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Kurzreferat

Das Thema dieser Dissertation ist die Anwendung der evolutionären neuronalen Ar-
chitektursuche, um geeignete neuronale Netze für die Vorhersage von Geschwindigkeit
und Verkehrsfluss aus Straßenverkehrsdaten zu finden. Die Arbeit beginnt mit der
Beschreibung der Messdaten und der Beschreibung des Vorhersageproblems. An-
schließend werden grundlegende Konzepte aus den Bereichen Maschinelles Lernen,
Deep Learning und Neuronale Architektursuche (NAS), insbesondere hinsichtlich der
Anwendung, erläutert. Der letzte Teil dieser Dissertation besteht aus fünf Artikeln, zu
denen der Autor dieser Arbeit einen wesentlichen Beitrag geleistet hat.

Die ersten beiden Artikel geben einen Überblick über das Problem der Verkehrsdaten-
vorhersage anhand von Messdaten aus der Stadt Bremen. Es wird die Maschinelles
Lernen Methode k-nearest neighbours vorgestellt und auf die Messdaten angewandt.
Zusätzlich wird die Verbesserung des Modells durch den Einsatz von Datenfüllmethoden
untersucht. Im dritten Artikel vergleichen wir kombinierte polynomiale Regressionsmod-
elle, ein einfaches Maschinelles Lernen Modell, mit graphischen neuronalen Netzen. Diese
Art von Netzen enthalten spezielle Operationen, die räumliche Abhängigkeiten zwischen
Messpunkten berücksichtigen. Die Anwendung evolutionärer neuronaler Architektur-
suche wird im vierten Artikel vorgestellt. Das Ergebnis des in unserem Framework
verwendeten genetischen Algorithmus hängt von der Fitness, d. h. der Kostenfunktion
auf dem Datensatz, jeder Architektur im Suchraum ab. Die Wahl des Validierungsver-
lustes als Fitness ist zwar ideal im Hinblick auf die Genauigkeit, verlangsamt aber den
Algorithmus enorm, da er das Training der neuronalen Netze bis zur Konvergenz er-
fordert. Um die Verwendung unseres Frameworks praktikabel zu machen, evaluieren
wir daher im fünften Artikel Zero-Cost Proxies, die eine Fitness für Architekturen auf
der Grundlage von einzelnen Vorwärts- oder Rückwärtsdurchläufen durch das Netzw-
erk berechnen. Die Evaluierung pro Netzwerk dauert daher nur wenige Sekunden statt
mehreren Stunden. Wir zeigen, dass der naswot Zero-Cost Proxy robust gegenüber
zufälligen Initialisierungen der Gewichte, Netzwerk- und Batchgrößen ist und eine hohe
Spearman-Rank-Korrelation mit dem Validierungsverlust aufweist.

Mein Beitrag ist ein Framework für die Suche nach neuronalen Architekturen, die beson-
ders geeignet für die Vorhersage von Verkehrsdaten sind. Mein NAS-Framework findet
auf einem gegebenen Datensatz eine Architektur, die mit von Experten designten neu-
ronalen Netzwerken und neuronalen Netzwerken, die von anderen NAS-Frameworks
gefunden wurden, in Bezug auf Kostenfunktion und Rechenzeit mithalten oder diese
übertreffen kann.





Abstract

The topic of this dissertation is the application of evolutionary neural architecture search
to find suitable neural networks for predicting speed and flow from road traffic data.
The thesis begins by describing the measurement data and describing the forecasting
problem. Following this, fundamental concepts in the fields of Machine Learning, Deep
Learning, and Neural Architecture Search (NAS), particularly concerning application,
are explained. The last part of this dissertation consists of five articles to which the
author of this thesis has made a significant contribution.

The first two articles provide an overview of the problem of traffic data prediction,
concerning measurement data from the city of Bremen. The machine learning model
k-nearest neighbors is introduced and applied to the measurement data. In addition, we
evaluate data imputation methods to improve models. In the third article, we compare
combined polynomial regression models, a simple machine learning model, with graph
convolutional neural networks. These are neural networks that include special opera-
tions incorporating spatial dependencies between measurement points. Our evolutionary
neural architecture search framework is presented in the fourth article. The outcome of
the genetic algorithm used in our framework depends on the fitness, i.e. performance on
the dataset, of each architecture in the search space. While the choice of validation loss
as fitness is ideal w.r.t. the accuracy, it slows down the algorithm tremendously since
it necessitates training the neural networks until convergence. Hence, to make usage of
our framework viable, in the fifth article, we evaluate zero-cost proxies, which compute
a fitness for architectures based on singular forward or backward passes through the
network. Therefore, evaluating network fitness only takes a few compared to multiple
hours. We show that the naswot zero-cost proxy is robust w.r.t. random initializations
of weights, network sizes and batch sizes and has a high spearman rank correlation with
the validation loss.

My contribution is a neural architecture search framework that finds neural network
architectures that are especially powerful for predicting road traffic data. My NAS
framework finds an architecture for a given dataset that can keep up with or outperform
handcrafted neural networks and neural networks found by other NAS frameworks in
terms of performance and computation time.
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1 An introduction to the task of
road traffic prediction

40 hours – the time every driver in Bremen lost in 2022 due to traffic congestion [31].
Road traffic is a complex and sensitive system, especially in large cities. Small jams
due to accidents, construction sites or sub-optimally programmed traffic lights can grow
quickly due to the high density of vehicles. They lead to congestions in the whole city
due to travellers adjusting their routes accordingly. A jam in one region can therefore
cause further jams in other regions. With an increasing number of cars on the roads,
the only chance of alleviating this problem is by employing intelligent transportation
systems (ITS) [86]. These systems can help stakeholders make coordinated, safe and
smart decisions when it comes to traffic management. To achieve this, it is essential
to gather, analyse and predict data on various parameters such as speed and flow of
vehicles on the road.

Speed data refers to the velocity at which vehicles move on the road. It is an important
parameter that influences traffic flow and safety. Accurate speed data can help in pre-
dicting the travel time of vehicles and identifying congestion points. On the other hand,
flow data refers to the number of vehicles that pass through a particular point on the
road during a given time period. It is a critical parameter in understanding the overall
traffic volume on a road and can help in identifying congestion points and bottlenecks.

To gather such data, various methods and technologies are used. One common method of
collecting speed and flow data is through the use of induction loops. Induction loops are
wires embedded in the road surface that are used to detect the presence of vehicles. These
loops work by generating a magnetic field that is disturbed by the presence of a vehicle,
allowing the system to detect the passage of a vehicle and measure its speed. However,
speed measurements are only accurate when a measurement site has two induction loops
not far apart. If this is not the case, speed is often computed by dividing the length
of the loop detector by the time a vehicle was present. It can easily be seen that this
method will lead to inaccurate data.

In order to record measurement data, induction loops have to be installed in specific
locations on the road. The loops are typically placed where drivers have to take decisions,
e.g. before and after junctions or on and off ramps. The loops are then connected
to a data collection unit that records the data and sends it to a central system for
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analysis. In Bremen, the data gets sent to the Verkehrsmanagementzentrale (VMZ)
and is used for monitoring traffic. During the research project DiSCO2 (data-based and
intelligent simulation of traffic for CO2 reduction in Bremen) we have worked on a hand
selected subset of historical data from the urban road network of Bremen [39, 55, 56].
The dataset consists of seven detectors on a junction over the span of 11 weeks. We
accumulated traffic flow data into 10 min intervals, resulting in 11088 timesteps. The
specifics are shown in Table 1.1. We additionally use datasets from California, which are
commonly used in the literature to evaluate the methods developed in our work on neural
architecture search [37, 38]. The California Department of Transportation (Caltrans)
has made its recordings of traffic publicly available. Measurements are obtained from
the Performance Measurement System (PeMS) of Caltrans. In this work we focus on
four of these data subsets, which are summarised in Table 1.1.

Table 1.1: Overview of datasets used in this work.

Dataset Type Region Timeframe #timesteps #sensors
Bremen flow Bremen Hbf Apr – Jun 2018 11088 7
PeMSD4 flow San Francisco Bay Jan – Feb 2018 16992 307
PeMSD8 flow San Bernardino Jul – Aug 2016 17856 170
METR-LA speed Los Angeles Mar – Jun 2012 34272 207
PEMS-BAY speed California Bay Jan – May 2017 52116 325

For all of these datasets, the measurements are accumulated in 5 min intervals. The
PeMSD4 dataset published by Bai et al. [4] is concerned with flow measurements from
the San Francisco Bay Area, recorded from January to February in 2018. This results in
16992 timestamps for all 307 sensors. The PeMSD8 dataset [4], also concerned with flow
measurements, includes 170 sensors located in the San Bernardino Area and was recorded
from July to August 2016, resulting in 17856 timestamps. The METR-LA dataset
published by Li et al. [43] includes speed measurements of 207 detectors within the Los
Angeles County, recorded from March to June 2012 for a total of 34272 timestamps
per detector. The PEMS-BAY dataset [43] also includes speed measurements and was
recorded in the California Bay Area from January to May 2017. There are 325 sensor
locations with 52116 timestamps each.

In Figure 1.1 example data from the PeMSD8 dataset can be seen. The flow, measured
in vehicles per hour is shown for a timeframe of 27 hours for one detector. The mea-
surements from the detector on the left show a common pattern for the traffic flow.
The first data points concern the night and early morning hours when there are not as
many vehicles on the road and, hence, the traffic flow has low values. Over the morning
hours traffic slowly rises as people start driving to work. Usually, there is a peak in
the morning before a small dip during lunch hours. Afterwards, traffic flow rises again
until there is a second peak in the evening as people drive back home. Finally, the flow
decreases again until the night. As mentioned, most flow curves follow this pattern,
however, depending on the location, e.g. industrial or residential district, they can alter
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as can be seen on the right in Figure 1.1. Here, the peak in the morning occurs earlier
and is more pronounced. There is a larger dip afterwards and a smaller peak in the
evening.
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Figure 1.1: The flow in vehicles per hour from two measurement locations in the PeMSD8
dataset over a period of 27 hours.

In Figure 1.2 a whole week of data from one sensor is shown. To focus on the pattern
of the flow, a Gaussian smoothing with kernel size 5 is applied. It can be seen that the
traffic on each week day follows a similar pattern. Usually, Fridays differ from the rest
of the weekdays. In this case, there was a high peak in flow in the evening after a dip at
the preceding timestamps. This can indicate a traffic jam that is clearing up again. On
weekends, especially on Sundays, there are less cars on the roads which leads to lower
flow values.
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Figure 1.2: The flow in vehicles per hour from one measurement location in the PeMSD8
dataset over a period of one week starting with a Monday.

In Figure 1.3 the Monday data for seven weeks is shown. As before, a Gaussian kernel
with size 5 is applied to emphasize the pattern visually. It can be seen that the flow
throughout the weeks and on the same weekday generally is similar. Again, there is a
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large peak in the fifth week, indicating a traffic jam clearing up. Apart from that, there
are no strong dissimilarities throughout the different weeks.
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Figure 1.3: The flow from one measurement location in the PeMSD8 dataset for 7 con-
secutive mondays.

In addition to the dependency on time for the individual detector data, the system also
has a spatial component. On their way through the road network, the same cars will pass
multiple measurement locations. In Figure 1.4 a subset of detectors from the METR-
LA dataset is shown. As one can see, a car driving along the freeway will pass many
detectors. This results in a spatial dependency of the measurements. Mathematically,
we can describe the traffic network and the detectors as a graph. To this end, let

G = (V,E)

denote the graph with vertices, or, in our context, detectors V, |V | = N ∈ N and edges
or connections E. To describe the relations between detectors on the edges, we use an
adjacency matrix. There are different types of adjacency matrices used in road traffic
networks, each offering unique insights into traffic patterns.

The binary adjacency matrix A indicates the presence or absence of edges between
detectors. If there is a direct connection between detectors i and j, the corresponding
entry aij is 1; otherwise, it is 0.

aij =

{︄
1 if there is a connection between detectors i and j

0 otherwise

When engineering such a matrix, one could determine the number of turns a driver has
to make to reach one detector from another and use a maximum number of turns as
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Figure 1.4: Detector locations from the METR-LA dataset (marked as blue dots).

threshold to describe the connectivity. Similarly, there could also be a threshold for the
distance between detectors or a combination of both.

The distance-based adjacency matrix D incorporates the driving distances between de-
tectors into the graph representation. Instead of binary values, the entries dij represent
the driving distances between detectors i and j.

dij = driving distance between detectors i and j

The adjacency matrix can also be based on measurement data, e.g. traffic intensity.
The weighted adjacency matrix W assigns weights to edges, representing the intensity
of traffic flow between detectors. The entry wij indicates the weight of the edge between
detectors i and j.

wij = traffic intensity between detectors i and j

Traffic intensity refers to the measure of traffic flow or volume between two detectors.
It quantifies the amount of vehicular movement or activity between the detectors over
a specific period of time.

Traffic intensity can be measured in various ways, such as the number of vehicles passing
through a particular section of the road per unit of time (e.g., vehicles per hour), the
vehicle occupancy (percentage of road space occupied by vehicles), or any other suitable
metric that reflects the traffic volume between detectors accurately. However, in reality,
to obtain the intensity between all detectors, we would have to be able to discern where
exactly individual cars are driving. The data recorded by loop detectors does not include
this information.
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Traffic patterns can vary based on the time of day. Time-dependent adjacency matrices
capture these temporal changes in traffic flow. For example when using connectivity
matrices, let each entry aij(t) represent the presence or absence of a connection between
detectors i and j at time t:

aij(t) =

{︄
1 if there is a connection between detectors i and j at time t

0 otherwise

Changes in the adjacency matrix could occur due to construction sites, public events
or traffic jams. If this data is available, using time dependent adjacency matrices could
lead to better predictive performance of the models or help in scenario simulations, e.g.
simulating the changes in traffic when a construction site is opened.

The choice of which adjacency matrix to use in a model depends on the availability of
data. Connectivity and driving distance based adjacency matrices are easier to compute,
since they only require sensor locations and knowledge about the road network, which
is often publicly available. Using a connectivity matrix poses the question of how to
define connectivity of two sensor locations. We have conducted several experiments
where connectivity was defined by a maximum number of turns between sensors, by a
maximum driving distance and combinations. The results of those experiments were
inferior when compared to using driving based matrices. For the datasets presented
above, we do not have time-dependent road network information available. Therefore,
in this work we concentrate on using a single driving distance based adjacency matrix
for each dataset. This is also the approach most commonly used in the literature [4, 20,
43].
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1.1 Traffic prediction

Accurate traffic prediction has significant implications for urban planning, transportation
management and public welfare:

• Traffic flow optimization: Predictive models assist traffic management systems
in optimizing signal timing and route planning, thereby reducing congestion and
improving overall traffic flow.

• Emission reduction: By predicting traffic patterns, authorities can implement eco-
friendly measures such as traffic diversions, reducing emissions and promoting en-
vironmental sustainability.

• Resource allocation: Efficient prediction enables better allocation of resources such
as law enforcement personnel and emergency services, ensuring quick responses to
accidents and traffic incidents.

• Enhanced public safety: Timely warnings to drivers about potential congestion
or hazardous conditions contribute to safer road experiences, reducing the risk of
accidents.

The VMZ currently uses a historic average model to predict future traffic behaviour
for usage in traffic signal phase planning. They designed multiple signal phase plans,
which are used depending on the time of the day and the current traffic situation. They
lack forecasts of short-term (up to one hour) traffic development. While there is a good
understanding of the general traffic patterns, there is no model for future traffic when
it delineates from the norm. Since events like accidents can lead to vastly different
behaviour in urban traffic networks than foreseen and are not predictable, short-term
predictions can greatly enhance traffic management systems. Forecasting for up to an
hour into the future is sufficient from an application point of view. When designing
a prediction model, it has to be tuned with the available historical data. Often, this
historical data comprises the last few timestamps of data, e.g. the last hour of traffic
data. It can also include data about traffic jams, construction sites, weather et cetera.
To this end, we define the task of traffic prediction as follows:

Definition 1 (Traffic prediction) Let xt ∈ RN×F denote the traffic conditions at time
t on the graph of the road network G = (V,E) with vertices V, |V | = N ∈ N and edges
E. Furthermore, let W ∈ RN×N denote an adjacency matrix. Then, given a timestamp
t0, we want to find a function f : RT×N×F ↦→ RT ′×N×D that predicts the next T ′ ∈ N
timestamps of data from the last T ∈ N timestamps of data:

yt0 = [xt0+1, . . . , xt0+T ] = f([xt0−T ′+1, . . . , xt0 ];G) ∈ RT ′×N×D

Here, F ∈ N and D ∈ N respectively denote the number of input and output features.
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To solve the task of predicting future traffic conditions, we investigate various techniques
in this thesis:

• Classical machine learning algorithms: Classical machine learning algorithms, such
as polynomial regression and k-nearest neighbours are widely used to capture in-
tricate patterns in traffic data and make accurate predictions.

• Graph neural networks (GNNs): GNNs are particularly effective for modelling spa-
tial dependencies in road networks. They can learn complex relationships between
traffic nodes (intersections or detectors) and improve prediction accuracy. Our
neural architecture search framework will output GNNs that are tailored to the
dataset at hand.

• Neural architecture search (NAS): NAS is an automated technique for exploring
optimal neural network architectures. In traffic prediction, NAS algorithms search
through a vast space of possible neural network structures, identifying architec-
tures that are well-suited for capturing complex traffic patterns. This method
significantly accelerates the development of efficient and accurate prediction mod-
els on the given dataset. NAS frameworks can have long computation times as
neural networks are trained until convergence to obtain a ranking of architectures
w.r.t. performance for selection. We integrate zero-cost proxies into the algorithm
which estimate the performance of the network with only one forwards or back-
wards pass, speeding up the whole framework execution by four magnitudes. This
makes it viable to use in traffic management centrals.

This leads to our main research question:

Can we design a neural architecture search method that performs on-par or
outperforms hand crafted deep learning models and classical machine learning
models on various traffic flow and speed datasets?
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1.2 Structure of the thesis

This thesis comprises two parts. The first one lays out the preliminaries for the papers in
the second part. In this Chapter, we introduced traffic prediction in urban road networks.
In Chapter 2, the mathematical foundations of machine learning and deep learning
are described. We briefly describe the two classical machine learning algorithms used
in the published papers, polynomial regression and k-nearest neighbours. Afterwards,
we present a thorough understanding of neural network layers. In Chapter 3, neural
architecture search is motivated and different ideas are described. We describe the
three main components: the search space, search method and performance estimation of
candidate solutions. In Chapter 4, we summarize the authors’ contributions and papers.
Chapter 5 focuses on summarizing these contributions and outlining future research
directions. All of our publications are included in the appendix.

The author includes all five papers he wrote during his Ph.D. [37, 38, 39, 55, 56] since
they are related to the task of traffic forecasting, deep learning and neural architecture
search and building upon one another. It follows a list of the included papers and
descriptions of the authors’ contributions.

• A. Mallek, D. Klosa and C. Büskens: Enhanced K-Nearest Neighbor Model For
Multi-steps Traffic Flow Forecast in Urban Roads [55]
My contributions are Section II.2) (Enhanced KNN) including implementation of
the model and Section III. (Data Description) and I had equal contribution to the
Section IV. (Experimental results).

• A. Mallek, D. Klosa and C. Büskens: Impact of Data Loss on Multi-Step Forecast
of Traffic Flow in Urban Roads Using K-Nearest Neighbors [56]
My contributions are Section 2.2 (Enhanced KNN), Section 4 (Data and Recon-
structed Data) and Section 5.2 (Under Artificial Datasets).

• D. Klosa, A. Mallek and C. Büskens: Short-Term Traffic Flow Forecast Using
Regression Analysis and Graph Convolutional Neural Networks [39]
My contributions are Section III.B. (Graph Convolutional Neural Networks), Sec-
tion IV. (Data Description) and the implementation, experiments and discussion of
the Graph Convolutional Neural Networks in Section V. (Results and Discussion).

• D. Klosa and C. Büskens: Evolutionary Neural Architecture Search for Traffic
Forecasting [37]
All parts of the paper are my contribution.

• D. Klosa and C. Büskens: Low Cost Evolutionary Neural Architecture Search
(LENAS) Applied to Traffic Forecasting [38]
All parts of the paper are my contribution.
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2 Mathematical foundations

Machine learning describes the ability of a machine to learn from data. But what do we
mean by that?

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

– Tom Mitchell, 1997 [59]

A lot of tasks T, experiences E and performance measures P are imaginable, but in this
work we will concentrate on the ones specific for the task of traffic prediction.

The task of traffic prediction is one of regression. As described in Definition 1, we want
to find a function f : RT×N×F → RT ′×N×D that maps the graph signal Xt from a dataset
D to the prediction ŷt of the measurement yt, i.e. f(xt) = ŷ. In our case, the features
of the input data can be the flow and speed at previous timestamps, weather data and
others. The features of the outputs are our target variables, in this case, flow or speed.
Hence, our dataset can be written as

D = {(Xt, yt)|Xt = [xt−T , . . . , xt−1], yt = [xt, . . . , xt+T ′−1],∀t = 1, . . . ,m ∈ N},

where m is the number of timesteps in the dataset D.

To be able to evaluate a machine learning model, we need to design a measure for
its performance. The performance measure P has to be chosen based on the task T.
Since we are focusing on regression, we use measures that compute the differences or
the distances between the predictions and the measurements. The mean absolute error
(MAE) is defined as

MAE =
1

m

m∑︂

i=1

|yi − ŷi|,
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where yi and ŷi denote the actual and predicted values, respectively, and m represents
the number of observations. The MAE provides a linear penalty for prediction errors
and is particularly robust to outliers due to its absolute nature.

In contrast, the mean squared error (MSE) is given by:

MSE =
1

m

m∑︂

i=1

(yi − ŷi)
2

By squaring the prediction errors, the MSE accentuates the impact of larger devia-
tions. Since this metric is differentiable everywhere, it is preferred for gradient-based
optimization techniques.

Building on this, the root mean squared error (RMSE) is essentially the square root of
the MSE, thus:

RMSE =
√

MSE =

⌜⃓
⎷⃓ 1

m

m∑︂

i=1

(yi − ŷi)
2

The RMSE has the same nature as MSE while expressing the error in the same units as
the target variable, aiding in interpretability.

Lastly, the mean absolute percentage error (MAPE) offers a relative measure of error
and is expressed as:

MAPE =
100%

m

m∑︂

i=1

⃓⃓
⃓⃓yi − ŷi

yi

⃓⃓
⃓⃓

Being a percentage, the MAPE facilitates error interpretation across different scales or
units, ideal for datasets with varying magnitudes.

When we evaluate a machine learning model, we are interested in its performance on
data it has not seen before. To this end we usually split the dataset into three datasets.
The training dataset is used to learn, i.e. tune the weights of the model. The validation
dataset is used to configure possible hyperparameters of the machine learning model.
This is done by evaluating the model on multiple runs with different hyperparameter
configurations on the validation dataset after training and comparing the performance.
The test dataset that is never shown in the training and validation process and can be
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used to evaluate the final performance of the model. It is important that the test dataset
can never be used for any tuning of the machine learning model.

There are two broad categories for gaining experience E. These are unsupervised and
supervised learning. In unsupervised learning the data does not have labels used for
classification or regression. The dataset contains many features from which we want to
learn certain properties of the data like probability distributions that generated the data.
The data can also be clustered as a means of learning from it. In supervised learning on
the other hand, the data includes the outcome (e.g. real measurement, label) we want
the machine learning model to learn. Traffic prediction is a supervised learning problem,
where the target values are future flow or speed measurements.

In the following section we will introduce two classical machine learning models, poly-
nomial regression and the k-nearest neighbours (KNN) algorithm. While regression
methods are widely used for time series forecasting, KNN needs to be adjusted to in-
corporate time series prediction properly. Afterwards we introduce the sub field of deep
learning, defining various layers of neural networks and how they are trained efficiently
with the backpropagation algorithm.

2.1 Classical machine learning

The mathematical theory in this section is well known and can be looked up in [62,
82].

2.1.1 Polynomial Regression

Regression analysis is a statistical approach used to model and analyse the relationships
between a scalar response y ∈ R and one or more explanatory variables x ∈ Rn. When we
assume that the relationship of the two is linear, we can use linear regression models. The
basic form of simple linear regression refers to the use of a single explanatory variable.
If there are more than one explanatory variables, the model is called multiple linear
regression. If there are multiple response variables, we call the model multivariate linear
regression. In our research regarding regression analysis, we concentrate on detector-wise
predictions, hence, do not use multivariate models.

Given the observed value y ∈ R, explanatory variables x ∈ Rn, parameters β ∈ Rn+1

and the error term ϵ ∈ R, the multiple linear regression model is defined as
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y = β0 + β1x1 + β2x2 + . . .+ βnxn + ϵ.

In the case of traffic data, the assumption of linearity between response and explanatory
variables does not hold. Hence, we use a special case of multiple linear regression called
polynomial regression. The underlying model, given m observations

yi = β0 + β1xi + β2x
2
i + . . .+ βnx

n
i + ϵi, i = 1, 2, . . . ,m

can be written as a system of linear equations

⎡
⎢⎢⎢⎣

y1
y2
...
ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

...
... . . . ...

1 xm x2
m . . . xn

m

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β0

β1
...
βn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε1
ε2
...
εm

⎤
⎥⎥⎥⎦ .

or in matrix notation:

y = Xβ + ϵ.

To solve for the parameters, we use the least squares method. The error term ϵ ∈ Rm

represents the difference between the observed value and the value predicted by the
model. When we are estimating the coefficients using least squares, we are effectively
minimizing the sum of the squared errors across all observations. This can be represented
by the equation:

min
m∑︂

i=1

ϵ2i = min ϵT ϵ = min(y −Xβ)T (y −Xβ) := minS(β)

To find the β that minimizes S(β), we take the derivative of S(β) with respect to β, set
it to zero and solve for β:

∂S(β)

∂β
= −2XT (y −Xβ) := 0

This yields the normal equations:
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XTXβ = XTy

From here, we can solve for β:

β = (XTX)−1XTy

The inverse (XTX)−1 is guaranteed to exist if m > n and all xi are distinct since X
is a Vandermonde matrix. However, the inverse is computationally expensive to find,
hence, in practice we usually use a gradient method to minimize the squared error, e.g.
gradient descent.

2.1.2 K-nearest neighbours

The k-nearest neighbours (KNN) algorithm is a non-parametric, lazy learning method
used for classification and regression. Given a new observation, it searches the training
set for the k training examples that are closest to the observation. Then, it returns the
most common output value among them for classification, or an average for regression.

In the context of traffic prediction for a series of timesteps, KNN predicts the outcome
variable for a new observation based on the average over each timestep of the outcome
variables of its k-nearest neighbours in the training dataset

D = {(Xt, yt)|Xt = [xt−T , . . . , xt−1], yt = [xt, . . . , xt+T ′−1],∀t = 1, . . . ,m ∈ N}.

The initiation step in the KNN algorithm involves determining the closest set of neigh-
bours to a given signal Xt based on the distance to potential candidate signals. Hence, we
compute the pointwise distance (e.g. MSE) of all signals Xt′ , t

′ ∈ {i|i ̸= t, i = 1, . . . ,m}
to the signal Xt and select the k signals with smallest distance.

The prediction ŷt for a new observation Xt is given by

ŷt =
1

k

k∑︂

i=1

yti =

[︄
1

k

k∑︂

i=1

Xti , . . . ,
1

k

k∑︂

i=1

Xti+T ′−1

]︄

where yti is the outcome variable for the i-th nearest neighbour to Xt in the training
dataset.
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We want to note that both KNN and polynomial regression learn models for each sensor
in the traffic network independent of each other, there is no transfer of data between
sensors occurring in the models. Furthermore if no time features are added, the models
do not profit off of the periodic behaviour of the traffic signals like described in Chapter
1. Another way to implement time is by learning multiple functions for each weekday
and hour of the day as we do in our works [39, 55, 56].

2.2 Deep learning

As their name suggests, artificial neural networks are inspired by animal brains. Natu-
ral neural networks are highly complex information processing systems. Their structure
consists of (partly hierarchically) interconnected cores in different areas. The cores them-
selves each consist of a large number of neurons, which in turn are closely interconnected.
Each neuron has a complex morphology and a variety of different non-linear mechanisms
used for information processing. Animal brains have a deep architecture. A given input
is perceived on several levels of abstraction. Each level of abstraction corresponds to a
different area of the cortex. In the first stages, we learn simple concepts and put them
together in deeper areas. This can be seen in the human visual system. A signal passes
through the ventral visual pathway from the retina to the lateral occipital cortex. The
lateral occipital cortex recognizes the signal. The ventral visual pathway consists of a
series of areas that process images in an increasingly abstract way, from, e.g., edges,
corners, colours and brightness to shapes and patterns to objects. This allows us to
learn and recognize three-dimensional objects from seeing two-dimensional images.

Artificial neural networks try to mimic animal brains to learn specific tasks. In this
thesis, we address regression tasks, specifically time series forecasting. Artificial neural
networks are made up of cores or commonly called layers or cells containing neurons,
each of them connected in different ways depending on the type of network. In recent
years, neural networks have become increasingly deep, i.e. the number of layers has
increased. Most of the time, a neural network learns to solve a task on a specific dataset,
e.g. learning to predict traffic flow or speed, solar activity and so on. The network is
shown many snippets from these time series present in the dataset. It then produces
an output time series predicting the next timesteps. This is called a forward pass or
forward step. With the true measurements and a so-called loss function, the error made
by the network can be measured. We then use an algorithm, called backpropagation,
to tweak the network weights such that next time the network is shown this sample, its
output is closer to the true measurements. This is called a backwards pass or backwards
step.

In this section, we first introduce a few of the layers that can make up an artificial neural
network, namely fully connected layers, graph convolutional layers and dilated causal
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convolutional layers. Afterwards, we present the learning process of a neural network.
The mathematical theory used in this section is well known and described by Goodfellow,
Bengio, and Courville [23] and LeCun, Bengio, and Hinton [41].

2.2.1 Feedforward fully connected neural networks

One of the first types of artificial neural networks are the so-called feedforward fully
connected neural networks. These networks consist of neurons or nodes that are grouped
into layers. Neurons in the same layer are not connected, but only to neurons in the next
layer. In particular, there are no connections back. Information moves only forward,
there are no loops. This type of network can be interpreted as a directed acyclic graph
(DAG), where the endpoints (neurons) of the edges (connections) are restricted to be
located in consecutive layers. An example is shown in Figure 2.1. Feedforward fully
connected neural networks are often called dense networks or multilayer perceptrons
(MLPs).

Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1: A dense neural network with three neurons in the input layer, five neurons
in the hidden layer and one output neuron.

The structure of a dense neural network is given by its architecture descriptor
(N0, N1, . . . , NL) where L is the total number of layers (N0 not included) or the depth
of the network and Nℓ is the number of neurons in the ℓth layer. Each neuron in the ℓth
layer is connected to every neuron in the (ℓ− 1)th layer by the relation

σ(w(ℓ)T
n x+ b(ℓ)n ), n = 1, . . . , Nℓ

where x ∈ RNℓ−1 denotes the input of the neuron, w(ℓ)
n ∈ RNℓ−1 a set of linear weights,

b
(ℓ)
n ∈ R a bias and σ : R → R the so-called activation function. After computing the

outputs of layer ℓ, they are fed to the (ℓ+1)th layer and so forth for ℓ ∈ {1, ..., L} = [L].
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The total action of a dense neural network or each layer can be divided into a linear and
a non-linear mapping. The linear mapping

f (ℓ) : RNℓ−1 → RNℓ

x ↦→ f (ℓ)(x) = W (ℓ)x+ b(ℓ)
(2.1)

with a weighting matrix W (ℓ) = [w
(ℓ)
1 , ..., w

(ℓ)
Nℓ
]T ∈ RNℓ×Nℓ−1 and a bias vector b(ℓ) ∈ RNℓ ,

depicts the connection between the neurons of the (ℓ−1)th and ℓth layer. The non-linear
mapping

σ(ℓ) : RNℓ → RNℓ

x = (x1, ..., xNℓ
) ↦→ σ(ℓ)(x) =

(︂
σ
(ℓ)
1 (x1), ..., σ

(ℓ)
Nℓ
(xNℓ

)
)︂ (2.2)

is called the activation function. With the linear mapping (2.1) and the non-linear
mapping (2.2), a feedforward network can be constructed as follows.

Definition 2 (Feedforward fully connected neural network)
With (2.1) and (2.2), the function

fnet(x) =
(︁
σ(L) ◦ f (L) ◦ σ(L−1) ◦ ... ◦ f (2) ◦ σ(1) ◦ f (1)

)︁
(x) (2.3)

is called a (deep) feedforward fully connected neural network with L layers.

The compositions σ(1) ◦f (1), ..., σ(L−1) ◦f (L−1) are called hidden layers and σ(L) ◦f (L) the
output layer. For L > 2, i.e more than one hidden layer, the network is called a deep
network. In Figure 2.1 the different layers and the actions of the mappings σ(ℓ) (circles)
and f (ℓ) (arrows) are visualized.

While the focus of this thesis lays on convolutional neural networks, fully connected net-
works or layers are still important, as they often make up the last layers of convolutional
neural networks, e.g. to map to the number of outputs. Additionally, convolutional
neural networks can be seen as a special case of dense networks.
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2.2.2 Convolutional neural networks

Convolutional neural networks or short CNNs are a biologically inspired variation of
dense neural networks. Similar to neurons in the visual cortex of animal brains, neurons
in CNNs share weights unlike in dense neural networks, where every neuron has its
own weight vector associated. Deep dense neural networks can easily use millions of
parameters. Weight sharing reduces the number of parameters massively. Additionally,
the dimensions of the inputs are kept in contrast to in dense networks, where inputs
have to be mapped to a vector. Hence, convolutional neural networks are widely used
for many tasks in favour of dense networks, because local neighbourhoods are retained.

As the name suggests, the convolutional neural network is made up of convolutions with
a kernel K. These kernels are trained to recognize patterns in the data. By combining
convolutions and downsampling operations, the so-called receptive fields of neurons in
deep layers grow, allowing them to detect complex patterns. The receptive field in a
neural network refers to the part of the image that is visible to a neuron. This receptive
field increases linearly as we stack more convolutional layers or increases exponentially
combining convolutions and downsamplings.

The kernel dimensions depend on the amount of input features or channels F ∈ N,
output channels D ∈ N and chosen kernel size k ∈ N, i.e. K ∈ RD×F×k. Note, that the
kernel dimension does not depend on the length of the input signal, hence, the number
of parameters is kept low. The discrete convolution operation in a convolutional layer is
defined in the following.

Definition 3 (Convolutional layer) Let X ∈ RF×N×T be an input signal to the con-
volutional layer with F ∈ N features, N ∈ N nodes and length T ∈ N. Further, let
D ∈ N denote the amount of output channels of the layer and K ∈ RD×F×1×k a kernel
with kernel size k = 2i+ 1, i ∈ N. Then, we define the output of the convolutional layer
by

X ′(p,m, n) = (X̄ ∗ K)(p,m, n) =
F∑︂

q=1

i∑︂

j=−i

K(p, q, ·, j)X̄(q,m, n+ j). (2.4)

The obtained output feature map X ′ ∈ RD×N×T has the same resolution as X, when X
is padded in front and after the signal such that X̄ ∈ RF×N×T+2i. Note that the notation
assumes that the central component of the kernel is at K(·, ·, 0, 0).
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2.2.2.1 Dilated causal convolution

Compared to traditional convolutional layers as defined before, dilated causal convolu-
tional layers put an emphasis on preserving the temporal order of data, hence the term
causal. They are instrumental when working with sequential data such as time series,
where it is essential to maintain causality — meaning the output at any time t should
only depend on the inputs at times less than or equal to t.

Incorporating dilation into these convolutions extends the receptive field without increas-
ing the number of parameters or the computational cost appreciably. This is achieved by
introducing a dilation rate that skips input values at regular intervals, thereby capturing
broader contexts in the input data. The discrete dilated causal convolution operation is
defined in the following.

Definition 4 (Dilated causal convolutional layer) Let X ∈ RF×N×T be an input
signal to the convolutional layer with F ∈ N channels, N ∈ N nodes and length T ∈
N. Additionally, let D ∈ N denote the amount of output channels of the layer, K ∈
RD×F×1×k a kernel with kernel size k = 2i + 1, i ∈ N. At last, let d ∈ N the dilation
factor and X̄ ∈ RF×N×T+2di the padded input signal X. Then, we define the output of
the dilated causal convolutional layer by

X ′(p,m, n) = (X̄ ∗ K)(p,m, n) =
F∑︂

q=1

2i∑︂

j=0

K(p, q, ·, j)X̄(q,m, n− dj).

When adopting a dilation rate d > 1, the convolution operation skips input values,
extending its receptive field without an increase in the computational resources or pa-
rameters required. This property facilitates the capture of hierarchical patterns as more
extensive contexts are obtained by increasing the dilation rate in subsequent layers.

2.2.2.2 Graph convolution

As the terminology implies, graph convolutional networks (GCNs) implement convolu-
tions on graphs, made up of nodes and edges. Unlike conventional CNNs that operate
on a regular grid, GCNs work with irregular data represented as graphs, while seeking
to identify and extract local patterns within the neighbourhood of each node.

It is still unclear what the best method is to conduct convolutions on graphs. There
are two main research directions. Graph convolution can be defined from the spectral

20



perspective, where graph filtering and graph wavelets are the main foci [76]. Spectral
graph convolutions are defined in the spectral domain based on graph Fourier transform.
Doing this allows us to compute the graph convolution by multiplying two Fourier trans-
formed graph signals and then taking the inverse Fourier transform. Another method to
define graph convolution is in the spatial domain by aggregating node representations
from the node neighbourhoods. In general, graph convolutions are used to aggregate
information from neighbouring nodes in a convolutional fashion. Zhang et al. [87] have
published a comprehensive review about graph convolutional networks. Zhou et al. [88]
additionally cover graph attention and gated graph neural network approaches. In their
review, Wu et al. [81] elaborate on spatio-temporal graph convolutional networks as a
combination of graph convolution for the spatial domain followed by normal convolution
for the temporal domain. This is the approach we are taking in our framework, but
the sequence of operations is discovered by a genetic algorithm. Using spatio-temporal
graph convolutional networks has been extensively studied for the task of traffic fore-
casting [17, 61, 79, 84]. All of these methods use a spectral approach. To this end
let the graph Fourier transform and its inverse be respectively denoted by F and F−1.
Then the transform of a graph signal X into the spectral domain by F and its inverse
operation are defined as

F(X) = UTX,F−1(X) = UX,

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −
D− 1

2AD− 1
2 . Here, D is the degree matrix with Dii =

∑︁
j(Ai,j) and A the adjacency

matrix of the graph. The normalized graph Laplacian has the property of being real
symmetric positive semidefinite. Therefore, it can be factorized as L = UΛUT , where Λ
is the diagonal matrix of eigenvalues. Then, according to the convolution theorem [54],
the convolution operation of the graph signal X with a filter g is defined as

g ∗X = F−1(F(X)⊙F(g)) = U(UTX ⊙ UTg),

where ⊙ denotes the hadamard product and UTg is the filter in the spectral domain.
By simplifying the filter as as a learnable diagonal matrix gθ, we finally obtain:

gθ ∗X = UgθU
TX

At this point there is a further split into multiple research directions based on the choice
of the learnable diagonal matrix.

Spectral Networks [12, 29] use learnable diagonal matrices gθ = diag(w), w ∈ RN as
filter. However, this comes with a few disadvantages due to the eigen-decomposition of
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the Laplacian. Especially the computational complexity of O(N3) makes it not viable to
use in practice. Defferrard, Bresson, and Vandergheynst [16] propose the ChebNet based
on the suggestion, that gθ can be approximated by a truncated expansion as Chebyshev
polynomials Tk(X) [25]:

gθ ≈
K∑︂

k=0

θkTk(L̃)

Here, L̃ = 2L
λmax
− I is the scaled Laplacian, λmax is the largest eigenvalue of L and I is

the identity matrix. Tk can be computed recursively as:

Tk(X) = 2xTk−1(X)− Tk−2(X)

with T0(X) = 1 and T1(X) = X. Consequently, the filter becomes a K-localized oper-
ator, meaning it relies only on the K-hop neighbourhood of each node, where K is the
order of the polynomial.

One can show via induction that Ti(L̃) = UTi(Λ̃)U
T . Hence, we can simplify the graph

convolution to:

gθ ∗X =
K∑︂

k=0

θkTk(L̃)X

With this, we can define the graph convolutional layer:

Definition 5 (Graph Convolutional Layer) Let X ∈ RT×N×F be an input signal to
the convolutional layer with F ∈ N channels, N ∈ N nodes and length T ∈ N. Moreover,
let D ∈ N denote the number of output channels and K ∈ RD×F×K be a tensor of
Chebyshev coefficients where K is the order of the polynomial. Then, we define the
output of the graph convolutional layer by

X ′(p,m, n) =
F∑︂

q=1

K∑︂

k=0

K(p, q, k)Tk(L̃)X(·, ·, q),

where L̃ = 2L/λmax − IN is the normalized Laplacian with λmax being the largest eigen-
value of L and IN is the N ×N identity matrix. The Chebyshev polynomials Tk(L̃) are
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applied to this rescaled Laplacian, yielding a matrix for each order k. These matrices
are applied to each channel of the input feature matrix X.

For each node i in the graph, the output feature value X ′(p,m, n) depends on a weighted
sum of the input features of all nodes, where the weights are determined by the Cheby-
shev coefficients and the graph structure encoded in the Laplacian L.

In practice, the order K of the Chebyshev polynomial is often chosen to be relatively
small to reduce the computational complexity and to prevent overfitting. For example,
Kipf and Welling [35] simplify the layer by setting K = 1 and λmax = 2.

Deep graph convolutional neural networks can suffer from performance degradation due
to oversmoothing, overfitting and training instability [42]. Zhou et al. [89] show that
normalizing each node during training can greatly decrease these problems. Hence, in
our framework, we apply their node normalization after each graph convolutional layer.
In our experiments, this lead to great improvements compared to other techniques such
as batch normalization [32], where normalization is done for each mini-batch of data.

2.2.3 Backpropagation

We have presented commonly used layers in convolutional neural networks. In the
following, we describe the basics of the optimization (also learning or training) process
in which the weights of a neural network are computed.

Similarly to fully connected networks, convolutional networks can also be described as
a mapping

fΘ(X) =
(︁
σ(L) ◦ f (L) ◦ σ(L−1) ◦ ... ◦ f (2) ◦ σ(1) ◦ f (1)

)︁
(X) ∈ RN×T ,

where f (ℓ) are layers as presented in the previous section, σ(ℓ) are activation functions, Θ
the network parameters and N × T is the dimension of the output. Since we especially
consider two-dimensional data in this thesis (although the concepts can easily be applied
for one- and three-dimensional data), the inputs to the network are graph signals N ×T
and are made up of F channels, e.g. flow, speed and other features. Commonly, inputs
to the network are not made up of one sample, but rather, batches made up of multiple
random samples are propagated through the network at once. The amount of samples
in a batch B is called the batch size nB ∈ N. For simplicity, we explain the concepts of
learning for a batch size of nB = 1 in the following.
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As before, a data set consists of pairs {(Xt, yt)}t=1,...,m∈N, where Xt ∈ RF×N×T is the
input samples and yt ∈ RD×N×T ground truth labels (measurements). Given an input
Xt, the network predicts

ŷt = fΘ(Xt).

Especially in the beginning, when network parameters are mostly random, the predicted
labels ŷt are dissimilar from the ground-truth class labels yt. We quantify the dissim-
ilarity with a loss function as mentioned in the beginning of this chapter. For all the
networks in this thesis, we use the mean squared error (MSE), which measures the
euclidean distance between the time series. It is defined as

MSE(yt, ŷt) =
1

m

m∑︂

t=1

(yt − ŷt)
2

The training goal is to find network parameters Θ∗ such that

Θ∗ = argmin
Θ

m∑︂

t=1

MSE(yt, fΘ(Xt)).

Backpropagation is an efficient way to compute the gradients of the network, which
are necessary for most optimization algorithms. The gradient of the loss with respect to
every single weight has to be computed. To do so, we use the chain rule of differentiation.
We do not go through the whole backpropagation algorithm for convolutional neural
networks, as the formulas can get quite large, but we show the key concepts. We compute
the gradient of each parameter in every layer of the network. For example, let k(ℓ)

ι denote
the kernel weight in the ℓth layer at position ι ∈ {−i1, . . . , i1} × 1. For simplicity, the
amount of channels is always 1. We compute the gradient of the MSE with respect to
k
(ℓ)
ι , i.e.

∂MSE

∂k
(ℓ)
ι

. (2.5)

When f (ℓ) is a convolutional layer, let

x(ℓ)
m,n = f (ℓ)(o(ℓ−1)) =

i1∑︂

ι=−i1

k(ℓ)
ι o

(ℓ−1)
m+ι,n
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be the (m,n)th value of the output of the convolution operation in layer ℓ as defined
in (2.4), where o(ℓ) = σ(ℓ)(x(ℓ)) denotes the activations of the ℓth layer. Using the chain
rule of differentiation for the MSE gradient (2.5), we obtain

∂MSE

∂k
(ℓ)
ι

=
N∑︂

n=1

T∑︂

m=1

∂MSE

∂x
(ℓ)
m,n

∂x
(ℓ)
m,n

∂k
(ℓ)
ι

,

where N and T are the amount of nodes and length of the output feature map. The
derivative of the output value with respect to the kernel weight can easily be computed,
hence, we obtain

∂MSE

∂k
(ℓ)
ι

=
N∑︂

n=1

T∑︂

m=1

∂MSE

∂x
(ℓ)
m,n

o
(ℓ−1)
m+ι,n =

N∑︂

n=1

T∑︂

m=1

δ(ℓ)m,no
(ℓ−1)
m+ι,n.

This means that the gradient of the MSE with respect to a kernel weight depends on the
previous layers output and the gradient of the MSE with respect to the output value of
the layer the kernel weight belongs to. We can further compute the δ

(ℓ)
m,n using the chain

rule

δ(ℓ)m,n =
∂MSE

∂x
(ℓ)
m,n

=
∑︂

Q

∂MSE

∂f (ℓ+1)(o(ℓ))Q

∂f (ℓ+1)(o(ℓ))Q

∂x
(ℓ)
m,n

Here, the set Q ∈ N2 denotes the index set of values in the output f (ℓ+1)(o(ℓ)) that are
affected by x

(ℓ)
m,n. We can not specify Q, because following the convolutional layer might

be any layer, e.g. another convolution or skip connection. Hence, the affected values
might differ. Note that

δ(ℓ)m,n =
∑︂

Q

δ
(ℓ+1)
Q

∂f (ℓ+1)(o(ℓ))Q

∂x
(ℓ)
m,n

.

Therefore, δ(ℓ) can be computed recursively while the second gradient is known before-
hand (dependent on the used layer and activation). The recursive computation of δ(ℓ)
starts from the last layer and propagates backwards through the network to the first
layer giving this process its name backpropagation.
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After computing the gradients via backpropagation, we can update the network param-
eters with gradient descent

Θ :− Θ− η
∂MSE

∂Θ
,

where η ∈ R+ is called the learning rate. When all samples in the training set (a subset
of the whole dataset) are propagated through the network once and the parameters
updated, we say that an epoch has passed. The samples are usually shuffled before
starting the next epoch and some kind of data augmentation might be applied to combat
overfitting.
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3 Neural architecture search

With advances in computational hardware, it is more feasible to train large neural net-
works today than ever before. It is not unusual for a network to consist of hundreds of
layers made up of billions of parameters. Most of these parameters are trainable param-
eters, e.g. (kernel) weights and biases. The number of hyperparameters grows with ever
increasing network sizes. We are faced with lots of choices:

• Depth of the network
One has to decide how many layers are used in a neural network. More layers can
help in finding and combining patterns within the data. However, with a growing
number of layers, the number of parameters usually grows. This can increase the
risk of overfitting to the training dataset, decreasing the performance on the test
dataset.

• Layer operation and connections
The choice of operation at each depth is also crucial. One has to choose which
operations to apply and also in which order. In ResNet presented by He et al.
[27] it was found that adding skip connections after convolutional blocks aids in
training the networks and leads to better performance. However, different orders
of operations within the ResNet blocks lead to substantially different results [28].

• Kernel size of convolutions and K-hop neighbourhoods of graph convo-
lutions
The kernel size impacts the receptive field of a neural network, i.e. how many
surrounding pixels or values can be seen. There is no best choice of kernel size or
K-hop neighbour for nodes. Hence, these hyperparameters have to be chosen for
the dataset at hand.

When tuning a neural network, it feels like this list goes on forever. Some of these
choices can be made based on self-made experience or experience from other researchers.
A common approach is a grid search over many possible hyperparameters, i.e. for each
combination of hyperparameters, we train a neural network and evaluate the performance
on a held-out validation set. We can then choose the hyperparameter configuration with
the best result on the validation set. Grid search, however, suffers from the so-called
curse of dimensionality [8, 9] as it can easily explode due to the sheer amount of possible
hyperparameter combinations growing exponentially. In recent years a new research
branch called neural architecture search (NAS) directed at these problems has emerged
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[2, 5, 10, 22, 24, 47, 65, 67, 77, 90]. While being more efficient, earlier improvements of
grid search, e.g. random search [11] for hyperparameter optimization do not optimize the
architecture directly. Neural architecture search has evolved to automatically discover
novel neural network architectures. In this chapter we give an overview of the history
of neural architecture search before diving deeper into the main approach used in this
thesis: evolutionary neural architecture search.

3.1 Literature review

One of the earliest NAS methods is called neuro-evolution [22, 24, 77]. Evolutionary
algorithms are inspired by the evolution in nature. Some candidate solutions to a specific
problem are (randomly) initialised, e.g. in our case simple neural networks and their
so-called fitness evaluated. The fitness measures the performance of a candidate on the
task. Based on the fitness of each candidate solution, they are then mutated in some
way depending on the framework.

Early neuro-evolution approaches specify a fixed fully connected neural network topol-
ogy or architecture and evolve the weights. This is contrary to most neural network
optimization schemes, which use backpropagation. It is debatable whether only opti-
mizing the weights is sufficient to find the best approximation. Gruau, Whitley, and
Pyeatt [24] compare evolving of the weights of a fixed topology and evolving the weights
and the topology simultaneously. They conclude that although evolving the architecture
additional to the weights takes more time for the algorithm, the architectures found are
smaller and a better fit for the specific problem. In contrast, it takes immense human
effort, experience and time to design the fixed architecture. Their idea, however, was
later compromised by Gomez and Miikkulainen [22], who have shown that randomly
choosing the number of hidden neurons is a superior method. Stanley and Miikkulainen
[77] presented the NEAT method that increases the efficiency of weight and topology
optimization, leading to superior results on benchmark learning tasks over methods with
fixed topology, including the method by Gomez and Miikkulainen [22]. The basic idea is
to alternate the optimization of weights and architecture in order to balance the fitness
and diversity of candidates.

When there is a lot of data at hand, we require large neural networks. However, the
above approaches create too small networks, because their goal is to be efficient instead
of act on a large scale. Real et al. [69] search for large models on the CIFAR-10 and
CIFAR-100 datasets (image classification). Instead of allowing mutations such as adding
a single node to the network, their algorithm can mutate whole layers, adding hundreds
of nodes at a time, thereby increasing expressive power quickly. This extensive search
is slow, but the discovered architectures can reach competitive accuracies in comparison
to hand crafted designs.
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Search based methods like evolution are generally slow and computationally expensive
because they require a massive amount of sampled candidates, each of which has to be
trained until convergence to measure its fitness. Hence, approaches moved away from
evolution and focus on reinforcement learning (RL). Zoph and Le [90] use a recurrent
neural network (RNN) to predict hyperparameters of a convolutional neural network
trained with a policy gradient method. They remark that the structure and connectivity
of a neural network can generally be specified by a string of variable length. This makes
it possible to sample topologies using RNNs. In their method, they use the RNN to
predict one hyperparameter of a network at each timestep until they obtain a complete
architecture. The resulting network is trained until it converges. Then, the accuracy
on a validation set is computed. RL algorithms try to maximize the reward given a
problem. The reward signal can be based on the performance of the networks as in the
case of Zoph and Le [90], but it can also include other criteria.

The idea of neural architecture search is also used in following works. Since the method
proposed by Zoph and Le [90] is still slow when used on large datasets, Zoph et al. [91]
propose to learn a single cell which can be stacked in series to get an arbitrary model
size instead of learning the whole network. Cells or layers are made up of nodes, each
connected by different commonly used operations. These operations make up the so-
called NASNet search space, e.g. identity, convolutions, dilated convolutions, separable
convolutions with different kernel sizes, max-pooling with different sizes. The RNN can
at each time step decide which of these operations get applied to the preceding hidden
state. The resulting architecture is a multi-layer network made up of the learned cell,
each with the same structure but with different weights. Their method, however, still
requires learning the sampled architecture from scratch to obtain the reward signal. The
search takes between 32,000 and 43,000 GPU hours. GPU hours are defined as hours
trained on a GPU. As large models are often trained in parallel on multiple GPUs,
it is necessary to report the total amount of hours spent over all these GPUs for fair
comparison. Additionally, it has to be stated which GPU is used, since there can be
great performance differences. Due to this, researchers need to train all models they
want to compare on the same GPUs for a fair comparison and can only cite results
when the same GPUs were used in the original work. Pham et al. [65] observe that
all the iterations in NAS can be seen as iterating over sub-graphs of a larger super-
graph. Hence, it is possible to represent the search space of NAS by a single Directed
Acyclic Graph (DAG). With this method, weight sharing of all sub-graphs can be made
possible. The sampled architectures do not have to be trained from scratch each time,
but can share weights. An architecture can then be sampled as a sub-graph with policy
gradient. The only differences between the architectures are the paths chosen in the
DAG. This leads to a speed-up of 1000 times compared to the previous method, hence,
Pham et al. [65] call their method Efficient NAS. However, the speed-up brings with it
slightly worse results on CIFAR-10 than the original approach by Zoph et al. [91] (2.89%
compared to 2.65% error), despite using 30% more parameters. Ashok et al. [2] use RL
NAS to compress big neural networks into smaller ones to make them applicable in the
real world. Their algorithm takes the larger teacher model as input and outputs the
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smaller student network. The reward used for the RL algorithm is computed from the
students evaluation performance and compression. They can compress neural networks
by one magnitude while maintaining similar performance to the teacher. However, using
this method somewhat defeats the purpose of NAS, since the teacher networks are hand
crafted and have to be selected for the algorithm.

It has become apparent, that all of the presented approaches come with scalability
issues or when sped up do not perform sufficiently. Liu, Simonyan, and Yang [47]
address these problems by relaxing the search space such that it becomes continuous
instead of discrete. They do this by applying all possible operations at each edge of the
DAG and learn a weighting of the outputs (mixed operation). Their approach, called
DARTS, makes it possible to optimize the architecture (weights) by gradient descent
with respect to the validation loss. They use a super-network made up of cells with the
same topology. This method was introduced by Zoph et al. [91]. While the cells share
their architecture, the (e.g. kernel) weights can be learned individually. The architecture
and the weights are trained alternately on the validation set (for the architecture) and
the training set (for the weights) with gradient descent. This is done to obtain an optimal
network architecture and associated weights for the given data set. After the search,
they obtain a promising cell and stack it multiple times to build a new neural network.
This (final) network is then trained from scratch. While DARTS improves run time
tremendously, the search process is biased as a result of the bi-level optimization and
greedy behaviour of gradient descent. Their algorithm tends to prefer skip connections
[60] and its performance collapses after a large number of epochs [44]. Mun, Ha, and Lee
[60] solve this issue by introducing dynamic exploration in DE-DARTS. Liang et al. [44]
introduce a simple early stopping in their DARTS+ to tackle the overfitting problem.
After the search process, a discrete architecture has to be derived, since applying mixed
operations is computationally expensive. When the weights of the mixed operations
converge against a one hot encoding, the discovered and final architectures are the
same. In practice, this is not always the case leading to big differences in learned and
discrete architecture. The transfer from the smaller network with less cells to the larger
network with more cells often creates a gap in performance as found by Chen et al. [14].
To alleviate this problem, they use an algorithm that allows the network depth to grow
slowly. However, this results in higher computational overhead and search instability
necessitating search space approximation and regularization.

Very recently, there have been advances in performance estimation techniques for neural
architectures [7, 52, 57, 74]. Performance estimation refers to the process where a
neural network is not trained until convergence to obtain the performance, but it is
estimated. This estimator can be a shortened learning process, e.g. training fewer
epochs or batches per epoch and using the best performance during shortened training
as an estimator, or doing additional extrapolation of the learning curve [18]. Similarly,
training speed estimators estimate how fast a neural network can learn [72]. This is
usually done by training a few epochs and computing a weighted sum over the losses
of each epoch. Model based estimators learn a prediction function from architecture
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feature encodings. Hybrid methods combine extrapolation and model based estimators.
There are also the previously mentioned weight sharing techniques in a super-network as
used in e.g. DARTS. Most recently, zero-cost (ZC) proxies, originating from pruning of
architectures, have been explored as performance estimators [1, 49, 50, 57, 80]. Pruning
for neural networks refers to the process of removing certain elements of a network, such
as neurons, weights, or even entire layers, to reduce the model’s size and complexity while
maintaining (or even improving) its performance. The goal of pruning is to achieve a
more efficient neural network that can be deployed in resource-constrained environments
like mobile devices or edge devices without a significant loss in accuracy. To do so,
pruning methods use measures for each part of the neural networks. ZC proxies use the
same measures but applied to the whole architecture. This results in a score that is used
to rank neural architectures. Evaluating ZC proxies usually involves passing one batch
through the neural network and applying the metric to the activations or outputs. For
some ZC proxies a backwards pass to compute gradients is necessary. It can easily be
seen that these methods are much faster in estimating performance of neural networks
than training until convergence or early stopping, but might come at the expense of
correlation between true performance and the score.

To conclude, the objective of NAS is to find an optimal architecture A from the space
of architectures A that minimizes the loss function L on a given dataset D. To be more
precise, we want to solve a bi-level optimization problem:

A∗ = min
A∈A
L(θ∗(A), A,Dvalid) (3.1)

s.t. θ∗(A) = argmin
θ
L(θ, A,Dtrain) (3.2)

Here, Dtrain ⊂ D and Dvalid ⊂ D respectively denote the training and validation datasets
and θ the network parameters.

To solve the bi-level optimization problem, NAS can be split into three components:
the architecture search space (definition of A), the search method (upper level objective
function) and the performance estimation (lower level objective function). In this thesis,
we want to explore the application of evolutionary NAS to traffic forecasting and if the
use of ZC proxies makes this method viable to use in applications. To our knowledge, the
only previous research on NAS for our traffic prediction problem has been conducted by
Rahimipour, Moienfar, and Hashemi [66], Pan et al. [64], Ke et al. [33] and Chen et al.
[13]. Rahimipour, Moienfar, and Hashemi [66] use an evolutionary algorithm to optimize
the number of neurons in a two layer fully connected neural network and the ratio and
slope of the activation function on a small dataset with only three sensor locations. Their
method produces satisfactory results. Pan et al. [64] and Ke et al. [33] use differentiable
NAS and call their frameworks AutoSTG and AutoSTG+. In addition they employ
meta learning to learn adjacency matrices for spatial graph convolution and kernels for
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temporal convolution from meta knowledge of the attributed graph. Chen et al. [13] build
on the DARTS framework adding a multi-scale decomposition transforming raw time
series to multi-scale sub-series prior to training. The adaptive graph learner finds inter-
variable dependencies for the different time scales, i.e. they learn a general adjacency
matrix and scale-dependent ones. Our framework is the first one to employ evolutionary
NAS with convolutional operations for the task of traffic forecasting. Furthermore, it is
the first to apply zero-cost proxies to the traffic prediction task.

In the following, we will present our framework in detail. The search space, i.e. the set
of all possible neural networks that is described in Section 3.2, the search method in
Section 3.3 and the performance estimation in Section 3.4.

3.2 Search space

The search space of NAS consists of all possible neural networks that can be formed
by selecting size, connections and operations. It includes the operations and choices of
their hyperparameters and the structure of the neural network. A neural network is
usually learned fully or split into cells with the same structure stacked on top of each
other to obtain a larger network [45, 46, 68, 91]. Searching for a full architecture can be
seen as a special case of the cell based approach where just one cell is used for the final
architecture.

Each cell consists of nodes x(i), i ∈ {−2,−1, 0, . . . , N − 1|N ∈ N}. The nodes x(−2) and
x(−1) are the inputs of the cell. The other nodes can be seen as feature maps. The nodes
are ordered in a sequence, forming a Directed Acyclic Graph (DAG). Each edge (i, j) is
associated with an operation o(i,j) mapping the node x(i) to a feature map. To obtain
the node x(j) all of its preceding nodes are summed up:

x(j) =
∑︂

i<j

o(i,j)(x(i)), j ∈ {0, . . . , N − 1}

Each cell has as input nodes x(−2) and x(−1) the outputs of the two preceding cells. For
the first cell in the network, x(−2) and x(−1) are both the input graph signal. The output
of the cell is the sum or concatenation of the nodes x(j) for j ∈ {N −M, . . . , N − 1}.
The parameter M ∈ N controls how many nodes are concatenated. The amount of
features or channel depth usually stays the same in a cell. The cell based approach has
the disadvantage that it adds two hyperparameters one has to search over, namely the
amount of cells in the search architecture and the amount of nodes in the cell. Hence,
it has to be run multiple times for those.
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Figure 3.1: Architecture search space of our framework.

In our framework, we learn the whole architecture, eliminating the need to search over
the amount of cells in the search architecture. The general structure of the resulting
neural networks can be seen in Figure 3.1. The inputs to the networks are the last T
traffic signals X ∈ RF×N×T as described in the traffic prediction problem 1 in Chapter
1 and the convolutional layer definitions in Chapter 2 with some feature vector incor-
porating time information, e.g. weekday, hour, minute of each timestamp. We apply a
2 dimensional convolutional layer with 1 × 1 kernel before applying the first operation
in the DAG as found by the search algorithm. The candidate operations that can be
chosen at each edge depend on the task. For image classification usually normal, di-
lated and separable convolutions are used [47]. For the task of traffic predictions, we
use the operations described in Section 2.2, i.e. graph convolution and dilated causal
convolution. Additionally, the operation space often includes skip connections, which
apply a convolution with 1× 1 kernel to the input, and none, which returns just zeros.
After the DAG, we apply another 2 dimensional convolution with 1× 1 kernel size and
a feedforward fully connected neural network for downsampling the channel depths and
scaling. We obtain the output graph signal X ∈ RD×N×T ′ with T ′ timestamps into the
future and D features, where D = 1, since we only predict flow or speed.

Note that our networks do not have a boundary on the size, i.e. they can become as
large as the search method allows. Since we learn the full architecture in contrast to a
cell, it is sufficient to use one input node (the input graph signal). The channel depth
increases by a factor of two throughout the network until a maximum possible depth is
reached. Hence, the channel depth nc(i) of each node x(i) is defined by

nc(i) = min(2inc(0), nc,max), i ∈ {1, . . . , N − 1},

where nc(0), nc,max, respectively, are the starting and maximum channel depth that can
be chosen to control the amount of network parameters.
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3.3 Evolutionary algorithms

NAS requires navigating through vast and complex search spaces, which is challenging
due to the high dimensionality and discrete nature of the problem. To address these
challenges, meta-heuristic algorithms have emerged as powerful tools. Among these,
three significant evolutionary algorithms, namely Genetic Algorithm (GA), Differential
Evolution (DE) and Particle Swarm Optimization (PSO), are analysed in the following
to determine the most suitable approach for our task.

Genetic Algorithm (GA) is an evolutionary algorithm inspired by the mechanisms of
natural selection and genetics [21, 30]. It operates on a population of candidate solutions,
simulating natural evolutionary processes such as selection, crossover and mutation.
Exploitation is achieved through the selection process, focusing on individuals of higher
fitness to exploit the fitness information within the population [19]. In Elitism selection,
the candidates with highest fitness are picked, while in binary tournament selection two
candidates are drawn randomly from the population and the one with higher fitness
is selected. Crossover mixes traits from paired parent solutions to create offspring,
introducing new solution variations. Mutation randomly alters parts of a solution. The
genetic operators (crossover and mutation) facilitate exploration by creating diversity
and introducing new genetic structures into the population [19]. GA’s efficacy in NAS
stems from its robustness in handling discrete and unordered search spaces and its
ability to explore a diverse range of solutions. Additionally, it is highly parallelizable
since candidate solutions are not dependent on each other.

Differential Evolution (DE) is a population-based optimization method known for its
success in continuous optimization problems [78]. It distinguishes itself with a unique
mutation strategy where differences between randomly selected individuals are used
to perturb other individuals in the population. DE was designed for continuous spaces,
hence, its mutation strategy might not be as effective for the discrete, categorical choices
characteristic of NAS search spaces. Awad, Mallik, and Hutter [3] transfer the discrete
operation space into a continuous one by defining a sub interval in [0, 1] ∈ R for each
operation. This makes it viable to use the algorithm and leads to superior performance
compared to other search algorithms like random search and regularized evolution. DE
supports parallel execution, as each individual in the population can be evaluated inde-
pendently.

Particle Swarm Optimization (PSO) inspired by the collective behaviour observed in
natural swarms like birds and fish, employs a set of particles that move through the
search space [34]. Each particle’s movement is influenced by its own best-known posi-
tion and the best-known positions of its neighbours. This social sharing of information
guides the swarm towards optimal regions in the search space. PSO, originally designed
for continuous spaces, has been adapted for discrete search spaces in NAS [15, 48]. This
adaptation often involves quantizing the search space or using binary versions of PSO.
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Exploration and exploitation are balanced through particle movement. Particles explore
the search space by following their own and their neighbours’ best-found positions, al-
lowing a mix of personal and social learning. It is inherently parallel, as particles can
be updated simultaneously.

In our work we selected GA as the algorithm to use in our search method, because there
is no need to transform the search space like in DE and PSO. Additionally, the genetic
operators mutation and crossover maintain a diverse population. This is also the case
in DE. In PSO, the particles tend to converge to local optima due to the nature of the
particle movement towards the best known positions. Due to time restrictions, in this
work we did not have the chance to run a comparative simulation among GA, DE and
PSO. However, in future work we plan to tackle this point in a comprehensive way.

The GA utilized in this study follows a structured approach, encompassing several stages.
At the initialization we generate a diverse population of neural network architectures,
with each individual representing a unique architecture. This diversity is crucial for
a comprehensive exploration of the search space. Then, we iterate through the genetic
operations and selection process. The selection process prioritizes architectures based on
their fitness, favouring those more suited to the task. Crossover and mutation introduce
new architectures into the population, ensuring continuous exploration and adaptation.
The algorithm terminates after a predetermined number of generations or when a certain
performance threshold is achieved. This termination criterion is essential to ensure that
the search process is both efficient and effective. The pseudo code of our genetic algo-
rithm is shown in Algorithm 1 and described in more detail in the following sections.

3.3.1 Initialization

The algorithm begins by creating an initial comparatively large random population of
size nw ∈ {2n|n ∈ N} as a so called warm-up population. Each architecture within
the search space has an equal probability of selection. To obtain their fitness we use a
performance estimator as described in Section 3.4. From this warm-up population, we
choose the top np ∈ {2n|n ∈ N} architectures for the following cycles. This method of
selection is called elitism.

3.3.2 Evolutionary operators

Once the population is initialized and evaluated, the core iterative process starts. This
involves repeatedly performing crossover and mutation for nc ∈ N generations. To
apply crossover, we need to select two parents from the current generation. We use the
binary tournament method to select parent solutions for crossover. In binary tournament
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Algorithm 1 Genetic algorithm for neural architecture search.
Require: nw > 0, np > 0, nc > 0
1: population← ∅
2: best← ∅
3: while |population| < nw do
4: model.arch← RandomInit()
5: model.fitness← PerformanceEstimation(model.architecture)
6: add model to population
7: end while
8: population← Elitism(population)
9: for i in range(nc) do

10: offspring ← ∅
11: while | offspring |< np do
12: parents← BinaryTournament(population, 2)
13: children← UniformCrossover(parents)
14: add children to offspring
15: end while
16: for model in offspring do
17: model.arch← Mutate(model.architecture)
18: model.fitness← PerformanceEstimation(model.architecture)
19: if model.fitness < best.fitness then
20: best← model
21: end if
22: end for
23: add offspring to population
24: population← BinaryTournament(population, np)
25: end for
26: return best
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Figure 3.2: Uniform crossover generates offspring by uniformly sampling and switching
edges from parents. The binary vector in the middle is an uniformly sampled
encoding of the switched edges. If there is a 0, the first child gets the edge
from the first parent and the second child from the second parent. If there
is a 1, the first child gets the edge from the second parent and the second
child from the first parent.

selection, two solutions (or chromosomes) are randomly chosen. The one with superior
fitness gets selected. This method ensures that well-performing architectures have a
higher likelihood of being chosen for reproduction while still preserving diversity [58].

Crossover combines genetic material from two parent architectures. We employ uniform
crossover, which involves selecting a random subset of nodes from the parents’ architec-
tures to swap. If there is a discrepancy in the sizes of the two architectures, the operation
is performed up to the size of the smaller parent, ensuring the resulting children retain
the original sizes of the parents. This process is shown in Figure 3.2. Other methods for
crossover include one-point crossover and k-point crossover. One point or node is chosen
randomly and the genetic material of each parent on the right of that point is swapped,
resulting in two offspring. If there are k points, the genetic material up until the second
point is swapped and then again from the third point and so forth.

37



Subsequent to crossover, mutation operations are applied, introducing slight variations to
promote diversity and explore new regions of the solution space. The potential mutation
operations are outlined in the following Sections.

3.3.2.1 Switching edges

Switching edges involves the swapping of operations between two distinct edges. Con-
sider two edges (i, j) and (i′, j′) with associated operations o(i,j) and o(i

′,j′), respectively.
The mutation exchanges the operations, thereby rerouteing the connectivity within the
DAG. This mutation allows the GA to probe architectures with similar components but
differing connectivity patterns.

3.3.2.2 Removal of an operation

For an edge (i, j) with an associated operation o(i,j), the removal mutation sets this
operation to zero, effectively removing the connection between nodes i and j. In the
DAG framework, this means the directed link between these nodes is eliminated. Such a
mutation can lead to reduced complexity, potentially streamlining the architecture and
reducing overfitting.

3.3.2.3 Altering the type of operation

This mutation operation alters the type of operation on a specific edge. For an edge
(i, j) with its associated operation o(i,j), the mutation swaps this with another operation
o′ chosen randomly from the operation set O.

3.3.2.4 Modifying parameters of an operation

This mutation is targeting the hyperparameters within the architecture, such as kernel
size or dilation factors. For instance, for a convolutional operation on edge (i, j) denoted
as o(i,j), this mutation might tweak the kernel size. Such modifications offer a fine-grained
exploration mechanism within the architectural domain.
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3.3.2.5 Node addition or removal

One of the more transformative mutations, this operation either introduces or eliminates
nodes. Adding a node implies introducing a new operation from the set O (excluding
none) connecting the new node to existing ones. In contrast, node removal entails
deleting the node and all its associated operations. This mutation allows the GA to
explore different architecture sizes. Theoretically, architectures can become infinitely
large, however, due to overfitting, they would not score well and, therefore, are less
likely to be selected.

Crossover and mutation are not applied to every pair of parents and not to every child.
Given the mutation and crossover methods are chosen, there are two additional hyperpa-
rameters, namely crossover probability Pc ∈ [0, 1] and mutation probability Pm ∈ [0, 1]
that control the evolution process. A high Pc ensures a rapid mixing of genetic material,
promoting diverse solutions, while a low Pc maintains more of the original solutions,
favouring exploitation over exploration [19]. The choice of Pc largely depends on the
problem domain and characteristics of the search space [26]. It is essential to fine-tune
Pc using cross-validation or other validation techniques specific to the problem at hand.
The mutation probability, Pm, determines the chance that a particular gene (or compo-
nent) of a solution will undergo mutation. This probability is typically set much lower
than Pc since mutation acts as a background operator to introduce randomness and
maintain diversity. The value should be chosen considering the size of the genome (i.e.,
the number of components in a solution, e.g. number of layers and hyperparameters of
those). For instance, if a solution has 100 components and Pm = 0.01, on average, one
component will be mutated when mutation is applied to a solution. As with Pc, the
choice of Pm should be based on empirical tests, cross-validation, or domain knowledge
about the specific problem.

Following crossover and mutation, each resulting child’s performance is estimated. Then,
we use binary tournament selection to select the final population of the current cycle.

3.3.3 Termination

After a set number of evolution cycles nc or if the fitness does not improve any more
for some cycles, the algorithm concludes, returning the solution (i.e., neural network
architecture) with the best observed fitness across all generations. Then, a hyperparam-
eter tuning process succeeds GA, where the best hyperparameters, e.g. batch size and
channel depths as described in Section 3.2 are found. The result is an architecture that
should perform superior to most other architectures in the search space on the given test
dataset.
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3.4 Performance estimation

As discussed in Section 3.1, the biggest computational bottleneck in NAS is the perfor-
mance evaluation of each neural network architecture. In the upper level of the bi-level
optimization problem (3.1)

A∗ = min
A∈A
L(θ∗(A), A,Dvalid)

an algorithm tries to find the optimal architecture A∗ ∈ A on the validation dataset
Dvalid given optimal parameters θ∗(A) of each architecture A ∈ A on the training data
Dtrain as described in the lower level (3.2):

θ∗(A) = argmin
θ
L(θ, A,Dtrain)

Finding the optimal parameters θ∗(A) for each architecture involves training until con-
vergence, sometimes for multiple hyperparameter combinations of each architecture in
the search space. Since the search space can be made up of thousands of architectures
(or technically be infinitely large), this takes an extensive amount of time. Hence, we
generally want to use some performance estimation technique to approximate the lower
level.

Early NAS methods [68, 90] suffer tremendously w.r.t. computation time, taking thou-
sands of GPU hours per run. One GPU hour refers to training the neural network for
one hour on a GPU. This is a common measurement, since NAS can be parallelized on
multiple GPUs. Note that this measurement does not give an insight into what GPU was
used. In recent years, there has been various methods applied to shorten the performance
estimation to speed up runs. When using a performance estimator it is essential that it
is correlated with the ground truth performance of an architecture and is robust towards
different hyperparameter configurations and random initializations of the architecture.
The estimation should not change much when different configurations or random seeds
are used. Performance estimators can be grouped into different approaches as described
in the following.

Model based methods consist of fully training the neural networks, obtaining θ∗(A) for
many architectures A ∈ A to build a training dataset with samples {A, θ∗(A)}. Then
a model f is trained to predict θ∗(A) given A. While it takes a while to train neural
networks and obtain a model f , query time is very fast. If f already exists, the evaluation
of the search method becomes very fast. Representations of the architectures include
graph neural networks [53, 75] and tree-based methods using the adjacency matrix as a
feature [51, 85].
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Learning curve based methods use partially trained models and often extrapolate the
learning curve. This is done by fitting the partial learning curve to an ensemble of
parametric models [71] or summing up losses over batches or epochs [18], sometimes
weighting the epochs a certain way [72]. Early stopping, as used in our first work on
NAS [37], is also a learning curve based method. We stop training early (after 30 epochs).
However, on the largest dataset PEMS-BAY, runtime on four GPUs still takes over a
month, resulting in thousands of GPU hours in total. Rorabaugh et al. [70] use an engine
that can be plugged into existing NAS frameworks to decrease estimation time by up to
82 %. Their engine consists of two steps. First, the architecture is trained for a small
amount and the final performance predicted. Then, a prediction analyser determines if
a stable performance estimate was found.

Hybrid methods combine model based and learning curve based methods. These meth-
ods train models to predict f(A) given A and the partial learning curve as features [6,
36].

One-shot estimators (OSE) refers to parameter sharing between all candidate solutions,
since it requires the training cost of only one super-net. This method was first introduced
in Efficient NAS by Pham et al. [65]. Each candidate solution is a subset of the super-
net, sampled by taking different routes throughout the network. Since then, OSE is
widely used in NAS [44, 47, 64, 83]. However, it has been shown that OSE can degrade
the true ranking of the candidate solutions, reducing the effectiveness [73]. Since the
aforementioned study was conducted on a small scale, Ning et al. [63] extend on this,
finding that undertrained super-nets loose the ability to distinguish between close intra-
level architectures. They propose several techniques to improve upon this, e.g. sampling
variance and fairness improvements and dynamic search space pruning.

Zero-cost (ZC) proxies rank neural architectures within the search space without neces-
sitating expensive training [1, 38, 40, 49, 50, 57, 80]. This is usually done by computing
statistics based on the activations or outputs of one forward pass of a mini batch or
the gradients of one backwards pass. They eliminate the need for costly training and
have shown promising results across various domains, including image classification and
natural language processing. However, they have not been thoroughly studied on regres-
sion tasks. Challenges related to weight initialization, mini-batch sampling and unclear
correlation between ZC proxies and validation loss are also prevalent. In our second
work on NAS [38] we explore the use of ZC proxies thoroughly. This includes large ex-
periments regarding the robustness to hyperparameter configurations and random seeds
for the most commonly used ZC proxies. We also conduct a study on the correlation of
each ZC proxy with the validation loss after full training and use the best performing
proxy in our evolutionary NAS method [37].

As presented, performance estimation in NAS is a complex, multi-faceted challenge.
While traditional full training offers reliability, its computational expense has driven the
advent of numerous alternative methods. Each of these approaches presents its own set of
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trade-offs between accuracy and computational cost. Since ZC proxies have the potential
to save the most computational resources, we extend the research on them for regression
tasks, specifically traffic forecasting, in our work as one of the main contributions of this
thesis.
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4 Contributions and papers

In this chapter, I present a series of five papers written during my Ph.D., which collec-
tively contribute to the development of a capable neural architecture search algorithm
for real-world traffic forecasting. These papers build upon one another, showcasing the
progress and the evolution of my research. I outline each paper below, highlighting their
main ideas and contributions.

4.1 Enhanced K-Nearest Neighbor Model for
Multi-step Traffic Flow Forecast in Urban Roads

A. Mallek, D. Klosa and C. Büskens: Enhanced K-Nearest Neighbor Model For Multi-
steps Traffic Flow Forecast in Urban Roads, 2022, (8th IEEE International Smart
Cities Conference, IEEE Xplore, pp. 1-5)

In this study, we introduce an enhanced k-nearest neighbor (EKNN) approach for ac-
curately predicting short-term traffic flow in urban roads. Our objective is to develop
an algorithm capable of effectively forecasting traffic flow volume, which is vital for
intelligent transportation planning.

To accomplish this, we apply our EKNN model to 11 weeks of non-processed data
collected from 7 inductive loop detectors installed on urban roads in downtown Bremen,
made available by the Traffic Management Center (Verkehrmanagementzentrale, VMZ)
Bremen. The training dataset consists of 8 weeks of data, while the remaining 3 weeks
are used for testing. We evaluate the performance of our model across different day-hour
categories, including rush hours.

The basic KNN model serves as a non-parametric data-driven approach that searches for
historical patterns similar to the current state and generates predictions based on those
patterns. To enhance the KNN model, we incorporate additional traffic attributes, such
as detector-wise data and weekday-wise data. We investigate the impact of the state vec-
tor length, which determines how far back in time the data remains relevant for accurate
predictions and introduce a search radius to select similar profiles for prediction.
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To evaluate the accuracy of our EKNN model, we utilize the mean absolute error (MAE)
and mean absolute percentage error (MAPE) metrics. The results demonstrate that the
EKNN model achieves an average absolute relative error of 17% for 6-step (1-hour)
predictions on the test set, excluding early hours with insignificant traffic. We find that
a state vector length of 60 minutes (comprising 6 timestamps) yields the best results for
our dataset.

In conclusion, our study contributes an EKNN algorithm for multi-step traffic flow pre-
diction in urban roads. We emphasize the importance of considering additional traffic
attributes, optimizing model parameters such as the state vector length and employing
appropriate data processing techniques to improve prediction accuracy. However, we
acknowledge the limitations of our study, including the absence of data on traffic lights.
We recognize the need for further experimentation with larger and processed datasets.

4.2 Impact of Data Loss on Multi-Step Forecast of
Traffic Flow in Urban Roads Using K-Nearest
Neighbors

A. Mallek, D. Klosa and C. Büskens: Impact of Data Loss on Multi-Step Forecast of
Traffic Flow in Urban Roads Using K-Nearest Neighbors, 2022 (Sustainability 2022,
14, 11232)

In this research, we explore the impact of data loss on the performance of the enhanced
k-nearest (EKNN) model for multi-step traffic flow forecasting in urban roads. Our
study utilizes real-world data obtained from seven inductive loop detectors provided by
the Traffic Management Center (Verkehrsmanagementzentrale, VMZ) of Bremen.

To begin, we evaluate the performance of the EKNN model on a complete dataset
spanning 11 weeks. This serves as a benchmark for assessing the model’s accuracy in
the absence of data loss. We then proceed to artificially generate 50 incomplete datasets,
each with varying gap sizes from a few timestamps to multiple weeks and completeness
levels (50% to 90%). This allows us to simulate different scenarios of data loss and
analyse the behaviour of the EKNN model under these conditions.

To address the challenge of data loss, we propose three computationally-efficient tech-
niques for reconstructing the missing parts of the incomplete datasets. They include
averaging methods and linear regression.

Next, we assess the performance of EKNN on the original dataset, incomplete datasets
and reconstructed datasets. Our experimental results demonstrate the effectiveness of
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the EKNN model in accurately forecasting traffic flow. The accuracy of the model
varies depending on the gap lengths and completeness levels of the datasets. We observe
that the EKNN model achieves an average accuracy of 83% in six-step forecasts over a
three-week test set when applied to the original dataset. Additionally, we find that the
performance of the model improves when applied to the reconstructed datasets compared
to the incomplete ones.

Overall, our research provides valuable insights into the behaviour of the EKNN model
in the presence of data loss and imputation of missing data. These findings contribute to
the development of robust data-driven models in the field of intelligent transportation.

4.3 Short-Term Traffic Flow Forecast Using
Regression Analysis and Graph Convolutional
Neural Networks

D. Klosa, A. Mallek and C. Büskens: Short-Term Traffic Flow Forecast Using Regres-
sion Analysis and Graph Convolutional Neural Networks, 2021, (7th Int Conf on Data
Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sen-
sor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
Haikou, Hainan, China, 2021, pp. 1413-1418)

In this paper, we present our research on short-term traffic flow forecasting in urban
arterial roads in Bremen. We propose linear regression and graph convolutional neural
networks (GCNN) to forecast traffic flow. The models are applied to 11 weeks of real-data
collected from 7 loop detectors installed in downtown Bremen, with 3 weeks dedicated
to testing their performance.

The linear regression model captures linear relationships between variables using polyno-
mial regression. We utilize different time frames to learn the linear dependencies between
data points. The model is trained separately for each week-day, with a polynomial of
degree 10 for the daily regression and a polynomial of degree 5 for the hourly regression.
The predicted flow values are calculated based on the regression polynomials. A correc-
tion step is applied to improve accuracy by combining regression values with data from
the previous week.

The GCNN model is based on the global spatial-temporal graph convolutional network
(GSTGCN), employing dilated 1D convolutions to learn short-term and long-term re-
lationships in the temporal space. The model incorporates a graph convolution that
considers the distance between sensors and a global correlated spatial mechanism based
on the connectivity within the traffic network. The features from different time frames
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are fused and passed through a fully connected neural network for prediction. The GCNN
model predicts traffic flow by considering data from all detectors simultaneously.

We evaluate the prediction accuracy of both models using mean absolute percentage error
(MAPE) and mean absolute error (MAE) metrics. The experimental results show that
both models are competitive, with an average MAPE of around 19% during morning and
evening peak times and an average MAPE of around 25% for all-day hours. The accuracy
varies across detectors, mainly depending on the flow volume at each location.

In conclusion, our study focuses on short-term traffic flow forecasting in a congested
area of Bremen. The proposed linear regression and GCNN models provide satisfactory
accuracy in predicting traffic flow. Future directions include hybridizing the models to
leverage their strengths and incorporating traffic light data to improve predictions of
fluctuating traffic patterns.

4.4 Evolutionary Neural Architecture Search for
Traffic Forecasting

D. Klosa and C. Büskens: Evolutionary Neural Architecture Search for Traffic Fore-
casting, 2022, (In Proceedings of the 21st IEEE International Conference on Machine
Learning and Applications, pp. 1230-1237)

In our research, we investigate the application of evolutionary neural architecture search
(ENAS) using a genetic algorithm (GA) for traffic forecasting. While current research
primarily relies on manually constructing neural network architectures without the aid
of neural architecture search (NAS), we aim to explore the potential of ENAS for finding
optimal neural network architectures to achieve accurate traffic prediction.

Our approach involves deploying a GA to search for the best neural network architectures
capable of predicting traffic conditions. The search space for the GA consists of various
combinations of none, skip connections, dilated convolutions and graph convolutions. We
initialize a population of neural architectures and evaluate their performance on traffic
prediction benchmarks. The architectures are trained for a limited number of epochs to
estimate their performance. The best-performing architectures are selected for further
evolution. Through crossover and mutation operations, we create offspring architectures
with potential improvements. This process continues for multiple generations. The
algorithm terminates after a predefined number of cycles. Then, we select the best-
performing architecture as our final model.

To evaluate the effectiveness of our ENAS framework, we conduct experiments on four
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real-world traffic datasets recorded in California. We compare the performance of our
framework against several baseline models, including historical average (HA), AGCRN,
Graph WaveNet and AutoSTG.

Our experimental results demonstrate that the architectures obtained through the GA-
based ENAS approach can match or even surpass the state-of-the-art models on the
traffic prediction benchmarks. Specifically, our framework outperforms other methods
on the PeMSD4 and PeMSD8 datasets while achieving competitive results on the others.
We also conduct an ablation study to analyse the impact of dilated convolution and graph
convolution in the architectures, with the results highlighting the importance of both
operations in improving performance.

In conclusion, our ENAS framework presents a promising approach for traffic forecasting
by automating the search for optimal neural network architectures. The experimental
results validate the effectiveness of our approach on real-world traffic prediction bench-
marks. We also discuss potential future directions, including exploring alternative op-
timization algorithms, adaptive adjacency matrices and the incorporation of additional
historical data for prediction.

4.5 Low cost evolutionary neural architecture search
applied to traffic forecasting

D. Klosa and C. Büskens: Low Cost Evolutionary Neural Architecture Search (LENAS)
Applied to Traffic Forecasting, 2023, (Mach. Learn. Knowl. Extr. 2023, 5, 830-846)

In this paper, we extend the existing research on evolutionary NAS (ENAS) [37] and
explore the use of zero-cost (ZC) proxies to estimate the performance of neural network
architectures without the need for time-consuming training. ZC proxies offer a cost-
effective solution to the performance estimation problem in NAS, potentially accelerating
the search process. The investigated ZC proxies require just one forward propagation of
inputs and sometimes one backwards propagation for evaluation and therefore speed-up
the performance estimation tremendously.

Our research introduces ZC proxies as a means to evaluate network architectures in
the ENAS framework. We evaluate the stability of ZC proxies with respect to weight
initialization, mini-batch size and sampling and architecture size. This is done by scoring
the same architectures with different hyperparameter combinations and random seeds
and comparing spearman rank correlation between those runs. ZC proxies leading to
high correlation are robust since the ranking of architectures is similar across runs.
Among the ZC proxies examined, we identify naswot as the most robust with a perfect
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spearman rank correlation, making it a suitable choice for the traffic forecasting task.

To evaluate the performance estimation properties of the ZC proxies, we conduct ex-
periments on the same traffic speed and traffic flow benchmarks as in [37]. For this, we
compute spearman rank correlation between validation loss after full training with the
ZC proxy score. Again, naswot performs the best with a correlation of 0,737. Although
not perfect, the results demonstrate that utilizing naswot scores instead of training to
convergence can significantly accelerate the neural architecture search process for a slight
decrease in performance of the final architecture.

In conclusion, our research contributes to the field of NAS for traffic forecasting by
exploring the application of ZC proxies to speed up search times. We can greatly increase
the speed of our ENAS framework making it viable to use in traffic control centers
without the need for expensive hardware. We discuss further research directions, e.g.
towards better ZC proxies designed for regression tasks like traffic prediction.
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5 Summary and future work

5.1 Summary

In the first part of this thesis, we have established the foundational concepts for the
papers we have published. We gave an introduction into the task of traffic prediction
in Chapter 1. We have shown a real world example, described the available data, the
challenges that come with it and the potential benefits of accurate traffic predictions.
In Chapter 2, we went over the fundamentals of machine learning in the form of su-
pervised learning for regression. We briefly introduced two classical machine learning
models, polynomial regression and k-nearest neighbours and detailed the inner work-
ings of (convolutional) neural networks and how they are trained. In Chapter 3, we
introduced neural architecture search for the task of traffic prediction and described our
general framework. This chapter, in conjunction with the accompanying published pa-
pers, highlights the authors primary contribution: the development of an evolutionary
neural architecture search approach that identifies a viable solution for the task of traffic
prediction.

5.2 Future work

Neural architecture search is a fast growing field within deep learning. However, as most
of the research is focused on computer vision and natural language processing, regression
is falling short in current research. The intersection of NAS and traffic prediction is very
limited. Further intersecting with evolutionary algorithms as search methods yields
two published papers (by us). We use a simple genetic algorithm without any efforts
towards hyperparameter tuning of this algorithm. This should be done in future research
and additionally compared to other evolutionary algorithms. Intersecting with zero-
cost proxies results in one published paper (by us). All of the currently used zero-
cost proxies are engineered with classification in mind. The best performing proxy,
naswot [57], operates under the assumption that samples in a mini-batch should activate
different regions of the neural network. However, this assumption proves to be invalid
for regression tasks. As demonstrated in Chapter 1, timeseries data, particularly for
flow, can exhibit significant similarity, undermining the effectiveness of this approach.
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This results in subpar correlation between the proxy and the validation loss. Future
research should focus on engineering zero-cost proxies specifically for regression tasks.
Again, looking at NAS for classification, there are benchmarks comprising the dataset
and the search space such that search methods can easily be compared. This lacks in
traffic prediction and efforts should be made towards creating such benchmarks.
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Abstract—Short-term flow forecast is a fundamental key in
intelligent transportation planning. Often accurate predictions
are provided by the predictive models the most adapted to
the nature of the addressed problem. In this paper we present
a k-Nearest Neighbor approach (E-KNN) enhanced by taking
advantage of traffic attributes. The proposed model is applied to
11 weeks of non-processed data, recorded by 7 inductive loop de-
tectors installed on urban roads located in downtown of Bremen
(Germany). The performance of E-KNN is tested on 3 weeks
of data and reported following different day-hours categories,
including rush hours. Excluding early day-hours where traffic
is insignificant, E-KNN performs 6-steps (1h) prediction with an
average absolute relative error of 17% on test-set.

Index Terms—Traffic flow; K-Nearest Neighbor; Short-term
forecast; Urban roads; Multi-step prediction; Machine learning.

I. INTRODUCTION

Huge part of business and economy nowadays heavily
rely on transportation systems. Among others, e-commerce,
which is partly based on delivering goods to customers, and
transportation of individuals from and to work for example.
Optimizing costs and time for such operations require efficient
and intelligent transportation management systems. One of the
crucial components of these systems is the prediction of differ-
ent attributes related to traffic, especially traffic flow volume.
Often, this latter is the main element on which other traffic-
related features are based, and is a vital topic discussed in both
academia and industry. Traffic managers usually depend on
short-term traffic flow forecasts to plan and formulate efficient
strategies in order to alleviate road congestion and further
optimize vehicular traffic inside cities. Moreover, travelers as
well refer to these forecasts to take decisions about their trav-
eling plans. The development of approaches for the purpose of
accurate short-term flow forecasting might not be successful
without a large amount of data. Therefore, traffic management
centers deploy a large range of tools to monitor and record
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traffic attributes, including, inductive loop detectors, video and
image processing, radars of different kinds and other Internet
of Things (IoT) mechanisms. Recently and in the past years,
researchers have extensively examined the problem of short-
term traffic flow forecast. Consequently, several data-driven
models have been proposed to tackle this problem, categorized
into two main classes: parametric and non-parametric models.
We can briefly describe parametric models as the models that
output predictions based on an explicit function defined within
a finite set of parameters. These parameters are often estimated
by training the model with a given dataset, for instance:
ARIMA and its variants [6], [9], [16], Neural Networks
[1], [11], [13], deep learning [12], Linear Regression [8]. In
contrast, non-parametric methods deliver predictions without
assuming any prior knowledge or having any explicit formulas,
such as Support Vector Regression (SVR) [3], [10] and k-
Nearest Neighbor [2], [4], [17].

In this paper we address the problem of multi-steps short-
term flow volume forecast in urban roads. This problem is part
of DiSCO2 project conducted at the University of Bremen. The
aim of this project is to set the stage for decision makers to
take actions to reduce CO2 emissions in Bremen (Germany).
To this end, we develop an enhanced k-Nearest Neighbor
model based on traffic features. This method (shortened as
KNN), is known to be a non-parametric data-driven model
and has extensively been investigated in the literature. Old
KNN models mainly focus on single step forecasts [5], [14],
[15]. However, this technique and other non-parametric models
have the advantage of being flexible and easily extensible.
Therefore, herein we extend the classical k-Nearest Neighbor
to what we call enhanced KNN referred to as E-KNN model.
This latter takes into account more attributes related to traffic
to improve forecasting accuracy. Several improvements to
KNN model have already been considered in the context of
traffic flow in some papers, including [2] that deployed a
weighted Gaussian method to compute forecasts instead of
the typical ones as in [15]. The authors in [17] incorporated
a time constraint in neighbor selection and a minima distance
to avoid selection of highly auto-correlated candidates. Cheng



et al. [4] developed a KNN model based on the assumption
that traffic between adjacent road segments within assigned
time periods is not correlated. This saptiotemporal approach
comprehensively considers the spatial heterogeneity of traffic.
Our E-KNN takes into account a search radius to ensure that
selected profiles share similar characteristics. It assumes as
well that the flow is not only distinct between weekends
and working days, bus also among all weekdays. Usually
studies are carried out on processed or filtered data, herein we
measure the performances of our designed technique using raw
data, provided by the Traffic Management Center (VMZ) of
Bremen, with no preprocessing, meaning that noise, corrupted
data and outliers are kept as they are in our dataset. The
purpose behind this is to have an idea about the accuracy of
the model when it is operated online, as needed in our project.
Furthermore, due to the same reason, the model performs 6-
steps (1h) forecasts at once.

The rest of this of this paper is organized as follows. In
section II we thoroughly describe the basic k-Nearest Neighbor
model, then the E-KNN approach. Section II introduces in
details our dataset. Afterwards, the accuracy of E-KNN is
experimentally tested and reported in Section IV. Finally, the
paper is concluded with future directions in Section V.

II. METHODOLOGY

k-Nearest Neighbor model is one of the famous data-driven
predictive models applied to different problems present in the
literature. In its essence, this approach explores historical data
to fetch for patterns in the past similar to a present one. The
algorithm then tries to generate forecasts based on the future
states of the historical patterns that are hypothetically closely
similar to a current state. The quality of this model as any
other data-driven model depends on how big the data is and
also how well it is represented. In what follows, we detail the
basic components of KNN and how they are characterized.
Afterwards, based on the nature of our problem, we integrate
in the model some enhancements to improve its performance.

1) Basic KNN and notations: In this subsection we intro-
duce the set of notations used to describe our KNN model and
its functionalities. First of all, traffic flow volume at instant
t at some detector (sensor) d is denoted by fd(t). Thus, a
flow volume series at some detector d in a given time frame
between ti and tj (i ≤ j) is defined by the following vector:

vd(ti, tj) = [fd(ti), fd(ti+1), . . . , fd(tj−1), fd(tj)] (1)

For simplicity, we concisely write f(t) and v(ti, tj), unless
the detector is required to be mentioned. We define a state
vector of length l at instant t as a vector of flow volume
comprising the traffic flow from instant t backwards to instant
t− l, therefore it can be seen as:

v(t− l, t) = [f(t− l), f(t− l + 1), . . . , f(t− 1), f(t)] (2)

The forecast of the next s steps are given in a prediction
vector denoted by v′ and expressed as follows:

v′(t+ 1, t+ s) =

[f ′(t+ 1), f ′(t+ 2), . . . , f ′(t+ s− 1), f ′(t+ s)] (3)

Once the state vector is defined, the other components of
KNN framework can then be set. The first task is to select
a set of nearest neighbors to a given state vector based on
measuring a certain distance between this latter and other
candidate vectors. The best k candidates (neighbors) are then
selected to be considered in the prediction process. Various
methods are usually used whether to determine the closeness
of current state vector to other vectors or to produce forecasts.
The distance between two state vectors is commonly given
by the Euclidean distance, however sometimes and in some
cases correlation coefficient distance is also considered
where its superiority is proven [17]. Averaging the k nearest
neighbors is often the common way used to predict future
states. Though, many other approaches were also applied in
the literature to obtain forecasts, including weighting the k
nearest neighbors according to their distance to current state
vector [7] and Gaussian-weight distance [2], [4].

Our KNN algorithm is designed to perform multi-steps
prediction, therefore, at some instant t, the vector aggregating
current state and s future steps can be seen as follows:

E(t) = v(t− l, t) + v′(t+ 1, t+ s) =

[f(t− l), . . . , f(t), f ′(t+ 1), . . . , f ′(t+ s)] (4)

In our study, we use Euclidean distance to rank the neigh-
bors of state vectors. Firstly, because the correlation coefficient
distance proved to be inferior to Euclidean distance through
the experiments. Secondly, the Gaussian-based distance did not
increase the accuracy of the predictions. We also use simple
averaging of the k nearest neighbors. Note that weighting of
neighbors procedure has also been tested and gave the same
results as simple averaging. Mathematically, the Euclidean
distance, in our case, is given as follows:

dist(i,j)(vi, vj) =
l∑

λ=0

(f i(t− λ)− f j(t− λ))2 (5)

such that vi and vj are two state vectors. As said before, our
KNN is designed to forecast multi-steps, hence the formula to
deliver forecast vector is:

v′(t+ 1, t+ s) = [f ′(t+ 1), . . . , f ′(t+ s)] =

[
k∑

i=1

f (i)(t+ 1)/k, . . . ,
k∑

i=1

f (i)(t+ s)/k] (6)

2) Enhanced KNN: The classical KNN model has largely
been applied to different kind of problems other than traffic
flow prediction. The KNN framework commonly used is the
one described above. However, several improvements can be
introduced based on the problem’s nature. In our problem,
various attributes can be regarded in order to boost forecast



accuracy. Therefore to enhance the performance of our KNN
model, we incorporate the following characteristics as well:

• Detector-wise: although the flow differs from one detector
to another as shown in Figure 1, it may happen that
patterns from different detectors have a partial similar-
ity. Since these candidates are retrieved from different
detectors, the other part of them may be very different,
which badly impacts the forecasting accuracy. Thus, if the
prediction is to be made for a given detector, the model
inspects data related to only this sensor.

• Weekday-wise: when our model explores the historical
data to retrieve state vector profiles, it only considers the
same weekday. For instance, if the current state vector is
taken from a Wednesday, all the profiles are constructed
from historical data belonging to Wednesdays. Obser-
vations showed that there is a clear difference between
working-day’s and weekend’s flows. More precisely, even
days of the same category differ in flow patterns, which
justifies our choice. This weekday-wise pre-selection of
state vector profiles showed a significant improvement in
model’s performance through preliminary experiments.

• State vector length: length of state vectors, denoted by l,
indicates how far backwards from a given instant t the
data is relevant to make accurate predictions. Hence, a
state vector of length l is given by:

v(t− l, t) =

[f(t− l), f(t− l + 1), . . . , f(t− 1), f(t)] (7)

The length of state vector impacts the prediction qual-
ity as well. If l is relatively small, the information
provided by the state vector may be insufficient to
make accurate predictions. However, longer state vector
might also provide irrelevant information. To choose
the best value for l, preliminary experiments have been
launched with different values of l, such that l ∈
{20, 30, 40, 50, 60, 90, 120, 150}. Tests showed that l =
60 minutes (6 timestamps) is the best choice for our
dataset.

• Search radius: To ensure that state vector profiles share
similar characteristics with the current state vector, we
only consider profiles within a certain radius denoted
by R. This means that the model selects profiles falling
no further than r timestamps forwards and backwards
from a current instant t. Therefore, the search space is
constrained within t − r and t + r. Obviously as we
decrease R, the ratio of profiles closer to the current
state vector in terms of characteristics increases, and
vice versa. One issue can be raised here, that is when
R getting smaller, profiles get fewer, which may also
affect prediction accuracy. Consequently, a trade-off value
of R has to be determined in this respect. Experiments
included R ∈ {40, 50, 60, 90, 120, 150, 200, 300} showed
that R = 90 minutes (r = 9 timestamps) is the
best search radius for our experiments. Note that above
200 minutes (20 timestamps), the efficiency drastically

Fig. 1: Flow on detectors MS217-MS223

decreases, which indicates that search radius imposition
is worthy.

III. DATA DESCRIPTION

The work done in this paper is part of a project currently
conducted at Center for Industrial Mathematics (ZeTeM) at the
University of Bremen. The aim of the project is to model traffic
in the city of Bremen in order to make accurate forecasts of
different characteristics of traffic, especially traffic flow. The
ultimate goal of the project is to set the stage for decision
makers to take actions, in the context of fighting against
climate change and air pollution, helping to reduce CO2

emissions due to traffic. In this project we have large datasets
of around 4 years worth of data. The data is gathered from over
550 measurement sites all around the city, on each of which
an inductive loop detector is installed. This data is mainly
delivered from the Traffic Management Center of Bremen
(VMZ), which is an associated partner in our project. Figure
2 displays, in red bullets, the location of the set of loop
detectors installed all around the city of Bremen to record
traffic attributes. We focus in this paper on a junction located
in city center surrounded by 7 loop detectors (MS217-MS223),
as shown in Figure 3. This junction is situated in front of
the main train station, tram station and bus station, which
makes the traffic in this part very messy and subject to a
lot of factors. Traffic lights are highly present in this area,
but unfortunately we have no data about them. As in any
data gathering device, due to malfunctioning, repairing or to
data transmission, a lot of entries are missing in the final
output recorded in databases. For this reason we selected a
time-frame where we have almost complete data (98%) to be
used for model assessment. Detectors take measurements each
90s, however in our study we use 10-minutes accumulations.
The chosen time-frame is ranged from 09 April 2018 to 24
June 2018, which covers a period of 11 weeks. In order to
measure the accuracy of the forecasts delivered by E-KNN



Fig. 2: Location of the detectors (in red bullets) installed all
over Bremen.

model, we divide our dataset into two parts. The first consists
of 8 weeks used for training, followed by 3 weeks for testing.
More precisely, training takes place from 09 April 2018 to 03
June 2018, then we test for the period going from 04 June
2018 to 24 June 2018.

Fig. 3: Detectors location in the studied junction.

IV. EXPERIMENTAL RESULTS

We report and comment in this section the performance of
E-KNN model under the data-set described in the previous
section. The discussion of the output of E-KNN will be carried
out according to the Mean Average Error (MAE) and Mean
Absolute Average Error (MAPE) given in the formulas below:

MAPE =
100

n
·

n∑

i=1

∣∣∣∣
m(t)i − p(t)i

m(t)i

∣∣∣∣ (8)

MAE =
1

n
·

n∑

i=1

|m(t)i − p(t)i| (9)

such that m(t) is the real value of traffic flow measured at
instant t and p(t) is the value predicted by the model. n is

the number of predictions.

We launch E-KNN model to run on each detector separately
because the data is different from one detector to another
as mentioned earlier (refer to Figure 1). This is due to the
detector’s location, since some of them are operating on 1-lane
roads, whereas others record data from 2-lane roads. Thus,
the order of magnitude of flow volume is different on each
detector. Predictions are made for 6-steps at once, meaning
that we get forecasts of the next hour per 10-minutes. As
structured in Table I, we report the performance accuracy
based on day-hours. Therefore, the following categories are
considered: traffic flow for all-day-hours, significant traffic
hours (between 6h in the morning and 22h in the evening),
morning peak times (from 6h to 9h) and finally evening peak
times (from 16h to 19h). It is obvious that the results vary
from one detector to another, and this is related, firstly, to the
same reasons mentioned above (distinct flow); and secondly to
traffic lights, which we have no data about them. Therefore,
the accuracy of E-KNN is henceforth discussed by average
results in each category of day-hours. First of all, one can
notice that when the flow volume is significant, the MAE
tends to grow while the MAPE tends to decrease. Since the
flow volume in our data is relatively large, which can reach
more than 1400 vehicle/hour (see Figure 1), we can expect
this kind of somehow large MAEs. Note that the results have
as well been affected by the occasional outliers, which we
did not remove from our dataset. Taking into account all-day-
hours, E-KNN model makes forecasts with an error of 46.40
MAE and 26.38% MAPE (random samples are exhibited in
Figure 4). However, when we only regard significant flow
during the day, meaning traffic in between 06:00 and 22:00,
a worse MAE is reached (56.26) and a better MAPE is given
(17.91%). It is expected to have a worse MAE because during
this period of time larger numbers of vehicles are flowing.
The accuracy in this category of hours is satisfactory as it
reaches around 83% accuracy. Moreover, we also have an
overview on the performance of the model during peak times
in the morning and in the evening, in particular, from 06:00
to 09:00 and from 16:00 to 19:00. Absolute relative error in
the morning is around 22% whereas it is only 16% in the
evening. Given that the detectors are installed on signalized
and heterogeneous urban arterial roads, which causes sharp
fluctuations in the traffic, and we have no data on how traffic
lights are programmed, we think that the accuracy of E-KNN
model is satisfactory especially during rush day-hours.

V. CONCLUSION

An enhanced k-Nearest Neighbor technique has been intro-
duced in this paper to deal with the problem of traffic flow
volume forecast. The proposed model is applied to a non-
processed dataset taken from urban roads located in downtown
of Bremen (Germany). The model was trained with 8 weeks of
data and tested with 3 weeks of it. We used MAE and MAPE
as performance criteria, and measured the accuracy of E-KNN
with regard to different categories of day-hours. When traffic is



TABLE I: 6-steps prediction results over the test-set.

06:00-09:00 16:00-19:00 06:00-22:00 All-day

Detector ID MAE MAPE MAE MAPE MAE MAPE MAE MAPE

MS217 63.58 14.30 100.50 12.10 75.08 11.97 62.87 16.64
MS218 23.96 28.86 55.94 20.29 36.11 22.78 28.80 30.57
MS219 61.54 15.34 92.90 11.98 71.28 12.35 60.41 18.80
MS220 73.98 21.12 80.82 17.16 74.10 18.30 62.32 27.12
MS221 26.24 25.25 53.18 16.99 45.87 21.58 38.24 31.30
MS222 38.42 26.63 57.00 17.77 47.59 19.31 37.11 30.54
MS223 47.54 23.98 49.78 17.45 43.80 19.09 35.06 29.68

Average 47.89 22.21 70.02 16.25 56.26 17.91 46.40 26.38

Fig. 4: Random samples of one-day prediction from different detectors.

significant during the day (between 06h and 22h), our model
reaches around 83% accuracy, which can be considered as
satisfactory given the nature of our dataset. Currently, we are
working on the imputation of missing entries using different
techniques to obtain complete data. Consequently, we would
like to measure the performance of E-KNN model with larger,
processed and filled in datasets.
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Abstract: Data-driven models have recently proved to be a very powerful tool to extract relevant
information from different kinds of datasets. However, datasets are often subject to multiple anoma-
lies, including the loss of important parts of entries. In the context of intelligent transportation, we
examine in this paper the impact of data loss on the behavior of one of the frequently used approaches
to address this kind of problems in the literature, namely, the k-nearest neighbors model. The method
designed herein is set to perform multi-step traffic flow forecasts in urban roads. In our study, we
deploy non-prepossessed real data recorded by seven inductive loop detectors and delivered by the
Traffic Management Center (VMZ) of Bremen (Germany). Firstly, we measure the performance of
the model on a complete dataset of 11 weeks. The same dataset is then used to artificially create
50 incomplete datasets with different gap sizes and completeness levels. Afterwards, in order to
reconstruct these datasets, we propose three computationally-low techniques, which proved through
empirical testing to be efficient in reproducing missing entries. Thereafter, the performance of the
E-KNN model is assessed under the original dataset, incomplete and filled-in datasets. Although the
accuracy of E-KNN under incomplete and reconstructed datasets depends on gap lengths and
completeness levels, under original dataset, the model proves to deliver six-step forecasts with an
accuracy of 83% on average over 3 weeks of the test set, which also translates to a less than one car
per minute error.

Keywords: data loss; incomplete dataset; intelligent transportation; k-nearest neighbors; linear
regression; short-term forecast; traffic flow

1. Introduction

A huge part of business and economy nowadays heavily relies on transportation
systems. Among others is e-commerce, which is partly based on delivering goods to cus-
tomers, and transportation of individuals from and to work, for example. Optimizing costs
and time for such operations requires efficient and intelligent transportation management
systems. One of the crucial components of these systems is the prediction of different
attributes related to traffic, especially traffic flow volume. Often, this latter is the main ele-
ment on which other traffic-related features are based, and is a vital topic discussed in both
academia and industry. Traffic managers usually depend on short-term traffic flow forecasts
to plan and formulate efficient strategies in order to alleviate road congestion and further
optimize vehicular traffic inside cities. Moreover, travelers also refer to these forecasts to
take decisions about their traveling plans. The development of approaches for the purpose
of accurate short-term flow forecasting might not be successful without a large amount of
data. Therefore, traffic management centers deploy a large range of tools to monitor and
record traffic attributes, including inductive loop detectors, video and image processing,
radars of different kinds, and other Internet of Things (IoT) mechanisms. Recently, and
in the past years, researchers have extensively examined the problem of short-term traffic
flow forecasts. Consequently, several data-driven models have been proposed to tackle
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this problem, categorized into two main classes: parametric and non-parametric models.
We can briefly describe parametric models as the models that output predictions based on
an explicit function defined within a finite set of parameters. These parameters are often
estimated by training the model with a given dataset, for instance: ARIMA and its vari-
ants [1–3], neural networks [4–6], deep learning [7], and linear regression [8]. In contrast,
non-parametric methods deliver predictions without assuming any prior knowledge or
having any explicit formulas, such as support vector regression (SVR) [9,10] and k-nearest
neighbors [11–13].

In the literature, researchers generally consider datasets with a few missing entries
that are usually imputed using simple techniques, otherwise, they take into account only
valid data. However, only a few of them drew attention to the impact of data loss on the
performance of predictive models. Therefore, some techniques have been used in the litera-
ture to substitute corrupted and missing entries with valid data. First attempts were made,
for instance, by Nihan et al. [14] by deploying the classical auto-regressive integrated mov-
ing average model. Zhong et al. [15] proposed different techniques to substitute missing
input, including neural networks and regression models. Later on, a non-parametric spatio-
temporal kernel regression model is developed to forecast travel time under the assumption
of sensor malfunction. The results were compared to a k-nearest neighbors model, which is
also non-parametric. The k-nearest neighbors technique has also been used for traffic data
imputation in [16]. Tian et al. proposed a long short-term memory-based neural network
that efficiently circumvents the negative impact of data loss [17]. Duan et al. [18] employed
a deep learning-based approach called denoising stacked autoencoders for efficient imputa-
tion of missing data. Teresa Pamula [19] investigated the sensitivity of neural networks to
loss of data in traffic flow prediction and proposed a strategy to substitute lost data in a way
where the accuracy of forecasts is maintained. Some statistical models, including Markov
chains, PPCA-based approaches, and Monte Carlo simulations have also been used [20–23].
An automated imputation procedure based on an adaptive identification technique that
tries to minimize the error between simulated and measured densities was elaborated by
Muralidharan and Horowitz [24]. Other techniques such as replacement by null values,
substituting by the sample mean, or exponentially moving average were considered for
testing and they showed good performance practically [25,26]. Several other strategies
have as well been used including fuzzy C-means hybridized with a genetic algorithm [27],
tensor-based methods [28], and simulator software such as Sumo and TransWorld [29].

In this paper, we address the problem of multi-step flow volume forecast in urban
roads under the circumstances of data loss. This problem is part of the DiSCO2 project
conducted at the University of Bremen. The aim of this project is to set the stage for
decision makers to take actions to reduce CO2 emissions in Bremen (Germany). To this
end, we develop an enhanced k-nearest neighbors model based on traffic features. This
method (shortened as KNN), is known to be a non-parametric data-driven model and has
extensively been investigated in the literature. Old KNN models mainly focus on single-
step forecasts [30–32]. However, this technique and other non-parametric models have the
advantage of being flexible and easily extensible. Therefore, herein we extend the classical
k-nearest neighbors to what we call enhanced KNN, referred to as the E-KNN model. This
latter takes into account more attributes related to traffic to improve forecasting accuracy.
Several improvements to the KNN model have already been considered in the context
of traffic flow in some papers, including [12], where the authors deployed a weighted
Gaussian method to compute forecasts instead of the typical ones, as in [31]. The authors
in [11] incorporated a time constraint in neighbor selection and a minima distance to
avoid the selection of highly auto-correlated candidates. Cheng et al. [13] developed a
KNN model based on the assumption that traffic between adjacent road segments within
assigned time periods is not correlated. This spatio-temporal approach comprehensively
considers the spatial heterogeneity of traffic. Our E-KNN takes into account a search
radius to ensure that selected profiles share similar characteristics. It also assumes that
the flow is not only distinct between weekends and working days, but also among all
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weekdays. Usually, studies are carried out on processed, filtered, or normalized data,
herein we measure the performance of our designed technique using raw data, provided
by the Traffic Management Center (VMZ) of Bremen, with no preprocessing, meaning that
noise, corrupted data, and outliers are kept as they are in our dataset. The purpose behind
this is to have an idea about the accuracy of the model when it is operated online, as needed
in our project. Furthermore, for the same reason, the model performs six-step (1 h) forecasts
at once in order to reduce the computational time.

In the second part of the paper, we take out the same dataset used to measure the
performance of E-KNN and create artificially incomplete datasets. To do so, we try to simu-
late the actual status of most raw datasets (including ours). Thus, we produce 50 datasets
with different gap sizes and completeness levels. Afterward, we try to reconstruct the
missing parts of these datasets by deploying three different techniques that we designed for
this purpose. We first assess the accuracy of reconstructing these datasets and profoundly
examine their structure, then apply E-KNN to each of them. At this point, we can obtain an
overview of how the E-KNN model behaves when is applied to incomplete and partially
reconstructed datasets. A deep analysis of this latter is thoroughly reported afterward.

The rest of this paper is structured as follows. In Section 2 we describe the basic
framework of k-nearest neighbors, then introduce the enhanced version of this model,
referred to as E-KNN. Section 3 comprises the imputation techniques designed to fill in
incomplete datasets. An in-depth description of the dataset used in this paper, and further
in some parts of our project, is sketched in Section 4. The way the incomplete datasets are
created and reconstructed is also extensively reported in the same section. Afterward, we
detail in Section 5 the empirical findings out of testing the performance accuracy of E-KNN
under original as well as incomplete and filled-in datasets. Finally, the paper is concluded
in Section 6.

2. K-Nearest Neighbors Model

The k-nearest neighbors model is one of the famous data-driven predictive models
applied to different problems present in the literature. In its essence, this approach explores
historical data to fetch patterns in the past similar to a present one. The algorithm then
tries to generate forecasts based on the future states of the historical patterns that are
hypothetically closely similar to a current state. The quality of this model as any other data-
driven model depends on how big the data is and also how well it is represented. In what
follows, we detail the basic components of KNN and how they are characterized. Afterward,
based on the nature of our problem, we integrate into the model some enhancements to
improve its performance.

2.1. Basic KNN and Notations

In this subsection, we introduce the set of notations used to describe our KNN model
and its functionalities. First of all, traffic flow volume at instant t at some detector (sensor)
d is denoted by fd(t). Thus, a flow volume series at some detector d in a given time frame
between ti and tj (i ≤ j) is defined by the following vector:

vd(ti, tj) = [ fd(ti), fd(ti+1), . . . , fd(tj−1), fd(tj)] (1)

For simplicity, we concisely write f (t) and v(ti, tj), unless the detector is required to
be mentioned. We define a state vector of length l at instant t as a vector of flow volume
comprising the traffic flow from instant t backward to instant t − l, therefore it can be
seen as:

v(t − l, t) = [ f (t − l), f (t − l + 1), . . . , f (t − 1), f (t)] (2)

The forecasts of the next s steps are given in a prediction vector denoted by v′ and
expressed as follows:

v′(t + 1, t + s) = [ f ′(t + 1), f ′(t + 2), . . . , f ′(t + s − 1), f ′(t + s)] (3)
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Once the state vector is defined, the other components of the KNN framework can
then be set. The first task is to select a set of nearest neighbors to a given state vector
based on measuring a certain distance between this latter and other candidate vectors.
The best k candidates (neighbors) are then selected to be considered in the prediction
process. Various methods are usually used to determine the closeness of the current state
vector to other vectors or to produce forecasts. The distance between two state vectors
is commonly given by the Euclidean distance, however sometimes and in some cases,
the correlation coefficient distance is also considered where its superiority is proven [11].
Averaging the k nearest neighbors is often the common way used to predict future states.
Though, many other approaches were also applied in the literature to obtain forecasts,
including weighting the k nearest neighbors according to their distance to current state
vector [33] and Gaussian-weight distance [12,13].

Our KNN algorithm is designed to perform multi-step prediction, therefore, at some
instant t, the vector aggregating current state, and s future steps can be seen as follows:

E(t) = v(t − l, t) + v′(t + 1, t + s) = [ f (t − l), . . . , f (t), f ′(t + 1), . . . , f ′(t + s)] (4)

In our study, we use the Euclidean distance to rank the neighbors of state vectors.
Firstly, the correlation coefficient distance proved to be inferior to the Euclidean distance
through the experiments. Secondly, the Gaussian-based distance did not increase the
accuracy of the predictions. We also use simple averaging of the k nearest neighbors. Note
that weighting of neighbors procedure has also been tested and gave the same results as
simple averaging. Mathematically, the Euclidean distance, in our case, is given as follows:

dist(i,j)(vi, vj) =
l

∑
λ=0

( f i(t − λ)− f j(t − λ))2 (5)

Such that vi and vj are two state vectors. As said before, our KNN is designed to
forecast multiple steps, hence the formula to deliver a prediction vector is:

v′(t + 1, t + s) = [ f ′(t + 1), . . . , f ′(t + s)] = [
k

∑
i=1

f (i)(t + 1)/k, . . . ,
k

∑
i=1

f (i)(t + s)/k] (6)

2.2. Enhanced KNN

The classical KNN model has extensively been applied to different kinds of problems
other than traffic flow prediction. The KNN framework commonly used is the one just
described. However, several improvements can be introduced based on the problem’s
nature. In our problem, various features can be regarded in order to boost forecast accuracy.
Therefore to enhance the performance of our KNN model, henceforth referred to as E-KNN,
we incorporate the following characteristics as well:

• Detector-wise: although the flow differs from one detector to another as shown in
Figure 1, it may happen that patterns from different detectors have a partial similarity.
Since these candidates are retrieved from different detectors, the other parts of them
may be very different, which badly impacts the forecasting accuracy. Thus, if the
prediction is to be made for a given detector, the model inspects only data related to it.

• Weekday-wise: when our model explores the historical data to retrieve state vector
profiles, it only considers the same weekday. For instance, if the current state vector is
taken from a Wednesday, all the profiles are constructed from historical data belonging
to Wednesdays. Observations showed that there is a clear difference between working-
day and weekend flows. More precisely, even days of the same category differ in
flow patterns, which justifies our choice. This weekday-wise pre-selection of state
vector profiles showed a significant improvement in the model’s performance through
preliminary experiments.
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• State vector length: the length of state vectors, denoted by l, indicates how far back-
ward from a given instant t the data is relevant to make accurate predictions. Hence,
a state vector of length l is given by:

v(t − l, t) = [ f (t − l), f (t − l + 1), . . . , f (t − 1), f (t)] (7)

The length of state vectors impacts the prediction quality as well. If l is relatively small,
the information provided by the state vector may be insufficient to make accurate
predictions. However, a longer state vector might also provide irrelevant information.
To choose the best value for l, preliminary experiments have been launched with
different values of l, such that l ∈ {20, 30, 40, 50, 60, 90, 120, 150}. Tests showed that
l = 60 min (six timestamps) is the best choice for our dataset.

• Search radius: to ensure that state vector profiles share similar characteristics with
the current state vector, we only consider profiles within a certain radius denoted by
R. This means that the model selects profiles falling no further than r timestamps
forwards and backwards from a current instant t. Therefore, the search space is
constrained within t − r and t + r. Obviously, as we decrease R, the ratio of profiles
closer to the current state vector in terms of characteristics increases, and vice versa.
One issue can be raised here, when R becomes smaller, profiles become fewer, which
may also affect the prediction accuracy. Consequently, a trade-off value of R has to be
determined in this respect. Experiments included R ∈ {40, 50, 60, 90, 120, 150, 200, 300}
and showed that R = 90 min (r = 9 timestamps) is the best search radius for our
experiments. Note that above 200 min (20 timestamps), the efficiency drastically
decreases, which indicates that search radius imposition is worthy.

Figure 1. Flow volume on detectors MS217–MS223 on 9 April 2018.

3. Imputation Techniques

Any kind of time series generally contains a mix of invalid values, missing entries,
and outliers; flow time series are not an exception. Commonly, missing and corrupted
values are replaced by some kind of constant depending on the predictive model to be
used, however, usually outliers are replaced with the closest rational value. In this section
we introduce three different techniques with a low computational effort to be deployed
for imputing missing values in our time series. The most efficient strategy among them
will be used to impute missing entries in our project. The reason behind seeking low
computational effort is that the chosen method is to be integrated into an online system.

3.1. Mean

An intuitive approach is to compute the mean of each timestamp over the entire
dataset. This roughly gives the amount of flow at each period of time during the day.
Without loss of generality, for 10 min accumulation we have 144 timestamps per day, we
denote their flow value by f (t), t ∈ {1, 2, . . . , 144}. Let us assume that in our dataset we
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have D days and only ω available values of f (t) (the rest is missing). Thus, we replace the
missing flow values at timestamp t in our dataset by:

m(t) = ∑ω
i=1 f (t)(i)

ω
(8)

Such that f (t)(i) is the ith day with available flow at this timestamp (ith available
flow value at timestamp t). Note that this technique excludes any differences between
weekday flows.

3.2. Mean per Weekday

This method is a more precise approach than the previous one. Herein, besides the
mean, we take into account weekdays as well. This means we compute the mean for each
timestamp of each weekday. If we take for instance 10 min accumulation, then we have to
take into account 144 × 7 values. As mentioned above the flow differs from one weekday
to another, especially during weekends. The idea is similar to the previous one, over the
dataset, we compute the mean flow for each timestamp related to weekday j ∈ {1, . . . , 7}.
Consequently, the values can be given by the following formula:

m(j)(t) =
∑

ω(j)
i=1 f (t)(i)

ω(j)
(9)

where ω(j) is the number of available values over the dataset at timestamp t of weekday j
and m(j)(t) is the imputed value at timestamp t of weekday j.

3.3. Linear Regression

In this subsection, we briefly describe a regression analysis model that has been
introduced for flow prediction in [8]. A linear regression model has been deployed, in which
forecasts are given by a set of polynomials of different degrees. The general formula of
these polynomials is:

P(x) =
n

∑
k=0

αkxk + ǫ = α0 + α1x + α2x2 + . . . + αnxn + ǫ (10)

where n is the degree of P and α is a vector of coefficients to be calibrated from the data.
The term ǫ is a random error with mean zero added for bias.

The model uses regression per weekday and incorporates it with local regression,
namely, hourly regression. First of all, the model tries to capture the regression of each
weekday with a polynomial of degree 10. The hourly regression of the flow is learned per
weekday as well with a polynomial of degree 5. As a result, the predicted values are given
by combining both values (daily and hourly) with more emphasis on daily regression to
avoid over-fitting. We will be using this model to predict the missing values at a given
timestamp, then impute them accordingly.

4. Data and Reconstructed Data

The work done in this paper is part of the DiSCO2 project currently conducted at the
Center for Industrial Mathematics (ZeTeM) at the University of Bremen. The aim of the
project is to model the traffic in the city of Bremen in order to make accurate forecasts of
different characteristics of traffic, especially traffic flow. The ultimate goal of the project is
to set the stage for decision makers to take actions targeting the reduction of CO2 emissions
in the context of fighting against climate change and air pollution.
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4.1. Data Description

In this project, we have large datasets of around 5 years’ worth of data. The data is
gathered from over 550 measurement sites all around the city, on each of which an inductive
loop detector is installed. This data is mainly delivered by the Traffic Management Center
of Bremen (VMZ), which is an associated partner in our project.

Figure 2 displays, in red bullets, the location of loop detectors installed all around
Bremen to record traffic attributes. This paper is only concerned with one place of the
city located in the city center. We focus on a junction surrounded by seven loop detectors
(MS217–MS223), as shown in Figure 3. This junction is situated in front of the main train
station as well as tram and bus stations, which makes the traffic in this area very messy and
subject to a lot of factors. Traffic lights are highly present in this region, but unfortunately
we have no data about them. As in any data gathering device, due to malfunctioning,
repairing, or data transmission, many entries are missing in the final output recorded in
databases. In our case, an important part of the data is missing over all 5 years. Sometimes
values are missing for months, and further, the completeness level of many of the detectors
is less than 50%. For this reason we selected a time frame where the data to be used
is almost complete (98%). First, we will use this data to train and test the predictive
model. Afterward, we will destroy parts of this dataset and then try to reconstruct it with
the different imputation techniques mentioned in the previous section. Detectors take
measurements each 90s, however in our study we use 10 min accumulations. The precise
dates used are from 9 April 2018 to 24 June 2018, which covers a period of 11 weeks. As we
already mentioned, this period corresponds to the time frame having the least amount of
missing entries. In order to measure the performance of the imputation techniques and
the accuracy of the forecasts delivered by the predictive model, we divide our dataset into
two parts. The first one consists of 8 weeks used for training, followed by 3 weeks for
testing. Precisely, training takes place from 9 April 2018 to 3 June 2018 then we test for the
period going from 4 June 2018 to 24 June 2018. The best imputation strategy will be later
used to fill in missing, corrupted, and outlier values in our database.

Figure 2. Location of the detectors (in red bullets) installed all over Bremen.

Figure 3. Detectors location in the studied junction.
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4.2. Reconstructed Data

In this subsection, we describe how we destroy parts of the working dataset and
reconstruct it. First, from the data described in the previous subsection, we take out the
same time frame where we have almost complete data (98%). We then artificially create
incomplete datasets by randomly removing different portions of data to reach a certain
level of completeness. Since in our data we have different lengths of missing portions,
ranging from one timestamp to even months, we will proceed by using analogous reasoning.
We proceed by removing, at random, timestamp portions of one of the following sizes,
{1, 3, 6, 36, 72, 144, 288, 1008, 4320}, respectively corresponding to 10 min, 30 min, 1 h, 6 h,
12 h, 1 day, 2 days, 1 week, and 1 month periods of time. The deletions are carried out at
random points until we reach different levels of completeness: 50%, 60%, 70%, 80%, and
90%. We also construct incomplete datasets to reach the previous incompleteness ratios
by passing in a list of random portion sizes, hence, there are different interval lengths of
missing data in each dataset.

Via what we have just described, we create 50 variants of incomplete datasets having
different combinations of gap lengths and incompleteness levels. To each of these we apply
the imputation techniques reported in Section 3 to construct complete datasets.

4.3. Performance of Imputation Methods

In order to measure the performance of the imputation methods, we consider the
same split mentioned above for our dataset. The first one is used to train the methods,
and the second part is to test their performance. We use mean absolute error (MAE), given
in Equation (12) as a criterion of accuracy. From the results reported in Tables 1–3 and their
corresponding Figures 4–6, we clearly see that the three methods are closely competitive;
however, it is obvious that the linear regression model is more accurate than the others.
The performance of the three models varies in function of completeness level and gap
lengths as well. Therefore, in what follows we comment and discuss the results based on
these attributes.

• Completeness ratio: The experiments reported in Tables 1 and 2, respectively plotted
in Figures 5 and 6, used different levels of completeness to investigate the impact of
various missing portions of data. The results showed that the completeness percentage
has an influence on the accuracy of the imputation methods. As we increase the
number of missing entries, the performance quality of the three imputation methods
decreases from around 91 with 50% completeness to 51 with 90% completeness. This is
clearly apparent in Figure 6, where a list of random gap lengths is passed in. In contrast
to that, Figure 5 shows that there is only a slight impact on the completeness ratio
when deletions are based on fixed gap lengths. This kind of performance is mainly
due to the large gaps of deletions (week and month), in this case deletions sometimes
take place mostly in the training set and sometimes in the test set, which alternates
the performance quality.

• Gap lengths: The results exhibited in Table 3 and Figure 4 suggest that for small gap
deletions the performance of the models is worse than the one with larger gaps. When
gap length is between 10 min and 1 day, the MAE is between 75 and 80, however,
it drops down to around 72 for one week gap and 58 for one-month deletion. This
kind of performance suggests, first, that the deletion of whole consecutive days has a
smaller impact on the performance of the models than missing shorter entries for one
day. Secondly, this means that training with smaller complete datasets is better than
doing it with larger ones with multiple missing entries of a length less than one day.
The efficiency of the models gets even better when the gap gets larger, namely one
week and one month. In these cases, two possibilities are to be considered. The first is
that the deletions are mostly (due to their length: a week or a month) in the training
set, which means that only a few entries on the test set have to be imputed, which
explains low errors (MAE). The other is that more missing entries are located in the
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test set, thus the training set is somehow complete, which affected well the filling
process of the missing values in the test set.

Table 1. Performance (MAE) of imputation methods in function of completeness ratio on fixed
gap-lengths datasets.

Completeness Ratio 50% 60% 70% 80% 90%

Mean 77.28 78.71 76.24 79.11 79.09
Mean Weekday 78.26 75.80 74.04 79.11 76.46
Linear Regression 76.95 74.82 73.26 78.42 76.01

Table 2. Performance (MAE) of imputation methods in function of completeness ratio on datasets
with a list of gap-lengths.

Completeness Ratio 50% 60% 70% 80% 90%

Mean 92.13 69.48 71.62 64.90 51.62
Mean Weekday 91.56 57.82 66.50 61.83 51.60
Linear Regression 91.22 57.27 66.50 61.44 51.50

Table 3. Performance (MAE) of imputation methods in function of gap-length.

Gap Length Mean Mean Weekday Linear Regression

1 78.50 77.89 76.85
3 78.62 79.70 78.33
6 78.33 79.42 78.40
36 79.90 80.47 79.65
72 80.45 79.98 78.85
144 77.49 77.03 76.39
288 78.13 77.16 76.56
1008 76.51 72.55 71.99
4320 72.12 58.83 58.10

Figure 4. Performance of imputation methods in function of gap-length.
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Figure 5. Performance of imputation methods for fixed gap-length.

Figure 6. Performance of imputation methods for a list of gap-lengths.

4.4. Deviation between Original and Reconstructed Data

As introduced above, we artificially produced 50 datasets with multiple kinds of
deletions, including fixed gap lengths and a list of random gaps under different percentages
of completeness. Afterward, different models were applied to reconstruct missing entries
in these datasets. This subsection quickly comments on some significant samples of
distributions of original and reconstructed datasets. Distributions are plotted detector-wise,
wherein the plots show the deviation between original, incomplete, and reconstructed
datasets. The results are given in function of both completeness level and gap length,
however, for brevity, herein we only include a few plots.

The plots in Figure 7 are taken from detector MS219 and aggregated by the percentage
of completeness. We can clearly see that as we increase the percentage of incompleteness,
the deviation between original and reconstructed datasets tends to grow, and vice versa.
Although the filling methods are closely competitive, we can notice that linear regression
has the least deviation from the original data, accordingly to what has been reported above.
Similar conclusions can be drawn as we increase the gap length as well, as shown in
Figures 8 and 9 taken from detector MS218. Note that this is also the case for almost all the
other detectors.
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Figure 7. Deviation between original and reconstructed datasets with different missing portions:
Detector MS219.

Figure 8. Distribution of original and reconstructed data with 50% completeness and gaps of length 1.

Figure 9. Distribution of original and reconstructed data with 50% completeness and gaps of
length 72.

In order to give more insights into the deviation between original and reconstructed
data, Figures 10–12 exhibit how the linear regression model reconstructs data. The figures
are samples taken from the same day (9 April 2018) and different detectors (MS217, MS220,
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and MS223). The data has 70% completeness level with missing entries of gap 1, 36, and
72 timestamps. We can notice that when we only have gaps of one timestamp missing at
once, the data is somehow well reconstructed. As we increase the gap, the accuracy of
the LR technique decreases. Figure 11 shows two gaps of 36 timestamps missing. We can
see that the original data is very sparse, however, the LR model tries to reduce the effect
of potential noise and outliers by imputing less sparse values. This is also set to avoid
over-fitting as shown in Figure 12 as well.

Figure 10. Data reconstructed with the Linear Regression method (completeness = 70%, gap = 1).

Figure 11. Data reconstructed with the Linear Regression method (completeness = 70%, gap = 36).

Figure 12. Data reconstructed with the Linear Regression method (completeness = 70%, gap = 72).

5. Results and Discussion

In this section, we report and discuss the output of our implemented model under
both original and artificial datasets. Before doing so, in order to evaluate the accuracy of
the predictions, two metrics are deployed: Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE). These are given by the following formulas:

MAPE =
100
n

·
n

∑
i=1

∣
∣∣∣
m(t)i − p(t)i

m(t)i

∣
∣∣∣ (11)
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MAE =
1
n
·

n

∑
i=1

|m(t)i − p(t)i| (12)

Such that m(t) is the real value of traffic flow measured at instant t and p(t) is the
value predicted by the model. n is the number of predictions.

5.1. Under Original Data

We report and comment in this subsection on the performance of the E-KNN model
under the original dataset described in the previous section. We use the same dates for
training and testing, namely, we train the model with data from 9 April 2018 to 3 June
2018, then test it on data from 4 June 2018 to 24 June 2018. The discussion of the output of
E-KNN will be carried out according to the mean average error (MAE) and mean absolute
average error (MAPE) given above (refer to Figures 13 and 14 for more details). We launch
the E-KNN model to run on each detector separately because, as can be seen from Figure 1,
the data is different from one detector to another. This is due to the location where the
detectors are installed. Some loop detectors are collecting data from one-lane roads, whereas
others record it from two-lane roads. Thus, the order of magnitude of the flow volume is
different for each detector. Predictions are made for one hour, which means we forecast
six steps at once. As structured in Table 4, we report the performance accuracy based on
day hours. we consider traffic flow for all day hours, significant traffic hours (between
6 h in the morning and 22 h in the evening), morning peak times (from 6 h to 9 h), and
finally evening peak times (from 16 h to 19 h). It is obvious that the results vary from one
detector to another, and this is related, firstly, to the same reasons just mentioned (distinct
flows), and secondly to traffic lights, which we have no data on. Therefore, the accuracy
of E-KNN is henceforth discussed by averaging the results in each category. First of all,
one can notice that when the flow volume is significant the MAE tends to grow while the
MAPE tends to decrease. Since the flow volume in our data is relatively large, it can reach
more than 1500 vehicles/hour (see Figure 1), we can expect this kind of somehow large
MAEs. Note that the results have also been affected by the occasional outliers, which we
did not remove from our dataset. Taking into account all day hours, the E-KNN model
makes forecasts with an error of 46.40 MAE and 26.38% MAPE. However, when we only
regard significant traffic during the day, meaning traffic between 06:00 and 22:00, a worse
MAE is reached (56.26) and a better MAPE is delivered (17.91%). It is expected to have
a worse MAE because during this period of time larger numbers of vehicles are flowing.
The accuracy in this category of hours is satisfactory as it reaches around 83%. Moreover,
two other categories appear as rush hours during the day, in particular, peak times in the
morning and in the evening, from 06:00 to 09:00 and from 16:00 to 19:00. Relative absolute
error in the morning is around 22%, whereas it is only 16% in the evening. Given that the
detectors are installed on signalized urban arterial roads and we have no data on how traffic
lights are programmed, we think that the accuracy of the E-KNN model is satisfactory,
especially during rush hours.

Table 4. Prediction results over the test set for 1 h (6 steps).

06:00–09:00 16:00–19:00 06:00–22:00 All Day

Detector ID MAE MAPE MAE MAPE MAE MAPE MAE MAPE

MS217 63.58 14.30 100.50 12.10 75.08 11.97 62.87 16.64
MS218 23.96 28.86 55.94 20.29 36.11 22.78 28.80 30.57
MS219 61.54 15.34 92.90 11.98 71.28 12.35 60.41 18.80
MS220 73.98 21.12 80.82 17.16 74.10 18.30 62.32 27.12
MS221 26.24 25.25 53.18 16.99 45.87 21.58 38.24 31.30
MS222 38.42 26.63 57.00 17.77 47.59 19.31 37.11 30.54
MS223 47.54 23.98 49.78 17.45 43.80 19.09 35.06 29.68

Average 47.89 22.21 70.02 16.25 56.26 17.91 46.40 26.38
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Figure 13. Predictions of traffic flow on randomly chosen detectors (weekend days).

Figure 14. Predictions of traffic flow on randomly chosen detectors (working days).

5.2. Under Artificial Datasets

This subsection is dedicated to the discussion of E-KNN performance under the
different imputed datasets produced as described in Section 4.2. In order to assess the
performance of E-KNN under the filled-in datasets (50 datasets), we apply it to each of
these datasets, always using the same time frames declared above for training and testing.
The accuracy of the model is reported using the mean absolute error criterion (MAE) since
both MAE and MAPE gave equivalent output. The results are discussed according to the
level of completeness of each dataset and also following gap lengths. The results show
that the ratio of completeness has an impact on the performance of E-KNN, however,
not for all of the 50 datasets. This is also related to the positions of deletions (especially
for large gaps) where sometimes they lay mostly in the training set and other times in
the test set. Another factor that should be taken into account is the flow volume, which
varies from one detector to another (refer to Figure 1) and sometimes leads to differences
in errors when deletions take place mostly in either the training set or test set. From
Tables 5 and 6, in general, as we increase the level of completeness of the datasets, E-KNN
seems to perform better. The model’s performance also depends on the length of gaps; for
some of these configurations, the completeness level seems to have a huge impact on the
performance (gap = 36, gap = 1008), and a slight one on others, as in gap = 1 for instance
(see Figure 15). We think that this does not relate to the gap length itself but to the random
distribution of deletions between the test set and training set in these datasets. Apart from
that, completeness level has a huge impact, especially on incomplete datasets. For instance,
on incomplete datasets with gap = 144, MAE decreases from 200 on a 60% level to around
80 on 90% completeness. Moreover, on datasets completed with the three models, MAE
decreases from around 60 to 50 as we increase the completeness ratio. The same thing can
be noticed with gap = 36 (see Figure 15), where for incomplete datasets MAE decreases
from 60 to 55 and from around 65 to 47 for completed datasets. For gap = 1008 (see
Figure 15), completeness level seems to have no effect on incomplete datasets, but intensely
impacts the performance of E-KNN with filled-in datasets as MAE decreases from 65 to
around 47.
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Figure 15. Performance of E-KNN under incomplete and completed datasets with differ-
ent gap-lengths.

On the other side, the gap length parameter also has an impact on E-KNN performance.
In general, when gap length is increased, the accuracy decreases (refer to Table 7). However,
this is not the case for our results sorted in function of completeness level. It seems that,
in presence of filled-in datasets, the gap length has little impact on the performance of
E-KNN which means that the datasets are somehow efficiently completed regardless of
the different deletion kinds. Howbeit, for incomplete datasets, gap length has an effect on
the accuracy. Take for instance 90% completeness (refer to Figure 16), MAE increases as
we increase the gap length, except for 72 and 288 where training sets seem to have fewer
deletions than test sets, which allowed E-KNN to perform well. In this case, MAE jumps
from around 50 on gap 1 to around 200 on gap 4320.

Figure 16. Performance of E-KNN on incomplete and completed datasets with a completeness level
of 90%.

Table 5. E-KNN’s performance for imputation methods in function of completeness ratio on datasets
with a list of gap-lengths.

Completeness Ratio 50% 60% 70% 80% 90%

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Incomplete 157.19 158.73 150.03 127.85 102.47 114.57 120.49 112.31 58.73 37.23
Mean 53.56 32.32 54.09 34.57 53.10 33.00 51.16 30.14 46.97 27.93
Mean Weekday 53.76 29.24 51.65 29.45 52.12 29.81 50.29 27.39 46.69 26.35
Linear Regression 53.79 29.10 51.72 29.38 52.25 29.72 50.46 27.21 46.73 26.30
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Table 6. E-KNN’s performance for imputation methods in function of completeness ratio on datasets
with fixed gap-lengths.

Completeness Ratio 50% 60% 70% 80% 90%

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Incomplete 124.91 111.74 167.87 139.26 159.17 159.63 142.12 131.63 111.20 93.35
Mean 60.35 38.45 56.99 35.66 53.69 33.49 50.79 30.55 48.09 28.01
Mean Weekday 60.15 33.34 56.58 31.61 53.18 29.95 50.63 28.40 47.87 26.83
Linear Regression 60.09 33.17 56.62 31.48 53.28 29.85 50.27 28.34 47.91 26.78

Table 7. E-KNN’s performance in function of gap length.

Gap Length Incomplete Mean Mean Weekday Linear Regression

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

1 58.73 32.74 52.16 32.03 52.41 29.71 52.36 29.58
3 57.57 32.29 53.22 32.75 53.74 30.30 53.62 30.16
6 174.61 207.74 53.34 32.62 53.92 30.41 53.78 30.27
36 235.41 179.15 55.14 34.36 54.98 31.06 55.08 30.98
72 219.87 215.39 55.57 34.62 54.89 31.07 55.02 31.01
144 172.62 166.38 55.12 33.47 54.71 30.01 54.84 29.95
288 151.30 157.05 55.37 33.92 54.11 29.60 54.24 29.51
1008 144.13 139.71 56.00 35.25 55.41 30.79 55.64 30.74
4320 70.35 47.85 49.92 30.08 48.97 27.27 48.95 27.12

In a nutshell, based on the discussion above, we can say that the E-KNN model
is very sensitive to incomplete datasets. This sensitivity also varies based on both the
completeness level of datasets and gap sizes. In general, as we increase completeness
level, the accuracy increases, and vice versa. The same thing might apply to gap lengths,
as we increase them, accuracy tends to decrease; however, not if the datasets are well
reconstructed. For completed datasets, E-KNN performance is often somehow stable under
different missing percentages and gap lengths; however, sometimes these two parameters
also impact E-KNN’s performance in a similar manner as happens with incomplete datasets.
When the performance of E-KNN is stable with regard to different gaps and completeness
ratios, it means that the imputation techniques are efficient and well reconstructed the
datasets despite the different factors considered.

6. Conclusions

We investigated in this paper the impact of data loss on the performance of the K-
nearest neighbors model applied to the context of intelligent transportation. The model
delivers a multi-step flow forecast for urban roads located in downtown Bremen. In order
to examine the efficiency of our E-KNN model under data loss circumstances, we artificially
created incomplete datasets with different completeness levels and gap lengths. Afterward,
we designed three different methods for the sake of reconstructing these datasets. The per-
formance of the E-KNN model is then tested with the original, incomplete, and imputed
datasets. The experimental results showed that E-KNN is able to reach 17% MAPE during
significant daily traffic (06:00–22:00) for 3 weeks of the test set. Moreover, considering
all day hours, the model is able to make 6-step forecasts with an average error of one
car per 90 s. The performance of the model under imputed datasets varies in function of
completeness level and gap length, but in general the model performs much better under
filled-in datasets than under incomplete ones.
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Abstract—Short-term forecast of different traffic attributes is
one of the fundamental tools used in transportation planning.
Precisely, accurate predictions of traffic flow are often the basis
of an efficient traffic management. In the paper at hands we shed
a light on short-term traffic flow forecast in urban arterial roads
in Bremen (Germany). This case-study uses real-data collected
from 7 loop detectors installed in downtown. To deal with this,
we propose two different models, namely, Linear Regression
and Graph Convolutional Neural Networks. The models are
separately applied to 11 weeks of data, three of these are
dedicated to test the performance of both models. Experimental
results show that the models are closely competitive and they
reach, in average over the whole test-set, around 19% mean
absolute percentage error during morning and evening peak
times.

Index Terms—Traffic Flow; Regression Analysis; Graph Con-
volutional Neural Networks; Short-term Forecast; Deep Learn-
ing; Machine Learning.

I. INTRODUCTION

Intelligent transportation systems (ITS) play a significant
role in organizing, controlling and planning the traffic flow
inside or outside of cities. Basically, smart cities heavily
rely on those systems to optimize the circulation process
and render city districts easily and quickly accessible from
everywhere. One of the main elements ITS is concerned
with is traffic flow volume in different city roads and further
highways surrounding the city. Various tools are usually used
to measure and monitor the traffic flow including inductive
loop detectors, video image processing, microwave and laser
radars and other techniques related to Internet of Things
(IoT). The data collected by the aforementioned tools (which
is usually Big Data), is often used to build different types of
models for analysis and prediction purposes. Many researchers
investigated broad topics of Intelligent Transportation with
a major focus on predicting the key factors that impact the
traffic, for instance, traffic flow volume, traffic speed, traffic
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state, etc. In the present paper we draw attention to short-term
traffic flow volume forecasting. Accurate prediction of this
key element is a stepping stone for other kinds of tasks such
as travel time forecast and traffic state prediction.

In our study, we use two different methods to deal with
short-term forecasting of traffic flow volume in Bremen city
(Germany). This is part of a project we conduct to model and
forecast traffic flow in the city, wherein the chief goal is to
reduce CO2 emissions in Bremen by controlling traffic lights.
In order to capture the linear relations in the working data, we
designed a Regression Analysis model based on different time
frames aiming to learn the linear dependencies between data
points. To cope with the non-linear characteristics in the data,
a Graph Convolutional Neural Network is used. For the time
being, both models were separately applied to data collected
from 7 inductive loop detectors installed around urban arterial
roads in downtown. The purpose of this paper is to compare
the proposed models, evaluate the prediction results obtained
so far and give insights on some future work. The rest of this
article is structured as follows. We review some related work
in Section II. In Section III, we detail the models devised in
the paper. Afterwards, the used data is described in Section IV.
Results and discussions are reported in Section V. The paper
is concluded with some future directions and perspectives in
Section VI.

II. LITERATURE REVIEW

The problem we consider has gained a lot of interest
among researchers and has been investigated in many papers
with different approaches. One of the common approaches
often used when one deals with time series is ARIMA and
its variants. This model has been solely applied as in [9]
and also hybridized with some other approaches such as
in [15]. Moreover, other techniques such as Support Vector
Regression (SVR) [11], [3], K-Nearest Neighbors (KNN) [2],
[17], [19] and several hybridized methods [10], [18] were
also explored. However, most recently researchers focus more
on Deep Learning methods to improve forecasting precision.



Some of the early Deep Learning models such as stacked auto
encodes (SAE) [12], long-short term memory (LSTM) and
gated recurrent units (GRU) [5] used only time series data in
the prediction process. Nevertheless, recent models employ
more advanced techniques as in [7], where Traffic-Wave is
used. The authors stack 1d dilated convolutions to increase
the receptive field of the convolutions exponentially, which
allows their model to extract short-term patterns in lower
layers and long-term patterns in higher layers, outperforming
the previous approaches. In Graph Wave-Net, as in [14],
the Traffic-Wave idea is extended by implementing graph
convolutions to capture spatial dependencies. Most recent
Deep Learning techniques for traffic forecasting incorporate
graph convolutions [1], [4], [6]. For an overview, the reader
is referred to a survey that has been carried out in [8].

III. METHODOLOGY

This section comprises a detailed description of the fore-
casting models designed in the current article.

A. Regression Analysis

Linear Regression (precisely Polynomial Regression in
our case), is a modeling approach that captures a certain
relationship between variables, usually known as independent
variables or predictors (input) and dependent variables
(output). In cases when we deal with only one input variable
the model is called Simple Linear Regression, however, when
the number of independent variables escalates, we refer to
the model as Multiple Linear Regression. Another variant
of linear regression models, different than the latter, named
Multivariate Linear Regression, also exists in the literature
and is often involved when multiple dependent variables
(output) are to be predicted. The relationships between
the different variables are modeled using linear predictor
functions whose unknown model parameters are generally
estimated from the data.

Linear Regression models have been extensively used in
various areas for multiple goals. Here we are interested in their
applications in the field of Machine Learning where the main
aim is to build a predictive model from an observed data-set,
then use the learnt model to predict or forecast future (unseen)
values. The general equation of a polynomial regression of
degree n can be written (in two forms) as follows:

P (x) =
n∑

k=0

αkx
k + ε = α0 + α1x+ α2x

2 + . . .+ αnx
n + ε

P (x) and x are respectively the dependent variable and the
independent variable. α is the vector of the corresponding
coefficients to be learnt from the data, and ε is a random error
term with mean zero; added for bias.
Our model is devised in 2-phases, the first one is to establish a
Regression Analysis, then subdue the model parameters, in a
second part, to a correction or a validation process in which the
values are slightly modified. The regression model considers

each week-day separately, for each of which a polynomial of
degree 10 is learnt, this yields 7 functions. Moreover, each
of the week-days is split up into 24 hours, to each hour a
polynomial of degree 5 is associated. Thus, in total we have
175 functions (168+7). The Regression Analysis takes into
account the mean of the values at a given instant over the
training set, then excludes the values that are above 1.5 ·mean
since polynomial regression is very sensitive to outliers. The
shape of the daily regression is smoothly captured with degree
10 with no over-fitting. Additionally, degree 5 is chosen for
the hourly regression as an attempt to grasp the shape of the
fluctuations and try to match with it. The predicted flow values
at a given instant are calculated as follows:

F (t) =
4 · Fweek−day(t) + Fhour(t)

5

where F (t) is the predicted traffic flow volume at instant
t, Fweek−day(t) and Fhour(t) are respectively the regression
polynomials corresponding to the week-day and the hour of
instant t. The correction phase gives high priority to the
parameters learnt by the regression model, however it tries
to make use of one week values and combine them with the
regression values as follows:

Pred(t) =
4 · Vreg(t) + Vweek(t)

5

Where Vweek(t) are the values at each instant t of the last
week-days of the training set and Vreg(t) are the output of
the regression model at the same instant t. Experimentally,
this latter showed a slight improvement in the prediction
accuracy.

The built-up model has the ability to do short and long
term forecasts very quickly, alongside that, it can be trained
with a small amount of data. In contrast, the main drawbacks
of the model are that it cannot accurately predict the sharp
fluctuations without further data feeding and also is unable to
predict any strange pattern that was not captured during the
training phase.

B. Graph Convolutional Neural Network

The Graph Convolutional Neural Network (GCNN) used
herein is based on the Global Spatial-Temporal Graph
Convolutional Network (GSTGCN) by Liang et al. [6]. The
architecture used in the present work is illustrated in Figure
1. The three temporal modules are each made up of NR = 3
residual blocks incorporating dilated 1d convolutions (DCC)
with dilation factors d = 1, 2, 4, in the same way as in [16],
for learning short-term and long-term relationships in the
temporal space. Dilated convolution blocks were also used
in Traffic-Wave [7] and Graph Wave-Net [14]. They are
followed by a weight normalization operation (WN) [13] to
combat overfitting and a ReLU activation.

We use three input segments for each prediction; Let
xt0 ∈ RN×D be the traffic state at the current timestamp
t0, where N = 7 is the amount of sensors, D = 1 is



the amount of features (in this case flow) and Tp ∈ N
is the amount of timestamps to be predicted. The recent-
time segment Xrecent = (xt0−Th+1, xt0−Th+2, . . . , xt0) ∈
RN×D×Th , Th ∈ N includes the most recent timestamps and
it is used to adapt to the current traffic state. The daily-
periodic segment Xdaily ∈ RN×D×Td , Td ∈ N incorpo-
rates the same segment to be predicted but on the previous
Td

Tp
∈ N days. This segment is chosen because traffic can

be similar on consecutive days. The weekly-periodic segment
Xweekly ∈ RN×D×Tw , Tw ∈ N also contains the same
segment to be predicted but from the previous Td

Tp
∈ N weeks

on the same weekday. It makes use of repeating patterns in
the historical data since the flow on the same weekday is
generally similar. The three temporal modules are used for
learning recent, daily-periodic and weekly-periodic features
Yrecent, Ydaily, Yweekly ∈ RN×F×Tp , where N = 7 is the
amount of sensors, F ∈ N is the amount of features and
Tp ∈ N is the amount of timestamps to be predicted. The
spatial modules consist of a graph convolution incorporating
the distance between sensors and a global correlated spatial
mechanism based on the connectivity within the traffic net-
work. The adjacency matrix deployed in the graph convolution
is based on driving distances in between sensors. Accordingly,
Dijkstra algorithm is applied to compute the driving distance
dist(i, j) from sensor i to sensor j. For the global correlated
spatial mechanism, the connectivity conn(i, j) of two sensors
i and j is set to conn(i, j) = α = 2 if there are at most two
edges in between sensors i and j, otherwise conn(i, j) = 1.
The resulting features of the three time-frames are fused and
a fully connected neural network is applied. While Liang et
al. in [6] use GSTGCN to predict traffic speed, the adapted
architecture demonstrates through experimental testing that it
is also capable to predict traffic flow.
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Fig. 1: The architecture of our Graph Convolutional Neural
Network.

IV. DATA DESCRIPTION

The present paper is part of a project currently conducted
at the Center for Industrial Mathematics (ZeTeM) of the

University of Bremen, to model and forecast traffic flow in
the city of Bremen (Germany). The project is launched in
the context of the increased efforts to combat climate change.
As stated above, the main goal of this project is to forecast a
short-term traffic state to allow decision-makers to take actions
in order to reduce CO2 emissions due to traffic. The Traffic
Management Center (VMZ) of Bremen is an associated partner
in the project and it is the main provider of the data we use.
Figure 2 presents Bremen city map and displays in red bullets
the location of the detectors installed all over the city to record
traffic data.

Fig. 2: Loop detectors installed in the city of Bremen.

In the study reported in this paper, we focus on probably the
most congested area in the city: downtown. We selected a junc-
tion in front of the main train station (Bremen Hauptbahnhof),
tram station, bus station, etc. The chosen junction is itself a

Fig. 3: The chosen junction (Red bullets correspond to the
detectors location).

big challenge because of the large amount of traffic lights and
signs present in this area, about which, unfortunately, we don’t



possess any data. In that location 7 inductive loop detectors
(form MS217 to MS223) are installed in the surroundings to
collect traffic data as shown in Figure 3.

Measurements take place every 90 seconds, however, in our
study we use 10-minutes accumulation. The sample data we
consider in the present work includes the time frame from 9
April 2018 to 24 June 2018. The chosen dates correspond to
the period with the least missing data (less than 2% of the
data is missing). The used data covers a period of 11 weeks
split up into 8 weeks for training the models and 3 weeks
for testing. Precisely, the models are trained with data from
9 April 2018 to 3 June 2018 and tested for the period going
from 4 June 2018 to 24 June 2018. Figures 4 and 5 exhibit
random samples of data per day and per week.

Fig. 4: One-day traffic flow data (detector MS223).

Fig. 5: One-week traffic flow data (detector MS223).

Since the data is collected from detectors placed in signal-
ized urban arterial roads, the fluctuations in the data are very
sharp and can jump between extreme values in short periods
of time. In our project, we focus on different attributes related
to traffic and transportation, however, in this paper we discuss
only traffic flow forecast. Note that traffic flow volume is given
by the number of vehicles traversing a detector per hour.

V. RESULTS AND DISCUSSIONS

In this section, we report and discuss the output of the
implemented models. Before doing so, in order to evaluate the
accuracy of the predictions made by both models, two metrics

are deployed: Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE). These are given by the following
formulas:

MAPE =
100

n
·

n∑

i=1

∣∣∣∣
m(t)i − p(t)i

m(t)i

∣∣∣∣

MAE =
1

n
·

n∑

i=1

|m(t)i − p(t)i|

such that m(t) is the real value of traffic flow measured at
instant t and p(t) is the value predicted by the model. n is
the number of predictions.

TABLE I: Prediction results over the test-set considering
morning peak hours only (06:00-09:00).

MAPE(%) MAE

Detector ID Reg. Ana. GCNN Reg. Ana. GCNN

MS217 15.50 16.11 78.93 65.65
MS218 25.27 34.15 25.39 28.14
MS219 16.50 13.74 75.86 56.65
MS220 20.09 20.02 77.47 73.36
MS221 22.28 30.34 26.11 32.07
MS222 22.21 27.08 39.50 40.20
MS223 23.46 20.93 53.56 47.12

Average 20.75 23.19 53.83 49.02

TABLE II: Prediction results over the test-set considering
evening peak hours only (16:00-19:00).

MAPE(%) MAE

Detector ID Reg. Ana. GCNN Reg. Ana. GCNN

MS217 11.77 11.77 96.81 96.02
MS218 20.85 19.90 58.78 48.26
MS219 11.04 11.22 84.80 86.62
MS220 17.19 15.38 79.51 71.50
MS221 19.81 18.98 57.56 55.46
MS222 20.01 19.48 61.91 59.05
MS223 18.64 17.31 52.98 48.67

Average 17.04 16.29 70.33 66.51

TABLE III: Prediction results over the test-set considering all-
day hours.

MAPE(%) MAE

Detector ID Reg. Ana. GCNN Reg. Ana. GCNN

MS217 15.81 17.03 63.05 61.95
MS218 28.30 32.13 28.81 29.02
MS219 18.01 19.62 60.22 58.12
MS220 24.19 25.19 61.39 58.95
MS221 29.49 29.69 38.98 36.67
MS222 29.67 30.42 39.91 38.15
MS223 27.91 27.80 37.92 34.99

Average 24.76 25.98 47.18 45.40



Fig. 6: Flow prediction in morning peak on a randomly
chosen working-day (detector MS220)

Fig. 7: Flow prediction in morning peak on a randomly
chosen weekend-day (detector MS222).

Fig. 8: Flow prediction in evening peak on a randomly chosen
working-day (detector MS221).

Fig. 9: Flow prediction in evening peak on a randomly chosen
weekend-day (detector MS222).

Fig. 10: Flow prediction on a randomly chosen working-day
(detector MS217)

Fig. 11: Flow prediction on a randomly chosen weekend-day
(detector MS218)

The discussion of the outcome of the Regression Analysis and
the Graph Convolutional Neural Network (GCNN) models is
carried out according to all-day hours and traffic peak hours
in the morning and in the evening. We report the results of 3
weeks of testing from 4 June 2018 to 24 June 2018. The focus
is on morning and evening peaks where a significant amount
of vehicles is flowing. The morning peak is set to be between
06:00 and 09:00. In the evening, 3 hours of traffic peak is
chosen between 16:00 and 19:00. The results are exhibited
per detector as shown in Tables I, II and III.

Tables I and II recapitulate the results of the experimental
tests per detector for the morning and evening peaks respec-
tively. The Regression Analysis model is applied to each
detector’s data separately, thus, the learnt functions are in
total 1225. However, GCNN takes into account all detectors
data simultaneously. For GCNN we set a one-hour forecast
horizon, whereas the Linear Regression model performs one-
day prediction at a time. We can clearly see that the prediction
accuracy differs from one detector to another. This mainly
pertains to the flow volume where the detector is placed,



because some of them records from multiple-lane roads (roads
do not have the same number of lanes). When the flow
volume is high, the MAE tends to take higher values, and
vice versa. This also is the reason why we have higher MAE
during peak hours than all-day hours. Athwart, the MAPE,
measuring a relative error, decreases during peak times. In
average, both models produce 24% − 25% MAPE for all-
day hours, which decreases to around 19% during morning
and evening peaks. As mentioned above, since we are dealing
with a signalized junction situated in downtown, the reached
accuracy is satisfactory, especially during the most congested
times of the day. It is noteworthy that our data differs from the
one used in recent works, wherein data-sets are mostly from
the Caltrans Performance Measure System (PeMS). The just-
mentioned system records highway traffic data in California,
which lacks the strong uncertainty about a vehicle’s behavior
(taken direction) at a given junction. Furthermore, apart from
the noise created by traffic light signals, this kind of behaviour
constantly changes and is very hard to predict.

For visualization purposes, Figures 10, 11, 6, 7, 8 and
9 illustrate the performance of both models on randomly
chosen detectors on different days (weekend and working-
days). Although the exhibited samples show that the models
can accurately track the measured flow trend, they also display
the weakness of the models, which is the inability of predicting
occasional peaks (such as in Figure 6 at 07:40). Another
data-related weakness, is the sharp fluctuations that appear
from time to time (refer to Figure 11). As mentioned above,
unfortunately, we don’t have any data about these unusual
traffic patterns.

VI. CONCLUSION AND FUTURE DIRECTIONS

This article dealt with forecasting traffic flow volume at
a single signalized traffic junction in Bremen (Germany). We
focused on a very congested location, in which 7 loop detectors
are installed. In order to forecast traffic flow in this region, we
proposed two different models: Linear Regression and Graph
Convolutional Neural Network based models. On a 3 weeks
test-set, we measured the accuracy of both models deploying
MAE and MAPE as performance indicators. The experimental
results showed that the models are closely competitive and
produce satisfactory forecasts with 19% error in average for
the peak times during the day and with averagely 25% for
all-day hours. To improve upon this, we plan to benefit
from both models strength, and possibly, hybridize between
them. Additionally, collecting traffic light data could help in
predicting the fluctuating traffic patterns.
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Abstract—Traffic forecasting is a challenging task due to
complex spatial and temporal dependencies across sensor lo-
cations and time. Interest in solving this task has increased,
but current research focuses on manually constructing neural
network architectures without the aid of neural architecture
search (NAS). In our work, we explore evolutionary neural archi-
tecture search (ENAS) by deploying a genetic algorithm (GA) to
find optimal neural network architectures for predicting traffic
conditions. The search space for the GA consists of arbitrary
combinations of dilated convolutions and graph convolutions for
modelling temporal and spatial dependencies respectively, limited
in complexity only by technical constraints. Experimental results
show that model architectures obtained via GA are able to match
the current state-of-the-art on traffic prediction benchmarks.

Index Terms—evolutionary neural architecture search, genetic
algorithm, neural architecture search, traffic forecasting, deep
learning

I. INTRODUCTION

Traffic forecasting is the task of predicting future traffic con-
ditions, such as flow and speed, by analyzing historical traffic
patterns. These forecasts are useful for detecting congestion
and long travel time risk, can help authorities in planning and
controlling traffic as well as help citizens to make routing
decisions. Furthermore, especially in urban and metropolitan
areas, enabling intelligent traffic systems (ITS) to adjust to
future events can lead to more homogeneous traffic flow, and
hence, fewer CO2 emissions, reducing environmental impact.
Since traffic data has become more available in recent years,
there has been increasing research towards developing machine
learning algorithms for traffic forecasting.

Traffic forecasting is a challenging task, since the future
traffic conditions at one measurement site do not only depend
on the recent conditions (temporal dimension), but also on the
ones from upstream measurement sites (spatial dimension).
Furthermore, datasets can contain hundreds of measurement
sites and the underlying road network can be complex, making
it difficult to model dependencies between them.

Traditional methods such as linear regression [18], auto-
regressive moving average [14] and vector auto-regression
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[24] fail to capture the complex spatio-temporal dependencies
of large traffic datasets. Hence, recent research has shifted
towards deep learning related models such as long-short term
memory and gated recurrent unit [4] for capturing temporal
dependencies and graph convolutional neural networks (GCN)
to learn the spatial dependencies within the data [6], [8],
[21]. One drawback of GCN models is that they require
knowledge of spatial connections within the graph structured
road network, often in the form of an adjacency matrix. Graph
WaveNet [21] and AGCRN [2] solve this issue by learning
the spatial dependencies directly from the data. However,
the neural architectures used are still handcrafted by experts.
When deployed in real world applications, these approaches
additionally need to be tailored to the scenario at hand,
requiring a considerable amount of time and effort.

Alleviating this tedious process of neural architecture de-
sign, neural architecture search (NAS) methods have become
a popular means for discovering tailored neural architectures
for various tasks. Early NAS frameworks focus on computer
vision and language modelling [11], [16], however, they can
also be applied to graph data [5], [23] and spatio-temporal
data [15]. There are three common components in NAS. The
first one being the search space, i.e. the general structure
of the discovered network architectures, which is defined
by the operations and their connections within the network.
Secondly, there are different search strategies, the main ones
are reinforcement learning (RL), gradient-based search and
evolutionary NAS (ENAS). RL based algorithms often require
a tremendous amount of computation time, even on smaller
datasets such as CIFAR-10 [25]. Gradient-based NAS as in
[11] are more efficient than RL based methods. However,
they can get stuck in local minima and require constructing a
supernet in advance, which constrains the search space and
necessitates multiple searches for different hyperparameter
settings, e.g. number of cells, number of vertices in cells
and hidden units. Although ENAS can also suffer from long
computation times, they can explore the search space more
thoroughly without a given supernet in advance. Lastly, the
performance estimation strategy defines how discovered ar-
chitectures are evaluated. Often, this is done by training them
for a certain amount of epochs. However, since this is costly,
strategies like weight inheritance and network morphisms
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Fig. 1: Architecture search space of our framework.

eliminate the need for training from scratch, greatly reducing
training time [3]. It is also possible to evaluate discovered
architectures without training at all [12].

The research on NAS for traffic forecasting is limited. Early
work [20] investigates the implementation of genetic algorithm
(GA) for optimizing gradient descent hyperparameters and
hidden layers in multi layer perceptrons (MLP) on a small
dataset. Rahimipour et al. [17] search for number of neurons
in two layer MLPs and slopes of the activation functions using
GA on a very small (three measurement sites) real-world
dataset. A particle swarm optimization algorithm is used
in [9] to optimize the amount of neurons in the hidden
layers of deep belief networks, learning rate and momentum.
However, they also limit their study to a small dataset and
fixed the amount of hidden layers. To our knowledge, Pan
et al. [15] are the first to implement gradient-based NAS
for traffic forecasting in their framework called AutoSTG.
They are using a cell-based approach of learning one smaller
architecture (a cell) and applying it in sequence multiple times
to obtain a larger network, similar to [11]. Their operation
space is made up of none, identity, temporal convolution
and spatial graph convolution. Additionally, they apply meta
learning to learn the adjacency matrices for the spatial graph
convolutions and kernels for their temporal convolutions.

To tackle some of the problems described above, we apply
evolutionary neural architecture search via genetic algorithm
for traffic forecasting. In comparison to the cell-based ap-
proach of AutoSTG [15], GA discovers complete variable-
sized architectures, decreasing the amount of search hyper-
parameters. To the best of our knowledge, we are the first to
apply ENAS on commonly used real world traffic benchmarks.
GA can find architectures that are capable of outperforming
or keeping up with current state-of-the-art models.

The work at hand is structured as follows; In Section II
we define the problem of traffic forecasting and introduce the
bilevel optimization problem NAS solves. We then present
our architecture search space and the GA used for exploring
it. In Section III we describe the traffic benchmarks, metrics
and baseline models. We present the results of our method,

compare them with the baseline models, and evaluate the
impact of dilated convolution and graph convolution on the
prediction performance. In Section IV, we outline possible
directions for future work before concluding in Section V.

II. METHODOLOGY

A. Traffic forecasting

The task of traffic forecasting is to predict future traffic
conditions from historical ones observed at measurement sites
of a road network. A road network can be defined as a
weighted undirected graph G = (V, E ,W), where V is a set
of vertices or nodes representing the |V| = N measurement
sites in the road network, E a set of edges indicating the
connectivity between measurement sites and W ∈ RN×N

a weighted adjacency matrix, representing the proximity be-
tween nodes. We use distance based adjacency matrices in our
work, calculated by driving distances between measurement
sites.

Then, given a timestamp t, the traffic conditions on the
graph G are denoted by a graph signal Xt ∈ RN×F , where
F ∈ N is the amount of features observed at each measurement
site or node. Finally, the goal of traffic forecasting is to learn a
function f for predicting future T graph signals on the graph
G from T ′ historical graph signals:

yt = [Xt+1, ..., Xt+T ] = fθ([Xt−T ′+1, ..., Xt];G) ∈ RN×D×T

Here, D ∈ N denotes the amount of features to predict for
each measurement site.

B. Neural architecture search

The objective of NAS is to find an optimal architecture
A from the space of architectures A that minimizes the loss
function L on a given dataset D. To be more precise, we want
to solve a bilevel optimization problem:

A∗ = min
A∈A
L(θ∗(A), A,Dvalid) (1)

s.t. θ∗(A) = argmin
θ
L(θ,A,Dtrain) (2)

Here, Dtrain ⊂ D and Dvalid ⊂ D respectively denote the
training and validation datasets and θ the network parameters.



In this work, we use genetic algorithm (GA) to solve the
optimization problem of NAS ((1) & (2)) by evolving neural
architectures A ∈ A.

1) Architecture search space: Fig. 1 shows the architecture
search space of our method. As can be seen, we are not using
a cell-based search approach as in [15], but evolve whole
architectures with varying number N ∈ N of nodes. The nodes
are ordered in a sequence, forming a directed acyclic graph.
Each edge (i, j), i, j ∈ N is associated with an operation
o(i,j) from the operation space O mapping the node x(i) to
node x(j). To obtain node x(j) all of its preceding nodes are
summed up:

x(j) =
∑

i<j

o(i,j)(x(i)), j = 2, ..., N.

The node x(1) is the input node and the node x(N) is the
output node of the network. We apply a 2D 1x1 convolution
to a given input Xt ∈ D to obtain node x(1) and another 2D
1x1 convolution to the output node x(N) followed by a fully
connected layer (FC) to obtain the final output. The number
of input and output channels n

(i)
c and n

(j)
c for each operation

o(i,j) is fixed to n
(i)
c = min(2i+1, 128).

The operation space is inspired by existing approaches [6],
[15], which mainly use convolutional operations. In this work,
we use the following operations:

• None – zeroes out the input (no connection between
nodes).

• Skip connections – since channels differ between nodes,
the skip connection employed is a 2D 1x1 convolution.
This operation has no mutable parameters.

• Dilated convolution – dilated convolutions increase the
receptive field of a neural network exponentially without
adding too many parameters [22]. Hence, we use dilated
convolutions in the temporal dimension to capture his-
toric traffic patterns. Note that the receptive field only
increases exponentially when dilation factors increase by
a factor of two with each following layer [22]. To fulfill
this, we modify the dilation factors manually after each
crossover and mutation operation. Mutable parameters are
the dilation factor and kernel size.

• Graph convolution – graph convolution has been shown
to capture the spatial dependencies between measurement
sites and has therefore increased the performance of
neural architectures [2], [6], [15], [21]. The mutable pa-
rameter is the kernel size or the degree of the underlying
Chebyshev polynomial.

2) Search method: The GA used in this work is summarised
in Algorithm 1. In detail, we start by initializing a random
population of size np ∈ {2n|n ∈ N}. Every architecture in
the search space has equal probability of getting selected.
However, we start with architectures of a random number of
nodes between 6 and 8. During evolution there is no upper
bound on the network size. To estimate their performance or
fitness (MAE), the architectures are trained for a small amount

of epochs (see Section III-B) on the training set Dtrain and
evaluated on the validation set Dvalid.

Algorithm 1 Genetic Algorithm

Require: np > 0, ng > 0
1: population← ∅
2: best← ∅
3: while |population| < np do
4: model.arch← RandomInit()
5: model.fitness← TrainAndEval(model.architecture)
6: add model to population
7: end while
8: c = 0
9: while c < ng do

10: offspring ← ∅
11: while |offspring| < np do
12: parents← BinaryTournament(population, 2)
13: children← UniformCrossover(parents)
14: add children to offspring
15: end while
16: for model in offspring do
17: model.arch← Mutate(model.arch)
18: model.fitness← TrainAndEval(model.arch)
19: if model.fitness < best.fitness then
20: best← model
21: end if
22: end for
23: add offspring to population
24: population← BinaryTournament(population, np)
25: c+ = 1
26: end while
27: return best

Once the population is initialized and evaluated, the
crossover and mutation cycle is repeated ng ∈ N times. We
do not use a stopping criterion, but have a fixed amount of
cycles. We use binary tournament for selecting two parents
for crossover. In binary tournament, two chromosomes are
picked at random and the one with better fitness, in our
case the MAE on the validation set, gets selected. Hence,
better performing architectures are more likely to be selected,
but we still retain diversity. After two parents are selected,
we apply uniform crossover by selecting a random subset
of nodes in the two parent’s architectures to be switched.
If the sizes of the architectures are different, we switch a
maximum of nodes equal to the amount of nodes in the smaller
architecture and retain the sizes. The two resulting children
are mutated afterwards and added to the current generation.
Mutation operations include:

• Switching edges (o(i,j) ↔ o(i
′,j′))

• Removing an operation (o(i,j) ← None)
• Changing the type of operation (o(i,j) ← o′(i,j), where

o′ ∈ O is selected at random)
• Mutating the parameters of an operation (kernel size

and/or dilation factor can be increased or decreased to
next possible size)



• Adding or removing a node (adding also adds an opera-
tion from the operation space, except None)

After mutation, the channels and dilation factors of some
operations need to be modified as previously mentioned. All
children are then trained and evaluated. Lastly, we use binary
tournament to select np models from the current generation to
stay in the population.

After ng cycles, we return the model with the best fitness
over all generations.

III. EVALUATION

A. Experimental settings

1) Datasets: Our experiments are conducted on four real
world datasets, two of which are concerned with traffic flow
prediction and two with traffic speed prediction:

• PeMSD4 – The PeMSD4 dataset is made up of traffic
flow measurements from 307 loop detectors in the San
Francisco Bay Area within the period from 1/Jan/2018 -
28/Feb/2018 [2].

• PeMSD8 – The PeMSD8 dataset contains traffic flow
measurements from 170 loop detectors in the San
Bernardino Area from 1/Jul/2016 to 31/Aug/2016 [2].

• METR-LA – The METR-LA dataset includes traffic
speed readings at 207 sensors located on the highways
of Los Angeles County from 1/Mar/2012 to 30/Jun/2012
[10].

• PEMS-BAY – The PEMS-BAY dataset comprises traffic
speed data from 325 measurement sites in the Bay Area
of California from 1/Jan/2017 - 31/May/2017 [10].

All datasets are aggregated into 5 min windows, resulting in
288 timestamps per day. For training, the data is normalized
by standard normalization for each node and feature. Given
a timestamp t, we want to predict the next hour of traffic
conditions, i.e. 12 timesteps. The input Xt ∈ RN×F×12

to our network is made up of a recent, daily, and weekly
segment from the historical data. These segments are defined
as follows:

Xrecent
t = [Xt−11, ..., Xt]

Xdaily
t = [Xt+1−288, ..., Xt+12−288]

Xweekly
t = [Xt+1−7×288, ..., Xt+12−7×288]

As can be seen, the recent segment comprises the last hour of
data, the daily segment includes data from the same hour to
be predicted, but on the day before and the weekly segment
contains the same hour we predict, but one week earlier.
Additionally, we include data about time of the day and day
of the week for the prediction segment. The segments and
time information are stacked in the feature dimension of the
input, i.e. Xt ∈ RN×5×12. Stacking in the feature dimension
has not been done in previous works. In [7] and [6] multiple
modules with the same architectures and a fusion layer are
used, while in [2] and [15] only the recent segment is used.
We have conducted experiments comparing different input
methods and concluded that stacking multiple segments in

the feature dimension works best for our approach. However,
future research might be conducted to set a standard for the
task of traffic prediction.

We seperate the datasets into training, validation and test
sets with a 7-1-2 ratio. The adjacency matrices are constructed
as in previous works by road network distance and gaussian
kernel threshholding [21].

We remark that, due to the choice of inputs, the resulting
datasets include fewer samples than in other works, where
only the last 12 timesteps are used as inputs [2], [15], [21].
Therefore, direct comparisons with their results are to be taken
with caution. For fair comparison in this work, we evaluate the
baseline models on our datasets.

2) Metrics: We use mean absolute error (MAE), rooted
mean squared error (RMSE) and mean absolute percentage
error (MAPE) to evaluate our framework and the baselines:

MAE =
1

N

N∑

i=1

|ŷi − yi|, RMSE =

Ã
1

N

N∑

i=1

(ŷi − yi)2,

MAPE = 100%× 1

N

N∑

i=1

|ŷi − yi|/yi

Here, N, ŷi and yi respectively refer to the number of
samples, predicted values and ground truth values. Since yi
can be zero-valued for some measurements, we only compute
MAPE when ground truth is larger than one.

3) Baselines: We compare our framework against the fol-
lowing models:

• Historical average (HA) – Traffic is modeled as a seasonal
process. We predict future timesteps by taking the average
over the last nd (to be determined) days of the same time.

• AGCRN – Adaptive graph convolutional recurrent net-
work captures spatio and temporal dependencies auto-
matically from the data without the need of predefined
adjacency matrices for the graph convolution [2].

• Graph WaveNet – Deploys WaveNet [19] and graph
convolutions for modelling spatio-temporal graph signals.
The adjacency matrix is self-adapting by discovering
structures in the data without prior knowledge [21].

• AutoSTG – Gradient-based NAS framework for spatio-
temporal prediction. Pan et al. [15] use special modules
for capturing spatio-temporal dependencies from meta
data of the attributed graph.

As mentioned earlier, we evaluate all baselines on our own
dataset as described in Section III-A1. To this end, we adapt
the publicly available code and conduct the recommended
hyperparameter search of each model.

B. Framework settings

We apply GA on each of the four datasets for 100 popula-
tions with a starting size of 12 models. The crossover proba-
bility and mutation probability are respectively set to 0.9 and
0.075. Note that these have not been fine-tuned, due to long
computation times of each experiment. Each of the operations
in the operation space (see Section II-B1), except for None,



(a) 15 min horizon. (b) 30 min horizon. (c) 60 min horizon.

Fig. 2: Traffic speed forecast on the METR-LA dataset for a single measurement site for (a) 15 min (b) 30 min and (c) 60
min prediction horizons. Our framework is shown in red (ENAS).

is followed by a ReLU activation and layer normalization [1].
Each network is trained with Adam optimizer for 30 epochs
with batch size 64 and a starting learning rate of 0.01, which is
reduced to 0 until epoch 30 by a cosine annealing learning rate
schedule [13]. The used loss function is MAE as described in
Section III-A2. We conduct each experiment on four Nvidia
GeForce GTX 3090 GPU to train four models simultaneously.
The best model architecture is trained for 100 epochs for
different starting learning rates (0.01, 0.005, 0.001) and batch
sizes (32, 64, 128). Finally, the best performing model on the
validation set is used for measuring performance on the test
set.

C. Results and discussion
Table I shows the prediction performance on the four

described datasets. We report MAE, RMSE and MAPE for
the 15 min, 30 min and 60 min horizons respectively. All
experiments are run twice with different random seeds.

As expected, the simplest model HA performs worst on all
four data sets. HA cannot capture the required complexity of
the spatio-temporal data at hand. It can only model the general
trend of the data, but cannot adapt to local changes in the trend.

In contrast, the two hand-crafted deep learning models,
AGCRN and Graph WaveNet, can model spatio-temporal de-
pendencies and therefore have better predictive performance.
AGCRN lacks stability on the two traffic flow datasets and
overall performs worst of all deep learning models. Graph
WaveNet outperforms all other methods on the METR-LA
dataset. Additionally their performance on PEMS-BAY is best
or at least can keep up with AutoSTG and our framework.

We are not able to conduct experiments with AutoSTG on
PeMSD4 and PeMSD8, since we lack meta data for these
two datasets. AutoSTG [15] is the best performing method on
PEMS-BAY for the 15 min horizon. They can also keep up
with the other approaches, however lack stability when using
different random seeds.

Our framework (ENAS) is the only deep learning model of
the four without an adapting adjacency matrix, nevertheless
that does not diminish the predictive performance. Especially
on PeMSD4, our framework outperforms AGCRN and Graph
WaveNet with respect to all metrics and horizons. On PeMSD8

ENAS outperforms on most metrics and horizons. Further-
more, the performance on METR-LA is underwhelming com-
pared to GWN. For PEMS-BAY, our framework can keep up
with GWN and AutoSTG.

In terms of search time, our method performs worst as it
runs for approximately 300 GPU hours on the smallest dataset
(PeMSD8) and approximately 1200 GPU hours on the largest
dataset (PEMS-BAY). AutoSTG has to be run multiple times
for different combinations of architecture related hyperparam-
eters, which each takes around 10 GPU hours for search and 5
hours for the training of the discovered architectures. AGCRN
and Graph WaveNet take the least time, since they do not
include an architecture search process.

In Fig. 2 we show predictions for a small timewindow of
a single measurement site of the METR-LA dataset of all
baselines except HA. It can be seen that for a horizon of
15 min and 30 min all investigated models’ predictions are
similar. Every model detects the future drop in traffic speed
prematurely. For the 60 min horizon, Graph WaveNet and our
model (ENAS) are closer to the time of the drop, however,
overestimate the severance of it. Note that we have shown
one example out of thousands present in the dataset. Since
the drops in traffic speed are of great interest for ITS, further
investigation of the models predictive performance for such is
beneficial.

D. Ablation study
To evaluate the importance of dilated convolution and graph

convolution in the architectures, we run an ablation study.
For that we remove dilated and graph convolution respectively
from the operation space and compare the performance of the
discovered architectures to our best architecture on PeMSD4.
Fig. 3 shows the results for all metrics for 15 min, 30 min and
60 min horizons. It can be seen, that including both operations
(as for ENAS) leads to an increase in performance. While
dilated convolution (w/o graph) greatly boosts performance,
graph convolution (w/o dilation) has less of an impact. We
remark, that the architecture without dilated convolution has
less network parameters (110k) than the one without graph
convolution (286k). However, we retrained with more channels
to get a comparable number of parameters, which did not
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Fig. 3: Comparison of the prediction performance of our framework on PeMSD4 for different operation spaces. We compare
the complete operation space (ENAS), without graph convolution (w/o graph) and without dilated convolution (w/o dilation).

increase the performance drastically. The worse performance
of only graph convolutions can be due to the adjacency matrix
not incorporating spatial dependencies correctly. Pan et al. [15]
have seen the opposite effects of their modules, hence, we
conject that learning spatial features from meta data or from
data directly is a superior method to ours.

IV. FUTURE WORK

We have shown that our framework can compete with
existing approaches. Nevertheless, there are still a variety of
potential improvements that can be implemented. The GA used
can be varied in terms of crossover and mutation probabilities,
population size, mutation operations, and selection methods.
Network morphisms [3], weight inheritance or estimating
performance without training [12] can speed up the search and
allow larger population sizes. This would be beneficial, since
due to the small population size in our study, the search space
is not extensively explored, leading to only small performance
gains over time. In addition, another evolutionary algorithm
such as particle swarm optimization [9] should be compared
against our algorithm.

We do not use adaptive adjacency matrices as in the deep
learning baselines. In future work, these could be learned from
metadata as in AutoSTG [15] or from the graph signal data
as in AGCRN [2] and Graph WaveNet [21].

Finally, of particular interest is the structure and amount of
input data. While many methods use only the last hour of data
as input [2], [15], [21], some, as in our approach, add daily
and weekly periodic segments, sometimes dating back not just
one but several weeks [6], [7]. Incorporating more historical
data for prediction could increase performance, hence a more
thorough investigation of this topic is worthwhile.

V. CONCLUSION

In this work, we apply evolutionary neural architecture
search using genetic algorithm for spatio-temporal traffic pre-
diction. Our framework discovers entire architectures at once,
consisting of dilated convolutions and graph convolutions, to
learn temporal and spatial dependencies, respectively. Experi-
ments with two traffic speed benchmarks and two traffic flow

benchmarks demonstrate the effectiveness of our system. In
the future, we plan to extend our framework by increasing
the complexity of our architectures, automatically adapting the
adjacency matrix from the data, and improving our genetic
algorithm.
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Abstract: Traffic forecasting is an important task for transportation engineering as it helps authorities
to plan and control traffic flow, detect congestion, and reduce environmental impact. Deep learning
techniques have gained traction in handling such complex datasets, but require expertise in neural
architecture engineering, often beyond the scope of traffic management decision-makers. Our study
aims to address this challenge by using neural architecture search (NAS) methods. These methods,
which simplify neural architecture engineering by discovering task-specific neural architectures,
are only recently applied to traffic prediction. We specifically focus on the performance estimation
of neural architectures, a computationally demanding sub-problem of NAS, that often hinders the
real-world application of these methods. Extending prior work on evolutionary NAS (ENAS), our
work evaluates the utility of zero-cost (ZC) proxies, recently emerged cost-effective evaluators of
network architectures. These proxies operate without necessitating training, thereby circumventing
the computational bottleneck, albeit at a slight cost to accuracy. Our findings indicate that, when
integrated into the ENAS framework, ZC proxies can accelerate the search process by two orders of
magnitude at a small cost of accuracy. These results establish the viability of ZC proxies as a practical
solution to accelerate NAS methods while maintaining model accuracy. Our research contributes
to the domain by showcasing how ZC proxies can enhance the accessibility and usability of NAS
methods for traffic forecasting, despite potential limitations in neural architecture engineering exper-
tise. This novel approach significantly aids in the efficient application of deep learning techniques in
real-world traffic management scenarios.

Keywords: neural architecture search; traffic forecasting; zero-cost proxies

1. Introduction

Forecasting future traffic conditions, such as flow and speed, by analyzing historical
traffic patterns is an essential task for transportation engineering. Accurate traffic forecasts
can detect congestion and help authorities plan and control traffic flow, enabling intelligent
traffic systems (ITS) to adjust to future events, leading to more uniform traffic flow, and
reduced CO2 emissions, ultimately reducing environmental impact. With the increasing
availability of traffic data, there has been a growing interest in developing machine learning
algorithms for traffic forecasting.

However, traffic forecasting poses several challenges. Future traffic conditions at a
single measurement site depend not only on recent conditions in the temporal dimension
but also on upstream measurements in the spatial dimension. Additionally, large datasets
with hundreds of measurement sites and complex road networks can make modeling
dependencies between them difficult.

Linear regression [1], auto-regressive moving average [2], vector auto-regression [3],
and k-nearest neighbors [4,5] are traditional methods that fall short in capturing the complex
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spatio-temporal dependencies present in large traffic datasets. As a result, recent research
has shifted towards deep learning models such as long-short term memory and gated
recurrent unit [6] to capture temporal dependencies, and graph convolutional neural
networks (GCN) to learn spatial dependencies within the data [7–9].

One limitation of GCN models is their reliance on prior knowledge of the spatial
connections within the graph-structured road network, typically in the form of an adja-
cency matrix. GraphWaveNet [7] and AGCRN [10] address this issue by learning spatial
dependencies directly from the data. However, these methods still rely on handcrafted
neural architectures designed by experts. Moreover, deploying these approaches in real-
world applications requires additional customization for the specific scenario, which can
be time-consuming and require considerable effort.

Neural architecture search (NAS) methods have gained popularity in recent years
for discovering customized neural architectures for various tasks, reducing the tedious
process of neural architecture design. While early NAS frameworks focused on computer
vision and language modeling [11,12], they can also be applied to graph data [13,14] and
spatio-temporal data [15].

NAS typically involves three components: the search space, search strategies, and
performance estimation. The search space defines the general structure of discovered
network architectures, including the operations and their connections within the network.
Different search strategies exist, such as reinforcement learning (RL), gradient-based search,
and evolutionary NAS (ENAS). RL-based algorithms are known to require significant
computational resources, even on smaller datasets such as CIFAR-10 [16]. Gradient-based
NAS methods, such as those used in [12], are more efficient but can become trapped in
local minima and require the construction of a supernet in advance. ENAS can explore
the search space more thoroughly without a given supernet, but can also suffer from
long computation times. The performance estimation strategy defines how discovered
architectures are evaluated. Typically, this involves training them for a certain number of
epochs, which can be costly. However, techniques such as weight inheritance and network
morphisms eliminate the need for training from scratch, greatly reducing training time [17].
It is also possible to evaluate discovered architectures without training at all [18,19].

The research on NAS for traffic forecasting is limited. Early work [20] investigates the
implementation of genetic algorithm (GA) for optimizing gradient descent hyperparameters
and hidden layers in multi layer perceptrons (MLP) on a small dataset. Rahimipour et al. [21]
search for number of neurons in two layer MLPs and slopes of the activation functions using
GA on a small (three measurement sites) real-world dataset. A particle swarm optimization
algorithm is used in [22] to optimize the amount of neurons in the hidden layers of deep
belief networks, learning rate and momentum. However, they also limit their study to a
small dataset and fix the amount of hidden layers. To our knowledge, Pan et al. [15] are
the first to implement gradient-based NAS for traffic forecasting in their framework called
AutoSTG. They are using a cell-based approach of learning one smaller architecture (a cell)
and applying it in sequence multiple times to obtain a larger network, similar to [12]. Their
operation space is made up of none, identity, temporal convolution, and spatial graph
convolution. Additionally, they apply meta learning to learn the adjacency matrices for the
spatial graph convolutions and kernels for their temporal convolutions. To our knowledge,
Klosa and Büskens [23] are the first to apply ENAS for the task of traffic forecasting on four
real world datasets. They use a simple genetic algorithm to search through an architecture
space flexible in size. Their algorithm does not make use of performance estimation
strategies, which leads to tremendous computation times, rendering their approach unfit
for application in the real world.

Our study proposes to advance the field by integrating zero-cost (ZC) proxies into
the architecture search algorithm used by Klosa and Büskens [23]. ZC proxies offer the
advantage of being able to rank neural architectures within the search space without
necessitating expensive training [18,19]. This technique has shown promising results in
image classification, natural language processing, and computer vision. Our proposed
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application of ZC proxies to spatio-temporal data forecasting and specifically to traffic data
is therefore novel.

However, it is crucial to acknowledge the potential limitations of this approach. ZC
proxies have predominantly been tested in fields other than regression tasks, and their
effectiveness in traffic forecasting is not yet fully understood. Additionally, some potential
challenges may arise in terms of biases towards architecture size, stability with regard to
weight initialization and mini-batch sampling, and the correlation between ZC proxies and
validation loss.

To rigorously investigate these issues, our research will aim to answer the follow-
ing questions:

1. Are ZC proxies biased towards architecture size?
2. Are ZC proxies stable with regards to weight initialization and mini-batch sampling?
3. Are ZC proxies stable with regards to architecture size?
4. Are ZC proxies and validation loss correlated?

Addressing these questions will provide a deeper understanding of the capabilities
and limitations of ZC proxies in the context of traffic forecasting, ultimately helping to
determine whether this method can be applied reliably in real-world settings.

This research paper is structured as follows; In Section 2 we define the problem of
traffic forecasting, introduce the bilevel optimization problem NAS solves, the architecture
search space, the genetic algorithm and define the ZC proxies examined in this work. We
answer the above mentioned research questions in Section 2.6. We describe the experimental
setup of our low cost evolutionary neural architecture search (LENAS) in Section 2.7 and
evaluate the performance on four real world datasets in Section 3. In Section 4, we discuss
the results, outline possible directions for future work before comming to a conclusion.

2. Materials and Methods

In this section, we describe the task of traffic forecasting. Afterwards, we define neural
architecture search and the components making up our framework LENAS. For that, we
define the search space, the search method and ZC proxies as our performance estimation.
Afterwards we answer the above stated research questions and describe the experimental
setup of the LENAS framework.

2.1. Traffic Forecasting

Let G = (V , E , W) denote an undirected graph, where V is a set of vertices or nodes
representing the | V |= N measurement sites in the road network, E a set of edges indicating
the connectivity between measurement sites and W ∈ RN×N a weighted adjacency matrix,
representing the proximity between nodes. Then, given a timestamp t, the traffic conditions
on the graph G are denoted by a graph signal Xt ∈ RN×F, where F ∈ N is the amount of
features observed at each measurement site or node. Finally, the goal of traffic forecasting is
to learn a function f for predicting future T graph signals on the graph G from T′ historical
graph signals:

yt = [Xt+1, ..., Xt+T ] = fθ([Xt−T′+1, ..., Xt];G) ∈ RN×D×T

Here, D ∈ N denotes the amount of features to predict for each measurement site.

2.2. Neural Architecture Search

The objective of NAS is to find an optimal architecture A from the space of architectures
A that minimizes the loss function L on a given dataset D. To be more precise, we want to
solve a bilevel optimization problem:

A∗ = min
A∈A
L(θ∗(A), A,Dvalid) (1)

s.t. θ∗(A) = arg min
θ
L(θ, A,Dtrain) (2)
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Here, Dtrain ⊂ D and Dvalid ⊂ D respectively denote the training and validation
datasets and θ the network parameters.

To solve the bilevel optimization problem, NAS can be split into three components:
the architecture search space, the search method, and the performance estimation, which
are described in the following sections.

2.3. Architecture Search Space

Figure 1 shows the architecture search space of our method. As can be seen, we are not
using a cell-based search approach as in [15], but evolve whole architectures with varying
number N ∈ N of nodes. The nodes are ordered in a sequence, forming a directed acyclic
graph. Each edge (i, j), i, j ∈ N is associated with an operation o(i,j) from the operation
space O mapping the node x(i) to node x(j). To obtain node x(j) all of its preceding nodes
are summed up:

x(j) = ∑
i<j

o(i,j)(x(i)), j = 2, ..., N.

The node x(1) is the input node and the node x(N) is the output node of the network. We
apply a 2D 1 × 1 convolution to a given input Xt ∈ D to obtain node x(1) and another 2D
1 × 1 convolution to the output node x(N) followed by a fully connected layer (FC) to
obtain the final output. The number of input and output channels n(i)

c and n(j)
c for each

operation o(i,j) is fixed to n(i)
c = min(2i+1, 128).

The operation space is inspired by existing approaches [8,15], which mainly use
convolutional operations. In this work, we use the following operations:

12D Conv
1x1 kernel

3

2
4

5

6 2D Conv
1x1 kernel

FC

Historic data

Future data

[Wed;
19:05-20:05]

Dilated Convolution
Graph Convolution

Skip Connection
None

Figure 1. Architecture search space of our framework.

2.3.1. None

The none or zero operation zeroes out the input. This is equivalent to not having a
connection between nodes.

2.3.2. Skip Connection

Skip connection usually copies the input. However, since channels differ between
nodes, the skip connection employed is a 2D 1 × 1 convolution that upscales the channel
dimension when necessary. This operation has no mutable parameters.

2.3.3. Dilated Causal Convolution

Dilated convolutions are a modification of the standard convolutional operations,
designed to increase the receptive field of a network without substantially increasing the
number of parameters or the computational cost [24]. Specifically, dilated causal convolu-
tions represent a type of convolution that only allows access to past (causal) information, a
feature that is particularly useful when processing sequential or temporal data such as in
the cases of time-series prediction or speech synthesis.

In the standard convolutional operations, the elements of the filter are applied to the
input elements in a compact, contiguous manner. On the contrary, in dilated convolutions,
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the filter is applied to the input with gaps, which are determined by a dilation rate. This
leads to an exponential expansion of the receptive field as the size of the filter grows linearly.
This combination of causality with the increased receptive field enables the network to
efficiently capture long-range temporal dependencies.

Note that the receptive field only increases exponentially when dilation factors increase
by a factor of two with each following layer [24]. To fulfill this, we modify the dilation
factors manually after each crossover and mutation operation. Mutable parameters are the
dilation factor and kernel size.

2.3.4. Graph Convolution

Graph convolutional networks (GCNs) have displayed significant effectiveness in
various applications owing to their ability to capture topological correlations present in
graph-structured data [7,8,10,15]. Among several methodologies to perform graph convo-
lutions, the method of Chebyshev polynomial approximation has been particularly notable.

The graph convolution operation based on Chebyshev polynomial allows the network
to take into account different scales of neighborhood when processing a node in the graph.
From the perspective of spectral graph theory, the Chebyshev polynomial approximation
has been used to generalize the convolution operation in the Fourier domain, leading to
computational efficiency and ensuring a flexible receptive field.

The central concept is to approximate the spectral decomposition of the graph Lapla-
cian, a crucial element of graph Fourier transform, with Chebyshev polynomials. Given a
signal x on a graph and a filter defined as a function gθ of the Laplacian L, the convolution
of x with gθ on the graph is represented in the spectral domain:

gθ ∗ x = gθ(L)x

To circumvent the computational overhead associated with the spectral decomposition
of the Laplacian, especially for large graphs, the filter gθ can be approximated using
Chebyshev polynomials Tk:

gθ ≈
K

∑
k=0

θkTk(L̃)

where L̃ = 2L
λmax
− I is the scaled Laplacian, λmax is the largest eigenvalue of L, and I is the

identity matrix. Tk can be computed recursively as:

Tk(x) = 2xTk−1(x)− Tk−2(x)

with T0(x) = 1 and T1(x) = x. Consequently, the filter becomes a K-localized operator,
meaning it relies only on the K-hop neighborhood of each node, where K is the order of
the polynomial. This method leads to a significant reduction in computational complexity
while providing control over the balance between the model’s capacity and computational
efficiency. K is the mutable parameter in this operation.

2.4. Search Method

We use the same genetic algorithm (GA) as a search method for NAS as in our previous
work [11] with the addition of using ZC proxies as performance estimators. The GA is
summarised in Algorithm 1. We warmstart the genetic algorithm by choosing a large
starting population size nw and selecting the best np performing architectures for the
following nc cycles. For performance estimation of each architecture we use the naswot ZC
proxy as described in Section 2.5 due to the performance in the experimental Section 2.6.
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Algorithm 1 Genetic algorithm with naswot

Require: nw > 0, np > 0, nc > 0
1: population← ∅
2: best← ∅
3: while |population| < nw do ⊲ Warmstart
4: model.arch← RandomInit()
5: model. f itness← naswot(model.architecture)
6: add model to population
7: end while
8: population← Elitism(population) ⊲ best genomes
9: for i in range(nc) do

10: o f f spring← ∅
11: while | o f f spring |< np do
12: parents← BinaryTournament(population, 2)
13: children← UniformCrossover(parents)
14: add children to o f f spring
15: end while
16: for model in o f f spring do
17: model.arch← Mutate(model.architecture)
18: model. f itness← naswot(model.architecture)
19: if model. f itness < best. f itness then
20: best← model
21: end if
22: end for
23: add o f f spring to population
24: population← BinaryTournament(population, np)
25: end for
26: return best

Once the population is initialized and evaluated, the crossover and mutation cycle
is repeated ng ∈ N times. We do not use a stopping criterion, but have a fixed amount
of cycles. We use binary tournament for selecting two parents for crossover. In binary
tournament, two chromosomes are picked at random and the one with better fitness, in
our case the ZC proxy score, is selected. Hence, better performing architectures are more
likely to be selected, but we still retain diversity. After two parents are selected, we apply
uniform crossover by selecting a random subset of nodes in the two parent’s architectures
to be switched. If the sizes of the architectures are different, we switch a maximum of
nodes equal to the amount of nodes in the smaller architecture and retain the sizes. Then,
the two resulting children are mutated and added to the current generation. Mutation
operations include:

• Switching edges (o(i,j) ↔ o(i
′ ,j′))

• Removing an operation (o(i,j) ← None)
• Changing the type of operation (o(i,j) ← o′(i,j), where o′ ∈ O is selected at random)
• Mutating the parameters of an operation (kernel size and/or dilation factor can be

increased or decreased to next possible size)
• Adding or removing a node (adding also adds an operation from the operation space,

except None)

After mutation, the channels and dilation factors of some operations need to be
modified as previously mentioned. All children are then trained and evaluated. Lastly,
we use a binary tournament to select np models from the current generation to stay in
the population.

After nc cycles, we return the model with the best fitness (naswot score) over all generations.
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2.5. Zero-Cost Proxies

As mentioned earlier, performance estimation is the bottleneck of NAS when it comes
to computation time. Zero-cost (ZC) proxies aim at evaluating an architectures performance
without the need of training, i.e., they evaluate network performance from one forward
pass and/or backwards pass of a single mini-batch of random data. In the following, we
give a brief overview of the zero-cost proxies used in this work. The ZC proxies snip,
grasp, synflow, and Fisher are inspired by pruning theory in which they are used to prune
network parameters least contributing to network performance. In recent works they have
been applied to score whole neural networks without training [19,25]. The ZC proxies
jacob_cov and naswot have been solely designed with scoring networks for NAS in mind.
We note that all ZC proxies have been thoroughly investigated for classification tasks [19,25],
however, research on regression is to the authors’ knowledge non-existent.

2.5.1. Gradient Norm

In gradient norm (grad_norm) the Euclidean norm of the gradients resulting from one
mini-batch of data is summed up. Ref. [25] use it in their work on ZC proxies as a baseline.

2.5.2. Single-Shot Network Pruning

Single-shot network pruning (snip) was proposed in [26] for parameter pruning at
initialisation stage of neural networks. It was used in [25] as a ZC proxy by computing

snip(θ) = |∂L
∂θ
⊙ θ|

for each parameter θ in the architecture A and obtaining the sum snip(A) = ∑θ∈A snip(θ).
⊙ denotes the Hadamard product.

2.5.3. Gradient Signal Preservation

Gradient signal preservation (grasp) was introduced to improve upon snip in [27].
The idea being to incorporate the change of gradient norm instead of loss when pruning
a parameter:

grasp(θ) = −
(

H
∂L
∂θ

)
⊙ θ

Here, H denotes the Hessian. It was used in [25] as a ZC proxy by computing the sum
grasp(A) = ∑θ∈A grasp(θ).

2.5.4. Synaptic Flow Pruning

Synaptic flow pruning (synflow) has been introduced as a method of pruning network
parameters without the need of training or data [28]. It does so by taking the product of all
network parameters as a lossR, avoiding layer collapse:

syn f low(θ) =
∂R
∂θ
⊙ θ

It was used in [25] as a ZC proxy by computing the sum syn f low(A) = ∑θ∈A syn f low(θ).

2.5.5. Fisher

Fisher was introduced in [29] as a method to prune activation channels having the
least effect on the loss in a neural network. It computes the sum over all gradients of the
activation layers a in an architecture:

f isher(a) =
(

∂L
∂a

a
)2

To use it as a ZC proxy, we compute the sum f isher(A) = ∑a∈A f isher(a) as in [25].
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2.5.6. Jacob Covariance

Jacobian covariance (jacob_cov) as introduced in [30] measures the flexibility of a
neural network by computing the covariance of the Jacobians of the rectified linear units for
a minibatch. The idea being that for a network to be able to tell inputs apart the covariance
should be low. For more details we refer to the original work [30].

2.5.7. NAS without Training

NAS without training (naswot) is what we will call the successor of jacob_cov as
described in [30]. Naswot builds on the same idea, but instead of computing the covariance
of the Jacobians, it computes a distance metric based on the activations of the rectified linear
units within a network. Given a minibatch X = {xi}b

i=1 of size b ∈ N. After a forward
pass of the minibatch we obtain the activations of each rectified linear unit ai. Then, the
activations are flattened and converted into a binary code ci, s.t. ci,m = 0 if ai,m = 0 and
ci,m = 1 if ai,m > 0. Afterwards, we compute the Hamming distance dH(ci, cj) ∈ [0, 1] of
the binary codes to measure their similarity. We then obtain the matrix

KH =




dH(c1, c1) · · · dH(c1, cb)
...

dH(cb, c1) · · · dH(cb, cb)




and finally compute the naswot score:

naswot(A) = log|KH |
We use the implementation of [25] for all ZC proxies except naswot, where we used

the implementation as in [30] and made some adjustments to make it viable to use for
regression tasks instead of classification as intended by the authors.

2.6. Robustness, Bias, and Usability of ZC Proxies

In this section, we aim to answer the research questions with regards to robustness,
bias, and usability of zero-cost proxies for NAS in our setting. All of the following experi-
ments are carried out on the PeMSD8 dataset described in Section 2.7.

Since we want to use ZC proxies in genetic algorithm as a measure of fitness, the
resulting scores and true fitness should lead to the same or similar ranking within the
population. Hence, in the following experiments, we will sample a population with
different architectures from our search space and compute the Spearman rank correlation of
ZC proxy score and true fitness. The true fitness is determined by training the architectures
until they converge and taking the best validation loss. As a loss function, we use the MAE
for training.

The main objective is to find a ZC proxy with high correlation to the validation loss.
However, there are also questions to be answered when it comes to robustness. We want
to find a ZC proxy that is not affected by the weight initialization of the network, nor
the sampling of the mini batch used for computation. Furthermore, the choice of channel
depths and the size of the mini batch should not affect the score. Previous work [19] has
discussed that the size of the architecture, i.e., the amount of layers in a network might
have an effect on ZC proxy scoring. To examine this behaviour, apart from the ZC proxy
score z, we will also compute

zl = z/nl , zc = z/nc

as the scaled variants of the score by the number of layers nl and number of channels nc in
each network. The results will answer research question 1 as stated in the Introduction.
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2.6.1. Are ZC Proxies Robust with Regards to Weight Initialization and
Mini-Batch Sampling?

To answer the second research question, we compute ZC proxy scores for each of
30 sampled architectures on 24 different random seeds. We obtain a ranking of architectures
by score for each random seed. Then, we compare the rankings by computing the Spearman
rank correlation. Correlation close to 0 indicates that rankings are not correlated, rendering
the ZC proxy unusable. Correlation close to 1 (or −1 when negative correlation) indicates
similar or same rankings. Additionally, we repeat this process for three different sizes
of mini batches (24, 32 and 64). We show the results in Table 1, where we take the mean
Spearman rank correlation over the three mini batch sizes.

It can be seen that grad_norm, snip, and synflow obtain good correlations, while
naswot performs the best. Scaling by number of layers and number of channels greatly
improves the jacob_cov score and improves naswot to reach a perfect correlation. Scaling
synflow improves the proxy slightly and grad_norm, snip, grasp, and Fisher get worse
when scaled.

According to these results, naswot is the best choice when scaled since the Spearman
rank correlation is perfect. It does not matter which random seed or mini-batch sampling is
chosen, naswot scored the architectures in the same order every time.

Table 1. Mean Spearman rank correlation over multiple random seeds for each ZC proxy score z and
its scaled variants by layers zl and channels zc.

Grad_norm Snip Grasp Fisher Synflow Jacob_cov Naswot

z 0.739 0.809 0.491 0.321 0.793 0.473 0.917
zl 0.395 0.454 0.308 0.209 0.824 0.983 0.999
zc 0.605 0.535 0.377 0.217 0.841 0.987 0.999

2.6.2. Are ZC Proxies Robust with Regards to Architecture Size?

For the third research question, we compute ZC proxy scores of the 30 sampled ar-
chitectures for different size configurations. We initialize each of the 30 architectures with
the channel depth at first layer c1 ∈ {4, 8} and maximum channel depth throughout the
architecture cmax ∈ {32, 64, 128}, resulting in six different combinations. For each of the six
size combination, we score the 30 architectures and rank them accordingly. Afterwards we
compute the Spearman rank correlation between these rankings. Additionally, this experi-
ment is repeated for 24 different random seeds. The results are shown in Table 2, where we
show the mean Spearman rank correlation over the 6 hyperparameter combinations and
24 random seeds.

Again, scaled naswot shows the most robustness closely followed by scaled jacob_cov,
hence, the choice of hyperparameters does not matter when using these two ZC proxies.
All other ZC proxies are not robust with respect to hyperparameter choice, and therefore,
if used, hyperparameters need to be chosen carefully when using these ZC proxies. We
note that these results are also affected by the robustness of ZC proxies with respect to the
initialization, i.e., low correlation between random seeds also results in low correlation
with respect to hyperparameter choice.
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Table 2. Mean Spearman rank correlation over multiple architecture sizes for each ZC proxy score z
and its scaled variants by layers zl and channels zc.

Grad_norm Snip Grasp Fisher Synflow Jacob_cov Naswot

z 0.741 0.809 0.492 0.325 0.787 0.475 0.908
zl 0.371 0.361 0.296 0.213 0.822 0.983 0.999
zc 0.773 0.707 0.520 0.258 0.857 0.990 0.997

2.6.3. Are ZC Proxies and Validation Loss Correlated?

To answer the fourth research question, we sample 161 random architectures from our
search space. As for the third research question, we initialize each of the 161 architectures
with the channel depth at first layer c1 ∈ {4, 8} and maximum channel depth throughout
the architecture cmax ∈ {32, 64, 128}, resulting in 966 total architectures. As mentioned
before, to obtain the true fitness of each architecture, we train them until convergence three
times for different batch sizes (32, 64, 128) and set the fitness to the best validation loss
reached during training. We report the mean Spearman rank correlation of ZC proxy score
and best validation loss (fitness) over all combinations in Table 3.

Overall, naswot performs the best out of all proxies. Snip and scaled jacob_cov perform
approximately as well as naswot, while grasp, Fisher, and synflow are outperformed.

Table 3. Mean Spearman rank correlation of the best validation loss of each architecture and each ZC
proxy score z and its scaled variants by layers zl and channels zc.

Grad_norm Snip Grasp Fisher Synflow Jacob_cov Naswot

z −0.655 −0.684 −0.484 −0.398 −0.252 −0.483 −0.693
zl 0.015 −0.243 −0.064 −0.068 −0.052 −0.729 0.737
zc 0.400 0.201 0.148 0.098 0.047 −0.732 0.737

To sum up, no ZC proxy is perfectly robust out of the box for our setting with regards
to weight initialization, mini-batch sampling, mini-batch size, and architecture size. After
scaling by the number of layers or channels in the architecture, naswot is robust and
jacob_cov slightly worse. All other ZC proxies are not robust and therefore unusable
for traffic prediction. Scaled naswot and scaled jacob_cov are the most correlated with
validation loss. Combining the robustness and correlation results, naswot comes out as
the best ZC proxy to use for our search space and task. The robustness with respect to
architecture size makes it possible to run scaled naswot on very small versions of the
architectures, further lowering computation cost.

2.7. Low Cost Evolutionary Neural Architecture Search

In this Section we incorporate the naswot ZC proxy into the genetic algorithm de-
scribed in Section 2.4 and evaluate our method on four real world datasets. In the following we
describe the four datasets, the evaluation metrics and baseline models we use for comparison.

2.7.1. Datasets

Our experiments are conducted on four real world datasets, two of which are con-
cerned with traffic flow prediction and two with traffic speed prediction:

• PeMSD4–The PeMSD4 dataset is made up of traffic flow measurements from 307 loop
detectors in the San Francisco Bay Area within the period from 1 January 2018 to
28 February 2018 [10].

• PeMSD8–The PeMSD8 dataset contains traffic flow measurements from 170 loop
detectors in the San Bernardino Area from 1 July 2016 to 31 August 2016 [10].
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• METR-LA–The METR-LA dataset includes traffic speed readings at 207 sensors located
on the highways of Los Angeles County from 1 March 2012 to 30 June 2012 [31].

• PEMS-BAY–The PEMS-BAY dataset comprises traffic speed data from 325 measure-
ment sites in the Bay Area of California from 1 January 2017 to 31 May 2017 [31].

All datasets are aggregated into 5 min windows, resulting in 288 timestamps per day.
For training, the data are normalized by standard normalization for each node and feature.
Given a timestamp t, we want to predict the next hour of traffic conditions, i.e., 12 timesteps.
The input Xt ∈ RN×F×12 to our network is made up of a recent, daily, and weekly segment
from the historical data. These segments are defined as follows:

Xrecent
t = [Xt−11, ..., Xt]

Xdaily
t = [Xt+1−288, ..., Xt+12−288]

Xweekly
t = [Xt+1−7×288, ..., Xt+12−7×288]

As can be seen, the recent segment comprises the last hour of data, the daily segment
includes data from the same hour to be predicted, but on the day before and the weekly
segment contains the same hour we predict, but one week earlier. Additionally, we include
data about time of the day and day of the week for the prediction segment. The segments
and time information are stacked in the feature dimension of the input, i.e., Xt ∈ RN×5×12.
Stacking in the feature dimension has not been done in previous works. In [8,32] multiple
modules with the same architectures and a fusion layer are used, while in [10,15] only
the recent segment is used. We have conducted experiments comparing different input
methods and concluded that stacking multiple segments in the feature dimension works
best for our approach. However, future research might be conducted to set a standard for
the task of traffic prediction.

We seperate the datasets into training, validation and test sets with a 7-1-2 ratio. The
adjacency matrices are constructed as in previous works by road network distance and
Gaussian kernel threshholding [7].

We remark that, due to the choice of inputs, the resulting datasets include fewer
samples than in other works, where only the last 12 timesteps are used as inputs [7,10,15].
Therefore, direct comparisons with their results are to be taken with caution. For fair
comparison in this work, we evaluate the baseline models on our datasets.

2.7.2. Metrics

We use mean absolute error (MAE), rooted mean squared error (RMSE) and mean
absolute percentage error (MAPE) to evaluate our framework and the baselines:

MAE =
1
N

N

∑
i=1
| ŷi − yi |,

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2,

MAPE = 100%× 1
N

N

∑
i=1

| ŷi − yi |
yi

Here, N, ŷi and yi respectively refer to the number of samples, predicted values and
ground truth values. Since yi can be zero-valued for some measurements, we only compute
MAPE when ground truth is larger than one.
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2.7.3. Baselines

We compare our framework against the following models:

• Historical average (HA)–Traffic is modeled as a seasonal process. We predict fu-
ture timesteps by taking the average over the last nd (to be determined) days of the
same time.

• AGCRN–Adaptive graph convolutional recurrent network captures spatio and tempo-
ral dependencies automatically from the data without the need of predefined adjacency
matrices for the graph convolution [10].

• Graph WaveNet–Deploys WaveNet [33] and graph convolutions for modelling spatio-
temporal graph signals. The adjacency matrix is self-adapting by discovering struc-
tures in the data without prior knowledge [7].

• AutoSTG–Gradient-based NAS framework for spatio-temporal prediction. Pan et al. [15]
use special modules for capturing spatio-temporal dependencies from meta data of
the attributed graph.

We evaluate all baselines on our own dataset as described in Section 2.7.1. To this
end, we adapt the publicly available code and conduct the recommended hyperparameter
search of each model.

2.7.4. Framework Settings

We apply GA on each of the four datasets until convergence of the algorithm. We have
not performed extensive hyperparameter tuning, as we want to show that the algorithm
can be applied by non-experts. We use a warmstart size of 1000 genomes to explore a large
chunk of the search space in the beginning. This should lead to a high diversity in the
population. Afterwards, we decrease the population size to 100 for a faster search time.
Note that this is a big increase in population size to previous work [11]. The crossover
probability is fixed to 0.9 while mutation probability pm is adaptively set for each genome
based on their rank in the interval [0.05, 0.15]:

pm(A) = 0.15− np−rank(A)
np

× 0.1

We use the naswot score to rank architectures. As shown in Section 2.6, the naswot
score is stable with regards to batch size and architecture size. Hence, we can select them
to be small, which will lead to faster search time. Therefore, each network is scored by
naswot with a minibatch size of 32, maximum channel size of 32 and starting channel
size of 4. We conduct each experiment on one Nvidia GeForce GTX 3090 GPU. The
best model architecture is trained until convergence for different starting learning rates
(0.02, 0.01, 0.005) and batch sizes (32, 64, 128). Finally, the best performing model on the
validation set is used for measuring performance on the test set.

3. Results

The results of the prediction performance for the four datasets are presented in Table 4,
where the MAE, RMSE, and MAPE for the 15 min, 30 min, and 60 min horizons are reported.
The experiments were conducted twice with different random seeds, except for the LENAS
experiments which were conducted thrice.

As anticipated, the simplest model, HA, showed the worst performance on all four
datasets due to its inability to capture the complexity of the spatio-temporal data. This
model can only capture the general trend of the data and fails to adapt to local changes in
the trend.
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On the other hand, the two hand-crafted deep learning models, AGCRN and GWN,
which can model spatio-temporal dependencies, achieved better predictive performance.
However, AGCRN had the worst performance among all deep learning models. GWN
outperformed all other methods on the METR-LA dataset and achieved the best or com-
parable performance to AutoSTG and ENAS while slightly outperforming LENAS on the
PEMS-BAY dataset.

We were unable to conduct experiments with AutoSTG on PeMSD4 and PeMSD8 due
to the lack of metadata for these datasets. Nonetheless, AutoSTG was the best-performing
method on the PEMS-BAY dataset for the 15 min horizon and exhibited comparable perfor-
mance to other approaches but lacked stability with different random seeds.

The ENAS framework described in [23] outperformed all other approaches on PeMSD4
for all metrics and on most metrics on PeMSD8. However, its performance on METR-LA
was underwhelming compared to GWN. For PEMS-BAY, the ENAS framework was able to
keep up with GWN and AutoSTG.

As expected, LENAS was unable to outperform ENAS as it searches the architecture
space less accurately. The results on METR-LA and PEMS-BAY were competitive with
other deep learning models, while the performance was lacking on PeMSD8 and PeMSD4,
especially for the shorter horizons.

Regarding search time, ENAS exhibited the worst performance, requiring approxi-
mately 300 GPU hours for the smallest dataset (PeMSD8) and approximately 1200 GPU
hours for the largest dataset (PEMS-BAY). AutoSTG had to be run multiple times for differ-
ent combinations of architecture-related hyperparameters, with each run taking around
10 GPU hours for search and 5 h for training the discovered architectures. AGCRN and
GWN took the least time since they did not include an architecture search process. LENAS
improved ENAS search time to 1–4 GPU hours depending on the dataset with a much
larger population size.
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Table 4. Traffic forecast performance on PeMSD4, PeMSD8, METR-LA and PEMS-BAY datasets. Here, GWN, ENAS and LENAS respectively denote Graph WaveNet,
GA without ZC proxies and our framework.

MAE RMSE MAPE

PeMSD4 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 34.33± 0.00 34.33± 0.00 34.33± 0.00 53.27± 0.00 53.27± 0.00 53.27± 0.00 24.22%± 0.00% 24.22%± 0.00% 24.22%± 0.00%
AGCRN 19.02± 0.07 19.88± 0.11 21.05± 0.36 30.99± 0.49 32.66± 0.53 34.56± 0.12 12.49%± 0.33% 12.92%± 0.32% 13.92%± 0.25%
GWN 18.28± 0.04 19.24± 0.06 20.95± 0.04 29.44± 0.09 31.09± 0.16 33.83± 0.21 11.98%± 0.03% 12.60%± 0.02% 13.71%± 0.00%
ENAS 17.95± 0.01 18.77± 0.00 20.44± 0.02 29.22± 0.01 30.67± 0.00 33.21± 0.03 11.55%± 0.01% 12.04%± 0.03% 13.22%± 0.03%
LENAS 18.42± 0.04 19.34± 0.06 20.81± 0.10 29.62± 0.05 31.14± 0.07 33.42± 0.11 11.82%± 0.04% 12.43%± 0.05% 13.43%± 0.08%

PeMSD8 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 31.33± 0.00 31.33± 0.00 31.33± 0.00 48.72± 0.00 48.72± 0.00 48.72± 0.00 23.50%± 0.00% 23.50%± 0.00% 23.50%± 0.00%
AGCRN 13.17± 0.08 13.67± 0.13 14.88± 0.23 22.34± 0.12 23.66± 0.15 25.67± 0.19 8.46%± 0.08% 8.81%± 0.11% 9.73%± 0.24%
GWN 13.69± 0.15 14.18± 0.08 14.98± 0.08 21.90± 0.13 23.18± 0.05 25.03± 0.05 8.81%± 0.15% 9.17%± 0.09% 9.94%± 0.02%
ENAS 13.14± 0.01 13.62± 0.17 14.85± 0.18 21.77± 0.07 23.18± 0.25 25.27± 0.15 8.33%± 0.07% 8.68%± 0.14% 9.64%± 0.07%
LENAS 14.19± 0.01 14.89± 0.07 15.85± 0.04 22.48± 0.01 23.97± 0.10 25.65± 0.02 8.88%± 0.03% 9.35%± 0.05% 10.21%± 0.01%

METR-LA 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 13.66± 0.00 13.66± 0.00 13.66± 0.00 21.28± 0.00 21.28± 0.00 21.28± 0.00 19.82%± 0.00% 19.82%± 0.00% 19.82%± 0.00%
AGCRN 3.38± 0.00 4.07± 0.00 5.04± 0.00 7.48± 0.00 9.28± 0.00 11.34± 0.00 8.46%± 0.00% 10.39%± 0.00% 12.90%± 0.00%
GWN 2.84± 0.01 3.22± 0.01 3.62± 0.04 5.45± 0.03 6.44± 0.00 7.39± 0.05 7.40%± 0.05% 8.67%± 0.14% 10.14%± 0.20%
AutoSTG 3.05± 0.24 3.69± 0.41 4.60± 0.77 5.73± 0.29 7.21± 0.53 9.02± 1.06 7.67%± 0.48% 9.56%± 0.86% 11.93%± 1.43%
ENAS 2.97± 0.00 3.40± 0.01 3.88± 0.01 5.75± 0.02 6.78± 0.01 7.80± 0.01 7.90%± 0.04% 9.50%± 0.07% 11.27%± 0.07%
LENAS 3.06± 0.06 3.54± 0.06 4.00± 0.04 5.94± 0.12 7.07± 0.20 8.15± 0.17 8.14%± 0.27% 9.85%± 0.23% 11.45%± 0.13%

PEMS-BAY 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 3.28± 0.00 3.28± 0.00 3.28± 0.00 6.54± 0.00 6.54± 0.00 6.54± 0.00 7.99%± 0.00% 7.99%± 0.00% 7.99%± 0.00%
AGCRN 1.41± 0.03 1.72± 0.01 1.99± 0.01 2.95± 0.02 3.89± 0.01 4.56± 0.02 3.09%± 0.01% 3.99%± 0.00% 4.79%± 0.00%
GWN 1.33± 0.01 1.62± 0.02 1.90± 0.02 2.81± 0.02 3.71± 0.04 4.44± 0.11 2.84%± 0.01% 3.74%± 0.04% 4.59%± 0.12%
AutoSTG 1.32± 0.05 1.63± 0.07 1.93± 0.09 2.80± 0.10 3.78± 0.15 4.59± 0.21 2.82%± 0.15% 3.80%± 0.26% 4.71%± 0.32%
ENAS 1.32± 0.00 1.63± 0.00 1.91± 0.00 2.81± 0.00 3.71± 0.01 4.45± 0.01 2.82%± 0.00% 3.74%± 0.01% 4.59%± 0.00%
LENAS 1.36± 0.00 1.68± 0.00 1.95± 0.01 2.87± 0.01 3.81± 0.02 4.53± 0.03 2.93%± 0.01% 3.89%± 0.01% 4.67%± 0.01%
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4. Discussion and Conclusions

In this research, we explored zero-cost proxies, namely the naswot proxy, to estimate
network performance for traffic forecasting tasks. Our novel approach centered on utilizing
a performance estimation process, rather than training until convergence, as typically
employed in other frameworks such as ENAS.

We observed that our LENAS framework, despite its advantage of fast search times
and lower computational costs, displayed worse performance compared to other deep
learning models. This underperformance is largely attributed to the disconnect between the
naswot score and the validation loss of the architectures. Our results indicated an average
Spearman rank correlation of 0.737, as highlighted in Table 3, signifying a substantial
margin of error when ranking architectures using the naswot score as opposed to the
validation loss.

The lack of correlation between the naswot score and the validation loss was a primary
factor contributing to the inaccuracies in our model. Hence, while the naswot proxy, once
normalized by network size, proved to be stable concerning weight initialization, mini-
batch sampling, and size, its use revealed notable challenges in achieving comparable
accuracy with the baseline models that do not incorporate performance estimation.

The experimental trials conducted with two traffic speed benchmarks and two traffic
flow benchmarks affirmed the double-edged nature of using the naswot score. On one
hand, we managed to speed up the neural architecture search process by two orders of
magnitude and explore the architecture space more thoroughly. Conversely, this came at the
cost of a decrease in accuracy, which emphasizes the need to balance speed with precision
in the application of such zero-cost proxies. When analyzing the experimental results in
Table 4, LENAS often performs worse than GWN, a handcrafted approach, suggesting
that the inclusion of naswot as performance estimator might be less effective than using
GWN. Both methods use adjacency matrices for the graph convolution. The choice of
the adjacency matrix can be crucial for the performance of the neural network. LENAS
employs a predefined adjacency matrix, while GWN uses an adaptive matrix which adapts
to the data at hand. This might be beneficial for the GWN approach and, hence, in future
research, LENAS should be extended to include adaptive adjacency matrices or attention
mechanisms [34].

In light of our findings, future research endeavors should prioritize designing zero-
cost proxies specifically geared towards regression tasks to yield more accurate results.
While our LENAS framework showed potential in terms of reduced search time and low
computational requirements, the accuracy of the naswot proxy needs further enhancement.

Overall, the exploration of zero-cost proxies such as the naswot score has shown
the potential and challenges of such an approach. This work opens up new pathways for
evolutionary neural architecture search processes, especially in the field of traffic forecasting,
provided the inaccuracies are effectively addressed in future iterations.
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