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Fig. 1. (a) Regional map showing a portion of the Bismarck
Archipelago (Papua New Guinea, in gray), the Manus Basin and
the locations of seafloor features (white with black outlines) such as
the Manus Spreading Center (MSC), Eastern Manus Volcanic
Zone (EMVZ), transform faults (TF) and known sites of seafloor
hydrothermal activity. Vienna Woods and Pual Ridge are shown as
stars. The active New Britain subduction zone is shown to the
southeast of the archipelago, while the inactive Manus Trench (not
shown) is to the northeast. (b) SeaBeam bathymetric map of Pual
Ridge and nearby Marmin Knolls neovolcanic edifices showing
locations of the PACMANUS and Northeast (NE) Pual vent fields.
Individual areas of venting within PACMANUS are shown.
(Adapted from Tivey et al., 2006.)
1. INTRODUCTION

Hydrothermal systems situated in back-arc basins share
many common physical and chemical processes with their
mid-ocean ridge (MOR) counterparts, including water–
rock reaction, magmatic volatile degassing, phase separa-
tion and subsurface mixing of fluids. In back-arc systems,
however, the proximity to a subduction zone and eruption
of magmas with higher water contents relative to mid-ocean
ridge basalt (MORB) results in a broader range of degassed
volatiles capable of influencing hydrothermal fluid chemis-
try (de Ronde, 1995; Ishibashi and Urabe, 1995; Yang and
Scott, 2006). In contrast to MOR settings, where CO2 is the
dominant volatile degassed, the exsolution of large quanti-
ties of H2O and CO2 from silicic magmas can be accompa-
nied by acid-volatile species such as SO2, HCl and HF.
Subsequent entrainment of water-rich magmatic fluids into
existing hydrothermal circulation cells could substantially
lower pH, thereby influencing the transport of dissolved
metals and styles of crustal alteration (Gamo et al., 1997,
2006; Gena et al., 2001; Yang and Scott, 2006). Moreover,
magmatic fluids have long been proposed as an additional
source of economically important metals (i.e. Cu, Zn, Ag
and Au) in excess of that feasible by rock leaching alone
(Yang and Scott, 1996, 2006; Sun et al., 2004; Simmons
and Brown, 2006). Many large volcanic-hosted massive sul-
fide deposits (Kuroko-type) are thought to have formed in
arc and back-arc magmatic–hydrothermal settings (Frank-
lin et al., 1981; Herzig and Hannington, 1995). Thus, mod-
els for the formation of metal sulfide deposits in back-arc
environments require an understanding of the role of mag-
matic fluids in metal transport and deposition.

Discharge of magmatic fluids directly into the water col-
umn has been observed above submarine arc volcanoes
(Embley et al., 2006; Nakagawa et al., 2006; Lupton
et al., 2008) and seamounts (Cheminée et al., 1991; Gamo
et al., 1993; de Ronde et al., 2005; Resing et al., 2007,
2009), and contributions of magmatic acid-volatile species
and water to hydrothermal fluids have been reported in a
few locations (Sedwick et al., 1992; McMurtry et al.,
1993; Gamo et al., 1997; Zengqian et al., 2005; Nakagawa
et al., 2006). In general, however, vent fluids from active
magmatic–hydrothermal systems hosted in felsic crust have
been historically under-sampled despite the prevalence of
hydrothermal activity associated with back-arc volcanism
in the western Pacific (Ishibashi and Urabe, 1995). Conse-
quently, factors influencing the formation of vent fluid
compositions in these environments are poorly constrained.

In 1999 the Ocean Drilling Program (ODP) drilled into
an active felsic-hosted hydrothermal system at the PACM-
2

ANUS site in the Eastern Manus Volcanic Zone, Papua
New Guinea (Figs. 1 and 2). Subsequent investigations of
alteration assemblages recovered in drill-cores indicated a
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Fig. 2. SM2000 bathymetry of the Vienna Woods hydrothermal field (a) and the northern (b) and southern (c) portions of the PACMANUS
hydrothermal field (adapted from Tivey et al., 2006). Sampled vents are denoted by solid triangles (moderate to high temperature focused
flow), or open triangles (low temperature (<80 �C) vents). Each discrete vent is given an identifier abbreviating the vent area (VW, Vienna
Woods; RMR, Roman Ruins; RGR, Roger’s Ruins; SM, Satanic Mills; SC, Snowcap; TK, Tsukushi; F, Fenway). Locations of the ODP Leg
193 drillholes (Sites 1188, 1189 and 1191, from Binns et al., 2007) are shown as open circles.
complex system affected by both temporally variable mag-
matic acid-volatile inputs and subsurface mixing of hydro-
thermal fluids with seawater (Bach et al., 2003; Roberts
et al., 2003; Lackschewitz et al., 2004; Paulick et al., 2004;
Paulick and Bach, 2006; Binns et al., 2007). In addition
to magmatic inputs, pervasive entrainment and mixing of
seawater in the subsurface, as indicated previously by
3

ODP Leg 193, may also therefore be an important process
that influences vent fluid chemistry in back-arc hydrother-
mal systems.

In 2006 we conducted a detailed chemical and isotopic
survey of vent fluid compositions at the near-arc hydro-
thermal fields PACMANUS and Northeast Pual (both
located on Pual Ridge near the New Britain Arc), and the



basalt-hosted Vienna Woods field (located farther from the
arc on the Manus Spreading Center) to examine the effects
of variable magmatic fluid inputs and crustal composition
(both related to arc proximity) on vent fluid geochemistry.
Here, we demonstrate that hydrothermal fluids at Pual
Ridge have undergone a complex evolution involving multi-
ple consecutive or concurrent processes. Fluids there are
heavily influenced by variable inputs of acidic magmatic
solutions to seawater-derived vent fluids at depth within
the hydrothermal reservoir, in addition to water/rock reac-
tion with felsic crust. Furthermore, phase separation/segre-
gation effects and widespread admixing of seawater prior to
venting at Pual Ridge subsequently modifies the composi-
tions of resulting fluid mixtures and partially obscures the
effects of magmatic inputs, further complicating fluid histo-
ries. In contrast, the geochemistry of vent fluids at Vienna
Woods is similar in many respects to other temporally sta-
ble hydrothermal systems commonly sampled in MOR set-
tings. This study demonstrates that the indirect effects of
arc proximity can exert substantial influence on the evolu-
tion of hydrothermal fluid compositions in back-arc envi-
ronments and adds to the diversity of known processes
influencing vent fluid geochemistry.

2. GEOLOGIC SETTING

The Manus Basin is a young (ca. 3.5 Ma old), rapidly
opening (up to 137 mm/year, Tregoning, 2002) back-arc ba-
sin in the northeastern portion of the Bismarck Sea
(Fig. 1a), tectonically bordered to the north by the presently
inactive Manus Trench and to the south by the Willaumez
Rise and the active New Britain Trench (Taylor, 1979a;
Taylor et al., 1994; Lee and Ruellan, 2006). Volcanism
associated with basin extension occurs along a series of
spreading centers and rifts between three major transform
faults (Taylor, 1979a; Taylor et al., 1994; Martinez and
Taylor, 1996). In the center of the basin, approximately
250 km from the active New Britain Arc, spreading occurs
along the 120 km long Manus Spreading Center (MSC)
bounded by the Willaumez and Djual transform faults
(Fig. 1a). Predominantly MORB-like basaltic lavas erupt
along the MSC (Sinton et al., 2003) and numerous areas
of hydrothermal activity have been reported, the largest
of which is the unsedimented Vienna Woods field (Both
et al., 1986; Tufar, 1990; Lisitsyn et al., 1993). In contrast,
the eastern Manus Basin between the Djual and Weitin
transform faults is an extensional transform zone within
remnant Eocene–Oligocene island-arc crust formed during
previous southwestward subduction along the Manus
Trench (Binns and Scott, 1993; Binns et al., 2007). As such,
it is probably the precursor of a back-arc spreading center
like the MSC. Volcanism associated with the incipient rif-
ting of pre-existing intermediate/felsic crust has produced
a complex series of en echelon neovolcanic ridges (such as
Pual Ridge shown in Fig. 1b) and volcanic domes on the
seafloor known as the Eastern Manus Volcanic Zone
(EMVZ, Fig. 1a). Lavas erupted in these edifices vary pro-
gressively from basaltic to more evolved rhyodacitic com-
positions (Binns and Scott, 1993; Kamenetsky et al., 2001;
Sinton et al., 2003) and they possess isotopic, major and
4

trace element characteristics similar to subaerial volcanoes
of the New Britain Arc, indicating strong arc affinities
(Sinton et al., 2003; Pearce and Stern, 2006). Due to its
proximity to the New Britain Arc (<100 km), the relative
influences of the mantle wedge, subducting slab and rem-
nant arc crust on EMVZ melt production and volcanism
are complex (Sinton et al., 2003; Pearce and Stern, 2006).
Several large areas of hydrothermal activity have been dis-
covered in the EMVZ (Fig. 1a) in the last two decades.
These include the DESMOS (Gamo et al., 1993, 1997,
2006; Auzende et al., 1997) and SuSu Knolls (Binns et al.,
1997; Auzende et al., 2000; Moss and Scott, 2001; Tivey
et al., 2006; Hrischeva et al., 2007) volcanic domes, and
the PACMANUS hydrothermal field (Binns and Scott,
1993; Auzende et al., 1997).

2.1. Hydrothermal vent fields

2.1.1. Vienna Woods

The Vienna Woods field was discovered and docu-
mented in 1990 (Tufar, 1990; Lisitsyn et al., 1993) and
hydrothermal fluids were subsequently sampled between
1995 and 2000 (Auzende et al., 1996; Gamo et al.,
1996a,b, 1997; Ishibashi et al., 1996; Douville et al.,
1999a,b; Fourre et al., 2006). Though the site is hosted in
basalt that is compositionally similar to MORB, lavas
along the MSC are variable and more intermediate compo-
sitions occur to the south and north of Vienna Woods
(Shaw et al., 2004). The rift zone itself is comprised of
basaltic pillow lavas/sheet flows with minimal sediment
cover and occasional 1–2 m wide along-axis fissures.
Hydrothermal activity in 2006 was confined to an area of
approximately 100 m by 150 m (Fig. 2a) at a water depth
of 2470 m within the rift zone of the MSC (�0.5 km south
of the neovolcanic zone). Three main clusters of tall sulfide
structures (5–12 m high), each separated by 100–150 m and
generally located near fissures, were actively venting rela-
tively clear fluids with little visible precipitate upon mixing
with seawater.

2.1.2. PACMANUS and Northeast Pual

The PACMANUS (Papua New Guinea–Australia–
Canada–MANUS) vent field, originally discovered during
the 1991 expedition of the same name, consists of several
discrete vent areas distributed over a 1.5 km section of Pual
Ridge (Fig. 1b, Binns and Scott, 1993). Pual Ridge is a 20
km long, Y-shaped neovolcanic edifice located 80 km from
Rabaul Volcano on the New Britain Arc (Fig. 1b). With a
ridge crest at 1600–1700 m depth, it is 1–1.5 km in width
and stands �500 m above the sedimented basaltic to andes-
itic seafloor of the EMVZ (Binns et al., 2007). Erupted la-
vas consist of highly vesicular and blocky dacite/
rhyodacite with some rhyolite and the ridge itself is con-
structed of stacked, subhorizontal flows up to 30 m thick
with negligible to minor sediment cover (Binns and Scott,
1993; Paulick et al., 2004; Yang and Scott, 2005). Based
on the composition of erupted lavas, Yang and Scott
(2002) proposed that the entire ridge represents a single
calc-alkaline trend that may have been generated by frac-
tional crystallization of a single volatile-rich mafic magma



Table 1
Measured compositions of vent fluid samples from the Vienna Woods, PACMANUS and NE Pual vent fields, Manus Basin.

Vent field

Area: VENTa (Tmax)

Sampleb Mg

(mm)

pH

(25 �C)

Na

(mm)

Cl

(mm)

Ca

(mm)

K

(mm)

SiO2

(mm)

SO4
2�

(mm)

Br

(mm)

F

(mm)

Fe

(mm)

Mn

(mm)

Li

(mm)

Vienna Woods

VW1 (282 �C) J2-207-IGT7 3.36 4.8 520 694 76.6 20.6 14.3 1.88 1.03 0.023 0.148 0.328 1.02

J2-207-IGT3 1.55 4.4 510 683 78.1 21.0 14.9 0.81 1.07 0.017 0.155 0.340 1.05

J2-207-M2 1.44 4.9 506 677 77.3 20.7 — — 1.05 0.022 0.141 0.341 1.03

VW2 (273 �C) J2-207-IGT4 1.02 4.2 509 687 79.5 21.0 14.7 0.72 1.05 0.021 0.162 0.358 1.14

VW3 (285 �C) J2-207-IGT8 1.11 4.7 504 663 69.5 20.0 14.4 0.87 1.01 0.019 0.127 0.207 1.06

J2-207-IGT6+ 14.9 5.4 494 644 53.5 17.2 10.4 7.83 0.971 0.034 0.082 0.151 0.759

PACMANUS

Roman Ruins

RMR1 (314 �C) J2-208-IGT8 7.26 2.3 470 617 18.4 71.8 13.7 0.47 0.924 0.120 5.56 3.40 0.986

J2-208-IGT5 7.59 2.4 485 619 18.6 71.3 13.4 0.64 0.923 0.120 5.62 3.28 0.957

J2-208-M4 8.19 2.4 472 621 18.3 70.4 — — 0.932 0.134 5.53 3.49 0.968

RMR2 (272 �C) J2-208-IGT2 15.9 2.3 434 549 10.6 50.6 16.6 2.61 0.808 0.097 — 2.26 0.620

J2-208-IGT1 16.0 2.4 435 543 10.3 50.5 16.7 2.54 0.812 0.096 0.991 2.27 0.639

J2-208-M2 27.0 2.7 443 551 10.5 38.5 — — 0.784 0.091 0.681 1.70 0.453

RMR3 (278 �C) J2-213-IGT7+ 22.7 3.2 508 648 18.8 58.8 11.6 10.6 0.993 0.117 4.32 2.58 0.778

J2-213-M4 6.39 2.5 534 708 23.8 86.4 — — 1.09 0.157 6.85 4.28 1.16

RMR4 (341 �C) J2-222-IGT1 3.63 2.7 495 650 22.3 77.2 17.8 0.42 1.00 0.116 6.47 2.83 1.06

J2-222-M4 4.71 2.6 495 647 21.8 75.5 17.3 — 1.04 0.125 6.17 2.73 0.948

Roger’s Ruins

RGR1 (320 �C) J2-213-IGT3 5.09 2.7 484 635 25.7 74.5 16.98 1.11 0.975 0.143 4.09 2.41 0.788

J2-213-IGT4 7.61 2.7 487 634 24.2 70.1 16.15 2.59 0.968 0.146 3.89 2.30 0.765

J2-213-M2 4.24 2.7 489 641 25.9 75.6 — — 0.991 0.155 4.43 2.68 0.832

RGR2 (274 �C) J2-222-IGT4+ 22.3 3.0 479 606 18.3 49.9 11.0 9.58 0.919 0.113 2.130 1.45 0.498

J2-222-IGT3 8.96 2.6 481 631 22.4 68.6 15.8 1.50 0.969 0.128 3.173 2.15 0.753

J2-222-M2 8.61 2.6 484 631 22.4 68.8 15.8 — 0.975 0.140 3.355 2.17 0.775

Satanic Mills

SM1 (295 �C) J2-209-IGT6 9.84 2.7 411 523 12.5 58.2 11.8 2.69 0.805 0.160 2.74 2.05 0.641

J2-209-IGT7 8.95 2.7 409 521 12.5 59.3 12.0 2.18 0.799 0.162 2.79 2.14 0.638

J2-209-M4 8.16 2.6 407 519 12.3 60.4 — — 0.797 0.175 2.97 2.34 0.646

SM2 (241 �C) J2-209-IGT4+ 26.6 2.7 400 478 7.07 31.0 9.40 12.1 0.715 0.215 0.705 1.11 0.311

J2-209-M2 16.9 2.4 374 455 5.87 38.6 — — 0.691 0.287 1.12 1.68 0.441

SM3 (288 �C) J2-214-IGT8 9.73 2.5 403 510 13.1 58.1 12.3 2.49 0.763 0.197 0.982 1.82 0.601

J2-214-IGT5 9.81 2.5 402 510 13.1 56.4 12.2 2.35 0.772 0.203 0.958 1.82 0.587

J2-214-M4 9.72 — 403 511 13.1 57.0 — — 0.787 0.207 1.04 1.99 0.600

Snowcap

SC1 (152 �C) J2-210-IGT8 30.8 4.6 419 499 6.38 24.6 6.78 10.8 0.756 0.128 0.029 0.993 0.298

J2-210-IGT5+ 48.5 5.0 450 532 9.71 12.9 1.69 24.1 0.809 0.078 — 0.212 0.089

J2-210-M2 31.5 4.7 420 501 6.57 24.8 — — 0.749 0.126 0.032 1.07 0.313

SC2 (180 �C) J2-211-IGT4 24.2 3.4 440 532 6.80 34.7 9.45 5.18 0.816 0.170 0.141 1.63 0.486

J2-211-IGT3 24.8 3.7 437 536 6.79 34.0 9.28 5.73 0.825 0.160 0.169 1.55 0.476

J2-211-M4 24.5 3.4 435 530 6.59 34.4 — — 0.820 0.173 0.129 1.64 0.503

Tsukushi

TK1 (62 �C) J2-211-IGT7 44.4 5.9 477 572 12.5 20.7 3.55 18.2 0.883 0.077 0.124 0.570 0.219

J2-214-IGT2 45.2 5.8 477 570 12.3 19.8 3.24 22.6 0.869 0.077 — 0.558 0.209

J2-214-M2 44.8 5.7 473 570 12.5 20.0 — — 0.874 0.077 0.117 0.574 0.219

Fenway

F1 (329 �C) J2-210-IGT1 5.97 2.5 347 463 14.3 53.8 12.7 0.93 0.717 0.279 7.37 2.31 0.637

J2-210-M4 5.84 2.6 340 465 14.3 53.8 — — 0.714 0.291 7.56 2.56 0.654

J2-214-IGT1+ 39.8 4.5 422 520 11.3 21.2 3.69 20.3 0.796 0.121 2.03 0.658 0.198

F2 (343 �C) J2-212-IGT8 4.90 2.7 485 683 25.2 86.4 13.8 0.55 1.08 0.168 13.3 4.22 1.03

J2-212-IGT5 5.26 2.7 485 685 25.2 85.8 13.8 0.74 1.07 0.169 13.1 4.16 1.03

J2-212-M4 4.66 2.7 483 685 25.7 86.8 — — 1.08 0.173 13.4 4.54 1.07

F3* (358 �C) J2-212-IGT2 4.52 2.7 417 589 22.2 73.9 11.9 0.97 0.919 0.165 11.5 3.60 0.904

J2-212-IGT1 4.74 2.8 377 517 20.3 64.9 10.4 2.45 0.796 0.154 9.83 3.09 0.748

J2-212-M2 8.89 2.8 425 573 20.4 66.8 — — 0.910 0.160 9.97 3.42 0.793

F4 (284 �C) J2-216-IGT7 8.95 2.6 395 527 17.7 60.2 10.9 2.46 0.826 0.158 6.85 2.95 0.713

J2-216-IGT6 8.69 2.5 392 524 17.7 60.7 11.3 2.17 0.834 0.155 6.65 2.94 0.685

J2-216-M2 10.2 2.4 394 527 17.4 58.2 — — 0.816 0.158 6.88 3.05 0.688

F5 (80 �C) J2-216-IGT4 45.0 5.0 437 517 13.3 14.1 1.72 27.6 0.792 0.082 0.868 0.325 0.109

J2-216-IGT3 44.0 4.9 436 517 14.1 15.3 1.90 27.4 0.797 0.082 0.572 0.368 0.119

J2-216-M4 48.8 5.8 453 535 11.8 11.7 — — 0.822 0.069 0.172 0.157 0.065

NE Pual

NP1 (35 �C) J2-218-IGT3 50.6 6.9 466 536 12.9 10.5 0.926 30.0 0.807 0.071 0.105 0.199 0.044

J2-218-IGT4 49.9 6.9 461 535 14.1 10.8 1.19 29.5 0.795 0.071 0.062 0.135 0.046

J2-218-M4 50.3 6.9 454 535 13.5 10.7 — — 0.797 0.069 0.174 0.210 0.049

Bottom SW (3 �C) 52.4 7.9 471 540 10.5 9.87 0.13c 28.2 0.808 0.064 0.0 0.0 0.028
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Vent field

Area: VENTa (Tmax)

B

(mm)

Sr

(lm)

Rb

(lm)

Cs

(lm)

Al

(lm)

RH2S

(mM)

H2

(lM)

CH4

(lM)

CO

(lM)

RCO2

(mm)

d13CCO2

(&)

d13CCH4

(&)

dDH2 O

(&)

d18OH2 O

(&)

d34SSO4

(&)

d34SH2 S

(&)

87Sr/86Sr

Vienna Woods

VW1 (282 �C) 0.240 232 15.8 0.267 5.5 1.3 42 65 — 4.36 �5.7 �20.8 2.1 0.50 — — —

0.250 240 17.5 0.283 6.2 1.5 39 61 — 4.21 �4.8 �20.7 2.6 0.55 — — 0.70440

— 236 19.4 0.288 7.2 — — — — — — — — — — — —

VW2 (273 �C) 0.250 244 18.1 0.281 7.3 1.6 55 70 — 4.39 �5.1 �20.7 2.5 — — — —

VW3 (285 �C) 0.240 224 16.6 0.256 6.7 1.5 43 62 — 4.47 �5.6 �20.8 0.28 0.40 — — —

0.185 183 13.0 0.188 5.1 1.0 32 46 — 3.80 — — 2.3 0.41 20.6 — —

PACMANUS

Roman Ruins

RMR1 (314 �C) 1.85 78.4 63.8 2.23 8.9 6.4 65 27 0.043 15.3 �3.3 �13.4 — — — 0.87 —

1.82 80.1 62.6 2.24 7.1 6.5 66 27 0.047 15.3 — — �0.38 1.0 — 1.9 —

— 76.9 67.2 2.42 — — — — — — — — — — — — —

RMR2 (272 �C) 1.34 62.0 42.3 1.57 5.6 2.7 29 36 — 19.1 �3.0 �13.3 �3.1 0.94 20.6 — —

1.34 61.0 41.2 1.50 4.7 2.9 29 35 0.023 19.2 — — �1.5 1.1 20.6 2.8 —

— 71.3 33.9 1.16 4.1 — — — — — — — — — — — —

RMR3 (278 �C) 1.42 85.1 48.8 1.69 4.6 2.5 72 8.2 0.023 6.72 — — �2.6 0.82 20.7 2.1 —

— 85.7 80.9 2.85 15 — — — — — — — — — — — —

RMR4 (341 �C) 1.62 88.0 74.5 2.23 6.5 6.3 53 22 — 9.54 �4.0 — �2.5 1.0 — 0.0 0.70460

1.57 86.5 71.5 2.26 5.1 — — — — — — — — — — — —

Roger’s Ruins

RGR1 (320 �C) 1.20 111 68.6 1.93 6.1 3.3 18 30 — 7.03 — — — — 21.3 4.7 0.70468

1.15 107 65.2 1.79 5.3 3.1 17 27 0.0050 6.36 — — �2.7 0.74 — 4.1 —

— 111 73.8 2.04 — — — — — — — — — — — — —

RGR2 (274 �C) 0.814 91.8 42.3 1.19 3.4 1.5 26 16 — 4.80 �3.1 �12.8 �1.2 0.70 — 1.7 —

1.12 102 66.7 1.71 5.1 2.5 42 22 — 6.37 �3.7 �13.0 �2.0 0.77 — 4.2 —

1.13 98.9 65.5 1.88 — — — — — — — — — — — — —

Satanic Mills

SM1 (295 �C) 1.14 62.6 57.9 1.77 9.5 7.4 23 14 — 168 �3.1 �9.1 �0.2 0.90 — �2.7 —

1.17 61.7 57.2 1.80 7.0 8.1 26 15 0.098 181 — — �3.0 0.63 20.9 — —

— 62.6 61.0 1.93 — — — — — — — — — — — — 0.70497

SM2 (241 �C) 0.768 48.6 24.8 0.844 4.5 3.3 4.3 15 0.0042 79.6 — — �0.27 0.55 21.4 �1.3 —

— 34.5 36.3 1.23 — — — — — — — — — — — — —

SM3 (288 �C) 1.01 69.7 56.0 1.71 5.2 8.3 6.7 26 0.034 216 �2.4 �7.4 �2.2 1.2 21.5 �0.48 —

0.990 70.4 56.2 1.72 5.9 8.3 7.0 28 0.030 230 — — �1.8 0.83 21.8 �0.52 0.70512

— 71.1 57.9 1.81 — — — — — — — — — — — — —

Snowcap

SC1 (152 �C) 0.592 43.6 18.2 0.654 0.91 2.9 7.7 35 0.033 112 �3.1 �14.4 �1.1 0.36 20.1 �1.8 —

0.222 82.3 6.02 0.141 0.15 0.54 6.5 6.1 — — — — �2.1 0.16 — — —

— 45.6 19.0 0.683 — — — — — — — — — — — — —

SC2 (180 �C) 0.851 55.6 27.4 1.10 1.7 — 18 36 0.045 102 �2.9 �15.2 �4.2 0.63 20.6 — 0.70635

0.823 55.9 27.2 1.09 2.4 1.0 17 34 — — — — �2.3 1.1 20.5 — —

— 55.8 28.9 1.16 2.3 — — — — — — — — — — — —

Tsukushi

TK1 (62 �C) 0.370 93.0 12.2 0.422 — — 0.16 7.1 0.040 5.74 — — �1.2 0.40 21.0 — —

0.351 93.0 11.3 0.401 — — 0.57 6.5 0.0012 5.13 — — �1.2 0.24 21.0 — —

— 92.7 12.8 0.422 — — — — — — — — — — — — —

Fenway

F1 (329 �C) 1.36 95.3 53.2 1.85 7.9 18.5 24 29 0.033 61.3 �2.7 �10.2 �4.3 1.2 20.8 �0.73 —

— 95.6 55.9 1.96 6.4 — — — — — — — — — — — —

0.453 90.9 15.5 0.484 1.9 4.6 6.4 7.0 0.0031 17.7 0.0 — �2.4 0.43 — �0.71 —

F2 (343 �C) 1.83 121 87.2 2.92 8.2 9.2 95 13 0.054 23.6 �3.5 �10.6 �0.9 1.4 — 1.2 —

1.84 117 82.2 2.93 6.9 9.0 93 12 0.049 23.3 �2.9 �11.7 �1.5 1.4 20.4 �1.0 —

— 118 87.7 3.18 — — — — — — — — — — — — —

F3* (358 �C) 1.60 103 73.5 2.49 6.1 15.0 233 32 0.14 44.0 — — �1.6 1.4 20.9 �1.2 0.70428

1.42 89.7 60.0 2.17 5.8 19.3 325 44 0.16 58.6 �2.6 �8.6 �0.3 1.1 20.8 �0.20 0.70447

— 92.9 65.0 2.38 — — — — — — — — — — — — 0.70482

F4 (284 �C) 1.31 86.8 57.5 2.07 7.5 11.6 25 39 0.036 51.8 �3.1 �8.8 �1.2 1.1 21.7 �0.17 —

1.32 85.8 57.3 2.08 8.4 11.6 26 38 0.037 54.7 — — �4.0 1.4 21.5 5.4 0.70461

— 83.3 55.6 2.05 — — — — — — — — — — — — —

F5 (80 �C) 0.268 104 9.33 0.218 0.66 2.5 2.8 7.7 — 14.4 — — — — — — —

0.287 104 9.35 0.256 1.2 2.7 2.7 11 — 15.5 — — �2.5 0.39 21.1 �0.28 —

— 97.0 3.64 0.108 — — — — — — — — — — — — —

NE Pual

NP1 (35 �C) 0.166 98.6 2.49 0.051 3.4 — 0.18 1.0 — 3.04 — — �0.13 0.38 20.9 — —

0.176 105 2.34 0.075 2.6 — 0.21 1.7 — 2.51 — — �2.4 0.31 20.8 — —

— 100 2.53 0.066 — — — — — — — — — — — — —

Bottom SW (3 �C) 0.426 91.0 1.3d 0.0023d 0.0 0.0 0.0 0.0 0.0 2.3 0.3e — � 0.14f �0.17g 20.99h — 0.70916

mM, mmol/L fluid; mm, mmol/kg fluid; lm, lmol/kg fluid; lM, lmol/L fluid. “—”, not determined; SW, seawater.
* Vigorous 2-phase venting.
+ Accidental SW entrainment suspected during sampling (based on temperature monitoring).
a Each vent represents an individual orifice from which multiple samples were taken (Tmax, max. observed vent temperature).
b Samples named by Jason (J2) dive number and gas-tight (-IGT) or major (-M) sampler number.
c Sarmiento and Gruber (2006).
d Spencer et al. (1970).
e Craig (1970).
f Redfield and Friedman (1965).
g Craig and Gordon (1965).
h Rees et al. (1978).

Table 1 (continued)
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source. While conclusive evidence for magma bodies be-
neath Pual Ridge is currently lacking, a faint and discontin-
uous seismic reflector was observed at �2 km depth in 2002
(Lee, 2003; Binns et al., 2007). Based on the Cl and H2O
contents of volcanic glasses from Pual Ridge and solubility
constraints, Sun et al. (2007) also suggested that a magma
chamber might be located near this depth. In contrast to
Vienna Woods, meter-scale fissures are noticeably absent
on the surface of Pual Ridge.

Five main areas of hydrothermal activity were previ-
ously documented at PACMANUS, including Roman
Ruins, Roger’s Ruins, Satanic Mills, Snowcap and Tsuku-
shi (Binns et al., 2007). Compositions of fluids collected at
PACMANUS between 1995 and 2000 have previously been
reported (Gamo et al., 1996a,b; Ishibashi et al., 1996; Dou-
ville et al., 1999a,b; Fourre et al., 2006). The five areas are
distributed at depths ranging from 1640 m to 1710 m
(Fig. 2b and 2c). To the north, hydrothermal activity at
the Roman Ruins and smaller Roger’s Ruins areas in
2006 (Fig. 2b) consisted of focused black or gray smoker
fluids venting from multi-spired, sulfide chimney complexes
up to 10 m tall. Areas of hydrothermal activity to the south
encircle the Snowcap Dome (Fig. 2c). Similar styles of vent-
ing through smaller sulfide structures were evident at Sata-
nic Mills and diffuse fluid also appeared to be flowing from
a nearby depression tentatively identified as the drill hole of
ODP Leg 193 Site 1191A (Fig. 2c). A 5.3 �C temperature
anomaly (above ambient) was measured �15 cm beneath
the surface of the drilling mud/bore-hole cuttings, which
were covered by a white microbial mat (Tivey et al.,
2006). Sulfide structures at Tsukushi were found to be lar-
gely inactive in 2006 and only a single low temperature
fluid (62 �C) exiting from an oxide mound fissure was sam-
pled. The Snowcap vent area is a broad knoll of mostly dif-
fuse venting with a small area of moderate temperature
(6180 �C) focused venting confined to the western flank
(Fig. 2c). In contrast to the Roman/Roger’s Ruins, Satanic
Mills and Tsukushi areas, where sulfide structures are lo-
cated atop rugged surficial lava flows, the Snowcap area
is heavily sedimented with hydrothermal precipitate/volca-
niclastic debris and lava outcrops are rare. Several outcrops
of heavily bleached rocks cemented with native sulfur were
observed near active vents in 2006, presumably reflecting
previous advanced argillic alteration by acid–sulfate type
fluids (Brimhall and Ghiorso, 1983; Gena et al., 2001;
Binns et al., 2007). However, no ‘white smoker’ activity
similar to that observed at the DESMOS caldera site
(Gamo et al., 1997, 2006) was evident anywhere on Pual
Ridge. A new site, Fenway, was discovered �200 m south
of Satanic Mills at 1710 m depth during this expedition
(Fig. 2c). The core area of the Fenway site is a 40 m diam-
eter two-tiered mound composed of chimney debris, mas-
sive anhydrite–sulfide breccia and coarse anhydrite sand.
At its summit (1710 m depth), a large black smoker chim-
ney complex was found to be vigorously venting the highest
temperature fluids (358 �C) observed at the PACMANUS
field to date. Several areas of diffuse venting, including
some emanating from anhydrite sand/talus, and occasional
gray/black smoker fluids were observed on the flanks of the
mound.
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Another discrete area of hydrothermal activity was also
discovered �8 km northeast of PACMANUS on Pual
Ridge during this expedition and named Northeast (NE)
Pual (Fig. 1b). Fluids venting at NE Pual were predomi-
nantly low temperature/diffuse in nature in 2006 and only
a single fluid with a maximum temperature of 35 �C was
sampled. The presence of extensive biological activity
(snails, shrimp, mussel beds and microbial mats), numerous
inactive sulfide chimneys and lack of higher temperature
venting suggests hydrothermal activity in this area is
waning.

3. METHODS

3.1. Sample collection

All hydrothermal fluid samples were collected during the
July–August 2006 MGLN06MV expedition to the Manus
Basin aboard the R/V Melville. Fluids were collected using
150 mL titanium isobaric gas-tight (IGT) fluid samplers
(Seewald et al., 2002) and 755 mL titanium syringe-style
‘major’ samplers (Von Damm et al., 1985) deployed from
the ROV Jason II. Two to three fluid samples were taken
per discrete vent at all sites visited (typically two IGT sam-
plers and one ‘major’ sampler) resulting in a total of 57
samples from 21 discrete vents at Vienna Woods and Pual
Ridge (Table 1). In most cases, fluids were sampled imme-
diately after removing sulfide chimney structures. The tem-
peratures of fluids collected with IGT samplers were
monitored in real-time during collection using thermocou-
ple temperature probes mounted adjacent to sampler snor-
kel tips. Only maximum temperatures for a given vent fluid
are reported (uncertainty ±2 �C) and temperatures were not
measured in real time during deployment of the ‘major’
samplers.

After recovery of the ROV, fluid samples were pro-
cessed on board the ship as soon as possible (typically
within 12 h). Fluids from IGT samplers were used for
the analysis of both volatile (H2, CH4, CO, CO2, H2S)
and dissolved inorganic constituents, whereas only the lat-
ter were analyzed from the ‘major’ samplers as they are
not gas-tight. Fluid aliquots for major element (Na, Cl,
Ca, K, SiO2, SO4, Br, F) and trace metal (Fe, Mn, Li,
B, Sr, Rb, Cs) determination were transferred to acid-
cleaned high-density polyethylene (HDPE) Nalgenee bot-
tles and analyzed onshore. Aliquots for trace metal analy-
sis were acidified with analytical-grade Optima� HCl prior
to storage. Subsamples of acidified aliquots were diluted
100-fold onboard ship and stored for shore-based mea-
surement of aqueous silica (SiO2). Prior to storage, sepa-
rate fluid aliquots were sparged with N2 to remove all
dissolved H2S for analysis of SO4 concentration and S iso-
topic composition (d34SSO4

). Fluid aliquots for the onshore
determination of dissolved inorganic carbon (RCO2, here-
after abbreviated as CO2) and the stable carbon isotope
composition of CO2 (d13CCO2

) and CH4 (d13CCH4
) were

stored in evacuated 25 mL serum vials sealed with butyl
rubber stoppers. Fluid aliquots were also flame-sealed in
glass ampoules for stable hydrogen (dDH2O) and oxygen
(d18OH2O) isotope analysis.



3.2. Analytical methods

Aqueous H2, CH4 and CO concentrations were deter-
mined onboard ship by molecular sieve gas chromatogra-
phy (GC) with thermal conductivity detection (for H2 and
CH4) and helium ionization detection (for CO) following
a syringe headspace extraction. pH (at 25 �C, 1 atm) was
measured potentiometrically onboard ship using a Ag/
AgCl combination reference electrode. Concentrations of
total dissolved sulfide (RH2S, hereafter abbreviated as
H2S) were determined gravimetrically at WHOI following
shipboard precipitation as Ag2S in a 5 wt% AgNO3 solu-
tion. Ag2S precipitates were stored in AgNO3 solution for
d34S analysis of H2S (d34SH2S). CO2 concentrations were
determined onshore after acidification of fluids with
25 wt% phosphoric acid by injecting aliquots of headspace
gas directly onto a GC with a Porapake Q packed column
and a thermal conductivity detector. These data were cor-
rected to account for CO2 partitioning between the head-
space and fluid phases within each individual serum vial.
Dissolved gas concentrations are expressed in concentra-
tion units of either mmol/L fluid (H2S, H2, CO and CH4)
for gases analyzed at sea or mmol/kg fluid (CO2) for species
analyzed in shore-based laboratories. The analytical uncer-
tainty (2s) is ±10% for H2, CH4, CO and H2S concentra-
tions, ±5% for CO2 concentrations and ±0.02 for pH
(25 �C) measurements.

The concentrations of the major elements were deter-
mined by ion chromatography. Concentrations of Sr, Li,
Rb, Cs, Fe, Mn and Al were determined by inductively cou-
pled plasma-mass spectrometry (ICP-MS) at WHOI (see
Craddock (2008) for details). To correct for the effects of
sulfide precipitate formation within the fluid samplers, re-
ported Fe data represent the ‘total’ concentrations obtained
by summation of the dissolved and precipitated Fe frac-
tions from a given sampler (Trefry et al., 1994; Craddock,
2008). Dissolved SiO2 and B concentrations were deter-
mined by inductively coupled plasma-optical emission spec-
trometry (ICP-OES) at the University of South Florida.
The analytical uncertainty (2s) is ±5% for Na, Cl, Ca, K,
SO4, Br, and F concentrations, ±10% for Sr, Li, Rb, Cs,
Fe, Mn and Al concentrations and ±2% for SiO2 and B
concentrations.

d13CCO2
and d13CCH4

values were determined at WHOI
on a subset of samples by isotope ratio monitoring-gas
chromatography mass spectrometry (irm-GC/MS) using a
Finnigan DeltaPlusXL mass spectrometer interfaced to an
Agilent 6890 gas chromatograph through a GCCIII inter-
face (combustion furnace was held at 950 �C for carbon iso-
tope analysis). The pooled standard deviation (1s) is 0.3&

for both d13CCO2
and d13CCH4

datasets. d34SH2S measure-
ments were conducted on Ag2S precipitates with an auto-
mated elemental analyzer interfaced with an isotope ratio
mass spectrometer at the USGS, Denver. SO4 in selected
fluid samples was precipitated as BaSO4 prior to d34SSO4

determination by the same method. Analytical uncertainty
for all d34S data is ±0.3& (2s). Oxygen isotope composi-
tions of vent fluid H2O (d18OH2O) were analyzed using an
automated CO2 equilibration device on a VG Optima mass
spectrometer at the USGS, Denver. Hydrogen isotope
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compositions (dDH2O) of vent fluid H2O were analyzed as
H2 on a Finnigan MAT 252 mass spectrometer at the
USGS, Denver. H2 was prepared by the Zn reduction
technique (Kendall and Coplen, 1985) following salt
removal by vacuum distillation. Analytical uncertainties
(1s) for d18OH2O and dDH2O values are estimated to be
0.1& and 1.5&, respectively.

Strontium isotope analyses (87Sr/86Sr) of fluids were
conducted on a Finnigan MAT 261 thermal ionization
mass spectrometer at the Freie Universität Berlin by static
multi-collection (for further details, see Eickmann et al.
(2009)). External reproducibility of 87Sr/86Sr data is esti-
mated to be on the order of 0.00007 (2s) based on three
individually processed aliquots of IAPSO reference seawa-
ter (87Sr/86Sr of 0.709134 ±0.000066, 2s, n = 3). Both this
and the value for ambient bottom seawater in the Manus
Basin (Table 1) are within error of the published value for
seawater (0.70916, Banner, 2004). With the exception of
87Sr/86Sr, all stable isotope data are reported using stan-
dard delta notation. For the isotope of interest, A, dA is de-
fined by the following expression:

dA ð&Þ ¼ RS � RSTD

RSTD

� �
� 1000 ð1Þ

Where RS and RSTD are the isotope ratios of the sample
and standard, respectively. d13CCO2

values are expressed
relative to the V-PDB scale, while all d34S data are and
V-CDT scales. d18OH2O and dDH2O values are both
expressed relative to V-SMOW, with d18OH2O values repre-
senting isotope activity ratios and dDH2O values represent-
ing concentration ratios as per convention (Shanks et al.,
1995; Shanks, 2001).

3.3. Calculation of endmember compositions

The fluid samplers used in this study have finite snorkel
and valve dead volumes that were filled with bottom seawa-
ter prior to deployment. Vent fluids can mix with seawater
prior to venting at the seafloor either within vent structures
or elsewhere in the subseafloor plumbing system and/or
accidentally during the sampling process. Hence, the com-
position of collected fluids invariably reflects two-compo-
nent mixing of seawater and a hydrothermal fluid
‘endmember’. The endmember is conventionally assumed
to be devoid of Mg for all practical purposes, reflecting
the composition of pure hydrothermal fluids prior to any
seawater admixing. This assumption is based on experimen-
tal evidence for near-quantitative removal of Mg from sea-
water during hydrothermal interactions with basalt,
andesite, and rhyolite at reaction zone conditions typical
of seafloor hydrothermal systems (Bischoff and Dickson,
1975; Mottl and Holland, 1978; Seyfried and Bischoff,
1981; Hajash and Chandler, 1982; Shiraki et al., 1987; Oga-
wa et al., 2005). In most cases, absolute Mg concentrations
in typical MOR vent fluids considered to be endmembers
are not resolvable from inherent sampler dead volume
contributions.

It has been suggested that the highly acidic nature of
many back-arc basin fluids may reverse Mg removal reac-
tions, thereby invalidating the assumption that a near-zero



Table 2
Summary of vent fluid compositions extrapolated to zero Mg concentration from the Vienna Woods, PACMANUS and NE Pual vent fields,
Manus Basin.

Vent Field

Area: VENT

Tmax

(�C)

Mgmin

(mm)

pHmin

(25 �C)

Na

(mm)

Cl

(mm)

Ca

(mm)

K

(mm)

SiO2

(mm)

Br

(mm)

F

(mm)

Fe

(mm)

Mn

(mm)

Li

(mm)

B

(mm)

Vienna Woods

VW1 282 1.44 4.4 513 691 80.1 21.2 15.3 1.06 0.019 0.15 0.351 1.08 0.236

VW2 273 1.02 4.2 509 690 80.9 21.2 15.0 1.06 0.021 0.17 0.365 1.16 0.246

VW3 285 1.11 4.7 504 672 70.7 20.1 14.6 1.02 0.019 0.12 0.211 1.07 0.186

PACMANUS

Roman Ruins

RMR1 314 7.26 2.3 477 632 19.8 81.7 15.7 0.947 0.135 6.52 3.97 1.13 2.07

RMR2 272 15.9 2.3 417 551 10.5 68.5 23.9 0.802 0.113 1.42 3.31 0.895 1.74

RMR3 278 6.39 2.5 541 731 25.5 96.8 20.5 1.13 0.167 7.75 4.79 1.32 2.17

RMR4 341 3.63 2.6 497 658 23.1 82.1 19.0 1.04 0.126 6.86 3.02 1.09 1.70

Roger’s Ruins

RGR1 320 4.24 2.7 488 648 27.1 81.1 18.8 1.00 0.158 4.64 2.76 0.888 1.28

RGR2 274 8.61 2.6 485 650 24.7 80.4 19.0 1.00 0.148 3.88 2.58 0.901 1.23

Satanic Mills

SM1 295 8.16 2.6 397 517 12.8 69.6 14.5 0.799 0.187 3.42 2.63 0.769 1.31

SM2 241 16.9 2.4 328 414 3.59 52.4 19.0 0.630 0.386 1.58 2.41 0.627 1.12

SM3 288 9.72 2.5 387 503 13.7 68.0 15.1 0.766 0.234 1.22 2.31 0.726 1.13

Snowcap

SC1 152 30.8 4.6 343 441 0.508 46.4 16.4 0.672 0.220 0.076 2.55 0.714 0.779

SC2 180 24.2 3.4 408 526 3.38 55.9 17.5 0.831 0.259 0.27 3.02 0.893 1.20

Tsukushi

TK1 62 44.4 5.7 505 749 23.7 81.3 22.8 1.28 0.154 0.81 3.92 1.33 �0.021

Fenway

F1 329 5.84 2.6 326 454 14.8 59.3 14.3 0.705 0.313 8.42 2.74 0.724 1.42

F2 343 4.66 2.7 486 699 26.9 94.3 15.2 1.10 0.181 14.6 4.75 1.15 1.99

F3 358 4.52 2.7 397 562 22.3 76.1 12.2 0.882 0.172 11.8 3.80 0.917 1.61

F4 284 8.69 2.5 377 523 19.1 70.5 13.3 0.829 0.177 8.26 3.62 0.839 1.50

F5 80 44.0 4.9 240 388 31.8 42.1 11.3 0.738 0.181 4.57 2.31 0.599 �0.55

NE Pual

NP1 35 49.9 6.9 205 410 84.8 29.6 22.8 0.586 0.220 2.62 4.23 0.475 �5.6

Bottom SW 3 52.4 7.9 471 540 10.5 9.9 0.13a 0.808 0.064 0.0 0.0 0.028 0.426
Mg composition exists in the subsurface (Gamo et al., 1997;
Douville et al., 1999a; Butterfield et al., 2003). As presented
below, however, hotter fluids within each Pual Ridge vent
area invariably have lower Mg concentrations, and the hot-
test fluids sampled overall have <10% of the seawater Mg
value (Table 1). These trends are consistent with two-
component mixing between seawater and a hydrothermal
endmember depleted in Mg. For the purposes of our inter-
pretations, we therefore assume that Mg in our samples is
predominantly derived from either subsurface or sam-
pling-related seawater entrainment and our endmember
compositions are arbitrarily assumed to contain zero Mg.
The possibility that some small fraction of the observed
Mg concentrations may not be seawater-derived is dis-
cussed later, but our interpretations would not change sig-
nificantly if all our endmember compositions were
calculated at the lowest Mg concentration in each vent fluid
(as proposed by Douville et al. (1999a)). While such an ap-
proach more accurately reflects compositions venting at the
seafloor, it is equally arbitrary, only minimizes the effect of
sampling-related entrainment and is therefore equivocal as
to the origin of high Mg concentrations. Because subsur-
face seawater entrainment invariably results in dilution or
concentration effects, use of endmember compositions cal-
culated at differing Mg concentrations would complicate
interpretation of species that behave conservatively during
9

this process. By consistently using zero Mg compositions,
the abundances of conservative species prior to seawater
admixing are more accurately represented. In addition,
trends in anomalous calculated endmember values with
Mg concentrations are useful in indicating where and how
subsurface seawater entrainment has modified the original
endmember compositions of non-conservative species
through associated reactions, even if calculated endmem-
bers for such species may not represent real compositions.

All endmember values referred to hereafter are calcu-
lated by extrapolating measured concentrations of individ-
ual species in multiple fluid samples from a given vent
orifice to zero Mg concentration using a linear least squares
regression weighted to pass through ambient bottom sea-
water concentrations (Tables 1 and 2, Von Damm et al.,
1985). Endmember d18OH2O and dDH2O values are calcu-
lated by extrapolation to zero Mg as per species concentra-
tions. Measured d13CCO2

values for each sample are
corrected to endmember values assuming 2.3 mmol/kg
CO2 in entrained seawater (see Cruse and Seewald, 2006).
In cases where multiple samples from a given vent orifice
were analyzed, endmember d13CCO2

, d13CCH4
and d34SH2S

values are averaged. Endmember 87Sr/86Sr ratios are calcu-
lated by extrapolating measured molar Mg/Sr ratios to zero
according to the method of Albarède et al. (1981). Where
the effects of subsurface seawater entrainment obscure com-



Sr

(lm)

Rb

(lm)

Cs

(lm)

Al

(lm)

RH2S

(mM)

H2

(lM)

CH4

(lM)

CO

(lM)

RCO2

(mm)

d13CCO2

(&)

d13CCH4

(&)

dDH2 O

(&)

d18OH2O

(&)

d34SH2S

(&)

87Sr/86Sr

242 18.3 0.291 6.6 1.4 43 66 — 4.38 �5.4 �20.7 2.4 0.56 — 0.70435

247 18.4 0.286 7.5 1.6 56 71 — 4.43 �5.2 �20.7 2.6 — —

225 17.2 0.261 7.0 1.5 44 64 — 4.48 �5.7 �20.8 1.3 0.49 — —

76.3 75.4 2.69 9.3 7.5 76 31 0.052 17.5 �3.4 �13.4 �0.42 1.2 1.4 —

48.9 61.2 2.24 7.6 4.0 41 51 0.033 26.5 �3.1 �13.3 �3.2 1.6 2.8 —

83.7 90.0 3.17 14.6 4.4 127 14 0.041 10.1 — — �4.5 1.6 2.1 —

86.9 79.2 2.44 6.3 6.8 57 23 — 10.1 �4.1 — �2.7 1.1 0.0 0.70425

112 77.4 2.15 6.5 3.6 20 32 0.006 7.31 — — �3.1 0.90 4.4 0.70429

101 78.0 2.14 6.1 2.8 49 27 — 7.04 �3.9 �12.9 �2.3 1.1 2.9 —

56.4 70.6 2.21 10.1 9.4 30 17 0.12 212 �3.1 �9.1 �2.0 0.97 �2.7 0.70374

6.68 51.6 1.78 9.2 6.8 8.7 31 0.009 160 — — �0.40 1.3 �1.3 —

65.7 69.4 2.15 6.8 10.2 8.4 33 0.039 274 �2.3 �7.4 �2.4 1.3 �0.50 0.70383

�23.4 44.0 1.65 2.2 7.0 20 85 0.079 268 �3.3 �14.4 �2.8 1.2 �1.8 —

24.9 51.1 2.10 3.9 1.9 32 66 0.084 187 �3.0 �15.2 �6.0 1.8 — 0.69768

104 75.9 2.86 n/d — 2.4 47 0.15 24.1 — — — —

95.8 61.3 2.14 8.1 20.8 27 32 0.036 68.7 �2.7 �10.2 �5.2 1.4 �0.72 —

122 94.5 3.32 8.4 10.1 104 14 0.057 25.7 �3.3 �11.1 �1.4 1.6 0.10 —

95.9 74.6 2.65 6.5 18.8 306 42 0.17 56.1 �3.0 �8.6 �1.0 1.4 �0.72 0.70394

84.2 68.7 2.51 9.6 14.0 31 46 0.044 63.6 �3.0 �8.8 �3.1 1.5 2.6 0.70364

176 53.6 1.57 6.3 17.2 18 62 — 86.4 — — — — �0.28 —

352 28.8 1.55 69 — 4.7 35 — 12.0 — — — — — —

91.0o 1.3b 0.0023 0.0 0.0 0.0 0.0 0.0 2.3 0.3c — �0.14d �0.17e — 0.70916

Table 2 (continued)

mM, mmol/L fluid; mm, mmol/kg fluid; lm, lmol/kg fluid; lM, lmol/L fluid; Tmax, max. observed temperature at vent; SW, seawater;
Mgmin, lowest Mg concentration for vent fluid; pHmin, lowest (25 �C) pH for vent fluid; “—“, not determined.
a Sarmiento and Gruber (2006).
b Spencer et al. (1970).
c Craig (1970).
d Redfield and Friedman (1965).
e Craig and Gordon (1965).
parisons of true endmember concentrations, we only dis-
cuss zero Mg endmembers calculated from fluids which
have the lowest Mg concentrations in a given vent field
on the assumption that these fluids most closely resemble
true endmembers prior to entrainment-related modifica-
tion. However, where it assists in deconvolving the effects
on endmember compositions of processes solely related to
subsurface seawater entrainment, species concentrations
calculated at the lowest Mg concentration measured for a
fluid (referred to as ‘minimum Mg’) are sometimes used
in addition to the zero Mg endmembers.

4. RESULTS

4.1. Temperature

Focused high-temperature fluids with near zero mea-
sured Mg concentrations were sampled from each of the
three main structures at Vienna Woods (Fig. 2a and
Table 1). The three fluids exhibited a narrow range of
temperatures (273–285 �C) and endmember compositions
(Tables 1 and 2) despite being located 100–150 m apart,
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suggesting that the Vienna Woods field is fed by a common
source fluid. Though pH (25 �C) and endmember fluid com-
positions have remained relatively constant since previous
expeditions, slightly hotter maximum temperatures (302
and 292 �C) were measured in 1995 and 2000, respectively
(Lisitsyn et al., 1993; Auzende et al., 1996; Gamo et al.,
1997; Douville et al., 1999a; Fourre et al., 2006). In general,
almost all aspects of the chemistry of fluids venting at Vien-
na Woods are similar to observations from basalt-hosted
hydrothermal systems in MOR settings (Von Damm,
1995; German and Von Damm, 2003).

At Pual Ridge, focused fluids were sampled from 17 dis-
crete orifices at PACMANUS (Fig. 2b and 2c) and one dif-
fusely venting structure at NE Pual (Fig. 1b). Vent fluids
sampled at Pual Ridge in 2006 show a wider range of tem-
peratures than were observed at Vienna Woods (Tables 1
and 2). The hottest fluids were observed at the summit of
the Fenway mound, where samples taken at F2 and F3
vents had maximum temperatures of 343 and 358 �C,
respectively (Table 1). Fluids at F3 vent exhibited a ‘flash-
ing’ phenomenon whereby exiting fluid was highly reflective
under ROV lighting, but changed to smoke-like precipitate



a few cm above the vent orifice. The phenomenon can be
attributed to vigorous 2-phase fluid venting (Massoth
et al., 1989; Hannington et al., 2001; Stoffers et al., 2006).
At a depth of 1710 m (�171 bar pressure) the fluid at F3 lies
on the 2-phase boundary for a 3.2 wt% NaCl solution
(Bischoff and Rosenbauer, 1985), consistent with subcritical
boiling (Fig. 3). Measured temperatures at other vent areas
on Pual Ridge were considerably lower than this, ranging
from 35 to 343 �C.

4.2. Mg and SO4

For most IGT samples taken at Vienna Woods, Mg con-
centrations are less than 1.6 mmol/kg (the estimated maxi-
mum contribution of ‘dead volume’ seawater Mg for the
sampler type (<4 mL, Seewald et al., 2002)) and are there-
fore consistent with venting of near zero Mg fluids at the
seafloor. Measured Mg concentrations from all IGT sam-
ples collected at Pual Ridge (3.63–50.6 mmol/kg), however,
are greater than the dead volume contribution (Table 1),
suggesting entrainment of seawater. Many fluids sampled
with both IGT and ‘major’ samplers have three near-iden-
tical measured Mg concentrations for different sampler
types (RMR1, SM3, SC2, TK1, F2 and NP1 in Table 1).
Sample sets from other vent fluids have two similar Mg val-
ues with a third (often suspected of accidental seawater
entrainment during sampling) having much higher Mg
(RMR2, RGR2, SC1, F1, F3, F4 and F5). It is unlikely that
such consistently high Mg concentrations in repeat samples
of a given vent fluid (with different sampler types) could be
the result of accidental entrainment of near-identical
amounts of seawater during each sampling event. There-
fore, these observations indicate that most, it not all, fluids
exiting at the seafloor at Pual Ridge contain high concen-
trations of Mg relative to Vienna Woods fluids where Mg
is near zero. Fluid samples taken at PACMANUS in
1995 also contained high Mg concentrations (Gamo et al.,
1996a; Douville et al., 1999a; Fourre et al., 2006) and do
not suggest the presence of a near zero Mg fluid venting
at the seafloor at that time either. The hottest fluids in
any given vent area at Pual Ridge invariably have the low-
est Mg concentrations and samples containing less than
10% of seawater Mg were taken from vents with tempera-
tures greater than 300 �C (Table 1).

For all Vienna Woods samples, both measured Mg and
SO4 concentrations decrease linearly to near zero (Fig. 4).
In contrast, SO4 abundances in Pual Ridge vent fluids devi-
ate from this behavior toward both positive and negative
apparent endmember SO4 concentrations. d34SSO4

values
for all Pual Ridge fluids (Table 1) lie within a narrow range
(+20.1& to +21.8&) indicative of seawater-derived SO4

(+20.99&, Rees et al., 1978). As all SO4 is likely seawa-
ter-derived, endmember SO4 concentrations are not explic-
itly calculated. Combined with high measured Mg
concentrations, the predominance of seawater SO4 suggests
that many, if not all, fluids venting as focused flow at the
seafloor at Pual Ridge entrained seawater prior to exiting.
Low temperature fluids at Fenway (F5, 80 �C) and NE Pual
(NP1, 35 �C) have SO4 concentrations that are similar to or
slightly greater than ambient seawater, but Mg concentra-
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tions that are lower (Table 1 and Fig. 4). Samples from
both fluids therefore display positive deviations from the
trends observed at Vienna Woods and Pual Ridge.

4.3. pH

Endmember pH values were not calculated because of the
numerous reactions that modify pH during subsurface and/
or sampling-related seawater entrainment. The pH’s
(measured at 25 �C) in low Mg (<5 mmol/kg) samples from
Vienna Woods are mildly acidic (4.2–4.9) and are within
the range of values previously measured in 1995 and 2000
(Gamo et al., 1997; Fourre et al., 2006). In contrast, the pH
of all PACMANUS fluid samples ranges from 2.3 to 5.9
(Table 1) and all high temperature (>250 �C) samples
(excluding those suspected of entrainment during sampling)
fall within a narrow range of 2.3–3.0. This range overlaps
the lowest pH measured at PACMANUS in 1995 (2.63 for
a 268 �C fluid, Fourre et al., 2006) and is comparable to val-
ues previously reported for other arc/back-arc hydrothermal
systems (Fouquet et al., 1991a, 1993; Gamo et al., 1997;
Nakagawa et al., 2006; Takai et al., 2008). The low tempera-
ture NE Pual fluid (NP1) had relatively high pH (6.9).

4.4. H2, H2S, CH4, CO and CO2

In general, endmember concentrations of H2, H2S, CH4

and CO2 in Vienna Woods fluids are uniform and relatively
low compared to the known range of MOR fluid composi-
tions (Von Damm, 1995; German and Von Damm, 2003).
At Pual Ridge, however, significant variability is evident
in endmember H2, H2S, CH4 and CO2 both between vent
areas and within each area (Table 2). With the exception
of the high value at F3 vent (306 lM), all endmember H2

concentrations are below 104 lM. Endmember H2 is gener-
ally lower in fluids with lower measured exit temperatures
(such as the Satanic Mills, Snowcap, and F5 fluids) and
lower endmember Cl (Table 2 and Fig. 5a). Endmember
H2S ranges from 1.9 mM at Snowcap to 20.8 mM at Fen-
way and is highest in fluids with lower endmember Cl
(Fig. 5b). d34SH2S values at PACMANUS are highly vari-
able, with positive values (0.0 to +4.4&) at Roman and
Roger’s Ruins but lower values (�2.7& to +2.6&) at
Satanic Mills, Snowcap and Fenway. These lower values
are below the published range for unsedimented hydrother-
mal systems (+1.4& to +8.6&, Shanks, 2001).

Endmember CO2 values range from 4.38 to 4.48 mmol/
kg at Vienna Woods and are comparable to the previously
reported value for the site (6 mM, Ishibashi et al., 1996).
d13CCO2

values range from �5.2& to �5.7& and are within
the range of basaltic CO2 d13C values reported near Vienna
Woods (�4.3& to �11.3&, Shaw et al., 2004). With the
exception of NE Pual, all fluids at Pual Ridge have substan-
tially higher endmember CO2 concentrations, ranging from
7.04 mmol/kg at Roger’s Ruins to 274 mmol/kg at Satanic
Mills (Table 2). Ishibashi et al. (1996) previously reported
values of 20–40 mM for the PACMANUS area but these
data are likely minimum estimates because the samples
were not acquired with gas-tight samplers. The higher
CO2 concentrations found in the lower Cl fluids at Snowcap
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Fig. 3. Plot of vent pressures and maximum temperatures (Tmax)
for all moderate- to high-temperature fluids sampled at Vienna
Woods (one symbol, VW1-3) and PACMANUS. The black line
represents the two-phase boundary for a 3.2 wt% NaCl solution
(from Bischoff and Rosenbauer, 1985). Cl contents were highly
variable (517–589 mmol/kg) between samples with similar Mg at
F3 vent due to the vigorously boiling nature of the fluid. However,
using the endmember Cl value (562 mmol/kg), the fluid approxi-
mates a �3.3 wt% NaCl equivalent solution.
and Satanic Mills (Fig. 5c and Table 2) are among the high-
est reported to date for vent fluids (Karl et al., 1988; Butter-
field et al., 1990; Sakai et al., 1990a,b; Von Damm, 1995;
German and Von Damm, 2003; Lupton et al., 2006) and
are comparable to those observed in black smoker fluids
at the back-arc JADE site, Okinawa Trough (Sakai et al.,
1990b). In addition to the higher concentrations relative
to Vienna Woods, CO2 is more 13C-enriched at PACM-
ANUS compared to Vienna Woods and MORB values,
Fig. 4. Measured Mg vs. measured SO4 concentrations for all vent fluid
fields. BSW is bottom seawater (denoted by star).
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with endmember d13CCO2
values varying from �4.1& to

�2.3& (Table 2).
Endmember CH4 concentrations at Vienna Woods and

Pual Ridge are at the lower end of known compositions
from MOR systems (German and Von Damm, 2003) but
are highly variable at PACMANUS, ranging from 14 lM
to a maximum of 85 lM. Higher endmember CH4 concen-
trations there are also associated with lower Cl contents
(Fig. 5d). d13CCH4

values (Table 2) at Pual Ridge (�7.4&

to �15.2&) are higher than Vienna Woods (�20.7& to
�20.8&), but values from both areas overlap the range ob-
served for other unsedimented MOR hydrothermal fluids
(�8.0& to �20.8&, McCollom and Seewald, 2007). CO
concentrations are also variable at PACMANUS (highest
endmember (0.15 lM) at F3 vent) but CO was not detected
in Vienna Woods fluids (Table 2).

4.5. Cl, Br and F

While endmember Cl concentrations are uniformly
25–30% higher than ambient seawater at Vienna Woods,
much greater variability is evident at Pual Ridge (Table 2).
Fluids at Roger’s and Roman Ruins are all enriched in Cl
relative to seawater, with endmember concentrations of
551–731 mmol/kg, whereas the other vent areas are both
enriched and depleted relative to seawater, reaching a min-
imum value of 388 mmol/kg (Table 2). Endmember Br and
Cl values at both Vienna Woods and Pual Ridge correlate
well with each other and the majority of fluids have Br/Cl
ratios close to that of ambient seawater (1.5, Table 3). In
contrast to Vienna Woods fluids, which are uniformly de-
pleted in fluoride(F), all Pual Ridge fluids are variably en-
riched relative to seawater (Table 2). Endmember F
values at PACMANUS (up to 0.386 mmol/kg) are the high-
est reported to date for seafloor hydrothermal systems (Von
Damm, 1995; German and Von Damm, 2003). Fluids with
higher endmember F at Pual Ridge also have higher
samples from the Vienna Woods, PACMANUS and NE Pual vent
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Fig. 5. Endmember Cl concentrations vs. endmember (a) H2, (b) H2S, (c) RCO2 and (d) CH4 concentrations for all PACMANUS, NE Pual
and Vienna Woods fluids. Dashed, dot-dashed, dotted and solid lines are drawn between closely co-located vents at Fenway, Roman Ruins,
Snowcap and Roger’s Ruins (cf. Fig. 2). BSW, bottom seawater.
endmember CO2, with the highest concentrations of both at
Snowcap, Satanic Mills and Fenway (Fig. 6).

4.6. d18OH2O and dDH2O

All vent waters at Vienna Woods have positive endmem-
ber dDH2O and d18OH2O values (Table 2), resembling obser-
vations from MOR hydrothermal systems (Shanks et al.,
1995; Shanks, 2001). In contrast, though all PACMANUS
fluids have endmember d18OH2O values greater than those of
Vienna Woods, the majority of dDH2O values there are sub-
stantially lower than seawater and among the most negative
found to date in seafloor hydrothermal fluids (de Ronde,
1995; Shanks et al., 1995; Gamo et al., 1997; Shanks, 2001).

4.7. Alkalis, alkaline earths and B

Because Na and other ionic species tend to co-vary with
Cl due to charge balance constraints, concentrations are
typically normalized to Cl to eliminate this variability
(Von Damm, 1995). All fluids from both Pual Ridge and
Vienna Woods have lower endmember Na/Cl ratios than
13
seawater (0.87), ranging from 0.50–0.79 at Pual Ridge
and 0.74–0.75 at Vienna Woods (Table 3).

Both absolute and Cl-normalized endmember K, Rb
and Cs concentrations are much higher in Pual Ridge fluids
relative to Vienna Woods (Tables 2 and 3), consistent with
the higher abundances of these elements in EMVZ crustal
rock relative to the MSC (Sinton et al., 2003). The maxi-
mum endmember K concentration at Pual Ridge
(96.8 mmol/kg, vs. 21.2 mmol/kg at Vienna Woods) is one
the highest reported to date and consistent with previously
reported endmember values at PACMANUS (80–90 mmol/
kg, Gamo et al., 1996a). Pual Ridge fluids have a broader
range of endmember Li concentrations (0.475–1.33 mmol/
kg) than Vienna Woods (1.07–1.16 mmol/kg) but endmem-
ber Li/Cl ratios from both areas overlap (Table 3).

With the exception of NE Pual, which has an endmem-
ber Ca concentration of 84.8 mmol/kg, Pual Ridge fluids
have much lower Ca contents (0.508–31.8 mmol/kg) com-
pared to Vienna Woods (70.7–80.9 mmol/kg) and this is
also apparent on a Cl-normalized basis (Table 3). This dis-
parity was evident in the compositions of samples taken in
1995, where endmembers of �18 and �80 mmol/kg were
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Table 3
Selected elemental ratios at zero Mg concentration from the Vienna Woods, PACMANUS and NE Pual vent fields, Manus Basin.

Vent field

Area: Vent

Tmax

(�C)

Mgmin

(mm)

pHmin

(25 �C)

Na/Cl Ca/Cl K/Cl Sr/Cl

(�10�3)

Li/Cl

(�10�3)

Rb/Cl

(�10�3)

Cs/Cl

(�10�6)

Br/Cl

(�10�3)

B/Cl

(�10�3)

Fe/Cl

(�10�3)

Mn/Cl

(�10�3)

Fe/Mn

Vienna Woods

VW1 282 1.44 4.4 0.74 0.12 0.031 0.35 1.6 0.026 0.42 1.5 0.34 0.22 0.51 0.44

VW2 273 1.02 4.2 0.74 0.12 0.031 0.36 1.7 0.027 0.41 1.5 0.36 0.24 0.53 0.45

VW3 285 1.11 4.7 0.75 0.11 0.030 0.33 1.6 0.026 0.39 1.5 0.28 0.19 0.31 0.59

PACMANUS

Roman Ruins

RMR1 314 7.26 2.3 0.75 0.031 0.13 0.12 1.8 0.12 4.3 1.5 3.3 10 6.3 1.6

RMR2 272 15.9 2.3 0.76 0.019 0.12 0.089 1.6 0.11 4.1 1.5 3.2 2.6 6.0 0.43

RMR3 278 6.39 2.5 0.74 0.035 0.13 0.11 1.8 0.12 4.3 1.5 3.0 11 6.5 1.6

RMR4 341 3.63 2.6 0.76 0.035 0.12 0.13 1.7 0.12 3.7 1.6 2.6 10 4.6 2.3

Roger’s Ruins

RGR1 320 4.24 2.7 0.75 0.042 0.13 0.17 1.4 0.12 3.3 1.5 2.0 7.2 4.3 1.7

RGR2 274 8.61 2.6 0.75 0.038 0.12 0.15 1.4 0.12 3.3 1.5 1.9 6.0 4.0 1.505

Satanic Mills

SM1 295 8.16 2.6 0.77 0.025 0.13 0.11 1.5 0.14 4.3 1.5 2.5 6.6 5.1 1.3

SM2 241 16.9 2.4 0.79 0.0087 0.13 0.016 1.5 0.12 4.3 1.5 2.7 3.8 5.8 0.66

SM3 288 9.72 2.5 0.77 0.027 0.14 0.13 1.4 0.14 4.3 1.5 2.2 2.4 4.6 0.53

Snowcap

SC1 152 30.8 4.6 0.78 0.0012 0.11 �0.053 1.6 0.10 3.7 1.5 1.8 0.17 5.8 0.030

SC2 180 24.2 3.4 0.78 0.0064 0.11 0.047 1.7 0.097 4.0 1.6 2.3 0.52 5.7 0.091

Tsukushi

TK1 62 44.4 5.7 0.67 0.032 0.11 0.14 1.8 0.10 3.8 1.7 �0.028 1.1 5.2 0.21

Fenway

F1 329 5.84 2.6 0.72 0.032 0.13 0.21 1.6 0.13 4.7 1.6 3.1 19 6.0 3.1

F2 343 4.66 2.7 0.69 0.039 0.13 0.17 1.6 0.14 4.8 1.6 2.8 21 6.8 3.1

F3 358 4.52 2.7 0.71 0.040 0.14 0.17 1.6 0.13 4.7 1.6 2.9 21 6.8 3.1

F4 284 8.69 2.5 0.72 0.037 0.13 0.16 1.6 0.13 4.8 1.6 2.9 16 6.9 2.3

F5 80 44.0 4.9 0.62 0.082 0.11 0.45 1.5 0.14 4.0 1.9 �1.4 12 6.0 2.0

NE Pual

NP1 35 49.9 6.9 0.50 0.21 0.072 0.86 1.2 0.070 3.8 1.4 �14 6.4 10 0.62

Bottom SW 3 52.4 7.9 0.87 0.019 0.018 0.17 0.052 0.0024 0.0043 1.5 0.79 <0.001 <0.001 —

All ratios are on a molar basis. Tmax, max. observed temperature at vent; SW, seawater; Mgmin, lowest Mg concentration for vent fluid; pHmin,
lowest (25 �C) pH for vent fluid.
reported for PACMANUS and Vienna Woods, respec-
tively (Gamo et al., 1996a). There is substantial inter- and
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intra-field variability at PACMANUS with some fluids
even having lower endmember Ca/Cl ratios than seawater
(Table 3). The highest endmember Ca concentrations and
Ca/Cl ratios at Pual Ridge are from the low temperature
F5 and NP1 fluids (Tables 2 and 3).

Endmember Sr concentrations are also much lower at
PACMANUS compared to Vienna Woods (Tables 2 and
3), with NE Pual having anomalously high Sr. Sr exhibits
similar variability to Ca in Pual Ridge fluids and the ele-
ments tend to co-vary on a Cl-normalized basis (Table 3).
At Snowcap, measured Sr values extrapolate to an apparent
negative endmember of �23.4 lmol/kg. This indicates sub-
stantial non-conservative behavior as Sr concentrations are
depleted below that expected for mixing of a fluid devoid of
Sr and Sr-replete seawater. As with Ca, the highest end-
member Sr concentrations and Sr/Cl ratios at Pual Ridge
are also at F5 and NP1 vents (Tables 2 and 3). Endmember
87Sr/86Sr ratios for PACMANUS fluids (Table 2 and Fig. 7)
range from 0.69768 to 0.70429 and are lower than the Vien-
na Woods endmember (0.70435). A calculated endmember
ratio of 0.69768 is below that possible for terrestrial mate-
rials (Banner, 2004), and therefore cannot reflect an existing
composition. This is likely due to modification of the Mg/Sr
ratio by the Sr loss noted above.
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Fig. 7. Measured 87Sr/86Sr ratios vs. measured Mg/Sr ratios for
select Vienna Woods and PACMANUS fluids. Lines of extrapo-
lation from bottom seawater (BSW) to zero Mg/Sr endmember
ratios are shown (Albarède et al., 1981). The range of 87Sr/86Sr
ratios for Pual Ridge/EMVZ lavas (0.703446–0.703690, Kamenet-
sky et al., 2001; Marty et al., 2001) are shown by arrows, with
Manus Spreading Center (MSC) basalt (0.703275, Sinton et al.,
2003) lying just below this range. The SC1 vent fluid extrapolates to
a ratio below that possible for modern terrestrial materials
(Banner, 2004)—an artifact of the high measured Mg/Sr ratio. Sr
loss due to co-precipitation in anhydrite is non-fractionating
(Michard et al., 1984), and would increase measured Mg/Sr
without changing measured 87Sr/86Sr ratios.
As shown in Tables 2 and 3, B is uniformly depleted rela-
tive to seawater (0.426 mmol/kg) in Vienna Woods fluids but
highly enriched in high temperature fluids at Pual Ridge (up
to 2.17 mmol/kg). These upper values are high relative to
MOR hydrothermal fluids (German and Von Damm,
2003), but within the range observed in other back-arc vent
fluids (Ishibashi and Urabe, 1995). All low temperature fluids
at Pual Ridge (F5, TK1 and NP1) are depleted in B below the
level expected for conservative mixing of a fluid devoid of B
with B-replete seawater. These compositions therefore yield
apparent negative endmember B concentrations, which, like
Sr, indicates substantial removal of B prior to venting
(Table 2).

4.8. Fe, Mn, Al and SiO2

Vienna Woods fluids were either clear or gray in color in
2006, which is consistent with the uniformly low endmem-
ber Fe (0.12–0.17 mmol/kg, Table 2). Endmember Fe con-
tents of Pual Ridge vent fluids are generally much higher
and range from 0.076 mmol/kg at Snowcap to 14.6 mmol/
kg at Fenway. This upper value is high compared to most
MOR vent fluids to date (Butterfield and Massoth, 1994;
Von Damm, 1995; Charlou et al., 2002; Gallant and Von
Damm, 2006). Fluids with the highest endmember Fe con-
tents (F2 and F3 at Fenway) also have the highest measured
temperatures but Cl values <30% higher than seawater (Ta-
bles 1 and 2). There is also substantial variability between
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and within vent areas at Pual Ridge, with higher Mg fluids
typically yielding lower endmember Fe values on a Cl-nor-
malized basis (Table 3).

All Pual Ridge fluids are greatly enriched in Mn relative
to Vienna Woods (Table 2), with endmembers ranging from
2.3 to 4.8 mmol/kg. Similar to Fe, such Mn values are also
among the highest reported for vent fluids to date and sim-
ilar to values reported in other back-arc systems (Ishibashi
and Urabe, 1995; Von Damm, 1995; German and Von
Damm, 2003; Takai et al., 2008). In contrast to Fe, how-
ever, there is less variability in Mn between vent areas or
within them. While endmember Al contents at Vienna
Woods are relatively uniform (6.6–7.5 lmol/kg), there is a
much greater range in high temperature Pual Ridge fluids
(2.2–14.6 lmol/kg). Samples from NP1 had similar Al
enrichments to hotter Pual Ridge fluids and yielded an end-
member concentration of 69 lmol/kg. Endmember SiO2

concentrations are also variable at Pual Ridge (11.3–
23.9 mmol/kg) compared to Vienna Woods (14.6–
15.3 mmol/kg), (Table 2). Previous samples taken at Vienna
Woods and PACMANUS in 1995 indicated endmember
values of �15 mM and �16 mM, respectively (Gamo
et al., 1996a).

5. DISCUSSION

Models that describe convective hydrothermal systems
driven by magmatic heat sources share several basic fea-
tures and processes regardless of host rock (substrate) com-
position and tectonic setting. Seawater is typically assumed
to enter the crust via a diffuse and poorly constrained ‘re-
charge’ zone and is subsequently heated to progressively
higher temperatures. The hottest part of the hydrothermal
flow path – the ‘reaction’ or ‘root’ zone – is most likely
adjacent to or above the magmatic intrusion. When buoy-
ancy forces are sufficient to expel high temperature fluids
from the hydrothermal reservoir, fluids rise toward the sea-
floor through a ‘discharge’ or ‘upflow’ zone (Alt and Bach,
2003). Processes that can modify the composition of black
smoker fluids during transit through such systems include
water–rock (and/or sediment) interaction, phase separa-
tion, input of magmatic volatile species, conductive cooling
and subsurface mixing with seawater within the crustal
aquifer (Alt, 1995; Von Damm, 1995; German and Von
Damm, 2003).

Given the similarity of hydrothermal interactions be-
tween seawater and basalt, andesite and rhyolite under
experimental conditions (Bischoff and Dickson, 1975; Mottl
and Holland, 1978; Seyfried and Bischoff, 1981; Hajash and
Chandler, 1982; Shiraki et al., 1987; Ogawa et al., 2005),
processes of Mg fixation and anhydrite precipitation are ex-
pected to control Mg, Ca and SO4 abundance during re-
charge of seawater into the crust at both the Pual Ridge
and Vienna Woods vent fields. Similarly, the abundances
of major elements (Na, Ca) are expected to be buffered by
fluid–mineral equilibria under reaction zone conditions, al-
beit at potentially different abundances depending on the
mineral compositions involved (Seyfried, 1987; Butterfield
et al., 2003). In addition, phase separation should influence
the abundances of elements if P–T conditions within the



Fig. 8. Cartoon illustrating the formation and evolution of a
hypothetical �360 �C source fluid (similar to Fenway) at PACM-
ANUS. Dashed black lines indicate solely seawater-derived fluids,
solid gray lines denote magmatic fluid phases and solid black lines
denote mixtures of both that rise to eventually exit on the seafloor
as either focused or diffuse/low temperature venting. Cold seawater
enters the crust via recharge zones and with progressive heating
first undergoes low temperature (T) water/rock (w/r) reactions
(denoted as (a)) such as fixation of Mg, alkalis and B, and
anhydrite precipitation (Alt, 1995). Near the reaction or root zone
of the hydrothermal reservoir, high temperature reactions (denoted
as (b)) such as albitization, mobilization of alkalis, Fe and Mn, and
modification of fluid dDH2O and d18OH2O values, occur regardless of
the presence or absence of magmatic inputs. Input, mixing and
reaction of an acidic magmatic fluid phase (c) likely occurs nearest
the magma intrusion and is accompanied by subsequent high
temperature reactions of the mixed fluid with the host rock (e.g.
deposition of magma-derived SO4 as anhydrite, titration of acidity
and further metal mobilization). Phase separation (d) and partial/
complete segregation of resulting high and low chlorinity phases
either occurs by decompression during upflow, or anywhere else
that the 2-phase boundary is intercepted within the hydrothermal
reservoir. During upflow, the resulting 360 �C source fluid mixes
with crustal seawater and is cooled to yield a lower temperature
focused fluid. Reactions occurring during mixing (e) include
deposition of admixed seawater SO4 as anhydrite (or in fluids
below �150 �C, dissolution of previously formed anhydrite depos-
its) and generation of secondary acidity by Fe sulfide deposition. In
the case of diffuse/low temperature fluids, additional low temper-
ature water/rock reactions, such as B fixation, may also occur prior
to venting at the seafloor.
hydrothermal reservoir reach the 2-phase boundary. Degas-
sing of volatiles from a magma body and subsequent
entrainment by circulating fluids most likely occurs near
the reaction zone in close proximity to the magma. Because
of the weak acid nature of MORB-derived volatiles (pre-
dominantly CO2), this process does not significantly alter
the acidity of high temperature fluids in typical mid-ocean
ridge (MOR) systems (Butterfield et al., 2003). However,
felsic-hosted magmatic–hydrothermal systems are likely to
differ substantially in this respect because degassed volatile
phases containing SO2 and HCl can be far more acidic
(Yang and Scott, 2006). Significant modification of high
temperature fluids by subsurface seawater entrainment
and mixing has been recognized in MOR sites, such as
the TAG hydrothermal mound on the Mid-Atlantic Ridge
(Edmond et al., 1995; Tivey et al., 1995; Gamo et al.,
1996c), North Cleft on the Juan de Fuca Ridge (Butterfield
and Massoth, 1994) and Kairei Field, Central Indian Ridge
(Gallant and Von Damm, 2006) and depends on the hydro-
logic regime in the ‘upflow’ zone.

In the following discussion we present evidence for the
above processes in Manus Basin hydrothermal fluids. Fur-
thermore, we show that the compositions of fluids at Pual
Ridge have a highly complex evolution involving most, if
not all, of these processes occurring either sequentially or
simultaneously. To illustrate this complexity, Fig. 8 shows
the proposed evolution of a hypothetical �360 �C source
fluid similar to that at the Fenway area of the PACM-
ANUS vent field.

5.1. Influence of water/rock reaction and substrate

composition on fluid compositions

5.1.1. Fluid–mineral equilibria

Ca and Na, whose concentrations are controlled by tem-
perature and pressure dependant equilibrium reactions
involving plagioclase minerals (Berndt et al., 1989; Berndt
and Seyfried, 1993), exhibit similar trends in Manus Basin
fluids to MOR hydrothermal systems. While few experi-
mental studies have examined felsic rock-seawater interac-
tions under hydrothermal conditions, early experimental
work has demonstrated that seawater interactions with
more silicic rock compositions (rhyolite and andesite)
broadly resemble those with basalt for many of these ‘solu-
bility-controlled’ species (Hajash and Chandler, 1982;
Shiraki et al., 1987). Endmember Na/Cl ratios from Pual
Ridge fluids overlap those at Vienna Woods and all are
lower than the seawater ratio, consistent with the removal
of Na during albitization (Table 3). Though absolute Ca
abundances in fluids from Pual Ridge have been variably
modified by subsurface anhydrite deposition or dissolution
(see below), endmember Ca/Cl ratios calculated from fluids
with low Mg (<5 mmol/kg, Table 2) are greater than seawa-
ter, which is consistent with Ca addition from the destruc-
tion of anorthite. Endmember Ca/Cl and Na/Cl ratios at
Pual Ridge are within the range generally observed in
unsedimented hydrothermal systems in MOR settings (Gal-
lant and Von Damm, 2006), suggesting that the composi-
tional differences between the host rock at Pual Ridge
and MORB do not influence these elements substantially.
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In addition to Ca and Na, Sr abundance in hydrother-
mal fluids is also considered to be solubility-controlled
(Berndt et al., 1988; Von Damm, 1988) and fluid composi-
tions from the Manus Basin support control of dissolved Sr



abundance by reactions involving plagioclase minerals. De-
spite higher crustal abundances of Sr in crustal rocks of the
EMVZ (Sinton et al., 2003), endmember Sr/Cl ratios (calcu-
lated from fluids with lowest Mg) at Pual Ridge are lower
than corresponding ratios at Vienna Woods. However, like
Ca/Cl and Na/Cl, endmember Sr/Cl and Sr/Ca ratios at
Vienna Woods and in low Mg fluids at Pual Ridge are with-
in the known range of MOR hydrothermal systems (Berndt
et al., 1988; Gallant and Von Damm, 2006). As stated be-
low, the variability in endmember 87Sr/86Sr ratios at
PACMANUS (Fig. 7) is an artifact of the effect of Sr loss
during seawater entrainment on the Mg/Sr extrapolation
method (see below). However, endmember ratios at Vienna
Woods (0.70435) and in low Mg fluids at PACMANUS
(0.70394–0.70428) are consistent with a predominantly
rock-derived source of Sr. Crustal 87Sr/86Sr ratios from
Pual Ridge and surrounding areas fall in a narrow range
of 0.703446–0.703690, while MSC basalts have a ratio of
0.703275 (Kamenetsky et al., 2001; Marty et al., 2001; Sin-
ton et al., 2003). A possible explanation for the slightly
higher 87Sr/86Sr ratios in fluids least affected by extrapola-
tion/entrainment artifacts is that the Sr represents a mixture
of seawater- and rock-derived Sr. Berndt et al. (1988) pro-
posed a fluid reaction path model to explain the relation-
ship between Sr abundance and 87Sr/86Sr ratios in MOR
vent fluids whereby incomplete seawater Sr removal occurs
during recharge (by anhydrite deposition), followed by sub-
sequent addition of rock-derived Sr by dissolution of Ca-
and Sr-bearing primary plagioclase minerals in high tem-
perature reaction zones. Precipitation during recharge
would remove Sr without changing its isotopic composition
while subsequent addition of rock Sr from plagioclase dis-
solution would give rise to decreased 87Sr/86Sr ratios and
increased Sr concentrations in endmember fluids.

Despite the high temperature of some fluids at PACM-
ANUS (e.g. 358 �C at F3), none of the sampled fluids are
devoid of Mg as is typical at Vienna Woods and other
MOR hydrothermal fluids. While we argue below (Sec-
tion 5.4) that the majority of Mg in Pual Ridge fluids is
added as a result of subsurface/sampling-related seawater
entrainment, there may be a relatively minor component
that reflects the true Mg composition of the endmember
fluid. This is best exemplified by the hottest fluid (F3 vent)
at Pual Ridge. Two of the three samples from F3 have con-
sistent measured Mg (4.52 and 4.74 mmol/kg, Table 1) and
temperatures (358 and 356 �C, respectively). It is unlikely
that these concentrations reflect entrainment of identical
amounts of seawater during sampling, and they are greater
than can be attributed to the dead volume of the IGT sam-
plers (which accounts for <1.6 mmol/kg Mg in any given
IGT sample). This implies a Mg content of �3 mmol/kg
as the F3 fluid exited the seafloor at a temperature that
places it on the boiling curve at seafloor pressure. It is
unreasonable to conclude that this Mg could be derived
from seawater mixing prior to venting as the required
�5% mix of seawater would cool the fluid by �20 �C below
the two-phase boundary. The possibility exists that admix-
ing of small amounts of a hotter seawater-like fluid oc-
curred deep in the system and boiling occurred in
response to decompression during upflow, but it is hard
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to envision a scenario whereby Mg-replete seawater persists
in the deep-seated reaction zone of such a hot and active
system. An alternative explanation to account for this
small, but significant concentration of Mg, is that it reflects
the enhanced solubility of Mg-aluminosilicates at the
exceedingly low pH of this fluid (2.7). Indeed, the solubility
of Mg in hydrothermal systems in general, can be repre-
sented by the reaction:

Mg2þ þ 4=3SiO2ðaqÞ þ 4=3H2O

¼ 1=3Mg3Si4O10ðOHÞ2 þ 2Hþ ð2Þ

where talc (Mg3Si4O10(OH)2) is used to represent more
compositionally complex phases (Seyfried, 1987). The stoi-
chiometry of this reaction indicates that at equilibrium the
activity of Mg2+ will vary inversely with the square of H+

activity. Accordingly, because vent fluids at PACMANUS
are characterized by pH values within a range of 2–3 while
pH typically varies from 3 to 4 in MOR systems (Von
Damm, 1995; German and Von Damm, 2003), Mg activi-
ties at Pual Ridge according to Eq. (2) or similar reactions
may be 2–4 orders of magnitude higher at a given temper-
ature, pressure and silica activity (Seyfried, 1987). As such,
they may approach the same order of magnitude as Mg
contributions from sampler dead volume. Given the com-
plex nature of Mg phases that may control Mg solubility
(Seyfried, 1987) and limited thermodynamic data for these
phases, however, further speculation is difficult. The obser-
vation of abundant chlorite phases throughout ODP cores
taken at both Snowcap and Roman Ruins (Lackschewitz
et al., 2004) suggests this group likely controls Mg solubil-
ity. Fixation of Mg into chlorite phases is thought to occur
above �200 �C (Alt, 1995). Regardless of what the exact
Mg content of pure endmember fluids is at Pual Ridge,
the low Mg concentrations measured at vents like F3 sug-
gest it is sufficiently close to the sampler dead volume con-
tribution that the calculation of endmember compositions
at the conventional zero Mg level is still justifiable.
5.1.2. Alkalis and B

The influence of compositional differences in host rocks
between the MSC and EMVZ is most apparent in the abun-
dances of elements that are considered highly ‘mobile’ dur-
ing fluid–rock interactions. Field and laboratory data
indicate that alkali elements are almost quantitatively par-
titioned into the fluid phase during high temperature
fluid–rock interaction with basalt and more silicic rock
compositions (Seyfried et al., 1984; Von Damm et al.,
1985; Von Damm, 1990; Ogawa et al., 2005). Endmember
abundances of the alkalis K, Rb and Cs are highly elevated
in Pual Ridge fluids relative to Vienna Woods (Tables 2 and
3) and basalt-hosted MOR systems (German and Von
Damm, 2003). This is entirely consistent with the greater
abundances of these incompatible elements in arc-like
EMVZ crust relative to the more mafic crust of the MSC
(Kamenetsky et al., 2001; Sinton et al., 2003; Paulick
et al., 2004; Monecke et al., 2007). In contrast to the other
mobile alkalis, large differences in endmember Li concen-
trations are not evident between Vienna Woods and Pual
Ridge fluids (Table 2). However, limited data suggest that
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Fig. 9. Endmember K (a), Li (b) and Cs (c) concentrations vs.
endmember Rb concentration for Vienna Woods, PACMANUS
and NE Pual fluids. Light gray triangles refer to ranges of alkali/
Rb ratios found in Manus Spreading Center (MSC) lavas (basalts
and basaltic andesites), (Sinton et al., 2003). Dark gray triangles
represent corresponding ranges for EMVZ (Sinton et al., 2003) and
Pual Ridge (Kamenetsky et al., 2001) lavas.
Li content of EMVZ crust (�5–7 ppm) does not differ from
that of the MSC basalt (�5–8 ppm) to the same extent as K,
Rb and Cs (Sinton et al., 2003). In addition to differences in
absolute abundances, endmember molar ratios of alkalis in
Pual Ridge and Vienna Woods fluids are in reasonable
agreement with the alkali ratios of the host rock composi-
tions at each location (Fig. 9). B is also greatly enriched
in most Pual Ridge fluids relative to Vienna Woods, consis-
tent with greater B enrichment in more silicic rock compo-
sitions and the increased influence of recycled slab material
as the arc is approached (Spivack and Edmond, 1987; Ryan
and Langmuir, 1993). Because of the strong affinity of B for
fluids, however, we cannot exclude magmatic degassing as
an additional source of B to hydrothermal fluids at Pual
Ridge (Ryan and Langmuir, 1993; Arnorsson and Andres-
dottir, 1995; Audetat et al., 1998).

If it is assumed that the mobile alkali elements Rb and
Cs are quantitatively leached during hydrothermal alter-
ation and do not undergo significant secondary mineral for-
mation, effective water/rock (w/r) ratios can be calculated if
fluid and rock concentrations are known (Von Damm et al.,
1985). Rb and Cs contents vary widely in the EMVZ and
along the MSC, however, as a result of highly variable host
rock compositions (Sinton et al., 2003). Using Rb (0.9 ppm)
and Cs (0.018 ppm) contents from dredged basalt to the
south of Vienna Woods (Sinton et al., 2003), calculated
w/r ratios for fluids there vary from 0.5 to 0.6. Using values
of Rb (27 ppm) and Cs (0.8 ppm) reported for Satanic Mills
lava flows (Monecke et al., 2007), higher w/r ratios are cal-
culated for high temperature (>200 �C) fluids at Pual
Ridge, varying from 5 to 6 for Rb and 2 to 3 for Cs. Differ-
ences between these locations notwithstanding, the rela-
tively low values combined with the alkali ratio patterns
discussed above indicate hydrothermal fluids at both Pual
Ridge and Vienna Woods have reacted with fresh crustal
rocks under what may be considered rock-dominated con-
ditions (Seyfried and Mottl, 1982).

5.1.3. Quartz–fluid equilibrium and dissolved SiO2

SiO2 contents in PACMANUS and NE Pual fluids,
though highly variable, suggest considerable depths of
hydrothermal circulation are possible beneath Pual Ridge.
The solubility of quartz in hydrothermal solutions is a
strong function of temperature, pressure and to a lesser ex-
tent, salinity. Based on the assumption of quartz–fluid equi-
librium at depth, dissolved SiO2 is commonly used as an
indicator of maximum P–T conditions encountered by
hydrothermal fluids (Fournier, 1983; Von Damm et al.,
1991; Foustoukos and Seyfried, 2007a). Using extrapolated
vent temperatures the quartz solubility data of Von Damm
et al. (1991) and endmember SiO2 contents, RMR2 and
RGR1 compositions suggest quartz–fluid equilibrium at
pressure of 400–700 bar (Fig. 10). While the upper limit
may be excessive, the lower limit suggests circulation depths
in the vicinity of a possible magma body �2 km beneath the
seafloor at Pual Ridge (Lee, 2003; Binns et al., 2007; Sun
et al., 2007). There is a high degree of variability between
co-located vents (e.g. RMR1 and RMR2), however, and
shallower equilibration pressures (<300 bars) are predicted
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Fig. 10. Endmember SiO2 concentrations and extrapolated vent
temperatures for Vienna Woods and PACMANUS fluids. The
latter are calculated for vent fluids hotter than �270 �C where
consistent temperatures (within 10 �C as measured by IGT sam-
plers) and Mg concentrations were obtained in repeat samples of a
given vent fluid. Temperatures were extrapolated to the estimated
sampler dead volume contribution by linear regression forced
through bottom seawater temperature. These calculations assume
no conductive cooling occurred during mixing with seawater and
neglect changes in heat capacity over the temperature range of
extrapolation. Quartz saturation curves from Von Damm et al.
(1991) are shown for pressures of 100–1000 bar as a function of
temperature. The endmember SiO2 concentrations and maximum
temperatures observed at Vienna Woods in 1995 (Gamo et al.,
1997) are plotted for comparison.
for most other vents (Fig. 10). It has been suggested that the
accuracy of the SiO2 geobarometer in felsic-hosted systems
may be affected by re-equilibration of SiO2 with quartz-rich
wall-rock during fluid upflow (Ishibashi and Urabe, 1995).
Abundant subsurface quartz-bearing vesicles and veins ob-
served in ODP drill-cores from postulated upflow zones
suggest that some SiO2 deposition has occurred during as-
cent of fluids to the seafloor at PACMANUS (Binns
et al., 2007). While this process may be responsible for low-
er apparent equilibrium pressures, it cannot, however, ex-
plain the extremely high silica observed at RMR2 and
RGR1.

In contrast, predicted equilibrium pressures for all three
vents at Vienna Woods (>1000 bar) imply an unreasonable
depth of circulation there. A more plausible explanation is
that extensive cooling of the Vienna Wood source fluid has
occurred during upflow, as evidenced by low endmember
Fe but high endmember Mn concentrations (see below, Ta-
ble 2) and the high dissolved SiO2 contents are merely a re-
lic of much higher temperatures than those venting at the
seafloor. A comparison with the observations from 1995
(Fig. 10, Gamo et al., 1997) suggests that Vienna Woods
fluids may be experiencing greater extents of conductive
cooling with time, as maximum measured temperatures
were �17 �C hotter in 1995 but endmember SiO2 concentra-
tions were essentially equivalent.
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5.1.4. pH and metal mobility

The above observations suggest fluid–mineral buffering
of major element abundances at depth. However, the pH
of the lowest Mg samples at PACMANUS (2.6–2.7) is con-
siderably more acidic than those observed during labora-
tory experiments that reacted seawater and rhyolite/dacite
(3.5–4.5) at temperatures of 300–500 �C (Hajash and Chan-
dler, 1982; Shiraki et al., 1987). These experiments were
conducted at 1 kbar pressure, however, which may be great-
er than reaction zone pressures encountered by fluids at
PACMANUS where the seafloor pressure is �170 bar. Ow-
ing to effects on fluid density and species dissociation equi-
libria, lower pressures tend to yield slightly lower measured
pH values buffered by heterogeneous equilibrium reactions
(Seyfried, 1987). However, uniformly low pH values, such
as those at PACMANUS, are not common in basalt-hosted
hydrothermal systems at similar depths (Butterfield et al.,
2003). Such high acidity in black smoker fluids has only
been observed in other arc and back-arc settings, such as
the Vai Lili (Fouquet et al., 1991a,b, 1993) and Mariner
fields (Seewald et al., 2005; Takai et al., 2008) in the Lau
Basin. Low pH values (2.4–2.7) at Mariner are suggested
to be the result of magmatic acid volatile (SO2) degassing
from underlying magmas (Seewald et al., 2005; Takai
et al., 2008). As discussed below, we argue that this process
contributes to the low pH values at PACMANUS also. In
contrast, the much higher pH of Vienna Woods fluids (4.4–
4.7) is more consistent with buffering by fluid–rock interac-
tions alone.

The influence of acidity is apparent in the high Fe and
Mn contents of PACMANUS fluids. Experiments have
demonstrated that Fe and Mn solubility during hydrother-
mal alteration of basalt and more felsic rock compositions
is a complex and sensitive function of in situ pH, in addition
to temperature, pressure and fluid composition (Mottl
et al., 1979; Hajash and Chandler, 1982; Rosenbauer and
Bischoff, 1983; Seyfried and Janecky, 1985; Seyfried, 1987;
Seewald and Seyfried, 1990). At PACMANUS, endmember
Fe concentrations calculated from low Mg (<5 mmol/kg)
fluids range from 6.86 to 14.6 mmol/kg, with corresponding
endmember Mn concentrations of 3.01 to 4.72 mmol/kg.
These are among the highest Fe and Mn contents reported
to date for either arc or back-arc basin hydrothermal fluids
(Ishibashi and Urabe, 1995; Takai et al., 2008) and are most
likely the result of the highly acidic nature of these fluids.

An evaluation of the Fe and Mn contents of Vienna
Woods fluids in the context of experimental observations
of their mobility from crystalline basalt as a function of
temperature supports the notion that fluids there have expe-
rienced cooling. The association of extremely low endmem-
ber Fe contents with vent temperatures below 300�
(Table 2) is consistent with experimental evidence that dis-
solved Fe is rapidly diminished below this temperature in
the absence of any seawater admixing (Seewald and
Seyfried, 1990). In contrast to Fe, however, Mn has slug-
gish kinetics of re-precipitation upon cooling of hydrother-
mal fluids, and therefore tends to record much hotter
temperatures of mobilization. Based upon the experimental
study of Seewald and Seyfried (1990), Mn concentrations in
Vienna Woods fluids (Table 2) are more consistent with



temperatures up to �350 �C. Such high temperatures in the
reaction zone would reconcile the observations of high SiO2

for the temperatures of venting that yield unreasonable
apparent depths of quartz–fluid equilibrium (Fig. 10).

5.2. Phase separation and Cl variability

Vienna Woods and Pual Ridge fluids exhibit variable
enrichments or depletions in endmember Cl relative to sea-
water (Table 2). While we demonstrate below that much of
this variability is due to phase separation, prior magmatic-
or rock-derived Cl inputs must first be considered in the
case of Pual Ridge fluids. Cl variations in MOR hydrother-
mal fluids beyond that permissible by rock hydration effects
are typically attributed to phase separation (Von Damm,
1990, 1995; German and Von Damm, 2003; Foustoukos
and Seyfried, 2007b) and rock-derived Cl is typically not
considered a significant source to mid-ocean ridge vent flu-
ids due to the low Cl content of MORB (Michael and
Schilling, 1989; Michael and Cornell, 1998). Silicic crustal
rocks in back-arc environments, however, have higher Cl
contents (Wallace, 2005; Aiuppa et al., 2009) and dredged
dacites from the vicinity of Pual Ridge contain up to
0.84 wt% Cl (Sun et al., 2007). Quantitative leaching of
such dacite at the water/rock ratios calculated previously
(2–6) would only increase vent fluid chlorinity by
<120 mmol/kg. Inputs of Cl from magmatic degassing
could also influence chloride contents of Pual Ridge vent
fluids, given the Cl-rich nature of Pual Ridge magmas
(Sun et al., 2007), and the chlorinity of magmatic fluids
may be substantially higher or lower than seawater. While
we demonstrate below that phase separation influences spe-
cies abundances at Pual Ridge, based on the above consid-
erations, hydrothermal fluids undergoing phase separation
there may have initial chlorinities that differ from seawater.

Conclusive evidence for subcritical phase separation at
seafloor pressures was found at the Fenway site where the
maximum measured temperature of 358 �C at F3 vent
places this fluid on the 2-phase boundary for a fluid of sea-
water salinity (Fig. 3) at a seafloor pressure of 171 bar
(Bischoff and Rosenbauer, 1985). The observed flashing
and variability in dissolved major element and gas concen-
trations between multiple fluid samples collected at F3 (Ta-
ble 1) are consistent with active boiling and partial
segregation of a two-phase emulsion of immiscible vapor/
brine during venting at the seafloor (Bischoff and Pitzer,
1985; Hannington et al., 2001; Stoffers et al., 2006). Mea-
sured exit temperatures (Fig. 3) for all other vent fluids at
PACMANUS and Vienna Woods lie well below the seawa-
ter 2-phase boundary at seafloor pressures. If phase separa-
tion at depth has contributed to Cl variability, these fluids
must have undergone substantial cooling prior to venting
at the seafloor. Previous phase separation at depth is sup-
ported by the rock record at Sites 1188 and 1189. Vanko
et al. (2004) demonstrated that the temperatures and ex-
treme salinity variations recorded by fluid inclusions at
depth beneath Snowcap are consistent with subseafloor
boiling at temperatures in excess of �350 �C, despite much
cooler temperatures of venting.
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At Vienna Woods, the low measured Mg concentrations
preclude seawater mixing as a heat loss mechanism and
extensive conductive cooling (>100 �C) is required to ex-
plain the low observed temperatures relative to the 2-phase
boundary there (Fig. 3). As stated previously, Mn abun-
dances in Vienna Woods fluids only suggest temperatures
near 350 �C and so it is possible that the high Cl endmem-
bers do not reflect active phase separation at depth in 2006,
but rather entrainment/depletion of residual brines formed
during previous phase separation events (Shanks and Sey-
fried, 1987; Von Damm and Bischoff, 1987; Von Damm,
1988; Butterfield and Massoth, 1994; Butterfield et al.,
1997; Schoofs and Hansen, 2000; Von Damm et al.,
2005). Brine entrainment would be consistent with the
chronic venting of Cl-rich fluids at Vienna Woods since
1990 (Lisitsyn et al., 1993; Gamo et al., 1997; Douville
et al., 1999a; Fourre et al., 2006) and the apparent absence
of any Cl-depleted conjugate fluids.

Measured temperatures below the 2-phase boundary,
notwithstanding, systematic compositional variability be-
tween fluids within several PACMANUS vent areas
strongly suggests that fluids other than F3 are also influ-
enced by phase separation and segregation. Endmember
concentrations of soluble alkali elements K, Li, Rb, and
Cs in areas with co-located vent fluids show strong linear
correlations with endmember Cl that extrapolate toward
the origin (Fig. 11). Because these elements are readily mobi-
lized from the crust during high temperature fluid–rock
interaction (Seyfried et al., 1984; Von Damm et al., 1985;
Von Damm, 1995) and do not preferentially partition into
the vapor phase (except under extreme conditions near ha-
lite saturation), alkali/Cl ratios are unaffected by phase sep-
aration (Berndt and Seyfried, 1990; Foustoukos and
Seyfried, 2007b,c). This behavior implies phase separation
and partial segregation of high and low salinity phases (But-
terfield et al., 1994). Systematic variations in the endmember
abundances of aqueous gases with Cl are also consistent
with ongoing phase separation at PACMANUS. Endmem-
ber CO2 and CH4 concentrations at Fenway and Roman
Ruins increase systematically with decreasing Cl (Fig. 5c
and 5d), consistent with enhanced partitioning of volatile
species into the lower salinity phases during phase separa-
tion. H2 and H2S are much more variable (Fig. 5a and 5b)
but these species behave non-conservatively during seawater
admixing in the subsurface (see below). Processes in addi-
tion to phase separation, however, must be invoked to ex-
plain the extreme enrichments in dissolved CO2 at Satanic
Mills and Snowcap (Fig. 5c). Enrichments of this magnitude
in seafloor hydrothermal fluids are unlikely to be solely the
result of partitioning of rock-derived CO2 into vapor phases
(Butterfield et al., 1990, 1994, 2003; Seewald et al., 2003) and
a combination of substantial magmatic CO2 inputs (dis-
cussed below), possibly with some secondary enhancement
by phase separation, is the most plausible explanation.

5.3. Magmatic fluid input at Pual Ridge

Numerous investigations have examined the compositions
of magmatic volatiles at PACMANUS recorded in erupted
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Fig. 11. Endmember Li (a), Rb (b), K (c) and Cs (d) concentrations vs. corresponding endmember Cl concentration for Vienna Woods,
PACMANUS and NE Pual vent fluids. Solid (Satanic Mills), dashed (Fenway), dot-dashed (Roman Ruins) and dotted (Snowcap) lines
represent unweighted linear least squared regressions of endmember fluid compositions within each respective vent area (limited to co-located
vent fluids with largest degrees of intra-vent Cl variability). Co-located vent fluids (cf. Fig. 2) exhibit strong correlations with Cl which trend
toward the origin, indicative of phase separation control and unmixing of high and low salinity fluid phases (Butterfield et al., 1994). BSW,
bottom seawater.
lavas. Felsic lavas at Pual Ridge are highly vesicular (Binns
and Scott, 1993; Marty et al., 2001; Paulick et al., 2004) and
accompanying melt inclusions possess vapor bubbles con-
taining H2O, CO2 and sulfur precipitates (Yang and Scott,
1996, 2002; Kamenetsky et al., 2001, 2002). Yang and Scott
(2005) suggested that fractional crystallization of magmas be-
neath Paul Ridge could sustain pre-eruptive degassing on
timescales of several decades, comparable to the lifetimes of
hydrothermal systems. Given that a magma body 2 km be-
neath the surface of Pual Ridge has been suggested (Lee,
2003; Binns et al., 2007; Sun et al., 2007) and apparent depths
of quartz–fluid equilibrium for some Pual Ridge fluids dis-
cussed above are similar, it is reasonable to assume circulating
hydrothermal fluids there may reach sufficient depths to en-
train volatiles exsolved from degassing silicic magma (Fig. 8).

5.3.1. Isotopic evidence for magmatic H2O

Addition of magmatic water to Pual Ridge vent fluids is
evident in the stark contrast in H2O isotopic compositions
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there compared to fluids at Vienna Woods (Fig. 12). The
stable isotopic composition of vent fluid H2O can record
the integrated effects of three fundamental processes –
water/rock (and/or sediment) interaction, phase separation
and any contributions from extraneous magmatic waters.
Hydration reactions between circulating hydrothermal flu-
ids and igneous crust at high temperatures invariably yield
a trend of increasing d18OH2O and dDH2O values (relative to
unmodified seawater) with decreasing water/rock ratios
(Bowers and Taylor, 1985; Bowers, 1989; Shanks et al.,
1995; Shanks, 2001). d18OH2O and dDH2O values from Vien-
na Woods are therefore generally consistent with water/
rock reaction as the dominant control of the isotopic com-
position of vent waters there. While the more positive end-
member d18OH2O values of PACMANUS fluids are
consistent with water/rock reaction at higher temperatures
and/or lower water/rock ratios than Vienna Woods, alter-
nate mechanisms must be invoked to explain the ubiquitous
negative endmember dDH2O values there (Fig. 12).



Fig. 12. Endmember dDH2O and d18OH2O values from Vienna
Woods and PACMANUS vent fields, with axes expanded to show
postulated compositions of mantle-derived water (Taylor, 1979b;
Ohmoto, 1986) and subduction-related volcanic vapors (Giggen-
bach, 1992; Hedenquist and Lowenstern, 1994). For clarity, the
inset shows the data at a larger scale and 1s analytical errors. The
isotopic composition of Pacific bottom seawater (SW) is shown by
a star (Craig and Gordon, 1965; Redfield and Friedman, 1965).
Low temperature fluids with near-SW Mg concentrations (F5, TK1
and NP1) are not plotted due to the large uncertainty associated
with extrapolation of dDH2O and d18OH2O values to zero Mg. The
solid black line represents a least squares regression of all
PACMANUS and Vienna Woods isotopic compositions (excluding
SW). This extrapolated trend strongly suggests PACMANUS
compositions reflect mixing between subduction-related volcanic
vapor compositions and an evolved SW-derived hydrothermal fluid
(see text).
Although phase separation is occurring at Pual Ridge
(as discussed previously), and experimental studies have
shown that this process can affect the hydrogen and oxygen
isotopic composition of vent waters (Horita et al., 1995;
Berndt et al., 1996; Shmulovich et al., 1999; Foustoukos
and Seyfried, 2007b), it cannot account for the hydrogen
isotope composition of vent fluids there. Under most open-
or closed-system scenarios for phase separation, vapor
phases are slightly enriched in D relative to the heavily
D-depleted brine phases, while the reverse is true for oxygen
isotope partitioning (Berndt et al., 1996; Foustoukos and
Seyfried, 2007b). Examination of the PACMANUS fluids
reveals no systematic variations in dDH2O or d18OH2O with
endmember Cl (Table 2). Furthermore, low chlorinity fluids
have consistently negative dDH2O and positive d18OH2O,
opposite to the trend expected for phase separation. While
Berndt et al. (1996) propose that generation of a vapor
phase with highly negative dDH2O and positive d18OH2O val-
ues is conceivable under a scenario of combined water/rock
reaction and open-system phase separation during isobaric
heating (i.e. by subsurface dike emplacement), it requires
segregation of a heavily distilled vapor (Foustoukos and
Seyfried, 2007b). No such vapor-like fluids were observed
at PACMANUS. Negative dDH2O values and positive
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d18OH2O values can also be produced by extensive reaction
of hydrothermal fluids with sedimentary overburden
(Shanks et al., 1995; Von Damm et al., 2005). However, gi-
ven the negligible sediment cover on the crest of Pual Ridge
(Binns et al., 2007) and the lack of a thermogenic d13CCH4

signature (Table 2, Welhan, 1988; Cruse and Seewald,
2006), there is no evidence to suggest that fluids there have
interacted with sediments. Direct input of isotopically dis-
tinct magmatic water to seawater-derived hydrothermal flu-
ids is therefore most plausible explanation the array of
negative dDH2O and positive d18OH2O values at Pual Ridge.

The isotopic signature of ‘juvenile’ or mantle-derived
magmatic water is estimated to have a narrow range of
dDH2O (�65 ± 20&) and d18OH2O (+6 ± 1&), (Taylor,
1979b; Ohmoto, 1986). In contrast, waters degassed from
silicic arc magmas (subduction-related volcanic vapors,
SRVV) may have much higher dDH2O (�10& to �30&)
and d18OH2O (+6& to +10&) values (Giggenbach, 1992;
Hedenquist and Lowenstern, 1994). Degassing-related frac-
tionation and slab-derived seawater inputs can both in-
crease the dDH2O value of magmatic waters at convergent
margins (Taylor, 1986, 1997; Giggenbach, 1992; Pineau
et al., 1998; Shaw et al., 2008). While it is impossible to
accurately constrain the isotopic composition of magmatic
water added, the array of PACMANUS isotopic composi-
tions trends toward a D-depleted and highly 18O-enriched
component similar to SRVV compositions (Fig. 12). The
fluids do not lie within the trend expected for simple mixing
of hydrothermal fluids with mantle-derived waters having
dDH2O values of �40& to �80& (Fig. 12), as suggested
for fluids from the nearby DESMOS hydrothermal system
(Gamo et al., 1997). Although the isotopic compositions
of PACMANUS vent waters could reflect the addition of
SRVV compositions directly to seawater, it is hard to envi-
sion a scenario where seawater could reach high tempera-
ture environments in the vicinity of a degassing magma
chamber without extensive isotopic modification by
water/rock reaction. The most likely scenario is that
SRVV-like compositions are mixing with seawater-derived
hydrothermal fluids that have experienced high temperature
fluid–rock interactions which increased dDH2O and d18OH2O

values (resembling the evolved compositions at Vienna
Woods, Figs. 8 and 12).

A crude estimate of the minimum quantity of magmatic
H2O added to circulating fluids can be constrained by sim-
ple hydrogen isotope mass balance. For this calculation we
assume that the effects of phase separation on dDH2O are
negligible, magmatic H2O at all PACMANUS areas has a
uniform dDH2O value at the lower limit of SRVV composi-
tions (�30&, Giggenbach, 1992; Hedenquist and Lowen-
stern, 1994) and the circulating fluids into which
magmatic waters are entrained have dDH2O values similar
to Vienna Woods fluids (+2.4&) due to prior water/rock
reaction. With these assumptions in mind, a magmatic
H2O fraction of �9 wt% is required to produce the compo-
sition observed in Roman Ruins fluid RMR1 (the highest
dDH2O value in Fig. 12). Fluid at the Snowcap SC2 vent
would require a magmatic H2O fraction of �25 wt%, with
the majority of fluids within these two extremes. While
these estimates are speculative and highly variable, they



do suggest substantial quantities of magmatic water are en-
trained by circulating hydrothermal fluids.

The isotopic compositions of PACMANUS fluids pre-
sented here also have implications for previous attempts
to estimate subsurface alteration temperatures from drill-
core clay minerals recovered at Sites 1188 and 1189.
Lackschewitz et al. (2004) assumed that hydrothermal
fluids at depth have near-seawater d18OH2O values and cal-
culated temperatures of clay mineral precipitation in the
subsurface. This assumption is now shown to be unreason-
able, given that both magmatic water input and water/rock
interaction have substantially increased d18OH2O values at
PACMANUS.

5.3.2. Magmatic CO2, F, and Cl

Elevated abundances of aqueous CO2 in PACMANUS
vent fluids are also consistent with a direct contribution
of magmatic volatiles because CO2 is invariably released
from silicic magmas during cooling and crystallization
(Carroll and Webster, 1994; Yang and Scott, 2006).
Although some of the CO2 observed in PACMANUS fluids
may be derived from rock leaching, unaltered subseafloor
dacites recovered by ODP drilling at Snowcap, Roman
Ruins and Satanic Mills contain less than 500 ppm residual
CO2 (Paulick et al., 2004). Assuming quantitative mobiliza-
tion, this limits the total amount of CO2 that can be derived
by substrate leaching to <6 mmol/kg for the range of water/
rock ratios (2–6) calculated using alkali abundances. Con-
centrations of aqueous CO2 in basalt-hosted mid-ocean
ridge vent fluids that approach values observed at PACM-
ANUS have also been attributed to active magmatic degas-
sing (Butterfield et al., 2003; Lilley et al., 2003; Seewald
et al., 2003). While primary CO2 contents of parental mag-
mas at PACMANUS are poorly constrained (Marty et al.,
2001), weight percent additions of magmatic H2O (esti-
mated above) indicate that CO2 is far less abundant than
H2O in the magmatic fluids being added. The exsolution
of a water-dominated magmatic fluid suggests a relatively
shallow (crustal) magma chamber (Yang and Scott, 2006),
consistent with the speculation of a fractionating silicic
magma body beneath Pual Ridge (Lee, 2003; Yang and
Scott, 2005; Binns et al., 2007; Sun et al., 2007).

Examination of the carbon isotopic composition of vent
fluid CO2 at PACMANUS (�4.1& to �2.3&) reveals a
more 13C enriched CO2 source relative to Vienna Woods
fluids (�5.2& to �5.7&), which likely reflects the closer
proximity of Pual Ridge to the New Britain Arc (80 km
vs. 220 km) and a larger contribution of more 13C-enriched
slab-derived carbon. d13CCO2

values in fluids from unsedi-
mented hydrothermal systems measured to date range from
�3.15& to �13.0& (Charlou et al., 1996, 2002; McCollom
and Seewald, 2007) but the majority of typical basalt-
hosted fluids range from �4& to �9& (Kelley et al.,
2004), reflecting the composition of primitive mantle CO2

(�5& to �8&, Pineau et al., 1976; Taylor, 1986; Cartigny
et al., 2001; Coltice et al., 2004). Based on the few studies
conducted to date, dissolved CO2 in back-arc hydrothermal
fluids are typically more 13C-enriched, with d13CCO2

values
ranging from +0.4& at Mariner (Lau Basin) to �6.2& at
White Lady (N. Fiji Basin), (Ishibashi et al., 1994; Takai
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et al., 2008). Vent fluid d13CCO2
values higher than mantle

carbon values can arise from two potential processes –
13C enrichment in the source magma due to slab-derived
carbonate inputs and/or degassing-related fractionation ef-
fects. In the case of the latter, the CO2 initially degassed
from basaltic magmas can be enriched in 13C by several
per mil (i.e. 2.2–4.3& at >1100 �C) relative to the unde-
gassed bulk CO2 reservoir (Javoy et al., 1978; Mattey,
1991). Such enrichments are only associated with the earli-
est stages of CO2 exsolution (Tsunogai et al., 1994), how-
ever, and the extremely low CO2 contents (Marty et al.,
2001) and low d13CCO2

values observed in EMVZ lavas
(down to �33.2&, Shaw et al., 2004) suggest more exten-
sive degassing of crustal magmas there. The 13C-enriched
nature of aqueous CO2 at PACMANUS therefore may re-
flect the greater influence of slab-derived carbon on the
magma source in this region of the basin. Subducted oce-
anic crust can contain sedimentary organic carbon/carbon-
ate and carbonates formed during low temperature
alteration of basaltic rocks (Alt and Teagle, 1999; Coltice
et al., 2004), giving a bulk slab d13C value of approximately
�1& (Coltice et al., 2004). Numerous geochemical proxies
(e.g. higher Ba/Nb and Cl/Nb ratios in dredged lavas) indi-
cate greater subduction-related inputs to magmas in the
EMVZ (and Pual Ridge) relative to the MSC (Kamenetsky
et al., 2001; Sinton et al., 2003; Sun et al., 2004; Pearce and
Stern, 2006; Park et al., 2010) and inputs of slab-derived
carbon have been suggested (Shaw et al., 2004). Trends of
increasing d13CCO2

with arc proximity have been observed
in other back-arc vent fluids, such as the Lau Basin
(Proskurowski et al., 2007) and the Okinawa Trough/Mari-
ana Arc (cf. Sakai et al., 1990a; Lupton et al., 2006).

High concentrations of magmatic CO2 in PACMANUS
vent fluids are also accompanied by elevated F abundances
(Fig. 6), which may reflect inputs of F to convecting hydro-
thermal fluids from magmatic degassing. Fluoride species
are enriched in felsic magmas (Carroll and Webster, 1994)
and are common constituents of exsolved magmatic gases
in arc-type environments (Yang and Scott, 2006; Aiuppa
et al., 2009). Magmatic F has been implicated in influencing
REE distribution patterns in vent fluids and anhydrites
from Manus Basin hydrothermal sites (Bach et al., 2003;
Craddock et al., 2010). The F enrichments in Pual Ridge
vent fluids are in stark contrast to Vienna Woods (Fig. 6)
and MOR hydrothermal systems, where F is depleted rela-
tive to seawater (Edmond et al., 1979a; Maris et al., 1984;
Von Damm et al., 1985; Seyfried and Ding, 1995a; German
and Von Damm, 2003). While a magmatic origin is cer-
tainly likely given the other indications of volatile input,
we cannot, however, completely discount rock-derived
sources of F. The behavior of F in seafloor hydrothermal
systems is poorly understood (Seyfried and Ding, 1995a)
and there is some experimental evidence to suggest both
mineralogical sources and sinks of F are possible during
hydrothermal alteration of silicic rock compositions (Gal-
luccio et al., 2009). Rock leaching has also been proposed
as a source of F to some felsic-hosted terrestrial geothermal
systems (Arnorsson et al., 1978). The F contents of unal-
tered Pual Ridge dacites (360–530 ppm, Paulick et al.,
2004) are not substantially different from MSC basalts



Fig. 13. d34S values for dissolved H2S (d34SH2S) vs. endmember
RCO2 concentrations. The range of d34SH2S values for unsediment-
ed hydrothermal systems in MOR settings is +1.4& to +8.6&

(Shanks, 2001). Values from Pual Ridge fluids below this range are
associated with higher CO2 concentrations of magmatic origin.
(�200 ppm, Sinton et al., 2003) and typical MORB
(�500 ppm, Michael and Schilling, 1989) and incomplete
leaching at calculated w/r ratios (�0.5 for Vienna Woods,
2–6 for Pual Ridge) could yield aqueous F concentrations
several times that of seawater in either setting. Therefore,
while the correlation of F with CO2 (Fig. 6) is suggestive
of a magmatic origin, further constraints are needed on
the mobility of F in hydrothermal systems before the excess
abundances relative to typical MOR hydrothermal fluids
can be attributed solely to magmatic degassing.

In addition to CO2 and F, magmatic fluids at Pual Ridge
could also contain varying amounts of Cl but we cannot
constrain such inputs, however, owing to the high quanti-
ties of seawater Cl and variability arising from phase sepa-
ration. Exsolved magmatic fluids may be characterized by
chlorinities comparable to or much lower than seawater.
At supercritical magmatic temperatures and shallow crustal
pressures, Cl-bearing magmatic fluids can separate into low
Cl vapor phases containing the bulk of H2O mass and small
quantities of a Cl-rich brine condensate (Cline and Bodnar,
1991; Shinohara, 1994; Kelley and Früh-Green, 2000;
Lowenstern, 2000; Webster, 2004). Additional lines of evi-
dence, such as Br/Cl ratios, would not be useful in identify-
ing the addition of magmatic fluids because molar Br/Cl
ratios in high temperature (>700 �C) fumaroles from wes-
tern Pacific arc volcanoes (0.6–1.4, Goff and McMurtry,
2000; Snyder et al., 2002) approach those of the seawater
value of 1.5. Most Pual Ridge fluids do not deviate from
the latter ratio (Table 3).

5.3.3. Magmatic SO2 input and disproportionation

There is some indirect evidence to suggest that magmatic
fluids entrained by Pual Ridge vent fluids are accompanied
by S species that generate substantial acidity. We conclude,
however, that much of the primary signature of magmatic S
has likely been overprinted by secondary processes subse-
quent to magmatic degassing and prior to seafloor venting
(Fig. 8). Exsolved CO2 and H2O-rich vapor bubbles in melt
inclusions from Pual Ridge contain a host of sulfate- and
sulfide-bearing minerals, indicating that sulfurous species
have partitioned from magmas into exsolved aqueous fluids
there (Kamenetsky et al., 2001, 2002; Yang and Scott,
2006). In contrast to basaltic magmas, where it exists
mostly as sulfide, total S in more oxidizing (higher fO2

)
calc-alkaline magmas is predominantly in the forms SO2

and SO4 (Burnham, 1979; Carroll and Rutherford, 1988;
Nilsson and Peach, 1993; Carroll and Webster, 1994).
SO2 strongly partitions into exsolved aqueous fluids during
magmatic degassing (Burnham, 1979; Scaillet and Pichavant,
2003) and, upon cooling below �400 �C, can undergo either
of the following disproportionation reactions (Iwasaki and
Ozawa, 1960; Holland, 1965; Drummond, 1981; Kusakabe
et al., 2000):

4SO2 þ 4H2O! H2Sþ 3H2SO4 ð3Þ
3SO2 þ 2H2O! S0 þ 2H2SO4 ð4Þ

where S0 is zero-valent sulfur. According to Kusakabe et al.
(2000), reaction (3) is more favored under higher tempera-
tures and lower SO2 contents than reaction (4). Both reac-
tions are rapid, produce sulfuric acid (H2SO4, which
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generates acidity upon dissociation to HSO4
� and H+)

and are associated with significant sulfur isotope fractiona-
tions between reactant SO2 and the oxidized and reduced S
products. H2SO4 is typically enriched in 34S, while H2S and
S0 are depleted in 34S relative to precursor SO2 (Ohmoto
and Rye, 1979; Ohmoto and Goldhaber, 1997; Kusakabe
et al., 2000). The SO4 produced invariably has a d34SSO4

va-
lue that is lower than seawater (+20.99&, Rees et al., 1978),
while negative d34SH2S values would be expected for H2S
assuming an initial magma d34S near 0& (Ohmoto and
Goldhaber, 1997).

Negative d34SH2S values are observed in fluids from some
areas of PACMANUS (Satanic Mills and Snowcap) and
are associated with extremely high levels of magmatic
CO2 (Fig. 13). d34SH2S values from unsedimented MOR
hydrothermal systems range from +1.4& to +8.6&, reflect-
ing a mixture of both reduced seawater SO4 and basaltic S
(Shanks, 2001, and references therein). The most negative
d34SH2S values (as low as �5.7&) measured to date were
from fluids at the DESMOS Caldera site to the east of Pual
Ridge in 1995 and were attributed to magmatic SO2 dispro-
portionation (Gamo et al., 1997). As stated previously,
there is no evidence to suggest fluids at Pual Ridge have
interacted with sediments and the most plausible explana-
tion for the above trend is that some of the H2S in Satanic
Mills and Snowcap fluids is derived either directly from
magmatic SO2 disproportionation, or possibly by reduction
of magmatic SO4 with low d34SSO4

values.
In contrast to d34SH2S, d34SSO4

values for all Pual Ridge
fluids do not deviate substantially from that of seawater-
derived SO4 (Table 1) and are therefore inconsistent with
a magmatic origin for dissolved SO4. The general absence
of anomalous d34SSO4

compositions that might be expected
from addition and disproportionation of magmatic SO2,



however, is not surprising considering the strong retrograde
solubility of anhydrite as a function of temperature
(Bischoff and Dickson, 1975; Bischoff and Seyfried, 1978;
Mottl and Holland, 1978). If it is assumed that magmatic
fluids are entrained (and therefore diluted) by circulating
high temperature fluids at considerable depth in the hydro-
thermal reservoir (near the high temperature reaction zone,
Fig. 8) any SO4 added could be quantitatively removed as
anhydrite if a continuous supply of Ca is available from
fluid–mineral equilibrium reactions. The widespread occur-
rence of anhydrite in the subsurface (Binns et al., 2007) and
the extensive removal of seawater sulfate evident in present-
day PACMANUS fluids (Fig. 4) is an indication of the abil-
ity the former mechanism to overwhelm a magmatic source
of SO4.

These observations are consistent with evidence arising
from ODP Leg 193 to suggest variable magmatic SO2 input,
disproportionation and removal to anhydrite has previ-
ously occurred at depth beneath PACMANUS. Two inde-
pendent investigations demonstrated d34SSO4

values as low
as +16.6& (Craddock and Bach, 2010) and +18.1&

(Roberts et al., 2003) in anhydrite deposited beneath
Snowcap, with trends of decreasing d34SSO4

with increasing
depth below the seafloor. These trends were interpreted to
be the result of precipitation from fluids with variable mix-
tures of both seawater- and magmatic SO2-derived SO4,
with the proportion of the latter increasing with depth be-
neath the Snowcap dome. Several inactive outcrops of
bleached volcaniclastic material cemented with native sulfur
(S0) were also found in the vicinity of Snowcap (Tivey et al.,
2006), suggesting that magmatic acid–sulfate fluids may
have reached the seafloor in the past.

The extremely high Fe contents of many PACMANUS
fluids suggests that magmatic-derived acidity has lead to
extensive dissolution of Fe from silicate minerals in the sub-
surface, which could have consumed H+ and raised in situ

pH. Measured pH values are still lower than experimental
observations of equilibrium buffering by the andesite/dacite
mineral assemblage (Hajash and Chandler, 1982; Shiraki
et al., 1987), suggesting that titration of magmatic acidity
may be incomplete. One possible explanation is that rocks
in the upflow zones at Pual Ridge may be completely al-
tered and characterized by mineral assemblages that are
stable at low pH, as suggested by ODP Leg 193 observa-
tions beneath Snowcap (Binns et al., 2007). The latter
would likely be incapable of buffering pH values to the
same extent as fresh andesite/dacite mineral assemblages.
While dissolved alkali abundances and ratios (Fig. 9)
clearly indicate interactions with fresh host rock at Pual
Ridge, this may reflect water–rock interactions prior to
magmatic fluid input (Fig. 8).

5.3.4. Spatial variability of magmatic fluid inputs

Our data are remarkably consistent with ODP Leg 193
observations which demonstrated apparent spatial variabil-
ity of magmatic inputs within the PACMANUS vent field.
Observations of anomalous subsurface anhydrite d34SSO4

values, rare-earth element patterns and ‘acid–sulfate’
(quartz–illite–pyrophyllite–anhydrite) alteration assem-
blages were limited to the Site 1188 (beneath the Snowcap
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Dome) and were lacking at Site 1189 (Roman Ruins), (Bach
et al., 2003; Roberts et al., 2003; Binns et al., 2007;
Craddock and Bach, 2010). The data collected in 2006 dem-
onstrates that vent fluids from Snowcap and the nearby
Satanic Mills area clearly contain the strongest signatures
of H2O, CO2, H2S, and possibly F of magmatic origin.
What is perplexing, however, is that while there is a notable
absence of extremely high concentrations of CO2 and
anomalous d34SH2S values in Roman and Roger’s Ruins
vent fluids, dDH2O and pH values there resemble those of
low Mg fluids from Satanic Mills and are consistent with
magmatic inputs. Given the poor constraints on composi-
tional variability of magmatic fluids in back-arc hydrother-
mal systems and the high degrees of dilution by circulating
hydrothermal fluids, it may be that magmatic fluid compo-
sitions at Roman and Roger’s Ruins contain lower
amounts of CO2 and SO2. The resulting SO2-derived
d34SH2S anomalies may be relatively small and suffer from
extensive overprinting. While we acknowledge it is also pos-
sible that Roman and Roger’s Ruins fluids may not be
entraining magmatic fluids at depth, this would require
some unknown alteration assemblage capable of buffering
both pH and dDH2O values to the same extent as the as
Snowcap, Satanic Mills and Fenway fluids.

5.4. Subsurface seawater entrainment

The large number of sample sets taken from Pual Ridge
vent fluids with consistently high measured Mg concentra-
tions (Table 1) strongly suggests that fluids there have
mixed with seawater to varying extents prior to exiting at
the seafloor. Mixing of seawater and hydrothermal fluids
prior to venting has been recognized ever since hydrother-
mal activity was first discovered in 1977 at the Galápagos
Spreading Center (Corliss et al., 1979; Edmond et al.,
1979a,b, 1995; Butterfield and Massoth, 1994; Tivey
et al., 1995; Gamo et al., 1996c; Von Damm et al., 1998;
Gallant and Von Damm, 2006). The hypothesis that exten-
sive subsurface mixing provides much of the Mg in Pual
Ridge fluids can be tested by examining the relationship be-
tween Mg abundance and temperature for co-located vents.
Isenthalpic mixing lines depicting temperature and Mg dur-
ing addition of 3 �C seawater to the hottest endmember flu-
ids at Roman Ruins and Fenway are shown in Fig. 14. If
other fluids in each vent area represent conservative mix-
tures of the hottest co-located fluid and cold seawater they
should fall on these mixing lines. Only fluids where at least
two samples with consistent vent temperature measure-
ments and Mg concentrations are plotted to prevent ambi-
guity introduced by seawater entrainment during sampling.
Examination of Fig. 14 reveals that the clustered vents
RMR4, RMR1 and RMR2 (Fig. 2b) display a conservative
trend. At Fenway, the diffuse F5 vent appears to be a con-
servative mixture of seawater and the nearby F3 black smo-
ker vent fluid. Vents F2 and F4 fall below predicted
temperatures, suggesting that in some cases conductive
cooling may be occurring in addition to mixing. Tempera-
ture loss due to the former could explain the anomalously
low apparent pressure of quartz–fluid equilibrium for F4
vent, and possibly other fluids also (Fig. 10). The agreement
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Fig. 14. Lowest Mg concentration (Mgmin) at a given vent fluid vs.
its vent temperature (Tmax) for co-located vent fluids at Roman
Ruins and Fenway. Only fluids where multiple samples yielded
consistently high Mg concentrations and temperatures (within
10 �C as measured by IGT samplers) are plotted (cf. Table 1).
Mixing lines expected for conservative isenthalpic mixing between
the vent fluids F3 (solid line) and seawater, and RMR4 (dashed
line) and seawater are shown. Temperatures depicted by these
mixing lines were calculated using the specific enthalpy data for a
3.2 wt% NaCl solution at 200 bar (Bischoff and Rosenbauer, 1985)
and Mg concentrations are used as a conservative metric of mixing
fraction between the hottest hydrothermal fluid and seawater
compositions. The mixing lines assume a constant heat capacity for
seawater below 200 �C of 4.1 J/gK (the actual change in heat
capacity below 200 �C is <5%).
of measured temperatures and Mg concentrations with val-
ues predicted by the mixing model indicate a seawater
source for the Mg in fluids. This strongly suggests that en-
trained seawater Mg behaves conservatively in many fluids
during mixing even at relatively high upflow zone tempera-
tures (>250 �C). Investigations of alteration assemblages
recovered during ODP Leg 193 suggest that abundant chlo-
rite formed in the subsurface is likely the result of Mg meta-
somatism during interactions of upwelling hydrothermal
fluids with entrained seawater (Lackschewitz et al., 2004).
While this contrasts with our finding that Mg may be lar-
gely conservative, the alteration assemblages likely reflect
high cumulative water/rock ratios and we cannot exclude
minor amounts of Mg fixation in upwelling fluids.

SO4 concentrations for the majority of Pual Ridge fluids
are lower than predicted for conservative mixing of seawa-
ter and an endmember hydrothermal fluid devoid of Mg
and SO4, yielding apparent negative endmember SO4 con-
centrations at zero Mg (Fig. 4). This further confirms fluids
are venting with non-zero Mg concentrations and near zero
SO4, consistent with non-conservative behavior of SO4 rel-
ative to Mg during the mixing process. The deviations to
negative apparent SO4 endmembers are generally greater
in fluids with higher Mg concentrations (Fig. 4), which re-
flect greater extents of subsurface seawater entrainment.
Calculated endmember Ca/Cl and Sr/Cl ratios are
consistently lower in such fluids also (Fig. 15a and 15b).
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Collectively, these data indicate anhydrite precipitation is
occurring during mixing due to its low solubility at elevated
temperatures, thereby removing Ca (and co-precipitating
Sr) and seawater-derived SO4 (Mottl and Holland, 1978;
Shikazono and Holland, 1983; Berndt et al., 1988; Mills
and Tivey, 1999) and skewing calculated endmember con-
centrations. In some cases, Sr losses are so great that it is
additionally removed from entrained seawater in addition
to the supply of Sr available in the upwelling hydrothermal
fluid, thereby yielding negative apparent endmember con-
centrations (e.g. SC1 vent, Table 2 and Fig. 15b). Such ex-
treme Sr loss relative to Mg upon mixing provides an
explanation for the implausible endmember 87Sr/86Sr ratio
calculated at Snowcap (0.69768, Fig. 7) which is beyond
the range possible for crustal materials (Banner, 2004).

In some cases, variable anhydrite precipitation is evident
in multiple fluids sampled in close proximity to one another
(e.g. RGR1 and RGR2 at Roger’s Ruins, Figs. 2b and 4),
suggesting that deposition may be occurring very near the
seafloor or within sulfide structures themselves. Although
mixing through ‘leaky’ walls of sulfide chimneys cannot
be excluded at all vents (Haymon and Kastner, 1981;
Goldfarb et al., 1983), consistently high Mg samples were
collected at SM3 vent after the near complete removal of
the sulfide chimney (<1 m tall) and measured fluid temper-
atures before (279 �C) and after removal (280–288 �C) were
similar. This suggests that some mixing is occurring beneath
the seafloor and not within the removed structure at SM3.
Shallow subsurface precipitation of anhydrite is entirely
consistent with observations from ODP drill-cores which
indicate that the abundant anhydrite deposits beneath the
seafloor at PACMANUS contain partially seawater-
derived SO4 (Roberts et al., 2003; Craddock and Bach,
2010). In cases where several vent fluids are in close proxim-
ity to one another and may be genetically related, the
apparent variability in measured Ca/Cl ratios due to anhy-
drite deposition is greatly reduced when such Ca loss is cor-
rected. Using the deviations in measured SO4

concentrations from conservative behavior to estimate
SO4 losses and assuming equimolar Ca loss for measured
compositions, adjusted Ca/Cl ratios in each case delineate
trends between seawater and a much narrower range of
endmember Ca/Cl (Fig. 16). This suggests clustered vents
at Roman Ruins, Roger’s Ruins and Fenway reflect a com-
mon source fluid for each area that has undergone phase
separation and partial segregation into fluids of differing
Cl contents, followed by variable degrees of subsurface sea-
water entrainment into these fluids and concomitant anhy-
drite precipitation.

In addition to influence of mixing, some low tempera-
ture fluids at Pual Ridge, namely F5 vent and the single
NE Pual fluid sampled (NP1), show evidence for extensive
anhydrite dissolution and fixation of B. F5 vent (80 �C) was
a poorly focused flow vent emanating from anhydrite sand/
talus on the north flank of the Fenway mound (Fig. 2c). In
addition to the temperature and proximity considerations
above, endmember alkali/Cl ratios (Table 3 and Fig. 11)
at F5 are similar to those venting at the summit black smo-
ker complex (F2, F3 and F4 vents), further suggesting the
fluid is a mixture of the summit source fluid and seawater.
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Fig. 15. Plots of the lowest Mg concentration (Mgmin) measured at each vent vs. (a) endmember Ca/Cl ratios, (b) endmember Sr/Cl ratios, (c)
lowest measured fluid pH (25 �C) and (d) endmember Fe/Mn ratios from Vienna Woods and Pual Ridge vent fluids. While these plots are
unconventional, they are intended to show that at Pual Ridge, calculated endmember Ca/Cl, Sr/Cl and Fe/Mn ratios appear to decrease with
increasing extents of subsurface seawater entrainment (accompanied by decreases in measured pH) consistent with non-conservative behavior
of Ca, Sr and Fe. NP1, F5 and TK1 are anomalous in that they have high endmember Ca/Cl and Sr/Cl ratios due to anhydrite dissolution (see
text). BSW, bottom seawater.
The striking feature of F5 and NP1 compositions are mea-
sured SO4 concentrations (with near-seawater d34SSO4

val-
ues) that are elevated relative to concentrations predicted
for conservative mixing of endmember fluids (devoid of
Mg and SO4) and seawater (Fig. 4). In addition to high
apparent endmember Ca/Cl and Sr/Cl ratios (Table 3 and
Fig. 15a and 15b), these differences indicate that previously
precipitated anhydrite is being re-dissolved by F5 and NP1
fluids, a likely consequence of the relatively low tempera-
tures (<80 �C) resulting from high degrees of mixing. Disso-
lution of anhydrite by active low temperature fluids has
previously only been observed at 9�500N on the East Pacific
Rise (McDermott and Von Damm, 2008) and highlights the
transient nature of Ca, Sr and SO4 sinks in anhydrite. F5
and NP1 also differ from higher temperature Pual Ridge
fluids in the behavior of B, as negative endmember concen-
trations are apparent upon extrapolation of measured B
concentrations to zero Mg (Table 2). Like Sr, this implies
removal of seawater-derived B in F5 and NP1 fluids in
addition to the B complement of their parent hydrothermal
fluids. The most plausible explanation for these depletions
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is that low temperature fixation reactions have decreased
the abundances of B prior to venting (Fig. 8). Laboratory
and field studies have shown that fixation of B from seawa-
ter solutions occurs during low temperature (<150 �C)
alteration of basaltic oceanic crust and likely sinks for B in-
clude alteration assemblages composed of ferric micas and
smectites (Seyfried et al., 1984; Alt, 1995).

The pervasive nature of subsurface seawater entrainment
apparent at Pual Ridge vent areas indicates a more open
hydrologic regime beneath Pual Ridge compared to Vienna
Woods and traditional MOR systems. Subsurface mixing at
the TAG hydrothermal system was attributed to a ‘leaky
mound’ model whereby seawater ingress is facilitated by
the permeable anhydrite–sulfide breccia deposits of the
TAG mound (Edmond et al., 1995; Humphris et al., 1995;
Tivey et al., 1995; Humphris and Tivey, 2000). Aside from
the Snowcap area, however, many of the mixed fluids at
Pual Ridge are emanating from comparatively small sulfide
structures atop rugged volcaniclastic flows. Meter-scale fis-
sures were largely absent on the surface (Tivey et al.,
2006), and it is possible fluid flow may instead be focused
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Fig. 16. Plot of lowest measured Mg concentrations (Mgmin) vs.
measured (“in situ”) molar Ca/Cl ratios and corresponding values
“corrected” for anhydrite precipitation for closely co-located
PACMANUS vent fluids. The “in situ” symbols denote the
Ca/Cl of each fluid calculated at Mgmin from regressions of
measured Ca and Cl concentrations. Deviations in the “in situ” SO4

concentration of these fluids (also calculated from measured SO4
2�

regressions at Mgmin) from conservative mixing of a hypothetical
zero Mg, zero SO4

2� fluid are calculated and used to the correct the
Ca/Cl ratios for molar equivalent Ca loss (vertical arrows).
Regression lines for each group of anhydrite “corrected” compo-
sitions (grouped by vent area) are shown. BSW, bottom seawater.
through contact zones between lava flows or subsurface net-
works of fractures/conduits (Binns et al., 2007). The possi-
bility that the blocky, highly vesicular and brecciated
volcaniclastic nature of lavas at Pual Ridge contributes to
the mixing regime must also be considered. Monecke et al.
(2007) demonstrated that hydrothermal alteration in glassy
dacites from the surface of Pual Ridge is influenced by pri-
mary volcanic textures and that some fluid flow occurs
through vesicles interconnected by perlitic cracks/quench
fractures. Enhanced permeability and fluid flow due to vol-
canic textures has been suggested for other back-arc hydro-
thermal systems (Ishibashi and Urabe, 1995), and may be an
inherent consequence of the volatile-rich nature of precursor
magmas in these environments.

5.4.1. Secondary acidity generation

An important consequence of the seawater entrainment
and mixing beneath the seafloor at Pual Ridge is the depo-
sition of iron sulfide minerals and production of secondary
acidity in addition to that derived from magmatic fluid in-
put at depth. Cooling induced by seawater mixing reduces
both the stability of iron chloride complexes and the solu-
bility of iron sulfides, resulting in the removal of Fe from
solution. Iron sulfide deposition can be described by the
reactions:

Fe2þ þH2SðaqÞ ¼ FeSðsÞ þ 2Hþ ð5Þ
Fe2þ þ 2H2SðaqÞ ¼ FeS2ðsÞ þ 2Hþ þH2ðaqÞ ð6Þ
Cuþ þ Fe2þ þ 2H2SðaqÞ ¼ CuFeS2ðsÞ þ 0:5H2ðaqÞ þ 3Hþ ð7Þ
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All of these reactions result in the generation of acidity. Be-
cause of the higher Fe content (several mmol/kg) of Pual
Ridge fluids relative to Cu (<1 mmol/kg, Craddock,
2008), deposition of pyrrhotite (FeS) or pyrite (FeS2) will
likely have a greater impact of fluid pH than chalcopyrite
(CuFeS2). The extent of Fe precipitation at PACMANUS
can be qualitatively assessed by examining Fe/Mn ratios,
since Fe precipitation from high temperature vent fluids
during cooling is a relatively rapid process while Mn precip-
itation is kinetically inhibited (Seewald and Seyfried, 1990).
Accordingly, initial Fe/Mn ratios of endmember hydrother-
mal fluids should show apparent decreases with increased
cooling (due to mixing), resulting in substantial secondary
acidity generation according to reactions (5)–(7). This trend
is observed between fluids in several PACMANUS vent
areas, where both pH and calculated endmember Fe/Mn
ratios are lower in fluids with higher Mg concentrations
(Fig. 15c and 15d). These data suggest that differences in
pH between co-located higher- and lower-temperature vent
fluids reflect local modification by mixing-induced sulfide
precipitation reactions that decrease pH below the already
low values. The impact of these reactions is considerable gi-
ven the extremely high (mmol/kg) Fe contents of Pual
Ridge fluids.

The predominance of pyrite as the most abundant dis-
seminated sulfide in ODP Leg 193 alteration lithologies
and the apparent lack of abundant pyrrhotite in either
the ODP drill-cores or chimney structures (Binns et al.,
2007; Craddock, 2008) suggests that pyrite precipitation
(reaction (6)) is responsible for Fe removal. This is also con-
sistent with the relatively oxidizing redox conditions (as
indicated by the aqueous H2 concentrations) that fall at
the low end of the spectrum for ridge-crest hydrothermal
fluids (Seyfried and Ding, 1995b; Von Damm, 1995). How-
ever, reaction (6) must produce equivalent moles of H2 for
each mole of Fe deposited and H2 in Pual Ridge fluids does
not approach the mmol/L levels expected for the quantities
of Fe removal evident. Hence, an additional sink is required
to consume H2. The only species present in sufficient quan-
tities that is capable of oxidizing H2 in near-seafloor mixing
zones is SO4, which is abundantly present in entrained sea-
water and as anhydrite. Reduction of SO4 by H2 can be rep-
resented by the reaction:

HSO4
� þHþ þ 4H2ðaqÞ ¼ H2SðaqÞ þ 4H2OðlÞ ð8Þ

That each mole of SO4 requires 4 moles of H2 for complete
reduction indicates that reaction (8) could be a very efficient
sink for H2 generated by pyrite precipitation. Moreover, the
kinetics of this reaction are greatly enhanced by the highly
acidic nature of these fluids, requiring timescales of a few
hours to reach near-equilibrium states at subsurface condi-
tions (Ohmoto and Lasaga, 1982). The lack of positive
deviations in d34SSO4

values (Table 1) expected for partial
reduction of entrained seawater SO4 (Woodruff and
Shanks, 1988; Shanks et al., 1995) suggests that anhydrite
SO4 may be involved. In most cases, the decreases in pH
observed for small amounts of seawater mixing are not as
large as predicted from the apparent loss of Fe suggesting
other reactions may be titrating secondary acidity
generated by Fe-sulfide precipitation. This may reflect



remobilization of other metals (e.g. Zn, Au, Ag and Pb),
suggesting that ‘zone refinement’ may be occurring. Tivey
et al. (1995) demonstrated that such remobilization of met-
als was occurring within the TAG hydrothermal mound as
a direct result of modification of high temperature fluids by
subsurface seawater entrainment.

6. SUMMARY

The chemical and isotopic compositions of vent fluid
samples collected from hydrothermal vent fields located
on the Manus Spreading Center (Vienna Woods) and Pual
Ridge (PACMANUS and NE Pual) in the Manus back-arc
basin have been determined. The sites differ substantially in
both substrate type (mafic at Vienna Woods vs. felsic at
Pual Ridge) and proximity to the New Britain subduction
zone (Pual Ridge is closest). Six areas of venting were sam-
pled at PACMANUS, including a large area (Fenway) dis-
covered during this expedition where vigorous 2-phase
venting of 358 �C fluid was observed, and one low temper-
ature fluid was sampled at NE Pual. Distinct differences be-
tween the chemistries of fluids at Vienna Woods and Pual
Ridge indicate that while processes of water–rock interac-
tion and phase separation are common to both, inputs of
acidic magmatic fluids and entrainment of seawater into
the subsurface exert substantial influence on fluid composi-
tions at Pual Ridge.

All fluids at Vienna Woods are characterized by a high
degree of uniformity and are compositionally similar to
mid-ocean ridge basalt-hosted hydrothermal systems. Since
the site was first sampled in 1990, the major element com-
position of fluids there have remained relatively constant.
High absolute abundances and differing molar ratios of
‘soluble’ alkali elements and B in Pual Ridge fluids relative
to those at Vienna Woods reflect hydrothermal interaction
with the more arc-like crust of the Eastern Manus Volcanic
Zone. Fluids from Pual Ridge display Cl variability which,
combined with trends of ‘soluble’ elements and dissolved
gas abundances with Cl, indicates that fluids have under-
gone phase separation even though measured exit tempera-
tures for most vents are much lower than the 2-phase
boundary for seawater. Vienna Woods fluids are substan-
tially cooler than the 2-phase boundary, hence either exten-
sive conductive cooling must be occurring or the chronic
venting of high Cl fluids there reflects residual brine
entrainment.

Measured pH (25 �C) values in low Mg fluids at Pual
Ridge differ from those of Vienna Woods in that values
are far lower than that expected for equilibrium buffering
by host rock mineral assemblages, suggesting the involve-
ment of magmatic fluids containing acid-volatile constitu-
ents (i.e. SO2). The extremely high dissolved metal
contents and ubiquitous negative dDH2O values found at
PACMANUS are also consistent with the input of highly
acidic magmatic fluids at depth to seawater-derived hydro-
thermal fluids. However, extremely high CO2 concentra-
tions (up to 274 mmol/kg) and negative d34SH2S values
(down to �2.7&) – both of which are strongly indicative
of magmatic inputs – are limited to the Snowcap, Satanic
Mills and Fenway vent areas. d34SSO4

values show no indi-
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cation of SO4 derived from magmatic sources, but removal
of such SO4 to anhydrite at depth in the high temperature
reaction zone may have completely erased this signal.
d13C values of CO2 at PACMANUS are higher than those
of Vienna Woods indicating a greater influence of slab-
derived carbon at Pual Ridge, which is located much closer
to the active New Britain Arc.

The ubiquity of non-zero measured Mg concentrations
in Pual Ridge fluids relative to Vienna Woods indicates that
subsurface entrainment of seawater into hydrothermal flu-
ids during upflow is pervasive at the former site and the var-
ious vent areas delineate a spectrum of subsurface mixing
regimes. Trends of increasing non-conservative SO4 behav-
ior, decreasing endmember Ca/Cl and Sr/Cl ratios with in-
creased seawater admixing within vent areas demonstrate
that subsurface precipitation of anhydrite is commonplace
and is substantially modifying the Ca and Sr fluxes of high
temperature fluids. Furthermore, these observations are
accompanied in several cases by trends of decreasing end-
member Fe/Mn ratios and decreasing measured pH
(25 �C) with increasing Mg, implying that iron sulfide depo-
sition is also occurring in the subsurface and is leading to
secondary acidity production.
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