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Abstract. The configuration balancing problem with stochastic
requests generalizes well-studied resource allocation problems such as
load balancing and virtual circuit routing. There are given m resources
and n requests; each request has multiple possible configurations, each of
which increases the load of each resource by some amount. The goal is to
select one configuration for each request to minimize the makespan: the
load of the most-loaded resource. In the stochastic setting, the amount
by which a configuration increases the resource load is uncertain until
the configuration is chosen, but we are given a probability distribution.

We develop both offline and online algorithms for configuration bal-
ancing with stochastic requests. When the requests are known offline,
we give a non-adaptive policy for configuration balancing with stochas-
tic requests that O( log m

log log m
)-approximates the optimal adaptive policy,

which matches a known lower bound for the special case of load balanc-
ing on identical machines. When requests arrive online in a list, we give
a non-adaptive policy that is O(log m) competitive. Again, this result is
asymptotically tight due to information-theoretic lower bounds for spe-
cial cases (e.g., for load balancing on unrelated machines). Finally, we
show how to leverage adaptivity in the special case of load balancing on
related machines to obtain a constant-factor approximation offline and an
O(log log m)-approximation online. A crucial technical ingredient in all
of our results is a new structural characterization of the optimal adaptive
policy that allows us to limit the correlations between its decisions.

Keywords: stochastic scheduling · stochastic routing · load balancing

1 Introduction

This paper considers the configuration balancing problem: there are m resources
and n requests. Request j has qj configurations xj(1), . . . , xj(qj) ∈ R

m
≥0. We
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must choose one configuration cj ∈ [qj ] per request, which adds xj(cj) to the
load vector on the resources. The goal is to minimize the makespan, i.e., the
load of the most-loaded resource. Configuration balancing captures many natural
resource allocation problems where requests compete for a finite pool of resources
and the task is to find a “fair” allocation in which no resource is over-burdened.
Two well-studied problems of this form arise in scheduling and routing.

(i) In load balancing a.k.a. makespan minimization, there are m (unrelated)
machines and n jobs. Scheduling job j on machine i increases the load of i
by pij ≥ 0. The goal is to schedule each job on some machine to minimize
the makespan, i.e., the load of the most-loaded machine.

(ii) In virtual circuit routing or congestion minimization, there is a directed
graph G = (V,E) on m edges with edge capacities ce > 0 for e ∈ E, and n
requests, each request consisting of a source-sink pair (sj , tj) in G and a
demand dj ≥ 0. The goal is to route each request j from sj to tj via some
directed path, increasing the load/congestion of each edge e on the path by
dj/ce, while the objective is to minimize the load of the most-loaded edge.

Configuration balancing captures both problems by taking the m resources
to be the m machines or edges, respectively; each configuration now corresponds
to assigning a job to some machine or routing a request along some path.

Typically, job sizes or request demands are not known exactly when solv-
ing resource allocation problems in practice. This motivates the study of algo-
rithms under uncertainty, where an algorithm must make decisions given only
partial/uncertain information about the input. Uncertainty can be modeled in
different ways. In exceptional cases, a non-clairvoyant algorithm that has no
knowledge about the loads of requests may perform surprisingly well; an example
is Graham’s greedy list scheduling for load balancing on identical machines [15].
In general, a non-clairvoyant algorithm cannot perform well. Hence, we consider
a stochastic model, where the unknown input follows some known distribution
but the actual realization is a priori unknown. Such a model is natural when
there is historical data available from which such distributions can be deduced.

In the configuration balancing with stochastic requests problem, we assume
that each configuration c of request j is a random vector Xj(c) with known
distribution Dj(c) supported on R

m
≥0 such that the Xj(c)’s are independent

across different requests j. The actual realized vector of a configuration c of
request j is only observed after irrevocably selecting this particular configura-
tion for request j. The objective is to minimize the expected maximum load
(makespan) E

[
maxi

∑n
j=1 Xij(cj)

]
, where cj is the configuration chosen for

request j. We assume that we have oracle access to the Dj(c)’s; in particular
we assume that in constant time, we can compute any needed statistic of the
distribution Dj(c).

Further, we distinguish whether there is an additional dimension of uncer-
tainty or not, namely the knowledge about the request set. In the offline setting,
the set of requests and the distributions of the configurations of each request are
known up-front, and they can be selected and assigned to the resources irre-
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vocably in any order. In the online setting, requests are not known in advance
and they are revealed one-by-one (online-list model). The algorithm learns the
stochastic information on configurations of a request upon its arrival, and must
select one of them without knowledge of future arrivals. After a configuration is
chosen irrevocably, the next request arrives.

In general, we allow an algorithm to base the next decision on knowledge
about the realized vectors of all previously selected request configurations. We
call such policies adaptive. Conversely, a non-adaptive policy is one that fixes
the particular configuration chosen for a request without using any knowledge
of the realized configuration vectors.

The goal of this paper is to investigate the power of adaptive and non-
adaptive policies for online and offline configuration balancing with stochas-
tic requests. We quantify the performance of an algorithm by bounding the
worst-case ratio of the achieved expected makespan and the minimal expected
makespan achieved by an optimal offline adaptive policy. We say that an algo-
rithm Alg α-approximates an algorithm Alg’ if, for any input instance, the
expected makespan of Alg is at most a factor α larger than the expected
makespan of Alg’; we refer to α also as approximation ratio. For online algo-
rithms, the term competitive ratio refers to their approximation ratio.

1.1 Our Results

Main Result. As our first main result, we present non-adaptive algorithms for
offline and online configuration balancing with stochastic requests.

Theorem 1. For configuration balancing with stochastic requests there is a
randomized offline algorithm that computes a non-adaptive policy that is a
Θ

(
log m

log log m

)
-approximation and an efficient deterministic online algorithm that

is a Θ(log m)-approximation when comparing to the optimal offline adaptive pol-
icy. Both algorithms run in polynomial time in the number of resources and the
total number of configurations over all requests.

The offline analysis relies on a linear programming (LP) relaxation of con-
figuration balancing, which has a known integrality gap of Θ

(
log m

log log m

)
, even for

virtual circuit routing [25], implying that the analysis is tight. In the online
setting, our analysis employs a potential function to greedily determine which
configuration to choose for each request. In particular, we generalize the idea
by [3] to the setting of configuration balancing with stochastic requests and
match a known lower bound for online deterministic load balancing on unre-
lated machines by [5].

If the configurations are not given explicitly as part of the input or the
number of configurations is large, then efficiently solving the problem requires
us to be able to optimize over configurations in polynomial time.

Applications. These results would hold for both load balancing on unrelated
machines and virtual circuit routing if we could guarantee that either the con-
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figurations are given explicitly or the respective subproblems can be solved effi-
ciently. We can ensure this in both cases.

For stochastic load balancing on unrelated machines, the resources are the
m machines, and each job has m possible configurations – one corresponding
to assigning that job to each machine. Thus, we can efficiently represent all
configurations. Further, here the LP relaxation of configuration balancing used
in Theorem 1 is equivalent to the LP relaxation of the generalized assignment
problem (GAP) solved in [33], which gives a deterministic rounding algorithm.
Hence, Theorem 1 implies the following theorem. We omit the proof in this
extended abstract; see [14] for proof.

Theorem 2. There exist efficient deterministic algorithms that compute a non-
adaptive policy for load balancing on unrelated machines with stochastic jobs that
achieve an Θ

(
log m

log log m

)
-approximation offline and an Θ(log m)-approximation

online when comparing to the optimal offline adaptive policy.

These results are asymptotically tight due to the lower bound of Ω
(

log m
log log m

)
on the adaptivity gap [17] and the lower bound of Ω(log m) on the competitive
ratio of any deterministic online algorithm, even for deterministic requests [5].
This implies that the adaptivity gap for stochastic load balancing is Θ

(
log m

log log m

)
.

For virtual circuit routing, the resources are the m edges and each request has
a configuration for each possible routing path. Thus, efficiently solving the sub-
problems requires more work as the configurations are only given implicitly and
there can be exponentially many. For the offline setting, since the LP relaxation
has (possibly) exponentially many variables, we design an efficient separation
oracle for the dual LP in order to efficiently solve the primal. For the online
setting, we carefully select a subset of polynomially many configurations that
contain the configuration chosen by the greedy algorithm, even when presented
with all configurations. Thus, Theorem 1 implies that stochastic requests are not
harder to approximate than deterministic requests. We omit the proof in this
extended abstract; see [14] for proof.

Theorem 3. For routing with stochastic requests, there exist an efficient ran-
domized offline algorithm computing a non-adaptive policy that is a Θ

(
log m

log log m

)
-

approximation and an efficient deterministic online algorithm that computes an
Θ(log m)-approximation when comparing to the optimal offline adaptive policy.

Adaptive Policies for Related Machines. When each request j has m configura-
tions and configuration c ∈ [m] can be written as Xj(c) = Xj

si
ec, where ec ∈ R

m

is the cth standard unit vector, the problem is also known as load balancing
on related machines. We say that Xj is the size of request (or job) j and si

is the speed of resource (or machine) i. In this special case, we show how to
leverage adaptivity to overcome the Ω

(
log m

log log m

)
lower bound on the adaptivity

gap. Interestingly, our adaptive algorithms begin with a similar non-adaptive
assignment of jobs to machines, but we deviate from the assignment adaptively
to obtain our improved algorithms.
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Theorem 4. For load balancing on related machines with stochastic jobs, there
exist efficient deterministic algorithms that compute an adaptive offline O(1)-
approximation and an adaptive online O(log log m)-approximation when com-
paring to the optimal offline adaptive policy.

It remains an interesting open question whether the online setting admits an
O(1)-competitive algorithm.

1.2 Technical Overview

We illustrate the main idea behind our non-adaptive policies, which compare to
the optimal offline adaptive policy. Throughout this paper, we let Opt denote
the optimal adaptive policy as well as its makespan. As in many other stochastic
optimization problems, our goal is to give a good deterministic proxy for the
makespan of a policy. Then, our algorithm will optimize over this deterministic
proxy to obtain a good solution. First, we observe that if all configurations were
bounded with respect to E[Opt] in every entry, then selecting configurations such
that each resource has expected load O(E[Opt]) gives the desired O

(
log m

log log m

)
-

approximation by standard concentration inequalities for independent sums with
bounded increments. Thus, in this case the expected load on each resource is a
good proxy. However, in general, we have no upper bound on Xij(c), so we
cannot argue as above. We turn these unbounded random variables (RVs) into
bounded ones in a standard way by splitting each request into truncated and
exceptional parts.

Definition 1 (Truncated and Exceptional Parts). Fix τ ≥ 0 as threshold.
For a RV X, its truncated part (w.r.t. threshold τ) is XT := X · 1X<τ and its
exceptional part is XE := X · 1X≥τ . Note that X = XT + XE.

It is immediate that the truncated parts XT
ij(c) are bounded in [0, τ ]. Taking

τ = O(E[Opt]), we can control their contribution to the makespan using con-
centration. It remains to find a good proxy for the contribution of exceptional
parts to the makespan. This is one of the main technical challenges of our work
as we aim to compare against the optimal adaptive policy: adaptive policies have
much better control over the exceptional parts than non-adaptive ones.

Concretely, let cj be the configuration chosen by some fixed policy for
request j. Note that cj itself can be a random variable in {1, . . . , qj}. We want to
control the quantity E

[
maxi

∑n
j=1 XE

ij (cj)
]
. Since we have no reasonable bound

on the XE
ij (cj)’s, for non-adaptive policies, we can only upper bound the expected

maximum by the following sum

E

[
max

1≤i≤m

n∑
j=1

XE
ij (cj)

]
≤

n∑
j=1

E

[
max

1≤i≤m
XE

ij (cj)
]
. (1)

We call the right hand side total (expected) exceptional load. The above inequality
is tight up to constants for non-adaptive policies, so it seems like the total
expected exceptional load is a good proxy to use for our algorithm. However, it
is far from tight for adaptive policies as the following example shows.
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Example 1. Recall that in load balancing on related machines, each request j
has m configurations and configuration c ∈ [m] has the special form of Xj(c) =
Xj

si
ec, where Xj is the processing time of job j and si is the speed of machine i.

We assume that there is one fast machine with speed s1 = 1 and m − 1 slow
machines with speed s2 = . . . = sm = 1

τm , where τ > 0 is the truncation thresh-
old. There are m jobs: a stochastic one with processing time Xj ∼ τ ·Ber

(
1
τ

)
and

m − 1 deterministic jobs with processing time Xj ≡ 1
m . The optimal adaptive

policy first schedules the stochastic job on the fast machine. If its realized size is
0, then it schedules all deterministic jobs on the fast machine as well. Otherwise
the realized size is τ and it schedules one deterministic job on each slow machine,
implying E[Opt] =

(
1 − 1

τ

)(
m−1

m

)
+ 1

τ · τ = Θ(1). However, the total expected
exceptional load (w.r.t. τ) is

∑
i,j E

[
XE

ij · 1j→i

]
= 1

τ (mτ) = m, where j → i
denotes that job j is assigned to machine i, i.e., configuration i is chosen for j.

In the example, the optimal adaptive policy accrues a lot of exceptional load,
but this does not have a large effect on the makespan. Concretely, (1) can be loose
by a Ω(m)-factor for adaptive policies. Thus, it seems that the total exceptional
load is a bad proxy in terms of lower-bounding Opt. However, we show that,
by comparing our algorithm to a near-optimal adaptive policy rather than the
optimal one, the total exceptional load becomes a good proxy in the following
sense. This is the main technical contribution of our work, and it underlies all
of our algorithmic techniques.

Theorem 5. For configuration balancing with stochastic requests, there exists
an adaptive policy with expected maximum load and total expected exceptional
load at most 2 · E[Opt] with respect to any truncation threshold τ ≥ 2 · E[Opt].
Further, any configuration c selected by this policy satisfies E

[
maxi Xi(c)

] ≤ τ .

The proof of the above relies on carefully modifying the “decision tree” rep-
resenting the optimal adaptive policy; see [14] for proof. In light of Theorem 5,
the deterministic proxies we consider are the expected truncated load on each
resource and the total expected exceptional load. All of our algorithms then pro-
ceed by ensuring that both quantities are bounded with respect to E[Opt]. In the
offline case, we round a natural assignment-type linear program (LP), and in the
online case, we use a potential-function argument. All of these algorithms actu-
ally output non-adaptive policies. For the special case of related-machines load
balancing, we also compute a non-adaptive assignment but instead of following
it exactly, we deviate using adaptivity and give improved solutions.

1.3 Related Work

While stochastic optimization problems have long been studied [6,11], approxi-
mation algorithms for them are more recent [13,29]. By now, multi-stage stochas-
tic problems (where uncertain information is revealed in stages) are well-under-
stood [9,19,34]. In contrast, more dynamic models, where the exact value of
an unknown parameter becomes known at times depending on the algorithms
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decisions (serving a request) still remain poorly understood. Some exceptions
come from stochastic knapsack [8,12,16,28] as well as stochastic scheduling and
routing which we discuss below.

Scheduling. For load balancing with deterministic sizes, a 2-approximation in
the most general unrelated-machines offline setting [26] is known. For identical
machines (pij = pj for all jobs j), the greedy algorithm (called list scheduling)
is a

(
2 − 1

m

)
-approximation algorithm [15]. This guarantee holds even when the

jobs arrive online and nothing is known about job sizes. This implies a
(
2− 1

m

)
-

approximate adaptive policy for stochastic load balancing on identical machines.
Apart from this, prior work on stochastic scheduling has focused on

approximating the optimal non-adaptive policy. There are non-adaptive O(1)-
approximations known for identical machines [24], unrelated machines [17], the
�q-norm objective [30], and monotone, symmetric norms [21].

In contrast, our work focuses on approximating the stronger optimal adap-
tive policy. The adaptivity gap (the ratio between the expected makespan of
the optimal adaptive and non-adaptive policies) can be Ω

(
log m

log log m

)
even for the

simplest case of identical machines [17]. Thus, previous work on approximat-
ing the optimal non-adaptive policy does not immediately give any non-trivial
approximation guarantees for our setting. The only previous work on adaptive
stochastic policies for load-balancing (beyond the highly-adaptive list schedul-
ing) is by [32]. They propose scheduling policies whose degree of adaptivity can
be controlled by parameters and show an approximation factor of O(log log m)
for scheduling on identical machines.

Online load balancing with deterministic jobs is also well studied [4]. On
identical machines, the aforementioned list scheduling algorithm [15] is

(
2 −

1
m

)
-competitive. For unrelated machines, there is a deterministic O(log m)-

competitive algorithm [3] and this is best possible [5]. When the machines are
uniformly related, [7] design an O(1)-competitive algorithm for minimizing the
makespan. [22,23] study the multi-dimensional generalization to vector schedul-
ing under the makespan and the �q-norm objective.

To the best of our knowledge, configuration balancing has not been explicitly
defined before. The techniques of [3] give an O(log m)-competitive algorithm for
deterministic requests. It is also studied for packing integer programs [1,2,18].

Routing. For oblivious routing with stochastic demands, [20] give an algorithm
which is an O(log2 n)-approximation with high probability. Here, “oblivious”
refers to the requirement that the chosen path between a source-sink pair must
not depend on the current congestion of the network. In particular, after speci-
fying a set of paths for each possible source-sink pair, a demand matrix is drawn
from an a-priori known distribution and each demand needs to be routed along
one of the predefined paths. The obliviousness requirement is very different from
our setting and makes the two models essentially incomparable.

When dj = 1 for each source-sink pair, there is an O
(

log m
log log m

)
-approximation

algorithm by [31], which is best possible, unless NP ⊆ ZPTIME(nlog log n) [10].
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In the online setting, when the source-sink pairs arrive online in a list and
have to be routed before the next pair arrives, [3] give a lower bound of Ω(log n)
on the competitive ratio of any deterministic online algorithm in directed graphs,
where n is the number of vertices. They also give a matching upper bound. For
more details on online routing we refer to the survey [27].

2 Configuration Balancing with Stochastic Requests

In this section, we prove our main results for the most general problem we
consider: configuration balancing. We give an O

(
log m

log log m

)
-approximation offline

and an O(log m)-approximation online; both algorithms are non-adaptive. Before
describing the algorithms, we give our main structural theorem that enables
all of our results. Roughly, we show that instead of comparing to the optimal
adaptive policy, by losing only a constant factor in the approximation ratio, we
can compare to a near-optimal policy that behaves like a non-adaptive one (w.r.t.
the proxy objectives we consider, namely, the total expected exceptional load).

2.1 Structural Theorem

In this section, we show that there exists a near-optimal policy as guaranteed by
Theorem 5. To this end, we modify the optimal policy by “restarting” whenever
an exceptional request is encountered. Additionally, we ensure that this modified
policy never selects a configuration c for a request j with E

[
maxi Xij(c)

]
> τ .

We let J denote the set of requests. For any subset J ′ ⊆ J , we let Opt(J ′)
denote the optimal adaptive policy (and its maximum load) on the set of
requests J ′. Note that Opt(∅) = 0. Our (existential) algorithm to construct
such a policy will begin by running the optimal policy Opt(J) on all requests.
However, once an exceptional request is encountered or the next decision will
choose a configuration with too large expected maximum, we cancel Opt(J)
and instead recurse on all remaining requests, ignoring all previously-accrued
loads; see Algorithm 1. The idea of our analysis is that we recurse with small
probability; see [14].

Theorem 5. For configuration balancing with stochastic requests, there exists
an adaptive policy with expected maximum load and total expected exceptional
load at most 2 · E[Opt] with respect to any truncation threshold τ ≥ 2 · E[Opt].
Further, any configuration c selected by this policy satisfies E

[
maxi Xi(c)

] ≤ τ .

Having this near-optimal policy at hand, the upshot is that we can bound
our subsequent algorithms with respect to the following LP relaxation (LPC) for
configuration balancing with stochastic requests. The variable ycj denotes select-
ing configuration c for request j. We take our threshold between the truncated
and exceptional parts to be τ . Using the natural setting of the y-variables as the
probabilities of the policy from Theorem 5, it is straight-forward to show that
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Algorithm 1: Policy S(J)
R ← J // remaining requests
if R = ∅ then

return empty policy // finish

while R �= ∅ do
j ← first / next request considered by Opt(J)
cj ← configuration chosen for request j by Opt(J)

1 if E
[
maxi Xij(cj)

]
> τ then // maximum too large

break
else

choose cj for request j // S(J) follows Opt(J)
R ← R \ {j} // update remaining requests

2 if maxi Xij(cj) ≥ τ then // exceptional configuration observed
break

run S(R) // recurse with remaining requests

the following LP relaxation has a feasible solution, formalized in Lemma 1.
∑qj

c=1 ycj = 1 ∀ j ∈ [n]∑n
j=1

∑qj
c=1 E[XT

ij(c)] · ycj ≤ τ ∀ i ∈ [m]∑n
j=1

∑qj
c=1 E[maxi XE

ij (c)] · ycj ≤ τ

ycj = 0 ∀ j ∈ [n],∀ c ∈ [qj ] : E[maxi Xij(c)] > τ
ycj ≥ 0 ∀ j ∈ [n],∀ c ∈ [qj ]

(LPC)

Lemma 1. (LPC) has a feasible solution for any τ ≥ 2 · E[Opt].

2.2 Offline Setting

Our offline algorithm is the natural randomized rounding of (LPC). For the trun-
cated parts, the following inequality bounds their contribution to the makespan.

Lemma 2. Let S1, . . . , Sm be sums of independent RVs bounded in [0, τ ] for
some τ > 0 such that E[Si] ≤ τ for all i ∈ [m]. Then, E[maxi Si] = O

(
log m

log log m

)
τ .

To bound the contribution of the exceptional parts, we use (1), i.e., the total
expected exceptional load. Using binary search for the correct choice of τ and
re-scaling the instance down by the current value of τ , it suffices to give an
efficient algorithm that either

– outputs a non-adaptive policy with expected makespan O
(

log m
log log m

)
, or

– certifies that E[Opt] > 1.

This is because for τ ∈ (
E[Opt], 2 · E[Opt]

]
, the re-scaling guarantees

E[Opt] ∈ [ 12 , 1) on the scaled instance, in which case the algorithm achieves
expected makespan O

(
log m

log log m

)
= O

(
log m

log log m

) · E[Opt].
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Algorithm 2: Offline Configuration Balancing with Stochastic Requests
try to solve (LPC) with τ = 2
if (LPC) is feasible then

let y∗ be the outputted feasible solution
for each request j do

independently sample c ∈ [qj ] with probability y∗
cj

choose sampled c as cj

else
return “E[Opt] > 1”

To that end, we use the natural independent randomized rounding of (LPC).
That is, if (LPC) has a feasible solution y∗, for request j, we choose configuration c
as configuration cj independently with probability y∗

cj ; see Algorithm 2.
If the configurations are given explicitly as part of the input, then (LPC)

can be solved in polynomial time and, thus, Algorithm 2 runs in polynomial
time. Hence, the O

(
log m

log log m

)
-approximate non-adaptive policy for configuration

balancing with stochastic requests (Theorem 1) follows from the next lemma.

Lemma 3. If (LPC) can be solved in polynomial time, Algorithm 2 is a
polynomial-time randomized algorithm that either outputs a non-adaptive pol-
icy with expected makespan O

(
log m

log log m

)
, or certifies correctly that E[Opt] > 1.

2.3 Online Setting

We now consider online configuration balancing where n stochastic requests
arrive online one-by-one, and for each request, one configuration has to be irre-
vocably selected before the next request appears. We present a non-adaptive
online algorithm that achieves a competitive ratio of O(log m), which is best
possible due to the lower bound of Ω(log m) [5].

By a standard guess-and-double scheme, we may assume that we have a good
guess of E[Opt]. We omit the proof, which is analogous to its virtual-circuit-
routing counterpart in [3].

Lemma 4. Given an instance of online configuration balancing with stochastic
requests, suppose there exists an online algorithm that, given parameter λ > 0,
never creates an expected makespan more than α · λ, possibly terminating before
handling all requests. Further, if the algorithm terminates prematurely, then it
certifies that E[Opt] > λ. Then, there exists an O(α)-competitive algorithm
for online configuration balancing with stochastic requests. Further, the resulting
algorithm preserves non-adaptivity.

We will build on the same technical tools as in the offline case. In particular, we
wish to compute a non-adaptive assignment online with small expected truncated
load on each resource and small total expected exceptional load. To achieve
this, we generalize the greedy potential function approach of [3]. Our two new
ingredients are to treat the exceptional parts of a request’s configuration as a
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resource requirement for an additional, artificial resource and to compare the
potential of our solution directly with a fractional solution to (LPC).

Now we describe our potential function, which is based on an
exponential/soft-max function. Let λ denote the current guess of the optimum
as required by Lemma 4. We take τ = 2λ as our truncation threshold. Given
load vector L ∈ R

m+1, our potential function is

φ(L) =
m∑

i=0

(3/2)Li/τ .

For i ∈ [m], we ensure the ith entry of L is the expected truncated load on
resource i and use the 0th entry as a virtual resource that is the total expected
exceptional load. For any request j, let Lj be the expected load vector after
handling the first j requests, with Lij denoting its ith entry. Let Li0 := 0 for all i.
Upon arrival of request j, our algorithm tries to choose the configuration cj ∈ [qj ]
that minimizes the increase in potential; see Algorithm 3.

Algorithm 3: Online Configuration Balancing with Stochastic Requests
� ← log3/2(2m + 2)

λ ← current guess of E[Opt]
τ ← 2λ truncation threshold
upon arrival of request j do

1 cj ← arg minc∈[qj ]

(
(3/2)(L0j−1+E[maxi∈[m] XE

ij(c)])/τ +
∑m

i=1(
3/2)(Lij−1+E[XT

ij(c)])/τ
)

− φ(Lj−1)

if Lij−1 + E[XT
ij(cj)] ≤ �τ for all i ∈ [m] and L0j−1 + E[maxi∈[m] X

E
ij (cj)] ≤ �τ

then
choose cj for j

Lij ← Lij−1 + E[XT
ij(cj)] for all i ∈ [m]

L0j ← L0j−1 + E[maxi∈[m] X
E
ij (cj)]

else
return “E[Opt] > λ”

To analyze this algorithm, we compare its makespan with a solution to (LPC).
This LP has an integrality gap of Ω

(
log m

log log m

)
, which follows immediately from

the path assignment LP for virtual circuit routing [25]. Hence, a straightforward
analysis of Algorithm 3 comparing to a rounded solution to (LPC) gives an assign-
ment with expected truncated load per machine and total expected exceptional
load O

(
log m · log m

log log m ) · E[Opt]. To get a tight competitive ratio of O(log m),
we avoid the integrality gap by comparing to a fractional solution to (LPC), and
we use a slightly different inequality than Lemma 2 for the regime where the
mean of the sums is larger than the increments by at most a O(log m)-factor.

Lemma 5. Let S1, . . . , Sm be sums of independent RVs bounded in [0, τ ] for τ >
0 such that E[Si] ≤ O(log m)τ for all 1 ≤ i ≤ m. Then, E[maxi Si] ≤ O(log m)τ .
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We give the guarantee for Algorithm 3, which implies the O(log m)-
competitive algorithm for online configuration balancing with stochastic
requests.

Lemma 6. Suppose the minimizing configuration in Line 1 can be found in
polynomial time. Then Algorithm 3 runs in polynomial time; it is deterministic,
non-adaptive and correctly solves the subproblem of Lemma 4 for α = O(log m).

3 Load Balancing on Related Machines

In this section, we improve on Theorem2 in the special case of related machines,
where each machine i has a speed parameter si > 0 and each job j an inde-
pendent size Xj such that Xij = Xj

si
. Recall that we gave a non-adaptive

O
(

log m
log log m

)
-approximation for unrelated machines. However, the adaptivity gap

is Ω
(

log m
log log m

)
even for load balancing on identical machines where every machine

has the same speed. Thus, to improve on Theorem 2, we need to use adaptivity.
The starting point of our improved algorithms is the same non-adaptive

assignment for unrelated-machines load balancing. However, instead of non-
adaptively assigning job j to the specified machine i, we adaptively assign j
to the least loaded machine with similar speed to i. We formalize this idea and
briefly explain the algorithms for offline and online load balancing on related
machines.

Machine Smoothing. In this part, we define a notion of smoothed machines.
We show that by losing a constant factor in the approximation ratio, we may
assume that the machines are partitioned into at most O(log m) groups such
that machines within a group have the same speed and the size of the groups
shrinks geometrically. Thus, by “machines with similar speed to i,” we mean
machines in the same group.

Formally, we transform an instance I of load balancing on m related machines
with stochastic jobs into an instance Is with so-called “smoothed machines” and
the same set of jobs with the following three properties:

(i) The machines are partitioned into m′ = O(log m) groups such that group
k consists of mk machines with speed exactly sk such that s1 < s2 < · · · <
sm′ .

(ii) For all groups 1 ≤ k < m′, we have mk ≥ 3
2mk+1.

(iii) Opt(Is) = O(Opt(I)).

To this end, we suitably decrease machine speeds and delete machines from
the original instance I; see [14] for the algorithm and the technical details.

Lemma 7. There is an efficient algorithm that, given an instance I of load
balancing with m related machines and stochastic jobs, computes an instance Is

of smoothed machines with the same set of jobs satisfying Properties (i) to (iii).

12



A similar idea for machine smoothing has been employed by Im et al. [23]
for deterministic load balancing on related machines. In their approach, they
ensure that the total processing power of the machines in a group decreases
geometrically rather than the number of machines.

Offline Setting. We run Algorithm2 on the configuration balancing instance
defined by the load balancing instance with smoothed machines. Given a job-to-
machine assignment, we list schedule the jobs assigned to a particular group on
the machines of this group. In the proof of Theorem 4, we rely on the following
strong bound on the expected maximum of the truncated load; see [14].

Lemma 8. Let c1, . . . , cm ∈ N≥1 be constants such that ci ≥ 3
2ci+1 for all 1 ≤

i ≤ m. Let S1, . . . , Sm be sums of independent random variables bounded in [0, τ ]
such that E[Si] ≤ ciτ for all 1 ≤ i ≤ m. Then, E

[
maxi

Si

ci

] ≤ O(τ).

Online Setting. We apply a similar framework as above. Note that our online
configuration balancing algorithm loses a logarithmic factor in the number of
resources, so to obtain a O(log log m)-approximation, we aggregate each group
(in the smoothed-machines instance) as a single resource. Intuitively, this defi-
nition captures the fact that we will average all jobs assigned to a group over
the machines in this group. Thus, our configuration balancing instance will have
only O(log m) resources and applying Theorem 1 proves Theorem 4; see [14].

Conclusion

We considered the configuration balancing problem under uncertainty. In con-
trast to the (often overly optimistic) clairvoyant settings and the (often overly
pessimistic) non-clairvoyant settings, we consider the stochastic setting where
each request j presents a set of random vectors, and we need to (adaptively)
pick one of these vectors, to minimize the expected maximum load over the
m resources. We give logarithmic bounds for several general settings (which are
existentially tight), and a much better O(1) offline and O(log log m) online bound
for the related machines setting. Closing the gap for online related-machines load
balancing remains an intriguing open problem. More generally, getting a better
understanding of both adaptive and non-adaptive algorithms for stochastic pack-
ing and scheduling problems remains an exciting direction for research.
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