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ONLINE THROUGHPUT MAXIMIZATION ON UNRELATED
MACHINES: COMMITMENT IS NO BURDEN*

FRANZISKA EBERLEf, NICOLE MEGOWT, AND KEVIN SCHEWIOR?}

Abstract. We consider a fundamental online scheduling problem in which jobs with processing
times and deadlines arrive online over time at their release dates. The task is to determine a
feasible preemptive schedule on a single or multiple possibly unrelated machines that maximizes
the number of jobs that complete before their deadline. Due to strong impossibility results for
competitive analysis on a single machine, we require that jobs contain some slack € > 0, which
means that the feasible time window for scheduling a job is at least 1 + & times its processing
time on each eligible machine. Our contribution is two-fold: (i) We give the first non-trivial online
algorithms for throughput maximization on unrelated machines, and (ii), this is the main focus of
our paper, we answer the question on how to handle commitment requirements which enforce that a
scheduler has to guarantee at a certain point in time the completion of admitted jobs. This is very
relevant, e.g., in providing cloud-computing services, and disallows last-minute rejections of critical
tasks. We present an algorithm for unrelated machines that is @(%)—competitive when the scheduler
must commit upon starting a job. Somewhat surprisingly, this is the same optimal performance
bound (up to constants) as for scheduling without commitment on a single machine. If commitment
decisions must be made before a job’s slack becomes less than a d-fraction of its size, we prove a
competitive ratio of (9(6%6) for 0 < 6 < e. This result nicely interpolates between commitment upon
starting a job and commitment upon arrival. For the latter commitment model, it is known that
no (randomized) online algorithm admits any bounded competitive ratio. While we mainly focus
on scheduling without migration, our results also hold when comparing against a migratory optimal
solution in case of identical machines.

Key words. Deadline scheduling, throughput, online algorithms, competitive analysis, unre-
lated machines, migration

AMS subject classifications. 68W27, 90B35, 68W40, 68Q25

1. Introduction. We consider the following online scheduling problem: there
are given m unrelated parallel machines. Jobs from an unknown job set arrive online
over time at their release dates r;. Each job j has a deadline d; and a processing time
pi; € Ry U{oo}, which is the execution time of j when processing on machine ¢; both
job parameters become known to an algorithm at job arrival. We denote a machine
with p;; < oo as eligible for job j. If all machines are identical, p;; = p; holds for
every job j, and we omit the index 7. When scheduling these jobs or a subset of them,
we allow preemption, i.e., the processing of a job can be interrupted at any time and
may resume later without any additional cost. We mainly study scheduling without
migration which means that a job must run completely on one machine. In case that
we allow migration, a preempted job can resume processing on any machine, but no
job can run simultaneously on two or more machines.

In a feasible schedule, two jobs are never processing at the same time on the
same machine. A job is said to complete if it receives p;; units of processing time

*Submitted to the editors June 9, 2021. A preliminary version of the results on online scheduling
with commitment on parallel identical machines was published at the European Symposium of Al-
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2 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

on machine ¢ within the interval [r;,d;) if j is processed by machine ¢. The number
of completed jobs in a feasible schedule is called throughput. The task is to find a
feasible schedule with maximum throughput. We refer to this problem as throughput
mazximization.

As jobs arrive online and scheduling decisions are irrevocable, we cannot hope to
find an optimal schedule even when scheduling on a single machine [12]. To assess
the performance of online algorithms, we resort to standard competitive analysis.
This means, we compare the throughput of an online algorithm with the throughput
achievable by an optimal offline algorithm that knows the job set in advance.

On a single machine, it is well-known that “tight” jobs with d; —r; =~ p; prohibit
competitive online decision making as jobs must start immediately and do not leave
a chance for observing online arrivals [7]. Thus, it is commonly required that jobs
contain some slack € > 0, i.e., every job j satisfies d; — r; > (1 + ¢€)p;. In the more
general setting with unrelated machines, we assume that each job j satisfies d; —r; >
(1 + €)p;; for each machine i that is eligible for j, i.e., each machine ¢ with p;; < oco.
The competitive ratio of our online algorithm will be a function of ¢; the greater the
slack, the better should the performance of our algorithm be. This slackness parameter
has been considered in a multitude of previous work, e.g., in [2,5,10,17,18, 31, 34].
Other results for scheduling with deadlines use speed scaling, which can be viewed as
another way to add slack to the schedule, see, e.g., [1,3,22,24,32].

In this paper, we focus on the question how to handle commitment requirements
in online throughput maximization. Modeling commitment addresses the issue that
a high-throughput schedule may abort jobs close to their deadlines in favor of many
shorter and more urgent tasks [16], which may not be acceptable for the job owner.
Consider a company that starts outsourcing mission-critical processes to external
clouds and that needs a guarantee that jobs complete before a certain time point when
they cannot be moved to another computing cluster anymore. In other situations, a
commitment to complete jobs might be required even earlier just before starting the
job, e.g., for a faultless copy of a database [10].

Different commitment models have been formalized [2,10,31]. The requirement to
commit at a job’s release date has been ruled out for online throughput maximization
by strong impossibility results (even for randomized algorithms) [10]. We distinguish
two commitment models.

(i) Commitment upon job admission: an algorithm may discard a job any time
before its start, we say its admission. This reflects a situation such as the
faultless copy of a database.

(ii) d-commitment. given 0 < § < ¢, an algorithm must commit to complete
a job while the job’s remaining slack is at least a d-fraction of its original
processing time. This models an early enough commitment (parameterized
by §) for mission-critical jobs. For identical parallel machines, the latest time
for committing to job j is then d; —(146)p;. When given unrelated machines,
such a commitment model might be arguably less relevant. We consider it
only for non-migratory schedules and include also the choice of a processor
in the commitment; we define the latest time point for committing to job j
as d; — (1 + 6)p;; when processing j on machine i.

Recently, a first unified approach has been presented for these models for a single
machine [10]. In this and other works [2,31], there remained gaps in the performance
bounds and it was left open whether scheduling with commitment is even “harder”
than without commitment. Moreover, it remained unsettled whether the problem is
tractable on multiple identical or even heterogeneous machines.
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COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 3

In this work, we give tight results for online throughput maximization on un-
related parallel machines and answer the “hardness” question to the negative. We
give an algorithm that achieves the provably best competitive ratio (up to constant
factors) for the aforementioned commitment models. Somewhat surprisingly, we show
that the same competitive ratio of (’)(%) can be achieved for both, scheduling without
commitment and with commitment upon admission. For unrelated machines, this
is the first nontrivial result for online throughput maximization with and without
commitment. For identical parallel machines, this is the first online algorithm with
bounded competitive ratio for arbitrary slack parameter . Interestingly, for this
machine environment, our algorithm does not require job migration in order to be
competitive against a migratory algorithm.

1.1. Related work. Preemptive online scheduling and admission control have
been studied rigorously. There are several results regarding the impact of deadlines
on online scheduling; see, e.g., [6,17,18] and references therein. In the following we
give an overview of the literature focused on (online) throughput maximization.

Offtine scheduling. In case that the jobs and their characteristics are known
to the scheduler in advance, the notion of commitment is irrelevant as an offline
algorithm only starts jobs that will be completed on time; there is no benefit in
starting jobs without completing them. The offline problem is well understood: For
throughput maximization on a single machine, there is a polynomial-time algorithm
by Lawler [29]. The model where jobs have weights and the task is to maximize the
total weight of jobs completed on time (weighted throughput) is NP-hard and we do
not expect polynomial time algorithms. The algorithm by Lawler solves this problem
optimally in time O(nswmax), where wmax = max; w;, and can be used to design a
fully polynomial-time approximation scheme (FPTAS) [33].

When given multiple identical machines, (unweighted) throughput maximiza-
tion becomes NP-hard even for identical release dates [30]. Kalyanasundaram and
Pruhs [25] show a 6-approximate reduction to the single-machine problem which im-
plies a (6 + ¢)-approximation algorithm for weighted throughput maximization on
identical parallel machines, for any ¢ > 0, using the FPTAS for the single-machine
problem [33]. Preemptive throughput maximization on unrelated machines is much
less understood from an approximation point of view. The problem is known to be
strongly NP-hard [14], even without release dates [35]. We are not aware of any ap-
proximation results for preemptive throughput maximization on unrelated machines.
The situation is different for non-preemptive scheduling. In this case, throughput
maximization is MAX-SNP hard [4] and several approximation algorithms for this
general problem as well as for identical parallel machines and other special cases are
known; see, e.g., [4,9,21].

Online scheduling without commitment. For single-machine throughput maxi-
mization, Baruah, Haritsa, and Sharma [6] show that, in general, no deterministic
online algorithm achieves a bounded competitive ratio. Thus, their result justifies our
assumption on e-slackness of each job. Moreover, they consider special cases such as
unit-size jobs or agreeable deadlines where they provide constant-competitive algo-
rithms even without further assumptions on the slack of the jobs. Here, deadlines are
agreeable if r; < r; for two jobs j and j’ implies d; < d;/. In our prior work [10], we
develop a @(%)—competitive algorithm and show a matching lower bound for deter-
ministic algorithms. While this is ruled out for deterministic algorithms, Kalyanasun-
daram and Pruhs [26] give a randomized O(1)-competitive algorithm for throughput
maximization on a single machine without slackness assumption.
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For maximizing weighted throughput, Lucier et al. [31] give an O( % )-competitive
online algorithm for scheduling on identical parallel machines. In a special case of this
problem, called machine utilization the goal is to maximize the total processing time
of completed jobs. This problem is much more tractable. On a single machine, Baruah
et al. [7,8] provide a best-possible online algorithm achieving a competitive ratio of 4,
even without any slackness assumptions. Baruah and Haritsa [5] are the first to inves-
tigate the problem under the assumption of e-slack and give a :Laj—competitive algo-
rithm which is asymptotically best possible. For parallel identical machines (though
without migration), DasGupta and Palis [11] give a simple greedy algorithm that
achieves the same performance guarantee of < and give an asymptotically match-
ing lower bound. Schwiegelshohn and Schwiegelshohn [34] show that migration helps
an online algorithm and improves the competitive ratio to (9( W) for m machines.

In a line of research without slackness assumption, Baruah et al. [8] show a lower
max; w;/pj
min; w;/p;
is the importance ratio of a given instance. Koren and Shasha give a matching upper
bound [28] and generalize it to ©(In k) for parallel machines if k > 1 [27].

Online scheduling with commitment upon job arrival. In our prior work [10], we
rule out bounded competitive ratios for any (even randomized) online algorithm for
throughput maximization with commitment upon job arrival, even on a single ma-
chine. Previously, such impossibility results where only shown exploiting weights [31].

Again, the special case w; = p;, or machine utilization, is much more tractable
than weighted or unweighted throughput maximization. A simple greedy algorithm
already achieves the best possible competitive ratio lje on a single machine, even for
commitment upon arrival, as shown by DasGupta and Palis [11] and the matching
lower bound by Garay et al. [17]. For scheduling with commitment upon arrival on m
parallel identical machines, there is an O( "{/m)—competitive algorithm and an al-
most matching lower bound by Schwiegelshohn and Schwiegelshohn [34]. Suprisingly,
this model also allows for bounded competitive ratios when preemption is not allowed.
In this setting, Goldwasser and Kerbikov [19] give a best possible (24 1)-competitive
algorithm on a single machine. Very recently, Jamalabadi, Schwiegelshohn, and
Schwiegelshohn [23] extend this model to parallel machines; their algorithm is near
optimal with a performance guarantee approaching In é as m tends to infinity.

Online scheduling with commitment upon admission and §-commitment. In our
previous work [10], we design an online single-machine algorithm, called the region
algorithm, that simultaneously (with the respective choice of parameters) achieves the
first non-trivial upper bounds for both commitment models. For commitment upon
job admission, our bound is (’)(E%), and in the J-commitment model it is O(W),
for 0 < § < €. For scheduling on identical parallel machines and commitment upon
admission, Lucier et al. [31] give a heuristic that empirically performs very well but
for which they cannot show a rigorous worst-case bound. In fact, Azar et al. [2] show
that no bounded competitive ratio is possible for weighted throughput maximization
for small e. For 6 = § in the d-commitment model, they design (in the context
of truthful mechanisms) an online algorithm for weighted throughput maximization
that is @( \g/ﬁ_l + (g/H—la_l)2)—competitive if the slack ¢ is sufficiently large, i.e.,

bound of (1 + v/k)? for deterministic single-machine algorithms, where k =

if e > 3. For weighted throughput, this condition on the slack is necessary as is shown
by a strong general lower bound, even on a single machine [10]. For the unweighted
setting, we give the first rigorous upper bound for arbitrary € in this paper for both
models, commitment upon admission and d-commitment, in the identical and even in
the unrelated machine environment.
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COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 5

Machine utilization is again better understood. As commitment upon arrival is
more restrictive than commitment upon admission and d-commitment, the previously
mentioned results immediately carry over and provide bounded competitive ratios.

1.2. Our results and techniques. Our main result is an algorithm that com-
putes a non-migratory schedule that is best possible (up to constant factors) for
online throughput maximization with and without commitment on identical parallel
machines and, more generally, on unrelated machines. This is the first non-trivial
online result for unrelated machines and it closes gaps for identical parallel machines.
Our algorithm is universally applicable (by setting parameters properly) to both com-
mitment models as well es scheduling without commitment.

THEOREM 1.1. Consider throughput mazimization on unrelated machines with-
out migration. There is an O(ﬁ)-competitive non-migratory online algorithm for
g

scheduling with commitment, where 0’ = § in the model with commitment upon ad-

mission and 0" = max{d, 5} in the 6-commitment model.

For scheduling with commitment upon admission, this is (up to constant factors)
an optimal online algorithm with competitive ratio 9(%), matching the lower bound
of Q(é) for m = 1 [10]. For scheduling with §-commitment, our result interpolates
between the models with commitment upon starting a job and commitment upon
arrival. If § < §, the competitive ratio is @(%), which is again best possible [10].
For § — ¢, the commitment requirements essentially implies commitment upon job
arrival which has unbounded competitive ratio [10].

In our analysis, we compare a non-migratory schedule, obtained by our algorithm,
with an optimal non-migratory schedule. However, in the case of identical machines
the throughput of an optimal migratory schedule can only be larger by a constant
factor than the throughput of an optimal non-migratory schedule. In fact, Kalyana-
sundaram and Pruhs [25] showed that this factor is at most “=2. Thus, the com-
petitive ratio for our non-migratory algorithm, when applied to identical machines,
holds (up to this constant factor) also in a migratory setting.

COROLLARY 1.2. Consider throughput mazimization with or without migration on
parallel identical machines. There is an (’)(ﬁ) -competitive non-migratory online al-
gorithm for scheduling with commitment, where §' = 5 in the model with commitment
upon admission and §' = max{d, 5} in the 0-commitment model.

The challenge in online scheduling with commitment is that, once we committed
to complete a job, the remaining slack of this job has to be spent very carefully.
The key component is a job admission scheme which is implemented by different
parameters. The high-level objectives are:

(i) never start a job for the first time if its remaining slack is too small (param-

eter ¢),

(ii) during the processing of a job, admit only significantly shorter jobs (param-

eter «), and

(iii) for each admitted shorter job, block some time period (parameter 3) during

which no other jobs of similar size are accepted.

While the first two goals are quite natural and have been used before in the single
and identical machine setting [10,31], the third goal is crucial for our new tight result.
The intuition is the following: Think of a single eligible machine in a non-migratory
schedule. Suppose we committed to complete a job with processing time 1 and have
only a slack of O(e) left before the deadline of this job. Suppose that ¢ substantially

smaller jobs of size % arrive where c is the competitive ratio we aim for. On the one
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6 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

hand, if we do not accept any of them, we cannot hope to achieve c-competitiveness.
On the other hand, accepting too many of them fills up the slack and, thus, leaves no
room for even smaller jobs. The idea is to keep the flexibility for future small jobs by
only accepting an e-fraction of jobs of similar size (within a factor two).

We distinguish two time periods that guide the acceptance decisions. During
the scheduling interval of a job j, we have a more restrictive acceptance scheme that
ensures the completion of j whereas in the blocking period we guarantee the com-
pletion of previously accepted jobs. We call our algorithm blocking algorithm. This
acceptance scheme is much more refined than the one of the known region algorithm
in [10] that uses one long region with a uniform acceptance threshold and is then too
conservative in accepting jobs.

Given that we consider the non-migratory version of the problem, a generalization
from a single to multiple machines seems natural. It is interesting, however, that such
a generalization works, essentially on a per-machine basis, even for unrelated machines
and comes at no loss in the competitive ratio.

Clearly, scheduling with commitment is more restrictive than without commit-
ment. Therefore, our algorithm is also O (é)—competitive for maximizing the through-
put on unrelated machines without any commitment requirements. Again, this is
optimal (up to constant factors) as it matches the lower bound on the competitive
ratio for deterministic online algorithms on a single machine [10].

COROLLARY 1.3. There is a @(%)-competitive algorithm for online throughput
mazimization on unrelated machines without commitment requirements and without
maigration.

However, for scheduling without commitment, we are able to generalize the sim-
pler region algorithm presented for the single-machine problem in [10] to scheduling
on unrelated machines.

THEOREM 1.4. A generalization of the region algorithm is @(é)—competitive for
online throughput maximization on unrelated machines without commitment require-
ments and without migration.

Besides presenting a simpler algorithm for throughput maximization without com-
mitment, we show this result to present an additional application of our technical
findings for the analysis of the blocking algorithm. We give details later. On a high
level, we show a key lemma on the size of non-admitted jobs for a big class of online
algorithms which results in an upper bound on the throughput of an optimal (offline)
non-migratory algorithm. This key lemma can be used in the analysis of both algo-
rithms, blocking and region. In fact, also the analysis of the original region algorithm
for a single machine [10] becomes substantially easier.

In case of identical machines, again, we can apply the result by Kalyanasundaram
and Pruhs [25] that states that the throughput of an optimal migratory schedule is
larger by at most a constant factor than the throughput of an optimal non-migratory
schedule. Thus, the result in Theorem 1.4 holds also in a migratory setting when
scheduling on identical machines.

COROLLARY 1.5. A generalization of the region algorithm is @(é) -competitive for
online throughput maximization on multiple identical machines without commitment
requirements, with and without migration.

Outline of the paper. In Section 2, we describe and outline the analysis of our
new non-migratory algorithm. It consists of two parts, which are detailed in Sections 3
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COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 7

and 4: firstly, we argue that all jobs admitted by our algorithm can complete by their
deadline and, secondly, we prove that we admit “sufficiently many” jobs. In Section 5,
we generalize the known region algorithm, developed for a single machine in our prior
work [10], to a non-migratory algorithm without commitment on unrelated machines.
We show how to apply a new key technique developed for the analysis in Section 4
to analyze it and prove the same competitive ratio (up to constant factors) as for a
single machine.

2. The blocking algorithm. In this section, we describe the blocking algorithm
for scheduling with commitment. We assume that the slackness constant € > 0 and,
in the J-commitment model, § € (0,¢) are given. If ¢ is not part of the input or
ifo < %, then we set § = %

The algorithm never migrates jobs between machines, i.e., a job is only processed
by the machine that initially started to process it. In this case, we say the job has been
admitted to this machine. Moreover, our algorithm commits to completing a job upon
admission (even in the d-commitment model). Hence, its remaining slack has to be
spent very carefully on admitting other jobs to still be competitive. As our algorithm
does not migrate jobs, it transfers the admission decision to the shortest admitted and
not yet completed job on each machine. A job only admits significantly shorter jobs
and prevents the admission of too many jobs of similar size. To this end, the algorithm
maintains two types of intervals for each admitted job, a scheduling interval and a
blocking period. A job can only be processed in its scheduling interval. Thus, it has
to complete in this interval while admitting other jobs. Job j only admits jobs that
are smaller by a factor of at least v = 15—6 < 1. For an admitted job k, job j creates
a blocking period of length at most Bp;i, where § = 15—6, which blocks the admission
of similar-length jobs (cf. Figure 1). The scheduling intervals and blocking periods of
jobs admitted by j will always be pairwise disjoint and completely contained in the
scheduling interval of j.

scheduling interval blocking period
| [0222200022220002220077

YIIIIIII 1272777
1707777777775 vs7777/] (/IIIIIIIII IS IS0
71777077777 777777 VIIII I I I I 1777777777
770772777777 0277777 (7777177777777 777777777

N

Fic. 1. Scheduling interval, blocking period, and processing intervals

Scheduling jobs. Independent of the admission scheme, the blocking algorithm
follows the SHORTEST PROCESSING TIME (SPT) order for the set of uncompleted
jobs assigned to a machine. SPT ensures that a job j has highest priority in the
blocking periods of any job k admitted by j.

Admitting jobs. The algorithm keeps track of available jobs at any time point 7.
A job j with r; < 7 is called available for machine ¢ if it has not yet been admitted to
a machine by the algorithm and its deadline is not too close, i.e., dj — 7 > (1 + 8)p;;.

Whenever a job j is available for machine i at a time 7 such that time 7 is not
contained in the scheduling interval of any other job admitted to 4, the shortest such
job j is immediately admitted to machine ¢ at time a; := 7, creating the scheduling
interval S(j) = [a;, e;), where e; = a;+(1+0)p;; and an empty blocking period B(j) =
(). In general, however, the blocking period of a job j is a finite union of time intervals
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8 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

associated with j, and its size is the sum of lengths of the intervals, denoted by |B(3)].
Both, blocking period and scheduling interval, depend on machine ¢ but we omit %
from the notation as it is clear from the context; both periods are created after job j
has been assigned to machine 1.

Four types of events trigger a decision of the algorithm at time 7: the release of a
job, the end of a blocking period, the end of a scheduling interval, and the admission
of a job. In any of these four cases, the algorithm calls the admission routine. This
subroutine iterates over all machines ¢ and checks if j, the shortest job on ¢ whose
scheduling interval contains 7, can admit the currently shortest job j* available for
machine 1.

To this end, any admitted job j checks whether p;;+ < vp;;. Only such jobs qualify
for admission by j. Upon admission by j, job j* obtains two disjoint consecutive
intervals, the scheduling interval S(j*) = [a;+,e;+) and the blocking period B(j*) of
size at most fp;j«. At the admission of job j*, the blocking period B(j*) is planned
to start at e;«, the end of j*’s scheduling interval. During B(j*), job j only admits
jobs k with p;, < %pij*.

Hence, when job j decides if it admits the currently shortest available job j* at
time 7, it makes sure that j* is sufficiently small and that no job k of similar (or
even smaller) processing time is blocking 7, i.e., it verifies that 7 ¢ B(k) for all jobs k
with p;r < 2p;j» admitted to the same machine. In this case, we say that j* is a child
of j and that j is the parent of j*, denoted by 7(j*) = j. If job j* is admitted at
time 7 by job j, the algorithm sets a;» = 7 and ej« = a;~ + (1 + 0)p;;» and assigns
the scheduling interval S(5*) = [a;+, e;+) to j*.

If ej» < e;, the routine sets f;« = min{e;, e« + Bp;;~ } which determines B(j*) =
lejx, fi+). As the scheduling and blocking periods of children k of j are supposed to
be disjoint, we have to update the blocking periods. First consider the job k with p;; >
2p;j~ admitted to the same machine whose blocking period contains 7 (if it exists), and
let [e},, fi.) be the maximal interval of B(k) containing 7. We set f;/ = min{e;, f; +
(1404 B)pi;+ } and replace the interval [e), f;) by [e},, T)U[T+ (144 5)pij«, fi!). For
all other jobs k with B(k) N [r,00) # 0 admitted to the same machine, we replace the
remaining part of their blocking period [e}, f.) by [e},+(1+0+B)pij«, f) where f; :=
min{e;, f; + (1 + 0 + B)pi;+ }. In this update, we follow the convention that [e, f) = 0
if f <e. Observe that the length of the blocking period might decrease due to such
updates.

Note that e;+ > e; is also possible as j does not take the end of its own scheduling
interval e; into account when admitting jobs. Thus, the scheduling interval of j*
would end outside the scheduling interval of j and inside the blocking period of j.
During B(j), the parent 7(j) of j, did not allocate the interval [e;, e;+) for completing
jobs admitted by j but for ensuring its own completion. Hence, the completion of
both j* and m(j) is not necessarily guaranteed anymore. To prevent this, we modify
all scheduling intervals S(k) (including S(j)) that contain time 7 of jobs admitted to
the same machine as j* and their blocking periods B(k). For each job k admitted to
the same machine with 7 € S(k) (including j) and e > e, we set e, = ej+. We also
update their blocking periods (in fact, single intervals) to reflect their new starting
points. If the parent 7(k) of k does not exist, B(k) remains empty; otherwise we
set B(k) := [ek, fr) where fi = min{er(x),exr + Bpir}. Note that, after this update,
the blocking periods of any but the largest such job will be empty. Moreover, the just
admitted job j* does not get a blocking period in this special case.

During the analysis of the algorithm, we show that any admitted job j still com-
pletes before a; + (1 + d)p;; and that e; < a; + (1 + 26)p;; holds in retrospect for all
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admitted jobs j. Thus, any job j that admits another job j* tentatively assigns this
job a scheduling interval of length (148)p;;+ but, for ensuring its own completion, it is
prepared to lose (1+25)p;;+ time units of its scheduling interval S(j). We summarize
the blocking algorithm in the following.

Algorithm Blocking algorithm

Scheduling Routine: At all times 7 and on all machines i, run the job with
shortest processing time that has been admitted to ¢ and has not yet completed.

Event: Release of a new job at time 7
Call Admission Routine.

Event: End of a blocking period or scheduling interval at time 7
Call Admission Routine.

Admission Routine:
1+ 1
j* < a shortest job available at 7 for machine ¢, i.e., j* € argmin{p;; |j € J,r; <
T and dj — T Z (1 +(S)p”}
while 1 <m do
K < the set of jobs on machine i whose scheduling intervals contain 7
if K =0 then
admit job j* to machine ¢, aj« < 7, and e;« < aj« + (1 + 6)psj«
S(j*) < laj«, e;+) and B(j*) < 0
call Admission Routine
else
j <+ argmin{p; | k € K}
if j* < p;; and 7 ¢ B(j’) for all j/ admitted to ¢ with p;;» < 2p;;+ then
admit job j* to machine ¢, aj« < 7, and e;+ <= ajx + (1 + 6)p;j»
if e;» < e; then
fj» < min{e;, e;« + Bpij-}
S(5*) « laje, e;+) and B(5%) < [ej+, f+)
else
S(j*) « laj«, ej+) and B(j*) 0
modify S(k) and B(k) for k € K
update B(j’) for j/ admitted to machine i with B(j') N [r,00) # @
call Admission Routine
end if
else
14 1+1
j* <+ a shortest job available at 7 for machine ¢, i.e., j* € argmin{p;; |j €
J,rj<tandd; — 7> (1+0)p;j}
end if
end if
end while

Roadmap for the analysis. During the analysis, it is sufficient to concentrate
on instances with small slack, as also noted in [10]. For € > 1 we run the blocking
algorithm with e = 1, which only tightens the commitment requirement, and obtain
constant competitive ratios. Thus, we assume 0 < ¢ < 1. For 0 < § < ¢, in
the -commitment model an online scheduler needs to commit to the completion of a
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job j no later than d; — (1 + 6)p;;. Hence, committing to the completion of a job j
at an earlier point in time clearly satisfies committing at a remaining slack of ép;;.
Therefore, we may assume 6 € [5,€).

The blocking algorithm does not migrate any job. In the analysis, we compare
the throughput of our algorithm to the solution of an optimal non-migratory schedule.
To do so, we rely on a key design principle of the blocking algorithm, which is that,
whenever the job set admitted to a machine is fixed, the scheduling of the jobs follows
the simple SPT order. This enables us to split the analysis into two parts.

In the first part, we argue that the scheduling routine can handle the admitted
jobs sufficiently well. That is, every admitted jobs is completed on time; see Section 3.
Here, we use that the blocking algorithm is non-migratory and consider each machine
individually.

For the second part, we observe that the potential admission of a new job j*
to machine ¢ is solely based on its availability and on its size relative to j;, the job
currently processed by machine ¢. More precisely, given the availability of j*, if p;j« <
YPij;» the time does not belong to the blocking period of a job k; admitted to machine ¢
with p;j» > %pik’i and i is the first machine (according to machine indices) with this
property, then j* is admitted to machine ¢. This implies that min {’ypiji, %pm} acts
as a threshold, and only available jobs with processing time less than this threshold
qualify for admission by the blocking algorithm on machine i. Hence, any available
job that the blocking algorithm does not admit has to exceed the threshold.

Based on this observation, we develop a general charging scheme for any non-
migratory online algorithm satisfying the property that, at any time 7, the algorithm
maintains a time-dependent threshold and the shortest available job smaller than this
threshold is admitted by the algorithm. We formalize this description and analyze the
competitive ratio of such algorithms in Section 4 before applying this general result
to our particular algorithm.

3. Completing all admitted jobs on time. We show that the blocking algo-
rithm finishes every admitted job on time in Theorem 3.1.

THEOREM 3.1. Let 0 < § < € be fized. If 0 <y <1 and B > 1 satisfy

B/2

(3:-1) B/2+ (1+26)

(14+6—-2(1+28)7) >1,
then the blocking algorithm completes any job j admitted at a; < dj — (14 )p;; on
time.

Recall that we chose v = 1% and 8 = 15—67 which guarantees that Equation (3.1) is
satisfied.

As the blocking algorithm does not migrate jobs, it suffices to consider each ma-
chine individually in this section. The proof relies on the following observations: (i)
The sizes of jobs admitted by job j that interrupt each others’ blocking periods are
geometrically decreasing, (ii) the scheduling intervals of jobs are completely contained
in the scheduling intervals of their parents, and (iii) scheduling in SPT order guaran-
tees that job j has highest priority in the blocking periods of its children. We start by
proving the following technical lemma about the length of the final scheduling interval
of an admitted job j, denoted by |S(j)|. In the proof, we use that w(k) = j for two
jobs j and k implies that pii < yps;.

LEMMA 3.2. Let 0 < § < ¢ be fized. If v > 0 satisfies (1+26)y < 6, then |S(j)] <
(14 20)pi;j. Moreover, S(j) contains the scheduling intervals and blocking periods of
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all descendants of j.

Proof. Consider a machine i and let 7 be a job admitted to machine ¢. By defini-
tion of the blocking algorithm, the end point e; of the scheduling interval of job j is
only modified when j or one of j’s descendants admits another job. Let us consider
such a case: If job j admits a job k& whose scheduling interval does not fit into the
scheduling interval of j, we set e; = ex = ap + (1+6)pix to accommodate the schedul-
ing interval S(k) within S(j). The same modification is applied to any ancestor j' of j
with e;s < eg. This implies that, after such a modification of the scheduling interval,
neither j nor any affected ancestor j’ of j are the smallest jobs in their scheduling
intervals anymore. In particular, no job whose scheduling interval was modified in
such a case at time 7 is able to admit jobs after 7. Hence, any job j can only admit
other jobs within the interval [a;,a; + (1 + d)p;;). That is, ar < a; + (1 + 9)p;; for
every job k with w(k) = j.

Thus, by induction, it is sufficient to show that ar + (1+20)pir < aj + (1+20)p;;
for admitted jobs k and j with m(k) = j. Note that 7(k) = j implies p;r < Ypi;.
Hence,

ar + (1 +20)pir < (a; + (14 0)pi;) + (1 +28)vpi; < aj + (14 20)p;j,

where the last inequality follows from the assumption (1 + 26)y < §. Due to the
construction of B(k) upon admission of some job k by job j, we also have B(k) C
S(7)- 0

Proof of Theorem 3.1. Let j be a job admitted by the blocking algorithm to ma-
chine 7 with a; < d; — (1 + ¢)p;;. Showing that job j completes before time d) :=
a; + (1 4 6)p;; proves the theorem. Due to scheduling in SPT order, each job j has
highest priority in its own scheduling interval if the time point does not belong to the
scheduling interval of a descendant of j. Thus, it suffices to show that at most dp;;
units of time in [a;, d}) belong to scheduling intervals S(k) of descendants of j. By
Lemma 3.2, the scheduling interval of any descendant &k’ of a child k of j is contained
in S(k). Hence, it is sufficient to only consider K, the set of children of j.

In order to bound the contribution of each child k € K, we impose a class struc-
ture on the jobs in K depending on their size relative to job j. More precisely, we
define (C.(j))cen,, where C.(j) contains all jobs k € K that satisfy s2rpi; < pix <
5=pij. As k € K implies p;. < 7pij, each child of j belongs to exactly one class
and (Cc(j))cen, in fact partitions K.

Consider two jobs k,k' € K where, upon admission, %k interrupts the blocking
period of k’. By definition, we have p;; < %pik/. Hence, the chosen class structure
ensures that k belongs to a strictly higher class than k’, i.e., there are ¢,¢’ € N
with ¢ > ¢ such that k € C.(j) and k' € Co(j). In particular, the admission of a
job k € C.(j) implies either that k is the first job of class C.(j) that j admits or that
the blocking period of the previous job in class C.(j) has completed. Based on this
distinction, we are able to bound the loss of scheduling time for j in S(j) due to S(k)
of a child k. Specifically, we partition K into two sets. The first set K; contains all
children of j that where admitted as the first jobs in their class C.(j). The set K>
contains the remaining jobs.

We start with K5. Consider a job k € C.(j) admitted by j. By Lemma 3.2, we
know that |S(k)| = (1 + ud)pik, where 1 < u < 2. Let &k’ € C.(j) be the previous job
admitted by j in class C.(j). Then, B(k") C [exs, ax). Since scheduling and blocking
periods of children of j are disjoint, j has highest scheduling priority in B(k’). Hence,
during B(k") U S(k) job j is processed for at least |B(k')| units of time. In other
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words, j is processed for at least a %—fmction of B(k') U S(k). We rewrite
this ratio as

B _ Bpir v

IB(KYUS(K)| — Bpirr + (1 + pd)pir,  vB+ (1 + pd)’

where v := 1;”;’ € (;,2]. By differentiating with respect to v and u, we observe
that the last term is increasing in v and decreasing in p. Thus, we lower bound this

expression by

BEN B/
IB(K'YUS(k)] = B/2+ (1+268)

Therefore, j is processed for at least a Wﬁ%)-fraction in Uper B(E)UUek, S(k).

We now consider the set K;. The total processing volume of these jobs is bounded
from above by >°° (L p;; = 2yp;;. By Lemma 3.2, |S(k)| < (1 + 26)p;jx. Combining
these two observations, we obtain ’ Urex, S(k)| < 2(1426)7ypi;. Combining the latter
with the bound for K5, we conclude that j is scheduled for at least

) S(k ‘ —1 0) —2(1+26 i > Did
fas \kU = B2+ ( 1+25)(( +0) =20+ 20))pis 2 by
€K
units of time, where the last inequality follows from Equation (3.1). Therefore, j

completes before d;- =a; + (14 9)pi; < dj, which concludes the proof. 0

4. Competitiveness: admitting sufficiently many jobs. This section shows
that the blocking algorithm admits sufficiently many jobs to be O(15)-competitive.
As mentioned before, this proof is based on the observation that, at time 7, the
blocking algorithm admits any job available for machine i if its processing time is
less than vyp;;,, where j; is the job processed by machine ¢ at time 7, and this time
point is not blocked by another job k; previously admitted by j; to machine 7. We
start by formalizing this observation for a class of non-migratory online algorithms
before proving that this enables us to bound the number of jobs any feasible schedule
successfully schedules during a particular period. Then, we use it to show that the
blocking algorithm is indeed O(é)—competitive.

4.1. A class of online algorithms. In this section, we investigate a class of
non-migratory online algorithms. Recall that a job j is called available for machine ¢
at time 7 if it is released before or at time 7, d; — 7 > (1 + 0)p;;, and is not yet
admitted.

We consider a non-migratory online algorithm A with the following properties.

(P1) A only admits available jobs.

(P2) Retrospectively, for each time 7 and each machine 7, there is a threshold u;, €
[0, 00] such that any job j that was available for machine ¢ and not admit-
ted to machine i by A at time 7 satisfies p;; > u;-. The function u® .
R — [0,00],7 — w;, is piece-wise constant and right-continuous for every
machine ¢ € {1,...,m}. Further, there are only countably many points of
discontinuity. (This last property is used to simplify the exposition.)

Key lemma on the size of non-admitted jobs. For the proof of the main
result in this section, we rely on the following strong, structural lemma about the
volume processed by a feasible non-migratory schedule in some time interval and the
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COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 13

size of jobs admitted by a non-migratory online algorithm satisfying (P1) and (P2) in
the same time interval.

Let o be a feasible non-migratory schedule. Without loss of generality, we assume
that o completes all jobs that it started on time. Let X be the set of jobs completed
by ¢ and not admitted by A. For 1 <i < m, let X7 be the set of jobs in X processed
by machine i. Let C, be the completion time of job x € X7 in o.

LEMMA 4.1. Let 0 <91 <y and fizx v € X7 as well as Y € X7\ {z}. If

(R) o > 01 as well asry >0y for ally €Y,

(C) Cp > C,y forally €Y, and

(‘D) Zyeypiy > ﬁ('ﬂQ - 191)
hold, then piy > u;9,, where u;g, is the threshold imposed by A at time V3. In
particular, if w; 9, = 0o, then no such job x exists.

Proof. We show the lemma by contradiction. More precisely, we show that,
if piz < u49,, the schedule o cannot complete x on time and, hence, is not feasi-
ble.

Remember that z € X7 implies that A did not admit job x at any point .
At time 2, there are two possible reasons why = was not admitted: p;; > w9, or
dy —1Y2 < (140)p;e. In case of the former, the statement of the lemma holds. Toward
a contradiction, suppose p;; < w9, and, thus, d, — 92 < (1 + §)p;, has to hold.
As job x arrives with a slack of at least ep;, at its release date r, and r, > ¥; by
assumption, we have

(4.1) Vg =01 202 —dy + dy — 15 > —(1+0)piz + (1 4 €)piz = (€ — 0)pia-

Since all jobs in Y complete earlier than 2 by Assumption (C) and are only
released after ¥ by (R), the volume processed by o in [¢1,C,) on machine i is at
least —=5 (2 —U1) +pix by (P). Moreover, o can process at most a volume of (J; —1)
on machine i in [1,93). These two bounds imply that o has to process job parts
with a processing volume of at least

€
e—90

(€ = 0)piz + Piz = (1 4 0)pix

(V2 — V1) + piz — (V2 — V1) > g

e—90

in [93, C;), where the inequality follows using Inequality (4.1). Thus, C, > ¥2 + (1 +
0)piz > dg, which contradicts the feasibility of o.

Observe that, by (P1) and (P2), the online algorithm A admits a job available

for machine 7 if it satisfies p;; < wir. In particular, if u;» = oo for some time point 7,

then A admits any job available for machine i. Hence, for 0 < ¢ < 9 with w9, = o0,

there does not exist a job x € X7 and a set Y C X7 \ {z} satisfying (R), (C), and

(P) for machine i. |

Bounding the number of non-admitted jobs. In this section, we use the
Properties (P1) and (P2) to bound the throughput of a non-migratory optimal (offline)
algorithm. To this end, we fix an instance as well as an optimal schedule with job set
OpT. Let A be a non-migratory online algorithm satisfying (P1) and (P2).

Let X be the set of jobs in OPT that the algorithm A did not admit. We assume
without loss of generality that all jobs in OPT complete on time. Since OPT as well
as A are non-migratory, we compare the throughput machine-wise. To this end, we
fix one machine 7. Let X; C X be the set of jobs scheduled on machine i by OPT.

Assumption (P2) guarantees that the threshold w; . is piece-wise constant and
right-continuous, i.e., u(¥ is constant on intervals of the form [T, T¢+1). Let Z represent
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the set of maximal intervals I; = [ry, 741) where u(¥) is constant. That is, Ujr = Uy
holds for all 7 € I; and u;,r,,, 7# u;, where u; := u; -,, The main result of this section
is the following theorem.

THEOREM 4.2. Let X; be the set of jobs that are scheduled on machine i in the
optimal schedule. Let T = {Iy,...,Ir} be the set of maximal intervals on machine i
of A such that the machine-dependent threshold is constant for each interval and has
the value u; in interval Iy = 1, T441). Then,

T
xi<y ST

where we set "= =0 if uy = 00 and L~ = o0 if {7y, 71} N {—00,00} # 0
and u; < 0.

We observe that T = oo trivially proves the statement as X; contains at most
finitely many jobs. The same is true if - = oo for some ¢t € [T]. Hence, for the
remainder of this section we assume without loss of generality that Z only contains
finitely many intervals and that “£—" < oo holds for every ¢ € [T7.

To prove this theorem, we develop a charging scheme that assigns jobs z € X
to intervals in Z. The idea behind our charging scheme is that OPT does not contain
arbitrarily many jobs that are available in I; since u; provides a natural lower bound on
their processing times. In particular, the processing time of any job that is released
during interval I; and not admitted by the algorithm exceeds the lower bound wu;.
Thus, the charging scheme relies on the release date r, and the size p;, of a job z € X,
as well as on the precise structure of the intervals created by .A.

The charging scheme we develop is based on a careful modification of the following
partition (F;)Z_; of the set X;. Fix an interval I; € Z and define the set F; C X; as
the set that contains all jobs z € X; released during I, i.e., F} = {x € X; : r,, € I}
Since, upon release, each job x € X; is available and not admitted by .4, the next fact
directly follows from Properties (P1) and (P2).

Fact 4.3. For all jobs x € F; it holds p;z > wus. In particular, if uy = oo,
then F, = ().

In fact, the charging scheme maintains this property and only assigns jobs in X
to intervals I; if p;, > w;. In particular, no job will be assigned to an interval
with u; = oco.

We now formalize how many jobs in X; are assigned to a specific interval I;. Let

g T — T
%:Z{ LJH
e—90 Ut

if uy < oo, and ¢y = 0 if uy = co. We refer to ¢y as the target number of I;. As
discussed before, we assume M < 00, and, thus, the target number is well-defined.
If each of the sets F} satisfies |Ft| < ¢y, then Theorem 4.2 immediately follows. In
general, |F;| < ¢; does not have to be true since jobs in OPT may be preempted and
processed during several intervals I;. Therefore, for proving Theorem 4.2, we show
that there always exists another partition (G;)I_; of X; such that |G| < ¢; holds.

The high-level idea of this proof is the following: Consider an interval I, =
[1¢,7t4+1). If Fy does not contain too many jobs, i.e., |Fi| < ¢, we would like to
set Gy = F;. Otherwise, we find a later interval Iy with |Fy| < ¢p such that we can
assign the excess jobs in F; to I.
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Proof of Theorem 4.2. As observed before, it suffices to show the existence of a
partition G = (G¢)I_; of X; such that |G;| < ¢, in order to prove the theorem.

In order to repeatedly apply Lemma 4.1, we only assign excess jobs x € F} to Gy
for t < t’ if their processing time is at least the threshold of I/, i.e., p;z > uy. By
our choice of parameters, a set Gy with ¢ many jobs of size at least uy “covers” the
interval Iy = [1y, Tw41) as often as required by (P) in Lemma 4.1, i.e.,

g Ty41 — Ty g
4.2 iz = P Uy = — 1) upy >
(4.2) Z b P Ut (\‘6—5 Ut’ J + > Uy 2

x€Gy

5(Tt/+1 - Tt/).

The proof consists of two parts: the first one is to inductively (on t) construct the
partition G = (Gy)L_; of X;, where |G;| < ¢; holds for ¢ € [T — 1]. The second one
is the proof that a job x € G, satisfies p;; > u; which will imply |Gr| < @r. During
the construction of G we define temporary sets A; C X; for intervals I;. The set G;
is chosen as a subset of F} U A; of appropriate size. In order to apply Lemma 4.1 to
each job in A, individually, alongside A, we construct a set Y, ; and a time 7, + <17,
for each job x € X; that is added to A;. Let C,, be the completion time of some
job y € X, in the optimal schedule OpT. The second part of the proof is to show
that x, 7.+, and Y, ; satisfy

(R) 7y > 7y for all y € Yy 4,

(C) C; > Cy for all y € Yy 4, and

(P) Zyeym Piy = 755 (Tt — Twt)-

This implies that x, Y = Y, ¢, Y1 = 75, and Y3 = 7, satisfy the conditions of
Lemma 4.1, and thus the processing time of x is at least the threshold at time 7,
ie., Dix > Uir, = Uys.

Constructing G = (Gy)L_;. We inductively construct the sets Gy in the order
of their indices. We start by setting A; = () for all intervals I; with t € T. We
define Y, ; = 0 for each job z € X; and each interval I;. The preliminary value of
the time 7, ¢ is the minimum of the starting point 7; of the interval I; and the release
date ry of x, i.e., 7, ¢ := min{r, r, }. We refer to the step in the construction where G,
was defined by step t.

Starting with ¢ = 1, let I; be the next interval to consider during the construction
with ¢ < T. Depending on the cardinality of F}; U A;, we distinguish two cases. If
|Ft UAt‘ S @t then we set Gt = Ft U At.

If |F; U Ay| > ¢4, then we order the jobs in F} U A; in increasing order of com-
pletion times in the optimal schedule. The first ¢; jobs are assigned to G while the
remaining |F; U A;| — ¢; jobs are added to A;y;. In this case, we might have to
redefine the times 7,41 and the sets Y, ;11 for the jobs x that were newly added
to Asr1. Fix such a job x. If there is no job z in the just defined set G; that has a
smaller release date than 7, ;, we set 7, ;41 = T+ and Yy ;41 = Y+ UGy Otherwise
let z € G be a job with r, < 7, that has the smallest time 7, ;. We set 7,141 = 7.+
and Yy 111 =Y, UG,

Finally, we set Gy = Fr U Ap. We observe that ur < oo implies o7 =
because 7r41 = 00. Since this contradicts the assumption ¢; < oo for all t € [T],
this implies up = co. We will show that p, > ur for all z € Gr. Hence, G = 0.
Therefore |G| = pr = 0.

Bounding the size of jobs in G;. We consider the intervals again in increasing
order of their indices and show by induction that any job x in Gy satisfies p;, > uy
which implies G; = 0 if u; = oo. Clearly, if x € F; NGy, Fact 4.3 guarantees p;, > u;.
Hence, in order to show the lower bound on the processing time of x € Gy, it is
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sufficient to consider jobs in Gy \ Fy C A;. To this end, we show that for such jobs
(R), (C), and (P) are satisfied. Thus, Lemma 4.1 guarantees that p;; > w;r, = us by
definition. Hence, A; = ) if u; = co by Lemma 4.1.

By construction, A; = (). Hence, (R), (C), and (P) are satisfied for each job x €
Ay

Suppose that the Conditions (R), (C), and (P) are satisfied for all z € A, for
all 1 < s < t. Hence, for s < t, the set G5 only contains jobs x with p;» > us.
Fix ¢ € A;. We want to show that p;,, > wu;. By the induction hypothesis and
by Fact 4.3, p;y > u;—1 holds for all y € G;_;. Since = did not fit in G;—; any-
more, |Gi_1| = pi_1.

We distinguish two cases based on G¢_1. If there is no job z € G;_1 with r, <
Tpt—1, then 7,4 = 7,41, and (R) and (C) are satisfied by construction and by the
induction hypothesis. For (P), consider

Z Diy = Z piy+ Z Diy

YEYa ¢ YEYy,t—1 yeGL—1

€

> fé(Ttﬂ — Tot—1) F U1 - Pr_1
€

> 1 — _ — T_

> 5—6(Tt 1— Te—1) + 5—6(Tt Ti—1)
€

= - 5(7'75 - Tw,t) ,

where the first inequality holds due to the induction hypothesis. By Lemma 4.1, p;;, >

U,

 — Ut

If there is a job z € Gy_1 with r, < 75,1 <71, then z € A;,_;. In step ¢t — 1,
we chose z with minimal 7, ;1. Thus, ry > 7,41 > 7,41 for all y € G;_; and r, >
Tpt—1 > T» > T,:—1 which is Condition (R) for the jobs in G:_;. Moreover, by
the induction hypothesis, r, > 7.1 holds for all y € Y, ;. Thus, 7,; and Y,
satisfy (R). For (C), consider that C; > Cy for all y € G;—1 by construction and,
thus, CF > C» > C; also holds for all y € Y, ;1 due to the induction hypothesis.
For (P), observe that

Z Piy = Z piy+ Z Diy

YEY ¢ YEY, +_1 yeGi_1

€

> ﬁ(Tt—l — Tz,t—l) + U1 - Pr—1
€ 15

> — —1 — - < - —

76—5(7} 1~ Tat 1)+5_5(Tt Ti—1)
€

> —(1 — .

= e 5(Tt T.’,C,t)

Here, the first inequality follows from the induction hypothesis and the second from
the definition of u;—; and ¢;_1. Hence, Lemma 4.1 implies p;z > ur, = us.

We note that p;, > u; for all z € Gy and for all ¢ € [T].

Bounding |X;|. By construction, we know that Uthl Gy = X;. We start with
considering intervals I; with u; = co. Then, I; has an unbounded threshold, i.e., u;; =
oo for all 7 € I;, and F; = () by Fact 4.3. In the previous part we have seen that the
conditions for Lemma 4.1 are satisfied. Hence, G; = 0 if u; = co. For ¢t with u; < oo,
we have |Gy| < ¢y = | 255 ™" | 4+ 1. As explained before, this bounds the number

e—0 o

of jobs in Xj. 0



U o= W N

© N O

0N NN N NN NN
©

R B R e e R B R s B

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 17

4.2. The blocking algorithm admits sufficiently many jobs. Having the
powerful tool that we developed in the previous section at hand, it remains to show
that the blocking algorithm admits sufficiently many jobs to achieve the competitive
ratio of O(#) where ¢’ = 5 for commitment upon admission and ¢’ = max {%, (5}
for d-commitment. To this end, we show that the blocking algorithm belongs to the
class of online algorithms considered in Subsection 4.1. Then, Theorem 4.2 provides
a bound on the throughput of an optimal non-migratory schedule.

We begin by showing that the blocking algorithm satisfies Properties (P1) to (P2).
The first property is clearly satisfied by the definition of the blocking algorithm. For
the second and the third property, we observe that a new job j* is only admitted
to a machine ¢ during the scheduling interval of another job j admitted to the same
machine if p;;» < yp;;. Further, the time point of admission must not be blocked by a
similar- or smaller-size job k previously admitted during the scheduling interval of j.
This leads to the bound p;;» < %pik for any job k whose blocking period contains
the current time point. Combining these observations leads to a machine-dependent
threshold w; € [0, 00| satisfying (P2).

More precisely, fix a machine ¢ and a time point 7. Using 7 — ¢ to denote that j
was admitted to machine i, we define w; ; 1= miny. ;_; res(j) Ypi; if there is no job k
admitted to machine ¢ with 7 € B(k), with min () = co. Otherwise, we set u;  := %pik.
We note that the function u(?) is piece-wise constant and right-continuous due to our
choice of right-open intervals for defining scheduling intervals and blocking periods.
Moreover, the points of discontinuity of u(*) correspond to the admission of a new job,
the end of a scheduling interval, and the start as well as the end of a blocking period
of jobs admitted to machine i. Since we only consider instances with a finite number
of jobs, there are at most finitely many points of discontinuity of u(?). Hence, we can
indeed apply Theorem 4.2.

Then, the following theorem is the main result of this section.

THEOREM 4.4. An optimal non-migratory (offline) algorithm can complete at
most a factor a+5 more jobs on time than admitted by the blocking algorithm, where
o= siﬁ (Qﬁ + 71J;QJ>.

Proof. We fix an instance and an optimal solution OpT. We use X to denote
the set of jobs in OPT that the blocking algorithm did not admit. Without loss of
generality, we can assume that all jobs in OPT complete on time. If J is the set of jobs
admitted by the blocking algorithm, then X U J is a superset of the jobs successfully
finished in the optimal solution. Hence, showing |X| < (a + 4)|J] suffices to prove
Theorem 4.4.

For each machine 7, we compare the throughput of the optimal solution to the
throughput on machine ¢ of the blocking algorithm. More precisely, let X; C X be
the jobs in OPT scheduled on machine i and let J; C J be the jobs scheduled by the
blocking algorithm on machine i. With Theorem 4.2, we show | X;| < (a 4+ 4)|J;] to
bound the cardinality of X in terms of |J|.

To this end, we retrospectively consider the interval structure created by the
algorithm on machine 7. Let Z be the set of maximal intervals I; = [, 7¢+1) such
that w; » = u; -, for all 7 € I;. We define u; = u; ,, for each interval I;. As discussed
above, the time points 7y for ¢ € [T] correspond to the admission, the end of a
scheduling interval, and the start as well as the end of a blocking period of jobs
admitted to machine 1. As the admission of a job adds at most three time points, we
have that |Z| < 3|J;| + 1.

As the blocking algorithm satisfies Properties (P1) to (P2), we can apply Theo-
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rem 4.2 to obtain

S

Tt“ + (31| + 1).

T
1Xi| < Z ”“ T 7)<

It remains to bound the first part in terms of |.J;|. If u; < oo, let j; € J; be the smallest
job j with 7, € S(j) U B(j). Then, at most -=5%—" (potentially fractional) jobs
will be charged to job j; because of interval It By definition of u;, we have u; = yp;j,
if I, € S(j;), and if I; C B(j;), we have u; = %pijt. The total length of intervals I; for
which j = j; holds sums up to at most (1 + 20)p;; for Iy C S(j) and to at most 203p;;
for I; € B(j). Hence, in total, the charging scheme assigns at most —=5(24+ 1“‘5)

jobs in X; to job j € J;. Therefore,
1 Xi| < (a+3)|Ji] + 1.

If J; = 0, the blocking algorithm admitted all jobs scheduled on machine i by OPT,
and |X;| = 0 = |J;| follows. Otherwise, |X;| < (a + 4)|J;|, and we obtain

m

OPT < [X UJ| =Y [Xi|+ || < Z (a+D|Ji| + |J| < (a+5)|J],

i=1
which concludes the proof. ]

4.3. Finalizing the proof of Theorem 1.1.

Proof of Theorem 1.1. In Theorem 3.1 we show that the blocking algorithm com-
pletes all admitted jobs J on time. This implies that the blocking algorithm is
feasible for the model commitment upon admission. As no job j € J is admit-
ted later than d; — (1 + d)p;;, the blocking algorithm also solves scheduling with J-
commitment. In Theorem 4.4, we bound the throughput |OPT| of an optimal non-
migratory solution by a+5 times |J|, the throughput of the blocking algorithm, where
a= (26 + 14;25) Our choice of parameters 3 = ¢ and v = 2 1mphes that the

blocking algorithm achieves a competitive ratio of ¢ 6 O((E_ 5 6). For commitment

5, we run the algorithm

then we set &' = ¢ in our

upon arrival or for d-commitment in the case where § <
with ¢’ = 5. Hence, ¢ € O(ﬁ) = (’)(é) Ifé6 > 5,
algorithm. Thus, 57 € O(1) and, again, c € O(ﬁ). d

5. Scheduling without commitment. This section considers online through-
put maximization without commitment requirements. We show how to exploit also
in this setting our key lemma on the size of non-admitted jobs for a big class of online
algorithms and the resulting upper bound on the throughput of an optimal (offline)
non-migratory algorithm from Subsection 4.1.

We consider the region algorithm that was designed by [10] for scheduling on a
single machine and we generalize it to parallel identical machines. We prove that
it has a competitive ratio of O(2), which is best possible on a single machine and
improves substantially upon the best previously known parallel-machine algorithm
(for weighted throughput) with a competitive ratio of O(E%) by Lucier et al. [31].
For a single machine, this matches the guarantee proven in [10]. However, our new
analysis is much more direct.

5.1. The region algorithm. Originally, the region algorithm was designed for
online scheduling with and without commitment on a single machine. We extend it to
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unrelated machines by never migrating jobs between machines and per machine using
the same design principles that guide the admission decisions of the region algorithm,
as developed in [10]. Since we do not consider commitment in this section, we can
significantly simplify the exposition of the region algorithm when compared to [10].

As in the previous section, a job is only processed by the machine it initially was
started on. We say the job has been admitted to this machine. Moreover, a running
job can only be preempted by significantly smaller-size jobs, i.e., smaller by a factor
of at least § with respect to the processing time, and a job j cannot start for the first
time on machine ¢ when its remaining slack is too small, i.e., less than 5p;;.

Formally, at any time 7, the region algorithm maintains two sets of jobs: admitted
jobs, which have been started before or at time 7, and available jobs. A job j is
available for machine i if it is released before or at time 7, is not yet admitted, and 7
is not too close to its deadline, i.e., r; <7 and d; — 7 > (1 + %)pij. The intelligence
of the region algorithm lies in how it admits jobs. The actual scheduling decision
then is simple and independent of the admission of jobs: at any point in time and on
each machine, schedule the shortest job that has been admitted to this machine and
has not completed its processing time. In other words, we schedule admitted jobs on
each machine in SHORTEST PROCESSING TIME (SPT) order. The region algorithm
never explicitly considers deadlines except when deciding whether to admit jobs. In
particular, jobs can even be processed after their deadline.

At any time 7, when there is a job j available for an idle machine i, i.e., 7 is not
processing any previously admitted job j/, the shortest available job j* is immediately
admitted to machine ¢ at time a} := 7. There are two events that trigger a decision of
the region algorithm: the release of a job and the completion of a job. If one of these
events occurs at time 7, the region algorithm invokes the preemption subroutine. This
routine iterates over all machines and compares the processing time of the smallest
job j* available for machine ¢ with the processing time of job j; that is currently
scheduled on machine i. If p;;+ < §pij,, job j* is admitted to machine 7 at time aj
and, by the above scheduling routine, immediately starts processing. We summarize
the region algorithm below.

The proof of the analysis splits again naturally into two parts: The first part is
to show that the region algorithm completes at least half of all admitted jobs, and
the second is to use Theorem 4.4 to compare the number of admitted jobs to the
throughput of an optimal non-migratory algorithm.

=T

5.2. Completing sufficiently many admitted jobs. The main result of this
section is the following theorem.

THEOREM 5.1. Let 0 < € < 1. Then the region algorithm completes at least half
of all admitted jobs before their deadline.

The proof of Theorem 5.1 relies on two technical results that enable us to restrict
to instances with one machine and further only consider jobs that are admitted by
the region algorithm in this instance. Then, we can use the analysis of the region
algorithm in [10] to complete the proof.

We start with the following observation. Let Z be an instance of online throughput
maximization with the job set J and let J C J be the set of jobs admitted by the
region algorithm at some point. It is easy to see that a job j ¢ J does not influence the
scheduling or admission decisions of the region algorithm. The next lemma formalizes
this statement and follows immediately from the just made observations.

LEMMA 5.2. For any instance I for which the region algorithm admits the job
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Algorithm Region algorithm

Scheduling Routine: At any time 7 and on any machine 4, run the job with
shortest processing time that has been admitted to ¢ and has not yet completed.

Event: Release of a new job at time 7
Call Threshold Preemption Routine.

Event: Completion of a job at time 7
Call threshold preemption routine.

Threshold Preemption Routine:
141
j* < a shortest job available for machine ¢ at 7, i.e., j* € argmin{p;; |j € J,r; <
Tand dj —7 > (1 + 5)pij}
while 1 <m do
j < job processed on machine ¢ at time 7
if j =0 then
admit job j* to machine ¢
call Threshold Preemption Routine
else if p;;» < {p;; then
admit job j* to machine ¢
call Threshold Preemption Routine
else
1+—1+1
j* + a shortest job available for machine i at 7, i.e., j* € argmin{p;; |j €
J7’I’j S 7 and dj — T 2 (1+ %)p”}
end if
end while

set J C J, the reduced instance ' containing only the jobs J forces the region al-
gorithm with consistent tie breaking to admit all jobs in J and to create the same
schedule as produced for the instance I.

The proof of the main result compares the number of jobs finished on time, F' C J,
to the number of jobs unfinished by their respective deadlines, U = J \ F. To further
simplify the instance, we use that the region algorithm is non-migratory and restrict
to single-machine instances. To this end, let F(?) and U denote the finished and
unfinished, respectively, jobs on machine .

LEMMA 5.3. Leti € {1,...,m}. There is an instance ' on one machine with job
set J' = FO UUW. Moreover, the schedule of the region algorithm for instance T'
with consistent tie breaking is identical to the schedule of the jobs J' on machine 1.
In particular, F' = F® and U' = U®.

Proof. By Lemma 5.2, we can restrict to the jobs admitted by the region algo-
rithm. Hence, let Z be such an instance with F® UU® being admitted to machine 1.
As the region algorithm is non-migratory, the sets of jobs scheduled on two different
machines are disjoint. Let Z’ consist of the jobs in 7’ := F() UU® and one machine.
We set p; = p;j for j € J’. The region algorithm on instance Z admits all jobs in 7.
In particular, it admits all jobs in 7’ to machine i.

We inductively show that the schedule for the instance Z’ is identical to the
schedule on machine 7 in instance Z. To this end, we index the jobs in J’ in increasing
admission time points in instance Z.
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It is obvious that job 1 € J' is admitted to the single machine at its release date rq
as happens in instance Z since the region algorithm uses consistent tie breaking.
Suppose that the schedule is identical until the admission of job j* at time a} = 7.
If 7* does not interrupt the processing of another job, then j* will be admitted at
time 7 in 7' as well. Otherwise, let 7 € J’ be the job that the region algorithm
planned to process at time 7 before the admission of job j*. Since j* is admitted at
time 7 in Z, j* is available at time 7, satisfies pj. = p;» < §pi; = §p}, and did not
satisfy both conditions at some earlier time 7/ with some earlier admitted job j’. Since
the job set in Z’ is a subset of the jobs in Z and we use consistent tie breaking, no other
job j* € J' that satisfies both conditions is favored by the region algorithm over j*.
Therefore, job j* is also admitted at time 7 by the region algorithm in instance Z'.
Thus, the schedule created by the region algorithm for J’ is identical to the schedule
of J on machine ¢ in the original instance. 0

For proving Theorem 5.1, we consider a worst-case instance for the region algo-
rithm where “worst” is with respect to the ratio between admitted and successfully
completed jobs. Since the region algorithm is non-migratory, there exists at least one
machine in such a worst-case instance that “achieves” the same ratio as the whole
instance. By the just proven lemma, we can find a worst-case instance on a single
machine. However, on a single machine, the region algorithm algorithm in this paper
is identical to the algorithm designed in [10]. Therefore, we simply follow the line of
proof developed in [10] to show Theorem 5.1.

More precisely, in [10] we show that the existence of a late job j implies that the
the set of jobs admitted by j or by one of its children contains more finished than
unfinished jobs. Let F; denote the set of jobs admitted by j or by one of its children
that finish on time. Similarly, we denote the set of such jobs that complete after their
deadlines, i.e., that are unfinished at their deadline, by U;. We restate the following
lemma, which was originally shown in a single-machine environment but clearly also
holds for unrelated machines.

LEMMA 5.4 (Lemma 3 in [10]). Consider some job j admitted to some machine
i€ {l,...,m}. If C; —a; > ((+ 1)p;; for £ >0, then |F}| — |U;| > [2£].

Proof of Theorem 5.1. Let U be the set of jobs that are unfinished by their dead-
line but whose ancestors have all completed on time. Every job j € U was admitted
by the algorithm at some time a; with d; —a; > (1 + %)pij. Since j is unfinished, we
have C; —a; > dj —a; > (1 + %)pij. By Lemma 5.4, |F;| —|U;| > L%J = 2. Thus,

|Fj| 4+ |U;| < 2|Fj] — 2 < 2|Fyl.

Since every ancestor of such a job j finishes on time, this completes the proof. ]

5.3. The region algorithm admits sufficiently many jobs. In this section,
we show the following theorem and give the proof of Theorem 1.4.

THEOREM 5.5. An optimal non-migratory (offline) algorithm completes at most
a factor (g + 4) more jobs on time than admitted by the region algorithm.

Proof. As in the previous section, fix an instance and an optimal solution OPT.
Let X be the set of jobs in OPT that the region algorithm did not admit. We assume
without loss of generality that all jobs in OPT finish on time. Further, let J denote
the set of jobs that the region algorithm admitted. Then, X U J is a superset of the
jobs in OPT. Thus, |X| < (2 + 3)|J| implies Theorem 5.5.
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Consider an arbitrary but fixed machine i. We compare again the throughput
of the optimal schedule on machine i to the throughput of the region algorithm on
machine 7. Let X; C X denote the jobs in OPT scheduled on machine i and let J;
denote the jobs scheduled by the region algorithm on machine i. Then, showing | X;| <
(2 4 3)|J;| suffices to prove the main result of this section. Given that the region
algorithm satisfies Properties (P1) and (P2), Theorem 4.2 already provides a bound
on the cardinality of X; in terms of the intervals corresponding to the schedule on
amchine 7. Thus, it remains to show that the region algorithm indeed qualifies for
applying Theorem 4.2 and that the bound developed therein can be translated to a
bound in terms of |J;|.

We start by showing that the region algorithm satisfies the assumptions necessary
for applying Theorem 4.2. Clearly, as the region algorithm only admits a job j
at time 7 if dj — 7 > (1 + %)pij, setting 6 = $ proves that the region algorithm
satisfies (P1). For (P2), we retrospectively analyze the schedule generated by the
region algorithm. For a time 7, let j; denote the job scheduled on machine i. Then,
setting u; » := §pij, or u;, = oo if no such job j; exists, indeed provides us with the
machine-dependent threshold necessary for (P2). This discussion also implies that u(?)
has only countably many points of discontinuity as there are only finitely many jobs
in the instance, and that u(¥ is right-continuous.

Hence, let Z denote the set of maximal intervals I; = [ry, 7¢41) for ¢t € [T] of
constant threshold u;,. Thus, by Theorem 4.2,

T
g Tt+1 — Tt
5.1 X, <SS =TT p
(51) X< 5 -

U
t=1 t

As the threshold u; , is proportional to the processing time of the job currently
scheduled on machine 4, the interval I; either represents an idle interval of machine %
(with u;; = o0) or corresponds to the uninterrupted processing of some job j on
machine . We denote this job by j; if it exists. We consider now the set 7; C 7
of intervals with j; = j for some particular job j € J;. As observed, these intervals
correspond to job j being processed which happens for a total of p;; units of time.
Combining with uy = $p;; for I} € Z;, we get

Tt+1 — Tt Pij 4
E =2 =,
U IDij €

t:I,€Z; t 1Pij

As § = §, we additionally have that =5 = 2. Hence, we rewrite Equation (5.1) by
8
|Xi| < g|Jz‘| +T.

It remains to bound T in terms of |.J;| to conclude the proof. To this end, we
recall that the admission of a job j to a machine interrupts the processing of at most
one previously admitted job. Hence, the admission of |J;| jobs to machine 1 creates
at most 2|.J;| + 1 intervals.

If the region algorithm does not admit any job to machine 4, ie., |J;| = 0,
then w;; = oo for each time point 7. Hence, there exists no job scheduled on ma-
chine i by OPT that the region algorithm did not admit. In other words, X; = 0
and |X;| = 0 = |J;|. Otherwise, 2|.J;| + 1 < 3|J;|. Therefore,

i < (243 il
£
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Combining with the observation about X; and J; previously discussed, we obtain

- 8 . 8
orn < [x Ul = Y1+ 101 < (243) Sl = (S a) 1,

i=1 i=1
which concludes the proof. O

5.4. Finalizing the proof of Theorem 1.4.

Proof of Theorem 1.4. In Theorem 5.1 we show that the region algorithm com-
pletes at least half of all admitted jobs J on time. In Theorem 4.2, we bound
the throughput |OPT| of an optimal non-migratory solution by (g + 4)|J]. Com-
bining these theorems shows that the region algorithm achieves a competitive ratio
ofc=2-(2+4)=2L+8 0

6. Conclusion. In this paper, we close the problem of online single-machine
throughput maximization with and without commitment requirements. For both com-
mitment settings, we give an optimal online algorithm. Further, our algorithms run
in a multiple-machine environment, even on heterogenous machines. Our algorithms
compute non-migratory schedules on unrelated machines with the same competitive
ratio (9(%) as for a single machine and improve substantially upon the state of the
art.

It remains open whether the problem with a large number of machines admits an
online algorithm with a better competitive ratio. For m > 2, it is not known whether
slack is actually needed to design algorithms with bounded competitive ratios, even
without commitment requirements and identical machines. In fact, results in [26]
(used to show a O(1)-competitive randomized algorithm on a single machine) imply
an O(1)-competitive algorithm for scheduling jobs without slack and without commit-
ment on m € O(1) identical machines. Further, for machine utilization, i.e., weighted
throughput with p; = w;, [23,34] improve upon the factor of (9(%) for commitment
upon arrival and jobs satisfying the e-slack assumption.

In fact, there are examples in the literature in which the worst-case ratio for
a scheduling problem improves with an increasing number of machines. Consider,
e.g., the non-preemptive offline variant of our throughput maximization problem on
identical machines. There is an algorithm with approximation ratio of 1.55 for any m
which is improving with increasing number of machines, converging to 1 as m tends
to infinity [20]. The second part of the result also holds for the weighted problem.

Another interesting question asks whether randomization allows for improved re-
sults. Recall that there is a O(1)-competitive randomized algorithm for scheduling on
a single machine without commitment and without slack assumption [26]. Therefore
is seems plausible that randomization also helps designing algorithms with improved
competitive ratios for the different commitment models, for which only weak lower
bounds are known [10], and on multiple machines as discussed above.

Further, we leave migratory scheduling on unrelated machines as an open prob-
lem. Allowing migration in this setting means that, on each machine i, a certain
fraction of the processing time p;; is executed, and these fractions must sum to one.
Generalizing the result we leverage for identical machines [25], it is conceivable that
any migratory schedule can be turned into a valid non-migratory schedule of the same
jobs by adding a constant number of machines of each type. Such a result would im-
mediately allow to transfer our competitive ratios to the migratory setting (up to
constant factors). Devanur and Kulkarni [13] show a weaker result that utilizes speed
rather than additional machines. Note that the strong impossibility result of Im and
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Moseley [22] does not rule out the desired strengthening because we make the e-slack
assumption for every job and machine eligible for it. Further, we — as well as Devanur
and Kulkarni [13] — assume that the processing time of each job j satisfies p;; < d;—r;
on any eligible machine ¢, whereas the lower bound in [22] requires jobs that violate
this reasonable assumption.

Further research directions include generalizations such as weighted throughput
maximization. While strong lower bounds exist for handling weighted throughput
with commitment [10], there remains a gap for the problem without. The known
lower bound of (1) already holds for unit weights [10]. A natural extension of
the region algorithm bases its admission decisions on the density, i.e., the ratio of the
weight of a job to its processing time. The result is an algorithm similar to the (9(5%)—
competitive algorithm by Lucier et al. [31]. Both algorithms only admit available jobs
and interrupt currently running jobs if the new job is denser by a certain factor.
However, we can show that there is a lower bound of Q(E%) on the competitive ratio
of such algorithms. Hence, in order to improve the upper bound for online weighted
throughput maximization, one needs to develop a new type of algorithm.
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