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Failure probability prediction based on condition monitoring data of wind ener
systems for spare parts supply

Kirsten Tracht a, Gert Goch (1)b,*, Peter Schuh a, Michael Sorg b, Jan F. Westerkamp b

a Bremen Institute for Mechanical Engineering (bime), University of Bremen, Badgasteiner Straße 1, 28359 Bremen, Germany
b Bremen Institute for Metrology, Automation and Quality Science (BIMAQ), University of Bremen, Linzer Straße 13, 28359 Bremen, Germany

1. Introduction

Spare parts availability is essential for efficient maintenance
repair and overhaul processes. These are necessary to ensure an
economic machine operation. Long lead times of spare parts lead to
the necessity of stock keeping, which ties a lot of capital because of
high acquisition costs. Spare parts stocking is based on demand
forecasting that possess high potential in reducing the amount of

spare parts in stock. Even if online condition monitoring syste
are installed in complex technical systems like wind ene
systems (WES, Table 1), condition monitoring information is ba
used to predict spare parts demand. The varying loads on w
energy system components and technically different sys
concepts of wind energy systems in general (e.g. rotatio
characteristics, load regulation, or generator type), vary
operating conditions regarding the WES location, and compone
constructed the same way but from different suppliers, resul
varying survival times of units and wide scattered results of
failure analysis [1]. In order to extract usable information about
failure probability for specific components, operational data, ev
failure and damage descriptions have to be comprised 

analyzed systematically. Therefore, an enhanced forecast mo
that considers condition information, has been developed. 

example in Fig. 1 illustrates the availability of the research WE
the University of Bremen in its first year of operation.

For example, during May the elevator rope system failed 

influenced the total availability of the wind turbine due to a re
cycle lasting 10 days. Fig. 1 highlights how this single ev
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Table 1
Acronyms and abbreviations.

Abbreviation Augmentation

a Shape parameter of Weibull distribution

b Regression coefficient

CMS Condition monitoring system

g Density function of binomial distribution

h0(t) Baseline hazard function

hi(t) Hazard function

k Number of spare part demands

l Scale parameter of Weibull distribution

n Number of units

p Failure probability

PHM Proportional hazards model

p(t) Density function of Weibull distribution

SCADA Supervisory control and data acquisition

t Time

T Survival time of Weibull distribution

Temp Temperature

WES Wind energy systems
Fig. 1. Monthly availability (blue) and power output availability (red) of the

research WES of the University of Bremen in (1st year of operation).

WT Wind turbine

x Covariate

CBM Condition based maintenance

WONDER Wind farm management system (brand name)

LWK Chamber of agriculture Schleswig–Holstein

WMEP Scientific measuring- and evaluation programme

* Corresponding author.
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Fig. 2
over 
ced the availability of the research WES significantly in
rast to the ‘‘power/wind-availability’’.

tate of the art

Preventive and corrective maintenance processes

he two most prevalently applied maintenance strategies are
ective and preventive maintenance processes. Corrective
ntenance is carried out unscheduled in case of component
res or if faults are detected in WES components during the
rring inspection [2]. It is the most expensive strategy and
ators strive for minimizing the number of these events,
use of a high risk of unavailable spare parts and prolonged
ntimes, caused by conditions that prohibit maintenance
ities. By contrast preventive maintenance aims at repairing
placing components before they fail. This can be achieved by
duled maintenance activities, also known as time based (or
ned) maintenance, which involves repair or unit replacements
gular time intervals, as recommended by the supplier, and

rdless of its condition. Time based maintenance reveals the
ibility of planning maintenance resources and the instant of

ntenance [3], thus minimizing downtime. This advantage is
rary to the drawback that unnecessary frequent maintenance
s increase the maintenance cost, because the lifespan of units
t entirely utilized. An alternative to preventive and corrective

ntenance is the condition based maintenance strategy, in
ch specific components are monitored and maintenance tasks

determined ahead of failures [4]. Today, maintenance
nicians manually perform failure detection with the help of
ition monitoring systems (CMS).

Condition monitoring

ind farm management or supervisory control and data
isition (SCADA) systems acquire condition monitoring, as well

peration data. For example, the wind farm management system
NDER by Deutsche WindGuard records 10-min mean values of
ation and condition data of a WES and transfers them to a data
isition server. Data of that system have also been processed to
ate the approach presented in this paper. Current and new

rging maintenance strategies for WESs depend on condition
meters and measurements. Those are either supplied by
ponent specific CMS (designed e.g. for gearboxes or bearings)
anufacturer related, plant wide CMS (e.g. GE or Nordex).
or the maintenance of WES, emphasis is put on the gearbox
the main bearing as a direct consequence of the long machine
ntimes caused by failures of these components (Fig. 2).

physical models are not available for failure forecasting because of
complex interactions between WES components and the super-
position of signals.

Despite the large amount of data, condition monitoring
information is not used systematically to predict failures as well
as spare parts demands and manual inspection of data becomes
impractical with the increasing number of WES per operator.

SCADA data on the other hand are readily available [7] and
systems like WONDER collect and store large amounts of data,
which give indications about the WES status. At present, SCADA-
systems are the most cost effective way of implementing a CMS [8].
Kusiak and Verma show that component failures can be predicted
5 to 60 min in advance [9,10]. This short period can be used to
prevent further damages on the WES, but it is not suitable for a
reasonable demand forecasting.

2.3. Demand forecasting of spare parts

Spare parts demand forecasting requires failure forecasting of
units. It is either performed on the basis of historical data or based
on hazard functions [11]. In case of demand prediction by means of
historical data, time series analysis approaches, such as Crostons
method is applied to predict intermittent and lumpy spare part
demands. Crostons method has been modified by Syntetos, who
hereby achieved the lowest forecast-error in demand prediction,
compared to other well known time series analysis methods, like
exponential smoothing or moving average [12]. These algorithms
need a very large amount of historical data, which do not exist
within the comparably young WES industry. Historical data are
missing due to short innovation cycles of units, high WES growth
rates and a lack of profound data recordings. Furthermore,
condition monitoring data and characteristics of maintenance
processes, applied for different machines, as well as wear or aging
processes, are only considered indirectly in time series based
approaches. Hence, observations of changing values of these
parameters cannot be implemented in these methods.

In contrast to this, spare parts demand prediction with the help
of hazard functions offers the opportunity of considering varying
stress or machine loads. Lanza, for example, implemented a shape
parameter into the Weibull distribution that varies with the
machine load. Thereby, the author is able to consider different
operating modes of machine tools [13]. More specific details of
operating modes or condition monitoring data, like temperature
values or oil conditions cannot be integrated into the approach.

Oil conditions have been implemented by Louit [14]. The model
proposed there is a single unit system that investigates the impact
of age and oil condition on the remaining useful lifetime of a unit
with the help of a proportional hazards model (PHM). Considera-
tion of external influences is not possible in his approach. The PHM
has been proposed by Cox in 1972 and is capable of integrating
factors influencing the survival time [15]. Originally the PHM has
been applied in the field of biology to investigate the impact of
various medical treatments. A comprehensive literature review
about PHM applications is presented by Kumar and Klefsjö [16].

Ghodrati showed that the PHM can be used in technical
applications, but neglected time dependent variables. The author
applied the algorithm to predict spare part demands of mining
machines by implementing external influences, like operating
conditions and operator behaviour [17].
. Failure rate and downtime per failure of WES units for two surveys including

20,000 turbine years of data as published in [5].
oday, parameters like oil, gearbox or bearing temperature,
er output, wind speed, wind directions as well as vibrations
monitored online. The majority of available CMS focus on
ation characteristics [6] as defined by DIN ISO 10816. However,
One single time dependent internal variable has been
considered by Louit (oil condition), so it is not possible to utilize
comprehensive operational and online condition monitoring data,
which are available in most technical systems, today. Therefore,
SCADA data are investigated in this paper in order to predict
failures of critical units more accurately. In contrast to existing
applications, internal as well as external time dependent
influences will be integrated into an enhanced forecast model.
Data are processed and applicability of time dependent SCADA
data to a PHM is proven. The approach proposed is verified with
SCADA data of WES. This ensures that failures of units are predicted
2
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depending on machine conditions, on stress states and on the
operating environment, utilizing data that are monitored in nearly
all technical systems, but not used for failure prediction, as yet.

3. Enhanced forecast model

3.1. Model definition

For integrating online condition monitoring and operation data
into the enhanced failure forecast model data mining, the PHM and
a binomial distribution have been applied in this paper. In general,
the PHM is suitable if it is assumed that covariates (influencing
parameters) induce a proportional change in the baseline hazard
function. The forecast model and its coherences proposed in this
paper are summarized in Fig. 3.

Within the enhanced forecast model, parameters influencing
the degradation of the considered unit are derived from the
SCADA-system. Parameter identification is realized by means of
technical coherences as well as expert knowledge. Based on these
parameters data mining is conducted with time dependent SCADA
data for machine status monitoring. For example, in the past,
maintenance technicians observed peaks in the value of the
generator temperature sensor when the degradation of bearings
advances. Hence, generator temperature is integrated as a
condition parameter in the model.

Within the model, any baseline hazard function (h0) can be
combined with covariates xi (Eq. (1)). Their importance is
represented by regression coefficients (b). If all covariates equal
zero, the baseline hazard function describes the risk of failure.

hiðtÞ ¼ h0ðtÞexpðb1xi1 þ b2xi2 þ � � � þ bnxinÞ (1)

Often, lifetime of units is not known, because the failure event
has not happened at the instant of investigation. The reason for
that could be an observation period that is too short. Lifetime data
that are incomplete in terms of end of life are referred to as right
censored data, which are implemented into the PHM with the help
of the partial likelihood estimator (Eq. (2)).

For building the PHM (Eq. (1)), regression coefficients (b) are
calculated for the covariates that influence survival time, whereas
significance of covariates is tested later in the model. As proposed
by Cox, calculation of regression coefficients is performed with the
partial likelihood estimation, without assuming a baseline hazard
function (h0) [15]. For that purpose Eq. (2) is maximized by means

Parameters identified for calculating failure probability of a u
in the first step of the model are tested regarding their statist
significance. This requires hazard functions, which are mode
with individual, all or combinations of covariates and compu
with the likelihood ratio test [18]. The log-likelihood value of
null model, which is the model without covariates, is compare
the log-likelihood value of every other model (Eq. (3)). The re
of Eq. (3) is inserted into the x2 distribution for evaluation of th
value. The smaller the p-value is, the better the covariate or a se
covariates describe the risk of failure. Only the set of covari
with the smallest p-values are selected for failure probab
prediction in further steps of the model.

After validating significance of covariates, the whole mode
validated in terms of adequately describing the failure data. T
validation process utilizes the graphical diagnosis proposed
Schoenfeld [19]. Schoenfeld residuals should vary rando
around zero, without shifting systematically. Otherwise, 

model assumption is violated.
For obtaining the hazard rate of the unit considered,

appropriate failure distribution is chosen dependent on the fai
process of the unit. Failure probability of electronic device
calculated by means of the exponential distribution, for exampl
the unit investigated is exposed to mechanical wear, the haz
function is calculated with the Weibull distribution [11].
density distribution is presented in Eq. (4). The scale parameter
and the shape parameter (a) are calculated as proposed by 

standard (DIN EN 61649:2008), whereas l equals 1/T [20]. 

calculated with historical demand data.

pðtÞ ¼ a
T

t

T

� �ða�1Þ
e�ðt=TÞa

The failure probability of a specific unit regarding its curr
condition and operation information is then inserted int
Binomial distribution. It calculates discrete demand events du
lead time of spare parts. The density function of the binom
distribution in Eq. (5) estimates the number of exactly k events
failure probability of p exists, whereas n represents the amoun
operating units.

gðk; n; pÞ ¼ n
k

� �
pkð1 � pÞn�k

By combining new and established algorithms in the enhan
forecast model SCADA-data are utilized for calculating spare p
demands depending on the units’ condition.

3.2. Scenario description

For the validation of the enhanced forecast model, eleven un
twelve spare part demands (generator bearing) and SCADA d
are analyzed in this paper. The data originate from 19 onsh
WES, which have been put into operation in 2001. From 200
2012 comprehensive SCADA data were recorded. All w
turbines are of the same machine type, but SCADA data 

different in some machines of the wind farm. Hence, only d
recorded completely were tested regarding their applicability
demand prediction of generator bearings (Table 2). Measurem
of temperature within the WES nacelle is carried out at the sp
highlighted in Fig. 4.

SCADA-Data

Estimation of regression coefficients and building of a survival 

function without a baseline hazard function (PHM)

Technical 

dependencies

Data selection 

and aggregation

Historical 

demand data

Failure distribu-

tion (e.g. Weibull)

Baseline hazard 

function

Failure probability calculation 

based on SCADA data

spare part demands 

(Binomial distribution) 

 
Fig. 3. Enhanced forecast model.
Table 2
Condition monitoring data of investigated wind turbines.

Measurement parameters Completely recorded

Temperature of main bearing

Temperature of stator X

Temperature of generator X

Wind speed X

Outside temperature

Wind direction X

Nominal power output X

Temperature of bearing A and B
of Newton’s algorithm.

LðbÞ ¼
Ym
i¼1

expðbxiÞP
tð jÞ � ti

expðbxiÞ
(2)

In the numerator of Eq. (2), only data from units that already
failed are inserted. The denominator also includes operative units.
For every covariate (e.g. wind speed), Eq. (2) calculates a regression
coefficient.

Ĝ ¼ 2½logðLðb̂ÞÞ � logðLð0ÞÞ� (3)
3
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he bearing temperature has been investigated on the basis of
enerator temperature, because the temperature of the bearing
t monitored in all wind turbines. This is reasonable, because

parisons of the two values measured showed that they vary
ortionally according to operation conditions. For validation,
temperature comparison has been conducted for a time span

 years.
or the analysis of time dependent SCADA-data, exceedances of
shold values have been counted and summarized for a time span
ne week. For example, exceedance of the temperature value
shold 100 8C of the generator has been counted. Thereby, no
rmation about the machine status is lost. These prepared data
fed into the enhanced forecast model and experiments have

 conducted with different reasonable parameter combinations.

esults

omputing operations with SCADA data and the statistical
are package R showed that it is possible to process

prehensive SCADA and CMS data. The best result (lowest p-
e of the x2-test) has been obtained with the PHM considering
ime and temperature (Table 3). Investigations showed that the
lue did not improve significantly, when more parameters were
n into account, like power output or wind force. Hence, it is not
ssary to include more SCADA-data for failure prediction in the
ario investigated.

hough the sample size of demand events is low (12 demands),
enfeld residuals did not show any abnormality, which can be
rded as a first feasibility check of the proposed approach.
he hazard rate obtained with the enhanced forecast model

(h)) is shifted in comparison to the baseline hazard rate
. 5). This shifting is caused by operating conditions, recorded

by the SCADA-System (80 temperature exceedances), influencing
the predicted survival time and the number of spare part demands
during lead time (10 weeks). Neglecting machine conditions,
seven demands are calculated with the baseline hazard function,
leading to understocking. In contrast to this, the enhanced
forecast model considered SCADA-data, which represent the
units’ current condition, and predicted ten spare part demands.
Thereby, the model allows for the more accurate estimation of
inventory levels in spare parts planning without venturing
machine availability and presents the basis for reducing main-
tenance costs.

5. Summary

Within this paper an approach utilizing SCADA data for spare
parts prediction of technical systems has been presented. The
method proposed has been tested with data of WES to predict
failures of units that are exposed to mechanical wear. This is
achieved by means of an enhanced forecast model, basing on a
PHM, capable of considering time dependent covariates, and a
binomial distribution. Information about the current temperature
of a generator bearing and its age are implemented in the model.
The model is also capable of considering external influences, but
within the scenario no significant influence on survival time of the
bearing has been observed. Even if 5,700,000 datasets of 6 years of
operation have been investigated, only 12 units of the same type
have been exchanged. Despite the small sample size, the model is
able to calculated appropriate results. It can be used for any unit
that has condition monitoring information available. Further
investigations on other WES units will be conducted to show
how, for example, failure prediction of electronic devices can profit
from SCADA-information.
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