
Low-Power Neural Network Accelerators:
Advancements in Custom Floating-Point Techniques

Dissertation zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.) im Fach Elektrotechnik
und Informationstechnik

Yarib Nevarez

1. Gutachter: Prof. Dr. Alberto García-Ortiz
2. Gutachter: Prof. Dr. Frans Widdershoven

Eingereicht am: 21.12.2023
Tag des Promotionskolloquiums: 22.05.2024

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Acknowledgment

This work is funded by the Consejo Nacional de Ciencia y Tecnologia – CONACYT (the Mexican
National Council for Science and Technology).

I extend my sincere gratitude to the University of Bremen, ITEM, and the Studierendenwerk
for their support and for providing an excelent environment for academic and professional
growth. I would also like to express my appreciation to Mexico and Conacyt for financially
supporting my doctorate, and to Germany and the Netherlands for being my welcoming second
home during my academic and professional experience.

I am deeply grateful to Prof. Dr. Alberto García-Ortiz, my Ph.D. advisor, for his invaluable
guidance and mentorship throughout this journey. His expertise in transforming students into
independent researchers has been fundamental to my development. I also extend my thanks to
Prof. Dr. Frans Widdershoven for his insightful reviews and contributions to my professional
development in industrial research, as well as to the members of the graduation committee for
their valuable feedback and suggestions.

My heartfelt thanks go to my colleagues Ardalan Najafi, Amir Najafi, Wanli Yu, Yanqiu
Huang, Robert Schmidt, Yizhi Chen, Jinming Sun, and Andreas Beering for their exceptional
collaboration, professional support, and brilliant minds. I am also grateful to Prof. Dr. Karl-
Ludwig Krieger, Prof. Dr. Klaus Pawelzik, and Dr. David Rotermund for their excellent
collaboration and guidance. A special mention to all the students I have supervised, whose
engagement and curiosity enriched my doctoral journey. I appreciate the kind and professional
assistance of Kerstin Janssen and Peter Lutzen in the research department. And I am thankful
to Tovalin, Julian Rosales, Fernando De la Torre, Ulises Ponce, Carlos Cruz, and Kai Müller for
their inspiration and support.

On a personal note, I extend my deepest thanks to Atena Berhang and her family for their
constant and heartwarming support. I am forever grateful to my parents for their encouragement
and teachings of virtue and universal love, and to my brothers Kevin and Efren, my greatest
sages and friends. I want to express my infinite love and gratitude to my daughter, Estefania, and
my mother, who have been my infinite sources of power. My gratitude also goes to all my family
members and friends who have supported me with their good wishes throughout my doctorate.

Finally, I would like to express my appreciation to Marcus Aurelius, Epictetus, Seneca, and
Nezahualcóyotl for their philosophical mentorship and inspiration. I want to express my infinite
and eternal love and gratitude to the universe for making this research possible.

Yarib Nevarez
The Netherlands, May 2024.

4

Abstract

The expansion of Artificial Intelligence (AI) is addressing a new era characterized by omnipresent
connected devices. To ensure the sustainability of this transformation, it is imperative to
adopt design strategies that harmonize precise computational results with economically viable
system architectures. Consequently, refining the efficiency and quality of AI hardware engines
stands as a critical consideration in this evolution. This necessitates a balanced approach that
prioritizes energy-efficient computations, precise and reliable results, and integration across
various platforms and devices.

Machine Learning (ML) algorithms are serving as the foundational enabler for the integration
of AI into Internet-of-Things (IoT) devices, particularly in the context of Industry 4.0. These
advancements are shaping applications to be more intelligent and economically rewarding. This
transformation improves numerous domains, from scientific research to industrial processes and
everyday living. However, this technological evolution also brings its own set of challenges.
ML algorithms pose significant computational and energy demands. Consequently, a central
objective of this dissertation is to explore innovative methods for enhancing the hardware
efficiency of computing engines.

Approximate computing techniques, such as quantization, exploit the inherent error resilience
of ML algorithms to address key design concerns in computer systems: energy efficiency, per-
formance, and chip area. Quantization, which involves reducing the number of bits used to
represent numbers, can significantly lower power consumption and data movement, thereby
enhancing energy efficiency by employing compact arithmetic units that save chip area. These
techniques often yield computation acceleration due to reduced data sizes, which promotes
faster, more parallel, and pipelined processing, particularly in neural network computation.
However, this approach introduces a trade-off between precision and model accuracy, necessi-
tating proper hardware design methodologies. While state-of-the-art methods are advancing,
significant research opportunities remain, especially for accelerators with custom Floating-Point
(FP) computation.

In this dissertation, a hardware design methodology is presented for low-power inference of
Spike-by-Spike (SbS) neural networks for embedded applications, within the field of Spiking

Neural Networks (SNNs). Compared to conventional SNNs employing the Leaky Integrate-and-
Fire (LIF) mechanism, SbS neural networks are highlighted for their reduced model complexity
and exceptional noise robustness. However, despite their advantages, SbS networks inherently
possess a memory footprint and computational cost that makes them challenging for deployment
in constrained devices. To solve this issue, this research leverages the intrinsic error resilience
of SbS models, aiming to enhance performance and reduce hardware complexity, while avoiding
quantization. Specifically, this research introduces a novel Multiply-Accumulate (MAC) module
designed to optimize the balance between computational accuracy and resource efficiency of
FP operations. This MAC module features configurable quality through a hybrid approach.
It combines standard FP number representations with a custom 8-bit FP format, as well as a
4-bit logarithmic number representation. This design excludes the use of a sign bit, further
contributing to the compact and efficient representation of numbers. This design enables the
MAC module to be tailored to the specific resource constraints and performance requirements of a
given application, making SbS neural networks possible for deployment in resource-constrained
environments.

In the field of Convolutional Neural Networks (CNNs), this dissertation presents a hardware
design methodology for low-power inference, specifically targeting sensor analytics applications.
Central to this work is the proposal of the Hybrid-Float6 (HF6) quantization scheme and its
dedicated hardware accelerator, designed to function as a Conv2D Tensor Processor (TP). This
quantization strategy employs a hybrid number representation, combining standard FP and a 6-bit
FP format. This strategy allows for a highly optimized FP MAC, reducing mantissa multiplication
into a multiplexer-adder operation. This research introduces a Quantization-Aware Training
(QAT) method that, in certain cases, offers beneficial regularization effects. The efficacy of
this exploration is demonstrated with a regression model, which improves its precision despite
the applied quantization. For ML portability, the custom FP representation is encapsulated
within a standard format – a design characteristic that enables the proposed hardware to process
it automatically. To validate the interoperability of this approach, the hardware architecture
is integrated with TensorFlow Lite, demonstrating compatibility with industry-standard ML

frameworks and affirming the potential for practical deployment in various sensing applications
while maintaining compliance with established ML infrastructure.

This dissertation addresses an essential challenge in the current technological landscape: the
harmonization of computational accuracy with energy efficiency and compatibility of hardware
solutions. This dissertation stands as a significant contribution towards the development of a
sustainable next-generation of neural network processors, essential to empower the increasingly
connected and intelligent world of tomorrow.

6

Kurzfassung

Die Ausweitung Künstlicher Intelligenz (KI) führt in eine neue Ära, die von omnipräsent
vernetzten Geräten geprägt ist. Um die Nachhaltigkeit dieses Wandels zu gewährleisten, ist
es unerlässlich, Designstrategien zu verfolgen, die präzise Rechenergebnisse mit wirtschaftlich
tragfähigen Systemarchitekturen in Einklang bringen. Daher ist die Verfeinerung der Effizienz
und Qualität von KI-Hardware-Engines bei dieser Entwicklung von entscheidender Bedeutung.
Dies erfordert einen ausgewogenen Ansatz, der die Energieeffizienz der Berechnungen, Präzision
und Zuverlässigkeit der Ergebnisse sowie die Integration über verschiedene Plattformen und
Geräte hinweg priorisiert.

Machine Learning (ML)-Algorithmen dienen als grundlegende Voraussetzung für die Inte-
gration von KI in Geräte des Internets der Dinge (IoT), insbesondere im Kontext von Industrie
4.0. Diese Weiterentwicklungen beeinflussen die Gestaltung von Anwendungen, die intelligen-
ter und ökonomisch vorteilhafter werden sollen. Dieser Wandel verbessert zahlreiche Bereiche,
von der wissenschaftlichen Forschung über industrielle Prozesse bis hin zum Alltag. Allerd-
ings bringt diese technologische Entwicklung auch eigene Herausforderungen mit sich. ML-
Algorithmen sind mit einem erheblichen Rechen- und Energiebedarf verbunden. Zentrales Ziel
dieser Dissertation ist es daher, innovative Methoden zur Verbesserung der Hardwareeffizienz
von Rechenmaschinen zu erforschen.

Approximative Rechentechniken, wie die Quantisierung, nutzen die inhärente Fehlerresistenz
von ML-Algorithmen aus, um wichtige Designprobleme in Computersystemen anzugehen: die
Energieeffizienz, die Leistung und die Chipfläche. Durch Quantisierung, bei der die Anzahl
der zur Darstellung von Zahlen verwendeten Bits reduziert wird, können der Stromverbrauch
und der Datenfluss erheblich reduziert und dadurch die Energieeffizienz verbessert werden,
indem flächensparendere Chips in kompakten Recheneinheiten eingesetzt werden. Diese Tech-
niken führen häufig zu einer Rechenbeschleunigung aufgrund reduzierter Datenpaketgrößen.
Dadurch wird eine schnellere, parallelere und in Pipelines ausgeführte Verarbeitung gefördert,
insbesondere bei der Berechnung neuronaler Netze. Andererseits führt dieser Ansatz jedoch zu
einem Kompromiss zwischen Zahlengenauigkeit und Modellgenauigkeit, was geeignete Meth-
oden für den Hardwareentwurf erfordert. Besonders im Hinblick auf Beschleuniger mit be-

nutzerdefinierter Gleitkommaberechnung (FP) gibt es trotz der Fortschritte bei den Methoden
des Stands der Technik immer noch erheblichen Raum für weiterführende Forschung.

In dieser Dissertation wird eine Hardware-Design-Methodik für Low-Power-Inferenz von
neuronalen Spike-by-Spike (SbS)-Netzen für eingebettete Anwendungen im Bereich der Spik-
ing Neural Networks (SNNs) vorgestellt. Im Vergleich zu herkömmlichen SNNs, die den Leaky
Integrate-and-Fire (LIF)-Mechanismus verwenden, werden neuronale SbS-Netzwerke wegen
ihrer reduzierten Modellkomplexität und außergewöhnlichen Rauschrobustheit beleuchtet. Trotz
ihrer Vorteile haben SbS-Netzwerke jedoch von Natur aus einen Speicherplatzbedarf und
Rechenkosten, die den Einsatz in eingeschränkten eingebetteten Systemen zu einer Heraus-
forderung machen. Um dieses Problem zu lösen, verfolgt diese Forschungsarbeit die intrin-
sische Fehlerresilienz von SbS-Modellen zur Leistungsverbesserung und Reduktion der Hard-
warekomplexität bei gleichzeitiger Vermeidung von Zahlenquantisierung. Insbesondere führt
diese Forschungsarbeit ein neuartiges Multiply-Accumulate (MAC)-Modul ein, das entwickelt
wurde, um das Gleichgewicht zwischen Rechengenauigkeit und Ressourceneffizienz von FP-
Operationen zu optimieren. Dieses MAC-Modul bietet konfigurierbare Qualität durch einen hy-
briden Ansatz. Es kombiniert Standard-FP-Zahlendarstellungen mit einem benutzerdefinierten
8-Bit-FP-Format sowie einer logarithmischen 4-Bit-Zahlendarstellung. Ferner kommt dieses
Design ohne Verwendung eines Vorzeichenbits aus und trägt somit weiter zur kompakten
und effizienten Darstellung von Zahlen bei. Darüber hinaus ermöglicht dieses Design, das
MAC-Modul an die spezifischen Ressourcenbeschränkungen und Leistungsanforderungen einer
bestimmten Anwendung anzupassen, wodurch neuronale SbS-Netzwerke für den Einsatz in
Umgebungen mit eingeschränkten Ressourcen bereitgestellt werden können.

Im Bereich der Convolutional Neural Networks (CNNs) stellt diese Dissertation eine Hardware-
Design-Methodik für Low-Power-Inferenz vor, die speziell auf Sensor-Analyse-Anwendungen
abzielt. Im Mittelpunkt dieser Arbeit steht der Vorschlag für das Quantisierungsschema Hybrid-
Float6 (HF6) und sein dedizierter Hardwarebeschleuniger, der als Conv2D-Tensorprozessor (TP)
fungieren soll. Diese Quantisierungsstrategie verwendet eine hybride Zahlendarstellung, welche
Standard-FP mit einem 6-Bit-FP-Format kombiniert. Diese Strategie ermöglicht einen hochop-
timierten FP-MAC, der die Mantissenmultiplikation auf eine Multiplexer-Addierer-Operation
reduziert. Diese Forschungsarbeit führt eine Quantization-Aware Training (QAT)-Methode ein,
die in bestimmten Fällen vorteilhafte Regularisierungseffekte bietet. Die Wirksamkeit dieses
Ansatzes wird in einem Regressionsmodell demonstriert, das trotz der angewendeten Quan-
tisierung eine verbesserte Genauigkeit zeigt. Für die ML-Portabilität wird die benutzerdefinierte
FP-Darstellung in ein Standardformat gekapselt - ein Designmerkmal, das es der vorgeschla-
genen Hardware ermöglicht, sie automatisch zu verarbeiten. Um die Interoperabilität dieses

8

Ansatzes zu validieren, wird die Hardware-Architektur in TensorFlow Lite integriert. Hiermit
wird die Kompatibilität zum Industriestandard-ML-Frameworks demonstriert und das Poten-
zial für den praktischen Einsatz in verschiedenen Sensoranwendungen unter Beibehaltung der
Einhaltung der etablierten ML-Infrastruktur bestätigt.

Diese Dissertation befasst sich mit einer wesentlichen Herausforderung in der aktuellen
technologischen Landschaft: der Harmonisierung von Rechengenauigkeit mit Energieeffizienz
und der Kompatibilität von Hardwarelösungen. Sie leistet einen wesentlichen Beitrag zur
Entwicklung einer nachhaltigen nächsten Generation von neuronalen Netzwerkprozessoren, die
für die Stärkung der zunehmend vernetzten und intelligenten Welt von morgen unerlässlich sind.

9

Contents

Contents

1. Introduction 1
1.1. Preamble . 1

1.1.1. AI/ML in Industry 4.0 . 1
1.1.2. Rationale for AI/ML Acceleration in IoT Applications 2
1.1.3. Approximation in AI/ML . 4

1.2. Problem Statement . 5
1.2.1. Power Dissipation . 6
1.2.2. Aggressive Quantization . 6
1.2.3. Interoperability . 7

1.3. Working Hypothesis . 7
1.4. Research Objective . 8
1.5. Scope . 9
1.6. Contributions . 11

1.6.1. Accelerating Spike-by-Spike Neural Networks with Hybrid 8-bit Floating-
Point and 4-bit Logarithmic Computation 11

1.6.2. Accelerating Convolutional Neural Networks with Hybrid 6-bit Floating-
Point Computation . 11

1.7. Publications . 12
1.8. Dissertation Outline . 13

2. Background and Related Work 15
2.1. Introduction . 15
2.2. Spiking Neural Networks . 16
2.3. Conventional Artificial Neural Networks . 21

2.3.1. Architecture . 21
2.3.2. Training Process . 24
2.3.3. Multi-Layer Perceptron . 25
2.3.4. Convolutional Neural Networks . 26

I

Contents

2.4. Neural Network Accelerators . 30
2.4.1. The Need for Accelerators . 30
2.4.2. Types of Accelerators . 32
2.4.3. Design Considerations . 33

2.5. Precision and Effect in Training . 35
2.5.1. Fixed-Point . 35
2.5.2. Floating-Point . 36
2.5.3. Post-Training Quantization . 38
2.5.4. Quantization-Aware Training . 38

2.6. Dataflow Taxonomy . 40
2.7. Flynn’s Taxonomy . 41
2.8. Multiply-Accumulate Unit . 42

2.8.1. Design Considerations . 43
2.9. Related Work . 44

2.9.1. Aggressive Quantization . 44
2.9.2. Spiking Neural Network Accelerators 45
2.9.3. Convolutional Neural Network Accelerators with Custom Floating-Point

Computation on Field-Programmable Gate Array (FPGA) 46
2.9.4. Neural Network Accelerators for Training and Inference with 8-bit

Floating-Point Computation on Application-Specific Integrated Circuit
(ASIC) . 50

2.9.5. Academic and Industrial Research on 8-bit Floating-Point Quantization
Techniques in Neural Network Training 51

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation 53
3.1. Introduction . 54
3.2. Design Technique . 57

3.2.1. Hardware Architecture . 58
3.2.2. Conv Processing Unit . 59
3.2.3. Hybrid Custom Floating-Point Multiply-Accumulate Unit: Vector Dot-

Product Approximation . 60
3.3. Experimental Results . 66

3.3.1. Performance Benchmark . 67
3.3.2. Design Exploration with Hybrid Custom Floating-Point and Logarith-

mic Computation . 72
3.3.3. Results and Discussion . 77

II

Contents

3.4. Conclusions . 79

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation 83
4.1. Introduction . 84
4.2. Design Technique . 86

4.2.1. Base Embedded System Architecture 86
4.2.2. Tensor Processor . 87
4.2.3. Training Method . 94
4.2.4. Embedded Software Architecture . 98

4.3. Experimental Results . 102
4.3.1. Sensor Analytics Application . 103
4.3.2. Training . 106
4.3.3. Hardware Design Exploration . 110
4.3.4. Discussion . 113

4.4. Conclusions . 117

5. Conclusion and Outlook 119
5.1. State-of-the-art challenges and solutions . 119
5.2. Key Contributions . 119
5.3. Future Directions . 120
5.4. Final Remarks . 120

A. Appendix 123
A.1. Tensor Processor Delegate and Hardware Drivers 123

A.1.1. Tensor Processor Delegate . 124
A.1.2. Hardware Drivers . 125
A.1.3. ARM Generic Interrupt Controller . 126
A.1.4. Supporting Classes . 126

A.2. TensorFlow Lite Integration . 127
A.3. SbS algorithm . 139

III

1. Introduction

1.1. Preamble . 1

1.2. Problem Statement . 5

1.3. Working Hypothesis . 7

1.4. Research Objective . 8

1.5. Scope . 9

1.6. Contributions . 11

1.7. Publications . 12

1.8. Dissertation Outline . 13

1.1. Preamble

This section presents the preamble to investigate design methodologies for low-power hard-
ware accelerators of AI/ML algorithms focusing on inference quality, scalability, versatility, and
compatibility as design philosophy.

1.1.1. AI/ML in Industry 4.0

AI and ML play a crucial role in the context of Industry 4.0, which is characterized by the
integration of digital technologies into manufacturing and industrial processes to create a more
connected, intelligent, and automated environment.

Industry 4.0

Since the beginning of industrialization, technological leaps have led to paradigm shifts, now
called "industrial revolutions": from mechanization, electrification, and later, digitalization (the
so-called 3rd industrial revolution). Based on the advanced digitalization within factories, the

1

1. Introduction

combination of Internet technologies and future-oriented technologies in the field of "smart"
things (machines and products) seems to result in a new fundamental paradigm shift in industrial
production. Emerging from this future expectation, the term "Industry 4.0" was established for
an expected "4th industrial revolution" [1].

Internet-of-Things in Industry

To build the emerging environment of Industry 4.0, disruptive technologies are required to
handle autonomous communications between all industrial embedded computers throughout the
factory and the Internet. Such technologies offer the potential to transform the industry along
the entire production chain and stimulate productivity and overall economic growth [2]. These
technologies include cloud computing, big data, and specially a new generation of IoT devices
fused with Cyber-Physical Systems (CPS), safety-security, augmented reality, ML, and hardware
accelerators [3].

1.1.2. Rationale for AI/ML Acceleration in IoT Applications

The continuous evolution of AI algorithms and IoT devices has not only made AI the major
workload running on these embedded devices, but has transformed AI into the main approach
for industrial solutions, specially in the rise of Industry 4.0 [3]. As a result, the term IoT has also
been redefined as AI of Things (AIoT) to emphasize the impact of this technology [4].

There are key motivations for accelerating AI/ML algorithms within IoT devices, focusing
on mission criticality, real-time processing, data privacy and security, and offline operation
capabilities [5]:

Mission Criticality

In mission-critical applications such as medical devices, autonomous vehicles, and industrial
automation, the need for quick and reliable decisions is essential. Low-power neural network
accelerators allow these devices to make decisions in real-time without significant power con-
sumption. These accelerators can be designed to meet stringent safety and reliability standards,
reducing the risk of failures in critical applications.

Real-Time Processing

For applications such as autonomous vehicles, drones, and robotics, immediate processing of
sensor data (such as images and LIDAR data) is necessary. Low-power accelerators can process

2

1.1. Preamble

this data on-device in real-time, reducing latency compared to cloud-based solutions. Real-time
processing is crucial for responsive and adaptive system behavior, which is essential for the
smooth functioning of IoT systems.

Data Privacy and Security

Processing data on-device, rather than sending it to a central server or cloud, can substan-
tially mitigate the risk of data interception or manipulation. With the increasing scrutiny and
regulations around data privacy (e.g., General Data Protection Regulation (GDPR)), processing
data locally on a device is a critical advantage, enabling compliance with data protection laws.
For sensitive applications such as smart home devices or wearables that handle personal data,
on-device processing with low-power neural network accelerators maintains user privacy.

Offline Operation Capabilities

Low-power neural network accelerators enable IoT and embedded devices to operate indepen-
dently of network connectivity, allowing for effective functioning in remote or disconnected
environments. These accelerators allow for continuous operation without reliance on a central
server, which is critical in situations where connectivity is inconsistent, costly, or non-existent,
such as in agricultural or maritime contexts.

Energy Efficiency

For battery-powered or energy-harvesting devices, the power consumption of the processing unit
is a critical constraint. Low-power accelerators are optimized for energy efficiency, which is
essential for prolonging operational lifetime of the device without frequent battery replacements
or recharging.

Emerging Applications

• Edge AI: This is where AI algorithms are processed locally on a hardware device. The
algorithms are run locally, on a hardware chip, without requiring a connection to a network,
unlike in cloud AI where algorithms run in a data center. Low-power accelerators are key
enablers of this paradigm.

• TinyML: Tiny Machine Learning (TinyML) is the deployment of machine learning algo-
rithms on low-power hardware, such as microcontrollers. These devices are particularly
relevant in IoT applications where power, cost, and form factor are key considerations.

3

1. Introduction

• Predictive Maintenance: In industrial IoT applications, low-power neural network ac-
celerators can be used to continuously monitor the health of machinery and predict when
maintenance is required in a reliable and energy-efficient manner.

• Health Monitoring: Continuous health and wellness monitoring through wearable de-
vices is an emerging application. For example, real-time analysis of ECG or other
biometric data can be performed efficiently on-device using low-power accelerators.

• Smart Agriculture: These devices can be used for precision farming, where they analyze
data from various sensors in real-time and make decisions to optimize farming practices.

• Natural Language Processing: In consumer devices, such as smart speakers or smart-
phones, low-power neural network accelerators enable more efficient and responsive voice
recognition and processing.

• Federated Learning: Low-power accelerators can facilitate Federated Learning (FL)
by efficiently handling the computations required for local model training and updates,
thereby contributing to both data privacy and security.

1.1.3. Approximation in AI/ML

Based on the error tolerance in ML algorithms, a promising solution is approximate computing.
This paradigm has been used in a wide range of applications to increase hardware efficiency [6].
For neural network applications, two main approximation strategies are used, namely network
compression and classical approximate computing [7].

Network Compression and Quantization

Researchers focusing on embedded applications started lowering the precision of weights and
activation maps to shrink the memory footprint of the large number of parameters representing
Artificial Neural Networks (ANNs), a method known as network quantization. In this manner,
reduced bit precision causes a small accuracy loss [8, 9, 10, 11]. In addition to quantization,
network pruning reduces the model size by removing structural portions of the parameters and
their associated computations [12, 13]. This method has been identified as an effective technique
to improve the efficiency of neural network models for applications with limited computational
and energy budget [14, 15, 16]. These techniques leverage the intrinsic error-tolerance of neural
networks, as well as their ability to recover from accuracy degradation while training.

4

1.2. Problem Statement

Error Tolerance in AI/ML Algorithms

An algorithm can be regarded as error-tolerant or error-resilient when it provides a result
with the required accuracy while utilizing processing components with a certain degree of
inaccuracy. There are several reasons why an algorithm/application is tolerant of errors as
discussed in [17]. These include noisy or redundant data of the algorithm, approximate or
probabilistic computations within the algorithm, and a range of acceptable outcomes. This is
the case of AI/ML models.

Approximate Computing

Approximate computing is a design paradigm that can trade-off computation quality (e.g.,
accuracy) and computational efficiency (e.g., in run-time, chip-area, and/or energy) by exploiting
the error resilience of applications/algorithms [18, 19]. Data redundancy of neural networks
incorporates a certain degree of resilience against random external and internal perturbations;
for instance, noisy inputs and random hardware errors. This property can be exploited in a
cross-layer resilience approach [20]: by leveraging error tolerance at algorithmic-level, it can
be allowed a certain degree of inaccuracies at the computing-level. This approach consists
of designing processing elements that approximate their computation by employing cleverly
modified algorithmic logic units [6].

Approximate computing techniques significantly enhance processing efficiency while only
moderately impacting accuracy. Several studies have demonstrated the feasibility of applying
these techniques to the inference stage of neural networks [21, 6, 22, 23, 24, 25]. These methods
typically result in slight reductions in inference accuracy but offer considerable improvements in
processing efficiency, chip area, and energy consumption. Consequently, leveraging the inherent
error-tolerance of neural networks, approximate computing emerges as a promising strategy for
AI/ML computations on resource-constrained devices.

1.2. Problem Statement

A fundamental problem for the rise of AI in Industry 4.0 is the fact that ML models are highly
computational and data intensive. This brings significant challenges across the spectrum of com-
puting hardware, especially in the scope of embedded systems [26]. The most deployed models
and also some of the most computationally and energy expensive are CNNs for computer vision
applications. Compared to conventional image processing methods, the accuracy of CNNs has
improved so significantly that by 2015, computers surpassed humans in image classification [5].

5

1. Introduction

The early development of CNNs, prior to 2016, mainly focused on accuracy enhancement with-
out considering computational costs. While the accuracy of deep CNNs for image classification
improved by 24% between 2012 and 2016, the demand on hardware resources increased by
more than 10×. Starting from 2017, there has been significant attention paid to improving
hardware efficiency in terms of compute power, memory bandwidth, and power consumption,
while maintaining accuracy at a level comparable to human perception [26].

1.2.1. Power Dissipation

Consequently, the recent breakthroughs in AI/ML applications have brought significant advance-
ments in neural network processors [27]. To bring the inference speed to an acceptable level,
ASIC with Neural Processing Unit (NPU) are becoming ubiquitous in both embedded and general
purpose computing. NPUs perform several tera operations per second in a confined area, as
a consequence, they become subject to elevated on-chip power densities that rapidly result in
excessive on-chip temperatures during operation [28]. Subsequently, the elevated power sup-
ply, physical dimensions, heat sink, and air cooling requirements demand a balance between
the benefits of ML against its financial and environmental costs. This outcome is delivered by
parallel computing techniques, yet unsustainable in resource-constrained devices. Therefore,
radical changes to conventional computing are required to sustain and improve performance
while satisfying energy and temperature constraints [18].

1.2.2. Aggressive Quantization

Furthermore, reducing the computing hardware with aggressive quantization such as binary [8],
ternary [29], and mixed precision (2-bit activations and ternary weights) [30] typically incur
significant accuracy degradation for very low precisions, especially for complex problems [31],
such as regression, semantic segmentation, machine translation, language generation, playing
agents, image/music generation, and medical applications.

While aggressive quantization can be beneficial for resource-constrained environments and
non-critical applications, careful consideration and a more conservative approach are essential
for ensuring the safety and reliability of AI/ML systems in high-accuracy or mission-critical
domains. Quantization techniques must be chosen wisely, keeping in mind the specific require-
ments and constraints of each application.

6

1.3. Working Hypothesis

1.2.3. Interoperability

Aggressive or exotic quantization might not be supported by all hardware/software platforms.
Custom hardware accelerators may have limitations on the precision they can handle effectively,
limiting the compatibility and portability of aggressively quantized models. Aggressively quan-
tized models may not be compatible with all frameworks, libraries, or AI platforms, limiting their
interoperability and portability across different environments. In real-world deployment scenar-
ios, there may be constraints and requirements that make aggressive quantization impractical,
especially when high accuracy, compatibility, portability, and interoperability are necessary.

1.3. Working Hypothesis

The primary hypothesis guiding this research is as follows:

Implementing a mixed or hybrid precision approach in neural network accelerators
– using reduced FP bit-width for weights and biases while retaining standard FP

for activation maps – can substantially decrease power consumption and thermal
dissipation, without significantly compromising inference accuracy.

Under this central hypothesis, the proposed neural network accelerator design, which adopts
this hybrid precision approach, is postulated to achieve the following specific outcomes:

H1 Efficient Hardware Operation: Minimization of power consumption and thermal output,
enabling sustained and efficient hardware operation [32].

H2 High Inference Quality: Preservation of high-quality inference results by maintaining
standard FP precision in activation maps, despite reduced precision in weights and biases.

H3 Enhanced Hardware Efficiency: Improvement in the hardware efficiency of the ac-
celerator, facilitated by faster arithmetic operations and decreased memory bandwidth
requirements, due to the hybrid precision approach [32].

H4 Compatibility and Interoperability: Ability to efficiently handle various precision levels
for weights, biases, and activation maps, ensuring compatibility and integration across
diverse industry standard software frameworks and hardware platforms.

H5 Accuracy Preservation via QAT: Utilization of QAT to adapt neural network models to the
hybrid precision, maintaining high model accuracy despite reduced precision components.

7

1. Introduction

Implications This research seeks to demonstrate that the strategic application of hybrid FP

precision computation in neural network accelerators can enable a new paradigm of energy-
efficient machine learning hardware without sacrificing quality, reliability, and interoperability.

1.4. Research Objective

The overarching objective of this research is to:

Develop advanced methodologies for energy-efficient neural network accelerators
that utilize custom FP computation in resource-constrained environments.

This primary objective can be decomposed into specific sub-objectives and key aspects, which
are enumerated as follows:

O1 Optimized Custom FP Representation: Examine custom FP representations that are
minimal and specifically tailored for neural network computations, involving various
non-standard FP formats with different bit-widths for the exponent and mantissa.

O2 Energy-Efficient Design Strategies: Investigate design strategies from logic-level op-
timizations to architectural-level approaches, with the primary aim of minimal energy
consumption.

O3 Custom FP Arithmetic Units: Research the design and implementation of arithmetic
units optimized for energy-efficient execution of proposed custom FP computations.

O4 Task-Specific Hardware Optimization: Study accelerator architectures specialized for
neural network tasks in environments with constrained resources, employing techniques
such as pipelining and hardware-specific optimizations to ensure efficiency and high
Quality of Result (QoR).

O5 Precision and Quantization Impact Analysis: Thoroughly explore and analyze the
effects of quantization and reduced precision on model accuracy, employing QAT and
dynamic precision techniques to preserve or enhance accuracy.

O6 Scalability and Flexibility: Investigate scalability solutions that can adeptly handle
diverse neural network models and sizes, promoting broader applicability.

O7 Comparative Analysis with Alternative Techniques: Conduct comparisons with other
energy-efficient neural network accelerators to emphasize the unique advantages and
strengths of the proposed custom FP computation approaches.

8

1.5. Scope

O8 Performance Evaluation and Benchmarking: Perform rigorous evaluation and bench-
marking against the existing state-of-the-art, aiming to highlight the benefits in terms of
energy efficiency and computational performance.

O9 Practical Application Demonstrations: Showcase the practical applicability of the
proposed methodologies in low-power and resource-constrained scenarios, such as IoT

devices and sensor analytics.

O10 Directions for Future Research: Offer valuable insights into potential future research
paths for further refining energy-efficient neural network accelerators with custom FP

computation for learning purposes.

Core Aims

• Quality Preservation: Ensure that reduced precision does not compromise accuracy and
reliability.

• Versatility: Design accelerators adaptable to diverse neural network tasks and deployment
scenarios.

• Compatibility: Facilitate integration of the proposed accelerator designs with existing
systems and software frameworks.

Overall, this research aims to significantly contribute to the evolving development of energy-
efficient neural network accelerators, targeting an advancement of the state-of-the-art in this
field.

1.5. Scope

The scope of this research encompasses the development of energy-efficient and high-quality in-
ference mechanisms for SbS and CNN models in resource-constrained applications. The method-
ologies are particularly tailored for deployment on System-on-Chip (SoC) devices, which operate
under stringent computational, memory, and power constraints.

S1 Spike-by-Spike Neural Networks

• SNNs offer advantageous robustness and the potential to achieve a power efficiency
closer to that of the human brain.

9

1. Introduction

• They operate reliably using stochastic elements that are inherently non-reliable mech-
anisms [33]. This provides superior resistance against adversary attacks [34, 35].

• The Spike-by-Spike model is on the less realistic side of the SNN scale of biological
realism [36, 34]. Consequently, the hardware complexity of SbS network implemen-
tations is greatly reduced [37].

• Despite the reduced complexity, SbS retains the advantageous robustness of SNNs

through its use of stochastic spikes for transmitting information between neuron
populations.

• However SbS models present elevated computational demands and memory foot-
print, unsuitable for resource-constrained environments. Hence, these models have
not been investigated in low-power applications. SbS accelerators can facilitate neu-
roscience research [34, 38, 39] and contribute to deploying robust neural networks
in small embedded systems [40].

S2 Convolutional Neural Networks

• CNNs are the essential building blocks in 2D pattern analytics. They have been
employed in sensor-based applications, such as mechanical fault detection, structural
health monitoring, Human Activity Recognition (HAR), and hazardous gas detection,
both in industry and academia [41, 42, 43, 44, 45].

• CNN models provide advantages such as local dependency, translation invariance,
and noise resilience in analytics [22].

• These models, however, are computationally intensive and power-hungry, posing
challenges for low-power embedded applications, particularly in the field of IoT and
sensor analytics.

• Numerous commercial ASIC and FPGA accelerators have been proposed for data-
centers and embedded systems applications. However, most target mid- to high-
range FPGAs and exhibit drawbacks, such as high power supply demands, physical
dimensions, cooling requirements, and cost.

• Aggressive quantization (e.g., binary, ternary, and mixed precision implementations)
often incurs significant accuracy degradation, especially for complex problems [8,
29, 30, 31].

• These limitations prevent widespread applicability in scenarios where low-power,
accuracy, and interoperability are mandatory.

10

1.6. Contributions

1.6. Contributions

This research produces hardware design methodologies for low-power hardware accelerators
with custom FP computation that reconcile efficiency with inference quality, and compatibility.
This work is demonstrated on SbS and CNN hardware accelerators on resource-constrained SoC

FPGAs.

1.6.1. Accelerating Spike-by-Spike Neural Networks with Hybrid 8-bit
Floating-Point and 4-bit Logarithmic Computation

1. Optimized MAC Design: An optimized FP MAC design with hybrid precision is presented.
It utilizes the IEEE 754 single-precision FP for feature maps and a custom FP representation
for weights, which significantly enhances efficiency through reduced latency, minimized
hardware resources, and a smaller memory footprint, while maintaining QoR.

2. Design Exploration and Evaluation: A comprehensive design exploration for 8 and
4-bit input weight FP representation is detailed. Evaluations report runtime, accuracy
degradation, hardware resource utilization, and power consumption. A significant latency
improvement and minimal accuracy degradation were measured.

3. Quality Monitoring through Noise Tolerance Plot: A noise tolerance plot is proposed
as a quality monitor, intended to serve as an intuitive visual model that provides insights
into the accuracy degradation of SbS networks when subjected to custom FP computation.

4. Adaptable Design for Error-Resilient Applications: The custom FP MAC design is
proposed as adaptable for use as a building block in other error-resilient applications, such
as image/video processing.

1.6.2. Accelerating Convolutional Neural Networks with Hybrid 6-bit
Floating-Point Computation

1. HF6 Quantization and MAC Design: This research introduces a 6-bit FP representation
tailored specifically for weights and bias. The proposed hardware MAC unit integrates the
IEEE 754 single-precision FP used for feature maps and a custom FP scheme designed
for weights. This combination boosts efficiency in multiple dimensions: a marked reduc-
tion in latency through denormalized accumulation, hardware area reduction achieved by

11

1. Introduction

changing traditional mantissa multiplication with a more efficient multiplexer-adder oper-
ation, and optimized memory usage. The QoR is retained throughout these enhancements.
This balance is further augmented by the incorporation of the QAT approach to assure
model accuracy.

2. Custom Hardware/Software Co-design Framework: A co-design framework for CNN

sensor analytics applications has been developed, targeting resource-constrained SoC FP-

GAs. This architecture incorporates TensorFlow Lite.

3. Customizable Tensor Processor with HF6: A customizable TP is demonstrated as a proof
of concept with HF6. Significant acceleration is achieved for the Conv2D tensor operation
without accuracy degradation employing QAT.

4. Demonstration and Design Exploration: The potential of this approach is showcased
with a CNN-regression model for anomaly localization in Structural Health Monitoring
(SHM) based on Acoustic Emission (AE). A hardware design exploration evaluates accu-
racy, compute performance, hardware resource utilization, and energy consumption.

1.7. Publications

The outcome of this dissertation, including the collaborative work with our research partners is
a list of publications. In the following, a complete list of the related publications is itemized.

Journal Articles

1. Yarib Nevarez, David Rotermund, Klaus R Pawelzik, and Alberto Garcia-Ortiz, "Accel-
erating Spike-by-Spike Neural Networks on FPGA With Hybrid Custom Floating-Point
and Logarithmic Dot-Product Approximation," IEEE Access, vol. 9, pp. 80603–80620,
May 2021, doi: 10.1109/ACCESS.2021.3085216.

2. Yarib Nevarez, Andreas Beering, Amir Najafi, Ardalan Najafi, Wanli Yu, Yizhi Chen,
Karl-Ludwig Krieger, and Alberto Garcia-Ortiz, "CNN Sensor Analytics With Hybrid-
Float6 Quantization on Low-Power Embedded FPGAs," IEEE Access, vol. 11, pp.
4852–4868, January 2023, doi: 10.1109/ACCESS.2023.3235866.

12

1.8. Dissertation Outline

Conference Proceedings

3. Yarib Nevarez, Alberto Garcia-Ortiz, David Rotermund, and Klaus R Pawelzik, "Ac-
celerator framework of spike-by-spike neural networks for inference and incremental
learning in embedded systems," 2020 9th International Conference on Modern Circuits
and Systems Technologies (MOCAST), Bremen, 2020, pp. 1–5, doi: 10.1109/MO-
CAST49295.2020.9200288.

4. Wanli Yu, Ardalan Najafi, Yarib Nevarez, Yanqiu Huang and Alberto Garcia-Ortiz,
"TAAC: Task Allocation Meets Approximate Computing for Internet of Things," 2020
IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5,
doi: 10.1109/ISCAS45731.2020.9180895.

5. Amir Najafi, Ardalan Najafi, Yarib Nevarez and Alberto Garcia-Ortiz, "Learning-Based
On-Chip Parallel Interconnect Delay Estimation," 2022 11th International Conference on
Modern Circuits and Systems Technologies (MOCAST), Bremen, 2022, pp. 1–5, doi:
10.1109/MOCAST49295.2020.9200288.

6. Yizhi Chen, Yarib Nevarez, Zhonghai Lu, and Alberto Garcia-Ortiz, "Accelerating
Non-Negative Matrix Factorization on Embedded FPGA with Hybrid Logarithmic Dot-
Product Approximation," 2022 IEEE 15th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), Malaysia, 2022, pp. 239–246, doi:
10.1109/MCSoC57363.2022.00070.

7. Ardalan Najafi, Wanli Yu, Yarib Nevarez, Amir Najafi, Andreas Beering, Karl-Ludwig
Krieger, and Alberto Garcia-Ortiz, "Acoustic Emission Source Localization using Approx-
imate Discrete Wavelet Transform," 2023 12th International Conference on Modern Cir-
cuits and Systems Technologies (MOCAST), Bremen, 2023, pp. 1–5, doi: 10.1109/MO-
CAST57943.2023.10176952.

1.8. Dissertation Outline

This dissertation is organized into three main parts: an introduction that lays the groundwork for
understanding the challenges and motivations of the topic; a central core that details the specific
methodologies and results obtained in the study; and a final part that includes the conclusions
drawn from the research and potential future works. More specifically:

I Introduction:

13

1. Introduction

• Chapter 1: Introduction to AI in the current industrial context and its implication in
the low-power IoT landscape - Describes the current technological landscape where
AI is integrated into omnipresent devices, highlighting the importance of sustainable
and efficient design.

• Chapter 2: Background on neural networks and hardware acceleration with custom
FP computation - A dive into the concepts and inherent challenges posed by these
algorithms, especially in terms of computational and energy demands.

II Core:

• Chapter 3: This chapter delves into the design of low-power SbS neural network
accelerators for embedded systems, emphasizing their advantages and challenges,
and introduces an innovative hardware MAC module that blends various FP formats
to optimize computational accuracy and efficiency, facilitating the deployment of
SbS networks in resource-limited settings.

• Chapter 3: This chapter presents an innovative hardware design for efficient low-
power CNN inference in sensor analytics, highlighting the HF6 quantization method
that merges standard FP with 6-bit FP, and integrates harmoniously with Tensor-
Flow Lite, demonstrating its applicability and alignment with industry standard ML

platforms.

III Conclusions:

• Chapter 5: Reflections and future directions - Summarizes the key findings of the
research, its implications in the field of low-power neural network accelerators, and
the potential avenues for future research and development.

14

2. Background and Related Work

2.1. Introduction . 15

2.2. Spiking Neural Networks . 16

2.3. Conventional Artificial Neural Networks 21

2.4. Neural Network Accelerators . 30

2.5. Precision and Effect in Training . 35

2.6. Dataflow Taxonomy . 40

2.7. Flynn’s Taxonomy . 41

2.8. Multiply-Accumulate Unit . 42

2.9. Related Work . 44

2.1. Introduction

At the heart of the AI revolution lie neural networks, which are computational models inspired by
the human brain. These algorithms have demonstrated an unprecedented ability to discern pat-
terns, extract insights, and make predictions from given data, often matching or even surpassing
human capabilities in certain domains [46, 47, 48, 49, 50].

However, the massive growth and complexity of neural networks have also given rise to
significant computational challenges. Deep neural networks, characterized by their multi-layered
architectures, can contain millions, or even billions, of parameters. Training and deploying
these models demand elevated amounts of computational power. Traditional Central Processing
Unit (CPU), while versatile, are not inherently optimized for the parallel and matrix-based
computations that neural networks demand. This computational bottleneck not only impacts the
speed and efficiency of neural network operations but also their energy consumption. This is a
critical concern in our increasingly mobile and interconnected world.

15

2. Background and Related Work

Neural networks accelerators such as Graphics Processing Units (GPUs), Tensor Processing
Units (TPUs), specialized ASIC, and FPGA-based implementations have emerged as important
players, providing the needed performance to drive neural computations fast and efficiently. As
the quest for speed and efficiency continues, there is a growing interest in further refining these
accelerators, particularly through custom numerical representations such as custom floating-
point computation. This avenue promises a harmonious blend of performance and power
efficiency, potentially announcing a new season for neural network engines.

This chapter examines the world of neural networks, starting with SNNs which mimic bio-
logical neuron behavior using time-sensitive spikes for communication. It then transitions into
traditional ANNs to present the specifics of CNNs that use continuous values. The discussion
further explores their indelible mark on modern computation and the imperatives driving the
development of dedicated hardware accelerators. Through this exploration, it is provided the
background stage into low-power neural network accelerators leveraging custom floating-point
computation.

2.2. Spiking Neural Networks

SNNs are a subclass of ANNs that are more closely aligned with the behavior of biological neurons.
Unlike the traditional ANN neurons, which transmit information through real-valued outputs,
neurons in SNNs communicate using discrete spikes or "action potentials". This spiking behavior
allows SNNs to process information in a temporal domain, which is potentially more energy-
efficient and closer to biological realism than traditional ANNs like Multi-Layer Perceptrons
(MLPs), CNNs, Recurrent Neural Networks (RNNs), and Long Short-Term Memory networks
(LSTMs), among others.

The primary distinction between SNNs and conventional ANNs centers on their neuron mod-
eling approach. While conventional ANNs rely on activation functions for continuous output,
SNNs model the temporal dynamics of spiking behavior. This makes SNNs especially relevant in
neuromorphic engineering, where researchers aim to develop hardware that mimics the behavior
and efficiency of biological brains.

SNNs exhibit inherent robustness comparable to the brain, operating reliably using inherently
non-reliable mechanisms like stochastic synapses [51]. Despite utilizing unreliable and stochas-
tic elements, SNNs demonstrate remarkable reliability [33] and superior robustness against input
noise and adversarial attacks [34, 35]. Beyond robustness, SNNs offer benefits such as higher
energy efficiency and more efficient asynchronous parallelization. For instance, Intel’s Loihi
[52] achieves over three orders of magnitude better energy-delay product than conventional ap-

16

2.2. Spiking Neural Networks

proaches, motivating substantial research efforts by major companies and pan-European projects
[53].

While the advantages of SNNs are compelling, they come with higher computational demands
that necessitate specialized hardware architectures [54, 7, 55, 56, 53, 52]. The level of detail in
biological emulation directly impacts computational complexity [57, 58].

In an SNN, each neuron accumulates input until a threshold is reached, upon which it emits a
spike and resets. This behavior can be mathematically described by models such as the LIF [59]:

𝜏𝑚
𝑑𝑢(𝑡)
𝑑𝑡

= −𝑢(𝑡) + 𝑅𝐼 (𝑡) (2.1)

where 𝑢(𝑡) is the neuron membrane potential, 𝜏𝑚 its time constant, 𝑅 its resistance, and 𝐼 (𝑡) the
input current. A spike is emitted when 𝑢(𝑡) surpasses a threshold 𝑢th, followed by a reset.

While SNNs offer advantages such as energy efficiency – particularly on neuromorphic hard-
ware – and competence in processing temporal data [60], their training poses challenges due
to the non-differentiable nature of spikes [61]. A range of techniques has been developed
to address this, including gradient approximations for backpropagation [62], surrogate gradient
methods [61], and unsupervised approaches like Spike-Timing-Dependent Plasticity (STDP) [63].

Spike-by-Spike Neural Networks

Towards lower biological realism, SbS networks retain the robustness advantages of SNNs by
utilizing stochastic spikes for information transmission between neuron populations [64, 34].
Derived from Poisson distributed spikes, comparable to observations from specific regions of
the visual cortex [65, 66], SbS networks simplify the inner dynamics of neuronal populations
considerably compared to other SNNs. However, SbS populations are designed to adopt competi-
tive behavior among neurons, resembling compressed sensing strategies [67, 68]. This trade-off
between biological realism and computational efficiency is justified by the lower computational
demand per spike, offering hardware efficiency benefits compared to other spiking neuron types
[69].

The SbS model operates as a spiking neural network founded on a generative probabilistic
model. It iteratively finds an estimate of its input probability distribution 𝑝(𝑠) (i.e. the probability
of input node 𝑠 to stochastically send a spike) by its latent variables via 𝑟 (𝑠) = ∑︁

𝑖 ℎ(𝑖)𝑊 (𝑠 |𝑖),
where ℎ⃗ is an inference population composed of a group of neurons that compete with each
other. An Inference Population (IP) sees only the spikes 𝑠𝑡 (i.e. the index identifying the input
neuron 𝑠 which generated that spike at time 𝑡 produced by its input neurons, not the underlying
input probability distribution 𝑝(𝑠) itself. By counting the spikes arriving at a group of SbS

17

2. Background and Related Work

neurons, 𝑝(𝑠) is estimated by 𝑝̂(𝑠) = 1/𝑇 ∑︁
𝑡 𝛿𝑠,𝑠𝑡 after 𝑇 spikes have been observed in total.

The goal is to generate an internal representation 𝑟 (𝑠) from the string of incoming spikes 𝑠𝑡 such
that the negative logarithm of the likelihood 𝐿 = 𝐶 −∑︁

𝜇

∑︁
𝑠 𝑝̂𝜇 (𝑠)𝑙𝑜𝑔

(︁
𝑟𝜇 (𝑠)

)︁
is minimized. 𝐶

is a constant which is independent of the internal representation 𝑟𝜇 (𝑠) and 𝜇 denotes one input
pattern from an ensemble of input patterns. Applying a multiplicative gradient descent method
on 𝐿, an algorithm for iteratively updating ℎ𝜇 (𝑖) with every observed input spike 𝑠𝑡 could be
derived [34]:

ℎ𝑛𝑒𝑤𝜇 (𝑖) =
1

1 + 𝜖

(︃
ℎ𝜇 (𝑖) + 𝜖

ℎ𝜇 (𝑖)𝑊 (𝑠𝑡 |𝑖)∑︁
𝑗 ℎ𝜇 (𝑗)𝑊 (𝑠𝑡 | 𝑗)

)︃
(2.2)

where 𝜖 is a parameter that also controls the strength of sparseness of the distribution of latent
variables ℎ𝜇 (𝑖). Furthermore, 𝐿 can also be used to derive online and batch learning rules for
optimizing the weights 𝑊 (𝑠 |𝑖). The interested reader is referred to [34] for a more detailed
exposition.

From a practical point of view, SbS provides a mechanism to obtain a sparse representation of
input patterns. Given a set of training samples {𝑥𝜂}, it learns weights (𝑊), that allow to express
the input patterns as a linear sparse non-negative combination of features. During inference,
it provides a mechanism for expressing each test input 𝑥𝜇 as 𝑥𝜇 ≈ 𝑊 ℎ𝜇 where all entries are
non-negative.

The inference procedure consists in generating indices 𝑠𝑡 distributed according to a categorical
distribution of the input pattern 𝑠𝑡 ∼ Categorical(𝑥𝜇 (0), 𝑥𝜇 (1), .., 𝑥𝜇 (𝑁 − 1)). Starting with a
random ℎ and executing iteratively Eq. (2.2) the SbS algorithm finds ℎ𝜇. The fundamental
concept of SbS can be extended from vector to matrix inputs. In this case, the linear operation
𝑊 ℎ𝜇 can be replaced by a convolution to obtain a convolutional SbS layer. A detailed description
of the SbS algorithm is presented in the Appendix A

Basic Network Overview SbS network models can be constructed in sequential layered struc-
tures [36]. Each layer consists of many IPs (represented by ℎ⃗), while the communication between
them is organized by a low bandwidth signal – the spikes.

The SbS layer update is summarized in Algorithm 1. This is an iterative algorithm, where the
number of spikes is denoted as (𝑁𝑆𝑝𝑘), which is the number of iterations. As a generative model,
each iteration updates the internal representation (𝐻) based on the input spikes (𝑆𝑖𝑛𝑡). A basic
SbS network architecture for handwritten digit classification (MNIST) is shown in Fig. 2.1 and
Tab. 2.1. Each IP is an independent computational entity, which allows to design specialized
hardware architectures that can be massively parallelized (see Fig. 2.2).

18

2.2. Spiking Neural Networks

Algorithm 1: SbS layer update.
1: for 𝑡 ← 0 to 𝑁𝑆𝑝𝑘 − 1 do
2: for 𝑥 ← 0, 𝑦 ← 0 to 𝑁𝑋 − 1, 𝑁𝑌 − 1 do
3: 𝑆𝑜𝑢𝑡𝑡 (𝑥, 𝑦) ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝐻 (𝑥, 𝑦, :))
4: for Δ𝑋 ← 0,Δ𝑌 ← 0 to 𝐾𝑋 − 1, 𝐾𝑌 − 1 do
5: 𝑠𝑝𝑘 ← 𝑆𝑖𝑛𝑡 (𝑥 + Δ𝑋 , 𝑦 + Δ𝑌)
6: for 𝑖 ← 0 to 𝑁𝐻 − 1 do
7: Δℎ(𝑖) ← 𝐻 (𝑥, 𝑦, 𝑖) ·𝑊 (Δ𝑋 ,Δ𝑌 , 𝑠𝑝𝑘, 𝑖)
8: 𝑟 ← 𝑟 + Δℎ(𝑖)
9: end for

10: for 𝑖 ← 0 to 𝑁𝐻 − 1 do
11: 𝐻𝑛𝑒𝑤 (𝑥, 𝑦, 𝑖) ← 1

1+𝜖
(︁
𝐻 (𝑥, 𝑦, 𝑖) + 𝜖

𝑟
Δℎ(𝑖)

)︁
12: end for
13: end for
14: end for
15: end for

Figure 2.1.: SbS network architecture for handwritten digit classification task.

Table 2.1.: SbS network architecture for handwritten digit classification task.
Layer size Kernel size

Layer (𝐻 𝑙) 𝑁𝑋 𝑁𝑌 𝑁𝐻 𝐾𝑋 𝐾𝑌

Input (𝐻𝑋) 28 28 2 - -
Convolution (𝐻1) 24 24 32 5 5
Pooling (𝐻2) 12 12 32 2 2
Convolution (𝐻3) 8 8 64 5 5
Pooling (𝐻4) 4 4 64 2 2
Fully connected (𝐻5) 1 1 1024 4 4
Output (𝐻𝑌) 1 1 10 1 1

19

2. Background and Related Work

IP Spike

IP Spike

SbS network

(c) IP neurons(a) Input layer

(b) Hidden layer

Figure 2.2.: SbS IPs as independent computational entities, (a) illustrates an input layer with a
massive amount of IPs operating as independent computational entities, (b) shows a
hidden layer with an arbitrary amount of IPs as independent computational entities,
(c) exhibits a set of neurons grouped in an IP.

Computational Cost The number of MAC operations required for inference of an SbS layer
is defined by 𝑁𝑂𝑃𝑆𝑀𝐴𝐶 = 𝑁𝑆𝑝𝑘𝑁𝑋𝑁𝑌𝐾𝑋𝐾𝑌 (3𝑁𝐻 + 2), where 𝑁𝑆𝑝𝑘 is the number of spikes
(iterations), 𝑁𝑋𝑁𝑌 is the size of the layer, 𝐾𝑋𝐾𝑌 is the size of the kernel for convolution/pooling,
and 𝑁𝐻 is the length of ℎ⃗. The computational cost of SbS network models is higher compared to
equivalent CNN models and lower compared to regular SNN models (e.g., LIF) [57].

Error Tolerance To illustrate the error tolerance of SbS networks, it is presented a classification
performance under positive additive uniformly distributed noise as an external disturbance.
Fig. 2.3 presents a comparison of the classification performance of an SbS network and a
standard CNN, with the same amount of neurons per layer as well as the same layer structure.
Both neural networks are trained for handwritten digit classification on MNIST dataset [70]
(see [36] for details). The figure shows the correctness of the MNIST test set with its 10,000
patterns in dependency of the noise level for positive additive uniformly distributed noise. The
blue curve shows the performance for the CNN, while the red curve shows the performance for
the SbS network with 1200 spikes (iterations). Beginning with a noise level of 0.1, the respective
performances are different with a p - level of at least 10−6 (tested with the Fisher exact test).
Increasing the number of spikes per SbS population to 6000 (performance values shown as black
stars), shows that more spikes can improve the performance under noise even more.

20

2. Background and Related Work

• Hidden Layer(s): Transform the input using weighted connections. The output ℎ of a
neuron in a hidden layer is:

ℎ = 𝑓 (w⊺ · x + 𝑏)

where w is the weights vector, 𝑏 is a bias, and 𝑓 is an activation function.

• Output Layer: Produces the predictions. The architecture depends on the task (e.g.,
regression, classification).

Weights and Bias

For each neuron, input data is transformed using weights and biases, adjusted during training.
The weighted sum for neurons is defined as:

𝑧 = w⊺ · x + 𝑏

Activation Functions

The activation functions introduce non-linearities, enabling neural networks to capture complex
relationships. Common functions include:

• Sigmoid: The sigmoid function, denoted as 𝜎(𝑧), is especially used in binary decision
tasks. Mathematically, the sigmoid function is defined as:

𝜎(𝑧) = 1
1 + 𝑒−𝑧

Here, 𝑧 represents the input to the function. The function outputs a value between 0 and
1, making it especially useful for models where the output is a probability.

The curve of the sigmoid function is S-shaped or sigmoidal. One of its properties is
that its derivative (used in the backpropagation step of training neural networks) can be
expressed in terms of the sigmoid function itself:

𝜎′(𝑧) = 𝜎(𝑧) (1 − 𝜎(𝑧))

However, the sigmoid function is not without drawbacks. For very large or very small
values of 𝑧, the function becomes saturated, leading to small gradients and, consequently,
slow convergence during training [73]. This phenomenon is often referred to as the
"vanishing gradient" problem.

22

2.3. Conventional Artificial Neural Networks

• Tanh: The hyperbolic tangent function, denoted as tanh(𝑧), serves as an activation
function in many neural network architectures. It scales and shifts the output of the
sigmoid function to produce outputs in the range [−1, 1]. The mathematical expression
for tanh is:

tanh(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧

Alternatively, it can be expressed in terms of the sigmoid function, 𝜎(𝑧), as:

tanh(𝑧) = 2𝜎(2𝑧) − 1

The derivative of tanh, which is used during the backpropagation phase of neural network
training, is given by:

𝑑

𝑑𝑧
tanh(𝑧) = 1 − tanh2(𝑧)

Compared to the sigmoid function, tanh is often preferred because its outputs are zero-
centered, making it less likely to get stuck during training. However, it still suffers from
the vanishing gradient problem for very large or very small values of 𝑧.

• ReLU: The Rectified Linear Unit, commonly referred to as ReLU, has become one of the
default activation functions, particularly for deep learning architectures. Mathematically,
the ReLU function is defined as:

𝑓 (𝑧) = max(0, 𝑧)

In essence, the function returns 𝑧 if 𝑧 is greater than or equal to zero, and returns zero
otherwise. This can be visualized as a linear function that will output the input directly if
it is positive; otherwise, it will output zero.

The gradient of the ReLU function is binary:

𝑓 ′(𝑧) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑧 > 0

0 otherwise

One noted benefit of the ReLU function is its computational efficiency, given that it only
requires a simple thresholding at zero. This allows models to train faster and requires less

23

2. Background and Related Work

computational resources compared to other activation functions like sigmoid or tanh.

However, a potential drawback of the ReLU function is that units can sometimes get
"stuck" during training and cease updating, leading to what’s known as "dying ReLUs."
The dying ReLU phenomenon can be viewed as a specific type of vanishing gradient
problem, where ReLU neurons become non-responsive and consistently output a value
of zero, regardless of the input they receive. This occurs because inputs less than 0
yield a gradient of 0, potentially preventing weight updates during backpropagation. To
counteract this, variants like Leaky ReLU [74] and Parametric ReLU [75] have been
proposed.

• Softmax: In a neural network for multiclass classification tasks, the softmax function is
a common choice for the activation function in the output layer. Given an input vector z
of length 𝐾 , representing the raw output (logits) of the 𝐾 nodes in the output layer, the
softmax function transforms these logits into a probability distribution over 𝐾 classes. For
each component 𝑖 (where 𝑖 = 1, 2, . . . , 𝐾), the softmax function 𝑆(z) is computed as:

𝑆(z)𝑖 =
exp(𝑧𝑖)∑︁𝐾
𝑗=1 exp(𝑧 𝑗)

where 𝑆(z)𝑖 represents the 𝑖-th component of the output vector 𝑆(z), exp denotes the
exponential function, and 𝑧𝑖 is the 𝑖-th component of the input vector z. After applying the
softmax function, each component of 𝑆(z) is in the interval (0, 1), and the components
sum to 1, allowing them to be interpreted as probabilities associated with each of the 𝐾
classes. This makes the softmax function particularly useful for producing the final output
in a neural network designed for classification tasks, as it ensures that the outputs are
normalized and can be interpreted as class probabilities.

2.3.2. Training Process

Neural networks learn by adjusting weights and biases in response to training data. The goal
is to minimize the difference between predictions and target values (the loss), often optimized
using gradient-based methods.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimization algorithm used to minimize an
objective function that is defined as a sum of differentiable functions. This is particularly

24

2.3. Conventional Artificial Neural Networks

well-suited for problems with a large number of training samples [76].
Given an objective function 𝐽 (𝜃) that is aimed to be minimized, the objective is often defined

as:

𝐽 (𝜃) = 1
𝑁

𝑁∑︂
𝑖=1

𝐽𝑖 (𝜃)

where 𝐽𝑖 (𝜃) is the loss associated with the 𝑖𝑡ℎ training example and 𝜃 represents the parameters
of the model.

The basic update rule for SGD is:

𝜃 ← 𝜃 − 𝜂∇𝐽𝑖 (𝜃)

where:

• 𝜂 is the learning rate, a positive scalar determining the size of steps in the parameter space.

• ∇𝐽𝑖 (𝜃) is the gradient of the loss with respect to the parameters for the 𝑖𝑡ℎ training example.

In each iteration, a single training example (𝑥𝑖, 𝑦𝑖) is picked randomly, and the model param-
eters are updated with the gradient of the loss 𝐽𝑖 (𝜃) with respect to that single example.

The iterative nature and use of only a single training example at each step make SGD compu-
tationally more efficient compared to batch gradient descent, especially for large datasets [76].
However, due to its stochastic nature, the trajectory of the parameters through the parameter
space can be noisy, leading to a non-stable convergence to the minimum [77]. Variants and
improvements, like momentum [78] or adaptive learning rates [79], have been introduced to
combat this instability and accelerate convergence.

2.3.3. Multi-Layer Perceptron

A MLP is a type of feedforward artificial neural network, consisting of multiple layers of
interconnected neurons [80].

Key Components

• An input layer that receives the data. The number of neurons in this layer corresponds to
the dimensionality of the input data.

• One or more hidden layers that transform the input data. Each neuron in a hidden layer
computes a weighted sum of its inputs, adds a bias term, and then applies an activation
function.

25

2. Background and Related Work

• An output layer that provides the final prediction or classification results. The number of
neurons in the output layer and their activation functions are tailored to the specific task.

Mathematically, the output 𝑜 𝑗 of the 𝑗 𝑡ℎ neuron in any layer can be defined as:

𝑜 𝑗 = 𝑓

(︄
𝑁∑︂
𝑖=1

𝑤𝑖 𝑗𝑥𝑖 + 𝑏 𝑗

)︄
where:

• 𝑥𝑖 is the output of the 𝑖𝑡ℎ neuron from the previous layer.

• 𝑤𝑖 𝑗 is the weight associated with the connection between the 𝑖𝑡ℎ neuron from the previous
layer and the 𝑗 𝑡ℎ neuron of the current layer.

• 𝑏 𝑗 is the bias term for the 𝑗 𝑡ℎ neuron.

• 𝑓 is the activation function, which introduces non-linearity into the network.

The weights and biases of an MLP are adjusted during the training phase.

2.3.4. Convolutional Neural Networks

CNNs represent a specialized architecture in the deep learning domain, predominantly optimized
for image and video processing tasks. Drawing inspiration from the human visual cortex structure
and function, CNNs are adept at automatically and adaptively discerning spatial hierarchies and
patterns inherent in visual data [81].

Key Components

• Input Layer: Responsible for ingesting raw pixel values from the image. The size is
typically dictated by the resolution and depth (e.g., RGB channels) of the input.

• Convolutional Layer: At its core, the convolution operation involves sliding a filter over
the input matrix to produce feature maps. Each filter aims to detect specific features,
like edges or textures, in the input. Mathematically, a convolutional layer applies a set of
learnable filters (or kernels) to the input data, where each filter is convolved across the
width and height of the input volume, computing the dot product between the entries of
the filter and the input, resulting in a two-dimensional activation map. This operation
captures local dependencies in the input through spatial relationships.

26

2.3. Conventional Artificial Neural Networks

• Activation Function: Following the convolution operation, it is common to introduce
non-linearity into the system. The ReLU is popularly employed in CNNs.

• Pooling Layer: To reduce the spatial dimensions and computational load, the pooling
layer down-samples feature maps. Max pooling is a widely adopted strategy. Given
an input matrix 𝑋 with dimensions 𝑊 × 𝐻, max pooling operates over non-overlapping
subregions defined by a 𝑛 × 𝑚 window and stride 𝑆. Each element 𝑌𝑖 𝑗 in the output
matrix 𝑌 is computed as 𝑌𝑖 𝑗 = max{𝑋𝑘𝑙}, where the maximum is taken over the elements
𝑋𝑘𝑙 from the pooling window. This procedure reduces the dimensions of the output to⌈︁
𝑊−𝑛
𝑆
+ 1

⌉︁
×

⌈︁
𝐻−𝑚
𝑆
+ 1

⌉︁
, assuming no padding.

• Fully Connected Layer: This layer sees each neuron connected to every activation from
the previous layer, effectively acting as a standard multi-layer perceptron. It linearizes the
features extracted from preceding layers and approximates a function, which commonly
is an image classification or regression task.

• Output Layer: For classification tasks, a common approach is to employ a fully connected
layer with a softmax activation function, transforming the output into probability distri-
butions across the classes, in binary classification scenarios a single neuron with sigmoid
activation is commonly utilized. For regression tasks, to predict continuous values, it is
typically used an output layer with a single neuron (or multiple neurons corresponding to
the dimensionality of the output) without an activation function or with a linear one.

A relevant characteristic of CNNs is weight sharing, this substantially reduces the number of
parameters, thus diminishing the risk of overfitting. Through their capacity to hierarchically
discern two-dimensional patterns, CNNs have been relevant in furthering advancements in a
variety of fields, spanning from sensor analytics to medical image analysis and autonomous
vehicle vision systems.

Conv2D Tensor Operation

A convolutional layer aims to learn and extract feature representations from a given input. Each
unit of a feature map is connected to a region of neighboring units on the input maps (from
the previous layer). This neighborhood in the previous layer is known as the receptive field of
such unit. A new feature map can be obtained by first convolving the input maps with a learned
kernel and then applying a nonlinear elementwise activation function to the convolved results.
All spatial locations on the input maps share a kernel to generate a feature map. All feature
maps are obtained by convolving several different kernels [82].

27

2. Background and Related Work

The 2D convolution process is performed by the Conv2D tensor operation, described in
Eq. (2.3), where 𝑊 is the convolution kernels (known as filters), 𝑏 is the bias vector for the
output feature maps, and ℎ is the input tensor containing the feature maps [80]. 𝐾 × 𝐿 × 𝑀
is the receptive field size, 𝐾 × 𝐿 is the convolution kernel, and 𝑀 is the number of input
channels/feature maps. Mathematically, the Conv2D operator is defined as:

𝐶𝑜𝑛𝑣2𝐷 (𝑊, 𝑏, ℎ)𝑖, 𝑗 ,𝑜 =
𝐾,𝐿,𝑀∑︂
𝑘,𝑙,𝑚

ℎ(𝑖+𝑘, 𝑗+𝑙,𝑚)𝑊(𝑜,𝑘,𝑙,𝑚) + 𝑏𝑜 (2.3)

Computational Cost of a Convolution Layer

The computational cost of a convolution layer primarily depends on the spatial dimensions of
the input and the kernel, the number of input and output channels, and the stride (slide step)
with which the kernel is applied. A list of definitions and concepts is presented:

Definitions

• 𝑊𝑖: Width of the input feature map.

• 𝐻𝑖: Height of the input feature map.

• 𝐷𝑖: Depth (number of channels) of the input feature map.

• 𝑊𝑘 : Width of the kernel.

• 𝐻𝑘 : Height of the kernel.

• 𝐷𝑘 : Depth of the kernel. Typically, 𝐷𝑘 = 𝐷𝑖.

• 𝑁𝑜: Number of output feature maps (number of kernels in the layer).

• 𝑆: Stride of the convolution.

Computations Per Output Element For each kernel position on the input feature map, the
number of multiply and accumulate operations is defined by:

2 ×𝑊𝑘 × 𝐻𝑘 × 𝐷𝑘 (2.4)

28

2.3. Conventional Artificial Neural Networks

Output Dimensions Given the stride 𝑆, the dimensions of the output feature map are:

𝑊𝑜 =
𝑊𝑖 −𝑊𝑘

𝑆
+ 1 (2.5)

𝐻𝑜 =
𝐻𝑖 − 𝐻𝑘

𝑆
+ 1 (2.6)

Total Computations For each output feature map, the total operations are:

𝑊𝑜 × 𝐻𝑜 × 2 ×𝑊𝑘 × 𝐻𝑘 × 𝐷𝑘 (2.7)

Given 𝑁𝑜 output feature maps, the computational cost of an entire convolution layer becomes:

𝑁𝑜 ×𝑊𝑜 × 𝐻𝑜 × 2 ×𝑊𝑘 × 𝐻𝑘 × 𝐷𝑘 (2.8)

This represents the number of multiply-accumulate operations in a convolution layer. Other
considerations might include biases and employed activation functions, but the above calculation
primarily signifies the computational burden of the convolution operation.

Error Tolerance in Convolution Layers

Deep neural networks, especially CNNs, have exhibited an advantageous property: they possess
a significant degree of robustness to various perturbations in their computations, including
reduced-precision arithmetic and the introduction of noise. This error tolerance has been
exploited for various optimization techniques with the goal of reducing computational and
storage overhead without sacrificing too much performance [9].

Sources of Error Errors in convolution layers can arise from various sources:

• Quantization: Converting FP precision weights and activations to a lower bit-width
representation.

• Pruning: Setting certain weights to zero to reduce the total number of weights.

• Approximate Computing: Techniques that purposefully introduce computational errors
by simplifying compute hardware to improve power efficiency, area, and speed.

Error Compensating Mechanisms There are several hypotheses and mechanisms that explain
the error tolerance:

29

2. Background and Related Work

• Overparameterization: Many deep models have more parameters than necessary for the
task. This data redundancy can help the network adapt to small errors.

• Re-training: After introducing errors (like in quantization), the network can be fine-tuned
to recover some of the lost performance.

• Regularization Effect: Some error introduction techniques, like quantization, can act as
a form of regularization, potentially helping to prevent overfitting.

Exploiting Error Tolerance for Optimization Leveraging the error resilience of convolution
layers can lead to several benefits:

• Reduced Precision: Weights and activations can be represented with fewer bits, leading
to a reduced memory footprint and computation savings.

• Energy Efficiency: Approximate computing techniques can yield significant power sav-
ings.

• Faster Computations: Reduced precision arithmetic can be faster, requiring reduced
computational hardware requirements, and can allow higher parallelism.

Understanding and harnessing the error tolerance properties of convolution layers present
opportunities for designing more efficient and compact neural network implementations, espe-
cially vital for low-power devices and real-time applications. While errors can be introduced
to an extent, it remains crucial to ensure that the network accuracy does not degrade beyond
acceptable levels.

2.4. Neural Network Accelerators

Neural network accelerators are specialized hardware components or platforms designed to
accelerate the computationally intensive tasks associated with neural networks. Their primary
goal is to enhance performance, reduce power consumption, and provide real-time processing
capabilities for AI/ML applications [83].

2.4.1. The Need for Accelerators

Neural networks come with intensive computational and memory demands due to their deep
architectures and vast numbers of parameters:

30

2.4. Neural Network Accelerators

• Compute Cost: AI/ML models, especially CNNs and transformers, are characterized by
their deep architectures. Each layer involves a large number of weights and activations.
In the forward pass (inference), for each neuron, the input activations are multiplied by
corresponding weights, and then all these products are accumulated to produce the neuron
output. Similarly, during training, the backpropagation algorithm is also computation-
costly.

• Memory Cost: AI/ML models, especially those with millions or even billions of param-
eters, require elevated memory footprint for model storage. During computation, the
frequent access to weights, along with the need to read and write intermediate activations,
can stress the memory bandwidth. Memory access is also energy-expensive, often more
than the actual arithmetic operations.

As an illustration, the memory requirements for an MLP are:

1. Weights Storage: Given a deep neural network with 𝐿 layers, where each layer 𝑙 has
𝑛𝑙 neurons and receives input from 𝑛𝑙−1 neurons, the number of weights (excluding
biases) is:

𝑊 =

𝐿∑︂
𝑙=2

𝑛𝑙 × 𝑛𝑙−1

2. Activations Storage: Activations need to be stored for the forward pass and are
particularly crucial during training for the backpropagation process. For a given
layer 𝑙, activations storage requirement is proportional to 𝑛𝑙 , and the total for the
entire network is:

𝐴 =

𝐿∑︂
𝑙=1

𝑛𝑙

Considering both weights and activations, the memory access pattern becomes a bottle-
neck, especially when the model size exceeds the on-chip memory capacity, leading to
frequent off-chip accesses which are both time and energy-consuming.

• Real-time Requirements: Many contemporary applications demand instantaneous or
near-instantaneous processing due to their interactive or safety-critical nature. Hence,
the computational backend supporting such applications, often driven by deep neural
networks, must be optimized for low-latency and high-throughput to meet the real-time
requirements.

31

2. Background and Related Work

• Energy Efficiency: Many modern devices, from smartphones to IoT sensors, operate
on constrained power budgets, such as batteries. For these devices, the power-hungry
computations of AI/ML models can quickly drain the power sources, limiting usability,
applicability, and functionality. Given that neural network computations are becoming
pervasive, even in these power-constrained devices, energy efficiency is of vital impor-
tance.

The proliferation of AI/ML applications in low-power devices imposes strict constraints on
energy consumption. Factors driving this need include:

1. Constrained Power Sources: Most low-power devices rely on battery power. High
energy consumption due to intensive computations can drastically reduce operational
time between charges, affecting applicability.

2. Form Factor and Heat Dissipation: Smaller devices have smaller batteries and
reduced space for cooling mechanisms, making them susceptible to overheating.
Hence, energy-efficient computations are not only related to battery longevity but
also about device temperature, safety, and size.

3. Operational Continuity in Low-Power Devices: Many edge devices, such as sen-
sors, are expected to operate continuously. These devices might be located in hard-
to-reach places, making frequent battery replacements impractical. Thus, energy
efficiency is crucial for operational viability and application feasibility.

Given these challenges, it is needed to optimize neural network deployments on such devices
at both software and hardware levels to achieve the desired performance within the power
constraints.

2.4.2. Types of Accelerators

In the dynamic field of AI/ML, various hardware accelerators, including GPUs, ASICs, FPGAs, and
NPUs, have emerged to optimize and facilitate neural network computations.

• GPUs: Historically designed for the purpose of graphics rendering, GPUs have architecture
that naturally perform parallel computing. This parallelism is especially beneficial for
neural network computations involving repetitive and simultaneous operations. As a
result, GPUs have become essential for deep learning training and inference.

The success of GPUs in the AI/ML domain is evident from the rise of GPU-optimized deep
learning frameworks and the continuous evolution of GPU architectures tailored for neural
network computations.

32

2.4. Neural Network Accelerators

• ASICs: These can provide significant benefits in terms of power, performance, and area
over general-purpose processors. One of the most notable ASICs designed for neural
network computations is Google’s TPU. Neuromorphic chips, like IBM’s TrueNorth or
Intel’s Loihi, are ASICs designed to mimic the synapse-neuron connections in the human
brain, potentially offering more efficient ways to handle neural network tasks, especially
for real-time processing and low-power scenarios.

• FPGAs: FPGAs represent a bridge between general-purpose processors and ASICs in terms
of adaptability and performance:

1. Reconfigurability: Unlike ASICs, which are fixed in their functionality post-manufacture,
FPGAs can be reconfigured to adopt different logic functions. This means they can
be tailored to accelerate specific neural network operations or configured to perform
certain computational patterns.

2. Parallelism: FPGAs excel in parallel processing, with their array of logic blocks
and interconnects. Neural network computations, which often involve concurrent
operations on data, can be accelerated by exploiting this parallelism.

3. Prototyping and Evolution: Given their reconfigurable nature, FPGAs are excellent
platforms for prototyping neural network architectures. Furthermore, in environ-
ments where neural network models evolve or are frequently updated, FPGAs can
adapt without requiring new hardware, even during an ongoing operation.

4. Trade-offs: While FPGAs offer flexibility, they might not achieve the same level
of performance or energy efficiency as a highly-optimized ASIC for a specific task.
However, their adaptability can outweigh this in certain scenarios.

In the context of the rapidly evolving field of AI/ML, FPGAs provide a compelling balance
of adaptability and performance, especially when agility in hardware is desired.

• NPUs: These are dedicated hardware accelerators optimized for neural network compu-
tation. NPUs streamline both training and inference processes by focusing on operations
and data flow patterns typically found in neural networks, resulting in enhanced energy
efficiency and performance compared to general-purpose processors.

2.4.3. Design Considerations

For neural network accelerator design, it is important to address key considerations such as
precision, memory hierarchy, scalability, and flexibility, each of which plays a crucial role in
ensuring optimal performance and adaptability in the evolving AI/ML domain.

33

2. Background and Related Work

• Precision: In neural network accelerator design, the precision of arithmetic operations
plays an important role. Employing reduced precision arithmetic offers dual advantages:
it can markedly accelerate computations and simultaneously diminish power consumption.
However, it is crucial to preserve a balance to ensure that the reduced precision does not
compromise the accuracy and reliability of the neural network model.

• Memory Hierarchy and Dataflow: Memory hierarchy and dataflow are tightly coupled
in the design of efficient neural network accelerators. Dataflow refers to the way data is
passed and processed between different memory hierarchies and computation units. The
choice of dataflow can dramatically impact the energy efficiency, latency, and throughput
of the accelerator.

For neural networks, especially deep learning models, the memory access pattern plays
a significant role in determining overall performance. This is because fetching data
(e.g., weights, activations) from memory often consumes more energy and time than the
arithmetic computations themselves.

• Scalability: The capability of a neural network accelerator to extend its computational
capacity to handle larger neural networks or to elevate existing hardware performance.
This extension can be achieved by either increasing the resources within a single chip
(vertical scaling) or by distributing the computation across multiple chips or processing
units (horizontal scaling).

As neural network models become more complex and demand more computational re-
sources, it is crucial for accelerators to be scalable. This ensures that they can continue to
provide accelerated performance for newer and larger models without requiring a complete
redesign. A modular approach facilitates easy addition of processing units or modules to
address scalability needs.

• Flexibility: Flexibility remains a cornerstone in the design of neural network accelerators.
While tailoring hardware for specific tasks or models can yield substantial performance
boosts, it is imperative that these accelerators retain the versatility to accommodate a
diverse range of neural network models and operations. This ensures a balance between
optimized performance and broad applicability, allowing for both efficiency and adapt-
ability in an ever-evolving field.

34

2.5. Precision and Effect in Training

2.5. Precision and Effect in Training

Conventional neural networks typically rely on standard FP arithmetic. However, to elevate
computational speed, minimize memory footprint, and reduce energy consumption, hardware
accelerators adopt lower precision formats. While this can speed up operations and reduce
resource demands, there is a trade-off as reduced precision might affect the model accuracy.
Therefore, balancing precision and performance is crucial, with techniques such as mixed-
precision and dynamic/custom arithmetic being employed to navigate these trade-offs [84].

2.5.1. Fixed-Point

Fixed-point arithmetic represents numbers with a fixed number of digits before and after the
decimal point, in contrast to floating-point where the decimal point can "float". Leveraging
fixed-point arithmetic offers distinct advantages. Specifically, fixed-point operations are more
resource-efficient, leading to accelerated computations. Additionally, their inherent simplicity
in arithmetic operations often translates to diminished power consumption.

However, while fixed-point arithmetic offers efficiencies in many neural network applications,
there are situations where it may not be ideal:

1. Training: During training, the need to represent small weight updates and gradient values
is critical. FP arithmetic is often preferred to ensure effective backpropagation, whereas
fixed-point might impede convergence or acceptable model accuracy [85].

2. High-Precision: For precision-critical tasks, such as medical, fixed-point arithmetic
might compromise prediction accuracy, especially when using fewer bits.

3. Transfer Learning and Fine-Tuning: In scenarios such as fine-tuning pre-trained mod-
els, small gradient values are crucial. The reduced precision of fixed-point might neglect
these refined updates.

4. Normalizing and Batch Normalization: Operations involving a diverse range of values,
like normalization, might introduce significant quantization errors when using fixed-point
representations [86].

5. RNNs: Due to their sequential nature and sensitivity to numerical precision, these models
are particularly prone to amplified errors from precision loss during the sequential pro-
cessing of data. This issue is especially prominent in tasks involving long sequences or
those requiring high precision.

35

2. Background and Related Work

6. Activation Functions with Exponential Ranges: Functions such as softmax, which
operate over a wide range, might be susceptible to quantization errors in a fixed-point
context.

While quantization techniques continue to evolve, it remains essential to rigorously evaluate
fixed-point representations in the above contexts to ensure desired performance and accuracy.

2.5.2. Floating-Point

FP arithmetic offers distinct advantages due to its capability to represent numbers with both high
precision and a wide dynamic range. However, while it provides granular accuracy, it typically
demands more computational resources and power compared to fixed-point arithmetic. The
inherent robustness of neural networks to numerical perturbations implies a potential avenue for
exploring custom reduced-precision FP arithmetic.

The representation of every numerical value, in any numerical system, is made of an integer
and a fractional part. The border that delimits them is called the radix point. The fixed-point
format for representing numeric values derives its name from the fact that in this format, the
base point is fixed at a certain position. For integer numbers, this position is at the right of the
least significant digit.

In scientific computation, it is often necessary to represent very large and very small values.
This is difficult to achieve using the fixed-point format because the bit size required to maintain
both the desired precision and the desired range are very large. In such situations, FP formats
are used to represent real numbers. Each FP number can be divided into three fields: sign 𝑆,
exponent 𝐸 , and mantissa 𝑀 . Using the binary number system, it is possible to represent any
FP number as:

(−1)𝑆 × 1.𝑀 × 2𝐸−𝐵 (2.9)

In FP representations the exponent is biased. This bias depends on the bit size of the exponent
field. This exponent bias is defined by Eq. (2.10), where 𝐸𝑠𝑖𝑧𝑒 is the exponent bit size.

𝐵 = 2𝐸𝑠𝑖𝑧𝑒−1 − 1 (2.10)

There is a natural trade-off between small bit size requiring fewer hardware resources and
larger bit size providing higher precision. Within a given total bit size, it is possible to assign

36

2. Background and Related Work

2.5.3. Post-Training Quantization

Transitioning a neural network model from high-precision to lower-precision computations
presents a set of challenges. One of the most critical of these challenges lies in preserving
the accuracy of the model while it operates under conditions of reduced numerical precision.
This balance requires thoughtful consideration and strategic implementation to ensure that the
benefits of computational efficiency do not come at the cost of significant degradation in model
performance.

In Post-Training Quantization (PTQ), a neural network, once fully trained, undergoes a con-
version process wherein its FP weights and activations are mapped to a lower precision [88].

Given the full precision weights 𝑊 of a neural network, they can be quantized to a lower
precision using the quantization function:

𝑄(𝑊) = round
(︃
𝑊

Δ

)︃
× Δ (2.12)

where Δ is a quantization step size, often derived from the range of the weights or activations
and the target precision.

One challenge of PTQ is to ensure minimal loss of accuracy after the conversion. Techniques
such as fine-tuning the quantized model, applying regularization during initial training, or using
advanced quantization schemes (e.g., mixed precision) can help to preserve accuracy of the
model.

While PTQ offers the benefit of simplicity, the resultant quantized model might not be as robust
or accurate as models trained with QAT techniques. However, for many applications, especially
those on resource-constrained devices, the slight trade-off in accuracy is often outweighed by
the benefits in computational efficiency, memory usage, and power consumption.

2.5.4. Quantization-Aware Training

This quantization maps weights to a lower precision 𝑄(𝑊), similarly as in PTQ; moreover, QAT

integrates this process into the training phase, ensuring that the resultant model is resilient to
potential accuracy degradation [88]. Such adaptations are relevant when targeting resource-
constrained devices or specialized hardware accelerators that rely on reduced precision for
improved computational efficiency and accuracy.

For neural networks with custom reduced FP formats, QAT exhibits even greater versatility.
Such custom formats often denoted as 𝐹𝑃𝑀,𝐸 , allocate specific bit-lengths for the mantissa 𝑀
and the exponent 𝐸 . The function for this quantization format is detailed in Algorithm 2. This

38

2.5. Precision and Effect in Training

algorithm converts full-precision values into their corresponding quantized FP representation
using custom-defined exponent and mantissa bit lengths.

Algorithm 2: Custom floating-point quantizer.
input: 𝑋𝐹𝑃 as the FP value.
input: 𝐸𝑠𝑖𝑧𝑒 as the target exponent bit size.
input: 𝑀𝑠𝑖𝑧𝑒 as the target mantissa bits size.
input: 𝑆𝑇𝐷𝑀𝑠𝑖𝑧𝑒 as the IEEE 754 mantissa bit size.
output: 𝑋𝐶𝐹𝑃 as the custom FP value.

1: 𝑠𝑖𝑔𝑛← 𝐺𝑒𝑡𝑆𝑖𝑔𝑛(𝑋𝐹𝑃)
2: 𝑒𝑥𝑝 ← 𝐺𝑒𝑡𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 (𝑋𝐹𝑃)
3: 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 ← 2𝐸𝑠𝑖𝑧𝑒−1 − 1 // Get full range value
4: 𝑐𝑚𝑎𝑛← 𝐺𝑒𝑡𝐶𝑢𝑠𝑡𝑜𝑚𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎(𝑋𝐹𝑃, 𝑀𝑠𝑖𝑧𝑒)
5: 𝑙𝑒 𝑓 𝑡𝑚𝑎𝑛← 𝐺𝑒𝑡𝐿𝑒 𝑓 𝑡𝑜𝑣𝑒𝑟𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎(𝑋𝐹𝑃, 𝑀𝑠𝑖𝑧𝑒)
6: if 𝑒𝑥𝑝 < − 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 then
7: 𝑋𝐶𝐹𝑃 ← 0
8: else if 𝑒𝑥𝑝 > 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 then
9: 𝑋𝐶𝐹𝑃 ← (−1)𝑠𝑖𝑔𝑛 · 2 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 · (1 + (1 − 2−𝑀𝑠𝑖𝑧𝑒))

10: else
11: if 2𝑆𝑇𝐷𝑀𝑠𝑖𝑧𝑒−𝑀𝑠𝑖𝑧𝑒−1 − 1 < 𝑙𝑒 𝑓 𝑡𝑚𝑎𝑛 then
12: 𝑐𝑚𝑎𝑛← 𝑐𝑚𝑎𝑛 + 1 // Above halfway
13: if 2𝑀𝑠𝑖𝑧𝑒 − 1 < 𝑐𝑚𝑎𝑛 then
14: 𝑐𝑚𝑎𝑛← 0 // Correct mantissa overflow
15: 𝑒𝑥𝑝 ← 𝑒𝑥𝑝 + 1
16: end if
17: end if
18: // Build custom FP representation
19: 𝑋𝐶𝐹𝑃 ← (−1)𝑠𝑖𝑔𝑛 · 2𝑒𝑥𝑝 · (1 + 𝑐𝑚𝑎𝑛 · 2−𝑀𝑠𝑖𝑧𝑒)
20: end if

During training, each forward pass applies the aforementioned quantization, simulating the
operational conditions of the reduced precision. The backward pass, essential for gradient-based
optimization, is conducted with a higher precision. If ∇𝑊 symbolizes the computed gradients,
the weight update rule in gradient descent is typically:

𝑊𝑡+1 = 𝑊𝑡 − 𝜂∇𝑊 (2.13)

Here, 𝜂 represents the learning rate. However, with QAT, the model remains cognizant of 𝑄(𝑊)
or 𝑄𝐹𝑃 (𝑊) during forward computations, a factor that influences gradient dynamics. Post-QAT

calibration using a validation dataset helps to refine scaling factors or biases, this improves the
model for optimal performance in its intended deployment environment. Assessments against a

39

2. Background and Related Work

full-precision baseline are important to ensure that the trade-offs in precision do not compromise
accuracy of the model.

2.6. Dataflow Taxonomy

Dataflow taxonomy refers to the classification of various schemes that determine how data
(weights, activations, and partial results) moves through the accelerator during computation. The
way data is moved and reused can have an impact on the energy efficiency and throughput of the
accelerator. These strategies aim to maximize performance and energy efficiency by optimizing
data movement, which is often more energy-intensive than computation itself. When choosing
or designing a dataflow, it is essential to consider the specific neural network workload, the
memory hierarchy, and the architectural details of the hardware to ensure an optimal match [83].

Weight Stationary (WS)

In this dataflow, weights are kept stationary in the processing elements. As different input
activations come in, they are multiplied with these stationary weights. This approach maximizes
the reuse of weights, which can be beneficial when processing a large number of activations,
such as during a convolution operation. Characteristics:

Fixed: Weights

Moving: Activations, Partial Sums

Output Stationary (OS)

Here, the partial results (output activations) are kept stationary. Weights and input activations
move through the processing elements and the partial sums are accumulated in place. This
scheme tries to maximize the reuse of the output from the computation, which is beneficial
when a given output is the result of multiple accumulations. Characteristics:

Fixed: Partial Sums

Moving: Weights, Activations

40

2.7. Flynn’s Taxonomy

Input Stationary (IS)

In this scheme, input activations remain stationary, while weights move through and are multi-
plied with these stationary activations. This can be beneficial when a single activation is used
in multiple computations. Characteristics:

Fixed: Activations

Moving: Weights, Partial Sums

No Local Reuse (NLR)

As the name suggests, in this dataflow, there is minimal local data reuse. All data types (weights,
activations, and partial sums) move through the processing elements. This is often not as efficient
in terms of energy consumption since there is a lack of reuse; however, it is simpler in terms of
control and design. Characteristic:

Moving: Weights, Activations, Partial Sums

Row Stationary (RS)

This is a specialized dataflow developed for systolic array architectures. In RS, a row of the
systolic array holds the activations stationary while weights are propagated horizontally and
partial sums propagate vertically.

2.7. Flynn’s Taxonomy

In the quest to comprehend the various computational architectures, especially when focusing
on neural network accelerators and their efficiency, it is important to grasp the foundational
classification of computer architectures. Flynn’s Taxonomy, introduced by Michael J. Flynn in
1966, provides a categorical breakdown of architectures based on their simultaneous instruction
and data streams handling capability.

SISD (Single Instruction, Single Data)

This category represents the classic sequential computer architecture, where a single instruction
operates on a single data stream. Most basic CPUs can be categorized here; modern designs
often include multiple cores (making them multiprocessors).

41

2. Background and Related Work

SIMD (Single Instruction, Multiple Data)

Under Single Instruction, Multiple Data (SIMD), a single instruction processes multiple data
streams concurrently. This design is prevalent in vector processors and GPUs. Given the parallel
nature of neural network computations, SIMD architectures, particularly GPUs, have gained
popularity for deep learning and neural network tasks due to their ability to process multiple
data points in parallel using the same operation.

MISD (Multiple Instruction, Single Data)

This architecture is less common and represents systems where multiple instructions operate
on a single data stream. Some fault-tolerant machines adopt this strategy, applying different
operations to replicate the data to ensure reliability.

MIMD (Multiple Instruction, Multiple Data)

These systems are where multiple processors operate independently on different instructions
and different data. Multi-core CPUs, clusters, and many supercomputers belong to this category.
Each processor can be assigned a unique task, making them suitable for a broader range of
applications compared to SIMD.

Relevance to Neural Network Accelerators

When discussing low-power neural network accelerators with custom reduced FP computa-
tion, SIMD architectures often stand out. The parallel nature of neural networks leverages the
capabilities of SIMD to handle multiple data points concurrently.

2.8. Multiply-Accumulate Unit

In the context of this dissertation, the terms ’dot-product’ and ’MAC’ are used interchangeably,
reflecting their deeply associated roles in computational processes. The dot-product, an essential
operation in neural network computation, entails a sequence of multiplications culminating in a
summation. This procedure aligns with the series of MAC operations, fundamental in the field of
digital signal processing. The MAC operation, with its inherent structure and efficiency, stands
as a central point in the architecture and optimization of neural network accelerators. Formally,

42

2.8. Multiply-Accumulate Unit

the MAC operation can be expressed as:

ACC = ACC + (𝐴 × 𝐵) (2.14)

Where:

• ACC: Represents an accumulator accumulating the results of the products.

• 𝐴 and 𝐵: Operands subjected to multiplication.

In neural computations, a substantial number of MAC operations are executed. To illustrate,
consider the convolutional layer in a CNN. This layer predominantly requires MAC operations to
compute the weighted sum of inputs and respective weights. Denoting 𝑥 [𝑖] as a data array or
vector of input values and 𝑤 [𝑖] as the weights, an output 𝑦 for a specified filter and input position
can be delineated as:

𝑦 =
∑︂
𝑖

𝑥 [𝑖] · 𝑤 [𝑖] (2.15)

This summation is fundamentally a sequence of MAC operations.

2.8.1. Design Considerations

Several considerations come into play to ensure optimal performance, efficiency, and versatility
of MAC hardware modules.

1. Computational Efficiency: Contemporary neural network models, particularly those
under the deep learning paradigm, necessitate executing billions of MAC operations. Well
engineered hardware MAC units can amplify the computation speed. The number of clock
cycles it takes to complete a MAC operation can impact the overall performance. High
performance is often achieved using parallelism techniques, pipelining, and array-based
hardware architectures.

2. Power Dynamics: The magnitude of MAC operations in neural networks means that
even marginal inefficiencies can escalate into significant power consumption. A carefully
designed MAC unit, potentially integrating advanced techniques such as quantization or
approximation, can reduce power requirements.

3. Precision Dynamics: Neural networks, in certain architectures, can accommodate re-
duced precision. However, the essence of a dynamic MAC unit design is to navigate the
balance between computational efficiency and precision.

43

2. Background and Related Work

4. Scalability Factors: The ever-evolving domain of neural networks is marked by models
growing in complexity and depth. A MAC unit, based on modular design principles, can
be scaled across extensive accelerator architectures, serving to the spectrum of models.

5. Adaptive Flexibility: The dynamism inherent in neural network architectures necessitates
a MAC unit enriched with the capacity to adapt to diverse operations, varied data typologies
(e.g., floating-point, fixed-point), and a range of hybrid/custom precisions.

The MAC operation holds an essential role in the field of neural network accelerator design.
The MAC design directly influences the accelerator performance, power efficiency, and overall
effectiveness.

2.9. Related Work

For efficient neural network computation, two main optimization strategies are used, namely
network compression and classical approximate computing [7]. Researchers focusing on low-
power embedded applications started lowering the precision of weights and activation maps to
compress the memory footprint of the large number of parameters representing ANNs, a method
known as network compression or quantization. This practice takes advantage of the intrinsic
error-tolerance of neural networks, as well as their ability to compensate for approximation while
training. In this way, reduced bit precision causes a small accuracy loss [8, 9, 10, 11].

In addition to quantization, network pruning reduces the model size by removing structural
portions of the parameters and their associated computations [12, 13]. This method has been
identified as an effective technique to improve the efficiency of Deep Neural Network (DNN) for
applications with limited computational budget [14, 15, 16].

2.9.1. Aggressive Quantization

In hardware development, Weight Quantization (WQ) has shown up to 2× improvement in
energy consumption with an accuracy degradation of less than 1% [89, 90]. Some advanced
quantization methods yield to Binary Neural Networks (BNNs) allowing the use of Logical
Exclusive Non-Disjunctions (XNORs) instead of the conventional costly MACs [11]. In [91], Sun
et al. report an accuracy of 98.43% on handwritten digit classification (MNIST) with a simple
BNN. Hence, quantization is a powerful tool for improving the energy efficiency and memory
requirements of ANN accelerators, with limited accuracy degradation.

44

2.9. Related Work

2.9.2. Spiking Neural Network Accelerators

The aforementioned methods can be used for SNNs as well. In [92], Rathi et al. report up to 3.1×
improvement in energy consumption with an accuracy of 90.1% on handwritten number recog-
nition while pruning noncritical connections and quantizing the weights of critical synapses.
Weight quantization allows the designer to realize a trade-off between the accuracy of the SNN

application and efficiency of resources. Approximate computing can also be applied at the neu-
ron level, where irrelevant units are deactivated to reduce the computation cost of the SNNs [93].
This computation skipping can be applied randomly on synapses, training conventional ANNs

with stochastic synapses improves generalization, resulting in a better accuracy [94, 95]. Such
methods are compatible with SNNs and have been tested both during training [96, 97] and op-
eration [98], and even to define the connectivity between layers [99, 100]. Implementations
of spiking neuromorphic systems in FPGA [101] and hardware [102] demonstrated that synap-
tic stochasticity allows to increase the final accuracy of the networks while reducing memory
footprint.

Quantization is, therefore, a powerful technique to improve energy efficiency and memory
requirements of ANN and SNN accelerators, with small accuracy degradation. However, this
approach requires QAT methods that, in some cases, are problematic, particularly in emerging
deep SNN algorithms [103].

Classical Approximate Computing

Approximate computing has been used in a wide range of applications to increase the computa-
tional efficiency in hardware [6]. This approach consists of designing processing elements that
approximate their computation by employing modified algorithmic logic units [6]. In [104],
Kim et al. have shown SNNs using carry skip adders achieving 2.4× latency enhancement and
43% more energy efficiency, with an accuracy degradation of 0.97% on a handwritten digit
classification task. Therefore, approximate computing provides an important enhancement in
energy efficiency and processing speed.

However, as the complexity of the dataset increases, as well as the depth of the network
topology, such as ResNet [105] on ImageNet [106], the accuracy degradation becomes more
important and may not be negligible anymore [11], especially for critical applications such
as autonomous driving. Therefore, it is not certain that network compression techniques and
approximate computing are suitable for all applications.

45

2. Background and Related Work

Spike-by-Spike Neural Network Accelerators

Rotermund et al. demonstrated the feasibility of a neuromorphic SbS IP on a Xilinx Virtex 6
FPGA [37]. It provides a massively parallel architecture, optimized to reduce memory access and
suitable for ASIC implementations. Nonetheless, this design is considerably resource-demanding
if implemented as a full SbS network in embedded reconfigurable technology.

2.9.3. Convolutional Neural Network Accelerators with Custom
Floating-Point Computation on FPGA

In the literature, a plenty of hardware architectures for CNN accelerators implemented in FPGA

can be found. Most of the research work implements fixed-point quantization, and very limited
research focuses on FP. These studies concentrate on low-precision FP; however, their applicabil-
ity for inference on low-power embedded devices is restricted by their size, power consumption,
and cost. To the best of my knowledge, there is no research work related to FP inference for
low-power embedded applications.

One research work has presented a CNN hardware accelerator implemented on the XC7Z007S,
this design focuses on fixed-point computation. The XC7Z007S stands out as the most resource-
limited and energy-efficient device within the Zynq-7000 SoC FPGA family. Its associated
development board, MiniZed, is priced at USD 89.00. This device serves as the central target
of this dissertation for low-power CNN acceleration.

High-Performance FPGA-Based CNN Accelerator With Block-Floating-Point Arithmetic

In [107], Xiaocong Lian et al. proposed a hardware accelerator with optimized block floating-
point (BFP). In this design, the activations and weights are represented by 16-bit and 8-bit FP

formats, respectively. This design is demonstrated on the Xilinx VC709 evaluation board. This
implementation achieves throughput and power efficiency of 760.83 GOP/s and 82.88 GOP/s/W,
respectively. However, this design is not suitable for low-power resource-constrained embedded
FPGAs.

Fig. 2.5(a) presents the high-level block diagram of the CNN accelerator. This accelerator is
composed of three main components: a Processing Element Array (PEA), an on-chip buffer,
and external memory. During initialization, both input images and network parameters are
transferred from the host computer to the on-board DDR3 modules through PCIe3.0x8.

Fig. 2.5(b) depicts the comprehensive architecture of the convolution PEA. Here, sixteen PEs
are tailored for the convolution of respective input channels. Input pixels 𝑖𝑚 and convolution
kernels 𝐾𝑚 are channeled into 𝑃𝐸𝑚. The 64 PUs in one PE share the same input pixels, while

46

2.9. Related Work

they use the kernels of the corresponding output channels. The outputs from the 16 PUs —
namely PU1_𝑛, PU2_𝑛, . . . , PU16_𝑛 — are added in accumulator 𝐴𝑛. These outputs are then
combined with the partial sum 𝑠𝑛 from earlier input channels. The PU𝑚_𝑛 manages calculations
for kernel 𝑘𝑚𝑛. Each PU convolution operation adheres to a two-stage pipeline, which involves
multiplication and accumulation. During each cycle, pixels from the input feature map receptive
field are sequentially sourced from the DSP Port A and are multiplied with the relevant weights.
The subsequent cycle accumulates the result from the multiplier. The convolutional product of
a singular filter is then produced after 𝐾𝑊 × 𝐾𝐻 cycles.

Figure 2.5.: (a) System architecture. (b) Processing element array.

A 200MHZ 202.4GFLOPS@10.8W VGG16 Accelerator in Xilinx VX690T

In [108], Chunsheng Mei et al. presented a hardware accelerator for the VGG16 model using half-
precision FP (16-bit). This design is demonstrated on Xilinx Virtex-7 (XC7VX690T) with a PCIe
interface. This implementation achieves throughput and power efficiency of 202.4 GFLOP/s and
18.72 GFLOP/s/W, respectively.

Fig. 2.6(a) presents the block diagram of system architecture. Initially, both the network model
and input images are transferred to the on-board DDR3 modules (DDR3 M0 and DDR3 M1)
using PCle3.0x8. For forward processing, distinct accelerators are allocated for the convolution
and fully-connected layers. An image-grain pipeline is scheduled for both the Fully-Connected
Layer Accelerator (FLAcc) and the Convolution Layer Accelerator (CLAcc). While FLAcc
processes the fully-connected layers of the current image, CLAcc concurrently processes the
convolutional computations for the next image. This heterogeneous architecture is constructed

47

2. Background and Related Work

on the condition that the convolution layers are suitable for parallelism, while the fully-connected
layer are not. To maximize the use of on-board resources, two sets of CLAcc, Convolution Layer
Input Buffer (CLIB), Convolution Layer Output Buffer (CLOB), FLAcc, and Fully-Connected
Layer Buffer (FLB) were designed to handle two input images simultaneously. The network
parameters are consistently shared between these two system accelerators.

Fig. 2.6(b) shows the CLAcc architecture. The design incorporates two CLAccs, both func-
tionally mirroring each other to process two tasks in tandem. A pingpong storage scheme is
utilized for input tiles and kernels, reducing the overhead associated with loading them. Bias
parameters are stored in CLOB. When convolution or fully-connected layer operation com-
mences, bias data are taken as the initial accumulation value. Notably, instead of opting for
single-precision FP (32-bit) arithmetic, the design uses half-precision FP (16-bit) arithmetic,
which suffices for the VGG16 model accuracy requirements.

Without necessitating network retraining, this design accommodates the model parameters
and input maps. Furthermore, the half-precision data format enhances deployment efficiency,
reducing off-chip bandwidth and on-chip resources compared to the single-precision format.

Figure 2.6.: (a) System architecture. (b) Convolution accelerator.

Low-precision Floating-point Arithmetic for High-performance FPGA-based CNN
Acceleration

In [109], Chen Wu et al. proposed a low-precision (8-bit) floating-point (LPFP) quantiza-
tion method for FPGA-based acceleration. This design is demonstrated on Xilinx Kintex 7
and Ultrascale/Ultrascale+. This implementation achieves throughput and power efficiency of
1086.8 GOP/s and 115.4 GOP/s/W, respectively.

Fig. 2.7(a) depicts the overarching system architecture. At its core lies the Floating-Point
Function Unit (FPFU), containing an array of Processing Elements (PEs). These PEs are
designed to compute layer outputs in parallel. Specifically, each PE within the FPFU is optimized

48

2.9. Related Work

to efficiently handle dot-products using the LPFP data format. The on-chip Memory System
(MS) incorporates three distinct buffers: the Input Feature Map Buffer (IFMB), Weight Buffer
(WB), and Output Feature Map Buffer (OFMB). Utilizing a ping-pong mechanism, these buffers
are designed to mitigate the communication latency between on-chip and off-chip memories,
a process facilitated by the Direct Memory Access (DMA) module. Additionally, the Central
Control Module (CCM) functions as an arbiter for the different modules, translating instructions
from the Instruction RAM (IR) into specific signals for associated modules.

Fig. 2.7(b) presents the PE architecture, conceived as a fully pipelined data-flow structure.
Upon receiving two vectors, a PE distributes the data among its 𝑁𝑚 multipliers. These multipliers
then transfer their full precision FP results to the Alignment Module (AM). Without truncating any
bits, these full precision FP products are aligned and transformed into fixed-point numbers. Post
alignment, these products are transferred to four fixed-point adder trees, completing four parallel
dot-product operations. This simultaneous processing exemplifies the feed-forward mechanism
for four pixels across two output channels. The accumulation of partial results (including bias),
pooling, and activation processes are performed in series inside the Post Process Module (PPM).

Figure 2.7.: (a) System architecture. (b) Processing element.

CNN Hardware Acceleration on a Low-Power and Low-Cost APSoC

In [110], Paolo Meloni et al. presented a CNN inference accelerator for compact and cost-
optimized devices. However, this implementation uses fixed-point to process light-weight CNN

architectures with a power efficiency between 2.49 to 2.98 GOPS/s/W.
Fig. 2.8(a) depicts the system architecture, which is a hybrid hardware-software design

tailored for the Zynq XC7Z007S SoC. In this configuration, an ARM Cortex-A9 single-core
processor collaborates with a convolution engine situated on the Programmable Logic (PL). This
accelerates both compute-bound and memory-bound operations. The Processing System (PS)

49

2. Background and Related Work

incorporates a memory interface unit, facilitating communication to an off-chip Double Data
Rate (DDR) memory, which is the storage space for input features, weights, biases, and output
features.

Fig. 2.8(b) presents the convolution engine specifics. The compute-intensive convolution
operations are handed over to the convolution engine Sum-of-Product (SoP) module, which
utilizes 54 Digital Signal Processing (DSP) slices (based on the Xilinx DSP48E1 primitives).
The SoP module simultaneously processes three 3x3 weight filters on three input features
(denoted as x_in) acquired by the line buffer. This action determines their cumulative effect
on a single output feature. These convolutional partial results are then accumulated using a
specialized adder module.

Figure 2.8.: (a) System architecture. (b) Convolution engine.

2.9.4. Neural Network Accelerators for Training and Inference with 8-bit
Floating-Point Computation on ASIC

State-of-the-art low-power neural network accelerators have demonstrated significant improve-
ments in both energy efficiency and computational performance using 8-bit FP arithmetic for
training and inference. The studies presented in this subsection uniformly explore the advantages
of 8-bit FP quantization, specifically with a composition of a 4-bit exponent and 3-bit mantissa
for high-accuracy inference, and a 5-bit exponent with a 2-bit mantissa for training.

In [111], Chen Wu et al. presented proposes the Phoenix architecture implementing 8-bit
FP quantization. Key findings suggest that this method incurs less error than its fixed-point
counterpart. Normalization prior to quantization aids in further error reduction (less than 0.5%
for top-1 and 0.3% for top-5 accuracy degradation). Phoenix outperforms other state-of-the-
art accelerators when benchmarked with AlexNet and VGG16. The circuit placement and

50

2.9. Related Work

routing results show that Phoenix achieves peak performance of 2.048 TMAC/s with 1.44 mm2

and 1091.2 mW at TSMC 28 nm technology, respectively. Compared with a state-of-the-art
accelerator, Phoenix achieves 3.32× and 7.45× better performance with the same core area for
AlexNet and VGG-16, respectively. Compared with Nvidia TITAN Xp GPU, Phoenix consumes
151× less energy with single image inference.

In [112], Jeongwoo Park et al. reported an 8-bit FP neural network training processor that
leverages shared exponent bias (FP8-SEB) for non-sparse neural networks. This implementation
uses multiple-way fused multiply-add (FMA) trees for maintaining high numerical precision
and reducing energy consumption, demonstrating improved efficiency against conventional
neural network training processors. Fabricated in 40 nm LP CMOS, the processor consumes
13.1 mW at 0.75 V, 20 MHz with the maximum energy efficiency of 4.81 TFLOPS/W, and
230 mW at 1.1 V, 180 MHz with the maximum performance of 567 GFLOPS and area efficiency
of 90.7 GFLOPS/mm2.

In [113], Swagath Venkataramani et al. demonstrated a 4-core AI chip, called RaPiD, an
accelerator that supports various precisions. Notably, the accelerator can handle 16 and 8-bit
FP computations, as well as 4 and 2-bit fixed-point calculations. Measurements show INT4
inference for batch size of 1 yields 3 - 13.5 (average 7) TOPS/W and FP8 training for a mini-
batch of 512 achieves a sustained 102 - 588 (average 203) TFLOPS across a wide range of
applications.

Lastly, in [114], Shreyas Kolala Venkataramanaiah et al. presented an 8-bit FP tensor core-
based CNN training processor. This processor incorporates highly parallel tensor cores, ensuring
high utilization throughout various phases of the training process. With the integration of
dynamic output activation sparsity and other efficiency-enhancing features, this 28nm prototype
chip showcases energy efficiency of 16.4 TFLOPS/W.

2.9.5. Academic and Industrial Research on 8-bit Floating-Point
Quantization Techniques in Neural Network Training

In the continued effort of refining neural network training, the application of 8-bit FP quantization
– employing a 5-bit exponent with 2-bit mantissa for training, and a 4-bit exponent with 3-bit
mantissa for inference – is demonstrated as a common key strategy, as reported by the subsequent
studies.

In one of the early explorations, as reported by Michal Gallus et al. in [115], 8-bit FP numbers
were utilized for training the LeNet-5 model for handwritten digit classification achieving 97.10%
accuracy (2% degradation) while reducing space complexity by 75%. In a study by Naigang

51

2. Background and Related Work

Wang et al., referenced in [116] from IBM T. J. Watson Research Center, the feasibility of using
8-bit FP numbers for training deep neural networks was demonstrated. This work introduced
techniques such as chunk-based accumulation and FP stochastic rounding, showing potential for
up to a fourfold increase in throughput on future hardware platforms.

In a notable progress presented in [117] by Xiao Sun et al. from IBM T. J. Watson Research
Center, the hybrid 8-bit FP (HFP8) format was introduced, tailored for a broad spectrum of
deep learning applications including image classification and language processing. This format,
tested on various architectures such as AlexNet, ResNet, MobileNetV2, DenseNet121, LSTMs,
Transformer, MaskRCNN, and SSD-Lite, and datasets like ImageNet, PennTreeBank, WMT14
En-De, SWB300, COCO, and VOC, demonstrated minimal accuracy loss when shifting from
baseline FP32 to HFP8 training. Building upon this work, Naveen Mellempudi et al., as re-
ported in [118] from Parallel Computing Lab, Intel Labs, explored a mixed precision training
approach. This integrates enhanced loss scaling and stochastic rounding to counteract gradi-
ent noise, achieved improved accuracies compared to full precision across various datasets,
including ImageNet-1K and WMT16, and a range of models like ResNet-18/34/50, GNMT, and
Transformer.

In [119], Fangxin Liu et al. adopted a distinct approach by introducing adaptive floating-point
(AFP) post-training quantization, which enhances compression rates and inference efficiency
without relying on the computationally demanding QAT. Their work introduces a framework
that automatically optimizes and selects the appropriate AFP configuration for each layer, hence
maximizing compression effectiveness. This approach results in minimal accuracy degrada-
tion (only 0.04% for ResNet-50 and 0.6% for MobileNet-v2) compared to their full-precision
counterparts.

In conclusion, the adoption of 8-bit floating-point quantization marks a significant advance-
ment in meeting the growing demand of industry for compatibility, efficiency, compactness, and
precision in neural network training and inference.

52

3. Low-Power Spike-by-Spike Neural
Network Accelerator: Hybrid 8-bit
Floating-Point and 4-bit Logarithmic
Computation

3.1. Introduction . 54

3.2. Design Technique . 57

3.3. Experimental Results . 66

3.4. Conclusions . 79

Abstract

In the domain of SNNs, this chapter explores the design methodology tailored for
low-power inference of SbS neural networks in embedded applications. Notably,
while SbS networks stand out for their reduced model complexity and superior
noise robustness compared to conventional SNNs utilizing the LIF mechanism, they
come with inherent challenges. Particularly, their computational cost and memory
footprint have been barriers for deployment on resource-limited devices.

Addressing these challenges, this research capitalizes on the intrinsic error resilience
of SbS models to improve performance and minimize hardware resources while
avoiding model quantization procedures. Central to this approach is the introduction
of a novel MAC module. This module is designed to harmonize computational
accuracy and resource efficiency in FP operations. This MAC module provides
configurable quality via a hybrid mechanism: it merges standard FP representations

53

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

with a custom 8-bit FP format and a 4-bit logarithmic representation. This design
excludes the use of a sign bit, which further contributes to the compact and efficient
representation of numbers. This design enables the MAC module to be tailored to the
specific resource constraints and performance requirements of a given application.
This research makes SbS neural networks possible for deployment in resource-
constrained environments.

3.1. Introduction

The exponential improvement in computing performance and the availability of large amounts
of data are boosting the use of AI applications in our daily lives. Among the various algorithms
developed over the years, neural networks have demonstrated remarkable performance in a
variety of image, video, audio, and text analytics [120, 121].

Historically, ANNs can be classified into three different generations [122]: the first one is
represented by the classical McCulloch and Pitts neuron model using discrete binary values
as outputs; the second one is represented by more complex architectures as MLP and CNN

using continuous activation functions; while the third generation is represented by SNN using
spikes as means for information exchange between groups of neurons. Although the AI research
is currently dominated by DNNs from the second generation, the SNNs belonging to the third
generation are receiving considerable attention [123, 34, 122, 124].

SNNs offer advantageous robustness and the potential to achieve power efficiency closer to
that of the human brain. SNNs operate reliably using stochastic elements that are inherently
non-reliable mechanisms [33]. This provides superior resistance against adversary attacks
[34, 35]. Beside robustness, SNNs have further advantages like the possibility of a more efficient
asynchronous parallelization and higher energy efficiency than DNNs. For example, Loihi [52],
a SNN developed by Intel, can solve LASSO optimization problems with an over three orders
of magnitude better energy-delay product than conventional approaches. These advantages are
motivating large research programs by major companies (e.g., Intel [52] and IBM [56]) as well
as pan-european projects in the domain of spiking neural networks [123].

SNNs emulate the real behavior of neurons in different levels of detail. The more detailed the
biological part is emulated, the greater the computational complexity [57, 58]. For example,
LIF is a widely used model; however, this model is relatively more complex for emulation in
low-power embedded applications.

Alternatively, the SbS neural network is a remarkable model for its reduced complexity, which
is on the less realistic side of the SNN scale of biological realism [36, 34]. Consequently, the

54

3.1. Introduction

hardware complexity of SbS network implementations is reduced [40, 37]. In spite of this,
SbS still uses stochastic spikes as a means of transmitting information between populations of
neurons and thus retains the advantageous robustness of SNNs.

The conceptual model in SbS (see Chapter 2.2 for a review) differs fundamentally from
conventional ANNs since (a) the building blocks of the network are IPs which are an optimized
generative representation with non-negative values, (b) time progresses from one spike to the
next, preserving the property of stochastically firing neurons, and (c) a network has only a
small number of parameters, which is a noise-robust stochastic version of Non-Negative Matrix
Factorization (NNMF). The SbS network is placed between non-spiking Neural Networks (NNs)
and stochastically spiking NNs, which offers advantages from both structures [36]. On one hand,
the SbS model incorporates the inherent robustness of SNNs, which gives the possibility of more
efficient asynchronous parallelization and resilience against disturbances based on the synaptic
stochasticity; on the other hand, the SbS model incorporates the regular flow of information from
CNNs.

As computational demanding algorithms, CNNs and SNNs in particular, must be addressed
by specialized hardware architectures. A significant research effort has been performed in SNN

accelerators, see e.g. [54, 7, 55, 56, 123, 52]. However, hardware accelerators that focus on SbS

have only been partially investigated so far [37]. Enhancing SbS accelerators will contribute to
the deployment of robust neural networks in resource-constrained devices [40, 34, 38, 39].

A central point that can be optimized in current SbS accelerators is the use of approximation
techniques. Most SNN models use FP numerical representation, which imposes high complexity
of the required circuits for FP operations. Quantization has the potential to improve computa-
tional performance; however, this solution is often accompanied by quantization-aware training
methods that, in some cases, are problematic or even inaccessible, particularly in deep SNN

algorithms [103].

As an alternative, based on the relaxed need for fully precise or deterministic computa-
tion of neural networks, approximate computing techniques allow substantial enhancement
in processing efficiency with moderated accuracy degradation. Some research papers have
shown the feasibility of applying approximate computing to the inference stage of neural
networks [21, 24, 23, 22]. Such techniques usually demonstrated small inference accuracy
degradation, but significant enhancement in computational performance, chip-area, and energy
consumption. Hence, by taking advantage of the intrinsic error-tolerance of neural networks,
approximate computing is positioned as a promising approach for inference on resource-limited
devices.

In this chapter, it is presented an accelerator for SbS neural networks with a hardware MAC unit

55

3.2. Design Technique

product is approximated by adding integer exponents and multiplying truncated mantissas,
and the sum of products is done by accumulating denormalized integer products with barrel
shifters, this increases computational throughput; (2) the synaptic weight vector uses either
reduced custom FP or logarithmic representation, this reduces memory footprint; and (3)
the neuron vector uses either standard or custom FP representation, this preserves QoR and
overall inference accuracy.

• A hardware design exploration with the proposed dot-product approximation using synap-
tic weight vectors with custom FP and logarithmic representation as shown in Fig. 3.1. It
is presented the inference run-time, accuracy degradation, resource utilization and power
dissipation. Experimental results demonstrate 20.5× run-time enhancement versus em-
bedded CPU (ARM Cortex-A9 at 666 MHz), and less than 0.5% of accuracy degradation
without retraining on a handwritten digit recognition task (MNIST). This machine learning
task simply provides a proof of concept to demonstrate the feasibility of our approximation
technique for SbS neural network accelerators.

• A noise tolerance plot is proposed as quality monitor, which serves as an intuitive visual
model to provide insights into the accuracy degradation and noise resilience-budget of
SbS networks under approximate processing effects.

• The present design for dot-product approximation is adaptable as a building block for
other error resilient applications (e.g., image/video processing).

To promote the research on SbS networks, the design exploration framework is made available
to the public as an open-source project at:
https://github.com/YaribNevarez/sbs-framework.git

3.2. Design Technique

In this section, it is presented a hardware architecture composed of specialized heterogeneous
Processing Units (PUs) with hybrid custom floating-point and logarithmic dot-product approx-
imation. This approach represents an advantageous design for error resilient applications in
resource-constrained devices due to the reduced hardware utilization and memory footprint.
Furthermore, the proposed approach allows the implementation of stationary synaptic weight
matrices as internal accelerator storage based on the reduced memory footprint.

Regarding the software architecture, this is structured as a layered object-oriented application
framework written in the C programming language. This offers a comprehensive high level

57

https://github.com/YaribNevarez/sbs-framework.git

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

embedded software Application Programming Interface (API) that allows the construction of
scalable sequential SbS networks with configurable hardware acceleration. Conceptually this
design is modular, reusable, and extensible. The overall structure is depicted in Fig. 3.2.

3.2.1. Hardware Architecture

As a hardware/software co-design, the system architecture is an embedded CPU+FPGA-based
platform, where the acceleration of SbS network computation is based on asynchronous1 ex-
ecution of parallel heterogeneous processing units: Spike (input layer), Conv (convolution),
Pool (pooling), and FC (fully connected). Fig. 3.3 illustrates the system overview as a scalable
structure. For hyperparameter configuration, each PU uses AXI-Lite interface. For data transfer,
each PU uses AXI-Stream interfaces via DMA allowing data movement with high transfer rate.
Each PU asserts an interrupt flag once the job or transaction is complete. This interrupt event is
handled by the embedded CPU to collect results and start a new transaction.

The hardware architecture can resize its resource utilization by changing the number of PU

instances prior to the hardware synthesis, this provides scalability with a good trade-off between
area and throughput. The dedicated PUs for Conv and FC implement the proposed dot-product
approximation as a system component. The PUs are described in System C using Xilinx Vivado
High-Level Synthesis (HLS). The approximate dot-product component is integrated in the Conv
PU.

1The system is synchronous at the circuit level, but the execution is asynchronous in terms of jobs.

BSP

Hardware abstraction classes

Processing unit classes

SbS modular base classes

API presentation classes

DynamicsAccelerator

BaseNetwork

SbsNetwork SbsLayer

QSPI TimerUART

AccHwDriver

DMA

SbsWeightMatrix

BaseLayer LayerPartition LearningData

Statistics LerningRuleLogger Multivector

AcceleratorProfile AcceleratorMode

AccHweConfig MemoryManager HwTimerDrv

GIC ARM FAT FS

Hardware platform

SbS
software
library

SbS Spike

DDR MEMPS PL AXI LiteCPU

CPU

SbS Update

SD card

AXI Stream

Figure 3.2.: System-level overview of the embedded software architecture.

58

3.2. Design Technique

3.2.2. Conv Processing Unit

This hardware module computes the dynamics of the IP defined by Eq. (2.2) and offers two
modes of operation: configuration and computation.

Configuration Mode

In this mode of operation, the PU receives and stores in on-chip memory (BRAM) the hyperpa-
rameters to compute the IP dynamics: 𝜖 as the epsilon, 𝑁 as the length of ℎ⃗𝜇 ∈ R𝑁 , 𝐾 ∈ N as
the size of the convolution kernel, and 𝐻 ∈ N as the number of IPs to process per transaction. 𝐻
is the number of IPs forming a layer or a partition.

Additionally, the processing unit also stores in on-chip memory (BRAM) the synaptic weight
matrix using a number representation with a reduced memory footprint. Fundamentally, the
synaptic weight matrix is defined by𝑊 ∈ R𝐾×𝐾×𝑀×𝑁 with 0 ≤ 𝑊 (𝑠𝑡 | 𝑗) ≤ 1 and

∑︁𝑀−1
𝑠𝑡=0 𝑊 (𝑠𝑡 | 𝑗) =

1 [36]. Hence, 𝑊 employs only positive normalized real numbers. Therefore, 𝑊 is deployed
using a reduced floating-point or logarithmic representation as follows:

• Custom floating-point representation. In this case,𝑊 is deployed with a reduced floating-
point representation using the designer defined bit-width for the exponent and for the man-
tissa. For example, 4-bit exponent, 1-bit mantissa; as a result: 5-bit custom floating-point.
The proposed method to determine the required bit-width is described in Section 3.2.3.

• Logarithmic representation. In this case, the synaptic weight matrix is 𝑊 ∈ N𝐾×𝐾×𝑀×𝑁

with positive natural numbers. Since 0 ≤ 𝑊 (𝑠𝑡 | 𝑗) ≤ 1 and
∑︁𝑀−1
𝑠𝑡=0 𝑊 (𝑠𝑡 | 𝑗) = 1, 𝑊 has

only negative values in the logarithmic domain. Hence, the sign bit is omitted, and the
values are represented as natural numbers. Therefore,𝑊 is deployed with a representation

Interruptions

CPU

AXI
Stream

DRAM
AXI
Lite

Configuration Data

Figure 3.3.: System-level hardware architecture with scalable number of heterogeneous PUs:
Spike, Conv, Pool, and FC

59

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

using the necessary bit-width for the exponent according to the given application. For
example, 4-bit exponent. The method to determine the required bit-width is described in
Section 3.2.3.

In order to deploy different SbS models, the Conv processing units can load different hyper-
parameters and synaptic weight matrices as required via the embedded software.

Computation Mode

In this mode of operation, the PU executes a transaction to process a group of IPs using the
previously given hyperparameters and synaptic weight matrix. This process operates in six
stages as shown in Fig. 3.4. In the first two stages, the PU receives ℎ⃗𝜇 ∈ R𝑁 , then the PU

calculates the emitted spike and stores it in 𝑆𝑛𝑒𝑤 ∈ N𝐻 (output spike vector). From the third
to the fifth stage, the PU receives 𝑆𝑡 ∈ N𝐾×𝐾 (input spike matrix), then it computes the update
dynamics, and then it dispatches ℎ⃗

𝑛𝑒𝑤

𝜇 ∈ R𝑁 (updated IP). This process repeats for 𝐻 number of
loops (for each IP of the layer or partition). Finally, 𝑆𝑛𝑒𝑤 is dispatched.

The computation of the update dynamics (see Fig. 3.4(d)) operates in two stages or hardware
modules: dot-product and neuron update. First, the dot-product module calculates the sum
of pairwise products of ℎ⃗𝜇 and 𝑊⃗ (𝑠𝑡), each pairwise product is stored as intermediate results.
Subsequently, the neuron update module calculates Eq. (2.2) reusing parameters and previous
intermediate results.

The calculation of the dot-product of Eq. (2.2) represents a considerable computational cost
using standard floating-point in non-quantized network models. Fortunately, the pair product of
ℎ𝜇 (𝑗) and𝑊 (𝑠𝑡 | 𝑗) was defined by us as an approximable factor in the dot-product of Eq. (2.2).
In the following section, the focus is on an optimized dot-product hardware design based on
approximate computing.

3.2.3. Hybrid Custom Floating-Point Multiply-Accumulate Unit: Vector
Dot-Product Approximation

The dot-product hardware module is part of an application-specific architecture optimized to
approximate the dot-product of arbitrary length vectors, see Eq. (3.1). For quality configurability,
the mantissa bit-width of 𝑊⃗ (𝑠𝑡) is parameterized, providing a tunable trade-off between resource
utilization and QoR. Since the lower-order bits have smaller significance than the higher-order
bits, removing them may have only a minor impact on QoR. This is designated as hybrid custom
floating-point approximation (see Fig. 3.1(b)).

60

3.2. Design Technique

𝑟𝜇 (𝑠𝑡) =
𝑁−1∑︂
𝑗=0

ℎ𝜇 (𝑗)𝑊 (𝑠𝑡 | 𝑗) (3.1)

Further on, the mantissa bits are completely removed to utilize only the exponent of a
floating-point representation. Hence, the worst-case quality and yet the most efficient configu-
ration becomes a logarithmic representation. Consequently, this structure leads to advantageous
architectural optimizations using only adders and barrel shifters for dot-product approximation
in hardware. This approach is designated as hybrid logarithmic approximation (see Fig. 3.1(c)).

In order to determine the required bit-width for the number representation, Eq. (3.2), Eq. (3.3),
and Eq. (3.4) are used.

𝐸min = log2(min
∀𝑖
(𝑊 (𝑖))) (3.2)

Computation mode

Configuration mode

(f) Dispatch output spike matrix

BRAM

AXI stream

AXI stream

AXI lite

(a) Receive IP vector

(b) Spike firing

(c) Receive spike kernel

(e) Dispatch new IP vector

(d) Update dynamics

Dot-product

Neuron update

Figure 3.4.: The Conv processing unit and its six stages: (a) receive IP vector, (b) spike firing, (c)
receive spike kernel, (d) update dynamics, (e) dispatch new IP vector, (f) dispatch
output spike matrix.

61

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

𝑁𝐸 = ⌈log2(|𝐸min |)⌉ (3.3)

𝑁𝑊 = 𝑁𝐸 + 𝑁𝑀 (3.4)

The Eq. (3.2) obtains the exponent of the minimum entry value in the synaptic weight matrix.
Since 0 ≤ 𝑊 (𝑠𝑡 | 𝑗) ≤ 1 and

∑︁𝑀−1
𝑠𝑡=0 𝑊 (𝑠𝑡 | 𝑗) = 1, 𝑊 has only negative values in the logarithmic

domain; the smallest value is expressed by the biggest negative exponent (𝐸min). Then, the
Eq. (3.3) obtains the necessary bit-width to represent the exponent (𝑁𝐸). Finally, the total
bit-width is obtained by incorporating both exponent and mantissa bit-widths in Eq. (3.4). 𝑁𝑀
denotes the mantissa bit-width, this is a knob parameter that is tuned by the designer to trade-off
between resource utilization and QoR. The bit-width concept is illustrated in Fig. 3.1.

In this section, three pipelined hardware modules are presented, featuring standard floating-
point (IEEE 754) computation, hybrid custom floating-point approximation, and hybrid loga-
rithmic approximation.

Dot-Product with Standard Floating-Point Computation

The hardware module to calculate the dot-product with standard floating-point computation is
shown in Fig. 3.5. This diagram presents the hardware blocks and their clock cycle schedule.
This module loads both ℎ𝜇 (𝑗) and 𝑊 (𝑠 | 𝑗) from BRAM, then the PU executes the pairwise
product (Fig. 3.5(c)) and accumulation (Fig. 3.5(d)). Intermediate results of ℎ𝜇 (𝑗)𝑊 (𝑠𝑡 | 𝑗)
are stored in BRAM for reuse in the neuron update stage. The latency in clock cycles of this
hardware module is defined by Eq. (3.5), where 𝑁 is the vector length of the dot-product. This
equation is obtained from the general pipelined hardware latency formula: 𝐿 = (𝑁 − 1) 𝐼 𝐼 + 𝐼𝐿,
where 𝐼 𝐼 is the initiation interval (Fig. 3.5(a)), and 𝐼𝐿 is the iteration latency (Fig. 3.5(b)). Both
𝐼 𝐼 and 𝐼𝐿 are obtained from the high-level synthesis analysis. The equation for the latency with
standard 32-bit floating-point is:

𝐿 𝑓 32 = 10𝑁 + 9 (3.5)

In this design, the high-level synthesis tool infers computational blocks with considerable
latency cost for standard floating-point. In the case of floating-point multiplication (Fig. 3.5(c)),
the synthesis infers a hardware block with a latency cost of 5 clock cycles. This block executes

62

3.2. Design Technique

addition of exponents, multiplication of mantissas, and mantissa correction (when needed).
Moreover, in the case of floating-point addition (3.5(d)), the synthesis infers a hardware block
with a latency cost of 9 clock cycles. Seemingly, this block executes alignment of mantissas,
addition, and correction (when needed). Therefore, the use of standard floating-point results in
high computational cost, this represents unnecessary overhead in error tolerant applications.

Dot-Product with Hybrid Custom Floating-Point and Logarithmic Computation

The hardware module to calculate dot-product with hybrid custom floating-point approximation
is shown in Fig. 3.6. In this design, ℎ𝜇 (𝑗) uses standard 32-bit floating-point number rep-
resentation, and 𝑊 (𝑠 | 𝑗) uses a positive reduced custom floating-point number representation,
where the mantissa bit width is the quality configurability knob. This parameter is tuned by the
designer to trade-off between QoR and resource utilization, thus, energy consumption.

As the most efficient setup, by completely truncating the mantissa of𝑊 (𝑠 | 𝑗) leads to a slightly
different hardware architecture using only adders and shifters, which computes the dot-product
with hybrid logarithmic approximation. This is shown in Fig. 3.7.

Additionally, the exponent bit-width of 𝑊 (𝑠 | 𝑗) is a design parameter for efficient resource

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Load

Load

+

Float adderStore

No

Yes

Float multiply

No

Done

II=10

(a) Initiation Interval

(b) Iteration latency

(c) Pairwise product

(d) Accumulation

Figure 3.5.: Dot-product hardware module with standard floating-point (IEEE 754) computation,
(a) exhibits the initiation interval of 10 clock cycles, (b) presents the iteration latency
of 19 clock cycles, (c) shows the pairwise product block in dark-gray, and (d)
illustrates the accumulation block in light-gray.

63

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

0

1

2

3

4

5

6

7

8

9

10

11

12

Load

Load

+

Multiply
mantissas

Correction

Yes

Denormalize

Store

No

No

Yes

No

Yes

No

Skip IP update

Phase I

Phase II

Phase III

Add exp

II=2

Overflow

(b) Iteration latency

(c) Pairwise
product

(d) Accumulation

(a) Initiation Interval

Figure 3.6.: Dot-product hardware module with hybrid custom floating-point approximation, (a)
exhibits the initiation interval of 2 clock cycles, (b) presents the iteration latency
of 13 clock cycles, (c) shows the pairwise product blocks in dark-gray, and (d)
illustrates the accumulation blocks in light-gray.

0

1

2

3

4

5

6

7

8

Load

Load

+

Add exp

Denormalize

Store

No

Yes

No

Phase I

II=2

(b) Iteration latency

(c) Pairwise product

(d) Accumulation

(a) Initiation Interval

Yes

No

Skip IP update

Phase II

Phase III

Figure 3.7.: Dot-product hardware module with hybrid logarithmic approximation, (a) exhibits
the initiation interval of 2 clock cycles, (b) presents the iteration latency of 9 clock
cycles, (c) shows the pairwise product block in dark-gray, and (d) illustrates the
accumulation blocks in light-gray.

64

3.2. Design Technique

utilization and it is defined based on the application and deployment needs.
The hybrid custom floating-point and logarithmic approximation designs work in three phases:

Computation, Threshold-test, and Result normalization.

• Phase I, Computation:
This phase approximates the magnitude of the dot-product in a denormalized representa-
tion. This is calculated in two iterative steps over each vector element: pairwise product
and accumulation. Pairwise product is executed either in hybrid custom floating-point or
hybrid logarithmic approximation described below.

– Pairwise product.

– Hybrid custom floating-point approximation. As shown in Fig. 3.6(c) in dark-
gray, the pairwise product is approximated by adding exponents and multiplying
mantissas of 𝑊 (𝑠 |𝑖) and ℎ𝜇 (𝑖). If the mantissa multiplication results in an
overflow, then it is corrected by increasing the exponent and shifting the resulting
mantissa by one position to the right. Then, as intermediate result, ℎ𝜇 (𝑗)𝑊 (𝑠𝑡 | 𝑗)
is stored for future reuse in the neuron update calculation. In this design, the
pairwise product has a latency of 5 clock cycles.

– Hybrid logarithmic approximation. As shown in Fig. 3.7(c) in dark-gray, the
pairwise product is approximated by adding 𝑊 (𝑠 |𝑖) to the exponent of ℎ𝜇 (𝑖),
since the values of𝑊 (𝑠 | 𝑗) are represented in the logarithmic domain and ℎ𝜇 (𝑗)
in standard floating-point. In this design, the pairwise product has a latency of
one clock cycle.

– Accumulation. As shown in both Fig. 3.6(d) and Fig. 3.7(d) in light-gray, first, it is
obtained the denormalized representation of ℎ𝜇 (𝑗)𝑊 (𝑠𝑡 | 𝑗) by shifting its mantissa
using its exponent as shifting parameter (barrel shifter). Then, this denormalized
representation is accumulated to obtain the approximated magnitude of the dot-
product.

The process of pairwise product and accumulation iterates over each element of the
vectors. The computation latency is given by Eq. (3.6) for hybrid custom floating-point,
and Eq. (3.7) for hybrid logarithmic, where 𝑁 is the length of the vectors. Both pipelined
hardware modules have the same throughput, since both have two clock cycles as initiation
interval.

𝐿𝑐𝑢𝑠𝑡𝑜𝑚 = 2𝑁 + 11 (3.6)

65

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

𝐿𝑙𝑜𝑔 = 2𝑁 + 7 (3.7)

• Phase II, Threshold-test:
The accumulated denormalized magnitude is tested to be above of a predefined threshold,
it must be above zero, since the dot-product is the denominator in Eq. (2.2). If passing
the threshold, then the next phase is executed. Otherwise the rest of update dynamics is
skipped. The threshold-test takes one clock cycle.

• Phase III, Result-normalization:
In this phase, the dot-product is normalized to obtain the exponent and mantissa in order to
convert it to standard floating-point for later use in the neuron update. The normalization
is obtained by shifting the approximated dot-product magnitude in a loop until it is in the
form of a normalized mantissa where the iteration count represents the exponent of the
dot-product. Each iteration takes one clock cycle.

The total latency of the hardware module with hybrid custom floating-point and hybrid
logarithmic approximation is the accumulated latency of the three phases.

The proposed architectures with approximation approach exceeds the performance of the
design with standard floating-point. This performance enhancement is achieved by decomposing
the floating-point computation into an advantageous handling of exponent and mantissa using
intermediate accumulation in a denormalized representation and only one final normalization.

3.3. Experimental Results

The proposed architecture is demonstrated on a Xilinx Zynq-7020. This device integrates a dual
ARM Cortex-A9 based PS and PL equivalent to Xilinx Artix-7 (FPGA) in a single chip [129].
The Zynq-7020 architecture conveniently maps the custom logic and software in the PL and PS

respectively as an embedded system.
In this platform, the proposed hardware architecture is implemented to deploy the SbS network

structure shown in 2.1 for handwritten digit classification task for MNIST data set. The SbS

model is trained using standard floating-point. Matlab software is used for this SbS network
implementation. The resulting synaptic weight matrices are deployed on the embedded system
as binary files stored in a micro SD memory card. In the embedded software, the SbS network is
built as a sequential model using the API from the SbS embedded software framework [40]. This
API allows to configure the computational workload of the neural network, this can be distributed
among the hardware processing units and the embedded CPU.

66

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

Table 3.2.: Performance of processing units with standard floating-point (IEEE 754) computa-
tion.

Hardware mapping Computation schedule (ms)

Layer PU 𝑡𝑠 𝑡𝐶𝑃𝑈 𝑡𝑃𝑈 𝑡 𝑓

HX_IN Spike 0 0.056 0.370 0.426
H1_CONV Conv1 0.058 0.598 2.002 2.658

H2_POOL Pool1 0.658 0.126 1.091 1.875
Pool2 0.785 0.125 1.075 1.985

H3_CONV Conv2 0.911 0.280 3.183 4.374
Conv3 1.193 0.279 3.176 4.648

H4_POOL Pool3 1.473 0.037 0.481 1.991
H5_FC FC 1.512 0.101 1.118 2.731
HY_OUT CPU 1.615 0.004 0 1.619

Benchmark on Processing Units with Standard Floating-Point Computation

The system architecture shown in Fig. 3.9 is implemented to benchmark the computation on
hardware PUs with standard floating-point. The embedded software builds the SbS network as
a sequential model and delegates the network computation to the hardware processing units at
200 MHz as clock frequency.

The layers of the neural network with the most neurons are partitioned for asynchronous
parallel processing. Since H2_POOL and H3_CONV are the layers with the most neurons, the
computational workload is distributed between two PUs for each one of these layers. The output
layer HY_OUT is fully processed by the CPU, since it is the layer with fewest neurons. The
hardware mapping and the computation schedule of this deployment are displayed in Tab. 3.2
and Fig. 3.10, respectively.

In the computation schedule, the following terms are defined as follows: 𝑡𝑠 (𝑛) as the start time
for the processing of the neural network layer (as a compute node) 𝑛 ∈ 𝐿 where 𝐿 represents
the set of layers; 𝑡𝐶𝑃𝑈 (𝑛) as the CPU preprocessing time; 𝑡𝑃𝑈 (𝑛) as the PU latency; and 𝑡 𝑓 (𝑛) as

AXI
Stream

DRAM
AXI
Lite

CPU
Configuration Data

Int

Figure 3.9.: System overview of the top-level architecture with 8 processing units.

68

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

𝑇𝑃𝑈 = max
𝑛∈𝐿
(𝑡𝑃𝑈 (𝑛)) (3.9)

𝑇𝑆𝐶 =

⎧⎪⎪⎨⎪⎪⎩
𝑇𝑃𝑈 , if 𝑇𝐶𝑃𝑈 ≤ 𝑇𝑃𝑈
𝑇𝐶𝑃𝑈 , otherwise

(3.10)

𝑇 𝑓 = max
𝑛∈𝐿
(𝑡 𝑓 (𝑛)) (3.11)

Using standard floating-point requires a high computational cost. As the largest layer, the
computational workload of H3_CONV is evenly partitioned among two PUs: Conv2 and Conv3.
However, in the cyclic schedule, Conv2 causes the performance bottleneck as shown in Fig. 3.11.
In this case, the CPU awaits for Conv2 to finish the computation of the previous cycle in order
to start the current computation cycle. In contrast, as the smallest layer, the computational
workload of HY_OUT is fully processed by the CPU. Tab. 3.2 and Fig. 3.10 show 4 𝜇s as the
processing latency of HY_OUT. This latency is negligible compared to the overall performance
assessment. Accelerating HY_OUT would yield a negligible gain. Moreover, assigning a dedi-
cated hardware PU to HY_OUT would add unprofitable data transfer and hardware interruption
handling overheads.

Applying Eq. (3.10), it is obtained a latency of 3.18 ms per spike cycle. This deployment
achieves an accuracy of 98.98% correct classification on the 10, 000 image test set with 1000
spikes.

The post-implementation resource utilization and power dissipation are shown in Tab. 3.3.
Each Conv PU instantiates an on-chip stationary weight matrix of 52, 000 entries, wish is sufficient
to store 𝑊 ∈ R5×5×2×32 and 𝑊 ∈ R5×5×32×64 for H1_CONV and H3_CONV, respectively. In
order to reduce BRAM utilization, a custom floating-point representation is used, composed
of a 4-bit exponent and a 4-bit mantissa (bit sign is omitted). Each 8-bit entry is promoted to
its standard floating-point representation for the dot-product computation. The method to find
the appropriate bit-width parameters for custom floating-point representation is presented in
Section 3.3.2.

The implementation of dot-product with standard floating-point arithmetic (IEEE 754) utilizes
proprietary Xilinx multiplier and adder floating-point operator cores. Vivado HLS implements
floating-point arithmetic operations by mapping them onto Xilinx LogiCORE IP cores, these

70

3.3. Experimental Results

Table 3.3.: Resource utilization and power dissipation of processing units with standard floating-
point (IEEE 754) computation.

PU LUT FF DSP BRAM 18K Power (mW)

Spike 2,640 4,903 2 2 38
Conv 2,765 4,366 19 37 89
Pool 2,273 3,762 5 3 59
FC 2,649 4,189 8 9 66

floating-point operator cores are instantiated in the resultant Register-Transfer Level (RTL)[130].
In this case, the implementation of the dot-product with the standard floating-point computation
reuses the multiplier and adder cores already instantiated and used in other computation sections
of Conv and FC processing units. The post-implementation resource utilization and power
dissipation of the floating-point operator cores are shown in Tab. 3.4.

Table 3.4.: Resource utilization and power dissipation of multiplier and adder floating-point
(IEEE 754) operator cores.

Core operation DSP FF LUT Latency (clk) Power (mW)

Multiplier 3 151 325 4 7
Adder 2 324 424 8 6

Benchmark on Noise Tolerance Plot

The purpose of the proposed noise tolerance plot is to serve as an intuitive visual model used
to provide insights into accuracy degradation under approximate processing effects. This plot
reveals inherent error resilience, and hence, approximation resilience. As an application-specific
quality metric, this plot offers an effective method to estimate the overall quality degradation of
the SbS network under different approximate processing effects, since both approximations and
noise have qualitatively the same effect [128].

In order to experimentally obtain the noise tolerance plot, the inference accuracy of the neural
network with increasing number of spikes is measured. The measurements are retaken with
uniformly distributed noise applied on the input. The levels of the noise amplitude are gradually
ascended until accuracy degradation is detected. Fig. 3.12 demonstrates this method using 100
input samples.

As benchmark, the tolerance plot in Fig. 3.12 revels accuracy degradation having 50% noise
and convergence with 400 spikes. In this case, the given SbS network with precise processing
demonstrates its inherent error resilience, hence, the resilience for approximate processing.

71

3. Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

Design Exploration for Dot-product with Hybrid Custom Floating-Point Computation

For this design exploration, a custom floating-point representation is composed of 4-bit exponent
and 1-bit mantissa. This format is used for the synaptic weight vector on the proposed dot-product
architecture. Each Conv PU instantiates an on-chip stationary weight matrix for 52, 000 entries of
5-bit. The available memory size is large enough to store𝑊 ∈ R5×5×2×32 and𝑊 ∈ R5×5×32×64 for
H1_CONV and H3_CONV, respectively. The same dot-product architecture is implemented in
the processing unit of the fully connected layer (FC). However, due to lack of BRAM resources,
this PU can not instantiate on-chip stationary synaptic weight matrix. Instead, FC receives the
𝑊⃗ (𝑠𝑡) (weight vectors) during operation as well as ℎ⃗𝜇 and 𝑆𝑡 . The hardware mapping and the
computation schedule of this implementation are displayed in Tab. 3.6 and Fig. 3.14.

As shown in the computation schedule in Tab. 3.6 and Fig. 3.14, this implementation presents
a maximum hardware PU latency of 1.30 ms according to Eq. (3.9), and CPU latency of 1.67 ms.
Therefore, applying Eq. (3.10), the total latency is 1.67 ms per spike cycle as shown in Fig. 3.14.
In this case, the cyclic bottleneck in each SbS spike is in the CPU performance.

This configuration achieves an accuracy of 98.97% correct classification on the 10, 000 image
test set with 1000 spikes. This indicates an accuracy degradation of 0.33%. To monitoring
output quality, the noise tolerance plot in Fig. 3.15 revels accuracy degradation for noise higher
than 50% on the input images, and convergence of inference with 400 spikes. Thus, the
particular SbS network implementation under approximate processing effects demonstrates a
minimal impact on the overall accuracy. This reveals an inherent error resilience, and hence,
remaining approximation budget.

The post-implementation resource utilization and power dissipation of this design are shown
in Tab. 3.5.

Table 3.5.: Resource utilization and power dissipation of processing units with hybrid custom
floating-point approximation.

PU LUT FF DSP BRAM 18K Power (mW)

Conv 3,139 4,850 19 25 82
FC 3,265 5,188 8 9 66

Design Exploration for Dot-Product whit Hybrid Logarithmic Computation

For this design, 4-bit integer exponent are used for logarithmic representation of the synaptic
weight matrix. Each Conv processing unit implements the proposed dot-product architecture
including an on-chip stationary weight matrix for 52, 000 entries of 4-bit integer each one to store
𝑊 ∈ N5×5×2×32 and 𝑊 ∈ N5×5×32×64 for H1_CONV and H3_CONV, respectively. The same

74

3.4. Conclusions

Table 3.9.: Experimental results.

Dot-product PU Post-implementation resource utilization Power (mW) Latency Accuracy (%)e

LUT FF DSP BRAM 18K (ms) Gaind Noise 0% 50%

Standard FPa Conv 2,765 4,366 19 37 89 3.183 10.77x 98.98 98.63FC 2,649 4,189 8 9 66

Hybrid custom FPb Conv 3,139 4,850 19 25 82 1.673 20.49x 98.97 98.47FC 3,265 5,188 8 9 66

Hybrid logc Conv 3,086 4,804 19 21 78 1.673 20.49x 98.84 95.22FC 3,046 4,873 8 8 66
a Reference with standard floating-point arithmetic (IEEE 754).
b Synaptic weight with number representation composed of 4-bit exponent and 1-bit mantissa.
c Synaptic weight with number representation composed of 4-bit exponent.
d Acceleration with respect to the computation on embedded CPU (ARM Cortex-A9 at 666 MHz) with latency 𝑇𝑆𝐶 = 34.28𝑚𝑠.
e Accuracy on 10,000 image test set with 1000 spikes.

accuracy of 98.97% and 98.84%, respectively. This results in accuracy degradation of 0.33%
and 0.46%, respectively. To monitor output quality, the noise tolerance plot in Fig. 3.15 and
Fig. 3.17 reveal accuracy degradation when having 50% and 40% noise on the input images,
and convergence of inference with 400 and 600 spikes, respectively. Therefore, the design
exploration under the proposed approximate computing approach indicates sufficient inherent
error resilience for further or more aggressive approximation approaches.

Regarding resource utilization and power dissipation with the proposed approach, Conv
processing units have a 43.24% reduction of BRAM, and 12.35% of improvement in energy
efficiency over the standard floating-point implementation. However, the proposed approach
does not reuse the available floating-point operator cores instantiated from other computational
sections (see Tab. 4.3). Therefore, the logic required for the dot-product must be implemented,
which is reflected as additional utilization of Look-up Table (LUT) and Flip-Flop (FF) resources.
The experimental results of the design exploration are summarized in Tab. 3.9. The platform
implementations are summarized in Tab. 3.10, and their power dissipation breakdowns are
presented in Fig. 3.18.

3.4. Conclusions

This chapter presents an accelerator for SbS neural networks with a dot-product functional unit
based on approximate computing that combines the advantages of custom floating-point and
logarithmic representations. This approach reduces computational latency, memory footprint,
and power dissipation while preserving accuracy. For output quality monitoring, noise tolerance
plots are proposed as an intuitive visual measure to provide insights into the accuracy degradation

79

3.4. Conclusions

ral networks, approximate computing techniques allow substantial enhancement in processing
efficiency with moderated accuracy degradation.

81

4. Low-Power Conv2D Tensor Accelerator:
Hybrid 6-bit Floating-Point Computation

4.1. Introduction . 84

4.2. Design Technique . 86

4.3. Experimental Results . 102

4.4. Conclusions . 117

Abstract

This chapter presents a hardware design methodology for low-power CNN infer-
ence, specifically targeting sensor analytics applications. Central to this work is
the proposal of the HF6 quantization scheme and its dedicated hardware accelerator,
designed to function as a Conv2D tensor processor. This quantization strategy em-
ploys a hybrid number representation, combining standard FP and a 6-bit FP format.
This strategy allows for a highly optimized FP MAC, reducing mantissa multipli-
cation into a multiplexer-adder operation. This research introduces a QAT method
that, in certain cases, offers beneficial regularization effects. The efficacy of this
exploration is demonstrated with a regression model, which improves its accuracy
despite the applied quantization. For ML portability, the custom FP representation is
encapsulated within a standard format – a design feature that the proposed hardware
automatically processes. To validate interoperability of this approach, the hardware
architecture is integrated with TensorFlow Lite, demonstrating compatibility with
industry-standard ML frameworks and affirming the potential for practical deploy-
ment in various sensing applications while maintaining compliance with established
ML infrastructure.

83

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation

4.1. Introduction

There is a growing demand for sensor analytics based on ML algorithms. Industry 4.0 and
smart city infrastructure leverage AI solutions to increase productivity and adaptability [131].
These solutions are powered by advances in ML, compute engines, and big data. Therefore,
enhancement of these should be considered for research, as they are the machinery of the future.

CNNs represent the essential building blocks in 2D pattern analytics. Sensor-based applications
such as mechanical fault diagnosis [41, 42], structural health monitoring [43], human activity
recognition [44], hazardous gas detection [45] have been powered by CNN models in industry
and academia. CNN-based models, as one of the main types of ANN, have been widely used
in sensor analytics with automatic learning from sensor data [132, 133, 134, 135]. In this
context, CNN models are applied for automatic feature learning, usually, from 1D time series
as well as for 2D time-frequency spectrograms. CNN models provide advantages such as local
dependency, scale invariance, and noise resilience in analytics [22]. However, CNN models are
computationally intensive and power-hungry. This is particularly challenging for low-power
embedded applications, such as in the IoT field.

For ML inference, dedicated hardware architectures are typically used to enhance compute
performance and power efficiency. In terms of computational throughput, GPUs offer the highest
performance; in terms of power efficiency, ASIC and FPGA solutions are more energy effi-
cient [136]. As a result, numerous commercial ASIC and FPGA accelerators have been proposed,
targeting both High Performance Computing (HPC) for data centers and embedded systems
applications.

However, most FPGA accelerators have been implemented to target mid- to high-range FPGAs

for computationally intensive CNN models such as AlexNet, VGG-16, and ResNet-18. The main
drawbacks of these implementations are power supply demands, physical dimensions, heat sink
requirements, air cooling, and high price. In some cases, these implementations are not feasible
for ubiquitous low-power/resource-constrained applications.

To reduce hardware there are two types of research [109]: the first one is deep compression
including weight pruning, weight quantization, and compression storage [9, 137]; the second
type of research corresponds to a more efficient data representation, also known as custom
quantization for dedicated hardware implementation. In this group, hardware implementations
with customized 8-bit floating-point computation have been proposed [108, 109, 107]. However,
these architectures are inadequate for embedded applications, the target devices are high-end
FPGAs and PCIe devices.

Reducing the compute hardware with more aggressive quantization such as binary [8],
ternary [29], and mixed precision (2-bit activations and ternary weights) [30] typically in-

84

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation

constrained embedded FPGA. TensorFlow Lite Micro is integrated in this framework.

3. A customizable tensor processor as a dedicated hardware for HF6. This design computes
Conv2D tensor operations employing a pipelined vector dot-product with parametrized on-
chip memory utilization. For exploration purposes, the compute engine can be synthesized
with the proposed HF6 hardware or with Xilinx LogiCORE IPs (for standard floating-
point).

4. The potential of this approach is demonstrated with a CNN-regression model for anomaly
localization in SHM based on AE. A hardware design exploration is presented evaluat-
ing inference accuracy, compute performance, hardware resource utilization, and energy
consumption.

This work is available to the community as an open-source project at:
https://github.com/YaribNevarez/tensorflow-lite-fpga-delegate.git

4.2. Design Technique

The system design is a hardware/software co-design framework for low-power ML analytics.
This architecture allows design exploration for dedicated hardware accelerators in embedded
systems. For ML compatibility, the proposed framework integrates TensorFlow Lite Micro.

4.2.1. Base Embedded System Architecture

The embedded system architecture consists of a cooperative hardware-software platform. See
Fig. 4.2. The embedded CPU delegates low-level compute-bound tensor operations to the TPs.
The TPs employ AXI-Lite interface for configuration and AXI-Stream interfaces via DMA for
data movement from off-chip memory. Each TP and DMA pair asserts interrupt flags once its
compute job/transaction completes. Interrupt events are handled by the embedded CPU to use
the results and to start a new compute job/transaction. The hardware architecture can vary its
resource utilization by customizing the TPs prior to the hardware synthesis.

86

https://github.com/YaribNevarez/tensorflow-lite-fpga-delegate.git

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation

4.2.3. Training Method

The training method consists of two separate stages: (1) training with iterative early stop and
(2) quantization-aware training.

Training with Iterative Early Stop

To achieve better performance on CNN-regression models, it is implemented a training procedure
with iterative early stop cycle. This allows to reach better local minima. This process consists
of four steps:

1. A model is obtained with an initial training with standard early stop monitoring.

2. The model is iteratively re-trained (refined) with standard early stop. This process itera-
tively restarts the moving averages of the optimizer to search for better local minima.

3. In case of a better local minimum, the model is saved and used as a base for subsequent
search iterations, otherwise it is a discarded search.

4. The cyclic process stops automatically with a given number of searches without a better
local minimum, this number of searches is denoted as the stop patience. This allows to
set a maximum number of unsuccessful search trials before the stop.

This method is described in Algorithm 3.

Quantization-Aware Training

The QAT method is integrated into the training process, this operates as a callback on each mini-
batch update. The quantization is applied on the trainable parameters of convolution layers.
This method is implemented on the ML framework (TensorFlow/Keras), see Algorithm 4.

The quantization method uses rounding strategy to reduce the FP representation. This maps
the full precision FP values to the closest representable 6-bit FP values, see Algorithm 5. This
method quantizes the filter and bias tensors of the convolution layers. The exponent bit size plays
a more predominant influence on the model accuracy than the mantissa bit size. In [32], Lai et al.
demonstrated that 4-bit exponent and X-bit mantissa is adequate and consistent across different
networks (SqueezeNet, AlexNet, GoogLeNet, VGG-16). In this research, the FP representation
with 4-bit exponent and 1-bit mantissa is investigated.

94

4.2. Design Technique

Algorithm 3: Training with iterative early stop cycle.
input: 𝑀𝑂𝐷𝐸𝐿 as the input model.
input: 𝐷𝑡𝑟𝑎𝑖𝑛 as the training data set.
input: 𝐷𝑣𝑎𝑙 as the validation data set.
input: 𝑁𝐼 as the stop patience for iterative training cycle.
input: 𝑁𝐸 as the early stop patience (epochs) for training.
input: 𝐵𝑠𝑖𝑧𝑒 as the mini-batch size.
output: 𝑀𝑂𝐷𝐸𝐿 as the full-precision output model.

1: 𝑇𝑟𝑎𝑖𝑛(𝑀𝑂𝐷𝐸𝐿, 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 , 𝑁𝐸 , 𝐵𝑠𝑖𝑧𝑒)
2: 𝑚𝑠𝑒𝑖 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑀𝑂𝐷𝐸𝐿, 𝐷𝑣𝑎𝑙) // Benchmark
3: 𝑛𝐼 ← 0
4: while 𝑛𝐼 < 𝑁𝐼 do
5: // Iterative early stop cycle
6: 𝑇𝑟𝑎𝑖𝑛(𝑀𝑂𝐷𝐸𝐿, 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 , 𝑁𝐸 , 𝐵𝑠𝑖𝑧𝑒)
7: 𝑚𝑠𝑒𝑣 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑀𝑂𝐷𝐸𝐿, 𝐷𝑣𝑎𝑙)
8: if 𝑚𝑠𝑒𝑣 < 𝑚𝑠𝑒𝑖 then
9: 𝑈𝑝𝑑𝑎𝑡𝑒(𝑀𝑂𝐷𝐸𝐿)

10: 𝑚𝑠𝑒𝑖 ← 𝑚𝑠𝑒𝑣
11: else
12: 𝑀𝑂𝐷𝐸𝐿 ← 𝐿𝑜𝑎𝑑𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠()
13: 𝑛𝐼 ← 𝑛𝐼 + 1
14: end if
15: end while

95

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation

Algorithm 4: OnMiniBatchUpdate_Callback.
input: 𝑀𝑂𝐷𝐸𝐿 as the full-precision input model.
input: 𝐸𝑠𝑖𝑧𝑒 as the target exponent bits size.
input: 𝑀𝑠𝑖𝑧𝑒 as the target mantissa bits size.
input: 𝐷𝑡𝑟𝑎𝑖𝑛 as the training data set.
input: 𝐷𝑣𝑎𝑙 as the validation data set.
input: 𝑁𝑒𝑝 as the number of epochs.
input: 𝐵𝑠𝑖𝑧𝑒 as the mini-batch size.
output: 𝑀𝑂𝐷𝐸𝐿 as the quantized output model.

1: // Quantize
2: 𝑀𝑂𝐷𝐸𝐿 ← Algorithm 5(𝑀𝑂𝐷𝐸𝐿, 𝐸𝑠𝑖𝑧𝑒, 𝑀𝑠𝑖𝑧𝑒)
3: if 1 < 𝑒𝑝𝑜𝑐ℎ then
4: // Update model after first epoch
5: 𝑚𝑠𝑒𝑣 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑀𝑂𝐷𝐸𝐿, 𝐷𝑣𝑎𝑙)
6: if 𝑚𝑠𝑒𝑣 < 𝑚𝑠𝑒𝑖 then
7: 𝑈𝑝𝑑𝑎𝑡𝑒(𝑀𝑂𝐷𝐸𝐿)
8: 𝑚𝑠𝑒𝑖 ← 𝑚𝑠𝑒𝑣
9: end if

10: end if

96

4.2. Design Technique

Algorithm 5: Custom floating-point quantization.
input: 𝑀𝑂𝐷𝐸𝐿 as the CNN.
input: 𝐸𝑠𝑖𝑧𝑒 as the target exponent bit size.
input: 𝑀𝑠𝑖𝑧𝑒 as the target mantissa bits size.
input: 𝑆𝑇𝐷𝑀𝑠𝑖𝑧𝑒 as the IEEE 754 mantissa bit size.
output: 𝑀𝑂𝐷𝐸𝐿 as the quantized CNN.

1: for 𝑙𝑎𝑦𝑒𝑟 in 𝑀𝑂𝐷𝐸𝐿 do
2: if 𝑙𝑎𝑦𝑒𝑟 is 𝐶𝑜𝑛𝑣2𝐷 or 𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑣2𝐷 then
3: 𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑏𝑖𝑎𝑠← 𝐺𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑙𝑎𝑦𝑒𝑟)
4: for 𝑥 in 𝑓 𝑖𝑙𝑡𝑒𝑟 and 𝑏𝑖𝑎𝑠 do
5: 𝑠𝑖𝑔𝑛← 𝐺𝑒𝑡𝑆𝑖𝑔𝑛(𝑥)
6: 𝑒𝑥𝑝 ← 𝐺𝑒𝑡𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 (𝑥)
7: 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 ← 2𝐸𝑠𝑖𝑧𝑒−1 − 1 // Get full range value
8: 𝑐𝑚𝑎𝑛← 𝐺𝑒𝑡𝐶𝑢𝑠𝑡𝑜𝑚𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎(𝑥, 𝑀𝑠𝑖𝑧𝑒)
9: 𝑙𝑒 𝑓 𝑡𝑚𝑎𝑛← 𝐺𝑒𝑡𝐿𝑒 𝑓 𝑡𝑜𝑣𝑒𝑟𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎(𝑥, 𝑀𝑠𝑖𝑧𝑒)

10: if 𝑒𝑥𝑝 < − 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 then
11: 𝑥 ← 0
12: else if 𝑒𝑥𝑝 > 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 then
13: 𝑥 ← (−1)𝑠𝑖𝑔𝑛 · 2 𝑓 𝑢𝑙𝑙𝑒𝑥𝑝 · (1 + (1 − 2−𝑀𝑠𝑖𝑧𝑒))
14: else
15: if 2𝑆𝑇𝐷𝑀𝑠𝑖𝑧𝑒−𝑀𝑠𝑖𝑧𝑒−1 − 1 < 𝑙𝑒 𝑓 𝑡𝑚𝑎𝑛 then
16: 𝑐𝑚𝑎𝑛← 𝑐𝑚𝑎𝑛 + 1 // Above halfway
17: if 2𝑀𝑠𝑖𝑧𝑒 − 1 < 𝑐𝑚𝑎𝑛 then
18: 𝑐𝑚𝑎𝑛← 0 // Correct mantissa overflow
19: 𝑒𝑥𝑝 ← 𝑒𝑥𝑝 + 1
20: end if
21: end if
22: // Build custom quantized floating-point value
23: 𝑥 ← (−1)𝑠𝑖𝑔𝑛 · 2𝑒𝑥𝑝 · (1 + 𝑐𝑚𝑎𝑛 · 2−𝑀𝑠𝑖𝑧𝑒)
24: end if
25: end for
26: 𝑆𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑙𝑎𝑦𝑒𝑟, 𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑏𝑖𝑎𝑠)
27: end if
28: end for

97

4.2. Design Technique

Model Deployment In TensorFlow, model creation, training, and evaluation typically proceed
through the use of the Keras API. Once the model has been evaluated for performance, there are
two primary methods for deployment:

• SD Card Method: The trained model is saved in the .tflite format and stored on an SD
card. This card is then inserted into the SoC FPGA slot.

• Embedded Software Method: Alternatively, the model can be embedded directly into
the code of the embedded software by converting it into a hex dump (using xxd tool). This
is then compiled into the application, eliminating the need for external storage.

This dual-method approach provides flexibility for a range of deployment scenarios.

TensorFlow Lite Delegate Implementation and Operation

TensorFlow, as an open-source framework, provides extensible interfaces to optimize the exe-
cution of specific parts of a model on various hardware types. Within this structure, delegates
are components that help TensorFlow Lite to efficiently reroute specific tensor operations to be
run on specialized hardware accelerators, rather than the default CPU.

Implementation In the TensorFlow ecosystem, a delegate serves as a bridge connecting hard-
ware and software, illustrated in Fig. 4.10. In this framework, specific tensor operations are
offloaded to specialized hardware like GPUs, NPUs, and custom accelerators such as the TP. To
harness the full potential of the proposed TP, it is needed to implement a tailored TensorFlow
Lite delegate.

The delegate interface identifies operations eligible for offloading and redirects them to the
specialized hardware, as depicted in Fig. 4.11.

Software Classes The collaboration diagram in Fig. 4.12 offers a visual representation of the
relationships between the delegate class implemented for the TP. This diagram is instrumental
in understanding the interactions between classes and can be insightful for developers and
researchers who aim to customize or extend the TensorFlow Lite delegate for specialized use-
cases.

In this diagram, the central class is the TPDelegate, representing the delegate designed for the
proposed custom TP. This delegate interacts with a variety of other classes, facilitating execution
of tensor operations and its memory/hardware management.

99

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation

Figure 4.12.: Collaboration diagram of TensorFlow delegate classes.

Initialization As depicted in Fig. 4.13, the process commences by enabling the delegate inter-
face at the application layer. Subsequently, the MicroInterpreter module creates and initializes a
TPDelegate instance. During this phase, the TP and DMA hardware drivers are also instantiated
and initialized.

100

4.3. Experimental Results

4.3.1. Sensor Analytics Application

The analytics model is designed to predict x- y- coordinates of acoustic emissions on a metal
plate. The metal plate is in the presence of noise disturbance to simulate realistic conditions.
This subsection presents the structure for experimental setup, data sets, and the CNN-regression
model.

Experimental Setup

The experiment uses eight piezoelectric sensors (Vallen Systeme VS900) attached with magnetic
holders on a metal plate (90 cm × 86.6 cm × 0.3 cm). The VS900 devices can operate either in
active or passive mode. Six VS900 are used in passive mode as acoustic sensors and two in
active mode to produce acoustic emissions. These acoustic emissions simulate anomalies on x-
y- coordinates as well as the noise disturbance on the system. See Fig. 4.15(a). To create data
sets, the samples of acoustic emissions are labeled with their coordinates.

Data Sets

The data sets are recorded applying pulses on the metal plate, the x- y- coordinates of these pulses
are used as labels. The pulses for training and validation data sets are shown in Fig. 4.15(b) and
Fig. 4.15(c), respectively. The pulses for training and validation data sets are mutually exclusive,
this exclusion is represented by the cross symbols in Fig. 4.15(c). This creates a grid layout
used to collect samples for the data sets. This grid is 10 × 10 divisions, these are on the metal
plate area (90 cm × 86.6 cm). This grid does not consider the four corners as they are used for
magnetic holders.

In order to create reproducible acoustic emissions, this demonstration uses 9-cycle sine pulse
in a Hanning window with central frequency 𝑓c (narrow-banded in the frequency domain).
This experiment assumes guided Lamb waves based on the plate structure. The narrow-band
behavior also reduces the dispersion of the acoustic emission waves [139]. The waveform can
be expressed as a function of time 𝑡 as follows:

𝑥pulse(𝑡) =
1
2

(︃
1 − cos

(︃
2𝜋 𝑓c𝑡

9

)︃)︃
𝐴0 sin(2𝜋 𝑓c𝑡) (4.8)

To generate the data sets, slightly different pulse amplitudes and frequencies for excitation
are used. The pulse frequency 𝑓𝑐 is varied in 1 kHz steps between 300 kHz and 349 kHz and
the amplitude 𝐴0 is varied in 0.1 V steps between 2.6 V and 3.5 V. This produces 500 different
pulses for each of the excitation points.

103

4.3. Experimental Results

TensorFlow Lite 8-bit Quantization

This optimization method converts filter and bias tensors as well as activation maps to 8-
bit integer representation, this allows inference using integer-only arithmetic [139]. In this
research, this quantization is applied only to the convolution layers as they are the compute
bound operations. Other layers employ 32-bit FP representation.

In the compute graph, the input and output feature maps are glued with linear quantization at
the input and output of the Conv2D operations.

The base model is quantized using the TensorFlow Lite library with integer-only quantization
on the Conv2D tensor operations. The filter and bias tensors are represented by 8-bit and 32-bit
signed integers, respectively. The input and output activation maps are represented by 8-bit
signed integer. The TensorFlow quantization includes two additional vectors (output-multiplier
and output-shift coefficients), these two vectors are the same shape as the bias vector with 32-bit
integer representation.

This model achieves 𝑀𝑆𝐸 = 0.0126 m2 and 𝑀𝐴𝐸 = 0.0992 m. See Fig. 4.19(b). The MAE
increases 5.1% of the base model. This degradation is attributed to the 8-bit quantization on the
Conv2D layers.

Trans-Precision Inference on HF6 Hardware

To demonstrate backward compatibility, the inference quality of the base model is measured
without QAT on the HF6 hardware. See Fig. 4.19(c). This obtains 𝑀𝑆𝐸 = 0.0188 m2 and
𝑀𝐴𝐸 = 0.1232 m. The MAE increases 29.5% of the base model. This degradation is attributed
to the rounding errors of non-quantized filters and bias in Conv2D layers.

Quantization-Aware Training for HF6 Hardware

The QAT is a post-training optimization. This has been run during two epochs with mini-batch
size of 10 samples. This quantization is executed targeting the HF6 format: 4-bit exponent
and 1-bit mantissa. This is applied to filter and bias tensors of Conv2D layers. This method is
described in Algorithm 4 with 𝑁𝑒𝑝 = 2, 𝐵𝑠𝑖𝑧𝑒 = 10, 𝐸𝑠𝑖𝑧𝑒 = 4, 𝑀𝑠𝑖𝑧𝑒 = 1. The optimization
results are illustrated in Fig. 4.18(b).

The resulting model achieves 𝑀𝑆𝐸 = 0.0112 m2 and 𝑀𝐴𝐸 = 0.0919 m. This corresponds
to an error reduction of 8.2% and 3.77%, respectively. This improvement is attributed to the
regularization effect, as shown in Fig. 4.19(d). The QAT time is 185 minutes.

109

4. Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation

Quantization-Aware Training for Hybrid-Logarithmic 6-bit

For the sake of quality comparison with logarithmic quantization, the model with 6-bit logarith-
mic representation is generated. See Fig. 2.4(e). This quantization matches the bit size of HF6.
The filter and bias tensors of Conv2D layers are quantized with the 6-bit logarithmic format:
1-bit sign, 5-bit signed exponent, and 0-bit mantissa. This is applied using the method described
in Algorithm 4 with 𝑁𝑒𝑝 = 2, 𝐵𝑠𝑖𝑧𝑒 = 10, 𝐸𝑠𝑖𝑧𝑒 = 5, 𝑀𝑠𝑖𝑧𝑒 = 0.

The model achieves 𝑀𝑆𝐸 = 0.0123 m2 and 𝑀𝐴𝐸 = 0.0968 m, which correspond to an error
increase of 0.82% and 1.36%, respectively. This degradation is attributed to the 6-bit logarithmic
quantization lacking fractional bits, as illustrated in Fig. 4.19(e).

A summary of improvement-degradation of MSE and MAE with different data representations
is presented in Fig. 4.19(f).

4.3.3. Hardware Design Exploration

The proposed hardware/software co-design is demonstrated on the Zynq-7007S SoC on the
MiniZed development board. This SoC integrates a single ARM Cortex-A9 PS and a PL equivalent
to Xilinx Artix-7 FPGA in a single chip [129]. The Zynq-7007S SoC architecture maps the custom
logic and software in the PL and PS, respectively.

In this platform, the proposed hardware/software architecture is implemented to deploy the
sensor analytics application. The desired model is converted to TensorFlow Lite (floating-point)
and deployed on the embedded software as a hex dump as a C array. The Zynq-7007S SoC

executes inference with TensorFlow Lite on the PS. The computational workload of convolution
layers is delegated to the dedicated hardware.

Benchmark on Embedded CPU

First, the performance of the embedded CPU is explored for inference without hardware accel-
eration. In this case, TensorFlow Lite creates the CNN model as a sequential compute graph
executing all computation on the CPU (ARM Cortex-A9) at 666 MHz with power dissipation of
1, 187 W.

The compute performance and run-time inference of the CPU are shown in Tab. 4.2(a) and
Fig. 4.21(a), respectively.

110

4.3. Experimental Results

Benchmark on Tensor Processor Synthesized with Xilinx LogiCORE IP for Floating-Point
Computation

For this design, the TP is implemented with standard Xilinx FP hardware prior synthesis. The
design parameters for the maximum required accelerator on-chip size are:

• Max convolution kernel size: 𝐾𝑊 = 𝐾𝐻 = 3.

• Max input tensor width: 𝑊𝐼 = 16.

• Max input and output channels: 𝐶𝐼 = 55, 𝐶𝑂 = 60.

• Filter and bias bit size: 𝐵𝑖𝑡𝑆𝑖𝑧𝑒𝐹 = 𝐵𝑖𝑡𝑆𝑖𝑧𝑒𝐵 = 32.

• Input tensor bit size: 𝐵𝑖𝑡𝑆𝑖𝑧𝑒𝐼 = 32.

Using equations from Section 4.2.2, the on-chip memory utilization are 𝐼𝑛𝑝𝑢𝑡𝑀 = 84, 480b,
𝐹𝑖𝑙𝑡𝑒𝑟𝑀 = 950, 400b, and 𝐵𝑖𝑎𝑠𝑀 = 1, 920b. Hence, the required on-chip memory buffer size is
𝑇𝑃𝐵 = 1, 036, 800b.

The post-implementation resource utilization and power dissipation are presented in Tab. 4.1(a).
The complete hardware platform utilizes 83% of BRAM, this includes the on-chip memory re-
quirements of the TP, DMA, and AXI interconnects. The total available on-chip memory (BRAM)
on the Zynq-7007S SoC is 1.8 Mb. After hardware syntheses, the estimated power dissipation of
the TP is 85 mW at 200 MHz (this estimation is provided by Xilinx Vivado).

Table 4.1.: Resource utilization and power dissipation on the Zynq-7007S SoC.

TP engine Post-implementation resource utilization Power (W)
LUT FF DSP BRAM 36Kb

(a) Floating-Point 5,578 8,942 23 41.5 1.42939% 31% 35% 83%

(b) Hybrid-Float6 7,313 10,330 20 15 1.42451% 36% 30% 30%

The compute performance and inference schedule of the model on this hardware implemen-
tation are shown in Tab. 4.2(b) and Fig. 4.21(b), respectively. During run-time, the software
(TensorFlow Lite) delegates computation to the TP as dedicated hardware for Conv2D tensor
operations.

The implementation of the dot-product with standard FP engine (IEEE 754 arithmetic) utilizes
proprietary multiplier and adder floating-point operator cores. Vivado HLS implements FP

arithmetic operations by mapping them onto Xilinx LogiCORE IP cores, these FP operator cores
are instantiated in the resultant RTL [130]. In this case, the implementation of the dot-product

111

4.3. Experimental Results

Using equations from Section 4.2.2, the on-chip memory requirements for the hardware
accelerator are 𝐼𝑛𝑝𝑢𝑡𝑀 = 84, 480 b, 𝐹𝑖𝑙𝑡𝑒𝑟𝑀 = 178, 200 b, 𝐵𝑖𝑎𝑠𝑀 = 360 b. Hence, the required
on-chip memory buffer size is 𝑇𝑃𝐵 = 263, 040 b.

The post-implementation resource utilization and power dissipation are presented in Tab. 4.1(b).
The complete hardware platform utilizes 30% of BRAM, this includes the on-chip memory re-
quirements of the TP, DMA, and AXI interconnects. The estimated power dissipation of the TP

is 84 mW at 200 MHz (this estimation is provided by Xilinx Vivado).
The compute performance and inference schedule of the model on this hardware implementa-

tion are shown in Tab. 4.2(c) and Fig. 4.21(c), respectively. Fig. 4.20 presents a comparison of
the acceleration and the reduction of power dissipation between standard FP and HF6 hardware
implementations.

This deployment does not require model treatment for hardware compatibility. For backward
compatibility, the 6-bit FP representation is wrapped into the standard FP. The dedicated hardware
design extracts the 6-bit format automatically to perform computation.

4.3.4. Discussion

Training and Quantization

The training with iterative early stop obtains a model with enhanced accuracy than standard
early stop. This method iteratively resets the moving averages of Adam’s optimizer, which helps
to iteratively search for better local minima. This iterative search is suitable for models with low
computational cost.

The TensorFlow Lite 8-bit quantization preserves the overall model accuracy. In some cases,
the associated regularization effect can improve the accuracy. However, the error distribution in
CNN linear regressions gets slightly degraded. In particular, 8-bit quantized output layers incur in
discrete-degradation patterns, Fig. 4.22(b) shows this effect on three different models. Vertical
and horizontal patterns appear in the error distribution of 8-bit fixed-point quantization. We
attribute this effect to the 8-bit resolution in the activation maps. In the case of HF6 quantization,
the activation maps are represented by floating-point preventing this degradation.

The proposed 6-bit FP representation (E4M1) improves latency, hardware area, and power
dissipation, while preserving model accuracy. For comparison, in our application, this num-
ber format produces better results than the 6-bit logarithmic representation (E5M0). This is
demonstrated in Fig. 4.19(d) and Fig. 4.19(e).

In [32], Lai et al. demonstrated that 4-bit exponent and X-bit mantissa preserves accuracy
on SqueezeNet, AlexNet, GoogLeNet, and VGG-16. To contribute on this, I investigated 4-bit

113

4.4. Conclusions

Table 4.4.: Comparison of hardware implementation with related work.
Platform Chunsheng et al. [108] Chen et al. [109] BFP [107] Paolo et al. [110] This work

Device XC7VX690T XC7K325T XC7VX690T XC7Z007S XC7Z007S
Year 2017 2019 2019 2019 2023
Dev. kit cost $7,494 $1,299 $7,494 $89 $89
Format (activation/weight) FP 16-bit FP 8-bit / 8-bit FP 16-bit / 8-bit INT 16-bit FP 32-bit / 6-bit
Frequency (MHz) 200 200 200 80 200
Peak power efficiency (GFLOP/s/W) 18.72 115.40 82.88 2.98 5.74
Peak throughput (GFLOP/s) 202.42 1086.8 760.83 10.62 0.482
Wall plug power (W) 10.81 9.42 9.18 2.5 2.3
BRAM 36Kb utilization 196.5 234.5 913 44 15
DSP utilization 1728 768 1027 54 20

4.4. Conclusions

This chapter presents the Hybrid-Float6 quantization and its dedicated hardware accelerator
for floating-point CNN computation. Feature maps and weights are represented by 32-bit and
6-bit FP, respectively. The 6-bit FP format is composed of 1-bit sign, 4-bit exponent, and
1-bit mantissa. The 1-bit mantissa enables low-power MAC implementations by reducing the
mantissa multiplication to a multiplexer-adder operation. The intrinsic error tolerance of neural
networks is exploited to further reduce the hardware design with approximation. This approach
improves latency, hardware area, and energy consumption. To preserve accuracy, a QAT training
method is presented that, based on regularization effects can improve accuracy. A lightweight TP

implementing a pipelined vector dot-product is presented. For ML compatibility/portability, the
6-bit FP is wrapped in the standard floating-point format, which is automatically extracted by the
proposed hardware. The hardware/software architecture is compatible with TensorFlow Lite. To
evaluate the applicability of this approach, it is presented a CNN-regression model for anomaly
localization in a SHM application based on acoustic emissions. The embedded hardware/software
framework is demonstrated on XC7Z007S as the smallest Zynq-7000 SoC, suitable for low-power
IoT applications. The proposed architecture achieves a peak power efficiency and acceleration
on convolution layers of 5.7 GFLOPS/s/W and 48.3×, respectively.

117

5. Conclusion and Outlook

5.1. State-of-the-art challenges and solutions 119

5.2. Key Contributions . 119

5.3. Future Directions . 120

5.4. Final Remarks . 120

The field of artificial intelligence is launching an era characterized by the prevalence of
ubiquitous connected devices. To ensure the sustainability of this transformation, it is crucial
to harmonize computational accuracy with energy efficiency and the compatibility of hardware
solutions. This dissertation focuses on enhancing the efficiency of AI hardware engines, taking
into account these considerations.

5.1. State-of-the-art challenges and solutions

Widely used AI/ML algorithms, SNNs and CNNs, come with elevated computational and energy
demands. The intrinsic error resilience of these algorithms brings "approximate computing"
paradigms, such as quantization, to the forefront, offering efficiency enhancements. This re-
search presents cutting-edge methodologies centered on low-power neural network accelerator
designs employing custom FP computation.

5.2. Key Contributions

• Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation: A hardware de-
sign methodology is presented for low-power SbS neural networks targeting embedded
applications. This approach leverages the intrinsic error resilience of SbS, emphasizing
a balance between performance and hardware complexity. Significant reductions in run-
time, memory footprint, and power consumption are realized, with minimal accuracy
trade-offs.

119

5. Conclusion and Outlook

• Hybrid 6-bit Floating-Point Computation: A novel low-power hardware design tech-
nique tailored for resource-constrained applications is presented. The HF6 quantization
strategy, its specialized hardware MAC unit, and the tensor processor are showcased.
Compatibility with TensorFlow Lite demonstrates its industry relevance and potential for
broader adoption.

5.3. Future Directions

Future directions focus on optimizing energy efficiency and computational performance for on-
device learning techniques. Key strategies include reduced gradient formats for optimized data
processing, and exploring reduced hardware architectures with lower-bit formats like Bfloat16
in feature maps. This can significantly optimize memory usage and reduce energy consumption
while maintaining QoR.

Additionally, in this work, there is potential to boost computational throughput by shifting
from pipeline to parallel computation structures, augmented by wider memory channels. This
approach not only enhances processing speed but also broadens the application scope beyond
sensor analytics to a comprehensive range of AI/ML models for both inference and learning.
The goal is to leverage hybrid reduced FP quantization, aligning with the need for more energy-
efficient on-device learning in various AI/ML applications.

5.4. Final Remarks

This dissertation delves into design techniques that exploit the intrinsic error resilience of AI/ML

algorithms, focusing on optimal FP inference acceleration in resource-constrained embedded
systems. Key takeaways include:

1. Quantization techniques, particularly those involving reduced floating-point formats, are
set to significantly improve hardware designs. These enhancements include acceleration
of computation, increased energy efficiency, and optimized chip area. Additionally,
they positively impact the versatility, portability, and compatibility aspects of hardware
solutions.

2. The MAC module designs presented in this work showcase a balance between compu-
tational accuracy and resource efficiency, suitable for resource-constrained embedded
devices. This approach has relevance and applicability in both academic research and
industrial contexts.

120

5.4. Final Remarks

3. The HF6 quantization approach has the potential to be applicable across the entire spectrum
of AI/ML models. This method enhances energy efficiency, processing speed, and memory
footprint, particularly important in the real-world application of AI/ML technologies.

4. The methodologies showcased for low-power inference acceleration hold significant po-
tential for adaptation to the high computational demands of data centers. Training AI/ML

models using reduced-precision floating-point hardware architectures achieves effects akin
to those of QAT methods. Implementing the proposed techniques in data centers could
lead to substantial improvements in energy and resource efficiency.

121

A. Appendix

A.1. Tensor Processor Delegate and Hardware Drivers 123

A.2. TensorFlow Lite Integration . 127

A.3. SbS algorithm . 139

This appendix is organized into three sections. It begins by delving into the TensorFlow Lite
delegate interface implementation for the TP and its associated hardware drivers. Following this,
modifications made to the TensorFlow Lite library are highlighted. The appendix concludes
with a detailed presentation of the SbS algorithm.

A.1. Tensor Processor Delegate and Hardware Drivers

This section provides an overview of the directory structure and key components involved in the
development of TP delegate and hardware drivers. The organized layout of these sections aids
in understanding the architecture and implementation.

The diagram in Fig. A.1 provides a comprehensive overview of the TP delegate and hardware
drivers, presenting the interactions among classes and showing both their public and private
functions. The subsequent subsections provide the directory structure for the implemented
classes.

This implementation is available to the community as an open-source project at:
https://github.com/YaribNevarez/tensorflow-lite-fpga-delegate.git

123

https://github.com/YaribNevarez/tensorflow-lite-fpga-delegate.git

A. Appendix

Figure A.1.: Collaboration diagram of the TP delegate and hardware drivers.

A.1.1. Tensor Processor Delegate

The TPDelegate class serves as the intermediary between the ML library and the hardware
drivers. It facilitates hardware initialization, creates computational Jobs for tensor operations
such as Conv2D and DepthwiseConv2D in both floating-point and fixed-point formats, and

124

A.1. Tensor Processor Delegate and Hardware Drivers

provides the means to execute these Jobs. TensorFlow Lite invokes these functions to delegate
the computational load to the TP.

Serving a dual role, the TPDelegate acts as a container for multiple TensorProcessor object
instances, containing an internal array of these. For horizontal scalability, the TPDelegate can
manage multiple TensorProcessor instances. Meanwhile, the TensorProcessor class, inheriting
from the ProcessingUnit class (hardware driver), encapsulates hardware interactions and offers
a bridge interface to them.

The TP delegate module is composed of the following directory structure:

libs/

delegates/

inc/

tensor_processor.h

tp_delegate.h

src/

tensor_processor.cpp

tp_delegate.cpp

A.1.2. Hardware Drivers

The driver module integrates the ProcessingUnit class and virtual function tables specifically
designed for low-level handling of the TP and DMA. The ProcessingUnit class encapsulates
the hardware interactions, including initialization, execution, cache memory coherence, and
interrupt handling, by employing the hardware virtual tables. The virtual function tables act as
wrappers for hardware functions, facilitating the smooth transition or interchange of hardware
components.

The hardware drivers module is structured as follows, including source files and headers:

125

A. Appendix

libs/

drivers/

inc/

conv_vtbl.h

dma_vtbl.h

processing_unit.h

src/

conv_vtbl.c

dma_vtbl.c

processing_unit.cpp

A.1.3. ARM Generic Interrupt Controller

The Generic Interrupt Controller (GIC) orchestrates interrupts within multiple core SoC. The GIC

ensures interrupt requests from diverse peripherals are prioritized and channeled to the suitable
processor core inside the SoC. This module serves as a wrapper tailored for the Xilinx GIC, which
is used by the hardware drivers. This wrapper facilitates the smooth transition or interchange of
SoC types and brands.

The GIC module is composed of the following directory structure:

libs/

arm/

inc/

gic.h

src/

gic.c

A.1.4. Supporting Classes

The supporting classes offer foundational utilities that enhance various modules through a
structured set of functionalities. These provide macros for decomposing FP values into their sign,
exponent, and mantissa, offering more granular control over numerical representations. This
module also provides memory management tailored for embedded devices, ensuring optimal
memory allocation while considering the constraints of the system. Additionally, Event and
Timer classes enhance performance monitoring by logging events and measuring timings with
a hardware timer, facilitating a profound understanding of system performance.

126

A.2. TensorFlow Lite Integration

The supporting classes comprises utility classes and their corresponding source files:

libs/

utilities/

inc/

custom_float.h

event.h

memory_manager.h

miscellaneous.h

timer.h

src/

event.c

memory_manager.c

miscellaneous.c

timer.c

A.2. TensorFlow Lite Integration

This appendix subsection details the modifications made to the TensorFlow Lite library to
incorporate the delegate interface designed for the proposed TP. This begins by showcasing a
directory tree that highlights the altered source and header files. Following this, it is presented
the specific code changes in each file.

127

A. Appendix

tensorflow/

lite/

c/

common.h
...

micro/

kernels/

conv.cpp

depthwise_conv.cpp

kernel_util.cpp

kernel_util.h
...

micro_graph.cpp

micro_graph.h

micro_interpreter.cpp

micro_interpreter.h
...

common.h

This file defines the data types employed within the TensorFlow Lite library, including compute
nodes, tensors, quantization types, delegates, and the execution context. Within the execution
context structure, the GetDelegate() function pointer has been introduced to access to the custom
delegate instance during execution.

1 typedef struct TfLiteContext {

2 // ...

3 void * (*GetDelegate) (const struct TfLiteContext* context);

4 } TfLiteContext;

conv.cpp

This file contains the Conv2D tensor operator. Within it, the allocation and initialization of the
Job instance have been incorporated. This instance carries the essential parameters required to
execute this tensor operation on the TP via the delegate. The Job object is instantiated based
on the tensor data type, whether it is floating-point or fixed-point. For a more generic TP, this

128

A.2. TensorFlow Lite Integration

mechanism would be positioned at a higher level to circumvent direct modifications to specific
tensor operator modules.

1 #include "tp_delegate.h"

2 // ...

3 void* Init(TfLiteContext* context, const char* buffer, size_t length)

4 {

5 // ...

6 return context->AllocatePersistentBuffer (context,

7 sizeof(OpDataConv) + sizeof(TPDelegate::Job));

8 }

1 TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node)

2 {

3 TPDelegate * delegate = reinterpret_cast <TPDelegate *>

4 (tflite::micro::GetDelegate (context));

5 // ...

6 TPDelegate::Job & job = *(reinterpret_cast <TPDelegate::Job*>

7 (node->user_data + sizeof(OpDataConv)));

8 // ...

9

10 if (delegate != nullptr)

11 {

12 switch (input->type)

13 {

14 case kTfLiteFloat32:

15 {

16 if (!TPDelegate::isValid (job))

17 {

18 job = delegate->createJob(ConvParamsFloat (params, data),

19 tflite::micro::GetTensorShape (input),

20 tflite::micro::GetTensorData <float> (input),

21 tflite::micro::GetTensorShape (filter),

22 tflite::micro::GetTensorData <float> (filter),

23 tflite::micro::GetTensorShape (bias),

24 tflite::micro::GetTensorData <float> (bias),

25 tflite::micro::GetTensorShape (output),

26 tflite::micro::GetTensorData <float> (output),

27 reinterpret_cast <Event *> (node->delegate));

129

A. Appendix

28 }

29 delegate ->execute (job);

30 break;

31 }

32 case kTfLiteInt8:

33 {

34 if (!TPDelegate::isValid (job))

35 {

36 job = delegate->createJob(

37 ConvParamsQuantized (params, data),

38 data.per_channel_output_multiplier ,

39 data.per_channel_output_shift ,

40 tflite::micro::GetTensorShape (input),

41 tflite::micro::GetTensorData <int8_t> (input),

42 tflite::micro::GetTensorShape (filter),

43 tflite::micro::GetTensorData <int8_t> (filter),

44 tflite::micro::GetTensorShape (bias),

45 tflite::micro::GetTensorData <int32_t> (bias),

46 tflite::micro::GetTensorShape (output),

47 tflite::micro::GetTensorData <int8_t> (output),

48 reinterpret_cast <Event *> (node->delegate));

49 }

50 delegate ->execute (job);

51 break;

52 }

53 default:

54 TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",

55 TfLiteTypeGetName (input->type), input->type);

56 return kTfLiteError;

57 }

58 }

59 else

60 {

61 // ...

62 }

63 // ...

130

A.2. TensorFlow Lite Integration

depthwise_conv.cpp

This file contains the DepthwiseConv2D tensor operator. Within it, the allocation and initializa-
tion of the Job instance have been incorporated. This instance carries the essential parameters
required to execute this tensor operation on the TP via the delegate. The Job object is instantiated
based on the tensor data type, whether it is floating-point or fixed-point. For a more generic
TP, this mechanism would be positioned at a higher level to circumvent direct modifications to
specific tensor operator modules.

1 #include "tp_delegate.h"

2 // ...

3 void* Init(TfLiteContext* context, const char* buffer, size_t length)

4 {

5 // ...

6 return context->AllocatePersistentBuffer (context,

7 sizeof(OpDataConv) + sizeof(TPDelegate::Job));

8 }

1 TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node)

2 {

3 TPDelegate * delegate = reinterpret_cast <TPDelegate *>

4 (tflite::micro::GetDelegate (context));

5 // ...

6 TPDelegate::Job & job = *(reinterpret_cast <TPDelegate::Job*>

7 (node->user_data + sizeof(OpDataConv)));

8 // ...

9

10 if (delegate != nullptr)

11 {

12 switch (input->type)

13 {

14 case kTfLiteFloat32:

15 {

16 if (!TPDelegate::isValid (job))

17 {

18 job = delegate->createJob(ConvParamsFloat (params, data),

19 tflite::micro::GetTensorShape (input),

20 tflite::micro::GetTensorData <float> (input),

21 tflite::micro::GetTensorShape (filter),

131

A. Appendix

22 tflite::micro::GetTensorData <float> (filter),

23 tflite::micro::GetTensorShape (bias),

24 tflite::micro::GetTensorData <float> (bias),

25 tflite::micro::GetTensorShape (output),

26 tflite::micro::GetTensorData <float> (output),

27 reinterpret_cast <Event *> (node->delegate));

28 }

29 delegate ->execute (job);

30 break;

31 }

32 case kTfLiteInt8:

33 {

34 if (!TPDelegate::isValid (job))

35 {

36 job = delegate->createJob(

37 ConvParamsQuantized (params, data),

38 data.per_channel_output_multiplier ,

39 data.per_channel_output_shift ,

40 tflite::micro::GetTensorShape (input),

41 tflite::micro::GetTensorData <int8_t> (input),

42 tflite::micro::GetTensorShape (filter),

43 tflite::micro::GetTensorData <int8_t> (filter),

44 tflite::micro::GetTensorShape (bias),

45 tflite::micro::GetTensorData <int32_t> (bias),

46 tflite::micro::GetTensorShape (output),

47 tflite::micro::GetTensorData <int8_t> (output),

48 reinterpret_cast <Event *> (node->delegate));

49 }

50 delegate ->execute (job);

51 break;

52 }

53 default:

54 TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",

55 TfLiteTypeGetName (input->type), input->type);

56 return kTfLiteError;

57 }

58 }

59 else

132

A.2. TensorFlow Lite Integration

60 {

61 // ...

62 }

63 // ...

kernel_util.cpp

This source file contains utility functions employed by the kernels or tensor operators during
execution. Within this file, a wrapper function has been added to retrieve the delegate instance
from the execution context.

1 // ...

2 void * GetDelegate (const TfLiteContext* context)

3 {

4 TFLITE_DCHECK(context != nullptr);

5 return context->GetDelegate (context);

6 }

kernel_util.h

This header file outlines the prototypes of utility functions used by the kernels or tensor operators
during execution. It is added the prototype for the wrapper function designed to extract the
delegate instance from the execution context.

1 // ...

2 void* GetDelegate (const TfLiteContext* context);

micro_graph.cpp

This source file contains the code associated with traversing and execution of the computational
graph or model. It incorporates functions for the allocation, initialization, preparation, execution,
and disposal of the model graph. An event logger has been introduced to this class, logging each
compute node activity, offering detailed timing data for performance analysis.

1 #include "event.h"

2 // ...

3 MicroGraph::~MicroGraph ()

4 {

5 DisposeEventLogger ();

133

A. Appendix

6 }

7 // ...

8 TfLiteStatus MicroGraph::InvokeSubgraph(int subgraph_idx)

9 {

10 // ...

11 for (size_t i = 0; i < subgraph->operators()->size(); ++i)

12 {

13 // ...

14 Event_start (reinterpret_cast <Event*> (event_array_[i]));

15

16 TFLITE_DCHECK(registration ->invoke);

17 TfLiteStatus invoke_status = registration ->invoke(context_ , node)

;

18

19 Event_stop (reinterpret_cast <Event*> (event_array_[i]));

20 // ...

21 }

22 // ...

23 }

24 // ...

25 void MicroGraph::AllocateEventLogger (void * parent, int subgraph_idx

)

26 {

27 if (event_array_ == nullptr && subgraph_allocations_ != nullptr)

28 {

29 const SubGraph* subgraph = (*subgraphs_)[subgraph_idx];

30 const SubgraphAllocations* subgraph_allocations =

31 &subgraph_allocations_[subgraph_idx];

32 const TfLiteRegistration* registration = nullptr;

33 const char* op_name = nullptr;

34

35 event_array_len_ = subgraph->operators ()->size ();

36

37 event_array_ = (void **) malloc (sizeof(Event*) *

event_array_len_);

38

39 for (size_t i = 0; i < event_array_len_; ++i)

40 {

134

A.2. TensorFlow Lite Integration

41 registration = subgraph_allocations ->

42 node_and_registrations[i].registration;

43

44 op_name = OpNameFromRegistration (registration);

45

46 event_array_[i] = reinterpret_cast <void*> (Event_new (

47 reinterpret_cast <Event*> (parent),

48 EVENT_OPERATION , (void *) op_name));

49

50 // [Begin] Temporary solution

51 subgraph_allocations ->node_and_registrations[i].node.delegate =

52 (TfLiteDelegate*) event_array_[i];

53 // [End] Temporary solution

54 }

55 }

56 }

57

58 void MicroGraph::DisposeEventLogger (void)

59 {

60 if (event_array_ == nullptr)

61 {

62 for (size_t i = 0; i < event_array_len_; ++i)

63 {

64 Event_delete (reinterpret_cast <Event **>(&event_array_[i]));

65 }

66 free (event_array_);

67 event_array_ = nullptr;

68 event_array_len_ = 0;

69 }

70 }

micro_graph.h

In this header file, the event functions and data members have been integrated into the Micro-
Graph class.

1 // ...

2 class MicroGraph

135

A. Appendix

3 {

4 public:

5 // ...

6 void AllocateEventLogger (void * parent, int subgraph_idx);

7

8 void DisposeEventLogger(void);

9

10 private:

11 // ...

12 void ** event_array_ = nullptr;

13 size_t event_array_len_ = 0;

14 // ...

15 };

micro_interpreter.cpp

This source file implements the MicroInterpreter class, which acts as the container for the
computational graph. The class prepares the compute nodes by registering tensor operators to
each node and allocating tensors. Furthermore, it provides compute graph execution and access
to the model tensors. An instance of this class is utilized by the application to invoke model
execution and access tensors.

In this class, an enable function for the delegate was introduced, this can be accessed by
the application layer. When invoked, it creates and initializes a TPDelegate instance, which
subsequently initializes the hardware drivers. Additionally, event logging has been incorporated
into the class for performance tracking.

1 #include "tp_delegate.h"

2 // ...

3 MicroInterpreter::~MicroInterpreter()

4 {

5 // ...

6 if (event_ != nullptr)

7 {

8 Event_delete (reinterpret_cast <Event**> (&event_));

9 }

10

11 if (delegate_ != nullptr)

12 {

136

A.2. TensorFlow Lite Integration

13 delete reinterpret_cast <TPDelegate*> (delegate_);

14 }

15 }

16 // ...

17 void MicroInterpreter::Init(MicroProfiler* profiler)

18 {

19 // ...

20 context_.GetDelegate = GetDelegate;

21 // ...

22 };

23 // ...

24 TfLiteStatus MicroInterpreter::AllocateTensors()

25 {

26 // ...

27 event_ = Event_new (nullptr, EVENT_MODEL , (void *) "MODEL");

28

29 graph_.AllocateEventLogger (event_, 0);

30 // ...

31 }

32

33 TfLiteStatus MicroInterpreter::Invoke()

34 {

35 TfLiteStatus rc;

36 // ...

37 Event_start (reinterpret_cast <Event*> (event_));

38

39 rc = graph_.InvokeSubgraph(0);

40

41 Event_stop (reinterpret_cast <Event*> (event_));

42

43 return rc;

44 }

45

46 // ...

47

48 void * MicroInterpreter::GetDelegate (const struct TfLiteContext*

context)

49 {

137

A. Appendix

50 MicroInterpreter* interpreter = reinterpret_cast <MicroInterpreter*>

51 (context->impl_);

52 return interpreter ->delegate_;

53 }

54

55 void MicroInterpreter::enable_delegate(bool enable)

56 {

57 if (enable)

58 {

59 delegate_ = new TPDelegate ();

60 TFLITE_DCHECK(delegate_ != nullptr);

61 if (delegate_)

62 {

63 int result = reinterpret_cast <TPDelegate*>

64 (delegate_)->initialize ();

65 TFLITE_DCHECK(result == XST_SUCCESS);

66 }

67 }

68 }

69

70 std::string MicroInterpreter::get_eventLog(void)

71 {

72 Event_print (reinterpret_cast <Event*> (event_));

73

74 return "";

75 }

micro_interpreter.h

This header file outlines the MicroInterpreter class. Within it, the enable_delegate() and
get_eventLog() member functions have been added as public methods for the application layer to
access. Additionally, private accessors for the delegate – provided as a callback to the execution
context object – as well as the event and delegate pointers have been added.

1 // ...

2 class MicroInterpreter

3 {

4 public:

138

A.3. SbS algorithm

5 // ...

6 void enable_delegate (bool);

7

8 std::string get_eventLog(void);

9

10 private:

11 // ...

12 static void * GetDelegate (const struct TfLiteContext* context);

13 // ...

14 void * event_ = nullptr;

15 void * delegate_ = nullptr;

16 };

application.cpp

In the application layer, the delegate can be activated for hardware acceleration. Subsequently,
the inference can be initiated. After which, access to the performance logging is available.

1 // ...

2 // Enable delegate

3 interpreter ->enable_delegate(true);

4 // ...

5

6 // ...

7 // Execute inference

8 status = interpreter ->Invoke ();

9 // ...

10

11 // ...

12 // Get performance logging

13 performance = interpreter ->get_eventLog ();

14 // ...

A.3. SbS algorithm

The SbS network inference is described in Algorithm 6, while spike production and layer update
are described in Algorithm 7 and Algorithm 8, respectably.

139

A. Appendix

Algorithm 6: SbS network inference.
input: Layers of the network as 𝐻𝑙 , where

𝑙 is the layer index.
input: 𝑁𝐿 as the number of layers.
input: 𝑁 𝑙

𝑋
, 𝑁 𝑙

𝑌
as the size of layers.

input: 𝑁𝑆𝑝𝑘 as the number of spikes for inference (iterations).
output: 𝐻𝑙 .

1: for 𝑡 = 0 to 𝑁𝑆𝑝𝑘 − 1 do
2: Initialization of 𝐻𝑙 (𝑖𝑋 , 𝑖𝑌 , :) :
3: if 𝑡 == 0 then
4: for 𝑙 = 0 to 𝑁𝐿 − 1 do
5: for 𝑖𝑋 = 0, 𝑖𝑌 = 0 to 𝑁 𝑙

𝑋
− 1, 𝑁 𝑙

𝑌
− 1 do

6: for 𝑖𝐻 = 0 to 𝑁 𝑙
𝐻
− 1 do

7: 𝐻𝑙 (𝑖𝑋 , 𝑖𝑌 , 𝑖𝐻) = 1/𝑁 𝑙
𝐻

8: end for
9: end for

10: end for
11: end if

Production of spikes :
12: for 𝑙 = 0 to 𝑁𝐿 − 1 do
13: if 𝑙 == 0 then
14: Draw spikes from input // (Algorithm 7)
15: else
16: Draw spikes from 𝐻𝑙 // (Algorithm 7)
17: end if
18: end for

Update layers :
19: for 𝑙 = 0 to 𝑁𝐿 − 1 do
20: Update 𝐻𝑙 // (Algorithm 8)
21: end for
22: end for

140

A.3. SbS algorithm

Algorithm 7: Spike production.
input: Layer as 𝐻𝑡 ∈ R𝑁𝑋×𝑁𝑌×𝑁𝐻 , where

𝑁𝑋 is the layer width,
𝑁𝑌 is the layer height
𝑁𝐻 is the length of ℎ⃗ (IP vector).

output: Output spikes as 𝑆𝑜𝑢𝑡𝑡 ∈ N𝑁𝑋×𝑁𝑌
1: for 𝑖𝑋 = 0, 𝑖𝑌 = 0 to 𝑁𝑋 − 1, 𝑁𝑌 − 1 do
2: Generate spike :
3: 𝑡ℎ = 𝑀𝑇19937𝑃𝑠𝑒𝑢𝑑𝑜𝑅𝑎𝑛𝑑𝑜𝑚()/(232 − 1)
4: 𝑎𝑐𝑢 = 0
5: for 𝑖𝐻 = 0 to 𝑁𝐻 − 1 do
6: 𝑎𝑐𝑢 = 𝑎𝑐𝑢 + 𝐻𝑡 (𝑖𝑋 , 𝑖𝑌 , 𝑖𝐻)
7: if 𝑡ℎ ≤ 𝑎𝑐𝑢 or 𝑖𝐻 == 𝑁𝐻 − 1 then
8: 𝑆𝑜𝑢𝑡𝑡 (𝑖𝑋 , 𝑖𝑌) = 𝑖𝐻
9: end if

10: end for
11: end for

141

A. Appendix

Algorithm 8: SbS layer update.
input: Layer as 𝐻 ∈ R𝑁𝑋×𝑁𝑌×𝑁𝐻 , where

𝑁𝑋 is the layer width,
𝑁𝑌 is the layer height
𝑁𝐻 is the length of ℎ⃗ (IP vector).

input: Synaptic matrix as𝑊 ∈ R𝐾𝑋×𝐾𝑌×𝑀𝐻×𝑁𝐻 , where
𝐾𝑋 × 𝐾𝑌 is the size of the convolution/pooling kernel,
𝑀𝐻 is the length of ℎ⃗ from previous layer,
𝑁𝐻 is the length of ℎ⃗ from this layer.

input: Input spike matrix from previous layer as 𝑆𝑖𝑛𝑡 ∈ N𝑁𝑋𝑖𝑛×𝑁𝑌 𝑖𝑛 , where
𝑁𝑋𝑖𝑛 is the width of the previous layer,
𝑁𝑌𝑖𝑛 is the height of the previous layer.

input: Strides of X and Y as 𝑠𝑡𝑟𝑖𝑑𝑒𝑋 and 𝑠𝑡𝑟𝑖𝑑𝑒𝑌 , respectively.
input: Epsilon as 𝜖 ∈ R.
output: Updated layer as 𝐻𝑛𝑒𝑤 ∈ R𝑁𝑋×𝑁𝑌×𝑁𝐻 .

Update layer :
1: 𝑧𝑋 = 0 // X and Y index for 𝑆𝑖𝑛𝑡
2: 𝑧𝑌 = 0
3: for 𝑖𝑌 = 0 to 𝑁𝑌 − 1 do
4: for 𝑖𝑋 = 0 to 𝑁𝑋 − 1 do
5: ℎ⃗ = 𝐻 (𝑖𝑋 , 𝑖𝑌 , :)

Update IP :
6: for 𝑗𝑋 = 0, 𝑗𝑌 = 0 to 𝐾𝑋 − 1, 𝐾𝑌 − 1 do
7: 𝑠𝑡 = 𝑆

𝑖𝑛
𝑡 (𝑧𝑋 + 𝑗𝑋 , 𝑧𝑌 + 𝑗𝑌)

8: 𝑤⃗ = 𝑊 (𝑗𝑋 , 𝑗𝑌 , 𝑠𝑡 , :)
9: 𝑝⃗ = 0

Dot-product :
10: 𝑟 = 0
11: for 𝑗𝐻 = 0 to 𝑁𝐻 − 1 do
12: 𝑝⃗(𝑗𝐻) = ℎ⃗(𝑗𝐻)𝑤⃗(𝑗𝐻)
13: 𝑟 = 𝑟 + 𝑝⃗(𝑗𝐻)
14: end for
15: if 𝑟 ≠ 0 then
16: Update IP vector :
17: for 𝑖𝐻 = to 𝑁𝐻 − 1 do
18: ℎ𝑛𝑒𝑤 (𝑖𝐻) = 1

1+𝜖

(︂
ℎ(𝑖𝐻) + 𝜖 𝑝⃗(𝑖𝐻)𝑟

)︂
19: end for

Set the new 𝐻 vector for the layer :
20: 𝐻𝑛𝑒𝑤 (𝑖𝑋 , 𝑖𝑌 , :) = ℎ⃗

𝑛𝑒𝑤

21: end if
22: end for
23: 𝑧𝑋 = 𝑧𝑋 + 𝑠𝑡𝑟𝑖𝑑𝑒𝑋
24: end for
25: 𝑧𝑌 = 𝑧𝑌 + 𝑠𝑡𝑟𝑖𝑑𝑒𝑌
26: end for

142

Abbreviations

Acronyms

Abbreviations

AI Artificial Intelligence. I, 1–3, 5–7, 14, 15, 21, 30–33, 51, 54, 84, 119–121
ML Machine Learning. I, 1, 2, 4–8, 14, 21, 30–33, 83–86, 94, 98, 101, 116, 117,

119–121, 124
IoT Internet-of-Things. I, 2–5, 7, 9, 10, 14, 32, 84, 117
FP Floating-Point. 5–9, 11, 14, 29, 35–39, 42, 46–57, 79, 80, 83, 85, 88, 90, 91, 94,

102, 109, 111–113, 115–117, 119, 120, 126
SbS Spike-by-Spike. 5, 6, 8–11, 14, 17–21, 46, 53–58, 60, 66–68, 71–74, 76–80, 119,

123, 145, 149
SNN Spiking Neural Network. 5, 6, 8–10, 16, 17, 20, 45, 53–55, 119
LIF Leaky Integrate-and-Fire. 6, 8, 17, 20, 53, 54
MAC Multiply-Accumulate. 6, 8, 11, 14, 20, 42–44, 53–56, 83, 85, 89–91, 117, 120
CNN Convolutional Neural Network. 5, 6, 8–12, 14, 16, 20, 21, 26, 27, 29, 31, 43, 46,

49, 54, 55, 83–86, 91, 94, 102, 103, 106, 110, 113, 117, 119, 145
HF6 Hybrid-Float6. 6, 8, 11, 12, 14, 83, 85, 86, 89, 90, 109, 110, 112, 113, 115, 116,

120, 121
TP Tensor Processor. 6, 8, 12, 86–89, 92, 93, 98–102, 111–113, 115, 117, 123–125,

127, 128, 131, 148
QAT Quantization-Aware Training. 6–8, 12, 38, 39, 45, 52, 83, 85, 94, 109, 115, 117,

121
FPGA Field-Programmable Gate Array. II, 10–12, 16, 32, 33, 45, 46, 48, 58, 66, 84, 86,

99, 102, 110
ASIC Application-Specific Integrated Circuit. II, 6, 10, 16, 32, 33, 46, 50, 84
CPS Cyber-Physical Systems. 2
GDPR General Data Protection Regulation. 3
TinyML Tiny Machine Learning. 3

143

Abbreviations

FL Federated Learning. 4
ANN Artificial Neural Network. 4, 16, 21, 44, 45, 54, 55, 84, 85, 87
NPU Neural Processing Unit. 6, 32, 33, 99
QoR Quality of Result. 8, 11, 12, 56, 57, 60, 62, 73, 80, 120
SoC System-on-Chip. 9, 11, 12, 46, 49, 85, 99, 102, 110, 111, 115, 117, 126
HAR Human Activity Recognition. 10
SHM Structural Health Monitoring. 12, 85, 86, 117
AE Acoustic Emission. 12, 86
CPU Central Processing Unit. 15, 41, 42, 58, 66–70, 74, 75, 77, 86–88, 99, 110, 115,

116
GPU Graphics Processing Unit. 16, 32, 42, 51, 84, 99, 108
TPU Tensor Processing Unit. 16, 33
MLP Multi-Layer Perceptron. 16, 25, 26, 31, 54
RNN Recurrent Neural Network. 16, 35
LSTM Long Short-Term Memory network. 16
STDP Spike-Timing-Dependent Plasticity. 17
IP Inference Population. 17, 18, 20, 46, 55, 59–61, 145
SGD Stochastic Gradient Descent. 24, 25
NaN Not a Number. 37, 91
PTQ Post-Training Quantization. 38
SIMD Single Instruction, Multiple Data. 42, 87, 89
DNN Deep Neural Network. 44, 54
WQ Weight Quantization. 44
BNN Binary Neural Network. 44
XNOR Logical Exclusive Non-Disjunction. 44
DMA Direct Memory Access. 49, 58, 69, 86, 88, 98, 100, 101, 111, 113, 125
PL Programmable Logic. 49, 66, 110
PS Processing System. 49, 66, 110
DDR Double Data Rate. 50
DSP Digital Signal Processing. 50, 115
NNMF Non-Negative Matrix Factorization. 55
NN Neural Network. 55
PU Processing Unit. 57–60, 62, 68–70, 74, 75, 78, 145
API Application Programming Interface. 58, 66, 98
HLS High-Level Synthesis. 58, 70, 87, 90, 111

144

Abbreviations

RTL Register-Transfer Level. 71, 111
LUT Look-up Table. 79, 115
FF Flip-Flop. 79, 115
HPC High Performance Computing. 84
RAM Random-Access Memory. 87
AWG Arbitrary Waveform Generator. 104
STFT Short-Time Fourier Transform. 104, 105
FFT Fast Fourier Transform. 105
PC Personal Computer. 107
GIC Generic Interrupt Controller. 126

145

List of Figures

List of Figures

2.1. SbS network architecture for handwritten digit classification task. 19
2.2. SbS IPs as independent computational entities, (a) illustrates an input layer with a

massive amount of IPs operating as independent computational entities, (b) shows
a hidden layer with an arbitrary amount of IPs as independent computational
entities, (c) exhibits a set of neurons grouped in an IP. 20

2.3. (a) Performance classification of SbS NN versus equivalent CNN, and (b) example
of the first pattern in the MNIST test data set with different amounts of positive
additive uniformly distributed noise. 21

2.4. Floating-point number representation. 37
2.5. (a) System architecture. (b) Processing element array. 47
2.6. (a) System architecture. (b) Convolution accelerator. 48
2.7. (a) System architecture. (b) Processing element. 49
2.8. (a) System architecture. (b) Convolution engine. 50

3.1. Dot-product hardware module with (a) standard floating-point (IEEE 754) arith-
metic, (b) hybrid custom floating-point approximation, and (c) hybrid logarith-
mic approximation. 56

3.2. System-level overview of the embedded software architecture. 58
3.3. System-level hardware architecture with scalable number of heterogeneous PUs:

Spike, Conv, Pool, and FC . 59
3.4. The Conv processing unit and its six stages: (a) receive IP vector, (b) spike

firing, (c) receive spike kernel, (d) update dynamics, (e) dispatch new IP vector,
(f) dispatch output spike matrix. 61

3.5. Dot-product hardware module with standard floating-point (IEEE 754) compu-
tation, (a) exhibits the initiation interval of 10 clock cycles, (b) presents the
iteration latency of 19 clock cycles, (c) shows the pairwise product block in
dark-gray, and (d) illustrates the accumulation block in light-gray. 63

147

List of Figures

3.6. Dot-product hardware module with hybrid custom floating-point approximation,
(a) exhibits the initiation interval of 2 clock cycles, (b) presents the iteration
latency of 13 clock cycles, (c) shows the pairwise product blocks in dark-gray,
and (d) illustrates the accumulation blocks in light-gray. 64

3.7. Dot-product hardware module with hybrid logarithmic approximation, (a) ex-
hibits the initiation interval of 2 clock cycles, (b) presents the iteration latency
of 9 clock cycles, (c) shows the pairwise product block in dark-gray, and (d)
illustrates the accumulation blocks in light-gray. 64

3.8. Computation on embedded CPU. 67

3.9. System overview of the top-level architecture with 8 processing units. 68

3.10. Performance of processing units with standard floating-point (IEEE 754) com-
putation. 69

3.11. Performance bottleneck of cyclic computation on processing units with standard
floating-point (IEEE 754) arithmetic, (a) exhibits the starting of 𝑡𝑃𝑈 of Conv2
on a previous computation cycle, (b) presents 𝑡𝐶𝑃𝑈 of Conv2 on the current
computation cycle, (c) shows the CPU waiting time (in gray color) for Conv2 as
a busy resource (awaiting for Conv2 interruption), and (d) illustrates the 𝑡 𝑓 from
the previous computation cycle, the starting of 𝑡𝑃𝑈 on the current computation
cycle (Conv2 interruption on completion, and start current computation cycle). 69

3.12. Noise tolerance on hardware PU with standard floating-point (IEEE 754) compu-
tation (benchmark/reference), (a) exhibits accuracy degradation applying 50%
of noise amplitude, and (b) illustrates convergence of inference with 400 spikes. 72

3.13. log2-histogram of each synaptic weight matrix showing the percentage of matrix
elements with given integer exponent. 73

3.14. Performance on processing units with hybrid custom floating-point approx-
imation, (a) exhibits computation schedule, (b) presents cyclic computation
schedule, and (c) shows the performance of Conv2 from a previous computation
cycle during the preprocessing of H1_CONV on the current computation cycle
without bottleneck. 75

3.15. Noise tolerance on hardware PU with custom floating-point approximation,
(a) exhibits accuracy degradation applying 50% of noise amplitude, and (b)
illustrates convergence of inference with 400 spikes. 76

3.16. Performance of processing units with hybrid logarithmic approximation, (a)
exhibits computation schedule, and (b) illustrates cyclic computation schedule. . 77

148

List of Figures

3.17. Noise tolerance on hardware PU with hybrid logarithmic approximation, (a)
exhibits accuracy degradation applying 40% of noise amplitude, (b) illustrates
convergence of inference with 600 spikes. 78

3.18. Power dissipation breakdown of platform implementations, (a) [40] architecture
with homogeneous AUs using standard floating-point arithmetic (IEEE 754),
(b) reference architecture with specialized heterogeneous PUs using standard
floating-point arithmetic (IEEE 754), (c) proposed architecture with hybrid
custom floating-point approximation, and (d) proposed architecture with hybrid
logarithmic approximation. 80

4.1. The workflow of our approach on embedded FPGAs. 85
4.2. Base embedded system architecture. 87
4.3. High level hardware architecture of the proposed tensor processor. 88
4.4. Setup transaction buffer stream. 89
4.5. Tensor Processor task execution. (a) Depicts the configuration mode along

with its corresponding setup buffer stream. (b) Illustrates the execution mode,
showcasing concurrent input and output tensor buffer streams. 89

4.6. Dot-product hardware module with (a) standard floating-point and (b) Hybrid-
Float6. 90

4.7. (a) Dot-product hardware module with Hybrid-Float6 MAC, (b) bias accumu-
lation, (c) activation and normalization to IEEE754. 91

4.8. Hybrid-Float6 multiply-accumulate hardware design. 92
4.9. Design parameters for on-chip memory buffers on the TP. 93
4.10. High level embedded software architecture. 98
4.11. Software flowchart. 98
4.12. Collaboration diagram of TensorFlow delegate classes. 100
4.13. Sequence diagram of TensorFlow delegate initialization. 101
4.14. Sequence diagram of TensorFlow delegate execution. 102
4.15. Experimental setup for sensor analytics on structural health monitoring, all

lengths are in meters (m). 104
4.16. Spectrograms of sensors 𝑆1, 𝑆2 converted to grayscale for pulses at 𝑥 = 0.105

m, 𝑦 = 0.109 m with noise disturbance. 105
4.17. CNN-regression model for sensor analytics. 106
4.18. Training results. 107
4.19. Performance of the model with different data representations. 108

149

List of Figures

4.20. Inference acceleration and power reduction on the TP with floating-point and
HF6 vs. CPU on the Zynq-7007S SoC. 112

4.21. Run-time inference of TensorFlow Lite on the Zynq-7007S SoC. (a) CPU ARM
Cortex-A9 at 666 MHz, (b) cooperative CPU + TP with floating-point Xilinx
LogiCORE IP at 200 MHz, and (c) cooperative CPU + TP with Hybrid-Float6
at 200 MHz. 114

4.22. 2D error distribution of three CNN-regression models. 115
4.23. Hardware resource utilization on the Zynq-7007S SoC. 116
4.24. Estimated power dissipation on the Zynq-7007S SoC with PS at 666 MHz and

PL at 200 MHz. 116

A.1. Collaboration diagram of the TP delegate and hardware drivers. 124

150

List of Tables

List of Tables

2.1. SbS network architecture for handwritten digit classification task. 19

3.1. Computation on embedded CPU. 67
3.2. Performance of processing units with standard floating-point (IEEE 754) com-

putation. 68
3.3. Resource utilization and power dissipation of processing units with standard

floating-point (IEEE 754) computation. 71
3.4. Resource utilization and power dissipation of multiplier and adder floating-point

(IEEE 754) operator cores. 71
3.5. Resource utilization and power dissipation of processing units with hybrid cus-

tom floating-point approximation. 74
3.6. Performance of hardware processing units with hybrid custom floating-point

approximation. 75
3.7. Performance of hardware processing units with hybrid logarithmic approximation. 77
3.8. Resource utilization and power dissipation of processing units with hybrid log-

arithmic approximation. 77
3.9. Experimental results. 79
3.10. Platform implementations. 80

4.1. Resource utilization and power dissipation on the Zynq-7007S SoC. 111
4.2. Compute performance of the CPU and TP on each Conv2D tensor operation.

This table presents: tensor operation, computational cost in mega floating-
point operations (MFLOP), latency, throughput, power efficiency, and estimated
energy consumption as the energy delay product (EDP). 112

4.3. Resource utilization and power dissipation of individual multiplier and adder
floating-point (IEEE 754) operator cores (Xilinx LogiCORE IP). 112

4.4. Comparison of hardware implementation with related work. 117

151

LIST OF ALGORITHMS

List of Algorithms

1. SbS layer update. 19
2. Custom floating-point quantizer. 39

3. Training with iterative early stop cycle. 95
4. OnMiniBatchUpdate_Callback. 96
5. Custom floating-point quantization. 97

6. SbS network inference. 140
7. Spike production. 141
8. SbS layer update. 142

153

Bibliography

Bibliography

[1] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann.
Industry 4.0. Business & information systems engineering, 6(4):239–242, 2014.

[2] Héctor Espinoza, Gerhard Kling, Frank McGroarty, Mary O’Mahony, and Xenia Ziou-
velou. Estimating the impact of the internet of things on productivity in europe. Heliyon,
6(5):e03935, 2020.

[3] Vitor Alcácer and Virgilio Cruz-Machado. Scanning the industry 4.0: A literature review
on technologies for manufacturing systems. Engineering science and technology, an
international journal, 22(3):899–919, 2019.

[4] Jing Zhang and Dacheng Tao. Empowering things with intelligence: A survey of the
progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet
of Things Journal, 2020.

[5] Kou-Hung Lawrence Loh. 1.2 fertilizing aiot from roots to leaves. In 2020 IEEE
International Solid-State Circuits Conference-(ISSCC), pages 15–21. IEEE, 2020.

[6] Jie Han and Michael Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In 2013 18th IEEE European Test Symposium (ETS), pages 1–6.
IEEE, 2013.

[7] Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, François Rummens, Marina
Reyboz, Elisa Vianello, and Edith Beigne. Spiking neural networks hardware implemen-
tations and challenges: A survey. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 15(2):1–35, 2019.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

155

Bibliography

[9] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[10] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[11] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016.

[12] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2:598–605, 1989.

[13] Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal
brain surgeon. Advances in neural information processing systems, 5:164–171, 1992.

[14] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440,
2016.

[15] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[16] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the
value of network pruning. arXiv preprint arXiv:1810.05270, 2018.

[17] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan. Analysis
and characterization of inherent application resilience for approximate computing. In
Proceedings of the 50th Annual Design Automation Conference, pages 1–9, 2013.

[18] Syed Ghayoor Abbas Gillani. Exploiting error resilience for hardware efficiency: targeting
iterative and accumulation based algorithms. 2020.

[19] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. Approxann: An approximate
computing framework for artificial neural network. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 701–706. IEEE, 2015.

156

Bibliography

[20] Nicholas P Carter, Helia Naeimi, and Donald S Gardner. Design techniques for cross-
layer resilience. In 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010), pages 1023–1028. IEEE, 2010.

[21] Uroš Lotrič and Patricio Bulić. Applicability of approximate multipliers in hardware
neural networks. Neurocomputing, 96:57–65, 2012.

[22] Zidong Du, Krishna Palem, Avinash Lingamneni, Olivier Temam, Yunji Chen, and
Chengyong Wu. Leveraging the error resilience of machine-learning applications for
designing highly energy efficient accelerators. In 2014 19th Asia and South Pacific
design automation conference (ASP-DAC), pages 201–206. IEEE, 2014.

[23] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and Kaushik
Roy. Design of power-efficient approximate multipliers for approximate artificial neural
networks. In Proceedings of the 35th International Conference on Computer-Aided
Design, pages 1–7, 2016.

[24] Syed Shakib Sarwar, Swagath Venkataramani, Anand Raghunathan, and Kaushik Roy.
Multiplier-less artificial neurons exploiting error resiliency for energy-efficient neural
computing. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 145–150. IEEE, 2016.

[25] Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Gerstlauer, Sri
Parameswaran, and Jörg Henkel. Approximate computing for ml: State-of-the-art, chal-
lenges and visions. In Proceedings of the 26th Asia and South Pacific Design Automation
Conference, pages 189–196, 2021.

[26] Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. Efficient embedded
learning for iot devices. In 2016 21st Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pages 308–311. IEEE, 2016.

[27] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-
der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the 44th annual
international symposium on computer architecture, pages 1–12, 2017.

[28] Hussam Amrouch, Georgios Zervakis, Sami Salamin, Hammam Kattan, Iraklis Anagnos-
topoulos, and Jörg Henkel. Npu thermal management. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(11):3842–3855, 2020.

157

Bibliography

[29] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural
networks with few multiplications. arXiv preprint arXiv:1510.03009, 2015.

[30] Philip Colangelo, Nasibeh Nasiri, Eriko Nurvitadhi, Asit Mishra, Martin Margala, and
Kevin Nealis. Exploration of low numeric precision deep learning inference using intel®
fpgas. In 2018 IEEE 26th annual international symposium on field-programmable custom
computing machines (FCCM), pages 73–80. IEEE, 2018.

[31] Julian Faraone, Martin Kumm, Martin Hardieck, Peter Zipf, Xueyuan Liu, David Boland,
and Philip HW Leong. Addnet: Deep neural networks using fpga-optimized multipliers.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1):115–128, 2019.

[32] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neural net-
work inference with floating-point weights and fixed-point activations. arXiv preprint
arXiv:1703.03073, 2017.

[33] Mark D McDonnell and Lawrence M Ward. The benefits of noise in neural systems:
bridging theory and experiment. Nature Reviews Neuroscience, 12(7):415–425, 2011.

[34] Udo Ernst, David Rotermund, and Klaus Pawelzik. Efficient computation based on
stochastic spikes. Neural computation, 19(5):1313–1343, 2007.

[35] Joel Dapello, Tiago Marques, Martin Schrimpf, Franziska Geiger, David D. Cox, and
James J. DiCarlo. Simulating a primary visual cortex at the front of cnns improves
robustness to image perturbations. bioRxiv, 2020.

[36] David Rotermund and Klaus R. Pawelzik. Back-propagation learning in deep spike-by-
spike networks. Frontiers in Computational Neuroscience, 13:55, 2019.

[37] David Rotermund and Klaus R. Pawelzik. Massively parallel FPGA hardware for spike-
by-spike networks. bioRxiv, 2019.

[38] David Rotermund and Klaus R. Pawelzik. Biologically plausible learning in a deep
recurrent spiking network. bioRxiv, 2019.

[39] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and
mathematical modeling of neural systems. Computational Neuroscience Series, 2001.

[40] Yarib Nevarez, Alberto Garcia-Ortiz, David Rotermund, and Klaus R Pawelzik. Acceler-
ator framework of spike-by-spike neural networks for inference and incremental learning

158

Bibliography

in embedded systems. In 2020 9th International Conference on Modern Circuits and
Systems Technologies (MOCAST), pages 1–5. IEEE, 2020.

[41] Guoqiang Li, Chao Deng, Jun Wu, Xuebing Xu, Xinyu Shao, and Yuanhang Wang.
Sensor data-driven bearing fault diagnosis based on deep convolutional neural networks
and s-transform. Sensors, 19(12):2750, 2019.

[42] Fei Dong, Xiao Yu, Enjie Ding, Shoupeng Wu, Chunyang Fan, and Yanqiu Huang. Rolling
bearing fault diagnosis using modified neighborhood preserving embedding and maximal
overlap discrete wavelet packet transform with sensitive features selection. Shock and
Vibration, 2018, 2018.

[43] Tomonori Nagayama and Billie F Spencer Jr. Structural health monitoring using smart
sensors. Technical report, Newmark Structural Engineering Laboratory. University of
Illinois at Urban, 2007.

[44] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning
for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119:3–11,
2019.

[45] Yong Chan Kim, Hyeong-Geun Yu, Jae-Hoon Lee, Dong-Jo Park, and Hyun-Woo Nam.
Hazardous gas detection for ftir-based hyperspectral imaging system using dnn and cnn. In
Electro-Optical and Infrared Systems: Technology and Applications XIV, volume 10433,
page 1043317. International Society for Optics and Photonics, 2017.

[46] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[47] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunacha-
lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge
Cuadros, et al. Development and validation of a deep learning algorithm for detection of
diabetic retinopathy in retinal fundus photographs. jama, 316(22):2402–2410, 2016.

[48] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

159

Bibliography

[49] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig. Achieving human parity in conversational speech
recognition. arXiv preprint arXiv:1610.05256, 2016.

[50] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[51] DK Smetters and Anthony Zador. Synaptic transmission: noisy synapses and noisy
neurons. Current Biology, 6(10):1217–1218, 1996.

[52] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi:
A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99,
2018.

[53] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester,
A. D. Brown, and S. B. Furber. Spinnaker: A 1-w 18-core system-on-chip for massively-
parallel neural network simulation. IEEE Journal of Solid-State Circuits, 48(8):1943–
1953, 2013.

[54] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine
intelligence with neuromorphic computing. Nature, 575(7784):607–617, 2019.

[55] Aaron R Young, Mark E Dean, James S Plank, and Garrett S Rose. A review of spiking
neuromorphic hardware communication systems. IEEE Access, 7:135606–135620, 2019.

[56] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar,
W. P. Risk, B. Jackson, and D. S. Modha. Truenorth: Design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 34(10):1537–1557, Oct 2015.

[57] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE transac-
tions on neural networks, 15(5):1063–1070, 2004.

[58] Katrin Amunts, Alois C Knoll, Thomas Lippert, Cyriel MA Pennartz, Philippe Ryvlin,
Alain Destexhe, Viktor K Jirsa, Egidio D?Angelo, and Jan G Bjaalie. The human brain

160

Bibliography

project – synergy between neuroscience, computing, informatics, and brain-inspired
technologies. PLoS biology, 17(7):e3000344, 2019.

[59] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dy-
namics: From single neurons to networks and models of cognition. Cambridge University
Press, 2014.

[60] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada,
Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A
million spiking-neuron integrated circuit with a scalable communication network and
interface. Science, 345(6197):668–673, 2014.

[61] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[62] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural
networks using backpropagation. Frontiers in neuroscience, 10:508, 2016.

[63] Timothée Masquelier and Simon J Thorpe. Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS computational biology, 3(2):e31, 2007.

[64] David Rotermund and Klaus R. Pawelzik. Back-propagation learning in deep spike-by-
spike networks. Frontiers in Computational Neuroscience, 13:55, 2019.

[65] Michael N Shadlen and William T Newsome. Noise, neural codes and cortical organiza-
tion. Current opinion in neurobiology, 4(4):569–579, 1994.

[66] William R Softky and Christof Koch. The highly irregular firing of cortical cells is incon-
sistent with temporal integration of random epsps. Journal of Neuroscience, 13(1):334–
350, 1993.

[67] Surya Ganguli and Haim Sompolinsky. Compressed sensing, sparsity, and dimensionality
in neuronal information processing and data analysis. Annual review of neuroscience,
35:485–508, 2012.

[68] Surya Ganguli and Haim Sompolinsky. Statistical mechanics of compressed sensing.
Physical review letters, 104(18):188701, 2010.

[69] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities
and challenges. Frontiers in neuroscience, 12, 2018.

161

Bibliography

[70] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/m-
nist/, 1998.

[71] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[72] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533, 1986.

[73] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings, 2010.

[74] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3. Atlanta, GA, 2013.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[76] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010: 19th International Conference on Computational Statis-
ticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers, pages
177–186. Springer, 2010.

[77] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM review, 60(2):223–311, 2018.

[78] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013.

[79] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[80] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[81] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

162

Bibliography

[82] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai,
Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional
neural networks. Pattern Recognition, 77:354–377, 2018.

[83] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329,
2017.

[84] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.

[85] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural
networks with low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

[86] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2704–2713, 2018.

[87] Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David Bailey, Steve Bass,
Dileep Bhandarkar, Mahesh Bhat, David Bindel, Sylvie Boldo, et al. Ieee standard for
floating-point arithmetic. IEEE Std, 754(2008):1–70, 2008.

[88] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient in-
ference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[89] Bert Moons and Marian Verhelst. A 0.3–2.6 tops/w precision-scalable processor for real-
time large-scale convnets. In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits),
pages 1–2. IEEE, 2016.

[90] Paul N Whatmough, Sae Kyu Lee, Hyunkwang Lee, Saketh Rama, David Brooks, and
Gu-Yeon Wei. 14.3 a 28nm soc with a 1.2 ghz 568nj/prediction sparse deep-neural-
network engine with> 0.1 timing error rate tolerance for iot applications. In 2017 IEEE
International Solid-State Circuits Conference (ISSCC), pages 242–243. IEEE, 2017.

[91] Xiaoyu Sun, Shihui Yin, Xiaochen Peng, Rui Liu, Jae-sun Seo, and Shimeng Yu. Xnor-
rram: A scalable and parallel resistive synaptic architecture for binary neural networks.
In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1423–1428. IEEE, 2018.

163

Bibliography

[92] Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning of connections
and weight quantization in spiking neural networks for energy-efficient recognition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(4):668–
677, 2018.

[93] Sanchari Sen, Swagath Venkataramani, and Anand Raghunathan. Approximate comput-
ing for spiking neural networks. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pages 193–198. IEEE, 2017.

[94] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[95] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization
of neural networks using dropconnect. In International conference on machine learning,
pages 1058–1066, 2013.

[96] Emre O Neftci, Bruno U Pedroni, Siddharth Joshi, Maruan Al-Shedivat, and Gert
Cauwenberghs. Stochastic synapses enable efficient brain-inspired learning machines.
Frontiers in neuroscience, 10:241, 2016.

[97] Gopalakrishnan Srinivasan, Abhronil Sengupta, and Kaushik Roy. Magnetic tunnel
junction based long-term short-term stochastic synapse for a spiking neural network with
on-chip stdp learning. Scientific reports, 6:29545, 2016.

[98] Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics as
sampling: a model for stochastic computation in recurrent networks of spiking neurons.
PLoS Comput Biol, 7(11):e1002211, 2011.

[99] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep
rewiring: Training very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

[100] Gregory K Chen, Raghavan Kumar, H Ekin Sumbul, Phil C Knag, and Ram K Krishna-
murthy. A 4096-neuron 1m-synapse 3.8-pj/sop spiking neural network with on-chip stdp
learning and sparse weights in 10-nm finfet cmos. IEEE Journal of Solid-State Circuits,
54(4):992–1002, 2018.

[101] Sadique Sheik, Somnath Paul, Charles Augustine, Chinnikrishna Kothapalli, Muham-
mad M Khellah, Gert Cauwenberghs, and Emre Neftci. Synaptic sampling in hardware

164

Bibliography

spiking neural networks. In 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 2090–2093. IEEE, 2016.

[102] M Jerry, A Parihar, B Grisafe, A Raychowdhury, and S Datta. Ultra-low power probabilis-
tic imt neurons for stochastic sampling machines. In 2017 Symposium on VLSI Circuits,
pages T186–T187. IEEE, 2017.

[103] Ming ZHANG, GU Zonghua, and PAN Gang. A survey of neuromorphic computing
based on spiking neural networks. Chinese Journal of Electronics, 27(4):667–674, 2018.

[104] Yongtae Kim, Yong Zhang, and Peng Li. An energy efficient approximate adder with
carry skip for error resilient neuromorphic vlsi systems. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 130–137. IEEE, 2013.

[105] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[106] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115(3):211–
252, 2015.

[107] Xiaocong Lian, Zhenyu Liu, Zhourui Song, Jiwu Dai, Wei Zhou, and Xiangyang Ji.
High-performance fpga-based cnn accelerator with block-floating-point arithmetic. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 27(8):1874–1885, 2019.

[108] Chunsheng Mei, Zhenyu Liu, Yue Niu, Xiangyang Ji, Wei Zhou, and Dongsheng Wang.
A 200mhz 202.4 gflops@ 10.8 w vgg16 accelerator in xilinx vx690t. In 2017 IEEE
Global Conference on Signal and Information Processing (GlobalSIP), pages 784–788.
IEEE, 2017.

[109] Chen Wu, Mingyu Wang, Xinyuan Chu, Kun Wang, and Lei He. Low-precision floating-
point arithmetic for high-performance fpga-based cnn acceleration. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 15(1):1–21, 2021.

[110] Paolo Meloni, Antonio Garufi, Gianfranco Deriu, Marco Carreras, and Daniela Loi. Cnn
hardware acceleration on a low-power and low-cost apsoc. In 2019 Conference on Design
and Architectures for Signal and Image Processing (DASIP), pages 7–12. IEEE, 2019.

165

Bibliography

[111] Chen Wu, Mingyu Wang, Xiayu Li, Jicheng Lu, Kun Wang, and Lei He. Phoenix: A
low-precision floating-point quantization oriented architecture for convolutional neural
networks. arXiv preprint arXiv:2003.02628, 2020.

[112] Jeongwoo Park, Sunwoo Lee, and Dongsuk Jeon. A neural network training processor
with 8-bit shared exponent bias floating point and multiple-way fused multiply-add trees.
IEEE Journal of Solid-State Circuits, 57(3):965–977, 2021.

[113] Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei Wang, Sanchari Sen, Jintao
Zhang, Ankur Agrawal, Monodeep Kar, Shubham Jain, Alberto Mannari, Hoang Tran,
et al. Rapid: Ai accelerator for ultra-low precision training and inference. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),
pages 153–166. IEEE, 2021.

[114] Shreyas Kolala Venkataramanaiah, Jian Meng, Han-Sok Suh, Injune Yeo, Jyotishman
Saikia, Sai Kiran Cherupally, Yichi Zhang, Zhiru Zhang, and Jae-sun Seo. A 28nm 8-bit
floating-point tensor core based cnn training processor with dynamic activation/weight
sparsification. In ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference
(ESSCIRC), pages 89–92. IEEE, 2022.

[115] Michal Gallus and Alberto Nannarelli. Handwritten digit classification using 8-bit floating
point based convolutional neural networks. Technical report, DTU Compute Technical
Report, 2018.

[116] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrish-
nan. Training deep neural networks with 8-bit floating point numbers. Advances in neural
information processing systems, 31, 2018.

[117] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vi-
jayalakshmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan.
Hybrid 8-bit floating point (hfp8) training and inference for deep neural networks. Ad-
vances in neural information processing systems, 32, 2019.

[118] Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul. Mixed
precision training with 8-bit floating point. arXiv preprint arXiv:1905.12334, 2019.

[119] Fangxin Liu, Wenbo Zhao, Zhezhi He, Yanzhi Wang, Zongwu Wang, Changzhi Dai,
Xiaoyao Liang, and Li Jiang. Improving neural network efficiency via post-training
quantization with adaptive floating-point. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5281–5290, 2021.

166

Bibliography

[120] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[121] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[122] Nassim Abderrahmane, Edgar Lemaire, and BenoÃ®t Miramond. Design space explo-
ration of hardware spiking neurons for embedded artificial intelligence. Neural Networks,
121:366 – 386, 2020.

[123] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester,
A. D. Brown, and S. B. Furber. Spinnaker: A 1-w 18-core system-on-chip for massively-
parallel neural network simulation. IEEE Journal of Solid-State Circuits, 48(8):1943–
1953, Aug 2013.

[124] Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois Rummens, Marina
Reyboz, Elisa Vianello, and Edith Beigne. Spiking neural networks hardware imple-
mentations and challenges: A survey. J. Emerg. Technol. Comput. Syst., 15(2), April
2019.

[125] Jongsun Park, Jung Hwan Choi, and Kaushik Roy. Dynamic bit-width adaptation in dct:
An approach to trade off image quality and computation energy. IEEE transactions on
very large scale integration (VLSI) systems, 18(5):787–793, 2009.

[126] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan, and Kaushik
Roy. Impact: imprecise adders for low-power approximate computing. In IEEE/ACM
International Symposium on Low Power Electronics and Design, pages 409–414. IEEE,
2011.

[127] Sparsh Mittal. A survey of techniques for approximate computing. ACM Computing
Surveys (CSUR), 48(4):1–33, 2016.

[128] Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. Approximate computing and the quest for computing efficiency. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[129] UG585 Xilinx. Zynq-7000 all programmable soc: Technical reference manual, 2015.

[130] James Hrica. Floating-point design with vivado hls. Xilinx Application Note, 2012.

167

Bibliography

[131] Michal Lom, Ondrej Pribyl, and Miroslav Svitek. Industry 4.0 as a part of smart cities.
In 2016 Smart Cities Symposium Prague (SCSP), pages 1–6. IEEE, 2016.

[132] Turker Ince, Serkan Kiranyaz, Levent Eren, Murat Askar, and Moncef Gabbouj. Real-
time motor fault detection by 1-d convolutional neural networks. IEEE Transactions on
Industrial Electronics, 63(11):7067–7075, 2016.

[133] Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia Loccufier,
Steven Verstockt, Rik Van de Walle, and Sofie Van Hoecke. Convolutional neural network
based fault detection for rotating machinery. Journal of Sound and Vibration, 377:331–
345, 2016.

[134] Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J Inman.
Real-time vibration-based structural damage detection using one-dimensional convolu-
tional neural networks. Journal of Sound and Vibration, 388:154–170, 2017.

[135] Xiaojie Guo, Liang Chen, and Changqing Shen. Hierarchical adaptive deep convolution
neural network and its application to bearing fault diagnosis. Measurement, 93:490–502,
2016.

[136] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason
Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit Subhaschan-
dra, et al. Can fpgas beat gpus in accelerating next-generation deep neural networks? In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 5–14, 2017.

[137] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. Advances in neural information processing systems, 28, 2015.

[138] Yarib Nevarez, David Rotermund, Klaus R Pawelzik, and Alberto Garcia-Ortiz. Accel-
erating spike-by-spike neural networks on fpga with hybrid custom floating-point and
logarithmic dot-product approximation. IEEE Access, 2021.

[139] Shirsendu Sikdar, Sauvik Banerjee, and G. Ashish. Ultrasonic guided wave propagation
and disbond identification in a honeycomb composite sandwich structure using bonded
piezoelectric wafer transducers. Journal of Intelligent Material Systems and Structures,
27, 10 2015.

[140] U. Kiencke, M. Schwarz, and T. Weickert. Signalverarbeitung: Zeit-Frequenz-Analysen
und SchÃ€tzverfahren. Oldenbourh, 2008.

168

Bibliography

[141] R. B. Blackman and J. W. Tukey. The measurement of power spectra from the point of view
of communications engineering - part i. Bell System Technical Journal, 37(1):185–282,
1958.

[142] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[143] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

169

	Introduction
	Preamble
	AI/ML in Industry 4.0
	Rationale for ai/ml Acceleration in iot Applications
	Approximation in AI/ML

	Problem Statement
	Power Dissipation
	Aggressive Quantization
	Interoperability

	Working Hypothesis
	Research Objective
	Scope
	Contributions
	Accelerating Spike-by-Spike Neural Networks with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation
	Accelerating Convolutional Neural Networks with Hybrid 6-bit Floating-Point Computation

	Publications
	Dissertation Outline

	Background and Related Work
	Introduction
	Spiking Neural Networks
	Conventional Artificial Neural Networks
	Architecture
	Training Process
	Multi-Layer Perceptron
	Convolutional Neural Networks

	Neural Network Accelerators
	The Need for Accelerators
	Types of Accelerators
	Design Considerations

	Precision and Effect in Training
	Fixed-Point
	Floating-Point
	Post-Training Quantization
	Quantization-Aware Training

	Dataflow Taxonomy
	Flynn's Taxonomy
	Multiply-Accumulate Unit
	Design Considerations

	Related Work
	Aggressive Quantization
	Spiking Neural Network Accelerators
	Convolutional Neural Network Accelerators with Custom Floating-Point Computation on fpga
	Neural Network Accelerators for Training and Inference with 8-bit Floating-Point Computation on asic
	Academic and Industrial Research on 8-bit Floating-Point Quantization Techniques in Neural Network Training

	Acceleration with Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation
	Introduction
	Design Technique
	Hardware Architecture
	Conv Processing Unit
	Hybrid Custom Floating-Point Multiply-Accumulate Unit: Vector Dot-Product Approximation

	Experimental Results
	Performance Benchmark
	Design Exploration with Hybrid Custom Floating-Point and Logarithmic Computation
	Results and Discussion

	Conclusions

	Low-Power Conv2D Tensor Accelerator: Hybrid 6-bit Floating-Point Computation
	Introduction
	Design Technique
	Base Embedded System Architecture
	Tensor Processor
	Training Method
	Embedded Software Architecture

	Experimental Results
	Sensor Analytics Application
	Training
	Hardware Design Exploration
	Discussion

	Conclusions

	Conclusion and Outlook
	State-of-the-art challenges and solutions
	Key Contributions
	Future Directions
	Final Remarks

	Appendix
	Tensor Processor Delegate and Hardware Drivers
	Tensor Processor Delegate
	Hardware Drivers
	ARM Generic Interrupt Controller
	Supporting Classes

	TensorFlow Lite Integration
	SbS algorithm

