
Zweitveröffentlichung/
Secondary Publication

Staats- und
Universitätsbibliothek
Bremen

Eberle, Franziska ; Megow, Nicole; Schewior, Kevin

https :// med ia .su u b. u n i-brem en. de

Online Throughput Maximization on Unrelated Machines: Commitment is No Burden

Journal Article as: peer-reviewed accepted version (Postprint)

DOl of this document(secondary publication): https://doi.org/10.26092/elib/3189

Publication date of this document:

for better findability or for reliable citation

01/08/2024

Recommended Citation (primary publication/Version of Record) incl. DOI:

Franziska Eberle, Nicole Megow, and Kevin Schewior. 2023. Online Throughput Maximization on Unrelated
Machines: Commitment is No Burden. ACM Trans. Algorithms 19, 1, Article 10 (January 2023), 25 pages.
https://doi.0rg/10.1145/3569582.

Please note that the version of this document may differ from the final published version (Version of Record/primary
publication) in terms of copy-editing, pagination, publication date and DDI. Please cite the version that you actually used.
Before citing, you are also advised to check the publisher's website for any subsequent corrections or retractions
(see also https://retractionwatch.com/).

@ Authors I ACM 2023. This is the author's version of the work. lt is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Algorithms, https://doi.org/10.1145/3569582.

This dacument is made available with all rights reserved.

Take down policy
lf you believe that this document or any material an this site infringes copyright, please contact
publizieren@suub.uni-bremen.de with full details and we will remave access to the material.

ONLINE THROUGHPUT MAXIMIZATION ON UNRELATED1

MACHINES: COMMITMENT IS NO BURDEN∗2

FRANZISKA EBERLE† , NICOLE MEGOW† , AND KEVIN SCHEWIOR‡3

Abstract. We consider a fundamental online scheduling problem in which jobs with processing4
times and deadlines arrive online over time at their release dates. The task is to determine a5
feasible preemptive schedule on a single or multiple possibly unrelated machines that maximizes6
the number of jobs that complete before their deadline. Due to strong impossibility results for7
competitive analysis on a single machine, we require that jobs contain some slack ε > 0, which8
means that the feasible time window for scheduling a job is at least 1 + ε times its processing9
time on each eligible machine. Our contribution is two-fold: (i) We give the first non-trivial online10
algorithms for throughput maximization on unrelated machines, and (ii), this is the main focus of11
our paper, we answer the question on how to handle commitment requirements which enforce that a12
scheduler has to guarantee at a certain point in time the completion of admitted jobs. This is very13
relevant, e.g., in providing cloud-computing services, and disallows last-minute rejections of critical14
tasks. We present an algorithm for unrelated machines that is Θ

(
1
ε

)
-competitive when the scheduler15

must commit upon starting a job. Somewhat surprisingly, this is the same optimal performance16
bound (up to constants) as for scheduling without commitment on a single machine. If commitment17
decisions must be made before a job’s slack becomes less than a δ-fraction of its size, we prove a18
competitive ratio of O

(
1
ε−δ

)
for 0 < δ < ε. This result nicely interpolates between commitment upon19

starting a job and commitment upon arrival. For the latter commitment model, it is known that20
no (randomized) online algorithm admits any bounded competitive ratio. While we mainly focus21
on scheduling without migration, our results also hold when comparing against a migratory optimal22
solution in case of identical machines.23

Key words. Deadline scheduling, throughput, online algorithms, competitive analysis, unre-24
lated machines, migration25

AMS subject classifications. 68W27, 90B35, 68W40, 68Q2526

1. Introduction. We consider the following online scheduling problem: there27

are given m unrelated parallel machines. Jobs from an unknown job set arrive online28

over time at their release dates rj . Each job j has a deadline dj and a processing time29

pij ∈ R+ ∪{∞}, which is the execution time of j when processing on machine i; both30

job parameters become known to an algorithm at job arrival. We denote a machine i31

with pij < ∞ as eligible for job j. If all machines are identical, pij = pj holds for32

every job j, and we omit the index i. When scheduling these jobs or a subset of them,33

we allow preemption, i.e., the processing of a job can be interrupted at any time and34

may resume later without any additional cost. We mainly study scheduling without35

migration which means that a job must run completely on one machine. In case that36

we allow migration, a preempted job can resume processing on any machine, but no37

job can run simultaneously on two or more machines.38

In a feasible schedule, two jobs are never processing at the same time on the39

same machine. A job is said to complete if it receives pij units of processing time40

∗Submitted to the editors June 9, 2021. A preliminary version of the results on online scheduling
with commitment on parallel identical machines was published at the European Symposium of Al-
gorithms 2020 [15].

Funding: The work of the second author was partially supported by the German Science Foun-
dation (DFG) under contract ME 3825/1. The work of the third author was partially supported by
the DAAD within the PRIME program using funds of BMBF and the EU Marie Curie Actions.
†Faculty of Mathematics and Computer Science, University of Bremen, Germany

(franziska.eberle@posteo.de, nicole.megow@uni-bremen.de).
‡Department of Mathematics and Computer Science, Universität zu Köln, Cologne, Germany

(kschewior@gmail.com).

1

mailto:franziska.eberle@posteo.de
mailto:nicole.megow@uni-bremen.de
mailto:kschewior@gmail.com

2 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

on machine i within the interval [rj , dj) if j is processed by machine i. The number41

of completed jobs in a feasible schedule is called throughput. The task is to find a42

feasible schedule with maximum throughput. We refer to this problem as throughput43

maximization.44

As jobs arrive online and scheduling decisions are irrevocable, we cannot hope to45

find an optimal schedule even when scheduling on a single machine [12]. To assess46

the performance of online algorithms, we resort to standard competitive analysis.47

This means, we compare the throughput of an online algorithm with the throughput48

achievable by an optimal offline algorithm that knows the job set in advance.49

On a single machine, it is well-known that “tight” jobs with dj − rj ≈ pj prohibit50

competitive online decision making as jobs must start immediately and do not leave51

a chance for observing online arrivals [7]. Thus, it is commonly required that jobs52

contain some slack ε > 0, i.e., every job j satisfies dj − rj ≥ (1 + ε)pj . In the more53

general setting with unrelated machines, we assume that each job j satisfies dj − rj ≥54

(1 + ε)pij for each machine i that is eligible for j, i.e., each machine i with pij <∞.55

The competitive ratio of our online algorithm will be a function of ε; the greater the56

slack, the better should the performance of our algorithm be. This slackness parameter57

has been considered in a multitude of previous work, e.g., in [2, 5, 10, 17, 18, 31, 34].58

Other results for scheduling with deadlines use speed scaling, which can be viewed as59

another way to add slack to the schedule, see, e.g., [1, 3, 22,24,32].60

In this paper, we focus on the question how to handle commitment requirements61

in online throughput maximization. Modeling commitment addresses the issue that62

a high-throughput schedule may abort jobs close to their deadlines in favor of many63

shorter and more urgent tasks [16], which may not be acceptable for the job owner.64

Consider a company that starts outsourcing mission-critical processes to external65

clouds and that needs a guarantee that jobs complete before a certain time point when66

they cannot be moved to another computing cluster anymore. In other situations, a67

commitment to complete jobs might be required even earlier just before starting the68

job, e.g., for a faultless copy of a database [10].69

Different commitment models have been formalized [2,10,31]. The requirement to70

commit at a job’s release date has been ruled out for online throughput maximization71

by strong impossibility results (even for randomized algorithms) [10]. We distinguish72

two commitment models.73

(i) Commitment upon job admission: an algorithm may discard a job any time74

before its start, we say its admission. This reflects a situation such as the75

faultless copy of a database.76

(ii) δ-commitment: given 0 < δ < ε, an algorithm must commit to complete77

a job while the job’s remaining slack is at least a δ-fraction of its original78

processing time. This models an early enough commitment (parameterized79

by δ) for mission-critical jobs. For identical parallel machines, the latest time80

for committing to job j is then dj−(1+δ)pj . When given unrelated machines,81

such a commitment model might be arguably less relevant. We consider it82

only for non-migratory schedules and include also the choice of a processor83

in the commitment; we define the latest time point for committing to job j84

as dj − (1 + δ)pij when processing j on machine i.85

Recently, a first unified approach has been presented for these models for a single86

machine [10]. In this and other works [2,31], there remained gaps in the performance87

bounds and it was left open whether scheduling with commitment is even “harder”88

than without commitment. Moreover, it remained unsettled whether the problem is89

tractable on multiple identical or even heterogeneous machines.90

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 3

In this work, we give tight results for online throughput maximization on un-91

related parallel machines and answer the “hardness” question to the negative. We92

give an algorithm that achieves the provably best competitive ratio (up to constant93

factors) for the aforementioned commitment models. Somewhat surprisingly, we show94

that the same competitive ratio of O
(
1
ε

)
can be achieved for both, scheduling without95

commitment and with commitment upon admission. For unrelated machines, this96

is the first nontrivial result for online throughput maximization with and without97

commitment. For identical parallel machines, this is the first online algorithm with98

bounded competitive ratio for arbitrary slack parameter ε. Interestingly, for this99

machine environment, our algorithm does not require job migration in order to be100

competitive against a migratory algorithm.101

1.1. Related work. Preemptive online scheduling and admission control have102

been studied rigorously. There are several results regarding the impact of deadlines103

on online scheduling; see, e.g., [6, 17, 18] and references therein. In the following we104

give an overview of the literature focused on (online) throughput maximization.105

Offline scheduling. In case that the jobs and their characteristics are known106

to the scheduler in advance, the notion of commitment is irrelevant as an offline107

algorithm only starts jobs that will be completed on time; there is no benefit in108

starting jobs without completing them. The offline problem is well understood: For109

throughput maximization on a single machine, there is a polynomial-time algorithm110

by Lawler [29]. The model where jobs have weights and the task is to maximize the111

total weight of jobs completed on time (weighted throughput) is NP-hard and we do112

not expect polynomial time algorithms. The algorithm by Lawler solves this problem113

optimally in time O(n5wmax), where wmax = maxj wj , and can be used to design a114

fully polynomial-time approximation scheme (FPTAS) [33].115

When given multiple identical machines, (unweighted) throughput maximiza-116

tion becomes NP-hard even for identical release dates [30]. Kalyanasundaram and117

Pruhs [25] show a 6-approximate reduction to the single-machine problem which im-118

plies a (6 + δ)-approximation algorithm for weighted throughput maximization on119

identical parallel machines, for any δ > 0, using the FPTAS for the single-machine120

problem [33]. Preemptive throughput maximization on unrelated machines is much121

less understood from an approximation point of view. The problem is known to be122

strongly NP-hard [14], even without release dates [35]. We are not aware of any ap-123

proximation results for preemptive throughput maximization on unrelated machines.124

The situation is different for non-preemptive scheduling. In this case, throughput125

maximization is MAX-SNP hard [4] and several approximation algorithms for this126

general problem as well as for identical parallel machines and other special cases are127

known; see, e.g., [4, 9, 21].128

Online scheduling without commitment. For single-machine throughput maxi-129

mization, Baruah, Haritsa, and Sharma [6] show that, in general, no deterministic130

online algorithm achieves a bounded competitive ratio. Thus, their result justifies our131

assumption on ε-slackness of each job. Moreover, they consider special cases such as132

unit-size jobs or agreeable deadlines where they provide constant-competitive algo-133

rithms even without further assumptions on the slack of the jobs. Here, deadlines are134

agreeable if rj ≤ rj′ for two jobs j and j′ implies dj ≤ dj′ . In our prior work [10], we135

develop a Θ
(
1
ε

)
-competitive algorithm and show a matching lower bound for deter-136

ministic algorithms. While this is ruled out for deterministic algorithms, Kalyanasun-137

daram and Pruhs [26] give a randomized O(1)-competitive algorithm for throughput138

maximization on a single machine without slackness assumption.139

4 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

For maximizing weighted throughput, Lucier et al. [31] give an O
(

1
ε2

)
-competitive140

online algorithm for scheduling on identical parallel machines. In a special case of this141

problem, called machine utilization the goal is to maximize the total processing time142

of completed jobs. This problem is much more tractable. On a single machine, Baruah143

et al. [7,8] provide a best-possible online algorithm achieving a competitive ratio of 4,144

even without any slackness assumptions. Baruah and Haritsa [5] are the first to inves-145

tigate the problem under the assumption of ε-slack and give a 1+ε
ε -competitive algo-146

rithm which is asymptotically best possible. For parallel identical machines (though147

without migration), DasGupta and Palis [11] give a simple greedy algorithm that148

achieves the same performance guarantee of 1+ε
ε and give an asymptotically match-149

ing lower bound. Schwiegelshohn and Schwiegelshohn [34] show that migration helps150

an online algorithm and improves the competitive ratio to O
(

m
√

1/ε
)

for m machines.151

In a line of research without slackness assumption, Baruah et al. [8] show a lower152

bound of (1 +
√
k)2 for deterministic single-machine algorithms, where k =

maxj wj/pj
minj wj/pj

153

is the importance ratio of a given instance. Koren and Shasha give a matching upper154

bound [28] and generalize it to Θ(ln k) for parallel machines if k > 1 [27].155

Online scheduling with commitment upon job arrival. In our prior work [10], we156

rule out bounded competitive ratios for any (even randomized) online algorithm for157

throughput maximization with commitment upon job arrival, even on a single ma-158

chine. Previously, such impossibility results where only shown exploiting weights [31].159

Again, the special case wj = pj , or machine utilization, is much more tractable160

than weighted or unweighted throughput maximization. A simple greedy algorithm161

already achieves the best possible competitive ratio 1+ε
ε on a single machine, even for162

commitment upon arrival, as shown by DasGupta and Palis [11] and the matching163

lower bound by Garay et al. [17]. For scheduling with commitment upon arrival on m164

parallel identical machines, there is an O(m
√

1/ε)-competitive algorithm and an al-165

most matching lower bound by Schwiegelshohn and Schwiegelshohn [34]. Suprisingly,166

this model also allows for bounded competitive ratios when preemption is not allowed.167

In this setting, Goldwasser and Kerbikov [19] give a best possible
(
2 + 1

ε

)
-competitive168

algorithm on a single machine. Very recently, Jamalabadi, Schwiegelshohn, and169

Schwiegelshohn [23] extend this model to parallel machines; their algorithm is near170

optimal with a performance guarantee approaching ln 1
ε as m tends to infinity.171

Online scheduling with commitment upon admission and δ-commitment. In our172

previous work [10], we design an online single-machine algorithm, called the region173

algorithm, that simultaneously (with the respective choice of parameters) achieves the174

first non-trivial upper bounds for both commitment models. For commitment upon175

job admission, our bound is O
(

1
ε2

)
, and in the δ-commitment model it is O

(
ε

(ε−δ)δ2
)
,176

for 0 < δ < ε. For scheduling on identical parallel machines and commitment upon177

admission, Lucier et al. [31] give a heuristic that empirically performs very well but178

for which they cannot show a rigorous worst-case bound. In fact, Azar et al. [2] show179

that no bounded competitive ratio is possible for weighted throughput maximization180

for small ε. For δ = ε
2 in the δ-commitment model, they design (in the context181

of truthful mechanisms) an online algorithm for weighted throughput maximization182

that is Θ
(

1
3
√
1+ε−1 + 1

(3
√
1+ε−1)2

)
-competitive if the slack ε is sufficiently large, i.e.,183

if ε > 3. For weighted throughput, this condition on the slack is necessary as is shown184

by a strong general lower bound, even on a single machine [10]. For the unweighted185

setting, we give the first rigorous upper bound for arbitrary ε in this paper for both186

models, commitment upon admission and δ-commitment, in the identical and even in187

the unrelated machine environment.188

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 5

Machine utilization is again better understood. As commitment upon arrival is189

more restrictive than commitment upon admission and δ-commitment, the previously190

mentioned results immediately carry over and provide bounded competitive ratios.191

1.2. Our results and techniques. Our main result is an algorithm that com-192

putes a non-migratory schedule that is best possible (up to constant factors) for193

online throughput maximization with and without commitment on identical parallel194

machines and, more generally, on unrelated machines. This is the first non-trivial195

online result for unrelated machines and it closes gaps for identical parallel machines.196

Our algorithm is universally applicable (by setting parameters properly) to both com-197

mitment models as well es scheduling without commitment.198

Theorem 1.1. Consider throughput maximization on unrelated machines with-199

out migration. There is an O
(

1
ε−δ′

)
-competitive non-migratory online algorithm for200

scheduling with commitment, where δ′ = ε
2 in the model with commitment upon ad-201

mission and δ′ = max{δ, ε2} in the δ-commitment model.202

For scheduling with commitment upon admission, this is (up to constant factors)203

an optimal online algorithm with competitive ratio Θ
(
1
ε

)
, matching the lower bound204

of Ω
(
1
ε

)
for m = 1 [10]. For scheduling with δ-commitment, our result interpolates205

between the models with commitment upon starting a job and commitment upon206

arrival. If δ ≤ ε
2 , the competitive ratio is Θ

(
1
ε

)
, which is again best possible [10].207

For δ → ε, the commitment requirements essentially implies commitment upon job208

arrival which has unbounded competitive ratio [10].209

In our analysis, we compare a non-migratory schedule, obtained by our algorithm,210

with an optimal non-migratory schedule. However, in the case of identical machines211

the throughput of an optimal migratory schedule can only be larger by a constant212

factor than the throughput of an optimal non-migratory schedule. In fact, Kalyana-213

sundaram and Pruhs [25] showed that this factor is at most 6m−5
m . Thus, the com-214

petitive ratio for our non-migratory algorithm, when applied to identical machines,215

holds (up to this constant factor) also in a migratory setting.216

Corollary 1.2. Consider throughput maximization with or without migration on217

parallel identical machines. There is an O
(

1
ε−δ′

)
-competitive non-migratory online al-218

gorithm for scheduling with commitment, where δ′ = ε
2 in the model with commitment219

upon admission and δ′ = max{δ, ε2} in the δ-commitment model.220

The challenge in online scheduling with commitment is that, once we committed221

to complete a job, the remaining slack of this job has to be spent very carefully.222

The key component is a job admission scheme which is implemented by different223

parameters. The high-level objectives are:224

(i) never start a job for the first time if its remaining slack is too small (param-225

eter δ),226

(ii) during the processing of a job, admit only significantly shorter jobs (param-227

eter γ), and228

(iii) for each admitted shorter job, block some time period (parameter β) during229

which no other jobs of similar size are accepted.230

While the first two goals are quite natural and have been used before in the single231

and identical machine setting [10,31], the third goal is crucial for our new tight result.232

The intuition is the following: Think of a single eligible machine in a non-migratory233

schedule. Suppose we committed to complete a job with processing time 1 and have234

only a slack of O(ε) left before the deadline of this job. Suppose that c substantially235

smaller jobs of size 1
c arrive where c is the competitive ratio we aim for. On the one236

6 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

hand, if we do not accept any of them, we cannot hope to achieve c-competitiveness.237

On the other hand, accepting too many of them fills up the slack and, thus, leaves no238

room for even smaller jobs. The idea is to keep the flexibility for future small jobs by239

only accepting an ε-fraction of jobs of similar size (within a factor two).240

We distinguish two time periods that guide the acceptance decisions. During241

the scheduling interval of a job j, we have a more restrictive acceptance scheme that242

ensures the completion of j whereas in the blocking period we guarantee the com-243

pletion of previously accepted jobs. We call our algorithm blocking algorithm. This244

acceptance scheme is much more refined than the one of the known region algorithm245

in [10] that uses one long region with a uniform acceptance threshold and is then too246

conservative in accepting jobs.247

Given that we consider the non-migratory version of the problem, a generalization248

from a single to multiple machines seems natural. It is interesting, however, that such249

a generalization works, essentially on a per-machine basis, even for unrelated machines250

and comes at no loss in the competitive ratio.251

Clearly, scheduling with commitment is more restrictive than without commit-252

ment. Therefore, our algorithm is also O
(
1
ε

)
-competitive for maximizing the through-253

put on unrelated machines without any commitment requirements. Again, this is254

optimal (up to constant factors) as it matches the lower bound on the competitive255

ratio for deterministic online algorithms on a single machine [10].256

Corollary 1.3. There is a Θ
(
1
ε

)
-competitive algorithm for online throughput257

maximization on unrelated machines without commitment requirements and without258

migration.259

However, for scheduling without commitment, we are able to generalize the sim-260

pler region algorithm presented for the single-machine problem in [10] to scheduling261

on unrelated machines.262

Theorem 1.4. A generalization of the region algorithm is Θ
(
1
ε

)
-competitive for263

online throughput maximization on unrelated machines without commitment require-264

ments and without migration.265

Besides presenting a simpler algorithm for throughput maximization without com-266

mitment, we show this result to present an additional application of our technical267

findings for the analysis of the blocking algorithm. We give details later. On a high268

level, we show a key lemma on the size of non-admitted jobs for a big class of online269

algorithms which results in an upper bound on the throughput of an optimal (offline)270

non-migratory algorithm. This key lemma can be used in the analysis of both algo-271

rithms, blocking and region. In fact, also the analysis of the original region algorithm272

for a single machine [10] becomes substantially easier.273

In case of identical machines, again, we can apply the result by Kalyanasundaram274

and Pruhs [25] that states that the throughput of an optimal migratory schedule is275

larger by at most a constant factor than the throughput of an optimal non-migratory276

schedule. Thus, the result in Theorem 1.4 holds also in a migratory setting when277

scheduling on identical machines.278

Corollary 1.5. A generalization of the region algorithm is Θ
(
1
ε

)
-competitive for279

online throughput maximization on multiple identical machines without commitment280

requirements, with and without migration.281

Outline of the paper. In Section 2, we describe and outline the analysis of our282

new non-migratory algorithm. It consists of two parts, which are detailed in Sections 3283

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 7

and 4: firstly, we argue that all jobs admitted by our algorithm can complete by their284

deadline and, secondly, we prove that we admit “sufficiently many” jobs. In Section 5,285

we generalize the known region algorithm, developed for a single machine in our prior286

work [10], to a non-migratory algorithm without commitment on unrelated machines.287

We show how to apply a new key technique developed for the analysis in Section 4288

to analyze it and prove the same competitive ratio (up to constant factors) as for a289

single machine.290

2. The blocking algorithm. In this section, we describe the blocking algorithm291

for scheduling with commitment. We assume that the slackness constant ε > 0 and,292

in the δ-commitment model, δ ∈ (0, ε) are given. If δ is not part of the input or293

if δ ≤ ε
2 , then we set δ = ε

2 .294

The algorithm never migrates jobs between machines, i.e., a job is only processed295

by the machine that initially started to process it. In this case, we say the job has been296

admitted to this machine. Moreover, our algorithm commits to completing a job upon297

admission (even in the δ-commitment model). Hence, its remaining slack has to be298

spent very carefully on admitting other jobs to still be competitive. As our algorithm299

does not migrate jobs, it transfers the admission decision to the shortest admitted and300

not yet completed job on each machine. A job only admits significantly shorter jobs301

and prevents the admission of too many jobs of similar size. To this end, the algorithm302

maintains two types of intervals for each admitted job, a scheduling interval and a303

blocking period. A job can only be processed in its scheduling interval. Thus, it has304

to complete in this interval while admitting other jobs. Job j only admits jobs that305

are smaller by a factor of at least γ = δ
16 < 1. For an admitted job k, job j creates306

a blocking period of length at most βpik, where β = 16
δ , which blocks the admission307

of similar-length jobs (cf. Figure 1). The scheduling intervals and blocking periods of308

jobs admitted by j will always be pairwise disjoint and completely contained in the309

scheduling interval of j.310

scheduling interval blocking period

τ
Fig. 1. Scheduling interval, blocking period, and processing intervals

Scheduling jobs. Independent of the admission scheme, the blocking algorithm311

follows the Shortest Processing Time (SPT) order for the set of uncompleted312

jobs assigned to a machine. SPT ensures that a job j has highest priority in the313

blocking periods of any job k admitted by j.314

Admitting jobs. The algorithm keeps track of available jobs at any time point τ .315

A job j with rj ≤ τ is called available for machine i if it has not yet been admitted to316

a machine by the algorithm and its deadline is not too close, i.e., dj − τ ≥ (1 + δ)pij .317

Whenever a job j is available for machine i at a time τ such that time τ is not318

contained in the scheduling interval of any other job admitted to i, the shortest such319

job j is immediately admitted to machine i at time aj := τ , creating the scheduling320

interval S(j) = [aj , ej), where ej = aj+(1+δ)pij and an empty blocking period B(j) =321

∅. In general, however, the blocking period of a job j is a finite union of time intervals322

8 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

associated with j, and its size is the sum of lengths of the intervals, denoted by |B(j)|.323

Both, blocking period and scheduling interval, depend on machine i but we omit i324

from the notation as it is clear from the context; both periods are created after job j325

has been assigned to machine i.326

Four types of events trigger a decision of the algorithm at time τ : the release of a327

job, the end of a blocking period, the end of a scheduling interval, and the admission328

of a job. In any of these four cases, the algorithm calls the admission routine. This329

subroutine iterates over all machines i and checks if j, the shortest job on i whose330

scheduling interval contains τ , can admit the currently shortest job j? available for331

machine i.332

To this end, any admitted job j checks whether pij? < γpij . Only such jobs qualify333

for admission by j. Upon admission by j, job j? obtains two disjoint consecutive334

intervals, the scheduling interval S(j?) = [aj? , ej?) and the blocking period B(j?) of335

size at most βpij? . At the admission of job j?, the blocking period B(j?) is planned336

to start at ej? , the end of j?’s scheduling interval. During B(j?), job j only admits337

jobs k with pik <
1
2pij? .338

Hence, when job j decides if it admits the currently shortest available job j? at339

time τ , it makes sure that j? is sufficiently small and that no job k of similar (or340

even smaller) processing time is blocking τ , i.e., it verifies that τ /∈ B(k) for all jobs k341

with pik ≤ 2pij? admitted to the same machine. In this case, we say that j? is a child342

of j and that j is the parent of j?, denoted by π(j?) = j. If job j? is admitted at343

time τ by job j, the algorithm sets aj? = τ and ej? = aj? + (1 + δ)pij? and assigns344

the scheduling interval S(j?) = [aj? , ej?) to j?.345

If ej? ≤ ej , the routine sets fj? = min{ej , ej? + βpij?} which determines B(j?) =346

[ej? , fj?). As the scheduling and blocking periods of children k of j are supposed to347

be disjoint, we have to update the blocking periods. First consider the job k with pik >348

2pij? admitted to the same machine whose blocking period contains τ (if it exists), and349

let [e′k, f
′
k) be the maximal interval of B(k) containing τ . We set f ′′k = min{ej , f ′k +350

(1+δ+β)pij?} and replace the interval [e′k, f
′
k) by [e′k, τ)∪ [τ+(1+δ+β)pij? , f

′′
k). For351

all other jobs k with B(k)∩ [τ,∞) 6= ∅ admitted to the same machine, we replace the352

remaining part of their blocking period [e′k, f
′
k) by [e′k+(1+δ+β)pij? , f

′′
k) where f ′′k :=353

min{ej , f ′k + (1 + δ+ β)pij?}. In this update, we follow the convention that [e, f) = ∅354

if f ≤ e. Observe that the length of the blocking period might decrease due to such355

updates.356

Note that ej? > ej is also possible as j does not take the end of its own scheduling357

interval ej into account when admitting jobs. Thus, the scheduling interval of j?358

would end outside the scheduling interval of j and inside the blocking period of j.359

During B(j), the parent π(j) of j, did not allocate the interval [ej , ej?) for completing360

jobs admitted by j but for ensuring its own completion. Hence, the completion of361

both j? and π(j) is not necessarily guaranteed anymore. To prevent this, we modify362

all scheduling intervals S(k) (including S(j)) that contain time τ of jobs admitted to363

the same machine as j? and their blocking periods B(k). For each job k admitted to364

the same machine with τ ∈ S(k) (including j) and ej? > ek, we set ek = ej? . We also365

update their blocking periods (in fact, single intervals) to reflect their new starting366

points. If the parent π(k) of k does not exist, B(k) remains empty; otherwise we367

set B(k) := [ek, fk) where fk = min{eπ(k), ek + βpik}. Note that, after this update,368

the blocking periods of any but the largest such job will be empty. Moreover, the just369

admitted job j? does not get a blocking period in this special case.370

During the analysis of the algorithm, we show that any admitted job j still com-371

pletes before aj + (1 + δ)pij and that ej ≤ aj + (1 + 2δ)pij holds in retrospect for all372

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 9

admitted jobs j. Thus, any job j that admits another job j? tentatively assigns this373

job a scheduling interval of length (1+δ)pij? but, for ensuring its own completion, it is374

prepared to lose (1 + 2δ)pij? time units of its scheduling interval S(j). We summarize375

the blocking algorithm in the following.376

Algorithm Blocking algorithm

Scheduling Routine: At all times τ and on all machines i, run the job with
shortest processing time that has been admitted to i and has not yet completed.

Event: Release of a new job at time τ
Call Admission Routine.

Event: End of a blocking period or scheduling interval at time τ
Call Admission Routine.

Admission Routine:
i← 1
j? ← a shortest job available at τ for machine i, i.e., j? ∈ arg min{pij | j ∈ J , rj ≤
τ and dj − τ ≥ (1 + δ)pij}
while i ≤ m do
K ← the set of jobs on machine i whose scheduling intervals contain τ
if K = ∅ then

admit job j? to machine i, aj? ← τ , and ej? ← aj? + (1 + δ)pij?

S(j?)← [aj? , ej?) and B(j?)← ∅
call Admission Routine

else
j ← arg min{pik | k ∈ K}
if j? < γpij and τ /∈ B(j′) for all j′ admitted to i with pij′ ≤ 2pij? then

admit job j? to machine i, aj? ← τ , and ej? ← aj? + (1 + δ)pij?

if ej? ≤ ej then
fj? ← min{ej , ej? + βpij?}
S(j?)← [aj? , ej?) and B(j?)← [ej? , fj?)

else
S(j?)← [aj? , ej?) and B(j?)← ∅
modify S(k) and B(k) for k ∈ K
update B(j′) for j′ admitted to machine i with B(j′) ∩ [τ,∞) 6= ∅
call Admission Routine

end if
else
i← i+ 1
j? ← a shortest job available at τ for machine i, i.e., j? ∈ arg min{pij | j ∈
J , rj ≤ τ and dj − τ ≥ (1 + δ)pij}

end if
end if

end while

Roadmap for the analysis. During the analysis, it is sufficient to concentrate377

on instances with small slack, as also noted in [10]. For ε > 1 we run the blocking378

algorithm with ε = 1, which only tightens the commitment requirement, and obtain379

constant competitive ratios. Thus, we assume 0 < ε ≤ 1. For 0 < δ < ε, in380

the δ-commitment model an online scheduler needs to commit to the completion of a381

10 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

job j no later than dj − (1 + δ)pij . Hence, committing to the completion of a job j382

at an earlier point in time clearly satisfies committing at a remaining slack of δpij .383

Therefore, we may assume δ ∈ [ε2 , ε).384

The blocking algorithm does not migrate any job. In the analysis, we compare385

the throughput of our algorithm to the solution of an optimal non-migratory schedule.386

To do so, we rely on a key design principle of the blocking algorithm, which is that,387

whenever the job set admitted to a machine is fixed, the scheduling of the jobs follows388

the simple SPT order. This enables us to split the analysis into two parts.389

In the first part, we argue that the scheduling routine can handle the admitted390

jobs sufficiently well. That is, every admitted jobs is completed on time; see Section 3.391

Here, we use that the blocking algorithm is non-migratory and consider each machine392

individually.393

For the second part, we observe that the potential admission of a new job j?394

to machine i is solely based on its availability and on its size relative to ji, the job395

currently processed by machine i. More precisely, given the availability of j?, if pij? <396

γpiji , the time does not belong to the blocking period of a job ki admitted to machine i397

with pij? ≥ 1
2piki and i is the first machine (according to machine indices) with this398

property, then j? is admitted to machine i. This implies that min
{
γpiji ,

1
2piki

}
acts399

as a threshold, and only available jobs with processing time less than this threshold400

qualify for admission by the blocking algorithm on machine i. Hence, any available401

job that the blocking algorithm does not admit has to exceed the threshold.402

Based on this observation, we develop a general charging scheme for any non-403

migratory online algorithm satisfying the property that, at any time τ , the algorithm404

maintains a time-dependent threshold and the shortest available job smaller than this405

threshold is admitted by the algorithm. We formalize this description and analyze the406

competitive ratio of such algorithms in Section 4 before applying this general result407

to our particular algorithm.408

3. Completing all admitted jobs on time. We show that the blocking algo-409

rithm finishes every admitted job on time in Theorem 3.1.410

Theorem 3.1. Let 0 < δ < ε be fixed. If 0 < γ < 1 and β ≥ 1 satisfy411

(3.1)
β/2

β/2 + (1 + 2δ)
(1 + δ − 2(1 + 2δ)γ) ≥ 1,412

then the blocking algorithm completes any job j admitted at aj ≤ dj − (1 + δ)pij on413

time.414

Recall that we chose γ = δ
16 and β = 16

δ , which guarantees that Equation (3.1) is415

satisfied.416

As the blocking algorithm does not migrate jobs, it suffices to consider each ma-417

chine individually in this section. The proof relies on the following observations: (i)418

The sizes of jobs admitted by job j that interrupt each others’ blocking periods are419

geometrically decreasing, (ii) the scheduling intervals of jobs are completely contained420

in the scheduling intervals of their parents, and (iii) scheduling in SPT order guaran-421

tees that job j has highest priority in the blocking periods of its children. We start by422

proving the following technical lemma about the length of the final scheduling interval423

of an admitted job j, denoted by |S(j)|. In the proof, we use that π(k) = j for two424

jobs j and k implies that pik < γpij .425

Lemma 3.2. Let 0 < δ < ε be fixed. If γ > 0 satisfies (1 + 2δ)γ ≤ δ, then |S(j)| ≤426

(1 + 2δ)pij. Moreover, S(j) contains the scheduling intervals and blocking periods of427

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 11

all descendants of j.428

Proof. Consider a machine i and let j be a job admitted to machine i. By defini-429

tion of the blocking algorithm, the end point ej of the scheduling interval of job j is430

only modified when j or one of j’s descendants admits another job. Let us consider431

such a case: If job j admits a job k whose scheduling interval does not fit into the432

scheduling interval of j, we set ej = ek = ak+(1+δ)pik to accommodate the schedul-433

ing interval S(k) within S(j). The same modification is applied to any ancestor j′ of j434

with ej′ < ek. This implies that, after such a modification of the scheduling interval,435

neither j nor any affected ancestor j′ of j are the smallest jobs in their scheduling436

intervals anymore. In particular, no job whose scheduling interval was modified in437

such a case at time τ is able to admit jobs after τ . Hence, any job j can only admit438

other jobs within the interval [aj , aj + (1 + δ)pij). That is, ak ≤ aj + (1 + δ)pij for439

every job k with π(k) = j.440

Thus, by induction, it is sufficient to show that ak + (1 + 2δ)pik ≤ aj + (1 + 2δ)pij441

for admitted jobs k and j with π(k) = j. Note that π(k) = j implies pik < γpij .442

Hence,443

ak + (1 + 2δ)pik ≤ (aj + (1 + δ)pij) + (1 + 2δ)γpij ≤ aj + (1 + 2δ)pij ,444

where the last inequality follows from the assumption (1 + 2δ)γ ≤ δ. Due to the445

construction of B(k) upon admission of some job k by job j, we also have B(k) ⊆446

S(j).447

Proof of Theorem 3.1. Let j be a job admitted by the blocking algorithm to ma-448

chine i with aj ≤ dj − (1 + δ)pij . Showing that job j completes before time d′j :=449

aj + (1 + δ)pij proves the theorem. Due to scheduling in SPT order, each job j has450

highest priority in its own scheduling interval if the time point does not belong to the451

scheduling interval of a descendant of j. Thus, it suffices to show that at most δpij452

units of time in [aj , d
′
j) belong to scheduling intervals S(k) of descendants of j. By453

Lemma 3.2, the scheduling interval of any descendant k′ of a child k of j is contained454

in S(k). Hence, it is sufficient to only consider K, the set of children of j.455

In order to bound the contribution of each child k ∈ K, we impose a class struc-456

ture on the jobs in K depending on their size relative to job j. More precisely, we457

define (Cc(j))c∈N0
, where Cc(j) contains all jobs k ∈ K that satisfy γ

2c+1 pij ≤ pik <458
γ
2c pij . As k ∈ K implies pik < γpij , each child of j belongs to exactly one class459

and (Cc(j))c∈N0 in fact partitions K.460

Consider two jobs k, k′ ∈ K where, upon admission, k interrupts the blocking461

period of k′. By definition, we have pik <
1
2pik′ . Hence, the chosen class structure462

ensures that k belongs to a strictly higher class than k′, i.e., there are c, c′ ∈ N463

with c > c′ such that k ∈ Cc(j) and k′ ∈ Cc′(j). In particular, the admission of a464

job k ∈ Cc(j) implies either that k is the first job of class Cc(j) that j admits or that465

the blocking period of the previous job in class Cc(j) has completed. Based on this466

distinction, we are able to bound the loss of scheduling time for j in S(j) due to S(k)467

of a child k. Specifically, we partition K into two sets. The first set K1 contains all468

children of j that where admitted as the first jobs in their class Cc(j). The set K2469

contains the remaining jobs.470

We start with K2. Consider a job k ∈ Cc(j) admitted by j. By Lemma 3.2, we471

know that |S(k)| = (1 + µδ)pik, where 1 ≤ µ ≤ 2. Let k′ ∈ Cc(j) be the previous job472

admitted by j in class Cc(j). Then, B(k′) ⊆ [ek′ , ak). Since scheduling and blocking473

periods of children of j are disjoint, j has highest scheduling priority in B(k′). Hence,474

during B(k′) ∪ S(k) job j is processed for at least |B(k′)| units of time. In other475

12 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

words, j is processed for at least a |B(k′)|
|B(k′)∪S(k)| -fraction of B(k′) ∪ S(k). We rewrite476

this ratio as477

|B(k′)|
|B(k′) ∪ S(k)|

=
βpik′

βpik′ + (1 + µδ)pik
=

νβ

νβ + (1 + µδ)
,478

where ν := pik′
pik
∈ (1

2 , 2]. By differentiating with respect to ν and µ, we observe479

that the last term is increasing in ν and decreasing in µ. Thus, we lower bound this480

expression by481

|B(k′)|
|B(k′) ∪ S(k)|

≥ β/2

β/2 + (1 + 2δ)
.482

Therefore, j is processed for at least a β/2
β/2+(1+2δ) -fraction in

⋃
k∈K B(k)∪

⋃
k∈K2

S(k).483

We now consider the set K1. The total processing volume of these jobs is bounded484

from above by
∑∞
c=0

γ
2c pij = 2γpij . By Lemma 3.2, |S(k)| ≤ (1 + 2δ)pik. Combining485

these two observations, we obtain
∣∣⋃

k∈K1
S(k)

∣∣ ≤ 2(1+2δ)γpij . Combining the latter486

with the bound for K2, we conclude that j is scheduled for at least487 ∣∣∣[aj , d′j) \ ⋃
k∈K

S(k)
∣∣∣ ≥ β/2

β/2 + (1 + 2δ)

(
(1 + δ)− 2(1 + 2δ)γ

)
pij ≥ pij488

units of time, where the last inequality follows from Equation (3.1). Therefore, j489

completes before d′j = aj + (1 + δ)pij ≤ dj , which concludes the proof.490

4. Competitiveness: admitting sufficiently many jobs. This section shows491

that the blocking algorithm admits sufficiently many jobs to be O
(

1
ε−δ
)
-competitive.492

As mentioned before, this proof is based on the observation that, at time τ , the493

blocking algorithm admits any job available for machine i if its processing time is494

less than γpiji , where ji is the job processed by machine i at time τ , and this time495

point is not blocked by another job ki previously admitted by ji to machine i. We496

start by formalizing this observation for a class of non-migratory online algorithms497

before proving that this enables us to bound the number of jobs any feasible schedule498

successfully schedules during a particular period. Then, we use it to show that the499

blocking algorithm is indeed O
(

1
ε−δ
)
-competitive.500

4.1. A class of online algorithms. In this section, we investigate a class of501

non-migratory online algorithms. Recall that a job j is called available for machine i502

at time τ if it is released before or at time τ , dj − τ ≥ (1 + δ)pij , and is not yet503

admitted.504

We consider a non-migratory online algorithm A with the following properties.505

(P1) A only admits available jobs.506

(P2) Retrospectively, for each time τ and each machine i, there is a threshold uiτ ∈507

[0,∞] such that any job j that was available for machine i and not admit-508

ted to machine i by A at time τ satisfies pij ≥ uiτ . The function u(i) :509

R → [0,∞], τ 7→ uiτ is piece-wise constant and right-continuous for every510

machine i ∈ {1, . . . ,m}. Further, there are only countably many points of511

discontinuity. (This last property is used to simplify the exposition.)512

Key lemma on the size of non-admitted jobs. For the proof of the main513

result in this section, we rely on the following strong, structural lemma about the514

volume processed by a feasible non-migratory schedule in some time interval and the515

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 13

size of jobs admitted by a non-migratory online algorithm satisfying (P1) and (P2) in516

the same time interval.517

Let σ be a feasible non-migratory schedule. Without loss of generality, we assume518

that σ completes all jobs that it started on time. Let Xσ be the set of jobs completed519

by σ and not admitted by A. For 1 ≤ i ≤ m, let Xσ
i be the set of jobs in Xσ processed520

by machine i. Let Cx be the completion time of job x ∈ Xσ in σ.521

Lemma 4.1. Let 0 ≤ ϑ1 ≤ ϑ2 and fix x ∈ Xσ
i as well as Y ⊂ Xσ

i \ {x}. If522

(R) rx ≥ ϑ1 as well as ry ≥ ϑ1 for all y ∈ Y ,523

(C) Cx ≥ Cy for all y ∈ Y , and524

(P)
∑
y∈Y piy ≥

ε
ε−δ (ϑ2 − ϑ1)525

hold, then pix ≥ uiϑ2
, where uiϑ2

is the threshold imposed by A at time ϑ2. In526

particular, if ui,ϑ2
=∞, then no such job x exists.527

Proof. We show the lemma by contradiction. More precisely, we show that,528

if pix < uiϑ2 , the schedule σ cannot complete x on time and, hence, is not feasi-529

ble.530

Remember that x ∈ Xσ
i implies that A did not admit job x at any point ϑ.531

At time ϑ2, there are two possible reasons why x was not admitted: pix ≥ uiϑ2
or532

dx−ϑ2 < (1+δ)pix. In case of the former, the statement of the lemma holds. Toward533

a contradiction, suppose pix < uiϑ2
and, thus, dx − ϑ2 < (1 + δ)pix has to hold.534

As job x arrives with a slack of at least εpix at its release date rx and rx ≥ ϑ1 by535

assumption, we have536

(4.1) ϑ2 − ϑ1 ≥ ϑ2 − dx + dx − rx > −(1 + δ)pix + (1 + ε)pix = (ε− δ)pix.537

Since all jobs in Y complete earlier than x by Assumption (C) and are only538

released after ϑ1 by (R), the volume processed by σ in [ϑ1, Cx) on machine i is at539

least ε
ε−δ (ϑ2−ϑ1)+pix by (P). Moreover, σ can process at most a volume of (ϑ2−ϑ1)540

on machine i in [ϑ1, ϑ2). These two bounds imply that σ has to process job parts541

with a processing volume of at least542

ε

ε− δ
(ϑ2 − ϑ1) + pix − (ϑ2 − ϑ1) >

δ

ε− δ
(ε− δ)pix + pix = (1 + δ)pix543

in [ϑ2, Cx), where the inequality follows using Inequality (4.1). Thus, Cx ≥ ϑ2 + (1 +544

δ)pix > dx, which contradicts the feasibility of σ.545

Observe that, by (P1) and (P2), the online algorithm A admits a job available546

for machine i if it satisfies pij < uiτ . In particular, if uiτ =∞ for some time point τ ,547

then A admits any job available for machine i. Hence, for 0 ≤ ϑ1 ≤ ϑ2 with uiϑ2 =∞,548

there does not exist a job x ∈ Xσ
i and a set Y ⊂ Xσ

i \ {x} satisfying (R), (C), and549

(P) for machine i.550

Bounding the number of non-admitted jobs. In this section, we use the551

Properties (P1) and (P2) to bound the throughput of a non-migratory optimal (offline)552

algorithm. To this end, we fix an instance as well as an optimal schedule with job set553

Opt. Let A be a non-migratory online algorithm satisfying (P1) and (P2).554

Let X be the set of jobs in Opt that the algorithm A did not admit. We assume555

without loss of generality that all jobs in Opt complete on time. Since Opt as well556

as A are non-migratory, we compare the throughput machine-wise. To this end, we557

fix one machine i. Let Xi ⊂ X be the set of jobs scheduled on machine i by Opt.558

Assumption (P2) guarantees that the threshold ui,τ is piece-wise constant and559

right-continuous, i.e., u(i) is constant on intervals of the form [τt, τt+1). Let I represent560

14 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

the set of maximal intervals It = [τt, τt+1) where u(i) is constant. That is, ui,τ = ut561

holds for all τ ∈ It and ui,τt+1
6= ut, where ut := ui,τt , The main result of this section562

is the following theorem.563

Theorem 4.2. Let Xi be the set of jobs that are scheduled on machine i in the564

optimal schedule. Let I = {I1, . . . , IT } be the set of maximal intervals on machine i565

of A such that the machine-dependent threshold is constant for each interval and has566

the value ut in interval It = [τt, τt+1). Then,567

|Xi| ≤
T∑
t=1

ε

ε− δ
τt+1 − τt

ut
+ T,568

where we set τt+1−τt
ut

= 0 if ut = ∞ and τt+1−τt
ut

= ∞ if {τt, τt+1} ∩ {−∞,∞} 6= ∅569

and ut <∞.570

We observe that T = ∞ trivially proves the statement as Xi contains at most571

finitely many jobs. The same is true if τt+1−τt
ut

=∞ for some t ∈ [T]. Hence, for the572

remainder of this section we assume without loss of generality that I only contains573

finitely many intervals and that τt+1−τt
ut

<∞ holds for every t ∈ [T].574

To prove this theorem, we develop a charging scheme that assigns jobs x ∈ Xi575

to intervals in I. The idea behind our charging scheme is that Opt does not contain576

arbitrarily many jobs that are available in It since ut provides a natural lower bound on577

their processing times. In particular, the processing time of any job that is released578

during interval It and not admitted by the algorithm exceeds the lower bound ut.579

Thus, the charging scheme relies on the release date rx and the size pix of a job x ∈ Xi580

as well as on the precise structure of the intervals created by A.581

The charging scheme we develop is based on a careful modification of the following582

partition (Ft)
T
t=1 of the set Xi. Fix an interval It ∈ I and define the set Ft ⊆ Xi as583

the set that contains all jobs x ∈ Xi released during It, i.e., Ft = {x ∈ Xi : rx ∈ It}.584

Since, upon release, each job x ∈ Xi is available and not admitted by A, the next fact585

directly follows from Properties (P1) and (P2).586

Fact 4.3. For all jobs x ∈ Ft it holds pix ≥ ut. In particular, if ut = ∞,587

then Ft = ∅.588

In fact, the charging scheme maintains this property and only assigns jobs in Xi589

to intervals It if pix ≥ ut. In particular, no job will be assigned to an interval590

with ut =∞.591

We now formalize how many jobs in Xi are assigned to a specific interval It. Let592

ϕt :=
⌊ ε

ε− δ
τt+1 − τt

ut

⌋
+ 1593

if ut < ∞, and ϕt = 0 if ut = ∞. We refer to ϕt as the target number of It. As594

discussed before, we assume τt+1−τt
ut

<∞, and, thus, the target number is well-defined.595

If each of the sets Ft satisfies |Ft| ≤ ϕt, then Theorem 4.2 immediately follows. In596

general, |Ft| ≤ ϕt does not have to be true since jobs in Opt may be preempted and597

processed during several intervals It. Therefore, for proving Theorem 4.2, we show598

that there always exists another partition (Gt)
T
t=1 of Xi such that |Gt| ≤ ϕt holds.599

The high-level idea of this proof is the following: Consider an interval It =600

[τt, τt+1). If Ft does not contain too many jobs, i.e., |Ft| ≤ ϕt, we would like to601

set Gt = Ft. Otherwise, we find a later interval It′ with |Ft′ | < ϕt′ such that we can602

assign the excess jobs in Ft to It′ .603

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 15

Proof of Theorem 4.2. As observed before, it suffices to show the existence of a604

partition G = (Gt)
T
t=1 of Xi such that |Gt| ≤ ϕt in order to prove the theorem.605

In order to repeatedly apply Lemma 4.1, we only assign excess jobs x ∈ Ft to Gt′606

for t < t′ if their processing time is at least the threshold of It′ , i.e., pix ≥ ut′ . By607

our choice of parameters, a set Gt′ with ϕt′ many jobs of size at least ut′ “covers” the608

interval It′ = [τt′ , τt′+1) as often as required by (P) in Lemma 4.1, i.e.,609

(4.2)
∑
x∈Gt′

pix ≥ ϕt′ · ut′ =

(⌊
ε

ε− δ
τt′+1 − τt′

ut′

⌋
+ 1

)
· ut′ ≥

ε

ε− δ
(τt′+1 − τt′).610

The proof consists of two parts: the first one is to inductively (on t) construct the611

partition G = (Gt)
T
t=1 of Xi, where |Gt| ≤ ϕt holds for t ∈ [T − 1]. The second one612

is the proof that a job x ∈ Gt satisfies pix ≥ ut which will imply |GT | ≤ ϕT . During613

the construction of G we define temporary sets At ⊂ Xi for intervals It. The set Gt614

is chosen as a subset of Ft ∪ At of appropriate size. In order to apply Lemma 4.1 to615

each job in At individually, alongside At, we construct a set Yx,t and a time τx,t ≤ rx616

for each job x ∈ Xi that is added to At. Let C∗y be the completion time of some617

job y ∈ Xi in the optimal schedule Opt. The second part of the proof is to show618

that x, τx,t, and Yx,t satisfy619

(R) ry ≥ τx,t for all y ∈ Yx,t,620

(C) C∗x ≥ C∗y for all y ∈ Yx,t, and621

(P)
∑
y∈Yx,t

piy ≥ ε
ε−δ (τt − τx,t).622

This implies that x, Y = Yx,t, ϑ1 = τx,t, and ϑ2 = τt satisfy the conditions of623

Lemma 4.1, and thus the processing time of x is at least the threshold at time τt,624

i.e., pix ≥ uiτt = ut.625

Constructing G = (Gt)
T
t=1. We inductively construct the sets Gt in the order626

of their indices. We start by setting At = ∅ for all intervals It with t ∈ T . We627

define Yx,t = ∅ for each job x ∈ Xi and each interval It. The preliminary value of628

the time τx,t is the minimum of the starting point τt of the interval It and the release629

date rx of x, i.e., τx,t := min{τt, rx}. We refer to the step in the construction where Gt630

was defined by step t.631

Starting with t = 1, let It be the next interval to consider during the construction632

with t < T . Depending on the cardinality of Ft ∪ At, we distinguish two cases. If633

|Ft ∪At| ≤ ϕt, then we set Gt = Ft ∪At.634

If |Ft ∪ At| > ϕt, then we order the jobs in Ft ∪ At in increasing order of com-635

pletion times in the optimal schedule. The first ϕt jobs are assigned to Gt while the636

remaining |Ft ∪ At| − ϕt jobs are added to At+1. In this case, we might have to637

redefine the times τx,t+1 and the sets Yx,t+1 for the jobs x that were newly added638

to At+1. Fix such a job x. If there is no job z in the just defined set Gt that has a639

smaller release date than τx,t, we set τx,t+1 = τx,t and Yx,t+1 = Yx,t ∪Gt. Otherwise640

let z ∈ Gt be a job with rz < τx,t that has the smallest time τz,t. We set τx,t+1 = τz,t641

and Yx,t+1 = Yz,t ∪Gt.642

Finally, we set GT = FT ∪ AT . We observe that uT < ∞ implies ϕT = ∞643

because τT+1 = ∞. Since this contradicts the assumption ϕt < ∞ for all t ∈ [T],644

this implies uT = ∞. We will show that px ≥ uT for all x ∈ GT . Hence, GT = ∅.645

Therefore |GT | = ϕT = 0.646

Bounding the size of jobs in Gt. We consider the intervals again in increasing647

order of their indices and show by induction that any job x in Gt satisfies pix ≥ ut648

which implies Gt = ∅ if ut =∞. Clearly, if x ∈ Ft ∩Gt, Fact 4.3 guarantees pix ≥ ut.649

Hence, in order to show the lower bound on the processing time of x ∈ Gt, it is650

16 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

sufficient to consider jobs in Gt \ Ft ⊂ At. To this end, we show that for such jobs651

(R), (C), and (P) are satisfied. Thus, Lemma 4.1 guarantees that pix ≥ uiτt = ut by652

definition. Hence, At = ∅ if ut =∞ by Lemma 4.1.653

By construction, A1 = ∅. Hence, (R), (C), and (P) are satisfied for each job x ∈654

A1.655

Suppose that the Conditions (R), (C), and (P) are satisfied for all x ∈ As for656

all 1 ≤ s < t. Hence, for s < t, the set Gs only contains jobs x with pix ≥ us.657

Fix x ∈ At. We want to show that pix ≥ ut. By the induction hypothesis and658

by Fact 4.3, piy ≥ ut−1 holds for all y ∈ Gt−1. Since x did not fit in Gt−1 any-659

more, |Gt−1| = ϕt−1.660

We distinguish two cases based on Gt−1. If there is no job z ∈ Gt−1 with rz <661

τx,t−1, then τx,t = τx,t−1, and (R) and (C) are satisfied by construction and by the662

induction hypothesis. For (P), consider663 ∑
y∈Yx,t

piy =
∑

y∈Yx,t−1

piy +
∑

y∈Gt−1

piy664

≥ ε

ε− δ
(τt−1 − τx,t−1) + ut−1 · ϕt−1665

≥ ε

ε− δ
(τt−1 − τx,t−1) +

ε

ε− δ
(τt − τt−1)666

=
ε

ε− δ
(τt − τx,t) ,667

668

where the first inequality holds due to the induction hypothesis. By Lemma 4.1, pix ≥669

uτt = ut.670

If there is a job z ∈ Gt−1 with rz < τx,t−1 ≤ τt−1, then z ∈ At−1. In step t − 1,671

we chose z with minimal τz,t−1. Thus, ry ≥ τy,t−1 ≥ τz,t−1 for all y ∈ Gt−1 and rx ≥672

τx,t−1 > rz ≥ τz,t−1 which is Condition (R) for the jobs in Gt−1. Moreover, by673

the induction hypothesis, ry ≥ τz,t−1 holds for all y ∈ Yz,t−1. Thus, τx,t and Yx,t674

satisfy (R). For (C), consider that C∗x ≥ C∗y for all y ∈ Gt−1 by construction and,675

thus, C∗x ≥ C∗z ≥ C∗y also holds for all y ∈ Yz,t−1 due to the induction hypothesis.676

For (P), observe that677 ∑
y∈Yx,t

piy =
∑

y∈Yz,t−1

piy +
∑

y∈Gt−1

piy678

≥ ε

ε− δ
(τt−1 − τz,t−1) + ut−1 · ϕt−1679

≥ ε

ε− δ
(τt−1 − τz,t−1) +

ε

ε− δ
(τt − τt−1)680

≥ ε

ε− δ
(τt − τx,t).681

682

Here, the first inequality follows from the induction hypothesis and the second from683

the definition of ut−1 and ϕt−1. Hence, Lemma 4.1 implies pix ≥ uτt = ut.684

We note that pix ≥ ut for all x ∈ Gt and for all t ∈ [T].685

Bounding |Xi|. By construction, we know that
⋃T
t=1Gt = Xi. We start with686

considering intervals It with ut =∞. Then, It has an unbounded threshold, i.e., uiτ =687

∞ for all τ ∈ It, and Ft = ∅ by Fact 4.3. In the previous part we have seen that the688

conditions for Lemma 4.1 are satisfied. Hence, Gt = ∅ if ut =∞. For t with ut <∞,689

we have |Gt| ≤ ϕt =
⌊

ε
ε−δ

τt+1−τt
ut

⌋
+ 1. As explained before, this bounds the number690

of jobs in Xi.691

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 17

4.2. The blocking algorithm admits sufficiently many jobs. Having the692

powerful tool that we developed in the previous section at hand, it remains to show693

that the blocking algorithm admits sufficiently many jobs to achieve the competitive694

ratio of O
(

1
ε−δ′

)
where δ′ = ε

2 for commitment upon admission and δ′ = max
{
ε
2 , δ
}

695

for δ-commitment. To this end, we show that the blocking algorithm belongs to the696

class of online algorithms considered in Subsection 4.1. Then, Theorem 4.2 provides697

a bound on the throughput of an optimal non-migratory schedule.698

We begin by showing that the blocking algorithm satisfies Properties (P1) to (P2).699

The first property is clearly satisfied by the definition of the blocking algorithm. For700

the second and the third property, we observe that a new job j? is only admitted701

to a machine i during the scheduling interval of another job j admitted to the same702

machine if pij? < γpij . Further, the time point of admission must not be blocked by a703

similar- or smaller-size job k previously admitted during the scheduling interval of j.704

This leads to the bound pij? < 1
2pik for any job k whose blocking period contains705

the current time point. Combining these observations leads to a machine-dependent706

threshold ui,τ ∈ [0,∞] satisfying (P2).707

More precisely, fix a machine i and a time point τ . Using j → i to denote that j708

was admitted to machine i, we define ui,τ := minj: j→i,τ∈S(j) γpij if there is no job k709

admitted to machine i with τ ∈ B(k), with min ∅ =∞. Otherwise, we set ui,τ := 1
2pik.710

We note that the function u(i) is piece-wise constant and right-continuous due to our711

choice of right-open intervals for defining scheduling intervals and blocking periods.712

Moreover, the points of discontinuity of u(i) correspond to the admission of a new job,713

the end of a scheduling interval, and the start as well as the end of a blocking period714

of jobs admitted to machine i. Since we only consider instances with a finite number715

of jobs, there are at most finitely many points of discontinuity of u(i). Hence, we can716

indeed apply Theorem 4.2.717

Then, the following theorem is the main result of this section.718

Theorem 4.4. An optimal non-migratory (offline) algorithm can complete at719

most a factor α+ 5 more jobs on time than admitted by the blocking algorithm, where720

α := ε
ε−δ
(
2β + 1+2δ

γ

)
.721

Proof. We fix an instance and an optimal solution Opt. We use X to denote722

the set of jobs in Opt that the blocking algorithm did not admit. Without loss of723

generality, we can assume that all jobs in Opt complete on time. If J is the set of jobs724

admitted by the blocking algorithm, then X ∪ J is a superset of the jobs successfully725

finished in the optimal solution. Hence, showing |X| ≤ (α + 4)|J | suffices to prove726

Theorem 4.4.727

For each machine i, we compare the throughput of the optimal solution to the728

throughput on machine i of the blocking algorithm. More precisely, let Xi ⊆ X be729

the jobs in Opt scheduled on machine i and let Ji ⊆ J be the jobs scheduled by the730

blocking algorithm on machine i. With Theorem 4.2, we show |Xi| ≤ (α + 4)|Ji| to731

bound the cardinality of X in terms of |J |.732

To this end, we retrospectively consider the interval structure created by the733

algorithm on machine i. Let I be the set of maximal intervals It = [τt, τt+1) such734

that ui,τ = ui,τt for all τ ∈ It. We define ut = ui,τt for each interval It. As discussed735

above, the time points τt for t ∈ [T] correspond to the admission, the end of a736

scheduling interval, and the start as well as the end of a blocking period of jobs737

admitted to machine 1. As the admission of a job adds at most three time points, we738

have that |I| ≤ 3|Ji|+ 1.739

As the blocking algorithm satisfies Properties (P1) to (P2), we can apply Theo-740

18 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

rem 4.2 to obtain741

|Xi| ≤
T∑
t=1

ε

ε− δ
τt+1 − τt

ut
+ |I| ≤

T∑
t=1

ε

ε− δ
τt+1 − τt

ut
+ (3|Ji|+ 1).742

It remains to bound the first part in terms of |Ji|. If ut <∞, let jt ∈ Ji be the smallest743

job j with τt ∈ S(j) ∪ B(j). Then, at most ε
ε−δ

τt+1−τt
ut

(potentially fractional) jobs744

will be charged to job jt because of interval It. By definition of ut, we have ut = γpijt745

if It ⊆ S(jt), and if It ⊆ B(jt), we have ut = 1
2pijt . The total length of intervals It for746

which j = jt holds sums up to at most (1 + 2δ)pij for It ⊆ S(j) and to at most 2βpij747

for It ⊆ B(j). Hence, in total, the charging scheme assigns at most ε
ε−δ (2β+ 1+2δ

γ) = α748

jobs in Xi to job j ∈ Ji. Therefore,749

|Xi| ≤
(
α+ 3

)
|Ji|+ 1.750

If Ji = ∅, the blocking algorithm admitted all jobs scheduled on machine i by Opt,751

and |Xi| = 0 = |Ji| follows. Otherwise, |Xi| ≤
(
α+ 4

)
|Ji|, and we obtain752

|Opt| ≤ |X ∪ J | =
m∑
i=1

|Xi|+ |J | ≤
m∑
i=1

(α+ 4)|Ji|+ |J | ≤ (α+ 5)|J |,753

which concludes the proof.754

4.3. Finalizing the proof of Theorem 1.1.755

Proof of Theorem 1.1. In Theorem 3.1 we show that the blocking algorithm com-756

pletes all admitted jobs J on time. This implies that the blocking algorithm is757

feasible for the model commitment upon admission. As no job j ∈ J is admit-758

ted later than dj − (1 + δ)pij , the blocking algorithm also solves scheduling with δ-759

commitment. In Theorem 4.4, we bound the throughput |Opt| of an optimal non-760

migratory solution by α+5 times |J |, the throughput of the blocking algorithm, where761

α = ε
ε−δ (2β + 1+2δ

γ). Our choice of parameters β = 16
δ and γ = δ

16 implies that the762

blocking algorithm achieves a competitive ratio of c ∈ O
(

ε
(ε−δ)δ

)
. For commitment763

upon arrival or for δ-commitment in the case where δ ≤ ε
2 , we run the algorithm764

with δ′ = ε
2 . Hence, c ∈ O

(
1

ε−δ′
)

= O
(
1
ε

)
. If δ > ε

2 , then we set δ′ = δ in our765

algorithm. Thus, ε
δ′ ∈ O(1) and, again, c ∈ O

(
1

ε−δ′
)
.766

5. Scheduling without commitment. This section considers online through-767

put maximization without commitment requirements. We show how to exploit also768

in this setting our key lemma on the size of non-admitted jobs for a big class of online769

algorithms and the resulting upper bound on the throughput of an optimal (offline)770

non-migratory algorithm from Subsection 4.1.771

We consider the region algorithm that was designed by [10] for scheduling on a772

single machine and we generalize it to parallel identical machines. We prove that773

it has a competitive ratio of O
(
1
ε

)
, which is best possible on a single machine and774

improves substantially upon the best previously known parallel-machine algorithm775

(for weighted throughput) with a competitive ratio of O
(

1
ε2

)
by Lucier et al. [31].776

For a single machine, this matches the guarantee proven in [10]. However, our new777

analysis is much more direct.778

5.1. The region algorithm. Originally, the region algorithm was designed for779

online scheduling with and without commitment on a single machine. We extend it to780

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 19

unrelated machines by never migrating jobs between machines and per machine using781

the same design principles that guide the admission decisions of the region algorithm,782

as developed in [10]. Since we do not consider commitment in this section, we can783

significantly simplify the exposition of the region algorithm when compared to [10].784

As in the previous section, a job is only processed by the machine it initially was785

started on. We say the job has been admitted to this machine. Moreover, a running786

job can only be preempted by significantly smaller-size jobs, i.e., smaller by a factor787

of at least ε
4 with respect to the processing time, and a job j cannot start for the first788

time on machine i when its remaining slack is too small, i.e., less than ε
2pij .789

Formally, at any time τ , the region algorithm maintains two sets of jobs: admitted790

jobs, which have been started before or at time τ , and available jobs. A job j is791

available for machine i if it is released before or at time τ , is not yet admitted, and τ792

is not too close to its deadline, i.e., rj ≤ τ and dj − τ ≥
(
1 + ε

2

)
pij . The intelligence793

of the region algorithm lies in how it admits jobs. The actual scheduling decision794

then is simple and independent of the admission of jobs: at any point in time and on795

each machine, schedule the shortest job that has been admitted to this machine and796

has not completed its processing time. In other words, we schedule admitted jobs on797

each machine in Shortest Processing Time (SPT) order. The region algorithm798

never explicitly considers deadlines except when deciding whether to admit jobs. In799

particular, jobs can even be processed after their deadline.800

At any time τ , when there is a job j available for an idle machine i, i.e., i is not801

processing any previously admitted job j′, the shortest available job j? is immediately802

admitted to machine i at time a?j := τ . There are two events that trigger a decision of803

the region algorithm: the release of a job and the completion of a job. If one of these804

events occurs at time τ , the region algorithm invokes the preemption subroutine. This805

routine iterates over all machines and compares the processing time of the smallest806

job j? available for machine i with the processing time of job ji that is currently807

scheduled on machine i. If pij? <
ε
4piji , job j? is admitted to machine i at time a?j := τ808

and, by the above scheduling routine, immediately starts processing. We summarize809

the region algorithm below.810

The proof of the analysis splits again naturally into two parts: The first part is811

to show that the region algorithm completes at least half of all admitted jobs, and812

the second is to use Theorem 4.4 to compare the number of admitted jobs to the813

throughput of an optimal non-migratory algorithm.814

5.2. Completing sufficiently many admitted jobs. The main result of this815

section is the following theorem.816

Theorem 5.1. Let 0 < ε ≤ 1. Then the region algorithm completes at least half817

of all admitted jobs before their deadline.818

The proof of Theorem 5.1 relies on two technical results that enable us to restrict819

to instances with one machine and further only consider jobs that are admitted by820

the region algorithm in this instance. Then, we can use the analysis of the region821

algorithm in [10] to complete the proof.822

We start with the following observation. Let I be an instance of online throughput823

maximization with the job set J and let J ⊆ J be the set of jobs admitted by the824

region algorithm at some point. It is easy to see that a job j /∈ J does not influence the825

scheduling or admission decisions of the region algorithm. The next lemma formalizes826

this statement and follows immediately from the just made observations.827

Lemma 5.2. For any instance I for which the region algorithm admits the job828

20 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

Algorithm Region algorithm

Scheduling Routine: At any time τ and on any machine i, run the job with
shortest processing time that has been admitted to i and has not yet completed.

Event: Release of a new job at time τ
Call Threshold Preemption Routine.

Event: Completion of a job at time τ
Call threshold preemption routine.

Threshold Preemption Routine:
i← 1
j? ← a shortest job available for machine i at τ , i.e., j? ∈ arg min{pij | j ∈ J , rj ≤
τ and dj − τ ≥ (1 + ε

2)pij}
while i ≤ m do
j ← job processed on machine i at time τ
if j = ∅ then

admit job j? to machine i
call Threshold Preemption Routine

else if pij? <
ε
4pij then

admit job j? to machine i
call Threshold Preemption Routine

else
i← i+ 1
j? ← a shortest job available for machine i at τ , i.e., j? ∈ arg min{pij | j ∈
J , rj ≤ τ and dj − τ ≥ (1 + ε

2)pij}
end if

end while

set J ⊆ J , the reduced instance I ′ containing only the jobs J forces the region al-829

gorithm with consistent tie breaking to admit all jobs in J and to create the same830

schedule as produced for the instance I.831

The proof of the main result compares the number of jobs finished on time, F ⊆ J ,832

to the number of jobs unfinished by their respective deadlines, U = J \F . To further833

simplify the instance, we use that the region algorithm is non-migratory and restrict834

to single-machine instances. To this end, let F (i) and U (i) denote the finished and835

unfinished, respectively, jobs on machine i.836

Lemma 5.3. Let i ∈ {1, . . . ,m}. There is an instance I ′ on one machine with job837

set J ′ = F (i) ∪ U (i). Moreover, the schedule of the region algorithm for instance I ′838

with consistent tie breaking is identical to the schedule of the jobs J ′ on machine i.839

In particular, F ′ = F (i) and U ′ = U (i).840

Proof. By Lemma 5.2, we can restrict to the jobs admitted by the region algo-841

rithm. Hence, let I be such an instance with F (i)∪U (i) being admitted to machine i.842

As the region algorithm is non-migratory, the sets of jobs scheduled on two different843

machines are disjoint. Let I ′ consist of the jobs in J ′ := F (i)∪U (i) and one machine.844

We set p′j = pij for j ∈ J ′. The region algorithm on instance I admits all jobs in J .845

In particular, it admits all jobs in J ′ to machine i.846

We inductively show that the schedule for the instance I ′ is identical to the847

schedule on machine i in instance I. To this end, we index the jobs in J ′ in increasing848

admission time points in instance I.849

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 21

It is obvious that job 1 ∈ J ′ is admitted to the single machine at its release date r1850

as happens in instance I since the region algorithm uses consistent tie breaking.851

Suppose that the schedule is identical until the admission of job j? at time a?j = τ .852

If j? does not interrupt the processing of another job, then j? will be admitted at853

time τ in I ′ as well. Otherwise, let j ∈ J ′ be the job that the region algorithm854

planned to process at time τ before the admission of job j?. Since j? is admitted at855

time τ in I, j? is available at time τ , satisfies p′j? = pij? <
ε
4pij = ε

4p
′
j , and did not856

satisfy both conditions at some earlier time τ ′ with some earlier admitted job j′. Since857

the job set in I ′ is a subset of the jobs in I and we use consistent tie breaking, no other858

job j∗ ∈ J ′ that satisfies both conditions is favored by the region algorithm over j?.859

Therefore, job j? is also admitted at time τ by the region algorithm in instance I ′.860

Thus, the schedule created by the region algorithm for J ′ is identical to the schedule861

of J on machine i in the original instance.862

For proving Theorem 5.1, we consider a worst-case instance for the region algo-863

rithm where “worst” is with respect to the ratio between admitted and successfully864

completed jobs. Since the region algorithm is non-migratory, there exists at least one865

machine in such a worst-case instance that “achieves” the same ratio as the whole866

instance. By the just proven lemma, we can find a worst-case instance on a single867

machine. However, on a single machine, the region algorithm algorithm in this paper868

is identical to the algorithm designed in [10]. Therefore, we simply follow the line of869

proof developed in [10] to show Theorem 5.1.870

More precisely, in [10] we show that the existence of a late job j implies that the871

the set of jobs admitted by j or by one of its children contains more finished than872

unfinished jobs. Let Fj denote the set of jobs admitted by j or by one of its children873

that finish on time. Similarly, we denote the set of such jobs that complete after their874

deadlines, i.e., that are unfinished at their deadline, by Uj . We restate the following875

lemma, which was originally shown in a single-machine environment but clearly also876

holds for unrelated machines.877

Lemma 5.4 (Lemma 3 in [10]). Consider some job j admitted to some machine878

i ∈ {1, . . . ,m}. If Cj − aj ≥ (`+ 1)pij for ` > 0, then |Fj | − |Uj | ≥ b4`ε c.879

Proof of Theorem 5.1. Let U be the set of jobs that are unfinished by their dead-880

line but whose ancestors have all completed on time. Every job j ∈ U was admitted881

by the algorithm at some time aj with dj − aj ≥
(
1 + ε

2

)
pij . Since j is unfinished, we882

have Cj − aj > dj − aj ≥
(
1 + ε

2

)
pij . By Lemma 5.4, |Fj | − |Uj | ≥

⌊ 4·ε/2
ε

⌋
= 2. Thus,883

|Fj |+ |Uj | ≤ 2|Fj | − 2 < 2|Fj |.884

Since every ancestor of such a job j finishes on time, this completes the proof.885

5.3. The region algorithm admits sufficiently many jobs. In this section,886

we show the following theorem and give the proof of Theorem 1.4.887

Theorem 5.5. An optimal non-migratory (offline) algorithm completes at most888

a factor
(
8
ε + 4

)
more jobs on time than admitted by the region algorithm.889

Proof. As in the previous section, fix an instance and an optimal solution Opt.890

Let X be the set of jobs in Opt that the region algorithm did not admit. We assume891

without loss of generality that all jobs in Opt finish on time. Further, let J denote892

the set of jobs that the region algorithm admitted. Then, X ∪ J is a superset of the893

jobs in Opt. Thus, |X| ≤
(
8
ε + 3

)
|J | implies Theorem 5.5.894

22 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

Consider an arbitrary but fixed machine i. We compare again the throughput895

of the optimal schedule on machine i to the throughput of the region algorithm on896

machine i. Let Xi ⊆ X denote the jobs in Opt scheduled on machine i and let Ji897

denote the jobs scheduled by the region algorithm on machine i. Then, showing |Xi| ≤898 (
8
ε + 3

)
|Ji| suffices to prove the main result of this section. Given that the region899

algorithm satisfies Properties (P1) and (P2), Theorem 4.2 already provides a bound900

on the cardinality of Xi in terms of the intervals corresponding to the schedule on901

amchine i. Thus, it remains to show that the region algorithm indeed qualifies for902

applying Theorem 4.2 and that the bound developed therein can be translated to a903

bound in terms of |Ji|.904

We start by showing that the region algorithm satisfies the assumptions necessary905

for applying Theorem 4.2. Clearly, as the region algorithm only admits a job j906

at time τ if dj − τ ≥
(
1 + ε

2

)
pij , setting δ = ε

2 proves that the region algorithm907

satisfies (P1). For (P2), we retrospectively analyze the schedule generated by the908

region algorithm. For a time τ , let ji denote the job scheduled on machine i. Then,909

setting ui,τ := ε
4piji or ui,τ =∞ if no such job ji exists, indeed provides us with the910

machine-dependent threshold necessary for (P2). This discussion also implies that u(i)911

has only countably many points of discontinuity as there are only finitely many jobs912

in the instance, and that u(i) is right-continuous.913

Hence, let I denote the set of maximal intervals It = [τt, τt+1) for t ∈ [T] of914

constant threshold uiτ . Thus, by Theorem 4.2,915

(5.1) |Xi| ≤
T∑
t=1

ε

ε− δ
τt+1 − τt

ut
+ T.916

As the threshold ui,τ is proportional to the processing time of the job currently917

scheduled on machine i, the interval It either represents an idle interval of machine i918

(with uiτ = ∞) or corresponds to the uninterrupted processing of some job j on919

machine i. We denote this job by jt if it exists. We consider now the set Ij ⊆ I920

of intervals with jt = j for some particular job j ∈ Ji. As observed, these intervals921

correspond to job j being processed which happens for a total of pij units of time.922

Combining with ut = ε
4pij for It ∈ Ij , we get923 ∑

t:It∈Ij

τt+1 − τt
ut

=
pij
ε
4pij

=
4

ε
.924

As δ = ε
2 , we additionally have that ε

ε−δ = 2. Hence, we rewrite Equation (5.1) by925

|Xi| ≤
8

ε
|Ji|+ T.926

It remains to bound T in terms of |Ji| to conclude the proof. To this end, we927

recall that the admission of a job j to a machine interrupts the processing of at most928

one previously admitted job. Hence, the admission of |Ji| jobs to machine 1 creates929

at most 2|Ji|+ 1 intervals.930

If the region algorithm does not admit any job to machine i, i.e., |Ji| = 0,931

then uiτ = ∞ for each time point τ . Hence, there exists no job scheduled on ma-932

chine i by Opt that the region algorithm did not admit. In other words, Xi = ∅933

and |Xi| = 0 = |Ji|. Otherwise, 2|Ji|+ 1 ≤ 3|Ji|. Therefore,934

|Xi| ≤
(

8

ε
+ 3

)
|Ji|.935

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 23

Combining with the observation about Xi and Ji previously discussed, we obtain936

|Opt| ≤ |X ∪ J | =
m∑
i=1

|Xi|+ |J | ≤
(

8

ε
+ 3

) m∑
i=1

|Ji|+ |J | =
(

8

ε
+ 4

)
|J |,937

which concludes the proof.938

5.4. Finalizing the proof of Theorem 1.4.939

Proof of Theorem 1.4. In Theorem 5.1 we show that the region algorithm com-940

pletes at least half of all admitted jobs J on time. In Theorem 4.2, we bound941

the throughput |Opt| of an optimal non-migratory solution by
(
8
ε + 4

)
|J |. Com-942

bining these theorems shows that the region algorithm achieves a competitive ratio943

of c = 2 ·
(
8
ε + 4

)
= 16

ε + 8.944

6. Conclusion. In this paper, we close the problem of online single-machine945

throughput maximization with and without commitment requirements. For both com-946

mitment settings, we give an optimal online algorithm. Further, our algorithms run947

in a multiple-machine environment, even on heterogenous machines. Our algorithms948

compute non-migratory schedules on unrelated machines with the same competitive949

ratio O
(
1
ε

)
as for a single machine and improve substantially upon the state of the950

art.951

It remains open whether the problem with a large number of machines admits an952

online algorithm with a better competitive ratio. For m ≥ 2, it is not known whether953

slack is actually needed to design algorithms with bounded competitive ratios, even954

without commitment requirements and identical machines. In fact, results in [26]955

(used to show a O(1)-competitive randomized algorithm on a single machine) imply956

an O(1)-competitive algorithm for scheduling jobs without slack and without commit-957

ment on m ∈ O(1) identical machines. Further, for machine utilization, i.e., weighted958

throughput with pj = wj , [23, 34] improve upon the factor of O
(
1
ε

)
for commitment959

upon arrival and jobs satisfying the ε-slack assumption.960

In fact, there are examples in the literature in which the worst-case ratio for961

a scheduling problem improves with an increasing number of machines. Consider,962

e.g., the non-preemptive offline variant of our throughput maximization problem on963

identical machines. There is an algorithm with approximation ratio of 1.55 for any m964

which is improving with increasing number of machines, converging to 1 as m tends965

to infinity [20]. The second part of the result also holds for the weighted problem.966

Another interesting question asks whether randomization allows for improved re-967

sults. Recall that there is a O(1)-competitive randomized algorithm for scheduling on968

a single machine without commitment and without slack assumption [26]. Therefore969

is seems plausible that randomization also helps designing algorithms with improved970

competitive ratios for the different commitment models, for which only weak lower971

bounds are known [10], and on multiple machines as discussed above.972

Further, we leave migratory scheduling on unrelated machines as an open prob-973

lem. Allowing migration in this setting means that, on each machine i, a certain974

fraction of the processing time pij is executed, and these fractions must sum to one.975

Generalizing the result we leverage for identical machines [25], it is conceivable that976

any migratory schedule can be turned into a valid non-migratory schedule of the same977

jobs by adding a constant number of machines of each type. Such a result would im-978

mediately allow to transfer our competitive ratios to the migratory setting (up to979

constant factors). Devanur and Kulkarni [13] show a weaker result that utilizes speed980

rather than additional machines. Note that the strong impossibility result of Im and981

24 F. EBERLE, N. MEGOW, AND K. SCHEWIOR

Moseley [22] does not rule out the desired strengthening because we make the ε-slack982

assumption for every job and machine eligible for it. Further, we – as well as Devanur983

and Kulkarni [13] – assume that the processing time of each job j satisfies pij ≤ dj−rj984

on any eligible machine i, whereas the lower bound in [22] requires jobs that violate985

this reasonable assumption.986

Further research directions include generalizations such as weighted throughput987

maximization. While strong lower bounds exist for handling weighted throughput988

with commitment [10], there remains a gap for the problem without. The known989

lower bound of Ω
(
1
ε

)
already holds for unit weights [10]. A natural extension of990

the region algorithm bases its admission decisions on the density, i.e., the ratio of the991

weight of a job to its processing time. The result is an algorithm similar to the O
(

1
ε2

)
-992

competitive algorithm by Lucier et al. [31]. Both algorithms only admit available jobs993

and interrupt currently running jobs if the new job is denser by a certain factor.994

However, we can show that there is a lower bound of Ω
(

1
ε2

)
on the competitive ratio995

of such algorithms. Hence, in order to improve the upper bound for online weighted996

throughput maximization, one needs to develop a new type of algorithm.997

REFERENCES998

[1] K. Agrawal, J. Li, K. Lu, and B. Moseley, Scheduling parallelizable jobs online to maximize999
throughput, in LATIN, vol. 10807, Springer, 2018, pp. 755–776, https://doi.org/10.1007/1000
978-3-319-77404-6 55.1001

[2] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv, Truthful online1002
scheduling with commitments, in EC, ACM, 2015, pp. 715–732, https://doi.org/10.1145/1003
2764468.2764535.1004

[3] N. Bansal, H. Chan, and K. Pruhs, Competitive algorithms for due date scheduling, Algo-1005
rithmica, 59 (2011), pp. 569–582, https://doi.org/10.1007/s00453-009-9321-4.1006

[4] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, Approximating the throughput of multiple1007
machines in real-time scheduling, SIAM J. Comput., 31 (2001), pp. 331–352, https://doi.1008
org/10.1137/S0097539799354138, https://doi.org/10.1137/S0097539799354138.1009

[5] S. K. Baruah and J. R. Haritsa, Scheduling for overload in real-time systems, IEEE Trans.1010
Computers, 46 (1997), pp. 1034–1039, https://doi.org/10.1109/12.620484.1011

[6] S. K. Baruah, J. R. Haritsa, and N. Sharma, On-line scheduling to maximize task com-1012
pletions, in RTSS, IEEE Computer Society, 1994, pp. 228–236, https://doi.org/10.1109/1013
REAL.1994.342713.1014

[7] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. E.1015
Shasha, and F. Wang, On the competitiveness of on-line real-time task scheduling, Real-1016
Time Systems, 4 (1992), pp. 125–144, https://doi.org/10.1007/BF00365406.1017

[8] S. K. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. E. Rosier, and D. E. Shasha,1018
On-line scheduling in the presence of overload, in FOCS, IEEE Computer Society, 1991,1019
pp. 100–110, https://doi.org/10.1109/SFCS.1991.185354.1020

[9] P. Berman and B. DasGupta, Improvements in throughout maximization for real-time sched-1021
uling, in STOC, ACM, 2000, pp. 680–687.1022

[10] L. Chen, F. Eberle, N. Megow, K. Schewior, and C. Stein, A general framework for han-1023
dling commitment in online throughput maximization, Math. Prog., 183 (2020), pp. 215–1024
247, https://doi.org/10.1007/s10107-020-01469-2.1025

[11] B. DasGupta and M. A. Palis, Online real-time preemptive scheduling of jobs with deadlines,1026
in APPROX, vol. 1913 of Lecture Notes in Computer Science, Springer, 2000, pp. 96–107,1027
https://doi.org/10.1007/3-540-44436-X 11.1028

[12] M. L. Dertouzos and A. K. Mok, Multiprocessor on-line scheduling of hard-real-time tasks,1029
IEEE Trans. Software Eng., 15 (1989), pp. 1497–1506, https://doi.org/10.1109/32.58762.1030

[13] N. R. Devanur and J. Kulkarni, A unified rounding algorithm for unrelated machines sched-1031
uling problems, in SPAA, C. Scheideler and J. T. Fineman, eds., ACM, 2018, pp. 283–290,1032
https://doi.org/10.1145/3210377.3210384, https://doi.org/10.1145/3210377.3210384.1033

[14] J. Du and J. Y. Leung, Minimizing the number of late jobs on unrelated machines, Oper.1034
Res. Lett., 10 (1991), pp. 153–158.1035

[15] F. Eberle, N. Megow, and K. Schewior, Optimally handling commitment issues in online1036

https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1007/s00453-009-9321-4
https://doi.org/10.1137/S0097539799354138
https://doi.org/10.1137/S0097539799354138
https://doi.org/10.1137/S0097539799354138
https://doi.org/10.1137/S0097539799354138
https://doi.org/10.1109/12.620484
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1007/BF00365406
https://doi.org/10.1109/SFCS.1991.185354
https://doi.org/10.1007/s10107-020-01469-2
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1109/32.58762
https://doi.org/10.1145/3210377.3210384
https://doi.org/10.1145/3210377.3210384

COMMITMENT IN ONLINE THROUGHPUT MAXIMIZATION 25

throughput maximization, in Proceedings of ESA, vol. 173 of LIPIcs, Schloss Dagstuhl -1037
Leibniz-Zentrum für Informatik, 2020.1038

[16] A. D. Ferguson, P. Bod́ık, S. Kandula, E. Boutin, and R. Fonseca, Jockey: Guaranteed1039
job latency in data parallel clusters, in EuroSys, ACM, 2012, pp. 99–112, https://doi.org/1040
10.1145/2168836.2168847.1041

[17] J. A. Garay, J. Naor, B. Yener, and P. Zhao, On-line admission control and packet1042
scheduling with interleaving, in INFOCOM, IEEE Computer Society, 2002, pp. 94–103,1043
https://doi.org/10.1109/INFCOM.2002.1019250.1044

[18] M. H. Goldwasser, Patience is a virtue: The effect of slack on competitiveness for admission1045
control, J. Sched., 6 (2003), pp. 183–211, https://doi.org/10.1023/A:1022994010777.1046

[19] M. H. Goldwasser and B. Kerbikov, Admission control with immediate notification, J.1047
Sched., 6 (2003), pp. 269–285, https://doi.org/10.1023/A:1022956425198.1048

[20] S. Im, S. Li, and B. Moseley, Breaking 1 - 1/e barrier for non-preemptive through-1049
put maximization, in IPCO, F. Eisenbrand and J. Könemann, eds., vol. 10328 of Lec-1050
ture Notes in Computer Science, Springer, 2017, pp. 292–304, https://doi.org/10.1007/1051
978-3-319-59250-3 24, https://doi.org/10.1007/978-3-319-59250-3 24.1052

[21] S. Im, S. Li, and B. Moseley, Breaking 1 - 1/e barrier for nonpreemptive throughput max-1053
imization, SIAM J. Discret. Math., 34 (2020), pp. 1649–1669, https://doi.org/10.1137/1054
17M1148438, https://doi.org/10.1137/17M1148438.1055

[22] S. Im and B. Moseley, General profit scheduling and the power of migration on heterogeneous1056
machines, in SPAA, vol. 10807 of Lecture Notes in Computer Science, Springer, 2018,1057
pp. 755–776, https://doi.org/10.1007/978-3-319-77404-6 55.1058

[23] S. Jamalabadi, C. Schwiegelshohn, and U. Schwiegelshohn, Commitment and slack for1059
online load maximization, in SPAA, ACM, 2020, pp. 339–348, https://doi.org/10.1145/1060
3350755.3400271.1061

[24] B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, J. ACM, 47 (2000),1062
pp. 617–643, https://doi.org/10.1145/347476.347479.1063

[25] B. Kalyanasundaram and K. Pruhs, Eliminating migration in multi-processor scheduling, J.1064
Algorithms, 38 (2001), pp. 2–24, https://doi.org/10.1006/jagm.2000.1128.1065

[26] B. Kalyanasundaram and K. Pruhs, Maximizing job completions online, J. Algorithms, 491066
(2003), pp. 63–85, https://doi.org/10.1016/S0196-6774(03)00074-9.1067

[27] G. Koren and D. E. Shasha, MOCA: A multiprocessor on-line competitive algorithm for1068
real-time system scheduling, Theor. Comput. Sci., 128 (1994), pp. 75–97, https://doi.org/1069
10.1016/0304-3975(94)90165-1.1070

[28] G. Koren and D. E. Shasha, Dover: An optimal on-line scheduling algorithm for overloaded1071
uniprocessor real-time systems, SIAM J. Comput., 24 (1995), pp. 318–339, https://doi.1072
org/10.1137/S0097539792236882.1073

[29] E. Lawler, A dynamic programming algorithm for preemptive scheduling of a single machine1074
to minimize the number of late jobs, Ann. Oper. Res., 26 (1990), pp. 125–133.1075

[30] E. L. Lawler, Recent results in the theory of machine scheduling, in Mathematical Pro-1076
gramming The State of the Art, A. Bachem, B. Korte, and M. Grötschel, eds., Springer,1077
1982, pp. 202–234, https://doi.org/10.1007/978-3-642-68874-4 9, https://doi.org/10.1007/1078
978-3-642-68874-4 9.1079

[31] B. Lucier, I. Menache, J. Naor, and J. Yaniv, Efficient online scheduling for deadline-1080
sensitive jobs: Extended abstract, in SPAA, ACM, 2013, pp. 305–314, https://doi.org/10.1081
1145/2486159.2486187.1082

[32] K. Pruhs and C. Stein, How to schedule when you have to buy your energy, in APPROX,1083
vol. 6302 of Lecture Notes in Computer Science, Springer, 2010, pp. 352–365, https://doi.1084
org/10.1007/978-3-642-15369-3 27.1085

[33] K. Pruhs and G. J. Woeginger, Approximation schemes for a class of subset selection prob-1086
lems, Theor. Comput. Sci., 382 (2007), pp. 151–156, https://doi.org/10.1016/j.tcs.2007.03.1087
006, https://doi.org/10.1016/j.tcs.2007.03.006.1088

[34] C. Schwiegelshohn and U. Schwiegelshohn, The power of migration for online slack sched-1089
uling, in ESA, vol. 57 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,1090
pp. 75:1–75:17, https://doi.org/10.4230/LIPIcs.ESA.2016.75.1091

[35] R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel machines, Jour-1092
nal of Algorithms, 57 (2005), pp. 37–48, https://doi.org/https://doi.org/10.1016/j.jalgor.1093
2004.06.011, https://www.sciencedirect.com/science/article/pii/S0196677404001130.1094

https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1109/INFCOM.2002.1019250
https://doi.org/10.1023/A:1022994010777
https://doi.org/10.1023/A:1022956425198
https://doi.org/10.1007/978-3-319-59250-3_24
https://doi.org/10.1007/978-3-319-59250-3_24
https://doi.org/10.1007/978-3-319-59250-3_24
https://doi.org/10.1007/978-3-319-59250-3_24
https://doi.org/10.1137/17M1148438
https://doi.org/10.1137/17M1148438
https://doi.org/10.1137/17M1148438
https://doi.org/10.1137/17M1148438
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/347476.347479
https://doi.org/10.1006/jagm.2000.1128
https://doi.org/10.1016/S0196-6774(03)00074-9
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1016/j.tcs.2007.03.006
https://doi.org/10.1016/j.tcs.2007.03.006
https://doi.org/10.1016/j.tcs.2007.03.006
https://doi.org/10.1016/j.tcs.2007.03.006
https://doi.org/10.4230/LIPIcs.ESA.2016.75
https://doi.org/https://doi.org/10.1016/j.jalgor.2004.06.011
https://doi.org/https://doi.org/10.1016/j.jalgor.2004.06.011
https://doi.org/https://doi.org/10.1016/j.jalgor.2004.06.011
https://www.sciencedirect.com/science/article/pii/S0196677404001130

	Introduction
	Related work
	Our results and techniques

	The blocking algorithm
	Completing all admitted jobs on time
	Competitiveness: admitting sufficiently many jobs
	A class of online algorithms
	The blocking algorithm admits sufficiently many jobs
	Finalizing the proof of theo:com:UB

	Scheduling without commitment
	The region algorithm
	Completing sufficiently many admitted jobs
	The region algorithm admits sufficiently many jobs
	Finalizing the proof of theo:otm:UB-no

	Conclusion
	References

