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Abstract

Sequential decision making—making a decision where available options are encountered

successively—is a hallmark of everyday life. Such decisions require deciding to accept or

reject an alternative without knowing potential future options. Prior work focused on

understanding choice behavior by developing decision models that capture human

choices in such tasks. We investigated people’s adaptive behavior in changing

environments in light of their cognitive strategies. We present two studies in which we

modified (1) outcome variance and (2) the time horizon and provide empirical evidence

that people adapt to both context manipulations. Furthermore, we apply a recently

developed threshold model of optimal stopping to our data to disentangle different

cognitive processes involved in optimal stopping behavior. The results from Study 1

show that participants adaptively scaled the values of the sampling distribution to its

variance, suggesting that the value of an option is perceived in relative rather than

absolute terms. The results from Study 2 suggest that increasing the time horizon

decreases the initial acceptance level, but less strongly than would be optimal.

Furthermore, for longer sequences, participants more weakly adjusted this acceptance

threshold over time than for shorter sequences. Further correlations between individual

estimates in each condition indicate that individual differences between the

participants’ thresholds remain fairly stable between the conditions, pointing toward an

additive effect of our manipulations.
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To accept a safe option or to continue searching for a better alternative is a hallmark of

everyday life, whether house hunting, selling or buying stocks, or finding a partner. In

such so-called optimal stopping problems, options are presented sequentially and people

must decide whether to accept an offer or to explore more alternatives (see Ferguson,

1989, for an early review). An important characteristic of such tasks is that there is no

going back to an earlier option after it is initially declined. Therefore, the difficulty lies

in the trade-off between accepting a possibly suboptimal option prematurely or

rejecting it, hoping for a better one in the future.

Previous research has emphasized either studying choice behavior in comparison to

normative models (see, e.g., Brickman, 1972; Corbin et al., 1975; Kahan et al., 1967;

Rapoport & Tversky, 1970) or introducing alternative choice models to characterize

optimal stopping behavior (Baumann et al., 2020; Bearden et al., 2006; Cox & Oaxaca,

1989; Goldstein et al., 2020; Guan et al., 2015; Hey, 1982; Lee, 2006; Lee et al., 2004;

Sang et al., 2020; Seale & Rapoport, 2000; Zwick et al., 2003). However, an often

neglected but important challenge when solving optimal stopping problems is to adapt

one’s behavior to changes in the environment, such as dealing with outcomes of different

magnitude or limited time horizons for searching. As an example, assume it is Black

Friday (sales for 3 days) and Barbara is bargain hunting for a specific video game. They

explore offers from different discounters that range between $10 and $20, but the game

sells fast and offers disappear quickly. At the same time, a luxury mall extends the

Black Friday days to 2 weeks, and Barbara intends to purchase an expensive bag that is

now offered for a price ranging between $700 and $900. However, price offers are

changing from day to day and Barbara has to choose the right time to purchase the

bag. How does Barbara adjust their choice strategy to different time and price scales?

Here we consider an optimal stopping setting that closely reflects the above examples,

where the decision maker is informed of the value of each draw and must decide after

each draw whether to choose or reject it. Moreover, the sampling distribution is known

and the payoff corresponds to the chosen value. In this variant, the optimal strategy

dictates comparing an alternative to a position-dependent threshold that corresponds to
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the expected reward of the remaining options (see Section 5b in Gilbert & Mosteller,

1966, and Appendix Text 1 & 2). If the current alternative exceeds the threshold, it

should be accepted. Because of the number of remaining options in continuing

sequences, the optimal decision threshold is nonlinearly increasing (becoming more

relaxed with the decreasing number of remaining options). Thus, regarding variance

and time horizon, two predictions immediately follow. First, since the optimal model

involves a relative comparison it predicts that choice behavior should be equal

regardless of whether the value variance is high or low. Second, when the total number

of options changes in different time horizons the optimal model predicts that people

should become pickier in longer time horizons, but also that the acceptance probability

at the last possible choice (i.e., when only one future option remains) should be 50%.

However, it appears to be widely acknowledged that humans do not behave optimally in

optimal stopping tasks (e.g., Baumann et al., 2020; Bhatia et al., 2021; Lee & Courey,

2021; Lee et al., 2004; Zwick et al., 2003), such that typical accounts often focus on

describing deviations from optimality due to biases and noise (Baumann et al., 2020;

Bhatia et al., 2021; Goldstein et al., 2020; Guan et al., 2015). Recent debates, however,

have criticized the idea of capturing parametric deviations from optimal (bias) for

neglecting the underlying psychological processes that drive behavior in the first place

(for a general discussion, see Rahnev & Denison, 2018). In particular, a biased optimal

model (BOM) suggests that people conduct the effortful calculation of optimal

probabilities and then deviate from them behaviorally. Such a calculation implies that

(a) people have an exact understanding of the underlying sampling distribution, and

based on this distribution (b) use backward induction to calculate the outcome

probabilities in each time step. However, individuals have, in general, difficulties with

probabilistic concepts (e.g., Alberini et al., 2004; Goldstein & Rothschild, 2014) and

backward induction has been shown to be extremely challenging to compute for just a

few time steps (Huys et al., 2015). In turn, decision models that involve such

computational steps assume processes that appear to be intractable and implausible for

a human decision maker (e.g., Bossaerts & Murawski, 2017; Cooper, 1990; Gershman
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et al., 2015; Gigerenzer & Gaissmaier, 2011; Simon, 1955; Todd et al., 2012). Moreover,

several studies investigating human search in related search tasks have shown that

corresponding models were not able to accommodate behavioral characteristics, leading

to inferior model fits compared to heuristic choice rules (e.g., Baumann et al., 2020;

Hey, 1982; Kahan et al., 1967; Rydzewska et al., 2018; Sang et al., 2020; Song et al.,

2019). In turn, these researchers argued that humans adopt heuristic decision rules

rather than calculating optimal outcome probabilities. Heuristic decision rules, such as

simple threshold rules, emphasize the plausibility of the assumptions on the underlying

decision processes. Especially in the domain of sequential search paradigms, which entail

complex optimal solutions, such rules appear to be reasonably good and fairly robust

and thus may constitute a better explanation (and predictor) of actual search behavior.

In particular, prior research has shown that the BOM’s assumption of nonlinearly

increasing thresholds is in disagreement with people’s decision thresholds. A model

proposing linearly increasing thresholds captures choices more accurately across

changing environments (Baumann et al., 2020; Lee & Courey, 2021) and also in related

sequential search domains (Sang et al., 2020; Song et al., 2019). Importantly, when

studying predictions of optimal and linear threshold models (LTMs) in regard to

adaptations to changing environments (e.g., left- vs. right-skewed value distributions),

behavioral evidence has been shown to contradict the predictions of the optimal model

but to correspond to the predictions of the LTM. Specifically, the LTM correctly

predicted that people tend to search less in scarce environments (simulated using a

left-skewed sampling distribution) than in environments with many good options

(simulated using a right-skewed sampling; see Baumann et al., 2020), which is the

opposite of the prediction of the optimal model and thus is also not predicted by BOMs.

In contrast to a model that defines human choices as deviations from optimality, the

LTM (Baumann et al., 2020) allows one to directly measure the impact of task features

on the cognitive parameter level. These parameters provide insights into the underlying

psychological process when a person is deciding among sequentially presented options.

In particular, it assumes that humans compare an observed offer to a decision threshold
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at each position, and this threshold is linearly adjusted across positions. The decision

maker’s choice is thus determined by an aspiration level before search (initial

threshold), a linear increment thereof when offers are rejected (adaptation rate), and

choice sensitivity (or determinism). The initial threshold reflects the option value above

which an option is accepted directly in the first decision. The adaptation rate reflects

the incremental rate of change of the aspiration level with time or number of available

options. Choice sensitivity reflects how sensitively people react to the extent to which

the current option value deviates from the (adapted) aspiration level. Therefore, the

LTM’s high accuracy in capturing sequential choices across different contexts and its

parameters’ psychological interpretability make the LTM an appropriate framework for

measuring the impact of changing task features on these mechanisms.

People’s sensitivity to the task environment in an optimal stopping task has been a

consistent finding across studies (e.g., Corbin et al., 1975; Cox & Oaxaca, 1989; Guan &

Lee, 2018; Lee & Courey, 2021; Lee et al., 2004; Shapira & Venezia, 1981). For

example, participants stopped earlier in sequences with descending compared to

ascending values (Brickman, 1972; Shapira & Venezia, 1981) and increased their

aspiration levels in rich compared to scarce environments (Baumann et al., 2020; Guan

& Lee, 2018; Guan et al., 2014; Kahan et al., 1967; Rydzewska et al., 2018). Moreover,

people adjusted to the length of the sequence by increasing their acceptance rate when

fewer alternatives were available (e.g., Guan et al., 2020; Lee et al., 2004; Seale &

Rapoport, 1997). However, the underlying processes that drive this adaptive behavior

are unknown. From an LTM perspective, thus, the question is which cognitive

parameters (e.g., initial threshold or adaptation rate) capture such behavioral trends.

Our first goal was to clarify this question in two studies when manipulating value

variance (high vs. low; Study 1) and time horizon (number of options; Study 2).

Importantly, we next sought to increase the understanding of suboptimal behavior from

a cognitive perspective. For this, we investigated how well people adjust within the

limits of their cognitive strategy. This approach allowed us to then analyze

maladaptation of cognitive variables (initial threshold and adjustment thereof) outside
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the constraints of linearity, meaning they could be attributed to other psychological

variables such as risk aversion in higher variance environments in Study 1 or increased

search costs in longer sequences in Study 2.

Our second goal was to investigate the stability and reliability of the measured cognitive

parameters across contexts and to examine their relationship with behavioral measures.

This is a critical question, as attempts to link suboptimal search behavior with

psychological variables, such as risk preferences, have been unsuccessful (e.g., Frey

et al., 2017; Schunk, 2009). Uncovering underlying cognitive processes that are

consistent across search contexts would contribute to a comprehensive understanding of

individual differences in optimal stopping tasks.

In the following section, we introduce the environment manipulations and discuss how

different theories may predict how people adapt. We then proceed to Study 1 and

Study 2, for each, presenting first our analysis of how optimal decision makers would

adjust, followed by the predictions of the LTM. In a subsequent modeling section, we

use the LTM to describe the participants’ behavior and compare the parametric

characteristics in each condition.

Changes in decision environments

Variance. The introductory examples about purchasing a video game and a luxury

bag illustrate that prices may vary for a desired object. How do humans translate

different variances into representations that map onto decision criteria?

Research on simultaneous decision making suggests that a person’s valuation of an

option is sensitive to the range of other alternatives in the sample (e.g., Nieuwenhuis

et al., 2005; Padoa-Schioppa, 2009; Rigoli et al., 2016; Tversky & Simonson, 1993), such

that people value an alternative on the basis of its relative rank within a pool of

alternatives and not by its absolute value (e.g., the normalization hypothesis; Rangel &

Clithero, 2012). Following this line of research, we would expect that variance has little

effect on search performance (i.e., on accepting optimal options) in an optimal stopping

task, but that to perform this task, people transform their value representations into
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value rankings, taking the variance of the alternatives into account. Interestingly, this

adaptive mechanism corresponds to the prediction of the mathematically derived

optimal solution, which scales the critical percentile values to the specific environment

distribution. However, whether people perfectly scale these estimates (true variance) in

an optimal stopping problem is an open question, which can be tested using the LTM,

for instance, by estimating the scaling factor of decision thresholds between conditions.

Alternatively, research on risky decision making suggests that variance in the outcomes

changes people’s risk preferences, where higher outcome variance implies higher

perceived risk and thus results in more risk-averse behavior (Genest et al., 2016; Holt &

Laury, 2002; Markowitz, 1959; Weber et al., 2004). From this perspective, an optimal

stopping task can be viewed as a series of repeated risky decisions, where accepting the

current option would reflect a “safe” choice and rejecting the current option would

reflect choosing an uncertain outcome (“gamble”). If variance influences risk preference,

we would expect that higher variance would lead to enhanced risk-averse behavior,

translating into more relaxed aspiration levels, compared to lower variance. In this case,

variance would affect search length, with higher variance leading to earlier stopping.

Time Horizon. Another influential factor in optimal stopping tasks is the time

horizon (e.g., Lee et al., 2004; Rydzewska et al., 2018; Seale & Rapoport, 1997; Zwick

et al., 2003). For example, when time is limited, as in the example above where sales

appear for 3 days, rejecting an option implies that only a few more options are left over

in the remaining time. The optimal solution predicts people will be pickier in longer

time horizons at the beginning of the sequence, which leads to higher performance.

Although increased search length in longer sequences has been empirically confirmed, it

is less clear what cognitive processes drive this behavior. Which factors in the LTM

need to be adapted in longer time horizons to maintain a good performance? In a

simulation study (see Study 2, Adaptation to the time horizon: Optimal and linear

models) we showed that to achieve the best performance, both the initial threshold and

its adjustment across search should be decreased. However, the constraints of linear

thresholds lower performance relative to optimality in extended time horizons.
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Therefore, in Study 2 we sought to replicate earlier findings and extend them by using

within-subject manipulations of time horizon, studying how different time horizons

influence participants’ choice behavior by comparing the cognitive parameters

underlying adaptive search.

Study 1

In the first study we investigated how outcome variance affects search behavior in the

optimal stopping task. In an online purchase task, we asked participants to repeatedly

perform a sequential choice task in which they had to choose the cheapest airplane

ticket. We manipulated the variance within participants by generating ticket prices

from two Gaussian distributions with high and low variance [but constant mean; i.e.,

∼N(µ = 180, σ = 10) or ∼N(µ = 180, σ = 40)] and participants solved these tasks in a

within-subject design.

Method

Participants. We recruited 205 participants (78 women; age range: 19–70 years) on

Amazon Mechanical Turk to participate in the experiment. Participants gave informed

consent, and the study design and method were approved by the ethics committee of

the University of Zurich. Participants were excluded from analysis if they accepted the

first option in a sequence in more than 90% of the trials, leaving 199 participants for

the subsequent analysis. Participants received a fixed payment of $4 and a bonus

contingent on their search performance (see the Procedure section for the calculation of

the performance-dependent bonus).

Procedure. The task was adapted from the study of Baumann et al. (2020) and

imitates an airline-ticket-shopping scenario where people search for the cheapest price.

In each trial, participants were presented with a sequence of 10 prices. For each price,

they had to decide to accept it or reject it at their own pace. Participants were aware of

the total number of prices in each trial and of the actual position in the sequence (Figure

1A). It was not possible to go back to an earlier option. If they reached the last (10th)

price they were forced to choose it. When participants accepted a price, they received
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feedback about how much they could have saved if they had chosen the best price in the

sequence (Figure 1B). A bonus was paid proportional to the performance: The closer

they were to the best price in the sequence, the more points they got (see Equation 1).

All participants completed 80 sequences in each of two conditions, one with high

variance and one with low variance. Within each condition, we sampled the ticket prices

from either ∼N(µ = 180, σ = 10) or ∼N(µ = 180, σ = 40). The order of the two

conditions was randomized and each participant encountered a newly generated sample.

Prior to each of the two conditions, participants learned about the respective

distribution to exclude learning effects in the stopping task. During learning,

participants saw 50 ticket prices drawn from the target distribution, presented

sequentially in randomly ordered trials (Figure 1C). After every 10th trial, participants

had to estimate the overall average, and the correct answer was revealed (Figure 1D).

Finally, participants created a histogram (by dragging the bars) of the true distribution

(Figure 1E), before the correct distribution was superimposed over their estimate

(Figure 1F; method proposed in Goldstein & Rothschild, 2014). If their estimates

deviated more than 20% from the correct answers, they were instructed to repeat the

learning phase, with a maximum of three repetitions. This procedure ensured that

participants had good knowledge about the value distribution, thus minimizing any

additional learning during the task.

Before the task started, participants were told their payoff would consist of a lump sum

of $4 plus a bonus between $0 and $4 contingent on their performance. Each trial

offered a maximum of 25 points to earn, which translated into a bonus of 0.025 cents

per trial. The maximum number of points was awarded when the cheapest ticket was

chosen and 0 points for the most expensive one. Intermediate choices equated to

pointsj =
25 · (pmax

j − pchosen
j )

pmax
j − pmin

j

, (1)

where pmax
j is the highest and pmin

j the lowest price in trial j. The final bonus was

calculated by dividing the total number of points by 1,000. The average bonus earned
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A B C

D E F

Figure 1 . Screenshots of online experiment. Panels A,B: Testing Phase. Panels C–F: Learning phase.
Panel A: In every trial participants encountered 10 tickets sequentially and had to decide to accept it
or to continue. Panel B: Feedback was provided. Panel C: Feedback was provided by superimposing
the correct distribution over their estimate. Panel D: Sequential presentation of ticket values. Panel E:
After each 10 tickets, participants estimated the average of the prices just seen. Panel F: At the end of
the learning phase, participants predicted how a future sample from the same predefined population
might look by drawing a histogram.

was $3.38 (min: $2.83; max: $3.64).

Adaptation to variance: The optimal model versus the LTM. Before we begin

to analyze the behavioral data gathered from this experiment, we first discuss the

adaptation to variance proposed by the optimal model and the LTM. The optimal

solution to this task is to use a position-dependent optimal threshold to which an

option is compared. The calculation of the optimal threshold is based on the expected

reward of the prices on the remaining days when following the optimal policy. Gilbert

and Mosteller (1966) derived the critical values when options are sampled from a

standard normal distribution (see Gilbert & Mosteller, 1966, for a mathematical

derivation of thresholds, and Appendix, Text 1). These values are then converted to the

scale of the respective distribution (by multiplying the value by the distribution’s

variance and adding the mean of the distribution; see Figure 2A (solid black line) for

thresholds for values from ∼ N (µ = 0, σ = 1) and Figure 2B (solid black lines) for

thresholds from the normal distribution with a mean of 180 and a variance of 10 and
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40). Consequently, thresholds differ on the absolute scale, with higher values in the

low-variance condition (Figure 2B). However, they remain identical regarding their

percentile rank within the sampling distribution. Thresholds corresponding to identical

percentiles lead to the same stopping points and performances between environments

that differ only in mean or variance. A simulation study1 across the two conditions,

confirmed that under the optimal model, a change in variance leads to the same

performance and search length (see Figure 4, black solid lines).

To investigate the prediction of the linear strategy, we calculated those thresholds in

both variance conditions (using grid search) that would lead to collecting the highest

payoffs. The best performing linear thresholds in both variance conditions are shown in

Figure 2B (red dashed lines), indicating an adjustment to variance, with higher

threshold values in low-variance decision environments. Importantly, once these

thresholds are scaled to the corresponding normalized values, they coincide (Figure 2A,

1 For each condition (SD = 10 and SD = 40), an equivalent number of 80 trials were simulated, where
values were sampled from ∼ N (µ = 180, σ = 10) and ∼ N (µ = 180, σ = 40) for a total of 240 optimal
agents, which were aggregated on measures of performance and search length.
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red dashed line). This result also indicates that the best performing linear decision

thresholds across different variance environments match in respect to their percentile

value, demonstrating that ideal adaptation to variance would lead to equal search

lengths also under the cognitively less complex LTM assumptions. Vice versa, thus, if

participants nonideally scale their value distributions we would generally expect

differences in search length and performance between the two conditions. A simulation

study for best performing linear threshold agents across the two conditions —

equivalent to the above simulation study for the optimal model — confirmed that under

the best performing linear threshold model, a change in variance leads to the same

performance and search length (see Figure 4, red dotted lines).

Adaptation to variance: Hypotheses on psychological variables. Whereas the

normalization hypothesis predicts no difference in thresholds on a relative scale between

conditions, the risk hypothesis would predict a difference. Figure 3A and B depicts the

adaptation of thresholds according to the normalization hypothesis, when thresholds are

measured on an absolute-scale value distribution (Panel A) or on a normalized scale

(i.e., standard-normal scale; Panel B). Figure 3 C represents the hypothesis that higher

outcome variance leads to more risk-averse behavior, reflected in higher decision

thresholds (θ0) and potentially also higher adaptation rates (δ), when expressed on a

standardized scale (see Figure 3B).

Behavioral results

Search length and performance. The data suggest that people adjust their choices

according to the normalization hypothesis. Figure 4A indicates that the average

accepted price differs greatly between conditions (SD = 10: M = 169.4, SD = 1.4; SD

= 40: M = 136.7, SD = 5.3). However, on a normalized scale, this difference seems to

disappear (Figure 4B; SD = 10: M = -1.06, SD = 0.15; SD = 40: M = -1.08, SD =

0.13). A Bayesian t test (R BayesFactor::ttestBF package, prior scale = medium;

Morey et al., 2018) supports these findings, showing strong evidence for a difference in

accepted prices between conditions (MDiff = 32.73, 95% confidence interval [CI]: [32.0,
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33.4], Bayes factor [BF] > 300) but inconclusive evidence that normalized accepted

prices differ (MDiff = 0.02, 95% CI [0.004, 0.04], BF=0.45). Furthermore, investigating

participants’ performance and search length between conditions revealed substantial to

strong evidence that they are equal (Figure 4C and D; search length: MSL
σ=10 = 5.03,

MSL
σ=40 = 4.99, MSL

Diff = 0.05, 95% CI [-0.07, 0.16], BF10 = 0.11), performance:

(MP erf
σ=10 = 21.24, MP erf

σ=40 = 21.36, MP erf
Diff = −0.058, 95% CI [-0.14, 0.025], BF10 = 0.27).

These results speak against the risk hypothesis, which predicted differences in search

length and performance. Instead, the results support the hypothesis that, from an LTM

or optimal perspective, values are perceived according to their ranks within the

distribution. Otherwise, we would have expected behavioral measures to differ between

conditions. However, although the adaptation to variance seems in line with the

optimal model (Figure 4, black circles) and the predictions of the best performing linear

model (Figure 4, red triangles), the actual behavior still deviates from both predictions,

as people performed suboptimally in both conditions. However, it also shows that

people’s deviations can at least partly be explained by the assumption on the linearity

of decision thresholds. Therefore, we next investigated if the LTM or three other choice

strategies describe the data, to further examine the underlying search processes that
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Figure 4 . Search length is measured as the number of “reject” decisions in a sequence plus 1.
Performance was defined as the average sum of accumulated points in each trial. In red: predictions of
the best performing linear threshold model.

may lead to suboptimal behavior.

None of our models assume any learning over trials. This assumption was in line with

an analysis of the accepted prices across trials. A linear mixed model on accepted prices

per trial with trial number as fixed effect and by-participant random intercepts for trial

number showed no significant effect of trial number in either variance condition [low

variance: F (1, 118) = 2.1, p = .15, high variance: F (1, 102) = 1.9, p = .16].

Modeling Participants’ Decisions

In this section we explore participants’ choice strategies by comparing possible cognitive

models that could account for their choice behavior. Furthermore, we analyse adaptive

choice behavior based on the underlying choice processes captured in the model’s

cognitive parameters. Besides the LTM we consider three models that have been used

in the optimal stopping literature: the BOM (a variant of the bias-from-optimal model
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described in Guan et al., 2015) that determines people’s thresholds in terms of how

much they deviate from optimality, a fixed threshold model (FTM; Goldstein et al.,

2020; Lee et al., 2004) that assumes a stable threshold across search, and an

independent threshold model (ITM; Baumann et al., 2020; Guan et al., 2015) that

assumes no relationship between thresholds. The ITM thus allows for any shape of

thresholds across search and sets the benchmark on how any threshold model can

describe optimal stopping behavior. Sampling models that base their stopping decisions

on information gained from an initial sample of options are not considered here as

studies have shown that such models are not appropriate for capturing human behavior

in the full-information version of the optimal stopping task (see e.g. Baumann et al.,

2020; Lee et al., 2004; Sang et al., 2020).

The models were implemented in a hierarchical Bayesian statistical framework using

JAGS (Plummer, 2003). In a Bayesian framework, information regarding model

parameters is represented by probability distributions. The data were used to update

prior distributions, resulting in posterior distributions, which were used for inference. A

hierarchical implementation allowed us to fit data on the individual-trial level while

simultaneously taking into account information shared across participants via

group-level distributions. Fitting involved running four independent chains, each with

2,000 samples drawn from the posterior distribution, with a burn-in period of 100

samples. The chains converged, which was monitored via the calculation of

Gelman–Rubin statistics on the four chains, autocorrelation plots, and visual inspection

of the chains. In the subsequent analysis, we evaluated the parameter estimates in both

variance conditions and analyzed them in terms of stability and predictability of choice

behavior. A description of all models’ priors can be found in the Appendix (Method

section). The following section introduces the four models using the example used in

our studies.
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Models

We consider a decision maker who encounters a sequence of ticket prices with values

denoted by x1, . . . , x10 who wants to find the minimum value in the sequence. If the

decision maker accepts the price xi, the sequence terminates and they have to pay xi;

otherwise, they continue to the next price. When the last ticket is reached, it must be

accepted.

All models assume that the decision maker relies on a probabilistic threshold to make

the decision to accept or reject a price—that is, price xi on position i is compared to a

position-dependent threshold ti. This comparison yields an acceptance probability θi

based on a sigmoid choice function with sensitivity parameter β and

θi = 1
1 + exp{β(xi − ti)}

. (2)

The parameter β (sensitivity) governs how deterministic the decision threshold is. Small

values of β reflect stochasticity in decisions, whereas the policy approaches determinism

with larger values. In other words, large values of β indicate that a decision maker

applies the decision threshold very consistently, and low values indicate sporadic

violations (e.g., either strategically to explore remaining options once in a while, or due

to less precise cognitive processes during the evaluation; Bendor et al., 2001).

The LTM (Baumann et al., 2020) postulates that the decision threshold changes over

time in a linear fashion. Formally, it is defined by the first threshold θ0 and the

incremental value δ, which is added to θi whenever a price is rejected:

θi+1 = θ0 + δ · i. (3)

An increasing θi over time (i.e., positive values of δ, in the current example) means that

the decision maker becomes more likely to accept more expensive prices compared to

the previous sequence positions. In sum, this model entails three adjustable parameters,
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the first threshold θ0, the increment of the threshold δ, and the choice sensitivity β.

The corresponding psychological interpretations are listed in Table 1.

Table 1
Linear Threshold Model Parameters and Their Psychological Interpretation

Parameter Cognitive function

θ0 Aspiration level before search

δ Adaptation rate during search

β
Sensitivity to differences between
aspiration level and actual price

The FTM is a simplified version of the LTM where the decision maker compares an

offer to a single fixed threshold θF (Goldstein et al., 2020; Lee & Courey, 2021). This

model is implemented as a nested model of the LTM by allowing the slope parameter δ

to have the value 0.

The BOM is based on the idea (Guan et al., 2015) that people use thresholds that

deviate systematically from the optimal thresholds. The optimal thresholds θ∗
i for each

position i are derived by determining the expected reward of the remaining options (for

the mathematical derivation, see Gilbert & Mosteller, 1966, Section 5b, Table 13 and

the Appendix Text 1 & 2). The model entails a systematic bias parameter γ that

reflects the divergence of the human threshold from the optimal one. Additionally, the

thresholds depend on a parameter α that determines how much their bias increases or

decreases as the sequence progresses.

θi = θ∗
i + γ + α · i. (4)

When γ and α are set to 0, the thresholds represent the optimal thresholds that lead to

best performance. This model is therefore defined by three free parameters, γ, α, and

the choice sensitivity β. Possible threshold shapes for different parameter combinations
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are shown in the Appendix Figure A1.

Finally, the ITM estimates N − 1 independent threshold parameters θ1, ..., θN−1 freely,

one for each position in the sequence. The thresholds can take any value across

positions and therefore provide an upper limit for how well any threshold model can

describe an individual’s decision given the assumption of a probabilistic threshold.

Modeling results

We first compared the estimated thresholds from the BOM and the LTM with the

estimates from the ITM, which serves as an upper limit in accuracy when describing

people’s thresholds. Figure 5A shows that the LTM’s estimated thresholds closely

match the estimated thresholds of the ITM in both variance conditions. Because of the

thresholds’ nonlinear increase across positions, the BOM is less capable of capturing

people’s decision thresholds. A quantitative analysis of the performance of the models

(using the deviance information criterion, DIC; see Spiegelhalter et al., 2002) both

variance conditions suggests a preference for the LTM compared to the BOM and the

ITM (see Appendix Table 15). To test if the FTM would better represent participants’

strategies, we investigated if the group-level posterior distribution (95% CI) of the slope

parameter δ includes 0. For both variance conditions, this was not the case (σ = 10:

0.7, 95% CI [0.6, 0.8]; σ = 40: 2.4, 95% CI [2.2, 2.8]; see Table 2), suggesting that

thresholds are adjusted across search. Inspection of the distribution across the

estimated individual δs for both conditions provided further support for this finding

(see Appendix Figure 3).

To further investigate the accuracy of the LTM in describing choices, we studied the

agreement of the acceptance probabilities between participants and the model. Figure

5B (low variance condition) and C (high variance condition) shows participants’

acceptance probabilities for prices split into quantiles on each position (black lines)

together with the posterior predictive means of the LTM, suggesting a fairly accurate

agreement. We conducted the same analysis for the BOM (see Appendix Figure 2),

which shows a weaker agreement with the data, in particular due to the model’s
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Figure 5 . Panel A: Estimated thresholds in both conditions for three models (see legend). Panels B
(high variance) and C (low variance): Probability of accepting across positions, agreement between
data (black lines) and the LTM (posterior predictive means and 95% confidence intervals). Q1: Prices
in the first quantile; Q2: prices between the first and second quantile, etc. Only the first six quantiles
are shown (of 10); BOM = biased optimal model; ITM = independent threshold model; LTM = linear
threshold model.

assumption of a nonlinear threshold increase.

Before analyzing the best fitting parameter values of the LTM, it is important to check

whether the fitting procedure gives meaningful parameter values when fitting fake data

where the “true” parameter values are known (Nilsson et al., 2011). Such a procedure is

known as parameter recovery, and it is a crucial part of a model-based analysis.

Scatterplots and correlations are shown in Appendix Figure 4, revealing a fairly good

agreement between the LTM’s generating and fitted parameter values (ρ > .85 for all

parameter correlations).

Cognitive parameter estimates in the low- and high-variance conditions.

The behavioral evidence of equal search length and performance across conditions

indicated that participants adjusted their decision thresholds according to the

normalization hypothesis. The LTM allows one to directly estimate this threshold and

thereby to substantiate this claim in both variance conditions. The corresponding mean

threshold parameters are plotted in Figure 6 (group-level means and individual

estimates). As can be seen, the absolute thresholds differed substantially between the

two conditions (Panel A) but not when the model was applied to the normalized values

(Panel B). The corresponding group-level parameters of θ0 and δ are listed in Table 2

and reveal no difference between the two variance conditions (see third column).
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The normalized values further allow a direct interpretation according to z values,

indicating the initial acceptance percentiles and the rate of subsequent adaptation (e.g.,

“I accept prices that belong to the 0.1 quantile of the distribution, and in each search

step I increase the quantile by 0.01”). Interestingly, as the final threshold values

(normalized) were still below 0 (50%), this also means that almost all participants were

risk seeking in the ninth trial. In the following section, we investigate the robustness of

the cognitive parameters between conditions to understand if these processes provide a

more stable measurement than search length or performance.
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Figure 6 . Individual-level threshold parameters for both variance conditions (blue: low variance, red:
high variance). The two darker lines show the thresholds based on the group-level parameters. Panel
A: Thresholds estimated using absolute prices. Panel B: Thresholds estimated using normalized prices
(µ = 0 and σ = 1).

Stability of cognitive parameters between conditions. To interpret the

robustness of parameter estimates, we first examined how behavioral measures, such as

search length and performance, correlated between the variance conditions. That is, the

previous modeling analyses indicated that performance and search length depend on

multiple variables (initial threshold, adaptation, and sensitivity). This means these

behavioral measures might be more variable (correlate less strongly) than their

underlying cognitive parameters. Thus, if the parameter estimates were meaningful,

then, ideally, they should correlate between conditions more strongly than—or at least

as much as—the behavioral measures, which provides a reference point for evaluation.
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Table 2
Posterior group-level mean parameters of the linear threshold model (LTM) and 95% confidence
intervals (in square brackets) for the low- and high-variance conditions. Top three rows: Absolute
parameter values; bottom three rows: normalized (µ=0 and σ=1) parameter values.

Group-mean parameter estimates

LTM parameter σ = 10 σ = 40 Difference (σ10 - σ40)

θ0 first threshold 167.6 [167.2, 168] 131.8 [130.3, 133.2] 35.8 [34.36, 37.32]

δ slope 0.74 [0.68, 0.8] 2.67 [2.45, 2.9] -1.9 [-2.17, -1.7]

β choice sensitivity 0.40 [0.37, 0.41] 0.1 [0.09, 0.11] 0.3 [0.27, 0.32]

θ0 normalized -1.17 [-1.21, -1.14] -1.20 [-1.24, -1.17] -0.04 [-0.08, 0.02]

δ normalized 0.07 [0.068, 0.08] 0.06 [0.061, 0.07] 0.007 [-0.001, 0.15]

β normalized 3.61 [3.43, 3.78] 3.89 [3.69, 4.01] -0.21 [-0.26, 0.026]

Search length between conditions correlated with r = .51 (95% CI [.4, .6], BF > 300)

and performance with r = .50 (95% CI .38, .60, BF > 300; R

BayesFactor::correlationBF package, prior scale = medium; Morey et al., 2018).

Indeed, the initial acceptance level θ0 yields a stronger correlation of ρ = .62, 95% CI

[.59, .65] (see Appendix Table 1 for an overview of all correlations) and the adaptation

rate of ρ = .53, 95% CI [.41, .61]. These associations are higher than or equal to,

respectively, the correlations of search length and performance, indicating that the

cognitive parameters of the LTM represent a more robust measure between variance

conditions. Furthermore, the LTM parameters did not strongly correlate with each

other, except for θ and δ, indicating mostly independent contributions to behavior.

When the LTM parameters more robustly describe behavior than the behavioral

measures themselves, then the consequent question is how the parameters relate to

performance measures and search length. Since both measures did not differ between

the variance conditions we readdress these questions in the next study in which, to

foreshadow, search length was affected by time horizon, which allowed us to delineate

participant characteristics from the effects of additional manipulations. Note here that
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the initial threshold was the primary predictor of search length and performance in both

variance conditions, illustrated in the scatterplot provided in the Appendix Figure 5.

Discussion Study 1

The goal of Study 1 was to understand how people adjust to environments changing in

option values’ variance when sequentially searching for the best option. Whereas

economic theories (Rangel & Clithero, 2012; Stewart, 2009) suggest that people

transform absolute values (and thus variance) into a normalized scale on a cognitive

level (normalization hypothesis), some theories in risky decision making (Genest et al.,

2016; Holt & Laury, 2002; Weber et al., 2004) postulate that higher variance in the

price distribution causes more risk-averse behavior. To test this, we manipulated the

variance of ticket prices in a sequential stopping task. The comparison of search length

and performance between the two variance conditions did not reveal any effect. This

finding suggests that outcome variance in a sequential search task does not affect risk

aversion, because otherwise we would have expected shorter search in high-variance

environments. To specify people’s choice strategies we implemented different models

from the optimal stopping literature in a computational framework and demonstrated

that an LTM best approximated the behavioral data (regarding acceptance proportions

in value quantiles), supporting the appropriateness of our account. In line with the

behavioral finding, the LTM (Baumann et al., 2020) captured the lack of difference in

search performance by scaling the thresholds relative to the variance in the

corresponding price distributions. This implies that participants accepted prices in both

conditions within the same percentile on each position, supporting the assumptions of

the normalization hypothesis.

The model parameters consistently correlated between the low- and the high-variance

conditions, ranging between ρ = .53 and ρ = .62, which is higher than correlations

between behavioral measures such as search length and performance. In particular the

initial threshold, which yields a correlation of ρ = .62, seems to be a robust underlying

parameter when adjusting between contexts. Studies examining test–retest correlations
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of behavioral measures in related search paradigms (e.g., the balloon analogue risk task;

Frey et al., 2017; White et al., 2008) have reported lower correlations (ρ = .52) in

behavioral measures, suggesting that the underlying search parameters depicted in the

LTM may uncover a more stable process of search across contexts.

Study 2

In the second study, we focused on the influence of the time horizon on adaptive choice

behavior in optimal stopping tasks. The sequences contained 5, 10, or 20 options.

Otherwise, the task was equivalent to that in Study 1, where participants were

conducting an online ticket-shopping task with the goal of finding the cheapest price.

Method

Participants. We recruited 70 participants (20 women; age range: 25–60 years) on

Amazon Mechanical Turk to participate in the three-condition, within-subject

experiment. We selected a sample size equivalent to that in a similar study (Baumann

et al., 2020). Participants gave informed consent, and the University of Zurich

Committee on the Use of Human Subjects approved the experiments. Participants were

excluded from analysis if they accepted the first option in a trial in more than 95% of

the trials, leaving 66 participants in the subsequent analysis.2 They received a fixed

payment of $2 and a performance-dependent bonus ranging between $0 and $6 (see

Procedure for a description of the calculation).

Procedure. The second experiment employed the same task as in Study 1. The

sequence length was varied, offering 5, 10, or 20 values. All prices were generated from

the same distribution throughout the experiment [ ∼ N (µ = 180, σ = 20)]. All

participants worked on a total of 180 trials, split into two parts of 90 trials. Both parts

consisted of three blocks with 30 trials, where trials within a block were of length N =

5, 10, or 20. The order of the blocks was randomized. The maximum number of 33

2 We examined the individual-level data (plotting accept probabilities for each individual in each
condition) and are confident that random behavior (e.g., randomly choosing one of 10 positions, p = .1,
or randomly choosing to accept with a probability of 50%) was mostly absent (i.e., almost all
participants showed an increasing acceptance trend with ongoing positions).
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points was awarded when the cheapest ticket was chosen and 0 points for the most

expensive one. Intermediate choices equated to

pointsi = 33 · (pmax − pchosen)
pmax − pmin

, (5)

where pmax represents the highest price and pmin the lowest price in sequence i.

Participants received a base payment of $2 and earned between $0 and $4 additionally

depending on their performance. The final bonus was calculated by dividing the total

collected points by the maximum number of points. The average bonus earned was

$4.87 (min: $2.98, max: $5.30)

Adaptation to the time horizon: Optimal and linear models

To better understand the theoretical predictions regarding the effects of time horizon we

first simulated the optimal model and the LTM, beginning with the former. In the

optimal model, the decision thresholds change across position and correspond to the

expected reward of the remaining options. Thus, initial thresholds are lower for longer

time horizons (in the case of finding the minimum price offer, see Appendix Figure 6,

black lines). Optimal thresholds therefore depend solely on the remaining options in the

sequence, regardless of the absolute sequence length. This also predicts that the choice

rates on the last decision (e.g., on Position 4 with Length 5, or on Position 9 with

Length 10) will be equal under the optimal model in all length conditions.

For detailed predictions regarding acceptance rates, search length, and performance of

an optimal agent, we simulated for each condition (N = 5, 10, and 20) an equivalent

number of 60 trials for values sampled from ∼N(µ = 180, σ = 20) for a total of 100

agents. The average accepted ticket price decreases for longer time horizons (N = 5: M

= 161.5; N = 10: M = 154.7; N = 20: M = 148; see Figure 8A) whereas performance,

which is measured as the average accumulated points in each trial divided by the

maximum points, increases (N = 5: M = 0.88; N = 10: M = 0.9; N = 20: M = 0.93;

Figure 8B). In absolute terms, an optimal agent searches more in longer time horizons
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(N = 5: M = 2.9; N = 10: M = 5.3; N = 20: M = 9.9; Figure 8C), but in relative

terms, search decreases (search length/total sequence length, N = 5: M = 0.58; N =

10: M = 0.53; N = 20: M = 0.49; Figure 8D).

If the participants’ strategies correspond to the architecture of the LTM, this would also

have implications for how parameters should change to maintain near-optimal

performance. Thus, to understand how people might adjust to the time horizon, we

conducted a series of model simulations, illustrated in Figure 7.3 First, Figure 7A shows

the predictions of performance (Panel A1) and search length (Panel A2) in the three

time horizon conditions (x axes; N = 5 vs. N = 10 vs. N = 20) depending on different

aspiration levels (colored circles; θ0), without changing them over time (i.e., with δ set

to 0). Figure 7A1 shows that, within each condition, the maximum performance

predicted by the LTM is a curvilinear function of the initial aspiration level. Intuitively

speaking, when searching for the minimum, too high aspiration levels lead to accepting

too many suboptimal options and too low aspiration levels lead to rejecting too many

optimal options.

Second, the connected dots represent identical threshold values across conditions

(indicated by their color in Figure 7). As can be seen, the threshold that yields optimal

performance with a time horizon of 5 (orange circles) predicts only suboptimal

performance with a time horizon of 10 (the same holds for a comparison between 10 and

20). This means, according to the LTM, if participants seek to optimize their behavior,

relative to a time horizon of 5, they have to decrease their aspiration levels (less tolerant

thresholds). Specifically, with the assumption that there is no adaptation across

sequence positions (δ = 0), the LTM predicts that the optimal initial thresholds for the

conditions of N = 5, 10, and 20 are -0.4, -0.8, and -1.2 (on a normalized scale),

respectively. Correspondingly, for these optimal initial thresholds, the LTM predicts

that the relative search length (relative to the time horizon; Figure 7A2) decreases with

3 For each sequence length (N = 5, 10, and 20), an equivalent number of 60 trials was simulated, where
values were sampled from ∼N(µ = 180, σ = 20) for a total of 100 participants, which were aggregated
on measures of performance and search length. We approximated the range of the parameters to the
range of values obtained in Study 1 and used any possible combination of initial threshold (θ0) and
rate of increase (δ) to simulate choices.
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Figure 7 . Linear Threshold Model simulation study. Panels A1 and A2: Performance (average number
of points/maximum number of points) and search length (i/N ; i = accepted position, N = time
horizon) for a range of θ0 values (see legend) and δ = 0. Optimal thresholds differ between time
horizons: N = 5: θ0 = -0.4 (orange); N = 10: θ0 = -0.8 (red); N = 20: θ0 = -0.8 (purple). Panels B1
and B2: δ 0.025; θ0 values according to legend. Panels C1 and C2: δ = 0.1; θ0 values according to
legend. Points connected with a line represent the same θ0 values. In Panels A2, B2, and C3, search
length is calculated in relative terms (i.e., i/N ; i = accepted position, N = time horizon).

increasing time horizon.

Up to now, our simulation has assumed that the thresholds remain fixed across the

sequence. In the next step, we allowed the initial threshold (θ0) to change across

positions via adaptation rate δ. The simulation results indicate that δ also contributes

to optimal performance in the LTM, suggesting differences between the time horizon

conditions, as illustrated in Figure 7B (B1 for predictions on performance and B2 for

predictions on search length) and C (C1 and C2, as described for B1 and B2). First,

with δ = 0 in Figure 7A1, introducing a small adaptation rate (δ = 0.025 in Figure

7B1) leads the previously optimal threshold (e.g., orange circles in Panel A1 for N = 5)

to become suboptimal. Further, whereas a small adaptation of δ (δ = 0.025) leads to a

higher performance when N = 20 (Panel B1), a large adaptation (in Panel C1) seems to

impede performance in this condition (when δ = 0.1).
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This model dynamic can be plausibly verbalized in a psychological way. That is, if

participants adapt to the task, they might approach the different time horizons with

different initial aspiration levels in the first place (longer time horizon = lower aspiration

level θ0; see Panel A1). In the second place, they would regulate their adjustment of the

aspiration level over time according to the time horizon, with lower increases in long

time horizons, because too strongly adapting the threshold over long time horizons

leads to prematurely accepting suboptimal offers. Of course, the LTM does not explain

how participants would know what the optimal adaptations are, but here we seek to

accurately capture these trends in order to pin down the contributing factors, and later

we discuss why they might or might not reach optimal levels from an LTM perspective.

To compare performances between the optimal and a best linear threshold strategy, we

calculated the best performing linear thresholds for each time horizon using grid search

to find the parameter values (θ0 and δ) that result in the highest reward.4 As proposed

by the simulation study above, optimal adaptation of linear thresholds to time horizons

involves decreasing the first threshold and lowering the adjustments across search (see

Figure 9B, black dashed lines). Figure 8B (red line) shows that using the best

performing linear thresholds reduces performance only slightly relative to the optimal

model, by 1.1% when N = 5, by 3% when N = 10, and by 6.5% when N = 20. This

result reveals that an ideal adaptation of the linear thresholds to time horizon would

lead to almost optimal performance and emphasizes the LTM’s potential to efficiently

solve the optimal stopping task. Of course, misadjustments might also lead to much

worse performance, which we discuss below. Figure 8D (red lines) displays the relative

search length by a decision maker who uses the best performing linear thresholds and

reveals that relative search length decreases as well with increasing time horizons (N =

5: 58%, 95% CI [0.57, 0.59], M = 2.9, SD = 0.2; N = 10: 53%, 95% CI [0.52, 0.54], M

= 5.3, SD = 0.36; N = 20: 48%, 95% CI [0.47, 0.49], M = 9.6, SD = 0.6). Although

this result suggests that the linear and the optimal threshold strategy lead to the same

aggregated measure of search length, they differ in terms of their prediction on the

4 We used the same procedure as in the simulation study that describes the relationship between
parameters and behavioral measures (Figure 7).
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Figure 8 . Summaries of (Panel A) mean accepted price, (Panel B) performance (as percentage), (Panel
C) search length (absolute), and (Panel D) search length (as percentage) for participants and the
optimal model. In red: predictions of the best performing linear thresholds.

distribution of accepted position across trials (e.g., 50% acceptance at Position 9 of 10

in the optimal model but 35% in the LTM; see Appendix Figure 7 for N = 20).
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Behavioral results

Search length, performance, and choice probabilities. The results reveal strong

evidence that the mean accepted ticket prices decreased with increasing time horizons

(Figure 8A, N = 5: 164.7; N = 10: 159.0; N = 20: 155.3; Bayesian t tests between N =

5 and N = 10: µprice
Diff = 5.4, 95% CI=[4.1, 6.5], BF10 > 300 and between N = 10 and N

= 20: µprice
Diff = 3.5, 95% CI=[2.6, 4.4], BF10 > 300), replicating participants’ search

behavior found in previous studies (Guan et al., 2015; Lee et al., 2004). In other words,

participants became more selective in sequences involving a higher number of offers.

Participants’ performance (accumulated points per trial/total number; see Figure 8B)

increased from N = 5 to N = 10 (N = 5: 81.2%, 95% CI [0.8, 0.3]; N = 10: 83.9%, 95%

CI [0.82, 0.86]), supported by a t test producing a BF of 12.5 in favor of a difference in

performance. However, when N = 20, performance did not increase further, reaching on

average 83.6% (95% CI [0.82, 0.85], BF = 0.15), indicating that there is no difference

between performance when N = 10 and N = 20. Thus whereas an optimal agent would

still improve performance in an N = 20 environment (see Figure 8B, black solid line),

participants did not.

Considering absolute search length, we found that participants searched longer in

extended time horizons, illustrated in Figure 8C (N = 5: M = 3, 95% CI [2.9, 3.1]; N =

10, M = 4.7, 95% CI [4.5, 5.0]; N = 20, M = 7.4, 95% CI=[6.8, 8.0]). However, whereas

we found no difference in search length when N = 5 between participants and the

optimal model (BF = 0.17), participants searched significantly less when N = 10 and N

= 20 (BF > 300 for both comparisons between search length), which was most

pronounced when N = 20, as also reflected in the participants’ relative search lengths

(Figure 8D): Whereas in a short time horizon (N = 5) participants searched on average

60% of the options (95% CI [0.58, 0.62]), they decreased their relative search length to

47.7% (95% CI [0.45, 0.5]) when N = 10 and to 37% (95% CI [33.9, 40.1]) when N = 20.

To what extent do participants behave optimally under the constraints of linearity? A

Bayesian t test indicates that compared to participants’ relative search length, there is

no evidence of a difference in search length when N = 5 (µSL
Diff = −0.001, 95% CI [-0.02,
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0.02], BF10 = 0.17) but strong evidence of a difference when N = 10 (µSL
Diff = 0.08, 95%

CI [0.06, 0.1], BF10 > 300) and N = 20 (µSL
Diff = 0.11, 95% CI [0.09, 0.14], BF10 = 0.17;

see Figure 8D). These results show that in longer sequences, participants’ search length

was notably reduced compared to a policy that assumes best performing linear

thresholds, by 8% when N = 10 and by 11% when N = 20. Furthermore, participants

achieved up to 92% of the performance when N = 5, 91% when N = 10, and 89% when

N = 20, which indicates of reduction of optimal adaptation in longer sequences (Figure

8B). Yet, some participants arrived at levels of performance competitive with the best

performing linear threshold rule, whereas others achieved only 47%. First, these

findings suggest that suboptimal behavior cannot be explained by strategic constraints

(optimal vs. best performing LTM) alone; otherwise, participants might have reached

the LTM’s best performance. Second, there are clear individual differences in how

people adapted to time horizons. Although some participants may have behaved

optimally relative to the best performing linear thresholds, others showed suboptimal

adaptation to extended time horizons. The causes of individual differences in adaptive

behavior may be found in the maladaptation of initial threshold and adaptation rate. In

particular, participants’ decrease in search length (and thus lower performance) in

longer sequences implies that they either placed their initial threshold too liberally or

adapted it too strongly over time, which we further address via modeling below.

Modeling results

We applied the same four models as in Study 1 to participants’ choices: the LTM, the

BOM, the FTM, and the ITM. We then analyzed how underlying parameters are

adjusted between time horizons and then investigated the reasons for participants’

performance decrease in longer sequences. Finally, we investigated the parameters

related to behavioral measures across changing time horizons.

Model comparison. Figure 9A shows the hierarchical group-mean thresholds for the

LTM (dark solid lines), the BOM (orange dashed lines), and the ITM (dotted blue

lines) for all three time horizon conditions. Apparently, the LTM and the ITM
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thresholds are almost congruent when N = 5 and N = 10. However, when N = 20, the

overlap of the thresholds is reduced, mainly due to a spike in the probability of

accepting higher ticket prices on Position 19, which cannot be captured by a linear

threshold. Although this spike seems to be in line with the BOM, it is much less

pronounced than predicted, indicating that the BOM is not well suited to capturing

participants’ choices. We note that in this case, a more flexible modeling approach

proposed by Lee (2006) that describes behavior by allowing a combination of fixed and

linear adjustments across search could capture such a spike in the acceptance rate at

the end of the extended sequence, which should be addressed in further studies. A

quantitative analysis of the performance of the models (using the DIC; see Spiegelhalter

et al., 2002)) for the three length conditions suggests a clear preference for the LTM

compared to the BOM and the ITM (see Appendix Table 16).

Qualitative evidence of the agreement between the LTM and the data is provided in

Appendix Figures 8–10; The LTM fairly adequately captures acceptance probabilities

for each quantile at every position, in all three time horizon conditions. Agreements

between the data and the BOM are shown in Appendix Figure 11, showing that the

BOM’s assumption of nonlinearly increasing thresholds is implausible and is most

pronounced when N = 5 and N = 10.

We used a parameter recovery analysis to ensure that the LTM provides meaningful

parameters in extended or shortened time horizons. The correlation of the simulated

and recovered parameters is rather high in all time horizon conditions, ranging between

.85 and .97. We refer to the Appendix Figure 12 for the correlation plots and the

description of the procedure.

Best fit parameters. To address the question of which cognitive factors contributed

to the suboptimal adjustments to time horizons, we compared the LTM’s estimated

parameters between the conditions. The estimated by-position thresholds for each time

horizon condition are plotted in Figure 9B (solid lines), along with the thresholds

obtained with the individual-level parameters. Table 3 summarizes the group-mean

parameter values of θ0, δ, and β in each time horizon condition and shows that both θ0
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Figure 9 . Panel A: Hierarchical group-mean thresholds estimated from the linear threshold model
(LTM; dark solid lines), the independent threshold model (ITM; dotted blue lines), the biased optimal
model (BOM; orange dashed lines), and the optimal model (black dot-dashed line). Panel B: Just the
LTM, repeating the group means from Panel A for this model and in addition showing the
individual-level threshold. Black dashed lines: Best performing linear threshold parameters.

Table 3
Posterior group-level mean parameters for each sequence length and difference between the posterior
distributions (N5 − N10, N10 − N20)

Group-mean parameter estimates

LTM parameter N = 5 N = 10 N = 20 N5 − N10 N10 − N20

θ0 161.1 [159.4, 162.7] 156.2 [154.2, 158.2] 151 [148.6, 153.3] 4.9 [3.5, 6.2] 5.2 [2.1, 8.3]
δ 4.4 [3.8, 4.9] 1.48 [1.24, 1.71] 0.58 [0.46, 0.71] 2.9 [2.4, 3.3] 0.9 [0.6, 1.1]
β choice sensitivity 0.21 [0.18, 0.23] 0.19 [0.16, 0.21] 0.17 [0.15, 0.19] 0.01 [-0.02, 0.04] 0.019 [-0.01, 0.05]

Note: Values in square brackets are the 95% confidence intervals. LTM = linear threshold model.

and δ are reliably reduced with increasing time horizon. Columns 4 and 5 (Table 3)

report the means of the difference of the population parameter’s posterior distributions

and indicate strong evidence of an adaptation of the first aspiration level (θ0) and its

adjustment across time (δ) between time horizons (difference is credibly different from

zero). These adjustments are thus in line with the type of adjustment required to

become more optimal, as predicted in the simulation study (Figure 7). However, the

main driver of the too short search length was the initial aspiration level, which becomes

evident when correlating the parameters with the behavioral measures (see below).

To understand the reasons for participants’ decrease in search length and performance

in extended time horizons, we compared the underlying parameters with the parameter
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of the best performing LTM (Fig. 9B, dashed lines). The best performing linear

threshold rule predicts an adaptation of the initial thresholds proportional to time

horizon (doubling the sequence leads to a decrease in the initial threshold by a constant

amount) and the adjustment across position (doubling the sequence leads to halving the

adjustment rate). Participants followed the same trend: The initial threshold was

decreased by a constant amount when the sequence size was doubled, from N = 5 to N

= 10 by 4.9 (95% CI [3.5, 6.2]) and from N = 10 to N = 20 by 5.2 (95% CI [2.1, 8.3];

see column 4 in Table 3). The adjustment rate of the threshold, δ, is reduced with

increasing sequence length, from 4.4 (95% CI [3.8, 4.9]) when N = 5 to 1.48 (95% CI

[1.24, 1.71]) when N = 10 and to 0.58 (95% CI [0.46, 0.71]) when N = 20. Therefore,

although participants appear to have followed the same regularities in adapting the

initial threshold θ0 and its adjustment rate δ to time, they decreased θ0 too little (thus

accepting too many options in the beginning of the sequence) but reduced δ too

strongly (thus departing too little from the initial threshold across search) with longer

time horizons. This result shows that both the maladaptation of the initial threshold

and the adjustment of the threshold contributed to the increased deviation from

optimality in extended sequences.

Stability of LTM parameters. As for Study 1, we next calculated the correlation

(R BayesFactor::correlationBF package, prior scale = medium; Morey et al., 2018) of

the individuals’ performance measures between conditions as a reference point for

evaluating model parameter correlations. Search length between conditions revealed a

correlation of ρ = .75 between N = 5 and N = 10 (95% CI [.6, .8], BF > 300) and

ρ = .77 (95% CI [.71, .83], BF > 300) between N = 10 and N = 20. The correlation of

performance between conditions is lower between N = 5 and N = 10, ρ = .59 (95% CI

[.42, .7], BF > 300), and between N = 10 and N = 20, ρ = .79 (95% CI [.7, .82], BF >

300).

Regarding the LTM parameters (see Appendix Table 2 for all correlations), θ0 (initial

decision threshold) showed the strongest correlations (ρ = .8, 95% CI [.7, .87] between

N = 5 and N = 10 and ρ = .73, 95% CI [.61, .83] between N = 10 and N = 20),
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Figure 10 . Study 2: Panels A1–A3: Scatterplots of search length (as percentages, search length/total
sequence length) versus parameters (θ0, δ, and β). Panels B1–B3: Performance (as percentages,
points/maximum points) versus parameters. Black: N = 5, pea green: N = 10, blue green: N = 20. In
red: Best performing linear threshold parameters and their performance and search length.

yielding a stronger stability between conditions than behavioral measures. The

correlation coefficient of δ (adaptation rate) was smaller (ρ = .51, 95% CI [.32,.67]

between N= 5 and N = 10 and ρ = .27, 95% CI [.04, .47] between N = 10 and N =

20), which could be an indication that particularly in long sequences (N = 20) this

parameter is estimated with higher uncertainty in light of relatively weak adaptation

rates. In any case, especially the high correlation of θ0 suggests that the initial

aspiration level is an individually stable predictor of search length, and that the

manipulation of time horizon had an additive effect on the participants’ aspiration level,

which is surprisingly equal in magnitude for all participants, which we address next.

Cognitive parameters capturing behavioral patterns in changing time

horizons. Since the LTM parameters are fairly stable and the initial threshold yields

an even higher correlation than the behavioral measures themselves, we address here

the question of how they relate to each other. The scatterplots in Figure 10 display the

relation between parameters and behavioral measures for each condition, as indicated
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by the symbol colors. The scatterplot displaying the relationship between performance

and parameters (Figure 10 A1) suggests an inverse U-shaped relationship between θ0

and performance, consistent with the prediction from the simulation study of the LTM

(Figure 7). A Bayesian regression analysis (R BayesFactor::lmBF package, prior scale =

medium; Morey et al., 2018) reveals that in short sequences (N= 5), θ0 is not a

significant predictor of performance, whereas in longer sequences (N = 10 and N = 20),

the best model is composed of θ2
0, accounting for about 45% and 44% (respectively) of

the variance in performance (see Appendix Tables 9 and 10 when N = 20 and Tables 13

and 14 when N = 20).

This result indicates that with increasing time horizon, the initial threshold becomes

predictive of performance, whereas setting it too high or too low leads to poorer

performance. Comparing participants’ initial threshold with the best performing linear

thresholds (Figure 10 A1, red shapes) shows that about 34% of the participants set

their initial threshold higher than the best performing linear threshold when N = 5 and

thus were less picky. This proportion increases with extended time horizons, to 67%

when N = 10 and 77% when N = 20, revealing that the reduction in performance in

longer sequences originates from participants’ too relaxed initial thresholds.

The correlation between the initial threshold and search length reveals a negative linear

relationship in all time horizons (Figure 10 B1) and also indicates the systematic

differences between conditions. A Bayesian linear regression analysis (R

BayesFactor::lmBF package, prior scale = medium; Morey et al., 2018) supports these

assumptions: For each time horizon condition, that is, N = 5, N = 10, and N = 20, θ0

is an important predictor of search length and accounts for 76%, 81%, and 66%

(respectively) of the variation in search length (see Appendix Tables 3 and 4 when N =

5, Tables 7 and 8 when N = 10, and Tables 11 and 12 when N = 20). These results

suggest that the initial aspiration level is the main predictor for participants’ search

length in different time scales, and that time horizon has an almost constant additive

effect regardless of a participant’s aspiration level.

The threshold adjustment across search, captured in the parameter δ, does not appear
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to be related to performance or search length in all conditions (Figure 10 A2 and B2),

as found in Study 1. A regression analysis confirmed this finding, showing that δ is not

an important zero-order predictor of performance. Additionally, we observed that when

N = 5, about 60% of the participants used a lower δ value than predicted by the best

performing linear thresholds. With increasing time horizon, however, δ was not

optimally adjusted, as 97% of the participants used lower adjustments across search

when N = 10 and even 100% of the participants when N = 20. This result illustrates

that increased length leads to both a too relaxed initial threshold and a more

pronounced adherence to this initial threshold, thus contributing to a lower performance

in longer optimal stopping tasks.

The parameter β (choice sensitivity) is a further strong predictor of the variation in

performance, where higher values of β result in higher payoffs. However, the

manipulation of time horizon did not affect the level of choice sensitivity, as evident in

Figure 10 A3. For additional comparisons between high- and low-performing individuals

in relation to the choice sensitivity in each length condition, see Appendix Figure 13.

According to Figure 10 B3, there is no relationship between search length and the

parameter β.

Discussion Study 2

The main purpose of the second study was to investigate the systematic influence of

time horizon on adaptive choice behavior in optimal stopping tasks (searching for the

cheapest ticket) and its cognitive description using the LTM (Baumann et al., 2020).

Participants’ search (in relative terms, search length/total length) decreased in longer

sequences as predicted by the optimal model. However, the reduction in search when N

= 20 is more pronounced. This trend is reflected in participants’ performance, which

increased from N = 5 to N = 10 but did not further improve when N = 20, which is in

contrast to the optimal model’s prediction of steadily increasing performance with

extended time horizons.

We used a Bayesian hierarchical approach to compare different choice strategies and



ADAPTIVITY IN SEQUENTIAL SEARCH 38

found that the LTM accurately describes choice behavior across time horizons. This

analysis allowed us to further study the underlying processes that govern adaptive

behavior. The effect of time horizon was captured by changes in initial decision

thresholds (aspiration level) and the adaptation rate of the thresholds with ongoing

sequence positions (i.e., with growing number of rejections). More specifically, with

longer time horizons, the initial aspiration level decreased, reflecting more frequent

initial rejections for longer time horizons. Similarly, the adaptation rate of the

thresholds across sequence positions was weaker for longer time horizons, reflecting a

slower change in the probability of accepting ticket prices.

However, a comparison with a best performing LTM (using grid search to find the best

performing linear thresholds) revealed that not all participants adapted their thresholds

perfectly and thus some had suboptimal performances. Especially in longer sequences,

as for N = 10 and N = 20, some participants tended to set their initial aspiration level

too high and adjusted it too little, which resulted in a suboptimal early termination.

Moreover, people showed a higher resistance to adjusting their initial aspiration level in

extended time horizons, which further contributed to a lower performance. Taken

together, the results indicate that participants’ performance reduction relative to the

optimal model is in line with the predictions of the LTM. However, participants failed

to perfectly adjust the initial aspiration level and its adjustment across search to a

longer time horizon, leading to a more pronounced decrease in performance. Several

reasons could account for people’s maladaptation to search in extended sequence

lengths, such as increased search costs or higher uncertainty, which we explore in the

General Discussion.

We found fairly high correlations between the parameter values, indicating that these

processes reflect stable processes in individual search behavior. Importantly, as found in

Study 1, the initial threshold reveals a higher correlation across time horizons than

behavioral measures and it is highly predictive for search length and performance. This

result highlights the importance of considering the underlying processes to better

understand sequential search. Indeed, research on other search domains has frequently
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emphasized that individual search might underlie a general mechanism that affects

search across different domains and tasks (Hills et al., 2008; Hills et al., 2015; Mata &

von Helversen, 2015; Pirolli, 2007). However, attempts to link behavior across different

exploration–exploitation tasks have been unsuccessful (e.g., von Helversen et al., 2018).

Stable cognitive process parameters in the sequential search tasks may thus help reveal

the common mechanism of search across different exploration–exploitation tasks.

General Discussion

Our goal was to learn about the aspects of adaptive behavior in light of outcome

variance (Study 1) and various time horizons (Study 2) in an optimal stopping task.

Research has shown that people use simple strategies to solve the task that may limit

how well they can adjust to these contexts. Here we studied adaptive behavior by

taking into account the constraints imposed by people’s cognitive choice strategies. The

knowledge we gained then allowed us to identify underlying processes responsible for

maladaptations to decision environments that go beyond such constraints.

Our analysis shows that an LTM (Baumann et al., 2020; Lee & Courey, 2021; Song

et al., 2019) accurately captures human choices across different contexts. The model

assumes that the decision maker’s choice strategy can be described by three parameters,

the initial aspiration level, its adaptation over time, and choice sensitivity (response

determinism). The model makes it possible to directly measure behavioral adaptation

on the parameter level and thus is quite suitable for our studies on context effects.

The optimal solution for the variant of the optimal stopping task studied here is based

on thresholds that are determined by their relative rank within the distribution and

scaled to the specific value distribution. Such an adaptation leads to identical

behavioral measures between contexts that differ only in variance. A simpler linear

threshold strategy is capable of adjusting to variance, as proposed by the optimal

model, thus leading to no loss in performance between conditions. We found that

participants’ performance was unchanged between variances, reflected in linear

thresholds that are identical between variance conditions when standardized. This



ADAPTIVITY IN SEQUENTIAL SEARCH 40

finding is in line with the normalization hypothesis (Rangel & Clithero, 2012), which

assumes that the value of an option is perceived according to its rank within the

sample. In Study 2 we investigated adaptive behavior in an environment of changing

time horizons. To achieve the highest performance in extended time horizons, the linear

threshold strategy proposes decreasing both the initial threshold and its adjustment.

Participants followed this pattern but failed to adjust both cognitive parameters

sufficiently in longer time horizons.

Normalization and its implications

Study 1 shows that outcome variance has an effect on people’s decision thresholds,

whereas low variance leads to increased thresholds. However, the decision thresholds

between the low- and high-variance conditions are practically identical on a normalized

scale (µ = 0,σ = 1), showing that people accept prices within the same percentile on

each position, regardless of the variance. This result suggests that the price’s value is

assessed on its percentile rank within the sample rather than on its absolute number.

Our finding is thus in line with the normalization hypothesis (Rangel & Clithero, 2012),

which assumes that the value of an option is computed under a normalized code and

corresponds to its relative position in the distribution of options. It is also consistent

with the line of research suggesting that the value of a single option is calculated by

comparing it to a sample of attribute values drawn from memory and its rank within

the sample (decision by sampling; Stewart et al., 2006).

Consequently, the finding that the individual acceptance level is formulated on a

percentile level (e.g., “I accept all prices in the first position that belong to the 12%

lowest prices within the sampling distribution”) may lead to distinct choice behavior

predictions for other distributional environments, for example, when options are

sampled from a skewed distribution. Indeed, previous studies could show that people’s

qualitative threshold adjustments are in line with the predictions of the normalization

hypothesis (Baumann et al., 2020; Guan & Lee, 2018). That is, the same percentile

rank (“I accept only prices that belong to the 12% lowest ones in the sample”) maps to
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a higher value in environments with only a few good options (left skewed) compared to

plentiful environments (right skewed, assuming the same mean). Additionally, Lee et al.

(Guan & Lee, 2018) have shown that thresholds that people use when searching for the

maximum [when values ∼ beta(4, 2)] can be modeled in the same way as the thresholds

that people use when searching for the minimum [when values ∼ beta(2, 4)], which

further supports our findings. Future work should attempt to replicate our analysis in

settings where options are sampled from different distributions and thus investigate if

thresholds formulated on a percentile level represents a stable cognitive mechanism of

the valuation process in sequential search tasks.

Our analysis is based on a variant of the optimal stopping task where the sampling

distribution is known and stable across the sequences. Such a scenario is required when

assuming that values defined on a percentile rank are successfully mapped to their

absolute values. However, in unknown or unstable environments, the process implied by

the normalization hypothesis could lead to strong biases. For example, in an

environment with an unknown value distribution, one has to learn it during search.

Calculating the rank of the current alternative within an initial, small (and plausibly

unrepresentative) sample would lead to a high distortion in the acceptance threshold.

For example, a decision maker who has a threshold to accept a price that belongs to the

10% best prices would accept too early in an initial unrepresentative sample of increased

prices or too late if it contains many low prices. Indeed, there is evidence that people’s

search behavior in unfamiliar or unstable environments is highly sensitive to the history

of samples during search (e.g., Brickman, 1972; Corbin et al., 1975; Lee & Courey, 2021;

Shapira & Venezia, 1981). The models presented in this paper do not account for

learning and thus are mute about how thresholds are formed. To understand the impact

of unknown or unstable value distributions on participants’ decision thresholds, one

would need to extend cognitive models of optimal stopping search by incorporating a

learning component, which we believe would be a useful direction for future research.
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Adaptivity to time horizons

Study 2 shows that time horizon affects decision thresholds, whereby extended time

results in lower first thresholds and lower adjustment rates across positions. In other

words, participants are less selective at the beginning of the sequence in shorter time

horizons and also adapt their acceptance rate more strongly across positions. This

strategy is intuitively correct since shorter sequences imply lower chances along the way

of a good option appearing. The qualitative adaptation of participants’ initial

thresholds and its adjustment over time is identical to the predictions of the LTM

simulation about optimal parameter adaptation across time. However, with increasing

time horizons, participants failed to adapt the parameters optimally, which led to a

reduced search length and lower performance.

Given that the LTM parameters are more stable than the behavioral measures

themselves, we addressed the question of how they relate to each other. Our result

indicates that the initial aspiration level, set prior to search, is the main factor

predicting participants’ search length. Indicated by the negative linear correlation

coefficient across the tasks in both studies, higher initial aspiration levels led to less

search and vice versa. Importantly, the rate of the threshold’s adjustment during search

had no additional impact on search length, indicating that participants’ modification of

their aspiration level during search had little impact on how long they searched.

Furthermore, this result suggests that a too high aspiration level prior to search may

serve as an explanation for the general finding of undersearch (Hey, 1982; Rapoport &

Tversky, 1970; Schotter & Braunstein, 1981) and thus deserves special consideration.

The relationship between the initial threshold and performance is nonmonotonic,

indicating that too extreme values (too high or too low) in the initial threshold led to

worse performance, revealing that not only too little, but also too much search can be

suboptimal. However, despite participants performing surprisingly well throughout all

the tasks, we found that a longer sequence length (20 alternatives, Study 2) led to more

pronounced undersearch for a larger number of participants (elongated longer tail in

search length distribution) and thus led to worse performance. Yet some participants
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achieved almost optimal performance across the tasks (Study 2) and thus adapted their

decision thresholds perfectly to the time horizons. Taken together, these results show

that participants differed not only in their aspiration levels but also in how well they

adapted them across time horizons.

Our investigation further suggests that participants’ initial thresholds and adjustment

rates were adapted systematically to time horizons in a nonlinear way, indicating that

they might have been following scaling regularities across time scales. Similarly, a study

using a simplified explore–exploit task (Sang et al., 2020) has shown that participants’

linearly decreasing thresholds declined in proportion to the length of the game. Indeed,

the best performing linear thresholds predicted a proportional adaptation of the initial

threshold and its adjustment rate and in this sense, participants’ adaptation was

optimal. Nevertheless, participants adapted too little in extended time horizons, leading

to stronger deviation from optimality. Additional cognitive mechanisms that were not

considered in our analysis, such as risk preference or search costs, could be reasons for

the suboptimal adaptation to extended time scales, which we further discuss in

subsequent sections.

Psychological reasons for malapdaptation in extended time horizons

Risk preferences. Some studies have suggested that people use biased decision

thresholds and thus search too little because they tend to be risk averse (Bhatia et al.,

2021; Schotter & Braunstein, 1981; Schunk, 2009). Unlike the risk-neutral best

performing LTM, human decision makers are often found to be risk averse (e.g., Pedroni

et al., 2017), preferring the safe over the risky option. Given this assumption,

suboptimal adaptation of higher initial thresholds to longer time horizons may reflect

risk aversion that may become more visible with longer time horizons. However, there

are conflicting findings regarding the impact of risk aversion on optimal stopping

behavior. One study reported that there was no relationship between search length in an

optimal stopping task and risk preferences elicited in a series of lottery tasks (Schunk,

2009). On the other side, a recent study about optimal sequential search with recall
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found evidence that in this paradigm, risk aversion is one of the main factors guiding

people’s behavior (Bhatia et al., 2021). Moreover, Sonsino et al. (2002) suggested that

the probability of choosing a given option decreases with the relative complexity of that

alternative. In that sense, participants might perceive a higher time horizon as more

risky or more complex and thus devalue the option of search more heavily, leading to

behavior that deviates from optimality. However, it should be noted here that

participants’ choice behavior in Study 1 was not affected by an increase in variance, a

manipulation that is often used as a measure of risk in the risky decision making

literature (e.g., Weber et al., 2004); higher variance resulted in increased risk aversion.

Search costs. Alternatively, Seale and Rapoport (2000) hypothesized that stopping

too early in the optimal stopping task could result from the existence of endogenous

search costs, that is, psychological costs arising from considering and evaluating options

(see also Bhatia et al., 2021). Although our experiment used a somewhat different

design, participants may have been motivated to end the experiment as quickly as

possible and thus considered the time spent observing and reviewing the prices as a

kind of search cost. This idea is further supported by the literature on the

accuracy–effort trade-off reported by Payne et al. (1993) and could also explain why

search was more strongly reduced with longer time horizons. In our study, search costs

may have been integrated into the evaluation of the decision thresholds, whereby

extended sequences would accumulate higher search costs (more steps to go through all

the alternatives) and thus exert a greater impact on decision thresholds.

Misrepresentation of underlying sampling distribution. A simple explanation

for the weak adjustment of the threshold across positions (relative to the adjustment of

the best performing linear thresholds) in extended time horizons might be that it

results from initial thresholds being higher. Alternatively, the origins of maladaptation

of the thresholds within a sequence might be that participants misrepresented the

underlying outcome distribution. In a sequential search paradigm such as the optimal

stopping task, the outcome distribution changes dynamically and thus has to be

recalculated at each time step. Since people seem to lack the ability to infer many
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characteristics of aggregated outcome distributions correctly (Benartzi & Thaler, 1999;

Klos et al., 2005), simpler strategies are used solve the task (see also Speekenbrink &

Konstantinidis, 2015; Wilson et al., 2014, for a similar discussion of bandit tasks).

Indeed, results from the balloon analogue risk task (a nonstationary environment)

revealed that the best fitting model to two data sets assumes a stationary

representation (Bishara et al., 2009; Wallsten et al., 2005), showing that people

simplified the balloons’ exploding behavior. Future work is needed to incorporate such

mental representations and updating mechanism into optimal stopping models to

explain “how” participants arrive at the lower thresholds.

The role of choice sensitivity. Participants’ response sensitivity is highly

predictive of their performance, with higher values (and thus more determinism) leading

to better performance. Indeed, high-performing participants’ choice curves are more

consistent compared to those of low-performing participants, showing less deviance from

the intended choice (see Appendix Figure 13). However, we found no relationship

between participants’ choice sensitivity and their search length. This result could shed

light on the complex relationship between risk preferences and search behavior. On one

side, studies relating risk preferences elicited in lottery tasks with search length in

optimal stopping tasks have not found any correlation (Schunk, 2009). On the other

side, studies on related sequential risk-taking tasks, such as the the angling risk tasks or

the balloon analogue risk task, reported sensitivity to the outcome evaluation as being

predictive for individual differences of real-world risk takers (Pleskac, 2008; Wallsten

et al., 2005). Exploring the relationship between choice sensitivity in search tasks and

risk preferences would be a further useful direction for future research.

LTM versus psychologically motivated optimal models

As mentioned in the Introduction, we think that the main advantages of the LTM are

(a) its plausible cognitive process assumptions, (b) that it captures linearly increasing

thresholds as observed across different contexts, and (c) that it offers psychological

interpretations of its parameters. The model fits in both of our studies support the
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assumptions of the LTM and thus provide further evidence of the LTM’s robustness in

describing choice behavior. The BOM, an optimal model with systematic biases, was

less capable of accommodating people’s choices. Interestingly, a recent study introduced

a model that assumes decision thresholds are based on the optimal thresholds but

explains deviations thereof by psychological factors such as risk preference and effort

search costs (Bhatia et al., 2021). Such models represent an important source for

quantifying and understanding deviations from optimality especially in simpler search

task with tractable optimal solutions. However, there are so far no direct comparisons

between the LTM and the psychologically motivated optimal model and therefore it is a

matter of debate whether one model is better than the other. An additional important

point when deciding on the models’ validity is to investigate the interpretability of both

models’ parameter values. Indeed, previous studies have identified individual

characteristics that could account for the variation in optimal stopping behavior, such as

intelligence (Burns et al., 2006), working memory capacity (people with higher capacity

tend to explore more; Hills & Pachur, 2012), age (older people may adapt less; Mata

et al., 2013; Rydzewska et al., 2018), or depressive symptoms (higher depression leads

to more search; von Helversen et al., 2011). Therefore, future studies should design

studies that question if individual differences in the models’ parameters are related to

more traditional measures such as problem solving, decision making biases or IQ.

Limits of Generality

In this section we address the question of our results’ generality (Simons et al., 2017).

Our research focused on an optimal stopping task in which people knew the underlying

value distribution. For this reason, we included a learning phase in which participants

were exposed to samples from the respective distribution. This framework ensured we

could measure adaptive behavior in response to context in optimal stopping tasks by

minimizing additional processes such as learning or adaptation to changing

environments. In such problems we find that human behavior is well described by an

LTM, which has been replicated in other studies despite variations in the testing
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context (Baumann et al., 2020; Lee & Courey, 2021; Sang et al., 2020; Song et al.,

2019), and even in environments in which the value distribution was not explicitly

learned (Baumann et al., 2020, Study 3). Therefore we expect that our findings are

reproducible in the full-information version of the optimal stopping task with stable

environments. However, unknown or unstable environments require participants to

learn the value distribution during search. Such environments require behavioral models

with an account of learning, which is not integrated in our models.

The task in our studies used an airline-ticket-purchasing task as a cover story and thus

one could argue that participants’ intuition may have been shaped by the expectation

that prices increase when approaching the end of search. On the other hand, searching

for online tickets represents a natural decision setting that has no clear implications on

the trend of ticket prices. Moreover, the extensive training before the actual decision

phase and additional test trials ensured that participants were aware that the price

distribution was not changing across the sequence. Furthermore, we did not find any

learning across trials, indicating that people’s belief about the stationarity of the ticket

distribution was stable throughout the experiment. Therefore, we think that our results

are likely to generalize to optimal stopping tasks that use distinct cover stories.

Context of Our Research

Overall, our work belongs in a stream of research that uses cognitive modeling to

identify the choice strategies and environmental factors that influence search behavior

in optimal stopping tasks (Baumann et al., 2020; Bhatia et al., 2021; Guan et al., 2020;

Guan & Lee, 2018; Lee, 2006) and sequential decision making tasks more broadly (e.g.,

Reutskaja et al., 2011; Solway & Botvinick, 2015; Song et al., 2019; Wallsten et al.,

2005). Furthermore, our work aims to uncover underlying processes that capture stable

individual differences in sequential decisions that go beyond behavioral measures and

thus contributes to the research area investigating a general mechanism of search across

different domains (Hills et al., 2008; Hills et al., 2015; Mata & von Helversen, 2015;

Pirolli, 2007).
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In addition, the work is part of a current research project with the goal of clarifying the

relationship between decisions in sequential search tasks and risky decisions. Sequential

decisions can be seen as risky choices that require one to decide between a safe (accept)

and an uncertain (reject) alternative. However, attempts to link risk preferences

measured in lottery tasks to search behavior in sequential decisions have been

unsuccessful (e.g., Frey et al., 2017; Pedroni et al., 2017). Our studies have repeatedly

found that in optimal stopping tasks risk preference appears to depend on position:

That is, people make risk-averse choices in the beginning of the sequence but turn to

risk-seeking behavior on the last positions. In a related project, we are currently

investigating how the characteristics of optimal stopping tasks—for example, the

sequential presentation of options—affect behavior beyond stable risk preferences to

gain a more comprehensive understanding of the relationship between risk preferences

and choices in sequential decisions.

Conclusion

We inquired into whether and how context task variables affect optimal choice behavior

in optimal stopping tasks by taking into account the constraints imposed by

participants’ cognitive strategies. Results show that people adapt their decision

thresholds to variance and time horizon as described by the choice strategy, but more

pronounced deviations from optimality suggest that additional variables may affect

human search behavior. By identifying and quantifying the cognitive processes involved

in participants’ adaptation strategies, we show that the adaptation to variance leads to

identical decision thresholds on a percentile scale, suggesting that the value of an option

is determined by the rank within the pool of alternatives. Extended time horizons affect

both people’s initial threshold level and its adjustment across search, both contributing

to less search and weaker performance. This work contributes to the understanding of

the adaptive processes that underlie sequential decisions and points to the importance

of taking into account the fit between the cognitive strategy and the environmental

condition when interpreting human behavior.
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Appendix: Adaptive Behavior in Optimal Sequential Search

Text

Calculation of optimal thresholds

We describe the calculation of optimal thresholds applied to our scenario, where payoff

is proportional to the chosen value and the goal is to the find cheapest ticket price. We

first derive the optimal solution mathematically based on the paper of Gilbert and

Mosteller (Gilbert & Mosteller, 1966, Section 5b) and further provide a more intuitive

explanation.

Let us assume a sequence of n ticket prices that are drawn from a standard normal

distribution with density

f(x) = 1
σ

√
2π

e(− 1
2

t−µ
σ

2) (6)

and the goal is to find the lowest ticket price in this sequence.

The optimal strategy for this task is as follows: If n = 1, the decision maker is forced to

accept the ticket. The threshold on the last position (T1) is set to ∞ and ticket prices

below this threshold are accepted:

T1 = ∞ (7)

Therefore the expected price of the last ticket (P1) is the mean (µ) of the distribution.

If n = 2, the decision maker decides to keep the first option or to reject it and to go on

to the second one. If they go on, their expected ticket price is µ. They keep the current

one, x, if x < µ, reject it if x > µ, and are indifferent if x = µ. Thus, the expected price

of the last ticket (P1) is also the threshold for the second to last option:
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T2 = P1 (8)

Then for n = 2, the decision maker’s expected price (P2) is

P2 =
∫ P1

−∞
f(x) · xdx + P1 ·

∫ ∞

P1
f(x)dx (9)

The remaining terms of the sequence can be computed in a recursive manner. For each

n, the decision maker accepts the ticket if its price is lower than the expected price of

the remaining n − 1 tickets (x < Pn−1) but rejects it if the ticket’s price is higher than

the remaining expected prices (x > Pn−1). Therefore the threshold on the nth position

(Tn) is

Tn = Pn−1 (10)

Accordingly the expected price (Pn) is

Pn =
∫ Pn−1

−∞
f(x) · xdx + Pn−1 ·

∫ ∞

Pn−1
f(x)dx (11)

Intuitive explanation

The optimal thresholds Tn for maximizing the payoff are calculated by working

backward from the last ticket price: The threshold of the final item (T1) is ∞, because

the rules of the task stipulate that the final item must be accepted if no earlier item has

been chosen. The thresholds for the previous items are determined by working

backward from the final item, using conditional expectations. First, we calculate the

expected value of the final item (P1). For the last item, this is the expectation of the
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overall probability distribution from which the options are sampled. Therefore, to

maximize expected reward on the second to last position, one’s policy should be to

accept a particular option if it is better (in our case smaller) than the expected reward

if one continues under the optimal policy. The second to last item should be accepted if

its value is smaller than the expected value of the final item. This means that the

threshold of the second to last item (T2) is the expected value of the last item (P1).

The expected value of the second to last item (P2) is the expected value of the part of

the probability distribution that is better (in our case smaller) than the threshold (T2)

for the second to last item. The probability of this expected value is the area under the

probability distribution that is better than this threshold. The overall expected reward

at the second to last position [P2; and therefore the threshold for the third to last item

(T3)] is calculated as follows: We multiply the expected value for the second to last item

with its probability plus the expected value of the last item multiplied with its

probability (which is equal to 1 minus the probability of the second to last item). The

remaining thresholds are calculated in the same way.

Method

• Linear Threshold Model (LTM):

βj ∼ N(µβ
g , σβ

g )

δj ∼ N(µδ
g, σδ

g)

t0j ∼ N(µt0
g , σt0

g )

µβ
g ∼ N(0, 100), σβ

g ∼ U(0.1, 10)

µδ
g ∼ N(0, 100), σδ

g ∼ U(0.1, 10)

µt0
g ∼ U(100, 200), σt0

g ∼ U(0.1, 10)

• Biased Optimal Model (BOM):

βj ∼ N(µβ
g , σβ

g )

γj ∼ N(µγ
g , σγ

g )
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α ∼ N(µα
g , σα

g )

µβ
g ∼ N(0, 100), σβ

g ∼ U(0.1, 10)

µγ
g ∼ N(0, 100), σγ

g ∼ U(0.1, 10)

µα
g ∼ N(0, 100), σα

g ∼ U(0.1, 10)

• Independent Threshold Model (ITM):

βj ∼ N(µβ
g , σβ

g )

t(p)j ∼ N(µt(p)
g , σt(p)

g )

µβ
g ∼ N(0, 100), σβ

g ∼ U(0.1, 10)

µt(p)
g ∼ U(0, 220), σβ

g ∼ U(0.1, 20)
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Figure A1 . Biased optimal model: Thresholds for different parameter values of γ and α.
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Figure A4 . Study 1: Parameter recovery for the linear threshold model’s parameters for both variance
conditions (σ = 10 and σ = 40). Parameter values in the range of estimated values from model fitting.
Each point corresponds to one of 100 trials with 100 sequences.
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Table A1
Study 1: Correlations between parameters

θ10 θ40 δ10 δ40 β10

θ10 1

θ40 0.62 [0.59, 0.65] 1

δ10 -0.35 [-0.47, -0.23] -0.26 [-0.38, -0.13] 1

δ40 -0.06 [-0.12, 0.07] -0.34 [-0.45, -0.21] 0.53 [0.41, 0.61] 1

β10 0.08 [-0.05, 0.21] 0.01 [-0.13, 0.15] 0.08 [-0.05, 0.21] -0.13 [-0.26, 0.00] 1

β40 0.23 [0.11, 0.36] 0.19 [0.06, 0.32] 0.03 [-0.10, 0.17] 0.19 [0.05, 0.32] 0.56 [0.45, 0.64]

Correlations between parameters with 95% confidence intervals (square brackets; bold numbers: Bayes
factor > 150). Parameter’s subscript corresponds to the variance condition (10 = SD10, 40 = SD40).
There is very strong evidence that the cognitive parameters are moderately to strongly correlated
between the two conditions. θ0, reflecting participants’ aspiration level before search, reveals the
strongest correlation (ρ = .62), pointing to a stable cognitive process across the two tasks. Note that the
first threshold (θ0) and the adjustment rate across search (δ) are negatively correlated to some extent,
showing a typical parameter dependency as in all regression-like (intercept plus slope) models. That is,
if the initial threshold is very high in the first place, then the ceiling is almost reached and there is no
point in further increases, and starting with a very low threshold, naturally, allows for the strongest
increase. Importantly, all other correlations are close to 0, suggesting an independent contribution to
predictions.
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Figure A5 . Panels A1–A3: Scatterplots of performance (as percentages, points/maximum points) and
parameters (θ0, δ, and β). Panels B1–B3: search length (as percentages, search length/total sequence
length) and parameters. Black: low variance (SD = 10); green: high variance (SD = 40). Red cross:
best linear threshold parameter.
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Figure A6 . Optimal thresholds for each time horizon (N= 5, 10, 20). Red dashed line: Identical
thresholds as the remaining number of options is the same. Optimal threshold depends only on the
remaining options, therefore the initial decision threshold when N = 5 is equal to the threshold on
Position 6 when N = 10 and to the threshold on position 16 when N = 20.
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Figure A7 . N = 20: Distribution of the stopping positions for 66 decision makers for 60 trials using the
optimal model versus the linear threshold model (LTM).
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Figure A8 . N = 5: Probability of acceptance across positions: data versus the linear threshold model’s
posterior predictions. Empirical data appear in blue; black lines and bars represent the posterior
predictive means and the 95% confidence intervals. The different lines represent prices ranging from the
first quantile (Q1) to the sixth (Q6). Q1: Prices in the first quantile; Q2: prices between the first and
second quantile, etc.
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Figure A9 . N = 10: Probability of acceptance across positions; data versus the linear threshold
model’s posterior predictions. Empirical data appear in blue; black lines and bars represent the
posterior predictive means and the 95% confidence intervals. The different lines represent prices
ranging from the first quantile (Q1) to the fifth (Q5). Q1: Prices in the first quantile; Q2: prices
between the first and second quantile, etc.
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Figure A10 . N = 20: Probability of acceptance across positions; data versus the linear threshold
model’s posterior predictions. Empirical data appear in blue; black lines and bars represent the
posterior predictive means and the 95% confidence intervals. The different lines represent prices
ranging from the first quantile (Q1) to the fourth (Q4). Q1: Prices in the first quantile; Q2: prices
between the first and second quantile, etc.
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Figure A11 . From top to bottom: N = 5, N = 10, and N = 20: Probability of acceptance across
positions; data versus the biased optimal model’s posterior predictions. Empirical data appear in blue;
black lines and bars represent the posterior predictive means and the 95% confidence intervals. The
different lines represent prices ranging from the first quantile (Q1) to the fourth (Q4). Q1: Prices in
first quantile; Q2: prices between the first and second quantile, etc.
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Figure A12 . Parameter recovery for the linear threshold model when N = 5, N = 10, and N = 20.
Parameter values in the range of estimated values from model fitting. Each point corresponds to one of
2,000 trials with 60 sequences.
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Figure A13 . Choice curves split into participant that belong to the 20% highest (red lines) and the
20% lowest performing group (black lines), for each search length and on the first position.
Well-performing participants exhibit higher determinism in choices than low-performing participants.
Solid lines are logistic curves fitted to the data (red line: fitted to data of participants in the
high-performing group; black line: fitted to data of participants in the low-performing group.)
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Table A2
Study 2: Correlations between LTM parameters

θ5
0 θ10

0 θ20
0 δ5 δ10 δ20 β5 β10

θ5
0 1

θ10
0 0.80 [0.69, 0.87] 1

θ20
0 0.61 [0.45, 0.74] 0.73 [0.61, 0.83] 1

δ5 -0.25 [-0.4, -0.2] -0.12 [-0.3, -0.1] -0.16 [-0.4, 0.06] 1

δ10 -0.2 [-0.4, 0.02] -0.14 [-0.34, 0.07] -0.19 [-0.4, 0.02] 0.51 [0.32, 0.67] 1

δ20 -0.2 [-0.41, 0.01] -0.11 [-0.32, 0.11] -0.15 [-0.36, 0.07] 0.31 [0.1, 0.5] 0.27 [0.04, 0.47] 1

β5 0.00 [-0.2, 0.2] -0.15 [0.36, 0.07] -0.08 [-0.3, 0.14] -0.02 [-0.4, -0.02] -0.12 [-0.3, 0.09] 0.00 [-0.23, 0.22] 1

β10 0.00 [-0.2, 0.2] -0.05 [-0.27, 0.17] -0.05 [-0.28, 0.17] -0.13 [-0.35, -0.1] 0.00 [-0.22, 0.2] -0.05 [-0.27, 0.18] 0.62 [0.45, 0.74] 1

β20 0.00 [-0.2, 0.2] -0.05 [-0.2, 0.1] 0.07 [-0.15, 0.3] -0.06 [-0.28, 0.16] -0.1 [-0.3, 0.12] -0.05 [-0.28, 0.16] 0.66 [0.51, 0.77] 0.74 [0.61, 0.83]

Correlations between linear threshold model parameters when N = 5, 10, and 20, with 95% confidence
intervals (bold numbers: Bayes factor > 150)
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Table A3
Study 2: N=5: Model comparison for the analysis of search length using Bayes Factor

Model Bm0 Bmf

θ + δ +β 1.9 × 1025 1

θ + β 1.6 × 1025 0.8

θ + δ 3 × 1020 1.5x10−5

θ + β 1.02 × 1020 5x10−6

θ 0.64 3.3 × 10−26

β 0.26 1.3 × 10−26

N = 5: Ranking of the different models for the analysis of the search length using Bayes factors.
Selected model is in bold. The six models with the highest support are presented. Bm0: Bayes factor for
row model against the Null model. Bmf : compares the row model against the model with the highest
Bayes Factor

Table A4
Study 2: N = 5: Posterior summaries of coefficients

Parameter µ ρ R2

Intercept 2.97[2.94, 3.01]

θ -0.08 [-0.09, -0.07] -0.87 [-0.92, -79] .76

δ -0.03 [-0.06, -0.00] 0.16 [-0.07, 0.4 ] .03

β 1.36 [0.88, 0.82] 0.17 [-0.06, 0.4] .03

Analysing search length: Mean of the posterior distribution of the covariates from the model with the
highest support. Each parameter and its correlation with search length is associated with the lower and
upper limits of the 95% highest density interval.
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Table A5
Study 2: N=5: Model comparison for the analysis of performance using Bayes Factor

Model Bm0 Bmf

β 1.9 × 104 1

θ + θ2 6.4 × 103 0.32

θ + β 4.6 × 103 0.23

δ + β 4.1 × 103 0.21

θ + θ2 + β 2.3 × 103 0.12

θ + β + δ 1.6 × 103 0.08

N = 5: Ranking of the different models for the analysis of the performance using Bayes factors.
Selected model is in bold. The six models with the highest support are presented. Bm0: Bayes factor for
row model against the Null model. Bmf : compares the row model against the model with the highest
Bayes Factor

Table A6
Study 2: N = 5: Posterior summaries of coefficients

Parameter µ ρ R2

Intercept 27[26.7, 27.3]

β 0.7 [-0.42, 0.98] 0.53 [0.35, 0.67] .28

Analysing performance: Mean of the posterior distribution of the covariates from the model with the
highest support. Each parameter and its correlation with search length is associated with the lower and
upper limits of the 95% highest density interval.
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Table A7
Study 2: N=10: Model comparison for the analysis of search length using Bayes Factor

Model Bm0 Bmf

θ + β 4.2 × 1028 1

θ + β+ δ 5.2 × 1027 0.13

θ 1.4 × 1024 3.3x10−5

θ + δ 1.4 × 1023 3.3x10−6

β 1.46 3.5 × 10−29

β 1.01 2.4 × 10−29

N = 10: Ranking of the different models for the analysis of the search length using Bayes factors.
Selected model is in bold. The six models with the highest support are presented. Bm0: Bayes factor for
row model against the Null model. Bmf : compares the row model against the model with the highest
Bayes Factor

Table A8
Study 2: N = 10: Posterior summaries of coefficients

Parameter µ ρ R2

Intercept 4.7[4.6, 4.81]

θ -0.14 [-0.16, -0.13] -0.90 [-0.93, -0.85] .81

β 3.06 [2.0, 4.1] 0.22 [0.00, 0.43] .05

Analysing search length: Mean of the posterior distribution of the covariates from the model with the
highest support. Each parameter and its correlation with search length is associated with the lower and
upper limits of the 95% highest density interval.
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Table A9
Study 2: N=10: Model comparison for the analysis of performance using Bayes Factor

Model Bm0 Bmf

θ + θ2 + β 4.0 × 1016 1

θ + θ2 + δ + β 5.4 × 1015 0.13

θ2 + β 1.1 × 1015 0.03

θ2 + β + δ 1.7 × 1014 0.004

θ+β 8.4 × 1012 2.0 × 10−4

θ+ δ+ β 1.2 × 1012 2.6 × 10−5

N = 10: Ranking of the different models for the analysis of the performance using Bayes factors.
Selected model is in bold. The six models with the highest support are presented. Bm0: Bayes factor for
row model against the Null model. Bmf : compares the row model against the model with the highest
Bayes Factor

Table A10
Study 2: N = 10: Posterior summaries of coefficients

Parameter µ ρ R2

Intercept 27.5[27.2, 27.8]

θ -0.55 [-0.88, -0.24] -0.30 [-0.50, -0.07] .09

θ2 -0.54 [-0.76, -0.32] -0.67 [-0.79, -0.53] .45

β 1.36 [0.99, 1.7] 0.71 [0.58, 0.81] .50

Analysing performance: Mean of the posterior distribution of the covariates from the model with the
highest support. Each parameter and its correlation with search length is associated with the lower and
upper limits of the 95% highest density interval.
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Table A11
Study 2: N=20: Model comparison for the analysis of search length using Bayes Factor

Model Bm0 Bmf

θ + β 9.1 × 1018 1

θ + β+ δ 9.5 × 1017 0.10

θ 6.1 × 1015 6.7 × 10−4

θ + δ 6.0 × 1014 6.5 × 10−5

β 0.5 5.11 × 10−20

β 0.3 3.2 × 10−20

N = 20: Ranking of the different models for the analysis of the search length using Bayes factors.
Selected model is in bold. The six models with the highest support are presented. Bm0: Bayes factor for
row model against the Null model. Bmf : compares the row model against the model with the highest
Bayes Factor

Table A12
Study 2: N = 20: Posterior summaries of coefficients

Parameter µ ρ R2

Intercept 7.4[7.11, 7.68]

θ -0.25 [-0.28, -0.21] -0.81 [-0.88, -72] .66

β 8.9 [5.2, 12.7] 0.06 [-0.16, 0.29] .004

Analysing search length: Mean of the posterior distribution of the covariates from the model with the
highest support. Each parameter and its correlation with search length is associated with the lower and
upper limits of the 95% highest density interval.
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Table A13
Study 2: N=20: Model comparison for the analysis of performance using Bayes Factor

Model Bm0 Bmf

θ + θ2 + β 1.4 × 1020 1

θ + θ2 + δ +β 3.1 × 1019 0.23

θ2 +β 3.3 × 1018 0.02

θ2 +β + δ 1.6 × 1018 0.01

θ +β 1.3x1011 9.3 × 1010

θ + β + β 2.2 × 1010 1.6 × 10−10

N = 20: Ranking of the different models for the analysis of the performance using Bayes factors.
Selected model is in bold. The six models with the highest support are presented. Bm0: Bayes factor for
row model against the Null model. Bmf : compares the row model against the model with the highest
Bayes Factor

Table A14
Study 2: N = 20: Posterior summaries of coefficients

Parameter µ ρ R2

Intercept 727.6[27.3, 27.8]

θ -0.44 [-0.68, -0.19] -0.07 [-0.3, -0.16] .005

θ2 -0.63 [-0.78, -0.47] -0.66 [-0.78, -0.51] .44

β 1.6 [1.08, 1.62] 0.70 [0.57, 0.81] .49

Analysing performance: Mean of the posterior distribution of the covariates from the model with the
highest support. Each parameter and its correlation with search length is associated with the lower and
upper limits of the 95% highest density interval.
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Table A15
Study 1: Deviance Information Criterion (DIC) for the LTM, BOM, and ITM for both conditions (SD
= 10 and SD = 40).

Condition Model DIC
SD = 10 LTM 21,874

ITM 26,874

BOM 27,636

SD = 40 LTM 30,170

ITM 30,687

BOM 30,843

Note: Lower numbers indicate a better fit. Lowest DIC in bold. LTM: Linear Threshold Model, BOM:
Biased Optimal Model, ITM: Independent Threshold Model

Table A16
Study 2: Deviance Information Criterion (DIC) for the LTM, BOM, and ITM for the three length
conditions (N = 5, 10, and 20).

Length Model DIC
N = 5 LTM 4,735

ITM 4,845

BOM 4,934

N = 10 LTM 7,174

ITM 7,240

BOM 7,570

N = 20 LTM 9,966

ITM 9,969

BOM 10,489

Note: Lower numbers indicate a better fit. Lowest DIC in bold. LTM: Linear Threshold Model, BOM:
Biased Optimal Model, ITM: Independent Threshold Model
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