAG of U-comparability of negative control outcome N

confounder, Y the the outcome of interest and /V the negative control outcome, all bin-
ary. Naturally, some assumptions must be made. In particular, the assumption of ”U-
comparability” must be met: Lipsitch et al. [2010] define U-comparability of N with Y
as the degree of overlap of the set of unobserved common causes of A and Y with the
set of unobserved common causes of A and N, with complete overlap indicating perfect
U-comparability. Furthermore, one needs to assume that A does not cause U [Lipsitch
et al., 2010].

When the effect of interest is the causal effect of A on Y e.g. expressed as
0=PY*='=1]-P[y*"=1],

and the estimator g(a, x) uses information on the observed covariates x, but not u, we

would expect the estimator to be biased, i.e.

0 #Elg(a,z)].

This is obvious from the DAG in Figure 2.2, given the open backdoor path A < U —
Y. More formally, Y= )| A|X, because Y*=% and A are only d-separated when also
controlling for U. However, given that there is a causal effect from A to Y, the observed
(biased) effect estimate is a mixture of a true causal effect and confounding bias and the

two cannot easily be disentangled.

In contrast, no causal effect of exposure on the negative control outcome exists. If variable
U were eliminated from the DAG in Figure 2.2 and if there was no model misspecification,
we would expect the probability of observing N = 1 to be similar among exposed and

unexposed individuals within strata of X, i.e.

P[N=1|A=0,X]~P[N=1/A=1X].
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Any deviation of the observed effect from the null, then, would be indicative of confound-

ing bias due to U.

The above procedure of conducting negative control outcome analyses relies on the as-
sumption of U-comparability being met. If, for instance, the directed edge from U to Y
in Figure 2.2 were removed, the negative control analysis would indicate the presence of
bias, but an estimator for the effect of A on Y conditional on X would be unbiased, be-
cause no open backdoor path remains between A and Y. Similarly, if the directed edge
from U to N were removed, the negative control analysis would fail to identify the residual

confounding bias present in the analysis of interest.

Negative control analyses are, therefore, only applicable if a suitable negative control out-
come is available in the measured data. As discussed in Lipsitch et al. [2010], a perfect
negative control outcome will rarely be available. However, a similar confounding struc-

ture and differences only in weak confounders may be sufficient in many cases.

Importantly, negative control analyses cannot generally be used to estimate the direction
and magnitude of bias, unless one makes additional assumptions regarding the strength of
association between variables. If, for instance, U is a weak predictor of N, but a strong
predictor of Y, the results of the negative control outcome analysis cannot be used to calib-
rate the effect estimate for the X-Y relation [Lipsitch etal.,2010]. Only if the confounding
structures relating to outcome of interest and negative control outcome are identical also
with regard to direction and strength of association is it possible to quantify the magnitude

of bias due to unobserved confounders U and use it for calibration of the effect of interest.

In the context of the present thesis, negative control outcome analysis was used in the con-
text of screening colonoscopy to investigate possible unobserved confounding. Here, the
study outcome of incident CRC diagnosis was replaced by the negative control outcome
of incident pancreas cancer diagnosis. Importantly, pancreatic cancer shares many risk
factors with colorectal cancer, but the strength of the association cannot be assumed to be
identical. For instance, stronger effects of tobacco smoke have been reported for pancre-
atic cancer [Maisonneuve and Lowenfels, 2015] than for colorectal cancer [Hannan et al.,
2009]. For details on this application, see Section 4.4.1 and the corresponding paper in
Section 7.2.

In many cases, confounding bias might only play a minor role while other biases, some-
times induced by the study design, are often not acknowledged appropriately (see, for
instance, the example of menopausal hormone therapy and coronary heart disease dis-
cussed in Hernan et al. [2008]). These biases are referred to as ”self-inflicted”, because

they arise purely from an inappropriate study design [Hernan et al., 2016]. Often, they
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arise due to non-alignment at time zero, which is discussed in depth in Chapter 3.

2.8 The built-in selection bias of the hazard ratio

The applied studies conducted as part of this thesis (Section 7) deviated from much of
the published literature in that they did not report HRs as effect measures, but instead
reported cumulative incidence curves showing the absolute cumulative risk in each group
at any time during follow-up. Furthermore, a relative risk was estimated at the end of
follow-up. The decision to estimate the risk over the entire follow-up rather than a single
HR was intentional: The hazard at a given point in time is conditional on not having
experienced the outcome previously. While groups may be comparable at baseline - either
via randomization or adjustment - the survivors will systematically differ at a later time
whenever the effect of exposure on outcome is non-zero [Hernan, 2010]. It has been
argued that the hazard ratio from a Cox model cannot be interpreted as a causal effect
measure, unless exposure has no effect or unless no factors other than exposure have any
effect on the outcome [Hernan, 2010; Martinussen, 2022; Young et al., 2020].

2.9 Collider-stratification bias

While adjustment for confounding variables is usually required in observational studies,
adjusting for the wrong variables can also introduce bias. One example of this is over-
adjustment, where the adjustment set includes a variable on the causal path from exposure
to outcome and, thereby, masks the effect of interest [Schisterman et al., 2009]. Another
example would be that of collider stratification bias [ Greenland, 2003; Hernan and Monge,
2023].

As discussed in section 2.2, a backdoor path from exposure to outcome is blocked by the
empty set, if it contains a collider. This means for the analysis that neither the collider
nor any of its descendants are to be adjusted for in the analysis. Conversely, if the ana-
lysis is adjusted for the influence of a collider or its descendants, the backdoor path is
open, leading to bias. While collider-stratification bias may arise due to conditioning on
a collider variable in the analytical model, it can also arise as a consequence of selection.
This becomes particularly important in the context of non-alignment at time zero, which

is discussed in depth in Chapter 3.
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CHAPTER 3

Target trial emulation

3.1 Motivation

While RCTs are often considered a gold standard in medical research, they are often not
feasible or even appropriate to answer specific research questions. Especially in cases
where a high generalizability is paramount, or e.g. for assessing off-label use of medica-
tions, RCTs are not suitable. However, they possess some properties that are particularly

advantageous to investigate cause-effect relations.

The most obvious of these properties is that there is on average no imbalance of baseline
characteristics due to the randomization process. Randomization might not achieve perfect
balance for every covariate in a specific trial, but conceptually covariates will approximate
balance as sample size approaches infinity. Importantly, this applies to both measured and

unmeasured baseline characteristics.

An often neglected property of RCTs that aids an unbiased assessment of causal effects
is the temporal ordering of central design elements, which need to be aligned at time zero
[Fu, 2023; Braitmaier and Didelez, 2022]. In an RCT potential study participants are first
screened regarding their eligibility. Next, the eligible ones are randomly assigned to the
treatment arms after signing an informed consent form and are invited to the baseline
examination and first treatment. The follow-up, then, only starts after this initial visit and
follow-up variables and the outcome of interest are measured at the subsequent follow-
up visits or at anytime during follow-up when allowing for electronic patient reported
outcomes. This temporal alignment is illustrated below in Figure 3.1 and is referred to as
alignment at time zero in this thesis. Whenever there is misalignment of these three design

elements, substantial bias may be the consequence [Garcia-Albéniz et al., 2017b; Hernan
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et al., 2016]. As discussed in Section 2.9, this issue can be expressed as a special form of

collider stratification bias.

A particular focus of the present thesis was bias due to non-alignment at time zero in
observational studies on screening colonoscopy. In that context and considering prospect-
ive study designs, one mechanism merits special emphasis: Exposure definition based on
pre-baseline information leading to a prevalent user type bias. Considering retrospective
case-control designs, bias may arise due to a post-baseline exposure definition. Each will
be introduced briefly here and a detailed assessment in the context of screening colono-

scopy is given in Chapter 4 and Section 7.6.

Bias due to exposure assessment using information from before time zero can have vari-
ous manifestations depending on the studied indication. In pharmacoepidemiological re-
search, it is to blame for the so-called prevalent user bias” or bias due to ”depletion of
susceptibles”: Considering a study on suspected adverse events of a medication, a com-
parison of current or prevalent users with never-users would be problematic. Any potential
study participants who were treated with the drug in the past, but stopped taking the drug
due to the adverse event, would not be included in either the current user group or the
never user group, leading to a depletion of individuals susceptible to the adverse event
among the previously exposed. Those who (still) take the drug at baseline are then more
likely to respond well to the drug and be resistant against the adverse event. Due to this
mechanism, menopausal hormone therapy was linked to a decreased risk of coronary heart
disease in an observational study [Grodstein et al., 2006], even though an RCT indicated
an increased risk [Manson et al., 2003]. A later study by Hernan et al. [2008] found no
decreased risk for coronary heart disease when alignment at time zero was ensured by the
study design. A similar bias arises in the context of screening colonoscopy, when individu-
als with a history of CRC are excluded while previous exposure to screening colonoscopy
is used to define the comparison groups. A structural exploration of this scenario, together
with a proper study design using TTE is given in Chapter 4 and Section 4.6, where it is
shown that the resulting bias is a form of collider stratification bias. A special focus is set

to site-specific effectiveness of screening colonoscopy.

Conversely, defining exposure based on information from after time zero leads to immor-
tal time bias [Suissa, 2008; Hernan et al., 2016], which can also be understood as a form of
collider stratification bias [Shrier and Suissa, 2022]. The mechanism at work is as follows:
If exposure uses post-baseline information, e.g. compares ever users to never users, indi-
viduals exposed late during follow-up cannot, by definition, have died previously - hence
the term “"immortal time”. Early deaths (or any outcomes), therefore, accumulate in the un-

exposed group, creating a false impression of the exposure being overly protective. Many
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examples have been published over the years: Suissa and Azoulay [2012] explore this bias
in the context of metformin therapy and cancer risk, whereas Garcia-Albéniz et al. [2017b]
show the potential for immortal time bias when evaluating screening colonoscopy. It is
noteworthy that these time related biases are not unique to prospective study designs, but
also permeate case-control studies [Dickerman et al., 2019; Rasouli et al., 2023]. Further
sources of bias, such as inappropriate adjustment for confounding, also affect case-control
designs [Rasouli et al., 2023].

Bias due to non-alignment at time zero was discussed in depth for the use case of site-
specific effectiveness of screening colonoscopy in Sections 4.6 and 7.6. As discussed in

Section 4.6, TTE is a simple solution to avoid this type of bias.

Finally, RCT results naturally lend themselves to an interventionist interpretation of a
causal effect, since they study the effect of a well-defined intervention on a subsequent
outcome. If the randomization process is successful in eliminating baseline confounding
and if there is no differential loss to follow-up, the only aspect in which the study arms dif-
fer is the treatment. This means that any difference between the treatment arms regarding
the outcome is attributable to the intervention, which makes it easy to translate the effect
into a recommendation for policy makers or regulators. If a beneficial effect is observed, it
would be unethical to withhold treatment from the public and if, conversely, no beneficial
effect or even a harmful effect is observed it would be unethical to offer the intervention to
patients. In observational studies, on the other hand, exposures of interest are sometimes
ill-defined. While it is, for instance, possible to estimate an “effect” of BMI on health
outcomes using association measures, no recommendation for policy makers would be
possible based on a study that does not define how a change in BMI should be achieved.
Causality is therefore usually defined as a contrast of potential outcomes under different

interventions [Rubin, 2005].

3.2 Basic procedure

With the above points in mind, it seems plausible to apply some of the design elements of
RCTs to observational studies, while avoiding some of the weaknesses of RCTs, such as
low generalizability due to a highly restricted study population. This is achieved in the so-
called target trial emulation framework, which has gained popularity especially for studies
using RWD [Hansford et al., 2023b]. As noted by Labrecque and Swanson [2017], TTE
is particularly suitable for teaching causal inference concepts, because it applies existing
and well-known study design aspects in a new way rather than requiring researchers to

understand a completely new method. The basic principles of target trial emulation, while
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not always referred to as such, have been established several decades ago. Dorn [1953]
lists several questions that a researcher planning an investigation of causal effects using
observational data should answer as to minimize the risk of mistaking association for a
causal effect. One of these questions is: “How would the study be conducted if it were
possible to do it by controlled experimentation?”” Later, Robins [1986] defined a method
to assess exposures sustained over time, in which he defines an observational cohort so as
to mimic the data one would obtain from an RCT, if information on treatment assignment
was missing. Even though the ideas behind target trial emulation have been published
many decades ago, popularity of the methods only started to increase relatively recently,
due to pioneering work such as the above-mentioned study by Hernan et al. [2008]. Since
then, many target trial emulations on different research questions have been published
(see for instance Hernan and Robins [2016]; Caniglia et al. [2019]; Danaei et al. [2013];
Garcia-Albéniz et al. [2017a]; Petito et al. [2020]; Chiu et al. [2024]) and several stud-
ies demonstrating certain perils of observational studies that can be circumnavigated by
target trial emulation are available (Hernan et al. [2016]; Garcia-Albéniz et al. [2017b];
Dickerman et al. [2019]; Didelez [2016]; Emilsson et al. [2018]). Much work has been
done on replication of existing RCTs as to identify scenarios in which TTE is either partic-
ularly suitable or faces substantial challenges [Franklin et al., 2021; Heyard et al., 2024;
Hoffman et al., 2022; Wang et al., 2023, 2024]. Furthermore, guidance on reporting of

emulated target trials is now available (see Hansford et al. [2023a,b]).

Target trial emulation is a two-step process. First, the study protocol of the ideal hypo-
thetical trial, i.e. the target trial, is defined. Second, an emulation of this ideal trial using
observational data is defined, so that the observational study is as similar to the target trial
as possible. The goal of this two step process is to ensure that central elements of the study
are clearly defined. For instance, which population should be studied, which (hypothet-
ical) interventions should be compared using what contrast, or how the outcome of interest
is defined, also considering intercurrent events [Hernan and Robins, 2020]. However, the
study protocol of the target trial is usually not defined in as much detail as would be re-
quired in a real RCT seeking ethical approval, but instead is sketched out in tabular form
[Braitmaier and Didelez, 2022; Hernan and Robins, 2016]. An example table, adapted
from Hernan and Robins [2016] is given in Table 3.1.

Any observational study — even when emulating a randomized trial — will differ in some
aspects from an RCT. Figure 3.1 illustrates the alignment of study design elements at time
zero of a hypothetical RCT on the left side and the design of a corresponding observational,
emulated trial on the right side. In an RCT, the time window for eligibility assessment and

assessment of baseline variables ends before baseline, i.e. in the randomized trial before
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Table 3.1: Tabular overview of the study protocol elements of emulated target trial stud-
ies, adapted from Hernan and Robins [2016].

Component Description
Study aim Definition of the research question
Eligibility criteria might differ between RCT and observational
study. For the observational study one might require individuals
to be observable in the data source for a minimum lookback
period to ensure that other eligibility criteria can be assessed
accurately. Conversely, some criteria required in an RCT may be
Eligibility omitted in the emulation. For instance, pregnant women are
routinely excluded from pre-marketing RCTs due to ethical
concerns. Off-label use among pregnant women might, then, be
assessed in observational studies. It must be kept in mind that
any modification of eligibility criteria may affect transportability
of study results.
Treatment strategies must be defined clearly. It is not sufficient
to specify e.g. which drug should be investigated, but also over
which time period treatment must be sustained and which
deviations from prescribed treatment should be allowed or not
allowed per protocol. If a treatment should be changed
dynamically based on e.g. blood testing this needs to be
pre-specified.
The treatment assignment in an RCT would be done randomly.
In observational studies, treatment assignment corresponds to the
observed treatment behavior. Randomization is emulated in
Treatment observational studies by adjusting for a sufficient set of
assignment covariates. Adjustment covariates should ideally be selected
based on subject matter knowledge and using causal reasoning.
Adjustment variables should be listed in the protocol and a
method of confounder adjustment be specified.
Follow-up Clear definition of when follow-up starts and ends.
The outcome variable must be clearly defined. One should
consider whether the outcome was reliably measured in the data,
Outcome or if there might be issues with measurement error and
misclassification. Strategies for intercurrent events must be
defined.
A clear definition of the causal contrast of interest is required. It
should be clearly stated how non-adherence is handled when the
Causal contrast treatment of interest is dynamic or sustained over time
(e.g. ”intention-to-treat” vs “per-protocol”) as this depends on
the target of inference and affects the statistical methods used.
When the causal contrast is a per-protocol effect, artificial
censoring and adjustment for time-dependent confounding are
required.

Treatment
strategies

Statistical
analysis
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visit 0 at which informed consent is obtained and randomization is conducted. The first
treatment might not occur immediately at visit 0, but instead at visit 1 shortly thereafter.
Follow-up starts after visit 0, i.e. after baseline. It is common for RCTs to estimate an
intention-to-treat (ITT) rather than a PP effect, i.e. the target of inference is the effect of
being assigned to a treatment arm rather than receiving treatment. As illustrated in the
right-hand side of Figure 3.1, an emulated trial similarly obtains information regarding
eligibility and baseline variables from before time-zero. However, since no randomization
is conducted, group assignment is then based on the observed exposure during the time-
zero time interval. Emulated target trials typically treat time as a discrete entity, so that
this first time interval may correspond to e.g. a week, month or quarter. Since group
assignment is based on observed exposure, no ITT effect regarding treatment assignment
can be estimated in an emulated trial. Instead, studies often estimate an observational
analog” of the ITT effect, namely the effect of being exposed at time-zero. This, however,
corresponds more closely to the PP effect reported in many RCTs, where adjustment for

non-adherence at baseline is done.

Note that in Figure 3.1 the term “baseline” is used for the RCT, while the term “time
zero” is used for the emulated trial. In an RCT, one clear baseline is defined, namely the
day at which a study participant signs their informed consent form and is randomized into
one study arm. Often, no single baseline exists per person in an emulated trial. If, for
instance, the emulated trial entails a control group not receiving treatment, it is unclear
from the observed data when follow-up should start for this person. Some studies in the
past have then declared one fixed baseline and assessed exposure either before (leading to
prevalent user-type biases) or after (leading to immortal time bias) baseline. The solution
in the TTE framework is usually to emulate multiple sequential trials, one at the beginning
of each discrete time interval. Each of these emulated trials has its own respective baseline
and all individuals eligible at that baseline are included in the respective trial. As a result,
the same person is included in multiple trials with differing baselines. However, time-zero
alignment of eligibility assessment, treatment assignment and start of follow-up is ensured

in all these emulated trials.

Similarly to the above point, emulated trials may, in contrast to randomized trials, assign
the same person to more than one treatment strategy. If, for instance, one were to compare
one dynamic treatment strategy that adapts medicine dose to some biomarker value with
one static treatment strategy that does not adapt medicine dose, all initiators would qualify
for both these strategies. In an RCT such an individual would be randomly assigned to one
strategy. In an emulated trial this person could also be randomly assigned to one strategy.

However, it is more efficient to clone the data from this person, assign one clone to each
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Baseline Time Zero

Eligibility &

baseline variables

Informed consent

Eligibility &
baseline variables
Randomization

Exposure

Visit 1/First assessment

treatment

Follow-Up

Time Time

Figure 3.1: Left side: Temporal ordering of design elements of an example RCT aiming
to estimate an intention-to-treat effect. Right side: Temporal ordering of an emulated
trial aiming at estimating the observational analog of an intention-to-treat effect.

strategy and censor the clone from a strategy when the observed treatment exposure during
follow-up deviates from the assigned strategy. As this artificial censoring introduces bias,
adjustment for time-dependent confounding, e.g. via IPCW becomes necessary [Robins,
1986; Hernan, 2018]. This approach is sometimes called the “clone-censor-weight ap-
proach” [Zhao et al., 2021].

Importantly, duplicated data due to cloning or sequential trial emulation needs to be con-
sidered when estimating confidence intervals. In this context, bootstrapping is commonly
used. A brief introduction to bootstrapping is given in Appendix A, while bootstrapping

in the emulated target trial on screening colonoscopy is described in Chapter 4.

3.3 Data sources

The thought experiment of formulating the ideal trial to answer a given research question
can be instructive in any observational study on causal effects [Didelez, 2016]. How-
ever, when emulating said ideal trial using observational data, certain criteria need to be
fulfilled.

The observational data must contain sufficient information to fulfill the following: As
mentioned in Franklin et al. [2019], the information must allow the identification of the

target population via eligibility criteria, contain sufficient information to adjust for con-

32



CHAPTER 3. TARGET TRIAL EMULATION

founding bias, contain reliable information on exposure and outcomes and must contain
information as to judge the generalizability of the study results. Importantly, the temporal

ordering of events must be clear from the data. These requirements are not unique to TTE.

Next, data must be collected longitudinally, ideally without gaps. The TTE framework
relies on sensible temporal ordering of eligibility assessment, treatment assignment and
start of follow-up. Therefore, the data must contain temporal information on a granularity
that allows this alignment. If continuous information is available over a long time period,

sequential trials can be emulated to make the best use of the available information.

When aiming to answer medical research questions, the real-world data most commonly
used are pseudonomized health claims data, electronic health records (EHR) or disease
registries [Franklin et al., 2019; Haug and Schink, 2021]. Even though claims data and
EHR are not collected for research purposes, they contain rich medical data, are readily
available and possess large sample sizes, making them interesting for research questions

that cannot easily be answered in RCTs.

Observational cohort data collected at subsequent visits is less ideal for TTE than routinely
collected health data, given the large gaps in between visits and the often limited number
of visits. TTE from such data must make stronger assumptions (see e.g. Chiu et al. [2021]

for an application using cohort data).

3.4 Strengths and limitations

RCT evidence is usually regarded as the most reliable basis for decision making regarding
medical interventions. However, RCTs have limitations of their own, cannot answer all
relevant research questions and often need to be supplemented or even replaced by obser-
vational studies using RWD in specific settings. In observational studies, however, there
is large variation regarding quality of both study design and underlying data. As part of
the present thesis, Braitmaier and Didelez [2022] established a German language tabu-
lar overview of the limitations of RCTs and observational studies with and without TTE,

which was adapted to English in Table 3.2.
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CHAPTER 4

Contributions to the field of screening
colonoscopy

The development of bespoke study designs and statistical analysis methods for specific
applications is a focal area of this dissertation. In this context, the effectiveness of two
cancer screening programs - mammography screening for early detection of breast cancer
and colonoscopy screening for early detection and prevention of colorectal cancer - was
assessed. Contributions to the field of screening colonoscopy are described in the current
chapter 4, while contributions to the field of screening mammography are described in
chapter 5.

Colonoscopy screening for prevention and early detection of colorectal cancer is offered in
Germany since 2002. While the reduction of CRC-related mortality is the ultimate goal of
colonoscopy screening, CRC incidence is another important outcome. A cancer diagnosis
and subsequent diagnostic procedures and curative treatments have a significant impact on
a patient’s live. Screening colonoscopy is thought to affect CRC incidence in two major
ways: 1) Early detection of asymptomatic cases leads to an increased incidence early
after screening, but also to earlier treatment initiation, which in turn improves survival 2)
Detection and removal of precursor stages during the screening examination reduces CRC
incidence [Bretthauer et al., 2022]. This assumed mechanism is illustrated in Figure 4.1,
where presence of cancer precursors P, undiagnosed cancer C, colorectal cancer diagnosis
Y and exposure to screening colonoscopy A is captured at two time points. While exposure
at time point 1, A, leads to an increase of cancer incidence at the same time point (Y7) by
detecting prevalent cases (C1), it also leads to a decrease of later cancer incidence Y5 by

removing precursor stages that are present at the time of screening (F).
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Figure 4.1: DAG representing the causal structure of screening colonoscopy and colo-
rectal cancer incidence

Importantly, no RCT evidence regarding colonoscopy screening’s effectiveness in redu-
cing colorectal cancer incidence or mortality was available at the time of its introduction.
However, its effectiveness was implied by RCT evidence on sigmoidoscopy, a less invas-
ive, endoscopic screening tool that functions in a similar way, but screens only the distal
as opposed to the entire colorectum [Elmunzer et al., 2012]. Furthermore, observational
studies conducted after the introduction of screening colonoscopy in Germany suggested
a strong effect on both CRC incidence and mortality, although some of these studies found
considerably stronger effects for the distal colorectum [Baxter et al., 2009, 2012; Brenner
etal., 2011, 2014a; Doubeni et al., 2013; Guo et al., 2021; Kahi et al., 2018; Mulder et al.,
2010; Nishihara et al., 2013]. The first RCT results were published in 2022 [Bretthauer
et al., 2022], 1.e. after the study by Braitmaier et al. [2022b]. However, Bretthauer et al.
[2022] focused on overall incidence of CRC, as they did not have sufficient sample size

to obtain site-specific estimates.

Garcia-Albéniz et al. [2017a] was the first to study the effectiveness of screening colono-
scopy using a target trial emulation approach. In a companion paper, they discuss how
commonly-applied approaches lead to non-alignment at time zero and consequently to
self-inflicted biases [Garcia-Albéniz et al., 2017b]. They did not, however, study whether
these self-inflicted biases differ between CRC sites and if they could potentially explain the
difference in effect estimates reported by previous observational studies. It was, therefore,
the objective of our study [Braitmaier et al., 2022b] to extend the framework of Garcia-
Albéniz et al. [2017a] and use a target trial emulation design to study site-specific effect-
iveness of colonoscopy screening in reducing CRC incidence. The details of the study
design including a tabular study protocol of the target trial and its emulation using obser-
vational data are given in the paper (see section 7.2). Briefly, we emulated sequential trials

—one per calendar quarter — from 2007 to 2011. Calendar quarters were chosen as the unit
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of discrete time, because some information in the underlying GePaRD is only available

on a quarterly basis. The strategies to be compared were to either undergo colonoscopy
screening in the baseline quarter or not. Individuals who underwent screening colono-
scopy in the baseline quarter were assigned to the screening strategy, while individuals
not undergoing screening colonoscopy in the baseline quarter were assigned to the control
strategy. This assignment process results in a trial population with zero non-adherence at

baseline.

While the goal of the initial analysis described in Braitmaier et al. [2022b] was to estim-
ate the effect of baseline exposure to screening colonoscopy regarding the site-specific
effectiveness, several extensions and additional data years were added to the project later
and are described in separate sections. First, section 4.1 introduces the methodological
framework for the target trial emulation on screening colonoscopy. Section 4.2 describes
the process used to find a suitable parameterization of the pooled logistic model used to
estimate the discrete-time hazards. Next, Section 4.3 gives a brief summary of the main
results from Braitmaier et al. [2022b], while an extensive description is given in the paper
itself, which is included in Section 7.2. Sensitivity analyses are described in Section 4.4

and extensions to the original study design are described in the subsequent sections.

The only RCT evidence regarding screening colonoscopy’s effect on CRC incidence [Brett-
hauer et al., 2022], which was published after Braitmaier et al. [2022b], assessed an inten-
tion-to-screen effect, i.e. the effect of being invited to screening at baseline. They further-
more conducted a per-protocol analysis by adjusting for non-adherence during baseline.
While this is more comparable to the effect estimate reported in Braitmaier et al. [2022b],
there is a key difference: The RCT by Bretthauer et al. [2022] was conducted during a time
in which screening colonoscopy was not available to the broader public, i.e. there was no
contamination of the control arm during follow-up. To make our results more comparable
with theirs and to fully evaluate the effect of screening colonoscopy in Germany, we added
a per-protocol analysis, censoring in the control arm at the earliest screening colonoscopy

during follow-up. This is described in Section 4.5.

Section 4.6 gives a structural explanation of bias arising in the context of screening colono-
scopy due to violations of alignment at time zero, with empirical results again reserved

for the corresponding publication in Section 7.6.

Further extensions included the assessment of the effect of quality of screening colono-
scopy. The quality was defined based on polyp-detection rate and the methodological
framework was extended for three instead of two exposure strategies - no screening colono-

scopy at baseline, low-quality screening colonoscopy at baseline and high-quality screen-
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ing colonoscopy at baseline. Further extensions and additional analyses are described in

detail in Section 4.7 below.

4.1 Methodological framework

4.1.1 Target trial emulation

Data was collected from an underlying cohort of n individuals. Each individual, ¢ =
1,...,n, was characterized at time ¢t = 1, ..., T' by covariates X, a binary exposure status A,
and an outcome indicator Y;. Individuals of this cohort were assumed to be independent.
Let overbars indicate the history of a variable. An emulated trial might investigate what
some authors have called the observational analog of the ITT effect (i.e. without censoring
for non-adherence during follow-up) of exposure strategies () on the outcome Y, where
@ = 0is the strategy of not being exposed to colonoscopy screening at baseline and () = 1
is the strategy of being exposed at baseline, both without restrictions regarding further
screening during follow-up. A sequence of r trials was emulated, in this case by starting
one emulated trial at each calendar quarter from 2007 to 2011. The r-th emulated trial
started at (calendar) time ¢, and follow-up time of the r-th trial isdenoted by &, = 1, ..., K,
with K, = T'—1,+1. Selection of individuals into emulated trials was based on eligibility
at time ¢,, F;, = 1. Assignment to exposure strategies was based on observed exposure
at time ¢, 1.e. for the r-th emulated trial, person-trial j has the assigned exposure strategy
Q; = A, ., where the subscript j = 1, ..., m with m > n refers to ”non-unique” person-

trials. The same individual 7 may be eligible for multiple trials.

4.1.2 Effect estimation

A pooled dataset of all emulated trials contained information on all j = 1, ..., m person-
trials regarding person-trial specific information on e.g. baseline covariates X, and in-
formation on the outcome of interest starting with baseline and continuing through follow-
up as Y , . While the main focus was on the event-specific cumulative incidence over time
under each strategy, the summary measure of interest was the causal relative risk (CRR)

at the end of follow-up given by

P [Yﬁ?:l 1} “n

CRRp = —————
P [Y;?— - 1}

Estimand 4.1 does not refer to a hypothetical scenario controlling the occurrence of com-
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peting events D, i.e. the aim of this analysis was to estimate the total effect without elim-

ination of competing events as defined in Young et al. [2020].

Estimation of 4.1 is based on a pooled logistic model applied to the pooled dataset to es-
timate the discrete-time subdistribution hazard for time point £, in a first step. Subdistri-
bution hazards, rather than event-specific hazards, were used here, because this way only
the model for the event of interest needed to be fitted. When using event-specific hazards
instead, models for both event of interest and competing event need to be fitted to derive
the event-specific cumulative incidence functions, i.e. an approach using event-specific
hazards would have been computationally more costly. Instead, individuals experiencing
the competing event are not treated as censored, but instead remain in the risk set until
the time when they would have censored, had they not experienced the competing event
(i.e. until the end of the study period). In the absence of censoring, these individuals would
remain in the risk set indefinitely. With this, the at-risk set at time point &, comprises in-
dividuals who have experienced the competing event in addition to those who have not
yet experienced any outcome event [Putter et al., 2007]. The pooled logistic model then
takes the form

P [Yik, =01, _, = 0,Q;] = logit™" [n(g;, k)] - (4.2)

A suitable parameterization of 1)(g;, k) depends on the functional shape of the cumulative
incidence functions and will differ from study to study. The process of finding a suitable
parameterization in the example of the emulated target trial on screening colonoscopy is

described in Section 4.2 below.

Inverse probability of treatment weighting (IPTW) was used in the above model to adjust
for baseline confounding. For this, a set of baseline covariates X;; was selected based
on subject-matter knowledge (see Braitmaier et al. [2022b] for details). These covariates
were included in a main effects logistic model estimating the probability of being exposed
to screening colonoscopy in the time-zero discrete time-interval as P[Q; = 1]|X,..] =
logit™" [z}, 3]. The predicted probability extracted from this fitted model (PS) was used

in the denominator of stabilized inverse probability weights as

swy, = P1@i =1 (4.3)
PS

for exposed person-trials and as
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1-p[Q; =1]
sw; = — P = 4.4
j LS (4.4)

for unexposed person-trials, with p[Q); = 1] being the predicted probability of being ex-
posed, extracted from a logistic model fitted without predictor variables. These weights
were truncated by setting weights above the 99th percentile to the 99th percentile of the
observed weight distribution, as is common practice [Garcia-Albéniz et al., 2017a; Goet-
ghebeur et al., 2020]. A sensitivity analysis was later conducted to assess the impact of

truncation (see Section 4.4).

Once Model 4.2 was fitted on the data, using the above inverse weights, the predicted
probability of not experiencing the outcome event by time k, under screening strategy
Q = g, denoted here as p [V;! =0[Y9, _; = 0,Q] , was extracted. This was achieved
by generating a dataset with one entry per time point and screening strategy and using
it as input to extract predicted probabilities from the fitted model. No person-trial level
information or inverse weights are needed for this step. With these predicted probabilities,

an estimate for the marginal, event-specific cumulative incidence was derived as

kr
plYe=1=1-]]p[¥"=0¥L, =0,Q]. (4.5)
=1

Finally, the summary measure of the effect of interest, in this case the CRR at time £,., was

derived as

~ v rg=1
RR;, = ]?[Yk’;—oﬂ
p [Yk‘i 1

i

While (4.6) was estimated as a summary measure of the relative effect at the end of follow-

(4.6)

up, the cumulative incidence curves given by (4.5) should be considered the main output.
The CIFs allow a visual assessment of temporal effects and are useful for risk prediction
under hypothetical intervention by estimating them for specific subgroups of interest. In
general, reporting CIFs is preferable to summarizing the temporal effect in a single meas-

ure, such as an average RR or HR.

In the above analyses, death is a competing event for CRC incidence, since CRC incid-
ence after death is not defined. At the same time, CRC incidence is per design a competing
event for death, because follow-up is terminated at any incident CRC diagnosis; any events

after the event of interest are not pertinent to the research question at hand. Furthermore,
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Figure 4.2: Multi-state model representation of site-specific CRC incidence and com-
peting death

CRC can occur at different sites in the colon (distal versus proximal). Disregarding, for
simplicity’s sake, the rare cases in which the location of the tumor is unknown or tumors
occur simultaneously at both sites, distal CRC is then a competing event for proximal
CRC and vice versa, if interest lies in the first CRC diagnosis overall. In the analyses
described in Braitmaier et al. [2022b], separate models were fitted for distal and proximal
CRC, respectively, using the above methods, i.e. treating CRC at the respectively other
site as competing events and not treating competing events as censoring events. Instead,
event-specific CIFs were estimated via the intermediate step of estimating discrete-time
subdistribution hazards. When using Cox PH models, this approach is often referred to
as Fine-Gray approach [Putter et al., 2020]. Notably, the event-specific CIFs could have
also been obtained using event-specific hazards, as is common in a multi-state representa-
tion of competing events [Putter et al., 2007]: The initial state is enrollment into the study
population by meeting all eligibility criteria. Given that the outcome of interest is CRC in-
cidence, follow-up is terminated at the time of diagnosis (because anything after that point
is not of interest to this particular research question). With that and as illustrated in Fig-
ure 4.2, three absorbing states exist: CRC in the distal colon, CRC in the proximal colon
and death. In the multi-state representation of the competing events model, the transition
intensities from the initial state to each absorbing state are given by the respective event-
specific hazard. The event-specific hazards then need to be estimated for all competing
events, even if interest is only in one event type, because the event-specific cumulative
incidence function depends on all of them. Therefore, the subdistribution approach is

computationally faster.

41.3 Confidence intervals

No simple, parametric solution is available for obtaining confidence intervals when using

pooled logistic regression to approximate discrete-time hazards, with repeated recruitment
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of the same individuals in more than one sequential trial. Bootstrapping was therefore used

to obtain robust confidence intervals for CIFs and RRs.

One bootstrap sample of size n is obtained by randomly sampling with replacement from
the original cohort data. Each bootstrap “individual” ¢* is characterized at time ¢ = 1, ..., T’
by covariates X, a binary exposure status A; and an outcome indicator Y,*. Note that
an individual 7 can be represented by more than one bootstrap individual :*. Based on
this bootstrap sample, the target trial emulation and accompanying analytical process de-
scribed in Section 4.1.2 was repeated to obtain the first bootstrap estimate, e.g. R~RMT for
the relative risk at time k,.. This process was repeated a total of B = 250 times to ob-
tain 250 bootstrap estimates, e.g. R~R17k,,, ey R~RB7;€7, for the time-dependent relative risk.
While B = 500 bootstrap samples are often used in the literature, only 250 samples were
used here, due to computational limitations and the number of analyses conducted. How-
ever, 500 samples were used in a sensitivity analysis to assess whether results would have

been much different. This analysis is described in detail in Section 4.4.7.

While various bootstrap methods are available, the most common method of calculating
confidence intervals in the target trial emulation literature is that of percentile based boot-
strap intervals. For 95 % confidence intervals, these are defined as the 2.5 % and 97.5 %

percentiles of the distribution of bootstrap estimates.

4.2 Functional shape of time

In the above analysis, pooled logistic regressions were fitted to obtain an estimate of the
cumulative incidence functions. While a central aspect of this model is the covariate ad-
justment via inverse probability of treatment weighting, a necessary first step is the defin-
ition of an appropriate parameterization of the pooled logistic model itself. This model
takes as input a modified dataset with one entry per discrete time point at which a person-
trial was under observation. Time itself is then included in the model equation. An un-
adjusted, non-parametric method (e.g. Kaplan-Meier in absence of competing events or
Aalen-Johansen when competing events exist) is used first to assess the shape of the CIFs.
The pooled logistic model then features discrete time, transformations of time and possibly
interaction terms with the treatment indicator. Depending on the nature of the exposure
and outcome, further variables might need to be included e.g. if repeated exposure takes
place during follow-up (see Garcia-Albéniz et al. [2020] as an example). In the emulated
target trial described in Braitmaier et al. [2022b] and its extensions, the parameterization
was found via the following procedure: First, a non-parametric estimate of the cumulat-

ive incidence functions was obtained via Kaplan-Meier methods, without any covariate
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adjustment. Competing events were treated as censoring events in this model selection

step, after it was shown that the difference between direct and total effect was minor, as
discussed in Section 4.4.2. Second, candidate model specifications were selected as de-
scribed below. Third, the resulting parametric estimates of the CIFs were compared to the
Kaplan-Meier curves to assess fit, both visually and using a numeric measure, namely the

Kolmogorow-Smirnov statistic. This measure — for exposure ¢ in this case — is defined as

(4.7)

_ nl q
K59 = S]l:p ’F[Kaplan—Meier} B F[Pooled logistic}"
with sup being the supremum and F the observed cumulative incidence function for
strategy q. The closer the Kolmogorow-Smirnov statistic is to zero, the less deviation
exists between the cumulative incidence functions being compared. To assess the fit of
the candidate functional shape, the maximum K S statistic observed over both exposures

q was determined as
K S measure = max K .S (4.8)
q
Candidate functional shapes were identified by the following steps:

1. The following transformations of time &, were used: k,, \/k,, (k,)?, logk,, exp k,

1
exp kr

and (selection of subsets of these is defined in step 4 below).

2. Each candidate model was required to include a linear time term, because the Kaplan-
Meier curves showed that for the control group a linear function would yield a good

approximation.

3. Each candidate model was required to contain an interaction term between each
transformation of time and the screening indicator as well as the main effects of
only screening indicator and transformation of time, so that the shape of the curves

could vary between exposure strategies.

4. In addition to linear time, combinations of at least two and at most three other trans-
formations of time were included. This restriction to a limited number of time vari-
ables controlled model complexity, given that the K .S-measure does not feature a

penalty term for model complexity.

Considering all possible permutations of the above pre-selected transformations of time,

20 candidate models were identified using the above steps. All models are summarized
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Table 4.1: Candidate functional shape of a pooled logistic model to estimate CRC incid-
ence

Model i

iflenti- Linear predictor n umria:-
1er 100

1 Q+Qt+Qexp(t) + Qg HE+exp(t) + oy 0.085
2 Q+Qt+ Qexp(t) + Qlog(t) +t + exp (t) + log (¢) 0.158
3 Q+Qt+Qexp(t) + Qt* + ¢t +exp (t) + 12 0.472
4 Q+Qt+Qexp(t) + Qvt+t+exp(t)+ 1 0.223
5 Q+Qt+@wl(t)+@10g(t)+t+mﬂog(t) 0.127
6 Q+Qt+ QTP +t+ oy +1° 0.098
7 Q+Qt+ Qs +QV({) + 1+ o + V(6 0.121
8 Q+ Qt+ Qlog (t) + Qt* + t + log (t) + ¢* 0.115
9 Q+Qt+Qlog(t) +Q/(t) +t+log(t) +/(t) 0.134
10 Q+Qt+@t2+Q\/_+t+t2+\/_ 0.112
11 Q+Qt+Qexp (1)+Q exp s TQlog (t)+t+exp (t)—l—eXlD o Hlog (t) 0.088
12 Q+Qt+Qexp(t)—l—Qexp —I—Qt2+t+exp()+exp(t)+t2 0.071
13 Q+Qt+Qexp (1) + Qg + QVE+t+exp (t) + oy + Vi 0.084
14 Q+Qt+Qexp(t)+Qlog(t) +Qt* +t +exp (t) +log (t) +t* 0.080
15 Q+Qt+Qexp(t)+Qlog(t) +QvVit+t+exp(t)+log(t)++t 0.092
16 Q+Qt+Qexp(t) +Qt> + QvVit+t+exp(t) + 12+t 0.078
17 Q+Qt+@exp +Qlog()+Qt2+t+ep(t +log(t)+t>  0.063
18 Q+Qt+ Qo +Qlog()+Qf+t+exp g +log(t) + vt 0.074
19 Q+Qt+ Qo T QP +QVE+t+ iy +2 + V1 0.061
20 Q+Qt+Qlog(t) + Q>+ Qvt+t+1log(t) + 1> + /1 0.045
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in Table 4.1, where beta coefficients are omitted and follow-up time is referred to as ¢ in-

stead of k,. to improve readability. A pooled logistic model was then fitted for each of these
candidate models without covariate adjustment and the XS measure was obtained. Fur-
thermore, the parametric curves resulting from each candidate model were plotted against
the non-parametric Kaplan-Meier curves for visual assessment. The K S measures are

given in Table 4.1. The visual comparison of the candidate models is given in Figure 4.3.

Model 20 yielded the smallest /.S measure. Visual assessment also confirmed that model
20 approximated the non-parametric curves very well, with no major deviations at any

time of follow-up.

Non-parametric methods, i.e. the Aalen-Johansen estimator, could have been used instead
of pooled logistic regression, when only baseline adjustment was necessary. For this,
IPTW could have been used to obtain a weighted Aalen-Johansen estimator, which would
have led to faster computation times when compared to the pooled logistic regression ap-
proach. However, the parametric methods were used here, because they can easily be
extended to more complex settings. For instance, IPCW for artificial censoring in a per-
protocol analysis is easily integrated in the parametric approach (see Section 4.5). Fur-
thermore, the logistic regression approach can include covariates directly in the outcome
model, as was done in a sensitivity analysis using the g-formula (see Section 4.4.4). Fi-
nally, the parametric approach yields smoothed curves that are less volatile in small sample

sizes when compared to non-parametric methods.

4.3 Main results of Braitmaier et al. [2022b]

For the results of the original analysis, the reader is kindly referred to the publication
Braitmaier et al. [2022b], which is printed in Section 7.2. As discussed in the paper, no
relevant difference in effectiveness according to the site of CRC were found. Braitmaier
et al. [2022b] contribute the differences reported in the literature to self-inflicted biases
introduced by inappropriate study design.

Braitmaier et al. [2022b] was the first study to use TTE to investigate site-specific effect-
iveness of screening colonoscopy. The site-specific results, therefore, cannot be compared
to other observational studies with similar methodology. However, the estimates for the
effect on overall CRC incidence can be compared to other studies. Garcia-Albéniz et al.
[2017a] reported results for a US sample in the age group of 70 to 74 with an eight year
follow-up. The shape of the adjusted cumulative incidence curves was very similar to the

curves reported in Braitmaier et al. [2022b]. Overall, the incidence of CRC was slightly
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Figure 4.3: Comparison of non-parametric Kaplan-Meier curves with candidate para-
metric models for estimating CIFs. Step functions represent Kaplan-Meier curves while
continuous line graphs represent the parametric estimate.
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higher in both groups in Garcia-Albéniz et al. [2017a], likely due to the older study popu-

lation. The adjusted relative risk after eight years was 0.84, whereas the adjusted relative
risk after eight years was 0.83 (95% CI: 0.78 - 0.88) when using the adjusted curves from
Braitmaier et al. [2022b].

In 2022, after the publication of the initial findings, the results of the first RCT on the
effectiveness of colonoscopy screening on CRC incidence (and mortality, although sample
sizes were small) became available [Bretthauer et al., 2022]. While sample sizes were not
sufficient to stratify analyses by site of CRC, the authors reported the effect of screening
colonoscopy on overall CRC incidence. In the supplement to Braitmaier et al. [2022b],
we provided results for the age group of 55 - 64, the same age group as was included in
the RCT. Given that due to the assignment of individuals to the screening strategies in
our emulated trial [Braitmaier et al., 2022b] there was no non-adherence at baseline, our
results are more closely comparable to the per-protocol results published in Figure S3 in
the supplement to Bretthauer et al. [2022] as compared to the intention-to-screen results
published in the main paper, although contamination in the control arm during follow-up
will likely have differed. There, the authors report an adjusted cumulative incidence at
the end of the 10-year follow-up of 1.22 for the usual care (i.e. control) group and 0.84
for the screened group, resulting in an RR of 0.67. This is very close to the 11-year RR
of 0.64 reported in Table S4 in the supplement to Braitmaier et al. [2022b]. While many
differences in study design remain, this agreement in results appears to support the validity
of our target trial emulation. However, further analyses were conducted to emulate the trial
of [Bretthauer et al., 2022] more closely by using artificial censoring and IPCW to adjust

for contamination of the control arm. These analyses are described below in section 4.5.

4.4 Sensitivity analyses

The assumptions underlying a causal interpretation of the results reported in Braitmaier
et al. [2022b] were investigated as illustrated in the supplement to the published paper.
Overlap plots of the propensity score for exposure at baseline were used to check for any
indication for potential positivity violations. In a scenario without positivity violation and
without confounding, the PS distributions of the exposure groups should overlap com-
pletely and be approximately identical. In a scenario without positivity violation, but with
confounding by the observed covariates X, the PS distributions of the exposure groups
should still cover the same value range, but the probability density functions will not be
identical with more probability density towards 1 in the exposed group and more prob-

ability density towards 0 in the unexposed group. This scenario can be mitigated by ap-

47



CHAPTER 4. CONTRIBUTIONS TO THE FIELD OF SCREENING
COLONOSCOPY

propriate adjustment for the covariates X. In a scenario with strong positivity violation,

there should be visible non-overlap between the PS distributions, i.e. some or all of the
PS distribution of one exposure group lies outside of the range covered by the PS distri-
bution of the other group. Strong positivity violations cannot be mitigated by confounder
adjustment, given that one would extrapolate beyond the data support. Instead, restricting

the study population or changing the research question may be necessary.

Covariate balance after applying inverse probability weights was checked using the abso-
lute standardized mean difference. This step is used to check if inverse weighting achieved

satisfactory balance in observed covariates. For a continuous variable this measure is
defined as

ASMD — i'treated - i'untreated ( 49)

)
2 2
Sireated + Suntreated
V 2

while for a binary variable it is defined as

xtreated - xuntreated ( 4.1 O)

| \/ xtreated 1 —Zreated +1'untreated(1 xuntreated)
2

ASMD =

Generally, if the absolute standardized mean difference after weighting is below 0.1, the
respective covariate is considered sufficiently balanced [Austin, 2009]. These checks did

not give reason for concern, as discussed in Braitmaier et al. [2022b].

However, the above checks are not sufficient to rule out all potential sources of bias. To
identify any weaknesses impacting the validity of the main findings, sensitivity analyses
were tailored to this study, acknowledging which aspects of study design or underlying

data carry the largest risk.

4.4.1 Negative control outcome

The most common concern with observational data is that of confounding bias, given that
no baseline randomization can be conducted. Several approaches exist to address the is-
sue of unobserved confounding: Instrumental variable analyses circumvent the issue, but
make strong assumptions and are only possible if an appropriate instrumental variable ex-
ists in the data [Greenland, 2000]. Quantitative bias analyses can be applied to investigate

specific unobserved confounders when e.g. the strength of the association between con-
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founder and outcome is known from the literature and the distribution of the confounder

between exposure groups is varied across scenarios [ Schneeweiss, 2006; Fox et al., 2022].
If, however, one is concerned about more than one variable, quantitative bias analysis is
often too restrictive. In those settings, negative control analyses [Lipsitch et al., 2010]
are valuable for detecting the presence of residual confounding. The rationale of negative

control analyses was explained in depth in Section 2.7.1.

In the TTE on the effectiveness of screening colonoscopy [Braitmaier et al., 2022b], pan-
creatic cancer incidence was chosen as negative control outcome. While there are some
differences in the sets of risk factors for the two types of cancer, there is also substantial
overlap. Many factors contribute to these cancer entities and the following list is not ex-
haustive: The risk of both cancers is thought to increase with tobacco smoking and the
extent of smoking, although different strengths of association have been reported in the
literature for the two cancer entities with a stronger effect of current smoking on pancre-
atic than on colorectal cancer [Hannan et al., 2009; Lowenfels and Maisonneuve, 2005].
Similar associations with high alcohol intake have been reported for both cancer entities
[McNabb et al., 2020; Wang et al., 2016]. Both pancreatic and colorectal cancer occur
more often in individuals with type 2 diabetes [Lowenfels and Maisonneuve, 2005; Yu
et al., 2022], which in turn is associated with obesity and sedentary lifestyle. Lifestyle
factors are poorly reflected in health claims data, which makes pancreatic cancer a valu-
able negative control outcome candidate, given that screening colonoscopy cannot pos-

sibly have a causal effect on pancreatic cancer incidence.

The same statistical methods were used for the negative control outcome analysis as for
the main analysis, including the same set of adjustment variables. Figure 4.4 shows the
adjusted cumulative incidence functions over an eleven-year follow-up (the figure was
adapted from Braitmaier et al. [2022b]). Confidence intervals were derived by bootstrap-
ping. During the first seven years of follow-up, the cumulative incidence curves are nearly
identical. After seven years, the curves diverge slightly, however, each curve is overlapped

by the confidence interval of the other curve.

These results indicate that, under the assumption of U-comparibility explained in section
2.7.1, it is unlikely that there is major unmeasured confounding that could qualitatively

change the results from the main analysis.

4.4.2 Treating competing events as censoring events

In the evaluation of the effectiveness of screening colonoscopy [Braitmaier et al., 2022b],

the outcome of interest was CRC incidence. With this, death was a competing event. Brait-
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Figure 4.4: Adjusted cumulative incidence functions of the effect of screening colono-
scopy on the negative control outcome of pancreatic cancer incidence (adapted from
Braitmaier et al. [2022b])
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maier et al. [2022b] reported the total effect of screening colonoscopy on site-specific and

overall CRC incidence, also mediated by the competing event. In this approach, person-
trials are not censored when experiencing a competing event. An alternative approach
would be to estimate the controlled direct effect under elimination of competing events,
i.e. censoring for competing events (see Young et al. [2020] for a discussion of total and

controlled direct effect).

When death is the competing event, estimating the controlled direct effect is usually not
very informative, given that it targets a hypothetical scenario under which the competing
event is eliminated (i.e. in which no death occurs ever). However, censoring for competing
events is often done in applied research without a sound causal justification. Therefore, a
sensitivity analysis was carried out in which person-trials were censored at death. If the
controlled direct effect were to differ substantially from the total effect, this could con-
tribute to differences between Braitmaier et al. [2022b] and other published observational

studies on screening colonoscopy.

While a comparison of total and direct effect was given in the supplement to Braitmaier
et al. [2022b] for the effect on any CRC, Figure 4.5 shows a comparison by site. While
the (baseline) adjusted risk estimates are slightly higher for the direct effect as compared
to the total effect, the differences were small and did not substantially impact the results

for any site.

A caveat to the results presented here is that further covariate adjustment would be needed
for the controlled direct effect: First, censoring due to the competing event may intro-
duce selection bias, which can be mitigated by adjusting for time-dependent covariates.
Second, further assumptions regarding the adjustment set are needed for the controlled
direct effect. Specifically, the adjustment set must also contain confounders between the
competing event (death) and the event of interest (CRC incidence). The main objective of
this sensitivity analysis, however, was to imitate the commonly-used approach to censor

for death without further adjustment for time-dependent confounding.

Given that the effect estimates did not differ substantially between the two approaches,
it is unlikely that the difference between Braitmaier et al. [2022b] and other published

studies are due to a different approach regarding competing events.

4.4.3 Confounding between exposure and competing event

In Braitmaier et al. [2022b], covariates were selected so as to control for confounding

between the exposure (screening colonoscopy) and the outcome of interest (CRC incid-
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Figure 4.5: Comparison of total and controlled direct effect by site of CRC
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ence). However, confounding between exposure and competing events may also lead to

bias [Lesko and Lau, 2017]. It is best practice to report not only the adjusted effects of
exposure on the outcome of interest, but also on the competing event [Latouche et al.,
2013].

The problem of uncontrolled confounding in the example of screening colonoscopy and
competing death is illustrated in Figure 4.6. Covariates X were selected to include all
variables that lead to confounding between exposure A and outcome Y if not controlled
for. The thick directed edge from the competing event D to the outcome of interest Y
indicates that Y cannot happen, if it is precluded by D. The directed edge from A to D was
omitted from the DAG, because screening colonoscopy affects overall mortality mainly
through its effect on death from colorectal cancer, which only accounts for a negligible
fraction of overall mortality. Adverse events of screening colonoscopy that lead to death,
such as bleeding due to perforation of the colon, are not included in the discussion here
because of their rarity. Laanani et al. [2019] found that perforation — which need not lead
to death — occurred in 3.5 to 7.3 colonoscopies out of 10,000, with increasing rates at
higher age (the age group considered here was comparably young) and decreasing rates
with physician experience (physicians conducting screening colonoscopies in Germany
are required to conduct at least 200 such procedures per year). Finally, node U represents
variables that lead to confounding between exposure A and competing event D, if not
adjusted for. No arrow was drawn from U to Y, because covariates X were selected
based on subject-matter knowledge so as to include the most relevant predictors of Y. If

U was not present, no association between A and D should be apparent in the analysis.

N\
L

Figure 4.6: DAG of confounding between exposure A and competing event D. The bold
arrow from D to Y indicates that D prevents Y from happening.

In the current section, the adjusted, event-specific cumulative incidence curves for any
death not preceded by a diagnosis of CRC are displayed for the two screening strategies
of either attending screening colonoscopy during the baseline quarter or not (i.e. no sus-

tained strategies). The same adjustment variables as in Braitmaier et al. [2022b] were
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Figure 4.7: Adjusted, event-specific cumulative incidence curves for any death not pre-
ceded by CRC diagnosis

used. An extended adjustment set was also considered, including the following addi-
tional variables assumed to be relevant predictors of overall mortality: other cancer dia-
gnoses, therapy with cytostatics, therapy with monoclonal antibodies, inpatient chemo-
therapy, radiotherapy, palliative care, antidepressant prescriptions, antipsychotic prescrip-
tions, asthma, chronic obstructive pulmonary disease, coronary heart disease, dementia,
drug abuse, chronic heart failure, hepatitis, treated hypertension, immunosuppressants,
platelet aggregation inhibitors, lipid lowering drugs, liver disease, severe liver disease,

acute myocardial infarction, hemiplegia, renal disease, stroke.

As is evident from Figure 4.7, the expectation of no association between exposure A and
competing event D was not reflected by the adjusted, event-specific cumulative incid-
ence curves. The mortality of the control group was substantially higher than that of the
screened group throughout follow-up. The curves did not change notably when adjusted
for further covariates. This result indicates the presence of bias, e.g. due to uncontrolled

confounding between exposure to screening colonoscopy and overall mortality.

The result obtained here matches well with the published literature: Garcia-Albéniz et al.
[2017a] estimated the effect of screening colonoscopy on CRC incidence. After adjust-

ing for confounding, they found a beneficial effect of screening on the 8-year cumulat-
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ive incidence of CRC. However, they reported in a follow-up paper that the effect (or

lack thereof) of screening colonoscopy on overall mortality was hopelessly confounded”
[Garcia-Albéniz et al., 2019], with an implausible reduction of overall mortality in the

screened group.

When judging how much the observed confounding between exposure A and competing
event D may have affected the estimates for the effect on the event of interest Y, res-
ults obtained in a simulation study by Lesko and Lau [2017] are helpful: The authors
compared scenarios where the adjustment set included either only confounders of the
exposure-outcome effect, or included confounders with both the outcome and the com-
peting event. They found that omitting confounders for the effect on the competing event
substantially biased results regarding the total effect, but not results regarding the con-
trolled direct effect. Indeed, when one considers censoring a form of controlling for the
occurrence of competing events, the backdoor path A < U — D — Y in Figure 4.6
would be blocked by D. With this in mind, total and controlled direct effect should sub-
stantially differ, if confounding between A and D was affecting the estimates for the effect
of AonY. As discussed in Section 4.4.2, this was not the case in Braitmaier et al. [2022b].
Confounding of the effect of A on Y due to unobserved common causes of A and D is,
therefore, unlikely to have played a role in Braitmaier et al. [2022b]. Nevertheless, un-
controlled residual confounding between A and D must be considered a limitation of the

data source.

4.4.4 Covariate adjustment via g-formula instead of IPTW

IPTW was used in Braitmaier et al. [2022b] to adjust CIFs for confounding by observed
covariates. In this approach, an exposure model is fitted to obtain propensity scores, which
in turn are used to obtain adjustment weights. The outcome model itself does not include
covariates, but is adjusted for confounding via the weights (see Section 2.5). This approach

assumes that the exposure model is correctly specified.

An alternative approach is to include covariates in the outcome model instead and suitably
standardize, which is known as the g-formula approach [Robins, 1986; Hernan and Robins,
2020], also called direct standardization. Here, no exposure model is required. Instead,
covariates are included in the outcome model, which is fitted on the observed data, using
observed exposure. The fitted model is then used to obtain predictions of the potential out-
comes for each exposure level by modifying the original dataset so that all entries share the
same exposure, potentially contrary to the factually observed exposure. Finally, marginal

estimates are obtained by averaging over all observations. In settings with time-dependent
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Figure 4.8: Comparison of IPTW and g-formula adjustment for baseline covariates

confounding, further modeling of covariates is needed (see e.g. Bornhorst et al. [2021]).

A core assumption of this approach is that the outcome model is correctly specified.

A sensitivity analysis using the g-formula approach instead of IPTW was conducted for
the results reported in Braitmaier et al. [2022b]. This analysis served two purposes: First,
covariates might affect exposure differently than they affect the outcome. While not prov-
ing correctness of model specification, similar results from IPTW and g-formula methods
may at least indicate that no strong model misspecification is present, unless one believes
that both models are equally misspecified. This analysis, therefore, was a sensitivity ana-
lysis regarding model misspecification. Second, since the program code for the analysis
was written from scratch, this sensitivity analysis served as a validation of the program
code. The g-formula approach is an alternative to MSMs using [IPTW [Robins et al., 2000].

Vastly differing results could therefore also indicate issues with the program code.

Here, the g-formula approach was as follows: First, a pooled logistic regression estimating

the probability of not experiencing the outcome by time £, was fitted as

P [ijr = 0|Yj,kr—1 =0,Qj, Xj,tJ = logit™* (n(g;, kr) +xje.7) - (4.11)
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In Equation 4.11, the same functional shape of time 7)(g;, k) was used as in the main

analysis (Equation 4.2). However, Equation 4.11 also contained baseline covariates x ;.
and did not use inverse weighting. The list of baseline covariates used was identical to
the ones used in the inverse weighting approach and is given in Braitmaier et al. [2022b].
The model included main effects only, i.e. no transformations of or interactions between
covariates were included in the model. As in the main analysis, a subdistribution approach

was used, i.e. competing events were not treated as censoring events.

Once fitted, this pooled logistic regression was used to obtain predicted probabilities. For
this, the original analysis dataset was copied twice, once setting () = 0 and once setting
@ = 1. These two modified datasets were used as input to the fitted model to obtain

predicted probabilities

ﬁ [}/;?kr - 0‘ Jokr—1 7 =0 Q =g, ]tr:| : (412)

Next, the cumulative, event-specific, person-trial-level risk conditional on baseline cov-

ariates was estimated by building the cumulative product over time as

bYF, = 1Q, X, —1—Hp BEOVE =00=04,X,].  (413)

Finally, the marginal, event-specific cumulative incidence function for strategy () =

was obtained by standardizing over the population as

1 m

p Y =1] EZ Vi o =1Q=0q,X;,]. (4.14)
A comparison of the results obtained with both methods is given in Figure 4.8. As is
evident from the figure, the two approaches yielded very similar results. This sensitivity
analysis, therefore, did not find evidence for either model misspecification or issues with

the program code.

4.4.5 Changing the adjustment set

Adjustment variables were selected a priori based on subject-matter expertise for the ana-
lyses described in Braitmaier et al. [2022b], i.e. no data-driven covariate selection strategy

was used. Furthermore, adjustment variables were included in the exposure model and not
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Figure 4.9: Sensitivity analysis regarding selection of covariate set; ASA: Acetylsalicylic
acid, CRC: colorectal cancer

the outcome model, since IPTW was used for covariate adjustment. As such, no inform-
ation regarding the association of individual covariates on the outcome were available to

judge variable importance.

A sensitivity analysis was conducted to assess the magnitude of the influence that indi-
vidual groups of covariates had on the result. In this analysis, (groups of) covariates were
dropped from the adjustment set and the primary analysis was repeated. A covariate was
assumed to have a large effect on the result, when the CIFs changed notably after dropping

said covariate.

The primary results reported in Braitmaier et al. [2022b] were adjusted for the following
baseline covariates (included as main effects in the propensity model): Age, sex, educa-
tional attainment (unknown or no degree, secondary degree, higher education), obesity,
family history of CRC, menopausal hormone therapy, acetylsalicylic acid, diabetes, codes
indicating alcohol abuse, codes indicating smoking and use of other preventive services
before baseline (none, one, two or more). Five covariate sets were studied in this sensit-

1vity analysis, dropping the following covariates, but keeping the others:
* Lifestyle factors (obesity, alcohol abuse, smoking)

» Use of other preventive services
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* Prescriptions (menopausal hormone therapy, acetylsalicylic acid)

 Diagnoses (family history of CRC, diabetes)
+ Educational attainment

The results of these sensitivity analyses are given in Figure 4.9. Most modified covariate
sets yielded results that did not differ from the fully adjusted main effects model. The only
exception was use of other preventive services in the three years before baseline. While
other preventive measures, such as skin cancer screening or general health check-ups, are
unlikely to affect the risk of developing CRC, they were assumed to be a proxy for health
seeking behavior and health consciousness, but also general health status. Person-trials
assigned to the screening strategy had previously undergone other preventive measures at
a higher rate when compared to the non-screening strategy (see Table 1 in Braitmaier et al.
[2022D]).

Assuming that participation in preventive measures is a proxy for health-seeking behavior
and health consciousness and further assuming that health consciousness is associated with
better health in general, an enrichment of the screening strategy with health conscious
individuals would lead to a decreased risk of developing CRC, among other diseases.
Indeed, when dropping use of preventive services from the adjustment set, the cumulative

incidence of CRC dropped notably in the screening arm.

While use of preventive services was included as an adjustment variable in Braitmaier
et al. [2022b], it was considered as a restriction criterion for subgroup analyses to increase
internal validity and homogeneity across exposure groups in Braitmaier et al. [2022a] in

the context of mammographic screening.

4.4.6 Non-truncated weights

Following the example of previous studies using target trial emulation (e.g. Garcia-Albéniz
et al. [2017a]), inverse weights used in the analyses described in Braitmaier et al. [2022b]
were truncated at the 99™ percentile. The goal of this truncation approach is to limit the in-
fluence of extreme observations. This, however, is a trade-off. If extremely large weights
were present for a small set of individuals with unusual covariates, these few individu-
als would have a disproportionate influence on the adjusted effect estimates. Truncation,
then, makes results more representative of the study population. Furthermore, truncating
weights can decrease variance, leading to more efficient estimators. However, truncated
weights may fail to remove confounding completely, thus leading to residual confounding
[Goetghebeur et al., 2020].
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Figure 4.11: Adjusted cumulative CRC incidence curves using truncated versus non-
truncated inverse probability weights to adjust for baseline confounding

The analysis regarding the causal effect of baseline screening colonoscopy on CRC risk
during follow-up [Braitmaier et al., 2022b] was therefore repeated without truncating the
inverse probability weights. Additional data years were available in this sensitivity ana-
lysis when compared to the initial publication described in Braitmaier et al. [2022b], res-
ulting in slightly different results. Covariate balance before and after weighting (with
truncated and non-truncated weights) is compared in Figure 4.10. Notably, most covari-
ates were well balanced with both weights. However, the use of other preventive services
before baseline could not be fully balanced with the truncated weights. With non-truncated
weights on the other hand, also the use of other preventive services was well-balanced.
This could indicate that the variable regarding use of preventive services identifies sub-
groups that almost never (namely those who do not undergo any preventive services) or
almost always (namely those who also undergo several other preventive services) parti-

cipate in colonoscopy screening.

Figure 4.11 shows the adjusted cumulative CRC incidence by screening strategy, once
with truncated and once with non-truncated weights. While results are very similar and

no clinically relevant changes result from using non-truncated weights, the cumulative
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incidence curve for the screening arm changes notably with a slightly higher cumulative

incidence. Indeed, the relative risk reduction at the end of follow-up is slightly smaller
when using non-truncated weights. The adjusted 14-year relative risk using truncated
weights was 0.68 (risk reduction of 32%), whereas the relative risk using non-truncated
weights was 0.70 (risk reduction of 30%).

4.4.7 Varying the number of bootstrap samples

As discussed above, standard parametric approaches for estimating confidence intervals
are not valid in the emulated target trial setting described in Braitmaier et al. [2022b],
since the same individual is potentially included in the dataset more than once. Instead,
person-level bootstrapping as described in Section 4.1 was used. Given that the under-
lying statistical methods are computationally heavy and the analyzed datasets are large,
obtaining bootstrap-based confidence intervals can become computationally prohibitive
when using a large number of bootstrap samples. As a compromise between statistical
accuracy and computational feasibility, 250 bootstrap samples were used in Braitmaier
et al. [2022b], whereas 500 bootstrap samples are a more common choice in the literature.
To investigate whether B = 250 bootstrap samples were sufficient to reliably estimate
confidence intervals, the same procedure was repeated in a sensitivity analysis regarding
the incidence curves for any CRC, but this time with B = 500 bootstrap samples. A

comparison of the resulting confidence intervals is given in Figure 4.12.

As is evident in Figure 4.12, the bootstrap-based confidence intervals based on 250 versus
500 bootstrap samples do not differ notably. This result suggests that in the analysis re-
ported in Braitmaier et al. [2022b] results would not have changed, had the number of
bootstrap samples been larger. B = 250 was a sufficiently large number of bootstrap

samples to reliably estimate 95% confidence intervals.

4.5 Update and per-protocol analysis

4.5.1 Rationale and methods

After the initial publication of Braitmaier et al. [2022b], the results of the first and only
RCT comparing the effectiveness of screening colonoscopy at baseline versus no screen-
ing colonoscopy at baseline were published (see Bretthauer et al. [2022]). One major
difference in the study designs of the emulated trial of Braitmaier et al. [2022b] and the
NordICC trial [Bretthauer et al., 2022] was that the NordICC trial was conducted at a

time when screening colonoscopy was not offered to the wider population in the coun-
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Figure 4.12: 95% confidence intervals based on 250 versus 500 bootstrap samples

tries involved in the study. This means that the control group did not feature a substantial
contamination with screening colonoscopies conducted during follow-up. In Braitmaier
et al. [2022b] on the other hand, screening colonoscopy was freely available to all eligible
individuals. With the initial analysis scheme reported in Braitmaier et al. [2022b] where
no restrictions regarding screening colonoscopy use during follow-up were made, this led

to a contamination of the control arm.

A per-protocol analysis was added to make results more comparable. Additional data
years had become available since the original publication [Braitmaier et al., 2022b] and
the follow-up was extended. Furthermore, additional sequential trials were emulated until
the end of 2013 (as opposed to 2011).

The censoring scheme for the per-protocol analysis was as follows: For person-trials as-
signed to the strategy with screening colonoscopy at baseline no artificial censoring was
applied, since screening colonoscopy is a quasi point exposure with the option of re-
peat screening colonoscopy only once after ten years. For person-trials assigned to the
control strategy, artificial censoring occurred at the end of the calendar quarter with the
first screening colonoscopy. Screen-detected CRC was not counted as an outcome in this

strategy, with screen-detected CRC being defined as a CRC diagnosis in the same calen-
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dar quarter as a screening colonoscopy or with a screening colonoscopy in the 180 days

preceding the diagnosis. Importantly, even when controlling for baseline confounders via
randomization or adjustment, artificial censoring may introduce bias, if time-dependent
covariates affect both the probability of being censored and the probability of experien-

cing the outcome. Adjustment for time-dependent covariates becomes necessary.

Adjustment for baseline confounding and time-dependent confounding/informative cen-
soring followed the approach described in [Robins et al., 2000]: Adjustment for baseline
covariates was achieved as before by constructing [IPTW weight contributions. Adjust-
ment for time-dependent covariates was achieved by constructing time-dependent [IPCW
weight contributions using time-updated versions of the baseline covariates. The censor-
ing model contained the same covariates as in the main analysis, namely main effects of
number of preventive services (0, 1, 2 or more), acecylsalicylic acid, age, codes indicating
alcohol abuse, family history of CRC, diabetes with pharmacological treatment, diabetes
with organ damage, female sex, educational attainment, menopausal hormone therapy,
obesity and smoking. Covariate balance could initially not be achieved for all covariates
throughout follow-up, which led to the inclusion of the following interaction terms in the
censoring model: menopausal hormone therapy with age categories (55 to 59, 60 to 64,
65 to 69, 70 to 74, 75 and older), menopausal hormone therapy with calendar year and
menopausal hormone therapy with family history of CRC.

As described under section 4.1, baseline weight contributions were defined as

plQ; =1] 41
Qs = 11X,,] (15)

for exposed person-trials and as

1-p[Q;=1]
1-p[Q; =1|X;,,]

iptw; = (4.16)
for unexposed person-trials, with X, being the covariate vector of person-trial j at the
start of emulated trial ». Time-dependent weight contributions for artificial censoring
were set to iﬁumr = 1 for time k, = 1, ..., K, and person-trials assigned to the active
screening strategy () = 1, since no artificial censoring was carried out in this strategy.
Furthermore, i@jjl was set to 1 for all person-trials j, because no artificial censoring
was possible during the first time interval by design (exposure to screening colonoscopy

in the first time interval was used for assignment to the exposure strategies ().
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For unexposed person-trials, the probability of not being artificially censored (Cens,; i, =

0) was estimated for each time point &, > 1 using a pooled logistic model as described in
Robins et al. [2000]:

P [Cens; s, = 0| X, ] = logit " [Bo + k. f1 + Tk, B4] - (4.17)
Censoring model 4.17 also included the above-mentioned interaction terms relating to
menopausal hormone therapy in the covariate vector ..

Another pooled logistic model was fitted to obtain the numerator of the weight contribu-

tions as

P [Cens;, = 0] = logit " [y + k.f1] - (4.18)

The time-dependent, stabilized weight contribution for person-trials in the strategy with no
screening colonoscopy at baseline for time point %, was then computed using the predicted

probabilities from the fitted models as

ke o
Z@ _ H2 p [CenSj,kT = O] . (4 19)
M Tl b [Cens, = 01X, ]
Final weights are then given as
SWj e, = iplw; * ipcw; , . (4.20)

Stabilized weights are generally preferred over non-stabilized weights when assessing sus-
tained treatments, because non-stabilized weights can grow very large, especially when
many time points are considered, leading to unstable estimators [Hernan and Robins, 2020;
Robins et al., 2000]. The stabilized weights were truncated at the 99th percentile of their

distribution to avoid excessive influence of outliers.

Covariate balance of time-dependent confounders was assessed throughout follow-up by
calculating the absolute standardized mean difference between screening strategies for
each time point k, after applying the weights (see Figure 4.13). When balance could
not be achieved for a confounder at baseline, sensitivity analyses were conducted within
strata of the baseline covariate. When balance could not be achieved for a time-dependent

covariate, sensitivity analyses were conducted by including the time-dependent covariate
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Figure 4.13: Covariate balance over follow-up in per-protocol analysis of screening
colonoscopy. Dashed line represents the 0.1 threshold

that could not be balanced in the outcome model equation.

452 Results and discussion

Overall, 1,642,348 person-trials were included in the control strategy and 240,193 in the
screening strategy when considering individuals aged 55 to 69 years old. In the con-
trol strategy, 18.7 % underwent screening colonoscopy at some point during the 14-year
follow-up and were artificially censored in the per-protocol analysis. An additional ana-
lysis was conducted, restricting the population to the age group of 55 to 64, i.e. the age
group assessed by [Bretthauer et al., 2022]. Here, 1,110,465 person-trials were included
in the control group and 171,310 in the screening group. In the control strategy, 20.3 %

underwent screening colonoscopy during follow-up and were artificially censored.

The 14-year adjusted RR among individuals aged 55 to 69 at baseline was 0.68 when
assessing a point exposure control strategy without artificial censoring and 0.72 when
assessing a sustained control strategy with artificial censoring and IPCW. Among indi-
viduals aged 55 to 64, the adjusted RR was 0.67 for the point exposure control strategy

and 0.72 for the sustained control strategy. In both of these age groups, a point exposure
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Figure 4.14: Per-protocol results for the effect of screening colonoscopy
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control strategy led to a higher risk of receiving a CRC diagnosis than a sustained control

strategy. The adjusted CIFs are given in Figure 4.14.

In both age groups, the effect estimates for a point exposure without artificial censor-
ing indicated a stronger protective effect than the estimates regarding a sustained control
strategy. The cumulative incidence throughout follow-up was higher for the point expos-
ure control strategy as compared to the sustained control strategy. This is likely due to
the initial increase in incidence due to the detection of cases at screening colonoscopies

during follow-up, which are eliminated per design in the sustained control strategy.

The adjusted RR among individuals aged 55 to 64 was 0.84 when restricting the follow-up
to 10 years. In Bretthauer et al. [2022], the length of available follow-up was 10 years,
the study population was aged 55 to 64 at baseline and the control strategy was free of
contamination by screening colonoscopy, because no screening colonoscopy was offered
to the wider public in the countries included in the study (Poland, Norway, and Sweden).
In their adjusted per-protocol analysis, the authors reported a RR of 0.69, i.e. the 10-year
protective effect was stronger as indicated by the above results. This difference may be
explained by a different background prevalence of CRC: The initial increase in cumu-
lative incidence due to screen-detected CRC in the screened group was much smaller in
Bretthauer et al. [2022] than in the results reported in Figure 4.14, indicating that the
background prevalence at baseline was smaller in the population studied by Bretthauer
et al. [2022]. With lower prevalence of CRC, the increase of the cumulative incidence
due to screen-detected cancers is smaller and the long-term preventive effect of screening

colonoscopy via removal of precursors is more prominent.

4.6 Bias due to non-alignment at time zero

While no RCT evidence is currently available regarding the site-specific (distal versus
proximal colon) effectiveness of screening colonoscopy, several observational studies
have reported results indicating that screening colonoscopy is much more effective in pre-
venting CRC in the distal colon than it is in the proximal colon [Baxter et al., 2009, 2012;
Brenner et al., 2011, 2014b; Doubeni et al., 2013; Guo et al., 2021; Kahi et al., 2018;
Mulder et al., 2010; Nishihara et al., 2013]. This is in contrast to the findings reported
in [Braitmaier et al., 2022b], where a TTE design was used and no clinically meaning-
ful differences in effectiveness between site of the tumor were observed. In contrast to
other study designs that do not prioritize causal interpretability, the TTE design of Brait-
maier et al. [2022b] ensures alignment of key study design elements at time zero. This

means that eligibility assessment uses only information from before time zero, exposure
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TimeﬂZero

Eligibility assessment
(before time zero)

Baseline covariates
(before time zero)

Exposure assessment
(at or before time zero)

Outcome variable (Follow-Up)
(starting with time zero)

Time

Figure 4.15: Misalignment at time zero for modified study on screening colonoscopy

assessment uses only information from time zero and outcome assessment uses only in-
formation starting with time zero, as is illustrated in Figure 3.1 in Chapter 3. The current
section gives some methodological considerations regarding bias due to non-alignment at
time zero in the context of screening colonoscopy and site-specific effectiveness, while
empirical results are restricted to the corresponding publication (Braitmaier et al. [2024],
see Chapter 7.6).

A study design as seen in previously published observational studies was used to investig-
ate whether non-alignment at time zero could have caused bias that affected site-specific
estimates differently. A hypothetical cohort design was used, corresponding to the setting
of an observational cohort being recruited at a given point in time. At the baseline examin-
ation of such a cohort study, participants would be asked whether they had ever undergone
screening colonoscopy and whether they ever received a CRC diagnosis. When interest
lies in the effect of screening colonoscopy on CRC incidence, participants reporting past
CRC diagnoses would be excluded from the analysis. The outcome of interest would then
be any CRC diagnosis during follow-up. Such a study design was applied to the same
data source used in [Braitmaier et al., 2022b], with some key design differences: Baseline
was defined as a fixed time point (beginning of 2009). Exposure was defined as a coded
screening colonoscopy during the baseline quarter or ever before. The resulting violation
of alignment at time zero is illustrated in Figure 4.15. Importantly, the age structure at
baseline still corresponds to a group in which distal CRC is much more common than
proximal CRC, with proximal CRC becoming more relevant later during follow-up and at

higher ages.

To illustrate such a study design, the following notation is introduced: Assume that time

t is split into three time windows, with £ = —1 corresponding to the pre-baseline period,
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Figure 4.16: DAG of analysis of screening colonoscopy with time zero violation under a
hypothetical scenario in which no directed path leads from past exposure A_; to sub-
sequent outcomes Yy or Y

t = 0 corresponding to time zero and ¢ = 1 corresponding to the post-baseline period.
Ay describes exposure to screening colonoscopy at time ¢, while Y; is a binary outcome
indicator for time ¢, which is 1 if a CRC diagnosis occurred in time window ¢. The variable
S describes selection into the study cohort. Figure 4.16 gives a graphical representation
of the causal relationships under such a design, with P, indicating the presence of cancer
precursors at time ¢ and C} indicating the presence of undiagnosed/latent CRC. Since
confounding is not pertinent to the discussion of violations of alignment at time zero,
confounders X are omitted from the graph. For illustration purposes, Figure 4.16 assumes
a null-effect of exposure on subsequent outcomes, i.e. all arrows leading from exposure

A, to the outcome at a later time, Y}~ , are absent.

There is a violation of alignment at time zero in the hypothetical cohort design described
above: Exposure definition uses information from time zero and before, instead of time
zero alone. With this, exposure may precede exclusion criteria. Furthermore, exposure is
ill-defined in that it does not correspond to a quantity that can be intervened upon, since
past exposure cannot be changed. While a TTE as described in Braitmaier et al. [2022b]
assesses the effect of Ay on {Yp, Y1}, the flawed study design with time zero violation

would instead attempt to assess the effect of Ayg alignment = {A—1 = 1or Ay = 1} on

As shown in Figure 4.16, selection in the cohort design without alignment at time zero is
based on Y_; as individuals with past CRC diagnosis are excluded. Given that exposure
to screening colonoscopy will lead to CRC diagnosis when latent CRC is present, CRC
diagnosis at time —1 is a collider on the path A ; — Y_; < (C_;. Controlling for a
collider or its descendants will introduce a non-causal association between the two parent
nodes, i.c. it will lead to collider bias [Pearl, 1995; Greenland, 2003]. With this, there are
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Figure 4.17: DAG of analysis of screening colonoscopy with time zero violation, with
selection based on past outcome but not past exposure

now open non-causal paths from past exposure to later outcome. It is, therefore, evident
from the DAG that the study design without alignment at time zero will yield biased results
if P[Y_4] > 0.

To illustrate this further, consider the modified DAG in Figure 4.17: In this scenario,
causal paths leading from exposure at time & to subsequent outcomes Y;~ exist, due to
the removal of precursor stages at the screening colonoscopy. Now, any analysis using
the faulty study design will report an effect estimate that is a mixture of the true effect of

exposure on the outcome and bias introduced by the study design.

To explain why the bias described above affects effect estimates of distal CRC more
severely, it is important to consider the age structure under study. With the age at baseline
being between 55 and 69, distal CRC is much more frequent than proximal CRC. Concep-
tually, if proximal CRC were to not occur at all before baseline, i.e. if Figure 4.17 were to
reflect only proximal CRC and P[C_; = 1] = P[Y_; = 1] = 0, then no selection would
take place and no association between A_; and C'_; would be introduced. More gener-
ally, in the age group under study it is known that P [C4§#! = 1] > P [C’Erf’dmal = 1]. The

described collider bias will therefore be more severe for distal CRC.

When analyzing the same data source used in Braitmaier et al. [2022b], but with the study
design without alignment at time zero, the results from previous observational studies
indicating a stronger effect in the distal colon could be reproduced. More details on the

study design and the empirical results are given in section 7.6.
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4.7 Extending the set-up to more than two exposure
strategies

So far, exposure was treated as a binary variable A, indicating either participation in
screening colonoscopy at baseline or no participation. In an extension of the original study,
exposure to screening colonoscopy was further subdivided into two categories depending

on the screening physician’s polyp detection record.

While adenoma detection rate is widely accepted as a quality marker of gastroenterologists
conducting screening colonoscopy [Kaminski et al., 2017], this measure is not directly
available in health claims data. Instead, polyp detection rate (PDR) was used to classify
screening colonoscopies as high or low quality. PDR has been shown to be a close match

to polyp detection rate [ Schwarz et al., 2023].

With the above categorization, exposure strategies () € {0, 1,2} are then expressed by
three levels: 0 =No screening colonoscopy at baseline, 1 = Low quality screening colono-
scopy at baseline and 2 = High quality screening colonoscopy at baseline. Previously, a
single logistic regression model was used for estimating propensity scores. Now, separate
logistic models were fitted for each exposure strategy ¢, where a dummy exposure vari-
able was defined as A, = 1if ) = gand as A, = 0 if ) # ¢. The same covariates were

used for adjustment with identical parameterization, namely main effects modelling.

Based on these strategy-specific models, person-trial specific stabilized weights for strategy

q are given by

P[Aq = 1]

P4 = TX] (4.21)

S’LUqu =
for person-trials under exposure strategy ¢q. Propensity models were fitted for all three
exposure strategies separately. When using identical parameterizations, this approach is
equivalent to multinomial regression. Weights were truncated at the 99th percentile of
the combined weight distribution. Cumulative incidence functions were, as described in

sections 4.1 and 4.2, estimated via pooled logistic regression models.

Covariate balance was assessed for each pairwise group comparison, using the absolute
standardized mean difference. Again, a value of 0.1 or below was defined as sufficiently

balanced.

The results and discussion are given in the publication [Schwarz et al., 2024], which is
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printed below in Section 7.5.
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Contributions to the field of mammo-
graphy screening

Some 30 to 40 years ago, RCTs demonstrated a roughly 20 % reduction in breast cancer-
related mortality due to mammography screening [Nelson et al., 2016]. However, treat-
ment options have improved since then [Guarneri and Conte, 2004; Jansen et al., 2020].
Furthermore, no RCT was conducted in the German population. Effectiveness in the

modern-day German population is, therefore, subject to debate.

An invitation-based mammography screening program was introduced in Germany start-
ing in 2005 and reaching nation-wide coverage in 2009. German law requires that any
medical screening tool that entails exposure to radiation must be safe and effective (see
§84 of the German Radiation Protection Law). However, conducting an RCT where mam-
mography screening is withheld from one study arm would be unethical, given that mam-
mography is an established screening tool with some evidence supporting its efficacy.
While mammography screening is known to have some harmful effects [Loberg et al.,
2015], benefits are generally assumed to outweigh risks when assuming that previously
reported reductions of breast cancer mortality by around 20 % can be relied upon [Lauby-
Secretan et al., 2015; Marmot et al., 2013]. However, uncertainty regarding effectiveness
in a modern day population persists [Biller-Andorno and Jiini, 2014]. One work pack-
age of the current thesis, therefore, consisted in developing an observational study design
to evaluate the effectiveness of the German mammography screening program to reduce
breast cancer-related mortality, as is described in Braitmaier et al. [2022a]. This effort
was commissioned and funded by the Federal Office for Radiation Protection (see fund-

ing statement in Braitmaier et al. [2022a]).
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Mammography screening is offered to women from the age of 50 to 69 in Germany (the

age range was extended in 2024, so that women are eligible until the age of 75 [g-ba.de,
20247]). Eligible women are invited every two years, i.e. participation is sustained over
time and a variety of screening trajectories are possible. Three strategies in particular will
be compared: () = 0: Never undergo screening, () = 1: Undergo screening at least at
baseline, possibly with further screening participation during follow-up, () = 2: Undergo
screening at baseline and thereafter at regular two-year intervals (plus a grace period of
half a year), unless aged 70 or diagnosed with breast cancer. Only the pairwise comparis-
ons with the never-screen strategy are of interest. The target trial protocol, its emulation
and details regarding the statistical analysis are given in Braitmaier et al. [2022a]. In the
following text, the issue of residual immortal time bias due to discretization of time will
be discussed in the context of an extensive simulation study. The study design of the TTE
itself is given in the corresponding publication (see Braitmaier et al. [2022a], which is

printed in Section 7.4).

5.1 Simulation study: Discrete time, emulated target
trials and residual immortal time bias

As discussed in Braitmaier et al. [2022a], some of the information in the health insurance
claims database underlying the analysis is only available on a quarterly basis. As a con-
sequence, sequential trials were emulated per calendar quarter and time was discretized
to quarter years. When assignment to strategies is based on observed screening behavior
during the first discrete time interval, i.e. when women who underwent screening in the
first interval are assigned to the active screening strategies and all others to the comparator
strategy, residual immortal time potentially remains within the first time interval; women
who undergo screening at the end of the first quarter cannot possibly have died in the be-
ginning of the quarter and, conversely, women who died at the beginning of the quarter

will have had little chance to undergo screening and accumulate in the comparator strategy.

Avoiding self-inflicted biases is one of the main advantages of the TTE framework in com-
parison to other study designs in observational research [Hernan et al., 2016]. Nonetheless,
residual immortal time may remain when granularity of discrete time is coarse, whereas
an infinitesimally fine granularity of discrete time would approximately eliminate time-
related biases. However, statistical methods such as pooled logistic regression, parametric
g-formula and bootstrapping commonly used in the target trial literature in combination
with the large data sources often employed, result in computationally heavy analyses and

long run times. Coarser discretization of time could be useful in some settings to reduce
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the computational burden.

A simulation study was conducted to assess the impact of different granularity levels of
discrete time in the setting of mammography screening and breast cancer related mortality.
Values for random variables were taken from the published literature whenever possible.
A hypothetical, population-based cohort study in which n women were recruited simul-
taneously into the study was simulated. While real-life mammography screening differs
in some aspects from this simulated study, simplifications were made whenever helpful
to focus on the issue of residual immortal time bias. A study in which women included
in the study were offered a once-only mammography screening during the first two years
of the study period was simulated. While in reality, mammography screening is offered
regularly every two years, this simplification was made to reduce complexity. The exact
data generating mechanisms for all variables are described below. The general rationale
behind some variables is given here: The sojourn period, i.e. the time between asympto-
matic disease onset and development of symptoms, is the window of opportunity for the
effect of mammography screening, which can only be effective by causing treatment at
an earlier stage of the disease, thereby improving survival. In the simulation study, any
potential effect could only occur if screening took place during this asymptomatic phase
of the disease. Death due to breast cancer and the competing event of death due to other
causes were observed during follow-up. This simulated cohort was then used to emulate
target trials under various simulation scenarios and using varying granularity of discrete
time. While the effect of screening on the outcome of interest was set to be null in most
scenarios as to easily detect bias, the effect of screening on the competing event of death by
other causes was set to be non-null in one scenario, corresponding to the possibility that
mammography screening may cause death in some instances (e.g. complications after

unnecessary treatment of overdiagnosed cases).

5.1.1 Causal structure of cohort data

The data generating mechanism of this simulation study is depicted in Figure 5.1. The
DAG is a simplified version of the true causal mechanism, because it discards temporal
effects. The binary exposure A can only have an effect on the outcome Y, if it occurs
during the time of asymptomatic disease B,gym,. Mammography screening does not af-
fect survival directly, but it aids in the early detection of breast cancer and therefore leads
to earlier treatment initiation, which in turn improves survival. If the disease has already
progressed to the symptomatic stage By, there is no effect of A on Y in this simulation,
because the opportunity of earlier treatment initiation has passed. Similarly, treatment of

overdiagnosed cases is only possible in cancers that did not present clinical symptoms
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Figure 5.1: Simplified data generating mechanism of simulation study; thick arrows de-
scribe deterministic relationships

yet, with overdiagnosis being defined as the diagnosis of a disease which would not have
become clinically apparent during the lifetime of the affected individual. Any effect of
screening on the competing event death by causes other than breast cancer (D), e.g. mor-
tality due to treatment complications of overdiagnosed cases, is only possible if screening

takes place during the asymptomatic disease stage.

There is no confounding in the current simulation setup. This simplification was made as
to focus on the effect of immortal time bias due to deaths in the first discrete time interval

of each emulated trial.

5.1.2 Simulation of cohort data

The current simulation is complex in that it involves temporal aspects and feedback loops.
The following sequence of steps was applied to simulate the cohort data underlying the

emulated target trial:

1. Latent variables corresponding to a world free of mammography screening and lat-

ent screening participation

2. Realized disease and screening values depending on temporal order of terminal
events (i.e. death from a world free of screening may prevent screening particip-

ation).
3. Latent variables in the presence of screening
4. Realized values of terminal events depending on temporal order
5. Additional scenario with early and sudden outcome events

More detail about the individual simulation steps is given in the following.
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Step 1: Latent variables in the absence of screening and latent screening participa-

tion

The proportions for simulation variables are taken, as far as possible, from published re-
search. Table 5.1 gives an overview of the simulated latent variables and references, when

applicable.
Step 2: Realized variables in the absence of screening and realized screening

The realized variables in the absence of screening and the realized screening variable are
determined based on the temporal ordering of terminal events. The realized variable on

asymptomatic disease onset was defined as

B o 07 lf T'latDA:O < 7-‘lU«tBu‘sy'rnp
asymp — .
lat Bosymp, otherwise

Similarly, the realized variable on symptom onset was defined as

O, if EatDA:O < ﬂatB_gymp

latB

Bsymp =

symp, Otherwise

The realized variable on screening participation was defined as

A 1, iflatA=1& Tigpa=o > Tiga & Tya=0 > Tiga

0, otherwise

Step 3: Latent variables in the presence of screening

Non-breast cancer mortality caused by treatment was simulated as a latent variable as

Bin(lvplethal treatment)a if Basymp =1& 7jlatA Z 7jlatBasymp &
lat Dovertreated = Tiaa < ﬂatA_gymp

0, otherwise

The proportion of treated asymptomatic cases who died because of treatment is assumed
to be zero in most simulation scenarios (Piethal treatment = 0), but is set to a non-zero
value (i.e. 1 %) in one simulation scenario to reflect some aspects of the ongoing debate

surrounding harms of (over-)treatment (see e.g. Arrospide et al. [2015]; Baum [2013];
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Table 5.1: Overview of latent variables underlying the simulated cohort

Variable

lat Bosymp ~
Bin(1,0.13)

lat Bsymp ~
Bin(1,0.78), if
Gl

lat DA=0 ~
Bin(1,0.1)

latY 4=0 ~
Bin(1,0.25), if
latB =1

symp

7jlatBasymp ~ F<@ =
1,B=1)—1

Tyamo =T(a=1,8

1
sojourn time—+t;e¢phql )

T‘latBSymp = Tya=o * 2

Tiatpa=o ~ I'(a =

1,8=3)

latA ~ Bin(1,0.83)
ﬂatA ~ Unlf(07 2)

Explanation
Latent asymptomatic disease (assuming

lifetime risk of developing breast cancer of 13
%)

Latent symptom onset (assuming that 22 % of
breast cancers regress naturally)

Latent death by other causes in the absence of
screening, assuming that 10 % of the study
population would die from other causes during
the study period

Latent death due to breast cancer in the
absence of screening, among individuals who
developed symptomatic breast cancer and
assuming lethality of 25 %

Time to asymptomatic disease onset in years,
assuming a mean of four years and then
shifting the distribution to the left by one year,
so that a portion of women enter the cohort
with pre-clinical breast cancer present.

Time to death due to breast cancer, where the
duration from disease onset to symptom onset
is defined by the sojourn time and assuming
that death due to breast cancer on average
oceurs tenq years after symptom onset. The
sojourn time is assumed to be 7 years on
average according to literature reports, but will
be varied across scenarios. tjenq 1S assumed to
be 5 years, but different values will be applied.
Time to symptom onset. z is a random number
drawn from a truncated normal distribution
bounded between 0 and 1 and with standard

deviation 0.1 and a mean of ——>dountme
sojourn time—+t;etpal

Time to latent death by other causes in the
absence of screening, assuming mean time of
eight years

Latent screening participation, assuming that
83 % of women would be willing to participate
Time to screening participation in years

Reference

cancer.gov
[2022]

Zahl et al. [2008]

Narod et al.
[2018]

Weedon-Fekjer
et al. [2005];
Narod et al.
[2018]

Schmuker and
Zok [2019]
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Loberg et al. [2015]). Death due to complications from treatment of clinically irrelevant

cancers is the most severe harm of mammography screening. Other major harmful effects,
such as the impact of a cancer diagnosis and subsequent treatment on quality of life or

psychological well-being, cannot be quantified in the context of this simulation.

Latent death due to causes other than breast cancer in the presence of screening was defined

as

ipA=t ) b if lat DA=" = 1 or lat Doyertreated = 1
a =

0, otherwise

The time to this latent death due to other causes in the presence of screening was defined

as
Ty o, if latDA=0 = 1

Tiaea + (=1, =0.25), otherwise

jﬂ’latDA:1 =

The event of interest, breast cancer mortality, in the presence of screening was modeled

as

BZTL(]_, 1-— Pscreen effect)) if latYAZO =1& 71latA 2 TBasymp &
laty4=! = Tiata < Ty,

0, otherwise

In the above definition, pscreen e f fect describes the proportion among women whose screen-
ing takes place during the asymptomatic stage of the disease, who would have died from
breast cancer in the absence of screening and whose death is avoided by screening. A
null-effect was simulated by setting pscreen effect = 0 to easily identify bias. An additional
scenario with a non-null treatment effect was carried out by setting pscreen effect = 1,
1.e. assuming that all breast cancer deaths are preventable, if they are detected at the

asymptomatic disease stage.
Step 4: Realized values of terminal events

The final step in simulating the cohort data is to determine the realized values of all vari-

ables under the observed screening exposure. The realized competing event given the
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realized screening value was determined as

;

if A=0&latD*~" =0
lfA - 0 & latDA:O - ]_ & natDA:O Z EatYA:O
lfA - 0 & latDAZO - 1 & j}atDA:O < j}atYA:O
ifA=1&latD*=' =0
lfA - 1 & lat.DAz:l - ]_ & ﬂatDAzl 2 ﬂatYAzl
lfA - 1 & latDA:1 - ]_ & z}atDAZI < j}atYA:1

_ o o = ©o O

Likewise, the realized event of interest given the realized screening value was determined

as
4

if A=0&latY*=" =0
if A=0&latY =0 =1 & T}y a-0 > T}y pa=o
ifA=0&IlatY* " =1& Tiary a=0 < Ty pa=o
if A=1&latY*=! =0
lfA - 1 & latYAZl - 1 & EatYAzl Z ﬂatDAzl
ifA=1&I1atYA"! =1 & Tiypyamr < Tpppae

— o o = o O

\
Step 5: Additional scenario with early and sudden outcome events

After simulating cohort data as described above, an additional setting in which immortal
time bias may play a particularly important role was simulated. For this, additional out-
come events were simulated during the first two years, i.e. in the period during which
screening is offered. In this scenario, additional early breast cancer deaths were simulated
from a binomial distribution, independent of any other variables. The probability of early
breast cancer death was set to 1.3%, i.e. at 10% of the lifetime risk of breast cancer. If
early breast cancer death occurred before screening exposure or any terminal event, these

variables were reset to zero.

5.1.3 Emulating target trials based on the cohort data

Once person-level cohort data was simulated via the above-described process, target trials
were emulated to examine the effect of undergoing screening (A = 1) in the first time
interval after baseline on the time to death due to breast cancer. Analyses for both direct
(censoring for competing death) and total (not censoring for competing death) effect were

conducted. To obtain discrete time, a discretization function d(¢,[) was used, where ¢ is
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Table 5.2: Overview of simulation scenarios

Key DPscreen ef fect  Plethal treatment SOj ourn time tlethal early outcomes

Sl 0 0 7.00 5.00 no
S2 0 0.01 7.00 5.00 no
S3 0 0 350 250 no
S4 0 0 1.75 125 no
S5 0 0 0.70  0.50 no
S6 0 0 7.00 5.00 yes
S7 0 0 350 5.00 no
S8 0 0 1.75 5.00 no
S9 0 0 0.70  5.00 no
S10 0 0 7.00 250 no
S11 0 0 7.00 1.25 no
S12 0 0 7.00 0.50 no
S13 1 0 7.00 5.00 no

continuous time and [ is the length of discrete time units in days. Emulated trials were
conducted using discretization values [ = 7,30,91, 182, 365. There was one emulated
trial per discrete time unit in the first 2 years after cohort start, since screening was only
offered during this time in the hypothetical study underlying the simulation. Individuals
were assigned to the exposure strategy (i.e. screening at baseline), if they participated
in screening during the first discrete time interval and to the control strategy (no screen-
ing at baseline) otherwise. Women who underwent screening or received a breast cancer

diagnosis before baseline were not included in the respective emulated trial.

An intention-to-screen analysis would yield highly conservative effect estimates due to
strong contamination of the control strategy, since the participation rate in mammographic
screening is high and a large proportion in the control strategy undergo screening during
follow-up. Therefore, person-trials in the control strategy were artificially censored when

they participated in screening during follow-up, i.e. a per-protocol effect was estimated.

The effect of screening was assessed non-parametrically using event-specific cumulative
incidence functions. The effect of interest was expressed as the relative risk at the end of

follow-up.

5.1.4 Simulation scenarios

For each simulation scenario, a cohort of size n = 100,000 individuals was simulated in

500 simulation runs. Results were averaged. The scenarios are given in Table 5.2.

Scenarios S1 and S2 can be regarded as realistic based on background knowledge from
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Table 5.3: Proportions of analysis variables in the simulated cohort, mean over all simu-
lation runs

Key A Busymp Bsymp D Y
S1  0.82 0.13 0.098 0.10 0.024
S2  0.82 0.13 0.098 0.10 0.024
S3  0.82 0.13 0.099 0.10 0.024
S4  0.82 0.13 0.100 0.10 0.025
S5 0.82 0.13 0.100 0.10 0.025
S6  0.79 0.13 0.098 0.09 0.105
S7  0.82 0.13 0.099 0.10 0.024
S8  0.82 0.13 0.100 0.10 0.024
S9  0.82 0.13 0.101 0.10 0.025
S10 0.82 0.13 0.098 0.10 0.024
S11  0.82 0.13 0.098 0.10 0.024
S12 0.82 0.13 0.098 0.10 0.024
S13 0.82 0.13 0.098 0.10 0.018

the published literature (excepting the null-effect pycreen effect = 0).

Scenarios S3 - S5 are increasingly unrealistic in that the time from asymptomatic dis-
ease onset to development of symptoms and finally breast cancer related death are much
shorter than what is expected for the majority of cases. Scenario S6 is unrealistic in that
it assumes a large number of early and sudden breast cancer related deaths. Scenarios S7
- S12 are modifications of scenarios S3 - S5 where either only sojourn time or only 7jea

are decreased.

Scenario S13 can be regarded as realistic when assuming a strong protective effect. Screen-
ing mammography aims to detect breast cancer early so that treatment can be initiated at a
stage where prognosis is favorable. The scenario is slightly exaggerated in that it assumes
100% of breast cancers detected at the asymptomatic stage can be treated successfully
and do not result in a breast cancer related death, whereas the real 5-year survival rate
of localized breast cancer is 99.3%, i.e. slightly below 100% [National Cancer Institute,
2024].

5.1.5 Results & discussion of simulation study

Realized proportions of the analysis variables in the simulated cohort underlying the emu-
lated trials were checked and means were calculated across all simulation runs. The res-
ulting mean proportions are given in Table 5.3. Results of the simulation are given as
relative risks at the end of follow-up and are summarized (mean over all simulation runs)

in Figure 5.2.
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Figure 5.2: Results of simulation runs. Error bars represent + standard error. The vertical,
dashed line indicates the null-effect.
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The presence of competing events complicates interpretation of the results slightly: Im-

mortal time bias due to the competing event may falsely reduce the point estimate for the
effect of screening on the competing event, but it may increase the estimate for the event
of interest — women who underwent screening in the first time interval cannot have died
before and are still at risk of breast cancer death, while women dying from other causes
early cannot undergo screening and also cannot die from breast cancer later on. Both dir-
ect and total effect of screening mammography on breast cancer mortality were estimated
to untangle this issue. As shown in Figure 5.2, results differed only slightly between direct
and total effect with slightly larger relative risks for the total effect. The following dis-
cussion focuses on the controlled direct effect for simplicity, but extends to the total effect

implicitly.

Scenarios S1 and S2 were the most realistic scenarios when assuming a null-effect, with
S2 including a harmful effect of screening relating to increased breast cancer mortality
due to overdiagnosed cases dying from complications of unnecessary treatment. In both
scenarios, notable immortal time bias occurred only when discrete time intervals of length
365 days were used. At finer granularity, no substantial immortal time bias was visible.
This indicates that under realistic settings, residual immortal time bias within the first
discrete time interval after time zero does not pose a threat in this application, unless
discrete time intervals become very long. The harmful effect of screening assumed in
scenario S2 did not result in visibly increased RRs. This is likely due to the small effect

S1Z¢€ Ofplethal treatment — 0.01.

In scenarios S3 - S5 both sojourn time and time from symptom onset to breast cancer
death were gradually and simultaneously decreased. In scenarios S7 - S9 only sojourn
time was decreased, while in scenarios S10 - S12 only time from symptom onset to breast
cancer death was decreased. In scenarios S3 - S5, immortal time bias increased with
decreasing sojourn time and time to breast cancer death. Furthermore, immortal time bias
became more severe with increasing granularity of discrete time. Especially in scenario
S5, immortal time bias increased with every increase in granularity of discrete time. In
scenarios S7 - S12, i.e. when only sojourn time or only time to death decreased, immortal
time bias also increased for the coarsest level of discrete time, but to a lesser extent. For
finer granularities of time, results did not stray far from the true null-effect. This indicates
that substantial bias can arise when the time from exposure to outcome becomes short

compared to the length of discrete time intervals.

Scenario S6 was an extreme case analysis in which a large amount of outcome events was
observed early and suddenly. This scenario was susceptible to immortal time bias, which

increased in severity as granularity of discrete time coarsened. This indicates that if a
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substantial portion of outcome events are observed during early follow-up, emulated tar-

get trials become susceptible to immortal time bias, particularly at coarser discretization of
time and especially when these early outcomes are spontaneous. It is noteworthy that scen-
ario S6 was unrealistic in that it simulated a large number of early breast cancer deaths that
were not preceded by a symptomatic disease phase. A study assessing the effectiveness of
mammography screening should include average risk women while excluding those who
already show symptoms of breast diseases and are at a higher risk of breast cancer related
mortality soon after baseline. High risk women are not the target population of mam-
mographic screening, but should receive diagnostic or curative medical attention instead.
While scenario S6 was an exaggeration to illustrate the potential for residual immortal
time bias, it does refer to the real phenomenon that especially among young women (e.g.
aged 40 or under), breast cancers are more often progressing much faster than in older
women, often are diagnosed at a more advanced stage and, subsequently, tend to have
worse survival outcomes [Assi et al., 2013]. However, even in those cases it is unlikely
that breast cancer deaths are not preceded by a symptomatic phase, which could be used
to restrict eligibility to the study. If, however, insufficient information were available in
the data to properly check eligibility, prevalent cases could mistakenly be included in the
cohort, leading to biased estimation as seen in scenario S6. This scenario illustrates the im-
portance of applying strict exclusion criteria, so that women with either prevalent or past

breast cancer or with symptoms of breast cancer are excluded from the study population.

Scenario S13 corresponds to scenario S1, with the difference that a non-null effect was
simulated. This was a positive control to check that the simulation set-up worked as in-
tended. Indeed, the results for scenario S13 indicate a protective effect of mammography
screening on breast cancer mortality. This scenario seemed susceptible to immortal time
bias only when the coarsest level of discrete time was used, as all other effect estimates

were clearly aligned and only the estimate for [ = 365 was lower.
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Discussion & outlook

In this thesis, target trial emulation (TTE) was used to assess the site-specific effectiveness
of screening colonoscopy [Braitmaier et al., 2022b]. Substantive sensitivity analyses were
conducted, tailored to the research question, data source and analysis methods used and
strengthened confidence in the obtained results. For instance, unobserved confounding is a
potential risk to observational studies. A suitable negative control outcome was identified
in Braitmaier et al. [2022b] — see Section 4.4.1 for a discussion of pancreatic cancer as neg-
ative control outcome for screening colonosopy — and no evidence of strong unobserved
confounding could be found. Chapter 4 gives an in-depth description of all sensitivity ana-
lyses conducted, including a discussion regarding the interpretation of each. Extensions
to the original study design were implemented after the initial results were published — see

e.g. Schwarz et al. [2024] for a set up to contrast high and low quality colonoscopy.

Furthermore, non-alignment at time zero was identified as a source of design-induced
bias in site-specific effect estimates reported in previous observational studies [Braitmaier
et al.,, 2024]. While bias due to non-alignment at time zero was discussed as a source of
bias in previous work [Garcia-Albéniz et al., 2017b], Braitmaier et al. [2024] was the
first to investigate how this bias affects site-specific estimates regarding effectiveness of
screening colonoscopy. Even though there was consensus in the published literature re-
garding a higher effectiveness of screening colonoscopy in the distal colon, Braitmaier
et al. [2024] demonstrated that this difference in site-specific effectiveness is mostly an
artifact resulting from selection bias.

Next, the German-language overview paper by Braitmaier and Didelez [2022] serves as a
low threshold entry point to target trial emulation, discussing its strengths and limitations.

It will hopefully increase the uptake of TTE in Germany.
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As part of this thesis, a detailed study protocol for the effectiveness evaluation of the Ger-
man mammography screening program was developed and published in a peer-reviewed
journal [Braitmaier et al., 2022a]. As pre-registration and peer-review of the study design
is not customary in observational research, this is a contribution to increase transparency

and reproducibility in observational studies.

For a discussion of each of the individual studies, the reader is referred to the discussion

sections in the respective papers attached in Chapter 7.

In addition to the study protocol, the present thesis contains methodological work in the
context of the emulated target trial on screening mammography. In particular, a substant-
ive simulation study was conducted to assess residual immortal time bias at varying gran-
ularities of discrete time. No major residual immortal time bias was found when using
realistic settings related to screening mammography, breast cancer mortality and discret-
ization of time as seen in GePaRD. Furthermore, the simulation study may serve as a guide
for target trial emulation with other data sources: Using coarser granularities of discrete
time considerably lightens the computational burden. The simulation results are inform-
ative as to how coarse discrete time intervals may be made before residual immortal time

bias becomes problematic.

In summary, the work presented in this thesis combined recent methodological advances
of causal inference with a rich data source containing information on many clinical factors.
The publications in Chapter 7 represent the first use of target trial emulation to evaluate
cancer screening programs in Germany, providing valuable information to inform patients

and policy makers.

6.1 Future perspectives

Several research questions remain and merit future work. First, the analyses described in
the study protocol by Braitmaier et al. [2022a] were underway when this thesis was written.
The results will contribute to decision making by health authorities regarding the future
of the German mammography screening program and will be published in peer-reviewed

journals to inform the public.

Further methodological work relating to the analyses described here may be conducted in
the future. For instance, bootstrapping in the context of target trial emulation is computa-
tionally demanding when using large health claims datasets and methods such as pooled
logistic regression or the parametric g-formula. Bootstrap samples need to be drawn from

the underlying population of i.i.d. individuals to repeat the entire emulation and analysis
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process several hundred times. Alternative approaches — such as extensions of the wild
bootstrap to account for correlated data — could be explored, either analytically or in simu-
lation studies, with the goal of decreasing computation time while ensuring nominal cov-

erage.

In the context of screening for colorectal cancer, several research questions remain open.
A natural extension of Braitmaier et al. [2022b] would be to assess the effectiveness of not
only screening colonoscopy, but also the alternative screening test for fecal occult blood,
which is offered in Germany starting at age 50 and is repeated every year until age 55 and
every other year thereafter. Furthermore, the effectiveness of screening colonoscopy was
only assessed in the age group of 55 to 69, but not in older individuals. Longer lookback
needs to be available to appropriately exclude individuals exposed to screening colono-
scopy in the ten years before time zero. This is less of a concern in younger individuals,
because screening colonoscopy was only available to the average risk population starting
atage 55. When more data years become available, sufficient lookback might be achieved
to assess the effectiveness also in older individuals. The presence of competing events and
confounding between exposure and competing death, however, further complicate the as-
sessment of effectiveness in an elderly, partly frail population. Further restriction criteria

regarding frailty and end-of-life may be explored to mitigate these issues.

6.2 Conclusion

The work presented in this thesis demonstrated that health claims data can be used to
reliably estimate the effect of cancer screening programs on cancer incidence, if appro-
priate study designs and methods are used. At the same time, potential for substantial,
self-inflicted bias was found in the context of site-specific effectiveness of colorectal can-
cer screening, if alignment at time zero was violated. A clear and concise definition of
the estimand and the target protocol along with its emulation is, therefore, invaluable for

convincing causal analyses with real world data.
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Publications

7.1 Author contributions

The following Table 7.1 gives an overview of the author contributions of Malte Braitmaier

for each paper contributing to this thesis.
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7.2 Paper 1: Screening colonoscopy similarly preven-
ted distal and proximal colorectal cancer: a pro-
spective study among 55-69-year-olds

This paper was published under a CC-BY open access license in the Journal of Clinical
Epidemiology. For details on how to cite the paper, refer to
https://doi.org/10.1016/j.jclinepi.2022.05.024
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Abstract

Objectives: We aimed to evaluate the effectiveness of screening colonoscopy in reducing incidence of distal vs. proximal colorectal
cancer (CRC) in persons aged 55—69 years.

Study Design and Setting: Using observational data from a German claims database (German Pharmacoepidemiological Research
Database), we emulated a target trial with two arms: Colonoscopy screening vs. no-screening at baseline. Adjusted cumulative incidence
of total, distal, and proximal CRC over 11 years of follow-up was estimated in 55—69-year-olds at an average CRC risk and without co-
lonoscopy, polypectomy, or fecal occult blood test before baseline.

Results: Overall, 307,158 persons were included (screening arm: 198,389 and control arm: 117,399). The adjusted 11-year risk of any
CRC was 1.62% in the screening group and 2.38% in the no-screening group resulting in a relative risk of 0.68 (95% CI: 0.63—0.73). The
relative risk was 0.67 for distal CRC (95% CI: 0.62—0.73) and 0.70 (95% CI: 0.63—0.79) for proximal CRC. The cumulative incidence
curves of the groups crossed after 6.7 (distal CRC) and 5.0 years (proximal CRC).

Conclusion: Our results suggest that colonoscopy is effective in preventing distal and proximal CRC. Unlike previous studies not using
a target trial approach, we found no relevant difference in the effectiveness by location. © 2022 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Screening colonoscopy; Colorectal neoplasms; Observational study; Effectiveness; Target trial emulation; Proximal

1. Introduction

Colorectal cancer (CRC) is among the most common
cancers and leading causes of cancer death worldwide
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[1]. An intention-to-screen meta-analysis of randomized
controlled trials (RCTs) on screening with flexible sigmoid-
oscopy showed a reduction of CRC incidence by 18% and
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What is new?

Key findings

e Using a target trial approach that avoids self-
inflicted biases, we found no notable difference
in effectiveness between distal and proximal colon
among persons aged 55—69 years at baseline.

What this adds to what is known?

e Previous observational studies suggested a lower
effectiveness of screening colonoscopy to prevent
colorectal cancer in the proximal than distal colon,
but these studies might be compromised by self-
inflicted selection bias.

What is the implication, what should change now?

e Our findings support the use of colonoscopy for
screening purposes in persons aged 55—69 years
to prevent both distal and proximal colorectal
cancer.

European Initiative on Colorectal Cancer study, the only
RCT assessing the effectiveness of screening colonoscopy
compared to no screening, will provide key insights into
the overall effect of colonoscopy on CRC incidence and
mortality [3]. Nonetheless, despite its large sample size, it
is not powered to investigate differences in the effect as
per tumor location.

Observational studies suggested a markedly lower effec-
tiveness of screening colonoscopy in reducing CRC inci-
dence in the proximal vs. distal part of the colorectum
[4—6]. For example, a recent cohort study by Guo et al.
suggested an incidence reduction of 64% for distal and
31% for proximal CRC. However, validity of existing
observational studies on this topic is questionable due to
possibly self-inflicted biases introduced by the analytical
approach. Garcia-Albéniz et al. demonstrated how effects
of screening colonoscopy on CRC incidence are overesti-
mated when treatment/exposure assignment is done before
baseline, whereas eligibility is assessed at baseline [7]. This
overestimate may differentially affect CRCs in the distal vs.
proximal colon. An accurate assessment of the difference of
colonoscopy in reducing incidence in the distal vs. prox-
imal colon is important, particularly for estimating the
risk-benefit ratio of screening colonoscopy compared to
the less invasive screening sigmoidoscopy.

As it seems unlikely that any RCT will be powered to
clarify this question, observational studies on screening co-
lonoscopy remain important to complement existing evi-
dence. These studies should exploit large databases with
sufficiently long follow-up. Furthermore, the observational
data must be analyzed in a way that facilitates causal con-
clusions and avoids self-inflicted biases. The emulation of

target trials is well recognized in this regard and was suc-
cessfully applied by Garcia-Albéniz et al. to estimate the
effectiveness of screening colonoscopy in Medicare benefi-
ciaries aged 70 years or older [8].

Extending this approach, we aimed at evaluating the
effectiveness of screening colonoscopy in reducing inci-
dence of distal vs. proximal CRC in persons aged 55—69
years using a large German claims database.

2. Methods

We emulated target trials comparing the strategies
“screening colonoscopy at baseline” vs. “no screening at
baseline”’, both with access to further screening and diagnostic
colonoscopies during follow-up. Supplement Table S1
contains a summary of our target trial protocol and its
emulation.

2.1. Data source and study population

We used the German Pharmacoepidemiological
Research Database (GePaRD) which comprises claims data
from four statutory health insurance providers in Germany
and covers about 20% of the German population [9]. We
used data from 2004 to 2017. Information on utilization
of screening colonoscopy, offered in Germany to persons
aged 55 years or older since 2002, is distinguishable from
diagnostic colonoscopy. Supplement 4 provides details on
GePaRD and the identification and classification of CRCs
in GePaRD.

To be eligible, persons had to be aged 55—69 years at
baseline, that is, at the start of the respective trial and had
to be continuously insured for at least 3 years before base-
line. As detailed in Figure 2 and Supplement 1, further in-
clusion and exclusion criteria were applied to focus on an
average-risk population, corresponding to ongoing colonos-
copy trials and prior target trials on colonoscopy [2,3,8].

2.2. Treatment arms and follow-up

The first quarter of 2007 was the baseline quarter of the
first trial. In this quarter, we assessed eligibility criteria for
all persons. The persons meeting the eligibility criteria
were assigned to the screening arm if they underwent colo-
noscopy screening in the baseline quarter or to the no-
screening arm otherwise. As previously described [8], this
procedure was repeated for all quarters from 2007 to
2011, yielding 20 successive trials. Persons could be
enrolled in more than one trial (Fig. 1). In particular, our
sample consisted of 7,4 persons, some of which were
included in more than one emulated trial, so that the final
sample size (including nonunique persons) was n >
Munique- 10 Teduce computational time, we used a 5%
random sample of those in the no-screening arm (drawn
at person level), which still yielded a high number of per-
sons in this arm.
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Fig. 1. Illustration of emulation of a series of target trials. The figure
displays a hypothetical person who met all eligibility criteria at the
start of 2007. This person was included in the emulated trial starting
on January 1, 2007. One-quarter later, the same person was still
eligible and was included in the emulated trial starting on April 1,
2007. The person was assigned to the control arm in both these trials,
as no screening colonoscopy was observed during the respective base-
line quarters. The person was still eligible for the emulated trial start-
ing on July 1, 2007. However, the person was allocated to the
screening arm as a screening colonoscopy was observed in the quarter
following July 1, 2007. The person was not eligible for the trial start-
ing on October 1, 2007 because a screening colonoscopy before this
trial’s baseline was observed. Data from all these trials were pooled
and time since baseline (of the respective trial) was used in all
time-to-event analyses.

Persons were followed up until the end of study period
(end of 2017), end of continuous insurance coverage, death,
or CRC diagnosis, whichever occurred first. The arms were
defined as screening vs. no-screening in the respective
baseline quarter regardless of screening behavior during
the remaining follow-up. Persons were not censored from
earlier trials once they changed strategy in subsequent tri-
als. We chose this approach over imposing full adherence
during follow-up by analysis because it avoids strong as-
sumptions on time-varying confounding (details in
Supplement 3).

2.3. Outcome and confounding variables

The outcome was the time until first diagnosis of CRC
during follow-up. This was analyzed for any type of CRC
and further analyzed separately for CRCs proximal and
distal to the splenic flexure (no separate analysis for the
category ‘‘both/unknown location” due to small numbers)
(Supplement 4).

We adjusted for confounding baseline covariates using
direct (e.g., age, gender, menopausal hormone therapy) or
proxy information (e.g., use of preventive services) on rele-
vant factors (Supplement 4).

2.4. Statistical analysis

We pooled persons across all emulated trials. The effect of
interest was measured as contrast between cumulative inci-
dence functions (CIF). We used pooled logistic regression
to estimate a parametric version of the Aalen—Johansen

estimator (details in Supplement 3). Adjustment for baseline
confounding was achieved by inverse probability of treat-
ment (i.e., propensity score) weighting. Covariate balance af-
ter weighting was examined using absolute standardized
differences. Overlap of the propensity score distributions
was assessed using histograms. Point wise, percentile-
based 95% confidence intervals were obtained using a robust,
person-level bootstrap with 250 iterations.

The above contrast of adjusted CIFs is known as total ef-
fect where death is not eliminated as competing event; in a
sensitivity analysis, we also estimated the direct effect (i.e.,
censoring and thus hypothetically eliminating death), ex-
pecting no relevant difference between the two approaches
in the age group of our study (details in Supplement 3).

Confounding variables were mostly operationalized as
binary variables. Missing values for educational attainment
were included as a distinct category. A negative control
analysis with pancreatic cancer as outcome variable was
conducted to assess residual confounding.

Supplement 3 contains a detailed description of the sta-
tistical methods. Data management and statistical analyses
were done in SAS software version 9.4 (SAS Institute,
North Carolina).

3. Results

Overall, 2,378,416 persons fulfilled all eligibility
criteria. Of these, 198,389 persons were assigned to the
screening colonoscopy arm. The random sample of controls
assigned to the no-screening arm included 117,399 persons
(1,247,913 nonunique persons, Fig. 2). Results reported
below refer to nonunique persons and outcome events, that
is, n always includes nonunique persons. Median follow-up
was 8.3 years (interquartile range: 3.0).

About half of the study population was female with me-
dian age 60—62 years in both arms (Table 1). The propor-
tion of persons with higher education was 20% in the
screening and 15% in the control arm. The group differ-
ences in the prevalence of the further confounders were
<3 percentage points, except for menopausal hormone
therapy (23% among screened vs. 14% among controls)
and uptake of at least one preventive service before baseline
(85% among screened vs. 66% among controls). Covariate
balance checks and propensity score overlap were satisfac-
tory (Supplement Figures S4—S5).

We observed 2,540 incident CRCs in the screening and
21,973 in the control arm (Table 2). In men, the ratio of the
number of distal to proximal CRCs was 2.7 in the screening
(women: 1.5) and 2.5 in the control arm (women: 1.6).
Figure 3 shows the adjusted CIF curves for any distal and
proximal CRC. After the initial spike in cumulative CRC
incidence in the screening arm (0.79%), the slope of the
CIF curve remained lower than in the no-screening arm
throughout follow-up. The CIF curves for any CRC of both
arms crossed after 6 years. After 11 years, the adjusted risk
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n = 3,230,085

unique

55 — 69 years old with three years continuous insurance coverage: n = 46,649,628,

Exclusion diagnoses:

5,564,367

» Gl symptoms in six months before BL: n = 8,030,853
» CRC, colorectal carcinoma in situ, adenoma, precursor ever before BL: n =

+ Inflammatory bowel disease ever before BL: n = 706,285

Asymptomatic before BL:n = 34,308,066, n

unique

=2,789,110

Exclusion diagnostic procedures:

* Abdominal CT or barium enema in six months before BL: n = 279,074

HNPCC test ever before BL: n = 4

Colonoscopy, polypectomy ever before BL: n = 6,524,645
Colectomy ever before BL: n = 234

FOBT ever before BL: n = 3,005,453

| Screening naive: n = 25,270,395, n

=2,378,416

unique

v

| After random selection of controlsn = 1,446,302, nq,e = 307,158

e —

Screening group:n = 198,389, n
198,389
Person-years of FU: 1,617,419
CRC diagnoses during FU: n = 2,540,
n =2,540

unique =

unique

No screening group:n = 1,247,913,

Nunique = 117,399

« Person-years of FU: 9,729,520

« CRC diagnoses during FU: n =
21,978, Nynique = 2,109

Fig. 2. Flow into study cohort of persons aged 55 to 69 years with at least 3 years continuous health insurance coverage prior to baseline (allowing
for 15-day gaps in insurance coverage). GePaRD data from 2004 to 2017 were used, with emulated target trials in every calendar quarter from

2007 to 2011.

was 1.62% (1.54—1.68%) in the screening arm compared to
2.38% (2.26—2.51%) in the control arm (adjusted absolute
risk difference: 0.77%, adjusted relative risk [aRR]: 0.68,
Table 2). The overall pattern of the CIF curves for distal
and proximal CRC was similar to any CRC. For proximal
CRC, the curves crossed earlier (after 5.0 years) compared
to distal CRC (after 6.7 years). After 11 years, the adjusted
absolute risk difference for distal CRC was 0.47% and the
aRR was 0.67. For proximal CRC, the adjusted absolute
risk difference was 0.22% and the aRR was 0.70
(Table 2). Supplement 9 provides a comparison of adjusted
and unadjusted CIF curves.

Supplement Table S2 provides characteristics of incident
CRCs, by screening arm and site of CRC. It also shows that
4.2% of distal CRCs and 4.8% of proximal CRCs in the
screening arm were included in at least one earlier
emulated trial in the control group. Overall, 16.9% of con-
trols were included in the screening arm of a later trial.
Supplement 8 presents the results of additional analyses re-
stricting to persons aged 55—64 years. Sensitivity analyses
treating death as a censoring event, that is, estimating the
direct instead of the total effect did not deviate substantially

from the main results (Supplement 10). Supplement 6 dis-
plays the results of a negative control analysis using pancre-
atic cancer incidence as an outcome.

4. Discussion

This study including more than 300,000 persons aged
55—69 years is—to our knowledge—the largest observa-
tional study on the effectiveness of colonoscopy in prevent-
ing distal vs. proximal CRC. Unlike previous observational
studies, our study did not show any substantial difference in
effectiveness between proximal and distal CRC. The 11-
year risk of CRC in the colonoscopy vs. control arm was
reduced by 33% (confidence interval [CI]: 27—38%) for
distal and by 30% (CI: 21—37%) for proximal CRC. The
cumulative incidence curves of the screening and control
arm crossed after 6.7 years follow-up for distal CRC and
after 5.0 years for proximal CRC.

This is the first observational study on the effectiveness of
screening colonoscopy in reducing distal vs. proximal CRC
incidence using a target-trial emulation. The advantage of
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Table 1. Baseline characteristics stratified by gender and treatment arm (screening colonoscopy arm vs. control arm). All numbers refer to

nonunique persons

Male Female Total
Screening No screening Screening No screening Screening No screening
(N = 99,101) (N = 583,861) (N = 99,288) (N = 664,052) (N = 198,389) (N = 1,247,913)

Characteristic n % n % n % n % n % n %
Age

Median (Q1-Q3) 61 57—-65 61 58-66 60 57—-65 62 58—66 61 57—65 62 58—66

Mean (SD) 61.3 450 61.6 447 609 455 61.9 451 61.1 453 61.8 4.49
Education

No degree/unknown 51,793 52.3 343,765 589 66,309 66.8 495934 74.7 118,102 59.5 839,699 67.3

Basic or secondary degree 19,876 20.1 117,450 20.1 20,391 20.5 109,463 16.5 40,267 20.3 226,913 18.2

Higher education 27,432 27.7 122,646 21.0 12,588 12.7 58,655 8.8 40,020 20.2 181,301 14.5
Region

East Germany 21,926 22.1 114,590 19.6 22,423 22.6 131,645 19.8 44,349 22.2 246,235 19.7

West Germany 77.175 77.9 469,271 80.4 76,865 77.4 532,407 80.2 154,040 77.6 1,001,678 80.3
Codes indicating obesity” 12,178 12.3 71,137 12.2 13,649 13.7 94,443 142 25827 13.0 165580 13.3
Diabetes type 2 14,762 14.9 98,120 16.8 8,689 8.8 75,849 114 23,451 11.8 173,969 13.9
Codes indicating a family 91 0.1 145 <0.05 409 0.4 851 0.1 500 0.3 996 0.1

history of CRC"
Menopausal hormone therapy  N.A. N.A. 22,759 229 95439 144 N.A. N.A.
Use of acetylsalicylic acid 4,743 4.8 31,008 5.3 1,527 1.5 13,164 2.0 6,270 3.2 44,172 3.5
Codes for alcohol abuse? 2911 29 27,212 4.7 1,485 1.5 14,477 2.2 4,396 2.2 41,689 3.3
Codes for heavy smoking® 5487 5.5 42,871 7.3 4,742 4.8 35,438 5.3 10,229 5.2 78,309 6.3
Use of other preventive services during 3 years before baseline”

None 23,109 23.3 258,419 443 5888 5.9 162,228 24.4 28,997 14.6 420,647 33.7

One or more 75,992 76.7 325,442 55.7 93,400 94.1 501,824 75.6 169,392 85.4 827,266 66.3

Q1—Q3, interquartile range; SD, standard deviation.
@ Only coded if there is a reimbursement of treatment or services due to these conditions, not coded for all persons with the respective

condition.
b Used as a proxy variable for preventive behavior.

this approach lies in avoiding time-related and other biases
that can be introduced by a poor study design, also called
self-inflicted biases because they are avoidable [10]. Previ-
ous observational studies addressing this research question
may have suffered from such biases. For example, a study
by Guo et al. suggesting a 64% risk reduction for distal
CRC but only a 31% risk reduction for proximal CRC
inquired at baseline about past colonoscopies and—based
on this information—assigned persons as exposed or unex-
posed to colonoscopy. Persons reporting at baseline CRC
in the past were excluded [6]. Given that colonoscopy is
typically used for CRC diagnosis, this exclusion criterion
mainly affects the colonoscopy group, leading to an imbal-
ance regarding prevalent CRCs yet undetected at baseline
(i.e., less in the colonoscopy group). As a result, the cumu-
lative CRC incidence in the colonoscopy group during
follow-up is artificially lowered, leading to an overestimate
of the preventive effect of colonoscopy as described by
Garcia—Albeniz et al [7]. As the vast majority of CRCs
diagnosed at an age when persons are typically included into
screening studies are in the distal colon [11], whereas

proximal CRC is more common at an older age, it seems
plausible that the overestimation mainly concerned the pre-
ventive effect for distal rather than proximal CRC. Accord-
ingly, also the difference in the effectiveness of colonoscopy
by location was overestimated. It seems likely that the differ-
ential age distribution of distal and proximal CRC also intro-
duced considerable bias in case-control studies and other
types of cohort studies suggesting a substantially higher
effectiveness of colonoscopy in the incidence or mortality
of distal vs. proximal CRC [4,5,12].

In the interpretation of prior studies suggesting a sub-
stantially lower effectiveness of colonoscopy for proximal
vs. distal CRC, a higher miss rate of colonoscopy or special
biological properties of precursor lesions in the proximal
colon were assumed to explain the findings. Particularly,
sessile serrated lesions play a major role in this reasoning
as they primarily occur in the proximal colon. They act
as precursors to CRC developing via the serrated pathway
characterized by the CpG methylator phenotype and micro-
satellite instability and are assumed to account for 25% of
sporadic CRCs [13]. Some studies reported that the



M. Braitmaier et al. / Journal of Clinical Epidemiology 149 (2022) 118—126 123

Table 2. Number of incident CRC and adjusted effect estimates at 11 years of follow-up, stratified by site

11-year absolute risk

# Nonunique cases difference 11-year relative risk
Screening No screening
Site Gender (N = 198,389) (N = 1,247,913) NNS % [95% CI°] [95% CI°]
Distal Male 1,046 8,211
Female 521 5,004
Total 1,567 13,215 213 0.47 [0.35;0.571 0.67 [0.62;0.73]
Proximal Male 385 3,244
Female 350 3,215
Total 735 6,459 463 0.22 [0.14;0.29] 0.70 [0.63;0.79]
Both distal and proximal or unknown site  Male 133 1,153
Female 105 1,146
Total 238 2,299
Total Male 1,564 12,608
Female 976 9,365
Total 2,540 21,973 131 0.77 1[0.62;0.91] 0.68 [0.63;0.73]

Abbreviation: NNS, number needed to screen, calculated as the inverse of the absolute risk reduction.

No effect estimates are given for both distal and proximal or unknown site and for gender-specific incidence, as there were too few cases for
reliable estimation.

@ Person-level percentile bootstrap confidence intervals based on 250 bootstrap samples.

detection rate for sessile serrated lesions varied between en- discrepancy with the results of prior studies on site-specific
doscopists and correlated with their adenoma detection rate effectiveness of colonoscopy.
[14,15]. In the real-world setting, variation in the detection Sessile serrated lesions have also been associated with a
of sessile serrated lesions might thus be relevant. Our find- higher risk of metachronous neoplasia compared to conven-
ings, however, do not suggest a strong impact of this vari- tional adenomas [16—18]. Whether this could lead to lower
ability regarding potential differences in the effectiveness effectiveness of colonoscopy in the proximal colon also
of colonoscopy by site as proposed previously. Colonoscop- depends on adherence to surveillance colonoscopy. We previ-
ies in our study were performed in 2007 or later, that is, at a ously showed that among persons with prior snare polypec-
time of heightened attention toward the quality of colonos- tomy in Germany about 60% underwent at least one repeat
copy but we think it is unlikely that this explains the large colonoscopy within 5 years and about 80% within 10 years
Distal Proximal Any CRC
0.03 1

L 0.02-
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Fig. 3. Adjusted cumulative incidence functions showing 11 years of follow-up. Analyses were done by site of incident CRC. No separate analyses
were done for incident CRCs of unknown location and simultaneous distal and proximal incident CRCs because too few events were observed.
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[19]. The effectiveness of screening colonoscopy estimated in
our study includes the potential effect attributable to these sur-
veillance colonoscopies. Effectiveness might have been higher
in case of perfect adherence to surveillance or lower in case of a
poorer uptake.

In our study, the curves for proximal CRC crossed about
2 years earlier than for distal CRC. This may suggest that
the time between transition from precancerous lesions or
preclinical CRC to clinical CRC is, on average, shorter
for proximal than for distal CRC. In view of the distinct
molecular features of distal and proximal CRC [20], differ-
ences in the natural history by location seem plausible and
could further be elucidated by the promising field of molec-
ular pathological epidemiology [21]. Although direct evi-
dence on adenoma dwell and sojourn time is hardly
obtainable, analyses showing poorer survival for proximal
than for distal CRC [22] and case reports on fast-growing
sessile serrated lesions indirectly support a high progressive
potential of neoplasia in the proximal colon [23,24]. Of
note, our findings refer to persons aged 55—69 years at
screening colonoscopy. Caution is needed when extrapo-
lating the results to older ages, also because the natural his-
tory likely differs by age and the importance of the
competing event death increases with age.

When comparing our results for distal CRC to RCT find-
ings on screening with flexible sigmoidoscopy [2,25], one
should note that no exact agreement was expected for
several reasons. First, most RCTs included persons aged
55—64 years at baseline [2,26], whereas we included per-
sons aged 55—69 years. Second, the intention-to-screen ef-
fect reported in these trials depends on adherence at
baseline (varying 60—80%) and is thus not directly compa-
rable to the effect estimate in our study where all persons in
the screening arm underwent colonoscopy at baseline.
Also, the per-protocol effects reported by RCTs are not
directly comparable to our results, because in our study,
persons in the control arm were not censored if they under-
went screening colonoscopy later. This contamination
equally affected distal and proximal CRC, so there was
no differential effect (Supplement Table S2). As our
research question focused on the difference in the effective-
ness by location, we favored this approach over censoring
nonscreened persons who were screened during follow-
up, as it avoided further assumptions and we preferred
the more conservative method. Had our aim been to assess
the overall efficacy of screening colonoscopy, correspond-
ing to the per-protocol effect of an RCT, this would have
been inadequate, so we would have chosen another
approach. Third, the effect of screening also depends on
adherence to recommended surveillance intervals, which
may be lower in a real-world setting compared to trials.
In Germany, at least 40% of persons with polypectomy
have been estimated to not adhere to recommended surveil-
lance intervals [19]. Furthermore, the effect of screening
depends on the background prevalence of diagnostic colo-
noscopy. In Germany, the 10-year prevalence of diagnostic

colonoscopy among persons aged 55—69 years was about
22—26% in 2017 [27], that is, a relevant proportion of per-
sons in the control arm may have had a diagnostic colonos-
copy during follow-up. This concerns the control group in
general, so it is not expected to bias the comparison of
site-specific effectiveness of screening colonoscopy. Also,
fecal occult blood testing may have occurred in the control
arm during follow-up. However, it is not expected that the
recommended fecal occult blood test during the study
period—the guaiac test—had a relevant impact on CRC
incidence, since RCT evidence on this test mainly showed
an effect on CRC mortality rather than on incidence [28].

In the interpretation of our results, some limitations must
be considered. First, although we used as much information
as possible to control for confounding, claims data are sub-
optimal in this regard, especially with respect to lifestyle
factors. As proxy information we mainly used conditions
like obesity or diabetes and the use of other preventive ser-
vices. However, as discussed by Garcia—Albéniz et al. [8] it
is unlikely that residual confounding plays a major role
here as adjustment for potential confounders had little
impact on previous observational studies [29,30]. Further-
more, CRC incidence in the control group and in noncom-
pliers was similar in RCTs [25,26,31]. There was also no
indication of any noteworthy residual confounding in a
negative control analysis (Supplement 6). Second, there
are specific codes for screening colonoscopy in our data-
base and we additionally used several exclusion criteria
to focus on an asymptomatic average-risk population, that
is, the target population of screening. Nonetheless, it is
possible that symptoms were not coded in the database.
We assume this did not play a major role in our study as
the CRC detection rate observed in the screening arm at
baseline is plausible and comparable to that reported in
screening trials (0.6% in an analysis restricted to 55—64-
year-olds compared to 0.5% in the Nordic-European Initia-
tive on Colorectal Cancer trial including 55—64-year-olds).

In conclusion, the results of our observational study us-
ing an emulated target-trial approach suggest that colonos-
copy is effective in preventing distal and proximal CRC.
Unlike in previous studies not using a target-trial approach,
there was no relevant difference in the effectiveness by
location. The distinct temporal patterns of the cumulative
incidence curves support hypotheses regarding differences
in the natural history of distal vs. proximal CRC.
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Supplement 2: lllustration of target trial emulation

Figure S1: lllustration of treatment assignment. The persons displayed in the figure depict a
hypothetical trial with a fixed date as baseline (e.g. January 1, 2007). Eligible persons who
received a screening colonoscopy in the baseline quarter are assigned to the screening arm,
whereas eligible persons without a screening colonoscopy are assigned to the control arm.

g = not screened in the baseline quarter

Se

%z screened in the baseline quarter

A°2°%2 8°2 &
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Supplement 3: Statistical modeling of cumulative incidence
curves

Contrasts between cumulative incidence curves (CIF) were used as statistical measure of the
effect of interest. CIFs were estimated using flexible pooled logistic regression models
(D’Agostino et al. 1990) and adjusted for baseline covariates via inverse probability of
treatment weighting (IPTW). Note that sequential trials start at different time points and time ¢
is follow-up time (i.e., time from start of the respective trial). Let time be discrete in quarterly
intervals and let t > 0 be a time point. Furthermore, let Y; € {0, 1} be an indicator variable for
a CRC diagnosis at time t, let A € {0,1} be an indicator variable for the assigned screening
strategy. The screening strategy A was not time-varying since we assessed the effect of
receiving colonoscopy screening at baseline, regardless of subsequent screening behavior
during follow-up. In the following, the overbar notation (Z,) is used to denote a variable’s history
up to time t. In the following, person-specific subscripts are mostly suppressed. However,
assume that our sample comprised n entries from m unique persons, some of which were
included in more than one ftrial (i.e. n = m).

Then, the discrete-time hazard of a CRC diagnosis was modelled as

logit{P (Y1 = 1|Y; = 0,4)}
= Blt + thz + ﬁ3\/f + ﬁ4 log(t) + BstA + ﬁ6t2A + 37\/514 + ﬂg log(t) A.

In the above equation, £ are the coefficients of the pooled logistic model. The transformations
of time were selected so that the unadjusted parametric model returned the same results as a
non-parametric Aalen-Johansen analysis (assessed visually, Aalen & Johansen 1978). The
above hazard is then transformed and weighted to obtain the adjusted CIF for CRC (Hernan
& Robins 2020). Covariate balance after weighting was examined using absolute standardized
differences (Stuart et al. 2013). The contrast of CIFs for screened and unscreened can be
interpreted as total causal effect of screening on CRC incidence, where ‘total’ means that the
competing event of death is not eliminated. We preferred this approach as it is meaningful in
a real-world setting and avoids additional assumptions regarding no unobserved confounding
between death (i.e., the competing event) and colorectal cancer incidence (i.e., the outcome
event). The alternative of estimating the direct effect by treating the competing event of death
as a censoring event, which is often the default analysis, was carried out in a sensitivity
analysis (see Supplement 10: below). This direct causal effect corresponds to the question of
what would have happened in a hypothetical setting where death as competing event was
eliminated had all individuals in the sample received screening versus had all individuals not
received screening. As illustrated below in Supplement 10:, this did not substantially change
the results. For details on total and direct effects, see Young et al. (2020).

Adjustment for baseline confounding was achieved via stabilized inverse probability of
treatment weighting. For this, PS were calculated via logistic regression, i.e., the probability of
undergoing screening in the baseline quarter was calculated conditional on age at baseline,
sex, educational attainment, CRC in family history, obesity, use of acetylsalicylic acid,
menopausal hormone therapy, type 2 diabetes, alcohol dependence, nicotine dependence and
use of preventive services during three years before baseline (zero, one, at least two). Weights
were truncated at the 99th percentile to avoid instable estimation due to extreme values. The
CIFs were estimated as the product over time of estimated outcome probabilities based on the
above discrete-time hazards. Our approach corresponds to the total effect estimated via
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inverse probability of treatment weighted estimators using subdistribution hazards as
described in Young et al. (2020).

Our sample consisted of m unique persons, some of which were included in more than one
emulated trial, so that the final sample size (including non-unique persons) was n > m.
Confidence intervals were computed using robust, person-level bootstrapping. For this, a
bootstrap sample was obtained by sampling (with replacement) m observations from the list of
unique persons. The process of emulating target trials and including some persons in more
than one emulated trial was then repeated for this bootstrap sample and the above, adjusted
standardized CIFs were computed. This process was repeated for B = 250 bootstrap iterations
and pointwise, percentile-based 95 % confidence intervals were derived from the resulting B
bootstrap estimates.

We chose the approach of not imposing full adherence over follow-up as it avoids the need for
much stronger assumptions concerning fully measured time-varying confounding.
Furthermore, we preferred the more conservative estimate resulting from individuals in the
control strategy undergoing screening later during follow-up. We point out that this approach
is not directly comparable to either intention-to-treat or per-protocol effects from RCTs.
Although some studies that emulated target trials refer to this approach as an intention-to-treat
effect, there is no non-adherence at baseline (which would occur in an intention-to-treat
analysis in an RCT). At the same time, we do not censor individuals during follow-up, when
they stop adhering to the assigned screening strategy, which would be required for a per-
protocol effect. However, our focus in this study was to compare site-specific effects of
colonoscopy and not to estimate effects that are directly comparable to RCTs. We therefore
chose the approach that avoided additional, strong assumptions to ensure the highest possible
validity of results regarding our main research question.
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Supplement 4: Data source, study population and identification/
classification of CRC cases in GePaRD

We used the German Pharmacoepidemiological Research Database (GePaRD) which is
based on claims data from four statutory health insurance providers in Germany and currently
includes information on approximately 25 million persons who have been insured with one of
the participating providers since 2004 or later. Details about GePaRD have been described
elsewhere (Pigeot & Ahrens 2008, Haug & Schink 2021). In addition to demographic data,
GePaRD contains information on drug dispensations as well as outpatient (i.e., from general
practitioners and specialists) and inpatient services and diagnoses. Per data year, there is
information on approximately 20% of the general population, and all geographical regions of
Germany are represented. For this study, we used data from 2004 to 2017.

In GePaRD information on utilization of screening colonoscopy, which has been offered in
Germany since 2002 to persons aged 55 or older, is available including the date of the
procedure. Screening colonoscopy can be distinguished from diagnostic colonoscopy as there
are different reimbursement codes for these procedures.

Age, sex, educational attainment, codes indicating a family history of CRC, codes indicating
obesity, codes indicating type 2 diabetes, codes indicating severe alcohol abuse, codes
indicating severe nicotine dependence, use of low-dose acetylsalicylic acid, use of
menopausal hormone therapy, and use of preventive services (none, one, or at least two
during three years before baseline) were assessed as baseline covariates. The latter served
as a proxy variable for a preventive behavior. Diagnosis codes and prescriptions relevant for
the ascertainment of baseline covariates were considered in the three years before baseline,
except for codes regarding family history which were considered any time before baseline.
Codes used to derive analysis variables are available upon request.

CRC diagnoses in GePaRD are coded according to the German modification of the
International Classification of Diseases, 10th revision (ICD-10-GM). We considered inpatient
diagnosis codes of CRC, which are considered to have a high validity. To avoid
misclassification, patients with only outpatient diagnosis codes of CRC were classified as CRC
cases if additional criteria such as codes for diagnostic procedures and surveillance were met.
Roughly 98% of CRC cases had an inpatient CRC diagnosis. Regarding classification of
location into proximal and distal to the splenic flexure, we used the information as provided by
the ICD code (proximal: C18.0-C18.4; distal: C18.5-C18.7, C19, C20). CRCs with unclear
information on location (C18.8 and C18.9) or with two or more codes providing discordant
information regarding proximal vs. distal location were classified into the category “both /
unknown”. A more detailed classification of tumor location would have resulted in more missing
values given that information on the exact location was more often discordant. Stage at
diagnosis was roughly estimated based on ICD codes indicating lymph node involvement or
distant metastases as previously described (Oppelt et al. 2019). Additionally, we considered
codes for cancer treatment typically used in more advanced stages. Based on this information,
CRCs were classified into the categories “advanced” and “non-advanced”. All codes used are
available on request.
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Supplement 6: Negative control analysis

A negative control analysis was conducted to assess the possibility of residual unmeasured
confounding. The analysis was carried out as described for the effect of screening colonoscopy
on overall CRC incidence, but CRC was replaced by pancreatic cancer as outcome variable.
If no residual unmeasured confounding was present, one would expect no association as there
is no mechanism by which screening colonoscopy could affect the risk of pancreatic cancer.
However, the usual assumptions and limitations of negative control analyses must be kept in
mind (see Lipsitch et al. 2010).

Figure S2 indicates no difference in cumulative incidence during the first seven years of follow-
up with the possibility of only some small amount of residual confounding towards the end of
follow-up. However, the difference is very small and the confidence intervals still allow this
difference to be due to chance.

0.004 4

0.0034

Adjusted CIF
o
8
N

0.00114

0.000+4

0 2 4 é 8 10
Follow-up time [years]

Group — No screening — Screening

Figure S2: Parametric, adjusted cumulative incidence functions for incidence of pancreatic
cancer in total study population, aged 55 to 69. Dashed curves represent 95% confidence
intervals. The eleven-year relative risk was 0.93 (Cl: 0.78-1.10)
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173 Supplement 7: Results of model checks

Distal CRC Proximal CRC Any CRC
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174

175  Figure S3: Results of covariate balance checks after IPT weighting. Covariates are plotted
176  over absolute standardized mean differences (ASMD) before and after weighting. The vertical
177  dashed line indicates the threshold of 0.1 commonly used to define covariate balance.
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179  Figure S4: Distributions of conditional probability to receive screening (S) at baseline, given
180  covariates X.
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189
190 Figure S5: Adjusted cumulative incidence functions for the age group of 55 to 64 years
191 showing eleven years of follow-up. Analyses were stratified by site of incident CRC. No
192

separate analyses were done for incident CRC’s of unknown location and simultaneous distal
193  and proximal incident CRC’s, since too few events were observed.

194
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Supplement 9: Results of unadjusted model

The below Figure S6 displays both the adjusted and the unadjusted cumulative incidence
function for the incidence of any CRC in the total study population aged 55 to 69 years. The
covariate adjustment led to a smaller effect size (the unadjusted eleven-year RR was 0.61),
which was to be expected, given that non-screened persons tend to be less healthy and more
prone to CRC than persons who opt for voluntary screening (healthy screenee bias).

o
A
S -
o — No screening Z
—— Screening

g | — Fully adjusted
S = = Unadjusted
o
S
o

L

O o
S
o
w0
o
8
o
o
o
S
© | | | | | |

0 2 4 6 8 10
Follow—-up time [years]

Figure S6: Cumulative incidence functions (CIF) of screened and non-screened persons.
Solid lines indicate covariate adjusted CIFs and dashed lines indicate unadjusted CIFs.
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Supplement 10: Comparison of total and direct effects
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Figure S7: Parametric, adjusted cumulative incidence functions for incidence of any CRC in
total study population, aged 55 to 69. Dashed curves represent the direct effect (i.e. under a
hypothetical scenario of eliminating death as competing event) and solid lines represent the

total effect as reported in the paper (i.e. allowing death as competing event).
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CHAPTER 7. PUBLICATIONS

7.3 Paper 2: [Emulation of target trials using real-world
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Beobachtungsdaten, wie z.B. Ab-
rechnungsdaten von Krankenkassen
oder Daten von Patientenregistern,
bieten eine reichhaltige Grundla-
ge zur Beantwortung medizinischer
Fragen. Wahrend die fehlende
Randomisierung oft als Schwache
genannt wird, findet es weniger
Beachtung, dass Verzerrungen in
der Analyse auch und v.a. durch
ein unangemessenes Studiende-
sign bedingt sein konnten. Der
Target-trial-Ansatz dient dazu, ein
geeignetes Studiendesign und Aus-
wertungskonzept zu erstellen, das
den Prinzipien und dem Vorgehen
einer randomisierten kontrollier-
ten Studie (,randomized controlled
trial”, RCT) so dhnlich wie mdg-
lich ist und unnétige Verzerrungen
vermeidet.

Motivation

Die ,real world data® (RWD), etwa
in Form von Sekundirdaten [14, 26]
wie Register-, Krankenkassendaten oder
elektronischen Patientenakten, stellen ei-
ne sehr reichhaltige Informationsquelle
fir die medizinische und (pharma-
ko)epidemiologische Forschung dar. Mit
solchen Daten lassen sich z.B. Fragen
tber seltene oder spite Nebenwirkun-
gen untersuchen oder sie koénnen zur
besseren Quantifizierung von Effekten
bekannter schidlicher Substanzen heran-
gezogen werden. Auflerdem kénnen sie
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Emulierung von ,target trials”
mit Real-world-Daten

Ein allgemeines Prinzip, um den
Herausforderungen von Beobachtungsdaten

zu begegnen

wertvolle Erkenntnisse iiber vulnerable
Personengruppen, wie etwa Schwange-
re, liefern. Sekundirdaten sind zudem
oft die einzige Quelle, wenn es um das
reale Versorgungsgeschehen geht (z.B.
den Gebrauch von Medikamenten oder
den Einsatz von Behandlungen). Nicht
zuletzt spielt die Analyse von RWD im
Vorlauf, als Information und Ergdnzung
fiur zukiinftige klinische Studien eine
wichtige Rolle [8].

Viele Typen von RWD werden routi-
nemafig und nicht zur Beantwortung be-
stimmter Forschungsfragen gesammelt,
was im Vergleich zu RCT eine spezi-
elle Herausforderung an die statistische
Analyse und Interpretation darstellt. Hier
wird oft auf die fehlende Randomisie-
rung hingewiesen, wodurch es zu Verzer-
rung durch Confounding kommen kann
[9]. Dies ist aber nur einer von vielen
Unterschieden und vielleicht nicht ein-
mal der wichtigste; andere Verzerrungs-
quellen sollten beriicksichtigt und best-
moglich vermieden werden. Aus histo-
rischen Beispielen ist bekannt, dass eine
naive statistische Analyse, die den vie-
len anderen Unterschieden zwischen Be-
obachtungsdaten und RCT ungeniigend
bzw. unangemessen Rechnung tragt, ir-
refithrende Ergebnisse liefern kann, dies
aber durch ein verbessertes Studiende-
sign vermieden werden kann [5, 17].
Zu diesen Unterschieden zihlt v.a. der
bei Sekundirdaten fehlende, eindeutig
ausgewiesene Startpunkt bzw. Null-Zeit-
punkt (,time zero, @ Abb. 1), was in einer

naiven Analyse zu Verzerrungen fiihren
kann, z. B. aufgrund von sog. Selektions-
effekten [12].

In dieser Arbeit wollen wir aufzei-
gen, wie durch ein geeignetes systemati-
sches Vorgehen eine aussagekriftige und
valide Analyse von Beobachtungsdaten
gewihrleistet werden kann. Speziell wol-
len wir die Emulierung eines ,target tri-
als“ (,target trial emulation, TTE) dar-
legen [20]: Dies bezeichnet ein Vorge-
hen, das sich an einem expliziten Proto-
koll fiir eine hypothetische randomisierte
Studie - dem ,target trial“ - orientiert,
die fur die Forschungsfrage ideal wire.
Dabei werden Ein-/Ausschlusskriterien
sowie zu vergleichende Behandlungsstra-
tegien festlegt, und die Analyse von Se-
kundérdaten so nah wie maéglich daran
angelehnt (emuliert). Die Vorteile und
Stiarken der TTE liegen darin, dass zum
einen eine klare Fragestellung am An-
fang stehen muss [7] und zum anderen
theoretisch sowie empirisch gezeigt wer-
den kann, dass vermeidbare Verzerrun-
gen durch die Anlehnung an ein ,target
trial“ auch tatsachlich vermieden werden
konnen [2, 20].

Herausforderungen

bei Beobachtungsdaten:
Fragestellung und
Startzeitpunkt

Bei der Analyse von Beobachtungsdaten
liegt es nahe, Fragestellungen zu formu-
lieren, die den Effekt (oder Nebenwir-

Pravention und Gesundheitsforderung ‘
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Startzeitpunkt — Time Zero

Uberpriifen der Einschlusskriterien
(vor dem Startzeitpunkt)

Erfassen der Baseline Kovariablen
(vor dem Startzeitpunkt)

Erfassen der Exposition
(zum Startzeitpunkt)

Erfassen der Zielvariable (Follow-Up)
(beginnt mit Startzeitpunkt)

A

Zeit

Abb. 1 A Zentrale, zeitliche Elemente des Studiendesigns miissen korrekt am Startzeitpunkt der Stu-

die ausgerichtet sein

kung) einer Behandlung/Therapie betref-
fen; als konkretes Beispiel betrachten wir
den Effekt von Screeningkoloskopien auf
die Darmkrebsinzidenz [4]. Dies allein
ist noch keine eindeutige Fragestellung
[16]: Mochte man etwa den Unterschied
in der Gesamtpopulation schitzen, wenn
der Gesamtpopulation gar keine Scree-
ningkoloskopie angeboten wiirde, also
niemand sie in Anspruch nehmen kénn-
te? Oder mochte man fiir eine individuel-
le Person im Alter von 55 Jahren wissen,
was der erwartete Nutzen davon wire,
sich sofort, erst in 5 Jahren oder jetzt
und in 10 Jahren, anstatt niemals einer
Koloskopie zu unterziehen? Dies sind un-
terschiedliche Fragen, die jeweils ande-
re Studiendesigns und Herangehenswei-
sen erfordern. Eine klare Fragestellung
an den Anfang zu stellen, scheint eine
Binsenweisheit, ist aber gerade bei Beob-
achtungsdaten aufgrund vieler verschie-
dener Optionen und zeitlicher Aspekte
nicht selbstverstindlich.

Eine Herausforderung bei RWD stellt,
wie schon erwihnt, die Festlegung des
Startzeitpunktes dar, der nicht wie bei ei-
nem RCT automatisch gegeben ist; dies
kann u.a. zu ,immortal time bias“ fithren
[30]. Wenn eine Person sich erst einige
Zeit nach dem impliziten oder explizi-
ten Startzeitpunkt der Behandlung un-
terzieht, trotzdem aber von Anfang an
dem Behandlungsarm zugewiesen wird,
muss diese Person per Definition des Be-
handlungsarms bis dahin tiberlebt haben.

‘ Pravention und Gesundheitsforderung

Es werden also Personen, die schon lan-
ger tiberlebt haben miissen, in den Be-
handlungsarm selektiert. Wenn die Kon-
trollgruppe keine Behandlung bekommt,
wirkt dieser Selektionseffekt hier nicht,
d.h. es kommt zu einer Anreicherung
von Personen im Kontrollarm, die kurze
Zeit nach dem Startzeitpunkt versterben.
Der Behandlungseffekt auf das Uberle-
ben wird daher iiberschitzt [31]. Neben
dem ,immortal time bias“ konnen auch
viele andere Selektionseftekte durch Un-
klarheitiiber den Startpunktoderanderer
Nichtbeachtung zeitlicher Effekte entste-
hen, so wie beispielsweise der ,,prevalent
user bias“ [27]. Eine korrekte Analyse
setzt voraus, dass die Uberpriifung der
Einschlusskriterien zum Startzeitpunkt
abgeschlossen ist — es darf nicht ,,in die
Zukunft geschaut“ werden (8 Abb. 1). Es
folgt dann unmittelbar die Zuteilung zu
den Behandlungsarmen, fiir deren Defi-
nition keine Informationen von vor dem
Startzeitpunkt verwendet werden darf.
Gleichzeitig beginnt der Follow-up, so-
dass unmittelbar nach der Zuteilung zu
den Behandlungsarmen mit der Erfas-
sung der Zielvariable in den Behand-
lungsarmen begonnen wird [12]. Diese
zeitliche Strukturierung einer Beobach-
tungsstudie ist in vielen Féllen nicht trivi-
al, beispielsweise wenn der Kontrollarm
keine Behandlung erhalten soll: Wann
wire der Startzeitpunkt fiir den Kon-
trollarm, der keine Behandlung erhilt?

Prinzipien der Target-trial-
Emulierung

Die grundlegende Idee des Target-trial-
Ansatzes ist, sich die Starken des Studi-
endesigns von RCT zu eigen zu machen.
Es gibt eine klare Fragestellung, eine rea-
listische und relevante Intervention und
eine zeitlich sinnvolle Anordnung, was
die Uberpriifung der Einschlusskriteri-
en, die Behandlungszuweisung und den
Beginn des Follow-up betriftt. Der erste
Schritt einer TTE besteht darin, die For-
schungsfrage zu formalisieren und zwar
in Form von konkreten Behandlungs-
strategien, die es zu vergleichen gilt. Die
jeweiligen Behandlungsstrategien bilden
dann den Ausgangspunkt fir das Studi-
enprotokoll des idealen, hypothetischen
RCT - dem ,target trial. Dieser Arbeits-
schritt hilft automatisch dabei, dass die
Analyse so konkret und praktisch rele-
vant wie moglich wird und eine klare
Interpretation erlaubt. Nach der Festle-
gung des ,target trials“ wird eine Beob-
achtungsstudie, die Emulierung, aufge-
setzt; die hierfiir relevanten Punkte sind
in @Tab. 1 beschrieben.

Wie oben beschrieben erfolgt die
Zuweisung von Personen zu den Be-
handlungsarmen dann anhand der zum
Startzeitpunkt beobachteten Exposition.
Wir betrachten wieder als Beispiel die
Effektivitdit von Screeningkoloskopien
hinsichtlich der Senkung der Darm-
krebsinzidenz [4]. Im ,target trial“ wird
eine Person dem Behandlungsarm zuge-
wiesen, wenn sie sich in dem Zeitfenster,
das als ,time zero* festgelegt wurde,
einer Screeningkoloskopie unterzieht
und dem Kontrollarm, wenn sie sich in
diesem Zeitfenster keiner Screeningko-
loskopie unterzieht. Da durch das Studi-
enprotokoll die Screeningstrategien klar
definiert werden, ist auch unmittelbar
klar, was die kausale Forschungsfrage
ist: Fithrt eine Screeningkoloskopie zum
Startzeitpunkt im Vergleich zu keiner
durchgefithrten Screeningkoloskopie zu
einer Verringerung der Darmkrebsinzi-
denz im Follow-up [4]? Man beachte,
dass im Kontrollarm spitere Kolosko-
pien stattfinden konnen - der kausale
Effekt entspricht in diesem Fall also in
etwa einem Intention-to-screen-Effekt
mit kompletter Adhdrenz zum Start-
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Zusammenfassung

Hintergrund. Die ,real world data” (RWD),
z.B. Krankenkassendaten, bieten reichhaltige
Informationen zu gesundheitsrelevanten
Faktoren und kdnnen die Basis fiir Studien zur
Arzneimittelsicherheit, Wirksamkeit medizi-
nischer Interventionen u.v.m. darstellen. Ein
besonderer Vorteil ist die je nach Datenquelle
groBere Verallgemeinerbarkeit, wenn z.B.
Informationen zu bestimmten Subgruppen
der Population vorliegen und ein Volunteer-
Bias ausgeschlossen werden kann. Gerade in
Féllen, in denen randomisierte kontrollierte
Studien (,randomized controlled trials”, RCT)
nicht durchgefiihrt werden kénnen, sind
Beobachtungsstudien basierend auf RWD
eine wichtige Informationsquelle. Die valide
Analyse von RWD stellt allerdings einige
Herausforderung dar, wobei insbesondere
mogliche Verzerrungen, die durch ein
sorgfaltiges Studiendesign vermeidbar waren,

https://doi.org/10.1007/511553-022-00967-9

Beachtung finden sollen. Hier setzt das Prinzip
der Target-trial-Emulierung (TTE) an.

Ziel der Arbeit. In diesem Artikel soll
aufgezeigt werden, wie die TTE den
Herausforderungen bei der Analyse von RWD
begegnet.

Material und Methoden. Die TTE wird
allgemein verstandlich vorgestellt. Prinzipien,
Vorteile, Annahmen und spezifische statis-
tische Aspekte werden anhand relevanter
Literatur und praktischer Beispiele erldutert.
Ergebnisse. Damit die Analyse von RWD
valide, kausal interpretierbare Ergebnisse
liefern kann, missen einige Bedingungen
erfllt sein. Neben einem ausreichenden
Informationsgehalt der Daten sind auch
eine klare Fragestellung und ein geeignetes
Studiendesign, das u.a. Selektionseffekte
vermeidet, von zentraler Bedeutung. Das
Target-trial-Prinzip besteht darin, dass
zundchst das Auswertungskonzept fiir

Emulierung von ,target trials” mit Real-world-Daten. Ein allgemeines Prinzip, um den
Herausforderungen von Beobachtungsdaten zu begegnen

einen RCT erarbeitet wird, welches in einem
zweiten Schritt mit Beobachtungsdaten
Lemuliert” wird. Somit liefert die TTE quasi
eine Anleitung, um die Fragestellung zu
definieren und ein geeignetes Studiendesign
zu entwerfen. TTE kann mit unterschiedlichen
statistischen Methoden kombiniert werden,
wobei statistische Effizienz durch sequenzielle
Trials und das sog. Klonen gewonnen werden
kann.

Schlussfolgerung. Die TTE ist ein allgemeines
und Ubergreifendes Prinzip, das zentralen
Herausforderungen bei der Analyse von
Beobachtungsdaten, also auch RWD,
systematisch begegnet.

Schliisselworter

Selektionsbias - Beobachtungsstudien -
Kausales Schlussfolgern - Gesundheitsdaten -
Confounding

observational data

Abstract

Background. Real world data (RWD), e.g.,
claims data, are a rich source of information
regarding health-related factors and can be
the basis for observational studies examining
the safety of medicines or effectiveness

of medical interventions, among others.

A special feature of these studies is the

high generalizability, due to the fact that,
potentially, information on various subgroups
of a population is available in the data source.
Also, these studies contribute important
answers to relevant health questions in cases
where randomized controlled trials (RCT)
cannot be conducted. Valid analyses of RWD,
however, pose several challenges regarding
possible biases. Here, we focus on target trial
emulation (TTE) as a guide to avoid potential
biases by a careful study design.

Objectives. This article will showcase how
TTE can address certain challenges of RWD
studies.

Materials and methods. TTE is introduced
in an understandable way, using relevant
literature and practical examples to explain
principles, advantages, assumptions, and
specific statistical aspects.

Results. Several conditions must be met

in order for observational studies to yield
valid causal inferences. Besides sufficiently
informative data, a clear research question
and a suitable study design must be chosen
to avoid, for instance, selection effects. The
core idea of the target trial principle is to
first set out the analysis plan for an RCT that
would answer the research question and, in
a second step, emulate it using observational

Emulation of target trials using real-world data. A general principle to address the challenges of

data. TTE, therefore, serves as a guide to
defining both the research question and study
design. Various statistical methods can be
incorporated in TTE and statistical efficiency
can be gained by sequential trials and so-
called cloning of study participants.
Conclusions. TTE is a general and com-
prehensive approach to address the

central challenges posed by the analysis of
observational data, including RWD.

Keywords

Selection bias - Observational studies -
Causal inference - Electronic health records -
Confounding

zeitpunkt Baseline, d.h. dem Effekt der
Zuweisung zu den Behandlungsarmen
ohne Spezifizierung fiir das weitere Fol-
low-up. Im Gegensatz zu diesem kausal
interpretierbaren Studienansatz haben
mehrere Beobachtungsstudien zur sel-
ben Fragestellung in der Vergangenheit

ein Studiendesign gewihlt, das Selek-
tionsbias nicht ausschliefen kann. Ein
hypothetisches Beispiel ist das Erfassen
der Screeningkoloskopie durch einen
Fragebogen beim Startzeitpunkt. Per-
sonen, die in der Vergangenheit eine
Screeningkoloskopie hatten, werden als

exponiert gezihlt. Gleichzeitig werden
Personen mit privalentem Darmkrebs
ausgeschlossen. Da Koloskopien aber
verwendet werden, um Darmkrebs zu
diagnostizieren, kommt es unter Expo-
nierten allein durch diese Definitionen
von Exposition und Ausschlusskriteri-

Pravention und Gesundheitsforderung ‘
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Tab. 1
bins [20]

Komponente Beschreibung und Emulierung
Ziel der Studie  Definition der Forschungsfrage
Einschluss-

kriterien

Komponenten des Studienprotokolls eines ,target trials” angelehnt an Hernan und Ro-

In der emulierten Studie kdnnen zusétzliche Einschlusskriterien nétig werden,
wie beispielsweise, dass eine gewisse Zeitspanne vor dem Startzeitpunkt in den

Daten abgebildet sein muss oder dass Informationen zu Geschlecht oder Alter

nicht fehlen diirfen

Behandlungs-
strategien

Méglichst prazise Festlegung der Behandlungsstrategien. Handelt es sich z. B.
um eine einmalige Behandlung, oder wird die Behandlung tber eine gewis-

se Zeit hinweg erhalten? Gibt es bestimmte Ereignisse, die eine Anderung der
Behandlung erfordern (z.B. Anpassung der Dosis ab einem bestimmten Labor-
wert)? Nur wenn die Strategien bis ins Detail definiert wurden, konnen sie valide
mit den Beobachtungsdaten emuliert werden

Behandlungs-
zuweisung

In einem RCT wiirde die Behandlungszuweisung durch eine Randomisierung
vorgenommen werden. Es ist an dieser Stelle nicht wichtig, den genauen Ran-

domisierungsprozess zu beschreiben (z. B. Blockrandomisierung o.4.). Vielmehr
muss im nachsten Schritt definiert werden, wie die Behandlungszuweisungin
der Beobachtungsstudie vorgenommen wird (z. B. Behandlungsbeginn inner-
halb der ersten Woche nach Startzeitpunkt). Es wird dann fiir die Beobachtungs-
studie auch definiert, welche Kovariablen fiir die Adjustierung berticksichtigt
werden missen, um die Randomisierung zu emulieren

Follow-up
Zielvariable
Kontrast

Genaue Festlegung: wann beginnt/endet der Follow-up?
Kann die Zielvariable in den Beobachtungsdaten verlasslich abgebildet werden?
Wie werden die Behandlungsstrategien miteinander verglichen? Wie wird mit

Nicht-Adhdrenz umgegangen (,intention-to-treat” ohne Adjustierung vs. Per-
Protokoll mit Adjustierung fiir Nicht-Adhérenz)?

Konnen die Kontraste in der Emulierung abgebildet werden? Beispielsweise
entspricht ein Intention-to-treat-Effekt der Emulierung eher einem Treatment-

initiation-Effekt eines RCT

Statistische
Analyse

Es muss ein besonderes Augenmerk auf Nicht-Adhdrenz im Follow-up gelegt
werden. Soll ein Per-protocol-Effekt emuliert werden, miissen Studienteil-

nehmer:innen kiinstlich zensiert werden, sobald sie gegen die zugewiesene
Behandlungsstrategie verstoBen. Da diese Zensierung einen Selektionsbias
verursachen kann, muss auBBerdem festgelegt werden, fiir welche Variablen im
Follow-up adjustiert werden muss

|

RCT ,randomized controlled tria

um zu einer verringerten Anzahl an
Fillen und somit zu einer Uberschit-
zung des Effekts der Koloskopie auf
die Darmkrebsinzidenz. Dies entspricht
dem ,prevalent user bias® Durch die
TTE werden solche Selektionseffekte
vermieden, da sowohl die Uberpriifung
der Einschlusskriterien, als auch die Er-
fassung der Exposition und der Start
des Follow-up zum selben Zeitpunkt
stattfinden (@ Abb. 1; [12]).

Die @ Tab. 2 stellt einen Vergleich der
moglichen Limitationen von RCT und
Beobachtungsstudien mit und ohne TTE
dar. Als Beispiele fur Verzerrungen, die
durch eine zeitliche Trennung zentraler
Elemente des Studiendesigns entstehen,
sind hier ,,prevalent user bias“ und ,,im-
mortal time bias“ aufgefiihrt. Prinzipi-
ell kann es aber immer zu Verzerrungen
kommen, wenn die in @ Abb. 1 aufgefiihr-

‘ Pravention und Gesundheitsforderung

te Ausrichtung am Startzeitpunkt verletzt
wird. Die Limitationen von Beobach-
tungsstudien aus @ Tab. 2 kénnen durch
ein sorgfiltiges Studiendesign auch ohne
explizite Definition eines ,target trials“
umgangen werden, wenn man sich der
jeweiligen Fehlerquellen bewusst ist. Der
Vorteil des TTE-Ansatzes ist aber, dass
diese Verzerrungen gar nicht erst entste-
hen konnen und damit auch versteckte
bzw. weniger offensichtliche Fehlerquel-
len vermieden werden.

Wir mochten an dieser Stelle auch
darauf verweisen, dass Randomisierung
und RWD nicht unvereinbar sind (sie-
he z.B. [13]). Da RWD aber hauptséch-
lich fiir (nicht-randomisierte) Beobach-
tungsstudien verwendet werden, gehen
wir in diesem Artikel nicht niher auf
diese Schnittstelle ein.

Sequenzielle Trials zur
Effizienzsteigerung

Ein Unterschied zwischen dem ,target
trial“ und der tatsichlich durchgefithrten
Beobachtungsstudie ist, dass im ,target
trial“ unmittelbar klar ist, was der Start-
zeitpunkt ist. Personen werden rekrutiert
und zum Startzeitpunkt zufillig einem
Behandlungsarm zugewiesen. Auch in
der entsprechenden Beobachtungsstudie
konnte ein Startzeitpunkt an einem be-
stimmten Datum angesetzt werden. In
diesem Fall hitten Personen nur zu die-
sem Zeitpunkt die Moglichkeit, in die
Studie eingeschlossen zu werden. Wenn
allerdings eine longitudinale Datenbank
vorliegt, gibt es ein aus statistischer Sicht
effizienteres Vorgehen: Es werden meh-
rere ,target trials“ hintereinander emu-
liert, beispielsweise einmal pro Quartal in
einer gegebenen Zeitspanne. In der Bei-
spielstudie zur Screeningkoloskopie wur-
de zu Beginn jedes Quartals von 2007 bis
2011 ein ,target trial“ emuliert, wobei alle
Personen, die zum Zeitpunkt des jewei-
ligen Startzeitpunktes in der Datenquelle
abgebildet sind, fiir den Trial berticksich-
tigt wurden [4]. Wenn also eine Person
bei mehreren emulierten Trials in den
Daten vorkommt und die Einschluss-
kriterien erfiillt, kann diese Person in
mehreren Trials eingeschlossen werden.
Da die Daten all dieser emulierten, se-
quenziellen Trials gemeinsam ausgewer-
tet werden, kommt diese Person dann
u. U. mehrmals im Analysedatensatz vor.
Man spricht in diesem Zusammenhang
auch von Klonen.

Dieses sequentielle Studiendesign
kann als Form eines longitudinalen
Matchings angesehen werden: Zu je-
dem Zeitpunkt, an dem ein emulierter
Trial beginnt, werden exponierte und
nicht-exponierte Personen daraufhin
gematcht, dass beide zu diesem Zeit-
punkt die gleichen Einschlusskriterien
erfilllen [33]. Wie in anderen, in der
Epidemiologie verbreiteten Matching-
Ansédtzen kann dann dieselbe Person
mehrmals im Kontrollarm oder auch
zunéchst im Kontrollarm und spiter als
exponierte Person in die Studie eingehen
[32]. Dies muss beim Schitzen von Kon-
fidenzintervallen berticksichtigt werden,



Tab.2 Ubersicht von Limitationen unterschiedlicher Ansétze

Risiko fiir Verzerrung
durch:

+Prevalent user bias” [27]

Jmmortal time bias” [30]

Unklare Forschungsfrage
[71

RCT Beobachtungsstudien mit RWD
Mit TTE Ohne TTE
Gering, Gering, Hoch,
Behandlung beginnt mit Rando- durch Ausrichtung am Startzeit- wenn etwa zur Bestimmung der Exposition/
misierung punkt vermieden Behandlung Informationen aus der Vergangen-
heit verwendet werden
Gering, Gering, Hoch,

Behandlungsgruppen werden durch Ausrichtung am Startzeit-
bei Randomisierung zugewiesen punkt vermieden

wenn etwa zur Bestimmung der Exposition/
Behandlung Informationen aus dem Follow-up,
also aus der Zukunft, verwendet werden

Hoch,
wenn Expositionen etwa nicht eindeutig als hypo-
thetische Interventionen definiert werden

Bei beiden Ansatzen gering,
durch Definition der zu vergleichenden Behandlungsstrategien

Confounding durch Base- Gering,
line-Variablen
vermieden

wird durch Randomisierung

Bei beiden Ansdtzen hoch,

informativ

Zeitabhangiges Confoun- Bei allen Ansdtzen hoch,

ding bei Per-protocol-
Analysen [18, 21]

Mangelnde externe Vali-  Hoch,

ditat
von Zielpopulation

Kosten- und zeitintensiv.  Hoch

stark selektierte Studienpopula-
tion unterscheidet sich u. U. stark

Abhéngig von der Datenquelle

schehen.
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- ,volunteer bias” u.d. muss bei anderen Datenquellen bedacht werden

Bei beiden Ansdtzen gering, wenn vorhandene Daten genutzt werden kénnen

RCT ,randomized controlled trial’, RWD ,real world data’, TTE Target-trial-Emulierung

beispielsweise durch robuste Bootstrap-
Methoden [19].

Klonen und kiinstliches
Zensieren

Wie oben beschrieben, konnen mehrere
Klone oder Kopien einer Person in die
Studie eingeschlossen werden, wenn die-
se Person zu mehreren Zeitpunkten die
Einschlusskriterien erfiillt. Eine weitere
Form des Klonens kann sich innerhalb
eines einzelnen Trials abspielen, wenn
die tatsichliche Behandlung von Per-
sonen am Startzeitpunkt mit mehreren
Behandlungsarmen konform ist. Bei-
spielsweise wird in der ZEBra-Studie die
Wirksamkeit des deutschen Mammo-
graphie-Screening-Programms  (MSP)
hinsichtlich Senkung der Brustkrebs-
mortalitit untersucht [3, 22]. Hierbei
konnen u. a. die drei folgenden Strategien
definiert werden: 1) niemals Screening,
2) Screening mindestens zum Startzeit-
punkt, 3) Screening zum Startzeitpunkt
und danach regelmiflig in 2-Jahres-
Abstinden. Werden nun Trials pro Ka-
lenderquartal emuliert, kann eine Frau,

die sich im Anfangsquartal einer Scree-
ningmammographie unterzieht, sowohl
Strategie 2 als auch Strategie 3 zugewie-
sen werden. Anstatt sie zufillig einer
der beiden Strategien zuzuweisen, wer-
den ihre Daten ,geklont® und beiden
Strategien zugewiesen.

Im obigen Beispiel sind also die Popu-
lationen in den beiden aktiven Studienar-
men zum Startzeitpunkt identisch. Per-
sonen werden dann aber wiahrend des
Follow-up kiinstlich zensiert (d.h. ihr
Follow-up wird kiinstlich beendet; [23]),
sobald ihre beobachtete Behandlung von
einer zugewiesenen Strategie abweicht.
Im Mammographiebeispiel wiirde also
eine Frau aus der Strategie ,,Screening
zum Startzeitpunkt und danach regel-
mafig“ zensiert werden, falls sie nach
dem vorgesehenen Intervall nicht erneut
beim Screeningtermin erscheint. Hierbei
sind Ausnahmen genau wie beim ,,target
trial“ zu berticksichtigen, z.B. wenn sie
zwischenzeitlich eine Brustkrebsdiagno-
se erhdlt oder ein Alter erreicht, in dem
Screeningmammographien nicht mehr
vorgesehen sind [3].

Es ist wichtig zu beachten, dass dieses
kiinstliche Zensieren eine Selektion dar-
stellt, der die statistische Analyse Rech-
nung tragen muss. Wenn beispielsweise
ein Faktor (wie etwa eine gesundheit-
liche Vorbelastung) sowohl die Abwei-
chung von einer zugewiesenen Strategie
(wie etwa Behandlungsabbruch) als auch
die Zielvariable beeinflusst, konnte es da-
zu kommen, dass im Behandlungsarm
Personen, bei denen dieser Faktor vor-
liegt, unterreprasentiert sind. Dies wiirde
wiederrum die Zielvariable im Behand-
lungsarm und damit das Ergebnis ver-
félschen. Das kiinstliche Zensieren muss
daher durch eine geeignete Gewichtung,
die solche Faktoren beriicksichtig, aus-
geglichen werden, dhnlich wie bei an-
deren Formen der informativen Zensie-
rung. Diese Gewichtung erfolgt beispiels-
weise mit Hilfe von zeitverdnderlichen
Propensity Scores (PS) durch das sog.
»inverse probability of censoring weigh-
ting (IPCW; [19]).

Pravention und Gesundheitsforderung
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Annahmen und
Voraussetzungen

In vielen Beobachtungsstudien wird ein
starkes Augenmerk auf das Problem
des Confounding gelegt. Da es keine
Randomisierung gibt, konnen sich die
Vergleichsgruppen hinsichtlich prog-
nostischer Faktoren systematisch unter-
scheiden, wodurch es zu Verzerrungen
beim Schitzen von Effekten kommt. Um
diese Verzerrung auszugleichen, miissen
die prognostischen Faktoren beobachtet
sein und angemessen in das statisti-
sche Analysemodell einflielen. In dieser
Arbeit mochten wir aber auf weitere
Annahmen aufmerksam machen, die
fur alle Arten von Beobachtungsstudien
erftillt sein miissen, wenn das Ziel eine
kausale Aussage ist, die aber oftmals
zu wenig beachtet werden [15]. Wir
beginnen wieder mit der Forschungs-
frage. Diese sollte einer eindeutigen und
realistischen Intervention entsprechen,
die auch tatsdchlich in den Daten beob-
achtbar ist. Es wire z.B. problematisch,
eine Intervention zu betrachten, die
den Body Mass Index (BMI) verdn-
dert, ohne dabei klarzustellen, ob dies
durch eine Veranderung der Ernidhrung,
der korperlichen Aktivitat, durch einen
chirurgischen Eingriff oder Kombina-
tionen dieser Faktoren geschieht, denn
die Effekte der jeweiligen Intervention
konnten sehr unterschiedlich ausfallen.
Diese Annahme wird auch ,(causal)
consistency“ genannt und soll im ,,target
trial“ durch das explizite Formulieren
realistischer Behandlungsstrategien er-
fullt werden. Ein wichtiger Aspekt ist
auch die Positivititsannahme [19]. In
einem RCT kann jede teilnehmende
Person durch die Randomisierung jeder
Strategie zugeordnet werden - dies muss
auch bei der Emulierung sichergestellt
sein: Wenn die Einschlusskriterien er-
fallt sind, muss es fiir jede Subgruppe
Individuen in jedem Behandlungsarm
geben (also einen positiven Anteil). Dies
lasst sich leicht empirisch tberpriifen
[34]. Wenn die Positivitdit empirisch
nicht gilt, kann dies zwar an einem zu
kleinen Stichprobenumfang liegen, aber
auch daran, dass die Einschlusskriterien
ungeeignet oder die Behandlungsstrate-
gien unrealistisch sind, was sich durch
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eine Anpassung der Forschungsfrage
oder des TTE-Protokolls beheben ldsst.

Grob ldsst sich sagen, dass Annahmen
immer dann ins Spiel kommen, wenn
eine Abweichung der Emulierung vom
starget trial“ besteht. So wird z.B. im
starget trial die Zuordnung zu den Be-
handlungsarmen zufillig (randomisiert)
stattfinden, was in der Emulierung mit
Beobachtungsdaten durch Adjustierung
fir Confounding ersetzt werden muss
— dafiir ist die Annahme notig, dass kein
ungemessenes Confounding existiert. Ei-
ne erfolgreiche Adjustierung fiir gemes-
senes Confoundinglisst sich z. B. anhand
von ,balance checks® iiberpriifen [29].
Allerdings ist dies nicht fiir ungemes-
senes Confounding moglich - hier las-
sen sich stattdessen teilweise quantitative
Biasanalysen durchfithren [24]. Zudem
ist zu beachten, dass auch im RCT nur
anfangsrandomisiert wird; bei Nicht-Ad-
hérenz ist es auch dann u.U. nétig, fiir
zeitabhéngiges Confounding zu adjustie-
ren, so wie auch bei der TTE, wenn die
zu vergleichenden Behandlungsstrategi-
en iiber lingere Zeit andauern. Neben
dem kiinstlichen Zensieren in Verkniip-
fung mit entsprechenden Gewichten gibt
es eine Reihe von alternativen statisti-
schen Verfahren zur Beriicksichtigung
von zeitabhingigem Confounding [19,
28].

Aus den obigen Annahmen folgt,
dass die Datengrundlage bestimmte
Kriterien erfiillen muss: 1) Es miissen
ausreichend Informationen zu relevan-
ten Kovariablen vorliegen, zumindest in
Form von Proxyvariablen. Diese Voraus-
setzung haben alle Beobachtungsstudien
gemein. 2) Die relevanten Informatio-
nen in der Datenbank miissen iber
einen ldngeren Zeitraum ohne grofle
Unterbrechungen und jeweils mit rela-
tiv prazisen Datumsangaben vorliegen.
Dies ist beispielsweise in Forschungsda-
tenbanken mit Versichertendaten - wie
der pharmakoepidemiologischen For-
schungsdatenbank GePaRD (German
Pharmacoepidemiological Research Da-
tabase; [14]) - erfullt. Allerdings kann
es bei anderen RWD, beispielsweise aus
Kohortenstudien, in denen Priméardaten
im Abstand mehrerer Jahre erhoben
werden, schwieriger sein. Aber auch
in Féllen, in denen die Datengrund-

lage nicht fiir die TTE ausreicht, ist
das Erstellen des Target-trial-Protokolls
sinnvoll: Es macht transparent, welche
Aspekte mit den verfiigbaren Daten
nicht abgebildet werden kénnen und
welche Auswirkungen dies auf die Stu-
dienergebnisse hat [7]. Beides ist zur
Bewertung der Ergebnisse oder auch fiir
die Planung von Sensitivititsanalysen
und zukiinftiger Studien wichtig.

Funktioniert TTE in der Praxis?

Um zu untersuchen, ob der Target-trial-
Ansatz tatsidchlich die Analyse von RWD
systematisch verbessert, bieten sich Fra-
gestellungen an, die sowohl in Beobach-
tungsstudien als auch in RCT untersucht
wurden. Beispielsweise wurden unter-
schiedliche Analysen zum Effekt von
Statinen auf das Risiko, an Krebs zu
erkranken, miteinander verglichen [5].
In fritheren Beobachtungsstudien wurde
ein stark protektiver Effekt von Statinen
auf das Krebsrisiko beschrieben, ohne
dass es eine klare biologische Erklirung
dafiir gab. Spétere RCT konnten diesen
scheinbar protektiven Effekt allerdings
nicht replizieren. Mit einer TTE und
Daten aus der Clinical Practice Research
Database (CPRD) wurden schliefllich
folgende explizite Behandlungsstrate-
gien verglichen [5]: (i) Statin-Therapie
zu einem bestimmten Zeitpunkt starten
und iber den Follow-up beibehalten,
es sei denn, dass sich eine Kontrain-
dikation entwickelt; (ii) keine Statin-
Therapie zum Startzeitpunkt und im
Follow-up nur dann, wenn sich eine
Indikation dazu entwickelt. Diese TTE
fand keinen nennenswerten Effekt von
Statin-Therapie auf die Krebsinzidenz.
Die Designschwichen fritherer Beobach-
tungsstudien waren, dass ein ,,prevalent
user design gewidhlt wurde, und eine
Einteilung in den Behandlungsarm nur
erfolgte, wenn die Therapie in den ers-
ten 4 Follow-up-Jahren aufrechterhalten
wurde. Als dieses fehlerhafte Design mit
denselben CPRD-Daten implementiert
wurde, ergab sich wieder ein dhnlicher,
scheinbar protektiver Effekt. Dieser irre-
fithrende protektive Effekt ist also nicht
durch unbeobachtetes Confounding,
sondern durch ein mangelhaftes Studi-
endesign entstanden, was sich durch ein



TTE vermeiden lief3. In der Literatur
sind mehrere Beispiele beschrieben, in
denen erst durch TTE plausible Ergeb-
nisse erzielt wurden, die mit dem Wissen
aus RCT's bzw. sonstigem Wissen konsis-
tent waren und die Ergebnisse fritherer
Beobachtungsstudien in Frage gestellt
haben [1, 5, 10-12, 17].

Zwar kann das Target-trial-Prinzip
nicht garantieren, dass es in einer Stu-
die kein ungemessenes Confounding
gibt, aber fast alle anderen Annahmen
lassen sich zumindest nach geeigne-
ter Anpassung des Protokolls erfiillen,
bzw. man kann explizit begriinden, dass
sie bei gegebener Datensituation so gut
wie moglich approximiert werden. Aller-
dings gibt es andere gute Griinde, warum
die Ergebnisse aus Beobachtungsstudien
nicht unbedingt den Ergebnissen aus
RCT entsprechen. Eine Schwiche von
klinischen Studien ist, dass die Studi-
enpopulation stark eingeschrinkt ist
und bestimmte Subgruppen aus der Ge-
samtbevolkerung nicht vertreten oder
unterreprasentiert sind (z.B. Schwange-
re, Altere). Wenn der Effekt in manchen
Subgruppen anders (z.B. bei Alteren
schwicher) ist, dann unterscheiden sich
u.U. die Ergebnisse aus Beobachtungs-
und Klinischer Studie. Sensitivitdtsana-
lysen konnen verwendet werden, um zu
quantifizieren, wie stark sich Unterschie-
de im Studienprotokoll zwischen ,target
trial“ und Emulierung auf die Ergeb-
nisse auswirken [25]. Allerdings ist der
Vorteil von Sekundérdaten und anderen
RWD, dass sich spezielle Subgruppen
untersuchen lassen, die in RCT unterre-
présentiert sind. In einer Studie, in der
10 RCTs mit Hilfe von Beobachtungs-
daten repliziert wurden [10], waren die
regulatorischen Entscheidungen in 6 von
10 Fillen identisch, und Beobachtungs-
studien mit einem aktiven Vergleichsarm
und einer vergleichbaren Indikation lie-
ferten eher verldssliche Ergebnisse als
placebokontrollierte Studien.

Ableitbare Aussagen aus TTE

Zu guter Letzt mochten wir festhal-
ten, dass TTE nicht als alternatives
Design zu anderen Studiendesigns fiir
Beobachtungsstudien, sondern als er-
gidnzendes und tbergreifendes Prinzip,

in das bestimmte Designs und Methoden
integriert werden konnen, verstanden
werden sollte. TTE kann etwa sowohl
mit prospektiven als auch eingebettete
Fall-Kontroll-Designs, falls bestimmte
Voraussetzungen erfillt sind, kombi-
niert werden [6] und ist daher vielseitig
und fiir verschiedenste Fragestellun-
gen einsetzbar. Bestimmte Fragen lassen
sich allerdings mit RWD generell nicht
oder nur schwer beantworten. So kann
beispielsweise der Vergleich eines Me-
dikamentes mit einem Placebo nur in
einem verblindeten RCT untersucht
werden, nicht aber basierend auf RWD
in einer Studie ohne Randomisierung
oder Verblindung. Der Vorteil von TTE
gegeniiber klassischen Studiendesigns
ohne explizite TTE liegt in der explizi-
ten Herangehensweise, die den zentralen
Herausforderungen bei der Analyse von
RWD systematisch begegnet.

Fazit fiir die Praxis

== Sekundirdaten und andere RWD
(,real world data”) sind eine wichtige
Informationsquelle. Die Herausfor-
derungen - im Vergleich zu RCTs
(,randomized controlled trials”) -
bei deren Analyse und Interpretation
liegen zwar auch in der fehlenden
Randomisierung, aber daneben gibt
es eine Reihe von vermeidbaren Feh-
lerquellen, deren Relevanz bisher oft
unterschatzt wurde.

== Die Target-trial-Emulierung (TTE) ist
ein allgemeines Prinzip: Zunachst
wird das Studienprotokoll fiir eine
ideale randomisierte Studie aufge-
setzt (der ,target trial”). Diese ideale
Studie wird dann basierend auf RWD
emuliert.

== Das TTE-Prinzip hilft dabei, eine
explizite und prazise Fragestellung zu
formulieren, wodurch sich Ergebnisse
klar kommunizieren lassen. TTE ist
zudem mit verschiedenen Methoden
der kausalen Inferenz kombinierbar.

== Die TTE beugt vielen vermeidbaren
Fehlern bei der Analyse von Beob-
achtungsdaten systematisch vor.
Unvermeidbare potenzielle Verzer-
rungsquellen werden transparent
gemacht und sollten einer Sensitivi-
tatsanalyse unterzogen werden.
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Background: The efficacy of mammography screening in reducing breast cancer mortality has been demonstrated in randomized
trials. However, treatment options - and hence prognosis — for advanced tumor stages as well as mammography techniques have
considerably improved since completion of these trials. Consequently, the effectiveness of mammography screening under current
conditions is unclear and controversial. The German mammography screening program (MSP), an organized population-based
screening program, was gradually introduced between 2005 and 2008 and achieved nation-wide coverage in 2009.

Objective: We describe in detail a study protocol for investigating the effectiveness of the German MSP in reducing breast cancer
mortality in women aged 50 to 69 years based on health claims data. Specifically, the proposed study aims at estimating per-protocol
effects of several screening strategies on cumulative breast cancer mortality. The first analysis will be conducted once 10-year follow-
up data are available.

Methods and Analysis: We will use claims data from five statutory health insurance providers in Germany, covering approximately
37.6 million individuals. To estimate the effectiveness of the MSP, hypothetical target trials will be emulated across time, an approach
that has been demonstrated to minimize design-related biases. Specifically, the primary contrast will be in terms of the cumulative
breast cancer mortality comparing the screening strategies of “never screen” versus “regular screening as intended by the MSP”.
Ethics and Dissemination: In Germany, the utilization of data from health insurances for scientific research is regulated by the Code
of Social Law. All involved health insurance providers as well as the responsible authorities approved the use of the health claims data
for this study. The Ethics Committee of the University of Bremen determined that studies based on claims data are exempt from
institutional review. The findings of the proposed study will be published in peer-reviewed journals.

Keywords: emulated target trial, cancer screening, effectiveness, claims data, mammography

Introduction
Background

Mammography screening aims at reducing breast cancer mortality through early diagnosis of asymptomatic, early-stage
cancers.' The prognosis of breast cancer is considerably better when diagnosed at an early stage.” ™ Several randomized
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clinical trials were conducted in the second half of the last century demonstrating a reduction in breast cancer mortality
due to screening with mammography.>-

In parallel to screening efforts increasing world-wide, novel treatment options for women with advanced breast
cancer stages have also been introduced over the last two decades leading to improved survival rates, particularly for
advanced stages without distant metastases.”* Consequently, the reduction in breast cancer mortality due to screening
might be lower if trials were conducted nowadays. However, mammography techniques have also improved such that the
present sensitivity of imaging techniques might have resulted in greater mortality reductions as compared to the earlier
trials.” Given that RCTs comparing mammography screening against no screening nowadays are no longer ethical, the
analysis of observational data is the only option to obtain insights into the effectiveness of mammography screening
under current conditions. A few large observational studies have been conducted on the effectiveness of mammography
screening and indicated a reduction in breast cancer mortality in screened women.'®™'? To date, however, there has been
no observational study on this research question using the novel principle of target trial emulation, which specifically
aims to minimize common time-related and other biases.

In Germany, an organized mammography screening program (MSP) was introduced from 2005 to 2008, achieving
nation-wide coverage in 2009. All women aged 50 to 69 years, with German residency, are centrally invited biennially by
mail to attend screening at one of the 94-95 certified mammography screening units.' Participation rates in the German
MSP are around 50% per screening round and 83% of women in a survey said they had participated at least once over
a 10-year time frame.'>'* Information on whether and when invitations were issued is not available due to data

protection reasons; screening attendance, however, can be identified using specific health insurance claims codes.

Objectives

The proposed observational study is part of a larger research effort commissioned by the German Federal Office for
Radiation protection to evaluate whether mammography screening is beneficial in Germany. Within this research effort,
our proposed study will estimate the effects of different screening strategies in the German mammography screening
program on breast cancer mortality over a 10-year follow-up in women aged 50 to 69 at baseline. Specifically, three
screening strategies will be compared: 1) Never screening 2) Screening at least at baseline, with free choice whether to
undergo screening afterwards 3) Screening at baseline and then regularly every two years.

Two primary research questions will be addressed:

Research question 1: Does participation in the German MSP reduce breast cancer mortality in the population of all
eligible women?

Research question 2: Does participation in the German MSP reduce breast cancer mortality in the subgroup of
screening-affine women?

While question 1 addresses the ideal situation that all those eligible participate, question 2 is relevant as it concerns
those women who are most likely to participate in the MSP. Both are regarded as primary research questions. The follow-
up time of 10 years refers to the time point when the first analysis will be conducted. Re-analysis based on extended
follow-up is planned.

For each research question we will consider the following two contrasts:

e Primary contrast: Strategy 1 (never screened) versus strategy 3 (regular screening).

e Seccondary contrast: Strategy 1 (never screened) versus strategy 2 (screening at baseline).

Specifically, in view of competing events, we will assess the total effect'” of the strategies in the primary analysis. The
primary contrast reflects the original intention of the MSP and is relevant to the individual women who can decide
whether to participate and adhere to the program or not. The secondary contrast addresses the effect of offering the MSP
under the reality of imperfect adherence; it is therefore also relevant to public health decision makers.
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Materials and Methods

Description of Data Sources

The German Pharmacoepidemiological Research Database (GePaRD) and the BARMER data warehouse (DWH) will be
the main data sources for this study. GePaRD comprises health claims data from four German statutory health insurance
(SHI) providers, with data on approximately 25 million individuals who have been insured with one of the participating
SHI providers since 2004 or later.'® The BARMER DWH covers approximately 12.6 million individuals who were
insured with BARMER between 2006 and 2017."7 In Germany, health insurance is mandatory, with 87% of the
population being insured with an SHI provider (11% of the population are insured with a private insurance provider
and further government schemes exist, eg for soldiers or refugees).'® The health claims data contain basic demographic
information, codes for outpatient drug prescriptions, outpatient physician contacts, in- and outpatient operations,
procedures, and diagnoses. Outpatient procedures and diagnoses are coded on a quarterly basis, while exact dates are
available for inpatient codes and outpatient services. Reimbursed drugs are identified based on Anatomical Therapeutic
Chemical (ATC) codes, diagnoses are identified based on International Classification of Diseases, tenth revision, German
modification (ICD-10-GM) codes and procedures and services based on Operation and Procedure classification (OPS)
codes and Uniform Assessment Standard (EBM) codes.

All regions of Germany are represented in the data from the involved SHIs. GePaRD and BARMER data will be
analyzed separately for reasons of data protection. Similar data from further health insurance providers might be added to
increase sample size if and when their use for this project will be approved.

Data starting in 2004 for GePaRD and 2006 for BARMER will be used for this study. For the first analysis, data up to
and including 2018 will be used. The follow-up will be extended as soon as further data years are available.

Study Design

To address the research questions, we use a target trial emulation approach.'®?° While any observational study might
suffer from bias due to uncontrolled confounding, awareness has recently increased for biases (often time-related) due to
deviation from basic principles of study design. These latter, “self-inflicted” biases, can be avoided or reduced by
emulating, as best as possible, the design of a hypothetical randomized trial that would ideally answer the research
question (the target trial).>! For our proposed mammography study, the protocol of the hypothetical target trial and its
emulation with health claims data are described in Table 1. Multiple consecutive trials will be emulated, with one trial
starting on the first day of each calendar quarter, to make full use of the longitudinal database. At the core of target trial
emulation is the alignment of eligibility checks, assignment to treatment strategies, and start of follow-up at time-zero, ie

baseline of each trial. A lack of such alignment is likely to entail erroneous conclusions.?'*>

Therefore, eligibility criteria
will be assessed at the baseline of each emulated trial. As a woman may qualify for multiple trials (starting in different
quarters), her individual data will be copied (or “cloned”) and included in every trial for which she is eligible®® (see
Figure S1). Furthermore, at each baseline, a woman’s data might fit with more than one screening strategy. Again,
information from this woman will be copied and one clone will be assigned to each screening strategy she fits. Hence one
person can contribute to several trials and within one trial to several screening strategies. This cloning approach reduces

2324 while maximizing statistical efficiency.?” Data from all emulated trials and all clones within each

time-related biases,
trial will be pooled and analyzed jointly. The respective analysis dataset will then contain information on m clones across
all trials originating from n women (ie m>n). Randomization is emulated by adjustment for confounding (more details
are given below and in Supplement 1). Each of the emulated trials has its own baseline, defined as the first day of the
calendar quarter of trial start. Pre-baseline covariates are based on information before this day, while follow-up and

outcome variables are based on information starting with this day, again ensuring alignment at time zero.

Eligibility Criteria
Individuals must satisfy the eligibility criteria listed in the emulated trial column in Table 1. Eligibility will be assessed at
the baseline of each emulated trial.
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Table | Tabular Study Protocol for the Ideal Target Trial and the Approximation by Our Emulated Trial

® Be 50 to 69 years old.

® Have no history of breast cancer, carcinoma in situ of the breast or
unspecified lumps in the breast.

® Be naive to screening or diagnostic mammography and other imaging of
the breast (in order to avoid selection of the study population according
to prior screening history).

® Be permanently living in Germany.

Component Target Trial Emulated Trial
Aim To estimate the effect, if any, of different mammography-based screening Same
strategies on breast cancer mortality in the German population aged 50—
69.
Eligibility To be eligible, women must: To be eligible, women must:

®  Not have missing information on sex, age, and region of residency.

® Be 50 to 69 years old.

® Be continuously insured for the 3 years before trial start.

® Have no coded diagnosis of breast cancer, carcinoma in situ of the breast
or unspecified lumps in the breast) ever before baseline.

® Have no coded screening or diagnostic mammography or other imaging
of the breast within 3 years before baseline.
Be permanently living in Germany.
For research question 2: have had at least one of the following preventive
services coded during 3 years before trial start: screening colonoscopy,
pap test or breast examination, health check-up 35, fecal occult blood
test, influenza vaccine, skin cancer screening (in order to identify

screening-affine women).

Screening strategies

I. Never undergo screening.

2. Screening at least at baseline.

3. Regular screening (two-year intervals).

Women are retained under their strategy if they receive a breast cancer
diagnosis or if they stop regular screening (strategy 3) at age 70 or older.
Receiving a screening mammogram will be considered non-adherence for
strategy |. Under all strategies, diagnostic mammograms are allowed when

clinically indicated.

Same

Assignment to study

Randomly to one study arm.

Women are assigned to screening strategies based on observed screening

arms Randomization is unblinded. behavior in baseline quarter.
We assume random assignment within the levels of the baseline covariates
described in the Supplement.
Follow-up Start: Treatment assignment. Same, except start is the first day of the quarter of trial start. Length of
End: Death, loss to follow-up or end of study period at 2018, whichever follow-up is 10 years.
occurs first.
Outcome Death from breast cancer. Same (as determined either by the cause of death algorithm or by record

linkage).

Causal contrast

Per protocol (PP) effect.

Observational analogue of PP effect. Adjustment for baseline and time-

varying post-baseline confounding is necessary.

Statistical analysis

Women are artificially censored when they deviate from their assigned
screening strategy as follows:
® No screening: Censored when a screening mammography occurs.
® Screening at baseline: No censoring based on screening participation
after baseline quarter.
® Regular screening: Censored when no subsequent screening mammo-
graphy was coded, unless the woman turned 70 or received a breast
cancer diagnosis by the tenth quarter after the last screening mammo-
graphy.
The analysis is adjusted for non-adherence using baseline and post-

baseline variables (eg via inverse probability weighting).

Same, except that data from each eligible woman receiving screening in the
baseline quarter is cloned and assigned to screening strategies 2-3.
Randomization will be emulated via adjustment for baseline confounders.
Bias due to artificial censoring will be adjusted for using post-baseline

confounders.

Note: The emulated trial is purely observational and exposure to the screening strategies is therefore based on the observed (appropriately censored) participation profiles.
Sequential trials are emulated in each calendar quarter from 2009 to 2016, with each trial applying the eligibility criteria at its respective baseline.

https:
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Women aged 50 - 69 years in baseline year (m = 74,396,836; n = 3,554,461)

A 4

Continuous enrolment in health insurance for = 3 years before baseline (m = 65,974,479;
n = 3,306,836)

Exclusion diagnoses ever before baseline:
+ Breast cancer (m = 9,483,463)
+ Carcinoma in situ (breast) (m = 1,323,474)

A 4

Asymptomatic before baseline (m = 56,456,398; n = 3,008,110)

Exclusion codes ever before baseline:
*1 - Screening mammography or other breast imaging (m = 37,425,042)

\ 4

Screening naive at baseline (m =19,031,356; n =1,763,499)

Not screened in quarter after baseline (m =18,197,055; n =1,618,623)

) 4

A 4

Screened at least in baseline quarter (m =834,301; n =797,066)

Regular screening every two years (m =834,301; n =797,066)

) 4

Figure | Flow chart of subject disposition. m refers to all clones across all emulated trials while n refers to women. GePaRD data from 2004-2016 was used; no information
on the study outcome was available at the time of analysis. Clones were assigned to screening strategies as illustrated in the Supplement. Active screening strategies have
identical sample sizes, since they only differ in the screening sustained over time and, therefore, in the censoring process. For the estimation of the subgroup effect in women
with at least one other preventive service during three years before baseline, a further decrease in sample size of 32.6% was observed (screening naive at cohort entry - m:
12,819,058, n: 1,503,094).

Sample Size
An overview of sample sizes (using GePaRD data from 2004 to 2016) is given in the flow chart in Figure 1.

Screening Strategies, Cloning and Artificial Censoring

The mammography screening strategies to be compared will be:

No screening: Under this strategy a woman never undergoes screening (control strategy).

Screening at baseline: Under this strategy, a woman undergoes screening in the baseline quarter and may or may not
attend further screenings afterwards.

Regular screening: Under this strategy, a woman undergoes screening in the baseline quarter and in regular two-year
intervals thereafter as long as she is in the age range of screening.

Assignment of a woman’s data to a strategy has to be done carefully using only baseline information, ie without
“looking into the future”. Thus, as explained above, her data will be cloned and one clone will be assigned to each
strategy with which the woman’s behavior is consistent in the baseline quarter, resulting in multiple clones (see
Supplement Figure S1 for illustration, and reference®® for a methodological introduction). Note that women who died
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in the baseline quarter without starting screening are consistent with and therefore assigned to all strategies. This avoids
accumulation of early breast cancer deaths in the no screening strategy and, thereby, avoids bias. The same applies to
women who received a breast cancer diagnosis in the baseline quarter without starting screening. Women who undergo
screening within the baseline quarter are only cloned into the active screening strategies, since their observed screening
behavior at baseline is not consistent with the control strategy. Furthermore, they are cloned into both active screening
strategies, which avoids immortal time bias.”’

Clones will be artificially censored at the start of the first calendar quarter during which their observed screening
behavior deviates from the assigned treatment strategy (Supplement Figures S2—-S4). Artificial censoring describes the

analyst’s decision to ignore any future data for this subject, just as if it were missing.?> For example, a woman’s data will
be censored in the “never screened” strategy at the time when she receives a screening, and a woman’s data will be
censored from the “regular screening” strategy at the time when she misses a regular screening. Regular screenings are
defined as screenings taking place between the fifth and tenth quarters (ie 12th to 30th month) after the quarter of the
previous screening.

Artificial censoring can introduce selection bias if (time-varying) factors influence both deviation from the assigned
strategy and the outcome. For instance, a woman may start taking hormone replacement therapy (HRT) and, due to the
increased breast cancer risk associated with this medication, also be advised to start regular mammography screening. At
that point, she deviates from the “no screening” strategy and would be artificially censored at the time of her first
screening mammogram in that strategy. Thus, artificial censoring will be more likely for women using HRT than for
women not using HRT, so that censoring might induce selection bias. However, this bias is avoided by weighting with the
inverse probability of censoring taking HRT (and other relevant time-varying factors) into account;*® note that this is
equivalent to adjusting for time-varying confounding. Women will not be artificially censored under any strategy after
receiving a breast cancer diagnosis or after turning 70. No artificial censoring occurs for the “screening at baseline”
strategy as any behavior, regular, irregular or lack of further screening after baseline, is compatible with this strategy.
Note that within all strategies, diagnostic mammography may take place at any time, as required or indicated, and does
not lead to artificial censoring as we aim to assess the added benefit of the MSP.

Exposure

While invitation to screening is not captured in the data, utilization of screening mammography can be identified via
a unique EBM code and, thus, is distinguishable from utilization of diagnostic mammography. Women who have not
attended screening yet or never attend screening will be included in the control strategy.

Outcome

Information on cause of death is not recorded in health claims data. For the majority of the study population, breast
cancer deaths will therefore be identified via an algorithm that uses available information in claims data in the year of
death. The algorithm has been developed in a sample for which both claims data and the official cause of death were
directly linked. The initial version of the algorithm, described by Langner et al,>” showed a sensitivity of 91.3% and
a specificity of 97.4%, and is currently being further optimized, eg by also considering information on cancer treatment.
For study participants living in the federal states of North Rhine-Westphalia, Bavaria, and Lower Saxony official cause of
death records will be directly available by linkage to the cancer registry of the respective federal state.

Covariates

Covariates for confounder adjustment were selected following subject matter knowledge and considerations about the
causal relationships between covariates, exposure and outcome. An illustration of relevant causal patterns is given in
Figure S5 in the Supplement. Details on how confounding as a potential source of bias is considered and how relevant
covariates are captured in the data are provided in Supplements 4 and 5, and a preliminary list of covariates is given in
Table S1 in Supplement 6. The list of covariates used in the final analysis will be finalized before data on the study

outcome becomes available. All baseline covariates that can vary over time will be re-assessed at each time point, ic on
a quarterly basis. All of these updated covariate values will be used to estimate inverse probability weights for artificial
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censoring and competing events censoring (the latter only applies to sensitivity analyses). We will apply the usual model
diagnostics and carry out balance checks. In addition to these covariates, further variables will be assessed to describe the
study cohort.

Missing Data
Individuals with missing core demographic information (ie age, sex, and region of residency) will be excluded from the
study. We expect this to be a negligible proportion of women.

We assume that prescriptions, diagnoses, and procedures not coded in our data did not take place. Since no
information other than codes from the databases is available, this assumption cannot be verified. Over-the-counter
prescriptions and medical services that are not reimbursed by health insurance providers are not coded in our database.

Loss to Follow-Up

Loss to follow-up may occur due to interruption of continuous enrolment, or end of insurance coverage. Interruptions in
insurance coverage are very rare in Germany, particularly in the age group relevant for this study.”® We therefore assume
that loss to follow-up is neither related to screening participation nor to the risk of breast cancer. Women are censored at
loss to follow-up.

Addressing Potential Sources of Bias

As explained under “Study design”, the target trial emulation principle, combined with cloning and artificial censoring,
ensures the alignment at time zero and thus mitigates many typical design-related biases in observational studies. Under
“Covariates” we further address how information in the claims data can be used to adjust for confounding. A systematic

overview and further explanation is provided in Supplement 4, addressing the topics “Confounding”, “Healthy screence
bias”, “Competing events”, “Time-related biases”, “Misclassification” and “Identifying assumptions”.

Primary Analysis

The primary analysis will consist of an estimation of the per-protocol effect of the screening strategies on breast cancer
mortality, both in the overall population (research question 1) and in a subgroup of screening affine women (research
question 2). One trial will be emulated for each calendar quarter from 2009 to 2016 with one woman possibly
contributing to multiple screening strategies per trial. This means that the baseline of the first trial is January Ist,
2009 and follow-up extends until end of data availability. The baseline of the second trial is April 1st, 2009 and follow-up
extends until end of data availability. Thus, one trial is emulated per quarter, until the last emulated trial starts on
October 1st, 2016. Data from all these emulated trials will be pooled and analyzed jointly. Clones will be artificially
censored as described above and reweighted with suitable inverse probability weights. In our main analysis, we estimate
the total effect on breast cancer mortality, ie the effect when death from other causes is not eliminated.'> Adjusted
cumulative incidence functions (CIF) will be estimated using a pooled logistic regression (for details on the statistical
methods used, see Supplement 1).

The comparison of the effect of screening strategies will be done in terms of differences in CIF, ie the effect will be
observed at each point of follow-up. For the comparison of strategy 1 (never screened) with strategy 3 (regular
screening), the above standardization to the empirical distribution of baseline confounders will use the confounder
distribution of the entire study population, ie we estimate the average treatment effect (ATE). For the comparison of
strategy 1 with strategy 2 (screening at least at baseline), on the other hand, the confounder distribution among treated
women will be used, ie we will estimate the average treatment effect on the treated (ATT). The ATT will be more
informative to answer the health policy question of whether offering the screening given imperfect adherence (ie contrast
between strategies 1 and 2) and given the confounder distribution in women who decide to undergo screening is effective
in lowering breast cancer mortality. Confidence intervals will be based on a person-level bootstrap to account for cloning.
For a more detailed description of the statistical methods used here, see references.'>!*?° The analyses may use
a random sample of controls only (ie from the never screened strategy), if computationally prohibitive otherwise.
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Furthermore, alternative adjustment methods may be used to adjust for baseline confounding instead of the above-
described standardization if the bootstrap sampling becomes computationally prohibitive.

Sub-Group and Secondary Analyses
While primary research question 1 refers to the entire study population, primary research question 2 will assess the effect
of screening in the sub-group of screening affine women. These are defined as having attended at least one of the
following preventive services during the three years preceding baseline: pap test or breast examination (identified via
a single claim code), health check-up after age 35, skin cancer screening, screening colonoscopy, fecal occult blood test,
influenza vaccination. By choosing a more restricted and homogeneous study population for primary research question 2,
we aim at minimizing residual confounding while being aware that the effect within this special group may be different
than in the larger population.*®

As a secondary analysis, stratification by calendar year at baseline will be carried out in order to account for the
implementation phase of the MSP. We will group all clones from emulated trials with baseline before or in 2011 in one
stratum and all others in another stratum. The choice of the cut-off year 2011 is based on baseline characteristics in
preliminary analyses (data not shown) and results in one stratum with highly variable age structure (implementation
phase until 2011) and one stratum with more homogeneous age structure.

Furthermore, a restricted analysis without women who have a coded family history of breast cancer will be
conducted, in order to obtain a subpopulation excluding high-risk individuals.

Sensitivity Analyses
The main analysis assesses the total effect of screening on breast cancer mortality, which encompasses the effect of
screening on breast cancer mortality mediated by death due to other causes. This amounts to estimating the event-specific
CIF for breast cancer death as event of interest.'> An estimation of the direct effect, ic under a hypothetical intervention
which eliminates all competing events (i death from other causes), will be conducted in a sensitivity analysis.'®
A comparison with the main analysis will help assess the impact of competing events on any conclusions.
Furthermore, the models from the primary analysis will be re-fitted, but with all-cause mortality as outcome variable.
Further sensitivity analyses, such as quantitative bias analysis regarding family history of breast cancer (see
Supplement 4), will be added to the analysis. Results of all secondary and sensitivity analyses will be interpreted in
an exploratory way.

Discussion

We propose a design for an observational study in Germany that aims to investigate whether mammography screening
reduces breast cancer mortality. The first data analysis will be conducted once 10-year follow-up data are available;
extension of follow-up is planned. To the best of our knowledge, there is currently no other study using the principle of
target trial emulation to address this research question. Garcia-Albéniz et al used target trial emulation to investigate the
continuation of screening mammography after age 70.>" There have been other large observational studies investigating
screening mammography and breast cancer mortality that were conceptually different from our proposed study.
Furthermore, these studies did not have individual-level confounder information, nor an unscreened control group and
they did not employ a per-protocol design.'®!! The key contribution of our proposed study will be an up-to-date
assessment of mammography screening effectiveness in a real-world German population, complementing evidence from
earlier randomized trials in other countries. For many reasons, we do not expect exact agreement of our results with those
from previous RCTs (see eg Groenwold for a discussion®?), but instead aim at complementing past studies with the best
possible evidence currently available on whether screening mammography affects breast cancer mortality in the German
population. The chosen screening strategies will inform individual women’s choices as well as policy makers. The
proposed study design carefully accounts for potential sources of bias and ambiguity. In particular, we also conduct
analyses restricted to screening affine women, which is expected to minimize healthy-screenee bias and thus leads to
a high internal validity. Moreover, the large size of our database constitutes a clear strength of our proposed study.
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While our study focuses on the effectiveness of mammography screening on breast cancer mortality, we are fully
aware that mammography screening also has harmful effects. Overdiagnoses are considered to be one of the major harms
of mammography screening including subsequent treatment of overdiagnosed cases.**** Mammography screening
programs have been implemented in many countries because it is assumed that the benefits of mammography on breast
cancer mortality outweigh these harms, but there is an ongoing debate with some scientists questioning this.***>*¢ Given
that a very long follow-up of up to 30 years would be required to address overdiagnoses,®” our study cannot contribute to
the debate on overdiagnoses. By focusing on the question whether there is a benefit of mammography screening under
current conditions in Germany, our study addresses one part of the evaluation required by law. According to German law,
any screening method to detect non-communicable diseases entailing exposure to radiation must be assessed both
regarding the ability to detect the disease at an early state and thereby improve prognosis and regarding the harm to
benefit ratio (§84 of the German Radiation Protection Law, “Strahlenschutzgesetz/StrlSchG™).

While the design of our study addresses several sources of bias, it is still limited by other issues of observational
analyses. While we have carefully considered all plausible sources of confounding as detailed in Supplement 4, some
unmeasured (baseline or time-dependent) confounding that cannot be mitigated with information based on claims codes
cannot be ruled out. In particular, the role of family history of breast cancer, which is only partly observed, will therefore
be assessed in quantitative bias analyses. Additionally, for a part of the study population the official cause of death is not
available and will instead be identified based on an algorithm that has previously been validated through data linkage.
The former version of this algorithm has already shown high sensitivity and specificity and is currently being further
optimized.?” Furthermore, imprecision in the date of some codes is present in the data, as outpatient diagnoses are coded
on a quarterly basis. We mitigated this by processing all data on a quarterly basis. This, however, introduces the
limitation of potential residual time-related biases in quarterly trial emulation. With these limitations in mind, we are
confident that our study represents the best analysis currently possible on the effectiveness of the mammography
screening program in Germany.

Given data availability, we expect to publish the results of this study by the end of 2024.
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granting approval will ask their respective authorities for approval. Please contact gepard@leibniz-bips.de for help
with this process.
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1 Details on the statistical analysis

Discrete-time cumulative incidence functions (CIFs) will be estimated using the following approach. Let
Anever (reference), Aonce, and Ayeguiqr be indicator variables for the screening strategies “never
screened”, “screened at least at baseline”, and “screened at baseline and every two years afterwards”.
The discrete-time (cause specific) hazard is modelled using pooled logistic regression adjusted for

baseline covariates:

logit (P(Yt+1|7t =0, C_'t =0,D; = O:Aonce;Aregular:X))

= fl (9{: t) + fZ (Qé, t, Aonce) + f3 (Hé; t, Aregular) + 94Aonce + 95Aregular + HéX,-

The above model includes flexible functions f(.) of time t, regression coefficients 8 for (transformed)
time and, possibly, interaction terms between time and screening strategy. The functions f(.) will be
determined by visual inspection so that the unadjusted parametric CIF estimated via pooled logistic
modelling approximates the non-parametric Aalen-Johansen curves reasonably well. The binary
variable Y; denotes the outcome event breast cancer death at time t. The binary variable C; denotes
censoring status at time t and the binary variable D; contains the event status of the competing event
(death by other causes) at time t. Baseline covariates and interactions between covariates are denoted
by X. The prime notation (.)’ denotes vectors. The history of a variable is denoted by overbars as ().
The above model is a marginal structural model and contains baseline covariates, but no time-varying
covariates. Adjustment for time-varying confounding by X, is achieved by inverse probability

weighting, where time-varying weights are calculated for each screening strategy

Ae {AnevererncerAregular} separately as

t

e
t k=1 [’P\)(Akllq_k—l')?kl)_/k—l = C_‘k—l = 0) !

truncating weights at the 99" percentile. Here A is the actual screening status at time k and is, by
definition, consistent with the strategy A as individuals will otherwise be censored. For efficiency the
above weights can be replaced by stabilized weights (see Cain et al. (2010) for a description of
stabilized weights). Analogous weights are used for censoring due to competing events when
estimating the direct effect. Below, upper indices refer to counterfactuals, e.g. the probability of breast
cancer death under screening even if a portion of the study subjects did not experience screening, i.e.
exposure is set to a value possibly contrary to the observed exposure (Hernan & Robins, 2020). The
cumulative incidence function C’I\Fi""f“ for clonei = 1, ..., m, at time point t under screening strategy
A = a will then be estimated using one of the approaches (i.e. based on modelling either

subdistribution or cause-specific hazard) described in Young et al. (2020), depending on computational
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cost. This cumulative incidence will be standardized to the empirical distribution of baseline

confounders as

1 m
CTFA=a = — " (TR,
i=1

As a function of time t, the above cumulative incidence function allows an assessment of how the

effect of screening evolves over the whole of follow-up.
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Figure S1: Illustration of cloning of women into the screening strategies. Assignment of clones to screening strategies is

based on screening behaviour from the calendar quarter of baseline. Women with a breast cancer diagnosis or recorded
death in the first quarter are cloned into all screening strategies, since they were compliant with all screening strategies
until the diagnosis/death occurred.
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Figure S2: lllustration of artificial censoring scheme under screening strategy “never screened”. Follow-up time is
discretized into calendar quarters, with rectangles denoting individual quarters. The rationale for censoring is described in
depth in the main body of the paper. Note that when a woman is censored, the time of censoring is set to the beginning of
the calendar quarter that led to censoring. In the above illustration, the last woman is censored at baseline because she
dies in the baseline quarter, i.e. she is censored at time point 0 with reason of censoring being death. C = breast cancer, D =
death, S = screening, S&C = screening and cancer in the same quarter.
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Figure S3: lllustration of artificial censoring scheme under screening strategy “screened at baseline”. Follow-up time is
discretized into calendar quarters, with rectangles denoting individual quarters. The rationale for censoring is described in
depth in the main body of the paper. C = breast cancer, D = death, S = screening, S&C = screening and cancer in the same
quarter, S&D = screening and death in the same quarter.
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Figure S4: lllustration of artificial censoring scheme under screening strategy “regularly screened every two years”. Follow-
up time is discretized into calendar quarters, with rectangles denoting individual quarters. A regular screening is defined as
having taken place between one year to ten quarters after the previous screening. The rationale for censoring is described
in depth in the main body of the paper. C = breast cancer, D = death, S = screening, S&C = screening and cancer in the same
quarter, S&D = screening and death in the same quarter. The dotted line indicates the end of the time period in which the
second screening would need to take place.
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4 Addressing potential sources of bias

Confounding: Covariates used to adjust for confounding will be derived at baseline and during follow-
up. Their selection is based on subject matter knowledge and available literature. Risk factors for
breast cancer were considered relevant, even though the outcome variable is breast cancer mortality,
since developing breast cancer is a necessary antecedent for breast cancer death. Figure S5 illustrates
the causal considerations for covariate selection. Adjustment for confounding will be carried out via

standardization and inverse probability weighting.

Given that claims data are not collected for research purposes, direct information on relevant
confounders is not always available or only available for extreme cases (e.g. heavy smoking, alcohol
abuse). We aim to minimize this problem by using indirect information on these confounders (e.g.
diseases resulting from exposure to these risk factors such as smoking-related diseases, or diseases
resulting mainly from unhealthy behaviour such as obesity) as well as proxy variables for a health-
seeking behaviour (e.g. utilization of preventive services, educational attainment). With respect to
family history of breast cancer, the information is restricted to the ICD-10-GM code Z80.3 (“malignant
neoplasm of the breast in the family”). It is not clear whether it is primarily coded in patients with a
hereditary breast cancer syndrome rather than in those with a “simple” family history. The observed
low proportion of women with Z80 codes (Braitmaier et al. 2022) indicates that it might only be used
in high-risk subjects who would not be the target group of normal MSP screening. We therefore plan
to conduct sensitivity analyses excluding women with this code. In addition, we will conduct a
quantitative bias analysis to estimate the impact of unmeasured confounding regarding a “simple”

family history of breast cancer.

For some risk factors, no information will be available in our data, for example age at menarche, parity,
age at first full-term pregnancy, breastfeeding, age at menopause, height, breast density, exposure to
radiation (unrelated to mammography). However, we argue that these risk factors are relatively
unknown to the public and it is therefore reasonable to assume that they do not influence the decision

to undergo screening.

Healthy screenee bias: Individuals volunteering for screening are generally healthier than individuals
who choose not to undergo screening (Weiss & Rossing 1996). In addition to adjustment for
confounding, we will address this specific issue by carrying out a subgroup analysis within screening-
affine women, defined by their pre-baseline use of other preventive services (research question 2).
This subpopulation is more homogenous regarding health seeking behaviour, and we expect an

increased internal validity albeit at the cost of generalizability. Therefore, both effects, the one in the
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full study sample and the one in the subgroup of screening-affine women, will be important for the

evaluation of the screening programme.

Competing events: Death due to causes other than breast cancer is a competing event for the outcome
of interest. We will compare the total effect (where death due to other causes is not treated as
eliminable) with the direct effect of screening (where the competing event is treated as eliminable and
thus censored with appropriate inverse probability of censoring weights, IPCW). Note that adjustment
for confounding of the direct effect must also include common causes of the competing event and the

study outcome, e.g. by including comorbidities (Young et al. 2020).

Time-related biases: Immortal time and other biases will be minimized by aligning eligibility checks and
treatment assignment at time zero, i.e. baseline (Dickerman et al. 2019). Furthermore, women whose
screening behaviour in the first quarter after trial start is consistent with more than one screening
strategy will be copied and one clone will be assigned to each eligible screening strategy, i.e. women
who undergo screening in the baseline quarter will be assigned to all active screening strategies. An
alternative, but less efficient approach would be to randomly assign each person to exactly one of the
eligible strategies (Garcia-Albeniz et al. 2020). Given that some information in the database used for
this study is only available on a quarterly basis (e.g. outpatient diagnosis codes), it is impossible to
break down the information into smaller time intervals than quarters. However, the length of follow-
up required to observe the effect of screening is large (approx. 7 - 10 years) (Jatoi & Miller 2003). We
therefore argue that the extent of bias due to the time units is negligible, as a delay of diagnosis of

three months is unlikely to influence the screening effect.

Misclassification: Health claims data is primarily generated for reimbursement purposes and,
therefore, some diagnosis codes might be used inappropriately for the underlying condition or over-
used (e.g. diagnosis codes in the outpatient setting). To minimize misclassification, we define most of
the diseases based on algorithms that, for example, combine different sources of information (e.g.
diagnosis codes in combination with therapy), only use codes with a high validity (such as inpatient
diagnosis codes) or only consider codes if recorded repeatedly. There may still be some
misclassification of morbidity, but we consider this type of misclassification unlikely to differ between
groups and negligible in our analysis. Risk factors that have a delayed impact on breast cancer may not
be measured adequately due to a limited length of the available look-back period. For instance, HRT
might influence breast cancer risk only after several years. Thus, a woman who stopped HRT treatment
five years before baseline would be misclassified as “no HRT use” if her look-back period in the data is
only three years. We will systematically describe the available look-back period (stratified by age at
baseline) to assess whether this could be a relevant misclassification. Finally, misclassification of the

outcome variable of breast cancer related deaths might occur since this variable is not directly
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available for much of the data and must be derived based on an algorithm. Langner et al. (2019)
reported a sensitivity of 91.3 % and a specificity of 97.4 % for a former version of this algorithm, which
is currently being further optimized and will be validated again based on a sample for which the official

cause of death is available.

Identifying assumptions: We make the usual assumptions for causal inference from observational data,
namely consistency, sequential exchangeability given observed covariates, and positivity. Consistency
is fulfilled when the screening strategies being assessed are well-defined and correspond to the
screening behaviour observed in the data, e.g. the outcome for a woman who happens to never
undergo screening is the same as if she had been assigned to never undergo screening in the target
trial. Sequential exchangeability is fulfilled when the observed screening behaviour of a woman at time
t is independent of her potential outcomes under the strategies given the measured covariates prior
to t; this can be thought of as no unmeasured baseline or time-varying confounding. Positivity is
fulfilled when the probability of observing a screening strategy is greater than zero for all strategies in
all covariate strata (Young et al. 2020, Hernan & Robins 2020). Furthermore, censoring competing
events to obtain the direct effect requires an assumption of no unmeasured common causes of the

different event types.
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5 llustration of causal considerations for covariate selection
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Figure S5: Illustration of variable groups considered for covariate adjustment and their causal connections. Note that this is
a simplified graph, ignoring the longitudinal aspect of the study. A directed edge from one variable to another means that
the first variable is a direct cause of the second. Screening is the exposure, breast cancer death is the outcome, and other
death is a competing event. A bi-directed edge can be interpreted as presence of latent variables between the two
connected variables. Variables “a” are common causes of screening and outcome. Variables “b” are proxies for those of
category “a”. Variables “c” are causes of the outcome that are associated with exposure. Variables “d” are causes of the
exposure that are associated with the outcome. Variables “e” are causes of the outcome that are not associated with
exposure. Variables “f” are causes of the exposure that are not associated with the outcome. Variables “g” are post-
screening variables that are mediators between exposure and outcome. Variables “h” have a causative effect both on the
competing event and the outcome. Variables “i” are causes of exposure and mediators. Variables “j” are confounders
between exposure and the competing event. Variables “f” should not be included for adjustment, as this can lead to bias-
amplification in case of residual unobserved confounding. Variables “g” (e.g. treatment after screening) should not be
included for adjustment, as they are on the causal path from exposure to outcome. Variables “a”, “b” (if “a” is
unmeasured), “c”, “d”, “h” (only for estimating the direct effect, not for the total effect), “i”, and “j” should be included for
adjustment to mitigate confounding. Variables “e” are not needed for adjustment but can be included to increase precision
of estimation. The variable groups (except “f”) are not mutually exclusive, and in fact many variables will fit into more than
one of these groups. An example of a covariate of the category “a” would be previous use of menopausal hormone therapy,
as this is a known risk factor for breast cancer and physicians might advise women with this risk factor to attend screening.
An example of a covariate of the category “j” would be presence of palliative care. An example for “d” might be educational
attainment as it may affect awareness of screening and is strongly associated with direct risk factors “c” of breast cancer

mortality; educational attainment can also be seen as type “b” proxy for further unmeasured confounders.
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6 List of covariates

In Table S1 below, we give an overview of variables used to adjust for confounding. Time-varying
covariates will be re-assessed on a quarterly basis. Variables might be added to this list of covariates,
if indicated by subject matter knowledge. The list of covariates used in the final analysis will be finalized
before data on the study outcome becomes available. Note that this is just an alphabetical list of
covariates that will be defined based on the information in the database. Content-wise, a discussion
on how confounding as a potential source of bias is considered and how relevant covariates are
captured in the data is provided in Supplement 4. Furthermore, Figure S5 illustrates the causal
considerations for covariate selection.

The covariates in Table S1 are mostly implemented as binary (time-dependent) variables. For most of
the variables, algorithms considering different types of information (e.g. diagnosis codes in
combination with therapy) will be developed or have been developed, with the aim of maximizing
validity and thus minimizing misclassification (see also Supplement 4).

Table S1: Relevant covariates for confounder adjustment.

variable/variable group time-varying
Acute hemorrhagic stroke yes
Acute ischemic stroke yes
Acute myocardial infarction yes
Age at baseline no
Alcohol abuse yes
Anaemia yes
Anticoagulant therapy yes
Antihypertensive therapy yes
Antiplatelet therapy yes
Benign neoplasm of breast yes
Breast disorders (benign mammary dysplasia, inflammatory disorders of breast,
hypertrophy of breast, unspecified lump in breast, other disorders) yes
Bronchial asthma yes
Cachexia yes
Chronic obstructive pulmonary disease (COPD) yes
Coronary heart disease yes
Dementia yes
Diabetes with end organ damage yes
Drug abuse yes
Drug-treated (arterial) hypertension yes
Educational attainment no
Family history of breast cancer* yes
Glaucoma yes
Heart failure yes
Hemiplegia yes
Hepatitis B or C yes
Hip fracture yes
HIV therapy yes
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Hormone replacement therapy yes
Lipid-lowering therapy yes
Liver diseases including chronic viral hepatitis yes
Mental diseases yes
Number of hospitalizations yes
Number of non-screening mammographies yes
Number of outpatient physician contacts yes
Number of prescriptions yes
Number of screening mammographies yes
Obesity/adiposity yes
Other cancers yes
Palliative care yes
Severe liver disease yes
Terminal renal disease yes
Tobacco abuse yes
Treated diabetes yes
Treatment for hypothyroidism yes
Treatment for osteoporosis yes
Treatment with antidepressants yes
Treatment with antipsychotics yes
Treatment with immunosuppressive drugs yes
Treatment with opioids yes

* Given that information on family history is limited, additional methods will be taken to consider

this confounder (see manuscript and Supplement 4).
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Abstract

Objective: A low-quality colonoscopy has been shown to be less effective in reducing
colorectal cancer (CRC) incidence than a high-quality colonoscopy, but the comparison
with no screening colonoscopy is lacking. We aimed to compare the 13-year risk of de-
veloping CRC between persons with I) a high-quality screening colonoscopy, 1) a low-
quality screening colonoscopy and III) without a screening colonoscopy. Study Design
and Setting: A healthcare database ( 20% of the German population) was used to emu-
late a target trial with three arms: High-quality screening colonoscopy (highQualSC) vs.
low-quality screening colonoscopy (lowQualSC) vs. no screening colonoscopy (noSC)
at baseline. The quality of screening colonoscopy was categorized based on the polyp
detection rate of the examining physician (cut-off of 21.8%). We included persons aged
55 to 69 years at average CRC risk and CRC screening naive at baseline. We estimated
adjusted cumulative CRC incidence over 13 years of followup. Results: The highQualSC
arm comprised 142,960 persons, the lowQualSC arm 62,338 persons and the noSC arm
124,040 persons. The adjusted 13-year CRC risk was 1.77% in the highQualSC arm,
2.09% in the lowQualSC arm and 2.74% in the noSC arm. Compared to the noSC arm,
the adjusted relative risk was 0.76 (95% CI: 0.70-0.84) in the lowQualSC arm and 0.65
(95% CI: 0.60-0.69) in the highQualSC arm. Conclusion: Our study shows that a low-
quality screening colonoscopy is also effective in reducing CRC incidence compared to
no screening colonoscopy. However, the effect is about one third less than that of a high-

quality screening colonoscopy.
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Abstract

Objective: Observational studies evaluating the effectiveness of cancer screening are often
biased due to an inadequate design where |) the assessment of eligibility, 1) the assignment
to screening vs. no screening and lll) the start of follow-up are not aligned at time zero
(baseline). Such flaws can entail misleading results but are avoidable by designing the study
following the principle of target trial emulation (TTE). We aimed to illustrate this by addressing
the research question whether screening colonoscopy is more effective in the distal vs. the

proximal colon.

Methods: Based on a large German health care database (20% population coverage), we
assessed the effect of screening colonoscopy in preventing distal and proximal CRC over 12
years of follow-up in 55-69-year-old persons at average CRC risk. We applied four different
study designs and compared the results: cohort study with / without alignment at time zero,

case control study with / without alignment at time zero.

Results: In both analyses with alignment at time zero, screening colonoscopy showed a similar
effectiveness in reducing the incidence of distal and proximal CRC (cohort analysis: 32% (95%
Cl: 27% - 37%) vs. 28% (95% CI: 20% - 35%); case-control analysis: 27% vs. 33%). Both
analyses without alignment at time zero suggested a difference in site-specific performance:
Incidence reduction regarding distal and proximal CRC, respectively, was 65% (95% CI: 61%
- 68%) vs. 37% (95% Cl: 31% - 43%) in the cohort analysis and 77% (95% CI: 67% - 84%) vs.

46% (95% CI: 25% - 61%) in the case-control analysis.

Conclusions: Our study demonstrates that violations of basic design principles can
substantially bias the results of observational studies on cancer screening. In our example, it
falsely suggested a much stronger preventive effect of colonoscopy in the distal vs. the
proximal colon. The difference disappeared when the same data were analyzed using a TTE

approach, which is known to avoid such design-induced biases.
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Introduction

Randomized controlled trials (RCT) are the gold standard for evaluating the effectiveness of
cancer screening. However, existing RCTs in this field do not answer all relevant research
questions. For screening colonoscopy, for example, an RCT has recently been published
(NordICC trial) demonstrating its effectiveness in reducing colorectal cancer (CRC) incidence
overall [1], but it was not powered to compare the effectiveness in the distal vs. the proximal

colon.

Complementary evidence from observational studies is therefore needed. Apart from potential
confounding, there is a high risk of bias and thus of misleading results if such studies are
inadequately designed. Indeed, several observational studies have reported a markedly
stronger preventive effect of screening colonoscopy in the distal as compared to the proximal
colon [2, 3, 4], while a cohort study designed following the principle of target trial emulation
(TTE) showed a similar effectiveness of screening colonoscopy in the distal and the proximal
colon [5]. We argued that the difference by site in the former studies was due to biases induced
by non-alignment at “time zero”, i.e. at baseline. This means that |) the assessment of eligibility,
II) the assignment to study arms and Ill) the start of follow-up were not aligned as they would
be in an RCT and as it would be ensured in an observational study designed based on the
principle of TTE [6]. Specifically, previous studies often defined exposure based on pre- or
post-baseline information on colonoscopy. As we further argued, this lack of alignment in
previous studies led to overestimating the effectiveness of screening colonoscopy. Due to the
different age pattern of distal and proximal CRC, this bias affected distal CRC more than

proximal CRC, i.e. the difference in effectiveness by site was an artefact.

To demonstrate this, we compared different study designs with and without alignment at time
zero aiming to investigate the question of site-specific effectiveness of screening colonoscopy
in reducing CRC incidence. For the two designs without alignment we used a cohort study
design, where the assignment to study arms occurs before time zero (pre-baseline), and a
nested case control study design, where the assignment to study arms occurs after time zero

3
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(post-baseline). The current paper is part of a growing literature identifying violations of

alignment at time zero as a potential source of major bias in observational studies [6, 7, 8].

Methods

Data source and study population

We used the German Pharmacoepidemiological Research Database (GePaRD) which
comprises claims data from four statutory health insurance providers in Germany and covers
about 20% of the German population [9]. In GePaRD, information on utilization of screening
colonoscopy, offered in Germany to persons aged 55 or older since 2002 (since 2019 also to
men aged 50-54), is distinguishable from diagnostic colonoscopy. As previously described, the
data source enables the valid identification of incident CRCs [10]. Furthermore, it contains
appropriate information to apply in- and exclusion criteria and to adjust for confounding as
relevant to the research question on the effectiveness of screening colonoscopy in reducing

CRC incidence [5]. For the present study, we used data from 2004 to 2020.

Based on this data source, we applied four different study designs to address the research
question, specifically a cohort and a case-control study design, each with and without
alignment at time zero. The study designs without alignment at time zero were inspired by
published examples [2, 11, 12, 13], and were partly complemented by sensitivity analyses. For
each of these four studies, persons were selected from the same population. Specifically, the
source population was a cohort of persons aged 55-69 at baseline, who were continuously

insured for at least three years before baseline.

Cohort study without alignment at time zero

The cohort started in 2009 (baseline). Similar to a previous study [2], individuals were assigned
to the screening colonoscopy arm if they had a screening colonoscopy any time before
baseline, including the baseline quarter. Individuals were assigned to the control arm if they
did not undergo screening colonoscopy any time before baseline, including the baseline

quarter. In a sensitivity analysis, we considered both screening and diagnostic colonoscopies
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for the assignment to the study arms, because some of the previous studies did not distinguish
between these examinations. Eligibility criteria were checked at baseline and the outcome
variable (incident CRC) was assessed beginning with baseline (start of follow-up). Persons
were followed up until end of study period (end of 2020), end of continuous insurance
coverage, death or CRC diagnosis, whichever occurred first. We also conducted sensitivity

analyses starting the cohort in 2010 and 2011, respectively.

When using such a study design, the assessment of eligibility and the start of follow-up are
aligned, but the assignment to the screening and the control arm is based on a period before
time zero (pre-baseline). Specifically, individuals in the colonoscopy arm had the examination
in the past (i.e. they were assigned to the screening arm based on past exposure) rather than

at time zero.

Cohort study with alignment at time zero

As described previously [5], we emulated sequential trials for each calendar quarter from 2007
to 2011. The emulation of sequential target trials makes full use of the information from
longitudinal data without violating principles of study design by using pre- or post-baseline
information for the assignment to study arms. At the baseline quarter of each trial, eligibility
was assessed and individuals with previous screening colonoscopy or CRC diagnosis were
excluded. Individuals were then assigned to the screening arm if they underwent a screening
colonoscopy in the baseline quarter of the respective trial and to the control arm otherwise.
Individuals were followed up until end of study period (end of 2020, i.e. follow-up was longer
than in our previous analysis), end of continuous insurance coverage, death or CRC diagnosis,
whichever occurred first. This study design made sure that assessment of eligibility criteria,
assignment to the screening and control arm, and start of follow-up were aligned at time zero

as would be the case in an RCT.

Case-control study without alignment at time zero
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We applied a case-control design frequently used in the published literature [11, 12, 13, 14,
15, 16]. Essentially, CRC cases are identified (date of diagnosis corresponds to index date)
and matched with controls free of CRC at index date. Then screening colonoscopy use ever
before or within a certain time period before the index date is assessed in cases and controls,
i.e. colonoscopies leading to CRC diagnosis are not considered as exposure in this type of
study. Here, we selected all individuals from the source population entering the cohort in 2009
with a CRC diagnosis in 2018-2020. For each case we matched up to five controls on age (+/-
one year) and sex (sampling without replacement). The exposure variable was then defined
as any screening colonoscopy between 2009 and the index date, i.e. exposure to colonoscopy
use was assessed within 10-12 years before the index date. Colonoscopies conducted in the
six months before CRC diagnosis were not considered in defining the exposure. As mentioned
above, this approach corresponds to published case-control studies which ignore
colonoscopies conducted as part of the diagnostic process leading to the current diagnosis
[11,12, 13, 14, 15, 16]. In general, it is a fundamental characteristic of traditional case-control
studies to assess exposure before disease onset. In a sensitivity analysis, we considered both
screening and diagnostic colonoscopies for the assignment to exposure groups. Again, we
also conducted sensitivity analyses using the years 2010 and 2011 for cohort entry, i.e. the

source population underlying this nested case-control study.

In the case-control design we used here (nested within a cohort), the assessment of eligibility
and the start of follow-up were aligned, while the assignment to the screening and the control
arm occurred after time zero (post-baseline) instead of at time zero. Note that in case-control
studies not nested in a cohort, there typically are additional misalignments [11, 14]. Specifically,

eligibility is assessed at index date and the start of follow-up is unclear.

Case-control study with alignment at time zero

Following the approach described by Dickerman et al. [17], a case-control study was nested
within the original cohort of sequential emulated target trials, and colonoscopy use was

assessed at baseline of each emulated trial. We included CRC patients with an incident CRC
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diagnosis at any point during follow-up (until 2020) and then used risk set sampling to match
up to five controls to each case. We sampled matched controls with replacement, i.e. the same
control could be matched to more than one case. Matching variables were the same as above.
The key difference to the case-control study without alignment is that exposure assignment
was based on information available at the start of the emulated trial, i.e. at time zero, instead
of information occurring after time zero. This approach has been shown to avoid self-inflicted

biases in the same way as a prospective study using TTE [17].

Data analysis

For the cohort studies, we estimated cumulative incidence functions (CIF) via pooled logistic
regressions, which were adjusted for baseline confounders via inverse probability of treatment
weighting. Effects were estimated as adjusted relative risks (RR) at the end of follow-up based
on these CIFs. As previously shown, adjustment yielded satisfactory covariate balance and a
negative control analysis did not indicate any residual confounding [5]. Confidence intervals
were estimated via person-level bootstrap. For the case-control studies, effects were estimated
as adjusted odds ratios (ORs) obtained via conditional logistic regression. For the case-control
analysis with alignment, no confidence intervals could be obtained due to computational
limitations: The emulation of sequential trials with repeated cohort entry would require
bootstrapping, where matching is repeated for every bootstrap sample, resulting in run times

of several months.

Results
Cohort study without alignment at time zero

We selected a random sample of 200,000 individuals in the control arm and 200,000
individuals in the screening colonoscopy arm. The adjusted relative risk after 12 years of follow-
up was 0.35 for distal CRC and 0.63 for proximal CRC (Table 1). The adjusted cumulative
incidence curves are given in Fig. 1. As shown in Supplement 1, results were similar when the

year 2010 or the year 2011 was used as baseline. In sensitivity analyses considering both
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screening and diagnostic colonoscopies as exposure, the adjusted 12-year relative risk was

0.40 for distal CRC and 0.66 for proximal CRC (Supplement 2).

Cohort study with alignment at time zero

Overall, 192,054 persons were included in the screening colonoscopy arm. The 5% random
sample (restriction due to computational limitations) of controls assigned to the no screening
arm included 116,452 persons (1,241,071 non-unique). The adjusted relative risk after 12
years of follow-up was 0.68 for distal CRC and 0.72 for proximal CRC (Table 1). Figure 1
shows the adjusted cumulative incidence curves for distal and proximal CRC. The distribution
of screen-detected and post-colonoscopy CRCs (i.e. non-screen-detected CRCs) by site is

shown in Supplement 6.

Case-control study without alignment at time zero

Overall, 446 cases with distal CRC matched to 2,230 controls and 302 cases with proximal
CRC matched to 1,510 controls were included. The adjusted ORs for distal and proximal CRC
were 0.23 and 0.54, respectively (Table 2). When the year 2010 or the year 2011 was used to
define the source population, the difference by site was similar (Supplement 1). The sensitivity
analysis considering both screening and diagnostic colonoscopy as exposure yielded similar
results; the adjusted ORs for distal and proximal CRC were 0.20 for distal CRC and 0.44 for

proximal CRC, respectively (Supplement 2).

Case-control study with alignment at time zero

Overall, 8,382 cases with distal CRC matched to 40,925 controls and 4,463 cases with
proximal CRC matched to 22,175 controls were included. The adjusted ORs for distal and

proximal CRC were 0.73 and 0.67, respectively (Table 2).

Discussion
To the best of our knowledge, our study is the first to systematically compare different study

designs to assess the effectiveness of screening colonoscopy in reducing CRC incidence in
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the distal vs. the proximal colon. Our cohort and case-control analyses with alignment at time
zero showed no relevant difference in the effectiveness by site. Using study designs without
alignment at time zero led to an overestimation of the effectiveness of screening colonoscopy
overall. The overestimation affected distal CRCs considerably more than proximal CRCs , i.e.
purely by design there appeared to be a difference in effectiveness by site. This finding held
up in sensitivity analyses varying data years and the type of examinations considered for the
exposure definition (only screening or also diagnostic colonoscopy). Our findings demonstrate
that the difference in the effectiveness of colonoscopy by site reported by previous

observational studies was due to bias introduced by inadequate study design.

As illustrated in Supplement 3 using directed acyclic graphs, the bias underlying studies using
pre-baseline information on colonoscopy for the assignment to study arms can be expressed
as a form of collider stratification bias [18, 19]. To give an intuitive explanation, let us revisit
the study by Guo et al. [2, 5]: At baseline, patients were asked about past colonoscopy use
and—based on this information—assigned as exposed or unexposed to colonoscopy. Persons
reporting a prior CRC diagnosis at baseline were excluded [2]. Given that colonoscopy is one
of the main tools by which CRC is diagnosed, this process removes individuals with previously
diagnosed CRC from the exposed group, i.e. it enriches the exposed group with individuals
who are known to be free of CRC. No such selection process takes place in the unexposed
group. This leads to a lower prevalence of preclinical CRC at baseline in the exposed as
compared to the unexposed group. As a consequence, this selection reduces the number of
CRCs occurring during follow-up in the exposed group as compared to the unexposed group
and thus leads to overestimation of the effect of screening on CRC incidence. As the vast
majority of CRCs diagnosed at an age when persons are typically included into screening
studies are in the distal colon [20] while proximal CRCs become more common at older age,
this bias mainly affects results for distal CRC, i.e. as mentioned above there appeared to be a
difference in effectiveness by site purely by design. We note that in addition to the initial

exposure assignment, Guo et al. also used an updated exposure variable in a Cox model with
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time-dependent covariates. However, this does not correct the initial selection issue at the start

of follow-up.

The above argument applies to studies using pre-baseline information for the assignment to
exposure groups. Many other studies used post-baseline information for the assignment to
exposure groups, also inducing bias. We illustrated this by the case-control study without
alignment at time zero: Whenever after baseline CRC is detected in a person at his or her first
colonoscopy, as is the case for most screen-detected CRCs, this person is assigned to the
unexposed group as there was no previous colonoscopy and the actual colonoscopy detecting
the CRC is not considered as prior exposure. This enriches the unexposed group with CRCs
and thus leads to overestimation of the effectiveness of screening. As the majority of screen-
detected CRCs are in the distal colon, this bias predominantly affects CRCs in the distal colon
and thus leads to an artificial difference in the effectiveness of colonoscopy by site (see also
Supplement 4). In our case-control study design embedded in an emulated target trial with
alignment at time zero, in which screen-detected CRCs are correctly assigned, no relevant
difference in the effectiveness of colonoscopy by site was observed. Of note, misalignment
due to post-baseline exposure assignment is typical of but not limited to case-control designs
on cancer screening. It can also occur in inadequately designed cohort studies and is not
overcome by using a time-varying exposure variable in a hazard model. This is explained in

more detail in Supplement 5 based on the example of the study by Nishihara et al. [3]

In summary and more generally, both study designs without alignment at time zero have in
common that there are mechanisms that lead to inappropriate consideration of screen-
detected CRCs, i.e. in the screening arm there was no peak in CRC incidence immediately
after baseline as it would be the case in an RCT. Of course, this overestimates the impact of
screening on CRC incidence, particularly for distal CRC, as illustrated in Figure 1. The flawed
approaches ignore the fact that a screening colonoscopy sometimes comes too late to prevent
CRC. Following the publication of the NordICC study, there was a discussion whether it is

appropriate to include persons with preclinical CRC, causing the peak at baseline, in a
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prevention trial [21, 22]. However, from a public health perspective, it is important to also take
into account CRCs that are not prevented by screening in order to avoid overestimating the
effectiveness of CRC screening at the population level. Apart from this, it should be noted that
studies without alignment at time zero do not provide a valid answer to the question regarding

the size of the preventive effect of colonoscopy in persons free of CRC at baseline.

It should be noted that, although we focus our discussion on biases most relevant for site-
specific effectiveness of screening colonoscopy, misalignment at time zero should also be
avoided for many other reasons. Rasouli et al. [23] demonstrated that time related issues such
as prevalent user bias or time-varying confounding are a threat to case-control designs not
embedded in an emulated target trial. Also Dickerman et al. showed—based on case-control
studies investigating the impact of statins on CRC risk—the biases inherent to traditional case-
control studies and the potential of avoiding bias and wrong conclusions if the study is designed
following the principle of TTE [17]. Similarly, there are many examples of biases other than

those we discussed here that are inherent to cohort studies without alignment at time zero [8].

Our findings have several implications. First, regarding research on CRC screening, previous
studies suggesting a lower effectiveness of colonoscopy in the proximal colon stimulated a
search for reasons that may explain the occurrence of post-colonoscopy CRCs specifically in
the proximal colon. It was suggested that one main reason relates to sessile serrated lesions
as they are more difficult to detect and more often occur in the proximal colon [24]. While we
do not question the important role of these lesions, our findings may encourage a broadening
of the discussion of potential reasons leading to post-colonoscopy CRCs. Indeed, in our
emulated target trial on screening colonoscopy, the proportion of post-colonoscopy CRCs
located in the distal vs. the proximal colon was rather similar (Supplement 6). A one-sided
focus on lesions that occur more frequently in the proximal colon therefore seems too narrow

regarding the identification of lesions possibly leading to post-colonoscopy CRCs.

Our results also have implications beyond the specific research question of our study.

Observational data are often used to evaluate the effectiveness of cancer screening. They
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represent a valuable data source to complement RCT evidence in this field, as RCTs on cancer
screening are scarce, were often conducted many years ago and are typically not powered to
estimate, for example, subgroup-specific effects or differences by cancer subtype. However,
our study illustrates that—in addition to appropriate control of confounding—it is of key
importance to design these studies in a way to ensure alignment at time zero. This means that
assessment of eligibility, assignment to the screening and control arm and start of follow-up

must be aligned. Otherwise, there is a high risk of bias.

Specific strengths of our study include the systematic comparison of different study designs as
well as the comprehensive sensitivity analyses. Given that all analyses were conducted using
the same data source and referred to the same setting, there is no heterogeneity regarding,
for example, the study variables or setting-related factors such as the uptake of surveillance
colonoscopy or colonoscopy quality. This strengthens our conclusion that differing results of

the analyses with and without alignment at time zero are exclusively due to the study design.

It should be noted that our findings apply to the population aged 55-69, covering the typical
screening age range of CRC screening. Whether screening colonoscopy is equally effective in
the distal and proximal colon in older age groups cannot be answered by our study, nor did we
address the endpoint CRC mortality. These research questions were beyond our study’s
scope, as our primary objective was to illustrate the relevance of design-induced biases and
the possibility to avoid them using TTE, exemplified by investigating site-specific effectiveness

of screening colonoscopy in reducing CRC incidence.

In conclusion, our study demonstrates that violation of alignment at time zero can substantially
bias the results of observational studies on cancer screening. In our example, it falsely
suggested an almost doubled preventive effect of colonoscopy in the distal vs. the proximal
colon. The difference disappeared when the same data were analyzed using a TTE approach,

which is known to avoid design-induced biases.
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415 Tables and Figures
416

417  Table 1: Results of cohort study designs without and with alignment at time zero (adjusted for
418  baseline covariates).

Control Screening Adjusted (95% Cl)
group group relative
risk
Design without alignment at time zero
Number at risk 200,000 200,000
Number of CRC cases
Distal CRC 2,472 829 0.35 (0.32-0.39)
Proximal CRC 1,290 823 0.63 (0.57-0.69)
Design with alignment at time zero
Number at risk 1,241,071 192,054
Number of CRC cases
Distal CRC 16,750 1,678 0.68 (0.63-0.73)
Proximal CRC 8,548 919 0.72 (0.65-0.80)
419
420

421  Table 2: Results of case-control study designs without and with alignment at time zero.

Site Case status Adjusted OR
Cases  Controls (95% CI)?

Design without alignment at time zero
Number of distal CRCs / controls 446 2,230

Thereof exposed 36 653 0.23 (0.16-0.33)
Number of proximal CRCs / controls 302 1,510
Thereof exposed 54 434 0.54 (0.39-0.75)

Design with alignment at time zero
Number of distal CRCs / controls 8,382 40,925

Thereof exposed 799 5,695 0.73
Number of proximal CRCs / controls 4,463 22,175
Thereof exposed 409 3,013 0.67

% Confidence intervals could not be obtained for the case-control analysis with
alignment at time zero due to computational limitation (see methods section).
OR: Odds Ratio

422

423
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Fig. 1: Adjusted cumulative incidence functions for distal and proximal CRC from the cohort

study design without alignment at time zero (top row) and the cohort study design with
alignment at time zero (bottom row)
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Supplement 1: Cohort and case-control study without alignment at time zero for
different baseline years

As mentioned in the methods section, for the study designs without alignment at time zero, we
selected individuals from the source population entering the cohort in 2009. In sensitivity
analyses, we varied the baseline year, i.e. individuals entering the cohort in 2010 and 2011,
respectively. The respective results are shown in Table S1 and Figure S1 for the cohort study
and in Table S2 for the case-control study. For comparison, also the results of the base case
analysis (baseline year 2009) are shown.

Table S1: Results of cohort study designs without alignment at time zero for different baseline
years.

Baseline Control group  Screening group Adjusted relative (95% Cl)
year risk
Number at risk 200,000 200,000
Number of CRC cases
2009 Distal, n 2,472 829 0.35 (0.32-0.39)
Proximal, n 1,290 823 0.63 (0.57-0.69)
2010 Distal, n 2,101 709 0.35 (0.32-0.39)
Proximal, n 1,131 702 0.61 (0.56-0.68)
2011 Distal, n 2,048 642 0.33 (0.30-0.37)
Proximal, n 1,056 640 0.54 (0.49-0.59)
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450

451  Figure S1: Adjusted cumulative incidence functions for distal and proximal CRC from the
452  cohort study design without alignment at time zero for different baseline years.
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454

455  Table S2: Results of case-control designs without alignment at time zero for different baseline
456  years.

457
Site Case status Adjusted OR
Cases  Controls (95% Cl)
Baseline year 2009
Number of distal CRCs / controls 446 2,230
Thereof exposed 36 653 0.23 (0.16-0.33)
Number of proximal CRCs / controls 302 1,510
Thereof exposed 54 434 0.54 (0.39-0.75)
Baseline year 2010
Number of distal CRCs / controls 430 2,150
Thereof exposed 29 607 0.19 (0.13-0.29)
Number of proximal CRCs / controls 264 1,320
Thereof exposed 38 345 0.46 (0.32-0.68)
Baseline year 2011
Number of distal CRCs / controls 408 2,040
Thereof exposed 24 500 0.20 (0.13-0.31)
Number of proximal CRCs / controls 254 1,270
Thereof exposed 31 298 0.47 (0.31-0.71)
458
459
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Supplement 2: Cohort and case-control study without alignment at time zero:
considering both screening and diagnostic colonoscopy for the assignment to

exposure groups

As mentioned in the methods section regarding the study designs without alignment at time
zero, only screening colonoscopies were considered for the assignment to exposure groups in
the base case analysis. In a sensitivity analysis, we considered both screening and diagnostic
colonoscopies for the exposure assignment. The respective results are shown in Table S4 and
Figure S2 for the cohort study design and in Table S5 for the case-control study.

Table S4: Results of cohort study designs without alignment at time zero: sensitivity analyses
considering both screening and diagnostic colonoscopy for the assignment to exposure
groups. For comparison, also the results of the base case analysis are shown.

Control group  Screening group Adjusted relative (95% Cl)
risk
Base case analysis
Number at risk 200,000 200,000
Number of CRC cases
Distal, n 2,472 829 0.35 (0.32-0.39)
Proximal,n 1,290 823 0.63 (0.57-0.69)
Sensitivity analysis
Number at risk 200,000 200,000
Number of CRC cases
Distal, n 2,657 982 0.40 (0.37-0.44)
Proximal,n 1,348 893 0.66 (0.60-0.72)
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Figure S2: Adjusted cumulative incidence functions for distal and proximal CRC from the cohort
study design without alignment at time zero: sensitivity analysis considering both screening
and diagnostic colonoscopy for the assignment to exposure groups. For comparison, also the
cumulative incidence functions of the base case analysis are shown.

Table S5: Results of case-control designs without alignment at time zero: sensitivity analyses
considering both screening and diagnostic colonoscopy for the assignment to exposure
groups. For comparison, also the results of the base case analysis are shown.

Site Case status Adjusted OR
Cases  Controls (95% Cl)

Base case analysis
Number of distal CRCs / controls 446 2,230

Thereof exposed 36 653 0.23 (0.16-0.33)
Number of proximal CRCs / controls 302 1,510
Thereof exposed 54 434 0.54 (0.39-0.75)

Sensitivity analysis
Number of distal CRCs / controls 446 2,230

Thereof exposed 60 1,020 0.20 (0.15-0.26)
Number of proximal CRCs / controls 302 1,510
Thereof exposed 82 685 0.44 (0.33-0.58)
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Supplement 3: Structural explanation of the bias inherent to study designs using pre-
baseline information for the assignment to exposure groups

For simplicity, we divide time into three periods t € {—1,0, 1} with t = —1 being the pre-baseline
period, t = 0 the baseline and t =1 the post-baseline or follow-up period. Let E; € {0,1}
described a person’s exposure to screening colonoscopy at time t. Let P, € {0, 1} indicate the
presence of colorectal precursors at time t and C; € {0, 1} the onset of preclinical CRC by time
t. Let Y; € {0, 1} indicate a diagnosis of colorectal cancer by time t. Finally, let S = 1 denote
selection into the study cohort.

E_,

Eo

E;

Py Py P

Figure S3: DAG of bias resulting from violation of alignment at time zero in the form of exposure assessment based
on pre-baseline information.

As shown in Figure S3, at time point t the causal mechanism that leads to a diagnosis of CRC
is as follows: Precursors P, lead to the development of CRC C;, which in turn progress to the
outcome of interest, CRC diagnosis Y;. At the same time, exposure to screening colonoscopy
E; leads to CRC diagnosis Y; at the same time point, if the disease is present. Furthermore,
exposure at time t prevents disease onset at the later time t + 1 by removing precursor stages
present at time t.

Importantly, the variable Y; is a collider variable on the path P; - C; — Y; « E;. When cohort
selection S is based on this collider, a non-causal association is introduced between E; and C;.
If the cohort selection process excludes individuals with CRC diagnosis before baseline (Y_;)
while including individuals with past exposure E_; in the exposed group of the analysis dataset,
the unexposed group appears to have a higher CRC incidence. Individuals who were screened
in the past and had prevalent CRC received a diagnosis and were filtered out of the study
cohort. Individuals who were screened in the past and did not have prevalent CRC are included
in the exposed group. No such selection takes place in the unexposed group, where individuals
must not have had any screening colonoscopy before baseline. Therefore, there is a non-
causal association between exposure before baseline and prevalent, undiagnosed CRC before
baseline. This non-causal association means that there are now open backdoor paths from
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exposure before baseline to the study outcome at later time points. The resulting bias,
therefore, can be expressed as a form of collider stratification bias.

Importantly, the strength of the bias will depend on the prevalence of C_;. If, conceptually, the
prevalence of CRC before baseline were to approach zero, no such selection would take place.
In the age group under study here, the prevalence of proximal CRC before baseline will be
much lower than the prevalence of distal CRC before baseline, which means that this bias will
impact the effect estimate for distal CRC more severely.
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Supplement 4: lllustration of the mechanism underlying the misallocation of screen-
detected CRCs in case-control studies without alignment at time zero

Figure S4 illustrates the mechanism that underlies the misallocation of screen-detected CRCs
in case-control studies without alignment at time zero, resulting in an overestimate of the
effectiveness of screening colonoscopy. First, let us imagine a hypothetical RCT investigating
the effectiveness of screening colonoscopy on CRC incidence. At baseline, screening-naive
persons are randomly assigned to either the screening or the control arm. Analysing this data
as a case-control study without alignment at time zero would mean that for CRCs occurring in
both arms, it is assessed whether they had a colonoscopy before CRC diagnosis. Given that
screen-detected CRCs did not have a colonoscopy before CRC diagnosis, they are assigned
(post-baseline, i.e. after randomization) to the control arm and are thereby classified as
unexposed. This overestimates the effectiveness of screening given that CRCs accumulate in
the control group (unexposed group). Given that screen-detected CRCs are more frequent in
the distal colorectum, the resulting bias affects distal CRC more severely than proximal CRC.

Screening arm == >

Postbaseline assignment
of expsoure

COﬂtrOlarm M N N NS NN NN NN NN NN BN BN BN NN BN N SN BN N S SN BN B SN N B B .

Figure S4: lllustration of the mechanism of misallocation of screen-detected CRCs in case-control studies without
alignment at time zero

Of note, in published case-control studies investigating the effectiveness of screening
colonoscopy based on primary data, selection bias in the control arm (higher prevalence of
screening colonoscopy as compared to the general population) can—as an additional
mechanism—also contribute to overestimating the effectiveness of screening colonoscopy, but
it is not expected that this bias leads to a difference in the effectiveness by site.

In our case-control study without alignment at time zero, there was a second mechanism
leading to overestimating the effectiveness of screening colonoscopy due a compromise we
had to make because of the left truncation of our data. Specifically, we had to select CRC
cases diagnosed in 2018-2020 from those entering the cohort in 2009 (see methods section)
in order to be able to assess exposure in the 10 years prior to CRC diagnosis. CRCs diagnosed
between 2009 and 2017 in the context of screening, which are more often in the distal than in
the proximal colon, were not included in the final set of cases, i.e. distal CRCs exposed to
screening colonoscopy were underrepresented in the final set of cases. We conducted
additional analyses to disentangle the effect of both mechanism (data not shown), which did
not change our conclusion, i.e. that the mechanism described in Figure S4 (also) leads to an
artificial difference in the effectiveness of colonoscopy by site.
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Supplement 5: Bias due to post-baseline information for exposure assignment in a
cohort study

In the cohort study by Nishihara et al. the assessment of eligibility criteria (e.g. no prior cancer
except for nonmelanoma skin cancer, no prior endoscopy) as well as the start of follow-up was
in 1988 (baseline). As part of a questionnaire administered every 2 years, participants were
then asked whether they had undergone either sigmoidoscopy or colonoscopy and, if so, the
reason for the investigation and whether there was a diagnosis of colorectal polyps. This
means that the assignment to exposure groups used information after the assessment of
eligibility and the start of follow-up, and it was updated every two years, i.e. post-baseline
information was used to determine exposure. The outcome was the incidence of colorectal
cancer, which was compared between participants without a lower endoscopy (control group),
participants with a polypectomy, participants with a negative sigmoidoscopy and participants
with a negative colonoscopy.

The mechanism described for the case-control study without alignment at time zero also
applies to this design. In each two-year time interval CRCs detected in persons who had their
first colonoscopy during this two-year time interval are—per definition—assigned to the
unexposed group as they had no colonoscopy prior to CRC diagnosis. This overestimates the
effectiveness of screening because CRCs are filtered to the unexposed group. As the majority
of screen-detected CRCs are in the distal colon, this bias predominantly affects CRCs in the
distal colon and thus leads to an artificial difference in the effectiveness of colonoscopy by site.
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Supplement 6: Post-colonoscopy CRC diagnoses

For the cohort analysis with alignment at time zero, we quantified the occurrence of post-
colonoscopy CRC diagnoses occurring in the screening arm and assessed their site
distribution. CRC diagnoses with a screening colonoscopy in the same calendar quarter or in
the 180 days before CRC diagnosis were considered screen-detected and were not counted
as post-colonoscopy CRC. The frequencies and percentages are given in the below Table:

Site N %
Distal CRC 541 39.3
Proximal CRC 633 46.0
Both/unknown 203 14.7
Total 1377
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APPENDIX A

Bootstrapping in emulated target trials

Target trial emulation often includes the data from one individual multiple times, either
because of cloning into exposure strategies that are congruent at baseline or because of
repeated study entry in sequential emulated trials. Naive parametric variance estimators
are then not applicable since they do not adjust for dependencies in the analysis dataset.
Furthermore, statistical methods in emulated target trials with survival outcomes are often
complex, e.g. pooled logistic regression models [D’Agostino et al., 1990] are frequently
used to model flexible cumulative incidence functions [Hernan and Robins, 2020], which
in turn are used to estimate contrasts such as ATEs or marginal relative risks, making it
difficult to obtain analytical solutions for variance estimation. Instead, bootstrapping is
commonly applied to obtain valid variance estimates and confidence intervals [Hernan
and Robins, 2020]. Alternative approaches, such as robust sandwich estimators, exist for
some but not all statistical methods [Austin, 2016]. Faster bootstrap algorithms, such as
the wild bootstrap, have been proposed for time to event settings with competing events
[Riihl and Friedrich, 2023], but have not been extended to target trial emulation settings
with cloned data. Therefore, the classic bootstrap approach is the only currently available
method of estimating robust confidence intervals, when using pooled logistic regression

in a target trial emulation with repeated inclusion of the same individual.

Bootstrapping is a general, computer-intense method of obtaining valid variance estimates
for a large variety of estimators [Efron, 1979]. It is an assumption lean method, partic-
ularly regarding parametric assumptions of the distribution underlying the sampled data.
However, some assumptions must be made. For instance, the data is assumed to be inde-
pendent and identically distributed, i.e. Z; Y. Furthermore, the observed distribution
function £ (z;) must be an unbiased estimator for the true underlying distribution function

F(Z;). Next, the parameter of interest § must be a smooth function of F'. See, for instance,
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Davison and Hinkley [1997]; Efron [1979]; Efron and Hastie [2021] for an in-depth in-
troduction to bootstrapping and Bickel and Freedman [1981] for some asymptotic theory

and examples in which bootstrapping fails.

Conceptually, many data samples could be obtained from the underlying population, as to
assess the distribution of the estimator, which would be informative with regards to the
variance of the estimator. For example, a series of one hundred studies - always sampling
from the same underlying population - would result in a distribution of one hundred es-
timates, which is informative regarding the variance of the estimator. Since repeating an
experiment a hundred times is not feasible, the bootstrap instead uses the sample of avail-
able data. To illustrate this, assume a sample of n observations 21, ..., 2, stemming from
a random variable Z * N (0,1). A parameter of interest, 6, is defined by a function of
Z as 0 = g(Z). The estimate of 0 is then § = g(z). In some cases, an analytic solution
might not be available to estimate a confidence interval for the estimate 6, in which case
bootstrapping is an alternative to obtain a robust confidence interval. A bootstrap sample
is obtained by randomly sampling, with replacement, from F (z) exactly n times, resulting
in the bootstrap sample z* = (z7, ..., z}). A bootstrap estimate of the target parameter 6 is
then § = g(z*). This process is repeated B times to obtain a distribution of bootstrap es-
timates 61, ..., 0. The distribution of bootstrap estimates is used to derive standard errors
or confidence intervals, e.g. via the percentile bootstrap taking the 2.5 and 97.5 percentiles

as lower and upper confidence limits [Efron, 1979; DiCiccio and Efron, 1996].

A central assumption of bootstrapping is that samples are independant and identically dis-
tributed (iid). As described above, in emulated target trials usually the same individual is
included more than once. Similarly, in PS matched analyses, the same individual is often
included as control in multiple matching sets to increase statistical efficiency. Further-
more, due to the matched nature of the analysis data, observations within matching sets
are not independent. The observations in the analysis dataset of such studies, then, are not
iid. For matching estimators, Abadie and Imbens noted that the basic bootstrap, i.e. when
sampling from the matched data, does not yield valid confidence intervals [Abadie and
Imbens, 2008]. Instead, bootstrap samples need to be drawn from the underlying study
population, i.e. before matching is done, and the process of matching and estimation be
repeated for the so-obtained bootstrap samples. Similarly, when emulating target trials,
bootstrap samples need to be drawn from the underlying study population and the entire
process of trial emulation, estimation of weights, weighted outcome regression and estim-
ation of resulting contrasts of interest must be repeated for each bootstrap sample to obtain

valid confidence intervals [Murray et al., 2021; Hernan and Robins, 2020].

The derivation of percentile-based bootstrap confidence intervals in the context of the
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evaluation of screening colonoscopy is briefly described in Chapter 4.
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