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Abstract

Reactive systems play a significant role in the daily life of every person. Such systems
include personal computers, automatic teller machines, devices we use every day in our
households, and also systems that play a less active but still important role, for example
monitoring devices scanning for environmental threats in a country. In particular for
safety-critical reactive systems it is of enormous importance that correctness properties of
such systems have been verified. A very prominent technique to tackle such verification
tasks is called model checking. From a theoretical point of view, model checking commonly
boils down to solving classical decision problems for finite automata; usually automata
operating on infinite words.
Still, due the dynamics of the real world it might be the case that a change in the environment
leads to a faulty or even dangerous state of such a system. Referring to the above example
of devices scanning for environmental threats, assume that due to a mistake at a local
construction site the connection to the other devices has been cut, leaving a part of the
country unmonitored. Hence, a new solution has to be computed. However, the new
solution can differ arbitrarily from the current state. Given that it is costly to move such
devices around, it is desirable to compute a new solution that is close to the current state. To
capture and formalize such scenarios, we introduce the new framework of solution discovery

via reconfiguration for constructing a feasible solution for a given problem by executing a
sequence of small modifications starting from a given state.
This thesis consists of two independent parts. In the first part, we study Parikh automata
on finite and infinite words with applications to model checking. Parikh automata extend
classical finite automata with a Counting mechanism. Several variants of Parikh automata
operating on infinite words were recently introduced. We show that one of these variants
coincides with blind counter automata on infinite words. Every 𝜔-language recognized by
a blind counter automata is of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

for Parikh recognizable languages 𝑈𝑖,𝑉𝑖 ,
but blind counter machines fall short of characterizing this class of 𝜔-languages. We intro-
duce several additional variants of Parikh automata on infinite words that yield automata
characterizations of classes of 𝜔-language of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

for all combinations of
languages𝑈𝑖,𝑉𝑖 being regular or Parikh-recognizable. When both𝑈𝑖 and𝑉𝑖 are regular, this
coincides with Büchi’s classical theorem. We study the effect of Y-transitions in all variants
of Parikh automata and show that almost all of them admit Y-elimination. Furthermore,
we investigate the deterministic variants of the newly introduced models, compare the



expressiveness of all models and conclude by studying their classical decision problems
with applications to model checking.
In the second part, we introduce the new framework of solution discovery via reconfiguration

and exemplify our framework on a multitude of fundamental graph problems. The solution
discovery variant of a graph problem consists of an input graph where tokens are initially
placed on the vertices or edges. Every token can be moved in a predetermined way for
a cost of one, for example, by Sliding them to a neighboring vertex or edge. Then the
question is whether we can discover an arbitrary solution for our problem starting with
the initial token placement within a given budget. We study the classical as well as the
parameterized complexity of the solution discovery variants of several graph problems and
explore the boundary between tractable and intractable instances.



Zusammenfassung

Reaktive Systeme spielen eine signifikante Rolle im täglichen Leben jeder Person. Beispiele
solcher Systeme sind PCs, Geldautomaten, Haushaltsgeräte und auch Systeme, die eine
weniger aktive, aber dennoch wichtige Rolle spielen, beispielsweise Überwachungssysteme,
die ein Land nach Umweltbedrohungen absuchen. Insbesondere für sicherheitskritische
Systeme ist es von erheblicher Wichtigkeit, dass deren Korrektheit verifiziert wurde. Eine
sehr prominente Technik um an solche Verifizierungsaufgaben heranzugehen heißt model

checking. Aus theoretischer Sicht lässt sich model checking häufig auf die Lösung klassischer
Entscheidungsprobleme für endliche Automaten reduzieren; in der Regel Automaten, die
auf unendlichen Wörtern laufen.
Dennoch kann es passieren, dass aufgrund eines Umwelteinflusses ein System einen feh-
lerhaften oder sogar gefährlichen Zustand einnimmt. Bezugnehmend auf das oben ge-
nannte Beispiel eines Überwachungssystems für Umweltbedrohungen, kann es passieren,
dass aufgrund eines Versehens bei einer naheliegenden Baustelle die Verbindung eines
Überwachungssystems gekappt wird, wodurch ein Teil des Landes unüberwacht ist. Somit
ist die Neuberechnung einer Lösung erforderlich. Diese neue Lösung kann sich jedoch belie-
big vom aktuellen Zustand unterscheiden. Unter der Annahme, dass es teuer ist ein solches
Gerät zu einer neuen Position zu bewegen, ist die Berechnung einer Lösung erwünscht,
die dem aktuellen Zustand möglichst nahe kommt. Um solche Szenarien zu formalisieren,
führen wir das neue Framework solution discovery via reconfiguration ein. Somit können
wir gültige Lösungen für ein gegebenes Problem konstruieren, indem wir eine Sequenz von
kleinen Modifikationen, beginnend in einem gegebenen Zustand, ausführen.
Diese Arbeit besteht aus zwei unabhängigen Teilen. Im ersten Teil untersuchen wir Parikh-
Automaten auf endlichen und unendlichen Wörtern mit model checking Anwendungen.
Parikh-Automaten erweitern klassische endliche Automaten mit einem Mechanismus
zum Zählen. Diverse Varianten von Parikh-Automaten, die auf unendlichen Wörtern
laufen, wurden kürzlich vorgestellt. Wir zeigen, dass eines dieser Modelle die gleiche Aus-
drucksstärke wie Blindzählerautomaten auf unendlichen Wörtern hat. Jede 𝜔-Sprache,
die von einem Blindzählerautomaten erkannt wird, ist von der Form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

für Parikh-
erkennbare Sprachen𝑈𝑖,𝑉𝑖 . Dennoch sind sie nicht mächtig genug, um diese Klasse von 𝜔-
Sprachen zu charakterisieren. Wir führen diverse weitere Varianten von Parikh-Automaten
auf unendlichen Wörtern ein, die Charakterisierungen für Klassen von𝜔-Sprachen der Form⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

für alle Kombinationen von regulären bzw. Parikh-erkennbaren𝑈𝑖,𝑉𝑖 liefern. Wenn



sowohl𝑈𝑖 als auch𝑉𝑖 regulär sind, erhalten wir genau den Satz von Büchi. Wir untersuchen
den Einfluss von Y-Transitionen in allen Varianten von Parikh-Automaten und zeigen, dass
fast alle Modelle Y-Elimination zulassen. Darüber hinaus untersuchen wir die deterministi-
schen Varianten der neu eingeführten Modelle, vergleichen deren Ausdrucksstärke, und
schließen mit einer Untersuchung der klassischen Entscheidungsprobleme mit Anwendun-
gen zum model checking ab.
Im zweiten Teil führen wir das neue Framework solution discovery via reconfiguration ein und
veranschaulichen unser Framework an einer Vielzahl von fundamentalen Graphproblemen.
Die Discovery-Variante eines Graphproblems besteht aus einem Eingabegraphen, auf dessen
Knoten oder Kanten bereits Token platziert sind. Jedes Token kann in einer vorbestimmten
Weise mit Kosten 1 bewegt werden, zum Beispiel durch Schieben zu einem benachbarten
Knoten bzw. einer benachbarten Kante. Dann stellt sich die Frage, ob wir eine beliebige
Lösung unseres Problems im Rahmen eines gegebenen Budgets entdecken können, wenn
wir mit der gegebenen Tokenplatzierung starten. Wir studieren sowohl die klassische
Komplexität als auch die parametrisierte Komplexität der Discovery-Varianten diverser
Graphprobleme und untersuchen die Grenze zwischen effizient lösbaren und nicht effizient
lösbaren Instanzen.



Preamble

This thesis consists of two independent parts. We recall the relevant notions and definitions
from the first part in the second part accordingly.
In the first part, we study Parikh automata on finite and infinite words. First we establish
some results for Parikh automata on finite words. Following, we present several definitions
of Parikh automata on infinite words. We consider the deterministic as well as the non-
deterministic variants and study closure properties, expressiveness, and common decision
problems with applications to model checking. Furthermore, we compare our models to
other models with counting mechanisms operating on infinite words.
The content of the first part is based on the following publications. We note that some
results in Chapter 2 have not been published. The author of this thesis contributed to a
significant majority in both of these works.

[GSS24] Mario Grobler, Leif Sabellek and Sebastian Siebertz. Remarks on Parikh-recognizable

omega-languages. Presented at CSL 2024.
[GS24] Mario Grobler and Sebastian Siebertz. Deterministic Parikh automata on infinite

words. Submitted to CSL 2025.

We emphasize that Georg Zetzsche was involved in insightful discussions that eventually
lead to some results in the first part. Thank you Georg!

In the second part, we introduce the new framework of solution discovery via reconfiguration

motivated by the dynamics of real-world applications. We exemplify our framework on a
multitude of fundamental graph problems, namely Vertex Cover, Independent Set, and
Dominating Set, being classical NP-complete problems; as well as on Vertex Cut and
Edge Cut, being classical problems in P.
The content of the second part is based on the following publications. The author of this
thesis contributed to a substantial portion of the presented excerpts.
[FGM+23] Michael R. Fellows, Mario Grobler, Nicole Megow, Amer E. Mouawad, Vija-

yaragunathan Ramamoorthi, Frances A. Rosamond, Daniel Schmand and Sebastian
Siebertz. On Solution Discovery via Reconfiguration. Presented at ECAI 2023.

[GMM+23] Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayara-
gunathan Ramamoorthi, Daniel Schmand, Sebastian Siebertz. Solution discovery via

reconfiguration for problems in P. Accepted at ICALP 2024.
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Part I

Parikh Automata on
Finite and Infinite Words



1 Prelude



Chapter 1. Prelude

1.1 Introduction

Finite automata find numerous applications in formal language theory, logic, verification,
and many more, in particular due to their good closure properties and algorithmic properties.
To enrich this spectrum of applications even more, it has been a fruitful direction to add
features to finite automata to capture also situations beyond the regular realm.
One such possible extension of finite automata with counting mechanisms has been in-
troduced by Greibach in her study of blind and partially blind (one-way) multicounter
machines [Gre78]. Blind multicounter machines are generalized by weighted automata
as introduced in [MS01]. Parikh automata (PA) were introduced by Klaedtke and Ruess
in [KR03b]. A Parikh automaton is a non-deterministic finite automaton that is addition-
ally equipped with a semi-linear set 𝐶 , and every transition is equipped with a 𝑑-tuple of
non-negative integers. Whenever an input word is read, 𝑑 counters are initialized with the
values 0 and every time a transition is used, the counters are incremented by the values
in the tuple of the transition accordingly. An input word is accepted if the PA ends in an
accepting state and additionally, the resulting 𝑑-tuple of counter values lies in 𝐶 . Klaedtke
and Ruess showed that PA are equivalent to weighted automata over the group (ℤ𝑘 , +, 0),
and hence equivalent to Greibach’s blind multicounter machines, as well as to reversal
bounded multicounter machines [BB74, Iba78]. Recently it was shown that these models
can be translated into each other using only logarithmic space [BDG+23]. In this work we
call the class of languages recognized by any of these models Parikh recognizable. Klaedtke
and Ruess [KR03b] showed that the class of Parikh recognizable languages is precisely
the class of languages definable in weak existential monadic second-order logic of one
successor extended with linear cardinality constraints. The class of Parikh recognizable
languages contains all regular languages, but also many more, even languages that are
not context-free, e. g., the language {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ∈ ℕ}. On the other hand, the language
of palindromes is context-free, but not Parikh recognizable. On finite words, blind multi-
counter automata, Parikh automata and related models have been investigated extensively,
extending [Gre78, KR03b] for example by affine PA and PA on letters [CFM11, CFM12a],
bounded PA [CFM12b], two-way PA [FGM19], PA with a pushdown stack [Kar04] as well as
a combination of both [DFT19], history-deterministic PA [EGJ+23], automata and grammars
with valences [FS02, Hoo02], and several algorithmic applications, e. g., in the context of
path logics for querying graphs [FL15].
In the well-studied realm of verification of reactive systems, automata-related approaches
provide a powerful framework to tackle important problems such as model checking
problems [BK08, CGP99, CHVB18]. However, computations of such systems are generally
represented as infinite objects, as we often expect them to not terminate (but rather interact
with the environment). Hence, automata processing infinite words are well-suited to
approach the model checking problem. One common approach is the following: assume
we are given a system, e. g., represented as a Kripke structure K , and a specification

12



1.1. Introduction

represented as an automaton A (or any formalism that can be translated into one) accepting
all correct computations. Then we can verify the correctness of the system by solving
the inclusion problem, that is, answering the question whether every computation of K
is also a computation of A. However, solving the inclusion problem generally requires
to complement the automaton A, which is often expensive or not even possible. Hence,
another common counterexample-driven approach is the following. Let A be an automaton
accepting all incorrect computations. Then we can verify that the system has no incorrect
computations by solving the intersection-emptiness problem of K and A, that is, answering
the question whether their sets of computations are disjoint. Büchi automata, recognizing𝜔-
regular languages, provide a natural extension of classical (finite word) automata to infinite
words, enjoying closure under the Boolean operations and decidable decision problems.
However, being one of the most basic models, their expressiveness is quite limited.
Let us consider two examples. In a three-user setting in an operating system we would like
to ensure that none of the users gets a lot more resources than the other two. One way to
represent a such a specification is considering the 𝜔-language

{𝛼 ∈ {𝑎, 𝑏, 𝑐}𝜔 | there are infinitely many prefixes𝑤 of 𝛼 with |𝑤 |𝑎 = |𝑤 |𝑏 = |𝑤 |𝑐},

stating that there are infinitely many moments where the resources are distributed equally.
Similarly, one could provide a set of unwanted computations via the 𝜔-language

{𝛼 ∈ {𝑎, 𝑏, 𝑐}𝜔 | there are infinitely many prefixes𝑤 of 𝛼 with |𝑤 |𝑎 > |𝑤 |𝑏 + |𝑤 |𝑐},

stating that one user gets more resources than the other two users combined infinitely often.
As another example, consider a classical producer-consumer setting, where a producer
continuously produces a good, and a consumer consumes these goods continuously. We can
model this setting as an infinite word and ask that at no time the consumer has consumed
more than the producer has produced at this time. Bad computations can be modeled via
the 𝜔-language

{𝛼 ∈ {𝑝, 𝑐}𝜔 | there is a prefix𝑤 of 𝛼 with |𝑤 |𝑐 > |𝑤 |𝑝}.

Such specifications are not 𝜔-regular, as these require to “count arbitrarily”. This motivates
the study of finite automata with counting mechanisms on infinite words. Fernau and
Stiebe initiated this study and introduced blind counter automata on infinite words [FS08],
extending Greibachs blind multicounter machines. Independently, Klaedtke and Ruess
proposed possible extensions of Parikh automata to infinite words. This line of research
was recently picked up by Guha et al. [GJLZ22].
Guha et al. [GJLZ22] introduced safety, reachability, Büchi- and co-Büchi Parikh automata.
These models provide natural generalizations of automata models with Parikh conditions
on infinite words. One shortcoming of safety, reachability and co-Büchi Parikh automata is
that they do not generalize Büchi automata, that is, they cannot recognize all 𝜔-regular

13



Chapter 1. Prelude

languages. The non-emptiness problem, which is highly relevant for model checking
applications, is undecidable for safety and co-Büchi Parikh automata. Furthermore, none
of these models is closed under the 𝜔-operation, meaning that for every model there is a
Parikh recognizable (finite word) language 𝐿 such that 𝐿𝜔 is not recognizable by any of
these models. Guha et al. raised the question whether (appropriate variants of) Parikh
automata on infinite words have the same expressiveness as blind counter automata on
infinite words.
Büchi’s famous theorem states that 𝜔-regular languages are characterized as languages of
the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

, where the𝑈𝑖 and 𝑉𝑖 are regular languages [Bü60]. As a consequence of
the theorem, many properties of 𝜔-regular languages are inherited from regular languages.
For example, algorithms deciding non-emptiness for finite word automata can be used to
solve the non-emptiness problem for Büchi automata as well. In their systematic study of
blind counter automata operating on infinite words, Fernau and Stiebe [FS08] considered the
class K∗, the class of 𝜔-languages of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

for Parikh recognizable languages𝑈𝑖
and𝑉𝑖 . They proved that the class of 𝜔-languages recognizable by blind counter automata is
a proper subset of the class K∗. They posed as an open problem to provide automata models
that capture classes of 𝜔-languages of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

where 𝑈𝑖 and 𝑉𝑖 are described
by a certain mechanism. In this work we propose reachability-regular Parikh automata,
limit Parikh automata, strong reset Parikh automata, and weak reset Parikh automata as new
automata models and study their deterministic and non-deterministic variants. First, we
focus on their non-deterministic variants.
We pick up the question of Fernau and Stiebe [FS08] to consider classes of 𝜔-languages of
the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

where𝑈𝑖 and𝑉𝑖 are described by a certain mechanism. We define the four
classes L𝜔

Reg,Reg, L𝜔
PA,Reg, L𝜔

Reg,PA and L𝜔
PA,PA of 𝜔-languages of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

, where the
𝑈𝑖,𝑉𝑖 are regular or Parikh recognizable languages of finite words, respectively. By Büchi’s
theorem the class L𝜔

Reg,Reg is the class of 𝜔-regular languages.

We show that the newly introduced (non-deterministic) reachability-regular Parikh au-
tomata, which are a small modification of reachability Parikh automata (as introduced
by Guha et al. [GJLZ22]) capture exactly the class L𝜔

PA,Reg. This model turns out to be
equivalent to (non-deterministic) limit Parikh automata. This model was hinted at in the
concluding remarks of [KR03b].
Fully resolving the classification of the above mentioned classes we introduce weak and
strong reset Parikh automata, whose non-deterministic variants turn out to be equivalent.
In contrast to all other Parikh models, these are closed under the 𝜔-operation, while
maintaining all algorithmic properties of PA (in particular, non-emptiness is NP-complete
and hence decidable). We show that the class of 𝜔-languages recognized by reset PA is a
strict superclass of L𝜔

PA,PA. We show that appropriate graph-theoretic restrictions of reset PA
exactly capture the classes L𝜔

PA,PA and L𝜔
Reg,PA, yielding the first automata characterizations

for these classes. On our way, we study the closure properties of the newly introduced

14



1.1. Introduction

models and obtain the following hierarchy.

reachability PA ⊊ reachability-regular PA = limit PA
⊊ Büchi PA ⊊ weak reset PA = strong reset PA.

The automata models introduced by Guha et al. [GJLZ22] do not have Y-transitions, while
blind counter automata as introduced by Fernau and Stiebe [FS08] have such transitions.
Towards answering the question of Guha et al. we study the effect of Y-transitions in all
Parikh automata models. We show that all models except safety and co-Büchi Parikh au-
tomata admit Y-elimination. This in particular answers the question of Guha et al. [GJLZ22]
whether blind counter automata and Büchi Parikh automata have the same expressiveness
on infinite words affirmative. We show that safety and co-Büchi PA with Y-transitions are
strictly more powerful than their variants without Y-transitions. In particular, co-Büchi PA
with Y-transitions generalize Büchi PA, while safety PA with Y-transitions are even more
powerful than reset PA.
Finally, we study the classical decision problems for the newly introduced models, namely
emptiness, membership and universality. We show that the results for (non-deterministic)
PA on finite words translate to the infinite word setting, that is, emptiness is coNP-complete,
membership is NP-complete and universality is undecidable. Additionally, we study the
intersection-emptiness and inclusion problems of the newly introduced models, as these
are important problems in order to study model checking problems, the core problems in
the field of formal verification. Formally, we are given a system 𝐾 as a Kripke structure (a
safety automaton) or a PA and a specification A as a PA. The question whether at least one
computation of a Kripke structure satisfies the specification (which we call existential safety
model checking and boils down to solving intersection-emptiness) is motivated by the
testing the absence of incorrect computations, as described above. Similarly, the question
whether all computations of a PA satisfy the specification (which we call universal PA
model checking and boils down to solving inclusion) has been studied in [GJLZ22] for
reachability PA, Büchi PA, safety PA and co-Büchi PA. Guha et al. [GJLZ22] show that this
problem is undecidable for the non-deterministic variants of these models. We study this
problem as well as the universal safety model checking problem and the existential PA
model checking problem for the remaining deterministic models. We refer to Table 1.1,
Table 1.2, and Table 1.3 for an overview of the results.
As indicated above, there are many scenarios where non-determinism adds expressiveness
or succinctness to their deterministic counterparts. However, this often comes at the
price of important decision problems becoming hard to solve, or even undecidable, see
also [CHVB18, GTW02]. This is also the case for Parikh automata, as witnessed, e. g., by
co-Büchi PA and safety PA. As mentioned above, Guha et al. [GJLZ22] have shown that
universality is undecidable for the non-deterministic variants of these models, yet being
more powerful than their deterministic counterparts. However, the deterministic variants
enjoy a coNP-complete (and hence decidable) universality problem [GJLZ22].
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∪ ∩

limit PA ✓ ✓ ✗

reachability-regular PA ✓ ✓ ✗

weak reset PA ✓ ✗ ✗

strong reset PA ✓ ✗ ✗

deterministic limit PA ✓ ✓ ✓

deterministic reachability-regular PA ✗ ✗ ✗

deterministic weak reset PA ✗ ✗ ✗

deterministic strong reset PA ✗ ✗ ✗

Table 1.1. Closure properties. The bar in the right column denotes the complement.

This motivates the study of the deterministic variants of the newly introduced models,
namely deterministic limit PA, deterministic reachability-regular PA, deterministic strong
reset PA, and deterministic weak reset PA. We investigate their expressiveness, closure
properties, and common decision problems. First we show that the above mentioned
hierarchy results for the non-deterministic variants do not translate to the deterministic
setting. While

deterministic strong reset PA ⊊ deterministic weak reset PA

and

deterministic reachability PA
⊊ deterministic reachability-regular PA
⊊ deterministic weak reset PA

still holds, all other models become pairwise incomparable. Furthermore, we show that
among all studied deterministic models only deterministic limit PA generalize Büchi au-
tomata in the sense that they recognize all 𝜔-regular languages.
Deterministic limit PA also shine in the light of closure properties: as we show, among
all studied PA operating on infinite words (the deterministic variants as well as the non-
deterministic ones) they are the only ones closed under all Boolean operations.
This benefit also yields decidable decision problems. In contrast to the all other models that
were mentioned before, emptiness and universality are both decidable for deterministic
limit PA. We show that also strong reset PA benefit from determinism: although having bad
closure properties, their universality problems becomes decidable. However, as we show,
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𝐿 = ∅? 𝑢𝑣𝜔 ∈ 𝐿? 𝐿 = Σ𝜔?

limit PA coNP-complete NP-complete undecidable
reachability-regular PA coNP-complete NP-complete undecidable
weak reset PA coNP-complete NP-complete undecidable
strong reset PA coNP-complete NP-complete undecidable

det. limit PA coNP-complete NP-complete decidable, ΠP
2 -hard

det. reachability-regular PA coNP-complete NP-complete undecidable
det. weak reset PA coNP-complete NP-complete undecidable
det. strong reset PA coNP-complete NP-complete ΠP

2 -complete

Table 1.2. Decision problems.

for deterministic reachability-regular PA and deterministic weak reset PA the universality
problem remains undecidable.
While universality and hence the universal model checking problems are undecidable for
all non-deterministic variants of the aforementioned models, the situation changes for
deterministic limit PA and deterministic strong reset PA. Again, we refer to Table 1.1,
Table 1.2, and Table 1.3 for an overview of the results.
We remark that the ΠP

2 -hardness results we obtain for deterministic limit PA are not tight,
that is, it remains open whether these problems can be solved in ΠP

2 . However, we are able to
show that if we have the guarantee that the semi-linear sets of the PA can be complemented
in polynomial time, then the ΠP

2 -hard problems for deterministic limit PA and deterministic
strong reset PA become coNP-complete. We also remark that the coNP-completeness result
for deterministic Büchi PA does not follow from [GJLZ22].
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Model Checking
Kripke PA

∃ ∀ ∃ ∀

limit PA coNP-c. undec. coNP-c. undec.
reachability-regular PA coNP-c. undec. coNP-c. undec.
weak reset PA coNP-c. undec. undec. undec.
strong reset PA coNP-c. undec. undec. undec.
reachability PA coNP-c. (□) undec. (□) coNP-c. (□) undec. (□)
Büchi PA coNP-c. undec. (□) coNP-c. undec. (□)
safety PA undec. (□) undec. (□) undec. (□) undec. (□)
co-Büchi PA undec. (□) undec. (□) undec. (□) undec. (□)

det. limit PA coNP-c. dec., ΠP
2 -hard coNP-c. dec., ΠP

2 -hard
det. reachability-regular PA coNP-c. undec. coNP-c. undec.
det. weak reset PA coNP-c. undec. undec. undec.
det. strong reset PA coNP-c. ΠP

2 -c. undec. ΠP
2 -c.

det. reachability PA coNP-c. (□) undec. (□) coNP-c. (□) undec. (□)
det. Büchi PA coNP-c. undec. (□) coNP-c. undec. (□)
det. safety PA undec. (□) coNP-c. (□) undec. (□) coNP-c. (□)
det. co-Büchi PA undec. (□) coNP-c. (□) undec. (□) coNP-c. (□)

Table 1.3. (Un)decidability results of model checking problems. The entries marked with
a (□) were shown in (or follow immediately from) [GJLZ22]
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1.2 Preliminaries

In this section we present the definitions and notations that are relevant for the first part
of the thesis. We write ℤ for the set of all integers and ℕ for the set of non-negative
integers including 0. For𝑚,𝑛 ∈ ℕ, we denote by [𝑚,𝑛] the set {𝑚,𝑚 + 1, . . . , 𝑛} with the
convention that [𝑚,𝑛] = ∅ if𝑚 > 𝑛. We abbreviate the set [1, 𝑛] by [𝑛]. Furthermore, let
ℕ∞ = ℕ ∪ {∞}. Throughout this part we mainly use the variables 𝑐, 𝑑, 𝑖, 𝑗, 𝑘, ℓ,𝑚, 𝑛, 𝑧 to
denote positive integers and we will tacitly assume this if not explicitly stated otherwise.

1.2.1 Words and Languages

Let Σ be an alphabet, i. e., a finite non-empty set and denote by Σ∗ the set of all finite words
over Σ. A language is a subset 𝐿 ⊆ Σ∗. For a word 𝑤 ∈ Σ∗, we denote by |𝑤 | the length
of𝑤 , and by |𝑤 |𝑎 the number of occurrences of the symbol 𝑎 ∈ Σ in𝑤 . We write Y for the
empty word of length 0 and denote by Σ+ = Σ∗ \ {Y} the set of all non-empty words over Σ.
We say a word 𝑣 ∈ Σ∗ is a subword of a word𝑤 ∈ Σ∗, denoted by 𝑣 ≼ 𝑤 , if 𝑣 can be obtained
from𝑤 by removing symbols at arbitrary positions of𝑤 . More formally, 𝑣 = 𝑣1 . . . 𝑣𝑚 is a
subword of𝑤 = 𝑤1 . . .𝑤𝑛 if there is a function 𝑓 : [𝑚] → [𝑛] such that 𝑓 (𝑖) < 𝑓 ( 𝑗) if 𝑖 < 𝑗

and 𝑣𝑖 = 𝑤 𝑓 (𝑖) for all 𝑖 ≤ 𝑚. Similarly, we call 𝑣 prefix of 𝑤 = 𝑤1 . . .𝑤𝑛 if 𝑣 = 𝑤1 . . .𝑤𝑖 for
some 𝑖 ≤ 𝑛; suffix of𝑤 if 𝑣 = 𝑤𝑖 . . .𝑤𝑛 for some 𝑖 ≤ 𝑛 + 1; and infix of𝑤 if 𝑣 = 𝑤𝑖 . . .𝑤 𝑗 for
𝑖, 𝑗 ≤ 𝑛 + 1. Note that Y is a prefix, suffix, and infix of every word𝑤 ∈ Σ∗.
An infinite word over an alphabet Σ is a function 𝛼 : ℕ \ {0} → Σ. We often write 𝛼𝑖
instead of 𝛼 (𝑖). Thus, we can understand an infinite word as an infinite sequence of symbols
𝛼 = 𝛼1𝛼2𝛼3 . . .. Hence, the notions of prefix, infix and suffix translate to infinite words the
obvious way; however, we only consider finite prefixes and infixes of infinite words, while
every suffix is always an infinite word itself. For𝑚 ≤ 𝑛, we abbreviate the infix 𝛼𝑚 . . . 𝛼𝑛 of 𝛼
by 𝛼 [𝑚 : 𝑛]. We denote by Σ𝜔 the set of all infinite words over Σ. We call a subset 𝐿 ⊆ Σ𝜔

an 𝜔-language. Moreover, for 𝐿 ⊆ Σ∗, we define 𝐿𝜔 = {𝑤1𝑤2 · · · | 𝑤𝑖 ∈ 𝐿 \ {Y}} ⊆ Σ𝜔 . We
call an infinite word 𝛼 ⊆ Σ𝜔 ultimately periodic if it can be written as 𝛼 = 𝑢𝑣𝜔 for finite
words 𝑢, 𝑣 ∈ Σ∗. Likewise, we call a non-empty 𝜔-language ultimately periodic if it contains
an ultimately periodic infinite word.
In addition to the convention of variable use mentioned above, we mainly use the variables 𝑎
and 𝑏 to denote symbols,𝑤 to denote finite words and 𝛼, 𝛽 to denote infinite words and we
will tacitly assume this if not explicitly stated otherwise.

1.2.2 Regular and 𝝎-regular Languages

A non-deterministic finite automaton (NFA) is a tuple A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ), where𝑄 is a finite
set of states, Σ is the input alphabet, 𝑞0 ∈ 𝑄 is the initial state, Δ ⊆ 𝑄 × Σ ×𝑄 is the set of
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transitions and 𝐹 ⊆ 𝑄 is the set of accepting states. We call A deterministic if for every
pair (𝑝, 𝑎) ∈ 𝑄 × Σ there is exactly one transition of the form (𝑝, 𝑎, 𝑞) ∈ Δ for some 𝑞 ∈ 𝑄 .
A run of A on a word 𝑤 = 𝑤1 . . .𝑤𝑛 ∈ Σ∗ is a (possibly empty) sequence of transitions
𝑟 = 𝑟1 . . . 𝑟𝑛 with 𝑟𝑖 = (𝑝𝑖−1,𝑤𝑖, 𝑝𝑖) ∈ Δ such that 𝑝0 = 𝑞0. We say 𝑟 is accepting if 𝑝𝑛 ∈ 𝐹 .
The empty run on Y is accepting if 𝑞0 ∈ 𝐹 . We define the language recognized by A as

𝐿(A) = {𝑤 ∈ Σ∗ | there is an accepting run of A on𝑤}.

If a language 𝐿 is recognized by some NFA A, we call 𝐿 regular.
A Büchi automaton is an NFA A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ) that takes infinite words as input. A run

of A on an infinite word 𝛼1𝛼2𝛼3 . . . is an infinite sequence of transitions 𝑟 = 𝑟1𝑟2𝑟3 . . .
with 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, 𝑝𝑖) ∈ Δ such that 𝑝0 = 𝑞0. We say 𝑟 is accepting if there are infinitely
many 𝑖 with 𝑝𝑖 ∈ 𝐹 . We define the 𝜔-language recognized by A as 𝐿𝜔 (A) = {𝛼 ∈ Σ𝜔 |
there is an accepting run of A on 𝛼}. If an 𝜔-language 𝐿 is recognized by some Büchi
automaton A, we call 𝐿 𝜔-regular.
Büchi’s theorem establishes an important connection between regular and 𝜔-regular lan-
guages:

Theorem 1.2.1 (Büchi [Bü60]). A language 𝐿 ⊆ Σ𝜔 is 𝜔-regular if and only if there are

regular languages𝑈1,𝑉1, . . . ,𝑈𝑛,𝑉𝑛 ⊆ Σ∗
for some 𝑛 ≥ 1 such that 𝐿 =

⋃︁
𝑖≤𝑛𝑈𝑖𝑉

𝜔
𝑖

.

Throughout this part we will denote the class of 𝜔-regular languages by L𝜔
Reg,Reg.

If every state of a Büchi automaton A is accepting, we call A a safety automaton. Similarly,
a Muller automaton is a tuple A = (𝑄, Σ, 𝑞0,Δ, F ), where 𝑄, Σ, 𝑞0, and Δ are defined as for
Büchi automata, and F ⊆ 2𝑄 is a collection of sets of accepting states. Runs are defined as
for Büchi automata, and a run 𝑟 is accepting if the sets of states that appear infinitely often
in 𝑟 is contained in F . Deterministic Muller automata have the same expressiveness as non-
deterministic Büchi automata [McN66]. However, deterministic Büchi automata are less ex-
pressive than their non-deterministic counterpart [Lan69]. If an 𝜔-language 𝐿 is recognized
by some deterministic Büchi automaton, we call 𝐿 deterministic𝜔-regular. For a (finite word)
language 𝑊 ⊆ Σ∗, we define 𝑊 = {𝛼 ∈ Σ𝜔 | 𝛼 [1 : 𝑖] ∈𝑊 for infinitely many 𝑖}. An 𝜔-
language 𝐿 is deterministic𝜔-regular if and only if 𝐿 =𝑊 for a regular language𝑊 [Lan69].

1.2.3 Pushdown Automata

A pushdown automaton (PDA) is a finite automaton equipped with a stack, that is, a first-in-
last-out buffer where only the top-most element can be accessed. Formally, a PDA is a tuple
A = (𝑄, Σ, Γ, 𝑞0, 𝑍0,Δ), where𝑄 , Σ and 𝑞0 are defined as for NFA. Additionally, Γ is the stack
alphabet, 𝑍0 is the initial stack symbol, and Δ ⊆ 𝑄 × (Σ ∪ {Y} × Γ+ × Γ∗ ×𝑄) is a finite set
of transitions. Intuitively, a transition (𝑝, 𝑎, [, Z , 𝑞) ∈ Δ means that if the PDA is currently
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in state 𝑝 and reads the symbol 𝑎 while the top most stack symbols1 yield the word [, the
PDA may replace [ by Z and move to state 𝑞. This intuition is formalized using the notion
of configurations. A configuration of A is a tuple (𝑞,𝑤, Z ) ∈ 𝑄 × Σ∗ × Γ∗, where 𝑞 is the
current state,𝑤 is the suffix of the input word that has not been read yet, and Z is the current
stack content. Let 𝑐, 𝑐′ be two configurations of A. We say 𝑐 derives into 𝑐′, written 𝑐 ⊢A 𝑐′,
if 𝑐 = (𝑞, 𝑎𝑤, [b), 𝑐′ = (𝑞′,𝑤, Z b) and (𝑞, 𝑎, [, Z , 𝑞′) ∈ Δ; or if 𝑐 = (𝑞,𝑤, [b), 𝑐′ = (𝑞′,𝑤, Z b)
and (𝑞, Y, [, Z , 𝑞′) ∈ Δ. Note that Y-transitions are allowed, that is, we do not necessarily
need to read a symbol of the input word to change the state or alter the stack content. A
computation of A is a sequence of configurations 𝑐1, . . . , 𝑐𝑛 for some 𝑛 ≥ 1 with 𝑐𝑖 ⊢A 𝑐𝑖+1
for all 1 ≤ 𝑖 < 𝑛. We write 𝑐 ⊢∗A 𝑐′ if there is a computation 𝑐1, . . . , 𝑐𝑛 of A with 𝑐 = 𝑐1 and
𝑐𝑛 = 𝑐

′. We define the language recognized by A as

𝐿(A) = {𝑤 ∈ Σ∗ | (𝑞0,𝑤, 𝑍0) ⊢∗A (𝑞, Y, Y) for a 𝑞 ∈ 𝑄}.

If a language 𝐿 is recognized by some PDA A, we call 𝐿 context-free.

1.2.4 Semi-linear Sets and Presburger Arithmetic

A linear set (of dimension 𝑑 ≥ 1) is a set of the form

𝐶 (b, 𝑃) = {b + p1𝑧1 + · · · + pℓ𝑧ℓ | 𝑧1, . . . , 𝑧ℓ ∈ ℕ} ⊆ ℕ𝑑 ,

where b ∈ ℕ𝑑 and 𝑃 = {p1, . . . , pℓ } ⊆ ℕ𝑑 is a finite set of vectors for some ℓ ≥ 0. We
call b the base vector and 𝑃 the set of period vectors. We call linear sets of the form 𝐶 (0, 𝑃)
homogeneous. A semi-linear set is a finite union of linear sets. We also consider semi-linear
sets over ℕ𝑑

∞, that is, semi-linear sets with an additional symbol ∞ for infinity. As usual,
addition of vectors and multiplication of a vector with a number is defined component-wise,
where 𝑧 + ∞ = ∞ + 𝑧 = ∞ +∞ = ∞ for all 𝑧 ∈ ℕ, 𝑧 · ∞ = ∞ · 𝑧 = ∞ for all 𝑧 ≥ 1, and
0 · ∞ = ∞ · 0 = 0. For vectors u = (𝑢1, . . . , 𝑢𝑐) ∈ ℕ𝑐

∞ and v = (𝑣1, . . . , 𝑣𝑑) ∈ ℕ𝑑
∞, we denote

by u·v = (𝑢1, . . . , 𝑢𝑐, 𝑣1, . . . , 𝑣𝑑) ∈ ℕ𝑐+𝑑
∞ the concatenation of u and v. We extend this definition

to sets of vectors. Let 𝐶 ⊆ ℕ𝑐
∞ and 𝐷 ⊆ ℕ𝑑

∞. Then 𝐶 · 𝐷 = {u · v | u ∈ 𝐶, v ∈ 𝐷} ⊆ ℕ𝑐+𝑑
∞ .

We denote by 0𝑑 the 𝑑-dimensional all-zero vector, by 1𝑑 the 𝑑-dimensional all-one-vector,
by e𝑑𝑖 the 𝑑-dimensional vector where the 𝑖th entry is 1 and all other entries are 0, and by i𝑑𝑖
the 𝑑-dimensional vector where the 𝑖th entry is ∞ and all other entries are 0. We often drop
the superscript 𝑑 if the dimension is clear. For all complexity theoretical results, we assume
a binary and explicit encoding of semi-linear sets unless stated otherwise.

1In contrast to the intuition given above, the transitions in our definition allow PDA to peek at a constant
number of stack symbols at the same time. It is well-known that this generalization does not increase the
expressiveness, as a PDA that may only peek at the top-most symbol can easily simulate this behavior
using additional states and Y-transitions. Hence, we stick to the succinct definition as it is more convenient
to work with.
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Figure 1.1. The semi-linear set 𝐶 = 𝐶 ((0, 0), {(1, 1)}) ∪𝐶 ((1, 2), {(0, 1), (2, 1)}).

Semi-linear sets coincide with sets definable in Presburger arithmetic, that is, the first-
order theory of (non-negative) integers and order, in the following sense: A Presburger
formula 𝜑 (v) with 𝑑 free variables defines the set {v ∈ ℕ𝑑 | (ℕ, 0, 1, +, <) |= 𝜑 (v)}. By a
groundbreaking result of Ginsburg and Spanier [GS64], a set 𝐶 ⊆ ℕ𝑑 is semi-linear if and
only if it is definable in Presburger arithmetic. Observe that this result implies that semi-
linear sets are closed under the Boolean operations. We refrain from formally introducing
first-order logic and refer to the textbooks [CJK13, Lib04] for an in-depth introduction.
Instead, we outline the connection by the following example. Consider the linear sets
𝐶1 = 𝐶 ((0, 0), {(1, 1)}) and𝐶2 = 𝐶 ((1, 2), {(0, 1), (2, 1)}), and let𝐶 = 𝐶1 ∪𝐶2, see Figure 1.1
for an illustration. We can define 𝐶1 and 𝐶2 by the Presburger formulas

𝜑1(𝑥1, 𝑥2) = ∃𝑧.(𝑥1 = 𝑧 ∧ 𝑥2 = 𝑧)

and
𝜑2(𝑥1, 𝑥2) = ∃𝑧1.∃𝑧2.(𝑥1 = 1 + 2𝑧2 ∧ 𝑥2 = 2 + 𝑧1 + 𝑧2),

respectively (where 2 is an abbreviation for 1 + 1 and 2𝑧2 is an abbreviation for 𝑧2 + 𝑧2).
Hence, for each period vector we guess the number of iterations using existential quantifiers.
Consequently, we can define 𝐶 by

𝜑 (𝑥1, 𝑥2) = 𝜑1(𝑥1, 𝑥2) ∨ 𝜑2(𝑥1, 𝑥2).

The translation of Presburger formulas into semi-linear sets involves way more sophisticated
methods, including a procedure to eliminate quantifiers; we refer the interested reader
to [CH16, Haa18].
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1.2.5 Parikh Recognizable Languages

A Parikh automaton (PA) is a tuple A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) where 𝑄 , Σ, 𝑞0, and 𝐹 are defined
as for NFA, Δ ⊆ 𝑄 × Σ ×ℕ𝑑 ×𝑄 , for some 𝑑 ≥ 1, is a finite set of labeled transitions, and
𝐶 ⊆ ℕ𝑑 is a semi-linear set. We call 𝑑 the dimension of A and interpret 𝑑 as a number of
counters. Analogously to NFA, we call A deterministic if for every pair (𝑝, 𝑎) ∈ 𝑄 × Σ there
is exactly one labeled transition of the form (𝑝, 𝑎, v, 𝑞) ∈ Δ for some v ∈ ℕ𝑑 and 𝑞 ∈ 𝑄 . A
run of A on a word 𝑤 = 𝑤1 . . .𝑤𝑛 is a (possibly empty) sequence of labeled transitions
𝑟 = 𝑟1 . . . 𝑟𝑛 with 𝑟𝑖 = (𝑝𝑖−1,𝑤𝑖, v𝑖, 𝑝𝑖) ∈ Δ such that 𝑝0 = 𝑞0. We define the extended Parikh

image of a run 𝑟 as 𝜌 (𝑟 ) = ∑︁
𝑖≤𝑛 v𝑖 (with the convention that the empty sum equals 0). We

say 𝑟 is accepting if 𝑝𝑛 ∈ 𝐹 and 𝜌 (𝑟 ) ∈ 𝐶 , referring to the latter condition as the Parikh

condition. The language recognized by A is

𝐿(A) = {𝑤 ∈ Σ∗ | there is an accepting run of A on𝑤}.

If a language 𝐿 ⊆ Σ∗ is recognized by some PA, then we call 𝐿 Parikh recognizable.
Throughout the part we mainly deal with the Abelian group (ℤ𝑑 , +, 0) for some 𝑑 ≥ 1.

1.2.6 Directed Graphs

A (directed) graph 𝐺 consists of its vertex set 𝑉 (𝐺) and edge set 𝐸 (𝐺) ⊆ 𝑉 (𝐺) ×𝑉 (𝐺). In
particular, a graph 𝐺 may have loops, that is, edges of the form (𝑢,𝑢). A (simple) path from
a vertex 𝑢 to a vertex 𝑣 in 𝐺 is a sequence of pairwise distinct vertices 𝑣1 . . . 𝑣𝑘 such that
𝑣1 = 𝑢, 𝑣𝑘 = 𝑣 , and (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 (𝐺) for all 1 ≤ 𝑖 < 𝑘 . Similarly, a (simple) cycle in 𝐺 is a
sequence of pairwise distinct vertices 𝑣1 . . . 𝑣𝑘 such that (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 (𝐺) for all 1 ≤ 𝑖 < 𝑘 ,
and (𝑣𝑘 , 𝑣1) ∈ 𝐸 (𝐺). If 𝐺 has no cycles, we call 𝐺 a directed acyclic graph (DAG). For a
subset𝑈 ⊆ 𝑉 (𝐺), we denote by𝐺 [𝑈 ] the graph𝐺 induced by 𝑈 , i. e., the graph with vertex
set𝑈 and edge set {(𝑢, 𝑣) ∈ 𝐸 (𝐺) | 𝑢, 𝑣 ∈ 𝑈 }. A strongly connected component (SCC) in𝐺 is
a maximal subset 𝑈 ⊆ 𝑉 (𝐺) such that for all 𝑢, 𝑣 ∈ 𝑈 there is a path from 𝑢 to 𝑣 , i. e., all
vertices in 𝑈 are reachable from each other. We write 𝑆𝐶𝐶 (𝐺) for the set of all strongly
connected components of𝐺 (observe that 𝑆𝐶𝐶 (𝐺) partitions 𝑉 (𝐺)). The condensation of 𝐺 ,
written𝐶 (𝐺), is the DAG obtained from𝐺 by contracting each SCC of𝐺 into a single vertex,
that is 𝑉 (𝐶 (𝐺)) = 𝑆𝐶𝐶 (𝐺) and (𝑈 ,𝑉 ) ∈ 𝐸 (𝐶 (𝐺)) if and only if there is 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉
with (𝑢, 𝑣) ∈ 𝐸 (𝐺). We call the SCCs with no outgoing edges in 𝐶 (𝐺) leaves. Note that an
automaton can be seen as a labeled graph. Hence, all definitions translate to automata by
considering the underlying graph (to be precise, an automaton can be seen as a labeled
multigraph; however, we simply drop parallel edges).
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1.2.7 Turing Machines, Decidability and Complexity Theory

Turing machines are the most common model to define the notions of computability and
decidability. Informally, a Turing machine is a finite automaton equipped with an infinite
tape (or a constant number of such tapes) of discrete cells that can store symbols, and a
read/write head (per tape) that points on one cell at a time. The Turing machine may read
the symbol of the cell the head is pointing at, write a symbol in the cell, and move the head
to a neighboring cell. However, when designing algorithms it is highly inconvenient to
construct Turing machines implementing these algorithms. Instead, we will always give
high level descriptions. For this reason, we refrain from formally defining Turing machines
and refer the interested reader to the textbooks [HMU06, Koz97, Sip13]. If a language
𝐿 ⊆ Σ∗ is recognized by a Turing machine, then we call 𝐿 semi-decidable. Furthermore, if 𝐿
is recognized by a Turing machine that halts on every input word, then we call 𝐿 decidable.
Similarly, if a function 𝑓 is computed by a Turing machine, then we call 𝑓 computable.
Note that we can always represent a decision problem as a language. As decision problems
often involve abstract objects as numbers, sets of numbers, automata, and so on, we always
assume that such objects are encoded as words in an appropriate way. Hence, if a decision
problem is decidable, we can implement an algorithm that solves it (in a finite amount
of time). On the other hand, if a decision problem is undecidable, there is no algorithm
solving it. Showing undecidability (and sometimes decidability) usually involves the notion
of reductions. A (many-one) reduction from a problem 𝐿 ⊆ Σ∗ to a problem 𝐿′ ⊆ Γ∗ is a
total, computable function 𝑓 : Σ∗ → Γ∗ such that 𝑤 ∈ 𝐿 if and only if 𝑓 (𝑤) ∈ 𝐿′. Hence,
we can understand a reduction as an algorithm that translates instances of one problem to
equivalent instances of a second problem. We write 𝐿 ≤ 𝐿′ if there is a reduction from 𝐿

to 𝐿′. The following lemma obviously holds.

Lemma 1.2.2. Let 𝐿 ⊆ Σ∗
and 𝐿′ ⊆ Γ∗ be two languages with 𝐿 ≤ 𝐿′.

• If 𝐿′ is decidable, then 𝐿 is decidable.

• If 𝐿 is undecidable, then 𝐿′ is undecidable.

Very often we are not just interested in the question whether a problem is decidable, but
in its inherent complexity, that is, the resources needed to solve it. We denote by P the
complexity class of decision problems decidable in polynomial time by a deterministic
Turing machine. Similarly, we denote by NP the complexity class of decision problems
that are decidable in polynomial time by a nondeterministic Turing machine. Obviously,
P ⊆ NP holds. The question whether this inclusion is strict is the most famous question in
theoretical computer science. While it is widely believed that the inclusion is strict, this
problem is open for more than 50 years [Coo71]. The complexity class coNP contains the
complements of problems in NP, that is, coNP = {𝐿 | 𝐿 ∈ NP}. The question whether NP
and coNP are equivalent is also open.
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A polynomial time reduction is a reduction computable in polynomial time by a deterministic
Turing machine. We write 𝐿 ≤P 𝐿

′ if there is a polynomial time reduction from 𝐿 to 𝐿′. We
call a language 𝐿 hard

2 for a complexity class C if 𝐿′ ≤P 𝐿 for all 𝐿′ ∈ C. If 𝐿 is C-hard
and contained in C, we call 𝐿 C-complete. Intuitively, the notion of C-hardness yields a
lower bound for the inherent complexity of a problem, while containment in C yields an
upper bound. Hence, the notion of C-completeness yields a tight bound on the inherent
complexity of a problem. Similar to the previous lemma, we will make constantly use of
the following.

Lemma 1.2.3. Let C be a complexity class and 𝐿 ⊆ Σ∗
and 𝐿′ ⊆ Γ∗ be two languages

with 𝐿 ≤P 𝐿
′
.

• If 𝐿′ is contained in C, then 𝐿 is contained in C.

• If 𝐿 is hard for C, then 𝐿′ is hard for C.

An oracle machine with oracle 𝐿 ⊆ Σ∗ is a Turing machine with a designated oracle
tape. Such a machine can write a word 𝑤 on its oracle type and answer the question
𝑤 ∈ 𝐿 in one step. Let 𝐿 be a language. Similar to P and NP we define the complexity
classes P𝐿 and NP𝐿 of decision problems decidable in polynomial time by a deterministic
resp. nondeterministic oracle machine with oracle 𝐿. Likewise, the complexity class coNP𝐿
contains the complements of problems in NP𝐿 . We extend these notion to classes: let L be
a complexity class. Then we define

PL =
⋃︂
𝐿∈L

P𝐿; NPL =
⋃︂
𝐿∈L

NP𝐿; coNPL =
⋃︂
𝐿∈L

coNP𝐿 .

Finally, we define the polynomial hierarchy. Let ΔP
0 = ΣP

0 = ΠP
0 = P. For every 𝑖 > 0 we

define
ΔP
𝑖 = PΣ

P
𝑖−1, ΣP

𝑖 = NPΣ
P
𝑖−1, ΠP

𝑖 = coNPΣ
P
𝑖−1 .

The polynomial hierarchy PH is the union of all these classes for all 𝑖 ≥ 0.

1.2.8 Grammars and the Chomsky Hierarchy

A grammar is a tuple 𝐺 = (𝑁, Σ, 𝑃, 𝑆), where 𝑁 is the alphabet of non-terminals, Σ with
𝑁 ∩ Σ = ∅ is the alphabet of terminals, 𝑃 ⊆ 𝑁 + × (𝑁 ∪ Σ)∗ is the set of production rules,
and 𝑆 ∈ 𝑁 is the start symbol. For pairs ([, Z1), . . . ([, Z𝑛) ∈ 𝑃 for some 𝑛 ≥ 1 we write

2Depending on the class C, the notion of polynomial time reduction must be strengthened or can be
weakened. For example, when showing NLogSpace-hardness, we require logarithmic space reductions.
However, the given definition of hardness holds for all complexity classes considered in this part and we
will hence ignore this technicality.
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[ → Z1 | · · · | Z𝑛 instead. Let 𝑤,𝑤 ′ ∈ (𝑁 ∪ Σ)∗. We say 𝑤 derives into 𝑤 ′ in 𝐺 , written
𝑤 ⊢𝐺 𝑤 ′ if 𝑤 = 𝑥[𝑦, 𝑤 ′ = 𝑥Z𝑦 and [ → Z ∈ 𝑃 . A derivation sequence in 𝐺 is a sequence
𝑤1, . . . ,𝑤𝑛 for some 𝑛 ≥ 1 such that𝑤𝑖 ⊢𝐺 𝑤𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑛. We write𝑤 ⊢∗

𝐺
𝑤 ′ if there

is a derivation sequence𝑤1, . . . ,𝑤𝑛 in 𝐺 with𝑤 = 𝑤1 and𝑤 ′ = 𝑤𝑛 . We define the language
generated by 𝐺 as 𝐿(𝐺) = {𝑤 ∈ Σ∗ | 𝑆 ⊢∗

𝐺
𝑤}. Observe that 𝐿(𝐺) contains only words

over Σ.
We say a grammar 𝐺 = (𝑁, Σ, 𝑃, 𝑆) is of . . .

• type-0 if there are no restrictions on the rules in 𝑃 .
• type-1 if for every rule [ → Z ∈ 𝑃 we have |[ | ≤ |Z |. Furthermore, the rule 𝑆 → Y is

allowed if 𝑆 does not appear on the right handside of any rule in 𝑃 .
• type-2 if every rule in 𝑃 is of the form 𝐴 → [ with 𝐴 ∈ 𝑁 .
• type-3 if every rule in 𝑃 is of the form 𝐴 → 𝑤𝐵 or 𝐴 → 𝑤 with 𝐴, 𝐵 ∈ 𝑁 and𝑤 ∈ Σ∗.

We denote the class of language generated by type-𝑖 grammars by L𝑖 . The famous Chomsky-
hierarchy, named after the linguist Noam Chomsky, states

L3 ⊊ L2 ⊊ L1 ⊊ L0.

Hence, L0 is the class of languages captured by grammars in their full generality, while
restricting the production rules yield less expressive grammars. It is well-known that all
these classes can equivalently be defined in terms of automata, as clarified by the following
folklore lemma.

Lemma 1.2.4. Let 𝐿 be a language. The following statements hold.

• 𝐿 ∈ L0 if and only if 𝐿 is semi-decidable.

• 𝐿 ∈ L1 if and only if 𝐿 is decidable by a Turing machine whose tapes are bounded

by the input length.

• 𝐿 ∈ L2 if and only if 𝐿 is context-free.

• 𝐿 ∈ L3 if and only if 𝐿 is regular.
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Chapter 2. Parikh Automata on Finite Words

2.1 Parikh Automata and Friends

In this chapter we show some results for Parikh automata on finite words. While these
results are interesting on their own, some of them yield algorithms that we will use as
subroutines in later sections.
Klaedtke and Ruess [KR03b] showed that the class of Parikh recognizable languages is
equivalent to the class of languages recognized by Ibarra’s reversal bounded multicounter
machines [Iba78], the class of language recognized by weighted automata over the group
(ℤ𝑑 , +, 0) as introduced by Mitrana and Stiebe [MS01], which is by definition equivalent
to the class of languages of Greibach’s blind multicounter machines [Gre78], which again
is equivalent to the class of reachability languages of integer vector addition systems
with states (ℤ-VASS) [HH14]. The latter models are very similar to Parikh automata, the
difference being that transitions are labeled with vectors of (possible negative) integers,
and a run is accepting if an accepting state is reached at the end while all counters are 0.
Baumann et al. showed that all these models can be translated into each other using only
logarithmic space [BDG+23]. However, the number of counters is in general not preserved
in these translations.
Let us formally define blind multicounter machines at this point, as considering such
machines (instead of PA) simplifies some proofs in this section. A blind multicounter

machine (BMCM) is a tuple M = (𝑄, Σ, 𝑞0,Δ, 𝐹 ), where 𝑄, Σ, 𝑞0 and 𝐹 are defined as for
NFA, and Δ ⊆ 𝑄 × (Σ ∪ {Y}) × ℤ𝑑 ×𝑄 for some 𝑑 ≥ 1 is a finite set of transitions labeled
with vectors of (possibly negative) integers. Note that Y-transitions are allowed. As for PA,
we call 𝑑 the dimension of M and interpret 𝑑 as a number of counters. A configuration

of M is a tuple (𝑞,𝑤, v) ∈ 𝑄 × Σ∗ × ℤ𝑑 , where 𝑞 is the current state, 𝑤 is a suffix of the
input word that has not been read yet, and v represents the current counter values. Let
𝑐, 𝑐′ be two configurations of M. We say 𝑐 derives into 𝑐′, written 𝑐 ⊢M 𝑐′, if 𝑐 = (𝑞, 𝑎𝑤, v),
𝑐′ = (𝑞′,𝑤, v′) and (𝑞, 𝑎, u, 𝑞′) ∈ Δ with v′ = v + u; or if 𝑐 = (𝑞,𝑤, v), 𝑐′ = (𝑞′,𝑤, v′) and
(𝑞, Y, u, 𝑞′) ∈ Δ with v′ = v + u. A computation of M is a sequence of configurations
𝑐1, . . . , 𝑐𝑛 for some 𝑛 ≥ 1 with 𝑐𝑖 ⊢M 𝑐𝑖+1 for all 1 ≤ 𝑖 < 𝑛. We write 𝑐 ⊢∗M 𝑐′ if there is a
computation 𝑐1, . . . , 𝑐𝑛 with 𝑐 = 𝑐1 and 𝑐𝑛 = 𝑐′. We define the langugae recognized by M as
𝐿(M) = {𝑤 ∈ Σ∗ | (𝑞0,𝑤, 0) ⊢ (𝑞, Y, 0) for a 𝑞 ∈ 𝐹 }. Latteux [Lat79] has shown that BMCM
of dimension 𝑑 admit an effective procedure to eliminate Y-transitions.

Lemma 2.1.1 ([Lat79]). For every BMCM of dimension 𝑑 with Y-transitions there is an

equivalent BMCM of dimension 𝑑 with no Y-transitions.

As mentioned above, although PA and BMCM are known to be equivalent, the translations
do in general not preserve the dimension. We first show that these models are equivalent up
to one dimension. This result will come in handy in this section, as it allows us to translate
fine-grained results from one model to the other. First, we observe that we can in a sense
consider the linear sets of the union of the semi-linear set of a PA independently.
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Observation 2.1.2. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) with 𝐶 =
⋃︁
𝑖≤ℓ 𝐶 (b𝑖, 𝑃𝑖) be a PA. Then

𝐿(A) = ⋃︁
𝑖≤ℓ 𝐿(𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶 (b𝑖, 𝑃𝑖)).

Lemma 2.1.3. The following are equivalent for every language 𝐿.

(1) 𝐿 is recognized by a BMCM of dimension 𝑑 ≥ 1.

(2) 𝐿 is recognized by a PA of dimension 𝑑 + 1.

Proof. The implication (1) ⇒ (2) is very similar to the construction in [JK03, Theorem 4.5];
we present a proof sketch. Let M = (𝑄, Σ, 𝑞0,Δ, 𝐹 ) be a BMCM of dimension 𝑑 and for
(𝑣1, . . . , 𝑣𝑑) ∈ ℤ𝑑 define ∥(𝑣1, . . . , 𝑣𝑑)∥ = max{|𝑣1 |, . . . , |𝑣𝑑 |}. Let

𝐷 = max{∥v∥ | (𝑝, 𝑎, v, 𝑞) ∈ Δ for some 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ}
be the largest absolute value appearing in a transition of M. We construct a PA A of dimen-
sion𝑑+1 with the same state space as M as follows. For every transition (𝑝, 𝑎, (𝑣1, . . . , 𝑣𝑑), 𝑞)
in Δ, we insert the transition (𝑝, 𝑎, (𝑣1 +𝐷, . . . , 𝑣𝑑 +𝐷, 𝐷), 𝑞) in A. Note that every entry in
(𝑣1 +𝐷, . . . , 𝑣𝑑 +𝐷,𝐷) is non-negative by the choice of 𝐷 . In particular, whenever a counter
of M is of value 𝑣 , then the same counter of A is of value 𝑣 − 𝑣𝐷 , where 𝑣𝐷 denotes the
counter value of the newly introduced counter. In particular, when all counters of M are 0,
then all counters of A have the same value. Hence, by choosing the linear set𝐶 (0, {1}), we
obtain an equivalent PA A with only one additional counter as desired.
For the implication (2) ⇒ (1), let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a PA of dimension 𝑑 + 1. By
the previous observation we may assume that 𝐶 = 𝐶 (b, 𝑃) is a linear set, as we can carry
out the following procedure translating A into an equivalent BMCM M for every linear
set independently and combine resulting machines by introducing a fresh initial state
with outgoing Y-transitions to the initial states of the M, which can then be eliminated
by Lemma 2.1.1 without changing the dimension. We construct M from A as follows.
First, we interpret A as a BMCM, that is, we keep the states and transitions of A and
forget the linear set. Next, for every p ∈ 𝑃 , we equip every state of A with an Y-transition
subtracting p. Furthermore, we introduce a new accepting state, say 𝑞 𝑓 , connect every
𝑞 ∈ 𝐹 to 𝑞 𝑓 via an Y-transition subtracting b, and make every other state non-accepting,
that is, we set 𝐹 = {𝑞 𝑓 }. Let M be the BMCM obtained this way. First observe that these
modifications do not change the accepted language of A, that is 𝐿(A) = 𝐿(M). Let𝑚 be
the largest integer appearing in the first component of a vector in 𝑃 . Now observe that for
every run of A there is a run of M such that the first counter value stays in the set [0,𝑚].
Indeed, whenever the first counter value would exceed𝑚, we can first subtract a fitting
period vector using one of the introduced Y-loops. This is always possible, as the counter
values might be negative in M. Hence, we may assume that the first counter value stays
within a fixed range, and hence we can simulate the first counter in the state space of M,
i. e., the state space of M is𝑄 × [0,𝑚], where𝑄 is the state space of A. Hence, we lose one
dimension as desired. ◀
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2.2 A Pumping Lemma for Parikh Recognizable
Languages

The famous pumping lemma for regular languages essentially states that for every regular
language 𝐿 and every sufficiently long word 𝑤 in 𝐿, we can partition 𝑤 in three parts,
say 𝑥𝑦𝑧 such that we can pump (and depump) 𝑦 and still obtain words in 𝐿, as stated in the
following lemma.

Lemma 2.2.1. Let 𝐿 be a regular language.

Then there exists a constant 𝑝 ∈ ℕ

such that for all𝑤 ∈ 𝐿 with |𝑤 | ≥ 𝑝

there is a partition𝑤 = 𝑥𝑦𝑧 with |𝑥𝑦 | ≤ 𝑝 and |𝑦 | > 0
such that for all 𝑘 ∈ ℕ we have 𝑥𝑦𝑘𝑧 ∈ 𝐿.

Observe that the pumping lemma only yields a necessary condition for a language being
regular, not a sufficient one. This means, there are non-regular languages that satisfy the
condition of the pumping lemma, e. g. the language

{𝑎𝑚𝑏𝑛𝑐𝑛 | 𝑛,𝑚 ≥ 1} ∪ {𝑏𝑚𝑐𝑛 | 𝑛,𝑚 ≥ 0}.
Jaffe established a variant of the pumping lemma that is both, necessary and sufficient [Jaf78].
A small modification of the pumping lemma for regular languages yields the well-known
pumping lemma for context-free languages.

Lemma 2.2.2. Let 𝐿 be a context-free language.

Then there exists a constant 𝑝 ∈ ℕ

such that for all𝑤 ∈ 𝐿 with |𝑤 | ≥ 𝑝

there is a partition𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑥𝑦 | ≤ 𝑝 and |𝑣𝑦 | > 0
such that for all 𝑘 ∈ ℕ we have 𝑢𝑣𝑘𝑥𝑦𝑘𝑧 ∈ 𝐿.

For more information on the pumping lemmas, we refer the interested reader to the text-
books [HMU06, Koz97, Sip13].
In a similar spirit, Cadilhac et al. established the following “pumping-style” lemma yielding
a necessary condition for a language being Parikh recognizable [CFM11].

Lemma 2.2.3. Let 𝐿 be a Parikh recognizable language.

Then there exist constants 𝑝, ℓ ∈ ℕ

such that for all𝑤 ∈ 𝐿 with |𝑤 | ≥ ℓ

there is a partition𝑤 = 𝑢𝑣𝑥𝑣𝑧 with 0 < |𝑣 | < 𝑝 < |𝑥 | and 𝑢𝑣𝑥𝑣 < ℓ

such that 𝑢𝑣2𝑥𝑧 ∈ 𝐿 and 𝑢𝑥𝑣2𝑧 ∈ 𝐿.

Note that, unlike the pumping lemma for regular languages, the pumping-style lemma
states that sufficiently long words 𝑤 in a Parikh recognizable languages can be split in
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five parts 𝑢𝑣𝑥𝑣𝑧 such that a short infix 𝑣 of 𝑤 appears twice in 𝑤 and its position can be
switched.
In this section we prove the following pumping lemma yielding a necessary condition for
languages being recognizable by PA of dimension 𝑑 .

Lemma 2.2.4. Let 𝐿 be a language recognized by a PA of dimension 𝑑 .

Then there exists a constant 𝑝 ∈ ℕ

such that for all𝑤 ∈ 𝐿 with |𝑤 | ≥ 𝑝

there is a partition𝑤 = 𝑢0𝑣1𝑢1 . . . 𝑣𝑑𝑢𝑑 with |𝑣1 . . . 𝑣𝑑 | > 0
and a vector (𝑥1, . . . 𝑥𝑑) ∈ ℕ𝑑

such that for all 𝑘 ∈ ℕ we have 𝑢0𝑣
1+𝑘𝑥1
1 𝑢1 . . . 𝑣

1+𝑘𝑥𝑑
𝑑

𝑢𝑑 ∈ 𝐿.

Intuitively, the lemma states that the number of infixes we may pump independently
matches the dimension 𝑑 . This can in general be not avoided, as witnessed by the following
class of languages. Define for every 𝑘 ≥ 1 the alphabet Σ𝑘 = {𝑎1, . . . , 𝑎𝑘} and let 𝐿𝑘 =

{𝑎𝑛1 . . . 𝑎𝑛𝑘 | 𝑛 ≥ 0}. Obviously, 𝐿𝑘 is recognized by a PA with 𝑘 counters, and we for every
𝑤 ∈ 𝐿𝑘 we need to pump 𝑘 infixes independently, namely one block of 𝑎𝑖 for every 1 ≤ 𝑖 ≤ 𝑘 .
Furthermore observe that this pumping lemma almost generalizes the pumping lemmas for
regular and context-free languages in the sense that the special cases for 𝑑 = 1 and 𝑑 = 2
yield only slightly weaker statements than Lemma 2.2.1 and Lemma 2.2.2. This matches
with the results in Lemma 2.3.1 and Lemma 2.3.2 presented in the next section.
Before we prove the lemma, we need the following notion. Let ≤ be a binary relation on a
set 𝑋 . We call ≤ a quasi-order (on 𝑋 ) if it satisfies the following properties.
Reflexivity. For all 𝑥 ∈ 𝑋 we have 𝑥 ≤ 𝑥 .
Transitivity. For all 𝑥,𝑦, 𝑧 ∈ 𝑋 we have 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧.
We call a quasi-order ≤ on a set𝑋 a well-quasi-order if it neither contains infinite descending
chains nor infinite anti-chains, that is, if every infinite sequence𝑥1, 𝑥2, . . . of pairwise distinct
elements of 𝑋 contains two elements 𝑥𝑖, 𝑥 𝑗 with 𝑖 < 𝑗 and 𝑥𝑖 ≤ 𝑥 𝑗 . Let 𝑌 ⊆ 𝑋 and 𝑥 ∈ 𝑌 .
We call 𝑥 minimal with respect to ≤ if 𝑌 contains no smaller element, that is, there is no
element 𝑦 ≠ 𝑥 in 𝑌 with 𝑦 ≤ 𝑥 . Observe that for every well-quasi-order ≤ on 𝑋 , every
subset 𝑌 ⊆ 𝑋 has only a finite number of minimal elements with respect to ≤. Higman’s
famous lemma [Hig52] states that the subword relation ≼ on Σ∗ is a well-quasi-order. We
are now ready to prove Lemma 2.2.4. In the light of Lemma 2.1.3 it is sufficient to show the
following pumping lemma for BMCM.

Lemma 2.2.5. Let 𝐿 be a language recognized by a BMCM of dimension 𝑑 .

Then there exists a constant 𝑝 ∈ ℕ

such that for all𝑤 ∈ 𝐿 with |𝑤 | ≥ 𝑝

there is a partition𝑤 = 𝑢0𝑣1𝑢1 . . . 𝑣𝑑+1𝑢𝑑+1 with |𝑣1 . . . 𝑣𝑑+1 | > 0
and a vector (𝑥1, . . . 𝑥𝑑+1) ∈ ℕ𝑑

such that for all 𝑘 ∈ ℕ we have 𝑢0𝑣
1+𝑘𝑥1
1 𝑢1 . . . 𝑣

1+𝑘𝑥𝑑+1
𝑑+1 𝑢𝑑+1 ∈ 𝐿.
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Proof. Let M = (𝑄, Σ, 𝑞0,Δ, 𝐹 ) be a BMCM of dimension 𝑑 recognizing 𝐿. By Lemma 2.1.1
we may assume that M has no Y-transitions. Let𝐶 = 𝑐1, . . . , 𝑐𝑛 be a computation of M with
𝑐𝑖 = (𝑞𝑖,𝑤𝑖, v𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. We associate with𝐶 the run 𝑟 (𝐶) = 𝑟1 . . . 𝑟𝑛−1 ⊆ Δ∗, that is,
the sequence of transitions witnessing 𝑐𝑖 ⊢M 𝑐𝑖+1 for all 1 ≤ 𝑖 < 𝑛. Let 𝑟 = 𝑟 (𝐶). Borrowing
the notation from PA, we denote by 𝜌 (𝑟 ) = v𝑛 − v1, which is equivalent to the sum of the
vectors appearing in the 𝑟𝑖 . As every run can be seen as word over Δ, we apply Higman’s
lemma and obtain that the subword relation ≼ over Δ is a well-quasi-order and hence the
subword relation over the set of accepting runs. This implies that there is a finite set of
minimal subruns, say 𝑟 (1), . . . , 𝑟 (𝑚) with 𝜌 (𝑟 (𝑖)) = 0 for all 𝑖 ≤ 𝑚. Let 𝑝 be the maximal
length among these subruns. Let𝑤 ∈ 𝐿 with |𝑤 | ≥ 𝑝 , and let𝐶 be a computation witnessing
membership of𝑤 in 𝐿. As the run 𝑟 = 𝑟 (𝐶) must have some 𝑟 (𝑖) = 𝑟 (𝑖)0 𝑟

(𝑖)
1 . . . 𝑟

(𝑖)
ℓ

as a subrun,
we can write 𝑟 = 𝑟 (𝑖)0 𝜏1𝑟

(𝑖)
1 . . . 𝜏ℓ𝑟

(𝑖)
ℓ

with 𝜏𝑖 ∈ Δ∗ for all 1 ≤ 𝑖 ≤ ℓ . Now observe that every 𝜏𝑖
is a cycle in M. Furthermore, we have 𝜌 (𝜏1) + · · · + 𝜌 (𝜏ℓ) = 0, as 𝜌 (𝑟 (𝑖)) = 𝜌 (𝑟 ) = 0. By
[FS02, Lemma 6.2] there is a subset {𝜏′1, . . . 𝜏′𝑘} ⊆ {𝜏1, . . . , 𝜏ℓ } with 𝑘 ≤ 𝑑 + 1 such that there
are 𝑥1, . . . , 𝑥𝑘 ∈ ℕ with 𝑥1𝜌 (𝜏′1) + · · · + 𝑥𝑘𝜌 (𝜏′𝑘) = 0. Let 𝑣1, . . . 𝑣𝑘 be the infixes processed
in 𝜏′1, . . . , 𝜏′𝑘 , respectively, and let 𝜏𝑘+1, . . . , 𝜏𝑑+1 be the empty words. Hence, we obtain the
desired partition of𝑤 by filling the 𝑢𝑖 with the remaining infixes. ◀

This lemma allows a more fine-grained analysis of Parikh recognizable languages. Take as
an example the language {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0}, which is obviously Parikh recognizable with two
counters, and also context-free. Note however that, as a consequence of the pumping lemma,
there is no PA with only one counter recognizing this language. Similarly, the language
{𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0} is Parikh recognizable with three counters but there is no PA with only
two recognizing it. Furthermore, this language is not context-free. These observations
motivate the next section, where we compare the classes of languages recognized by PA
with 𝑑 ≥ 1 counters with the classes in the Chomsky hierarchy.

2.3 Parikh Automata and the Chomsky Hierarchy

In this section we show that the class of languages recognized by PA with a single counter
coincides with L3, while the class of languages recognized by PA with two counters is a
strict subset of L2. Furthermore, we translate known hierarchy results for BMCM to PA.
We complete the picture by a result in [CFM12a] stating that every Parikh recognizable
language is contained in L1. We refer to Figure 2.1 for an overview.

Lemma 2.3.1. The following are equivalent for every language 𝐿.

(1) 𝐿 is regular.

(2) 𝐿 is recognized by a PA with a single counter.
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1-PA = L1 2-PA 3-PA . . . PA

L2 L1 L0

Figure 2.1. Location of Parikh recognizable languages in the Chomsky hierarchy. The
term 𝑑-PA refers to the class of languages recognized by PA of dimension 𝑑 .
Arrows indicate strict inclusions while no (non-transitive) connections mean
incomparability.

Proof. The implication (1) ⇒ (2) is clear, as we can always turn an NFA into an equivalent
PA of dimension 1 with linear set {0} by labeling every transition with 0.
For the implication (1) ⇒ (2) let A = (𝑄, Σ, 𝑞0, Σ, 𝐹 ,𝐶) be a PA of dimension 1. By
Observation 2.1.2 we may assume that 𝐶 is linear as the class of regular languages is closed
under union; hence, we can carry our the following procedure for each linear set individually.
First, we show how to translate A into an equivalent NFA A′ if 𝐶 has a very simple form,
namely that 𝐶 = (b, {p}), that is, a linear set with a single (one-dimensional) period vector.
Now we simulate the counter of A in the state space of A′ as follows: as long as the counter
value does not exceed b, we store the current counter value in the state space of A. As
soon as the counter exceeds this threshold, we use a fresh copy of the state space of A′ to
store the “distance” to the next multiple of p, that is, the current counter value modulo p.
Formally, let A′ = (𝑄′, Σ, (𝑞0, 0), 𝛿′, 𝐹 ′) be an NFA with

𝑄′ = {(𝑞, 𝑖) | 𝑞 ∈ 𝑄, 0 ≤ 𝑖 < b} ∪ {(𝑞′, 𝑖) | 𝑞′ ∈ 𝑄, 0 ≤ 𝑖 < p},
𝐹 ′ = {(𝑞′, 0) | 𝑞′ ∈ 𝐹 },

where the set of transitions is defined as follows:

Δ′ = {((𝑝, 𝑖), 𝑎, (𝑞, 𝑖 + 𝑗)) | (𝑝, 𝑎, 𝑗, 𝑞) ∈ Δ, 𝑖 + 𝑗 < b}
∪ {((𝑝, 𝑖), 𝑎, (𝑞′, (𝑖 + 𝑗 − b) mod p)) | (𝑝, 𝑎, 𝑗, 𝑞) ∈ Δ, 𝑖 + 𝑗 ≥ b}
∪ {((𝑝′, 𝑖), 𝑎, (𝑞′, (𝑖 + 𝑗) mod p)) | (𝑝, 𝑎, 𝑗, 𝑞) ∈ Δ}.

In the next step, we assume that 𝐶 = (b, 𝑃) is an arbitrary linear set. We use (a small
modification of) Bézout’s identity [Bé79], stating that for all non-negative integers𝑚,𝑛,
and 𝑘 ≥ 𝑚𝑛 that are multiples of gcd(𝑚,𝑛), there are non-negative integers 𝑐, 𝑑 such that
𝑘 =𝑚𝑐 + 𝑛𝑑 , where gcd(𝑚,𝑛) denotes the greatest common divisor of𝑚 and 𝑛. We extend
the definition of gcd to sets the natural way. Thus, we can equally describe 𝐶 as a union
of the finite set 𝐶′ = {𝑛 ∈ 𝐶 | 𝑛 < b + Πp∈𝑃p} and a linear set with only one period
vector, namely 𝐶 (b + Πp∈𝑃p, {gcd(𝑃)}). Now we can use a construction very similar to the
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previous case, encoding all values of the finite set as well the new period vector into the
state space of A′, additionally making all states (𝑞, 𝑖) with 𝑖 ∈ 𝐶′ accepting. Note that A′

has |𝑄 | (b + Πp∈𝑃p + gcd(𝑃))-many states. ◀

Lemma 2.3.2. Let 𝐿 be a language recognized by a PA with two counters. Then 𝐿 is

context-free.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a PA of dimension 2. Again, we assume that 𝐶 =

((𝑏1, 𝑏2), 𝑃) is linear as the class of context-free languages is closed under union. In the
first step, we build a type-3 grammar 𝐺𝐶 that generates words over the alphabet {𝑥,𝑦},
where 𝑥,𝑦 are fresh symbols that do not appear in Σ, with the property that a vector v is
member of 𝐶 if and only if there is a word 𝑤 ∈ 𝐿(𝐺𝐶) with v = ( |𝑤 |𝑥 , |𝑤 |𝑦). Hence, let
𝐺𝐶 = ({𝑆}, {𝑥,𝑦}, 𝑃𝐶, 𝑆) with

𝑃𝐶 = {𝑆 → 𝑥𝑝1𝑦𝑝2𝑆 | (𝑝1, 𝑝2) ∈ 𝑃} ∪ {𝑆 → 𝑥𝑏1𝑦𝑏2}.

In the next step, we modify 𝐺𝐶 in such a way that we obtain a context-free grammar 𝐺′
𝐶

with the property that v ∈ 𝐶 if and only if 𝐿(𝐺′
𝐶
) contains all words𝑤 with ( |𝑤 |𝑥 , |𝑤 |𝑦) ∈ 𝐶 ,

and no other words. Particularly,𝐺′
𝐶

generates all words that are permutations of words
generated by 𝐺′

𝐶
. It is known that the set of permutations of words of a regular language

over an alphabet with two symbols is context-free (see e. g. [Sin09]). Hence, let 𝐺′
𝐶

be a
context-free grammar generating the permutations of all words in 𝐿(𝐺𝐶).
By a standard construction, we can build a PDA M𝐶 with a single state that accepts exactly
the words generated by𝐺′

𝐶
by simulating a derivation sequence where we always derive

the leftmost non-terminal first (using Y-transitions) on the stack and checking the input
word against the derived word on the stack (see e. g. [Koz97] for details). Hence, let M𝐶 be
such a PDA with 𝐿(M𝐶) = 𝐿(𝐺′

𝐶
).

Finally, we build a PDA from A inheriting the stack alphabet and Y-transition from M𝐶 . The
idea is as follows. Let 𝑟 be an accepting run of A with 𝜌 (𝑟 ) = v ∈ 𝐶 . Recall that M𝐶 accepts
all words𝑤 with v = ( |𝑤 |𝑥 , |𝑤 |𝑦). Now, for every transition (𝑝, 𝑎, (𝑣1, 𝑣2), 𝑞) ∈ Δ we expect
the word 𝑥𝑣1𝑦𝑝1 to be on top of the stack. That is, we construct M as follows. We begin
with a copy of A and replace every transition (𝑝, 𝑎, (𝑣1, 𝑣2), 𝑞) with (𝑝, 𝑎, 𝑥𝑣1𝑦𝑣2, Y, 𝑞). At the
beginning, we put a fresh stack symbol, say #, at the bottom of the stack. Furthermore, we
copy the Y-transitions in M𝐶 (simulating the derivation sequences of 𝐺′

𝐶
) to every state

of A𝐶 . Finally, we may only remove the new symbol # in the accepting states of A. This
finishes the construction.
We sketch that we indeed have 𝐿(A) = 𝐿(M). Let 𝑤 ∈ 𝐿(A) with accepting run 𝑟 =

𝑟1 . . . 𝑟𝑛 collecting the vector v = (𝑣1 + · · · + 𝑣𝑛, 𝑣′1 + · · · + 𝑣′𝑛) ∈ 𝐶 . As M𝐶 accepts the
word 𝑥𝑣1𝑦𝑣

′
1 . . . 𝑥𝑣𝑛𝑦𝑣

′
𝑛 , the PDA M can always prepare the stack such that the transition

(𝑝, 𝑎, 𝑥𝑣𝑖𝑦𝑣 ′𝑖 , Y, 𝑞) is eligible whenever the PA A takes the corresponding transition. Finally,
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as 𝑟 ends in an accepting state, M may safely remove the new stack symbol #, emptying
the stack.
Now let𝑤 ∈ 𝐿(M) and let𝑢 ∈ {𝑥,𝑦}∗ be the word simulated on the stack while processing𝑤 .
In particular, we have 𝑢 ∈ 𝐿(M𝐶) and hence (𝑢 |𝑥 |, 𝑢 |𝑦 |) ∈ 𝐶 . Furthermore, as 𝑤 is in an
accepting state of A after processing𝑤 , we conclude𝑤 ∈ 𝐿(A). ◀

Remark. Klaedtke and Ruess claim in [KR03b, example in Definition 3] that there is a 2-PA
for the language {𝑎𝑖+ 𝑗𝑏𝑖𝑐 𝑗 | 𝑖, 𝑗 ≥ 0}, and that this language is not context-free. However,
this language is context-free, so there is no contradiction.

We note that the inclusion is strict, as the language

Pal = {𝑤1 . . .𝑤𝑛 ∈ {𝑎, 𝑏}∗ | 𝑛 ≥ 0,𝑤1 . . .𝑤𝑛 = 𝑤𝑛 . . .𝑤1}

of palindromes is context-free but not recognized by any PA. This can be shown using the
pumping-style lemma (Lemma 2.2.3) very similar to the proof of [CFM11, Proposition 3]
showing that the language Copy = {𝑤#𝑤 | 𝑤 ∈ {𝑎, 𝑏}∗} is not Parikh recognizable. In fact,
we choose the word (𝑎𝑝𝑏)ℓ (𝑏𝑎𝑝)ℓ ∈ Pal (instead of (𝑎𝑝𝑏)ℓ#(𝑎𝑝𝑏)ℓ ∈ Copy) and re-use the
arguments in their proof.
The following lemma is an immediate consequence from [CFM12a, Proposition 4.12].

Lemma 2.3.3. Let 𝐿 be a Parikh recognizable language. Then 𝐿 ∈ L1.

The results in [Lat79] imply that BMCM with 𝑑 ≥ 1 counters are strictly less expressive
than BMCM with 𝑑 + 1 counters. This results translates immediately to PA by Lemma 2.1.3.

Corollary 2.3.4. For every𝑑 ≥ 1, there is a language 𝐿 that is a language that is recognized

by no PA of dimension 𝑑 but by a PA of dimension 𝑑 + 1.

Furthermore, Latteux [Lat79] has shown that every language 𝐿 recognized by a blind counter
machine can be written as a finite intersection of languages recognized by blind counter
machines of dimension 1. Hence, we obtain the following.

Corollary 2.3.5. Let 𝐿 be a Parikh recognizable language. Then there are languages

𝐿1, . . . , 𝐿𝑛 for some 𝑛 ≥ 1 recognized by PA of dimension 2 such that 𝐿 =
⋂︁
𝑖≤𝑛 𝐿𝑖 .

Note that the dimension in this corollary is tight in the sense that PA of dimension 1
recognize regular languages only by Lemma 2.3.1, which are closed under intersection.
Furthermore, the corollary implies that for every 𝑑 ≥ 2 the class of languages recognized
by PA of dimension 𝑑 is not closed under intersection.
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2.4 Universality for Deterministic Parikh Automata

In this section, we consider the following common decision problems for (deterministic) PA.

• Emptiness: given a PA A, is 𝐿(A) = ∅?
• Membership: given a PA A and a finite words𝑤 , is𝑤 ∈ 𝐿(A)?
• Universality: given a PA A, is 𝐿(A) = Σ∗?

As shown by Klaedtke and Ruess [KR03b], emptiness and membership are decidable for
deterministic and non-deterministic PA. Furthermore, they have shown that universality is
decidable for deterministic PA but undecidable for non-deterministic PA. Refining these
results, Figueira and Libkin [FL15] showed that non-emptiness and membership are NP-
complete for non-deterministic PA, and these results translate quickly to the deterministic
setting as well.
As a preparation for the results in Section 3.2 we show that universality for deterministic
PA is ΠP

2 -complete in order to establish complexity bounds of several problems related to
PA operating on infinite words.
To achieve that, we first introduce an auxiliary problem for PA and show that it is already
ΠP

2 -hard even restricted to deterministic acyclic PA. We define the irrelevance problem

for PA as follows: given a PA A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) of dimension 𝑑 , is A equivalent to
A∗ = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,ℕ

𝑑)? In other words: is 𝐶 irrelevant for A in the sense that every run
of A reaching an accepting state satisfies the Parikh condition? In the following, we denote
by 𝜌 (A) = {𝜌 (𝑟 ) | 𝑟 is an accepting run of A∗) and note that this set is always semi-linear
as a consequence of Parikh’s theorem [Par66] and [KR03b, Lemma 5].

Lemma 2.4.1. The irrelevance problem for deterministic acyclic PA is ΠP
2 -hard.

Proof. We reduce from the inclusion problem for integer expressions, which is known to
be ΠP

2 -complete (assuming that all numbers are encoded in binary) [SM73, Sto76]. The set
of integer expressions is defined as follows. Every 𝑛 ∈ ℕ is an integer expression with
𝐿(𝑛) = {𝑛}. If 𝑒1 and 𝑒2 are integer expressions, then so are 𝑒1 + 𝑒2 and 𝑒1 ∪ 𝑒2 where
𝐿(𝑒1 + 𝑒2) = {𝑢 + 𝑣 | 𝑢 ∈ 𝐿(𝑒1), 𝑣 ∈ 𝐿(𝑒2)} and 𝐿(𝑒1 ∪ 𝑒2) = 𝐿(𝑒1) ∪ 𝐿(𝑒2). The inclusion
problem is defined as follows: given integer expressions 𝑒1, 𝑒2, is 𝐿(𝑒1) ⊆ 𝐿(𝑒2)?
We proceed as follows: first, we construct a linear set 𝐶 (0, 𝑃2) of dimension 𝑑 + 1 from 𝑒2
with the property that 𝑛 ∈ 𝐿(𝑒2) if and only if 𝑛 · 1𝑑 ∈ 𝐶 (0, 𝑃2), where 𝑑 and |𝑃2 | depend
linearly on the number of operators in 𝑒2. Second, we construct a deterministic acyclic
PA A1 from 𝑒1 with the property 𝐿(𝑒1) = 𝜌 (A1). Finally, we construct a deterministic
acyclic PA A from A1 such that 𝐶 (0, 𝑃2) is irrelevant for A if and only if 𝐿(𝑒1) ⊆ 𝐿(𝑒2).
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𝑛

1
(a) 𝑒 = 𝑛

𝑛1 . . . 𝑛𝑘 𝑚1 . . .𝑚ℓ

𝑃1 0

0 𝑃2

(b) 𝑒 = 𝑒1 + 𝑒2

𝑛1 . . . 𝑛𝑘 𝑚1 . . .𝑚ℓ 0 0

𝑃1 0 1 0

0 𝑃2 0 1

0 . . . 0 0 . . . 0 1 1
(c) 𝑒 = 𝑒1 ∪ 𝑒2

Figure 2.2. Illustration of the construction of a linear set from an integer expression.

Claim 2.4.2. Given an integer expression 𝑒 , we can compute in polynomial time a linear

set 𝐶 (0, 𝑃) such that 𝑛 ∈ 𝐿(𝑒) if and only if 𝑛 · 1 ∈ 𝐶 (0, 𝑃).

Proof. We construct 𝐶 (0, 𝑃) inductively from 𝑒 and maintain the following invariant in
each step: 𝑛 ∈ 𝐿(𝑒) if and only if 𝑛 · 1 ∈ 𝐶 (0, 𝑃) and for all p = (𝑚, 𝑝1 . . . , 𝑝𝑑) ∈ 𝑃 we have
𝑝𝑖 = 1 for at least one 1 ≤ 𝑖 ≤ 𝑑 . We refer to Figure 2.2 for an illustration.
Base Case. If 𝑒 = 𝑛 for 𝑛 ∈ ℕ, we choose 𝐶 (0, 𝑃) ∈ ℕ2 with 𝑃 = {(𝑛, 1)}.
Step. We need to consider two cases.
If 𝑒 = 𝑒1 + 𝑒2, there are linear sets 𝐶 (0, 𝑃1) ⊆ ℕ1+𝑑1 and 𝐶 (0, 𝑃2) + ℕ1+𝑑2 for 𝑒1 and 𝑒2
satisfying the invariant by assumption. We construct a linear set 𝐶 (0, 𝑃) of dimension
1 + 𝑑1 + 𝑑2 as follows. We pad the vectors in 𝑃1 and 𝑃2 with zeros to align the dimensions.
Then 𝑃 is the union of these vectors, i. e.,

𝑃 = {𝑛 · p1 · 0𝑑2 | 𝑛 · p1 ∈ 𝑃1} ∪ {𝑛 · 0𝑑1 · p2 | 𝑛 · p2 ∈ 𝑃2}.

The invariant is maintained using this construction: for every integer𝑚 +𝑛 ∈ 𝐿(𝑒) we have
𝑚 ·1𝑑1 ·0𝑑2 ∈ 𝐶 (0, {𝑚 ·p1 ·0𝑑2 | 𝑚 ·p1 ∈ 𝑃1}) and 𝑛 ·0𝑑1 ·1𝑑2 ∈ 𝐶 (0, {𝑛 ·0𝑑2 ·p2 | 𝑛 ·p2 ∈ 𝑃2}) by
assumption and construction. Hence, (𝑛+𝑚) ·1𝑑1+𝑑2 ∈ 𝐶 (0, 𝑃). Likewise, if𝑛 ·1𝑑1+𝑑2 ∈ 𝐶 (0, 𝑃),
we can partition the sets of used period vectors in the set of period vectors originating
from 𝑃1, and the set originating from 𝑃2. As only the period vectors originating from 𝑃1 can
modify the first 𝑑1 counters (ignoring the first), they yield a number 𝑛1 ∈ 𝐿(𝑒1). Similarly,
the period vectors from 𝑝2 yield a number 𝑛2 ∈ 𝐿(𝑒2), and hence 𝑛 = 𝑛1 + 𝑛2 ∈ 𝐿(𝑒).
If 𝑒 = 𝑒1 ∪ 𝑒2, there are linear sets 𝐶 (0, 𝑃1) ⊆ ℕ1+𝑑1 and 𝐶 (0, 𝑃2) ⊆ ℕ1+𝑑2 for 𝑒1 and 𝑒2
satisfying the invariant by assumption. We construct a linear set 𝐶 (0, 𝑃) of dimension
1 + 𝑑1 + 𝑑2 + 1 as as follows. Again, we pad the vectors in 𝑃1 and 𝑃2 with zeros to align the
dimensions, and add an additional 0-counter. Furthermore, we consider the two vectors
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𝑞0 𝑞1

𝑎, 𝑛

𝑏, 𝑛

(a) 𝑒 = 𝑛

𝑝0 𝑝𝑚

𝑞0𝑞𝑛

. . .

. . .

𝑎, 0
𝑏, 0

(b) 𝑒 = 𝑒1 + 𝑒2

𝑞

𝑝0 𝑝𝑚

𝑞0 𝑞𝑛

𝑞 𝑓

. . .

. . .

𝑎, 0

𝑏, 0

𝑎, 0
𝑏, 0

𝑎, 0
𝑏, 0

(c) 𝑒 = 𝑒1 ∪ 𝑒2

Figure 2.3. Illustration of the construction of a deterministic acyclic PA from an integer
expression.

v1 = 0 · 1𝑑1 · 0𝑑2 · 1 and v2 = 0 · 0𝑑1 · 1𝑑2 · 1. Then 𝑃 is the union of these vectors, i. e.,

𝑃 = {𝑛 · p1 · 0𝑑2 · 0 | 𝑛 · p1 ∈ 𝑃1} ∪ {𝑛 · 0𝑑1 · p2 · 0 | 𝑛 · p2 ∈ 𝑃2} ∪ {v1, v2}.

The invariant is maintained using this construction: if 𝑛 ∈ 𝐿(𝑒1), then 𝑛 · 1𝑑1+𝑑2+1 ∈ 𝐶 (0, 𝑃)
as witnessed by the following choice of period vectors. First, we can use v2 to ensure that
the last 𝑑2 + 1 entries (including the new counter) are indeed set to one. Furthermore, the
first 𝑑1 + 1 entries of v1 (including the first counter) are 0; hence, they do not modify the
relevant counters for 𝑛. Hence, the containment follows from the invariant and construction.
We argue analogously if 𝑛 ∈ 𝐿(𝑒2) using v1. Now, if 𝑛 · 1𝑑1+𝑑2+1 ∈ 𝐶 (0, 𝑃) we observe that
exactly one of the vectors v1 and v2 must have been used, as these are the only ones that
modify the last counter. If v1 has been used, then no period vector originating in 𝑃1 may
have been used, as they all contain a one-entry by the invariant, and are hence blocked
by the 1-entries in v1. As v1 does not modify the first counter, and all used period vectors
originate from 𝑃2, we conclude 𝑛 ∈ 𝐿(𝑒2). Analogously, if v2 has been used, we conclude
𝑛 ∈ 𝐿(𝑒1).
Observe that the dimension 𝑑 and the size of 𝑃 both depend linearly on the size of 𝑒 , hence
|𝐶 (0, 𝑃) | ∈ O(|𝑒 |2). ◁

Claim 2.4.3. Given an integer expression 𝑒 , we can compute in polynomial time a deter-

ministic acyclic PA with a single accepting state A such that 𝐿(𝑒) = 𝜌 (A).

Proof. We construct A over the alphabet {𝑎, 𝑏} of dimension 1 with linear set ℕ inductively
from 𝑒 and maintain the invariant in the claim in every step. We refer to Figure 2.3 for an
illustration.
Base Case. If 𝑒 = 𝑛 for 𝑛 ∈ ℕ, the PA A consists of an initial state and an accepting state
that are connected by an 𝑎-transition and a 𝑏-transition, both labeled with 𝑛.
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Step. We need to consider two cases.
If 𝑒 = 𝑒1 + 𝑒2, there are PA A1 and A2 for 𝑒1 and 𝑒2 satisfying the invariant by assumption.
We construct a PA A as follows: we take the disjoint union of A1 and A2 and connect the
accepting state of A1 with the initial state of A2 via an 𝑎-transition and a 𝑏-transitions,
both labeled with 0. Finally, the accepting states of A1 is not accepting anymore in A.
If 𝑒 = 𝑒1 ∪ 𝑒2, there are PA A1 and A2 for 𝑒1 and 𝑒2 satisfying the invariant by assumption.
We construct a PA A as follows: we take the disjoint union of A1 and A2 and add a fresh
initial state, say 𝑞, and a fresh accepting state, say 𝑞 𝑓 . Then, we connect 𝑞 with the initial
state of A1 with an 𝑎-transition labeled with 0, and we connect 𝑞 with the initial state of A2
with a 𝑏-transition labeled with 0. Similarly, we connect the accepting state of A1 as well
as the accepting state of A2 with 𝑞 𝑓 via 𝑎-transitions and 𝑏-transitions, all labeled with 0.
Finally, the accepting states of A1 and A2 are not accepting anymore in A. ◁

We are now ready to prove Lemma 2.4.1. Let A1 be the PA for 𝑒1 as constructed in the
proof of Claim 2.4.3. Similarly, let 𝐶 (0, 𝑃2) be the linear set of dimension 1 + 𝑑 for 𝑒2 as
constructed in the proof of Claim 2.4.2. Now we construct the deterministic acyclic PA A
as follows. We start with A1 and pad all vectors with zeros, that is, we replace every
(one-dimensional) vector 𝑛 in A1 by 𝑛 · 0𝑑 . Then, we add a fresh accepting state and connect
it from the accepting state of A1 with an 𝑎-transition and 𝑏-transition, both labeled with
0 · 1𝑑 . Finally, the accepting state of A1 is not accepting anymore in A, and we choose
𝐶 (0, 𝑃2) as the linear set of A. Observe that the properties of A1 and 𝐶 (0, 𝑃2) ensure that
𝐶 (0, 𝑃2) is irrelevant for A if and only if 𝐿(𝑒1) ⊆ 𝐿(𝑒2). This concludes the proof. ◀

Remark. Recall that we assume a binary and explicit encoding of semi-linear sets. In terms
of expressiveness we can equally assume that they are given as Presburger formulas. How-
ever, this drastically changes the complexity: if the semi-linear sets are given as Presburger
formulas, the problem becomes coNEXP-complete, as we can interreduce the problem with
the ∀∗∃∗-fragment of Presburger arithmetic, which is coNEXP-complete [Haa14].

Observe that we can easily reduce the previous problem to the universality problem for
deterministic PA.

Corollary 2.4.4. Universality for deterministic PA is ΠP
2 -hard.

Proof. Let A be the deterministic acyclic PA with linear set 𝐶 (0, 𝑃) as constructed in the
previous proof. We construct a deterministic A′ such that 𝐶 (0, 𝑃) is irrelevant for A if and
only if A′ is universal. To achieve that, we start with A and make every state accepting.
Furthermore, we add an 𝑎-loop and a 𝑏-loop to the accepting state of A, both labeled with 0.
Finally, the semi-linear set of A′ is 𝐶 (0, 𝑃) ∪ (ℕ · {0}). ◀
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Now we show that universality for deterministic PA is in ΠP
2 , yielding completeness for

universality and irrelevance by the reduction presented in the proof of the previous corollary.

Lemma 2.4.5. Universality for deterministic PA is ΠP
2 -complete.

Proof. We show that the problem is contained in ΠP
2 by showing that its complement is

contained in ΣP
2 . We make use of the following observation. As we can assume that every

state is accepting (by encoding accepting states into the semi-linear set), the question
whether a deterministic PA A with semi-linear set 𝐶 is not universal boils down to the
question 𝜌 (A) ⊈ 𝐶? If both sets are given explicitly (again assuming binary encoding),
Huynh showed that this question can be decided in ΣP

2 [Huy86, Huy80]. However, we
cannot explicitly compute the set 𝜌 (A) as its size can be exponentially large in the size
of A [To10]. To circumvent this problem, we guess a small linear subset of 𝜌 (A) that
witnesses non-inclusion.
In the first step, we compute an existential Presburger formula, say 𝜑 (v) = ∃𝑥1 . . . 𝑥𝑚𝜓
defining the set 𝜌 (A). This can be done in linear time using the results in [VSS05]; we also
refer to [FL15, Proposition III.2] for a short discussion on the construction.
In the second step, we use the result in [HZ21, Corollary II.2] essentially stating that
every semi-linear set can be written as a finite union of linear sets of small bit size. To be
precise, the result states that every semi-linear set 𝐶 ⊆ ℕ𝑑 can be written as

⋃︁
𝑖 𝐶 (b𝑖, 𝑃𝑖)

with |𝑃𝑖 | ≤ 2𝑑 log(4𝑑 ∥𝐶 ∥), where ∥𝐶 ∥ denotes the largest absolute value that appears in
a base or period vector in any linear set in the union of 𝐶 . Hence, we guess a linear set
𝐶 (b𝑖, 𝑃𝑖) ⊆ 𝜌 (A) of small bit size. Note however, that we do not verify at this point whether
𝐶 (b𝑖, 𝑃𝑖) is indeed a subset of 𝜌 (A).
In the third step, we use Huynh’s results [Huy86, Huy80] to solve 𝐶 (b𝑖, 𝑃𝑖) ⊈ 𝐶 in ΣP

2 .
As one main ingredient to obtain containment ΣP

2 , Huynh showed that every non-empty
(set-theoretic) difference of two semi-linear sets contains a vector of polynomial bit size.
Hence let v ∈ 𝐶 (b𝑖, 𝑃𝑖) \ 𝐶 be such a vector whose bit size is bounded polynomially in
𝐶 (b𝑖, 𝑃𝑖) and 𝐶 , and hence in the input size.
Finally, we need to verify that v is indeed a member of 𝜌 (A) (recall that we did not verify
that 𝐶 (b𝑖, 𝑃𝑖) is indeed a subset of 𝐶A). In order to do so, we guess a valuation of the
quantified variables 𝑥1, . . . , 𝑥𝑛 (again of polynomial bit size) of 𝜑 and verify that 𝜑 (v) is
indeed satisfied under this valuation.
Overall, we conclude that non-universality for deterministic PA is in ΣP

2 , yielding the desired
result. ◀
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Chapter 3. Parikh Automata on Infinite Words

In this chapter, we recall the acceptance conditions of Parikh automata operating on infinite
words that were studied before in the literature and introduce our new models. We make
some easy observations and compare the existing with the new automata models. First we
focus on the non-deterministic variants of these models before studying their deterministic
variants. Whenever we do not explicitly specify that a model is deterministic, we mean the
non-deterministic variant.

Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a PA. A run of A on an infinite word 𝛼 = 𝛼1𝛼2𝛼3 . . . is an
infinite sequence of labeled transitions 𝑟 = 𝑟1𝑟2𝑟3 . . . with 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖) ∈ Δ such
that 𝑝0 = 𝑞0. The automata defined below differ only in their acceptance conditions; hence,
the notion of determinsm translates directly. In the following, whenever we say that an
automaton A accepts an infinite word 𝛼 , we mean that there is an accepting run of A on 𝛼 .

1. The run 𝑟 satisfies the safety condition if for every 𝑖 ≥ 0 we have 𝑝𝑖 ∈ 𝐹 and
𝜌 (𝑟1 . . . 𝑟𝑖) ∈ 𝐶 . We call a PA accepting with the safety condition a safety PA [GJLZ22].
We define the 𝜔-language recognized by a safety PA A as

𝑆𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

2. The run 𝑟 satisfies the reachability condition if there is an 𝑖 ≥ 1 such that 𝑝𝑖 ∈ 𝐹

and 𝜌 (𝑟1 . . . 𝑟𝑖) ∈ 𝐶 . We say there is an accepting hit in 𝑟𝑖 . We call a PA accepting
with the reachability condition a reachability PA [GJLZ22]. We define the 𝜔-language
recognized by a reachability PA A as

𝑅𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

3. The run 𝑟 satisfies the Büchi condition if there are infinitely many 𝑖 ≥ 1 such that
𝑝𝑖 ∈ 𝐹 and 𝜌 (𝑟1 . . . 𝑟𝑖) ∈ 𝐶 . We call a PA accepting with the Büchi condition a
Büchi PA [GJLZ22]. We define the 𝜔-language recognized by a Büchi PA A as

𝐵𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

Hence, a Büchi PA can be seen as a stronger variant of a reachability PA where we
require infinitely many accepting hits instead of a single one.

4. The run 𝑟 satisfies the co-Büchi condition if there is 𝑖0 such that for every 𝑖 ≥ 𝑖0 we
have 𝑝𝑖 ∈ 𝐹 and 𝜌 (𝑟1 . . . 𝑟𝑖) ∈ 𝐶 . We call a PA accepting with the co-Büchi condition a
co-Büchi PA [GJLZ22]. We define the 𝜔-language recognized by a co-Büchi PA A as

𝐶𝐵𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

Hence, a co-Büchi PA can be seen as a weaker variant of safety PA where the safety
condition needs not necessarily be fulfilled from the beginning, but from some point
onwards.
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We now define the models newly introduced in this work. As already observed in [GJLZ22]
among the above considered models only Büchi PA can recognize all 𝜔-regular languages.
For example, {𝛼 ∈ {𝑎, 𝑏}𝜔 | |𝛼 |𝑎 = ∞} cannot be recognized by safety PA, reachability PA
or co-Büchi PA.
We first extend reachability PA with the classical Büchi condition to obtain reachability-

regular PA. In Theorem 3.1.8 we show that these automata characterize the class

L𝜔
PA,Reg =

{︄⋃︂
𝑖≤𝑛

𝑈𝑖𝑉𝑖 | 𝑛 ≥ 1,𝑈𝑖 is Parikh-recognizable,𝑉𝑖 is regular
}︄

hence, providing a robust and natural model.

5. The run satisfies the reachability and regularity condition if there is an 𝑖 ≥ 1 such
that 𝑝𝑖 ∈ 𝐹 and 𝜌 (𝑟1 . . . 𝑟𝑖) ∈ 𝐶 , and there are infinitely many 𝑗 ≥ 1 such that 𝑝 𝑗 ∈ 𝐹 .
We call a PA accepting with the reachability and regularity condition a reachability-

regular PA. We define the 𝜔-language recognized by a reachability-regular PA A as

𝑅𝑅𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

Observe that every 𝜔-regular language is reachability-regular PA recognizable, as we can
turn an arbitrary Büchi automaton into an equivalent reachability-regular PA by labeling
every transition with 0 and setting 𝐶 = {0}.
Next we introduce limit PA, which were proposed in the concluding remarks of [KR03b].
As we will prove in Theorem 3.1.8, this seemingly quite different model is equivalent to
reachability-regular PA.

6. The run satisfies the limit condition if there are infinitely many 𝑖 ≥ 1 such that 𝑝𝑖 ∈ 𝐹 ,
and if additionally 𝜌 (𝑟 ) ∈ 𝐶 , where the 𝑗 th component of 𝜌 (𝑟 ) is computed as follows.
If there are infinitely many 𝑖 ≥ 1 such that the 𝑗th component of v𝑖 has a non-zero
value, then the 𝑗th component of 𝜌 (𝑟 ) is ∞. In other words, if the sum of values in a
component diverges, then its value is set to ∞. Otherwise, the infinite sum yields a
positive integer. We call a PA accepting with the limit condition a limit PA. We define
the 𝜔-language recognized by a limit PA A as

𝐿𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

Still, none of the yet introduced models have 𝜔-closure. This shortcoming is addressed with
the following two models, which will turn out to be equivalent and form the basis of the
automata characterization of the classes

L𝜔
PA,PA =

{︄⋃︂
𝑖≤𝑛

𝑈𝑖𝑉𝑖 | 𝑛 ≥ 1,𝑈𝑖 and 𝑉𝑖 are Parikh-recognizable
}︄

43



Chapter 3. Parikh Automata on Infinite Words

and

L𝜔
Reg,PA =

{︄⋃︂
𝑖≤𝑛

𝑈𝑖𝑉𝑖 | 𝑛 ≥ 1,𝑈𝑖 is regular,𝑉𝑖 is Parikh-recognizable
}︄
.

7. The run satisfies the strong reset condition if the following holds. Let 𝑘0 = 0 and denote
by 𝑘1 < 𝑘2 < . . . the positions of all accepting states in 𝑟 . Then 𝑟 is accepting if
𝑘1, 𝑘2, . . . is an infinite sequence and 𝜌 (𝑟𝑘𝑖−1+1 . . . 𝑟𝑘𝑖 ) ∈ 𝐶 for all 𝑖 ≥ 1. We call a PA
accepting with the strong reset condition a strong reset PA. We define the 𝜔-language
recognized by a strong reset PA A as

𝑆𝑅𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

8. The run satisfies the weak reset condition if there are infinitely many reset positions
0 = 𝑘0 < 𝑘1 < 𝑘2, . . . such that 𝑝𝑘𝑖 ∈ 𝐹 and 𝜌 (𝑟𝑘𝑖−1+1 . . . 𝑟𝑘𝑖 ) ∈ 𝐶 for all 𝑖 ≥ 1. We call a
PA accepting with the weak reset condition a weak reset PA. We define the𝜔-language
recognized by a weak reset PA A as

𝑊𝑅𝜔 (A) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼}.

Intuitively worded, whenever a strong reset PA enters an accepting state, the Parikh condi-
tion must be satisfied. Then the counters are reset. Similarly, a weak reset PA may reset the
counters whenever there is an accepting hit, and they must reset infinitely often, too. In
the following we will often just speak of reset PA without explicitly stating whether they
are weak or strong. In this case, we mean the strong variant. We will show the equiva-
lence of the nondeterministic variants of two models in Lemma 3.1.23 and Lemma 3.1.24,
while in the deterministic setting weak reset PA are more expressive than strong reset PA,
see Lemma 3.2.17.
Guha et al. [GJLZ22] assume that reachability PA are complete, i.e., for every (𝑝, 𝑎) ∈ 𝑄 × Σ
there are v ∈ ℕ𝑑 and 𝑞 ∈ 𝑄 such that (𝑝, 𝑎, v, 𝑞) ∈ Δ, as incompleteness allows to express
additional safety conditions. We also make this assumption in order to avoid inconsistencies.
In fact, we can assume that all models are complete, as the other models can be completed by
adding a non-accepting sink. Observe that their deterministic variants are always complete
by definition.

Example 3.0.1. Let A be the automaton in Figure 3.1 with 𝐶 = {(𝑧, 𝑧′), (𝑧,∞) | 𝑧′ ≥ 𝑧}.
• If we interpret A as a PA (over finite words), then we have 𝐿(A) = {𝑤 ∈ {𝑎, 𝑏}∗ · {𝑏} |
|𝑤 |𝑎 ≤ |𝑤 |𝑏} ∪ {Y}. The automaton is in the accepting state at the very beginning and
every time after reading a 𝑏. The first counter counts the occurrences of 𝑎, the second
one counts occurrences of 𝑏. By definition of𝐶 the automaton only accepts when the
second counter value is greater or equal to the first counter value (note that vectors
containing an ∞-entry have no additional effect).
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Figure 3.1. The automaton A with 𝐶 = {(𝑧, 𝑧′), (𝑧,∞) | 𝑧′ ≥ 𝑧} from Example 3.0.1.

• If we interpret A as a safety PA, then we have 𝑆𝜔 (A) = {𝑏}𝜔 . As 𝑞1 is not accepting,
only the 𝑏-loop on 𝑞0 may be used.

• If we interpret A as a reachability PA, then we have 𝑅𝜔 (A) = {𝛼 ∈ {𝑎, 𝑏}𝜔 | 𝛼 has a
prefix in 𝐿(A)}. The automaton has satisfied the reachability condition after reading
a prefix in 𝐿(A) and accepts any continuation after that.

• If we interpret A as a Büchi PA, then we have 𝐵𝜔 (A) = 𝐿(A)𝜔 . The automaton
accepts an infinite word if infinitely often the Parikh condition is satisfied in the
accepting state. Observe that 𝐶 is a homogeneous linear set and the initial state as
well as the accepting state have the same outgoing transitions.

• If we interpret A as a co-Büchi PA, then we have 𝐶𝐵𝜔 (A) = 𝐿(A) · {𝑏}𝜔 . This is
similar to the safety PA, but the accepted words may have a finite “non-safe” prefix
from 𝐿(A).

• If we interpret A as a reachability-regular PA, then we have 𝑅𝑅𝜔 (A) = {𝛼 ∈ {𝑎, 𝑏}𝜔 |
𝛼 has a prefix in 𝐿(A) and |𝛼 |𝑏 = ∞}. After having met the reachability condition
the automaton still needs visit an accepting state infinitely often.

• If we interpret A as a limit PA, then we have 𝐿𝜔 (A) = {𝛼 ∈ {𝑎, 𝑏}𝜔 | |𝛼 |𝑎 < ∞}.
The automaton must visit the accepting state infinitely often. At the same time the
extended Parikh image must belong to𝐶 , which implies that the infinite word contains
only some finite number 𝑧 of symbol 𝑎 (note that only the vectors of the form (𝑧,∞)
have an effect here, as at least one symbol must be seen infinitely often by the infinite
pigeonhole principle).

• If we interpret A as a weak reset PA, then we have𝑊𝑅𝜔 (A) = 𝐿(A)𝜔 . As a weak
reset PA may (but is not forced to) reset the counters upon visiting the accepting
state, the automaton may reset every time a (finite) infix in 𝐿(A) has been read.

• If we interpret A as a strong reset PA, then we have 𝑆𝑅𝜔 (A) = {𝑏∗𝑎}𝜔 ∪{𝑏∗𝑎}∗ · {𝑏}𝜔 .
Whenever the automaton reaches an accepting state also the Parikh condition must
be satisfied. This implies that the 𝑎-loop on 𝑞1 may never be used, as this would
increase the first counter value to at least 2, while the second counter value is 1 upon
reaching the accepting state 𝑞0 (which resets the counters).
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3.1 Nondeterministic Parikh Automata

In this section, we study the nondeterministic variants of Parikh automata on infinite
words. We first show that the newly introduced variants are closed under union and left-
concatenation with Parikh recognizable languages, yielding the foundation in order to
establish the claimed characterizations. These characterizations in turn help us to establish
the remaining closure properties. Motivated by further examining the expressiveness of
all these models, we study the effect of Y-transitions and show that almost all considered
models admit Y-elimination, the exception being safety and co-Büchi PA. Based on this
result, we show that Büchi PA and blind counter automata operating on infinite words
as introduced by Fernau and Stiebe [FS08] are equivalent. Finally, we study the classical
decision problems with application to model checking.

3.1.1 Preparation

It was observed in [GJLZ22] that Büchi PA recognize a strict subset of L𝜔
PA,PA. In this

section we first show that the class of reset PA recognizable 𝜔-languages is a strict su-
perset of L𝜔

PA,PA. Then we provide an automata-based characterization of L𝜔
PA,Reg,L

𝜔
PA,PA,

and L𝜔
Reg,PA. Towards this goal we first establish some closure properties.

Guha et al. [GJLZ22] have shown that safety, reachability, Büchi, and co-Büchi PA are
closed under union using a modification of the standard construction for PA, i. e., taking
the disjoint union of the automata (introducing a fresh initial state), and the disjoint union
of the semi-linear sets, where disjointness is achieved by “marking” every vector in the first
set by an additional 1 (increasing the dimension by 1), and all vectors in the second set by
an additional 2. Then all transitions from the new initial state leading to the copy of the first
automaton are also marked with a 1 and those leading to the copy of the second automaton
are marked with a 2. We observe that the same construction also works for reachability-
regular and limit PA, and a small modification is sufficient to make the construction also
work for reset PA. To be precise, we need to refresh the mark every time we leave an
accepting state, as the reset “forgets” this information. We leave the details to the reader.

Lemma 3.1.1. The classes of reachability-regular PA recognizable, limit PA recognizable,

and reset PA recognizable 𝜔-languages are closed under union.

Furthermore, we show that these classes, as well as the class of Büchi PA recognizable
𝜔-languages, are closed under left-concatenation with PA recognizable languages. We
provide some details in the next lemma, as we will need to modify the standard construction
in such a way that we do not need to keep accepting states of the PA on finite words. This
will help to characterize L𝜔

PA,PA via (restricted) reset PA.
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Lemma 3.1.2. The classes of reachability-regular PA recognizable, limit PA recogniz-

able, reset PA recognizable, Büchi PA recognizable, co-Büchi PA recognizable, and safety

PA recognizable 𝜔-languages are closed under left-concatenation with PA recognizable

languages.

Proof. We begin with reset PA. Let A1 = (𝑄1, Σ, 𝑞1,Δ1, 𝐹1,𝐶1) be a PA of dimension 𝑑1 and
let A2 = (𝑄2, Σ, 𝑞2,Δ2, 𝐹2,𝐶2) be a reset PA of dimension 𝑑2. We sketch the construction of
a reset PA A of dimension 𝑑1 +𝑑2 that recognizes 𝐿(A1) ·𝑆𝑅𝜔 (A). We assume without loss
of generality that 𝑞2 is accepting (this can be achieved by introducing a fresh initial state).
Furthermore, for now we assume that Y ∉ 𝐿(A1), that is, every accepting run of A1 is not
empty. Again, A consists of disjoint copies of A1 and A2 but only the accepting states
of A2 remain accepting, and the initial state of A is 𝑞1. All transitions of the copy of A1
use the first 𝑑1 counters (that is, the remaining 𝑑2 counters are always 0), and, likewise, the
transitions of A2 only use the last 𝑑2 counters (that is, the first 𝑑1 counters are always 0).
Finally, we copy every transition of A1 that leads to an accepting state of A1 such that it
also leads to 𝑞2, that is, we add the transitions {(𝑝, 𝑎, v · 0𝑑2, 𝑞2) | (𝑝, 𝑎, v, 𝑞) ∈ Δ1, 𝑞 ∈ 𝐹1}.
The semi-linear set 𝐶 of A is 𝐶1 · {0𝑑2} ∪ {0𝑑1} · 𝐶2. As every accepting run of A1 is
non-empty by assumption, A may guess the last transition of every accepting run of A1
and replace it with one of the new transitions that leads to A2 instead. As 𝑞2 is accepting,
the counters are reset, which justifies the choice of 𝐶 . Now, if Y ∈ 𝐿(A1), observe that
𝐿(A1) · 𝑆𝑅𝜔 (A2) = (𝐿(A1) \ {Y} · 𝑆𝑅𝜔 (A2)) ∪ 𝑆𝑅𝜔 (A2). Hence, we may remove Y from
𝐿(A1) by replacing 𝑞1 by a fresh non-accepting copy and use the closure under union.
Hence, in any case only the copies of accepting states of A2 remain accepting; in particular
no state of A1 is accepting in the corresponding copy of A.
The construction for reachability-regular PA, limit PA and Büchi PA is very similar. The
only difference is that we choose 𝐶 = 𝐶1 ·𝐶2 for the semi-linear set of A, as counters are
never reset here.
Finally, for co-Büchi PA and safety PA we need the following modifications. First, we make
every state of A accepting. Furthermore, we add one additional counter that is set to 1 on
every transition from an accepting state of A1 to the initial state of A2 (note that every
run of A can only take such a transition once). This counter is not modified on every other
transition. The new semi-linear set is 𝐶 = (ℕ𝑑1+𝑑2 · {0}) ∪ (𝐶1 ·𝐶2 · {1}), that is, as long as
we have not reached the state set of A2, we do not check the counter values yet. ◀

Before we continue, we show that we can normalize PA (on finite words) such that the
initial state is the only accepting state. This observation simplifies several proofs in this
section.
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Lemma 3.1.3. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a PA of dimension 𝑑 . Then there exists an

equivalent PA A′
of dimension 𝑑 + 1 with the following properties.

• The initial state of A′
is the only accepting state.

• 𝑆𝐶𝐶 (A′) = {𝑄}.

We say that A′
is normalized.

Proof. The normalized PA A′ is obtained from A by adding a fresh state 𝑞′0, which is the
initial state and only accepting state, and which inherits all outgoing transitions from 𝑞0 and
all incoming transitions from the accepting states. Furthermore, all transitions get a new
counter, which is set to 0 except for the new incoming transitions of 𝑞′0 where the counter
is set to 1, and all vectors in 𝐶 are concatenated with 1 (and we add the all zero-vector if
we want to accept Y). Finally, we remove all states that cannot reach 𝑞′0 (such states can
appear when shortcutting the incoming transitions of 𝐹 , and are useless in the sense that
their removal does not change the accepted language; however, this removal is necessary
for the second property).
Formally, we define A′ = {𝑄 ∪ {𝑞′0}, Σ, 𝑞′0,Δ′, {𝑞′0},𝐶′), where

Δ′ = {(𝑝, 𝑎, v · 0, 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ}
∪ {(𝑞′0, 𝑎, v · 0, 𝑞) | (𝑞0, 𝑎, v, 𝑞) ∈ Δ}
∪ {(𝑝, 𝑎, v · 1, 𝑞′0) | (𝑝, 𝑎, v, 𝑓 ) ∈ Δ, 𝑓 ∈ 𝐹 }
∪ {(𝑞′0, 𝑎, v · 1, 𝑞′0) | (𝑞0, 𝑎, v, 𝑓 ) ∈ Δ, 𝑓 ∈ 𝐹 }.

and

𝐶′ =

{︄
𝐶 · {1} if Y ∉ 𝐿(A)
𝐶 · {1} ∪ {0𝑑+1} otherwise.

It is now easily verified that 𝐿(A) = 𝐿(A′). ◀

Observe that we have 𝑆𝑅𝜔 (A′) = 𝐿(A)𝜔 , that is, every normalized PA interpreted as a
reset PA recognizes the 𝜔-closure of the language recognized by the PA. As an immediate
consequence we obtain the following corollary.

Corollary 3.1.4. For every Parikh recognizable language 𝐿 we have that 𝐿𝜔 is reset PA

recognizable.

Combining these results we obtain that every 𝜔-language in L𝜔
PA,PA, i.e., every 𝜔-language

of the form
⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

is reset PA recognizable. We show that the other direction does not
hold, i.e., the inclusion is strict.
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Lemma 3.1.5. The class L𝜔
PA,PA is a strict subclass of the class of reset PA recognizable

𝜔-languages.

Proof. The inclusion is a direct consequence of Lemma 3.1.1, Lemma 3.1.2, and Corollary 3.1.4.
Hence it remains to show that the inclusion is strict.
Consider the 𝜔-language 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1}𝜔 ∪ {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1}∗ · {𝑎}𝜔 . This 𝜔-language is
reset PA recognizable, as witnessed by the strong reset PA in Figure 3.2 with semi-linear
set 𝐶 = {(𝑧, 𝑧) | 𝑧 ∈ ℕ}.

𝑞0 𝑞1 𝑞2 𝑞3

𝑎,

(︃
1
0

)︃
𝑏,

(︃
0
1

)︃

𝑏,

(︃
0
1

)︃

𝑏,

(︃
0
1

)︃
𝑏,

(︃
0
1

)︃

𝑎,

(︃
1
0

)︃

𝑎,

(︃
0
0

)︃ 𝑎,

(︃
0
0

)︃

Figure 3.2. The strong reset PA for 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1}𝜔 ∪ {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1}∗ · {𝑎}𝜔 with
semi-linear set 𝐶 = {(𝑧, 𝑧) | 𝑧 ∈ ℕ}.

We claim that 𝐿 ∉ L𝜔
PA,PA. Assume towards a contraction that 𝐿 ∈ L𝜔

PA,PA, i. e., there are
Parikh recognizable languages𝑈1,𝑉1, . . . ,𝑈𝑛,𝑉𝑛 such that 𝐿 = 𝑈1𝑉

𝜔
1 ∪· · ·∪𝑈𝑛𝑉𝜔𝑛 . Then there

is some 𝑖 ≤ 𝑛 such that for infinitely many 𝑗 ≥ 1 we have 𝛼 𝑗 = 𝑎𝑏𝑎2𝑏2 . . . 𝑎 𝑗𝑏 𝑗 · 𝑎𝜔 ∈ 𝑈𝑖𝑉𝜔𝑖 .
Then𝑉𝑖 must contain a word of the form 𝑣 = 𝑎𝑘 , 𝑘 > 0. Additionally, there cannot be a word
in 𝑉𝑖 with infix 𝑏. To see this assume for sake of contradiction that there is a word𝑤 ∈ 𝑉𝑖
with ℓ = |𝑤 |𝑏 > 0. Let 𝛽 = (𝑣 ℓ+1𝑤)𝜔 . Observe that 𝛽 has an infix that consists of at least
ℓ + 1 many 𝑎, followed by at most ℓ , but at least one 𝑏, hence, no word of the form 𝑢𝛽 with
𝑢 ∈ 𝑈𝑖 is in 𝐿. This is a contradiction, thus 𝑉𝑖 ⊆ {𝑎}+.
Since𝑈𝑖 is Parikh recognizable, there is a PA A𝑖 with 𝐿(A𝑖) = 𝑈𝑖 . Let𝑚 be the number of
states in A𝑖 and𝑤 ′ = 𝑎𝑏𝑎2𝑏2 . . . 𝑎𝑚

4+1𝑏𝑚
4+1. Then𝑤 ′ is a prefix of a word accepted by A𝑖 .

Now consider the infixes 𝑎ℓ𝑏ℓ and the pairs of states 𝑞1, 𝑞2, where we start reading 𝑎ℓ and
end reading 𝑎ℓ , and 𝑞3, 𝑞4 where we start to read 𝑏ℓ and end to read 𝑏ℓ , respectively. There
are𝑚2 choices for the first pair and𝑚2 choices for the second pair, hence𝑚4 possibilities
in total. Hence, as we have more than𝑚4 such infixes, there must be two with the same
associated states 𝑞1, 𝑞2, 𝑞3, 𝑞4. Then we can swap these two infixes and get a word of the
form 𝑎𝑏 . . . 𝑎𝑟𝑏𝑠 . . . 𝑎𝑠𝑏𝑟 . . . 𝑎𝑚

4+1𝑏𝑚
4+1 that is a prefix of some word in 𝐿(A𝑖) = 𝑈𝑖 . But no

word in 𝐿 has such a prefix, a contradiction. Thus,𝑈1𝑉
𝜔
1 ∪ · · · ∪𝑈𝑛𝑉𝜔𝑛 ≠ 𝐿. ◀
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3.1.2 Characterization of Büchi Parikh Automata

As mentioned in the last section, the class of 𝜔-languages recognized by Büchi PA is a strict
subset of L𝜔

PA,PA, i. e., languages of the form
⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

for Parikh recognizable 𝑈𝑖 and 𝑉𝑖 . In
this subsection we show that a restriction of the PA recognizing the𝑉𝑖 is sufficient to exactly
capture the expressiveness of Büchi PA. To be precise, we show the following.

Lemma 3.1.6. The following are equivalent for all 𝜔-languages 𝐿 ⊆ Σ𝜔 .

(1) 𝐿 is Büchi PA recognizable.

(2) 𝐿 is of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

, where𝑈𝑖 ∈ Σ∗
is Parikh recognizable and𝑉𝑖 ∈ Σ∗

is recognized

by a normalized PA where 𝐶 is a homogeneous linear set.

We note that we can translate every PA (with a linear set𝐶) into an equivalent normalized PA
by Lemma 3.1.3. However, this construction adds a base vector, as we concatenate {1} to 𝐶 .
In fact, this can generally not be avoided without losing expressiveness. It turns out that
this loss of expressiveness is exactly what we need to characterize the class of 𝜔-languages
recognized by Büchi PA as stated in the previous lemma. The main reason for this is pointed
out in the following lemma.

Lemma 3.1.7. Let 𝐿 be a language recognized by a (normalized) PA A =

(𝑄, Σ, 𝑞0,Δ, {𝑞0},𝐶) where𝐶 is a homogeneous linear set. Then we have 𝐵𝜔 (A) = 𝐿(A)𝜔 .

Proof. In this proof we assume that 𝐶 = 𝐶 (0, 𝑃) with 𝑃 = {p1, . . . , pℓ } for some ℓ ≥ 0.
Let 𝛼 ∈ 𝐵𝜔 (A) with accepting run 𝑟 = 𝑟1𝑟2𝑟3 . . . where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖). As 𝑟 satisfies
the Büchi condition and A is normalized there are infinitely many accepting hits, that is,
infinitely many 𝑖 such that 𝑝𝑖 = 𝑞0 and 𝜌 (𝑟1 . . . 𝑟𝑖) ∈ 𝐶 . By Dickson’s Lemma [Dic13], there
is an infinite monotone (sub)sequence of accepting hits 𝑠1 < 𝑠2 < . . . , i. e., for all 𝑗 > 𝑖 we
have 𝜌 (𝑟1 . . . 𝑟𝑠𝑖 ) = p1𝑧1 + · · · + pℓ𝑧ℓ for some 𝑧𝑖 ∈ ℕ and 𝜌 (𝑟1 . . . 𝑟𝑠 𝑗 ) = p1𝑧

′
1 + · · · + pℓ𝑧′ℓ for

some 𝑧′𝑖 ∈ ℕ, and 𝑧′
𝑘
≥ 𝑧𝑘 for all 𝑘 ≤ ℓ . Hence, every infix 𝛼 [𝑠𝑖 + 1, 𝑠𝑖+1] for 𝑖 ≥ 0 (assuming

𝑠0 = 0) is accepted by A.
Now let 𝑤1𝑤2 · · · ∈ 𝐿(A)𝜔 such that 𝑤𝑖 ∈ 𝐿(A) for all 𝑖 ≥ 1. Let 𝑟 (𝑖) be an accepting
run of A on𝑤𝑖 . Observe that for every 𝑖 ≥ 1 we have that 𝑟 (1) . . . 𝑟 (𝑖) is an accepting run
of A on 𝑤1 . . .𝑤𝑖 , as 𝐶 is a homogeneous linear set, and hence we have 𝜌 (𝑟 (1) . . . 𝑟 (𝑖)) =
𝜌 (𝑟 (1)) + · · · +𝜌 (𝑟 (𝑖)) ∈ 𝐶 . Hence, the infinite sequence 𝑟 (1)𝑟 (2) . . . is a run of A on𝑤1𝑤2 . . .
with infinitely many accepting hits. Hence𝑤1𝑤2 · · · ∈ 𝐵𝜔 (A). ◀

This is the main ingredient to prove Lemma 3.1.6.

Proof of Lemma 3.1.6. We note that the proof in [GJLZ22] showing that every 𝜔-language 𝐿
recognized by a Büchi-PA is of the form

⋃︁
𝑖 𝑈𝑖𝑉𝑖 for PA recognizable 𝑈𝑖 and 𝑉𝑖 already

constructs PA for the 𝑉𝑖 of the desired form. This shows the implication (1) ⇒ (2).
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To show the implication (2) ⇒ (1), we use that the𝜔-closure of languages recognized by PA
of the stated form is Büchi PA recognizable by Lemma 3.1.7. As Büchi PA are closed under
left-concatenation with PA recognizable languages (Lemma 3.1.2) and union [GJLZ22], the
claim follows. ◀

3.1.3 Characterization of L𝝎
PA,Reg

In this subsection we characterize L𝜔
PA,Reg by showing the following equivalences.

Theorem 3.1.8. The following are equivalent for all 𝜔-languages 𝐿 ⊆ Σ𝜔 .

(1) 𝐿 is of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

, where𝑈𝑖 ∈ Σ∗
is Parikh recognizable, and𝑉𝑖 ⊆ Σ∗

is regular.

(2) 𝐿 is limit PA recognizable.

(3) 𝐿 is reachability-regular PA recognizable.

Observe that in the first item we may assume that 𝐿 is of the form
⋃︁
𝑖 𝑈𝑖𝑉𝑖 , where𝑈𝑖 ∈ Σ∗

is Parikh recognizable, and 𝑉𝑖 ⊆ Σ𝜔 is 𝜔-regular. Then, by simple combinatorics and
Büchi’s theorem we have

⋃︁
𝑖 𝑈𝑖𝑉𝑖 =

⋃︁
𝑖 𝑈𝑖 (

⋃︁
𝑗𝑖
𝑋 𝑗𝑖𝑌

𝜔
𝑗𝑖
) = ⋃︁

𝑖, 𝑗𝑖
𝑈𝑖 (𝑋 𝑗𝑖𝑌𝜔𝑗𝑖 ) =

⋃︁
𝑖, 𝑗𝑖
(𝑈𝑖𝑋 𝑗𝑖 )𝑌𝜔𝑗𝑖 ,

for regular languages 𝑋 𝑗𝑖 , 𝑌𝑗𝑖 , where 𝑈𝑖𝑋 𝑗𝑖 is Parikh recognizable, as Parikh recognizable
languages are closed under concatenation [Cad13, Proposition 3].
To simplify the proof, it is convenient to consider the following generalizations of Büchi au-
tomata. A transition-based generalized Büchi automaton (TGBA) is a tupleA = (𝑄, Σ, 𝑞0,Δ,T)
where T ⊆ 2Δ is a collection of sets of transitions. Then a run 𝑟1𝑟2𝑟3 . . . of A is accepting
if for all 𝑇 ∈ T there are infinitely many 𝑖 such that 𝑟𝑖 ∈ 𝑇 . It is well-known that TGBA
have the same expressiveness as Büchi automata [GL02].
Theorem 3.1.8 will be a direct consequence from the following lemmas. The first lemma
shows the implication (1) ⇒ (2).

Lemma 3.1.9. If 𝐿 ∈ L𝜔
PA,Reg, then 𝐿 is limit PA recognizable.

Proof. As the class of limit Parikh recognizable 𝜔-languages is closed under union by
Lemma 3.1.1, it is sufficient to show how to construct a limit PA for an 𝜔-language of the
form 𝐿 = 𝑈𝑉𝜔 , where𝑈 is Parikh recognizable and 𝑉 is regular.
Let A1 = (𝑄1, Σ, 𝑞1,Δ1, 𝐹1,𝐶) be a PA with 𝐿(A1) = 𝑈 and A2 = (𝑄2, Σ, 𝑞2,Δ2, 𝐹2) be a
Büchi automaton with 𝐿𝜔 (A2) = 𝑉𝜔 . We use the following standard construction for
concatenation. Let A = (𝑄1 ∪𝑄2, Σ, 𝑞1,Δ, 𝐹2,𝐶) be a limit PA where

Δ = Δ1 ∪ {(𝑝, 𝑎, 0, 𝑞) | (𝑝, 𝑎, 𝑞) ∈ Δ2} ∪ {(𝑓 , 𝑎, 0, 𝑞) | (𝑞2, 𝑎, 𝑞) ∈ Δ2, 𝑓 ∈ 𝐹1}.

We claim that 𝐿𝜔 (A) = 𝐿.

51



Chapter 3. Parikh Automata on Infinite Words

To show 𝐿𝜔 (A) ⊆ 𝐿, let 𝛼 ∈ 𝐿𝜔 (A) with accepting run 𝑟1𝑟2𝑟3 . . . where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖).
As only the states in 𝐹2 are accepting, there is a position 𝑗 such that 𝑝 𝑗−1 ∈ 𝐹1 and 𝑝 𝑗 ∈ 𝑄2.
In particular, all transitions of the copy of A2 are labeled with 0, i. e., v𝑖 = 0 for all 𝑖 ≥ 𝑗 .
Hence 𝜌 (𝑟 ) = 𝜌 (𝑟1 . . . 𝑟 𝑗−1) ∈ 𝐶 (in particular, there is no ∞ value in 𝜌 (𝑟 )). We observe that
𝑟1 . . . 𝑟 𝑗−1 is an accepting run of A1 on 𝛼 [1, 𝑗 − 1], as 𝑝 𝑗−1 ∈ 𝐹1 and 𝜌 (𝑟1 . . . 𝑟 𝑗−1) ∈ 𝐶 . For
all 𝑖 ≥ 𝑗 let 𝑟 ′𝑖 = (𝑝𝑖−1, 𝛼𝑖, 𝑝𝑖). Observe that (𝑞2, 𝛼 𝑗 , 𝑝 𝑗 )𝑟 ′𝑗+1𝑟

′
𝑗+2 . . . is an accepting run of A2

on 𝛼 𝑗𝛼 𝑗+1𝛼 𝑗+2 . . . , hence 𝛼 ∈ 𝐿(A1) · 𝐿𝜔 (A2) = 𝐿.
To show𝐿 = 𝑈𝑉𝜔 ⊆ 𝐿𝜔 (A), let𝑤 ∈ 𝐿(A1) = 𝑈 with accepting run 𝑠 , and𝛼 ∈ 𝐿𝜔 (A2) = 𝑉𝜔
with accepting run 𝑟 = 𝑟1𝑟2𝑟3 . . . , where 𝑟𝑖 = (𝑝𝑖−1, 𝛼1, 𝑝𝑖). Observe that 𝑠 is also a partial run
of A on𝑤 , ending in an accepting state 𝑓 . By definition of Δ, we can continue the run 𝑠 in A
basically as in 𝑟 . To be precise, let 𝑟 ′1 = (𝑓 , 𝛼1, 0, 𝑝1), and, for all 𝑖 > 1 let 𝑟 ′𝑖 = (𝑝𝑖−1, 𝛼𝑖, 0, 𝑝𝑖).
Then 𝑠𝑟 ′1𝑟 ′2𝑟 ′3 . . . is an accepting run of A on𝑤𝛼 , hence𝑤𝛼 ∈ 𝐿𝜔 (A). ◀

Observe that the construction in the proof of the lemma works the same way when we
interpret A as a reachability-regular PA (every visit of an accepting state has the same
good counter value; this argument is even true if we interpret A as a Büchi PA), showing
the implication (1) ⇒ (3).

Corollary 3.1.10. If 𝐿 ∈ L𝜔
PA,Reg, then 𝐿 is reachability-regular.

For the backwards direction we need an auxiliary lemma, essentially stating that semi-linear
sets over 𝐶 ⊆ (ℕ ∪ {∞})𝑑 can be modified such that ∞-entries in vectors in 𝐶 are replaced
by arbitrary integers, and remain semi-linear.

Lemma 3.1.11. Let 𝐶 ⊆ (ℕ ∪ {∞})𝑑 be semi-linear and 𝐷 ⊆ {1, . . . , 𝑑}. Let 𝐶𝐷 ⊆ ℕ𝑑

be the set obtained from 𝐶 as follows.

1. Remove every vector v = (𝑣1, . . . , 𝑣𝑑) where 𝑣𝑖 = ∞ for an 𝑖 ∉ 𝐷 .

2. As long as 𝐶𝐷 contains a vector v = (𝑣1, . . . , 𝑣𝑑) with 𝑣𝑖 = ∞ for an 𝑖 ≤ 𝑑 : replace v
by all vectors of the form (𝑣1, . . . 𝑣𝑖−1, 𝑧, 𝑣𝑖+1, . . . , 𝑣𝑑) for 𝑧 ∈ ℕ.

Then 𝐶𝐷 is semi-linear. Furthermore, 𝐶𝐷 can be computed in polynomial time.

Proof. For a vector v = (𝑣1, . . . , 𝑣𝑑) ∈ (ℕ ∪ {∞})𝑑 , let Inf (v) = {𝑖 | 𝑣𝑖 = ∞} denote the
positions of ∞-entries in v. Furthermore, let v̄ = (𝑣1, . . . , 𝑣𝑑) denote the vector obtained
from v by replacing every ∞-entry by 0, i. e., 𝑣𝑖 = 0 if 𝑣𝑖 = ∞, and 𝑣𝑖 = 𝑣𝑖 otherwise.
We carry out the following procedure for every linear set of the semi-linear set independently,
hence we assume that 𝐶 = (b, 𝑃) with is linear. We also assume that there is no p ∈ 𝑃 with
Inf (p) ⊈ 𝐷 , otherwise, we simply remove it.
Now, if Inf (b) ⊈ 𝐷 , then 𝐶𝐷 = ∅, as this implies that every vector in 𝐶 has an ∞-entry at
an unwanted position (the first item of the lemma).
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Otherwise, 𝐶𝐷 = 𝐶 (b,⋃︁p∈𝑃 ({p̄} ∪ {e𝑖 | 𝑖 ∈ Inf (p)})), which is linear by definition and
computable in polynomial time. ◀

We are now ready to prove the following lemma, showing the implication (2) ⇒ (1).

Lemma 3.1.12. If 𝐿 is limit PA recognizable, then 𝐿 ∈ L𝜔
PA,Reg.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be an limit PA of dimension 𝑑 . The idea is as follows. We
guess a subset 𝐷 ⊆ {1, . . . , 𝑑} of counters whose values we expect to be ∞. Observe that
every counter not in 𝐷 has a finite value, hence for every such counter there is a point
where all transitions do not increment the counter further. For every subset 𝐷 ⊆ {1, . . . , 𝑑}
we decompose A into a PA and a TGBA. In the first step we construct a PA where every
counter not in 𝐷 reaches its final value and is verified. In the second step we construct
a TGBA ensuring that for every counter in 𝐷 at least one transition adding a non-zero
value to that counter is used infinitely often. This can be encoded directly into the TGBA.
Furthermore we delete all transitions that modify counters not in 𝐷 .
Fix 𝐷 ⊆ {1, . . . , 𝑑} and 𝑓 ∈ 𝐹 , and define the PA A𝐷

𝑓
= (𝑄, Σ, 𝑞0,Δ, {𝑓 },𝐶𝐷) where 𝐶𝐷 is

defined as in Lemma 3.1.11. Furthermore, we define the TGBA B𝐷
𝑓

= (𝑄, Σ, 𝑓 ,Δ𝐷 ,T𝐷)
where Δ𝐷 contains the subset of transitions of Δ where the counters not in 𝐷 have zero-
values (just the transitions without vectors for the counters, as we construct a TGBA).
On the other hand, for every counter 𝑖 in 𝐷 there is one acceptance component in T𝐷

that contains exactly those transitions (again without vectors) where the 𝑖th counter has a
non-zero value. Finally, we encode the condition that at least one accepting state in 𝐹 needs
to by seen infinitely often in T𝐷 by further adding the component {(𝑝, 𝑎, 𝑞) ∈ Δ | 𝑞 ∈ 𝐹 }
(i. e. now we need to see an incoming transition of a state in 𝐹 infinitely often).
We claim that 𝐿𝜔 (A) =

⋃︁
𝐷⊆{1,...,𝑑},𝑓 ∈𝐹 𝐿(A𝐷

𝑓
) · 𝐿𝜔 (B𝐷

𝑓
), which by the comment below

Theorem 3.1.8 and the equivalence of TGBA and Büchi automata implies the statement of
the lemma.
To show 𝐿𝜔 (A) ⊆ ⋃︁

𝐷⊆{1,...,𝑑},𝑓 ∈𝐹 𝐿(A𝐷
𝑓
) · 𝐿𝜔 (B𝐷

𝑓
), let 𝛼 ∈ 𝐿𝜔 (A) with accepting run

𝑟1𝑟2𝑟3 . . . where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖). Let 𝐷 be the positions of ∞-entries in 𝜌 (𝑟 ) =

(𝑣1, . . . , 𝑣𝑑). As the 𝑣𝑖 with 𝑖 ∉ 𝐷 have integer values, there is a position 𝑗 such that
in all v𝑘 for 𝑘 ≥ 𝑗 the 𝑖-th entry of v𝑘 is 0. Let ℓ ≥ 𝑗 be minimal such that 𝑝ℓ in 𝐹 . We split
𝛼 = 𝑤𝛽 , where𝑤 = 𝛼 [1, ℓ], and 𝛽 = 𝛼ℓ+1𝛼ℓ+2 . . . .
First we argue that𝑤 ∈ 𝐿𝜔 (A𝐷

𝑝ℓ
). Observe that A𝐷

𝑝ℓ
inherits all transitions from A, hence

𝑟1 . . . 𝑟ℓ is a run of A𝐷
𝑝ℓ

on 𝑤 . As 𝑝ℓ is accepting by definition, it remains to show that
𝜌 (𝑟1 . . . 𝑟ℓ) ∈ 𝐶𝐷 . By the choice of ℓ , all counters not in 𝐷 have reached their final values.
As 𝐶𝐷 contains all vectors of 𝐶 where all ∞-entries are replaced by arbitrary values, the
claim follows, hence𝑤 ∈ 𝐿(A𝐷

𝑝ℓ
).
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Now we argue that 𝛽 ∈ 𝐿𝜔 (B𝐷
𝑝ℓ
). For every 𝑘 > ℓ define 𝑟 ′

𝑘
= (𝑝𝑘−1, 𝛼𝑘 , 𝑝𝑘). Observe that

𝑟 ′ = 𝑟 ′
𝑘+1𝑟

′
𝑘+2 . . . is a run of B𝐷

𝑝ℓ
on 𝛽 (all 𝑟 ′

𝑘+1 exist in B𝐷
𝑝ℓ

, as the counters not in 𝐷 of all
transitions 𝑟𝑘 have zero-values by the definition of ℓ). It remains to show that 𝑟 ′ is accepting,
i. e., that for every counter in𝐷 at least one transition with a non-zero value is used infinitely
often, and an accepting state is visited infinitely often. This is the case, as these counter
values are ∞ in 𝜌 (𝑟 ) and by the acceptance condition of limit PA, hence 𝛽 ∈ 𝐿𝜔 (B𝐷

𝑝ℓ
). We

conclude 𝛼 ∈ ⋃︁
𝐷⊆{1,...,𝑑},𝑓 ∈𝐹 𝐿(A𝐷

𝑓
) · 𝐿𝜔 (B𝐷

𝑓
).

To show
⋃︁
𝐷⊆{1,...,𝑑},𝑓 ∈𝐹 𝐿(A𝐷

𝑓
) · 𝐿𝜔 (B𝐷

𝑓
) ⊆ 𝐿𝜔 (A), let 𝑤 ∈ 𝐿(A𝐷

𝑓
) and 𝛽 ∈ 𝐿𝜔 (B𝐷

𝑓
) for

some 𝐷 ⊆ {1, . . . , 𝑑} and 𝑓 ∈ 𝐹 . We show that𝑤𝛽 ∈ 𝐿𝜔 (A).
Let 𝑠 be an accepting run of A𝐷

𝑓
on 𝑤 , which ends in the accepting state 𝑓 by definition.

Let 𝜌 (𝑠) = (𝑣1, . . . , 𝑣𝑑). By definition of 𝐶𝐷 , there is a vector u = (𝑢1, . . . , 𝑢𝑑) in 𝐶 where
𝑢𝑖 = ∞ if 𝑖 ∈ 𝐷 , and 𝑢𝑖 = 𝑣𝑖 if 𝑖 ∉ 𝐷 . Furthermore, let 𝑟 = 𝑟1𝑟2𝑟3 . . . , where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, 𝑝𝑖),
be an accepting run of B𝐷

𝑓
on 𝛽 , which starts in the accepting state 𝑓 by definition. By

definition of T 𝑑 , for every counter 𝑖 ∈ 𝐷 at least one transition where the 𝑖-th counter of the
corresponding transition in Δ is non-zero is used infinitely often. Hence, let 𝑟 ′ = 𝑟 ′1𝑟 ′2𝑟 ′3 . . .
where 𝑟 ′𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖) for a suitable vector v𝑖 . Furthermore, the labels of transitions of
counters not in 𝐷 have a value of zero, hence 𝜌 (𝑟 ′) = (𝑥1, . . . , 𝑥𝑑), where 𝑥𝑖 = ∞ if 𝑖 ∈ 𝐷 ,
and 𝑥𝑖 = 0 if 𝑖 ∉ 𝐷 . A technical remark: it might be the case that there are more than
one transitions in Δ that collapse to the same transition in Δ𝐷 , say 𝛿1 = (𝑝, 𝑎, u, 𝑞) and
𝛿2 = (𝑝, 𝑎, v, 𝑞) appear in Δ and collapse to (𝑝, 𝑎, 𝑞) in Δ𝐷 . If both transitions, 𝛿1 and 𝛿2,
are seen infinitely often, we need to take care that we also see both infinitely often when
translating the run 𝑟 back. This is possible using a round-robin procedure.
Now observe that 𝑠𝑟 ′ is a run of A on 𝑤𝛽 (recall that 𝑠 ends in 𝑓 , and 𝑟 ′ starts in 𝑓 ).
Furthermore, we have 𝜌 (𝑠𝑟 ′) = 𝜌 (𝑠) +𝜌 (𝑟 ′) = (𝑣1+𝑥1, . . . , 𝑣𝑑 +𝑥𝑑), where 𝑣𝑖 +𝑥𝑖 = ∞ if 𝑖 ∈ 𝐷 ,
and 𝑣𝑖 + 𝑥𝑖 = 𝑣𝑖 if 𝑖 ∉ 𝐷 by the observations above. Hence 𝜌 (𝑠𝑟 ′) ∈ 𝐶 . Finally, T𝐷 enforces
that at least one accepting state in B𝐷

𝑓
is seen infinitely often, hence𝑤𝛽 ∈ 𝐿𝜔 (A). ◀

Observe that the construction in Lemma 3.1.9 yields a limit PA whose semi-linear set 𝐶
contains no vector with an ∞-entry. Hence, by this observation and the construction in the
previous lemma we obtain the following corollary.

Corollary 3.1.13. For every limit PA there is an equivalent limit PA whose semi-linear

set does not contain any ∞-entries.

Finally we show the implication (3) ⇒ (1).

Lemma 3.1.14. If 𝐿 is reachability-regular, then 𝐿 ∈ L𝜔
PA,Reg.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a reachability-regular PA. The intuition is as follows.
a reachability-regular PA just needs to verify the counters a single time. Hence, we can
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recognize the prefixes of infinite words 𝛼 ∈ 𝐵𝜔 (A) that generate the accepting hit with
a PA. Further checking that an accepting state is seen infinitely often can be done with a
Büchi automaton.
Fix 𝑓 ∈ 𝐹 and let A𝑓 = (𝑄, Σ, 𝑞0,Δ, {𝑓 },𝐶) be the PA that is, syntactically equal to A with
the only difference that 𝑓 is the only accepting state. Similarly, let B𝑓 = (𝑄, Σ, 𝑓 , {(𝑝, 𝑎, 𝑞) |
(𝑝, 𝑎, v, 𝑞) ∈ Δ}, 𝐹 ) be the Büchi automaton obtained from A by setting 𝑓 as the initial state
and the forgetting the vector labels.
We claim that 𝑅𝑅𝜔 (A) = ⋃︁

𝑓 ∈𝐹 𝐿(A𝑓 ) · 𝐿𝜔 (B𝑓 ).
To show 𝑅𝑅𝜔 (A) ⊆ ⋃︁

𝑓 ∈𝐹 𝐿(A𝑓 ) · 𝐿𝜔 (B𝑓 ), let 𝛼 ∈ 𝐵𝜔 (A) with accepting run 𝑟 = 𝑟1𝑟2𝑟3 . . .
where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖). Let𝑘 be arbitrary such that there is an accepting hit in 𝑟𝑘 (such a𝑘
exists by definition) and consider the prefix 𝛼 [1, 𝑘]. Obviously 𝑟1 . . . 𝑟𝑘 is an accepting run
of A𝑝𝑘 on 𝛼 [1, 𝑘]. Furthermore, there are infinitely many 𝑗 such that 𝑝 𝑗 ∈ 𝐹 by definition.
In particular, there are also infinitely many 𝑗 ≥ 𝑘 with this property. Let 𝑟 ′𝑖 = (𝑝𝑖−1, 𝛼𝑖, 𝑝𝑖)
for all 𝑖 > 𝑘 . Then 𝑟 ′

𝑘+1𝑟
′
𝑘+2 . . . is an accepting run of B𝑝𝑘 on 𝛼𝑘+1𝛼𝑘+2 . . . (recall that 𝑝𝑘 is

the initial state of B𝑝𝑘 ). Hence we have 𝛼 [1, 𝑘] ∈ 𝐿(A𝑝𝑘 ) and 𝛼𝑘+1𝛼𝑘+2 · · · ∈ 𝐿𝜔 (B𝑝𝑘 ).
To show

⋃︁
𝑓 ∈𝐹 𝐿(A𝑓 ) · 𝐿𝜔 (B𝑓 ) ⊆ 𝑅𝑅𝜔 (A), let𝑤 ∈ 𝐿(A𝑓 ) and 𝛽 ∈ 𝐿𝜔 (B𝑓 ) for some 𝑓 ∈ 𝐹 .

We show 𝑤𝛽 ∈ 𝐵𝜔 (A). Let 𝑠 = 𝑠1 . . . 𝑠𝑛 be an accepting run of A𝑓 on 𝑤 , which ends in
the accepting state 𝑓 with 𝜌 (𝑠) ∈ 𝐶 by definition. Furthermore, let 𝑟 = 𝑟1𝑟2𝑟3 . . . be an
accepting run of B𝐷

𝑓
on 𝛽 which starts in the accepting state 𝑓 by definition. It is now easily

verified that 𝑠𝑟 ′ with 𝑟 ′ = 𝑟 ′1𝑟 ′2𝑟 ′3 . . . where 𝑟 ′𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖) (for an arbitrary v𝑖 such that
𝑟 ′𝑖 ∈ Δ) is an accepting run of A on𝑤𝛽 , as there is an accepting hit in 𝑠𝑛 , and the (infinitely
many) visits of an accepting state in 𝑟 translate one-to-one, hence𝑤𝛽 ∈ 𝐵𝜔 (A). ◀

As shown in Lemma 3.1.6, the class of Büchi PA recognizable 𝜔-languages is equivalent to
the class of 𝜔-languages of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

where 𝑈𝑖 and 𝑉𝑖 are Parikh recognizable, but
the PA for 𝑉𝑖 is restricted in such a way that the initial state is the only accepting state and
the set is a homogeneous linear set. Observe that for every regular language 𝐿 there is a
Büchi automaton A where the initial state is the only accepting state with 𝐿𝜔 (A) = 𝐿𝜔 (see
e. g., [Tho91, Lemma 1.2]). Hence, L𝜔

PA,Reg is a subset of the class of Büchi PA recognizable
𝜔-languages. This inclusion is also strict, as witnessed by the Büchi PA in Example 3.0.1
which has the mentioned property.

Corollary 3.1.15. The class L𝜔
PA,Reg is a strict subclass of the class of Büchi PA recognizable

𝜔-languages.

We finish this subsection by observing that reachability PA capture a subclass of L𝜔
PA,Reg

where, due to completeness, all 𝑉𝑖 = Σ.

Observation 3.1.16. The following are equivalent for all 𝜔-languages 𝐿 ⊆ Σ𝜔 .

(1) 𝐿 is of the form

⋃︁
𝑖 𝑈𝑖Σ

𝜔
where𝑈𝑖 ⊆ Σ∗

is Parikh recognizable.

(2) 𝐿 is reachability PA recognizable.
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3.1.4 Characterization of L𝝎
PA,PA and L𝝎

Reg,PA

In this section we give a characterization of L𝜔
PA,PA and a characterization of L𝜔

Reg,PA. As
mentioned in the beginning of this section, reset PA are too strong to capture this class.
However, restrictions of strong reset PA are good candidates to capture L𝜔

PA,PA as well
as L𝜔

Reg,PA. In fact we show that it is sufficient to restrict the appearances of accepting states
to capture L𝜔

PA,PA, as specified by the first theorem of this subsection. Further restricting
the vectors yields a model capturing L𝜔

Reg,PA, as specified in the second theorem of this
subsection. Recall that the condensation of A is the DAG of strong components of the
underlying graph of A.

Theorem 3.1.17. The following are equivalent for all 𝜔-languages 𝐿 ⊆ Σ𝜔 .

(1) 𝐿 ∈ L𝜔
PA,PA.

(2) 𝐿 is recognized by a strong reset PA A with the property that accepting states appear

only in the leaves of the condensation of A, and there is at most one accepting state

per leaf.

Proof. To show the implication (1) ⇒ (2), let A𝑖 = (𝑄𝑖, Σ, 𝑞𝑖,Δ𝑖, 𝐹𝑖) for 𝑖 ∈ {1, 2} be PA and
let 𝐿 = 𝐿(A1) · 𝐿(A2)𝜔 . By Lemma 3.1.3 we may assume that A2 is normalized (recall that
by Corollary 3.1.4 this implies 𝑆𝑅𝜔 (A2) = 𝐿(A2)𝜔 ) and hence write 𝐿 = 𝐿(A1) · 𝑆𝑅𝜔 (A2).
As pointed out in the proof of Lemma 3.1.2, we can construct a reset PA A that recognizes 𝐿
such that only the accepting states of A2 remain accepting in A. As A2 is normalized,
this means that only 𝑞2 is accepting in A. Hence A satisfies the property of the theorem.
Finally observe that the construction in Lemma 3.1.1 maintains this property, implying that
the construction presented in Lemma 3.1.5 always yields a reset PA of the desired form.

To show the implication (2) ⇒ (1), let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a strong reset PA of
dimension 𝑑 with the mentioned property. Let 𝑓 ∈ 𝐹 and let A𝑓 = (𝑄, Σ, 𝑞0,Δ𝑓 , {𝑓 },𝐶 · {1})
with Δ𝑓 = {𝑝, 𝑎, v · 0, 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ, 𝑞 ≠ 𝑓 } ∪ {(𝑝, 𝑎, v · 1, 𝑓 ) | (𝑝, 𝑎, v, 𝑓 ) ∈ Δ} be the
PA of dimension 𝑑 + 1 obtained from A by setting 𝑓 as the only accepting state with an
additional counter that is 0 at every transition except the incoming transitions of 𝑓 , where
the counter is set to 1. Additionally all vectors in 𝐶 are concatenated with 1. Similarly, let
A𝑓 ,𝑓 = (𝑄, Σ, 𝑓 ,Δ𝑓 , {𝑓 },𝐶 · {1}) be the PA of dimension 𝑑 +1 obtained from A𝑓 by setting 𝑓
as the initial state.
To show 𝑆𝑅𝜔 (A) ⊆ ⋃︁

𝑓 ∈𝐹 𝐿(A𝑓 ) ·𝐿(A𝑓 ,𝑓 )𝜔 , let 𝛼 ∈ 𝑆𝜔 (A) with accepting run 𝑟 = 𝑟1𝑟2𝑟3 . . .
where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖). Let 𝑘1 < 𝑘2 < . . . be the positions of accepting states in 𝑟 , i. e.,
𝑝𝑘𝑖 ∈ 𝐹 for all 𝑖 ≥ 1. First observe that the property in the theorem implies 𝑝𝑘𝑖 = 𝑝𝑘 𝑗 for all
𝑖, 𝑗 ≥ 1, i. e., no two distinct accepting states appear in 𝑟 , since accepting states appear only
in different leaves of the condensation of A.
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For 𝑗 ≥ 1 define 𝑟 ′𝑗 = (𝑝 𝑗−1, 𝛼 𝑗 , v 𝑗 · 0, 𝑝 𝑗 ) if 𝑗 ≠ 𝑘𝑖 for all 𝑖 ≥ 1, and 𝑟 ′𝑗 = (𝑝 𝑗−1, 𝛼 𝑗 , v 𝑗 · 1, 𝑝 𝑗 ) if
𝑗 = 𝑘𝑖 for some 𝑖 ≥ 1, i. e., we replace every transition 𝑟 𝑗 by the matching transition in Δ𝑓 .
Now consider the partial run 𝑟1 . . . 𝑟𝑘1 and observe that 𝑝𝑖 ≠ 𝑝𝑘1 for all 𝑖 < 𝑘1, and
𝜌 (𝑟1 . . . 𝑟𝑘1) ∈ 𝐶 by the definition of strong reset PA. Hence 𝑟 ′ = 𝑟 ′1 . . . 𝑟 ′𝑘1

is an accepting
run of A𝑝𝑘1

on 𝛼 [1, 𝑘1], as only a single accepting state appears in 𝑟 ′, the newly introduced
counter has a value of 1 when entering 𝑝𝑘1 , i. e., 𝜌 (𝑟 ′) ∈ 𝐶 · {1}, hence 𝛼 [1, 𝑘1] ∈ 𝐿(A𝑝𝑘1

).
Finally, we show that 𝛼 [𝑘𝑖 + 1, 𝑘𝑖+1] ∈ 𝐿(A𝑝𝑘1 ,𝑝𝑘1

). Observe that 𝑟 ′
𝑘𝑖+1 . . . 𝑟

′
𝑘𝑖+1

is an accepting
run of A𝑝𝑘1 ,𝑝𝑘1

on 𝛼 [𝑘𝑖 + 1, 𝑘𝑖+1]: we have 𝜌 (𝑟𝑘𝑖+1 . . . 𝑟𝑘𝑖+1) = v ∈ 𝐶 by definition. Again, as
only a single accepting state appears in 𝑟 ′

𝑘𝑖+1 . . . 𝑟
′
𝑘𝑖+1

, we have 𝜌 (𝑟 ′
𝑘𝑖+1 . . . 𝑟

′
𝑘𝑖+1

) = v ·1 ∈ 𝐶 · {1},
and hence 𝛼 [𝑘𝑖 + 1, 𝑘𝑖+1] ∈ 𝐿(A𝑝𝑘1 ,𝑝𝑘1

). We conclude 𝛼 ∈ 𝐿(A𝑝𝑘1
) · 𝐿(A𝑝𝑘1 ,𝑝𝑘1

)𝜔 .
To show

⋃︁
𝑓 ∈𝐹 𝐿(A𝑓 ) · 𝐿(A𝑓 ,𝑓 )𝜔 ⊆ 𝑆𝑅𝜔 (A), let 𝑢 ∈ 𝐿(A𝑓 ), and 𝑣1, 𝑣2, · · · ∈ 𝐿(A𝑓 ,𝑓 ) for

some 𝑓 ∈ 𝐹 . We show that 𝑢𝑣1𝑣2 · · · ∈ 𝑆𝑅𝜔 (A).
First let 𝑢 = 𝑢1 . . . 𝑢𝑛 and 𝑟 ′ = 𝑟 ′1 . . . 𝑟 ′𝑛 with 𝑟 ′𝑖 = (𝑝𝑖−1, 𝑢𝑖, v𝑖 · 𝑐𝑖, 𝑝𝑖), where 𝑐𝑖 ∈ {0, 1}, be an
accepting run of A𝑓 on 𝑢. Observe that 𝜌 (𝑟 ′) ∈ 𝐶 · {1}, hence

∑︁
𝑖≤𝑛 𝑐𝑖 = 1, i. e., 𝑝𝑛 is the

only occurrence of an accepting state in 𝑟 ′ (if there was another, say 𝑝 𝑗 , then 𝑐 𝑗 = 1 by the
choice of Δ𝑓 , hence

∑︁
𝑖≤𝑛 𝑐𝑖 > 1, a contradiction). For all 1 ≤ 𝑖 ≤ 𝑛 let 𝑟𝑖 = (𝑝𝑖−1, 𝑢𝑖, v𝑖, 𝑝𝑖).

Then 𝑟1 . . . 𝑟𝑛 is a partial run of A on𝑤 with 𝜌 (𝑟1 . . . 𝑟𝑛) ∈ 𝐶 and 𝑝𝑛 = 𝑓 .
Similarly, no run of A𝑓 ,𝑓 on any 𝑣𝑖 visits an accepting state before reading the last symbol,
hence we continue the run from 𝑟𝑛 on 𝑣1, 𝑣2, . . . using the same argument. Hence𝑢𝑣1𝑣2 · · · ∈
𝑆𝑅𝜔 (A), concluding the proof. ◀

As a side product of the proof of Theorem 3.1.17 we get the following corollary, which is in
general not true for arbitrary reset PA.

Corollary 3.1.18. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a strong reset PA with the property that

accepting states appear only in the leaves of the condensation of A, and there is at most

one accepting state per leaf. Then we have 𝑆𝑅𝜔 (A) = ⋃︁
𝑓 ∈𝐹 𝑆𝜔 (𝑄, Σ, 𝑞0,Δ, {𝑓 },𝐶).

By even further restricting the power of strong reset PA, we get the following characteriza-
tion of L𝜔

Reg,PA.

Theorem 3.1.19. The following are equivalent for all 𝜔-languages 𝐿 ⊆ Σ𝜔 .

(1) 𝐿 is of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

, where𝑈𝑖 ⊆ Σ∗
is regular and 𝑉𝑖 ⊆ Σ∗

is Parikh recognizable.

(2) 𝐿 is recognized by a strong reset PA A with the following properties.

(a) At most one state𝑞 per leaf of the condensation of A may have incoming transitions

from outside the leaf, this state 𝑞 is the only accepting state in the leaf, and there

are no accepting states in non-leaves.

(b) only transitions connecting states in a leaf may be labeled with a non-zero vector.
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Observe that property (a) is a stronger property than the one of Theorem 3.1.17, hence,
strong reset PA with this restriction are at most as powerful as those that characterize L𝜔

PA,PA.
However, as a side product of the proof we get that property (a) is equivalent to the property
of Theorem 3.1.17. Hence, property (b) is necessary to sufficiently weaken strong reset PA
such that they capture L𝜔

Reg,PA. In fact, using the notion of normalization, we can re-use
most of the ideas in the proof of Theorem 3.1.17.

Proof of Theorem 3.1.19. We can trivially convert an NFA into an equivalent PA by labeling
every transition with 0 and choosing 𝐶 = {0}, showing the implication (1) ⇒ (2). Let A
be an arbitrary PA and assume that it is normalized; in particular implying that it is only a
single SCC. Again, we have 𝐿(A)𝜔 = 𝑆𝜔 (A) and the constructions for concatenation and
union preserve the properties, hence, we obtain a strong reset PA of the desired form.

To show the implication (2) ⇒ (1), let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a strong reset PA of
dimension 𝑑 with properties (a) and (b). Fix 𝑓 ∈ 𝐹 and let

B𝑓 = (𝑄 𝑓 , Σ, 𝑞0, {(𝑝, 𝑎, 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ, 𝑝, 𝑞 ∈ 𝑄 𝑓 }, {𝑓 })

with 𝑄 𝑓 = {𝑞 ∈ 𝑄 | 𝑞 appears in a non-leaf SCC of 𝐶 (A)} ∪ {𝑓 } be the NFA obtained
from A by removing all leaf states except 𝑓 , and removing all labels from the transitions.
Recycling the automaton from Theorem 3.1.17, let A𝑓 ,𝑓 = (𝑄, Σ, 𝑓 ,Δ𝑓 , {𝑓 },𝐶 · {1}) with
Δ𝑓 = {(𝑝, 𝑎, v · 0, 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ, 𝑞 ≠ 𝑓 } ∪ {(𝑝, 𝑎, v · 1, 𝑓 ) | (𝑝, 𝑎, v, 𝑓 ) ∈ Δ}. We claim
𝑆𝑅𝜔 (A) = ⋃︁

𝑓 ∈𝐹 𝐿(B𝑓 ) · 𝐿(A𝑓 ,𝑓 )𝜔 .
To show 𝑆𝑅𝜔 (A) ⊆ ⋃︁

𝑓 ∈𝐹 𝐿(B𝑓 ) · 𝐿(A𝑓 ,𝑓 )𝜔 , let 𝛼 ∈ 𝑆𝑅𝜔 (A) with accepting run 𝑟 =

𝑟1𝑟2𝑟3 . . . where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖), and let 𝑘1 < 𝑘2 < . . . be the positions of the accepting
states in 𝑟 , and consider the partial run 𝑟1 . . . 𝑟𝑘1 (if 𝑘1 = 0, i. e., the initial state is already
accepting, then 𝑟1 . . . 𝑟𝑘1 is empty).
By property (a) we have that 𝑝𝑘1 is the first state visited in 𝑟 that is, located in a leaf of𝐶 (A).
Hence 𝑟 ′1 . . . 𝑟 ′𝑘1

, where 𝑟 ′𝑖 = (𝑝𝑖−1, 𝛼𝑖, 𝑝𝑖), is an accepting run of B𝑝𝑘1
on 𝛼 [1, 𝑘1] (in the case

𝑘1 = 0 we define 𝛼 [1, 𝑘1] = Y).
By the same argument as in the proof of Theorem 3.1.17 we have 𝑝𝑘𝑖 = 𝑝𝑘 𝑗 for all 𝑖, 𝑗 ≥ 1,
hence 𝛼 [𝑘𝑖 + 1, 𝑘𝑖+1] ∈ 𝐿(A𝑝𝑘1 ,𝑝𝑘1

), and hence 𝛼 ∈ 𝐿(B𝑝𝑘 ) · 𝐿(A𝑝𝑘1 ,𝑝𝑘1
)𝜔 .

To show
⋃︁
𝑓 ∈𝐹 𝐿(A𝑓 ) · 𝐿(A𝑓 ,𝑓 )𝜔 ⊆ 𝑆𝑅𝜔 (A), let 𝑢 ∈ 𝐿(B𝑓 ), and 𝑣1, 𝑣2, · · · ∈ 𝐿(A𝑓 ,𝑓 ) for

some 𝑓 ∈ 𝐹 . We show that 𝑢𝑣1𝑣2 · · · ∈ 𝑆𝜔 (A).
First observe that properties (a) and (b) enforce that 0 ∈ 𝐶 , as the accepting state of a leaf
of 𝐶 (A) is visited before a transition labeled with a non-zero can be used. Let 𝑢 = 𝑢1 . . . 𝑢𝑛
and 𝑠1 . . . 𝑠𝑛 with 𝑠𝑖 = (𝑝𝑖1, 𝑢𝑖, 𝑝𝑖) be an accepting run of B𝑓 on 𝑢. Define 𝑠′𝑖 = (𝑝𝑖1, 𝑢𝑖, 0, 𝑝𝑖)
and observe that 𝑠′1 . . . 𝑠′𝑛 is a partial run of A with 𝜌 (𝑠′1 . . . 𝑠′𝑛) ∈ 𝐶 and 𝑝𝑛 = 𝑓 by the
observation above. Again we can very similarly continue the run on 𝑣1, 𝑣2, . . . using the
same argument. Hence 𝑢𝑣1𝑣2 · · · ∈ 𝑆𝑅𝜔 (A), concluding the proof. ◀
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3.1.5 Blind Counter Automata and 𝜺-elimination

As mentioned in Section 1.2, blind multicounter machines and Parikh automata are equiv-
alent on finite words. Blind counter automata on infinite words were first studied by
Fernau and Stiebe [FS08]. In this section we first recall the definition of blind counter ma-
chines as introduced by Fernau and Stiebe [FS08]. The definition of these automata admits
Y-transitions. It is easily observed that Büchi PA with Y-transitions are equivalent to blind
counter machines. Therefore, we extend all models studied in this paper with Y-transitions
and consider the natural question whether they admit Y-elimination. We show that almost
all models allow Y-elimination, the exception being safety and co-Büchi PA. As it turns out,
co-Büchi PA with Y-transitions are powerful enough to simulate Büchi PA, and safety PA
with Y-transitions are powerful enough to simulate reset PA. This is a stark contrast to their
variants without Y-transitions, as they do not even recognize all 𝜔-regular languages.
In order to avoid confusion (and sticking to the notation in the literature), we use the
terms blind multicounter machines (BMCM), meaning the model operating on finite words
introduced in Chapter 2, while blind counter automata (BCA) always denotes the model
operating on infinite words which we introduce now. Similar to Parikh automata, the syntax
of blind counter automata operating on infinite words is identical to blind multicounter
machines on finite words, that is, a tupleM = (𝑄, Σ, 𝑞0,Δ, 𝐹 ) whereΔ ⊆ 𝑄×(Σ∪{Y})×ℤ𝑑×𝑄
for some 𝑑 ≥ 1 is a finite set. We adapt the definition of configuration to infinite words as
follows. A configuration of M is a tuple 𝑐 = (𝑞, 𝛼, v) ∈ 𝑄 × Σ𝜔 × ℤ𝑑 , where 𝑞 is the current
state, 𝛼 is the suffix of the input word that has not been read yet, and v represents the current
counter value. We say 𝑐 derives into 𝑐′, written 𝑐 ⊢M 𝑐′, if 𝑐 = (𝑞, 𝑎𝛽, v), 𝑐′ = (𝑞′, 𝛽, v′)
and (𝑞, 𝑎, u, 𝑞′) ∈ Δ with v′ = v + u; or if 𝑐 = (𝑞, 𝛽, v), 𝑐′ = (𝑞′, 𝛽, v′) and (𝑞, Y, u, 𝑞′) ∈ Δ
with v′ = v + u. Wa say M accepts an infinite word 𝛼 if there is an infinite sequence of
configuration derivations 𝑐1 ⊢ 𝑐2 ⊢ 𝑐3 ⊢ . . . with 𝑐1 = (𝑞0, Y, 𝛼, 0) such that for infinitely
many 𝑖 we have 𝑐𝑖 = (𝑝𝑖, 𝛼 𝑗+1𝛼 𝑗+2 . . . , 0) with 𝑝𝑖 ∈ 𝐹 and for all 𝑗 ≥ 1 there is a configuration
of the form (𝑝, 𝛼 𝑗+1𝛼 𝑗+2 . . . , v) for some 𝑝 ∈ 𝑄 and v ∈ ℤ𝑘 in the sequence. That is, an
infinite word is accepted if we infinitely often visit an accepting state when the counters
are 0, and every symbol of 𝛼 is read at some point. We define the 𝜔-language recognized
by M as 𝐿𝜔 (M) = {𝛼 ∈ Σ𝜔 | M accepts 𝛼}.
Parikh automata naturally generalize to Parikh automata with Y-transitions. An Y-PA is
a tuple A = (𝑄, Σ, 𝑞0,Δ, E, 𝐹 ,𝐶) where E ⊆ 𝑄 × {Y} × ℕ𝑑 × 𝑄 is a finite set of labeled

Y-transitions, and all other entries are defined as for PA. A run of A on an infinite word
𝛼1𝛼2𝛼3 . . . is an infinite sequence of transitions 𝑟 ∈ (E∗Δ)𝜔 , say 𝑟 = 𝑟1𝑟2𝑟3 . . . with 𝑟𝑖 =
(𝑝𝑖−1, 𝛾𝑖, v𝑖, 𝑝𝑖) such that 𝑝0 = 𝑞0, and 𝛾𝑖 = Y if 𝑟𝑖 ∈ E, and 𝛾𝑖 = 𝛼 𝑗 if 𝑟𝑖 ∈ Δ is the 𝑗-th
occurrence of a (non-Y) transition in 𝑟 . The acceptance conditions of the models translate to
runs of Y-PA in the obvious way. We use terms like Y-safety PA, Y-reachability PA, etc, to
denote an Y-PA with the respective acceptance condition.
Note that we can treat every PA as an Y-PA, that is, a PA A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) is equivalent
to the Y-PA A′ = (𝑄, Σ, 𝑞0,Δ,∅, 𝐹 ,𝐶).
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3.1.6 Blind Counter Automata vs. Büchi Parikh Automata

We start with the following simple observation.

Lemma 3.1.20. BCA and Y-Büchi PA are equivalent.

Proof. We first show that for every BCA M there is an equivalent Y-Büchi PA A. Let
M = (𝑄, Σ, 𝑞0,Δ, 𝐹 ) be a BCA of dimension 𝑑 . For a vector (𝑥1, . . . , 𝑥𝑑) ∈ ℤ𝑑 we define
the vector v± = (𝑥+1 , . . . 𝑥+𝑑 , 𝑥

−
1 , . . . 𝑥

−
𝑑
) ∈ ℕ2𝑑 as follows: if 𝑥𝑖 is positive, then 𝑥+𝑖 = 𝑥𝑖

and 𝑥−𝑖 = 0. Otherwise, 𝑥+𝑖 = 0 and 𝑥−𝑖 = |𝑥𝑖 |. We construct an equivalent Y-Büchi PA
A = (𝑄, Σ, 𝑞0,Δ

′, E′, 𝐹 ,𝐶) of dimension 2𝑑 , where Δ′ = {(𝑝, 𝑎, v±, 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ} and
E′ = {(𝑝, Y, v±, 𝑞) | (𝑝, Y, v, 𝑞) ∈ Δ}. Finally, let 𝐶 = {(𝑥1, . . . , 𝑥𝑑 , 𝑥1, . . . , 𝑥𝑑) | 𝑥𝑖 ∈ ℕ}. It is
now easily verified that 𝐿𝜔 (M) = 𝑃𝜔 (A).

For the reverse direction we show that for every Büchi PA A there is an equivalent BCA M.
Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a Büchi PA of dimension 𝑑 where 𝐶 =

⋃︁
𝑖≤ℓ 𝐶 (b𝑖, 𝑃𝑖). Note

that we have 𝐵𝜔 (A) = ⋃︁
𝑖≤ℓ 𝐵𝜔 (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶 (b𝑖, 𝑃𝑖)) by the infinite pigeonhole principle.

Hence, we can assume that 𝐶 = 𝐶 (b, 𝑃) is linear as BCA are closed under union [FS08]. We
construct a blind 𝑑-counter machine M that simulates A as follows: M consists of a copy
of A where the accepting states have are equipped with additional Y-transitions subtracting
the period vectors p ∈ 𝑃 . We only need to consider the base vector b a single time, hence
we introduce a fresh initial state 𝑞′0 and a Y-transition from 𝑞′0 to 𝑞0 subtracting b. Formally,
we construct M = (𝑄 ∪ {𝑞′0}, Σ, 𝑞′0,Δ′, 𝐹 ) where

Δ′ = Δ ∪ {(𝑞′0, Y,−b, 𝑞0} ∪ {(𝑞 𝑓 , Y,−p, 𝑞 𝑓 ) | 𝑞 𝑓 ∈ 𝐹, p ∈ 𝑃}.

It is now easily verified that 𝐵𝜔 (A) = 𝐿𝜔 (M). ◀

3.1.7 𝜺-elimination

We now show that almost all PA models admit Y-elimination. We first consider Büchi PA,
where Y-elimination implies the equivalence of blind counter machines and Büchi PA
by Lemma 3.1.20. We provided an elementary combinatorial proof on the automaton level
in the manuscript [GSS23, Theorem 4.2]. We thank Georg Zetzsche for outlining a much
simpler proof (using a heavier toolbox) which we present here.

Theorem 3.1.21. Y-Büchi PA admit Y-elimination.

Proof. Observe that the construction in Lemma 3.1.20 translates Y-free BCA into Y-free
Büchi PA. We can hence translate a given Büchi PA into a BCA and eliminate Y-transitions
and then translate back into a Büchi PA. Therefore, all we need to show is that BCA admit
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Y-elimination. To show that BCA admit Y-elimination we observe that

𝐿 is recognized by a BCA ⇔ 𝐿 =
⋃︂
𝑖

𝑈𝑖𝑉
𝜔
𝑖 ,

where𝑈𝑖 is a language of finite words that is recognized by a BMCM (on finite words) and𝑉𝑖
is a language of finite words that is recognized by a BMCM where 𝐹 = {𝑞0}. The proof of
this observation is very similar to the proof of Lemma 3.1.6 and we leave the details to the
reader.
As shown in [Gre78, Lat79, Zet13], BMCM admit Y-elimination. Furthermore, from the proof
technique established in [Zet13, Lemma 7.7] it is immediate that the condition 𝐹 = {𝑞0} can
be preserved. We obtain Y-free BMCM A′

𝑖 and B′
𝑖 for the languages 𝑈𝑖 and 𝑉𝑖 . Using the

construction of [KR03b, Theorem 32], we can translate A′
𝑖 and B′

𝑖 into PA A𝑖 and B𝑖 , where
the B𝑖 satisfy 𝐹𝑖 = {𝑞0} and the sets 𝐶𝑖 are homogeneous linear sets. Now the statement
follows by Lemma 3.1.6. ◀

We continue with Y-reachability, Y-reachability-regular and Y-limit PA, as we show
Y-elimination using the same technique for these models. As shown in Observation 3.1.16
and Theorem 3.1.8, the class of 𝜔-languages recognized by reachability PA coincides with
the class of 𝜔-languages of the form

⋃︁
𝑖 𝑈𝑖Σ

𝜔 for Parikh recognizable𝑈𝑖 , and the class of
reachability-regular and limit PA recognizable 𝜔-languages coincides with the class of
𝜔-languages of the form

⋃︁
𝑖 𝑈𝑖𝑉

𝜔
𝑖

for Parikh recognizable𝑈𝑖 and regular 𝑉𝑖 , respectively. It
is well-known that NFA and PA on finite words are closed under homomorphisms and hence
admit Y-elimination [KR03b] (as a consequence of [Lat79, Proposition II.11], Y-transitions
can even be eliminated without changing the semi-linear set). The characterizations allow
us to reduce Y-elimination of these infinite word PA to the finite case.

Lemma 3.1.22. Y-reachability, Y-reachability-regular, and Y-limit PA admit Y-elimination.

Proof. We show the statement for Y-reachability PA. The technique can very easily be trans-
lated to the other two models. Let A be an Y-reachability PA with 𝑅𝜔 (A) = 𝐿 ⊆ Σ𝜔 . Let A𝑒

be the reachability PA obtained from A by replacing every Y-transition with an 𝑒-transition,
where 𝑒 is a fresh symbol that does not appear in Σ. Let ℎ be the homomorphism that erases
the symbol 𝑒 , i.e., ℎ(𝑒) = Y. Observe that A𝑒 recognizes an𝜔-language 𝐿𝑒 ⊆ (Σ∪{𝑒})𝜔 with
the property that ℎ(𝐿𝑒) = 𝐿 (note that by definition {Y}𝜔 = ∅). Now, by Observation 3.1.16
we can write 𝐿𝑒 as

⋃︁
𝑖 𝑈𝑖 · (Σ ∪ {𝑒})𝜔 where 𝑈𝑖 ⊆ (Σ ∪ {𝑒})∗ is Parikh recognizable. As the

class of Parikh recognizable languages is closed under homomorphisms [KR03b], we have

𝐿 = ℎ(𝐿𝑒) = ℎ
(︄⋃︂
𝑖

𝑈𝑖 · (Σ ∪ {𝑒})𝜔
)︄
=

⋃︂
𝑖

ℎ(𝑈𝑖) · Σ𝜔 ,

and can hence find a reachability PA for 𝐿. The proof for reachability-regular and limit PA
works the same way, as the regular languages are also closed under homomorphisms. ◀
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Now we show that strong Y-reset PA and weak Y-reset PA admit Y-elimination. We show
that these two models are equivalent. Hence to show this statement we only need to argue
that strong Y-reset PA admit Y-elimination.

Lemma 3.1.23. Every strong Y-reset PA A is equivalent to a weak Y-reset PA A′
that has

the same set of states and uses one additional counter. If A is a strong reset PA, then A′
is

a weak reset PA.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, E, 𝐹 ,𝐶) be a strong Y-reset PA. We construct an equivalent weak
Y-reset PA A′ that simulates A, ensuring that no run visits an accepting state without
resetting. To achieve that, we add an additional counter that tracks the number of visits
of an accepting state (without resetting). Moreover, we define 𝐶′ = 𝐶 · {1}, such that this
new counter must be set to 1 when visiting an accepting state, thus disallowing to pass
such a state without resetting. Now it is clear that A′ is a weak Y-reset PA equivalent to A.
Observe that if A has no Y-transitions, then A′ has no Y-transitions. ◀

Lemma 3.1.24. Every weak Y-reset PA A is equivalent to a strong Y-reset PA A′
with at

most twice the number of states and the same number of counters. If A is a strong reset PA,

then A′
is a weak reset PA.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, E, 𝐹 ,𝐶) be a weak Y-reset PA. We construct an equivalent strong
Y-reset PA A′ that simulates A by having the option to “avoid” accepting states arbitrarily
long. For this purpose, we create a non-accepting copy of 𝐹 . Consequently, A′ can decide
to continue or reset a partial run using non-determinism. Again, it is clear that A′ is
equivalent to A. Observe that if A has no Y-transitions, then A′ has no Y-transitions. ◀

Lemma 3.1.25. Strong Y-reset PA admit Y-elimination.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, E, 𝐹 ,𝐶) be a strong Y-reset PA of dimension 𝑑 . We assume
without loss of generality that 𝑞0 has no incoming transitions (this can be achieved by in-
troducing a fresh copy of 𝑞0). Furthermore, we assume that 𝐹 ≠ ∅ (otherwise 𝑆𝑅𝜔 (A) = ∅).
Let the states of𝑄 be ordered arbitrarily, say𝑄 = {𝑞0, . . . , 𝑞𝑛−1}. We construct an equivalent
strong reset PA A′ = (𝑄′, Σ, 𝑞0,Δ

′, 𝐹 ′,𝐶′) of dimension 𝑑 +𝑛. In the beginning, A′ is a copy
of A (keeping the Y-transitions for now), which is modified step-by-step. The purpose of
the new counters is to keep track of the states that have been visited (since the last reset).
Initially, we hence modify the transitions as follows: for every transition (𝑞𝑖, 𝛾, v, 𝑞 𝑗 ) ∈ Δ∪E
we replace v by v · e𝑛𝑗 .
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Let 𝑝, 𝑞 ∈ 𝑄 . Assume there is a sequence of transitions _̃ = 𝑟1 . . . 𝑟 𝑗 . . . 𝑟𝑘 ∈ E∗ΔE∗;
1 ≤ 𝑗 ≤ 𝑘 ≤ 2𝑛 + 1, where

• 𝑟 𝑗 = (𝑝 𝑗−1, 𝑎, v 𝑗 , 𝑝 𝑗 ) ∈ Δ, and
• 𝑟𝑖 = (𝑝𝑖−1, Y, v𝑖, 𝑝𝑖) ∈ E for all 𝑖 ≠ 𝑗, 𝑖 ≤ 𝑘 ,
• such that 𝑝0 = 𝑝, 𝑝𝑘 = 𝑞, and 𝑝𝑖 ≠ 𝑝ℓ for 𝑖, ℓ ≤ 𝑗 and 𝑝𝑖 ≠ 𝑝ℓ for 𝑖, ℓ ≥ 𝑗 , and
• all internal states are non-accepting, i. e., 𝑝𝑖 ∉ 𝐹 for all 0 < 𝑖 < 𝑘 .

Then we introduce the shortcut (𝑝, 𝑎, 𝜌 (_̃), 𝑞), where 𝜌 (_̃) is computed already with re-
spect to the new counters, tracking that the 𝑝𝑖 in _̃ have been visited, i. e., the counters
corresponding to the 𝑝𝑖 in this sequence have non-zero values.
Let 𝑝, 𝑞 ∈ 𝑄 . We call a (possibly empty) sequence _ = 𝑟1 . . . 𝑟𝑘 ∈ E∗ with 𝑟𝑖 = (𝑝𝑖−1, Y, v𝑖, 𝑝𝑖)
and 𝑝0 = 𝑝, 𝑝𝑘 = 𝑞 a no-reset Y-sequence from 𝑝 to 𝑞 if all internal states are non-accepting,
i. e., 𝑝𝑖 ∉ 𝐹 for all 0 < 𝑖 < 𝑘 . A no-reset Y-path is a no-reset sequence such that 𝑝𝑖 ≠ 𝑝 𝑗 for
𝑖 ≠ 𝑗 . Observe that the set of no-reset Y-paths from 𝑝 to 𝑞 is finite, as the length of each
path is bounded by 𝑛 − 1. We call the pair (𝑝, 𝑞) a 𝐶-pair if there is a no-reset Y-sequence 𝑟
from 𝑝 to 𝑞 with 𝜌 (𝑟 ) ∈ 𝐶 , where 𝜌 (𝑟 ) is computed in A.
Let 𝑆 = (𝑓1, . . . , 𝑓ℓ) be a non-empty sequence of pairwise distinct accepting states (note that
this implies ℓ ≤ 𝑛). We call 𝑆 a 𝐶-sequence if each (𝑓𝑖, 𝑓𝑖+1) is a 𝐶-pair.
For all 𝑝, 𝑞 ∈ 𝐹 and𝐶-sequences 𝑆 such that 𝑝 = 𝑓1 if 𝑝 ∈ 𝐹 and 𝑞 = 𝑓ℓ if 𝑞 ∈ 𝐹 , we introduce
a new state (𝑝, 𝑆, 𝑞). We add (𝑝, 𝑆, 𝑞) to 𝐹 ′, that is, we make the new states accepting. State
(𝑝, 𝑆, 𝑞) will represent a partial run of the automaton with only Y-transitions starting in 𝑝 ,
visiting the accepting states of 𝑆 in that order, and ending in 𝑞.
Observe that in the following we introduce only finitely many transitions by the observations
made above; we will not repeat this statement in each step. Let 𝑝, 𝑞 ∈ 𝑄 and 𝑆 = (𝑓1, . . . , 𝑓ℓ)
be a 𝐶-sequence. For every transition of the form (𝑠, 𝑎, v, 𝑝) ∈ Δ we insert new transitions

{(𝑠, 𝑎, v + 𝜌 (_), (𝑝, 𝑆, 𝑞)) | _ is a no-reset Y-path from 𝑝 to 𝑓1}

to Δ′. Similarly, for every transition of the form (𝑞, 𝑎, v, 𝑡) ∈ Δ we insert new transitions

{((𝑝, 𝑆, 𝑞), 𝑎, v + 𝜌 (_), 𝑡) | _ is a no-reset Y-path from 𝑓ℓ to 𝑞}

to Δ′. Again this set is finite. Additionally, let 𝑝′, 𝑞′ ∈ 𝑄 and 𝑆′ = (𝑓 ′1 , . . . , 𝑓 ′𝑘 ) be a𝐶-sequence.
For every sequence _̃ = _𝛿_′ where _ is a no-reset Y-path from 𝑓ℓ to 𝑞, 𝛿 = (𝑞, 𝑎, v, 𝑝′), and _′
is a no-reset Y-path from 𝑝′ to 𝑓 ′1 we add the shortcuts

(︁
(𝑝, 𝑆, 𝑞), 𝑎, 𝜌 (_̃), (𝑝′, 𝑆′, 𝑞′)

)︁
to Δ′.

Lastly, we connect the initial state 𝑞0 in a similar way (recall that we assume that 𝑞0 has
no incoming transitions, and in particular no loops). For every transition (𝑝, 𝑎, v, 𝑞) ∈ Δ
and every 𝐶-sequence 𝑆 = (𝑓1, . . . , 𝑓𝑙 ) with the property that (𝑞0, 𝑓1) is a 𝐶-pair and there
is a no-reset Y-path _ from 𝑓ℓ to 𝑝 , we introduce the transition (𝑞0, 𝑎, 𝜌 (_) + v, 𝑞) for every
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such path _. Additionally, for every𝐶-sequence 𝑆′ = (𝑓 ′1 , . . . 𝑓 ′𝑘 ) such that there is a no-reset
Y-path _′ from 𝑞 to 𝑓 ′1 , we introduce the transition

(︁
𝑞0, 𝑎, 𝜌 (_) + v + 𝜌 (_′), (𝑞, 𝑆′, 𝑡)

)︁
for all

such paths _, _′ and 𝑡 ∈ 𝑄 . Furthermore, for every no-reset Y-path _̂ from 𝑞0 to 𝑝 , we
introduce the transition (𝑞0, 𝑎, 𝜌 (_̂) + v + 𝜌 (_′), (𝑞, 𝑆′, 𝑡)) for all 𝑡 ∈ 𝑄 . A reader who is
worried that we may introduce too many transitions at this point shall recall that (𝑞, 𝑆′, 𝑡)
has no outgoing transition if there does not exist a no-reset Y-path from 𝑓 ′

𝑘
to 𝑡 . Finally, we

delete all Y-transitions.
We define 𝐶′ similar to the construction by Klaedtke and Ruess [KR03b] used to eliminate
Y-transitions in the finite setting. For every 𝑞 ∈ 𝑄 \ 𝐹 we define 𝐶𝑞 = {𝜌 (𝑟 ) | 𝑟 ∈ E∗ is
partial run of A starting and ending in 𝑞 that does not visit any accepting state}. As a
consequence of Parikh’s theorem [Par66] and [KR03b, Lemma 5], the sets𝐶𝑞 are semi-linear.
Then 𝐶′ = {v · (𝑥0, . . . , 𝑥𝑛−1) | v + u ∈ 𝐶, u ∈ ∑︁

𝑥𝑖≥1𝐶𝑞𝑖 }. By this, we substract the 𝐶𝑞𝑖 if the
counter for 𝑞𝑖 is greater or equal to one, that is, the state has been visited. This finishes the
construction.
We now prove that A′ is equivalent to A. In the one direction we compress the run by
using the appropriate shortcuts, in the other direction we unravel it accordingly.

To show that 𝑆𝑅𝜔 (A) ⊆ 𝑆𝑅𝜔 (A′), let 𝛼 ∈ 𝑆𝑅𝜔 (A) with accepting run 𝑟 = 𝑟1𝑟2𝑟3 . . . . If
there are no Y-transitions in 𝑟 , we are done (as 𝑟 is also an accepting run of A′ on 𝛼).
Otherwise, we construct an accepting run 𝑟 ′ of A′ on 𝛼 by replacing maximal Y-sequences
in 𝑟 step-by-step. Let 𝑖 be minimal such that 𝑟𝑖 . . . 𝑟 𝑗 is a maximal Y-sequence. Let 𝑟𝑖 =
(𝑝𝑖−1, Y, v𝑖, 𝑝𝑖), 𝑟 𝑗 = (𝑝 𝑗−1, Y, v 𝑗 , 𝑝 𝑗 ), and 𝑟 𝑗+1 = (𝑝 𝑗 , 𝛼𝑧, v 𝑗+1, 𝑝 𝑗+1). It might be the case that
𝑖 = 1, i. e., the run 𝑟 starts with an Y-transition leaving 𝑞0. Otherwise 𝑖 > 1 and we can write
𝑟𝑖−1 = (𝑝𝑖−2, 𝛼𝑧−1, v𝑖−1, 𝑝𝑖−1). By allowing the empty sequence, we may assume that there is
always a second (possibly empty) maximal Y-sequence 𝑟 𝑗+2 . . . 𝑟𝑘 starting directly after 𝑟 𝑗+1.
We distinguish (the combination of) the following cases.

• At least one state in 𝑟𝑖 . . . 𝑟 𝑗 is accepting, i. e., there is a position 𝑖 − 1 ≤ ℓ ≤ 𝑗 such
that 𝑝ℓ ∈ 𝐹 (F) or not (N).

• At least one state in 𝑟 𝑗+2 . . . 𝑟𝑘 is accepting, i. e., there is a position 𝑗 + 1 ≤ ℓ′ ≤ 𝑘 such
that 𝑝ℓ ′ ∈ 𝐹 (F) or not (N). If 𝑟 𝑗+2 . . . 𝑟𝑘 is empty, we are in the case (N).

Hence, we consider four cases in total.

• Case (NN). That is, there is no accepting state in 𝑟𝑖 . . . 𝑟𝑘 . Note that the Y-sequence
𝑟𝑖 . . . 𝑟 𝑗 can be decomposed into an Y-path and Y-cycles as follows. If we have 𝑝𝑖1 ≠ 𝑝 𝑗1
for all 𝑖 ≤ 𝑖1 < 𝑗1 ≤ 𝑗 we are done as 𝑟𝑖 . . . 𝑟 𝑗 is already an Y-path. Otherwise let 𝑖1 ≥ 𝑖
be minimal such that there is 𝑗1 > 𝑖1 with 𝑝𝑖1 = 𝑝 𝑗1 , that is, 𝑟𝑖1+1 . . . 𝑟 𝑗1 is an Y-cycle. If
𝑟𝑖 . . . 𝑟𝑖1𝑟 𝑗1+1 . . . 𝑟 𝑗 is an Y-path, we are done. Otherwise, let 𝑖2 > 𝑗1 be minimal such
that there is 𝑗2 > 𝑖2 with 𝑝𝑖2 = 𝑝 𝑗2 , that is, 𝑟𝑖2+1 . . . 𝑟 𝑗2 is an Y-cycle. Then again, if
𝑟𝑖 . . . 𝑟𝑖1𝑟 𝑗1+1 . . . 𝑟𝑖2𝑟 𝑗2+1 . . . 𝑟 𝑗 is an Y-path, we are done. Otherwise, we can iterate this
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argument and obtain a set of Y-cycles 𝑟𝑖1+1 . . . 𝑟 𝑗1, . . . , 𝑟𝑖𝑚+1 . . . 𝑟 𝑗𝑚 for some 𝑚, and
an Y-path 𝑟 𝑖, 𝑗 = 𝑟𝑖 . . . 𝑟𝑖1𝑟 𝑗1+1 . . . 𝑟𝑖𝑚𝑟 𝑗𝑚+1 . . . 𝑟 𝑗 which partition 𝑟𝑖 . . . 𝑟 𝑗 . Now observe
that 𝜌 (𝑟𝑖1+1 . . . 𝑟 𝑗1) + · · · + 𝜌 (𝑟𝑖𝑚+1 . . . 𝑟 𝑗𝑚 ) ∈ 𝐶𝑝𝑖1 + · · · + 𝐶𝑝𝑖𝑚 . We can do the same
decomposition for the Y-sequence 𝑟 𝑗+2 . . . 𝑟𝑘 into a set of Y-cycles and an Y-path 𝑟 𝑗+2,𝑘 .
By the construction of Δ′, there is a shortcut

𝛿 = (𝑝𝑖−1, 𝛼𝑧, (𝜌 (𝑟 𝑖, 𝑗 ) + v 𝑗+1 + 𝜌 (𝑟 𝑗+2,𝑘)) · ê𝑛, 𝑝𝑘),

where ê𝑛 is the 𝑛-dimensional vector counting the states appearing in 𝑟 𝑖, 𝑗 and 𝑟 𝑗+2,𝑘
and the state 𝑝 𝑗+1. By the construction of Δ′ and 𝐶′, we may subtract all Y-cycles that
have been visited in 𝑟𝑖 . . . 𝑟𝑘 , hence, we may replace 𝑟𝑖 . . . 𝑟𝑘 by 𝛿 to simulate exactly
the behavior of A.

• Case (NF). That is, there is no accepting state in 𝑟𝑖 . . . 𝑟 𝑗 but at least one accepting
state in 𝑟𝑖+2 . . . 𝑟𝑘 (in particular, this sequence is not empty). Let ℓ1, . . . , ℓ𝑚 denote the
positions of accepting states in 𝑟𝑖+2 . . . 𝑟𝑘 , and let ℓ0 < ℓ1 be maximal such that ℓ0 is
resetting (this is before 𝑟𝑖 , and if such an ℓ0 does not exist, let ℓ0 = 0), i. e., ℓ0 is the
position of the last reset before the reset at position ℓ1. As 𝑟 is an accepting run, the
sequence 𝑆 = (ℓ1, . . . , ℓ𝑚) is a 𝐶-sequence (we may assume that all states in 𝑆 are
pairwise distinct, otherwise there is a reset-cycle, which can be ignored). In the same
way as in the previous case we can partition the Y-sequence 𝑟𝑖 . . . 𝑟 𝑗 into an Y-path 𝑟 𝑖, 𝑗
and a set of Y-cycles, which may be subtracted from 𝐶 . Likewise, we can partition
the sequence 𝑟 𝑗+2 . . . 𝑟ℓ1 into an Y-path 𝑟 𝑗+2,ℓ1 and Y-cycles with the same property.
By the construction of Δ′ there is a shortcut (𝑝𝑖−1, 𝑎, 𝜌 (𝑟 𝑖, 𝑗 ) + v 𝑗+1, 𝑝 𝑗+1) and hence a
transition

𝛿 = (𝑝𝑖−1, 𝑎, 𝜌 (𝑟 𝑖, 𝑗 ) + v 𝑗+1 + 𝜌 (𝑟 𝑗+2,ℓ1), (𝑝 𝑗+1, 𝑆, 𝑝𝑘)) .
Note that this is also the case if 𝑖 = 1. Thus, we replace 𝑟𝑖 . . . 𝑟𝑘 by 𝛿 . In particular,
𝜌 (𝑟ℓ0+1 . . . 𝑟𝑖−1𝛿) can be obtained from 𝜌 (𝑟ℓ0+1 . . . 𝑟ℓ1) by subtracting all Y-cycles that
have been visited within this partial run. Furthermore, observe that the containment
of 𝜌 (𝑟ℓ1+1 . . . 𝑟ℓ2), . . . , 𝜌 (𝑟ℓ𝑚−1+1 . . . 𝑟ℓ𝑚 ) in 𝐶 depends only on the automaton, and not
the input word. As the counters are reset in 𝑟ℓ𝑚 , we may continue the run from 𝛿

the same way as in 𝑟𝑘 , using an appropriate transition from Δ′ that adds the vector
𝜌 (𝑟 ℓ𝑚+1,𝑘), thus respecting the acceptance condition.

• Case (FN). Similar to (NF), but this time we replace 𝑟𝑖−1𝑟𝑖 . . . 𝑟 𝑗 by an appropriate
transition into a state of the form (𝑝𝑖−2, 𝛼𝑧, v, (𝑝𝑖−1, 𝑆, 𝑝 𝑗 )) for a suitable 𝐶-sequence 𝑆
and vector v, followed by a shortcut leading to 𝑝𝑘 . If 𝑖 = 0 (we enter a 𝐶-sequence
before reading the first symbol), we make use of the transitions introduced especially
for 𝑞0.

• Case (FF). Similar to (FN) and (NF), but we transition from a state of the form
(𝑝𝑖−1, 𝑆, 𝑝 𝑗 ) into a state of the form (𝑝 𝑗+1, 𝑆

′, 𝑝𝑘) for suitable 𝐶-sequences 𝑆, 𝑆′, again
respecting the case 𝑖 = 0.
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To show that 𝑆𝑅𝜔 (A′) ⊆ 𝑆𝑅𝜔 (A) we unravel the shortcuts and (𝑝, 𝑆, 𝑞)-states introduced
in the construction. Let 𝛼 ∈ 𝑆𝑅𝜔 (A′) with accepting run 𝑟 ′ = 𝑟 ′1𝑟 ′2𝑟 ′3 . . . . We replace every
transition 𝑟 ′𝑖 ∈ Δ′ \ Δ (i. e., transitions that do not appear in A) by an appropriate sequence
of transitions in A. Let 𝑖 ≥ 1 be minimal such that 𝑟 ′𝑖 is a transition in Δ′ \ Δ.
We distinguish the form of 𝑟 ′𝑖 and show that the possible forms correspond one-to-one to
the cases in the forward direction.

• Case (NN). The case that 𝑟 ′𝑖 = (𝑝, 𝑎, 𝜌 (_̃), 𝑞) is a shortcut, i. e., _̃ ∈ E∗ΔE∗, corresponds
to the case (NN). In particular, there are no accepting states in 𝑟 . Let 𝑘 < 𝑖 be the
position of the last reset before 𝑟 ′𝑖 , and 𝑘′ the position of the first reset after 𝑟 ′𝑖 , where
𝑘′ = 𝑖 if 𝑟 ′𝑖 transitions into a accepting state. By the acceptance condition we have
𝜌 (𝑟 ′

𝑘+1 . . . 𝑟
′
𝑘 ′) ∈ 𝐶 − (∑︁𝑞∈𝑄 ′𝐶𝑞) for some set 𝑄′ ⊆ 𝑄 based on the counter values.

Hence, we can replace 𝑟 ′𝑖 by the partial run _̃ filled with possible Y-cycles on some
states in 𝑄′.

• Case (NF). The case that 𝑟 ′𝑖 = (𝑠, 𝑎, v + 𝜌 (_), (𝑝, 𝑆, 𝑞)) such that 𝑆 = (𝑓1, . . . 𝑓ℓ) is a 𝐶-
sequence, there is a transition 𝛿 = (𝑠, 𝑎, v, 𝑝) ∈ Δ and _ is a no-reset Y-path from 𝑝 to 𝑓1,
corresponds to the case (NF). By the definition of𝐶-sequence there is a sequence 𝑟 𝑓1,𝑓ℓ
of Y-transitions in A starting in 𝑓1, ending in 𝑓ℓ , visiting the accepting states 𝑓1 to 𝑓ℓ
(in that order) such that the reset-acceptance condition is satisfied on every visit of
one the accepting states. Then we can replace 𝑟 ′𝑖 by 𝛿_𝑟 𝑓1,𝑓ℓ , possibly again filled with
some Y-cycles based on the state counters of _, similar to the previous case. Note that
at this point we do not yet unravel the path from 𝑓ℓ to 𝑞, as it depends on how the
run 𝑟 ′ continues (as handled by the next two cases).

• Case (FN). The case that 𝑟 ′𝑖 = ((𝑝, 𝑆, 𝑞), 𝑎, v + 𝜌 (_), 𝑡) such that 𝑆 = (𝑓1, . . . 𝑓ℓ) is a
𝐶-sequence, there is a transition 𝛿 = (𝑞, 𝑎, v, 𝑡) ∈ Δ and _ is a no-reset Y-path from 𝑓ℓ
to 𝑞, corresponds to the case (FN). Similar to the previous case, we can replace 𝑟 ′𝑖
by _𝛿 , possibly again amended with some Y-cycles based on the state counters of _. If
𝑖 = 1, the transition might also be of the form 𝑟 ′1 = (𝑞0, 𝛼1, 𝜌 (_) + v, 𝑡) such that 𝑆 is
a 𝐶-sequence with the property that (𝑞0, 𝑓1) is a 𝐶-pair. Then there is a sequence of
Y-transitions 𝑟𝑞0,𝑓ℓ in A as above. Then we replace 𝑟 ′1 by 𝑟𝑞0,𝑓ℓ_𝛿 (with possible Y-cycles)
instead.

• Case (FF). The case that 𝑟 ′𝑖 = ((𝑝, 𝑆, 𝑞), 𝑎, 𝜌 (_̃), (𝑝′, 𝑆′, 𝑞′) such that 𝑆 = (𝑓1, . . . 𝑓ℓ)
and 𝑆′ = (𝑓 ′1 , . . . , 𝑓 ′𝑘 ) are 𝐶-sequences, there is a transition 𝛿 = (𝑞, 𝑎, v, 𝑝′) ∈ Δ and
_̃ = _𝛿_′, where _ is a no-reset Y-path from 𝑓ℓ to 𝑞 and _′ is a no-reset Y-path from 𝑝′

to 𝑓 ′1 , corresponds to the case (FF). This case can be seen as the union of the previous
cases. There is a sequence 𝑟 𝑓 ′1 ,𝑓 ′𝑘 of Y-transitions in A, as in the case (RF). Hence, we
replace 𝑟 ′𝑖 by _̃𝑟 𝑓 ′1 ,𝑓 ′𝑘 (with possible Y-cycles). If 𝑖 = 1, the transition might also be of the
form 𝑟 ′1 = (𝑞0, 𝛼1, 𝜌 (_) + v + 𝜌 (_′), (𝑝′, 𝑆′, 𝑞′)) such that (𝑞0, 𝑓1) is a𝐶-pair. Then there
is a sequence of Y-transitions 𝑟𝑞0,𝑓ℓ in A as above, and we replace 𝑟 ′1 by 𝑟𝑞0,𝑓ℓ _̃𝑟 𝑓 ′1 ,𝑓

′
𝑘
.

Observe that the size of A′ is in O(|A|2 |A|!). This finishes the proof of the lemma. ◀
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)︃ 𝑏,
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1
0

)︃

𝑏,

(︃
0
0

)︃
Figure 3.3. The Y-PA with 𝐶 = {(𝑧, 𝑧′) | 𝑧′ ≥ 𝑧} for the proof of Lemma 3.1.26.

Finally we show that safety and co-Büchi PA do not admit Y-elimination.

Lemma 3.1.26. Y-safety PA and Y-co-Büchi PA do not admit Y-elimination.

Proof. Consider the automaton A in Figure 3.3 with 𝐶 = {(𝑧, 𝑧′) | 𝑧′ ≥ 𝑧}.
If we interpret A as an Y-safety or Y-co-Büchi PA, we have we have 𝑆𝜔 (A) = 𝐶𝐵𝜔 (A) =
{𝑎𝑏+}𝜔 . This 𝜔-language is neither safety PA nor co-Büchi PA recognizable (one can easily
adapt the proof in [GJLZ22, Theorem 3] showing that {𝛼 ∈ {𝑎, 𝑏}𝜔 | |𝛼 |𝑎 = ∞} is neither
safety PA nor co-Büchi PA recognizable).
Observe how A utilizes the Y-transition to enforce that 𝑞0 is seen infinitely often: whenever
the 𝑏-loop on 𝑞1 is used, the first counter increments. The semi-linear set states that at no
point the first counter value may be greater than the second counter value which can only
be increased using the Y-loop on 𝑞0. Hence, any infinite word accepted by A may contain
arbitrary infixes of the form 𝑏𝑛 for 𝑛 < ∞, as the automaton can use the Y-loop on 𝑞0 at
least 𝑛 times before, but not 𝑏𝜔 . ◀

We generalize the trick presented in the previous proof to show that Y-co-Büchi PA recognize
all Büchi PA recognizable 𝜔-languages. Further adapting the trick we show that Y-safety PA
recognize all reset PA recognizable 𝜔-languages.

Lemma 3.1.27. The class of Büchi PA recognizable 𝜔-languages is a strict subclass of the

class of Y-co-Büchi PA recognizable 𝜔-languages.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a Büchi PA of dimension 𝑑 . Without loss of generality
we assume 𝑞0 ∉ 𝐹 (this can be achieved by adding a fresh initial state). We construct an
equivalent Y-co-Büchi PA A′ of dimension 𝑑 +3 as follows. Let𝑄′ = 𝑄∪{𝑞′0}∪{𝑞′

𝑓
| 𝑞 𝑓 ∈ 𝐹 }

where 𝑞′0 is a fresh state and the 𝑞′
𝑓

are copies of the accepting states of A in which we
do not expect good counter values. We define A′ = (𝑄′, Σ, 𝑞′0,Δ

′, E′, 𝑄′,𝐶′). The idea is as
follows: we use one of the three new counters to indicate that we would like to check the
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current counter values for membership in 𝐶 . The other two additional counters are used to
enforce that we see a state in 𝐹 infinitely often, that is that we indeed must check the current
counter values for membership in 𝐶 infinitely often. To achieve that, we introduce Y-loops
on every state that is accepting in A as well as on the new initial state. The automaton
then guesses the number of symbols that are read before visiting the next accepting state
and increases the second counter accordingly. The first counter is incremented every time
a symbol of the infinite input word is read. At every state we expect the second counter
value to be greater or equal the first counter value.
Hence, we define

Δ′ = {(𝑝, 𝑎, v · (1, 0, 0), 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ, 𝑝, 𝑞 ∉ 𝐹 }
∪ {(𝑝, 𝑎, v · (1, 0, 1), 𝑞 𝑓 ), (𝑝, 𝑎, v · (1, 0, 0), 𝑞′

𝑓
) | (𝑝, 𝑎, v, 𝑞 𝑓 ) ∈ Δ, 𝑝 ∉ 𝐹, 𝑞 𝑓 ∈ 𝐹 }

∪ {(𝑝 𝑓 , 𝑎, v · (1, 0, 1), 𝑞), (𝑝′
𝑓
, 𝑎, v · (1, 0, 0), 𝑞) | (𝑝 𝑓 , 𝑎, v, 𝑞) ∈ Δ, 𝑝 𝑓 ∈ 𝐹, 𝑞 ∉ 𝐹 }

∪ {(𝑝′
𝑓
, 𝑎, v · (1, 0, 1), 𝑞 𝑓 ), (𝑝 𝑓 , 𝑎, v · (1, 0, 1), 𝑞′

𝑓
) | (𝑝 𝑓 , 𝑎, v, 𝑞 𝑓 ) ∈ Δ, 𝑝 𝑓 , 𝑞 𝑓 ∈ 𝐹 }

∪ {(𝑝 𝑓 , 𝑎, v · (1, 0, 0), 𝑞 𝑓 ), (𝑝′𝑓 , 𝑎, v · (1, 0, 0), 𝑞′
𝑓
) | (𝑝 𝑓 , 𝑎, v, 𝑞 𝑓 ) ∈ Δ, 𝑝 𝑓 , 𝑞 𝑓 ∈ 𝐹 },

and

E′ = {(𝑞′0, Y, 0𝑑 · (0, 0, 1), 𝑞0), (𝑞′0, Y, 0𝑑 · (0, 1, 0), 𝑞′0)} ∪ {(𝑞 𝑓 , Y, 0𝑑 · (0, 1, 0), 𝑞 𝑓 ) | 𝑞 𝑓 ∈ 𝐹 }.

Finally, we define

𝐶′ = {0𝑑 · (0, 𝑦, 0) | 𝑦 ∈ ℕ}
∪ {(𝑣1, . . . , 𝑣𝑑 , 𝑥,𝑦, 2𝑝 + 1) | 𝑝 ∈ ℕ, 𝑦 ≥ 𝑥, (𝑣1, . . . , 𝑣𝑑) ∈ ℕ𝑑}
∪ {(𝑣1, . . . , 𝑣𝑑 , 𝑥,𝑦, 2𝑝 + 2) | 𝑝 ∈ ℕ, 𝑦 ≥ 𝑥, (𝑣1, . . . , 𝑣𝑑) ∈ 𝐶}.

The interested reader can now (fairly) easy verify that A and A′ are equivalent.
The strictness of the inclusion follows immediately from [GJLZ22], as there are𝜔-languages
recognized by co-Büchi PA but not by any Büchi PA. ◀

Before we show that Y-safety PA are powerful enough to simulate reset PA, we first introduce
the following Myhill-Nerode-like notion for linear sets. Let𝐶 be a linear set of dimension 𝑑 .
We call𝐶 congruent if for every v1, v2 ∈ 𝐶 and every v ∈ ℕ𝑑 we have v1 + v ∈ 𝐶 if and only
of v2 + v ∈ 𝐶 . We call a congruent linear set 𝐶 resetting if 0 ∈ 𝐶 (i. e., if 𝐶 is congruent and
homogeneous).

Lemma 3.1.28. The class of reset PA recognizable 𝜔-languages is a strict subclass of the

class of Y-safety PA recognizable 𝜔-languages.
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Proof. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a strong reset PA of dimension𝑑 with𝐶 =
⋃︁
𝑖≤ℓ 𝐶 (b𝑖, 𝑃𝑖).

We assume again without loss of generality that 𝑞0 ∉ 𝐹 . We construct an equivalent Y-safety
PA A = (𝑄′, Σ, 𝑞′0,Δ

′, E′, 𝑄′,𝐶′) of dimension 2𝑑 + 3. The idea is to combine the ideas from
the previous proof while observing that we can simulate resets by testing membership in a
resetting linear set. To be precise, the additional three counters serve the same purpose as
in the last proof while the additional 𝑑 counters allow us to simulate resets. Hence, we start
by defining 𝐶′ = 𝐶check ∪𝐶don′t care where

𝐶check = {(𝑣1, . . . , 𝑣𝑑 , 𝑣1, . . . , 𝑣𝑑 , 𝑧, 𝑧, 2𝑝) | 𝑝, 𝑧, 𝑣1, . . . , 𝑣𝑑 ∈ ℕ}

and
𝐶don′t care = {(𝑣1, . . . , 𝑣2𝑑𝑥,𝑦, 2𝑝 + 1) | 𝑝 ∈ ℕ, 𝑦 ≥ 𝑥, (𝑣1, . . . , 𝑣2𝑑) ∈ ℕ2𝑑}.

The crucial observation is that 𝐶check is a resetting linear set. In the next step we introduce
a new initial state that is equipped with an Y-loop and a Y-transition to 𝑞0 exactly as the
in previous proof. Then we replace every accepting state 𝑓 ∈ 𝐹 by the gadget depicted
in Figure 3.4. Here we use the following observation: whenever a vector v is contained
in 𝐶 , then it is in particular contained 𝐶 (b𝑖, 𝑃𝑖) for a 𝑖 ≤ ℓ and can hence be written as
b𝑖 +

∑︁
p∈𝑃𝑖 p𝑧p for some values 𝑧p ∈ ℕ. While the first 𝑑 counters of A′ are copies of

the 𝑑 counters of A, the second set of 𝑑 counters are used to represent any vector that
is contained in 𝐶 , i. e., can be written as mentioned above. The Y-loops in the state 𝑓 (𝑖)
allow us to add any vector contained in 𝐶 (b𝑖, 𝑃𝑖) to the counter values of the second set of
𝑑 counters. Hence, the vector induced by the first 𝑑 counters is contained in 𝐶 if and only
if 𝑓 can be reached with a vector whose vector induced by the second set of 𝑑 counters is
equivalent to the vector induced by the first 𝑑 counters. This is checked in the state 𝑓 where
membership in 𝐶check is tested (as the last counter has an even value when entering 𝑓 ).
We refrain from giving the details of the construction of A′ as they do not yield further
insights. ◀

Observe that Y-safety PA generalize Y-co-Büchi PA, as they can guess the number 𝑛 of
transitions a Y-co-Büchi PA uses before they constantly verify the Parikh-condition. Very
similar to the previous proof, the Y-safety PA uses an Y-transition on a fresh initial state 𝑛
times to postpone the verification of the Parikh-condition for 𝑛 transitions.
We conclude by arguing that Y-co-Büchi PA do not generalize reset PA. To achieve that, we
define the following property, which is heavily inspired by the pumping-style lemma for
Parikh recognizable (finite word) languages, see Lemma 2.2.3.
Let L be a class of 𝜔-languages. We say that L has the exchange property if for every
𝐿 ∈ L there are 𝑝, ℓ ∈ ℕ such that for every 𝛼 ∈ 𝐿 the following holds: there is a partition
𝛼 = 𝑢𝑣𝑥𝑣𝛽 with 0 < |𝑣 | ≤ 𝑝 < |𝑥 | and |𝑢𝑣𝑥𝑣 | ≤ ℓ such that 𝑢𝑣2𝑥𝛽 ∈ 𝐿 and 𝑢𝑥𝑣2𝛽 ∈ 𝐿.
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Figure 3.4. We replace every accepting state 𝑓 ∈ 𝐹 by such a gadget. Every state 𝑓 (𝑖) is
equipped with an Y-loop for every p𝑖 ∈ 𝑃𝑖 . Note that the actual membership of
the current counter values in 𝐶 is (still) checked in 𝑓 as we require the current
counter values to be in 𝐶check.
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Observation 3.1.29. The classes of Büchi PA and (Y-)co-Büchi PA recognizable

𝜔-languages have the exchange property. The classes of reset PA and (Y-)safety PA recog-

nizable 𝜔-languages do not have the exchange property.

As an immediate consequence of this observation and the argument above we obtain the
following corollaries.

Corollary 3.1.30. The class of Y-co-Büchi PA recognizable 𝜔-languages is a strict subset

of the class of Y-safety PA recognizable 𝜔-languages.

Corollary 3.1.31. The classes of reset PA recognizable 𝜔-languages and Y-co-Büchi PA

recognizable 𝜔-languages are incomparable.

3.1.8 Remaining Closure Properties

As a preparation for the next subsection we establish the remaining closure properties. As
limit PA and reachability-regular PA are equivalent by Theorem 3.1.8, we only argue for
limit PA. Similarly, as strong reset PA and weak reset PA are equivalent by Lemma 3.1.23
and Lemma 3.1.24, we only argue for strong reset PA.
First we observe that the 𝜔-languages recognized by reset PA are ultimately periodic.

Lemma 3.1.32. Let A be a reset PA. If 𝑆𝑅𝜔 (A) ≠ ∅, then A accepts an infinite word of

the form 𝑢𝑣𝜔 .

Proof. Assume 𝑆𝑅𝜔 (A) ≠ ∅. Then there exists an infinite word 𝛼 ∈ 𝑆𝑅𝜔 (A) with accepting
run 𝑟 = 𝑟1𝑟2𝑟3 . . . , where 𝑟𝑖 = (𝑝𝑖−1, 𝛼𝑖, v𝑖, 𝑝𝑖). Let 𝑘1 < 𝑘2 < . . . be the positions of all
accepting states in 𝑟 . Let 𝑘𝑖 < 𝑘 𝑗 be two such positions such that 𝑝𝑘𝑖 = 𝑝𝑘 𝑗 . Let 𝑢 = 𝛼1 . . . 𝛼𝑘𝑖
be the prefix of 𝛼 read upon visiting 𝑝𝑘𝑖 and 𝑣 = 𝛼𝑘𝑖+1 . . . 𝛼𝑘 𝑗 the infix read between 𝑝𝑘𝑖
and 𝑝𝑘 𝑗 . Then A also accepts 𝑢𝑣𝜔 , as 𝑟1 . . . 𝑟𝑘𝑖 (𝑟𝑘𝑖+1 . . . 𝑟𝑘 𝑗 )𝜔 is an accepting run of A on 𝑢𝑣𝜔
by definition. ◀

Lemma 3.1.33. The classes of limit PA recognizable and reachability-regular PA recogniz-

able 𝜔-languages are closed intersection. The class of reset PA recognizable 𝜔-languages is

not closed under intersection.

Proof. The closure of limit PA (and hence reachability-regular PA) under intersection follows
from a simple product construction, exactly as for finite word PA [KR03b, Theorem 21].
The non-closure of reset PA under intersection follows from an argument similar to the
argument showing non-closure of blind counter machines [FS08] (on infinite words). Let
𝐿1 = {𝑎𝑛𝑏𝑛 | 𝑛 > 0}𝜔 and 𝐿2 = {𝑎}{𝑏𝑛𝑎2𝑛 | 𝑛 > 0}. Then 𝐿1 ∩ 𝐿2 contains only one infinite
word, namely 𝑎𝑏𝑎2𝑏2𝑎4𝑏4 . . . which is not ultimately periodic. Hence, 𝐿1∩𝐿2 is not accepted
by any strong reset PA as a consequence of the previous lemma. ◀
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Finally, we show that all our models are not closed under complement.

Lemma 3.1.34. The classes of limit PA recognizable, reachability-regular PA recognizable,

and reset PA recognizable 𝜔-languages are not closed complement.

Proof. Non-closure for reset PA follows immediately from the closure under union and
non-closure under intersection by De Morgan’s law.
Hence, we only need to argue for limit PA. Let𝐷 = {𝑤𝑤 | 𝑤 ∈ {𝑎, 𝑏}∗}. As shown in [KR03b,
Lemma 26], this language is not Parikh recognizable. However, its complement 𝐷 is Parikh
recognizable. Now let 𝐿 = 𝐷 · {𝑐}𝜔 . By Lemma 3.1.2, this𝜔-language is limit PA recognizable.
Observe that 𝐿 = {𝑎, 𝑏}𝜔 ∪ {𝑎, 𝑏}∗{𝑐}∗{𝑎, 𝑏}{𝑎, 𝑏, 𝑐}𝜔 ∪ 𝑃𝐴𝐿 · {𝑐}𝜔 . The first two languages
of the union are 𝜔-regular and hence limit PA recognizable. Hence, it is sufficient to show
that 𝐷 · {𝑐}𝜔 is not limit PA recognizable. Observe that limit PA have the exchange property.
Cadilhac et al. [CFM11] have shown how to establish the pumping-syle lemma (Lemma 2.2.3)
to show that the language {𝑤#𝑤 | 𝑤 ∈ {𝑎, 𝑏}∗} is not Parikh recognizable. The proof can
easily adapted to show that 𝐷 is not Parikh recognizable (one only needs to remove the #),
which again can easily adapted to show that 𝐷 · {𝑐}𝜔 and hence 𝐿 is not recognized by any
limit PA by exploiting the exchange property. ◀

At this point we are ready to present a complete picture of comparing all (non-deterministic)
models, see Figure 3.5.

3.1.9 Decision Problems

In this section, we study the following classical decision problems for PA on infinite words.
• Emptiness: given a PA A, is the 𝜔-language of A empty?
• Membership: given a PA A and finite words 𝑢, 𝑣 , does A accept 𝑢𝑣𝜔?
• Universality: given a PA A, does A accept every infinite word?

Furthermore, we study the classical model checking problem, where we are given a systemK
and a specification, e. g., represented as an automaton A, and the question is whether every
run of K satisfies the specification, i. e., we ask 𝐿(K) ⊆ 𝐿(A), which is true if and only if
𝐿(K) ∩ 𝐿(A) = ∅. However, as complementing is often expensive or not even possible,
another approach is to specify the set of all bad runs and ask whether no run of K is bad,
which boils down to the question is 𝐿(K) ∩ 𝐿(A) = ∅? We call the first approach universal

model checking and the latter approach existential model checking. In our setting we assume
the specification A to be a PA operating on infinite words, while the system K may be
given as a Kripke-structure (which can be seen as a safety automaton [CHVB18]), in which
case the goal is to solve safety model checking, or also as a PA operating on infinite words,
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reachability PA

𝜔-regular

reachability-regular PA
= limit PA = L𝜔

PA,Reg

co-Büchi PA Y-co-Büchi PA

L𝜔
Reg,PA = reset PA (∗∗) L𝜔

PA,PA = reset PA (∗)

Büchi PA = BCA reset PA

safety PA

Y-safety PA

(∗) At most one state 𝑞 per leaf of 𝐶 (A) may have incoming transitions from outside the leaf, this
state 𝑞 is the only accepting state in the leaf, and there are no accepting states in non-leaves;

(∗∗) and only transitions connecting states in leaves may be labeled with non-zero vectors.

Figure 3.5. Comparison of Parikh automata on infinite words. Arrows indicate strict inclu-
sions while no (non-transitive) connections mean incomparability.

in which case the goal is to solve PA model checking. Hence, we consider four problems in
total, which boil down to the following decision problems.

• Inclusion: given a safety automaton or a PA A1, and a PA A2, is the 𝜔-language
of A1 a subset of the 𝜔-language of A2?

• Intersection emptiness: given a safety automaton or a PA A1, and a PA A2, is the
𝜔-language of A1 disjoint from the 𝜔-language of A2?

Observe that our characterization results imply that we can efficiently translate reachability-
regular PA into Büchi PA which in turn can efficiently be translated into strong reset PA.
Furthermore strong reset PA and weak reset PA can efficiently be translated into each other
by Lemma 3.1.23 and Lemma 3.1.24. Hence, for showing upper bounds for these models it
is sufficient to argue for reset PA. However, the proof of Lemma 3.1.12 showing that every
limit PA recognizable 𝜔-language is a member of L𝜔

PA,Reg constructs a number of finite
word PA that is exponentially in the dimension of the limit PA we start with. Hence, we
argue for limit PA separately. Contrary, we can translate reachability-regular PA efficiently
into limit PA; hence, for showing lower bounds of all newly introduced models it is sufficient
to argue for reachability-regular PA.
We begin by showing that emptiness for reset PA is coNP-complete, where the upper bound
even holds if we allow Y-transitions (which does not increase their expressiveness but our
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Y-elimination procedure constructs an equivalent reset PA of super-polynomial size). Hence,
reset PA (even with Y-transitions) are a powerful model that can still be used for algorithmic
applications.
We present an algorithm solving non-emptiness for reset PA in NP by exploiting that
𝜔-languages accepted by reset PA are ultimately periodic. As a consequence, we can reduce
non-emptiness for Y-reset PA to the finite word case, as clarified in the following lemma.

Lemma 3.1.35. Emptiness for reachability-regular PA, strong reset PA and weak reset PA

is coNP-complete.

Proof. The coNP-hardness for reachability-regular PA (and hence all of these models) follows
immediately from the coNP-hardness of finite word PA [FL15]. Hence, we focus on the
membership in coNP by presenting an NP-algorithm for non-emptiness that works even
for strong reset PA with Y-transitions. Let A be a strong Y-reset PA. By Lemma 3.1.32 it
suffices to check whether A accepts an ultimately periodic infinite word 𝑢𝑣𝜔 . If such a
word exists, we may assume that there is an accepting run 𝑟𝑢𝑟𝜔𝑣 of A on 𝑢𝑣 where neither 𝑟𝑢
nor 𝑟𝑣 visit the same accepting state twice (otherwise we simply remove such cycles in
the run). For any 𝑝, 𝑞 ∈ 𝑄 we define A𝑝⇒𝑞 = (𝑄 ∪ {𝑞′0}, Σ, 𝑞′0,Δ′, E′, {𝑞},𝐶), where Δ′ =
{(𝑞1, 𝑎, v, 𝑞2) | (𝑞1, 𝑎, v, 𝑞2) ∈ Δ, 𝑞1 ∉ 𝐹 } ∪ {(𝑞′0, 𝑎, v, 𝑞2) | (𝑝, 𝑎, v, 𝑞2) ∈ Δ} and, analogously,
E′ = {(𝑞1, Y, v, 𝑞2) | (𝑞1, Y, v, 𝑞2) ∈ E, 𝑞1 ∉ 𝐹 } ∪ {(𝑞′0, Y, v, 𝑞2) | (𝑝, Y, v, 𝑞2) ∈ Δ}.
Hence, if we interpret A𝑝⇒𝑞 as a finite word PA, then it accepts all words accepted by
the finite word PA A when starting in 𝑝 , ending in 𝑞, and not visiting an accepting state
in-between. In other words, if 𝑝, 𝑞 ∈ 𝐹 , then A𝑝⇒𝑞 accepts all finite infixes that the strong
reset PA A may read when the last reset was in 𝑝 , and the next reset is in 𝑞
Now, the following NP algorithm solves non-emptiness:

1. Guess a sequence 𝑓1, . . . , 𝑓𝑘 of accepting states with 𝑘 ≤ 2|𝐹 | such that 𝑓𝑖 = 𝑓𝑘 for
some 𝑖 ≤ 𝑘 .

2. Verify that 𝐿(A𝑞0⇒𝑓1) ≠ ∅ and 𝐿(A𝑓𝑗⇒𝑓𝑗+1) ≠ ∅ for all 1 ≤ 𝑗 < 𝑘 (interpreted as PA
over finite words).

3. Verify that 𝐿(A𝑓𝑖⇒𝑓𝑖+1) · . . . · 𝐿(A𝑓𝑘−1⇒𝑓𝑘 ) ⊈ {Y}.
The third step can be done by adding a fresh symbol (say 𝑒) to the automata and replacing
every Y-transition with an 𝑒-transition (observe that this does construction does not change
the emptiness behavior, and is, in contrast to the Y-elimination procedure in [KR03b]
computable in polynomial time). Afterwards we use the NP-algorithm for non-emptiness
for PA [FL15].
The third step essentially states that not all 𝐿(A𝑓𝑗⇒𝑓𝑗+1) for 𝑗 ≥ 𝑖 may only accept the empty
word, as we require 𝑣 ≠ Y. To check this property, we can construct a PA1 recognizing

1This is possible in polynomial time by a standard construction very similar to the one of Lemma 3.1.2.
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𝐿(A𝑓𝑖⇒𝑓𝑖+1) · . . . · 𝐿(A𝑓𝑘−1⇒𝑓𝑘 ), and again replace every Y-transition with an 𝑒-transition.
Finally, we build the product automaton with the PA (NFA) that recognizes the language
{𝑤 ∈ (Σ ∪ {𝑒})∗ | 𝑤 contains at least 1 symbol from Σ}, which is possible in polynomial
time [KR03b] and test non-emptiness for the resulting PA. ◀

Let us quickly explain how to modify the algorithm such that we obtain an NP-algorithm
for non-emptiness for limit PA.

Lemma 3.1.36. Emptiness for limit PA is coNP-complete.

Proof. Let A be a limit PA of dimension 𝑑 . Recall the proof of Lemma 3.1.12 showing
𝐿𝜔 (A) is a member of L𝜔

PA,Reg by iterating over all subsets 𝐷 ⊆ [𝑑]. Intuitively, such a
subset 𝐷 indicates the counters which we expect to be ∞ when processing an infinite
word 𝛼 ∈ 𝐿𝜔 (A). For every fixed 𝐷 , we utilize Lemma 3.1.11 to compute a sequence
of finite word PA, say A1,A′

1, . . .A𝑛,A′
𝑛 for some 𝑛 ≥ 1 in polynomial time such that

𝛼 ∈ ⋃︁
𝑖≤𝑛 𝐿(A𝑖) · 𝐿(A′

𝑖 )𝜔 = 𝐿. Given these automata, we can compute a reachability-
regular PA recognizing 𝐿 in polynomial time by Corollary 3.1.10. In particular, for every
fixed 𝐷 we can compute a reachability-regular PA (and hence a reset PA by the comment
above) accepting all words that are accepted by A such that there is an accepting run 𝑟 of A
on 𝛼 with Inf (𝜌 (𝑟 )) = 𝐷 (recall that Inf (v) for some v ∈ ℕ𝑑 denotes the positions of all
∞-entries in v). Hence, we can use the NP-algorithm in the previous proof by first guessing
a good set 𝐷 and turning only the matching “relevant part” of A into a reset PA. ◀

We will now turn our attention to the membership problem. Note that, given finite words 𝑢
and 𝑣 , we can always construct a safety automaton that recognizes 𝑢𝑣𝜔 and no other infinite
word with |𝑢𝑣 | many states. Recall that every state of a safety automaton is accepting. We
show that the intersection of a reset PA recognizable 𝜔-language and a safety automaton-
recognizable 𝜔-language remains reset PA recognizable using a product construction which
is computable in polynomial time. Hence, we can reduce the membership problem to the
non-emptiness the standard way.

Lemma 3.1.37. The class of reset PA recognizable 𝜔-languages is closed under intersection

with safety automata-recognizable 𝜔-languages.

Proof. We show a construction for strong Y-reset PA that is computable in polynomial time.
Let A1 = (𝑄1, Σ, 𝑞1,Δ1, E1, 𝐹1,𝐶1) be a strong Y-reset PA and A2 = (𝑄2, Σ, 𝑞2,Δ2, 𝑄2) be a
safety automaton. Consider the product automaton

A = (𝑄1 ×𝑄2, Σ, (𝑞1, 𝑞2),Δ, E, 𝐹1 ×𝑄2,𝐶1)

with
Δ = {((𝑝, 𝑞), 𝑎, v, (𝑝′, 𝑞′) | (𝑝, 𝑎, v, 𝑝′) ∈ Δ1 and (𝑞, 𝑎, 𝑞′) ∈ Δ2}

75



Chapter 3. Parikh Automata on Infinite Words

and
E = {((𝑝, 𝑞), Y, v, (𝑝′, 𝑞)) | (𝑝, Y, v, 𝑝′) ∈ E1 and 𝑞 ∈ 𝑄2}.

As every state of A2 is accepting, we need to take care that A does not use a transition
that is not enabled in A2 while mimicking the behavior of A1. Hence, it is easily verified
that 𝑆𝑅𝜔 (A) = 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (A2). ◀

Combining the previous two results, we obtain that membership for all our models is in NP.
For the lower bound, we reduce from the membership problem for semi-linear sets, that is,
given a semi-linear set 𝐶 ⊆ ℕ𝑑 and a vector v ∈ ℕ𝑑 , deciding membership of v in 𝐶 . This
problem is known to be NP-complete, which follows immediately from the NP-algorithms
for integer programming [BT76, vzGS78] and the NP-hardness of (a variant of) subset
sum [GJ79, Kar72]; see also [Haa18] for a short discussion.

Corollary 3.1.38. Membership for limit PA, reachability-regular PA, strong reset PA and

weak reset PA is NP-complete.

We will now turn our attention to the universality and inclusions problems, the latter being
the core of solving universal model checking. Note that we can always reduce universality
to inclusion, as an automaton A is universal if and only if Σ𝜔 is a subset of the 𝜔-language
of A. Observe however that universality (and hence inclusion) remain undecidable for our
models, as these problems are already undecidable for reachability PA [GJLZ22] which can
effectively be translated into reachability-regular PA. This implies that the universal model
checking problems are undecidable for our models.

Corollary 3.1.39. Universality and inclusion are undecidable for limit PA, reachability-

regular PA, strong reset PA and weak reset PA.

Contrary, the existential safety model checking for all our models, that is, intersection
emptiness for PA with safety automata is coNP-complete. Hardness follows immediately
from the hardness of emptiness, while containment in coNP is as an immediate consequence
of Lemma 3.1.37.

Corollary 3.1.40. Intersection-emptiness for limit PA, reachability-regular PA, strong

reset PA and weak reset PA with safety automata is coNP-complete.

We continue with the existential PA model checking problem. This problems is coNP
complete for limit PA and reachability-regular PA. Again, hardness follows from the hardness
of emptiness, while containment follows from the closure under intersection, as witnessed
by the product construction in Lemma 3.1.33 which is computable in polynomial time

Lemma 3.1.41. Intersection-emptiness for limit PA and reachability-regular PA is coNP-

complete.

76



3.1. Nondeterministic Parikh Automata

We continue with Büchi PA, as their intersection-emptiness problems has not been studied
in the literature before. Their intersection-emptiness problem remains coNP-complete;
however, we need more sophisticated methods to proof this statement.

Lemma 3.1.42. Intersection-emptiness for Büchi PA is coNP-complete.

Proof. The lower bound follows again from their coNP-complete emptiness problem.
We give a proof sketch showing that intersection non-emptiness for Büchi PA is in NP by
utilizing a recent result essentially stating that Ramsey-quantifiers in Presburger formulas
can be eliminated in polynomial time [BGLZ24]. The authors show how to use the Ramsey-
quantifier to check liveness properties for systems with counters. In particular, the existence
of an accepting run of a Büchi PA (answering the question whether the accepted𝜔-language
is non-empty) can be expressed with a Presburger formula with a Ramsey-quantifier. Hence,
checking if the intersection of the two 𝜔-languages recognized by two Büchi PA can be
tested by intersecting two Presburger-formulas and moving the quantifiers to the front. We
refer to Sections 4.1 and 8.2 in [BGLZ24] for more information. ◀

We conclude by showing that intersection emptiness is undecidable for strong reset PA.
The result relies on the fact that the intersection of two such languages can encode non-
terminating computations of two-counter machines.
A two-counter machine M is a finite sequence of instructions

(1 : I1) (2 : I2) . . . (𝑘 − 1 : I𝑘−1) (𝑘 : STOP)

where the first component of a pair (ℓ, Iℓ) is the line number, and the second component is
the instruction in line ℓ . An instruction is of one of the following forms:

• Inc(𝑍𝑖), where 𝑖 = 0 or 𝑖 = 1.
• Dec(𝑍𝑖), where 𝑖 = 0 or 𝑖 = 1.
• If 𝑍𝑖 = 0 goto ℓ′ else ℓ′′, where 𝑖 = 0 or 𝑖 = 1, and ℓ′, ℓ′′ ≤ 𝑘 .

Instructions of the first or second form are called increments resp. decrements, while
instructions of the latter form are called zero-tests. A configuration of M is a tuple 𝑐 =

(ℓ, 𝑧0, 𝑧1), where ℓ ≤ 𝑘 is the current line number, and 𝑧0, 𝑧1 ∈ ℕ are the current counter
values of 𝑍0 and 𝑍1 respectively. We say 𝑐 derives into its unique successor configuration 𝑐′,
written 𝑐 ⊢ 𝑐′, as follows.

• If Iℓ = Inc(𝑍0), then 𝑐′ = (ℓ + 1, 𝑧0 + 1, 𝑧1).
• If Iℓ = Inc(𝑍1), then 𝑐′ = (ℓ + 1, 𝑧0, 𝑧1 + 1).
• If Iℓ = Dec(𝑍0), then 𝑐′ = (ℓ + 1,max{𝑧0 − 1, 0}, 𝑧1).
• If Iℓ = Dec(𝑍1), then 𝑐′ = (ℓ + 1, 𝑧0,max{𝑧1 − 1, 0}).
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• If Iℓ = If 𝑍0 = 0 goto ℓ′ else ℓ′′, then 𝑐′ = (ℓ′, 𝑧0, 𝑧1) if 𝑧0 = 0, and 𝑐′ = (ℓ′′, 𝑧0, 𝑧1) if
𝑧0 > 0.

• If Iℓ = If 𝑍1 = 0 goto ℓ′ else ℓ′′, then 𝑐′ = (ℓ′, 𝑧0, 𝑧1) if 𝑧1 = 0, and 𝑐′ = (ℓ′′, 𝑧0, 𝑧1) if
𝑧1 > 0.

• If Iℓ = STOP, then 𝑐 has no successor configuration.
The unique computation of M is a finite or infinite sequence of configurations 𝑐0𝑐1𝑐2 . . .
such that 𝑐0 = (1, 0, 0) and 𝑐𝑖 ⊢ 𝑐𝑖+1 for all 𝑖 ≥ 0. Observe that the computation is finite if and
only if the instruction (𝑘 : STOP) is reached. If this is the case, we say M terminates. Given
a two-counter machine M, it is undecidable to decide whether M terminates [Min67].
In the following we assume without loss of generality that our two-counter machines satisfy
the guarded-decrement property [GJLZ22], which guarantees that every decrement does
indeed change a counter value: every decrement (ℓ : Dec(𝑍𝑖)) is preceded by a zero-test of
the form (ℓ − 1, If 𝑍𝑖 = 0 goto ℓ + 1 else ℓ). Note that this modification does not change the
termination behavior of a two-counter machine, as decrementing a counter whose value is
already zero does not have an effect.

Lemma 3.1.43. The intersection emptiness problem for reset PA is undecidable.

Proof. We can encode infinite computations of two-counter machines as infinite words over
Σ = {𝑎, 𝑏, 1, 2, . . . , 𝑘} ∪ ΣI, where ΣI = {𝐼𝑎, 𝐼𝑏, 𝐷𝑎, 𝐷𝑏, 𝑍𝑎, 𝑍𝑏, �̄�𝑎, �̄�𝑏}. The idea is as follows.
Let 𝑐 = (ℓ, 𝑧0, 𝑧1) be a configuration of M. We encode 𝑐 as a finite word 𝑤𝑐 = ℓ𝑢𝑥 ∈ Σ∗,
where ℓ ∈ {1, 2, . . . , 𝑘} encodes the current line number, 𝑢 ∈ {𝑎, 𝑏}∗ with |𝑢 |𝑎 = 𝑧0 and
|𝑢 |𝑏 = 𝑧1 encodes the current counter values, and 𝑥 ∈ ΣI encodes the instruction Iℓ of line ℓ
as follows:

• If Iℓ = Inc(𝑍0), then 𝑥 = 𝐼𝑎 , and if Iℓ = Inc(𝑍1), then 𝑥 = 𝐼𝑏 .
• If Iℓ = Dec(𝑍0), then 𝑥 = 𝐷𝑎 , and if Iℓ = Dec(𝑍1), then 𝑥 = 𝐷𝑏 .
• If Iℓ = If 𝑍0 = 0 goto ℓ′ else ℓ′′, and the line number of the unique successor configu-

ration of 𝑐 is ℓ′, then 𝑥 = 𝑍𝑎 (that is, the zero-test is successful). Analogously with
𝑥 = 𝑍𝑏 .

• If Iℓ = If 𝑍0 = 0 goto ℓ′ else ℓ′′, and the line number of the unique successor con-
figuration of 𝑐 is ℓ′′, then 𝑥 = �̄�𝑎 (that is, the zero-test fails). Analogously with
𝑥 = �̄�𝑏 .

Let𝑤𝑐,𝑤𝑐 ′ ∈ Σ∗ be two words encoding two configurations of M. We call𝑤𝑐 ·𝑤𝑐 ′ correct

if 𝑐 ⊢ 𝑐′. Hence, we can encode a unique infinite computations 𝑐0𝑐1𝑐2 . . . as an infinite
word 𝑤𝑐0𝑤𝑐1𝑤𝑐2 . . . . We show that the 𝜔-language 𝐿 = {𝑤𝑐0𝑤𝑐1𝑤𝑐2 . . . } can be written as
the intersection of two deterministic strong reset PA 𝜔-languages. Let

𝐿1 = {𝑤𝑐0𝑤𝑐1𝑤𝑐2 · · · | 𝑤𝑐2𝑖𝑤𝑐2𝑖+1 is correct for every 𝑖 ≥ 0}, and
𝐿2 = {𝑤𝑐0𝑤𝑐1𝑤𝑐2 · · · | 𝑤𝑐2𝑖+1𝑤𝑐2𝑖+2 is correct for every 𝑖 ≥ 0}.
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Observe that 𝐿1 ∩ 𝐿2 = 𝐿, and 𝐿 is empty if and only if the unique computation of M
terminates. Hence, it remains to show that 𝐿1 and 𝐿2 are recognized by deterministic strong
reset PA. We argue for 𝐿1; the argument for 𝐿2 is very similar. The idea is as follows: We
construct a deterministic strong reset PA A1 with five counters that tests the correctness
of two consecutive encodings of configurations, say 𝑤𝑐2𝑖 · 𝑤𝑐2𝑖+1 = ℓ1𝑢1𝑥1 · ℓ2𝑢2𝑥2 with
ℓ1, ℓ2 ∈ {1, 2, . . . , 𝑘}, 𝑢1𝑢2 ∈ {𝑎, 𝑏}∗ and 𝑥1, 𝑥2 ∈ ΣI. First observe that checking whether ℓ2 is
indeed the correct line number (that is, the correct successor of ℓ1) can be hard-coded into
the state space of A1: if 𝑥1 encodes an increment or decrement, we expect ℓ2 = ℓ1 + 1, and
if 𝑥1 encodes a successful or failing zero-test If 𝑍𝑖 = 0 goto ℓ′ else ℓ′′, we expect ℓ2 = ℓ′ or
ℓ2 = ℓ

′′, respectively. Four counters of A1 are used to count the numbers of 𝑎’s and 𝑏’s in 𝑢1
and 𝑢2, respectively. Then, if 𝑥1 = 𝐼𝑎 , we expect |𝑢2 |𝑎 = |𝑢1 |𝑎 + 1 and |𝑢2 |𝑏 = |𝑢1 |𝑏 , and so on.
To be able to perform the correct check, we also encode 𝑥1 into the state space as well as
the fifth counter by counting modulo |ΣI |. Observe that the guarded-decrement property
ensures that decrements are handled correctly. Hence, A1 has two sets of states counting
the numbers of 𝑎’s and 𝑏’s of 𝑢1 and 𝑢2, accordingly, as well as a set of accepting states that
is used to check the counter values.
After such a check, A1 resets, and continues with the next two (encodings of) configurations.
The automaton for 𝐿2 works in the same way, but skips the first configuration. ◀
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3.2 Deterministic Parikh automata

In this section, we study the deterministic variants of Parikh automata on infinite words.
First, we study the closure properties of the newly introduced models, yielding the foun-
dation in order to investigate the expressiveness of the models. The main part of this
section is devoted to the decision problems; in particular we focus on the core problems for
model checking that, in contrast to the non-deterministic variants, are decidable for the
deterministic variants and present algorithms for these problems.

3.2.1 Closure Properties

We now study the closure properties of the deterministic variants of the models intro-
duced by Grobler et al. [GSS24], that is, deterministic limit PA, deterministic reachability-
regular PA, deterministic strong reset PA, and deterministic weak reset PA.
It is well known that semi-linear sets over ℕ𝑑 are closed under complement [GS64]; see
also [Haa18]. Before we study deterministic limit automata we show that this is also true
for semi-linear sets enriched with ∞.

Lemma 3.2.1. Let 𝐶 ⊆ ℕ𝑑
∞ be a semi-linear set. Then the complement �̄� = ℕ𝑑

∞ \ 𝐶 is

semi-linear.

Proof. Let 𝑓 : ℕ∞ → ℕ be the bijection with 𝑓 (∞) = 0 and 𝑓 (𝑖) = 𝑖 + 1 for 𝑖 ∈ ℕ. We
extend 𝑓 to vectors v = (𝑣1, . . . , 𝑣𝑑) ∈ ℕ𝑑

∞ and sets of vectors 𝐶 ⊆ ℕ𝑑
∞ component-wise:

𝑓 (𝑣1, . . . , 𝑣𝑑) = (𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑑)) and 𝑓 (𝐶) = {𝑓 (v) | v ∈ 𝐶}. Note that 𝑓 (𝐶) ⊆ ℕ𝑑 .
Now we observe that 𝑓 (𝐶) is semi-linear if and only if 𝐶 is semi-linear. First assume that 𝐶
is semi-linear. We may assume that 𝐶 = 𝐶 (b, 𝑃) is linear, as we can carry out the following
procedure for every linear set individually. Assume b = (𝑏1, . . . , 𝑏𝑑). We define 𝐷∞(b) =
{𝑖 | 𝑏𝑖 = ∞}. For a set 𝐷 ⊆ {1, . . . , 𝑑} with 𝐷∞(b) ⊆ 𝐷 and a vector v = (𝑣1, . . . , 𝑣𝑑) ∈ ℕ𝑑

∞,
let v𝐷 = (𝑣𝐷1 , . . . , 𝑣𝐷𝑑 ) with 𝑣𝐷𝑖 = 0 if 𝑖 ∈ 𝐷 and 𝑣𝐷𝑖 = 𝑣𝑖 if 𝑖 ∉ 𝐷 . Furthermore, we call a subset
𝑃 ′ ⊆ 𝑃 of period vectors 𝐷-compatible if for every 𝑖 ∈ 𝐷 \𝐷∞(b), the set 𝑃 ′ contains at least
one vector where the 𝑖th component is ∞, and if for every 𝑖 ∉ 𝐷 , the set 𝑃 ′ contains no
vector where the 𝑖th component is ∞. Observe that this definition ensures that for every
vector v ∈ 𝑃 ′ we have v𝐷 ∈ ℕ𝑑 , that is, no component in v𝐷 is ∞. Let P𝐷

∞ ⊆ 2𝑃 be the
collection of 𝐷-compatible subsets of 𝑃 . Then we have

𝑓 (𝐶) =
⋃︂

𝐷∞ (b)⊆𝐷⊆{1,...,𝑑}

⋃︂
𝑃 ′∈P𝐷

∞

𝐶 (b𝐷 + 1𝐷 +
∑︂
p∈𝑃 ′

p𝐷 , {p𝐷 | p ∈ 𝑃 ′}),

which is semi-linear by definition.
For the other direction, we may again assume that 𝑓 (𝐶) = 𝐶 (b, 𝑃) is linear. Similar to above,
assume b = (𝑏1, . . . , 𝑏𝑑) and define 𝐷0(b) = {𝑖 | 𝑏𝑖 = 0}. For a set 𝐷 ⊆ 𝐷0(b) we call a
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subset 𝑃 ′ ⊆ 𝑃 of period vectors 𝐷-safe if for every 𝑖 ∈ 𝐷 the set 𝑃 ′ contains no vector where
the 𝑖th component is not 0, and if for every 𝑖 ∉ 𝐷 the set 𝑃 ′ contains at least one vector
where 𝑖th component is not 0. Let P𝐷

0 ⊆ 2𝑃 be the collection of 𝐷-safe subsets of 𝑃 . Let
i𝐷 = (𝑣1, . . . , 𝑣𝑑) with 𝑣𝑖 = ∞ if 𝑖 ∈ 𝐷 and 𝑣𝑖 = 0 if 𝑖 ∉ 𝐷 . Then we have

𝐶 =
⋃︂

𝐷⊆𝐷0 (b)

⋃︂
𝑃 ′∈P𝐷

0

𝐶 (i𝐷 + b − 1 +
∑︂
p∈𝑃 ′

p, 𝑃 ′),

which is semi-linear by definition (we assume ∞− 1 = ∞). Observe that every component
in i𝐷 + b + ∑︁

p∈𝑃 ′ p is strictly greater 0, hence we can subtract 1 without getting negative.

As semi-linear sets over ℕ𝑑 are closed under complement, we have

𝐶 is semi-linear ⇔ 𝑓 (𝐶) is semi-linear
⇔ ℕ𝑑 \ 𝑓 (𝐶) is semi-linear
⇔ 𝑓 −1(ℕ𝑑 \ 𝑓 (𝐶)) = 𝐶 is semi-linear. ◀

Lemma 3.2.2. The class of deterministic limit PA recognizable languages is closed under

union, intersection and complement.

Proof. First observe that we can always assume that every state of a (deterministic) limit PA
is accepting, as we can check the existence of an accepting state being visited infinitely
often in the semi-linear set. To achieve this, we introduce one new counter and increment
it at every transition that points to an accepting state. In the semi-linear set we enforce
that this counter is ∞.
Hence, we can show the closure under union and intersection by a standard product con-
struction. In case of union, we test whether at least one automaton has good counter values,
and we can show the closure under intersection by testing whether both automata have good
counter values. Closure under complement follows immediately from Lemma 3.2.1. ◀

Following the standard proof showing that the language 𝐿𝑎<∞ = {𝛼 ∈ {𝑎, 𝑏}𝜔 | |𝛼 |𝑎 < ∞}
is not deterministic 𝜔-regular, we make the following observation.

Observation 3.2.3. There is no deterministic reachability-regular PA, deterministic weak

reset PA or deterministic strong reset PA recognizing the 𝜔-regular language 𝐿𝑎<∞.

Observe however, that the complement 𝐿𝑎=∞ = {𝛼 ∈ {𝑎, 𝑏}𝜔 | |𝛼 |𝑎 = ∞} of 𝐿𝑎<∞ is
recognized by all of these models.

Lemma 3.2.4. The class of deterministic reachability-regular PA recognizable languages

is not closed under union, intersection or complement.
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Proof. First we show non-closure under union. Let

𝐿1 = {𝑢𝑐𝛼 | 𝑢 ∈ {𝑎, 𝑏, 𝑐}∗, |𝑢 |𝑎 = |𝑢 |𝑏, |𝛼 |𝑐 = ∞}

and
𝐿2 = {𝑣𝑎𝛽 | 𝑣 ∈ {𝑎, 𝑏, 𝑐}∗, |𝑣 |𝑏 = |𝑣 |𝑐, |𝛽 |𝑎 = ∞}.

Both languages are deterministic reachability-regular PA recognizable, as witnessed by the
automaton in Figure 3.6 and the fact that 𝐿2 can be obtained from 𝐿1 by shuffling symbols.
We show that the language 𝐿1 ∪𝐿2 is not deterministic reachability-regular PA recognizable.
Assume there is an 𝑛-state deterministic reachability-regular PA A recognizing 𝐿1 ∪ 𝐿2.
Then there is a unique accepting run 𝑟1𝑟2 . . . of A on 𝑎𝑏𝑐𝜔 . In particular, at some point
the automaton verifies the Parikh condition, say after using the transition 𝑟𝑖 . Let 𝑚 =

max{𝑛 + 1, 𝑖} and consider the infinite word 𝑎𝑏𝑐𝑚𝑏𝑚−1𝑎𝜔 with the unique accepting run
𝑟 ′1𝑟

′
2 . . . of A. Due to determinism, we have 𝑟 𝑗 = 𝑟 ′𝑗 for all 𝑗 ≤ 𝑚 + 2; in particular, the

automaton verifies the Parikh condition within this run prefix. As𝑚− 1 ≥ 𝑛, the automaton
visits a state, say 𝑞 twice while reading 𝑏𝑚−1. Hence, we can pump this 𝑞-cycle and obtain
an accepting run of A on 𝑎𝑏𝑐𝑚𝑏𝑚−1+𝑘𝑎𝜔 for some 𝑘 > 0, a contradiction.
For the non-closure under intersection, define

𝐿1 = {𝛼 | |𝛼 [1 : 𝑖] |𝑎 = |𝛼 [1 : 𝑖] |𝑏 for some 𝑖}

and
𝐿2 = {𝛼 | |𝛼 [1 : 𝑖] |𝑎 = |𝛼 [1 : 𝑖] |𝑐 for some 𝑖}.

Suppose there is an 𝑛-state deterministic reachability-regular PA recognizing 𝐿1 ∩ 𝐿2. Let
𝛼 = 𝑎(𝑎𝑛𝑏𝑛)𝑛+1𝑐𝑛(𝑛+1)+1𝑎𝜔 . The unique run 𝑟 of A on 𝛼 is not accepting, as 𝛼 has no
balanced 𝑎-𝑏 prefix. Observe that A visits at least one state twice while reading a 𝑏𝑛-block.
Furthermore, there is a state, say 𝑞, such that A visits 𝑞 twice while reading two different
𝑏𝑛-blocks, as there are 𝑛 + 1 different 𝑏𝑛-blocks. Hence, we can swap the latter 𝑞-cycle to
the front and obtain an infinite word, say 𝛼′ in 𝐿1 ∩ 𝐿2, with a unique accepting run 𝑟 ′
of A. This run verifies the Parikh condition at some point. We distinguish two cases.
If 𝑟 ′ verifies the Parikh condition before reading the first 𝑐 , we can depump the 𝑐𝑛(𝑛+1)+1-
block and obtain an accepting run on an infinite word without a balanced 𝑎-𝑐-prefix, a
contradiction. Hence assume that 𝑟 ′ verifies the Parikh condition after reading at least one 𝑐 ,
say at position 𝑘 . However, then we have 𝜌 (𝑟 [1 : 𝑘]) = 𝜌 (𝑟 ′[1 : 𝑘]), and hence A also
accepts 𝛼 , a contradiction.
The non-closure under complement follows immediately from Observation 3.2.3. ◀
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𝑞0 𝑞1

𝑎,

(︃
1
0

)︃
; 𝑏,

(︃
0
1

)︃
𝑐, 0

𝑐, 0

𝑎,

(︃
1
0

)︃
; 𝑏,

(︃
0
1

)︃
Figure 3.6. The deterministic reachability-regular PA with 𝐶 = 𝐶 (0, {1})

for 𝐿1 = {𝑢𝑐𝛼 | 𝑢 ∈ {𝑎, 𝑏, 𝑐}∗, |𝑢 |𝑎 = |𝑢 |𝑏, |𝛼 |𝑐 = ∞}.

Lemma 3.2.5. The class of deterministic weak reset PA recognizable languages is not

closed under union, intersection or complement.

Proof. We begin with the non-closure under union. Let

𝐿𝑎=𝑏 = {𝛼 | |𝛼 [1 : 𝑖] |𝑎 = |𝛼 [1 : 𝑖] |𝑐 for ∞ many 𝑖}

and similarly define

𝐿𝑎=𝑐 = {𝛼 | |𝛼 [1 : 𝑖] |𝑎 = |𝛼 [1 : 𝑖] |𝑐 for ∞ many 𝑖 .

We show that 𝐿𝑎=𝑏 ∪𝐿𝑎=𝑐 is not deterministic weak reset PA recognizable. Assume there is a
deterministic weak reset PA A recognizing 𝐿𝑎=𝑏 ∪𝐿𝑎=𝑐 . Consider the unique accepting run 𝑟
of A on 𝛼 = (𝑎𝑏)𝜔 and let 𝑖, 𝑗 be two positions with 𝑖 + 1 < 𝑗 such that 𝑟 resets after reading
𝛼 [1 : 𝑖] and 𝛼 [1 : 𝑗] in the same state (such a pair of positions does always exists by the
infinite pigeonhole principle). Now consider the infinite word 𝛼 [1 : 𝑖]𝑐 |𝛼 [1:𝑖] |𝑎 (𝑎𝑐)𝜔 , which
is also accepted by A. However, this implies that A also accepts 𝛼 [1 : 𝑗]𝑐 |𝛼 [1:𝑖] |𝑎 (𝑎𝑐)𝜔 , as A
is in the same (accepting) state after reading 𝛼 [1 : 𝑖] as well as 𝛼 [1 : 𝑗], but this infinite
word is not contained in 𝐿𝑎=𝑏 ∪ 𝐿𝑎=𝑐 , as 𝛼 [1 : 𝑗] contains at least one more 𝑎 than 𝛼 [1 : 𝑖], a
contradiction.
The argument for the non-closure under intersection is the same as for the non-deterministic
setting, as the 𝜔-languages considered in Lemma 3.1.33 are indeed deterministic weak reset
PA recognizable.
The non-closure under complement is an immediate consequence of Observation 3.2.3. ◀

Lemma 3.2.6. The class of deterministic strong reset PA recognizable languages is not

closed under union, intersection or complement.
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Proof. We begin with the non-closure under union. Let 𝐿 = {𝑐∗𝑎𝑛𝑐∗𝑏𝑛 | 𝑛 > 0}𝜔 and
𝐿𝑐=∞ = {𝛼 | |𝛼 |𝑐 = ∞}. Observe that 𝑎𝑛𝑐𝜔 ∈ 𝐿 ∪ 𝐿𝑐=∞ for every 𝑛 ≥ 0. Assume there is a
deterministic strong reset PA recognizing 𝐿 ∪ 𝐿𝑐=∞. Let 𝑛1 ≠ 𝑛2 be such that the unique
accepting runs of A on 𝛼1 = 𝑎

𝑛1𝑐𝜔 resp. 𝛼2 = 𝑎
𝑛2𝑐𝜔 reset in the same state the first time they

reset after reading at least one 𝑐 , say after reading 𝛼1 [1 : 𝑖1] resp. 𝛼2 [1 : 𝑖2] (with 𝑖1 > 𝑛1
and 𝑖2 > 𝑛2). As 𝑎𝑛1𝑐𝑖1−𝑛1𝑏𝑛1 (𝑎𝑏)𝜔 is also accepted by A, the infinite word 𝑎𝑛2𝑐𝑖2−𝑛2𝑏𝑛1 (𝑎𝑏)𝜔
is also accepted by A, a contradiction.
To show the non-closure under intersection, we use an argument similar to the non-
deterministic setting. Let 𝐿1 = {𝑎𝑛𝑏𝑛 | 𝑛 > 0}𝜔 and 𝐿2 = {𝑎}{𝑏𝑛𝑎2𝑛 | 𝑛 > 0}. Then 𝐿1 ∩ 𝐿2
contains only one infinite word, namely 𝑎𝑏𝑎2𝑏2𝑎4𝑏4 . . . . Hence 𝐿1 ∩ 𝐿2 is not ultimately
periodic and hence not accepted by any strong reset PA [GSS24].
The non-closure under complement again follows from Observation 3.2.3. ◀

3.2.2 Expressiveness

In this section we study the expressiveness of deterministic PA on infinite words for those
models whose deterministic variants were not studied before in the literature.
First we remark that deterministic reachability-regular PA, deterministic limit PA, deter-
ministic strong reset PA and deterministic weak reset PA are strictly weaker than their
non-deterministic counterparts. This follows immediately from their different closure prop-
erties: reachability-regular PA, weak reset PA (and hence strong reset PA) are closed under
union (see Lemma 3.1.1), and limit PA are not closed under complement (see Lemma 3.1.33).
Hence, from the results of the previous section we obtain the following corollary.

Corollary 3.2.7. The following strict inclusions hold.

• Deterministic reachability-regular PA ⊊ Reachability-regular PA.

• Deterministic limit PA ⊊ Limit PA.

• Deterministic strong reset PA ⊊ Reset PA.

• Deterministic weak reset PA ⊊ Reset PA.

In the following, when we show non-inclusions, we always give the strongest separation,
e. g., when showing that a deterministic strong reset PA cannot simulate a deterministic
weak reset PA, we show that it can not even simulate a deterministic reachability PA, which
is weaker than a deterministic weak reset PA. We refer to Figure 3.7 for an overview of the
results in this section. We simply write that a model is a strict/no subset of another model;
by that we mean that the class of 𝜔-languages recognized by the first model is a strict/no
subset of the class of 𝜔-languages recognized by the second model.
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rechability PA reachability-regular PA weak reset PA

(non-det.) 𝜔-regular limit PA strong reset PA

safety PA co-Büchi PA Büchi PA

Figure 3.7. Inclusion diagram of the studied deterministic models. Arrows indicate strict
inclusions while no connections mean incomparability.

𝝎-regular languages

We begin by showing that every 𝜔-regular language is deterministic limit PA recognizable.

Lemma 3.2.8. 𝜔-regular ⊊ deterministic limit PA.

Proof. Let 𝐿 ⊆ Σ𝜔 be 𝜔-regular and let A = (𝑄, Σ, 𝑞0,Δ, F ) be a deterministic Muller
automaton recognizing 𝐿. The idea is to construct an equivalent deterministic limit PA
A′ = (𝑄, Σ, 𝑞0,Δ

′, 𝑄,𝐶) of dimension |𝑄 |, where every state is accepting, while encoding
the sets in F into the semi-linear set 𝐶 . Let 𝑓 : 𝑄 → {1, . . . , |𝑄 |} be a bijection associating
every state with a counter. Hence, we define Δ′ = {(𝑝, 𝑎, e|𝑄 |

𝑓 (𝑞), 𝑞) | (𝑝, 𝑎, 𝑞) ∈ Δ}. For every
𝐹 ∈ F , we define 𝐶𝐹 = 𝐶 (∑︁𝑞∈𝐹 i𝑓 (𝑞), {e𝑓 (𝑞) | 𝑞 ∉ 𝐹 }). That is, for every state in 𝐹 we expect
its counter value to be ∞, while we expect every other counter value to be a finite number.
We choose 𝐶 =

⋃︁
𝐹∈F 𝐶𝐹 and hence obtain an equivalent deterministic limit PA.

The strictness is witnessed by the 𝜔-language {𝑎𝑛𝑏𝑛𝑐𝜔 | 𝑛 > 0}, which is obviously
deterministic limit PA recognizable, but not 𝜔-regular. ◀

Observation 3.2.3 immediately yields the following result.

Corollary 3.2.9.

𝜔-regular ⊈

Deterministic reachability-regular PA

Deterministic Büchi PA

Deterministic strong reset PA

Deterministic weak reset PA

Observe however that these models generalize deterministic Büchi automata. This is not true
for deterministic reachability PA, deterministic safety PA nor deterministic co-Büchi PA, as
shown in the next lemma.
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Lemma 3.2.10.

Deterministic 𝜔-regular ⊈
Deterministic reachability PA

Deterministic safety PA

Deterministic co-Büchi PA

Proof. As an immediate consequence of Lemma 3.2.12 (proved below) we have that no
deterministic reachability PA recognizes the deterministic 𝜔-regular language 𝑎∗𝑏𝜔 .
The two other claims follow from [GJLZ22, Proof of Theorem 3], where the authors have
shown that (even non-deterministic) safety PA do not recognize the deterministic 𝜔-regular
language {𝑎, 𝑏}𝜔 \ {𝑎}𝜔 and that no co-Büchi PA recognizes the deterministic 𝜔-regular
language 𝐿𝑎=∞ = {𝛼 ∈ {𝑎, 𝑏}𝜔 | |𝛼 |𝑎 = ∞}. ◀

Deterministic Safety PA and co-Büchi PA

As a consequence of Lemma 3.2.10 we obtain the following corollary.

Corollary 3.2.11.
Deterministic reachability-regular PA

Deterministic limit PA

Deterministic strong reset PA

Deterministic weak reset PA

⊈
Deterministic safety PA

Deterministic co-Büchi PA

As shown in [GJLZ22] also deterministic reachability PA ⊈ deterministic safety PA and
deterministic reachability PA ⊈ deterministic co-Büchi PA as well as deterministic Büchi
PA ⊈ deterministic safety PA and deterministic Büchi PA ⊈ deterministic co-Büchi PA.
Furthermore, the classes of deterministic safety PA and deterministic co-Büchi PA are
themselves incomparable as shown in [GJLZ22].
Vice versa, deterministic safety PA ⊈ non-deterministic weak reset PA and deterministic
co-Büchi PA ⊈ non-deterministic weak reset PA [GSS24]. Hence, these classes are no
subclasses of any of the other studied classes.
Overall, deterministic safety PA and deterministic co-Büchi PA are incomparable with all
other studied models.

Deterministic Reachability PA

We begin by characterizing the class of deterministic reachability PA recognizable 𝜔-
languages.

Lemma 3.2.12. An 𝜔-language 𝐿 is deterministic reachability PA recognizable if and

only if 𝐿 = 𝑈 Σ𝜔 , where𝑈 ⊆ Σ∗
is recognized by a deterministic PA.
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Proof. Let A be a deterministic reachability PA recognizing 𝐿. Then we have 𝐿(A) = 𝑈 .
Likewise, if A is a PA recognizing 𝑈 , then 𝑅𝜔 (A) = 𝐿 (recall that A is complete by the
definition of determinism). ◀

We have the following strict inclusion.

Lemma 3.2.13. Deterministic reachability PA ⊊ deterministic reachability-regular PA.

Proof. Let A be a deterministic reachability PA. We may assume that every state of A is
accepting, as we can project the current state into the semi-linear set. To be precise, we
introduce two new counters for each state of A, counting the number of visits and exits.
Then, the current state is the (unique) state with one more visit than exit, or in case that
the number of visits and exits is the same for every state, then the current state is the
initial state of A. As these statements can be encoded into a semi-linear set, we can assume
that every state is equipped with its own semi-linear set, and can hence make every state
accepting (and assign the empty set if we want to simulate a non-accepting state). If every
state is accepting, then A is an equivalent deterministic reachability-regular PA.
The strictness is witnessed e. g., by the 𝜔-language {𝑎𝑛𝑏𝑛𝑎𝜔 | 𝑛 > 0}, which is deterministic
reachability-regular PA recognizable and by Lemma 3.2.12 not deterministic reachability PA
recognizable. ◀

It remains to show the following incomparability results.

Lemma 3.2.14. Deterministic reachability PA ⊈ deterministic limit PA.

Proof. We show that the deterministic reachability PA recognizable 𝜔-language

𝐿 = {𝛼 | |𝛼 [1 : 𝑖] |𝑎 = |𝛼 [1 : 𝑖] |𝑏 for some 𝑖 > 0}

is not deterministic limit PA recognizable. The proof is similar [GJLZ22, Lemma 3]. Assume
there is an 𝑛-state deterministic limit PA A recognizing 𝐿. Consider the unique non-
accepting run of A on 𝑎(𝑎𝑛𝑏𝑛)𝜔 . Observe that A visits at least one state twice while
reading a 𝑏𝑛-block, and there are at least two of the (infinitely many) 𝑏𝑛-blocks such that A
visits the same state, say 𝑞, twice while reading them. Hence, we can shift one such 𝑞-cycle
to the front and obtain the unique run on an infinite word that is in 𝐿. However, this run is
still non-accepting, as the extended Parikh image and number of visits of an accepting state
do not change. ◀

Lemma 3.2.15. Deterministic reachability PA ⊈ deterministic strong reset PA.

Proof. We show that the deterministic reachability PA recognizable 𝜔-language

𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} · {𝑎, 𝑏}𝜔
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is not deterministic strong reset PA recognizable. Assume there is a deterministic strong
reset PA A with 𝑛 states recognizing 𝐿. Let 𝛼 = 𝑎𝑛𝑏𝜔 with unique accepting run 𝑟 =

𝑟1𝑟2𝑟3 . . . of A on 𝛼 . Let 𝑓1, 𝑓2, . . . be the sequence of reset positions of 𝑟 and let 𝑖 > 𝑛 be
minimal with 𝑖 = 𝑓𝑖 ′ for some 𝑖′ ≥ 1 (that is, 𝑓𝑖 ′ is the first reset position after reading a 𝑏).
First observe that 𝑖 < 2𝑛. Assume that this is not the case. As A visits at least one state
twice while reading 𝑏𝑛, say state 𝑞, we observe that A is caught in a 𝑞 . . . 𝑞 cycle while
reading 𝑏𝜔 due to determinism. That is, every state that is visited while reading 𝑏𝜔 is already
visited while reading the first 𝑛 many 𝑏s. Hence we have 𝑖 < 2𝑛. Now let 𝑗 ≥ 2𝑛 be minimal
such that 𝑗 = 𝑓 𝑗 ′ for some 𝑗 ′ > 𝑖′ is a reset position in 𝑟 such that the state at position 𝑓 𝑗 ′ is
the same state as the one at position 𝑓𝑖 ′ (which exists by the same argument).
Now let 𝛼′ = 𝑎𝑛𝑏 𝑗−𝑛𝑎𝜔 with unique accepting run 𝑟 ′ = 𝑟 ′1𝑟 ′2𝑟 ′3 . . . of A on 𝛼′. Observe that
𝛼 [1 : 𝑗] = 𝛼′[1 : 𝑗], and hence 𝑟 [1 : 𝑗] = 𝑟 ′[1 : 𝑗]. As the partial runs 𝑟 [1 : 𝑖] and 𝑟 [1 : 𝑗]
reachability the same accepting state, the run 𝑟 [1 : 𝑖]𝑟 ′𝑗+1𝑟

′
𝑗+2 . . . is an accepting run of A on

𝑎𝑛𝑏𝑖−𝑛𝑎𝜔 . However, as 𝑖 −𝑛 < 𝑛, this infinite word is not contained in 𝐿, a contradiction. ◀

Deterministic Reachability-regular PA

We begin by showing that every deterministic reachability-regular PA (and hence every
deterministic reachability PA) can be translated into an equivalent deterministic weak
reset PA.

Lemma 3.2.16. Deterministic reachability-regular PA ⊊ deterministic weak reset PA.

Proof. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a deterministic reachability-regular PA and let A′ =
(𝑄 ∪ {𝑞′0}, Σ, 𝑞′0,Δ′, 𝐹 ,𝐶′) be a copy of A with a new fresh initial state 𝑞′0 inheriting all
outgoing transitions of 𝑞0 (observe that this modification preserves determinism). We
add one new counter that is incremented at every transition leaving 𝑞′0, and not modified
otherwise, that is,

Δ′ = {(𝑝, 𝑎, v · 0, 𝑞) | (𝑝, 𝑎, v, 𝑞) ∈ Δ} ∪ {(𝑞′0, 𝑎, v · 1, 𝑞) | (𝑞0, 𝑎, v, 𝑞) ∈ Δ}.

We choose 𝐶′ = 𝐶 · {1} ∪ℕ𝑑 · {0} and obtain an equivalent weak reset PA A′.
The strictness is witnessed by the 𝜔-language {𝑎𝑛𝑏𝑛 | 𝑛 > 0}𝜔 , which is obviously de-
terministic weak reset PA recognizable, but not even recognized by (non-deterministic)
Büchi PA [GJLZ22], which are more expressive than reachability-regular PA. ◀

Deterministic Strong Reset PA

Lemma 3.2.17. Deterministic strong reset PA ⊊ deterministic weak reset PA.

Proof. The inclusion follows from Lemma 3.1.23, as the construction preserves determinism.
The strictness follows from the fact that {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} · {𝑎, 𝑏}𝜔 is deterministic reachabil-
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ity PA recognizable, and hence deterministic weak reset PA recognizable (by Lemma 3.2.13
and Lemma 3.2.16), but not recognized by any deterministic strong reset PA, as shown in
Lemma 3.2.15. ◀

Lemma 3.2.18. Deterministic strong reset PA ⊈ deterministic Büchi PA.

Proof. The argument is as in Lemma 3.2.16. The𝜔-language {𝑎𝑛𝑏𝑛 | 𝑛 > 0}𝜔 is deterministic
strong reset PA recognizable, but there is no Büchi PA recognizing it [GJLZ22]. ◀

Lemma 3.2.19. Deterministic strong reset PA ⊈ deterministic limit PA.

Proof. This follows from the previous proof as limit PA are less expressive than Büchi PA. ◀

Deterministic Büchi PA

We show that 𝜔-languages recognized by deterministic Büchi PA can be characterized in a
similar way as deterministic 𝜔-regular languages.

Lemma 3.2.20. An 𝜔-language 𝐿 is deterministic Büchi PA recognizable if and only of

𝐿 = 𝑃 where 𝑃 is recognized by a deterministic PA.

Proof. Let A be a deterministic Büchi PA recognizing 𝐿 and let 𝛼 ∈ 𝐵𝜔 (A) with accepting
run 𝑟 . As 𝑟 has infinitely many accepting hits by definition, we have 𝛼 ∈ 𝐿(A)⃗ . Similarly,
let A be a deterministic PA recognizing 𝑃 and let 𝛼 ∈ 𝑃 . As A is deterministic, the unique
run of A on 𝛼 has infinitely many accepting hits, hence we have 𝛼 ∈ 𝐵𝜔 (A). ◀

Lemma 3.2.21. Deterministic Büchi PA ⊈ deterministic limit PA.

Proof. The proof is almost identical to the proof of Lemma 3.2.14, but this time we consider
the 𝜔-language 𝐿𝑎=𝑏 = {𝛼 | |𝛼 [1 : 𝑖] |𝑎 = |𝛼 [1 : 𝑖] |𝑏 for ∞ many 𝑖}. Then we can re-use the
same argument as the constructed infinite word has indeed infinitely many balanced 𝑎-𝑏
prefixes. ◀

Lemma 3.2.22. Deterministic Büchi PA ⊈ deterministic weak reset PA.

Proof. As shown in Lemma 3.2.5, the 𝜔-language 𝐿𝑎=𝑏 ∪𝐿𝑎=𝑐 is not deterministic weak reset
PA recognizable. However, it is obviously deterministic Büchi PA recognizable. ◀

We note however that the class of 𝜔-languages recognized by deterministic Büchi PA with
a linear set form a subclass of the class of 𝜔-languages recognized by deterministic weak
reset PA with a linear set, as clarified in the following lemma.
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Lemma 3.2.23. Let A be a deterministic Büchi PA with a linear set 𝐶 (b, 𝑃). Then there

is an equivalent deterministic weak reset PA.

Proof. First we observe that if b = 0, then we have 𝐵𝜔 (A) = 𝑊𝑅𝜔 (A). To see this, let
𝛼 ∈ 𝐵𝜔 (A) with (unique) accepting run 𝑟 . By Dickson’s Lemma [Dic13], the run 𝑟 contains
an infinite monotone sequence 𝑠1 < 𝑠2 < . . . of accepting hits, that is, for all 𝑖 ≥ 0 we
have 𝜌 (𝑟 [1 : 𝑠𝑖]) ∈ 𝐶 (b, 𝑃) and for all 𝑗 > 𝑖 we have 𝜌 (𝑟 [𝑠𝑖 + 1 : 𝑠 𝑗 ]) ∈ 𝐶 (b, 𝑃). Hence, the
run 𝑟 also satisfies the weak reset condition. For the other direction let 𝛼 ∈𝑊𝑅𝜔 (A) with
(unique) accepting run 𝑟 and reset positions 0 = 𝑘0 < 𝑘1 < 𝑘2 . . . . As we assume b = 0, it is
immediate that 𝜌 (𝑟 [1 : 𝑘𝑖]) ∈ 𝐶 (b, 𝑃) for all 𝑖 ≥ 1. Hence, the run 𝑟 also satisfies the Büchi
condition.
Finally we argue that we can always assume that b = 0. Indeed, we can always encode b
into the state space of A. ◀

3.2.3 Decision Problems and Model Checking

In this section, we study classical decision problems as well as the core problems for model
checking for the deterministic variants. We repeat the problems for convenience. For an
overview of the results in this section we refer to Table 1.2 and Table 1.3.

• Emptiness: given a PA A, is the 𝜔-language of A empty?
• Membership: given a PA A and finite words 𝑢, 𝑣 , does A accept 𝑢𝑣𝜔?
• Universality: given a PA A, does A accept every infinite word?
• Inclusion: given a safety automaton or a PA A1, and a PA A2, is the 𝜔-language

of A1 a subset of the 𝜔-language of A2?
• Intersection-emptiness: given a safety automaton or a PA A1, and a PA A2, is the
𝜔-language of A1 disjoint from the 𝜔-language of A2?

The techniques employed for showing NP-completeness for non-emptiness and member-
ship are identical to the non-deterministic case, see Lemma 3.1.35, Lemma 3.1.36 and
Corollary 3.1.38.

Corollary 3.2.24. Emptiness for deterministic limit PA, deterministic reachability-regular

PA, deterministic weak reset PA and deterministic strong reset PA is coNP-complete.

Corollary 3.2.25. Membership for deterministic limit PA, deterministic reachability-

regular PA, deterministic weak reset PA and deterministic strong reset PA is NP-complete.

However, showing undecidability and completeness results for universality and the model
checking problems require more sophisticated methods. Hence, we devote most of this
section to the latter problems, being the core of solving universal model checking. Recall
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that we can always reduce universality to inclusion, as an automaton A is universal if and
only if Σ𝜔 is a subset of the 𝜔-language of A. Hence, we show all undecidability results and
lower bounds for universality and all decidability results and upper bounds for inclusion.
We begin with the undecidability results.

Lemma 3.2.26. Universality for deterministic reachability-regular PA and deterministic

weak reset PA is undecidable.

Proof. As shown in [GJLZ22], universality is already undecidable for deterministic reacha-
bility PA. As we can effectively construct equivalent deterministic reachability-regular PA
and deterministic weak reset PA from deterministic reachability PA by Lemma 3.2.13 and
Lemma 3.2.16, the lemma follows. ◀

Recall our strategy for showing that universality for finite word PA is ΠP
2 -hard by a reduction

from the irrelevance problem for PA, see Corollary 2.4.4. We conclude ΠP
2 -hardness for

universality for deterministic limit and deterministic strong reset PA using a simplified
variant of this reduction.

Corollary 3.2.27. Universality and inclusion for deterministic limit PA and deterministic

strong reset PA is ΠP
2 -hard.

Now we focus on the decidability results and upper bounds. Let A1 and A2 be two (deter-
ministic limit) PA. Note that 𝐿𝜔 (A1) ⊆ 𝐿𝜔 (A2) holds if and only if 𝐿𝜔 (A1) ∩ 𝐿𝜔 (A2) = ∅.
As deterministic limit PA are effectively closed under complement and intersection, and
emptiness is coNP-complete (and hence decidable) for them, we obtain the following result.

Corollary 3.2.28. Universality and inclusion for deterministic limit PA are decidable.

Unfortunately, we do not obtain tight bounds and conjecture that these problem are ΠP
2 -

complete for them. However, we make the following observation. The relatively high ΠP
2

lower bound of universality for deterministic limit PA and deterministic strong reset PA
(and also of irrelevance for finite word PA) can be explained by the cost of (implicitly)
complementing semi-linear sets. In fact, if we have the guarantee that the semi-linear set
of the second PA can be complemented in polynomial time, the universality and inclusion
problems become coNP-complete. We start with deterministic limit PA.

Lemma 3.2.29. Let A1 and A2 be deterministic limit PA with the guarantee that the semi-

linear set of A2 can be complemented in polynomial time. Then the following questions

are coNP-complete.

1. Is 𝐿𝜔 (A2) = Σ𝜔?

2. Is 𝐿𝜔 (A1) ⊆ 𝐿𝜔 (A2)?
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Proof. Containment in coNP of both questions follows immediately from a reduction to
emptiness for deterministic limit PA, as the guarantee allows us to complement determin-
istic limit PA in polynomial time, and we can construct the product automaton of two
deterministic limit PA in polynomial time.
The partition problem is defined as follows: given a multiset 𝑀 of positive integers, is
there a subset 𝑀′ of 𝑀 such that

∑︁
𝑛∈𝑀 𝑛 =

∑︁
𝑛∈𝑀\𝑀 ′ 𝑛?. This problem is one of the classical

NP-complete problems [GJ79]. We reduce from its complement.
Let 𝑀 = {𝑛1, . . . 𝑛𝑘} be a multiset of positive integers. We construct a deterministic limit
PA A over the alphabet {𝑎, 𝑏} of dimension 2 as follows. The state set of A is {𝑞0, 𝑞1, . . . 𝑞𝑘}
where 𝑞0 is the initial state and 𝑞𝑘 is the only accepting state. For every 1 ≤ 𝑖 ≤ 𝑘 , there is an
𝑎-transition from 𝑞𝑖−1 to 𝑞𝑖 labeled with (𝑛𝑖, 0) as well as a 𝑏-transition labeled with (0, 𝑛𝑖).
Finally, we add an 𝑎-loop and a 𝑏-loop to the accepting state 𝑞𝑘 , both labeled with 0. The
semi-linear set of A is

𝐶 = {(𝑧, 𝑧′) | 𝑧 ≠ 𝑧′} = 𝐶 ((1, 0), {(1, 0), (1, 1)}) ∪𝐶 ((0, 1), {(0, 1), (1, 1)}),

whose size does not depend on the size of 𝑀 . Furthermore, the complement of 𝐶 is

𝐶 = {(𝑧, 𝑧) | 𝑧 ∈ ℕ} = 𝐶 (0, {(1, 1}),

and can hence be computed in polynomial time.
Now we have that A is universal if and only if 𝑀 is a negative instance of partition. To
see this, observe that every prefix𝑤1 . . .𝑤𝑘 ∈ {𝑎, 𝑏}𝑘 of every word 𝛼 ∈ 𝐿𝜔 (A) represents
a subset 𝑀′ of 𝑀 with 𝑛𝑖 ∈ 𝑀′ if and only if 𝑤𝑖 = 𝑎, and hence 𝑛𝑖 ∈ 𝑀 \ 𝑀′ if and only
if 𝑤𝑖 = 𝑏. The semi-linear set 𝐶 of A states that 𝑀′ and 𝑀 \𝑀′ are not a partition of 𝑀 .
Hence, the claim follows. ◀

Now we show that this is also the case for deterministic strong reset PA, presenting in parallel
the strategy that we will finally adapt to show that inclusion is ΠP

2 -complete in the general
case. We show that complements of deterministic strong reset PA recognizable 𝜔-languages
are reachability-regular PA recognizable, and given that we can complement the semi-linear
set in polynomial time, we can construct such a reachability-regular PA in polynomial time.
Subsequently, we show how to test intersection emptiness of a deterministic strong reset
PA and a reachability-regular PA in coNP. We begin by proving the first main ingredient.

Lemma 3.2.30. Let A = (𝑄, Σ, 𝑞0,Δ, 𝐹 ,𝐶) be a deterministic strong reset PA. Then there

is a (non-deterministic) reachability-regular PA A′
recognizing 𝑆𝑅𝜔 (A). Furthermore, if

𝐶 can be complemented in polynomial time, then we can compute A′
in polynomial time.

Proof. We assume that every state of A is reachable from the initial state 𝑞0 (as we can
safely remove unreachable states in polynomial time). Observe that A rejects an infinite
word 𝛼 whenever one of the following two conditions is met:
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1. The unique run of A on 𝛼 visits every accepting state just finitely often.
2. The unique run of A on 𝛼 visits an accepting state with bad counter values.

The first condition is 𝜔-regular, while the second one can be tested with a reachability PA.
We begin by clarifying the first point. Testing whether there is an infinite word rejected
by A because its unique run visits every accepting only finitely often boils down to testing
whether the complement𝜔-language of the underlying Büchi automaton of A is non-empty.
Hence, let B be the Büchi automaton obtained from A by forgetting all vectors and let B
be a Büchi automaton recognizing the complement of 𝐿𝜔 (B). As B is deterministic, we can
construct B in polynomial time [Kur87]. Then B accepts all words rejected by A due to
the first condition.
Second, we show how to construct a (non-deterministic) reachability PA accepting all infinite
words that are rejected by A due the second condition. Recall the following definition from
Lemma 3.1.35. For any two states 𝑝, 𝑞 ∈ 𝑄 let A𝑝⇒𝑞 = (𝑄 ∪ {𝑞′0}, Σ, 𝑞′0,Δ𝑝⇒𝑞, {𝑞},𝐶) where

Δ𝑝⇒𝑞 = {(𝑞1, 𝑎, v, 𝑞2) | (𝑞1, 𝑎, v, 𝑞2) ∈ Δ, 𝑞1 ∉ 𝐹 ) ∪ {(𝑞′0, 𝑎, v, 𝑞2) | (𝑝, 𝑎, v, 𝑞2) ∈ Δ}.

For every pair of accepting states 𝑝, 𝑞 ∈ 𝐹 , we consider the PA A𝑝⇒𝑞 , which is defined as
A𝑝⇒𝑞 but with the complement semi-linear set𝐶 of𝐶 . Observe that we can compute A𝑝⇒𝑞

in polynomial time if 𝐶 can be complemented in polynomial time. Hence, A𝑝⇒𝑞 accepts all
finite words collecting a vector not in 𝐶 when starting in 𝑝 , ending in 𝑞, and not visiting
other accepting states in-between. Now let A◦

𝑝⇒𝑞 the PA obtained from A and A𝑝⇒𝑞 as
follows. We start with a copy of A but every state is not accepting and every vector is
replaced by 0. Then, we identify the state 𝑝 in A◦

𝑝⇒𝑞 with the initial state of A𝑝⇒𝑞 , that
is, we remove every outgoing transition of 𝑝 in A◦

𝑝⇒𝑞 and replace them with the outgoing
transitions of the initial state of A𝑝⇒𝑞 . Furthermore, the accepting state 𝑞 of A𝑝⇒𝑞 is the
only accepting state of A◦

𝑝⇒𝑞 . Observe that 𝑞 has no outgoing transitions by construction.
Finally, we add a trivial self-loop to 𝑞 and choose 𝐶 to be the semi-linear set of A◦

𝑝⇒𝑞 .
Hence, A◦

𝑝⇒𝑞 accepts all infinite words of the form 𝑢𝑣𝛽 with 𝛽 ∈ Σ𝜔 such that A is in
state 𝑝 after reading 𝑢, then in state 𝑞 after further reading 𝑣 , and collects a vector not in 𝐶
while reading 𝑣 and hence rejects every infinite word with prefix 𝑢𝑣 . We compute the PA
A◦
𝑝⇒𝑞 for every 𝑝, 𝑞 ∈ 𝐹 and let A◦ be the reachability PA recognizing the union of all

these A◦
𝑝⇒𝑞 by taking the disjoint union and connecting them with a fresh initial state

(see [GJLZ22, Lemma 6] for details). In contrast to an iterated product construction, the
presented construction allows us to compute A◦ in polynomial time, albeit not preserving
determinism.
Finally, let A′ be a reachability-regular PA accepting 𝐿𝜔 (B) ∪ 𝑅𝜔 (A◦). Note that A′ can
be computed in polynomial time in the sizes of B and A◦ by turning both automata into
reachability-regular PA and again taking their disjoint union with a fresh initial state. Now
we have 𝑅𝑅𝜔 (A′) = 𝑆𝑅𝜔 (A). ◀
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Before we proceed, we show two auxiliary lemmas.

Lemma 3.2.31. Let A1 = (𝑄1, Σ, 𝑝𝐼 ,Δ1, 𝐹1,𝐶) be a deterministic strong reset PA and

B = (𝑄2, Σ, 𝑞𝐼 ,Δ2, 𝐹2) be a Büchi automaton. Then 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B) is ultimately

periodic.

Proof. Assume 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B) ≠ ∅ and let 𝛼 be an infinite word accepted by both
automata, A1 and B. If 𝛼 = 𝑢𝑣𝜔 for some 𝑢, 𝑣 ∈ Σ∗, we are done. Hence assume that this
is not the case. Let A = (𝑄1 ×𝑄2, Σ, (𝑝𝐼 , 𝑞𝐼 ),Δ, 𝐹1 ×𝑄2,𝐶) with Δ = {((𝑝, 𝑞), 𝑎, v, (𝑝′, 𝑞′)) |
(𝑝, 𝑎, v, 𝑝′) ∈ Δ1, (𝑞, 𝑎, 𝑞′) ∈ Δ2} be the product automaton2 of A1 and B. As 𝛼 ∈ 𝑆𝑅𝜔 (A1),
the unique accepting run of A1 on 𝛼 , say (𝑝0, 𝛼1, v1, 𝑝1) (𝑝1, 𝛼2, v2, 𝑝2) . . . with 𝑝0 = 𝑝𝐼 , is
accepting. Likewise, as 𝛼 ∈ 𝐿𝜔 (B), there is an accepting run (𝑞0, 𝛼1, 𝑞1) (𝑞1, 𝛼2, 𝑞2) . . . with
𝑞0 = 𝑞𝐼 of B on 𝛼 .
Hence, 𝑟 = ((𝑝0, 𝑞0), 𝛼1, v1, (𝑝1, 𝑞1)) ((𝑝1, 𝑞1), 𝛼2, v2, (𝑝2, 𝑞2)) . . . is a run of A on 𝛼 with the
following properties:

• there is 𝑝 𝑓 ∈ 𝐹1 such that for infinitely many 𝑖 we have 𝑝𝑖 = 𝑝 𝑓 . Let 𝑓1, 𝑓2, . . . denote
the positions of all occurrences of a state of the form (𝑝 𝑓 , ·) in 𝑟 .

• there is 𝑞 𝑓 ∈ 𝐹2 such that for infinitely many 𝑖 we have 𝑞𝑖 = 𝑞 𝑓 .
Let 𝑗 ≥ 𝑓1 be minimal such that 𝑞 𝑗 = 𝑞 𝑓 . Now let 𝑘 ≤ 𝑗 be maximal such that 𝑘 = 𝑓ℓ
for some ℓ ≥ 1. Then 𝑟 [1 : 𝑓ℓ]𝑟 [𝑓ℓ + 1 : 𝑓ℓ+1]𝜔 is an accepting run of A on an ultimately
periodic word, say 𝑢𝑣𝜔 , that visits an accepting state of B infinitely often. Hence 𝑢𝑣𝜔 ∈
𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B). ◀

Lemma 3.2.32. Let A1 = (𝑄1, Σ, 𝑝0,Δ1, 𝐹1,𝐶) be a deterministic strong reset PA and let

B = (𝑄2, Σ, 𝑞0,Δ2, 𝐹2) be a Büchi automaton. The question 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B) = ∅ is

coNP-complete.

Proof. The lower bound follows immediately from the coNP-hardness of emptiness; hence,
we focus on the containment in coNP by showing that testing intersection non-emptiness is
in NP. By the previous lemma it is sufficient to check the existence of an ultimately periodic
word. Recall the algorithm in 3.1.35 that decides the non-emptiness problem for reset PA
in NP by exploiting that 𝜔-languages accepted by a strong reset PA are ultimately periodic.
We modify the algorithm as follows.
First, let A be the product automaton of A1 and B (as in the previous proof; however,
the set of accepting states is not important for the algorithm). We guess state 𝑝 𝑓 ∈ 𝐹1
and 𝑞 𝑓 ∈ 𝐹2 that we expect to be seen infinitely often to satisfy the acceptance conditions
of A1 resp. B. Furthermore, similar to the algorithm above we guess a sequence of distinct

2We note that A interpreted as a strong reset PA does not recognize 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B). Instead, it accepts
all infinite words 𝛼 ∈ 𝑆𝑅𝜔 (A1) such that B has an infinite but not necessarily accepting run on 𝛼 .
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states ( 𝑝1, 𝑞1) (𝑝2, 𝑞2) . . . (𝑝𝑛, 𝑞𝑛) of A such that for some ℓ ≤ 𝑛 we have 𝑞ℓ = 𝑞 𝑓 , for some
𝑘 ≤ ℓ we have 𝑝𝑘 = 𝑝 𝑓 , and for all 𝑗 ≠ ℓ we have 𝑝 𝑗 ∈ 𝐹1. If 𝑝ℓ ∈ 𝐹1, we proceed exactly
as in the original NP-algorithm, that is, for every 0 ≤ 𝑖 < 𝑛, we test the finite word PA
A(𝑝𝑖 ,𝑞𝑖 )⇒(𝑝𝑖+1,𝑞𝑖+1) , as well as the finite word PA A(𝑝𝑛,𝑞𝑛)⇒(𝑝𝑘 ,𝑞𝑘 ) for non-emptiness.
Now assume 𝑝ℓ ∉ 𝐹1. Let A𝑝ℓ−1⇒𝑞ℓ⇒𝑝ℓ+1 be the finite word PA that accepts all finite infixes
accepted by the product automaton A when starting in (𝑝ℓ−1, 𝑞ℓ−1), visiting (𝑝ℓ , 𝑞ℓ) at some
point, and ending in (𝑝ℓ+1, 𝑞ℓ+1) such that for all internal states (𝑝𝑖, 𝑞𝑖) we have 𝑝𝑖 ∉ 𝐹1.
Two achieve this, we take two copies of A, where all accepting states in the first copy are
not reachable, all accepting states in the second copy have no outgoing transitions, and the
second copy can only be reached from the first copy via (𝑝ℓ , 𝑞ℓ).
Formally, let

A𝑝ℓ−1⇒𝑞ℓ⇒𝑝ℓ+1 = (𝑄1 ×𝑄2 × {1, 2} ∪ {𝑞′0}, Σ, 𝑞′0,Δ′, {(𝑝ℓ+1, 𝑞ℓ+1)},𝐶)

with

Δ′ = {((𝑝, 𝑞, 1), 𝑎, v, (𝑝′, 𝑞′, 1)) | ((𝑝, 𝑞), 𝑎, v, (𝑝′, 𝑞′)) ∈ Δ, 𝑝, 𝑝′ ∉ 𝐹1}
∪ {((𝑝, 𝑞, 2), 𝑎, v, (𝑝′, 𝑞′, 2)) | ((𝑝, 𝑞), 𝑎, v, (𝑝′, 𝑞′)) ∈ Δ, 𝑝 ∉ 𝐹1}
∪ {((𝑝, 𝑞, 1), 𝑎, v, (𝑝ℓ , 𝑞ℓ , 2) | ((𝑝, 𝑞), 𝑎, v, (𝑝ℓ , 𝑞ℓ)) ∈ Δ}
∪ {(𝑞′0, 𝑎, v, (𝑝′, 𝑞′, 1) | ((𝑝ℓ−1, 𝑞ℓ−1), 𝑎, v, (𝑝′, 𝑞′)) ∈ Δ, 𝑝′ ∉ 𝐹1}
∪ {(𝑞′0, 𝑎, v, (𝑝ℓ , 𝑞ℓ , 2) | ((𝑝ℓ−1, 𝑞ℓ−1), 𝑎, v, (𝑝ℓ , 𝑞ℓ)) ∈ Δ}.

Now the algorithm is similar the first case with the addition that we also test this automaton
for non-emptiness. Hence, for every 0 ≤ 𝑗 < ℓ−1 and ℓ+1 ≤ 𝑗 < 𝑛 we test A(𝑝 𝑗 ,𝑞 𝑗 )⇒(𝑝 𝑗+1,𝑞 𝑗+1)
as well as A(𝑝𝑛,𝑞𝑛)⇒(𝑝𝑘 ,𝑞𝑘 ) for non-emptiness. Furthermore, we test A𝑝ℓ−1⇒𝑞ℓ⇒𝑝ℓ+1 for non-
emptiness.
If all these tests succeed, we conclude 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B) ≠ ∅, as they witness the existence
of an ultimately periodic word 𝛼 accepted by A1 with the property that there is a run an
accepting run of B on 𝛼 that visits 𝑞 𝑓 infinitely often. ◀

Let A be a deterministic strong reset PA whose semi-linear set can by complemented in
polynomial time. By Lemma 3.2.30 we can compute a Büchi automaton B and a reach-
ability PA A◦ such that 𝑆𝑅𝜔 (A) = 𝐿𝜔 (B) ∪ 𝑅𝜔 (A◦). By the previous lemma we can
test 𝑆𝑅𝜔 (A) ∩ 𝐿𝜔 (B) = ∅ in coNP. Hence, it remains to show that testing intersection
emptiness of a deterministic strong reset PA and a reachability PA is decidable in coNP.
To achieve that, we use the NP-algorithm in [HZ21] deciding the reachability problem for
ℤ-VASS with 𝑘 nested zero-tests (ℤ-VASSnz

𝑘
). A ℤ-VASSnz

𝑘
(of dimension 𝑑 ≥ 1) is a tuple

𝑉 = (𝑄,𝑍, 𝐸) where 𝑄 is a finite set of states, 𝑍 ⊆ {0, 1, . . . , 𝑑} is its set of zero tests with
|𝑍 \ {0}| = 𝑘 , and 𝐸 ⊆ 𝑄 × ℤ𝑑 × 𝑍 ×𝑄 is a finite set of transitions. A configuration of 𝑉
is a pair (𝑝, v) ∈ 𝑄 × ℤ𝑑 . Assume v = (𝑣1, . . . , 𝑣𝑑). We write (𝑝, v) ⊢𝑉 (𝑝′, v′) if there is a
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transition (𝑝, u, ℓ, 𝑝′) ∈ 𝐸 such that v′ = v + u and 𝑣1 = · · · = 𝑣ℓ = 0. Furthermore, we write
(𝑝, v) ⊢∗

𝑉
(𝑝′, v′) if there is a sequence (𝑝1, v1) ⊢𝑉 · · · ⊢𝑉 (𝑝𝑛, v𝑛) for some 𝑛 ≥ 1 such that

(𝑝, v) = (𝑝1, v1) and (𝑝′, v′) = (𝑝𝑛, v𝑛). Intuitively, a ℤ-VASSnz
𝑘

is a counter machine with
zero-tests that can only zero-test the top-most ℓ counters at once, for 𝑘 different values of ℓ .
The reachability problem for ℤ-VASSnz

𝑘
is defined as follows: given a ℤ-VASSnz

𝑘
𝑉 and two

configurations (𝑝, v), (𝑝′, v′), does (𝑝, v) ⊢∗
𝑉
(𝑝′, v′) hold? As shown in [HZ21], this problem

is NP-complete3 for any fixed 𝑘 . We are now ready to show that universality and inclusion
for deterministic strong reset PA are coNP-complete if we can complement their semi-linear
sets in polynomial time.

Lemma 3.2.33. Let A1 and A2 be deterministic strong reset PA with the guarantee that

the semi-linear set of A2 can be complemented in polynomial time. Then the following

questions are coNP-complete.

1. Is 𝑆𝑅𝜔 (A2) = Σ𝜔?

2. Is 𝑆𝑅𝜔 (A1) ⊆ 𝑆𝑅𝜔 (A2)?

Proof. Hardness follows again from a reduction from partition, very similar to the reduction
in Lemma 3.2.29. Hence, we focus on the containment in coNP of the second question.
As mentioned above, we can compute a Büchi automaton B and a reachability PA A◦ such
that 𝑆𝑅𝜔 (A2) = 𝐿𝜔 (B) ∪ 𝑅𝜔 (A◦) by Lemma 3.2.30, and test 𝑆𝑅𝜔 (A1) ∩ 𝐿𝜔 (B) = ∅ in
coNP by Lemma 3.2.32.
It remains to show how to solve 𝑆𝑅𝜔 (A1)∩𝑅𝜔 (A◦) = ∅ in coNP. In order to do so we use the
NP-algorithm in [HZ21] solving reachability for ℤ-VASSnz2 to decide 𝑆𝑅𝜔 (A)∩𝑅𝜔 (A◦) ≠ ∅
in NP. Let A1 = (𝑄1, Σ, 𝑝0,Δ1, 𝐹1,𝐶1) be of dimension 𝑑1 and A◦ = (𝑄2, Σ, 𝑞0,Δ2, 𝐹2,𝐶2) be
of dimension 𝑑2. Assume 𝑆𝑅𝜔 (A) ∩ 𝑅𝜔 (A◦) ≠ ∅ and let 𝛼 be an infinite word accepted by
both automata. In particular, there is a finite prefix 𝑢 of 𝛼 and an accepting run of A◦ on 𝛼
satisfying the Parikh condition after processing 𝑢, say in the accepting state 𝑞 𝑓 ∈ 𝐹2. Recall
that all outgoing transitions of every accepting state of A◦ are self-loops, hence we may
assume that A◦ does not leave 𝑞 𝑓 anymore after processing 𝑢. Now let 𝑝 𝑓 ∈ 𝐹1 be the first
accepting state visited by the unique accepting run of A1 on 𝛼 after processing 𝑢, say after
processing the prefix 𝑢𝑣 . Note that A◦ is still in 𝑞 𝑓 after processing 𝑢𝑣 .
Our strategy is as follows. First, we guess states 𝑝 𝑓 and 𝑞 𝑓 with the mentioned properties.
We then verify these properties by building a product ℤ-VASSnz2 with the property that
((𝑝0, 𝑞0), 0) ⊢∗𝑉 ((𝑝 𝑓 , 𝑞 𝑓 ), 0) if and only there is a finite prefix 𝑢𝑣 as described above. Then
we need to test whether A1 can continue a partial run from 𝑝 𝑓 to an accepting run, that is,

3We note that our definition of ℤ-VASSnz
𝑘

differs slightly from the definition in [HZ21], as we allow 𝐸 ⊆
𝑄 ×ℤ𝑑 ×𝑍 ×𝑄 instead of 𝐸 ⊆ 𝑄 × {−1, 0, 1}𝑑 ×𝑍 ×𝑄 only. However, this difference does not change the
mentioned complexity for the reachability problem [HZ21], see also [BDG+23, Section A.1].
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3.2. Deterministic Parikh automata

whether A2 with initial state 𝑝 𝑓 accepts at least one infinite word, say 𝛽 . If all these tests
succeed, the infinite word 𝑢𝑣𝛽 witnesses non-emptiness.
We build a product ℤ-VASSnz2 𝑉 with 𝑑1 + 𝑑2 many counters. The idea is as follows. We use
the first 𝑑1 counters with to simulate A1 ensuring that every visit of an accepting state
of A1 is with good counter values by zero-testing them. Likewise, we use a second set of 𝑑2
counters to simulate A◦. Let us give some more details on how to verify that every visit of
an accepting state implies good counter values. Let𝐶1 = 𝐶 (b1, 𝑃1) ∪ · · · ∪𝐶 (b𝑘 , 𝑃𝑘) for some
𝑘 ≥ 1. For every accepting state 𝑓 ∈ 𝐹1 we insert 𝑘 states, say 𝑓 (1), . . . , 𝑓 (𝑘) , and a copy
of 𝑓 itself. We connect 𝑓 to 𝑓 (𝑖) with a transition subtracting b𝑖 and no zero-test. Then, for
every period vector p𝑖 ∈ 𝑃𝑖 , we insert a loop on 𝑓 (𝑖) subtracting p𝑖 . Finally, every outgoing
transition of 𝑓 (𝑖) is equipped with a zero-test on the first 𝑑1 counters. This construction
allows us to test membership of the current counter values in𝐶1, while resetting the counters
in parallel. Finally, when reaching (𝑝 𝑓 , 𝑞 𝑓 ), we use the same idea to check whether the
vector induced by the last 𝑑2 counters yields a vector in 𝐶2. As 𝑝 𝑓 is accepting, we expect
all counters to be zero at this point, which we check by zero-testing them all. Hence, if
((𝑝0, 𝑞0), 0) ⊢∗𝑉 ((𝑝 𝑓 , 𝑞 𝑓 ), 0) holds (where we assume that (𝑝 𝑓 , 𝑞 𝑓 ) is the state of 𝑉 reached
after the described zero-tests), this implies that there is a finite prefix 𝑢𝑣 such that A2
rejects every infinite word with prefix𝑢𝑣 due to bad counter values, while the unique partial
run of A1 on 𝑢𝑣 respects the strong reset acceptance condition. Finally, we need to check
whether the 𝜔-language of A1 with initial state 𝑝 𝑓 is not-empty using the NP-algorithm
for testing emptiness for strong reset PA (see Lemma 3.1.35) If these tests succeed, there is
an infinite word 𝛽 such that 𝑢𝑣𝛽 ∈ 𝑆𝑅𝜔 (A1) \ 𝑆𝑅𝜔 (A2), witnessing non-inclusion. ◀

We are now ready to combine and generalize the results in the previous lemmas to arbitrary
deterministic strong reset PA.

Lemma 3.2.34. Universality and inclusion for deterministic strong reset PA are ΠP
2 -

complete.

Proof. Hardness follows from Corollary 3.2.27; hence, we show that non-inclusion is in ΣP
2 ,

yielding the desired result.
Let A1 = (𝑄1, Σ, 𝑝0,Δ1, 𝐹1,𝐶1) and A2 = (𝑄2, Σ, 𝑞0,Δ2, 𝐹2,𝐶2) be deterministic strong re-
set PA of dimensions 𝑑1 and 𝑑2, resp. As in the previous lemma, we can compute a Büchi
automaton B accepting all infinite words that are rejected by A2 because every accepting
state of A2 is visited only finitely often. By Lemma 3.2.32, we can test 𝑆𝑅𝜔 (A1)∩𝐿𝜔 (B) ≠ ∅
in NP. If the intersection is indeed non-empty, we conclude 𝑆𝑅𝜔 (A1) ⊈ 𝑆𝑅𝜔 (A2). Oth-
erwise, this non-inclusion might hold as there is an infinite word 𝛼 ∈ 𝑆𝑅𝜔 (A1) rejected
by A2 due to a reset with bad counter values. To test this case, we proceed as follows.
We guess two accepting states 𝑞2, 𝑞3 of A2 and utilize the non-irrelevance algorithm in
Lemma 2.4.1 to test the existence of such a finite infix with bad counter values, i. e., an infix
whose unique partial run of A2 yields a vector v ∉ 𝐶2. We then construct a ℤ-VASSnz2 to
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test whether there is an infinite word accepted by A1 that is rejected by A2 because the
partial run between 𝑞2 and 𝑞3 yields the bad vector v, ensuring that A1 respects all resets,
similar to the proof of the previous lemma.
Let A = (𝑄1×, 𝑄2, Σ, (𝑝0, 𝑞0),Δ, 𝐹1 ×𝑄2,𝐶1) with

Δ = {((𝑝, 𝑞), 𝑎, v, (𝑝′, 𝑞′)) | (𝑝, 𝑎, v, 𝑝′) ∈ Δ1, (𝑞, 𝑎, ·, 𝑞′) ∈ Δ2}

be the product automaton of A1 and A2 where we only keep the vectors and accepting
states from A1. We guess two states (𝑝2, 𝑞2), (𝑝3, 𝑞3) ∈ 𝑄1 × 𝐹2 such that there is 𝛼 ∈
𝑆𝑅𝜔 (A1) \ 𝑆𝑅𝜔 (A2) with the property that A2 rejects 𝛼 because the unique rejecting run
of A2 on 𝛼 visits 𝑞2 at some position, say 𝑓2 (and hence resets), the next reset is in 𝑞3 at
position 𝑓3, and the vector collected in this time is not a member of 𝐶2. Furthermore, 𝑝2
and 𝑝3 are the corresponding states of A1 at positions 𝑓2 and 𝑓3. Additionally, we guess two
states (𝑝1, 𝑞1), (𝑝4, 𝑞4) ∈ 𝐹1 ×𝑄2 such that the unique accepting run of A1 on 𝛼 resets the
last time before reaching position 𝑓2 say at position 𝑓1 ≤ 𝑓2, namely in 𝑝1; and A1 resets the
first time after reaching position 𝑓3 say at position 𝑓4 ≥ 𝑓3, namely in 𝑝4. Furthermore, 𝑞1
and 𝑞4 are the states of A2 at positions 𝑓1 and 𝑓4. Observe that 𝑓1 = 𝑓2 and 𝑓3 = 𝑓4 are
possible.
First, we test whether (𝑝1, 𝑞1) is reachable in A in the sense that there is a finite prefix 𝑢
of 𝛼 such that A is in state (𝑝1, 𝑞1) after reading 𝑣 and A1 resets with good counter values
whenever an accepting state of A1 is seen. In order to do so, we modify A such that (𝑝1, 𝑞1)
is the only accepting state, and replace its outgoing transitions with trivial self-loops. Then
we use the NP-algorithm in Lemma 3.1.35 to test non-emptiness of the resulting automaton.
Second, we test whether it is possible to successfully continue the run from (𝑝4, 𝑞4) in the
sense that there is an infinite word 𝛽 accepted by A when starting in (𝑝4, 𝑞4) (and hence
by A1 when starting in 𝑝4). In order to do so, we modify A such that (𝑝4, 𝑞4) is the initial
state and test non-emptiness of the resulting automaton, again using the NP-algorithm
in Lemma 3.1.35.
Let A′ be defined as A but this time we only keep the vectors from A2 (instead of A1)
and its semi-linear set is 𝐶2 (instead of 𝐶1). Third, we test whether there is indeed a finite
prefix of𝑤 of 𝛼 such that A′ is in state (𝑝3, 𝑞3) after processing𝑤 when starting in (𝑝2, 𝑞2),
and the vector collected by the unique partial run of A′ (and hence A2) is not a member
of𝐶2. To achieve that we compute the PA A′

(𝑝2,𝑞2)⇒(𝑝3,𝑞3) and test for non-irrelevance using
the algorithm in Lemma 2.4.1 in ΣP

2 (observe that the construction of this PA preserves
determinism up to completeness, and we can always complete the PA by adding a non-
accepting sink). Recall that a part of this algorithm guesses a vector v not contained in 𝐶2
such that there is a run ending in the accepting state (here (𝑝3, 𝑞3)) collecting v. We need
to keep this vector for the next step.
Finally, we need to verify that there is a non-rejecting partial run of A on an infix 𝑣𝑤𝑥 ,
starting in (𝑝1, 𝑞1), visiting (𝑝2, 𝑞2) and (𝑝3, 𝑞3) in between, and ending in (𝑝4, 𝑞4) such
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that𝑤 is processed between the visits of (𝑝2, 𝑞2) and (𝑝3, 𝑞3), witnessing that A2 is indeed
rejecting. To achieve that, we construct a product ℤ-VASSnz2 𝑉 of dimension 𝑑1 + 𝑑2 in a
similar way as in the proof of the previous lemma. We give a high level description of 𝑉 .
The state set of 𝑉 consists of three copies of the product 𝑄1 ×𝑄2, and the transitions keep
the vectors of the transitions of both automata, A1 and A2. We can move from the first
copy to the second copy upon reaching (𝑝2, 𝑞2), and from the second copy to the third copy
upon reaching (𝑝3, 𝑞3). The 𝑑2 counters belonging to A2 are frozen (that is 0) in the first
and third copy. Contrary, all counters are used in the second copy. Furthermore, we remove
every state in 𝑄1 × 𝐹2 in the second copy besides (𝑝2, 𝑞2) and (𝑝3, 𝑞3). We verify that A1
always resets with good counter values using zero tests as in the proof of the previous
lemma. Finally, upon reaching (𝑝4, 𝑣4), we subtract 0𝑑1 · v (where v is the vector guessed in
the previous step) and test whether all counters are zero. As 𝑝4 is accepting, we expect the
first 𝑑1 counters to be zero. Furthermore, as v is a vector witnessing bad counter values with
respect to A2, all-zero counters imply that there is indeed such an infix 𝑤 of 𝛼 breaking
the run of A2. Let (𝑝 𝑓 , 𝑞 𝑓 ) be the state of 𝑉 reached after this zero test. Then we use the
NP-algorithm in [HZ21] to test ((𝑝1, 𝑞1), 0) ⊢∗𝑉 ((𝑝 𝑓 , 𝑞 𝑓 ), 0). If the answer is positive, we
conclude that 𝑆𝑅𝜔 (A1) ⊈ 𝑆𝑅𝜔 (A2), as witnessed by 𝛼 = 𝑢𝑣𝑤𝑥𝑦𝛽 .
We conclude with a technical remark: the bit size of the vector v guessed in the third step
might polynomially depend on 𝐶1 and 𝐶2. In particular, the bit size of (a suitable encoding
of) 𝐶1 might be arbitrary larger than the bit size of 𝐶2. Hence, when calling the irrelevance
algorithm with A′ (where only 𝐶2 is present) we need to take in account that the bit size
of v might not be polynomial in 𝐶2 but in 𝐶1 and 𝐶2. ◀

Finally, we study the intersection-emptiness problems, being the core of solving existential
model checking. We observe that all results translate from the non-deterministic setting.
Hence, for deterministic limit PA, deterministic reachability-regular PA and deterministic
Büchi PA we conclude coNP-completeness by Lemma 3.1.41 and Lemma 3.1.42.

Corollary 3.2.35. Intersection-emptiness for deterministic limit PA, deterministic

reachability-regular PA, and deterministic Büchi PA is coNP-complete.

For deterministic strong reset PA (and hence for deterministic weak reset PA) we obtain
undecidability, as the PA constructed in the proof of Lemma 3.1.43 is indeed deterministic.

Corollary 3.2.36. Intersection-emptiness for deterministic strong and weak reset PA is

undecidable.
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4 Conclusion



We have studied the expressiveness, closure properties and classical decision problems
of the non-deterministic and determinstic variants of the newly introduced models of PA
operating on infinite words, namely reachability-regular PA, limit PA, weak reset PA, and
strong reset PA. Notably, deterministic limit PA are closed under the Boolean operations and
hence all common decision problems are decidable for them, including the classical model
checking problems. Additionally, (strong) reset PA, being a very expressive model, enjoy
a decidable emptiness problems as well as a decidable existential safety model checling
problem. Closely related to model checking problems are synthesis problems. Here, the
problem is to generate a model from a system specification (which is correct by construction).
Gale-Stewart games play a key role in solving such synthesis problems [GS53]. However,
these games are undecidable when winning conditions are specified by automata whose
emptiness or universality problem is undecidable. Our decidability results for deterministic
limit PA raise the interesting and important question whether Gale-Stewart games can be
solved when their winning condition is expressed by these automata.
In future work we further plan to study the regular separability problem for these models,
that is, given two 𝜔-languages 𝐿1, 𝐿2 recognized by PA operating on infinite words, is there
an 𝜔-regular language 𝐿 with 𝐿1 ⊆ 𝐿 and 𝐿2 ∩ 𝐿 = ∅. Solving this problem can be used as
an alternative approach to solving existential PA model checking, as (regular) separability
implies intersection emptiness. It has already been studied for some related models, e. g.,
PA on finite words [CCLP17] and Büchi VASS [BMZ23]. Furthermore, it remains to classify
the intersections of all incomparable models and thereby to provide a fine grained “map of
the universe” for Parikh recognizable 𝜔-languages.
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Chapter 5. Prelude

5.1 Introduction

In many dynamic real-world applications of decision-making problems, feasible solutions
must be found starting from a certain predetermined system state. This is in contrast to
the classical academic problems where we are allowed to compute a feasible solution from
scratch. However, when constructing a new solution from scratch, we have no control over
the difference between the current system state and the new target one. Very prominent
examples for such systems are typically settings where humans are involved in the system
and big changes to the running system are not easily implementable or even accepted.
When optimizing public transport lines, shift plans, or when assigning workers to tasks it is
clearly desirable to aim for an optimal solution that is as similar as possible to the current
state of the system. In this part, we develop a new framework where we aim to restore a
healthy system state from an infeasible or corrupted state via a bounded number of small
modification steps.
As a motivating example for our framework consider the mobile phone coverage of a
city. Mobile transmission towers are placed systematically in order to ensure that every
part of the city is in range of at least one such tower, connecting that part to the mobile
communications network. By representing all relevant parts of the city as vertices of a graph,
and connecting two vertices whenever they are close enough such that placing a mobile
transmission tower in one of the parts ensures connectivity of the other part, a placement
of these towers such that the whole city is connected corresponds to a dominating set. Now
assume that mobile transmission towers are already installed around the city but a newly
built development area in the city is not connected to the network yet. An approach in
order to connect the new area could be the computation of a new dominating set from
scratch. However, in general the new dominating set can differ arbitrarily from the existing
one. Given the costs to move around the towers (or to disassemble them and assemble
them elsewhere), it is desirable to be able to compute a new dominating set in the modified
system that is close to the original one. One could also think of simply building a new
tower in the new area. Albeit being a valid strategy, given the cost of building a new tower
it might be desirable to re-use the already existing towers. To substantiate the example,
consider the map of Berlin in Figure 5.1. The black dots on the map represent different
locations1 in Berlin, and the red squares represent mobile transmission towers together
with their range. The blue triangle named 𝑣 is a new development area in the district of
Köpenick and, particularly, not in range of any tower. One simple solution to include 𝑣
into mobile communications network is to move the tower from position 𝑢 to 𝑣 without
changing any other tower.

1In fact, they are 52 important locations in Berlin according to Martin Grötschel.
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https://d-maps.com/carte.php?numcar=23860&lang=en

𝑣

𝑢

Figure 5.1. Example application of the solution discovery via reconfiguration framework.
By moving the mobile transmission tower from 𝑢 to 𝑣 , we can integrate 𝑣 into
the mobile communication network while inducing only a small change to the
current state.
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To address the computational aspects of such situations, we introduce the new framework
of solution discovery via reconfiguration. In this model, an optimizer is given a problem
instance together with a current (generally infeasible) state. The goal is to decide whether
a feasible solution to the given problem can be constructed by applying only a bounded
number of changes to the current state. We exemplify our framework by studying the
discovery variants of fundamental graph problems, namely Vertex Cover, Independent
Set, and Dominating Set, being canonical NP-complete problems, as well as Vertex Cuts
and Edge Cuts, being classical problems solvable in polynomial time. When a base problem
is polynomial-time solvable, one may efficiently compute an optimal solution from scratch.
However, as previously illustrated, there are situations in which a solution that is close
to a currently established configuration is more desirable. As we show in this work, the
constraints put on these problems in the solution discovery framework, namely a limited
number of changes, can drastically alter their complexities.
Let us give more details on our framework. For any of the aforementioned problems, say 𝐿,
we consider instances consisting of a graph 𝐺 , a budget 𝑏, and a starting configuration
of 𝑘 tokens, which is not necessarily a feasible solution for 𝐿 (and where tokens either
occupy vertices or edges of𝐺). The goal is to decide whether we can transform the starting
configuration of tokens into a feasible solution for 𝐿 by applying at most 𝑏 local changes.
Depending on the setting, such a local change may be the slide of a token to an unoccupied
neighboring vertex or edge, the jump of a token to another unoccupied vertex or edge, or
the addition or removal of a token, yielding the token sliding model, token jumping model or
token addition/removal model, respectively. We refer to Section 5.2 for a formal definition
of the framework.
Solution discovery problems are inspired by related approaches transforming one solution
to another such as local search, reoptimization, dynamic algorithms, and combinatorial

reconfiguration.
Local search is an algorithmic paradigm that is based on the iterative improvement of
solutions by searching for a better solution in a well-defined neighborhood (typically
defined by certain local changes). A local search procedure terminates once there is no
improved solution in the neighborhood. Strongly related is the framework of reoptimization

where we look for solutions for a problem instance when given solutions to neighboring
instances. Local search and reoptimization have proven to be very powerful for many
problems in theory and practice, see e. g., [AL97, BHK18, GH06].
In contrast to these models, in a solution discovery problem, a sequence of reconfiguration
steps may not necessarily find improved solutions at each step, as long as we arrive at a
feasible solution within a bounded number of steps.
In the area of dynamic (graph) algorithms, the dynamic nature of real-world systems is
modeled via a sequence of additions and removals of vertices or edges in a graph. The goal is
to output an updated solution much more efficiently than a static algorithm that is computing
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one from scratch. Dynamic graph algorithms have been studied extensively, e. g., for Vertex
Cover [BHI18, OR10] and Independent Set [AOSS18]. The (parameterized) complexity of
dynamic algorithms has been studied, e. g., in [AKEF+15, HN13, KST18]. In contrast to the
solution discovery framework, changes to the system happen in a very specific way, while
the reconfiguration steps are restricted only indirectly by the computation time (and space)
and not by a concrete reconfiguration budget.
In the combinatorial reconfiguration framework [Heu13, Nis18], we are given a graph with
both, an initial solution and a target solution, and we aim to transform the initial solution to
the target one by executing a sequence of reconfiguration steps chosen from a well-defined
restricted collection of steps that is typically described by allowed token moves. Contrary,
in a solution discovery problem, the target solution is not known (and might not even exist)
and the goal is to find any feasible target solution via arbitrary intermediate configurations
whose number is bounded by the budget.
We observe strong connections between the solution discovery variants of our base problems
and their weighted rainbow variants as well as their red-blue variants with cardinality

constraints. An instance of a weighted rainbow vertex (resp. edge) selection problem consists
of a weighted vertex (resp. edge) colored graph, and the solution of such an instance may
not contain two vertices (resp. edges) of the same color and additionally may not collect too
much weight. We show that the weighted rainbow variants of vertex cuts and edge cuts
are fixed-parameter tractable (fpt) with respect to the solution size and use these results to
design fpt-algorithms for the solution discovery variants of these problems with respect to
the number of tokens in the token sliding model. Similarly, solving the solution discovery
variant of a problem in the token jumping model boils down to solving the red-blue variant
of that same problem. An instance of a red-blue vertex (resp. edge) selection problem
consists of a graph where every vertex (resp. edge) is either colored red or blue and two
integer parameters 𝑘 and 𝑏. The goal is to find a solution of size 𝑘 that contains at most 𝑏
blue vertices (resp. edges).
We study the solution discovery variants of the aforementioned problems and provide a
full classification of tractability vs. intractability with respect to the classical as well as the
parameterized complexity in all three token models. Moreover, we prove similar results
for the rainbow variants as well as the red-blue variants of the aforementioned problems,
which we believe to be of independent interest. Additionally, for some hard problems we
restrict the graph classes to regain tractability. We refer to Table 5.1 for an overview of
the results.
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Vertex Cover Independent Set Dominating Set Vertex/Edge Cut
Discovery

Sliding
NP-c., FPT[𝑘],
W[1]-hard[𝑏]

NP-c.,
W[1]-hard[𝑘 + 𝑏]

NP-c.,
W[1]-hard[𝑘 + 𝑏]

NP-c., FPT[𝑘],
W[1]-hard[𝑏]

Discovery
Jumping

NP-c., FPT[𝑘]
W[1]-hard[𝑏]

NP-c.,
W[1]-hard[𝑘 + 𝑏]

NP-c.,
W[1]-hard[𝑘 + 𝑏]

NP-c., FPT[𝑘],
W[1]-hard[𝑏]

Discovery
Add/Rem.

NP-c.,
FPT[𝑏]

NP-c.,
FPT[𝑏]

NP-c.,
W[1]-hard[𝑏] in P

Rainbow NP-c.,
FPT[𝑘]

NP-c.,
W[1]-hard[𝑘]

NP-c.,
W[1]-hard[𝑘]

NP-c. (∗), FPT[𝑘]
NP-c. on planar

Red-Blue NP-c., FPT[𝑘]
W[1]-hard[𝑏]

NP-c.,
W[1]-hard[𝑘 + 𝑏]

NP-c.,
W[1]-hard[𝑘 + 𝑏]

NP-c., FPT[𝑘],
W[1]-hard[𝑏]

Table 5.1. Overview of our results. For the solution discovery problems, we denote by 𝑘
the number of tokens and by 𝑏 the budget. For the colorful problems, we denote
by 𝑘 the solution size and by 𝑏 the bound on the number of blue elements. The
NP-completeness result for rainbow cuts (∗) was shown in [BCL20, Theorem 5.5];
we strengthen this result by showing that the problem is already NP-hard on
planar graphs.
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5.2 Preliminaries

In this section we present the definitions and notations that are relevant for the second
part of the thesis. We repeat the relevant notions from the preliminaries in the first part for
convenience. We write ℕ for the set of non-negative integers including 0.

5.2.1 Turing Machines, Decidability and Complexity Theory

Turing machines are the most common model to define the notions of computability and
decidability. Informally, a Turing machine is a finite automaton equipped with an infinite
tape (or a constant number of such tapes) of discrete cells that can store symbols, and a
read/write head (per tape) that points on one cell at a time. The Turing machine may read
the symbol of the cell the head is pointing at, write a symbol in the cell, and move the head
to a neighboring cell. However, when designing algorithms it is highly inconvenient to
construct Turing machines implementing these algorithms. Instead, we will always give
high level descriptions. For this reason, we refrain from formally defining Turing machines
and refer the interested reader to the textbooks [HMU06, Koz97, Sip13]. Note that we can
always represent a decision problem as a language 𝐿. As decision problems often involve
abstract objects as numbers, sets of numbers, automata, and so on, we always assume that
such objects are encoded as words in an appropriate way. Hence, if a decision problem is
decidable, we can implement an algorithm that solves it (in a finite amount of time).
Very often we are not just interested in the question whether a problem is decidable, but
in its inherent complexity, that is, the resources needed to solve it. We denote by P the
complexity class of decision problems decidable in polynomial time by a deterministic
Turing machine. Similarly, we denote by NP the complexity class of decision problems that
are decidable in polynomial time by a nondeterministic Turing machine. Additionally, we
denote by PSPACE the complexity class of decision problems decidable with polynomial
space by a deterministic Turing machine. Obviously, P ⊆ NP ⊆ PSPACE holds. The question
whether the first inclusion is strict is the most famous question in theoretical computer
science. While it is widely believed that both inclusions are strict, these questions are open
for more than 50 years [Coo71].
A polynomial time reduction from a problem 𝐿 ⊆ Σ∗ to a problem 𝐿′ ⊆ Γ∗ is a total function
𝑓 : Σ∗ → Γ∗ computable in polynomial time by a deterministic Turing machine. We write
𝐿 ≤P 𝐿

′ if there is a polynomial time reduction from 𝐿 to 𝐿′. We call a language 𝐿 hard
2 for

a complexity class C if 𝐿′ ≤P 𝐿 for all 𝐿′ ∈ C. If 𝐿 is C-hard and contained in C, we call 𝐿

2Depending on the class C, the notion of polynomial time reduction must be strengthened or can be
weakened. For example, when showing NLogSpace-hardness, we require logarithmic space reductions.
However, the given definition of hardness holds for all complexity classes considered in this part and we
will hence ignore this technicality.
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C-complete. Intuitively, the notion of C-hardness yields a lower bound for the inherent
complexity of a problem, while containment in C yields an upper bound. Hence, the notion
of C-completeness yields a tight bound on the inherent complexity of a problem. We will
make constantly use of the following lemma.

Lemma 5.2.1. Let C be a complexity class and 𝐿 ⊆ Σ∗
and 𝐿′ ⊆ Γ∗ be two languages

with 𝐿 ≤P 𝐿
′
.

• If 𝐿′ is contained in C, then 𝐿 is contained in C.

• If 𝐿 is hard for C, then 𝐿′ is hard for C.

In order to obtain a more fine-grained analysis of the inherent complexity of a problem,
it might be desirable to apply a finer analysis than classifying a problem to be in P or
NP-hard. The subject of parameterized complexity analyzes the complexity of a problem not
only depending on the input size but with respect to a parameter, e. g. the solution size or,
speaking of solution discovery variants of graph problems, the budget.
A parameterized problem is a language3 𝐿 ⊆ Σ∗ × ℕ. For an instance (𝑤,𝑘) ∈ Σ∗ × ℕ,
we call 𝑘 the parameter. A parameterized problem 𝐿 is fixed-parameter tractable, fpt for
short, if there exists an algorithm that on input (𝑤,𝑘) decides in time 𝑓 (𝑘) · | (𝑤,𝑘) |𝑐
whether (𝑤,𝑘) ∈ 𝐿, for a computable function 𝑓 and constant 𝑐 , where | (𝑤,𝑘) | denotes the
length of (an appropriate encoding) of (𝑤,𝑘). We denote by FPT the complexity class of all
fixed-parameter tractable parameterized problems.
Let 𝐿 ⊆ Σ∗ × ℕ and 𝐿′ ⊆ Γ∗ × ℕ be parameterized problems. An fpt-reduction from 𝐿

to 𝐿′ is a reduction 𝑓 with the property that there are computable functions 𝑔, ℎ such that
𝑓 (𝑤,𝑘) = (𝑤 ′, 𝑘′) is computable in time 𝑔(𝑘) · | (𝑤,𝑘) |𝑐 for some constant 𝑐 and 𝑘′ ≤ ℎ(𝑘).
We write 𝐿 ≤fpt 𝐿

′ if there is an fpt-reduction from 𝐿 to 𝐿′.
The W-hierarchy is a collection of parameterized complexity classes

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . .

Similarly to the classical complexity theory, we will make constantly use of the following
lemma, originally shown in [DF92].

Lemma 5.2.2. Let 𝐿 ⊆ Σ∗×ℕ and 𝐿′ ⊆ Γ∗×ℕ be parameterized problems with 𝐿 ≤fpt 𝐿
′
.

• If 𝐿′ is fpt, then 𝐿 is fpt.

• If 𝐿 is W[1]-hard, then 𝐿′ is W[1]-hard.

Analogously to P and NP, the question whether the inclusion FPT ⊆ W[1] is strict is
open. It is widely believed that the inclusion is strict. Hence, showing intractability in the

3Recall that we assume an appropriate encoding of natural numbers as words over a finite alphabet; usually,
the parameter is encoded in unary.
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parameterized setting is usually accomplished by establishing an fpt-reduction from a W[1]-
hard problem. We refer to the textbooks [CFK+15, DF99, FG06] for extensive background
on parameterized complexity.

5.2.2 Graphs

An (undirected) graph 𝐺 consists of its vertex set 𝑉 (𝐺) and edge set 𝐸 (𝐺), where 𝐸 (𝐺) is a
subset of all two element sets of 𝑉 (𝐺). Very often we denote an edge connecting 𝑢 and 𝑣
by𝑢𝑣 instead of {𝑢, 𝑣}. Observe that𝑢𝑣 = 𝑣𝑢 for every edge𝑢𝑣 ∈ 𝐸 (𝐺). If𝑢𝑣 ∈ 𝐸 (𝐺), we say
that 𝑢 and 𝑣 are adjacent. We assume that all graphs are simple, i. e., that they do not have
an edge of the form 𝑣𝑣 . The degree of a vertex 𝑣 is the number of edges 𝑢𝑣 ∈ 𝐸 (𝐺) for some
𝑢 ∈ 𝑉 (𝐺). A graph 𝐻 is a subgraph of 𝐺 if 𝑉 (𝐻 ) ⊆ 𝑉 (𝐺) and 𝐸 (𝐻 ) ⊆ 𝐸 (𝐺). A (simple)

path (of length 𝑘 − 1) from a vertex 𝑢 to a vertex 𝑣 in 𝐺 is a sequence of pairwise distinct
vertices 𝑣1 . . . 𝑣𝑘 such that 𝑣1 = 𝑢, 𝑣𝑘 = 𝑣 , and 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 (𝐺) for all 1 ≤ 𝑖 < 𝑘 . Similarly,
a (simple) cycle (of length 𝑘) in 𝐺 is a sequence of pairwise distinct vertices 𝑣1 . . . 𝑣𝑘 such
that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 (𝐺) for all 1 ≤ 𝑖 < 𝑘 and 𝑣𝑘𝑣1 ∈ 𝐸 (𝐺). The distance dist𝐺 (𝑢, 𝑣) between two
vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) is the length of a shortest path starting in 𝑢 and ending in 𝑣 in 𝐺 . We
say a graph 𝐻 is obtained from a graph 𝐺 by subdividing an edge 𝑒 ∈ 𝐸 (𝐺) if 𝐻 is obtained
from𝐺 by replacing the edge 𝑒 by a path of length 𝑘 for some 𝑘 > 1. A graph is 𝑑-degenerate

if it can be reduced to the empty graph by iteratively removing a vertex of degree at most 𝑑 .
For example, forests (that is, acyclic graphs) are 1-degenerate. A graph is planar if it can
be embedded into the plane without any edges crossing. Furthermore, we call a graph 𝐺
bipartite if it does not contain cycles of odd length, or, equivalently, if its vertex set 𝑉 (𝐺)
can be partitioned into two parts, say 𝑉1,𝑉2, such that all edges of 𝐺 have one endpoint
in 𝑉1 and one endpoint in 𝑉2. In this case, we call (𝑉1,𝑉2) a bipartition of 𝐺 . For a vertex
subset 𝑆 ⊆ 𝑉 (𝐺), we denote by 𝐺 [𝑆] the subgraph of 𝐺 induced by 𝑆 , i. e., the graph with
vertex set 𝑆 and edge set {𝑢𝑣 ∈ 𝐸 (𝐺) | 𝑢, 𝑣 ∈ 𝑆}. Similarly, for such a set we denote by𝐺 −𝑆
the subgraph of 𝐺 obtained by removing the vertices of 𝑆 in 𝐺 , i. e., the graph 𝐺 [𝑉 (𝐺) \ 𝑆].
Let C be a set of colors. An edge coloring is a function 𝜑 : 𝐸 (𝐺) → C mapping each edge
𝑒 ∈ 𝐸 (𝐺) to a color 𝜑 (𝑒) ∈ C. Similarly, a vertex coloring assigns colors to vertices. An
edge weight function is a function𝑤 : 𝐸 (𝐺) → ℕ, and similarly a vertex weight function
assigns weights to vertices. We denote weighted graphs by tuples (𝐺,𝑤), colored graphs
by tuples (𝐺,𝜑), and colored weighted graphs by tuples (𝐺,𝜑,𝑤). The weight of a set of
vertices/edges is the sum of the weights of its elements.

5.2.3 Solution Discovery

Let 𝐺 be a graph. A configuration of 𝐺 is either a subset of its vertices or a subset of its
edges. We formalize the notions of token moves. Under the token addition/removal model, a
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configuration𝐶′ can be obtained (in one step) from𝐶 , written𝐶 ⊢ 𝐶′, if𝐶′ = 𝐶 ∪ {𝑥} for an
element 𝑥 ∉ 𝐶 , or if 𝐶′ = 𝐶 \ {𝑥} for an element 𝑥 ∈ 𝐶 . Under the token jumping model, a
configuration 𝐶′ can be obtained (in one step) from 𝐶 if 𝐶′ = (𝐶 \ {𝑦}) ∪ {𝑥} for elements
𝑦 ∈ 𝐶 and 𝑥 ∉ 𝐶 . Under the token sliding model, a configuration 𝐶′ can be obtained (in one
step) from 𝐶 if 𝐶′ = (𝐶 \ {𝑦}) ∪ {𝑥} for elements 𝑦 ∈ 𝐶 and 𝑥 ∉ 𝐶 if 𝑥 and 𝑦 are neighbors
in𝐺 , that is, if 𝑥,𝑦 ∈ 𝑉 (𝐺), then 𝑥𝑦 ∈ 𝐸 (𝐺); and if 𝑥,𝑦 ∈ 𝐸 (𝐺), then 𝑥 ∩𝑦 ≠ ∅. If𝐶′ can be
obtained from 𝐶 (in any model), we write 𝐶 ⊢ 𝐶′. A discovery sequence of length ℓ in 𝐺 is a
sequence of configurations 𝐶0𝐶1 . . .𝐶ℓ of 𝐺 such that 𝐶𝑖 ⊢ 𝐶𝑖+1 for all 0 ≤ 𝑖 < ℓ .
Let 𝐿 be a vertex (resp. edge) selection problem, i. e., a problem defined on graphs such that
a solution consists of a subset of vertices (resp. edges) satisfying certain requirements. The
𝐿-Discovery problem is defined as follows. We are given a graph 𝐺 , a subset 𝑆 ⊆ 𝑉 (𝐺)
(resp. 𝑆 ⊆ 𝐸 (𝐺)), and a budget 𝑏 (as a non-negative integer). The goal is to decide whether
there exists a discovery sequence𝐶0𝐶1 . . .𝐶ℓ in𝐺 for some ℓ ≤ 𝑏 such that 𝑆 = 𝐶0 and𝐶ℓ is
a solution for 𝐿. In general, we denote an instance of L-discovery by (𝐺, 𝑆, 𝑏). Throughout
this part, we use the variable 𝑘 to denote the size of 𝑆 , that is, the number of tokens.
Note that for discovery problems under the token sliding model we can always assume that
𝑏 ≤ 𝑘𝑛, where 𝑛 is the number of vertices in the input graph. This follows from the fact
that each token will have to traverse a path of length at most 𝑛 to reach its target position.
For discovery problems in the token jumping model we can always assume 𝑏 ≤ 𝑘 , as it
is sufficient to move every token at most once. Similarly, for the token addition/removal
model we can always assume that 𝑏 ≤ 𝑛 for vertex selection problems and 𝑏 ≤ 𝑚 for edge
selection problems, where𝑚 is the number of edges in the input graph. As 𝑘 is trivially
upper-bounded by 𝑛 for vertex selection problems (resp.𝑚 for edge selection problems),
all solution discovery variants we consider are in NP and proving NP-hardness suffices to
prove NP-completeness.

5.2.4 Red-Blue Variants of Vertex or Edge Selection problems

We define the red-blue variant of a vertex or edge selection problem in its generality, as these
problems are closely related to their solution discovery variants under the token jumping
model. We make some general observations, that, in particular, hold for all problems we
study in this part.
Let 𝐿 be an arbitrary vertex (resp. edge) selection problem. An instance of the Red-Blue-𝐿
problem consists of a colored graph (𝐺,𝜑) whose vertices (resp. edges) are either colored
red or blue (that is, the color set of 𝜑 is {•, •}), as well as two non-negative integers 𝑘 and 𝑏.
The goal is to decide whether there exists a solution 𝑋 ⊆ 𝑉 (𝐺) (resp. 𝑋 ⊆ 𝐸 (𝐺)) of 𝐿 of
size 𝑘 such that the number of blue elements in 𝑋 is at most 𝑏. We denote an instance of
Red-Blue-𝐿 by (𝐺,𝜑, 𝑘, 𝑏).
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Lemma 5.2.3. Let 𝐿 be an arbitrary vertex (resp. edge) selection problem. There is an

fpt-reduction from 𝐿-Discovery in the token jumping model to Red-Blue-𝐿 preserving

the parameter computable in linear time.

Proof. Let (𝐺, 𝑆, 𝑏) be an instance of 𝐿-Discovery under the token jumping model. Let 𝜑
be a red-blue-coloring such that every vertex (resp. edge) in 𝑆 is colored red and every other
vertex (resp. edge) is colored blue. It is now easy to verify that (𝐺,𝜑, |𝑆 |, 𝑏) is an equivalent
Red-Blue-𝐿 instance. ◀

Corollary 5.2.4. Let 𝐿 be an arbitrary vertex (resp. edge) selection problem. Then, the

following results hold under the token jumping model:

1. If Red-Blue-𝐿 is in P, then 𝐿-Discovery is in P.

2. If Red-Blue-𝐿 is in FPT with respect to 𝑘 or 𝑏, then 𝐿-Discovery is in FPT with

respect to 𝑘 or 𝑏.

3. If 𝐿-Discovery is NP-hard, then Red-Blue-𝐿 is NP-hard.

4. If 𝐿-Discovery is W[1]-hard with respect to 𝑘 or 𝑏, then Red-Blue-𝐿 is W[1]-hard

with respect to 𝑘 or 𝑏.

We remark that the other direction does not trivially hold, i. e., we can in general not
consider an instance of Red-Blue-𝐿 as an instance of 𝐿-Discovery, as the number of red
vertices/edges might exceed the bound 𝑘 on the solution size.

5.2.5 A word on the token addition/removal model

In contrast to the token sliding and the token jumping model, the number of tokens in
a discovery sequence under the token addition/removal model changes in general. This
can lead to possibly unwanted side-effects. For NP-complete edge or vertex selection
(monotone) minimization problems 𝐿 (such as Vertex Cover or Dominating Set) of a
graph 𝐺 , the question whether there is an fpt-algorithm for 𝐿-Discovery with respect to
parameter 𝑘 yields the following setting. When starting with initial configuration 𝑆 = ∅
(hence 𝑘 = 0), we ask for an algorithm computing an arbitrary solution for 𝐿 in time
𝑓 (0) · O(|𝑉 (𝐺) |𝑐) = O(|𝑉 (𝐺) |𝑐) for some computable function 𝑓 and a constant 𝑐 , i. e.,
we ask for a polynomial time algorithm for an NP-complete problem. Hence, we do not
consider the parameter 𝑘 for such problems under the token addition/removal model. To
avoid such situations, we could consider another approach where we restrict the definition
of the addition/removal model by adding size constraints, that is, by requiring that every
configuration consists of at least ℓ1 and at most ℓ2 tokens. However, by choosing ℓ1 = 𝑘 − 1
and ℓ2 = 𝑘 +1, such problems are equivalent (up to a budget factor of 2) to the token jumping
model, as every addition needs to be followed by a removal and vice versa. Hence, we stick
to the given definition and focus only on parameter 𝑏.
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6.1. Vertex Cover Discovery

6.1 Vertex Cover Discovery

A vertex cover in a graph 𝐺 is a set of vertices 𝐶 ⊆ 𝑉 (𝐺) such that every edge has at least
one endpoint in 𝐶 , that is, for every edge {𝑢, 𝑣} ∈ 𝐸 (𝐺) we have 𝐶 ∩ {𝑢, 𝑣} ≠ ∅. In the
Vertex Cover problem we are given a graph𝐺 and an integer 𝑘 and the goal is to compute
a vertex cover of size at most 𝑘 in 𝐺 .

6.1.1 Related work

The Vertex Cover problem is one of the classical NP-complete problems [GJ79] and the
textbook example of a fixed-parameter tractable problem [DF99]. The problem remains NP-
hard even restricted to planar graphs of maximum degree 3. It admits a 2-approximation and
is hard to approximate within a factor of (2 − Y), for any Y > 0, assuming the unique games
conjecture [KR03a]. The dynamic variant of the problem was studied, e. g., in [AKEF+15].
The Vertex Cover problem is also very well studied under the combinatorial reconfig-
uration framework [Heu13, Nis18]. In contrast to the decision variant, Vertex Cover
Reconfiguration is known to be PSPACE-complete on general graphs under the token
sliding model, token jumping model, and 𝑘-token addition/removal model, where the latter
is defined as in our discovery setting with the additional restriction that the difference of
number of tokens in every intermediate configuration and the number of initial tokens is
at most 𝑘 [IDH+11, KMM12]. This remains true even for several restricted graph classes,
see [Wro18]. On the positive side, polynomial-time algorithms are known only for very
simple graph classes such as trees [DDF+14]. More positive results (which vary depending
on the model) are possible if we consider the parameterized complexity of the problem. We
refer the reader to [MNR+17] and the references therein for more details.

6.1.2 The Sliding Model

In the Vertex Cover Discovery problem, we are given a graph𝐺 , a starting configuration 𝑆 ,
and a non-negative integer 𝑏. The goal is to decide whether we can discover a vertex cover
in 𝐺 (starting from 𝑆) using at most 𝑏 token slides.
We prove that Vertex Cover Discovery under the token sliding model is NP-complete
even restricted to planar graphs of degree four, fixed-parameter tractable with respect to
parameter 𝑘 and W[1]-hard with respect to parameter 𝑏.

Theorem 6.1.1. The Vertex Cover Discovery problem under the token sliding model is

NP-complete on the class of planar graphs of maximum degree four.
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Proof. We present a reduction from the Vertex Cover problem on planar graphs of maxi-
mum degree three, which is known to be NP-complete [Lic82]. Given an instance (𝐺,𝑘) of
the Vertex Cover problem, where 𝐺 is a planar graph of maximum degree three, we con-
struct an instance of Vertex Cover Discovery as follows. We create a new graph𝐻 initially
consisting of a copy of 𝐺 . Then for each vertex 𝑣 ∈ 𝑉 (𝐻 ), we create a new path consisting
of three vertices {𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣 } and we connect 𝑣 to 𝑥𝑣 . We choose 𝑆 = {𝑥𝑣 , 𝑦𝑣 | 𝑣 ∈ 𝑉 (𝐺)} and
set the budget to 𝑏 = 𝑘 . Note that |𝑆 | = 2|𝑉 (𝐺) |. This completes the construction. It follows
from the construction that 𝐻 is planar and of maximum degree four. We prove that (𝐺,𝑘)
is a positive instance of the Vertex Cover problem if and only if (𝐻, 𝑆, 𝑏) is a positive
instance of the Vertex Cover Discovery problem.
First assume that 𝐺 has a vertex cover 𝐶 of size at most 𝑘 . For every 𝑣 ∈ 𝐶 , we slide the
token on 𝑥𝑣 to 𝑣 in 𝐻 . Since 𝐶 is of size at most 𝑘 = 𝑏, we need at most 𝑏 slides. To see
that the resulting set is a vertex cover of 𝐻 , note that every edge {𝑣, 𝑥𝑣 } is still covered by
either 𝑣 or 𝑥𝑣 and the edges {𝑥𝑣 , 𝑦𝑣 } and {𝑦𝑣 , 𝑧𝑣 } are still covered by 𝑦𝑣 . Moreover, all the
other edges of 𝐻 are covered since 𝐶 is a vertex cover of 𝐺 .
For the reverse direction assume that (𝐻, 𝑆, 𝑏) is a positive instance of the Vertex Cover
Discovery problem. Since 𝑏 = 𝑘 , we know that at most 𝑘 tokens can move, i. e., be placed
in 𝐻 [𝑉 (𝐺)]. Moreover, since the resulting configuration must be a vertex cover of 𝐻 and
𝐻 [𝑉 (𝐺)] is an induced subgraph of 𝐻 it follows that the tokens on vertices corresponding
to vertices of 𝐺 must form a vertex cover of 𝐺 of size at most 𝑘 , as needed. ◀

Before we proceed, we observe that every graph has at most 2𝑘 vertex covers of size 𝑘 . This
bound follows immediately from the standard search-tree algorithm branching into the
two end points of an uncovered edge, hence yielding a binary tree of depth at most 𝑘 . As
every leaf node corresponds to a vertex cover, and there are at most 2𝑘 leaves in the tree,
the bound follows. For more information we refer to [HNW07, CFK+15]).

Observation 6.1.2. Every graph 𝐺 has at most 2𝑘 vertex covers of size 𝑘 .

Now we show that the Vertex Cover Discovery problem is fixed-parameter tractable
with respect to parameter 𝑘 .

Theorem 6.1.3. TheVertex Cover Discovery problem under the token sliding model is

fixed-parameter tractable with respect to parameter 𝑘 .

Proof. Let (𝐺, 𝑆, 𝑏) be an instance of the Vertex Cover Discovery problem. As observed
above, there are only 2𝑘 vertex covers of size 𝑘 in 𝐺 . Hence, we can enumerate them and
check for every vertex cover whether it is reachable from 𝑆 in at most 𝑏 steps by finding a
minimum weight perfect matching in a bipartite graphs.
Observe that the search tree containing all vertex covers of size at most 𝑘 can be constructed
in time O(2𝑘 |𝐸 (𝐺) |), as an uncovered edge can be found in time O(|𝐸 (𝐺) |) and the total
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size of the search tree is bounded by 2𝑘+1. Hence, it remains to check whether a vertex
cover 𝐶 of size at most 𝑘 in 𝐺 can be reached from 𝑆 using at most 𝑏 token slides. To do so,
we proceed as follows. For every vertex cover 𝐶 , we construct an edge-weighted complete
bipartite graph (𝐻𝑆,𝐶,𝑤), where the bipartition of 𝐻𝑆,𝐶 is (𝑆,𝐶). For all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐶 , we
define𝑤 (𝑢𝑣) = dist𝐺 (𝑢, 𝑣).
Observe that the length of a shortest discovery sequence 𝐶0 . . .𝐶ℓ with 𝑆 = 𝐶0 and 𝐶 = 𝐶ℓ
in 𝐺 is equivalent to a minimum weight perfect matching in 𝐻 , that is, the minimum
weight over all sets 𝑀 ⊆ 𝐻𝑆,𝐶 (𝐸) with the property that every vertex 𝑣 ∈ 𝑉 (𝐻𝑆,𝐶) appears
in exactly one edge in 𝑀 . It is well-known that such a matching can be found in time
O(|𝑉 (𝐻𝑆,𝐶) |3) ⊆ O(|𝑉 (𝐺) |3) using, e. g., Edmonds’ blossom algorithm [EK72]. If the
weight of a minimum weight perfect matching in 𝐻 is at most 𝑏, we conclude that we are
dealing with a positive instance as the vertex cover𝐶 can be discovered from 𝑆 in at most 𝑏
steps. Similarly, if every vertex cover of size 𝑘 in𝐺 cannot be discovered within 𝑏 steps, we
conclude that we are dealing with a negative instance. Overall, we obtain a total running
time of O(2𝑘 · |𝑉 (𝐺) |3). ◀

Finally, we show that the Vertex Cover Discovery problem is W[1]-hard with respect to
parameter 𝑏 even restricted to 2-degenerate bipartite graphs by reducing from the Cliqe
problem. A clique in a graph is a set of pairwise adjacent vertices. In the Cliqe problem
we are given a graph 𝐺 and non-negative integer 𝑘 and the question is to decide whether
there exists a clique of size at least 𝑘 in 𝐺 . It is well-known that the Cliqe problem is
NP-hard [GJ79] and its parameterized variant is W[1]-hard with respect to 𝑘 [DF95].

Theorem 6.1.4. The Vertex Cover Discovery problem under the token sliding model is

W[1]-hard with respect to parameter 𝑏 on the class of 2-degenerate bipartite graphs.

Proof. We present an fpt-reduction from the Cliqe problem. Let (𝐺,𝑘) be an instance
of the Cliqe problem. We construct a graph 𝐻 from 𝐺 as follows (see Figure 6.1 for an
illustration). Let 𝑛 = |𝑉 (𝐺) | and𝑚 = |𝐸 (𝐺) |.
The vertex set𝑉 (𝐻 ) of 𝐻 is partitioned into six vertex sets𝑉1, . . . ,𝑉6. Let𝑉1 = {𝑟𝑖 | 𝑖 ≤

(︁𝑘
2
)︁
}

and 𝑉2 = {𝑧𝑖 | 𝑖 ≤
(︁𝑘
2
)︁
}. The set 𝑉3 consists of 2𝑚

(︁𝑘
2
)︁

vertices grouped into 𝑚 sets 𝑉 𝑒3
for each 𝑒 ∈ 𝐸 (𝐺). For each 𝑒 ∈ 𝐸 (𝐺), let 𝑉 𝑒3 = {𝑔𝑒𝑖 , ℎ𝑒𝑖 | 𝑖 ≤

(︁𝑘
2
)︁
}. Finally, we define

𝑉4 = {𝑦𝑒 | 𝑒 ∈ 𝐸 (𝐺)},𝑉5 = {𝑥𝑢 | 𝑢 ∈ 𝑉 (𝐺)} and 𝑉6 = {𝑠𝑢 | 𝑢 ∈ 𝑉 (𝐺)}.
Now we define the edge set 𝐸 (𝐻 ). For each 𝑖 ≤

(︁𝑘
2
)︁
, we add an edge between the vertices

𝑟𝑖 ∈ 𝑉1 and 𝑧𝑖 ∈ 𝑉2. Next for each 𝑖 ≤
(︁𝑘
2
)︁

and 𝑒 ∈ 𝐸 (𝐺), we connect the vertex 𝑔𝑒𝑖 ∈ 𝑉 𝑒3 to
the vertices 𝑧𝑖 ∈ 𝑉2, ℎ𝑒𝑖 ∈ 𝑉 𝑒3 , and 𝑦𝑒 ∈ 𝑉4. For each edge 𝑢𝑣 ∈ 𝐸 (𝐺), we connect the vertex
𝑦𝑢𝑣 ∈ 𝑉4 to 𝑥𝑢, 𝑥𝑣 ∈ 𝑉5. Finally, for each 𝑢 ∈ 𝑉 (𝐺), we add an edge between the vertices
𝑥𝑢 ∈ 𝑉5 and 𝑠𝑢 ∈ 𝑉6. This completes the construction of the graph 𝐻 . We define the initial
configuration 𝑆 = 𝑉6 ∪𝑉4 ∪ {𝑔𝑒𝑖 ∈ 𝑉3 | 𝑒 ∈ 𝐸 (𝐺), 𝑖 ≤

(︁𝑘
2
)︁
} of size𝑚 +𝑛 +𝑚

(︁𝑘
2
)︁

and we set the
budget to 𝑏 = 2

(︁𝑘
2
)︁
+ 𝑘 .
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...

𝑉2

𝑔𝑢𝑣1
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𝑉3

𝑦𝑢𝑣
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...

𝑉5
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𝑠𝑣

...
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Figure 6.1. An illustration of the W[1]-hardness reduction for Vertex Cover Discovery.

We first prove that the graph𝐻 is indeed 2-degenerate. Observe that all vertices in𝑉1 and𝑉6
and the vertices ℎ𝑒𝑖 in 𝑉 𝑖3 have a degree of one. After their removal, the vertices 𝑔𝑒𝑖 in 𝑉 𝑒3
have a degree of two. Their removal again reduces the degrees of the vertices in 𝑉2 to one
and in 𝑉4 to 2. Finally removing the vertices in 𝑉2 yields an edge-less graph. Note that
(𝑉1 ∪𝑉3 ∪𝑉5,𝑉2 ∪𝑉4 ∪𝑉6) is a bipartition of 𝐻 , witnessing bipartiteness.
We claim that 𝐺 has a clique of size 𝑘 if and only if (𝐻, 𝑆, 𝑏) is a positive instance of the
Vertex Cover Discovery problem.
Assume that 𝐺 has a clique 𝐶 of size 𝑘 . Consider the following vertex cover in 𝐻 :

𝑆′ = (𝑆 ∪𝑉2 ∪ {𝑥𝑢 | 𝑢 ∈ 𝐶}) \ ({𝑦𝑢𝑣 | 𝑢, 𝑣 ∈ 𝐶} ∪ {𝑠𝑢 | 𝑢 ∈ 𝐶}) .

We discover 𝑆′ from 𝑆 using at most 𝑏 token slides as follows. For every 𝑢, 𝑣 ∈ 𝐶 , we slide
the tokens from 𝑔𝑢𝑣𝑖 ∈ 𝑉3 to 𝑧𝑖 ∈ 𝑉2 for arbitrary distinct values of 𝑖 ≤

(︁𝑘
2
)︁
. Then we slide the

tokens from {𝑦𝑢𝑣 | 𝑢, 𝑣 ∈ 𝐶} ⊆ 𝑉4 to the vertices 𝑔𝑢𝑣𝑖 freed in the last step. Next we slide 𝑘
tokens from {𝑠𝑢 | 𝑢 ∈ 𝐶} to {𝑥𝑢 | 𝑢 ∈ 𝐶}. Since 𝑉2 ∪ {𝑔𝑒𝑖 ∈ 𝑉3 | 𝑒 ∈ 𝐸 (𝐺), 𝑖 ≤

(︁𝑘
2
)︁
} ⊆ 𝑆′,

the edges incident on these vertices are covered. For each 𝑢 ∈ 𝑉 (𝐺), either 𝑥𝑢 ∈ 𝑉5 or
𝑠𝑢 ∈ 𝑉6 is in 𝑆′. Hence, the edges between the sets 𝑉5 and 𝑉6 are covered by 𝑆′. Finally,
the edges between the vertices in 𝑉4 that are not in 𝑆′ and 𝑉5 are covered by the vertices
corresponding to the clique 𝐶 since the moved vertices in 𝑉4 correspond to the edges of the
clique 𝐶 . Note that we moved exactly 𝑏 tokens, and every token once.
Now assume that (𝐻, 𝑆, 𝑏) is a positive instance of the Vertex Cover Discovery problem. As
the set 𝑆 does not contain any vertex from𝑉1 ∪𝑉2, every vertex cover in 𝐻 needs to consist
of

(︁𝑘
2
)︁

vertices in 𝑉1 ∪𝑉2 in order to cover all edges between 𝑉1 and 𝑉2. Observe that every
discovery sequence of length at most 𝑏 needs to move

(︁𝑘
2
)︁

tokens from𝑉3 to𝑉2. As all edges
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of the form {𝑔𝑒𝑖 , ℎ𝑒𝑖 } for 𝑒 ∈ 𝐸 (𝐺), 𝑖 ≤
(︁𝑘
2
)︁

need to be covered,
(︁𝑘
2
)︁

vertices need to be moved
from𝑉4 to𝑉3 again. After that we are left with a budget of 𝑘 to cover the edges between

(︁𝑘
2
)︁

vertices in 𝑉4 and 𝑉5. These edges can only be covered with 𝑘 tokens (originating from 𝑉6)
if they form a clique in 𝐺 . ◀

6.1.3 Jumping, Addition and Removing, and the colorful variants

Finally, we show that Rainbow Vertex Cover and Red-Blue Vertex Cover are fpt with
respect to parameter 𝑘 , again by exploiting Observation 6.1.2. By Corollary 5.2.4, we obtain
that Vertex Cover Discovery under the token jumping model is fpt with respect to
parameter 𝑘 . Considering parameter 𝑏, this problem becomes W[1]-hard, as the reduction
in Theorem 6.1.4 showing W[1]-hardness under the token sliding model translates directly
to the jumping model. This also implies W[1]-hardness of Red-Blue Vertex Cover with
respect to parameter 𝑏. Contrary to that, we show that Vertex Cover Discovery under
the token addition/removal model is fpt with respect to parameter 𝑏.
First we note that all these problems remain NP-complete. The containment in NP for all
these problems is obvious, while the NP-hardness for Vertex Cover Discovery under the
jumping model works exactly as in Theorem 6.1.1, and the NP-hardness for the remaining
problems follows from trivial reductions fromVertexCover. Similarly, by Observation 6.1.2
(and the observation in Theorem 6.1.3), given a graph𝐺 , we can enumerate all vertex covers
in 𝐺 of size 𝑘 in time O(2𝑘 |𝐸 (𝐺) |). As we can test whether a vertex cover is rainbow
or contains at most 𝑏 blue vertices in polynomial time, we obtain containment of these
problems in FPT. By Corollary 5.2.4, this result translates to Vertex Cover Discovery
under the token jumping model.

Corollary 6.1.5. The Rainbow Vertex Cover problem, the Red-Blue Vertex Cover

problem, and the Vertex Cover Discovery problem under the token jumping model are

NP-complete and fixed-parameter tractable with respect to parameter 𝑘 .

Recall the proof of Theorem 6.1.4 showing the W[1]-hardness of Vertex Cover Discovery
under the token sliding model with respect to parameter 𝑏. We can re-use this reduction
to show W[1]-hardness for Vertex Cover Discovery under the token jumping model.
However, we only need a budget of

(︁𝑘
2
)︁
+𝑘 (instead of 2

(︁𝑘
2
)︁
+𝑘), as we can move the vertices

from the set 𝑉4 representing the edges directly to the
(︁𝑘
2
)︁

vertices in 𝑉2, without the need
to use to bypass the vertices in 𝑉3. Then the core arguments translate one-to-one. This
result also translates to Red-Blue Vertex Cover by Corollary 5.2.4. Hence, we obtain the
following corollary.
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Corollary 6.1.6. The Red-Blue Vertex Cover problem and the Vertex Cover Discovery

problem under the token jumping model are W[1]-hard with respect to parameter 𝑏 on

2-degenerate bipartite graphs.

Under the token addition/removal model, the Vertex Cover Discovery problem boils
down to solving an instance of Vertex Cover, as clarified in the following lemma.

Lemma 6.1.7. The Vertex Cover Discovery under the token addition/removal model is

fixed-parameter tractable with respect to parameter 𝑏.

Proof. Let (𝐺, 𝑆, 𝑏) be an instance of the Vertex Cover Discovery problem. We may
assume that every configuration sequence𝐶0 . . .𝐶ℓ with𝐶0 = 𝑆 yielding a vertex cover in𝐺
does never remove a token, as every superset of a vertex cover is still a vertex cover. As
a consequence, we only need to compute a minimum vertex cover in the graph 𝐺 − 𝑆 in
order to obtain the smallest number of tokens needed to “complete” 𝑆 to a vertex cover
in 𝐺 . Using an arbitrary fpt-algorithm we compute a vertex cover of size 𝑏 if existent. If
this is the case, we conclude that we are dealing with a positive instance, and otherwise we
conclude that we are dealing with a negative instance. ◀
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6.2 Independent Set Discovery

An independent set in a graph𝐺 is a set of vertices 𝐼 ⊆ 𝑉 (𝐶) that are pairwise non-adjacent,
that is, for all 𝑢, 𝑣 ∈ 𝐼 we have 𝑢𝑣 ∉ 𝐸 (𝐺). In the Independent Set problem we are given a
graph 𝐺 and an integer 𝑘 and the goal is to compute an independent set of size at least 𝑘
in 𝐺 .

6.2.1 Related Work

The Independent Set problem is one of the classical NP-complete problems [GJ79], and
even NP-complete to approximate within a factor of |𝑉 (𝐺) |1−Y , for any Y > 0 [Zuc06].
Despite the strong connection to the Vertex Cover problem, namely that 𝐶 is a vertex
cover in𝐺 if and only if𝑉 (𝐺) \𝐶 is an independent set in𝐺 , the Independent Set problem
is W[1]-complete with respect to parameter 𝑘 [DF95].
Hence, on general graphs, local search approaches cannot be expected to improve the
above stated approximation factor. However, in practice we are often dealing with graphs
belonging to special graph classes, e. g., planar graphs, where local search is known to lead
to much better approximation algorithms, and even to polynomial-time approximation
schemes (PTAS), see e. g., [HPQ17].
The Independent Set problem is also one of the most studied problems under the combi-
natorial reconfiguration framework [Heu13, Nis18]. With respect to classical complexity,
results for the Independent Set Reconfiguration problem and the are interchangeable
(as for the base problems) and hence PSPACE-complete under the token sliding model,
token jumping model, and 𝑘-token addition/removal model. More positive results (quite
different than those for Vertex Cover Reconfiguration) are possible if we consider
the parameterized complexity of the problem. We refer the reader to [MNR+17] and the
references therein for more details.

6.2.2 The Sliding Model

In the Independent Set Discovery problem, we are given a graph 𝐺 , a starting configu-
ration 𝑆 , and a non-negative integer 𝑏. The goal is to decide whether we can discover an
independent set in 𝐺 (starting from 𝑆) using at most 𝑏 token slides.
We prove that Independent Set Discovery under the token sliding model is NP-complete
even restricted to planar graphs of degree four and W[1]-hard with respect to parameter
𝑘 +𝑏 even restricted to graphs excluding cycles of length at least four as induced subgraphs.
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Theorem 6.2.1. The Independent Set Discovery problem is NP-complete on the class of

planar graphs of maximum degree four.

Proof. We present a reduction from Independent Set on planar graphs of maximum degree
three, which is known to beNP-complete [Moh01]. Given an instance (𝐺,𝑘) with𝑛 = |𝑉 (𝐺) |
of the Vertex Cover problem, where 𝐺 is a planar graph of maximum degree three, we
construct an instance of Independent Set Discovery as follows. We create a new graph 𝐻
initially consisting of a copy of 𝐺 . Then for each vertex 𝑣 ∈ 𝑉 (𝐻 ), we create a new path on
five vertices 𝑤𝑣 , 𝑥𝑣 , 𝑐𝑣 , 𝑦𝑣 , 𝑧𝑣 and we connect 𝑣 to 𝑐𝑣 . We choose 𝑆 = {𝑐𝑣 , 𝑥𝑣 , 𝑦𝑣 | 𝑣 ∈ 𝑉 (𝐺)}
and we set the budget to 𝑏 = 2𝑛 − 𝑘 , where 𝑛 = |𝑉 (𝐺) |. Note that |𝑆 | = 3|𝑉 (𝐺) |. This
completes the construction. It is easy to observe that the graph𝐻 is planar and of maximum
degree four. We prove that (𝐺,𝑘) is a positive instance of the Independent Set problem if
and only if (𝐻, 𝑆, 𝑏) is a positive instance of the Indepedent Set Discovery problem.
First assume that 𝐺 has an independent set 𝐼 of size at least 𝑘 . For every 𝑣 ∈ 𝐼 , we slide the
token on 𝑐𝑣 to 𝑣 in 𝐻 . For all other vertices 𝑣 ∉ 𝐼 , we slide the token on 𝑥𝑣 to 𝑤𝑣 and the
token on 𝑦𝑣 to 𝑧𝑣 . Observe that we need a budget of 2 to repair the path on every vertex
𝑣 ∉ 𝐼 , while we need only a budget of 1 to repair the paths on vertices 𝑣 ∈ 𝐼 . Since 𝐼 is
of size at least 𝑘 , we need no more than 2𝑛 − 𝑘 = 𝑏 slides. To see that the resulting set is
an independent set of 𝐻 , note that for every path on a vertex 𝑣 ∈ 𝐼 we have moved the
token from 𝑐𝑣 to 𝑣 itself. As 𝐼 is an independent set, and the only conflicting neighbor of 𝑥𝑣
resp. 𝑦𝑣 is 𝑐𝑣 , the tokens from these paths form an independent set. The tokens on paths of
vertices 𝑣 ∉ 𝐼 also form an independent set. As the only neighbor of𝑤𝑣 is 𝑥𝑣 and the token
has been moved from 𝑥𝑣 to𝑤𝑣 , hence there is no conflict. This is also true for 𝑦𝑣 and 𝑧𝑣 . As
the neighbors 𝑥𝑣 and 𝑦𝑣 of 𝑐𝑣 have been freed, and there is no token on 𝑣 itself, the tokens
on the paths form an independent set.
For the reverse direction assume that (𝐻, 𝑆, 𝑏) is a positive instance of the Independent
Set Discovery problem witnessed by the discovery sequence 𝐶0 . . .𝐶ℓ with 𝑆 = 𝐶0 and
ℓ ≤ 𝑏 such that 𝐶ℓ is an independent set in 𝐻 . We need to show that |𝐶ℓ ∩ 𝑉 (𝐺) | ≥ 𝑘 ,
which then corresponds to an independent set in 𝐺 . Assume towards a contradiction that
|𝐶ℓ ∩𝑉 (𝐺) | = 𝑝 < 𝑘 . This implies that 3𝑛 − 𝑝 tokens are still located on the newly created
paths. Since every path can contain at most 3 independent vertices and 𝐼 is an independent
set, at least 𝑛 − 𝑝 paths contain 3 tokens. It takes at least 2 slides to keep the 3 tokens
independent while not moving them out of the path. Hence, we require a budget of at least
2𝑛 − 2𝑝 for these slides. Moreover, each of the 𝑝 tokens on 𝑉 (𝐺) require at least one slide.
In total, we require a budget of 2𝑛 − 𝑝 > 2𝑛 − 𝑘 , a contradiction. ◀

Next we show that the problem is W[1]-hard with respect to parameter 𝑘 +𝑏 by a reduction
from the Multicolored Independent Set problem, which is known to be W[1]-hard
even on graphs excluding {𝐶4, . . . ,𝐶𝑝} as induced subgraphs for any constant 𝑝 [BBC+20],
where𝐶𝑖 denotes the cycle of length 𝑖 . In the Multicolored Independent Set problem we
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are given a vertex-colored graph (𝐺,𝜑) and an integer 𝑘 , where the color set of 𝜑 consists
of 𝑘 colors, say {1, . . . , 𝑘}, the question is whether there is an independent set 𝐼 of size 𝑘
in 𝐺 such that all vertices in 𝐼 have pairwise distinct colors. Note that this implies that 𝐼
contains a vertex of every color.

Theorem 6.2.2. The Independent Set Discovery problem is W[1]-hard with respect to

parameter 𝑘 +𝑏 on graphs excluding {𝐶4, . . . ,𝐶𝑝} as induced subgraphs for any constant 𝑝 .

Proof. We present an fpt-reduction from the Multicolored Independent Set problem.
Given an instance (𝐺,𝜑, 𝑘) of Multicolored Independent Set with the property that 𝐺
excludes {𝐶4, . . . ,𝐶𝑝} as induced subgraphs for any constant 𝑝 , we construct an instance
(𝐻, 𝑆, 𝑏) of Independent Set Discovery as follows. First let 𝐻 be a copy of 𝐺 . Then, for
each 𝑖 ≤ 𝑘 , we add an edge on two fresh vertices {𝑢𝑖,𝑤𝑖} and connect 𝑢𝑖 to all vertices 𝑣
with 𝜑 (𝑣) = 𝑖 . Observe that this construction does not add any cycles. Finally, we choose
𝑆 = {𝑢𝑖,𝑤𝑖 | 𝑖 ≤ 𝑘} and set the budget to 𝑏 = 𝑘 . Note that |𝑆 | = 2𝑘 .
We claim that (𝐺,𝜑, 𝑘) is a positive instance of Multicolored Independent Set if and
only if (𝐻, 𝑆, 𝑏) is a positive instance of Independent Set Discovery.
Assume that (𝐺,𝜑) admits a multicolored independent set of size 𝑘 . Let 𝐼 = {𝑣1, . . . , 𝑣𝑘}
denote such a set where 𝜑 (𝑣𝑖) = 𝑖 . Then we can discover 𝐼 in 𝐻 from 𝑆 using 𝑏 token slides
by moving the token on 𝑢𝑖 to 𝑣𝑖 for all 𝑖 ≤ 𝑘 .
For the reverse direction assume that (𝐻, 𝑆, 𝑏) is a positive instance of the Independent Set
Discovery problem witnessed by the discovery sequence𝐶0 . . .𝐶ℓ with ℓ ≤ 𝑏. Observe that
every edge of the form {𝑢𝑖,𝑤𝑖} needs to be fixed as both endpoints contain a token. Hence,
every discovery sequence needs to move the token from 𝑢𝑖 to a vertex in 𝑉 (𝐺), already
exhausting the whole budget. Hence, this is only possible if (𝐺,𝜑) admits a multicolored
independent set. ◀

In what follows, we further investigate the parameterized complexity of the Independent
Set Discovery problem with respect to 𝑏 or 𝑘 only instead of 𝑘 +𝑏 and restricted to special
graph classes. First we show that the problem becomes fpt with respect to parameter 𝑘
on graph classes where we can compute independence covering families in fpt-time. For
a graph 𝐺 and non-negative integer 𝑘 ≥ 1, a family of independent sets in 𝐺 is called an
independence covering family for (𝐺,𝑘), denoted by F (𝐺,𝑘), if for every independent set 𝐼
in 𝐺 of size at most 𝑘 , there exists 𝐽 ∈ F (𝐺,𝑘) such that 𝐼 ⊆ 𝐽 . Lokshtanov et al. [LPS+20]
have shown that for many special graph classes we can compute an independence covering
family for (𝐺,𝑘) of size at most 𝑔(𝑘) · |𝑉 (𝐺) |𝑐 for a computable function 𝑔 and a constant 𝑐
using an fpt-algorithm with respect to 𝑘 . These classes include, e. g., the class of all 𝑑-
degenerate graphs for an arbitrary constant 𝑑 .
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Theorem 6.2.3. The Independent Set Discovery problem is fixed-parameter tractable

with respect to parameter 𝑘 for every class of graphs C with the property that for every

𝐺 ∈ C and 𝑘 ≥ 1 we can compute an independence covering family for (𝐺,𝑘) of size

𝑔(𝑘) · |𝑉 (𝐺) |𝑐 for a computable function 𝑔 and constant 𝑐 in fpt-time with respect to 𝑘 . In

particular, the problem is fixed-parameter tractable on the class of all 𝑑-degenerate graphs

for an arbitrary constant 𝑑 .

Proof. Given an instance (𝐺, 𝑆, 𝑏) of Independent Set Discovery where 𝐺 ∈ C, we start
by computing an independence covering family F (𝐺,𝑘) of size 𝑔(𝑘) · |𝑉 (𝐺) |𝑐 in fpt-time,
which is possible by assumption. For every 𝐽 ∈ F (𝐺,𝑘), we construct a complete weighted
bipartite graph (𝐻𝑆,𝐽 ,𝑤), where the bipartition of 𝐻𝑆,𝐽 is (𝑆, 𝐽 ). For all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐽 , we
define𝑤 (𝑢𝑣) = dist𝐺 (𝑢, 𝑣).
Observe (similar to the graph constructed in the proof of Theorem 6.1.3) that the length
of a shortest discovery sequence 𝐶0 . . .𝐶ℓ with 𝑆 = 𝐶0 and 𝐶ℓ ⊆ 𝐽 in 𝐺 is equivalent to
a minimum weight matching 𝑀 in 𝐻𝑆,𝐽 with the property that for every 𝑣 ∈ 𝑆 the set 𝑀
contains an edge 𝑒 with 𝑣 ∈ 𝑒 (that is, 𝑀 saturates 𝑆). Such a matching can be computed in
time O(|𝑉 (𝐻𝑆,𝐽 ) |3) using, e. g., Edmonds’ blossom algorithm [EK72]. Hence, we compute
the family F (𝐺,𝑘) in fpt-time and iterate over all 𝐽 ∈ F (𝐺,𝑘) and test whether the weight
of a such a minimum weight matching in 𝐻𝑆,𝐽 is at most 𝑏.
We claim that (𝐺, 𝑆, 𝑏) is a positive instance of Independent Set Discovery if and only if
(𝐻𝑆,𝐽 ,𝑤) has a matching saturating 𝑆 of weight at most 𝑏 for at least one 𝐽 ∈ F (𝐺,𝑘).
If (𝐺, 𝑆, 𝑏) is a positive instance witnessed by the discovery sequence 𝐶0 . . .𝐶ℓ , then 𝐶ℓ is
an independent set in 𝐺 , and in particular 𝐶ℓ ⊆ 𝐽 for at least one 𝐽 ∈ F (𝐺,𝑘). Hence, the
graph𝐻𝑆,𝐽 admits a matching saturating 𝑆 with weight at most 𝑏, namely {𝑢𝑣 | 𝑢 ∈ 𝑆, 𝑣 ∈ 𝐼 }.
Likewise, if 𝐻𝑆,𝐽 is a graph admitting a matching 𝑀 saturating 𝑆 with weight at most 𝑏,
let 𝐼 ⊆ 𝐽 be the set of vertices that appear as an endpoint of an edge in 𝑀 . As 𝐽 is an
independent set in 𝐺 , the set 𝐼 is also an independent set in 𝐺 . By the construction of 𝐻𝑆,𝐽 ,
the matching 𝑀 witnesses that 𝐼 can be discovered from 𝑆 in at most 𝑏 steps. Hence, we
conclude that (𝐺, 𝑆, 𝑏) is a positive instance of Independent Set Discovery. ◀

In contrast to the previous theorem, we show that Independent Set Discovery is W[1]-
hard with respect to parameter 𝑏 even on very restricted graph classes by a reduction from
the Multicolored Cliqe problem which is known to be W[1]-hard [CFK+15]. Similar to
the Multicolored Independent Set problem, in the Multicolored Cliqe Set problem
we are given a vertex-colored graph (𝐺,𝜑) and an integer 𝑘 , where the color set of𝜑 consists
of 𝑘 colors, say {1, . . . , 𝑘}, the question is whether there is clique 𝐶 of size 𝑘 in 𝐺 such that
all vertices in 𝐶 have pairwise distinct colors.

Theorem 6.2.4. The Independent Set Discovery problem is W[1]-hard with respect to

parameter 𝑏 on the class of 2-degenerate bipartite graphs.
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𝑥𝑣
𝑦𝑣 𝑧𝑣

𝑋𝑖

𝑋 𝑗

...

...

𝑢𝑖 𝑤𝑖

𝑢 𝑗 𝑤 𝑗

𝑌𝑖, 𝑗

𝑢𝑖, 𝑗𝑤𝑖, 𝑗

Figure 6.2. An illustration of the W[1]-hardness reduction for Independent Set Discovery
on 2-degenerate bipartite graphs.

Proof. We present an fpt-reduction from the Multicolored Cliqe problem. Given an
instance (𝐺,𝜑, 𝑘) with 𝑛 = |𝑉 (𝐺) | and𝑚 = |𝐸 (𝐺) | of Multicolored Cliqe, we construct
an instance (𝐻, 𝑆, 𝑏) of Independent Set Discovery as follows (see Figure 6.2 for an
illustration).
First let 𝐻 be a copy of 𝐺 . We replace every 𝑣 ∈ 𝑉 (𝐺) by a path on 3 vertices which we
denote by 𝑥𝑣 , 𝑦𝑣 , and 𝑧𝑣 . For all 𝑖 ≤ 𝑘 , we define the set𝑋𝑖 = {𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣 | 𝜑 (𝑣) = 𝑖}. Moreover,
for all 𝑖 ≤ 𝑘 , we add an edge on two fresh vertices {𝑢𝑖,𝑤𝑖} and connect 𝑢𝑖 to all vertices 𝑧𝑣
with 𝜑 (𝑣) = 𝑖 . For 𝑖 < 𝑗 ≤ 𝑘 , we denote by 𝐸𝑖, 𝑗 = {𝑢𝑣 ∈ 𝐸 (𝐺) | 𝜑 (𝑢) = 𝑖, 𝜑 (𝑣) = 𝑗}
the set of edges connecting vertices of color 𝑖 and 𝑗 . For each 𝐸𝑖, 𝑗 , we create a new set of
vertices, which we denote by 𝑌𝑖, 𝑗 , containing one vertex 𝑒𝑢𝑣 for each edge {𝑢, 𝑣} ∈ 𝐸𝑖, 𝑗 . We
additionally add an edge on two fresh vertices {𝑤𝑖, 𝑗 , 𝑢𝑖, 𝑗 } and connect 𝑢𝑖, 𝑗 to all vertices
in 𝑌𝑖, 𝑗 . For each vertex 𝑒𝑢𝑣 ∈ 𝑌𝑖, 𝑗 , we connect 𝑒𝑢𝑣 to 𝑦𝑢 via a path consisting of two new
vertices and we connect 𝑒𝑢𝑣 to 𝑦𝑣 via a path consisting of two new vertices.
Let 𝑋 =

⋃︁
𝑖≤𝑘 𝑋𝑖 and 𝑌 =

⋃︁
𝑖< 𝑗≤𝑘 𝑌𝑖, 𝑗 . We denote by𝑊 the set of all vertices along paths

from 𝑌 to 𝑋 that are at distance one from some vertex in 𝑌 and we use 𝑍 to denote the set
of all vertices along such paths that are at distance two from some vertex in 𝑌 . Finally, let

𝑆 =𝑊 ∪ {𝑢𝑖,𝑤𝑖 | 𝑖 ≤ 𝑘} ∪ {𝑢𝑖, 𝑗 ,𝑤𝑖, 𝑗 | 𝑖 < 𝑗 ≤ 𝑘} ∪ {𝑦𝑣 | 𝑣 ∈ 𝑉 (𝐺)}

and set the budget to 𝑏 = 3
(︁𝑘
2
)︁
+ 2𝑘 . Note that |𝑆 | = 2𝑘 + 2

(︁𝑘
2
)︁
+ 𝑛 + 2𝑚.
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It is not hard to see that the graph 𝐻 is indeed bipartite by construction. To see that the
graph 𝐻 is 2-degenerate it suffices to note that all vertices in𝑊 are of degree 2, and their
removal yields a forest (which is 1-degenerate).
We claim that (𝐺,𝜑, 𝑘) is a positive instance of Multicolored Cliqe if and only if (𝐻, 𝑆, 𝑏)
is a positive instance of Independent Set Discovery.
Assume that (𝐺,𝜑) admits a multicolored clique of size 𝑘 . Let𝐶 = {𝑣1, . . . 𝑣𝑘} denote such a
clique where 𝜑 (𝑣𝑖) = 𝑖 . Consider the discovery sequence where we slide the token on 𝑦𝑣𝑖
to 𝑥𝑣𝑖 and then slide the token on 𝑢𝑖 to 𝑧𝑣𝑖 for all 𝑖 ≤ 𝑘 (using a budget of 2𝑘). Next, for all
𝑖 < 𝑗 ≤ 𝑘 we slide the token on 𝑢𝑖, 𝑗 to the vertex 𝑒𝑣𝑖𝑣 𝑗 ∈ 𝑌𝑖, 𝑗 and then slide the two tokens in
𝑊 to their neighbors in 𝑍 (using a budget of 3

(︁𝑘
2
)︁
). Since 𝐶 is a multicolored clique in 𝐺 ,

the vertices in 𝑍 with a token on it only have neighbors of the form 𝑦𝑣𝑖 in the sets 𝑋 𝑗 . As
we freed exactly these vertices in the first steps, the resulting configuration is indeed an
independent set of 𝐻 .
For the reverse direction, assume that (𝐻, 𝑆, 𝑏) is a positive instance of Independent Set
Discovery witnessed by the discovery sequence 𝐶0 . . .𝐶ℓ . Since we have two adjacent
tokens on 𝑢𝑖 and𝑤𝑖 for all 𝑖 ≤ 𝑘 , all tokens on the 𝑢𝑖 are moved (to a vertex of the form 𝑧𝑣 )
in the discovery sequence. Moreover, since every vertex 𝑦𝑣 contains a token (and is adjacent
to 𝑧𝑣 ), the vertices on the 𝑦𝑣 need also to be moved. Hence, we need a minimum of 2𝑘
slides for the edges of the form {𝑢𝑖,𝑤𝑖}. Similarly, for each pair 𝑖, 𝑗 with 𝑖 < 𝑗 ≤ 𝑘 , we have
two adjacent tokens on 𝑤𝑖, 𝑗 and 𝑢𝑖, 𝑗 . Moreover, all vertices in𝑊 contain tokens. Hence,
we need at least three slides for a total of 3

(︁𝑘
2
)︁

slides for the edges of the form {𝑢𝑖, 𝑗 ,𝑤𝑖, 𝑗 }.
Hence, there must exist 𝑘 vertices 𝑦𝑣𝑖 and

(︁𝑘
2
)︁

vertices 𝑒𝑣𝑖𝑣 𝑗 adjacent to those vertices in order
to successfully slide the tokens on the 𝑢𝑖 and 𝑢𝑖, 𝑗 vertices away from their neighbors 𝑤𝑖
and 𝑤𝑖, 𝑗 that contain tokens. This is only possible if these vertices 𝑣𝑖 form a clique in 𝐺
which is multicolored by construction. ◀

6.2.3 Jumping, Addition and Removing, and the colorful variants

Finally, we show that the hardness results for Independent Set Discovery under the
token sliding model translate to the token jumping model. In fact, we only need small
modifications to re-use the constructions from the token sliding model. By Corollary 5.2.4,
the hardness results translate to Red-Blue Independent Set as well.
Indeed, the hardness-reductions in Theorem 6.2.1, Theorem 6.2.2 and Theorem 6.2.4 for
Independent Set Discovery under the token sliding model translate directly to the token
jumping model, as the ability to jump does not alter the key observations in these proofs.
In particular, in all of these proofs, we move 𝑏 tokens exactly once. It is easily verified that
jumping leads to the same solution discoveries. Hence, we obtain the following corollary.
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Corollary 6.2.5. The Independent Set Discovery problem under the token jumping

model and the Red-Blue Independent Set Discovery problem are NP-complete on the

class of planar graphs of maximum degree four, W[1]-hard with respect to parameter 𝑘 +𝑏
on graphs excluding {𝐶4, . . . ,𝐶𝑝} as induced subgraphs for any constant 𝑝 , and W[1]-hard

with respect to parameter 𝑏 on the class of 2-degenerate bipartite graphs.

We note that as Rainbow Independent Set is a generalization of Independent Set, all
hardness results translate trivially.

Corollary 6.2.6. The Rainbow Independent Set problem is NP-hard and W[1]-hard

with respect to parameter 𝑘 .

We conclude by showing that Independent SetDiscovery under the token addition/removal
model boils down to solving an instance of Vertex Cover.

Lemma 6.2.7. The Independent Set Discovery problem under the token addi-

tion/removal model is fixed-parameter tractable with respect to parameter 𝑏.

Proof. Let (𝐺, 𝑆, 𝑏) be an instance of the Independent Set Discovery problem. We may
assume that every configuration sequence𝐶0 . . .𝐶ℓ with𝐶0 = 𝑆 yielding an independent set
in 𝐺 does never add a token, as every subset of an independent set is still an independent
set. As a consequence, it is sufficient to consider the graph 𝐺 [𝑆]. As every edge of 𝐺 [𝑆]
yields a conflict, the problem boils down to the computation of a vertex cover of size at
most 𝑏 in 𝐺 [𝑆]. Hence, we use an arbitrary fpt-algorithm to compute of vertex cover 𝐶 of
size 𝑏 if existent. If this is the case, we conclude that we are dealing with a positive instance,
as 𝑆 \ 𝐶 is an independent set in 𝐺 . Otherwise we conclude that we are dealing with a
negative instance. ◀
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6.3 Dominating Set Discovery

A dominating set in a graph𝐺 is a set of vertices 𝐷 ⊆ 𝑉 (𝐺) such that every vertex 𝑣 ∈ 𝑉 (𝐺)
is contained in 𝐷 or adjacent to a vertex in 𝐷 , that is, we have 𝑣 ∈ 𝐷 or there is a vertex
𝑢 ∈ 𝐷 with 𝑢𝑣 ∈ 𝐸 (𝐺). In the Dominating Set problem we are given a graph 𝐺 and an
integer 𝑘 and the goal is to compute a dominating set of size at most 𝑘 in 𝐺 .

6.3.1 Related Work

TheDominating Set problem is one of the classicalNP-complete problems [GJ79]. From the
parameterized perspective, the problem is W[2]-complete with respect to parameter 𝑘 and
hence believed to be harder than Independent Set. However, the Dominating Set problem
can be approximated up to a factor of log |𝑉 (𝐺) | by a simple greedy algorithm [Joh73, Lov75]
and this factor asymptotically cannot be improved unless P = NP [DS14].
Similar to the Independent Set problem, local search approaches cannot be expected to
improve the above stated approximation factor on general graphs. However, restricting to
special graph classes as the class of planar graphs, local search is known to lead to much
better approximation algorithms and even PTAS [HPQ17]. Furthermore, the Dominating
Set problem is known to be fixed-parameter tractable with respect to 𝑘 on many special
graph classes; we refer to [TV19] for an overview. The dynamic variant of the problem was
studied e. g., in [AKEF+15].
For the Dominating Set Reconfiguration problem, it is known that the problem is
PSPACE-complete under the token sliding model, token jumping model, and 𝑘-token addi-
tion/removal model even restricted to many special graph classes, e. g., bipartite graphs or
planar graphs [HIM+16]. On the positive side, polynomial-time algorithms are known only
for very simple graph classes such as trees.

6.3.2 The Sliding Model

In the Dominating Set Discovery problem, we are given a graph 𝐺 , a starting configu-
ration 𝑆 , and a non-negative integer 𝑏. The goal is to decide whether we can discover a
dominating set in 𝐺 (starting from 𝑆) using at most 𝑏 token slides.
We prove that Dominating Set Discovery under the token sliding model is NP-complete
even restricted to planar graphs of degree five and W[2]-hard with respect to parameter
𝑘 + 𝑏 even restricted to bipartite graphs. Furthermore, when restricting to certain graph
classes, the problem is fpt with respect to parameter 𝑘 but W[1]-hard with respect to
parameter 𝑏 on 2-degenerate graphs.
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Theorem 6.3.1. The Dominating Set Discovery problem is NP-complete on the class of

planar graphs of maximum degree five.

Proof. We present a reduction from Dominating Set on planar graphs of maximum degree
three, which is known to be NP-complete [GJ79]. Given an instance (𝐺,𝑘) of Dominating
Set, where 𝐺 is a planar graph of maximum degree three, we construct an instance of
Dominating Set Discovery as follows. We create a new graph 𝐻 initially consisting
of a copy of 𝐺 . Then, for each vertex 𝑣 ∈ 𝑉 (𝐻 ), we create a new path on four vertices
𝑤𝑣 , 𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣 and connect 𝑣 to𝑤𝑣 . Then, we create an additional new vertex𝑢𝑣 and connect𝑢𝑣
to both 𝑣 and 𝑥𝑣 . We choose 𝑆 = {𝑥𝑣 , 𝑦𝑣 , | 𝑣 ∈ 𝑉 (𝐺)} and we set the budget to 𝑏 = 2𝑘 . Note
that |𝑆 | = 2|𝑉 (𝐺) |. This completes the construction. It is easy to observe that the graph 𝐻
is planar and of maximum degree five. We prove that (𝐺,𝑘) is a positive instance of the
Dominating Set problem if and only if (𝐻, 𝑆, 𝑏) is a positive instance of the Dominating
Set Discovery problem.
First assume that 𝐺 has a dominating set 𝐷 of size at most 𝑘 . For every 𝑣 ∈ 𝐷 we slide the
token on 𝑥𝑣 to 𝑣 in 𝐻 using a budget of 2𝑘 . To see that the resulting set is a dominating set
in 𝐻 , note that every pair of vertices𝑤𝑣 and 𝑢𝑣 is dominated by either 𝑥𝑣 or 𝑣 . Moreover,
every pair of vertices 𝑦𝑣 and 𝑧𝑣 is dominated by 𝑦𝑣 . The vertex 𝑥𝑣 is either dominated by 𝑥𝑣
or 𝑦𝑣 (depending on whether 𝑣 ∈ 𝐷 or not). Since 𝐷 is a dominating set of 𝐺 , all vertices in
𝑉 (𝐺) are also dominated, hence the resulting configuration yields a dominating set.
For the reverse direction assume that (𝐻, 𝑆, 𝑏) is a positive instance of the Dominating
Set Discovery problem. Note that moving a token on 𝑥𝑣 to either𝑤𝑣 or 𝑢𝑣 leaves a none
dominated vertex. Moreover, to dominate all vertices {𝑢𝑣 ,𝑤𝑣 , 𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣 } we need at least two
tokens which implies that in the resulting configuration, for each 𝑣 , we either have a token
on 𝑣 and a token on 𝑦𝑣 , or the from the initial configuration do not move, that is, one token
on 𝑥𝑣 and one token on 𝑦𝑣 . Since 𝑏 = 2𝑘 and the distance from 𝑥𝑣 to 𝑣 is two, we can have
at most 𝑘 tokens slide to vertices corresponding to vertices of 𝐺 . Such vertices must form a
dominating set in 𝐺 , as needed. ◀

Next we show that the problem is W[2]-hard with respect to parameter 𝑘 + 𝑏 again by a
reduction from Dominating Set.

Theorem 6.3.2. The Dominating Set Discovery problem is W[2]-hard with respect to

𝑘 + 𝑏 on the class of bipartite graphs.

Proof. We present a parameterized reduction from the Dominating Set problem, which is
known to be W[2]-hard on general graphs. Given an instance (𝐺,𝑘) of Dominating Set,
we construct an instance (𝐻, 𝑆, 𝑏) of Dominating Set Discovery as follows (see Figure 6.3
for an illustration).
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Figure 6.3. Illustration of the hardness reduction for Dominating Set Discovery.

First, 𝐻 contains two copies of the vertex set of𝐺 . We denote these two sets by 𝐿 and 𝑅. We
connect each vertex 𝑣 ∈ 𝐿 to the copy of 𝑣 in 𝑅, as well as to the copies of all adjacent vertices
in 𝑅, i. e., to all vertices in {𝑣} ∪ {𝑢 | 𝑢𝑣 ∈ 𝐸 (𝐺)} ⊆ 𝑅, that is, we connect 𝑣 to each vertex in
its closed neighborhood in 𝑅. Then we add 𝑘 fresh vertices𝑦1, . . . ,𝑦𝑘 and connect them to all
vertices in 𝐿. We further add one fresh vertex 𝑧 with 𝑘 + 1 pendent neighbors {𝑧1, . . . , 𝑧𝑘+1}
attached to it. We connect 𝑧 to all vertices in 𝐿. We choose 𝑆 = {𝑧,𝑦1, . . . , 𝑦𝑘} and we set
the budget to 𝑏 = 𝑘 . Note that |𝑆 | = 𝑘 + 1. This completes the construction. Observe that 𝐻
is indeed bipartite as witnessed by the bipartition (𝐿 ∪ {𝑧1, . . . 𝑧𝑘+1}, 𝑅 ∪ {𝑦1, . . . , 𝑦𝑘} ∪ {𝑧}).
We claim that (𝐺,𝑘) is a positive instance of Dominating Set if and only if (𝐻, 𝑆, 𝑏) is a
positive instance of Dominating Set Discovery.
Assume that𝐺 has a dominating set 𝐷 of size 𝑘 . For all 𝑖 ≤ 𝑘 , we slide the token on 𝑦𝑖 to an
arbitrary copy of a vertex of 𝐷 in 𝐿. Those vertices dominate 𝑅 ∪ {𝑦1, . . . , 𝑦𝑘} while vertex 𝑧
dominates 𝐿∪ {𝑧1, . . . 𝑧𝑘+1}. Hence, the resulting configuration yields a dominating set in 𝐻 .
For the reverse direction, assume that (𝐻, 𝑆, 𝑏) is a positive instance of Dominating Set
Discovery witnessed by the discovery sequence 𝐶0 . . .𝐶ℓ . We can assume without loss of
generality that the resulting dominating set 𝐶ℓ contains 𝑧 and no vertex of 𝑅. This follows
from the fact that not having a token on 𝑧 requires moving 𝑘 + 1 > 𝑏 tokens to its neighbors
{𝑧1, . . . , 𝑧𝑘+1}, which is not feasible. Moreover, every token in 𝑅 can only dominate itself
since 𝐿 is already dominated by 𝑧. Hence, every token in 𝑅 can instead be placed using less
moves on the copy of the same vertex in 𝐿 and potentially dominate more vertices. Putting
it all together, we can assume that 𝐶ℓ contains a token on 𝑧 and at most 𝑘 tokens in 𝐿 that
must dominate all vertices of 𝑅. This implies that 𝐶ℓ \ {𝑧} is a dominating set of size 𝑘 in𝐺 ,
as needed. ◀

For the next result, we use the standard reduction from Vertex Cover to Dominating Set
to reduce Vertex Cover Discovery on 2-degenerate bipartite graphs (which is W[1]-hard
with respect to 𝑏 by Theorem 6.1.4) to Dominating Set Discovery on 2-degenerate graphs.
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Theorem 6.3.3. The Dominating Set Discovery problem is W[1]-hard with respect to

parameter 𝑏 on the class of 2-degenerate graphs.

Proof. Given an instance (𝐺, 𝑆, 𝑏) of Vertex Cover Discovery, we create an instance
(𝐻, 𝑆, 𝑏) of Dominating Set Discovery where 𝐻 is obtained from 𝐺 by adding a new
vertex 𝑒𝑢𝑣 for each edge 𝑢𝑣 ∈ 𝐸 (𝐺) and connecting 𝑒𝑢𝑣 to both 𝑢 and 𝑣 . Observe that we
do not increase the distances between vertices of 𝐺 in 𝐻 and that we can assume, without
loss of generality, that a dominating set of 𝐻 does not contain one of the newly introduced
vertices of the form 𝑒𝑢𝑣 (as picking either 𝑢 or 𝑣 dominates at least the vertices dominated
by 𝑒𝑢𝑣 ). Note that since we start with a 2-degenerate bipartite graph 𝐺 and we simply add
vertices of degree two (forming triangles) it follows that 𝐻 is also 2-degenerate (but not
bipartite). This concludes the proof. ◀

Finally, we show that the problem becomes fpt with respect to parameter 𝑘 on graph classes
where we can compute domination cores in fpt-time. For a graph 𝐺 and non-negative
integer 𝑘 ≥ 1, a set 𝐶 ⊆ 𝑉 (𝐺) is a 𝑘-domination core for𝐺 if every set of size at most 𝑘 that
dominates 𝐶 also dominates 𝐺 . Hence, given a 𝑘-domination core for𝐺 , we can compute a
dominating set of size 𝑘 by computing a set that only needs to dominate 𝐶 . Given that 𝐶 is
small, this leads to fpt-algorithms for Dominating Set. Although it is very unlikely that
domination cores of small sizes exist for general graphs, it is known that they exist for
many special graph classes, e. g. planar graphs. We refer to [DK09, KRS18, TV19] for more
information. We show that Dominating Set Discovery is fixed-parameter tractable with
respect to parameter 𝑘 on every class of graphs where we can compute 𝑘-domination cores
in fpt-time (with respect to 𝑘).

Theorem 6.3.4. The Dominating Set Discovery problem is fixed-parameter tractable

with respect to parameter 𝑘 for every class C of graphs with the property that for every

𝐺 ∈ C and 𝑘 ≥ 1 we can compute a 𝑘-domination core of size 𝑔(𝑘) · |𝑉 (𝐺) |𝑐 for a

computable function 𝑔 and constant 𝑐 in fpt-time with respect to 𝑘 . In particular, the

problem is fixed-parameter tractable on planar graphs.

Proof. Given an instance (𝐺, 𝑆, 𝑏) of Dominating Set Discovery where 𝐺 ∈ C, we start
by computing a 𝑘-domination core 𝐶 for 𝐺 of size 𝑔(𝑘) · |𝑉 (𝐺) |𝑐 in fpt-time, which is
possible by assumption. We then compute the projection classes towards 𝐶 , that is, we
compute a family of sets of vertices such that any two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) \𝐶 belong to
the same set if and only if 𝑁 (𝑢) ∩𝐶 = 𝑁 (𝑣) ∩𝐶 , where 𝑁 (𝑢) = {𝑣 | 𝑢𝑣 ∈ 𝐸 (𝐺)} denotes
the open neighborhood of vertex 𝑢. The number of projection classes is trivially upper
bounded by 2𝑔(𝑘) , hence dependent on 𝑘 only. By the definition of domination cores, we can
assume, without loss of generality, that every minimal dominating set of𝐺 of size at most 𝑘
contains at most one vertex from each projection class. Hence, we can now enumerate
all minimal dominating sets of size at most 𝑘 by treating each projection class as a single
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vertex. Since both |𝐶 | and the number of projection classes is bounded by a function of 𝑘 ,
this brute-force enumeration can be accomplished in time bounded by some function of 𝑘 .
Let 𝐷 denote a dominating set consisting of vertices from𝐶 as well as vertices representing
projection classes. We now construct a complete weighted bipartite graph (𝐻𝑆,𝐷 ,𝑤), where
the bipartition of 𝐻 is (𝑆, 𝐷). For all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐷 ∩𝐶 , we define 𝑤 (𝑢𝑣) = dist𝐺 (𝑢, 𝑣).
Furthermore, for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐷 \𝐶 , we define𝑤 (𝑢𝑣) to be the shortest distance from 𝑢

to any vertex in the corresponding projection class. In particular, we have𝑤 (𝑢𝑣) = 0 if 𝑢
belongs to the same class as 𝑣 . The rest of the proof is identical to the proof of Theorem 6.2.3
(see also Theorem 6.1.3), that is, we look for a matching saturating 𝑆 of weight at most 𝑏
in 𝐻𝑆,𝐷 . If such a matching exists for at least one 𝐷 , we conclude that we are dealing with a
positive instance. Otherwise we conclude that we are dealing with a negative instance. ◀

6.3.3 Jumping, Addition and Removing, and the colorful variants

Similar to the Independent Set Discovery problem, we show that the hardness results for
Dominating Set Discovery under the token sliding model translate to the token jumping
model. In fact, we only need small modifications to re-use the constructions from the token
sliding model. By Corollary 5.2.4, the hardness results translate to Red-Blue Independent
Set as well.
Indeed, the W[2]-hardness-reduction in Theorem 6.3.2 translates one-to-one to the jumping
model by the observations in the proof. Similar, for the NP-hardness reduction in Theo-
rem 6.3.1 we only need to change the budget to 𝑏 = 𝑘 (instead of 𝑏 = 2𝑘), as the tokens
on 𝑥𝑣 can jump directly to 𝑣 for a cost of one per token. Finally, for the W[1]-hardness
reduction in Theorem 6.3.3, we reduce from Vertex Cover Discovery under the token
jumping model, which is also W[1]-hard with respect to parameter 𝑏 on 2-degenerate
bipartite graphs by Corollary 6.1.6.

Corollary 6.3.5. The Dominating Set Discovery problem under the token jumping

model and the Red-Blue Dominating Set Discovery problem are NP-complete on the

class of planar graphs of maximum degree five, W[2]-hard with respect to parameter 𝑘 +𝑏
on bipartite graphs, and W[1]-hard with respect to parameter 𝑏 on the class of 2-degenerate

graphs.

We note that as Rainbow Dominating Set is a generalization of Dominating Set, all
hardness results translate trivially.

Corollary 6.3.6. The Rainbow Dominating Set problem is NP-hard and W[2]-hard

with respect to parameter 𝑘 .
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This is also the case for Dominating Set Discovery under the token addition/removal
model, as an instance of such a problem with initial configuration 𝑆 = ∅ is equivalent to
finding a dominating set of size 𝑏. Hence, the hardness results translate to this problem as
well.

Corollary 6.3.7. The Red-Blue Dominating Set problem is NP-hard and W[2]-hard

with respect to parameter 𝑏.
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7.1. Vertex Cut Discovery and Edge Cut Discovery

7.1 Vertex Cut Discovery and Edge Cut Discovery

A vertex cut in a graph 𝐺 between two of its vertices 𝑠 and 𝑡 is a set of vertices 𝐶 ⊆ 𝑉 (𝐺)
such that every path from 𝑠 to 𝑡 in 𝐺 contains a vertex of 𝐶 . Likewise, an edge cut in a
graph 𝐺 between two of its vertices 𝑠 and 𝑡 is a set of edges 𝐶 ⊆ 𝐸 (𝐺) such that every path
from 𝑠 to 𝑡 in 𝐺 contains an edge of 𝐶 . In the Vertex Cut (resp. Edge Cut) problem we
are given a graph 𝐺 , vertices 𝑠 and 𝑡 , and an integer 𝑘 and the goal is to compute a vertex
cut (resp. edge cut) of size at most 𝑘 separating 𝑠 and 𝑡 in 𝐺 .

7.1.1 Related Work

The Vertex Cut as well as the Edge Cut problem are both known to be polynomial time
solvable, e. g., by reducing them to finding maximum flows in networks using Menger’s
theorem [Men27]. Then we can find such flows by utilizing the flow algorithm by Edmond
and Karp [EK72].
Gomes et al. [GNS20] studied the Vertex Cut problem under the combinatorial reconfig-
uration framework [Heu13, Nis18] and show PSPACE-hardness under the token jumping
model and NP-hardness under the token jumping model and 𝑘-token addition/removal
model. These hardness results even hold on the class of bipartite graphs.
The Rainbow Edge Cut problem has already been studied together with several other
rainbow disconnection problems in [BCL20]. The authors show that Rainbow Edge Cut is
NP-complete on general graphs. We show that this problem remains NP-complete even if
we restrict it to the class of planar graphs.

7.1.2 Rainbow Vertex Cut and Rainbow Edge Cut

This time we start with the rainbow variants in order to establish an fpt-algorithm for
the discovery variants with respect to parameter 𝑘 . Given an edge-colored graph (𝐺,𝜑)
with vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and an integer 𝑘 , the Rainbow Edge Cut problem asks whether
there exists an edge cut 𝐶 ⊆ 𝐸 (𝐺) of size 𝑘 separating 𝑠 and 𝑡 such that all edges in 𝐶 have
pairwise different colors. The Rainbow Vertex Cut problem can be defined analogously
where instead of 𝐶 ⊆ 𝐸 (𝐺) we look for a rainbow subset of vertices 𝐶 ⊆ 𝑉 (𝐺) separating 𝑠
and 𝑡 . The Rainbow Edge Cut problem is known to be NP-complete [BCL20, Theorem 5.5].
We start by showing that the problem remains NP-complete on planar graphs by a reduction
from the Rainbow Matching problem.
A rainbow matching in an edge-colored graph (𝐺,𝜑) is a set of edges 𝑀 ⊆ 𝐸 (𝐺) such that
each vertex 𝑣 ∈ 𝑉 (𝐺) appears in at most one edge in 𝑀 and all edges in 𝑀 have pairwise
distinct colors. In the Rainbow Matching problem we are given an edge-colored graph
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Figure 7.1. Illustration of the hardness reduction for Rainbow Edge Cut on planar graphs.

(𝐺,𝜑) and an integer 𝑘 and the goal is to compute a rainbow matching of size 𝑘 in 𝐺 . The
Rainbow Matching problem is known to be NP-complete, even restricted to paths [LP14].

Theorem 7.1.1. The Rainbow Edge Cut problem is NP-complete on planar graphs.

Proof. Containment in NP is clear as Rainbow Edge Cut on general graphs is in NP. Hence
we focus on the hardness proof. We present a reduction from RainbowMatching on paths.
Let (𝑃, 𝑘) be an instance of Rainbow Matching where 𝑃 is an edge-colored path on 𝑛
vertices denoted by 𝑣1, . . . 𝑣𝑛 and the edges are colored with colors from a color set C.
We construct an instance (𝐺,𝜑 : 𝐸 (𝐺) → C′) of Rainbow 𝑠-𝑡-Cut as follows. The new
color set is C′ = C ∪ {black} ∪ {𝑐𝑖 | 𝑖 ≤ 𝑛 − 2}, that is, C′ uses the colors from C as well as
𝑛 − 2 fresh colors and the color black.
Let us describe the construction of 𝐺 in detail; see Figure 7.1 for an illustration. In the first
step, 𝐺 consists of 𝑘 disjoint copies of 𝑃 , which we call 𝑃1, . . . , 𝑃𝑘 . Let the vertices of 𝑃 𝑗 be
called 𝑣 𝑗,1 . . . 𝑣 𝑗,𝑛 . Additionally, we add two fresh vertices 𝑠 and 𝑡 . For every 𝑗 < 𝑘 , insert a
set 𝐿 𝑗 of 𝑛 − 1 fresh vertices, and call them 𝑢 𝑗,1, . . . , 𝑢 𝑗,𝑛−1. Hence,

𝑉 (𝐺) =
⋃︂
𝑗≤𝑘

𝑉 (𝑃 𝑗 ) ∪
⋃︂
𝑗<𝑘

𝑉 (𝐿 𝑗 ) ∪ {𝑠, 𝑡}.

Now we connect 𝑠 and 𝑡 with a black edge, which enforces that this black edge must be
part of every (rainbow) cut separating 𝑠 and 𝑡 . Hence, any other black edge may not be part
of such a rainbow cut. We connect 𝑠 and 𝑡 to the vertices in 𝑃 𝑗 and 𝐿 𝑗 as follows. For every
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𝑗 ≤ 𝑘 we insert the edges {𝑠, 𝑣 𝑗,1} and {𝑣 𝑗,𝑛, 𝑡}, which are colored black. Likewise, for every
𝑗 < 𝑘 we insert the edges {𝑠,𝑢 𝑗,1} and {𝑢 𝑗,𝑛−1, 𝑡}, which are also colored black. Finally, for
every 𝑗 < 𝑘 and 𝑖 ≤ 𝑛 − 2, we insert the edge {𝑣 𝑗,𝑖, 𝑢 𝑗,𝑖} which is colored black and the edges
{𝑢 𝑗,𝑖, 𝑣 𝑗,𝑖+1} and {𝑢 𝑗,𝑖, 𝑣 𝑗+1,𝑖+2}, which are colored 𝑐𝑖 . This finishes the construction.
We claim that 𝑃 has a rainbow matching of size 𝑘 if and only if 𝐺 admits a rainbow cut
separating 𝑠 and 𝑡 of size 𝑛. Assume that 𝑃 has a rainbow matching 𝑀 = {𝑒1, . . . , 𝑒𝑘} of
size 𝑘 . Without loss of generality, we assume that the edges in 𝑀 are ordered with respect
to the 𝑣𝑖 , i.e., if 𝑒𝑖 = {𝑣ℓ𝑖 , 𝑣ℓ𝑖+1} and 𝑖 < 𝑗 , then ℓ𝑖 < ℓ𝑗 . We claim that the set 𝐶 that consists
of the black edge {𝑠, 𝑡}, the copy of 𝑒𝑖 in 𝑃𝑖 , and the obvious edges connecting the 𝑃𝑖 and 𝐿 𝑗
is a rainbow 𝑠-𝑡-cut of 𝐺 . To be precise, we have

𝐶 = {𝑠, 𝑡} ∪ {{𝑣𝑖,ℓ𝑖 , 𝑣𝑖,ℓ𝑖+1}, {𝑢𝑖,ℓ𝑖 , 𝑣𝑖,ℓ𝑖+1} | 𝑖 ≤ 𝑘} ∪
⋃︂
𝑖≤𝑘

{{𝑢𝑖, 𝑗 , 𝑣𝑖, 𝑗+2} | ℓ𝑖 < 𝑗 ≤ ℓ𝑖+1 − 2}.

Observe that 𝐶 is a cut by construction (see Figure 7.1), and that no two edges in 𝐶 have
the same color, as 𝑀 is a rainbow matching, and for every 𝑗 < 𝑘 and 𝑖 ≤ 𝑛 − 2 at most one
of the edges {𝑣 𝑗,𝑖, 𝑢 𝑗𝑖 } and {𝑢 𝑗𝑖 , 𝑣 𝑗+1,𝑖+2} is contained in 𝐶 .
Now assume that𝐺 admits a rainbow cut separating 𝑠 and 𝑡 . As 𝑠 and 𝑡 are directly connected,
every such cut 𝐶 must contain the edge {𝑠, 𝑡}. Furthermore, by construction 𝐶 contains
exactly one edge from every 𝑃 𝑗 , say the edge {𝑣 𝑗,ℓ𝑖 , 𝑣 𝑗,ℓ𝑖+1}, as no other black edge is part of𝐶 .
We claim that𝑀 = {{𝑣ℓ𝑖 , 𝑣ℓ𝑖+1} | {𝑣 𝑗,ℓ𝑖 , 𝑣 𝑗,ℓ𝑖+1} ∈ 𝐶 for some 𝑗 ≤ 𝑘} is a rainbow matching in 𝑃 .
Obviously,𝑀 is rainbow, as𝐶 is rainbow. To show that𝑀 is indeed a matching, observe that
for all ℓ𝑖 ≠ ℓ𝑗 we have |ℓ𝑖 − ℓ𝑗 | ≥ 2, that is, 𝑀 does not contain two (copies of) consecutive
edges of 𝑃 . To see this, assume for the sake of contradiction that there are 𝑖 ≠ 𝑗 such that
|ℓ𝑖 − ℓ𝑗 | ≤ 1. Let 𝑗1 < 𝑗2 be such that {𝑣 𝑗1,ℓ𝑖 , 𝑣 𝑗1,ℓ𝑖+1} and {𝑣 𝑗2,ℓ𝑗 , 𝑣 𝑗2,ℓ𝑗+1} are contained in 𝐶 . By
construction, 𝐶 must also contain {𝑢 𝑗1,ℓ𝑖 , 𝑣 𝑗1,ℓ𝑖+1} and can hence not contain {𝑢 𝑗1,ℓ𝑖 , 𝑣 𝑗1+1,ℓ𝑖+2},
as they share the same color. This however implies that {𝑣 𝑗2,ℓ𝑗 , 𝑣 𝑗2,ℓ𝑖+1} cannot be contained
in 𝐶 , a contradiction. This finishes the proof. ◀

Observe that we can reuse the ideas of the previous proof to show the hardness of the
Rainbow Vertex Cut problem. In fact, we can subdivide every edge (and color the
subdivision vertex with the same color as the edge), and color every other vertex black.
Then all observations translate one-to-one and we obtain the following corollary.

Corollary 7.1.2. The Rainbow Vertex Cut problem is NP-complete on planar graphs.

An instance of the Weighted Rainbow Vertex/Edge Cut problem consists of an weighted
vertex/edge-colored graph (𝐺,𝜑,𝑤) together with vertices 𝑠 and 𝑡 and non-negative in-
tegers 𝑘 and 𝑏 and the goal is to decide whether there exists a rainbow vertex/edge cut
separating 𝑠 and 𝑡 of size 𝑘 collecting weight at most 𝑏. We show that the Weighted
Rainbow Vertex/Edge Cut problem is fpt with respect to the solution size 𝑘 given that
the weights do not exceed the number of vertices.
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Our proof technique employs a heavy toolbox including the treewidth reduction theo-

rem [MOR13, Theorem 2.15] and (a variant of) Courcelle’s theorem [Cou90]. We refrain
from formally introducing these and related notions as we only need a small portion of
them. Instead, in addition to the cited works (and references therein), we refer to [CFK+15,
Section 7.4] and [FG06, Chapter 11] for an in-depth introduction to treewidth, monadic
second-order (MSO) logic and Courcelle’s theorem.

Theorem 7.1.3. The Weighted Rainbow Vertex/Edge Cut problem is fixed-parameter

tractable with respect to 𝑘 given that the weight of each vertex is upper-bounded by the

number of vertices.

Proof. We present an fpt-algorithm for the Weighted Rainbow Vertex Cut problem. The
tractability of Weighted Rainbow Edge Cut follows by considering the vertex cut version
in the line graph of the input graph 𝐺 , that is, the graph with vertex set 𝐸 (𝐺) and edge
set {{𝑢𝑣, 𝑣𝑤} | 𝑢𝑣, 𝑣𝑤 ∈ 𝐸 (𝐺)}
We follow the approach of [MOR13]. Let (𝐺,𝜑,𝑤) be a weighted vertex-colored graph
with 𝑛 vertices with the property that 𝑤 (𝑣) ≤ 𝑛 for every 𝑣 ∈ 𝑉 (𝐺). We first compute
a subgraph 𝐻 of 𝐺 using the treewidth reduction theorem [MOR13]), essentially stating
the following. Let 𝐶 be the set of all vertices of 𝐺 participating in a minimal vertex cut
separating 𝑠 and 𝑡 of size at most 𝑘 for some 𝑠, 𝑡 ∈ 𝑇 for fixed subset 𝑇 ⊆ 𝑉 (𝐺). For
every fixed 𝑘 , there is a linear-time algorithm that computes a graph 𝐻 with the following
properties:

1. 𝐶 ∪𝑇 ⊆ 𝑉 (𝐻 );
2. For all 𝑠, 𝑡 ∈ 𝑇 , a set 𝐾 ⊆ 𝑉 (𝐻 ) with |𝐾 | ≤ 𝑘 is a minimal vertex cut separating 𝑠

and 𝑡 in 𝐻 if and only if 𝐾 ⊆ 𝐶 ∪𝑇 and 𝐾 is a minimal vertex cut separating 𝑠 and 𝑡
in 𝐺 ;

3. The treewidth of 𝐻 is at most ℎ(𝑘, |𝑇 |) for some function ℎ; and
4. 𝐻 [𝐶 ∪𝑇 ] is isomorphic to 𝐺 [𝐶 ∪𝑇 ], i. e., their vertex and edge sets are equivalent

up to names.
We apply the theorem to 𝐺 with 𝑇 = {𝑠, 𝑡} to obtain a subgraph 𝐻 of 𝐺 . We inherit the
colors and weights from 𝐺 . Since all minimal vertex cuts of size at most 𝑘 are preserved
in 𝐻 it is sufficient to search for a minimum weight rainbow vertex cut separating 𝑠 and 𝑡
in 𝐻 of size at most 𝑘 .
Since the graph 𝐻 has treewidth at most ℎ(𝑘, 2) we can apply the optimization version
of Courcelle’s Theorem for graphs of bounded treewidth. For this, observe that we can
formulate the existence of a rainbow vertex cut separating 𝑠 and 𝑡 as an MSO formula 𝜑 (𝑋 )
such that 𝜑 (𝑆) for a set 𝑆 ⊆ 𝑉 (𝐺) is true if and only if 𝑆 is a rainbow vertex cut. We now
apply Courcelle’s Theorem in the optimization version presented in [ALS91, CM93]. We
remark that the running time in the optimization version of the theorem is usually stated
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as being polynomial time for each fixed number of weight functions. This could potentially
imply an exponential running time in the given weights. However, it is easily observed
that this is not the case and the dependence on each weight function is in fact linear by
assumption. We refer to the discussion before Theorem 5.4 in [ALS91] to conclude in our
case a running time of 𝑓 (𝑘) · 𝑛2 for some computable function 𝑓 . ◀

7.1.3 The Sliding Model

In the Vertex Cut Discovery problem under the token sliding model we are given a
graph 𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), a starting configuration 𝑆 ⊆ 𝑉 (𝐺) of size 𝑘 and a non-
negative integer 𝑏. The goal is to decide whether we can discover a vertex cut separating 𝑠
and 𝑡 (starting from 𝑆) using at most 𝑏 token slides. Similarly, in the Edge Cut Discovery
problem, we are given a graph 𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), a starting configuration 𝑆 ⊆ 𝐸 (𝐺) of
size 𝑘 and a non-negative integer 𝑏. The goal is to decide whether we can discover an edge
cut separating 𝑠 and 𝑡 (starting from 𝑆) using at most 𝑏 token slides. We denote an instance
of Vertex Cut Discovery resp. Edge Cut Discovery by a tuple (𝐺, 𝑠, 𝑡, 𝑆, 𝑏).
We prove that Vertex Cut Discovery under the token sliding model is NP-hard, fixed-
parameter tractable with respect to parameter 𝑘 and W[1]-hard with respect to parameter 𝑏.
We start by proving hardness by a reduction from the Cliqe problem. Recall that Cliqe
is NP-hard and W[1]-hard with respect to the solution size.

Theorem 7.1.4. The Vertex Cut Discovery problem under the token sliding model is

NP-hard and W[1]-hard with respect to parameter 𝑏 on 2-degenerate bipartite graphs.

Proof. We show hardness by a reduction from the Cliqe problem. The reduction is both
a polynomial time reduction as well as an fpt-reduction, showing both claimed results.
Let (𝐺,𝑘) be an instance of the Cliqe problem. We may assume that 𝑘 ≥ 4; hence,

(︁𝑘
2
)︁
> 𝑘 .

We construct the following graph𝐻 (see Figure 7.2 for an illustration). We add two vertices 𝑠
and 𝑡 in𝐻 where 𝑠 has𝑘 pendent vertices, which we collect in a set named𝑍 . For every vertex
𝑢 ∈ 𝑉 (𝐺), we add a vertex 𝑥𝑢 in𝐻 , which we connect with 𝑠 , and for every 𝑒 ∈ 𝐸 (𝐺) we add
a vertex𝑦𝑒 in𝐻 , which we connect with 𝑡 . Let𝑋 denote the set of the 𝑥𝑢 and𝑌 denote the set
of the 𝑦𝑒 . For every vertex 𝑢 ∈ 𝑉 (𝐺) and for each edge 𝑒 ∈ 𝐸 (𝐺) incident with 𝑢, connect 𝑥𝑢
and 𝑦𝑒 via a 1-subdivided edge (that is, a path with one interval vertex). Furthermore, we
add

(︁𝑘
2
)︁

disjoint paths 𝑃1, . . . , 𝑃(𝑘2) , each with a single internal vertex, connecting 𝑠 and 𝑡 .
We denote the internal vertex of 𝑃𝑖 by 𝑝𝑖 . This completes the construction of 𝐻 .
Observe that 𝐻 is 2-degenerate and bipartite. To see that 𝐻 is 2-degenerate observe that all
subdivision vertices (the 𝑝𝑖 as well as the subdivision vertices connecting 𝑋 and 𝑌 ) have a
degree of 2. Their removal yields two stars with centers 𝑠 and 𝑡 which are 1-degenerate.
Bipartiteness follows from the subdivisions. We define the initial configuration 𝑆 as 𝑍 ∪ 𝑌
and set the budget to 𝑏 = 2𝑘 + 2

(︁𝑘
2
)︁
.
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𝑠

...

𝑍

𝑥𝑢

𝑥𝑣

𝑋

𝑦𝑢𝑣

𝑌

𝑡

𝑃𝑖
...

Figure 7.2. Illustration of the hardness reduction for the Vertex Cut Discovery problem.

We claim that𝐺 has a clique of size 𝑘 if and only if (𝐻, 𝑠, 𝑡, 𝑆, 𝑏) is a positive instance of the
Vertex Cut Discovery problem.
Assume that 𝐺 has a clique 𝐶 of size 𝑘 . In order to separate 𝑠 and 𝑡 , we need to cut all (of
the

(︁𝑘
2
)︁
-many) paths 𝑃𝑖 by moving a token on each 𝑝𝑖 , and the paths using a vertex from 𝑋

and a vertex from 𝑌 . Using a budget of 2𝑘 , we move the 𝑘 tokens on the vertices in 𝑍 to
the 𝑘 vertices 𝑥𝑢 for 𝑢 ∈ 𝐶 by sliding them over 𝑠 . As 𝐶 is a clique, this frees

(︁𝑘
2
)︁

tokens
in 𝑌 , namely those 𝑦𝑒 with 𝑥𝑢 ∈ 𝑒 for 𝑢 ∈ 𝐶 (while the remaining tokens in 𝑌 block all other
paths connecting 𝑋 and 𝑌 ). We move the tokens on these 𝑦𝑒 to the subdivision vertices of
the 𝑃𝑖 by sliding them over 𝑡 , again for a cost of 2 per token. That is, using 𝑏 = 2𝑘 + 2

(︁𝑘
2
)︁

slides we discover the vertex cut {𝑥𝑢 | 𝑢 ∈ 𝐶} ∪ {𝑦𝑢𝑣 | 𝑢, 𝑣 ∉ 𝐶} ∪ {𝑝𝑖 | 𝑖 ≤
(︁𝑘
2
)︁
} separating 𝑠

and 𝑡 , witnessing that (𝐻, 𝑠, 𝑡, 𝑆, 𝑏) is a positive instance.
Now assume that (𝐻, 𝑠, 𝑡, 𝑆, 𝑏) is a positive instance of the Vertex Cut Discovery problem.
Let 𝐶0 . . .𝐶ℓ with 𝑆 = 𝐶0 and ℓ ≤ 𝑏 be a configuration sequence in 𝐺 yielding a vertex cut
in 𝐺 between 𝑠 and 𝑡 . Without loss of generality, we assume that ℓ is minimal, i. e., there
is no valid solution that can be discovered in less than ℓ steps. In order to cut the 𝑃𝑖 , the
set 𝐶ℓ must contain 𝑝𝑖 for every 𝑖 ≤

(︁𝑘
2
)︁
. Note that the every token in 𝑍 as well as every

token in 𝑌 can reach a 𝑝𝑖 in two sliding steps. Hence, we can furthermore assume that
a token from 𝑌 never moves to a vertex in 𝑋 . This assumption is justified as 𝐶ℓ contains
already

(︁𝑘
2
)︁
-many 𝑝𝑖 , hence at most 𝑘 vertices of 𝑋 are contained in 𝐶ℓ (recall that

(︁𝑘
2
)︁
≥ 𝑘).

Now, instead of moving a vertex from 𝑌 to 𝑋 and moving a vertex from 𝑍 to a 𝑝𝑖 (each for
a cost of 2), we can move a vertex from 𝑍 to 𝑋 and a vertex from 𝑌 to a 𝑝𝑖 for the same cost
instead.
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Let 𝑧𝑃 be the number of tokens moved from 𝑍 to some 𝑝𝑖 and 𝑧𝑋 = 𝑘 − 𝑧𝑃 be the number of
tokens moved from 𝑍 to 𝑋 . Then,

(︁𝑘
2
)︁
− 𝑧𝑃 tokens are moved from 𝑌 to the remaining 𝑝𝑖 .

Observe that 𝑧𝑋 tokens on 𝑋 can block at most
(︁𝑧𝑋

2
)︁
=

(︁𝑘−𝑧𝑃
2

)︁
paths connecting 𝑋 and 𝑌 .

Hence, we have
(︁𝑘−𝑧𝑃

2
)︁
≥

(︁𝑘
2
)︁
− 𝑧𝑃 , as all 𝑠-𝑡-paths using vertices from 𝑋 and 𝑌 are cut. As

we assume 𝑘 ≥ 4, this inequality is only true for 𝑧𝑃 = 0, that is, no vertex from 𝑍 moves to
a 𝑝𝑖 . Therefore, the (𝑘-many) tokens on 𝑍 moved to 𝑋 and

(︁𝑘
2
)︁

tokens on 𝑌 moved to the 𝑝𝑖 .
Let 𝑦𝑢𝑣 ∈ 𝑌 be such a vertex that has no token anymore. Now both 𝑥𝑢 and 𝑥𝑣 must have a
token to cut all the paths between 𝑠 and 𝑡 passing through 𝑦𝑢𝑣 . The

(︁𝑘
2
)︁

vertices in 𝑌 with no
token satisfy the above property if and only if the corresponding edges in𝐺 form a 𝑘-clique
in 𝐺 , witnessing that (𝐺,𝑘) is a positive instance. ◀

Observe that a small modification of the construction yields the same hardness results for
the Edge Cut Discovery problem, as we can keep the same graph 𝐻 and put the tokens on
incident edges instead. To be precise, we put the tokens in 𝑍 on the edges connecting 𝑍
and 𝑠 instead, and we put the tokens on 𝑌 on the edges connecting 𝑌 and 𝑡 instead. Finally,
we set the budget to 𝑏 = 𝑘 +

(︁𝑘
2
)︁
. Hence, we can move the tokens on edges incident to 𝑍 to

the edges {𝑠, 𝑥𝑢} for 𝑢 ∈ 𝐶 for total cost of 𝑘 , and the tokens on edges incident to 𝑌 to the
edges {𝑡, 𝑝𝑖} for 𝑖 ≤

(︁𝑘
2
)︁

for a cost of
(︁𝑘
2
)︁
.

Corollary 7.1.5. The Edge Cut Discovery problem under the token sliding model is

NP-hard and W[1]-hard with respect to parameter 𝑏 on 2-degenerate bipartite graphs.

Finally, we use the fixed-parameter tractability of the Weighted Rainbow Vertex/Edge
Cut problem to design an fpt-algorithm for Vertex/Edge Cut Discovery problem with
respect to parameter 𝑘 .

Theorem 7.1.6. The Vertex/Edge Cut Discovery problem under the token sliding model

is fixed-parameter tractable with respect to parameter 𝑘 .

Proof. We present an fpt-algorithm for the Vertex Cut Discovery problem using the
fpt-algorithm for the Weighted Rainbow Vertex Cut problem shown in Theorem 7.1.3
as a subroutine. We note that we can easily adapt the strategy for the Edge Cut Dis-
covery problem using the fpt-algorithm for the Weighted Rainbow Edge Cut problem,
respectively.
Our approach is closely related to the color coding technique established in [AYZ95].
Let (𝐺, 𝑠, 𝑡, 𝑆, 𝑏) be an instance of the Vertex Cut Discovery problem with 𝑛 = |𝑉 (𝐺) |.
Let C be a color set of 𝑘 colors. We color the vertices in 𝑆 arbitrarily with distinct colors
from C and the remaining vertices in 𝑉 (𝐺) \ 𝑆 uniformly at random using colors from C,
yielding a vertex coloring 𝜑 : 𝑉 (𝐺) → C. Now we define a weight function𝑤 : 𝑉 (𝐺) → ℕ

such that for each 𝑣 ∈ 𝑉 (𝐺) we have𝑤 (𝑣) is equal to the length of a shortest path connect-
ing 𝑣 to the unique vertex in 𝑆 with the same color as 𝑣 . Hence, the weight𝑤 (𝑣) denotes the
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cost of moving the token on the vertex with the same color as 𝑣 to 𝑣 . In particular,𝑤 (𝑢) = 0
for all 𝑢 ∈ 𝑆 and𝑤 (𝑣) ≤ 𝑛 for all 𝑣 ∈ 𝑉 (𝐺).
Consider the instance (𝐺, 𝑠, 𝑡, 𝜑,𝑤, 𝑘, 𝑏) of the Weighted Rainbow Vertex Cut problem.
First we observe that if (𝐺, 𝑠, 𝑡, 𝜑,𝑤, 𝑘, 𝑏) is a positive instance, then (𝐺, 𝑠, 𝑡, 𝑆, 𝑏) is a positive
instance of the Vertex Cut Discovery problem. Indeed, let𝐶 ⊆ 𝑉 (𝐺) be a rainbow vertex
cut separating 𝑠 and 𝑡 collecting weight at most 𝑏. Hence, we can find a discovery sequence
starting in 𝑆 and ending in 𝐶 by moving all tokens in 𝑆 to the vertex in 𝐶 with the same
color via a shortest path. By the choice of the weight function 𝑤 , we conclude that the
length of the discovery sequence is upper bounded by 𝑏, witnessing that (𝐺, 𝑠, 𝑡, 𝑆, 𝑏) is a
positive instance.
Likewise, we observe that if (𝐺, 𝑠, 𝑡, 𝑆, 𝑏) is a positive instance of the Vertex Cut Discovery
problem, then (𝐺, 𝑠, 𝑡, 𝜑,𝑤, 𝑘, 𝑏) is a positive instance of the Weighted Rainbow Vertex
Cut with probability at least 𝑘−𝑘 . This probability is justified by the following observation.
Let𝐶0 . . .𝐶ℓ be a discovery sequence for some ℓ < 𝑏 such that𝐶ℓ is a vertex cut separating 𝑠
and 𝑡 . In particular, given that the vertices in 𝐶ℓ are colored such that each token reaches a
vertex of the same color as the vertex the token started on in 𝐶0, we observe that 𝐶ℓ is a
vertex cut separating 𝑠 and 𝑡 collecting weight at most 𝑏 with respect to𝑤 . As there are 𝑘𝑘
ways to color the vertices in 𝐶ℓ with 𝑘 different colors (recall that |𝐶ℓ | = 𝑘), and the color
of every other vertex is irrelevant, we obtain a success probability of 𝑘−𝑘 . This probability
is tight in the sense that all other (rainbow) colorings of 𝐶ℓ might collect a weight greater
than 𝑏, hence being too costly.
It remains to show that we can derandomize the construction of (𝐺, 𝑠, 𝑡, 𝜑,𝑤, 𝑘, 𝑏) in fpt-time
in order to utilize the fpt-algorithm for the Weighted Rainbow Vertex Cut problem
yielding an fpt-algorithm for the Vertex Cut Discovery problem. However, there are 𝑘𝑛−𝑘
many possibilities to color the vertices of𝐺 with 𝑘 colors (recall that the 𝑘 vertices in 𝑆 have
a fixed coloring). Hence, the naı̈ve approach, namely enumerating all these possibilities,
does not yield an fpt-algorithm.
To circumvent this problem, we use the derandomization technique in [AYZ95]. Instead of
a random coloring 𝜑 , we construct a (𝑛 − 𝑘, 𝑘)-perfect hash family F such that for every
subset 𝑋 ⊆ 𝑉 (𝐺) \ 𝑆 of size 𝑘 , there is a coloring 𝑐 : 𝑉 (𝐺) → C ∈ F with the property
every element of 𝑋 is mapped to a different element in C. The family F can be constructed
deterministically in time 2O(𝑘) log𝑛 [AYZ95]. Observe that the weight function𝑤 can be
computed in time polynomial time, e. g., by the Floyd-Warshall algorithm. Combining
these observations with the results in Theorem 7.1.3, we conclude that the Vertex Cut
Discovery problem can be solved in time 𝑓 (𝑘) · |𝑉 (𝐺) |𝑐 for some computable function 𝑓
and a constant 𝑐 . ◀
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7.1.4 Jumping, Adding and Removing, and the Red-Blue Variant

Finally, we study the Red-Blue Vertex/Edge Cut problem and the Vertex Cut Discovery
problem under the token jumping model as well as under the token addition/removal model.
We begin with the latter problem and show that it remains solvable in polynomial time.

Lemma 7.1.7. The Vertex/Edge Cut Discovery problem under the token addi-

tion/removal model can be solved in polynomial time.

Proof. We present the strategy for Edge Cut Discovery, the strategy of Vertex Cut
Discovery is analogous. Let (𝐺, 𝑠, 𝑡, 𝑆, 𝑏) be an instance of the Edge Cut Discovery
problem. We may assume that every configuration sequence 𝐶0 . . .𝐶ℓ in 𝐺 with 𝐶0 = 𝑆

yielding an edge cut does never remove a token, as every superset of an edge cut is still an
edge cut. We consider the graph 𝐺 − 𝑆 , that is, the graph obtained from 𝐺 by removing all
edges in 𝑆 . We compute in polynomial time an arbitrary minimum cut𝐶 of𝐺−𝑆 separating 𝑠
and 𝑡 . The size of 𝐶 is exactly the minimum number of tokens we need to add in order to
separate 𝑠 and 𝑡 . Hence, if |𝐶 | ≤ 𝑏 we conclude that we are dealing with a positive instance.
Otherwise we conclude that we are dealing with a negative instance. ◀

Next we show that Red-Blue Vertex/Edge Cut is fpt with respect to parameter 𝑘 . By
Corollary 5.2.4, this result translates to Vertex/Edge Cut Discovery under the token
jumping model as well. In fact, we can easily reduce Red-Blue Vertex/Edge Cut to the
weighted rainbow version of the problem by giving every blue vertex/edge weight 1 and
every red vertex/edge weight 0, and coloring all vertices/edges with distinct colors. The
fixed-parameter tractability follows then from Theorem 7.1.3.

Corollary 7.1.8. The Red-Blue Vertex/Edge Cut problem and the Vertex Cut Discov-

ery problem under the token jumping model are fixed-parameter tractable with respect

to 𝑘 .

Finally, we note that the reduction in Theorem 7.1.4 showing W[1]-hardness of the Ver-
tex/Edge Cut Discovery problem under the token sliding model with respect to parame-
ter 𝑏 can be easily adapted to the token jumping model. In fact, we only need to change
the budget to 𝑏 = 𝑘 +

(︁𝑘
2
)︁

(instead of 2𝑘 + 2
(︁𝑘
2
)︁

as we only a budget of 1 instead of 2 in
order to move a token to its destination). The other observations translate one-to-one. By
Corollary 5.2.4 this result also translates to Red-Blue Vertex/Edge Cut.

Corollary 7.1.9. The Red-Blue Vertex/Edge Cut problem and the Vertex/Edge Cut

Discovery problem under the token jumping model are W[1]-hard with respect to 𝑏.
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8 Conclusion



We have introduced the new framework of solution discovery via reconfiguration motivated
by the dynamics of real-world applications with the goal to restore healthy system states
by executing a sequence of small modifications. We proved many tractability and hardness
results concerning solution discovery variants of fundamental graph problems, including
classical NP-complete problems as well as problems in P.
We expect further research on this new model capturing the dynamics of real-world situa-
tions as well as constraints on the adaptability of solutions. It seems particularly interesting
to investigate directed or weighted versions of the studied problems. In future work, we
plan to combine our framework with other established frameworks, e. g., dynamic problems,
to categorize more of these dynamic real-world applications of decision-making problems.
For instance, one can augment the solution discovery framework by allowing two input
graphs 𝐺 and 𝐺′ for each instance, where 𝐺′ is obtained from 𝐺 by a small number of
edge/vertex addition/deletions. Moreover, we require the initial configuration 𝑆 to satisfy
certain properties in 𝐺 . Now the question becomes whether we can transform 𝑆 to 𝑆′
using at most 𝑏 reconfiguration steps such that 𝑆′ satisfies similar properties in 𝐺′. This
generalization increases the degrees of freedom in which we can analyze the problems and
pushes towards multivariate analyses, where the changes in the graph can now also be part
of the parameter.
Another possible avenue to explore is to relax the constraints that we impose on token
positions. For instance, we can allow multiple tokens to occupy the same vertex or edge.
This, in turn, allows us to decouple the size of the initial configuration from the size of a
desired target solution (under the token sliding model and token jumping model). As an
example, the Independent Set Discovery problem could be reformulated as follows. We
are given a graph 𝐺 , a starting configuration 𝑆 , an integer 𝑘 ≤ |𝑆 |, and a budget 𝑏. The goal
is now to decide whether we can reach an independent set of size at least 𝑘 starting from 𝑆

and using at most 𝑏 steps.
Furthermore, a challenge is the design of efficient algorithms that can compute approximate
solutions with respect to the solution size or with respect to the allowed transformation
budget. We note, without proof, that the reduction in Theorem 7.1.4 showing hardness for
the Vertex Cut Discovery problem can be adjusted to give a 𝑛1−Y-inapproximability of
the optimal transformation budget.
Finally, we note that our framework is well-suited for graph problems, but not limited to
such problems. As an example, we could consider a discovery variant of the well-known
satisfiability problem for propositional logic (SAT) as follows: we are given a formula 𝜑
and an arbitrary valuation 𝑉 of the variables appearing in 𝜑 . In particular, 𝜑 might be
satisfiable but 𝑉 is not a valuation witnessing satisfiability. Then one step could be the flip
of the valuation of a single variable, and the question is, given 𝜑 , 𝑉 and budget 𝑏, whether
at most 𝑏 such flips suffice in order to discover a valuation such that 𝜑 is true under this
valuation.
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[Lov75] László Lovász. On the ratio of optimal integral and fractional covers. Discrete

mathematics, 13(4):383–390, 1975.
[LP14] Van Bang Le and Florian Pfender. Complexity results for rainbow matchings.

Theoretical Computer Science, 524:27–33, 2014.
[LPS+20] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav

Zehavi. Covering small independent sets and separators with applications to
parameterized algorithms. ACM Transactions on Algorithms, 16(3):32:1–32:31,
2020.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and control, 9(5):521–530, 1966.

[Men27] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall
Series in Automatic Computation. Prentice-Hall, 1967.

[MNR+17] Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and
Akira Suzuki. On the parameterized complexity of reconfiguration problems.
Algorithmica, 78(1):274–297, 2017.

[Moh01] Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of

Combinatorial Theory, Series B, 82(1):102–117, 2001.
[MOR13] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in

linear time via treewidth reduction. ACM Transactions on Algorithms (TALG),
9(4):1–35, 2013.

[MS01] Victor Mitrana and Ralf Stiebe. Extended finite automata over groups. Discrete

Applied Mathematics, 108(3):287–300, 2001.
[Nis18] Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.



[OR10] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a
small vertex cover. In 42nd Annual ACM Symposium on the Theory of Computing

(STOC 2010), pages 457–464. ACM, 2010.
[Par66] Rohit J. Parikh. On context-free languages. Journal of the ACM (JACM),

13(4):570–581, 1966.
[Sin09] Arindama Singh. Elements of Computation Theory. Springer, 1st edition, 2009.
[Sip13] Michael Sipser. Introduction to the Theory of Computation. Course Technology,

third edition, 2013.
[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential

time (preliminary report). In Proceedings of the Fifth Annual ACM Symposium

on Theory of Computing (STOC 1973), pages 1–9. Association for Computing
Machinery, 1973.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer

Science, 3(1):1–22, 1976.
[Tho91] Wolfgang Thomas. Automata on Infinite Objects, page 133–191. MIT Press,

1991.
[To10] Anthony W. To. Parikh images of regular languages: Complexity and applica-

tions, 2010.
[TV19] Jan A. Telle and Yngve Villanger. Fpt algorithms for domination in sparse

graphs and beyond. Theoretical Computer Science, 770:62–68, 2019.
[VSS05] Kumar N. Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of

equational horn clauses. In Proceedings of the 20th International Conference on

Automated Deduction (CADE 2020), pages 337–352. Springer, 2005.
[vzGS78] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear

integer equalities and inequalities. Proceedings of the American Mathematical

Society, 72(1):155–158, 1978.
[Wro18] Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth.

Journal of Computer and System Sciences, 93:1–10, 2018.
[Zet13] Georg Zetzsche. Silent transitions in automata with storage. In Automata,

Languages, and Programming, pages 434–445. Springer, 2013.
[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. In 38th Annual ACM Symposium on the Theory of

Computing (STOC 2006), pages 681–690. ACM, 2006.


	Parikh Automata on Finite and Infinite Words
	Prelude
	Introduction
	Preliminaries
	Words and Languages
	normalnormalRegular and omega-regular Languages
	Pushdown Automata
	Semi-linear Sets and Presburger Arithmetic
	Parikh Recognizable Languages
	Directed Graphs
	Turing Machines, Decidability and Complexity Theory
	Grammars and the Chomsky Hierarchy


	Parikh Automata on Finite Words
	Parikh Automata and Friends
	A Pumping Lemma for Parikh Recognizable Languages
	Parikh Automata and the Chomsky Hierarchy
	Universality for Deterministic Parikh Automata

	Parikh Automata on Infinite Words
	Nondeterministic Parikh Automata
	Preparation
	Characterization of Büchi Parikh Automata
	normalnormalCharacterization of LPA, Regω
	normalnormalCharacterization of LPA, PAω and LReg, PAω
	normalnormalBlind Counter Automata and -elimination
	Blind Counter Automata vs. Büchi Parikh Automata
	normalnormalε-elimination
	Remaining Closure Properties
	Decision Problems

	Deterministic Parikh automata
	Closure Properties
	Expressiveness
	Decision Problems and Model Checking


	Conclusion

	Solution Discovery via Reconfiguration
	Prelude
	Introduction
	Preliminaries
	Turing Machines, Decidability and Complexity Theory
	Graphs
	Solution Discovery
	Red-Blue Variants of Vertex or Edge Selection problems
	A word on the token addition/removal model


	Solution Discovery for NP-complete Problems
	Vertex Cover Discovery
	Related work
	The Sliding Model
	Jumping, Addition and Removing, and the colorful variants

	Independent Set Discovery
	Related Work
	The Sliding Model
	Jumping, Addition and Removing, and the colorful variants

	Dominating Set Discovery
	Related Work
	The Sliding Model
	Jumping, Addition and Removing, and the colorful variants


	Solution Discovery for Problems in ¶
	Vertex Cut Discovery and Edge Cut Discovery
	Related Work
	Rainbow Vertex Cut and Rainbow Edge Cut
	The Sliding Model
	Jumping, Adding and Removing, and the Red-Blue Variant


	Conclusion


