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Abstract

Cancer screening affects cancer-related outcomes by detection at an early – possibly even

pre-cancerous – stage, thereby enabling timely treatment initiation or removal of precurs-

ors. Ideally, efficacy of cancer screening programs should be assessed in randomized

controlled trials before population-wide implementation. In the absence of trial evidence,

or when interest lies in real-world effectiveness, observational data must be used to as-

sess the effectiveness of existing programs. However, limitations of observational study

designs and data sources must be addressed.

Issues relating to unclear research questions or incorrect temporal alignment of study

design elements have been identified as a common source of major bias in non-interven-

tional research in recent years. Target trial emulation has been proposed as a framework

to formulate clear and precise estimands by defining the study protocol of a hypothetical

target trial that would answer the research question at hand and emulating said target trial

as best as possible using observational data.

As part of this thesis, I developed a detailed study design for the evaluation of the German

mammography screening program regarding its effect on breast cancer-related mortality.

Furthermore, I conducted an extensive, realistic simulation study to assess the potential of

residual immortal time bias due to the coarse granularity of discrete time available in the

underlying database. Next, I emulated a target trial to assess the causal effect of screening

colonoscopy on the incidence of colorectal cancer. Differing effectiveness by site of the

tumor was reported in previous observational studies on screening colonoscopy. I showed

in the present thesis that previous observational studies overestimated the effect of screen-

ing colonoscopy and that the difference by site was largely a result of design-induced bias.

I extended the initial study design to more complex settings with a sustained no screening

strategy and to strategies incorporating the quality of colonoscopy. Finally, I conducted

substantive sensitivity analyses tailored to the specific study design and research ques-

tion, e.g. concerning residual confounding bias, strengthening confidence in the validity

of findings.
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Zusammenfassung

Krebsscreening zielt darauf ab, inzidente Tumorerkrankungen in einem möglichst frühen

Stadium zu entdecken, damit eine Behandlung begonnen werden kann so lange die Pro-

gnose günstig ist, oder aber bereits Vorstufen zu erkennen und direkt zu entfernen. Vor

Einführung eines Krebsscreening Programmes sollte dessen Wirksamkeit in randomisier-

ten kontrollierten Studien (RCT) nachgewiesen werden. Ist dies nicht geschehen, oder soll

die Wirksamkeit existierender Programme unter realen Bedingungen in der Bevölkerung

untersucht werden, müssen dafür i.d.R. Beobachtungsdaten genutzt werden. Dies geht mit

einer sorgfältigen Abwägung eventueller Limitationen nichtinterventioneller Studiende-

signs und Datenquellen einher.

In den vergangenen Jahren wurden Probleme im Design von Beobachtungsstudien als

Quelle starker Verzerrungen identifiziert. Hierbei sind insbesondere eine unklare Definiti-

on der Forschungsfrage und Selektionseffekte durch eine unlogische zeitlicheAnordnung

von Elementen des Studiendesigns zu nennen. Als Lösung bietet sich das Emulieren von

Target Trials an, wobei zunächst das Studienprotokoll eines hypothetischen RCTs inklu-

sive einer klar formulierten Forschungsfrage entwickelt wird, welches dann so exakt wie

möglich mit Beobachtungsdaten umgesetzt oder emuliert wird.

Die vorgelegte Dissertation besteht aus mehreren eigenen Forschungsleistungen. Im Rah-

men meiner Dissertation habe ich ein detailliertes Studienprotokoll zur Effektivitätsevalu-

ierung des deutschen Mammographie Screening Programms bzgl. der Brustkrebsmortali-

tät erarbeitet. Weiterhin habe ich in einer umfangreichen Simulationsstudie untersucht, ob

die vergleichsweise starke Vergröberung diskreter Zeit in der verfügbaren Datengrundlage

zu residualem Immortal Time Bias führen kann. Darüber hinaus habe ich einen Target Tri-

al zur Beurteilung des kausalen Effekts der Screening Koloskopie auf die Darmkrebsinzi-

denz emuliert. Frühere Beobachtungsstudien hatten auf einen deutlich größeren Effekt im

distalen Teil des Kolons hingewiesen. Ich konnte hingegen zeigen, dass das Studiendesign

dieser früheren Berichte zu Verzerrungen geführt hat, wodurch die Effektivität von Scree-

ning Koloskopien insgesamt überschätzt wurde. Die unterschiedlichen Effektschätzer für
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CONTENTS

den distalen und proximalen Teil des Kolons sind auf diese Verzerrungen zurückzuführen.

In Folgestudien konnte ich das ursprüngliche Design der Emulierung auf komplexere Ex-

positionen ausweiten. Insbesondere habe ich den Effekt einer anhaltenden Nichtteilnahme

modelliert, aber auch die Qualität der Koloskopie in die Expositionsdefinition einbezogen.

Die Target Trial Emulierung habe ich mit vielfältigen und auf die Fragestellung, Daten-

quelle und Studiendesign maßgeschneiderten Sensitivitätsanalysen untermauert, um die

Gefahr durch z.B. ungemessene Störgrößen beurteilen zu können. Die Ergebnisse dieser

Sensitivitätsanalysen deuteten auf eine hohe Robustheit der Ergebnisse hin.

vii



CHAPTER 1
Introduction

Health claims data and other routinely collected real-world data (RWD) provide a rich

source of individual-level health information. These data cover diagnoses, medications

and operations or other treatments [Haug and Schink, 2021; Pigeot and Ahrens, 2008].

Using them to assess the causal effect of exposures on health outcomes, however, poses

unique challenges to study design and statistical methods [Schneeweiss andAvorn, 2005].

In the context of RWD and causal inference, a special focus must be put on the intersection

of applied knowledge and statistical methods. In many cases it is not immediately clear

how a subject matter question can be translated into statistical language and off-the-shelf

methods may be inadequate. Collaboration between subject-matter experts and statisti-

cians is required to clearly define the research question. Next, bespoke study designs and

statistical solutions need to be tailored to fit to the target of inference.

1.1 Defining the target of inference
The first step in any causal analysis must be to define the target of inference, i.e. the es-

timand [Faries et al., 2020]. In the following, the estimand will refer to the unknown

quantity which is to be estimated and the estimate will refer to the effect estimate pro-

duced by the statistical estimation procedure. Any systematic difference between the es-

timator and estimand will be referred to as bias. Specifying the estimand entails several

steps, first of which is a clear and precise definition of an exposure of interest, correspond-

ing to a realistic – possibly hypothetical – intervention, which must be represented in the

available data [Hernán and Robins, 2020]. It must be defined whether the exposure is a

once-only event, or is sustained over time. In the latter case, a strategy on how to address

non-adherence during follow-up must be defined [Hernán and Robins, 2020]. Artificial

1



CHAPTER 1. INTRODUCTION

censoring for non-adherence might be required, but is generally informative and leads

to bias, which makes adjustment for time-varying confounders necessary [Joffe, 2001;

Hernán and Robins, 2020]. Besides non-adherence, the definition of the estimand must

also consider other intercurrent events, such as competing events. While these are often

treated as censoring events in applied studies, this might not correspond to a meaningful

causal effect given that it corresponds to a hypothetical scenario under which competing

events can be eliminated. Instead, approaches that do not treat competing events as cen-

soring events, but incorporate the effect of the exposure on the outcome mediated by the

competing event in the estimand may be preferable [Young et al., 2020].

After the exposures of interest have been defined succinctly, the outcome and contrast of

interest must be defined. The effect of interest can be expressed as an absolute effect such

as the absolute risk reduction (ARR), or as a relative effect such as the relative risk (RR).

Generally, contrasts based on risks should be preferred to contrasts of hazards for causal

inference, since hazards are always conditional on the event of interest (and competing

events) not having occurred yet and, thereby, have a ”built-in” selection bias [Hernán,

2010; Aalen et al., 2015].

The above-described choices must be made explicit. This can be achieved using the target

trial emulation (TTE) framework, which aims at applying design elements of a randomized

controlled trial (RCT) to observational studies. In this approach, the study protocol of the

ideal randomized trial – the target trial – is defined first and then emulated using obser-

vational data [Hernán and Robins, 2016]. The study protocol contains information on the

most important design elements of the target trial, such as eligibility, treatment strategies,

follow-up, outcome variable, contrast of interest, and the statistical analysis. When spe-

cifying the emulated trial, any deviations from the target trial become immediately appar-

ent and any impact on the estimates can be discussed or assessed in appropriate sensitivity

analyses [Didelez, 2016]. Furthermore, the resulting study protocol for the emulated trial

must contain information on which confounding variables are required to emulate ran-

domization. While the TTE framework is a useful tool for causal inference in general, it

also provides a structured template for applied researchers and statisticians to speak the

same language.

1.2 Estimation of causal effects
Some features of the TTE framework need special emphasis. First, the concept of cloning

is introduced to maximize statistical efficiency. While one person can only be included

in an RCT once and be randomized into only one treatment arm, the same person can be

2



CHAPTER 1. INTRODUCTION

included in an emulated trial repeatedly. For instance, sequential trials may be emulated

over time to best use the information contained in a longitudinal database and individu-

als may be included in more than one emulated trial if they are eligible at the respective

baseline. Furthermore, the exposure status at the baseline of an emulated trial might be

consistent with more than one exposure strategy, in which case information from these

individuals is copied and cloned into all exposure strategies that are consistent with the

observed exposure. To distinguish identical individuals who were included in more than

one emulated trial or under more than one exposure strategy, the terms person-trial and

clone are used, respectively [Hernán et al., 2016; García-Albéniz et al., 2020; Danaei et al.,

2013].

Next, artificial censoring and appropriate adjustment (e.g. via inverse probability of cen-

soring weighting (IPCW)) may be used to adjust for non-adherence during follow-up, if

the target of interest is a per-protocol (PP) effect. Since censoring is informative in the

presence of time-varying covariates that affect both adherence and the outcome variable,

appropriate confounder adjustment needs to be carried out. When using IPCW for ad-

justment, propensity scores (PSs) for the probability of adhering to the exposure strategy

are estimated for each time point and weights are constructed by taking the inverse of

the cumulative product of these PSs [Robins et al., 2000]. Alternatively, the parametric

g-formula may be used to adjust for time-varying confounding, albeit at higher computa-

tional cost [Robins, 1986].

Regarding the type of outcome variable, TTE analyses most commonly feature time to

event variables. As mentioned above, contrasts based on hazards are not ideal for causal

inference purposes. As an alternative, pooled logistic regression is useful to estimate flex-

ible functions of risk [D’Agostino et al., 1990]. This approach also allows estimation

of contrasts at any point during follow-up, so that time-varying treatment effects can be

visualized easily.

Another difficulty in causal inference from observational data is the selection of a suf-

ficient set of confounders, i.e. a set of covariates that, when adjusted for appropriately,

allows identification of the causal effect. While data-driven causal-discovery exists, the

preferred way for covariate selection is via subject matter knowledge [Witte and Didelez,

2019]. When the causal relations between variables are known, confounders can be se-

lected without further assumptions regarding any data-driven method. A tool to help with

subject matter-motivated variable selection is the use of directed acyclic graphs (DAGs)

[Pearl, 1995].

Finally, when cloning individuals and including them in the analysis dataset repeatedly,

3



CHAPTER 1. INTRODUCTION

confidence intervals must be estimated using robust methods. For this, individual level

bootstrapping is commonly used. It is important to note that samples must be drawn at

the level of individuals and not at the level of clones to ensure that the assumption of ran-

dom sampling with equal weights per individual is fulfilled [Efron, 1979]. Furthermore,

the procedure of estimating inverse probability weights and obtaining marginal effect es-

timates must be repeated for each bootstrap sample [Murray et al., 2021]. The fact that

bootstrapping is a computationally heavy procedure in combination with the large datasets

commonly used for RWD studies poses further challenges to the statistical programming.

For instance, a random subsample might be used instead of the entire study population

to reduce the computational cost, if sample size allows it (see, e.g. García-Albéniz et al.

[2017a] and Braitmaier et al. [2022b]).

1.3 Potential sources of bias
Several potential sources of bias must be considered carefully when planning a causal

analysis of observational data. The most frequently discussed source of bias stems from a

violation of the exchangeability assumption, i.e. from confounding. Relevant confounders

need to be identified, preferably via subject matter knowledge about the causal structure

between variables. Furthermore, these confounders need to be measured in the data. The

so-called healthy screenee bias deserves special emphasis when evaluating cancer screen-

ing programs [Weiss and Rossing, 1996; Shrank et al., 2011]. Health-conscious individu-

als are both more likely to undergo voluntary screening and less likely to develop cancer,

due to a healthier lifestyle. Health consciousness and related health factors are, therefore,

important confounders. However, health consciousness itself is not an easily measured or

quantifiable variable, and is not available in routinely collected data and, therefore, needs

to be approximated as best as possible using proxy codes.

Besides confounding, great consideration should be given to self-inflicted biases result-

ing from inappropriate study design. In particular, time-related biases occur when basic

elements of the study, particularly the assessment of eligibility, treatment assignment and

start of follow-up are not aligned at a clear time zero. For example, immortal time bias res-

ults when the exposure assessment uses information from after baseline, since individuals

assigned to the exposed strategy due to an exposure long after baseline cannot have died

before their exposure, leading to an accumulation of early deaths in the control strategy.

Bias also results when exposure assessment uses information from before baseline [Hernán

et al., 2016]. For instance, if an analysis on the effectiveness of colonoscopy screening

were to count individuals who underwent screening before baseline as exposed, but at

4
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the same time excluded individuals who had a colorectal cancer (CRC) diagnosis before

baseline from the study, there would be a depletion of ill individuals among the screened

but not the unscreened [García-Albéniz et al., 2017b].

1.4 Aim of this thesis
The thesis addresses methodological problems in the context of assessing the effectiveness

of cancer screening programs. The German Pharmacoepidemiological Research Database

(GePaRD) [Pigeot and Ahrens, 2008; Haug and Schink, 2021] was used to emulate target

trials from observational data. The main and original contributions are:

1. I designed and conducted an emulated target trial on the site-specific effect of screen-

ing colonoscopy on CRC incidence (see Braitmaier et al. [2022b] and Chapter 4)

2. I carried out an extensive set of assumption checks and sensitivity analyses to assess

validity of study results (see Section 4.4)

3. I extended the initial study design to a per-protocol analysis with sustained non-

exposure (see Section 4.5)

4. I demonstrated that differences in site-specific effectiveness reported in previous

work were a result of design-induced biases (see Braitmaier et al. [2024] and Section

4.6)

5. I extended the initial study design to include more than two exposure categories to

contrast low and high quality colonoscopy (see Schwarz et al. [2024] and Section

4.7)

6. I developed a study protocol for an emulated target trial assessing the effectiveness

of the German mammography screening program (see Braitmaier et al. [2022a])

7. I conducted a simulation study to quantify the potential of residual immortal time

bias due to coarse granularity of discrete time in the context of the emulated trial on

screening mammography (see Section 5.1)

1.5 Structure of this thesis
The thesis is structured as follows: Chapter 2 gives background on estimation of causal

effects from observational data, with some general explanation of the estimation proced-

ures used in the context of this thesis. Furthermore, some common sources of bias - such

5



CHAPTER 1. INTRODUCTION

as confounding - are introduced in the chapter. Chapter 3 is an introduction to target trial

emulation. The original contributions of the present work are covered in Chapters 4 and

5, with Chapter 4 focusing on work related to the evaluation of screening colonoscopy

and Chapter 5 focusing on screening mammography. A discussion and outlook is given in

Chapter 6. Finally, the publications contributing to this thesis are printed in Chapter 7.

1.6 Funding and competing interests
The studies relating to colonoscopy screening that are presented in this thesis were funded

by BIPS intramural funds. The study protocol for the evaluation of the German mam-

mography screening project was funded by the Federal Office for Radiation Protection

from funds of the Federal Ministry for the Environment, Nature Conservation and Nuclear

Safety, the Federal Ministry of Health and the Kooperationsgemeinschaft Mammographie

(supported by the National Association of Statutory Health Insurance Funds and the Na-

tional Association of Statutory Health Insurance Physicians), grant numbers 3617S42402

and 3617S42410.

There are no conflicts of interest to declare.
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CHAPTER 2
Estimation of causal effects from ob-
servational data

2.1 What is a causal effect?
In an interventionist understanding of causal effects, the occurrence of Y can be partially

controlled by intervening on A when A causes Y [Hernán, 2004]. One can imagine two

alternative scenarios for an individual i in whichAi is either set to 1 or to 0. WhenAi is set

to 0, the potential outcome is given by Y A=0
i , while the potential outcome in the opposite

scenario is given by Y A=1
i . An individual-level causal effect is present if Y A=1

i ̸= Y A=0
i .

Only one potential outcome can be observed in one individual [Hernán and Robins, 2020].

Medical research generally aims to estimate group-level rather than individual-level causal

effects. The average potential outcome had the entire study population (or some subgroup

of interest) been exposed is compared to the average potential outcome had the entire

study population not been exposed, i.e. a causal effect ofA on Y is present, ifE
[︁
Y A=1

]︁
̸=

E
[︁
Y A=0

]︁
. The challenge arises to estimate causal effects from observed data, as only one

potential outcome is observable per person. Since exposed and unexposed individuals

might differ in variables other than exposure, tools are needed to disentangle the causal

effect of exposure from non-causal associations due to confounding or inappropriate study

design. This is the objective of causal inference and the fundamental assumptions required

for the most frequently used methods will be laid out in this chapter.

7



CHAPTER 2. ESTIMATION OF CAUSAL EFFECTS FROM OBSERVATIONAL
DATA

2.2 Directed acyclic graphs
Directed acyclic graphs (DAGs) are used to visually illustrate the (assumed) causal struc-

ture between variables [Pearl, 1995]. See Figure 2.1 for a simple DAG with three nodes.

DAGs are a valuable tool to reach clarity regarding the causal relations between vari-

ables and enable the identification of bias sources due to confounding or design-induced

selection effects. This latter property was exploited in this thesis when exploring design-

induced biases in the context of screening colonoscopy (see Sections 4.6 and 7.6). DAGs

do not display information on the strength of associations, but give a qualitative repres-

entation of causal relationships. A DAG consists of nodes and directed edges or arrows

connecting these nodes. While the presence of a directed edge between nodes indicates

that one directly causes the other, the absence of edges is equally relevant for the analyst,

as it indicates (conditional) independence and absence of direct causation (by the causal

Markov property) between these nodes. The causal Markov property states that a node

is independent of any node that is not its descendant, if conditioned on all of its direct

causes [Hernán and Robins, 2020]. Undirected or bidirected edges are sometimes used

to illustrate the presence of further, unmeasured variables that have a causal relationship

with both nodes connected by the edge.

Some nomenclature is required: In the graph G : A → Y , A is a parent to the child

Y . Any node A that precedes a node Y on a directed path is called an ancestor to Y ,

while Y is a descendant of A. On a path containing node C with arrows converging in it

(...→ C ← ...), node C is called a collider.

A Y

X

Figure 2.1: Basic DAG showing the relations between an exposure A, an outcome Y
and a confounding variable X.

An important concept to read off conditional independence from graphs is d-separation.

If a graph contains the nodes A and Y and a set Z is considered, A is d-separated from Y

by Z if a node w fulfilling one of the two following criteria exists on every path from A

to Y :

1. Node w is a collider, meaning that it has converging arrows into it and neither w nor

its descendants are contained in Z.

2. Node w is not a collider and w is contained in Z.
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If the criteria for d-separation and the causal Markov property are fulfilled,A is independ-

ent of Y conditional on Z, i.e. A ⊥⊥ Y |Z.

Based on a DAG and using the concept of d-separation, a valid adjustment set Z can be

identified. In this context, the so-called backdoor criterion becomes relevant: A set Z

is said to fulfill the backdoor criterion regarding the causal effect of A on Y , if Z does

not contain descendants of A and if all paths between A and Y with an arrow into A are

blocked by Z [Pearl, 1995; Peters et al., 2017].

2.3 Clear definition of exposure, outcome and intercur-
rent events

While seemingly obvious, it is important to stress that the target of inference, i.e. the causal

estimand, needs to be specified before any effect estimation can be conducted. The esti-

mand is defined as that which is to be estimated [Hernán and Robins, 2020; Rubin, 2005].

Any ambiguity in the definition of the estimand potentially leads to inappropriate analyses

or misinterpretation. The complexity of clearly defining the estimand received more at-

tention in the biostatistics community after the addendum to the ICH E9 (R1) guideline

on estimands was published, requiring great care to define estimands in clinical research

[ICH E9 (R1), 2020], although the concepts contained in the guideline have been known

for a much longer time. The guideline mentions several aspects of estimands that need to

be clearly specified at the planning stage of a study, namely the treatment strategy under

investigation, the population to which the clinical question relates, the clinical endpoint

of interest, intercurrent events and how they are incorporated in the research question and,

lastly, the effect measure to be assessed.

Relating to the definition of treatment or exposure under investigation it is important to

note that beyond specifying the medicinal product or potential health hazard itself, one

must also define in what way study participants shall be exposed to it. Exposure could,

for instance be the mere offer of receiving a medicinal product, uptake of at least one dose

at baseline or sustained exposure over a certain amount of time. Both the interpretation of

results and the statistical methodology appropriate for the study will differ depending on

the exact definition of the exposure of interest [Goetghebeur et al., 2020].

Next, the population of interest must be defined. This has two-fold relevance: On the one

hand, at the planning stage of the study individuals must be recruited into the study so as

to be representative of this target population. On the other hand, if some patient groups

cannot be included in the study for any reason and the trial eligible group differs from
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the target population, the latter needs to be clearly defined to assess under which circum-

stances study results apply to the target population. If the study population and the eligible

population do not substantially differ, it is reasonable to assume that the study results can

easily be applied to the entire eligible population, i.e. the study results are likely to be

generalizable [Dahabreh et al., 2019]. If, furthermore, study eligible population and tar-

get population are identical, the study results are directly relevant to the target population.

When transporting (referring to transportability as opposed to mere generalizability) study

results beyond the trial eligible population, additional statistical care is needed [Dahabreh

et al., 2019].

While the ICH E9 (R1) guideline relates to RCTs, further specifications regarding the

estimand are generally required in observational studies. For instance, when obtaining

marginal, population-level effect estimates, the population of interest needs to be spe-

cified. If marginal estimates are obtained in relation to the covariate distribution of the

entire sample, these estimates relate to the average treatment effect (ATE). If, however,

marginal estimates are obtained in relation to the covariate distribution of the subset of

individuals who received treatment, these estimates relate to the average treatment effect

on the treated (ATT). In an RCT without differential non-compliance, ATE and ATT are

not expected to differ due to the randomization process, but in observational studies they

are likely to differ [Li et al., 2022]. Similarly, the marginal effect in the population of

untreated individuals, i.e. the average treatment effect on the untreated (ATU) might be

relevant in many settings as well [Wang et al., 2017].

Next, an intercurrent event occurs after treatment initiation and possibly affects the oc-

currence or observability of the outcome of interest. As such, the term intercurrent event

describes a wide variety of events, such as exposure to drugs other than the one being stud-

ied, treatment discontinuation due to adverse events, development of contraindications,

experience of competing events and many more. Given that the occurrence of intercur-

rent events may be affected by exposure and may in turn affect the outcome of interest,

careful consideration is required when defining the target of inference. Different strategies

of treating intercurrent events yield answers to different causal questions.

The ICH addendum, which was specifically developed for randomized trials, was pre-

ceded by a rich literature on causal inference from observational data, one fruit of which

is target trial emulation. In this framework, estimands are clearly defined by explicitly

specifying the ideal randomized trial with corresponding intervention and then emulat-

ing this target trial as closely as possible using available observational data. Sometimes,

the available observational data is not sufficient for reliable estimation, necessitating the

choice of a different estimand. Target trial emulation will be covered in depth in Chapter
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3.

2.4 Identifying assumptions
Some strong and often unverifiable assumptions are needed in order for the causal effect

to be identifiable from the available data. While different methods require different as-

sumptions, the below identifying assumptions need to be fulfilled when using the methods

described in e.g. Braitmaier et al. [2022a] and Braitmaier et al. [2022b].

Under consistency the exposure of interest is well-defined, is observed in the data and can

be intervened upon. More formally, if the observed exposure of an individual is A = a,

then the consistency assumption states that Y A=a = Y , i.e. the potential outcome under

the exposure value that was indeed observed is consistent with the realized outcome value

observed in the data. If the exposure of interest is a static strategy sustained over multiple

time points k ∈ {1, ..., K}, consistency assumes that Y Ā=ā = Y for individuals with the

observed exposure history Ā = ā. The term ”well-defined” in the context of consistency

also means that the exposure observed in the data does not consist of different versions.

When studying the effect of a reduction in body mass index (BMI) without defining which

intervention leads to this reduction, problems in the interpretation arise. Some individuals

might achieve the reduction by means of bariatric surgery, while others do so via lifestyle

changes. The results of an analysis assessing this poorly defined exposure would not be

informative, since it is unclear how much of the effect was achieved via which version of

exposure. Consistency, then, can be achieved by careful and diligent planning of the study

[Hernán and Robins, 2020].

The aspect of consistency relating to multiple versions of treatment also relates to the as-

sumption of no interference, which states that the potential outcome of one individual is

not affected by the treatment of another [VanderWeele and Hernán, 2013]. If we assume

that the no interference assumption does not hold, there is a near-infinite number of altern-

ative versions of treatment for each individual, depending on the exposure values observed

in the rest of the study population. In most settings, it is implicitly assumed that no in-

terference is present and no explicit mention of it is made. However, in some particular

settings this might not be the case. In studies on the effectiveness of vaccines, vaccination

of other members of the study population affects an unvaccinated persons risk of infection

via increased herd immunity.

Positivity describes the assumption that all levels of exposure are observed in all strata of
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covariates used for confounder adjustment, or more precisely

P [A = a|X] > 0

for all a in all strata of the covariate vectorX observed in the data (i.e. all x with positive

probability density f(x) > 0). For exposures sustained over time,

P
[︁
Ak = ak|Āk−1, X̄k

]︁
> 0

for all āk−1 and x̄k. Unlike with consistency, positivity can be empirically verified using

the data. For instance, the occurrence of any level of a covariate can be assessed in each

exposure group. Furthermore, overlap of the PS distributions should be checked (more

details on PSs will be given below) [Hernán and Robins, 2020].

Exchangeability is formally defined as

Y A=a ⊥⊥ A

for all a, i.e. the potential outcome had exposure A been set to a is independent from the

observed value of A. This form of exchangeability, sometimes referred to as ”full” ex-

changeability, is achieved via randomization in an RCT with A being assignment to treat-

ment (rather than treatment received). It is usually not fulfilled in observational studies,

assuming that both outcome and exposure are affected by covariates X . In an observa-

tional setting, conditional exchangeability holds, if X forms a sufficient adjustment set,

i.e.

Y A=a ⊥⊥ A|X

holds for all a. If covariates other than X exist that are not observed in the data and that

confound the relationship between Y and A, this assumption is violated. The conditional

exchangeability assumption, therefore, is sometimes referred to as the ”no unobserved

confounding” assumption [Hernán and Robins, 2020]. If the exposure is sustained over

time, adjustment for time-varying covariates is typically necessary. In this setting, ex-

changeability is extended to the time-varying setting and is referred to as sequential ex-

changeability, since conditional exchangeability must hold at every time point. First, the

time-varying exposure strategies under investigation must be clearly defined. Exposure at

time k might depend on past exposure and past and concurrent covariates, i.e. a strategy

g might be defined as Ak = g(Āk−1, X̄k), where the overbar represents the history of a
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variable. Then, the sequential exchangeability assumption states that

Y G=g ⊥⊥ Ak|Āk−1 = g(Āk−2, X̄k−1), X̄k

holds for all g and k [Hernán and Robins, 2020]. Exchangeability cannot be tested using

the observed data, since the key assumption of no unobserved confounding refers to things

that are not available to the analyst. Instead, the plausibility of this assumption being ful-

filled needs to be judged on subject matter knowledge regarding potential confounders

and outcome predictors. Additionally, sensitivity analyses such as negative control ana-

lysis can detect violations of this assumption (see Section 2.7.1). It is noteworthy that

methods such as instrumental variable analysis exist that do not make the conditional ex-

changeability assumption. These methods, however, make other strong and unverifiable

assumptions.

2.5 Estimation procedures
In contrast to RCTs, in observational studies one must generally assume that at least some

variables that predict the outcome of interest are not distributed equally across comparison

groups. In this case, a naive estimator that does not appropriately adjust for the confound-

ing influence of covariates will be biased. While methods exist to obtain unbiased estim-

ators when (some) confounders are not observed in the data (e.g. instrumental variable

methods), most approaches assume that sufficient confounder information is measured so

as to adjust for confounding in the analysis. Methods that use observed covariates for

adjustment, relying on the exchangeability assumption described above, can be broadly

divided into methods that model the outcome, such as regression adjustment, and meth-

ods that model the exposure, i.e. propensity score methods. Doubly or multiply robust

methods that combine the two approaches exist [Goetghebeur et al., 2020].

Regression adjustment is arguably the most commonly taught method of confounder ad-

justment and follows the philosophy of outcome modeling. Covariates are included in

the model equation of a parametric model and their influence on the outcome is modeled

jointly with the effect of exposure [Goetghebeur et al., 2020]. For a binary outcome vari-

able Y , consider the following logistic model

P [Y = 1|A,X] = logit−1(β0 + aβA + xβX). (2.1)

The above model represents the simplest case without interactions between covariates and
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exposure, in which βA is an effect measure for exposure A.

An alternative approach to adjusting for unbalanced covariates is the use of PS methods,

such as PS matching or inverse probability weighting (IPW). The PS is defined as the

probability of an individual in the study population, conditional on their observed covari-

ates, to experience the exposure [Rosenbaum and Rubin, 1983], i.e.

PS = P [A = 1|X] . (2.2)

It is important to note that the goal of the PS is not to perfectly predict the observed expos-

ure. Instead, it has a dual property as a balancing score, meaning that conditional on the

PS, the distribution of baseline covariates X will be balanced between exposure categor-

ies, i.e., X ⊥⊥ A|PS. If the PS is estimated via a misspecified model, it might not fulfill
this balancing criterion [Wyss et al., 2014]. To the contrary, Imai and Ratkovic [2014]

note that even mild misspecification of the propensity model can lead to substantial bias

and the propensity model should be selected so as to maximize covariate balance. The

performance of the PS needs to be assessed, e.g. via balance checks using the absolute

standardized mean difference [Zhang et al., 2019]. If the PS does not balance covari-

ates, a different model specification must be chosen [Wyss et al., 2014]. While the PS is

commonly estimated via logistic regression, other approaches including machine learning

methods have been proposed [Lee et al., 2010; Pirracchio and Carone, 2018], each with

their own strengths and limitations.

Many methods for confounder adjustment based on the propensity score have been de-

veloped. Propensity score matching gained particular popularity in applied work, presum-

ably because of its ease of use. In 1:n PS matching, one exposed individual is matched

to n unexposed individuals based on their PS. Since no exact match based on the real-

numbered PS is to be expected, matching is either done on PS strata (e.g. quintiles) or

uses a caliper width [Austin, 2011]. Both optimal and greedy matching algorithms are

available, but given that optimal matching usually does not perform substantially better

than greedy matching and that optimal matching can become computationally prohibit-

ive, greedy matching is used in most real-life studies [Austin, 2014; Rosenbaum, 1989].

A limitation of PS matching is that data from some of the study population will not (or

only to a small extend) be considered in the analysis, if no or few corresponding matches

can be found. More than that, the covariate structure of the matched population will cor-

respond to the covariate structure of the treated population, since matches are selected for

all exposed individuals, but not necessarily for all unexposed individuals. Because of this,

PS matching is often used to estimate the ATT, but estimation of the ATE requires further
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methodological considerations.

An alternative PS method that uses data from all individuals in the study population is

IPW. When adjusting for baseline confounding, inverse weights are constructed as

1

P [A = 1|X]

for the treated and
1

1− P [A = 1|X]

for the untreated. In this approach, data from all individuals in the study population is

considered and estimation of the ATE, among others, becomes straightforward. IPW can

be extended to adjust for time-varying confounding in sustained or time-dependent expos-

ures whereas PS matching is applicable to point exposures only. Furthermore, trimming

of weights at the extremes or use of stabilized weights, especially when adjusting for time-

varying confounding, limits instability due to extreme weights [Goetghebeur et al., 2020].

Outcome models using inverse probability of treatment weights are also called marginal

structural models (MSMs). They are considered ”marginal” in that they model the mar-

ginal distribution of potential outcomes. While MSMs can be used to model point expos-

ures, they are especially useful when modeling exposures sustained over or varying with

time, in which time-dependent confounding plays a role [Robins et al., 2000].

One example in which time-varying confounding is particularly relevant is a per-protocol

study design for sustained exposures, where artificial censoring is used to adjust for non-

adherence during follow-up, i.e. individuals are artificially censored if and when they stop

adhering to their assigned exposure strategy. If, however, a covariate that affects both

exposure or treatment adherence and the outcome of interest changes during follow-up,

this covariate affects both the probability to be artificially censored from the dataset due

to non-adherence and the probability of experiencing the outcome. This leads to time-

dependent confounding. Let Censt be the censoring status at time t ∈ {1, ..., T}. Then,
a time-varying inverse weight, which considers observed, time-dependent covariates, is

given by

wt =
1∏︁t

l=1 P
[︁
Censl = 0|Censl−1 = 0, X̄l

]︁ . (2.3)

Given that these weights, which build the inverse of a cumulative product of probabilities,

can become very large, the resulting weighted models may become unreliable. Therefore,
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stabilized weights are usually used instead. These are defined as

swt =

∏︁t
l=1 P

[︁
Censl = 0|Censl−1 = 0

]︁∏︁t
l=1 P

[︁
Censl = 0|Censl−1 = 0, X̄l

]︁ . (2.4)

These weights are easily obtained using standard software by generating a modified data-

set with one entry per individual and time point and then applying e.g. pooled logistic

regression to this modified dataset [Robins et al., 2000], i.e. time is included in the model

applied to the longitudinal dataset. Furthermore, separate models are often fitted for each

exposure level, which allows covariates to affect the censoring probability in different

ways (see e.g. Murray et al. [2021] for a tutorial and Dickerman et al. [2023] for an ex-

ample of this).

2.6 Time-to-event analysis
Assume a study in which time T to an event of interest Y ∈ {0, 1} is measured in days,
i.e. T ϵN. For now, also assume that no other event can prevent the event of interest, e.g. in
a study on overall mortality. However, individuals may drop out of the study prematurely

or still be event-free at the end of the study period, in which case they are censored at the

end of their available follow-up. This is called administrative censoring and is a form of

right-censoring [Joffe, 2001]. The censoring status is indicated using a binary variable

Cens ϵ {0, 1}. To explain the analysis of right-censored data, we assume for simplicity’s
sake that individuals in the study are randomly assigned at baseline to either one of two

arms, i.e., A ϵ {0, 1}.

Let t be the observed realization of the random variable T , with the cumulative distribution

function, also called cumulative incidence function (CIF), as

F (t) = P [T ≤ t] . (2.5)

The survival function is simply the complement of the cumulative distribution function,

i.e.,

S(t) = 1− F (t). (2.6)

If no loss to follow-up occurred, F (t) is simply estimated by dividing the number of indi-

viduals who experience the outcome event by time th by the number of individuals at risk
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at time 0, where h ϵ {1, 2, ..., u} indicates the ordered survival times. However, since loss
to follow-up does occur in realistic studies, methods to account for this type of censoring

need to be used. These methods usually assume that censoring is independent, meaning

that individuals censored at time t should not be systematically different from individu-

als not censored regarding the risk of experiencing the outcome event [Andersen et al.,

2012]. Under the assumption of independent censoring, the Kaplan-Meier estimator is

used to estimate the survival function as

Ŝ(t) =
∏︂
th≤t

nh − dh
nh

. (2.7)

In equation 2.7, nh is the number of individuals at risk at time th and dh is the number of

events at time th. While direct adjustment for baseline confounders by including covariate

information in a model equation is only applicable to (semi-)parametric models, adjusted

or standardized non-parametric Kaplan-Meier curves can be obtained by IPW [Cole and

Hernán, 2004]. However, non-parametric estimates of survival curves tend to become

unstable especially at later time points, because only few or no events are observed per

time point and the resulting step function is often constant over some time points before

substantially changing when events are observed at a subsequent time point. Parametric

models, such as the pooled logistic regression approach described below, have the advant-

age of smoothing survival curves over time [Hernán and Robins, 2020].

The discrete-time hazard is

h(t) = P [T = t|T ≥ t] . (2.8)

In the absence of competing events, the survival probability is a function of the discrete-

time hazards [Suresh et al., 2022] and is defined as

S(t) =
t∏︂

u=0

1− h(t). (2.9)

Non-parametric, semi-parametric and fully parametric methods exist to estimate hazards

and survival probability. (Semi-)parametric methods have the advantage that they allow

incorporating various confounder adjustment methods for scenarios in which random as-

signment is not given, such as regression adjustment where covariates are included in the

outcome model itself. The most common semi-parametric method to model the hazard
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function is the proportional hazards Cox model. It consists of an infinite-dimensional,

non-parametric part (the baseline hazard) and of a p-dimensional, parametric part, with p

being the number of variables in the covariate matrix X [Tsiatis, 2006].

Even though the proportional hazards Cox model is popular, hazard ratios (HRs) are diffi-

cult to interpret causally due to a built-in selection of individuals who did not experience

the outcome by time point t [Hernán, 2010]. Complications arising in the context of hazard

ratios are discussed more in depth in Section 2.8.

An alternative approach that circumvents the built-in selection bias of the hazard ratio

is to estimate and contrast CIFs. By assessing the time-specific cumulative risk, time-

varying effects become apparent. Pooled logistic regression is a parametric method of

estimating discrete-time hazards, which in turn can be transformed into an estimate of CIFs

[D’Agostino et al., 1990]. For the pooled logistic regression to approximate discrete-time

hazards well, one must assume that less than 10 % experience the outcome at any given

time point [Murray et al., 2021].

Amodified dataset is generated in which every individual has one row per observed time

point. If, for instance, individual i = 1 experienced the outcome at time point five, the

modified dataset for this individual would contain five entries:

i t A Y Cens

1 1 1 0 0

1 2 1 0 0

1 3 1 0 0

1 4 1 0 0

1 5 1 1 0

The pooled logistic model is fitted on this modified dataset and time t is included in the

model equation. A simple model can be defined as

P [Yt = 0|Yt−1 = 0, A] = logit−1 (β1t+ β2a+ β3ta) . (2.10)

From the above we obtain the cumulative risk by building the cumulative product

1−
t∏︂

l=1

P [Yl = 0|Yl−1 = 0, A] .

By including various transformations of t and possibly interaction terms with the ex-

posure variable A or other variables, this approach allows to model dynamic CIFs (see
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e.g. Braitmaier et al. [2022b] for crossing CIFs). Furthermore, the flexibility achieved

by including various transformations of time is needed to compensate for the lack of a

non-parametric baseline hazard, which is one aspect that makes Cox models appealing

[Murray et al., 2021].

The above pooled logistic regression model is not adjusted for confounding by X . To do

so, baseline covariatesX are either included in the model itself or confounder adjustment

is achieved by IPW.

Note that the reason for censoring individuals when they drop out of the study is that

researchers want to make inferences about a real-life population in which ”drop-out” does

not exist. This same rationale does not apply when dealing with competing events, as

discussed in the next section.

2.6.1 Competing events

Acompeting event is any event that prevents the event of interest from happening. That is,

if a competing event occurs, the event of interest is not only not observed, it is not defined.

Different approaches have been proposed to conduct statistical analyses in the presence

of competing events with some authors recommending cause-specific hazard ratios when

interested in etiology [Lau et al., 2009]. In the remainder of this thesis, the term ”event-

specific” will be used instead of ”cause-specific” to avoid confusion with causal inference

terminology. Young et al. [2020] proposed a framework that formalizes causal estimands

in a competing events setting.

In studies on non-mortality outcomes, death is a necessary competing event. Let T > 0

be the event time and E an indicator for the type of event (e.g. E = 1 for the event of

interest and E = 2 for competing death). Various approaches are available in competing

events settings, with two being described in depth in Young et al. [2020]: When estimat-

ing the controlled direct effect, one aims at estimating the effect of exposure on the out-

come event under a hypothetical scenario in which the competing event was eliminated,

i.e. under which the competing event cannot occur. Methodologically, this elimination is

achieved by treating competing events as censoring events, which corresponds to setting

the event-specific hazard to zero. This is the default in many applied fields. If, however,

the competing event is death and given that most inference aims at answering questions

in real-world populations, this makes the controlled direct effect difficult to interpret for

most settings, because death cannot be eliminated. The total effect, on the other hand, de-

notes the effect of exposure on the event of interest, while allowing for competing events

to occur. This means that the total effect also includes the effect of exposure on the out-
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come that is mediated by the competing event. Therefore, caution is also required when

interpreting the total effect: If the exposure has a strong negative effect on the competing

event, the total effect might indicate a spurious beneficial effect on the event of interest,

as seen with the example whether smoking can prevent dementia [Rojas-Saunero et al.,

2023]. Hypothetically, cancer screening would appear overly beneficial regarding cancer

occurrence, if it had a strongly harmful effect on death. It is recommended to assess the

total effect on both the event of interest and the competing event [Latouche et al., 2013].

The total effect is defined as a contrast of potential outcomes, where Y 0
t denotes the po-

tential outcome by time t had all study participants been unexposed and Y 1
t had all study

participants been exposed [Young et al., 2020]. A relevant contrast could then be the risk

difference based on event-specific cumulative incidence functions, given under random-

ization as

P [Yt = 1|A = 1]− P [Yt = 1|A = 0] . (2.11)

In this case, two approaches are available: One using the event-specific hazard [Putter

et al., 2020; Lau et al., 2009], the other using the subdistribution hazard [Fine and Gray,

1999; Lau et al., 2009].

Let F1(t) be the event-specific cumulative incidence for experiencing the outcome of in-

terest (i.e. E = 1) before time t and, accordingly, let F2(t) be the event-specific cumu-

lative incidence of experiencing the competing event (i.e. E = 2) before time t. The

event-specific hazard for event type E = 1 (in discrete time) is given by the conditional

probability

h1(t) = P [T = t, E = 1|T ≥ t] . (2.12)

The event-specific hazard for the competing event, h2(t), is defined accordingly as

h2(t) = P [T = t, E = 2|T ≥ t] . (2.13)

There is no one-to-one relationship between a single event-specific hazard and cumulative

incidence in the presence of competing events. The event-specific cumulative incidence

for the outcome of interest is a function of both event-specific hazards h1(t) and h2(t) and

is given by

20



CHAPTER 2. ESTIMATION OF CAUSAL EFFECTS FROM OBSERVATIONAL
DATA

F1(t) =
t∑︂

s=1

h1(s)S(s− 1). (2.14)

In Equation 2.14, S(t) =
∏︁t

s=1 (1− h(t)) is the overall survival function, which depends

on the overall hazard h(t), which in turn is a function of all event-specific hazards and is

defined as

h(t) =

max(E)∑︂
e=1

he(t). (2.15)

Accordingly, the event-specific hazards of all event types are needed to estimate the event-

specific CIF [Schmid and Berger, 2021]. When treating competing events as censoring

events instead (i.e. for the controlled direct effect), the resulting cumulative incidence

function will always be larger than or equal to F1(t).

An alternative method of estimating the event-specific cumulative incidence function does

not require information on the event-specific hazard of all event types: Individuals who

experience the competing event are not censored, but remain in the risk set and are as-

signed a virtual end of their observation period, e.g. the end of the study period if only

administrative censoring occurs [Putter et al., 2007]. The so-called subdistribution hazard

[Fine and Gray, 1999; Lau et al., 2009; Schmid and Berger, 2021] for event type E = 1 is

then given by the conditional probability

λ1(t) = P [T = t, E = 1|(T ≥ t ∩ E = 1) ∪ (T < t ∩ E ̸= 1)] . (2.16)

The event-specific CIF for event type E = 1 as a function of the subdistribution hazard

(see e.g. Putter et al. [2020]) is defined as

F1(t) = 1−
t∏︂

s=1

(λ1(s)) . (2.17)

The advantage of the subdistribution approach is that only one hazard function needs to

be estimated. In cases were computation takes a long time (e.g. big data), the lower com-

putational burden is particularly appealing, even though it is best practice to also assess

the effect of exposure on the competing event [Latouche et al., 2013].
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2.7 Confounding bias
If f(x) is an estimator for the estimand θ, then it is considered biased if |E [f(x)]−θ| > 0.

If an experiment were repeated many times, a biased estimator would return estimates that

are systematically different from the estimand. Importantly, bias can arise from amultitude

of issues such as the definition of the estimator, the data itself or the study design, among

others.

Themost frequently discussed source of bias in observational studies is confounding due to

the lack of baseline randomization. When speaking of confounding, one must first define

what is meant by the term ”confounder”. Often, a confounder is defined as a variable

that is associated with both exposure and outcome. However, this simplistic definition is

not sufficient. For example, if an exposure affects an outcome solely through a mediator,

the mediator would be associated with both exposure and outcome, but we would not

generally wish to control for the mediator as this would mask the effect. Throughout

this dissertation, a confounder is defined as a variable that reduces confounding bias when

adjusted for appropriately. More formally, a confounder is a variable on an open backdoor

path from exposure to outcome which blocks this backdoor path when controlled for (see

section 2.2 for definition of d-separation).

While elaborate methods exist to identify sufficient adjustment sets from the data (under

various assumptions, see e.g. Witte and Didelez [2019]), the choice of confounding vari-

ables to be included in the adjustment set commonly relies on subject-matter knowledge.

If the true DAG of the causal relationships between exposure, outcome and any other vari-

ables is known, a sufficient adjustment set can be read off from the DAG without the need

for data-driven selection. While the assumption of no unmeasured confounding cannot be

tested directly, sensitivity analyses are commonly used to collect evidence regarding the

plausibility of this assumption, given the observed data.

2.7.1 Negative control outcome analysis

The underlying idea of negative control outcome analyses [Lipsitch et al., 2010] is to apply

the data analysis framework of the study’s main analysis, but to substitute the outcome

variable with one that is known to be causally unaffected by the exposure of interest.

After adjusting for observed confounders, the analysis should return a null-effect. If, in

contrast, the analysis returns a non-null effect estimate for the negative control outcome,

unobserved confounding may be at play.

In Figure 2.2, let A be the exposure, X the observed confounder, U the unobserved
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Figure 2.2: DAG of U-comparability of negative control outcome N

confounder, Y the the outcome of interest and N the negative control outcome, all bin-

ary. Naturally, some assumptions must be made. In particular, the assumption of ”U -

comparability” must be met: Lipsitch et al. [2010] define U -comparability of N with Y

as the degree of overlap of the set of unobserved common causes of A and Y with the

set of unobserved common causes of A and N , with complete overlap indicating perfect

U -comparability. Furthermore, one needs to assume that A does not cause U [Lipsitch

et al., 2010].

When the effect of interest is the causal effect of A on Y e.g. expressed as

θ = P
[︁
Y A=1 = 1

]︁
− P

[︁
Y A=0 = 1

]︁
,

and the estimator g(a, x) uses information on the observed covariates x, but not u, we

would expect the estimator to be biased, i.e.

θ ̸= E [g(a, x)] .

This is obvious from the DAG in Figure 2.2, given the open backdoor path A ← U →
Y . More formally, Y A=a /⊥⊥A|X , because Y A=a and A are only d-separated when also

controlling for U . However, given that there is a causal effect from A to Y , the observed

(biased) effect estimate is a mixture of a true causal effect and confounding bias and the

two cannot easily be disentangled.

In contrast, no causal effect of exposure on the negative control outcome exists. If variable

U were eliminated from the DAG in Figure 2.2 and if there was nomodel misspecification,

we would expect the probability of observing N = 1 to be similar among exposed and

unexposed individuals within strata of X , i.e.

P [N = 1|A = 0, X] ≈ P [N = 1|A = 1, X] .
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Any deviation of the observed effect from the null, then, would be indicative of confound-

ing bias due to U .

The above procedure of conducting negative control outcome analyses relies on the as-

sumption of U-comparability being met. If, for instance, the directed edge from U to Y

in Figure 2.2 were removed, the negative control analysis would indicate the presence of

bias, but an estimator for the effect of A on Y conditional on X would be unbiased, be-

cause no open backdoor path remains between A and Y . Similarly, if the directed edge

fromU toN were removed, the negative control analysis would fail to identify the residual

confounding bias present in the analysis of interest.

Negative control analyses are, therefore, only applicable if a suitable negative control out-

come is available in the measured data. As discussed in Lipsitch et al. [2010], a perfect

negative control outcome will rarely be available. However, a similar confounding struc-

ture and differences only in weak confounders may be sufficient in many cases.

Importantly, negative control analyses cannot generally be used to estimate the direction

and magnitude of bias, unless one makes additional assumptions regarding the strength of

association between variables. If, for instance, U is a weak predictor of N , but a strong

predictor of Y , the results of the negative control outcome analysis cannot be used to calib-

rate the effect estimate for theX-Y relation [Lipsitch et al., 2010]. Only if the confounding

structures relating to outcome of interest and negative control outcome are identical also

with regard to direction and strength of association is it possible to quantify the magnitude

of bias due to unobserved confounders U and use it for calibration of the effect of interest.

In the context of the present thesis, negative control outcome analysis was used in the con-

text of screening colonoscopy to investigate possible unobserved confounding. Here, the

study outcome of incident CRC diagnosis was replaced by the negative control outcome

of incident pancreas cancer diagnosis. Importantly, pancreatic cancer shares many risk

factors with colorectal cancer, but the strength of the association cannot be assumed to be

identical. For instance, stronger effects of tobacco smoke have been reported for pancre-

atic cancer [Maisonneuve and Lowenfels, 2015] than for colorectal cancer [Hannan et al.,

2009]. For details on this application, see Section 4.4.1 and the corresponding paper in

Section 7.2.

In many cases, confounding bias might only play a minor role while other biases, some-

times induced by the study design, are often not acknowledged appropriately (see, for

instance, the example of menopausal hormone therapy and coronary heart disease dis-

cussed in Hernán et al. [2008]). These biases are referred to as ”self-inflicted”, because

they arise purely from an inappropriate study design [Hernán et al., 2016]. Often, they
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arise due to non-alignment at time zero, which is discussed in depth in Chapter 3.

2.8 The built-in selection bias of the hazard ratio
The applied studies conducted as part of this thesis (Section 7) deviated from much of

the published literature in that they did not report HRs as effect measures, but instead

reported cumulative incidence curves showing the absolute cumulative risk in each group

at any time during follow-up. Furthermore, a relative risk was estimated at the end of

follow-up. The decision to estimate the risk over the entire follow-up rather than a single

HR was intentional: The hazard at a given point in time is conditional on not having

experienced the outcome previously. While groups may be comparable at baseline - either

via randomization or adjustment - the survivors will systematically differ at a later time

whenever the effect of exposure on outcome is non-zero [Hernán, 2010]. It has been

argued that the hazard ratio from a Cox model cannot be interpreted as a causal effect

measure, unless exposure has no effect or unless no factors other than exposure have any

effect on the outcome [Hernán, 2010; Martinussen, 2022; Young et al., 2020].

2.9 Collider-stratification bias
While adjustment for confounding variables is usually required in observational studies,

adjusting for the wrong variables can also introduce bias. One example of this is over-

adjustment, where the adjustment set includes a variable on the causal path from exposure

to outcome and, thereby, masks the effect of interest [Schisterman et al., 2009]. Another

example would be that of collider stratification bias [Greenland, 2003; Hernán andMonge,

2023].

As discussed in section 2.2, a backdoor path from exposure to outcome is blocked by the

empty set, if it contains a collider. This means for the analysis that neither the collider

nor any of its descendants are to be adjusted for in the analysis. Conversely, if the ana-

lysis is adjusted for the influence of a collider or its descendants, the backdoor path is

open, leading to bias. While collider-stratification bias may arise due to conditioning on

a collider variable in the analytical model, it can also arise as a consequence of selection.

This becomes particularly important in the context of non-alignment at time zero, which

is discussed in depth in Chapter 3.

25



CHAPTER 3
Target trial emulation

3.1 Motivation
While RCTs are often considered a gold standard in medical research, they are often not

feasible or even appropriate to answer specific research questions. Especially in cases

where a high generalizability is paramount, or e.g. for assessing off-label use of medica-

tions, RCTs are not suitable. However, they possess some properties that are particularly

advantageous to investigate cause-effect relations.

The most obvious of these properties is that there is on average no imbalance of baseline

characteristics due to the randomization process. Randomizationmight not achieve perfect

balance for every covariate in a specific trial, but conceptually covariates will approximate

balance as sample size approaches infinity. Importantly, this applies to both measured and

unmeasured baseline characteristics.

An often neglected property of RCTs that aids an unbiased assessment of causal effects

is the temporal ordering of central design elements, which need to be aligned at time zero

[Fu, 2023; Braitmaier and Didelez, 2022]. In an RCT potential study participants are first

screened regarding their eligibility. Next, the eligible ones are randomly assigned to the

treatment arms after signing an informed consent form and are invited to the baseline

examination and first treatment. The follow-up, then, only starts after this initial visit and

follow-up variables and the outcome of interest are measured at the subsequent follow-

up visits or at anytime during follow-up when allowing for electronic patient reported

outcomes. This temporal alignment is illustrated below in Figure 3.1 and is referred to as

alignment at time zero in this thesis. Whenever there is misalignment of these three design

elements, substantial bias may be the consequence [García-Albéniz et al., 2017b; Hernán
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et al., 2016]. As discussed in Section 2.9, this issue can be expressed as a special form of

collider stratification bias.

A particular focus of the present thesis was bias due to non-alignment at time zero in

observational studies on screening colonoscopy. In that context and considering prospect-

ive study designs, one mechanism merits special emphasis: Exposure definition based on

pre-baseline information leading to a prevalent user type bias. Considering retrospective

case-control designs, bias may arise due to a post-baseline exposure definition. Each will

be introduced briefly here and a detailed assessment in the context of screening colono-

scopy is given in Chapter 4 and Section 7.6.

Bias due to exposure assessment using information from before time zero can have vari-

ous manifestations depending on the studied indication. In pharmacoepidemiological re-

search, it is to blame for the so-called ”prevalent user bias” or bias due to ”depletion of

susceptibles”: Considering a study on suspected adverse events of a medication, a com-

parison of current or prevalent users with never-users would be problematic. Any potential

study participants who were treated with the drug in the past, but stopped taking the drug

due to the adverse event, would not be included in either the current user group or the

never user group, leading to a depletion of individuals susceptible to the adverse event

among the previously exposed. Those who (still) take the drug at baseline are then more

likely to respond well to the drug and be resistant against the adverse event. Due to this

mechanism, menopausal hormone therapy was linked to a decreased risk of coronary heart

disease in an observational study [Grodstein et al., 2006], even though an RCT indicated

an increased risk [Manson et al., 2003]. A later study by Hernán et al. [2008] found no

decreased risk for coronary heart disease when alignment at time zero was ensured by the

study design. Asimilar bias arises in the context of screening colonoscopy, when individu-

als with a history of CRC are excluded while previous exposure to screening colonoscopy

is used to define the comparison groups. A structural exploration of this scenario, together

with a proper study design using TTE is given in Chapter 4 and Section 4.6, where it is

shown that the resulting bias is a form of collider stratification bias. A special focus is set

to site-specific effectiveness of screening colonoscopy.

Conversely, defining exposure based on information from after time zero leads to immor-

tal time bias [Suissa, 2008; Hernán et al., 2016], which can also be understood as a form of

collider stratification bias [Shrier and Suissa, 2022]. The mechanism at work is as follows:

If exposure uses post-baseline information, e.g. compares ever users to never users, indi-

viduals exposed late during follow-up cannot, by definition, have died previously - hence

the term ”immortal time”. Early deaths (or any outcomes), therefore, accumulate in the un-

exposed group, creating a false impression of the exposure being overly protective. Many
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examples have been published over the years: Suissa andAzoulay [2012] explore this bias

in the context of metformin therapy and cancer risk, whereas García-Albéniz et al. [2017b]

show the potential for immortal time bias when evaluating screening colonoscopy. It is

noteworthy that these time related biases are not unique to prospective study designs, but

also permeate case-control studies [Dickerman et al., 2019; Rasouli et al., 2023]. Further

sources of bias, such as inappropriate adjustment for confounding, also affect case-control

designs [Rasouli et al., 2023].

Bias due to non-alignment at time zero was discussed in depth for the use case of site-

specific effectiveness of screening colonoscopy in Sections 4.6 and 7.6. As discussed in

Section 4.6, TTE is a simple solution to avoid this type of bias.

Finally, RCT results naturally lend themselves to an interventionist interpretation of a

causal effect, since they study the effect of a well-defined intervention on a subsequent

outcome. If the randomization process is successful in eliminating baseline confounding

and if there is no differential loss to follow-up, the only aspect in which the study arms dif-

fer is the treatment. This means that any difference between the treatment arms regarding

the outcome is attributable to the intervention, which makes it easy to translate the effect

into a recommendation for policy makers or regulators. If a beneficial effect is observed, it

would be unethical to withhold treatment from the public and if, conversely, no beneficial

effect or even a harmful effect is observed it would be unethical to offer the intervention to

patients. In observational studies, on the other hand, exposures of interest are sometimes

ill-defined. While it is, for instance, possible to estimate an ”effect” of BMI on health

outcomes using association measures, no recommendation for policy makers would be

possible based on a study that does not define how a change in BMI should be achieved.

Causality is therefore usually defined as a contrast of potential outcomes under different

interventions [Rubin, 2005].

3.2 Basic procedure
With the above points in mind, it seems plausible to apply some of the design elements of

RCTs to observational studies, while avoiding some of the weaknesses of RCTs, such as

low generalizability due to a highly restricted study population. This is achieved in the so-

called target trial emulation framework, which has gained popularity especially for studies

using RWD [Hansford et al., 2023b]. As noted by Labrecque and Swanson [2017], TTE

is particularly suitable for teaching causal inference concepts, because it applies existing

and well-known study design aspects in a new way rather than requiring researchers to

understand a completely new method. The basic principles of target trial emulation, while
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not always referred to as such, have been established several decades ago. Dorn [1953]

lists several questions that a researcher planning an investigation of causal effects using

observational data should answer as to minimize the risk of mistaking association for a

causal effect. One of these questions is: “How would the study be conducted if it were

possible to do it by controlled experimentation?” Later, Robins [1986] defined a method

to assess exposures sustained over time, in which he defines an observational cohort so as

to mimic the data one would obtain from an RCT, if information on treatment assignment

was missing. Even though the ideas behind target trial emulation have been published

many decades ago, popularity of the methods only started to increase relatively recently,

due to pioneering work such as the above-mentioned study by Hernán et al. [2008]. Since

then, many target trial emulations on different research questions have been published

(see for instance Hernán and Robins [2016]; Caniglia et al. [2019]; Danaei et al. [2013];

García-Albéniz et al. [2017a]; Petito et al. [2020]; Chiu et al. [2024]) and several stud-

ies demonstrating certain perils of observational studies that can be circumnavigated by

target trial emulation are available (Hernán et al. [2016]; García-Albéniz et al. [2017b];

Dickerman et al. [2019]; Didelez [2016]; Emilsson et al. [2018]). Much work has been

done on replication of existing RCTs as to identify scenarios in which TTE is either partic-

ularly suitable or faces substantial challenges [Franklin et al., 2021; Heyard et al., 2024;

Hoffman et al., 2022; Wang et al., 2023, 2024]. Furthermore, guidance on reporting of

emulated target trials is now available (see Hansford et al. [2023a,b]).

Target trial emulation is a two-step process. First, the study protocol of the ideal hypo-

thetical trial, i.e. the target trial, is defined. Second, an emulation of this ideal trial using

observational data is defined, so that the observational study is as similar to the target trial

as possible. The goal of this two step process is to ensure that central elements of the study

are clearly defined. For instance, which population should be studied, which (hypothet-

ical) interventions should be compared using what contrast, or how the outcome of interest

is defined, also considering intercurrent events [Hernán and Robins, 2020]. However, the

study protocol of the target trial is usually not defined in as much detail as would be re-

quired in a real RCT seeking ethical approval, but instead is sketched out in tabular form

[Braitmaier and Didelez, 2022; Hernán and Robins, 2016]. An example table, adapted

from Hernán and Robins [2016] is given in Table 3.1.

Any observational study – even when emulating a randomized trial – will differ in some

aspects from an RCT. Figure 3.1 illustrates the alignment of study design elements at time

zero of a hypothetical RCT on the left side and the design of a corresponding observational,

emulated trial on the right side. In an RCT, the time window for eligibility assessment and

assessment of baseline variables ends before baseline, i.e. in the randomized trial before
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Table 3.1: Tabular overview of the study protocol elements of emulated target trial stud-
ies, adapted from Hernán and Robins [2016].

Component Description

Study aim Definition of the research question

Eligibility

Eligibility criteria might differ between RCT and observational

study. For the observational study one might require individuals

to be observable in the data source for a minimum lookback

period to ensure that other eligibility criteria can be assessed

accurately. Conversely, some criteria required in an RCT may be

omitted in the emulation. For instance, pregnant women are

routinely excluded from pre-marketing RCTs due to ethical

concerns. Off-label use among pregnant women might, then, be

assessed in observational studies. It must be kept in mind that

any modification of eligibility criteria may affect transportability

of study results.

Treatment

strategies

Treatment strategies must be defined clearly. It is not sufficient

to specify e.g. which drug should be investigated, but also over

which time period treatment must be sustained and which

deviations from prescribed treatment should be allowed or not

allowed per protocol. If a treatment should be changed

dynamically based on e.g. blood testing this needs to be

pre-specified.

Treatment

assignment

The treatment assignment in an RCT would be done randomly.

In observational studies, treatment assignment corresponds to the

observed treatment behavior. Randomization is emulated in

observational studies by adjusting for a sufficient set of

covariates. Adjustment covariates should ideally be selected

based on subject matter knowledge and using causal reasoning.

Adjustment variables should be listed in the protocol and a

method of confounder adjustment be specified.

Follow-up Clear definition of when follow-up starts and ends.

Outcome

The outcome variable must be clearly defined. One should

consider whether the outcome was reliably measured in the data,

or if there might be issues with measurement error and

misclassification. Strategies for intercurrent events must be

defined.

Causal contrast

A clear definition of the causal contrast of interest is required. It

should be clearly stated how non-adherence is handled when the

treatment of interest is dynamic or sustained over time

(e.g. ”intention-to-treat” vs ”per-protocol”) as this depends on

the target of inference and affects the statistical methods used.

Statistical

analysis

When the causal contrast is a per-protocol effect, artificial

censoring and adjustment for time-dependent confounding are

required.
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visit 0 at which informed consent is obtained and randomization is conducted. The first

treatment might not occur immediately at visit 0, but instead at visit 1 shortly thereafter.

Follow-up starts after visit 0, i.e. after baseline. It is common for RCTs to estimate an

intention-to-treat (ITT) rather than a PP effect, i.e. the target of inference is the effect of

being assigned to a treatment arm rather than receiving treatment. As illustrated in the

right-hand side of Figure 3.1, an emulated trial similarly obtains information regarding

eligibility and baseline variables from before time-zero. However, since no randomization

is conducted, group assignment is then based on the observed exposure during the time-

zero time interval. Emulated target trials typically treat time as a discrete entity, so that

this first time interval may correspond to e.g. a week, month or quarter. Since group

assignment is based on observed exposure, no ITT effect regarding treatment assignment

can be estimated in an emulated trial. Instead, studies often estimate an ”observational

analog” of the ITT effect, namely the effect of being exposed at time-zero. This, however,

corresponds more closely to the PP effect reported in many RCTs, where adjustment for

non-adherence at baseline is done.

Note that in Figure 3.1 the term ”baseline” is used for the RCT, while the term ”time

zero” is used for the emulated trial. In an RCT, one clear baseline is defined, namely the

day at which a study participant signs their informed consent form and is randomized into

one study arm. Often, no single baseline exists per person in an emulated trial. If, for

instance, the emulated trial entails a control group not receiving treatment, it is unclear

from the observed data when follow-up should start for this person. Some studies in the

past have then declared one fixed baseline and assessed exposure either before (leading to

prevalent user-type biases) or after (leading to immortal time bias) baseline. The solution

in the TTE framework is usually to emulate multiple sequential trials, one at the beginning

of each discrete time interval. Each of these emulated trials has its own respective baseline

and all individuals eligible at that baseline are included in the respective trial. As a result,

the same person is included in multiple trials with differing baselines. However, time-zero

alignment of eligibility assessment, treatment assignment and start of follow-up is ensured

in all these emulated trials.

Similarly to the above point, emulated trials may, in contrast to randomized trials, assign

the same person to more than one treatment strategy. If, for instance, one were to compare

one dynamic treatment strategy that adapts medicine dose to some biomarker value with

one static treatment strategy that does not adapt medicine dose, all initiators would qualify

for both these strategies. In an RCT such an individual would be randomly assigned to one

strategy. In an emulated trial this person could also be randomly assigned to one strategy.

However, it is more efficient to clone the data from this person, assign one clone to each
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Informed consent

Time Zero

Eligibility & 
baseline variables

Follow-Up

Time

Exposure
assessment

Baseline 

Eligibility & 
baseline variables

Follow-Up

Time

Randomization

Visit 1/First 
treatment

Figure 3.1: Left side: Temporal ordering of design elements of an example RCT aiming
to estimate an intention-to-treat effect. Right side: Temporal ordering of an emulated
trial aiming at estimating the observational analog of an intention-to-treat effect.

strategy and censor the clone from a strategy when the observed treatment exposure during

follow-up deviates from the assigned strategy. As this artificial censoring introduces bias,

adjustment for time-dependent confounding, e.g. via IPCW becomes necessary [Robins,

1986; Hernán, 2018]. This approach is sometimes called the ”clone-censor-weight ap-

proach” [Zhao et al., 2021].

Importantly, duplicated data due to cloning or sequential trial emulation needs to be con-

sidered when estimating confidence intervals. In this context, bootstrapping is commonly

used. A brief introduction to bootstrapping is given in Appendix A, while bootstrapping

in the emulated target trial on screening colonoscopy is described in Chapter 4.

3.3 Data sources
The thought experiment of formulating the ideal trial to answer a given research question

can be instructive in any observational study on causal effects [Didelez, 2016]. How-

ever, when emulating said ideal trial using observational data, certain criteria need to be

fulfilled.

The observational data must contain sufficient information to fulfill the following: As

mentioned in Franklin et al. [2019], the information must allow the identification of the

target population via eligibility criteria, contain sufficient information to adjust for con-
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founding bias, contain reliable information on exposure and outcomes and must contain

information as to judge the generalizability of the study results. Importantly, the temporal

ordering of events must be clear from the data. These requirements are not unique to TTE.

Next, data must be collected longitudinally, ideally without gaps. The TTE framework

relies on sensible temporal ordering of eligibility assessment, treatment assignment and

start of follow-up. Therefore, the data must contain temporal information on a granularity

that allows this alignment. If continuous information is available over a long time period,

sequential trials can be emulated to make the best use of the available information.

When aiming to answer medical research questions, the real-world data most commonly

used are pseudonomized health claims data, electronic health records (EHR) or disease

registries [Franklin et al., 2019; Haug and Schink, 2021]. Even though claims data and

EHR are not collected for research purposes, they contain rich medical data, are readily

available and possess large sample sizes, making them interesting for research questions

that cannot easily be answered in RCTs.

Observational cohort data collected at subsequent visits is less ideal for TTE than routinely

collected health data, given the large gaps in between visits and the often limited number

of visits. TTE from such data must make stronger assumptions (see e.g. Chiu et al. [2021]

for an application using cohort data).

3.4 Strengths and limitations
RCT evidence is usually regarded as the most reliable basis for decision making regarding

medical interventions. However, RCTs have limitations of their own, cannot answer all

relevant research questions and often need to be supplemented or even replaced by obser-

vational studies using RWD in specific settings. In observational studies, however, there

is large variation regarding quality of both study design and underlying data. As part of

the present thesis, Braitmaier and Didelez [2022] established a German language tabu-

lar overview of the limitations of RCTs and observational studies with and without TTE,

which was adapted to English in Table 3.2.
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CHAPTER 4
Contributions to the field of screening
colonoscopy

The development of bespoke study designs and statistical analysis methods for specific

applications is a focal area of this dissertation. In this context, the effectiveness of two

cancer screening programs - mammography screening for early detection of breast cancer

and colonoscopy screening for early detection and prevention of colorectal cancer - was

assessed. Contributions to the field of screening colonoscopy are described in the current

chapter 4, while contributions to the field of screening mammography are described in

chapter 5.

Colonoscopy screening for prevention and early detection of colorectal cancer is offered in

Germany since 2002. While the reduction of CRC-related mortality is the ultimate goal of

colonoscopy screening, CRC incidence is another important outcome. A cancer diagnosis

and subsequent diagnostic procedures and curative treatments have a significant impact on

a patient’s live. Screening colonoscopy is thought to affect CRC incidence in two major

ways: 1) Early detection of asymptomatic cases leads to an increased incidence early

after screening, but also to earlier treatment initiation, which in turn improves survival 2)

Detection and removal of precursor stages during the screening examination reduces CRC

incidence [Bretthauer et al., 2022]. This assumed mechanism is illustrated in Figure 4.1,

where presence of cancer precursorsP , undiagnosed cancerC, colorectal cancer diagnosis

Y and exposure to screening colonoscopyA is captured at two time points. While exposure

at time point 1, A1, leads to an increase of cancer incidence at the same time point (Y1) by

detecting prevalent cases (C1), it also leads to a decrease of later cancer incidence Y2 by

removing precursor stages that are present at the time of screening (P1).
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A1

Y1

C1

P1

A2

Y2

C2

P2

Figure 4.1: DAG representing the causal structure of screening colonoscopy and colo-
rectal cancer incidence

Importantly, no RCT evidence regarding colonoscopy screening’s effectiveness in redu-

cing colorectal cancer incidence or mortality was available at the time of its introduction.

However, its effectiveness was implied by RCT evidence on sigmoidoscopy, a less invas-

ive, endoscopic screening tool that functions in a similar way, but screens only the distal

as opposed to the entire colorectum [Elmunzer et al., 2012]. Furthermore, observational

studies conducted after the introduction of screening colonoscopy in Germany suggested

a strong effect on both CRC incidence and mortality, although some of these studies found

considerably stronger effects for the distal colorectum [Baxter et al., 2009, 2012; Brenner

et al., 2011, 2014a; Doubeni et al., 2013; Guo et al., 2021; Kahi et al., 2018; Mulder et al.,

2010; Nishihara et al., 2013]. The first RCT results were published in 2022 [Bretthauer

et al., 2022], i.e. after the study by Braitmaier et al. [2022b]. However, Bretthauer et al.

[2022] focused on overall incidence of CRC, as they did not have sufficient sample size

to obtain site-specific estimates.

García-Albéniz et al. [2017a] was the first to study the effectiveness of screening colono-

scopy using a target trial emulation approach. In a companion paper, they discuss how

commonly-applied approaches lead to non-alignment at time zero and consequently to

self-inflicted biases [García-Albéniz et al., 2017b]. They did not, however, study whether

these self-inflicted biases differ betweenCRC sites and if they could potentially explain the

difference in effect estimates reported by previous observational studies. It was, therefore,

the objective of our study [Braitmaier et al., 2022b] to extend the framework of García-

Albéniz et al. [2017a] and use a target trial emulation design to study site-specific effect-

iveness of colonoscopy screening in reducing CRC incidence. The details of the study

design including a tabular study protocol of the target trial and its emulation using obser-

vational data are given in the paper (see section 7.2). Briefly, we emulated sequential trials

– one per calendar quarter – from 2007 to 2011. Calendar quarters were chosen as the unit
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of discrete time, because some information in the underlying GePaRD is only available

on a quarterly basis. The strategies to be compared were to either undergo colonoscopy

screening in the baseline quarter or not. Individuals who underwent screening colono-

scopy in the baseline quarter were assigned to the screening strategy, while individuals

not undergoing screening colonoscopy in the baseline quarter were assigned to the control

strategy. This assignment process results in a trial population with zero non-adherence at

baseline.

While the goal of the initial analysis described in Braitmaier et al. [2022b] was to estim-

ate the effect of baseline exposure to screening colonoscopy regarding the site-specific

effectiveness, several extensions and additional data years were added to the project later

and are described in separate sections. First, section 4.1 introduces the methodological

framework for the target trial emulation on screening colonoscopy. Section 4.2 describes

the process used to find a suitable parameterization of the pooled logistic model used to

estimate the discrete-time hazards. Next, Section 4.3 gives a brief summary of the main

results from Braitmaier et al. [2022b], while an extensive description is given in the paper

itself, which is included in Section 7.2. Sensitivity analyses are described in Section 4.4

and extensions to the original study design are described in the subsequent sections.

The only RCT evidence regarding screening colonoscopy’s effect onCRC incidence [Brett-

hauer et al., 2022], which was published after Braitmaier et al. [2022b], assessed an inten-

tion-to-screen effect, i.e. the effect of being invited to screening at baseline. They further-

more conducted a per-protocol analysis by adjusting for non-adherence during baseline.

While this is more comparable to the effect estimate reported in Braitmaier et al. [2022b],

there is a key difference: The RCT by Bretthauer et al. [2022] was conducted during a time

in which screening colonoscopy was not available to the broader public, i.e. there was no

contamination of the control arm during follow-up. To make our results more comparable

with theirs and to fully evaluate the effect of screening colonoscopy in Germany, we added

a per-protocol analysis, censoring in the control arm at the earliest screening colonoscopy

during follow-up. This is described in Section 4.5.

Section 4.6 gives a structural explanation of bias arising in the context of screening colono-

scopy due to violations of alignment at time zero, with empirical results again reserved

for the corresponding publication in Section 7.6.

Further extensions included the assessment of the effect of quality of screening colono-

scopy. The quality was defined based on polyp-detection rate and the methodological

frameworkwas extended for three instead of two exposure strategies - no screening colono-

scopy at baseline, low-quality screening colonoscopy at baseline and high-quality screen-

37



CHAPTER 4. CONTRIBUTIONS TO THE FIELD OF SCREENING
COLONOSCOPY

ing colonoscopy at baseline. Further extensions and additional analyses are described in

detail in Section 4.7 below.

4.1 Methodological framework

4.1.1 Target trial emulation

Data was collected from an underlying cohort of n individuals. Each individual, i =

1, ..., n, was characterized at time t = 1, ..., T by covariatesXt, a binary exposure statusAt

and an outcome indicator Yt. Individuals of this cohort were assumed to be independent.

Let overbars indicate the history of a variable. An emulated trial might investigate what

some authors have called the observational analog of the ITT effect (i.e. without censoring

for non-adherence during follow-up) of exposure strategies Q on the outcome Y , where

Q = 0 is the strategy of not being exposed to colonoscopy screening at baseline andQ = 1

is the strategy of being exposed at baseline, both without restrictions regarding further

screening during follow-up. A sequence of r trials was emulated, in this case by starting

one emulated trial at each calendar quarter from 2007 to 2011. The r-th emulated trial

started at (calendar) time tr and follow-up time of the r-th trial is denoted by kr = 1, ..., Kr,

withKr = T−tr+1. Selection of individuals into emulated trials was based on eligibility

at time tr, Etr = 1. Assignment to exposure strategies was based on observed exposure

at time tr, i.e. for the r-th emulated trial, person-trial j has the assigned exposure strategy

Qj = Aj,tr , where the subscript j = 1, ...,m with m ≥ n refers to ”non-unique” person-

trials. The same individual i may be eligible for multiple trials.

4.1.2 Effect estimation

A pooled dataset of all emulated trials contained information on all j = 1, ...,m person-

trials regarding person-trial specific information on e.g. baseline covariates Xj,tr and in-

formation on the outcome of interest starting with baseline and continuing through follow-

up as Yj,kr . While themain focus was on the event-specific cumulative incidence over time

under each strategy, the summary measure of interest was the causal relative risk (CRR)

at the end of follow-up given by

CRRT =
P
[︂
Y Q=1
T = 1

]︂
P
[︂
Y Q=0
T = 1

]︂ . (4.1)

Estimand 4.1 does not refer to a hypothetical scenario controlling the occurrence of com-
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peting eventsD, i.e. the aim of this analysis was to estimate the total effect without elim-

ination of competing events as defined in Young et al. [2020].

Estimation of 4.1 is based on a pooled logistic model applied to the pooled dataset to es-

timate the discrete-time subdistribution hazard for time point kr in a first step. Subdistri-

bution hazards, rather than event-specific hazards, were used here, because this way only

the model for the event of interest needed to be fitted. When using event-specific hazards

instead, models for both event of interest and competing event need to be fitted to derive

the event-specific cumulative incidence functions, i.e. an approach using event-specific

hazards would have been computationally more costly. Instead, individuals experiencing

the competing event are not treated as censored, but instead remain in the risk set until

the time when they would have censored, had they not experienced the competing event

(i.e. until the end of the study period). In the absence of censoring, these individuals would

remain in the risk set indefinitely. With this, the at-risk set at time point kr comprises in-

dividuals who have experienced the competing event in addition to those who have not

yet experienced any outcome event [Putter et al., 2007]. The pooled logistic model then

takes the form

P
[︁
Yj,kr = 0|Ȳjkr−1 = 0, Qj

]︁
= logit−1 [η(qj, kr)] . (4.2)

A suitable parameterization of η(qj, kr) depends on the functional shape of the cumulative

incidence functions and will differ from study to study. The process of finding a suitable

parameterization in the example of the emulated target trial on screening colonoscopy is

described in Section 4.2 below.

Inverse probability of treatment weighting (IPTW) was used in the above model to adjust

for baseline confounding. For this, a set of baseline covariates Xj,tr was selected based

on subject-matter knowledge (see Braitmaier et al. [2022b] for details). These covariates

were included in a main effects logistic model estimating the probability of being exposed

to screening colonoscopy in the time-zero discrete time-interval as P[Qj = 1|Xj,tr ] =

logit−1 [xj,trβ]. The predicted probability extracted from this fitted model (ˆ︂PS) was used
in the denominator of stabilized inverse probability weights as

swj =
p̂ [Qj = 1]ˆ︂PS (4.3)

for exposed person-trials and as
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swj =
1− p̂ [Qj = 1]

1−ˆ︂PS (4.4)

for unexposed person-trials, with p̂[Qj = 1] being the predicted probability of being ex-

posed, extracted from a logistic model fitted without predictor variables. These weights

were truncated by setting weights above the 99th percentile to the 99th percentile of the

observed weight distribution, as is common practice [García-Albéniz et al., 2017a; Goet-

ghebeur et al., 2020]. A sensitivity analysis was later conducted to assess the impact of

truncation (see Section 4.4).

Once Model 4.2 was fitted on the data, using the above inverse weights, the predicted

probability of not experiencing the outcome event by time kr under screening strategy

Q = q, denoted here as p̂
[︁
Y q
kr

= 0|Ȳ q
kr−1 = 0, Q

]︁
, was extracted. This was achieved

by generating a dataset with one entry per time point and screening strategy and using

it as input to extract predicted probabilities from the fitted model. No person-trial level

information or inverse weights are needed for this step. With these predicted probabilities,

an estimate for the marginal, event-specific cumulative incidence was derived as

p̂
[︁
Y q
kr

= 1
]︁
= 1−

kr∏︂
l=1

p̂
[︁
Y q
l = 0|Ȳ q

l−1 = 0, Q
]︁
. (4.5)

Finally, the summary measure of the effect of interest, in this case the CRR at time kr, was

derived as

ˆ︂RRkr =
p̂
[︁
Y q=1
kr

= 1
]︁

p̂
[︁
Y q=0
kr

= 1
]︁ . (4.6)

While (4.6) was estimated as a summary measure of the relative effect at the end of follow-

up, the cumulative incidence curves given by (4.5) should be considered the main output.

The CIFs allow a visual assessment of temporal effects and are useful for risk prediction

under hypothetical intervention by estimating them for specific subgroups of interest. In

general, reporting CIFs is preferable to summarizing the temporal effect in a single meas-

ure, such as an average RR or HR.

In the above analyses, death is a competing event for CRC incidence, since CRC incid-

ence after death is not defined. At the same time, CRC incidence is per design a competing

event for death, because follow-up is terminated at any incident CRC diagnosis; any events

after the event of interest are not pertinent to the research question at hand. Furthermore,

40



CHAPTER 4. CONTRIBUTIONS TO THE FIELD OF SCREENING
COLONOSCOPY

alive & healthy

distal CRC

proximal CRC

death without CRC

Figure 4.2: Multi-state model representation of site-specific CRC incidence and com-
peting death

CRC can occur at different sites in the colon (distal versus proximal). Disregarding, for

simplicity’s sake, the rare cases in which the location of the tumor is unknown or tumors

occur simultaneously at both sites, distal CRC is then a competing event for proximal

CRC and vice versa, if interest lies in the first CRC diagnosis overall. In the analyses

described in Braitmaier et al. [2022b], separate models were fitted for distal and proximal

CRC, respectively, using the above methods, i.e. treating CRC at the respectively other

site as competing events and not treating competing events as censoring events. Instead,

event-specific CIFs were estimated via the intermediate step of estimating discrete-time

subdistribution hazards. When using Cox PH models, this approach is often referred to

as Fine-Gray approach [Putter et al., 2020]. Notably, the event-specific CIFs could have

also been obtained using event-specific hazards, as is common in a multi-state representa-

tion of competing events [Putter et al., 2007]: The initial state is enrollment into the study

population by meeting all eligibility criteria. Given that the outcome of interest is CRC in-

cidence, follow-up is terminated at the time of diagnosis (because anything after that point

is not of interest to this particular research question). With that and as illustrated in Fig-

ure 4.2, three absorbing states exist: CRC in the distal colon, CRC in the proximal colon

and death. In the multi-state representation of the competing events model, the transition

intensities from the initial state to each absorbing state are given by the respective event-

specific hazard. The event-specific hazards then need to be estimated for all competing

events, even if interest is only in one event type, because the event-specific cumulative

incidence function depends on all of them. Therefore, the subdistribution approach is

computationally faster.

4.1.3 Confidence intervals

No simple, parametric solution is available for obtaining confidence intervals when using

pooled logistic regression to approximate discrete-time hazards, with repeated recruitment
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of the same individuals inmore than one sequential trial. Bootstrappingwas therefore used

to obtain robust confidence intervals for CIFs and RRs.

One bootstrap sample of size n is obtained by randomly sampling with replacement from

the original cohort data. Each bootstrap ”individual” i∗ is characterized at time t = 1, ..., T

by covariates X∗
t , a binary exposure status A

∗
t and an outcome indicator Y

∗
t . Note that

an individual i can be represented by more than one bootstrap individual i∗. Based on

this bootstrap sample, the target trial emulation and accompanying analytical process de-

scribed in Section 4.1.2 was repeated to obtain the first bootstrap estimate, e.g. R̃R1,kr for

the relative risk at time kr. This process was repeated a total of B = 250 times to ob-

tain 250 bootstrap estimates, e.g. R̃R1,kr , ..., R̃RB,kr for the time-dependent relative risk.

While B = 500 bootstrap samples are often used in the literature, only 250 samples were

used here, due to computational limitations and the number of analyses conducted. How-

ever, 500 samples were used in a sensitivity analysis to assess whether results would have

been much different. This analysis is described in detail in Section 4.4.7.

While various bootstrap methods are available, the most common method of calculating

confidence intervals in the target trial emulation literature is that of percentile based boot-

strap intervals. For 95 % confidence intervals, these are defined as the 2.5 % and 97.5 %

percentiles of the distribution of bootstrap estimates.

4.2 Functional shape of time
In the above analysis, pooled logistic regressions were fitted to obtain an estimate of the

cumulative incidence functions. While a central aspect of this model is the covariate ad-

justment via inverse probability of treatment weighting, a necessary first step is the defin-

ition of an appropriate parameterization of the pooled logistic model itself. This model

takes as input a modified dataset with one entry per discrete time point at which a person-

trial was under observation. Time itself is then included in the model equation. An un-

adjusted, non-parametric method (e.g. Kaplan-Meier in absence of competing events or

Aalen-Johansen when competing events exist) is used first to assess the shape of the CIFs.

The pooled logistic model then features discrete time, transformations of time and possibly

interaction terms with the treatment indicator. Depending on the nature of the exposure

and outcome, further variables might need to be included e.g. if repeated exposure takes

place during follow-up (see García-Albéniz et al. [2020] as an example). In the emulated

target trial described in Braitmaier et al. [2022b] and its extensions, the parameterization

was found via the following procedure: First, a non-parametric estimate of the cumulat-

ive incidence functions was obtained via Kaplan-Meier methods, without any covariate
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adjustment. Competing events were treated as censoring events in this model selection

step, after it was shown that the difference between direct and total effect was minor, as

discussed in Section 4.4.2. Second, candidate model specifications were selected as de-

scribed below. Third, the resulting parametric estimates of the CIFs were compared to the

Kaplan-Meier curves to assess fit, both visually and using a numeric measure, namely the

Kolmogorow-Smirnov statistic. This measure – for exposure q in this case – is defined as

KSq = sup
kr

|F̂ q
[Kaplan−Meier] − F̂ q

[Pooled logistic]|, (4.7)

with sup being the supremum and F̂ q the observed cumulative incidence function for

strategy q. The closer the Kolmogorow-Smirnov statistic is to zero, the less deviation

exists between the cumulative incidence functions being compared. To assess the fit of

the candidate functional shape, the maximum KS statistic observed over both exposures

q was determined as

KS measure = max
q

KSq. (4.8)

Candidate functional shapes were identified by the following steps:

1. The following transformations of time kr were used: kr,
√
kr, (kr)

2, log kr, exp kr

and 1
exp kr

(selection of subsets of these is defined in step 4 below).

2. Each candidatemodel was required to include a linear time term, because theKaplan-

Meier curves showed that for the control group a linear function would yield a good

approximation.

3. Each candidate model was required to contain an interaction term between each

transformation of time and the screening indicator as well as the main effects of

only screening indicator and transformation of time, so that the shape of the curves

could vary between exposure strategies.

4. In addition to linear time, combinations of at least two and at most three other trans-

formations of time were included. This restriction to a limited number of time vari-

ables controlled model complexity, given that the KS-measure does not feature a

penalty term for model complexity.

Considering all possible permutations of the above pre-selected transformations of time,

20 candidate models were identified using the above steps. All models are summarized
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Table 4.1: Candidate functional shape of a pooled logistic model to estimate CRC incid-
ence

Model

identi-

fier

Linear predictor η

KS

meas-

ure *

100

1 Q+Qt+Q exp (t) +Q 1
exp (t)

+ t+ exp (t) + 1
exp (t)

0.085

2 Q+Qt+Q exp (t) +Q log (t) + t+ exp (t) + log (t) 0.158

3 Q+Qt+Q exp (t) +Qt2 + t+ exp (t) + t2 0.472

4 Q+Qt+Q exp (t) +Q
√
t+ t+ exp (t) +

√
t 0.223

5 Q+Qt+Q 1
exp (t)

+Q log (t) + t+ 1
exp (t)

+ log (t) 0.127

6 Q+Qt+Q 1
exp (t)

+Qt2 + t+ 1
exp (t)

+ t2 0.098

7 Q+Qt+Q 1
exp (t)

+Q
√︁

(t) + t+ 1
exp (t)

+
√︁

(t) 0.121

8 Q+Qt+Q log (t) +Qt2 + t+ log (t) + t2 0.115

9 Q+Qt+Q log (t) +Q
√︁

(t) + t+ log (t) +
√︁

(t) 0.134

10 Q+Qt+Qt2 +Q
√︁

(t) + t+ t2 +
√︁

(t) 0.112

11 Q+Qt+Q exp (t)+Q 1
exp (t)

+Q log (t)+t+exp (t)+ 1
exp (t)

+log (t) 0.088

12 Q+Qt+Q exp (t) +Q 1
exp (t)

+Qt2 + t+ exp (t) + 1
exp (t)

+ t2 0.071

13 Q+Qt+Q exp (t) +Q 1
exp (t)

+Q
√
t+ t+ exp (t) + 1

exp (t)
+
√
t 0.084

14 Q+Qt+Q exp (t) +Q log (t) +Qt2 + t+ exp (t) + log (t) + t2 0.080

15 Q+Qt+Q exp (t)+Q log (t)+Q
√
t+ t+exp (t)+ log (t)+

√
t 0.092

16 Q+Qt+Q exp (t) +Qt2 +Q
√
t+ t+ exp (t) + t2 +

√
t 0.078

17 Q+Qt+Q 1
exp (t)

+Q log (t) +Qt2 + t+ 1
exp (t)

+ log (t) + t2 0.063

18 Q+Qt+Q 1
exp (t)

+Q log (t) +Q
√
t+ t+ 1

exp (t)
+ log (t) +

√
t 0.074

19 Q+Qt+Q 1
exp (t)

+Qt2 +Q
√
t+ t+ 1

exp (t)
+ t2 +

√
t 0.061

20 Q+Qt+Q log (t) +Qt2 +Q
√
t+ t+ log (t) + t2 +

√
t 0.045
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in Table 4.1, where beta coefficients are omitted and follow-up time is referred to as t in-

stead of kr to improve readability. Apooled logistic model was then fitted for each of these

candidate models without covariate adjustment and the KS measure was obtained. Fur-

thermore, the parametric curves resulting from each candidate model were plotted against

the non-parametric Kaplan-Meier curves for visual assessment. The KS measures are

given in Table 4.1. The visual comparison of the candidate models is given in Figure 4.3.

Model 20 yielded the smallestKS measure. Visual assessment also confirmed that model

20 approximated the non-parametric curves very well, with no major deviations at any

time of follow-up.

Non-parametric methods, i.e. theAalen-Johansen estimator, could have been used instead

of pooled logistic regression, when only baseline adjustment was necessary. For this,

IPTW could have been used to obtain a weightedAalen-Johansen estimator, which would

have led to faster computation times when compared to the pooled logistic regression ap-

proach. However, the parametric methods were used here, because they can easily be

extended to more complex settings. For instance, IPCW for artificial censoring in a per-

protocol analysis is easily integrated in the parametric approach (see Section 4.5). Fur-

thermore, the logistic regression approach can include covariates directly in the outcome

model, as was done in a sensitivity analysis using the g-formula (see Section 4.4.4). Fi-

nally, the parametric approach yields smoothed curves that are less volatile in small sample

sizes when compared to non-parametric methods.

4.3 Main results of Braitmaier et al. [2022b]
For the results of the original analysis, the reader is kindly referred to the publication

Braitmaier et al. [2022b], which is printed in Section 7.2. As discussed in the paper, no

relevant difference in effectiveness according to the site of CRC were found. Braitmaier

et al. [2022b] contribute the differences reported in the literature to self-inflicted biases

introduced by inappropriate study design.

Braitmaier et al. [2022b] was the first study to use TTE to investigate site-specific effect-

iveness of screening colonoscopy. The site-specific results, therefore, cannot be compared

to other observational studies with similar methodology. However, the estimates for the

effect on overall CRC incidence can be compared to other studies. García-Albéniz et al.

[2017a] reported results for a US sample in the age group of 70 to 74 with an eight year

follow-up. The shape of the adjusted cumulative incidence curves was very similar to the

curves reported in Braitmaier et al. [2022b]. Overall, the incidence of CRC was slightly
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Figure 4.3: Comparison of non-parametric Kaplan-Meier curves with candidate para-
metric models for estimating CIFs. Step functions represent Kaplan-Meier curves while
continuous line graphs represent the parametric estimate.
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higher in both groups in García-Albéniz et al. [2017a], likely due to the older study popu-

lation. The adjusted relative risk after eight years was 0.84, whereas the adjusted relative

risk after eight years was 0.83 (95% CI: 0.78 - 0.88) when using the adjusted curves from

Braitmaier et al. [2022b].

In 2022, after the publication of the initial findings, the results of the first RCT on the

effectiveness of colonoscopy screening on CRC incidence (andmortality, although sample

sizes were small) became available [Bretthauer et al., 2022]. While sample sizes were not

sufficient to stratify analyses by site of CRC, the authors reported the effect of screening

colonoscopy on overall CRC incidence. In the supplement to Braitmaier et al. [2022b],

we provided results for the age group of 55 - 64, the same age group as was included in

the RCT. Given that due to the assignment of individuals to the screening strategies in

our emulated trial [Braitmaier et al., 2022b] there was no non-adherence at baseline, our

results are more closely comparable to the per-protocol results published in Figure S3 in

the supplement to Bretthauer et al. [2022] as compared to the intention-to-screen results

published in the main paper, although contamination in the control arm during follow-up

will likely have differed. There, the authors report an adjusted cumulative incidence at

the end of the 10-year follow-up of 1.22 for the usual care (i.e. control) group and 0.84

for the screened group, resulting in an RR of 0.67. This is very close to the 11-year RR

of 0.64 reported in Table S4 in the supplement to Braitmaier et al. [2022b]. While many

differences in study design remain, this agreement in results appears to support the validity

of our target trial emulation. However, further analyses were conducted to emulate the trial

of [Bretthauer et al., 2022] more closely by using artificial censoring and IPCW to adjust

for contamination of the control arm. These analyses are described below in section 4.5.

4.4 Sensitivity analyses
The assumptions underlying a causal interpretation of the results reported in Braitmaier

et al. [2022b] were investigated as illustrated in the supplement to the published paper.

Overlap plots of the propensity score for exposure at baseline were used to check for any

indication for potential positivity violations. In a scenario without positivity violation and

without confounding, the PS distributions of the exposure groups should overlap com-

pletely and be approximately identical. In a scenario without positivity violation, but with

confounding by the observed covariates X , the PS distributions of the exposure groups

should still cover the same value range, but the probability density functions will not be

identical with more probability density towards 1 in the exposed group and more prob-

ability density towards 0 in the unexposed group. This scenario can be mitigated by ap-
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propriate adjustment for the covariates X . In a scenario with strong positivity violation,

there should be visible non-overlap between the PS distributions, i.e. some or all of the

PS distribution of one exposure group lies outside of the range covered by the PS distri-

bution of the other group. Strong positivity violations cannot be mitigated by confounder

adjustment, given that one would extrapolate beyond the data support. Instead, restricting

the study population or changing the research question may be necessary.

Covariate balance after applying inverse probability weights was checked using the abso-

lute standardizedmean difference. This step is used to check if inverse weighting achieved

satisfactory balance in observed covariates. For a continuous variable this measure is

defined as

ASMD =

⃓⃓⃓⃓
⃓⃓ x̄treated − x̄untreated√︂

s2
treated

+s2
untreated

2

⃓⃓⃓⃓
⃓⃓, (4.9)

while for a binary variable it is defined as

ASMD =

⃓⃓⃓⃓
⃓⃓ x̄treated − x̄untreated√︂

x̄treated(1−x̄treated)+x̄untreated(1−x̄untreated)
2

⃓⃓⃓⃓
⃓⃓. (4.10)

Generally, if the absolute standardized mean difference after weighting is below 0.1, the

respective covariate is considered sufficiently balanced [Austin, 2009]. These checks did

not give reason for concern, as discussed in Braitmaier et al. [2022b].

However, the above checks are not sufficient to rule out all potential sources of bias. To

identify any weaknesses impacting the validity of the main findings, sensitivity analyses

were tailored to this study, acknowledging which aspects of study design or underlying

data carry the largest risk.

4.4.1 Negative control outcome

The most common concern with observational data is that of confounding bias, given that

no baseline randomization can be conducted. Several approaches exist to address the is-

sue of unobserved confounding: Instrumental variable analyses circumvent the issue, but

make strong assumptions and are only possible if an appropriate instrumental variable ex-

ists in the data [Greenland, 2000]. Quantitative bias analyses can be applied to investigate

specific unobserved confounders when e.g. the strength of the association between con-
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founder and outcome is known from the literature and the distribution of the confounder

between exposure groups is varied across scenarios [Schneeweiss, 2006; Fox et al., 2022].

If, however, one is concerned about more than one variable, quantitative bias analysis is

often too restrictive. In those settings, negative control analyses [Lipsitch et al., 2010]

are valuable for detecting the presence of residual confounding. The rationale of negative

control analyses was explained in depth in Section 2.7.1.

In the TTE on the effectiveness of screening colonoscopy [Braitmaier et al., 2022b], pan-

creatic cancer incidence was chosen as negative control outcome. While there are some

differences in the sets of risk factors for the two types of cancer, there is also substantial

overlap. Many factors contribute to these cancer entities and the following list is not ex-

haustive: The risk of both cancers is thought to increase with tobacco smoking and the

extent of smoking, although different strengths of association have been reported in the

literature for the two cancer entities with a stronger effect of current smoking on pancre-

atic than on colorectal cancer [Hannan et al., 2009; Lowenfels and Maisonneuve, 2005].

Similar associations with high alcohol intake have been reported for both cancer entities

[McNabb et al., 2020; Wang et al., 2016]. Both pancreatic and colorectal cancer occur

more often in individuals with type 2 diabetes [Lowenfels and Maisonneuve, 2005; Yu

et al., 2022], which in turn is associated with obesity and sedentary lifestyle. Lifestyle

factors are poorly reflected in health claims data, which makes pancreatic cancer a valu-

able negative control outcome candidate, given that screening colonoscopy cannot pos-

sibly have a causal effect on pancreatic cancer incidence.

The same statistical methods were used for the negative control outcome analysis as for

the main analysis, including the same set of adjustment variables. Figure 4.4 shows the

adjusted cumulative incidence functions over an eleven-year follow-up (the figure was

adapted from Braitmaier et al. [2022b]). Confidence intervals were derived by bootstrap-

ping. During the first seven years of follow-up, the cumulative incidence curves are nearly

identical. After seven years, the curves diverge slightly, however, each curve is overlapped

by the confidence interval of the other curve.

These results indicate that, under the assumption of U-comparibility explained in section

2.7.1, it is unlikely that there is major unmeasured confounding that could qualitatively

change the results from the main analysis.

4.4.2 Treating competing events as censoring events

In the evaluation of the effectiveness of screening colonoscopy [Braitmaier et al., 2022b],

the outcome of interest was CRC incidence. With this, death was a competing event. Brait-
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Figure 4.4: Adjusted cumulative incidence functions of the effect of screening colono-
scopy on the negative control outcome of pancreatic cancer incidence (adapted from
Braitmaier et al. [2022b])
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maier et al. [2022b] reported the total effect of screening colonoscopy on site-specific and

overall CRC incidence, also mediated by the competing event. In this approach, person-

trials are not censored when experiencing a competing event. An alternative approach

would be to estimate the controlled direct effect under elimination of competing events,

i.e. censoring for competing events (see Young et al. [2020] for a discussion of total and

controlled direct effect).

When death is the competing event, estimating the controlled direct effect is usually not

very informative, given that it targets a hypothetical scenario under which the competing

event is eliminated (i.e. in which no death occurs ever). However, censoring for competing

events is often done in applied research without a sound causal justification. Therefore, a

sensitivity analysis was carried out in which person-trials were censored at death. If the

controlled direct effect were to differ substantially from the total effect, this could con-

tribute to differences between Braitmaier et al. [2022b] and other published observational

studies on screening colonoscopy.

While a comparison of total and direct effect was given in the supplement to Braitmaier

et al. [2022b] for the effect on any CRC, Figure 4.5 shows a comparison by site. While

the (baseline) adjusted risk estimates are slightly higher for the direct effect as compared

to the total effect, the differences were small and did not substantially impact the results

for any site.

A caveat to the results presented here is that further covariate adjustment would be needed

for the controlled direct effect: First, censoring due to the competing event may intro-

duce selection bias, which can be mitigated by adjusting for time-dependent covariates.

Second, further assumptions regarding the adjustment set are needed for the controlled

direct effect. Specifically, the adjustment set must also contain confounders between the

competing event (death) and the event of interest (CRC incidence). The main objective of

this sensitivity analysis, however, was to imitate the commonly-used approach to censor

for death without further adjustment for time-dependent confounding.

Given that the effect estimates did not differ substantially between the two approaches,

it is unlikely that the difference between Braitmaier et al. [2022b] and other published

studies are due to a different approach regarding competing events.

4.4.3 Confounding between exposure and competing event

In Braitmaier et al. [2022b], covariates were selected so as to control for confounding

between the exposure (screening colonoscopy) and the outcome of interest (CRC incid-
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Figure 4.5: Comparison of total and controlled direct effect by site of CRC
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ence). However, confounding between exposure and competing events may also lead to

bias [Lesko and Lau, 2017]. It is best practice to report not only the adjusted effects of

exposure on the outcome of interest, but also on the competing event [Latouche et al.,

2013].

The problem of uncontrolled confounding in the example of screening colonoscopy and

competing death is illustrated in Figure 4.6. Covariates X were selected to include all

variables that lead to confounding between exposure A and outcome Y if not controlled

for. The thick directed edge from the competing event D to the outcome of interest Y

indicates that Y cannot happen, if it is precluded byD. The directed edge fromA toD was

omitted from the DAG, because screening colonoscopy affects overall mortality mainly

through its effect on death from colorectal cancer, which only accounts for a negligible

fraction of overall mortality. Adverse events of screening colonoscopy that lead to death,

such as bleeding due to perforation of the colon, are not included in the discussion here

because of their rarity. Laanani et al. [2019] found that perforation – which need not lead

to death – occurred in 3.5 to 7.3 colonoscopies out of 10,000, with increasing rates at

higher age (the age group considered here was comparably young) and decreasing rates

with physician experience (physicians conducting screening colonoscopies in Germany

are required to conduct at least 200 such procedures per year). Finally, node U represents

variables that lead to confounding between exposure A and competing event D, if not

adjusted for. No arrow was drawn from U to Y , because covariates X were selected

based on subject-matter knowledge so as to include the most relevant predictors of Y . If

U was not present, no association between A and D should be apparent in the analysis.

A

U D

X

Y

Figure 4.6: DAG of confounding between exposure A and competing event D. The bold
arrow from D to Y indicates that D prevents Y from happening.

In the current section, the adjusted, event-specific cumulative incidence curves for any

death not preceded by a diagnosis of CRC are displayed for the two screening strategies

of either attending screening colonoscopy during the baseline quarter or not (i.e. no sus-

tained strategies). The same adjustment variables as in Braitmaier et al. [2022b] were
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Figure 4.7: Adjusted, event-specific cumulative incidence curves for any death not pre-
ceded by CRC diagnosis

used. An extended adjustment set was also considered, including the following addi-

tional variables assumed to be relevant predictors of overall mortality: other cancer dia-

gnoses, therapy with cytostatics, therapy with monoclonal antibodies, inpatient chemo-

therapy, radiotherapy, palliative care, antidepressant prescriptions, antipsychotic prescrip-

tions, asthma, chronic obstructive pulmonary disease, coronary heart disease, dementia,

drug abuse, chronic heart failure, hepatitis, treated hypertension, immunosuppressants,

platelet aggregation inhibitors, lipid lowering drugs, liver disease, severe liver disease,

acute myocardial infarction, hemiplegia, renal disease, stroke.

As is evident from Figure 4.7, the expectation of no association between exposure A and

competing event D was not reflected by the adjusted, event-specific cumulative incid-

ence curves. The mortality of the control group was substantially higher than that of the

screened group throughout follow-up. The curves did not change notably when adjusted

for further covariates. This result indicates the presence of bias, e.g. due to uncontrolled

confounding between exposure to screening colonoscopy and overall mortality.

The result obtained here matches well with the published literature: García-Albéniz et al.

[2017a] estimated the effect of screening colonoscopy on CRC incidence. After adjust-

ing for confounding, they found a beneficial effect of screening on the 8-year cumulat-

54



CHAPTER 4. CONTRIBUTIONS TO THE FIELD OF SCREENING
COLONOSCOPY

ive incidence of CRC. However, they reported in a follow-up paper that the effect (or

lack thereof) of screening colonoscopy on overall mortality was ”hopelessly confounded”

[García-Albéniz et al., 2019], with an implausible reduction of overall mortality in the

screened group.

When judging how much the observed confounding between exposure A and competing

event D may have affected the estimates for the effect on the event of interest Y , res-

ults obtained in a simulation study by Lesko and Lau [2017] are helpful: The authors

compared scenarios where the adjustment set included either only confounders of the

exposure-outcome effect, or included confounders with both the outcome and the com-

peting event. They found that omitting confounders for the effect on the competing event

substantially biased results regarding the total effect, but not results regarding the con-

trolled direct effect. Indeed, when one considers censoring a form of controlling for the

occurrence of competing events, the backdoor path A ← U → D → Y in Figure 4.6

would be blocked by D. With this in mind, total and controlled direct effect should sub-

stantially differ, if confounding betweenA andD was affecting the estimates for the effect

ofA on Y . As discussed in Section 4.4.2, this was not the case in Braitmaier et al. [2022b].

Confounding of the effect of A on Y due to unobserved common causes of A and D is,

therefore, unlikely to have played a role in Braitmaier et al. [2022b]. Nevertheless, un-

controlled residual confounding between A and D must be considered a limitation of the

data source.

4.4.4 Covariate adjustment via g-formula instead of IPTW

IPTW was used in Braitmaier et al. [2022b] to adjust CIFs for confounding by observed

covariates. In this approach, an exposure model is fitted to obtain propensity scores, which

in turn are used to obtain adjustment weights. The outcome model itself does not include

covariates, but is adjusted for confounding via theweights (see Section 2.5). This approach

assumes that the exposure model is correctly specified.

An alternative approach is to include covariates in the outcome model instead and suitably

standardize, which is known as the g-formula approach [Robins, 1986; Hernán andRobins,

2020], also called direct standardization. Here, no exposure model is required. Instead,

covariates are included in the outcome model, which is fitted on the observed data, using

observed exposure. The fitted model is then used to obtain predictions of the potential out-

comes for each exposure level by modifying the original dataset so that all entries share the

same exposure, potentially contrary to the factually observed exposure. Finally, marginal

estimates are obtained by averaging over all observations. In settings with time-dependent
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Figure 4.8: Comparison of IPTW and g-formula adjustment for baseline covariates

confounding, further modeling of covariates is needed (see e.g. Börnhorst et al. [2021]).

A core assumption of this approach is that the outcome model is correctly specified.

A sensitivity analysis using the g-formula approach instead of IPTW was conducted for

the results reported in Braitmaier et al. [2022b]. This analysis served two purposes: First,

covariates might affect exposure differently than they affect the outcome. While not prov-

ing correctness of model specification, similar results from IPTW and g-formula methods

may at least indicate that no strong model misspecification is present, unless one believes

that both models are equally misspecified. This analysis, therefore, was a sensitivity ana-

lysis regarding model misspecification. Second, since the program code for the analysis

was written from scratch, this sensitivity analysis served as a validation of the program

code. The g-formula approach is an alternative toMSMs using IPTW [Robins et al., 2000].

Vastly differing results could therefore also indicate issues with the program code.

Here, the g-formula approach was as follows: First, a pooled logistic regression estimating

the probability of not experiencing the outcome by time kr was fitted as

P
[︁
Yj,kr = 0|Ȳj,kr−1 = 0, Qj, Xj,tr

]︁
= logit−1 (η(qj, kr) + xj,trγ) . (4.11)
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In Equation 4.11, the same functional shape of time η(qj, kr) was used as in the main

analysis (Equation 4.2). However, Equation 4.11 also contained baseline covariates xj,tr

and did not use inverse weighting. The list of baseline covariates used was identical to

the ones used in the inverse weighting approach and is given in Braitmaier et al. [2022b].

The model included main effects only, i.e. no transformations of or interactions between

covariates were included in the model. As in the main analysis, a subdistribution approach

was used, i.e. competing events were not treated as censoring events.

Once fitted, this pooled logistic regression was used to obtain predicted probabilities. For

this, the original analysis dataset was copied twice, once setting Q = 0 and once setting

Q = 1. These two modified datasets were used as input to the fitted model to obtain

predicted probabilities

p̂
[︁
Y q
j,kr

= 0|Y q
j,kr−1 = 0, Q = q,Xj,tr

]︁
. (4.12)

Next, the cumulative, event-specific, person-trial-level risk conditional on baseline cov-

ariates was estimated by building the cumulative product over time as

p̂
[︁
Y q
j,kr

= 1|Q,Xj,tr

]︁
= 1−

kr∏︂
l=1

p̂
[︁
Y q
j,l = 0|Y q

j,l−1 = 0, Q = q,Xj,tr

]︁
. (4.13)

Finally, the marginal, event-specific cumulative incidence function for strategy Q = q

was obtained by standardizing over the population as

p̂
[︁
Y q
kr

= 1
]︁
=

1

m

m∑︂
j=1

p̂
[︁
Y q
j,kr

= 1|Q = q,Xj,tr

]︁
. (4.14)

A comparison of the results obtained with both methods is given in Figure 4.8. As is

evident from the figure, the two approaches yielded very similar results. This sensitivity

analysis, therefore, did not find evidence for either model misspecification or issues with

the program code.

4.4.5 Changing the adjustment set

Adjustment variables were selected a priori based on subject-matter expertise for the ana-

lyses described in Braitmaier et al. [2022b], i.e. no data-driven covariate selection strategy

was used. Furthermore, adjustment variables were included in the exposure model and not
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Figure 4.9: Sensitivity analysis regarding selection of covariate set; ASA: Acetylsalicylic
acid, CRC: colorectal cancer

the outcome model, since IPTW was used for covariate adjustment. As such, no inform-

ation regarding the association of individual covariates on the outcome were available to

judge variable importance.

A sensitivity analysis was conducted to assess the magnitude of the influence that indi-

vidual groups of covariates had on the result. In this analysis, (groups of) covariates were

dropped from the adjustment set and the primary analysis was repeated. A covariate was

assumed to have a large effect on the result, when the CIFs changed notably after dropping

said covariate.

The primary results reported in Braitmaier et al. [2022b] were adjusted for the following

baseline covariates (included as main effects in the propensity model): Age, sex, educa-

tional attainment (unknown or no degree, secondary degree, higher education), obesity,

family history of CRC, menopausal hormone therapy, acetylsalicylic acid, diabetes, codes

indicating alcohol abuse, codes indicating smoking and use of other preventive services

before baseline (none, one, two or more). Five covariate sets were studied in this sensit-

ivity analysis, dropping the following covariates, but keeping the others:

• Lifestyle factors (obesity, alcohol abuse, smoking)

• Use of other preventive services
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• Prescriptions (menopausal hormone therapy, acetylsalicylic acid)

• Diagnoses (family history of CRC, diabetes)

• Educational attainment

The results of these sensitivity analyses are given in Figure 4.9. Most modified covariate

sets yielded results that did not differ from the fully adjusted main effects model. The only

exception was use of other preventive services in the three years before baseline. While

other preventive measures, such as skin cancer screening or general health check-ups, are

unlikely to affect the risk of developing CRC, they were assumed to be a proxy for health

seeking behavior and health consciousness, but also general health status. Person-trials

assigned to the screening strategy had previously undergone other preventive measures at

a higher rate when compared to the non-screening strategy (see Table 1 in Braitmaier et al.

[2022b]).

Assuming that participation in preventive measures is a proxy for health-seeking behavior

and health consciousness and further assuming that health consciousness is associatedwith

better health in general, an enrichment of the screening strategy with health conscious

individuals would lead to a decreased risk of developing CRC, among other diseases.

Indeed, when dropping use of preventive services from the adjustment set, the cumulative

incidence of CRC dropped notably in the screening arm.

While use of preventive services was included as an adjustment variable in Braitmaier

et al. [2022b], it was considered as a restriction criterion for subgroup analyses to increase

internal validity and homogeneity across exposure groups in Braitmaier et al. [2022a] in

the context of mammographic screening.

4.4.6 Non-truncated weights

Following the example of previous studies using target trial emulation (e.g. García-Albéniz

et al. [2017a]), inverse weights used in the analyses described in Braitmaier et al. [2022b]

were truncated at the 99th percentile. The goal of this truncation approach is to limit the in-

fluence of extreme observations. This, however, is a trade-off. If extremely large weights

were present for a small set of individuals with unusual covariates, these few individu-

als would have a disproportionate influence on the adjusted effect estimates. Truncation,

then, makes results more representative of the study population. Furthermore, truncating

weights can decrease variance, leading to more efficient estimators. However, truncated

weights may fail to remove confounding completely, thus leading to residual confounding

[Goetghebeur et al., 2020].
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Figure 4.10: Covariate balance using truncated versus non-truncated inverse weights
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Figure 4.11: Adjusted cumulative CRC incidence curves using truncated versus non-
truncated inverse probability weights to adjust for baseline confounding

The analysis regarding the causal effect of baseline screening colonoscopy on CRC risk

during follow-up [Braitmaier et al., 2022b] was therefore repeated without truncating the

inverse probability weights. Additional data years were available in this sensitivity ana-

lysis when compared to the initial publication described in Braitmaier et al. [2022b], res-

ulting in slightly different results. Covariate balance before and after weighting (with

truncated and non-truncated weights) is compared in Figure 4.10. Notably, most covari-

ates were well balanced with both weights. However, the use of other preventive services

before baseline could not be fully balancedwith the truncated weights. With non-truncated

weights on the other hand, also the use of other preventive services was well-balanced.

This could indicate that the variable regarding use of preventive services identifies sub-

groups that almost never (namely those who do not undergo any preventive services) or

almost always (namely those who also undergo several other preventive services) parti-

cipate in colonoscopy screening.

Figure 4.11 shows the adjusted cumulative CRC incidence by screening strategy, once

with truncated and once with non-truncated weights. While results are very similar and

no clinically relevant changes result from using non-truncated weights, the cumulative
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incidence curve for the screening arm changes notably with a slightly higher cumulative

incidence. Indeed, the relative risk reduction at the end of follow-up is slightly smaller

when using non-truncated weights. The adjusted 14-year relative risk using truncated

weights was 0.68 (risk reduction of 32%), whereas the relative risk using non-truncated

weights was 0.70 (risk reduction of 30%).

4.4.7 Varying the number of bootstrap samples

As discussed above, standard parametric approaches for estimating confidence intervals

are not valid in the emulated target trial setting described in Braitmaier et al. [2022b],

since the same individual is potentially included in the dataset more than once. Instead,

person-level bootstrapping as described in Section 4.1 was used. Given that the under-

lying statistical methods are computationally heavy and the analyzed datasets are large,

obtaining bootstrap-based confidence intervals can become computationally prohibitive

when using a large number of bootstrap samples. As a compromise between statistical

accuracy and computational feasibility, 250 bootstrap samples were used in Braitmaier

et al. [2022b], whereas 500 bootstrap samples are a more common choice in the literature.

To investigate whether B = 250 bootstrap samples were sufficient to reliably estimate

confidence intervals, the same procedure was repeated in a sensitivity analysis regarding

the incidence curves for any CRC, but this time with B = 500 bootstrap samples. A

comparison of the resulting confidence intervals is given in Figure 4.12.

As is evident in Figure 4.12, the bootstrap-based confidence intervals based on 250 versus

500 bootstrap samples do not differ notably. This result suggests that in the analysis re-

ported in Braitmaier et al. [2022b] results would not have changed, had the number of

bootstrap samples been larger. B = 250 was a sufficiently large number of bootstrap

samples to reliably estimate 95% confidence intervals.

4.5 Update and per-protocol analysis

4.5.1 Rationale and methods

After the initial publication of Braitmaier et al. [2022b], the results of the first and only

RCT comparing the effectiveness of screening colonoscopy at baseline versus no screen-

ing colonoscopy at baseline were published (see Bretthauer et al. [2022]). One major

difference in the study designs of the emulated trial of Braitmaier et al. [2022b] and the

NordICC trial [Bretthauer et al., 2022] was that the NordICC trial was conducted at a

time when screening colonoscopy was not offered to the wider population in the coun-
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Figure 4.12: 95% confidence intervals based on 250 versus 500 bootstrap samples

tries involved in the study. This means that the control group did not feature a substantial

contamination with screening colonoscopies conducted during follow-up. In Braitmaier

et al. [2022b] on the other hand, screening colonoscopy was freely available to all eligible

individuals. With the initial analysis scheme reported in Braitmaier et al. [2022b] where

no restrictions regarding screening colonoscopy use during follow-up were made, this led

to a contamination of the control arm.

A per-protocol analysis was added to make results more comparable. Additional data

years had become available since the original publication [Braitmaier et al., 2022b] and

the follow-up was extended. Furthermore, additional sequential trials were emulated until

the end of 2013 (as opposed to 2011).

The censoring scheme for the per-protocol analysis was as follows: For person-trials as-

signed to the strategy with screening colonoscopy at baseline no artificial censoring was

applied, since screening colonoscopy is a quasi point exposure with the option of re-

peat screening colonoscopy only once after ten years. For person-trials assigned to the

control strategy, artificial censoring occurred at the end of the calendar quarter with the

first screening colonoscopy. Screen-detected CRC was not counted as an outcome in this

strategy, with screen-detected CRC being defined as a CRC diagnosis in the same calen-
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dar quarter as a screening colonoscopy or with a screening colonoscopy in the 180 days

preceding the diagnosis. Importantly, even when controlling for baseline confounders via

randomization or adjustment, artificial censoring may introduce bias, if time-dependent

covariates affect both the probability of being censored and the probability of experien-

cing the outcome. Adjustment for time-dependent covariates becomes necessary.

Adjustment for baseline confounding and time-dependent confounding/informative cen-

soring followed the approach described in [Robins et al., 2000]: Adjustment for baseline

covariates was achieved as before by constructing IPTW weight contributions. Adjust-

ment for time-dependent covariates was achieved by constructing time-dependent IPCW

weight contributions using time-updated versions of the baseline covariates. The censor-

ing model contained the same covariates as in the main analysis, namely main effects of

number of preventive services (0, 1, 2 or more), acecylsalicylic acid, age, codes indicating

alcohol abuse, family history of CRC, diabetes with pharmacological treatment, diabetes

with organ damage, female sex, educational attainment, menopausal hormone therapy,

obesity and smoking. Covariate balance could initially not be achieved for all covariates

throughout follow-up, which led to the inclusion of the following interaction terms in the

censoring model: menopausal hormone therapy with age categories (55 to 59, 60 to 64,

65 to 69, 70 to 74, 75 and older), menopausal hormone therapy with calendar year and

menopausal hormone therapy with family history of CRC.

As described under section 4.1, baseline weight contributions were defined as

ˆ︃iptwj =
p̂ [Qj = 1]

p̂ [Qj = 1|Xj,tr ]
(4.15)

for exposed person-trials and as

ˆ︃iptwj =
1− p̂ [Qj = 1]

1− p̂ [Qj = 1|Xj,tr ]
(4.16)

for unexposed person-trials, with Xj,tr being the covariate vector of person-trial j at the

start of emulated trial r. Time-dependent weight contributions for artificial censoring

were set to ˆ︃iptwj,kr = 1 for time kr = 1, ..., Kr and person-trials assigned to the active

screening strategy Q = 1, since no artificial censoring was carried out in this strategy.

Furthermore, ˆ︃iptwj,1 was set to 1 for all person-trials j, because no artificial censoring

was possible during the first time interval by design (exposure to screening colonoscopy

in the first time interval was used for assignment to the exposure strategies Q).
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For unexposed person-trials, the probability of not being artificially censored (Censj,kr =

0) was estimated for each time point kr > 1 using a pooled logistic model as described in

Robins et al. [2000]:

P [Censj,kr = 0|Xj,kr ] = logit−1 [β0 + krβ1 + xj,krβ4] . (4.17)

Censoring model 4.17 also included the above-mentioned interaction terms relating to

menopausal hormone therapy in the covariate vector xj,kr .

Another pooled logistic model was fitted to obtain the numerator of the weight contribu-

tions as

P [Censj,kr = 0] = logit−1 [β0 + krβ1] . (4.18)

The time-dependent, stabilized weight contribution for person-trials in the strategy with no

screening colonoscopy at baseline for time point kr was then computed using the predicted

probabilities from the fitted models as

ˆ︃ipcwj,kr =

∏︁kr
2 p̂ [Censj,kr = 0]∏︁kr

2 p̂ [Censj,kr = 0|Xj,kr ]
. (4.19)

Final weights are then given as

ˆ︂swj,kr = ˆ︃iptwj ∗ ˆ︃ipcwj,kr . (4.20)

Stabilized weights are generally preferred over non-stabilized weights when assessing sus-

tained treatments, because non-stabilized weights can grow very large, especially when

many time points are considered, leading to unstable estimators [Hernán andRobins, 2020;

Robins et al., 2000]. The stabilized weights were truncated at the 99th percentile of their

distribution to avoid excessive influence of outliers.

Covariate balance of time-dependent confounders was assessed throughout follow-up by

calculating the absolute standardized mean difference between screening strategies for

each time point kr after applying the weights (see Figure 4.13). When balance could

not be achieved for a confounder at baseline, sensitivity analyses were conducted within

strata of the baseline covariate. When balance could not be achieved for a time-dependent

covariate, sensitivity analyses were conducted by including the time-dependent covariate
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Figure 4.13: Covariate balance over follow-up in per-protocol analysis of screening
colonoscopy. Dashed line represents the 0.1 threshold

that could not be balanced in the outcome model equation.

4.5.2 Results and discussion

Overall, 1,642,348 person-trials were included in the control strategy and 240,193 in the

screening strategy when considering individuals aged 55 to 69 years old. In the con-

trol strategy, 18.7 % underwent screening colonoscopy at some point during the 14-year

follow-up and were artificially censored in the per-protocol analysis. An additional ana-

lysis was conducted, restricting the population to the age group of 55 to 64, i.e. the age

group assessed by [Bretthauer et al., 2022]. Here, 1,110,465 person-trials were included

in the control group and 171,310 in the screening group. In the control strategy, 20.3 %

underwent screening colonoscopy during follow-up and were artificially censored.

The 14-year adjusted RR among individuals aged 55 to 69 at baseline was 0.68 when

assessing a point exposure control strategy without artificial censoring and 0.72 when

assessing a sustained control strategy with artificial censoring and IPCW. Among indi-

viduals aged 55 to 64, the adjusted RR was 0.67 for the point exposure control strategy

and 0.72 for the sustained control strategy. In both of these age groups, a point exposure
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Figure 4.14: Per-protocol results for the effect of screening colonoscopy
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control strategy led to a higher risk of receiving a CRC diagnosis than a sustained control

strategy. The adjusted CIFs are given in Figure 4.14.

In both age groups, the effect estimates for a point exposure without artificial censor-

ing indicated a stronger protective effect than the estimates regarding a sustained control

strategy. The cumulative incidence throughout follow-up was higher for the point expos-

ure control strategy as compared to the sustained control strategy. This is likely due to

the initial increase in incidence due to the detection of cases at screening colonoscopies

during follow-up, which are eliminated per design in the sustained control strategy.

The adjusted RR among individuals aged 55 to 64 was 0.84 when restricting the follow-up

to 10 years. In Bretthauer et al. [2022], the length of available follow-up was 10 years,

the study population was aged 55 to 64 at baseline and the control strategy was free of

contamination by screening colonoscopy, because no screening colonoscopy was offered

to the wider public in the countries included in the study (Poland, Norway, and Sweden).

In their adjusted per-protocol analysis, the authors reported a RR of 0.69, i.e. the 10-year

protective effect was stronger as indicated by the above results. This difference may be

explained by a different background prevalence of CRC: The initial increase in cumu-

lative incidence due to screen-detected CRC in the screened group was much smaller in

Bretthauer et al. [2022] than in the results reported in Figure 4.14, indicating that the

background prevalence at baseline was smaller in the population studied by Bretthauer

et al. [2022]. With lower prevalence of CRC, the increase of the cumulative incidence

due to screen-detected cancers is smaller and the long-term preventive effect of screening

colonoscopy via removal of precursors is more prominent.

4.6 Bias due to non-alignment at time zero
While no RCT evidence is currently available regarding the site-specific (distal versus

proximal colon) effectiveness of screening colonoscopy, several observational studies

have reported results indicating that screening colonoscopy is much more effective in pre-

venting CRC in the distal colon than it is in the proximal colon [Baxter et al., 2009, 2012;

Brenner et al., 2011, 2014b; Doubeni et al., 2013; Guo et al., 2021; Kahi et al., 2018;

Mulder et al., 2010; Nishihara et al., 2013]. This is in contrast to the findings reported

in [Braitmaier et al., 2022b], where a TTE design was used and no clinically meaning-

ful differences in effectiveness between site of the tumor were observed. In contrast to

other study designs that do not prioritize causal interpretability, the TTE design of Brait-

maier et al. [2022b] ensures alignment of key study design elements at time zero. This

means that eligibility assessment uses only information from before time zero, exposure
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Figure 4.15: Misalignment at time zero for modified study on screening colonoscopy

assessment uses only information from time zero and outcome assessment uses only in-

formation starting with time zero, as is illustrated in Figure 3.1 in Chapter 3. The current

section gives some methodological considerations regarding bias due to non-alignment at

time zero in the context of screening colonoscopy and site-specific effectiveness, while

empirical results are restricted to the corresponding publication (Braitmaier et al. [2024],

see Chapter 7.6).

A study design as seen in previously published observational studies was used to investig-

ate whether non-alignment at time zero could have caused bias that affected site-specific

estimates differently. A hypothetical cohort design was used, corresponding to the setting

of an observational cohort being recruited at a given point in time. At the baseline examin-

ation of such a cohort study, participants would be asked whether they had ever undergone

screening colonoscopy and whether they ever received a CRC diagnosis. When interest

lies in the effect of screening colonoscopy on CRC incidence, participants reporting past

CRC diagnoses would be excluded from the analysis. The outcome of interest would then

be any CRC diagnosis during follow-up. Such a study design was applied to the same

data source used in [Braitmaier et al., 2022b], with some key design differences: Baseline

was defined as a fixed time point (beginning of 2009). Exposure was defined as a coded

screening colonoscopy during the baseline quarter or ever before. The resulting violation

of alignment at time zero is illustrated in Figure 4.15. Importantly, the age structure at

baseline still corresponds to a group in which distal CRC is much more common than

proximal CRC, with proximal CRC becoming more relevant later during follow-up and at

higher ages.

To illustrate such a study design, the following notation is introduced: Assume that time

t is split into three time windows, with t = −1 corresponding to the pre-baseline period,
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Figure 4.16: DAG of analysis of screening colonoscopy with time zero violation under a
hypothetical scenario in which no directed path leads from past exposure A−1 to sub-
sequent outcomes Y0 or Y1

t = 0 corresponding to time zero and t = 1 corresponding to the post-baseline period.

At describes exposure to screening colonoscopy at time t, while Yt is a binary outcome

indicator for time t, which is 1 if a CRC diagnosis occurred in time window t. The variable

S describes selection into the study cohort. Figure 4.16 gives a graphical representation

of the causal relationships under such a design, with Pt indicating the presence of cancer

precursors at time t and Ct indicating the presence of undiagnosed/latent CRC. Since

confounding is not pertinent to the discussion of violations of alignment at time zero,

confoundersX are omitted from the graph. For illustration purposes, Figure 4.16 assumes

a null-effect of exposure on subsequent outcomes, i.e. all arrows leading from exposure

Ak to the outcome at a later time, Yt>k, are absent.

There is a violation of alignment at time zero in the hypothetical cohort design described

above: Exposure definition uses information from time zero and before, instead of time

zero alone. With this, exposure may precede exclusion criteria. Furthermore, exposure is

ill-defined in that it does not correspond to a quantity that can be intervened upon, since

past exposure cannot be changed. While a TTE as described in Braitmaier et al. [2022b]

assesses the effect of A0 on {Y0, Y1}, the flawed study design with time zero violation
would instead attempt to assess the effect of Ano alignment = {A−1 = 1 or A0 = 1} on
{Y0, Y1}.

As shown in Figure 4.16, selection in the cohort design without alignment at time zero is

based on Y−1 as individuals with past CRC diagnosis are excluded. Given that exposure

to screening colonoscopy will lead to CRC diagnosis when latent CRC is present, CRC

diagnosis at time −1 is a collider on the path A−1 → Y−1 ← C−1. Controlling for a

collider or its descendants will introduce a non-causal association between the two parent

nodes, i.e. it will lead to collider bias [Pearl, 1995; Greenland, 2003]. With this, there are
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Figure 4.17: DAG of analysis of screening colonoscopy with time zero violation, with
selection based on past outcome but not past exposure

now open non-causal paths from past exposure to later outcome. It is, therefore, evident

from the DAG that the study design without alignment at time zero will yield biased results

if P [Y−1] > 0.

To illustrate this further, consider the modified DAG in Figure 4.17: In this scenario,

causal paths leading from exposure at time k to subsequent outcomes Yt>k exist, due to

the removal of precursor stages at the screening colonoscopy. Now, any analysis using

the faulty study design will report an effect estimate that is a mixture of the true effect of

exposure on the outcome and bias introduced by the study design.

To explain why the bias described above affects effect estimates of distal CRC more

severely, it is important to consider the age structure under study. With the age at baseline

being between 55 and 69, distal CRC is much more frequent than proximal CRC. Concep-

tually, if proximal CRC were to not occur at all before baseline, i.e. if Figure 4.17 were to

reflect only proximal CRC and P [C−1 = 1] = P [Y−1 = 1] = 0, then no selection would

take place and no association between A−1 and C−1 would be introduced. More gener-

ally, in the age group under study it is known that P
[︁
Cdistal

−1 = 1
]︁
> P

[︂
Cproximal

−1 = 1
]︂
. The

described collider bias will therefore be more severe for distal CRC.

When analyzing the same data source used in Braitmaier et al. [2022b], but with the study

design without alignment at time zero, the results from previous observational studies

indicating a stronger effect in the distal colon could be reproduced. More details on the

study design and the empirical results are given in section 7.6.
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4.7 Extending the set-up to more than two exposure
strategies

So far, exposure was treated as a binary variable A, indicating either participation in

screening colonoscopy at baseline or no participation. In an extension of the original study,

exposure to screening colonoscopy was further subdivided into two categories depending

on the screening physician’s polyp detection record.

While adenoma detection rate is widely accepted as a quality marker of gastroenterologists

conducting screening colonoscopy [Kaminski et al., 2017], this measure is not directly

available in health claims data. Instead, polyp detection rate (PDR) was used to classify

screening colonoscopies as high or low quality. PDR has been shown to be a close match

to polyp detection rate [Schwarz et al., 2023].

With the above categorization, exposure strategies Q ∈ {0, 1, 2} are then expressed by
three levels: 0 = No screening colonoscopy at baseline, 1 = Low quality screening colono-

scopy at baseline and 2 = High quality screening colonoscopy at baseline. Previously, a

single logistic regression model was used for estimating propensity scores. Now, separate

logistic models were fitted for each exposure strategy q, where a dummy exposure vari-

able was defined as Aq = 1 if Q = q and as Aq = 0 if Q ̸= q. The same covariates were

used for adjustment with identical parameterization, namely main effects modelling.

Based on these strategy-specificmodels, person-trial specific stabilizedweights for strategy

q are given by

swq,j =
P [Aq = 1]

P [Aq = 1|X]
(4.21)

for person-trials under exposure strategy q. Propensity models were fitted for all three

exposure strategies separately. When using identical parameterizations, this approach is

equivalent to multinomial regression. Weights were truncated at the 99th percentile of

the combined weight distribution. Cumulative incidence functions were, as described in

sections 4.1 and 4.2, estimated via pooled logistic regression models.

Covariate balance was assessed for each pairwise group comparison, using the absolute

standardized mean difference. Again, a value of 0.1 or below was defined as sufficiently

balanced.

The results and discussion are given in the publication [Schwarz et al., 2024], which is
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printed below in Section 7.5.
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Contributions to the field of mammo-
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Some 30 to 40 years ago, RCTs demonstrated a roughly 20 % reduction in breast cancer-

related mortality due to mammography screening [Nelson et al., 2016]. However, treat-

ment options have improved since then [Guarneri and Conte, 2004; Jansen et al., 2020].

Furthermore, no RCT was conducted in the German population. Effectiveness in the

modern-day German population is, therefore, subject to debate.

An invitation-based mammography screening program was introduced in Germany start-

ing in 2005 and reaching nation-wide coverage in 2009. German law requires that any

medical screening tool that entails exposure to radiation must be safe and effective (see

§84 of the German Radiation Protection Law). However, conducting an RCTwhere mam-

mography screening is withheld from one study arm would be unethical, given that mam-

mography is an established screening tool with some evidence supporting its efficacy.

While mammography screening is known to have some harmful effects [Løberg et al.,

2015], benefits are generally assumed to outweigh risks when assuming that previously

reported reductions of breast cancer mortality by around 20 % can be relied upon [Lauby-

Secretan et al., 2015; Marmot et al., 2013]. However, uncertainty regarding effectiveness

in a modern day population persists [Biller-Andorno and Jüni, 2014]. One work pack-

age of the current thesis, therefore, consisted in developing an observational study design

to evaluate the effectiveness of the German mammography screening program to reduce

breast cancer-related mortality, as is described in Braitmaier et al. [2022a]. This effort

was commissioned and funded by the Federal Office for Radiation Protection (see fund-

ing statement in Braitmaier et al. [2022a]).
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Mammography screening is offered to women from the age of 50 to 69 in Germany (the

age range was extended in 2024, so that women are eligible until the age of 75 [g-ba.de,

2024]). Eligible women are invited every two years, i.e. participation is sustained over

time and a variety of screening trajectories are possible. Three strategies in particular will

be compared: Q = 0: Never undergo screening, Q = 1: Undergo screening at least at

baseline, possibly with further screening participation during follow-up, Q = 2: Undergo

screening at baseline and thereafter at regular two-year intervals (plus a grace period of

half a year), unless aged 70 or diagnosed with breast cancer. Only the pairwise comparis-

ons with the never-screen strategy are of interest. The target trial protocol, its emulation

and details regarding the statistical analysis are given in Braitmaier et al. [2022a]. In the

following text, the issue of residual immortal time bias due to discretization of time will

be discussed in the context of an extensive simulation study. The study design of the TTE

itself is given in the corresponding publication (see Braitmaier et al. [2022a], which is

printed in Section 7.4).

5.1 Simulation study: Discrete time, emulated target
trials and residual immortal time bias

As discussed in Braitmaier et al. [2022a], some of the information in the health insurance

claims database underlying the analysis is only available on a quarterly basis. As a con-

sequence, sequential trials were emulated per calendar quarter and time was discretized

to quarter years. When assignment to strategies is based on observed screening behavior

during the first discrete time interval, i.e. when women who underwent screening in the

first interval are assigned to the active screening strategies and all others to the comparator

strategy, residual immortal time potentially remains within the first time interval; women

who undergo screening at the end of the first quarter cannot possibly have died in the be-

ginning of the quarter and, conversely, women who died at the beginning of the quarter

will have had little chance to undergo screening and accumulate in the comparator strategy.

Avoiding self-inflicted biases is one of the main advantages of the TTE framework in com-

parison to other study designs in observational research [Hernán et al., 2016]. Nonetheless,

residual immortal time may remain when granularity of discrete time is coarse, whereas

an infinitesimally fine granularity of discrete time would approximately eliminate time-

related biases. However, statistical methods such as pooled logistic regression, parametric

g-formula and bootstrapping commonly used in the target trial literature in combination

with the large data sources often employed, result in computationally heavy analyses and

long run times. Coarser discretization of time could be useful in some settings to reduce
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the computational burden.

A simulation study was conducted to assess the impact of different granularity levels of

discrete time in the setting of mammography screening and breast cancer related mortality.

Values for random variables were taken from the published literature whenever possible.

A hypothetical, population-based cohort study in which n women were recruited simul-

taneously into the study was simulated. While real-life mammography screening differs

in some aspects from this simulated study, simplifications were made whenever helpful

to focus on the issue of residual immortal time bias. A study in which women included

in the study were offered a once-only mammography screening during the first two years

of the study period was simulated. While in reality, mammography screening is offered

regularly every two years, this simplification was made to reduce complexity. The exact

data generating mechanisms for all variables are described below. The general rationale

behind some variables is given here: The sojourn period, i.e. the time between asympto-

matic disease onset and development of symptoms, is the window of opportunity for the

effect of mammography screening, which can only be effective by causing treatment at

an earlier stage of the disease, thereby improving survival. In the simulation study, any

potential effect could only occur if screening took place during this asymptomatic phase

of the disease. Death due to breast cancer and the competing event of death due to other

causes were observed during follow-up. This simulated cohort was then used to emulate

target trials under various simulation scenarios and using varying granularity of discrete

time. While the effect of screening on the outcome of interest was set to be null in most

scenarios as to easily detect bias, the effect of screening on the competing event of death by

other causes was set to be non-null in one scenario, corresponding to the possibility that

mammography screening may cause death in some instances (e.g. complications after

unnecessary treatment of overdiagnosed cases).

5.1.1 Causal structure of cohort data

The data generating mechanism of this simulation study is depicted in Figure 5.1. The

DAG is a simplified version of the true causal mechanism, because it discards temporal

effects. The binary exposure A can only have an effect on the outcome Y , if it occurs

during the time of asymptomatic disease Basymp. Mammography screening does not af-

fect survival directly, but it aids in the early detection of breast cancer and therefore leads

to earlier treatment initiation, which in turn improves survival. If the disease has already

progressed to the symptomatic stageBsymp, there is no effect ofA on Y in this simulation,

because the opportunity of earlier treatment initiation has passed. Similarly, treatment of

overdiagnosed cases is only possible in cancers that did not present clinical symptoms
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A I(A,Basymp) Y

D

Basymp Bsymp

Figure 5.1: Simplified data generating mechanism of simulation study; thick arrows de-
scribe deterministic relationships

yet, with overdiagnosis being defined as the diagnosis of a disease which would not have

become clinically apparent during the lifetime of the affected individual. Any effect of

screening on the competing event death by causes other than breast cancer (D), e.g. mor-

tality due to treatment complications of overdiagnosed cases, is only possible if screening

takes place during the asymptomatic disease stage.

There is no confounding in the current simulation setup. This simplification was made as

to focus on the effect of immortal time bias due to deaths in the first discrete time interval

of each emulated trial.

5.1.2 Simulation of cohort data

The current simulation is complex in that it involves temporal aspects and feedback loops.

The following sequence of steps was applied to simulate the cohort data underlying the

emulated target trial:

1. Latent variables corresponding to a world free of mammography screening and lat-

ent screening participation

2. Realized disease and screening values depending on temporal order of terminal

events (i.e. death from a world free of screening may prevent screening particip-

ation).

3. Latent variables in the presence of screening

4. Realized values of terminal events depending on temporal order

5. Additional scenario with early and sudden outcome events

More detail about the individual simulation steps is given in the following.
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Step 1: Latent variables in the absence of screening and latent screening participa-

tion

The proportions for simulation variables are taken, as far as possible, from published re-

search. Table 5.1 gives an overview of the simulated latent variables and references, when

applicable.

Step 2: Realized variables in the absence of screening and realized screening

The realized variables in the absence of screening and the realized screening variable are

determined based on the temporal ordering of terminal events. The realized variable on

asymptomatic disease onset was defined as

Basymp =

⎧⎨⎩0, if TlatDA=0 < TlatBasymp

latBasymp, otherwise

Similarly, the realized variable on symptom onset was defined as

Bsymp =

⎧⎨⎩0, if TlatDA=0 < TlatBsymp

latBsymp, otherwise

The realized variable on screening participation was defined as

A =

⎧⎨⎩1, if latA = 1 & TlatDA=0 ≥ TlatA & TY A=0 ≥ TlatA

0, otherwise

Step 3: Latent variables in the presence of screening

Non-breast cancer mortality caused by treatment was simulated as a latent variable as

latDovertreated =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bin(1, plethal treatment), if Basymp = 1 & TlatA ≥ TlatBasymp &

TlatA < TlatAsymp

0, otherwise

The proportion of treated asymptomatic cases who died because of treatment is assumed

to be zero in most simulation scenarios (plethal treatment = 0), but is set to a non-zero

value (i.e. 1 %) in one simulation scenario to reflect some aspects of the ongoing debate

surrounding harms of (over-)treatment (see e.g. Arrospide et al. [2015]; Baum [2013];
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Table 5.1: Overview of latent variables underlying the simulated cohort

Variable Explanation Reference

latBasymp ∼
Bin(1, 0.13)

Latent asymptomatic disease (assuming

lifetime risk of developing breast cancer of 13

%)

cancer.gov

[2022]

latBsymp ∼
Bin(1, 0.78), if
latBasymp = 1

Latent symptom onset (assuming that 22 % of

breast cancers regress naturally)
Zahl et al. [2008]

latDA=0 ∼
Bin(1, 0.1)

Latent death by other causes in the absence of

screening, assuming that 10 % of the study

population would die from other causes during

the study period

latY A=0 ∼
Bin(1, 0.25), if
latBsymp = 1

Latent death due to breast cancer in the

absence of screening, among individuals who

developed symptomatic breast cancer and

assuming lethality of 25 %

Narod et al.

[2018]

TlatBasymp ∼ Γ(α =
1, β = 1

4
)− 1

Time to asymptomatic disease onset in years,

assuming a mean of four years and then

shifting the distribution to the left by one year,

so that a portion of women enter the cohort

with pre-clinical breast cancer present.

TY A=0 = Γ(α = 1, β =
1

sojourn time+tlethal
)

Time to death due to breast cancer, where the

duration from disease onset to symptom onset

is defined by the sojourn time and assuming

that death due to breast cancer on average

occurs tlethal years after symptom onset. The

sojourn time is assumed to be 7 years on

average according to literature reports, but will

be varied across scenarios. tlethal is assumed to
be 5 years, but different values will be applied.

Weedon-Fekjær

et al. [2005];

Narod et al.

[2018]

TlatBsymp = TY A=0 ∗ z

Time to symptom onset. z is a random number

drawn from a truncated normal distribution

bounded between 0 and 1 and with standard

deviation 0.1 and a mean of sojourn time

sojourn time+tlethal

TlatDA=0 ∼ Γ(α =
1, β = 1

8
)

Time to latent death by other causes in the

absence of screening, assuming mean time of

eight years

latA ∼ Bin(1, 0.83)
Latent screening participation, assuming that

83 % of women would be willing to participate

Schmuker and

Zok [2019]

TlatA ∼ Unif(0, 2) Time to screening participation in years
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Løberg et al. [2015]). Death due to complications from treatment of clinically irrelevant

cancers is the most severe harm of mammography screening. Other major harmful effects,

such as the impact of a cancer diagnosis and subsequent treatment on quality of life or

psychological well-being, cannot be quantified in the context of this simulation.

Latent death due to causes other than breast cancer in the presence of screeningwas defined

as

latDA=1 =

⎧⎨⎩1, if latDA=0 = 1 or latDovertreated = 1

0, otherwise

The time to this latent death due to other causes in the presence of screening was defined

as

TlatDA=1 =

⎧⎨⎩TlatDA=0 , if latDA=0 = 1

TlatA + Γ(α = 1, β = 0.25), otherwise

The event of interest, breast cancer mortality, in the presence of screening was modeled

as

latY A=1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bin(1, 1− pscreen effect), if latY A=0 = 1 & TlatA ≥ TBasymp &

TlatA < TBsymp

0, otherwise

In the above definition, pscreen effect describes the proportion amongwomenwhose screen-

ing takes place during the asymptomatic stage of the disease, who would have died from

breast cancer in the absence of screening and whose death is avoided by screening. A

null-effect was simulated by setting pscreen effect = 0 to easily identify bias. An additional

scenario with a non-null treatment effect was carried out by setting pscreen effect = 1,

i.e. assuming that all breast cancer deaths are preventable, if they are detected at the

asymptomatic disease stage.

Step 4: Realized values of terminal events

The final step in simulating the cohort data is to determine the realized values of all vari-

ables under the observed screening exposure. The realized competing event given the
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realized screening value was determined as

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if A = 0 & latDA=0 = 0

0, if A = 0 & latDA=0 = 1 & TlatDA=0 ≥ TlatY A=0

1, if A = 0 & latDA=0 = 1 & TlatDA=0 < TlatY A=0

0, if A = 1 & latDA=1 = 0

0, if A = 1 & latDA=1 = 1 & TlatDA=1 ≥ TlatY A=1

1, if A = 1 & latDA=1 = 1 & TlatDA=1 < TlatY A=1

Likewise, the realized event of interest given the realized screening value was determined

as

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if A = 0 & latY A=0 = 0

0, if A = 0 & latY A=0 = 1 & TlatY A=0 ≥ TlatDA=0

1, if A = 0 & latY A=0 = 1 & TlatY A=0 < TlatDA=0

0, if A = 1 & latY A=1 = 0

0, if A = 1 & latY A=1 = 1 & TlatY A=1 ≥ TlatDA=1

1, if A = 1 & latY A=1 = 1 & TlatY A=1 < TlatDA=1

Step 5: Additional scenario with early and sudden outcome events

After simulating cohort data as described above, an additional setting in which immortal

time bias may play a particularly important role was simulated. For this, additional out-

come events were simulated during the first two years, i.e. in the period during which

screening is offered. In this scenario, additional early breast cancer deaths were simulated

from a binomial distribution, independent of any other variables. The probability of early

breast cancer death was set to 1.3%, i.e. at 10% of the lifetime risk of breast cancer. If

early breast cancer death occurred before screening exposure or any terminal event, these

variables were reset to zero.

5.1.3 Emulating target trials based on the cohort data

Once person-level cohort data was simulated via the above-described process, target trials

were emulated to examine the effect of undergoing screening (A = 1) in the first time

interval after baseline on the time to death due to breast cancer. Analyses for both direct

(censoring for competing death) and total (not censoring for competing death) effect were

conducted. To obtain discrete time, a discretization function d(t, l) was used, where t is
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Table 5.2: Overview of simulation scenarios

Key pscreen effect plethal treatment sojourn time tlethal early outcomes

S1 0 0 7.00 5.00 no

S2 0 0.01 7.00 5.00 no

S3 0 0 3.50 2.50 no

S4 0 0 1.75 1.25 no

S5 0 0 0.70 0.50 no

S6 0 0 7.00 5.00 yes

S7 0 0 3.50 5.00 no

S8 0 0 1.75 5.00 no

S9 0 0 0.70 5.00 no

S10 0 0 7.00 2.50 no

S11 0 0 7.00 1.25 no

S12 0 0 7.00 0.50 no

S13 1 0 7.00 5.00 no

continuous time and l is the length of discrete time units in days. Emulated trials were

conducted using discretization values l = 7, 30, 91, 182, 365. There was one emulated

trial per discrete time unit in the first 2 years after cohort start, since screening was only

offered during this time in the hypothetical study underlying the simulation. Individuals

were assigned to the exposure strategy (i.e. screening at baseline), if they participated

in screening during the first discrete time interval and to the control strategy (no screen-

ing at baseline) otherwise. Women who underwent screening or received a breast cancer

diagnosis before baseline were not included in the respective emulated trial.

An intention-to-screen analysis would yield highly conservative effect estimates due to

strong contamination of the control strategy, since the participation rate in mammographic

screening is high and a large proportion in the control strategy undergo screening during

follow-up. Therefore, person-trials in the control strategy were artificially censored when

they participated in screening during follow-up, i.e. a per-protocol effect was estimated.

The effect of screening was assessed non-parametrically using event-specific cumulative

incidence functions. The effect of interest was expressed as the relative risk at the end of

follow-up.

5.1.4 Simulation scenarios

For each simulation scenario, a cohort of size n = 100,000 individuals was simulated in

500 simulation runs. Results were averaged. The scenarios are given in Table 5.2.

Scenarios S1 and S2 can be regarded as realistic based on background knowledge from
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Table 5.3: Proportions of analysis variables in the simulated cohort, mean over all simu-
lation runs

Key A Basymp Bsymp D Y
S1 0.82 0.13 0.098 0.10 0.024

S2 0.82 0.13 0.098 0.10 0.024

S3 0.82 0.13 0.099 0.10 0.024

S4 0.82 0.13 0.100 0.10 0.025

S5 0.82 0.13 0.100 0.10 0.025

S6 0.79 0.13 0.098 0.09 0.105

S7 0.82 0.13 0.099 0.10 0.024

S8 0.82 0.13 0.100 0.10 0.024

S9 0.82 0.13 0.101 0.10 0.025

S10 0.82 0.13 0.098 0.10 0.024

S11 0.82 0.13 0.098 0.10 0.024

S12 0.82 0.13 0.098 0.10 0.024

S13 0.82 0.13 0.098 0.10 0.018

the published literature (excepting the null-effect pscreen effect = 0).

Scenarios S3 - S5 are increasingly unrealistic in that the time from asymptomatic dis-

ease onset to development of symptoms and finally breast cancer related death are much

shorter than what is expected for the majority of cases. Scenario S6 is unrealistic in that

it assumes a large number of early and sudden breast cancer related deaths. Scenarios S7

- S12 are modifications of scenarios S3 - S5 where either only sojourn time or only Tlethal

are decreased.

Scenario S13 can be regarded as realistic when assuming a strong protective effect. Screen-

ing mammography aims to detect breast cancer early so that treatment can be initiated at a

stage where prognosis is favorable. The scenario is slightly exaggerated in that it assumes

100% of breast cancers detected at the asymptomatic stage can be treated successfully

and do not result in a breast cancer related death, whereas the real 5-year survival rate

of localized breast cancer is 99.3%, i.e. slightly below 100% [National Cancer Institute,

2024].

5.1.5 Results & discussion of simulation study

Realized proportions of the analysis variables in the simulated cohort underlying the emu-

lated trials were checked and means were calculated across all simulation runs. The res-

ulting mean proportions are given in Table 5.3. Results of the simulation are given as

relative risks at the end of follow-up and are summarized (mean over all simulation runs)

in Figure 5.2.
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Figure 5.2: Results of simulation runs. Error bars represent± standard error. The vertical,
dashed line indicates the null-effect.

84



CHAPTER 5. CONTRIBUTIONS TO THE FIELD OF MAMMOGRAPHY
SCREENING

The presence of competing events complicates interpretation of the results slightly: Im-

mortal time bias due to the competing event may falsely reduce the point estimate for the

effect of screening on the competing event, but it may increase the estimate for the event

of interest – women who underwent screening in the first time interval cannot have died

before and are still at risk of breast cancer death, while women dying from other causes

early cannot undergo screening and also cannot die from breast cancer later on. Both dir-

ect and total effect of screening mammography on breast cancer mortality were estimated

to untangle this issue. As shown in Figure 5.2, results differed only slightly between direct

and total effect with slightly larger relative risks for the total effect. The following dis-

cussion focuses on the controlled direct effect for simplicity, but extends to the total effect

implicitly.

Scenarios S1 and S2 were the most realistic scenarios when assuming a null-effect, with

S2 including a harmful effect of screening relating to increased breast cancer mortality

due to overdiagnosed cases dying from complications of unnecessary treatment. In both

scenarios, notable immortal time bias occurred only when discrete time intervals of length

365 days were used. At finer granularity, no substantial immortal time bias was visible.

This indicates that under realistic settings, residual immortal time bias within the first

discrete time interval after time zero does not pose a threat in this application, unless

discrete time intervals become very long. The harmful effect of screening assumed in

scenario S2 did not result in visibly increased RRs. This is likely due to the small effect

size of plethal treatment = 0.01.

In scenarios S3 - S5 both sojourn time and time from symptom onset to breast cancer

death were gradually and simultaneously decreased. In scenarios S7 - S9 only sojourn

time was decreased, while in scenarios S10 - S12 only time from symptom onset to breast

cancer death was decreased. In scenarios S3 - S5, immortal time bias increased with

decreasing sojourn time and time to breast cancer death. Furthermore, immortal time bias

became more severe with increasing granularity of discrete time. Especially in scenario

S5, immortal time bias increased with every increase in granularity of discrete time. In

scenarios S7 - S12, i.e. when only sojourn time or only time to death decreased, immortal

time bias also increased for the coarsest level of discrete time, but to a lesser extent. For

finer granularities of time, results did not stray far from the true null-effect. This indicates

that substantial bias can arise when the time from exposure to outcome becomes short

compared to the length of discrete time intervals.

Scenario S6 was an extreme case analysis in which a large amount of outcome events was

observed early and suddenly. This scenario was susceptible to immortal time bias, which

increased in severity as granularity of discrete time coarsened. This indicates that if a
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substantial portion of outcome events are observed during early follow-up, emulated tar-

get trials become susceptible to immortal time bias, particularly at coarser discretization of

time and especially when these early outcomes are spontaneous. It is noteworthy that scen-

ario S6 was unrealistic in that it simulated a large number of early breast cancer deaths that

were not preceded by a symptomatic disease phase. A study assessing the effectiveness of

mammography screening should include average risk women while excluding those who

already show symptoms of breast diseases and are at a higher risk of breast cancer related

mortality soon after baseline. High risk women are not the target population of mam-

mographic screening, but should receive diagnostic or curative medical attention instead.

While scenario S6 was an exaggeration to illustrate the potential for residual immortal

time bias, it does refer to the real phenomenon that especially among young women (e.g.

aged 40 or under), breast cancers are more often progressing much faster than in older

women, often are diagnosed at a more advanced stage and, subsequently, tend to have

worse survival outcomes [Assi et al., 2013]. However, even in those cases it is unlikely

that breast cancer deaths are not preceded by a symptomatic phase, which could be used

to restrict eligibility to the study. If, however, insufficient information were available in

the data to properly check eligibility, prevalent cases could mistakenly be included in the

cohort, leading to biased estimation as seen in scenario S6. This scenario illustrates the im-

portance of applying strict exclusion criteria, so that women with either prevalent or past

breast cancer or with symptoms of breast cancer are excluded from the study population.

Scenario S13 corresponds to scenario S1, with the difference that a non-null effect was

simulated. This was a positive control to check that the simulation set-up worked as in-

tended. Indeed, the results for scenario S13 indicate a protective effect of mammography

screening on breast cancer mortality. This scenario seemed susceptible to immortal time

bias only when the coarsest level of discrete time was used, as all other effect estimates

were clearly aligned and only the estimate for l = 365 was lower.
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In this thesis, target trial emulation (TTE) was used to assess the site-specific effectiveness

of screening colonoscopy [Braitmaier et al., 2022b]. Substantive sensitivity analyses were

conducted, tailored to the research question, data source and analysis methods used and

strengthened confidence in the obtained results. For instance, unobserved confounding is a

potential risk to observational studies. A suitable negative control outcome was identified

in Braitmaier et al. [2022b] – see Section 4.4.1 for a discussion of pancreatic cancer as neg-

ative control outcome for screening colonosopy – and no evidence of strong unobserved

confounding could be found. Chapter 4 gives an in-depth description of all sensitivity ana-

lyses conducted, including a discussion regarding the interpretation of each. Extensions

to the original study design were implemented after the initial results were published – see

e.g. Schwarz et al. [2024] for a set up to contrast high and low quality colonoscopy.

Furthermore, non-alignment at time zero was identified as a source of design-induced

bias in site-specific effect estimates reported in previous observational studies [Braitmaier

et al., 2024]. While bias due to non-alignment at time zero was discussed as a source of

bias in previous work [García-Albéniz et al., 2017b], Braitmaier et al. [2024] was the

first to investigate how this bias affects site-specific estimates regarding effectiveness of

screening colonoscopy. Even though there was consensus in the published literature re-

garding a higher effectiveness of screening colonoscopy in the distal colon, Braitmaier

et al. [2024] demonstrated that this difference in site-specific effectiveness is mostly an

artifact resulting from selection bias.

Next, the German-language overview paper by Braitmaier and Didelez [2022] serves as a

low threshold entry point to target trial emulation, discussing its strengths and limitations.

It will hopefully increase the uptake of TTE in Germany.
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As part of this thesis, a detailed study protocol for the effectiveness evaluation of the Ger-

man mammography screening program was developed and published in a peer-reviewed

journal [Braitmaier et al., 2022a]. As pre-registration and peer-review of the study design

is not customary in observational research, this is a contribution to increase transparency

and reproducibility in observational studies.

For a discussion of each of the individual studies, the reader is referred to the discussion

sections in the respective papers attached in Chapter 7.

In addition to the study protocol, the present thesis contains methodological work in the

context of the emulated target trial on screening mammography. In particular, a substant-

ive simulation study was conducted to assess residual immortal time bias at varying gran-

ularities of discrete time. No major residual immortal time bias was found when using

realistic settings related to screening mammography, breast cancer mortality and discret-

ization of time as seen in GePaRD. Furthermore, the simulation studymay serve as a guide

for target trial emulation with other data sources: Using coarser granularities of discrete

time considerably lightens the computational burden. The simulation results are inform-

ative as to how coarse discrete time intervals may be made before residual immortal time

bias becomes problematic.

In summary, the work presented in this thesis combined recent methodological advances

of causal inference with a rich data source containing information onmany clinical factors.

The publications in Chapter 7 represent the first use of target trial emulation to evaluate

cancer screening programs in Germany, providing valuable information to inform patients

and policy makers.

6.1 Future perspectives
Several research questions remain and merit future work. First, the analyses described in

the study protocol byBraitmaier et al. [2022a]were underwaywhen this thesis waswritten.

The results will contribute to decision making by health authorities regarding the future

of the German mammography screening program and will be published in peer-reviewed

journals to inform the public.

Further methodological work relating to the analyses described here may be conducted in

the future. For instance, bootstrapping in the context of target trial emulation is computa-

tionally demanding when using large health claims datasets and methods such as pooled

logistic regression or the parametric g-formula. Bootstrap samples need to be drawn from

the underlying population of i.i.d. individuals to repeat the entire emulation and analysis
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process several hundred times. Alternative approaches – such as extensions of the wild

bootstrap to account for correlated data – could be explored, either analytically or in simu-

lation studies, with the goal of decreasing computation time while ensuring nominal cov-

erage.

In the context of screening for colorectal cancer, several research questions remain open.

Anatural extension of Braitmaier et al. [2022b] would be to assess the effectiveness of not

only screening colonoscopy, but also the alternative screening test for fecal occult blood,

which is offered in Germany starting at age 50 and is repeated every year until age 55 and

every other year thereafter. Furthermore, the effectiveness of screening colonoscopy was

only assessed in the age group of 55 to 69, but not in older individuals. Longer lookback

needs to be available to appropriately exclude individuals exposed to screening colono-

scopy in the ten years before time zero. This is less of a concern in younger individuals,

because screening colonoscopy was only available to the average risk population starting

at age 55. When more data years become available, sufficient lookback might be achieved

to assess the effectiveness also in older individuals. The presence of competing events and

confounding between exposure and competing death, however, further complicate the as-

sessment of effectiveness in an elderly, partly frail population. Further restriction criteria

regarding frailty and end-of-life may be explored to mitigate these issues.

6.2 Conclusion
The work presented in this thesis demonstrated that health claims data can be used to

reliably estimate the effect of cancer screening programs on cancer incidence, if appro-

priate study designs and methods are used. At the same time, potential for substantial,

self-inflicted bias was found in the context of site-specific effectiveness of colorectal can-

cer screening, if alignment at time zero was violated. A clear and concise definition of

the estimand and the target protocol along with its emulation is, therefore, invaluable for

convincing causal analyses with real world data.
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7.1 Author contributions
The following Table 7.1 gives an overview of the author contributions of Malte Braitmaier

for each paper contributing to this thesis.
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7.2 Paper 1: Screening colonoscopy similarly preven-
ted distal and proximal colorectal cancer: a pro-
spective study among 55-69-year-olds

This paper was published under a CC-BY open access license in the Journal of Clinical

Epidemiology. For details on how to cite the paper, refer to

https://doi.org/10.1016/j.jclinepi.2022.05.024

92





















Supplementary Information for the manuscript

Screening colonoscopy similarly prevented distal and

proximal colorectal cancer; A prospective study among 55-

69-year-olds

Malte Braitmaier, Sarina Schwarz, Bianca Kollhorst, Carlo Senore, Vanessa Didelez, Ulrike

Haug

Corresponding author: Ulrike Haug, Leibniz Institute for Prevention Research and

Epidemiology BIPS; Department of Clinical Epidemiology; haug@leibniz-bips.de

Contents
Supplement 1: Study protocol of target trial and its emulation

Supplement 2: Illustration of target trial emulation

Supplement 3: Statistical modeling of cumulative incidence curves

Supplement 4: Data source, study population and identification/ classification of CRC
cases in GePaRD

Supplement 5: Characterization of incident CRC cases

Supplement 6: Negative control analysis

Supplement 7: Results of model checks

Supplement 8: Results of sensitivity analyses restricted to persons aged 55 to 64 at

baseline

Supplement 9: Results of unadjusted model

Supplement 10: Comparison of total and direct effects

References



S
u
p
p
le
m
e
n
t
1
:S

tu
d
y
p
ro
to
c
o
l
o
f
ta
rg
e
t
tr
ia
l
a
n
d
it
s
e
m
u
la
ti
o
n

T
a
b
le

S
1
:
S
p
e
c
if
ic
a
ti
o
n
o
f
th
e
st
u
d
y
p
ro
to
c
o
l
o
f
a
ta
rg
e
t
tr
ia
l
a
n
d
it
s
e
m
u
la
ti
o
n
u
s
in
g
o
b
s
e
rv
a
ti
o
n
a
l
h
e
a
lt
h
in
s
u
ra
n
c
e
c
la
im
s
d
a
ta
fr
o
m
G
e
P
a
R
D
.

C
o
m
p
o
n
e
n
t

T
a
rg
e
t
tr
ia
l

E
m
u
la
te
d
tr
ia
l

A
im

T
o
e
st
im
a
te
th
e
e
ff
e
c
t
o
f
s
c
re
e
n
in
g
c
o
lo
n
o
s
c
o
p
ie
s
o
n
th
e

1
1
-y
e
a
r
ri
sk

o
f
a
n
y
C
R
C
,
d
is
ta
l
C
R
C
a
n
d
p
ro
xi
m
a
l
c
o
lo
n

c
a
n
c
e
r
in
th
e
G
e
rm

a
n
p
o
p
u
la
ti
o
n
a
g
e
d
5
5
to
6
9
.

S
a
m
e

E
lig
ib
ili
ty

T
o
b
e
e
lig
ib
le
,
p
e
rs
o
n
s
m
u
s
t

b
e
a
g
e
d
5
5
to
6
9
a
t
b
a
s
e
lin
e
.

b
e
w
it
h
o
u
t
g
a
s
tr
o
in
te
st
in
a
l
s
ym

p
to
m
s
in
th
e
la
st
6

m
o
n
th
s
b
e
fo
re

b
a
s
e
lin
e
.

h
a
ve

n
o
h
is
to
ry
o
f
C
R
C
(i
n
c
lu
d
in
g
c
a
rc
in
o
m
a
s
in

s
it
u
),
a
d
e
n
o
m
a
s
a
n
d
p
re
c
u
rs
o
rs
.

b
e
c
o
lo
n
o
s
c
o
p
y
n
a
ïv
e
.

h
a
ve

n
o
d
ia
g
n
o
s
is
o
f
H
N
P
C
C
.

h
a
ve

n
o
h
is
to
ry
o
f
in
fl
a
m
m
a
to
ry
b
o
w
e
l
d
is
e
a
s
e
.

T
o
b
e
e
lig
ib
le
,
p
e
rs
o
n
s
m
u
s
t

b
e
a
g
e
d
5
5
to
6
9
in
th
e
ye
a
r
o
f
th
e
tr
ia
l.

h
a
ve

n
o
c
o
d
e
d
g
a
st
ro
in
te
s
ti
n
a
l
s
ym

p
to
m
s
in
th
e
la
s
t

s
ix
m
o
n
th
s
b
e
fo
re

b
a
s
e
lin
e
,
a
s
w
e
ll
a
s
n
o
c
o
d
e
d

a
b
d
o
m
in
a
l
c
o
m
p
u
te
d
to
m
o
g
ra
p
h
y
a
n
d
b
a
ri
u
m
e
n
e
m
a
.

h
a
ve

n
o
c
o
d
e
d
C
R
C
s
,
c
o
lo
re
c
ta
l
c
a
rc
in
o
m
a
s
in
s
itu
,

a
d
e
n
o
m
a
s
,
a
n
d
p
re
c
u
rs
o
rs

e
ve
r
b
e
fo
re

b
a
s
e
lin
e
.

h
a
ve

n
o
c
o
d
e
d
c
o
lo
n
o
s
co
p
y,
p
o
ly
p
e
c
to
m
y,
c
o
le
c
to
m
y
,

o
r
fe
c
a
lo
c
c
u
lt
b
lo
o
d
te
s
t
(F
O
B
T
)
e
ve
r
b
e
fo
re

b
a
s
e
lin
e
.

b
e
c
o
n
tin
u
o
u
s
ly
in
s
u
re
d
e
ve
r
b
e
fo
re

b
a
s
e
lin
e
.

h
a
ve

n
o
c
o
d
e
d
H
N
P
C
C
te
s
t
e
ve
r
b
e
fo
re

b
a
s
e
lin
e
.

h
a
ve

n
o
d
ia
g
n
o
s
is
c
o
d
e
s
o
f
in
fl
a
m
m
a
to
ry
b
o
w
e
l

d
is
e
a
s
e
e
ve
r
b
e
fo
re

b
a
se
lin
e
.

T
re
a
tm
e
n
t
s
tr
a
te
g
ie
s

S
c
re
e
n
in
g
c
o
lo
n
o
s
c
o
p
y
a
t
b
a
s
e
lin
e
.

N
o
s
c
re
e
n
in
g
c
o
lo
n
o
s
c
o
p
y
a
t
b
a
s
e
lin
e
.

A
c
c
e
s
s
to

s
u
rv
e
ill
a
n
c
e
,
fu
rt
h
e
r
C
R
C
s
cr
e
e
n
in
g
o
r

d
ia
g
n
o
s
ti
c
c
o
lo
n
o
s
c
o
p
y
d
u
ri
n
g
fo
llo
w
-u
p
u
n
d
e
r
b
o
th

s
tr
a
te
g
ie
s
.

S
a
m
e



T
re
a
tm
e
n
t
a
s
s
ig
n
m
e
n
t

R
a
n
d
o
m
iz
e
d
a
s
s
ig
n
m
e
n
t

N
o
n
-r
a
n
d
o
m
,
p
a
ti
e
n
ts
w
h
o
re
c
e
iv
e
d
a
s
cr
e
e
n
in
g

c
o
lo
n
o
s
c
o
p
y
in
th
e
b
a
s
e
lin
e
q
u
a
rt
e
r
a
re

a
ss
ig
n
e
d
to
th
e

s
c
re
e
n
in
g
g
ro
u
p
,
a
n
d
o
th
e
rw
is
e
to
th
e
c
o
m
p
a
ri
s
o
n
g
ro
u
p
.

R
a
n
d
o
m
iz
a
ti
o
n
w
ill
b
e
e
m
u
la
te
d
vi
a
a
d
ju
s
tm
e
n
t
fo
r
th
e

fo
llo
w
in
g
b
a
s
e
lin
e
va
ri
a
b
le
s
:

a
g
e
,
s
e
x,
e
d
u
c
a
ti
o
n
,

o
b
e
s
it
y,
C
R
C
in
fa
m
ily

h
is
to
ry
,
u
s
e
o
f
m
e
n
o
p
a
u
s
a
l

h
o
rm

o
n
e
th
e
ra
p
y
,
u
s
e
o
f
(l
o
w
-d
o
s
e
)
a
c
e
ty
ls
a
lic
yl
ic
a
c
id
,

d
ia
b
e
te
s
m
e
lli
tu
s
ty
p
e
2
,
a
lc
o
h
o
l,
s
m
o
k
in
g
,
u
s
e
o
f

p
re
v
e
n
tiv
e
s
e
rv
ic
e
s
o
th
e
r
th
a
n
c
o
lo
n
o
s
c
o
p
y
s
c
re
e
n
in
g

d
u
ri
n
g
th
re
e
ye
a
rs
b
e
fo
re

b
a
s
e
lin
e
(0
,
1
,

2
).

F
o
llo
w
-u
p
(F
U
)

S
ta
rt
:
T
re
a
tm
e
n
t
a
ss
ig
n
m
e
n
t.

E
n
d
:
C
R
C
d
ia
g
n
o
s
is
,
d
e
a
th
,
lo
s
s
to
F
U
,
o
r
3
1

D
e
c
e
m
b
e
r
2
0
1
7
(e
n
d
o
f
s
tu
d
y)
,
w
h
ic
h
e
ve
r
o
c
c
u
rs

fi
rs
t.

S
a
m
e
e
xc
e
p
t
s
ta
rt
is
q
u
a
rt
e
r
o
f
tr
e
a
tm

e
n
t
a
s
s
ig
n
m
e
n
t
w
it
h

a
n
e
w
tr
ia
l
s
ta
rt
in
g
e
ve
ry
q
u
a
rt
e
r
fr
o
m

2
0
0
7
to
2
0
1
1
;
2
0

e
m
u
la
te
d
tr
ia
ls
in
to
ta
l.

O
u
tc
o
m
e

C
R
C
d
ia
g
n
o
s
is
w
it
h
in
1
1
ye
a
rs

a
ft
e
r
b
a
s
e
lin
e
.

C
R
C
d
ia
g
n
o
s
is
w
ith
in
1
1
ye
a
rs
a
s
fr
o
m
q
u
a
rt
e
r
o
f

s
c
re
e
n
in
g
c
o
lo
n
o
s
c
o
p
y:

C
a
u
s
a
l
c
o
n
tr
a
s
t

E
ff
e
ct
o
f
re
c
e
iv
in
g
s
cr
e
e
n
in
g
c
o
lo
n
o
s
c
o
p
y
a
t
b
a
se
lin
e

E
ff
e
ct
o
f
re
c
e
iv
in
g
a
s
c
re
e
n
in
g
c
o
lo
n
o
s
c
o
p
y
vs

n
o
t
a
t

b
a
s
e
lin
e
,
re
g
a
rd
le
s
s
o
f
sc
re
e
n
in
g
u
ti
liz
a
ti
o
n
a
ft
e
r
b
a
s
e
lin
e

S
ta
ti
s
ti
c
a
l
a
n
a
ly
s
is

T
o
ta
l
e
ff
e
ct
m
e
a
s
u
re
d
a
s
c
o
n
tr
a
s
t
o
f
c
u
m
u
la
ti
ve

in
c
id
e
n
c
e
fu
n
c
ti
o
n
s
o
ve
r
th
e
w
h
o
le
fo
llo
w
-u
p
(i
.e
.
n
o
t

e
lim

in
a
ti
n
g
d
e
a
th
a
s
c
o
m
p
e
ti
n
g
e
ve
n
t)
.

S
a
m
e
w
ith

a
d
d
iti
o
n
a
la
d
ju
s
tm
e
n
t
fo
r
b
a
s
e
lin
e
c
o
n
fo
u
n
d
in
g

b
y
in
ve
rs
e
p
ro
b
a
b
ili
ty
o
f
tr
e
a
tm
e
n
t
w
e
ig
h
ti
n
g
.



Supplement 2: Illustration of target trial emulation

Figure S1: Illustration of treatment assignment. The persons displayed in the figure depict a

hypothetical trial with a fixed date as baseline (e.g. January 1, 2007). Eligible persons who

received a screening colonoscopy in the baseline quarter are assigned to the screening arm,

whereas eligible persons without a screening colonoscopy are assigned to the control arm.



Supplement 3: Statistical modeling of cumulative incidence

curves

Contrasts between cumulative incidence curves (CIF) were used as statistical measure of the

effect of interest. CIFs were estimated using flexible pooled logistic regression models

via inverse probability of

treatment weighting (IPTW). Note that sequential trials start at different time points and time

is follow-up time (i.e., time from start of the respective trial). Let time be discrete in quarterly

intervals and let be a time point. Furthermore, let be an indicator variable for

a CRC diagnosis at time , let be an indicator variable for the assigned screening

strategy. The screening strategy was not time-varying since we assessed the effect of

receiving colonoscopy screening at baseline, regardless of subsequent screening behavior

during follow-up. In the following, the overbar notation (

up to time . In the following, person-specific subscripts are mostly suppressed. However,

assume that our sample comprised entries from unique persons, some of which were

included in more than one trial (i.e. ).

Then, the discrete-time hazard of a CRC diagnosis was modelled as

In the above equation, are the coefficients of the pooled logistic model. The transformations

of time were selected so that the unadjusted parametric model returned the same results as a

non-parametric Aalen-Johansen analysis (assessed visually, Aalen & Johansen 1978). The

above hazard is then transformed and weighted to obtain the adjusted CIF for CRC (Hernán

& Robins 2020). Covariate balance after weighting was examined using absolute standardized

differences (Stuart et al. 2013). The contrast of CIFs for screened and unscreened can be

interpreted as total causal effect of screening on CRC incidence, where total means that the

competing event of death is not eliminated. We preferred this approach as it is meaningful in

a real-world setting and avoids additional assumptions regarding no unobserved confounding

between death (i.e., the competing event) and colorectal cancer incidence (i.e., the outcome

event). The alternative of estimating the direct effect by treating the competing event of death

as a censoring event, which is often the default analysis, was carried out in a sensitivity

analysis (see Supplement 10: below). This direct causal effect corresponds to the question of

what would have happened in a hypothetical setting where death as competing event was

eliminated had all individuals in the sample received screening versus had all individuals not

received screening. As illustrated below in Supplement 10:, this did not substantially change

the results. For details on total and direct effects, see Young et al. (2020).

Adjustment for baseline confounding was achieved via stabilized inverse probability of

treatment weighting. For this, PS were calculated via logistic regression, i.e., the probability of

undergoing screening in the baseline quarter was calculated conditional on age at baseline,

sex, educational attainment, CRC in family history, obesity, use of acetylsalicylic acid,

menopausal hormone therapy, type 2 diabetes, alcohol dependence, nicotine dependence and

use of preventive services during three years before baseline (zero, one, at least two). Weights

were truncated at the 99th percentile to avoid instable estimation due to extreme values. The

CIFs were estimated as the product over time of estimated outcome probabilities based on the

above discrete-time hazards. Our approach corresponds to the total effect estimated via



inverse probability of treatment weighted estimators using subdistribution hazards as

described in Young et al. (2020).

Our sample consisted of unique persons, some of which were included in more than one

emulated trial, so that the final sample size (including non-unique persons) was .

Confidence intervals were computed using robust, person-level bootstrapping. For this, a

bootstrap sample was obtained by sampling (with replacement) observations from the list of

unique persons. The process of emulating target trials and including some persons in more

than one emulated trial was then repeated for this bootstrap sample and the above, adjusted

standardized CIFs were computed. This process was repeated for bootstrap iterations

and pointwise, percentile-based 95 % confidence intervals were derived from the resulting

bootstrap estimates.

We chose the approach of not imposing full adherence over follow-up as it avoids the need for

much stronger assumptions concerning fully measured time-varying confounding.

Furthermore, we preferred the more conservative estimate resulting from individuals in the

control strategy undergoing screening later during follow-up. We point out that this approach

is not directly comparable to either intention-to-treat or per-protocol effects from RCTs.

Although some studies that emulated target trials refer to this approach as an intention-to-treat

effect, there is no non-adherence at baseline (which would occur in an intention-to-treat

analysis in an RCT). At the same time, we do not censor individuals during follow-up, when

they stop adhering to the assigned screening strategy, which would be required for a per-

protocol effect. However, our focus in this study was to compare site-specific effects of

colonoscopy and not to estimate effects that are directly comparable to RCTs. We therefore

chose the approach that avoided additional, strong assumptions to ensure the highest possible

validity of results regarding our main research question.



Supplement 4: Data source, study population and identification/

classification of CRC cases in GePaRD

We used the German Pharmacoepidemiological Research Database (GePaRD) which is

based on claims data from four statutory health insurance providers in Germany and currently

includes information on approximately 25 million persons who have been insured with one of

the participating providers since 2004 or later. Details about GePaRD have been described

elsewhere (Pigeot & Ahrens 2008, Haug & Schink 2021). In addition to demographic data,

GePaRD contains information on drug dispensations as well as outpatient (i.e., from general

practitioners and specialists) and inpatient services and diagnoses. Per data year, there is

information on approximately 20% of the general population, and all geographical regions of

Germany are represented. For this study, we used data from 2004 to 2017.

In GePaRD information on utilization of screening colonoscopy, which has been offered in

Germany since 2002 to persons aged 55 or older, is available including the date of the

procedure. Screening colonoscopy can be distinguished from diagnostic colonoscopy as there

are different reimbursement codes for these procedures.

Age, sex, educational attainment, codes indicating a family history of CRC, codes indicating

obesity, codes indicating type 2 diabetes, codes indicating severe alcohol abuse, codes

indicating severe nicotine dependence, use of low-dose acetylsalicylic acid, use of

menopausal hormone therapy, and use of preventive services (none, one, or at least two

during three years before baseline) were assessed as baseline covariates. The latter served

as a proxy variable for a preventive behavior. Diagnosis codes and prescriptions relevant for

the ascertainment of baseline covariates were considered in the three years before baseline,

except for codes regarding family history which were considered any time before baseline.

Codes used to derive analysis variables are available upon request.

CRC diagnoses in GePaRD are coded according to the German modification of the

International Classification of Diseases, 10th revision (ICD-10-GM). We considered inpatient

diagnosis codes of CRC, which are considered to have a high validity. To avoid

misclassification, patients with only outpatient diagnosis codes of CRC were classified as CRC

cases if additional criteria such as codes for diagnostic procedures and surveillance were met.

Roughly 98% of CRC cases had an inpatient CRC diagnosis. Regarding classification of

location into proximal and distal to the splenic flexure, we used the information as provided by

the ICD code (proximal: C18.0-C18.4; distal: C18.5-C18.7, C19, C20). CRCs with unclear

information on location (C18.8 and C18.9) or with two or more codes providing discordant

A more detailed classification of tumor location would have resulted in more missing

values given that information on the exact location was more often discordant. Stage at

diagnosis was roughly estimated based on ICD codes indicating lymph node involvement or

distant metastases as previously described (Oppelt et al. 2019). Additionally, we considered

codes for cancer treatment typically used in more advanced stages. Based on this information,

-

available on request.
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Supplement 6: Negative control analysis

A negative control analysis was conducted to assess the possibility of residual unmeasured

confounding. The analysis was carried out as described for the effect of screening colonoscopy

on overall CRC incidence, but CRC was replaced by pancreatic cancer as outcome variable.

If no residual unmeasured confounding was present, one would expect no association as there

is no mechanism by which screening colonoscopy could affect the risk of pancreatic cancer.

However, the usual assumptions and limitations of negative control analyses must be kept in

mind (see Lipsitch et al. 2010).

Figure S2 indicates no difference in cumulative incidence during the first seven years of follow-

up with the possibility of only some small amount of residual confounding towards the end of

follow-up. However, the difference is very small and the confidence intervals still allow this

difference to be due to chance.

Figure S2: Parametric, adjusted cumulative incidence functions for incidence of pancreatic

cancer in total study population, aged 55 to 69. Dashed curves represent 95% confidence

intervals. The eleven-year relative risk was 0.93 (CI: 0.78-1.10)



Supplement 7: Results of model checks

Figure S3: Results of covariate balance checks after IPT weighting. Covariates are plotted

over absolute standardized mean differences (ASMD) before and after weighting. The vertical

dashed line indicates the threshold of 0.1 commonly used to define covariate balance.

Figure S4: Distributions of conditional probability to receive screening (S) at baseline, given

covariates X.
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Figure S5: Adjusted cumulative incidence functions for the age group of 55 to 64 years

showing eleven years of follow-up. Analyses were stratified by site of incident CRC. No



Supplement 9: Results of unadjusted model

The below Figure S6 displays both the adjusted and the unadjusted cumulative incidence

function for the incidence of any CRC in the total study population aged 55 to 69 years. The

covariate adjustment led to a smaller effect size (the unadjusted eleven-year RR was 0.61),

which was to be expected, given that non-screened persons tend to be less healthy and more

prone to CRC than persons who opt for voluntary screening (healthy screenee bias).

Figure S6: Cumulative incidence functions (CIF) of screened and non-screened persons.

Solid lines indicate covariate adjusted CIFs and dashed lines indicate unadjusted CIFs.



Supplement 10: Comparison of total and direct effects

Figure S7: Parametric, adjusted cumulative incidence functions for incidence of any CRC in

total study population, aged 55 to 69. Dashed curves represent the direct effect (i.e. under a

hypothetical scenario of eliminating death as competing event) and solid lines represent the

total effect as reported in the paper (i.e. allowing death as competing event).
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1 Details on the statistical analysis 18 

Discrete-time cumulative incidence functions (CIFs) will be estimated using the following approach. Let 19 

𝐴𝑛𝑒𝑣𝑒𝑟 (reference), 𝐴𝑜𝑛𝑐𝑒 , and 𝐴𝑟𝑒𝑔𝑢𝑙𝑎𝑟  be indicator variables for the screening strategies “never 20 

screened”, “screened at least at baseline”, and “screened at baseline and every two years afterwards”. 21 

The discrete-time (cause specific) hazard is modelled using pooled logistic regression adjusted for 22 

baseline covariates: 23 

𝑙𝑜𝑔𝑖𝑡 (ℙ(𝑌𝑡+1|𝑌̅𝑡 = 0, 𝐶𝑡̅ = 0, 𝐷̅𝑡 = 0, 𝐴𝑜𝑛𝑐𝑒 , 𝐴𝑟𝑒𝑔𝑢𝑙𝑎𝑟 , 𝑋))24 

= 𝑓1(𝜃1
′ , 𝑡) + 𝑓2(𝜃2

′ , 𝑡, 𝐴𝑜𝑛𝑐𝑒) + 𝑓3(𝜃3
′ , 𝑡, 𝐴𝑟𝑒𝑔𝑢𝑙𝑎𝑟) + 𝜃4𝐴𝑜𝑛𝑐𝑒 + 𝜃5𝐴𝑟𝑒𝑔𝑢𝑙𝑎𝑟 + 𝜃6

′ 𝑋′.  25 

The above model includes flexible functions 𝑓(. ) of time 𝑡, regression coefficients 𝜃 for (transformed) 26 

time and, possibly, interaction terms between time and screening strategy. The functions 𝑓(. ) will be 27 

determined by visual inspection so that the unadjusted parametric CIF estimated via pooled logistic 28 

modelling approximates the non-parametric Aalen-Johansen curves reasonably well. The binary 29 

variable 𝑌𝑡 denotes the outcome event breast cancer death at time 𝑡. The binary variable 𝐶𝑡 denotes 30 

censoring status at time 𝑡 and the binary variable 𝐷𝑡 contains the event status of the competing event 31 

(death by other causes) at time 𝑡. Baseline covariates and interactions between covariates are denoted 32 

by 𝑋. The prime notation (. )′ denotes vectors. The history of a variable is denoted by overbars as (. )̅̅ ̅̅ . 33 

The above model is a marginal structural model and contains baseline covariates, but no time-varying 34 

covariates. Adjustment for time-varying confounding by 𝑋𝑡   is achieved by inverse probability 35 

weighting, where time-varying weights are calculated for each screening strategy 36 

𝐴 𝜖 {𝐴𝑛𝑒𝑣𝑒𝑟, 𝐴𝑜𝑛𝑐𝑒 , 𝐴𝑟𝑒𝑔𝑢𝑙𝑎𝑟} separately as  37 

𝑊𝑡
𝐴 = ∏

1

ℙ̂(𝐴𝑘|𝐴̅𝑘−1, 𝑋̅𝑘 ,𝑌̅𝑘−1 = 𝐶𝑘̅−1 = 0) 

𝑡

𝑘=1

, 38 

truncating weights at the 99th percentile. Here 𝐴𝑘 is the actual screening status at time k and is, by 39 

definition, consistent with the strategy 𝐴 as individuals will otherwise be censored. For efficiency the 40 

above weights can be replaced by stabilized weights (see Cain et al. (2010) for a description of 41 

stabilized weights). Analogous weights are used for censoring due to competing events when 42 

estimating the direct effect. Below, upper indices refer to counterfactuals, e.g. the probability of breast 43 

cancer death under screening even if a portion of the study subjects did not experience screening, i.e. 44 

exposure is set to a value possibly contrary to the observed exposure (Hernan & Robins, 2020). The 45 

cumulative incidence function 𝐶𝐼𝐹̂𝑖,𝑡
𝐴=𝑎 for clone 𝑖 = 1, … , 𝑚, at time point 𝑡 under screening strategy 46 

𝐴 = 𝑎  will then be estimated using one of the approaches (i.e. based on modelling either 47 

subdistribution or cause-specific hazard) described in Young et al. (2020), depending on computational 48 
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cost. This cumulative incidence will be standardized to the empirical distribution of baseline 49 

confounders as  50 

𝐶𝐼𝐹̂𝑡
𝐴=𝑎 =

1

𝑚
∑ 𝐶𝐼𝐹̂𝑖,𝑡

𝐴=𝑎

𝑚

𝑖=1

. 51 

As a function of time t, the above cumulative incidence function allows an assessment of how the 52 

effect of screening evolves over the whole of follow-up. 53 

  54 
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2 Illustration of assignment to screening strategies  55 

 56 

 57 

  58 

Figure S1: Illustration of cloning of women into the screening strategies. Assignment of clones to screening strategies is 
based on screening behaviour from the calendar quarter of baseline. Women with a breast cancer diagnosis or recorded 
death in the first quarter are cloned into all screening strategies, since they were compliant with all screening strategies 
until the diagnosis/death occurred.  
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3 Illustrations of artificial censoring schemes per screening strategy 59 

 60 

  61 

Figure S2: Illustration of artificial censoring scheme under screening strategy “never screened”. Follow-up time is 
discretized into calendar quarters, with rectangles denoting individual quarters. The rationale for censoring is described in 
depth in the main body of the paper. Note that when a woman is censored, the time of censoring is set to the beginning of 
the calendar quarter that led to censoring. In the above illustration, the last woman is censored at baseline because she 
dies in the baseline quarter, i.e. she is censored at time point 0 with reason of censoring being death. C = breast cancer, D = 
death, S = screening, S&C = screening and cancer in the same quarter.  
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 62 

 63 

  64 

Figure S3: Illustration of artificial censoring scheme under screening strategy “screened at baseline”. Follow-up time is 
discretized into calendar quarters, with rectangles denoting individual quarters. The rationale for censoring is described in 
depth in the main body of the paper. C = breast cancer, D = death, S = screening, S&C = screening and cancer in the same 
quarter, S&D = screening and death in the same quarter. 
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 65 

 66 

  67 

Figure S4: Illustration of artificial censoring scheme under screening strategy “regularly screened every two years”. Follow-
up time is discretized into calendar quarters, with rectangles denoting individual quarters. A regular screening is defined as 
having taken place between one year to ten quarters after the previous screening. The rationale for censoring is described 
in depth in the main body of the paper. C = breast cancer, D = death, S = screening, S&C = screening and cancer in the same 
quarter, S&D = screening and death in the same quarter. The dotted line indicates the end of the time period in which the 
second screening would need to take place.  
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4 Addressing potential sources of bias 68 

Confounding: Covariates used to adjust for confounding will be derived at baseline and during follow-69 

up. Their selection is based on subject matter knowledge and available literature. Risk factors for 70 

breast cancer were considered relevant, even though the outcome variable is breast cancer mortality, 71 

since developing breast cancer is a necessary antecedent for breast cancer death. Figure S5 illustrates 72 

the causal considerations for covariate selection. Adjustment for confounding will be carried out via 73 

standardization and inverse probability weighting.  74 

Given that claims data are not collected for research purposes, direct information on relevant 75 

confounders is not always available or only available for extreme cases (e.g. heavy smoking, alcohol 76 

abuse). We aim to minimize this problem by using indirect information on these confounders (e.g. 77 

diseases resulting from exposure to these risk factors such as smoking-related diseases, or diseases 78 

resulting mainly from unhealthy behaviour such as obesity) as well as proxy variables for a health-79 

seeking behaviour (e.g. utilization of preventive services, educational attainment). With respect to 80 

family history of breast cancer, the information is restricted to the ICD-10-GM code Z80.3 (“malignant 81 

neoplasm of the breast in the family”). It is not clear whether it is primarily coded in patients with a 82 

hereditary breast cancer syndrome rather than in those with a “simple” family history. The observed 83 

low proportion of women with Z80 codes (Braitmaier et al. 2022) indicates that it might only be used 84 

in high-risk subjects who would not be the target group of normal MSP screening. We therefore plan 85 

to conduct sensitivity analyses excluding women with this code. In addition, we will conduct a 86 

quantitative bias analysis to estimate the impact of unmeasured confounding regarding a “simple” 87 

family history of breast cancer. 88 

For some risk factors, no information will be available in our data, for example age at menarche, parity, 89 

age at first full-term pregnancy, breastfeeding, age at menopause, height, breast density, exposure to 90 

radiation (unrelated to mammography). However, we argue that these risk factors are relatively 91 

unknown to the public and it is therefore reasonable to assume that they do not influence the decision 92 

to undergo screening.  93 

Healthy screenee bias: Individuals volunteering for screening are generally healthier than individuals 94 

who choose not to undergo screening (Weiss & Rossing 1996). In addition to adjustment for 95 

confounding, we will address this specific issue by carrying out a subgroup analysis within screening-96 

affine women, defined by their pre-baseline use of other preventive services (research question 2). 97 

This subpopulation is more homogenous regarding health seeking behaviour, and we expect an 98 

increased internal validity albeit at the cost of generalizability. Therefore, both effects, the one in the 99 
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full study sample and the one in the subgroup of screening-affine women, will be important for the 100 

evaluation of the screening programme. 101 

Competing events: Death due to causes other than breast cancer is a competing event for the outcome 102 

of interest. We will compare the total effect (where death due to other causes is not treated as 103 

eliminable) with the direct effect of screening (where the competing event is treated as eliminable and 104 

thus censored with appropriate inverse probability of censoring weights, IPCW). Note that adjustment 105 

for confounding of the direct effect must also include common causes of the competing event and the 106 

study outcome, e.g. by including comorbidities (Young et al. 2020).  107 

Time-related biases: Immortal time and other biases will be minimized by aligning eligibility checks and 108 

treatment assignment at time zero, i.e. baseline (Dickerman et al. 2019). Furthermore, women whose 109 

screening behaviour in the first quarter after trial start is consistent with more than one screening 110 

strategy will be copied and one clone will be assigned to each eligible screening strategy, i.e. women 111 

who undergo screening in the baseline quarter will be assigned to all active screening strategies. An 112 

alternative, but less efficient approach would be to randomly assign each person to exactly one of the 113 

eligible strategies (Garcia-Albeniz et al. 2020). Given that some information in the database used for 114 

this study is only available on a quarterly basis (e.g. outpatient diagnosis codes), it is impossible to 115 

break down the information into smaller time intervals than quarters. However, the length of follow-116 

up required to observe the effect of screening is large (approx. 7 - 10 years) (Jatoi & Miller 2003). We 117 

therefore argue that the extent of bias due to the time units is negligible, as a delay of diagnosis of 118 

three months is unlikely to influence the screening effect.   119 

Misclassification: Health claims data is primarily generated for reimbursement purposes and, 120 

therefore, some diagnosis codes might be used inappropriately for the underlying condition or over-121 

used (e.g. diagnosis codes in the outpatient setting). To minimize misclassification, we define most of 122 

the diseases based on algorithms that, for example, combine different sources of information (e.g. 123 

diagnosis codes in combination with therapy), only use codes with a high validity (such as inpatient 124 

diagnosis codes) or only consider codes if recorded repeatedly. There may still be some 125 

misclassification of morbidity, but we consider this type of misclassification unlikely to differ between 126 

groups and negligible in our analysis. Risk factors that have a delayed impact on breast cancer may not 127 

be measured adequately due to a limited length of the available look-back period. For instance, HRT 128 

might influence breast cancer risk only after several years. Thus, a woman who stopped HRT treatment 129 

five years before baseline would be misclassified as “no HRT use” if her look-back period in the data is 130 

only three years. We will systematically describe the available look-back period (stratified by age at 131 

baseline) to assess whether this could be a relevant misclassification. Finally, misclassification of the 132 

outcome variable of breast cancer related deaths might occur since this variable is not directly 133 
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available for much of the data and must be derived based on an algorithm. Langner et al. (2019) 134 

reported a sensitivity of 91.3 % and a specificity of 97.4 % for a former version of this algorithm, which 135 

is currently being further optimized and will be validated again based on a sample for which the official 136 

cause of death is available.  137 

Identifying assumptions: We make the usual assumptions for causal inference from observational data, 138 

namely consistency, sequential exchangeability given observed covariates, and positivity. Consistency 139 

is fulfilled when the screening strategies being assessed are well-defined and correspond to the 140 

screening behaviour observed in the data, e.g. the outcome for a woman who happens to never 141 

undergo screening is the same as if she had been assigned to never undergo screening in the target 142 

trial. Sequential exchangeability is fulfilled when the observed screening behaviour of a woman at time 143 

t is independent of her potential outcomes under the strategies given the measured covariates prior 144 

to t; this can be thought of as no unmeasured baseline or time-varying confounding. Positivity is 145 

fulfilled when the probability of observing a screening strategy is greater than zero for all strategies in 146 

all covariate strata (Young et al. 2020, Hernan & Robins 2020). Furthermore, censoring competing 147 

events to obtain the direct effect requires an assumption of no unmeasured common causes of the 148 

different event types. 149 

  150 
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5 Illustration of causal considerations for covariate selection 151 

 152 

 153 

 154 

  155 

Figure S5: Illustration of variable groups considered for covariate adjustment and their causal connections. Note that this is 
a simplified graph, ignoring the longitudinal aspect of the study. A directed edge from one variable to another means that 
the first variable is a direct cause of the second. Screening is the exposure, breast cancer death is the outcome, and other 
death is a competing event. A bi-directed edge can be interpreted as presence of latent variables between the two 
connected variables. Variables “a” are common causes of screening and outcome. Variables “b” are proxies for those of 
category “a”. Variables “c” are causes of the outcome that are associated with exposure. Variables “d” are causes of the 
exposure that are associated with the outcome. Variables “e” are causes of the outcome that are not associated with 
exposure. Variables “f” are causes of the exposure that are not associated with the outcome. Variables “g” are post-
screening variables that are mediators between exposure and outcome. Variables “h” have a causative effect both on the 
competing event and the outcome. Variables “i” are causes of exposure and mediators. Variables “j” are confounders 
between exposure and the competing event. Variables “f” should not be included for adjustment, as this can lead to bias-
amplification in case of residual unobserved confounding. Variables “g” (e.g. treatment after screening) should not be 
included for adjustment, as they are on the causal path from exposure to outcome. Variables “a”, “b” (if “a” is 
unmeasured), “c”, “d”, “h” (only for estimating the direct effect, not for the total effect), “i”, and “j” should be included for 
adjustment to mitigate confounding. Variables “e” are not needed for adjustment but can be included to increase precision 
of estimation. The variable groups (except “f”) are not mutually exclusive, and in fact many variables will fit into more than 
one of these groups. An example of a covariate of the category “a” would be previous use of menopausal hormone therapy, 
as this is a known risk factor for breast cancer and physicians might advise women with this risk factor to attend screening. 
An example of a covariate of the category “j” would be presence of palliative care. An example for “d” might be educational 
attainment as it may affect awareness of screening and is strongly associated with direct risk factors “c” of breast cancer 
mortality; educational attainment can also be seen as type “b” proxy for further unmeasured confounders. 
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6 List of covariates 156 

In Table S1 below, we give an overview of variables used to adjust for confounding. Time-varying 157 

covariates will be re-assessed on a quarterly basis. Variables might be added to this list of covariates, 158 

if indicated by subject matter knowledge. The list of covariates used in the final analysis will be finalized 159 

before data on the study outcome becomes available. Note that this is just an alphabetical list of 160 

covariates that will be defined based on the information in the database. Content-wise, a discussion 161 

on how confounding as a potential source of bias is considered and how relevant covariates are 162 

captured in the data is provided in Supplement 4. Furthermore, Figure S5 illustrates the causal 163 

considerations for covariate selection.  164 

The covariates in Table S1 are mostly implemented as binary (time-dependent) variables. For most of 165 

the variables, algorithms considering different types of information (e.g. diagnosis codes in 166 

combination with therapy) will be developed or have been developed, with the aim of maximizing 167 

validity and thus minimizing misclassification (see also Supplement 4).  168 

Table S1: Relevant covariates for confounder adjustment.  169 

variable/variable group time-varying 

Acute hemorrhagic stroke yes 

Acute ischemic stroke yes 

Acute myocardial infarction  yes 

Age at baseline no 

Alcohol abuse  yes 

Anaemia yes 

Anticoagulant therapy yes 

Antihypertensive therapy yes 

Antiplatelet therapy yes 

Benign neoplasm of breast yes 

Breast disorders (benign mammary dysplasia, inflammatory disorders of breast, 
hypertrophy of breast, unspecified lump in breast, other disorders) yes 

Bronchial asthma yes 

Cachexia yes 

Chronic obstructive pulmonary disease (COPD) yes 

Coronary heart disease  yes 

Dementia yes 

Diabetes with end organ damage  yes 

Drug abuse yes 

Drug-treated (arterial) hypertension yes 

Educational attainment no 

Family history of breast cancer*  yes 

Glaucoma  yes 

Heart failure yes 

Hemiplegia yes 

Hepatitis B or C yes 

Hip fracture yes 

HIV therapy yes 
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Hormone replacement therapy yes 

Lipid-lowering therapy yes 

Liver diseases including chronic viral hepatitis yes 

Mental diseases yes 

Number of hospitalizations  yes 

Number of non-screening mammographies  yes 

Number of outpatient physician contacts  yes 

Number of prescriptions yes 

Number of screening mammographies  yes 

Obesity/adiposity yes 

Other cancers  yes 

Palliative care  yes 

Severe liver disease yes 

Terminal renal disease yes 

Tobacco abuse  yes 

Treated diabetes yes 

Treatment for hypothyroidism  yes 

Treatment for osteoporosis  yes 

Treatment with antidepressants yes 

Treatment with antipsychotics yes 

Treatment with immunosuppressive drugs yes 

Treatment with opioids yes 

* Given that information on family history is limited, additional methods will be taken to consider 170 

this confounder (see manuscript and Supplement 4).  171 

  172 
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Abstract

Objective: A low-quality colonoscopy has been shown to be less effective in reducing

colorectal cancer (CRC) incidence than a high-quality colonoscopy, but the comparison

with no screening colonoscopy is lacking. We aimed to compare the 13-year risk of de-

veloping CRC between persons with I) a high-quality screening colonoscopy, II) a low-

quality screening colonoscopy and III) without a screening colonoscopy. Study Design

and Setting: A healthcare database ( 20% of the German population) was used to emu-

late a target trial with three arms: High-quality screening colonoscopy (highQualSC) vs.

low-quality screening colonoscopy (lowQualSC) vs. no screening colonoscopy (noSC)

at baseline. The quality of screening colonoscopy was categorized based on the polyp

detection rate of the examining physician (cut-off of 21.8%). We included persons aged

55 to 69 years at average CRC risk and CRC screening naïve at baseline. We estimated

adjusted cumulative CRC incidence over 13 years of followup. Results: The highQualSC

arm comprised 142,960 persons, the lowQualSC arm 62,338 persons and the noSC arm

124,040 persons. The adjusted 13-year CRC risk was 1.77% in the highQualSC arm,

2.09% in the lowQualSC arm and 2.74% in the noSC arm. Compared to the noSC arm,

the adjusted relative risk was 0.76 (95% CI: 0.70–0.84) in the lowQualSC arm and 0.65

(95% CI: 0.60–0.69) in the highQualSC arm. Conclusion: Our study shows that a low-

quality screening colonoscopy is also effective in reducing CRC incidence compared to

no screening colonoscopy. However, the effect is about one third less than that of a high-

quality screening colonoscopy.
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Abstract

Objective: Observational studies evaluating the effectiveness of cancer screening are often

biased due to an inadequate design where I) the assessment of eligibility, II) the assignment

to screening vs. no screening and III) the start of follow-up are not aligned at time zero

(baseline). Such flaws can entail misleading results but are avoidable by designing the study

following the principle of target trial emulation (TTE). We aimed to illustrate this by addressing

the research question whether screening colonoscopy is more effective in the distal vs. the

proximal colon.

Methods: Based on a large German health care database (20% population coverage), we

assessed the effect of screening colonoscopy in preventing distal and proximal CRC over 12

years of follow-up in 55 69-year-old persons at average CRC risk. We applied four different

study designs and compared the results: cohort study with / without alignment at time zero,

case control study with / without alignment at time zero.

Results: In both analyses with alignment at time zero, screening colonoscopy showed a similar

effectiveness in reducing the incidence of distal and proximal CRC (cohort analysis: 32% (95%

CI: 27% - 37%) vs. 28% (95% CI: 20% - 35%); case-control analysis: 27% vs. 33%). Both

analyses without alignment at time zero suggested a difference in site-specific performance:

Incidence reduction regarding distal and proximal CRC, respectively, was 65% (95% CI: 61%

- 68%) vs. 37% (95% CI: 31% - 43%) in the cohort analysis and 77% (95% CI: 67% - 84%) vs.

46% (95% CI: 25% - 61%) in the case-control analysis.

Conclusions: Our study demonstrates that violations of basic design principles can

substantially bias the results of observational studies on cancer screening. In our example, it

falsely suggested a much stronger preventive effect of colonoscopy in the distal vs. the

proximal colon. The difference disappeared when the same data were analyzed using a TTE

approach, which is known to avoid such design-induced biases.



Introduction

Randomized controlled trials (RCT) are the gold standard for evaluating the effectiveness of

cancer screening. However, existing RCTs in this field do not answer all relevant research

questions. For screening colonoscopy, for example, an RCT has recently been published

(NordICC trial) demonstrating its effectiveness in reducing colorectal cancer (CRC) incidence

overall [1], but it was not powered to compare the effectiveness in the distal vs. the proximal

colon.

Complementary evidence from observational studies is therefore needed. Apart from potential

confounding, there is a high risk of bias and thus of misleading results if such studies are

inadequately designed. Indeed, several observational studies have reported a markedly

stronger preventive effect of screening colonoscopy in the distal as compared to the proximal

colon [2, 3, 4], while a cohort study designed following the principle of target trial emulation

(TTE) showed a similar effectiveness of screening colonoscopy in the distal and the proximal

colon [5]. We argued that the difference by site in the former studies was due to biases induced

by non-alignment at assessment of eligibility,

II) the assignment to study arms and III) the start of follow-up were not aligned as they would

be in an RCT and as it would be ensured in an observational study designed based on the

principle of TTE [6]. Specifically, previous studies often defined exposure based on pre- or

post-baseline information on colonoscopy. As we further argued, this lack of alignment in

previous studies led to overestimating the effectiveness of screening colonoscopy. Due to the

different age pattern of distal and proximal CRC, this bias affected distal CRC more than

proximal CRC, i.e. the difference in effectiveness by site was an artefact.

To demonstrate this, we compared different study designs with and without alignment at time

zero aiming to investigate the question of site-specific effectiveness of screening colonoscopy

in reducing CRC incidence. For the two designs without alignment we used a cohort study

design, where the assignment to study arms occurs before time zero (pre-baseline), and a

nested case control study design, where the assignment to study arms occurs after time zero



(post-baseline). The current paper is part of a growing literature identifying violations of

alignment at time zero as a potential source of major bias in observational studies [6, 7, 8].

Methods

Data source and study population

We used the German Pharmacoepidemiological Research Database (GePaRD) which

comprises claims data from four statutory health insurance providers in Germany and covers

about 20% of the German population [9]. In GePaRD, information on utilization of screening

colonoscopy, offered in Germany to persons aged 55 or older since 2002 (since 2019 also to

men aged 50-54), is distinguishable from diagnostic colonoscopy. As previously described, the

data source enables the valid identification of incident CRCs [10]. Furthermore, it contains

appropriate information to apply in- and exclusion criteria and to adjust for confounding as

relevant to the research question on the effectiveness of screening colonoscopy in reducing

CRC incidence [5]. For the present study, we used data from 2004 to 2020.

Based on this data source, we applied four different study designs to address the research

question, specifically a cohort and a case-control study design, each with and without

alignment at time zero. The study designs without alignment at time zero were inspired by

published examples [2, 11, 12, 13], and were partly complemented by sensitivity analyses. For

each of these four studies, persons were selected from the same population. Specifically, the

source population was a cohort of persons aged 55 69 at baseline, who were continuously

insured for at least three years before baseline.

Cohort study without alignment at time zero

The cohort started in 2009 (baseline). Similar to a previous study [2], individuals were assigned

to the screening colonoscopy arm if they had a screening colonoscopy any time before

baseline, including the baseline quarter. Individuals were assigned to the control arm if they

did not undergo screening colonoscopy any time before baseline, including the baseline

quarter. In a sensitivity analysis, we considered both screening and diagnostic colonoscopies



for the assignment to the study arms, because some of the previous studies did not distinguish

between these examinations. Eligibility criteria were checked at baseline and the outcome

variable (incident CRC) was assessed beginning with baseline (start of follow-up). Persons

were followed up until end of study period (end of 2020), end of continuous insurance

coverage, death or CRC diagnosis, whichever occurred first. We also conducted sensitivity

analyses starting the cohort in 2010 and 2011, respectively.

When using such a study design, the assessment of eligibility and the start of follow-up are

aligned, but the assignment to the screening and the control arm is based on a period before

time zero (pre-baseline). Specifically, individuals in the colonoscopy arm had the examination

in the past (i.e. they were assigned to the screening arm based on past exposure) rather than

at time zero.

Cohort study with alignment at time zero

As described previously [5], we emulated sequential trials for each calendar quarter from 2007

to 2011. The emulation of sequential target trials makes full use of the information from

longitudinal data without violating principles of study design by using pre- or post-baseline

information for the assignment to study arms. At the baseline quarter of each trial, eligibility

was assessed and individuals with previous screening colonoscopy or CRC diagnosis were

excluded. Individuals were then assigned to the screening arm if they underwent a screening

colonoscopy in the baseline quarter of the respective trial and to the control arm otherwise.

Individuals were followed up until end of study period (end of 2020, i.e. follow-up was longer

than in our previous analysis), end of continuous insurance coverage, death or CRC diagnosis,

whichever occurred first. This study design made sure that assessment of eligibility criteria,

assignment to the screening and control arm, and start of follow-up were aligned at time zero

as would be the case in an RCT.

Case-control study without alignment at time zero



We applied a case-control design frequently used in the published literature [11, 12, 13, 14,

15, 16]. Essentially, CRC cases are identified (date of diagnosis corresponds to index date)

and matched with controls free of CRC at index date. Then screening colonoscopy use ever

before or within a certain time period before the index date is assessed in cases and controls,

i.e. colonoscopies leading to CRC diagnosis are not considered as exposure in this type of

study. Here, we selected all individuals from the source population entering the cohort in 2009

with a CRC diagnosis in 2018-2020. For each case we matched up to five controls on age (+/-

one year) and sex (sampling without replacement). The exposure variable was then defined

as any screening colonoscopy between 2009 and the index date, i.e. exposure to colonoscopy

use was assessed within 10-12 years before the index date. Colonoscopies conducted in the

six months before CRC diagnosis were not considered in defining the exposure. As mentioned

above, this approach corresponds to published case-control studies which ignore

colonoscopies conducted as part of the diagnostic process leading to the current diagnosis

[11, 12, 13, 14, 15, 16]. In general, it is a fundamental characteristic of traditional case-control

studies to assess exposure before disease onset. In a sensitivity analysis, we considered both

screening and diagnostic colonoscopies for the assignment to exposure groups. Again, we

also conducted sensitivity analyses using the years 2010 and 2011 for cohort entry, i.e. the

source population underlying this nested case-control study.

In the case-control design we used here (nested within a cohort), the assessment of eligibility

and the start of follow-up were aligned, while the assignment to the screening and the control

arm occurred after time zero (post-baseline) instead of at time zero. Note that in case-control

studies not nested in a cohort, there typically are additional misalignments [11, 14]. Specifically,

eligibility is assessed at index date and the start of follow-up is unclear.

Case-control study with alignment at time zero

Following the approach described by Dickerman et al. [17], a case-control study was nested

within the original cohort of sequential emulated target trials, and colonoscopy use was

assessed at baseline of each emulated trial. We included CRC patients with an incident CRC



diagnosis at any point during follow-up (until 2020) and then used risk set sampling to match

up to five controls to each case. We sampled matched controls with replacement, i.e. the same

control could be matched to more than one case. Matching variables were the same as above.

The key difference to the case-control study without alignment is that exposure assignment

was based on information available at the start of the emulated trial, i.e. at time zero, instead

of information occurring after time zero. This approach has been shown to avoid self-inflicted

biases in the same way as a prospective study using TTE [17].

Data analysis

For the cohort studies, we estimated cumulative incidence functions (CIF) via pooled logistic

regressions, which were adjusted for baseline confounders via inverse probability of treatment

weighting. Effects were estimated as adjusted relative risks (RR) at the end of follow-up based

on these CIFs. As previously shown, adjustment yielded satisfactory covariate balance and a

negative control analysis did not indicate any residual confounding [5]. Confidence intervals

were estimated via person-level bootstrap. For the case-control studies, effects were estimated

as adjusted odds ratios (ORs) obtained via conditional logistic regression. For the case-control

analysis with alignment, no confidence intervals could be obtained due to computational

limitations: The emulation of sequential trials with repeated cohort entry would require

bootstrapping, where matching is repeated for every bootstrap sample, resulting in run times

of several months.

Results

Cohort study without alignment at time zero

We selected a random sample of 200,000 individuals in the control arm and 200,000

individuals in the screening colonoscopy arm. The adjusted relative risk after 12 years of follow-

up was 0.35 for distal CRC and 0.63 for proximal CRC (Table 1). The adjusted cumulative

incidence curves are given in Fig. 1. As shown in Supplement 1, results were similar when the

year 2010 or the year 2011 was used as baseline. In sensitivity analyses considering both



screening and diagnostic colonoscopies as exposure, the adjusted 12-year relative risk was

0.40 for distal CRC and 0.66 for proximal CRC (Supplement 2).

Cohort study with alignment at time zero

Overall, 192,054 persons were included in the screening colonoscopy arm. The 5% random

sample (restriction due to computational limitations) of controls assigned to the no screening

arm included 116,452 persons (1,241,071 non-unique . The adjusted relative risk after 12

years of follow-up was 0.68 for distal CRC and 0.72 for proximal CRC (Table 1). Figure 1

shows the adjusted cumulative incidence curves for distal and proximal CRC. The distribution

of screen-detected and post-colonoscopy CRCs (i.e. non-screen-detected CRCs) by site is

shown in Supplement 6.

Case-control study without alignment at time zero

Overall, 446 cases with distal CRC matched to 2,230 controls and 302 cases with proximal

CRC matched to 1,510 controls were included. The adjusted ORs for distal and proximal CRC

were 0.23 and 0.54, respectively (Table 2). When the year 2010 or the year 2011 was used to

define the source population, the difference by site was similar (Supplement 1). The sensitivity

analysis considering both screening and diagnostic colonoscopy as exposure yielded similar

results; the adjusted ORs for distal and proximal CRC were 0.20 for distal CRC and 0.44 for

proximal CRC, respectively (Supplement 2).

Case-control study with alignment at time zero

Overall, 8,382 cases with distal CRC matched to 40,925 controls and 4,463 cases with

proximal CRC matched to 22,175 controls were included. The adjusted ORs for distal and

proximal CRC were 0.73 and 0.67, respectively (Table 2).

Discussion

To the best of our knowledge, our study is the first to systematically compare different study

designs to assess the effectiveness of screening colonoscopy in reducing CRC incidence in



the distal vs. the proximal colon. Our cohort and case-control analyses with alignment at time

zero showed no relevant difference in the effectiveness by site. Using study designs without

alignment at time zero led to an overestimation of the effectiveness of screening colonoscopy

overall. The overestimation affected distal CRCs considerably more than proximal CRCs , i.e.

purely by design there appeared to be a difference in effectiveness by site. This finding held

up in sensitivity analyses varying data years and the type of examinations considered for the

exposure definition (only screening or also diagnostic colonoscopy). Our findings demonstrate

that the difference in the effectiveness of colonoscopy by site reported by previous

observational studies was due to bias introduced by inadequate study design.

As illustrated in Supplement 3 using directed acyclic graphs, the bias underlying studies using

pre-baseline information on colonoscopy for the assignment to study arms can be expressed

as a form of collider stratification bias [18, 19]. To give an intuitive explanation, let us revisit

the study by Guo et al. [2, 5]: At baseline, patients were asked about past colonoscopy use

and based on this information assigned as exposed or unexposed to colonoscopy. Persons

reporting a prior CRC diagnosis at baseline were excluded [2]. Given that colonoscopy is one

of the main tools by which CRC is diagnosed, this process removes individuals with previously

diagnosed CRC from the exposed group, i.e. it enriches the exposed group with individuals

who are known to be free of CRC. No such selection process takes place in the unexposed

group. This leads to a lower prevalence of preclinical CRC at baseline in the exposed as

compared to the unexposed group. As a consequence, this selection reduces the number of

CRCs occurring during follow-up in the exposed group as compared to the unexposed group

and thus leads to overestimation of the effect of screening on CRC incidence. As the vast

majority of CRCs diagnosed at an age when persons are typically included into screening

studies are in the distal colon [20] while proximal CRCs become more common at older age,

this bias mainly affects results for distal CRC, i.e. as mentioned above there appeared to be a

difference in effectiveness by site purely by design. We note that in addition to the initial

exposure assignment, Guo et al. also used an updated exposure variable in a Cox model with



time-dependent covariates. However, this does not correct the initial selection issue at the start

of follow-up.

The above argument applies to studies using pre-baseline information for the assignment to

exposure groups. Many other studies used post-baseline information for the assignment to

exposure groups, also inducing bias. We illustrated this by the case-control study without

alignment at time zero: Whenever after baseline CRC is detected in a person at his or her first

colonoscopy, as is the case for most screen-detected CRCs, this person is assigned to the

unexposed group as there was no previous colonoscopy and the actual colonoscopy detecting

the CRC is not considered as prior exposure. This enriches the unexposed group with CRCs

and thus leads to overestimation of the effectiveness of screening. As the majority of screen-

detected CRCs are in the distal colon, this bias predominantly affects CRCs in the distal colon

and thus leads to an artificial difference in the effectiveness of colonoscopy by site (see also

Supplement 4). In our case-control study design embedded in an emulated target trial with

alignment at time zero, in which screen-detected CRCs are correctly assigned, no relevant

difference in the effectiveness of colonoscopy by site was observed. Of note, misalignment

due to post-baseline exposure assignment is typical of but not limited to case-control designs

on cancer screening. It can also occur in inadequately designed cohort studies and is not

overcome by using a time-varying exposure variable in a hazard model. This is explained in

more detail in Supplement 5 based on the example of the study by Nishihara et al. [3]

In summary and more generally, both study designs without alignment at time zero have in

common that there are mechanisms that lead to inappropriate consideration of screen-

detected CRCs, i.e. in the screening arm there was no peak in CRC incidence immediately

after baseline as it would be the case in an RCT. Of course, this overestimates the impact of

screening on CRC incidence, particularly for distal CRC, as illustrated in Figure 1. The flawed

approaches ignore the fact that a screening colonoscopy sometimes comes too late to prevent

CRC. Following the publication of the NordICC study, there was a discussion whether it is

appropriate to include persons with preclinical CRC, causing the peak at baseline, in a



prevention trial [21, 22]. However, from a public health perspective, it is important to also take

into account CRCs that are not prevented by screening in order to avoid overestimating the

effectiveness of CRC screening at the population level. Apart from this, it should be noted that

studies without alignment at time zero do not provide a valid answer to the question regarding

the size of the preventive effect of colonoscopy in persons free of CRC at baseline.

It should be noted that, although we focus our discussion on biases most relevant for site-

specific effectiveness of screening colonoscopy, misalignment at time zero should also be

avoided for many other reasons. Rasouli et al. [23] demonstrated that time related issues such

as prevalent user bias or time-varying confounding are a threat to case-control designs not

embedded in an emulated target trial. Also Dickerman et al. showed based on case-control

studies investigating the impact of statins on CRC risk the biases inherent to traditional case-

control studies and the potential of avoiding bias and wrong conclusions if the study is designed

following the principle of TTE [17]. Similarly, there are many examples of biases other than

those we discussed here that are inherent to cohort studies without alignment at time zero [8].

Our findings have several implications. First, regarding research on CRC screening, previous

studies suggesting a lower effectiveness of colonoscopy in the proximal colon stimulated a

search for reasons that may explain the occurrence of post-colonoscopy CRCs specifically in

the proximal colon. It was suggested that one main reason relates to sessile serrated lesions

as they are more difficult to detect and more often occur in the proximal colon [24]. While we

do not question the important role of these lesions, our findings may encourage a broadening

of the discussion of potential reasons leading to post-colonoscopy CRCs. Indeed, in our

emulated target trial on screening colonoscopy, the proportion of post-colonoscopy CRCs

located in the distal vs. the proximal colon was rather similar (Supplement 6). A one-sided

focus on lesions that occur more frequently in the proximal colon therefore seems too narrow

regarding the identification of lesions possibly leading to post-colonoscopy CRCs.

Our results also have implications beyond the specific research question of our study.

Observational data are often used to evaluate the effectiveness of cancer screening. They



represent a valuable data source to complement RCT evidence in this field, as RCTs on cancer

screening are scarce, were often conducted many years ago and are typically not powered to

estimate, for example, subgroup-specific effects or differences by cancer subtype. However,

our study illustrates that in addition to appropriate control of confounding it is of key

importance to design these studies in a way to ensure alignment at time zero. This means that

assessment of eligibility, assignment to the screening and control arm and start of follow-up

must be aligned. Otherwise, there is a high risk of bias.

Specific strengths of our study include the systematic comparison of different study designs as

well as the comprehensive sensitivity analyses. Given that all analyses were conducted using

the same data source and referred to the same setting, there is no heterogeneity regarding,

for example, the study variables or setting-related factors such as the uptake of surveillance

colonoscopy or colonoscopy quality. This strengthens our conclusion that differing results of

the analyses with and without alignment at time zero are exclusively due to the study design.

It should be noted that our findings apply to the population aged 55-69, covering the typical

screening age range of CRC screening. Whether screening colonoscopy is equally effective in

the distal and proximal colon in older age groups cannot be answered by our study, nor did we

scope, as our primary objective was to illustrate the relevance of design-induced biases and

the possibility to avoid them using TTE, exemplified by investigating site-specific effectiveness

of screening colonoscopy in reducing CRC incidence.

In conclusion, our study demonstrates that violation of alignment at time zero can substantially

bias the results of observational studies on cancer screening. In our example, it falsely

suggested an almost doubled preventive effect of colonoscopy in the distal vs. the proximal

colon. The difference disappeared when the same data were analyzed using a TTE approach,

which is known to avoid design-induced biases.
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Tables and Figures

Table 1: Results of cohort study designs without and with alignment at time zero (adjusted for
baseline covariates).

Table 2: Results of case-control study designs without and with alignment at time zero.



Fig. 1: Adjusted cumulative incidence functions for distal and proximal CRC from the cohort
study design without alignment at time zero (top row) and the cohort study design with
alignment at time zero (bottom row)



Supplement



Supplement 1: Cohort and case-control study without alignment at time zero for

different baseline years

As mentioned in the methods section, for the study designs without alignment at time zero, we

selected individuals from the source population entering the cohort in 2009. In sensitivity

analyses, we varied the baseline year, i.e. individuals entering the cohort in 2010 and 2011,

respectively. The respective results are shown in Table S1 and Figure S1 for the cohort study

and in Table S2 for the case-control study. For comparison, also the results of the base case

analysis (baseline year 2009) are shown.

Table S1: Results of cohort study designs without alignment at time zero for different baseline
years.



Figure S1: Adjusted cumulative incidence functions for distal and proximal CRC from the
cohort study design without alignment at time zero for different baseline years.



Table S2: Results of case-control designs without alignment at time zero for different baseline
years.



Supplement 2: Cohort and case-control study without alignment at time zero:

considering both screening and diagnostic colonoscopy for the assignment to

exposure groups

As mentioned in the methods section regarding the study designs without alignment at time

zero, only screening colonoscopies were considered for the assignment to exposure groups in

the base case analysis. In a sensitivity analysis, we considered both screening and diagnostic

colonoscopies for the exposure assignment. The respective results are shown in Table S4 and

Figure S2 for the cohort study design and in Table S5 for the case-control study.

Table S4: Results of cohort study designs without alignment at time zero: sensitivity analyses
considering both screening and diagnostic colonoscopy for the assignment to exposure
groups. For comparison, also the results of the base case analysis are shown.



Figure S2: Adjusted cumulative incidence functions for distal and proximal CRC from the cohort
study design without alignment at time zero: sensitivity analysis considering both screening
and diagnostic colonoscopy for the assignment to exposure groups. For comparison, also the
cumulative incidence functions of the base case analysis are shown.

Table S5: Results of case-control designs without alignment at time zero: sensitivity analyses
considering both screening and diagnostic colonoscopy for the assignment to exposure
groups. For comparison, also the results of the base case analysis are shown.





exposure before baseline to the study outcome at later time points. The resulting bias,

therefore, can be expressed as a form of collider stratification bias.

Importantly, the strength of the bias will depend on the prevalence of . If, conceptually, the

prevalence of CRC before baseline were to approach zero, no such selection would take place.

In the age group under study here, the prevalence of proximal CRC before baseline will be

much lower than the prevalence of distal CRC before baseline, which means that this bias will

impact the effect estimate for distal CRC more severely.



Supplement 4: Illustration of the mechanism underlying the misallocation of screen-

detected CRCs in case-control studies without alignment at time zero

Figure S4 illustrates the mechanism that underlies the misallocation of screen-detected CRCs

in case-control studies without alignment at time zero, resulting in an overestimate of the

effectiveness of screening colonoscopy. First, let us imagine a hypothetical RCT investigating

the effectiveness of screening colonoscopy on CRC incidence. At baseline, screening-naïve

persons are randomly assigned to either the screening or the control arm. Analysing this data

as a case-control study without alignment at time zero would mean that for CRCs occurring in

both arms, it is assessed whether they had a colonoscopy before CRC diagnosis. Given that

screen-detected CRCs did not have a colonoscopy before CRC diagnosis, they are assigned

(post-baseline, i.e. after randomization) to the control arm and are thereby classified as

unexposed. This overestimates the effectiveness of screening given that CRCs accumulate in

the control group (unexposed group). Given that screen-detected CRCs are more frequent in

the distal colorectum, the resulting bias affects distal CRC more severely than proximal CRC.

Figure S4: Illustration of the mechanism of misallocation of screen-detected CRCs in case-control studies without
alignment at time zero

Of note, in published case-control studies investigating the effectiveness of screening

colonoscopy based on primary data, selection bias in the control arm (higher prevalence of

screening colonoscopy as compared to the general population) can as an additional

mechanism also contribute to overestimating the effectiveness of screening colonoscopy, but

it is not expected that this bias leads to a difference in the effectiveness by site.

In our case-control study without alignment at time zero, there was a second mechanism

leading to overestimating the effectiveness of screening colonoscopy due a compromise we

had to make because of the left truncation of our data. Specifically, we had to select CRC

cases diagnosed in 2018-2020 from those entering the cohort in 2009 (see methods section)

in order to be able to assess exposure in the 10 years prior to CRC diagnosis. CRCs diagnosed

between 2009 and 2017 in the context of screening, which are more often in the distal than in

the proximal colon, were not included in the final set of cases, i.e. distal CRCs exposed to

screening colonoscopy were underrepresented in the final set of cases. We conducted

additional analyses to disentangle the effect of both mechanism (data not shown), which did

not change our conclusion, i.e. that the mechanism described in Figure S4 (also) leads to an

artificial difference in the effectiveness of colonoscopy by site.



Supplement 5: Bias due to post-baseline information for exposure assignment in a

cohort study

In the cohort study by Nishihara et al. the assessment of eligibility criteria (e.g. no prior cancer

except for nonmelanoma skin cancer, no prior endoscopy) as well as the start of follow-up was

in 1988 (baseline). As part of a questionnaire administered every 2 years, participants were

then asked whether they had undergone either sigmoidoscopy or colonoscopy and, if so, the

reason for the investigation and whether there was a diagnosis of colorectal polyps. This

means that the assignment to exposure groups used information after the assessment of

eligibility and the start of follow-up, and it was updated every two years, i.e. post-baseline

information was used to determine exposure. The outcome was the incidence of colorectal

cancer, which was compared between participants without a lower endoscopy (control group),

participants with a polypectomy, participants with a negative sigmoidoscopy and participants

with a negative colonoscopy.

The mechanism described for the case-control study without alignment at time zero also

applies to this design. In each two-year time interval CRCs detected in persons who had their

first colonoscopy during this two-year time interval are per definition assigned to the

unexposed group as they had no colonoscopy prior to CRC diagnosis. This overestimates the

effectiveness of screening because CRCs are filtered to the unexposed group. As the majority

of screen-detected CRCs are in the distal colon, this bias predominantly affects CRCs in the

distal colon and thus leads to an artificial difference in the effectiveness of colonoscopy by site.



Supplement 6: Post-colonoscopy CRC diagnoses

For the cohort analysis with alignment at time zero, we quantified the occurrence of post-

colonoscopy CRC diagnoses occurring in the screening arm and assessed their site

distribution. CRC diagnoses with a screening colonoscopy in the same calendar quarter or in

the 180 days before CRC diagnosis were considered screen-detected and were not counted

as post-colonoscopy CRC. The frequencies and percentages are given in the below Table:
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APPENDIX A
Bootstrapping in emulated target trials

Target trial emulation often includes the data from one individual multiple times, either

because of cloning into exposure strategies that are congruent at baseline or because of

repeated study entry in sequential emulated trials. Naive parametric variance estimators

are then not applicable since they do not adjust for dependencies in the analysis dataset.

Furthermore, statistical methods in emulated target trials with survival outcomes are often

complex, e.g. pooled logistic regression models [D’Agostino et al., 1990] are frequently

used to model flexible cumulative incidence functions [Hernán and Robins, 2020], which

in turn are used to estimate contrasts such as ATEs or marginal relative risks, making it

difficult to obtain analytical solutions for variance estimation. Instead, bootstrapping is

commonly applied to obtain valid variance estimates and confidence intervals [Hernán

and Robins, 2020]. Alternative approaches, such as robust sandwich estimators, exist for

some but not all statistical methods [Austin, 2016]. Faster bootstrap algorithms, such as

the wild bootstrap, have been proposed for time to event settings with competing events

[Rühl and Friedrich, 2023], but have not been extended to target trial emulation settings

with cloned data. Therefore, the classic bootstrap approach is the only currently available

method of estimating robust confidence intervals, when using pooled logistic regression

in a target trial emulation with repeated inclusion of the same individual.

Bootstrapping is a general, computer-intense method of obtaining valid variance estimates

for a large variety of estimators [Efron, 1979]. It is an assumption lean method, partic-

ularly regarding parametric assumptions of the distribution underlying the sampled data.

However, some assumptions must be made. For instance, the data is assumed to be inde-

pendent and identically distributed, i.e. Zi
iid∼ F . Furthermore, the observed distribution

function F̂ (zi)must be an unbiased estimator for the true underlying distribution function

F (Zi). Next, the parameter of interest θmust be a smooth function ofF . See, for instance,
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Davison and Hinkley [1997]; Efron [1979]; Efron and Hastie [2021] for an in-depth in-

troduction to bootstrapping and Bickel and Freedman [1981] for some asymptotic theory

and examples in which bootstrapping fails.

Conceptually, many data samples could be obtained from the underlying population, as to

assess the distribution of the estimator, which would be informative with regards to the

variance of the estimator. For example, a series of one hundred studies - always sampling

from the same underlying population - would result in a distribution of one hundred es-

timates, which is informative regarding the variance of the estimator. Since repeating an

experiment a hundred times is not feasible, the bootstrap instead uses the sample of avail-

able data. To illustrate this, assume a sample of n observations z1, ..., zn stemming from

a random variable Z
iid∼ N(0, 1). A parameter of interest, θ, is defined by a function of

Z as θ = g(Z). The estimate of θ is then θ̂ = g(z). In some cases, an analytic solution

might not be available to estimate a confidence interval for the estimate θ̂, in which case

bootstrapping is an alternative to obtain a robust confidence interval. A bootstrap sample

is obtained by randomly sampling, with replacement, from F̂ (z) exactly n times, resulting

in the bootstrap sample z∗ = (z∗1 , ..., z
∗
n). A bootstrap estimate of the target parameter θ is

then θ̃ = g(z∗). This process is repeated B times to obtain a distribution of bootstrap es-

timates θ̃1, ..., θ̃B. The distribution of bootstrap estimates is used to derive standard errors

or confidence intervals, e.g. via the percentile bootstrap taking the 2.5 and 97.5 percentiles

as lower and upper confidence limits [Efron, 1979; DiCiccio and Efron, 1996].

A central assumption of bootstrapping is that samples are independant and identically dis-

tributed (iid). As described above, in emulated target trials usually the same individual is

included more than once. Similarly, in PS matched analyses, the same individual is often

included as control in multiple matching sets to increase statistical efficiency. Further-

more, due to the matched nature of the analysis data, observations within matching sets

are not independent. The observations in the analysis dataset of such studies, then, are not

iid. For matching estimators, Abadie and Imbens noted that the basic bootstrap, i.e. when

sampling from the matched data, does not yield valid confidence intervals [Abadie and

Imbens, 2008]. Instead, bootstrap samples need to be drawn from the underlying study

population, i.e. before matching is done, and the process of matching and estimation be

repeated for the so-obtained bootstrap samples. Similarly, when emulating target trials,

bootstrap samples need to be drawn from the underlying study population and the entire

process of trial emulation, estimation of weights, weighted outcome regression and estim-

ation of resulting contrasts of interest must be repeated for each bootstrap sample to obtain

valid confidence intervals [Murray et al., 2021; Hernán and Robins, 2020].

The derivation of percentile-based bootstrap confidence intervals in the context of the
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evaluation of screening colonoscopy is briefly described in Chapter 4.
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