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Abstract

This thesis provides an exploration of the brain’s neural dynamics, shedding light on the mecha-
nisms underlying learning, memory retention, neural synchronization, and sensory processing.
Through a comprehensive series of studies, we explore how neurons adjust their connections
in response to specific patterns, a fundamental aspect of memory and learning. This synaptic
plasticity demonstrates a tight balance between different neural adaptations, allowing the brain
to retain old memories while continuously forming new ones.
The Investigation proceeds with an investigation of collective neural behavior, in particular the
transitions between different firing states within networks of neurons. Our results characterize
the critical points that govern these transitions, contributing significantly to the understanding
of large-scale neural coordination. This insight highlights the importance of maintaining a bal-
ance between excitatory and inhibitory neurons, which directly impacts the brain’s ability to
process information and maintain functional states.
Delving deeper into the mechanisms of sensory processing, our study examines the brain’s re-
sponse to visual stimuli, specifically under circumstances that generate gamma oscillations in
the visual cortex. The interaction between external stimuli and brain wave activity shows layer-
specific effects, providing a detailed insight into the neural basis of perception and cognition.
In conclusion, this thesis presents a focused view of neural function, from synaptic alterations
to network dynamics and sensory processing. It highlights the brain’s remarkable capacity for
stability amidst constant change, a foundational aspect underpinning the continuity of memory
and the adaptability of learning. The collective findings of study offer profound implications
for both neuroscience and the development of advanced artificial neural systems, emphasizing
the necessity of intricate balancing in both natural and artificial learning environments.
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Chapter 1

Introduction

The balance between excitatory and inhibitory neural activities, commonly referred to as the
excitation/inhibition (E/I) balance, is a fundamental mechanism governing the functioning of
neural networks. This balance has been shown to participate in several functions of neural
networks.
The concept of dynamic stability is directly related to the balance between excitation and inhi-
bition. This stability can be examined in terms of two main aspects. Initially, it refers to the
network’s ability to maintain a consistent, balanced level of neural activity under steady internal
and external inputs, thereby establishing a baseline of predictable neural activity. Furthermore,
dynamic stability includes the network’s ability to self-adjust and adapt, specifically its ability
to return to a balanced state after facing perturbations. Perturbations can range from external
stimuli like sensory input to internal changes, such as changes in neural connectivity or changes
in the levels of neurotransmitters.32,59,129
The maintenance of dynamic stability is essential to prevent the network from going into a
problematic mode of operation, such as hyperactivity or complete inactivity. Hyperactivity is
an undesirable state where there is excessive neuronal activity, potentially leading to problems
such as neuronal fatigue. Conversely, total inactivity indicates that the neural network is un-
able to respond to external stimuli and is not functioning optimally for information processing.
Therefore, dynamic stability functions as a protective mechanism, ensuring that the neural net-
work remains both robust and adaptable. This enables the system to maintain a well-balanced
level of activity despite any external or internal disturbances it may encounter.1,24,69,75,150
This balance serves as a crucial factor in optimizing synaptic gain modulation, signal-to-noise
ratios, and modulation of neuronal responsiveness to heterogeneous stimulus input. Through
these regulatory mechanisms, neural circuits achieve an operational state.In this highly selective
period of responsiveness, the network employs salience-based signal amplification to prioritize
the processing of behaviorally or cognitively relevant stimuli. In addition, a suppression mech-
anism is invoked to reduce or filter out non-salient stimuli, thereby reducing computational
noise and allowing for a more focused distribution of neural resources. This dynamic interplay
between enhancement and attenuation mechanisms allows the network to adapt its functional
architecture, effectively adapting its computational performance to the specific demands im-
posed by varying external and internal conditions.11,17,25,83,113,123
Last but not least, the role of the balance between excitatory and inhibitory signals in facilitat-
ing information processing is crucial for encoding, transmitting, and decoding neural signals,
as well as effectively organizing and integrating them. The balance ensures that the network
can perform complex computational tasks such as pattern recognition, memory storage and re-
trieval, and decision-making with high accuracy and efficiency.153
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Therefore, it is important to note that the E/I balance is not only static but a dynamic state that is
fundamental to the computational capability, adaptability, and accuracy of the neural network.
Furthermore, this dynamic equilibrium is essential for achieving strong dynamic stability, finely
modulating neural responses, and enabling effective data processing.
In addition, this synaptic balance is critical in defining neuronal responses to sensory inputs,
which are fundamentally linked by cause-and-effect relationships in neural pathways. It func-
tions as a modulation mechanism, finely adjusting the impact of incoming sensory data within
the neural network. The balance between excitatory and inhibitory synaptic currents enables
neurons to respond to sensory input with both precision and adaptability. This ability is crucial
for performing complex neural functions like identifying objects, navigating space, and con-
solidating memories. This state of synaptic homeostasis is essential to ensuring the adaptabil-
ity, precision, and overall functional efficacy of neural systems. In fact, synaptic homeostasis
functions as a self-regulating mechanism that adjusts synaptic strength to maintain overall net-
work stability, a phenomenon known as preventing the nervous system from collapsing into
chaos.19,42,81,90,120,135,138,151
However, dysregulation of the cortical E/I balance has emerged as a critical etiological factor
underlying several neurological disorders characterized by perturbations in the structural, func-
tional, or biochemical substrates of the nervous system. Such imbalances can lead to a range
of cognitive, emotional, and motor impairments, such as epilepsy, Parkinson’s disease (PD),
Tourette’s syndrome, autism spectrum disorders (ASD), and schizophrenia.125 In the follow-
ing, the relationship between these conditions and the E/I balance will be further explained.
In the case of seizures, the balance between excitatory and inhibitory neural activity tends to
heavily shift toward the excitatory side, resulting in a high E/I ratio. This imbalance leads
the brain’s neuronal networks to become hyperexcitable, contributing to sudden and recurrent
seizures. The risk of seizures increases not simply due to an increase in excitation but also be-
cause of the ratio of excitatory to inhibitory activity. A slight shift in this ratio can significantly
change the stability of neuronal networks, increasing their sensitivity to external stimuli that
could trigger a seizure. Medicines called anti-convulsants aim to restore both balance and a
more stable E/I ratio by suppressing excitatory activity or enhancing inhibitory signals.30,45,85,87
In contrast to the seizures, Parkinson’s disease exhibits an opposite trend. In areas like the basal
ganglia, the E/I balance often leans more towards inhibition, leading to a decreased E/I ratio.
As a consequence of this distorted balance and ratio, motor control is diminished, leading to
symptoms such as muscle rigidity and slowed movements (bradykinesia). In the context of PD,
enhancing excitatory signals or reducing inhibitory ones can aid in recalibrating the ratio and
bringing back a more favorable E/I balance, subsequently enhancing motor functions. For ex-
ample, dopaminergic therapies aim to modulate this balance.51,71,140,145
In Tourette’s syndrome, a neurodevelopmental disorder characterized by repetitive, involun-
tary motor and vocal tics, there is typically an elevated E/I ratio. This ratio is defined as an
excess of excitatory activity relative to inhibitory activity. This increased excitatory state dis-
rupts the normal balance, leading to spontaneous, uncontrolledmotor tics and vocalizations. For
individuals with Tourette’s, the frequency and intensity of tics often hinge on this imbalance.
Treatment strategies for Tourette’s aim to decrease this excitatory activity, using medication
such as antipsychotics or behavioral interventions, to return the E/I ratio to a more balanced
state.39,61,104,114
In autism, the E/I balance and ratio can also be variable, partially explaining the broad na-
ture of the disorder. In some cases, there is a higher ratio of excitatory to inhibitory activity,
making sensory stimuli overwhelming and potentially leading to social difficulties. In such
instances, medications like antipsychotics or mood stabilizers may be prescribed to modulate
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the excitatory activity. On the other hand, there may be an abnormally low E/I ratio in some
cases, resulting in reduced responsiveness to social cues and dampened emotional responses.
In these situations, treatments might include stimulant medications or selective serotonin reup-
take inhibitors (SSRIs) to address the low excitatory activity. Both extremes of the E/I ratio
can contribute to the wide range of symptoms seen in autism, making treatment particularly
demanding.5,7,22,72,100,101,110,132,143
In schizophrenia, the balance and ratio of excitatory and inhibitory signals in key brain regions,
such as the prefrontal cortex, can have a significant impact on cognitive and emotional func-
tioning. For example, an elevated E/I ratio, characterized by excessive excitation, could lead
to cognitive overload, impairing attention and working memory. Conversely, a reduced ratio
could result in neural network hypoactivity, affecting the ability to process information and
make decisions. In the same way, emotional regulation can be disturbed by these imbalances
in the E/I ratio, resulting in a wide range of emotional symptoms, from heightened sensitivity
to emotional numbness.10,55,76,78,94,95
Therefore, it is very important to understand the balance and ratio of excitatory to inhibitory
neural activity in order to fully comprehend the complicated pathophysiology of these various
neurological disorders. A more focused and effective approach to treating these disorders may
be possible by targeting these specific imbalances and imbalanced ratios.
Recent theoretical and empirical research increasingly emphasizes the importance of the bal-
ance between excitatory and inhibitory (E/I) synaptic inputs in the functioning of neurons. This
balance is not just a byproduct of neural architecture; it serves as an active mechanism that en-
ables diverse neural computations and dynamics. Thus, an understanding of this balance is not
only essential for unraveling the fundamental mechanisms that govern neuronal behavior but
also for developing a coherent picture of the broader functionality of neural networks.
Following the former studies, in this research, I have conducted three sets of studies in three pri-
mary areas of Neuroscience and Physics. My initial efforts focused on identifying the biological
foundations that enable neural networks to perform self-supervised learning of spatiotemporal
embedded patterns. In this context, I concentrated on inhibitory and excitatory synaptic plas-
ticity. I investigated the hypothesis that synaptic plasticity might support a balance between
excitatory and inhibitory mechanisms while facilitating the learning of embedded patterns that
are robust to different noises. In the following investigation, I did not focus on the origin of the
balance between excitatory and inhibitory neuronal activities. Instead, I manipulated the ratio
of excitatory to inhibitory neurons to study its influence on scale-free dynamics and to find out
if and how this affects the dynamic range. In the last study, I investigated the role of excitatory
neurons in modulating gamma oscillations in the visual cortex, specifically under the influence
of optogenetic and visual stimuli. I investigated the effect on gamma oscillations by varying
the intensity of optogenetic laser activation of excitatory neurons, which indirectly shows how
inhibition and excitation work in different areas of the visual cortex.

1.1 Learning of Spatio-Temporal Spike Patterns

One of the goals of this research project was to find out if combining realistic learning mecha-
nisms can contribute to the emergence of a balance between excitation and inhibition, like what
is seen in the brain’s cortex.49,92 The answer to this question has substantial implications for
comprehension of neural networks and brain functioning.
Firstly, the modeling highlights the importance of synaptic plasticity in the learning process and
in encoding specific patterns within the neural network. This understanding carries substantial
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implications for both basic neuroscience and the advancement of efficient machine-learning al-
gorithms and artificial neural networks. Secondly, the study highlights the essential function
of plasticity in maintaining a balanced membrane potential among neurons. A balanced mem-
brane potential is crucial for optimum neural circuit operation, impacting factors ranging from
information processing to the efficiency and speed of neural computation.32
Therefore, the computational model serves as an essential tool for studying the dual function of
plasticity, providing insights that are highly relevant to both neuroscience and the wider field
of computational biology.
In this context, it is generally assumed that the neuron and its synapses are the primary focus
and that the input received by the neuron is crucial.

However, it should be noted that although early sensory cortex areas primarily represent stimuli
via spike rates, experimental evidence demonstrates that time-based information is also pro-
cessed carefully. Evidence from a diverse range of sensory cortices, including visual, auditory,
olfactory, and somatosensory, suggests that neurons can respond deterministically to incoming
stimuli, suggesting the possibility of precise spike codes.23,28,58,62,107,108,133,137
This level of precision could be reached by changing the rate of spikes in large groups of neu-
rons, but it is an interesting idea that responses from individual neurons may be especially
important in higher-order cortical areas like the frontal cortex where firing rates are particu-
larly low, suggesting a unique role for single-neuron dynamics in supporting complex cog-
nitive functions. This concept expands our understanding of neural encoding and decoding
mechanisms and provides an opportunity to further explore the complex mechanisms of neural
activity.18,53,60,89,109
In the fields of neuroscience and computational biology, significant attention has historically
been given to the biological plausibility of synaptic plasticity and the balance between exci-
tation and inhibition. However, a number of theoretical studies have set aside these realistic
constraints to focus simply on understanding mechanisms that could enable precise encoding
of spatiotemporal patterns within neural networks.
These theoretical studies show that even simple neural models, called ”integrate-and-fire” neu-
rons20,21, can detect and respond to complex spatiotemporal input spike patterns when they
possess suitable synaptic weights. To explain further, an integrate-and-fire neuron integrates
input signals until a certain threshold is reached or exceeded; at that point, it fires an action
potential, or ”spike”.
The Tempotron model is a primary example of this type of neuron.46 The Tempotron was de-
veloped as an advanced version of the classic Perceptron model.89 It was designed to classify
and detect complex spatio-temporal patterns by generating a spike in response to a given set of
inputs and no spikes for some other spatio-temporal patterns. The model implements a super-
vised algorithm to adjust the weights of the neuron’s input signals, also known as afferents, to
either enhance (strengthen) or attenuate (weaken) them.
An additional example is the Chronotron, which focuses on time-based rather than label-based
learning, and was introduced on the basis of the Tempotron. The Chronotron, like the Tem-
potron, aims to achieve precise temporal encoding, but with the specific goal of pinpointing the
timing of the neuron’s response.35,36,88 The Chronotron objective can be achieved by several
more or less realistic synaptic mechanisms.6,149
In summary, the Tempotron and Chronotron models are pioneering theoretical studies that chal-
lenge and extend our current understanding of neural dynamics, specifically in the areas of
pattern recognition and temporal coding. These models take a different approach from most
traditional research in neuroscience, which aims to match biological plausibility closely. They
suggest that without relying on the exact mechanisms observed in real neural systems, it is possi-
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ble to achieve intricate and subtle forms of pattern recognition. Thesemodels imply that neurons
are not just simple signal transmitters; rather, they may have the computational capacity to per-
form complex tasks involving precise timing and complex pattern recognition. They provided
a foundation for new directions in computational neuroscience and artificial neural networks.
They have opened the path for innovative research that could change our understanding of both
biological brains and artificial systems and invite us to reconsider the computational complex-
ity that neurons can possess. The development of multi-layer neural networks, which use spike
timing and bio-inspired computing, represents an extension of these studies. This development
might enable these networks to potentially perform tasks more efficiently than algorithms that
are not based on bio-inspired computing.68
However, in fact, the Tempotron and Chronotron models are supervised learning algorithms,
a feature that raises questions when trying to adapt these models to biological systems. This
is because a biological neuron receives input that is not labeled exactly as it is in supervised
learning models. The input is continuous, subject to temporal biases, and often embedded in a
noisy background. This variation raises fundamental questions about the applicability of these
models to real neural systems.
In more detail, the challenge is how these theoretical models, which rely on labeled data, would
map onto the real mechanisms of synaptic plasticity. In the context of these models, it is unclear
how neurons, within a biological context, would understand which aspects of an input to focus
on when the ”label”—or meaningful context—may not appear until much later. The traditional
theories of synaptic plasticity do not easily explain such delayed labeling. For example, Heb-
bian plasticity relies on the nearly simultaneous firing of connected neurons, as expressed in the
phrase ”neurons that fire together wire together”, but does not explain how labels are introduced
later on.50
The challenge is to introduce timing into models of synaptic plasticity in a biologically plausi-
ble way. Moreover, these theoretical models assume a clean learning environment, which is far
from the noisy real-world conditions in which neurons function. In contrast, real neurons must
perform reliably in the face of noise and variability, raising the question of how these models
can be adapted to more closely resemble these conditions.
Therefore, although the Tempotron and Chronotron models offer valuable theoretical insights,
applying them to biological systems in a straightforward manner is not without challenges.
Their dependence on supervised learning and labeled data introduces gaps that need to be
bridged for these models to be considered truly reflective of biological neural learning.128
The challenge of combining the supervised nature of models like the Tempotron and Chronotron
with the unsupervised learning environment of biological neurons has recently been addressed
in a novel way. Robert Gütig demonstrated that neurons can recognize spatio-temporal patterns,
even when these are embedded in noisy backgrounds. This recognition was achieved through
”weak supervision”, which relies on optimizing synaptic efficacy based on a known number of
pattern repetitions rather than explicit labeling of data.47
The study’s findings are based on the features of the N-methyl-D-aspartate (NMDA) receptor,
a well-researched element in synaptic plasticity.8,27,82
This model provides a connection between the domain of theoretical models based on super-
vised learning and the actual circumstances of biological neurons, which function through un-
supervised learning processes. The study based on weak supervision brings us closer to a model
that more accurately represents the biological mechanisms of neural pattern recognition. More-
over, the study emphasizes the role of the NMDA receptor in synaptic plasticity, reinforcing its
importance as a key mediator in the learning process. The learning rule proposed based on the
NMDA receptor offers a biologically plausible mechanism that aligns well with observed neural
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behaviors. This not only enhances the validity of the model but also offers a potential pathway
for integrating it into broader theories of neural function and learning. Finally, the study pro-
vides an area for further research to enhance our understanding of how weakly supervised or
even unsupervised learning mechanisms might work in both biological and artificial neural net-
works. Indeed, by getting closer to the biological mechanisms that govern neural activity and
learning, we might be able to develop more plausible models that could have applications in
fields ranging from neuroscience to machine learning and artificial intelligence.47
Although Gütig’s study addresses some of the problems associated with applying supervised
learning models to biological models, it does not fully address the biological plausibility con-
cerns. The model deviates from Dale’s rule, which states that a synapse can only be either
excitatory or inhibitory, not both. This deviation from Dale’s rule raises questions about the
biological accuracy of the model.
Furthermore, themodel operates under weak supervision. The questions arising from suchweak
supervision are particularly interesting. In particular, how would this mechanismmanifest itself
in a biological context where labeling and even the concept of a ”known number of repetitions
of embedded patterns” may not be clearly defined?
Additionally, the model requires precise fine-tuning of synaptic weight changes, suggesting
that only a small subset of possible weight changes would lead to the desired learning outcome.
This selection of candidate weights does not fit biological variability and complexity, raising
further questions about the biological plausibility of the model. Therefore, this question re-
mains unanswered: can mechanisms of synaptic plasticity be identified that enable neurons to
autonomously specialize in detecting statistically dominant patterns in their input? If so, the
identification of such mechanisms would advance our understanding of neural plasticity and
learning and would provide a bridge between theoretical models and biological reality. Identi-
fying or developing such a mechanism is a vital area for future research in both computational
neuroscience and the broader field of machine learning.
I address this issue in paper 2.1. The research employs basic Hebbian mechanisms to facilitate
the plasticity of excitatory and inhibitory neurons. This approach is similar to the functioning
of NMDA receptors in excitatory synapses. In addition, the study follows Dale’s principle by
ensuring that neurons maintain their specific inhibitory or excitatory roles without switching
between the two during the learning process.
We employed three realistic mechanisms that appeared to be sufficient for the self-organization
of pattern recognition in single neurons. First, we imposed limits on synaptic effectiveness to
control the instability of Hebbian mechanisms. Second, we considered homeostatic plasticity,
which is applied to excitatory synapses. This plasticity regulates the firing rate to match the
biological firing rate.131,134 If the actual firing rate exceeds the target rate, each synapse will be
down-scaled, and if the firing rate falls below the target rate, it will be up-scaled. This synaptic
scaling is crucial for maintaining system stability. Third, in this methodology, we utilized post-
synaptic hetero-synaptic plasticity, which induces a competition for resources provided by the
post-synaptic neuron (e.g., receptors) to result in negative changes in efficacy (i.e., long-term
depression; LTD).
The algorithm supports the emergence of a balance between excitation and inhibition, which is
in line with the findings of the global and detailed balance of excitation and inhibition in the
cortex. During periods without a pattern, excitatory and inhibitory inputs are in global balance.
At times when a learned pattern is present, excitatory and inhibitory inputs cancel each other
out in temporal detail, showing detailed balance.32,59,92
In 2.1 we showed that pattern recognition is more reliable when it learns from patterns that in-
clude timing changes and Poisson-distributed rate modulation instead of exact repetitions. This
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suggests that the proposed mechanisms are adaptable to patterns that are not strictly timed or
have a temporal rate code. However, robust pattern recognition resistant to temporal jitter and
noise is demonstrated when the algorithm is applied to strictly timed patterns.
On the other hand, the capacity to acquire new information while maintaining memory charac-
terizes functional neural systems. This dual ability presents a dilemma for scientists: how can
synapses combine plasticity with the ability to change and learn at the same time? This question
is important not only for understanding basic brain function but also for developing effective
machine learning systems, which often struggle with the same duality.93
The processes underlying the balance between stability and plasticity in neural networks can
provide insights into the pathophysiology of neurological and psychiatric conditions such as
Alzheimer’s disease, Parkinson’s disease, and Schizophrenia, which are associated with dis-
ruptions in synaptic plasticity and stability. For instance, in Alzheimer’s disease, amyloid beta
accumulation and tau pathology cause a loss of synaptic plasticity, leading to synapse loss and
disruption of neural networks. In Parkinson’s disease, the degeneration of dopaminergic neu-
rons disrupts the stability of motor control networks, leading to the characteristic symptoms
of tremors and rigidity. These networks cannot compensate for plasticity because of the pro-
gressive loss of neurons. In a similar way, schizophrenia is characterized by a disruption in
the neural circuitry underlying cognitive functions and emotional responses, suggesting an un-
derlying problem with synaptic stability and plasticity. It has been hypothesized that NMDA
receptor hypofunction in schizophrenia impairs synaptic plasticity and may contribute to the
cognitive deficits and negative symptoms observed in schizophrenia patients.26,38,65,77,84,99,127
Moreover, the brain’s ability to be plastic, allowing it to learn and adapt to new situations, is
vital. Understanding how neural networks maintain consistency amidst continuous plasticity is
critical to understanding processes such as learning, memory consolidation, and retrieval. Note
that this adaptability is a continuous process, with neurons constantly adjusting their synaptic
connections to achieve optimal biological firing rates, highlighting the perpetual nature of neu-
ral plasticity.131,134
Furthermore, a more detailed understanding of how stability and plasticity are balanced within
neural networks could pave the way for the development of stronger and more effective arti-
ficial neural networks. Specifically, networks that are overly stable may struggle to learn new
data, while those that are overly sensitive to changes may experience information loss, a phe-
nomenon in which new learning overwrites previously stored data.2,37,67
Therefore, it is critical to address the mechanisms necessary for a neural network to maintain
both stability and adaptability. This is often referred to as the stability plasticity dilemma, which
is a prominent challenge in understanding both natural and artificial neural functionalities. Iden-
tifying solutions to this problem is essential for the advancement of cognitive science and neural
network technology.93
It is important to note that the brain appears to use multiple levels of memory storage and con-
solidation, from the cellular to the network level, to manage this balance between plasticity
and stability. It has been proposed that several mechanisms, including immediate early genes,
long-term potentiation, and the integration of new neurons into existing circuits ( e.g., in the
hippocampus), contribute to this balancing process.15,142
Taken together, the capacity of neural systems to learn while preserving past data presents a
critical issue that pertains to the formation and maintenance of memories. However, the mech-
anisms that allow this delicate balance between plasticity for learning and stability for memory
maintenance are not fully understood. This represents a significant gap in our understanding of
brain function and a pressing challenge for the field of neuroscience.
In 2.1, we studied this issue for a single neuron and a network of neurons. The results showed ex-



Introduction 8

tremely long memory persistence for a single output neuron when learning continues with noise
input. For the network of output neurons, the question is whether the mechanism supports incre-
mental learning, where patterns occur rarely and are intermingled with random activity and/or
different patterns. This incremental learning of sets of patterns in neural populations is sup-
ported by including competition for patterns induced by pre-synaptic hetero-synaptic plastic-
ity.130 Within this neural architecture, individual output neurons are tuned to recognize specific
groups of input patterns, resulting in a collective system that accurately encodes the ”what” and
”when” of those patterns. This organized specialization allows for an accurate mapping of the
information presented to the input.
However, the model in 2.1 faces a challenge with sequential learning: when a new embedded
pattern is introduced after the initial pattern has been learned, the system experiences a profound
memory disruption, where the memory of the previous pattern is overwritten by the new one.
This results in the loss of the first learned pattern as the system adapts to recognize the newly
presented information.
In the second study in 2.2, we showed that when training spikes are subject to both jitter (tem-
poral variability) and randomness (stochasticity), previous memories are preserved even as new
learning occurs. This variety of input ensures that only a specific subset of synaptic weights are
selected for adjustment, pushing them toward a state where synaptic scaling-adjustment of the
strength of connections based on activity levels-promotes stability.
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1.2 Excitatory / Inhibitory Ratio and Dynamic Range

In 2.1, it is shown that synaptic plasticity can balance a neuron’s input.41 However, an excess
of excitatory neurons can lead to over-excitation, which can ultimately lead to neuronal fatigue
or excitotoxicity, a pathological state in which neurons are damaged or destroyed by excessive
stimulation. On the other hand, an excess of inhibitory neurons can diminish the activity of
the network to such an extent that its functional capacity is reduced. Therefore, achieving a
suitable balance between these two types of neurons is crucial for maintaining the proper health
and efficient functioning of the nervous system.12,59,112,121,125
Moreover, experimental evidence shows that approximately 20% of neurons are inhibitory
GABAergic neurons in the cortex. This number has significant implications for the structure and
function of neural networks. The presence of this subset of inhibitory neurons helps regulate the
excitatory activity of the remaining 80%, preventing the network from becoming either hyper-
active or too inhibited. These GABAergic neurons have a vital role in shaping neural responses,
perfecting neural codes, and therefore contributing to the general stability and adaptability of
the network.29,32,52,56,64,86,122,126
While inhibitory neurons are fewer in number, they have a significant impact on the behavior
of the neural network, providing both the flexibility to learn and the stability to retain informa-
tion.43,59
Therefore, understanding the role and optimal ratio of excitatory to inhibitory neurons is cru-
cial not only for unraveling the functioning of biological brains but might also be crucial for
designing effective and balanced artificial neural networks.
Although the importance of the E/I ratio in network dynamics, especially at high levels of con-
nectivity, has been emphasized in previous research13, an intriguing bridge between these con-
cepts lies in how this ratio in neural networks directly influences the network’s dynamic range.
In this context, ”dynamic range” characterizes the network’s ability to adapt and respond to di-
verse conditions and stimuli, and the question is how this dynamic range is linked to the specific
ratio of inhibitory to excitatory neurons.
On the other hand, experimental evidence indicates that the dynamics of neural avalanches, a
phenomenonwhere a series of correlated neuronal firings propagate through a neural network, is
closely related to the balance between excitatory and inhibitory neuronal activity (E/I balance).
This relationship has been observed in experiments in cortical cell cultures, anesthetized rats,
and awake monkeys.14,97,116,146 Typically, the activation of a single neuron or a small number of
them starts this cascade of neuronal activity. Specifically, a neural avalanche is not merely the
haphazard firing of neurons but a highly organized sequence where every neuronal activation
is related to its preceding activations. This pattern of activations may extend across various
clusters of neurons, producing intricate connections within the neural network.14,33,111
The emergence of these avalanches is not a random occurrence; instead, it is strongly linked
to the balance between excitatory and inhibitory neuronal activities within the system. Several
experimental studies have provided substantial evidence for the central role of the E/I balance
in governing the dynamics of neural avalanches. For example, cortical cell cultures provide a
simplified and highly controlled environment to observe the initiation and propagation of neural
avalanches, aiding in isolating the influence of E/I balance from other potential variables. In
vivo studies of anesthetized rats and awake monkeys further emphasize the importance of this
balance by enabling the examination of neural avalanche phenomena in more complex and nat-
uralistic settings.97,116,146 In more detail, research has found neural avalanches displaying global
behavior within neuronal activity patterns both in vitro and in vivo.14,40,96,146 Studies have shown
that optimal brain function, including phase synchrony146, information storage124, communica-
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tion, information transition14, computational power16, and dynamic range66,117, occurs when the
brain is operating at or near criticality. At the critical point, a boundary is established between
an ordered and a less ordered state that exhibits distinct scaling behaviors.40 At this point, neu-
ral networks exhibit a power law distribution in a statistical collective behavior of the system,
such as a neural avalanche. Studies have shown that avalanche size and lifetime distributions
are indicators of long-range correlation.14
The distribution of neural avalanche size exhibits a widely varying profile, but is described by
a single universal scaling exponent, β, in size, P (S) ∼ S̄β , and a single universal exponent
in duration, τ , P (T ) ∼ T̄ τ , where S and T denote the size and duration of the avalanches,
respectively. Power-law distributions were observed in neuronal avalanches present in cortex
slice cultures of rats in vitro, in the cortical layer 2/3 of rats during the first and second week
postnatal44, Local Field Potentials (LFPs) of anesthetized cats48,102, newborn rats146, and mon-
keys96,102.
In the context of neural avalanches, the use of the physics of critical phenomena analysis offers a
convincing methodological approach for quantitative investigations. This enables an extensive
study of phase transitions in neural systems, including the characterization of the order of such
transitions and the evaluation of their dynamic ranges. In particular, it characterizes whether
these transitions are first-order (characterized by abrupt changes) or second-order (character-
ized by gradual shifts). This evaluation also provides a method for determining the dynamic
range of neural systems and, thus, their ability to effectively process and respond to a range of
stimulus levels.
The concept of an ”order parameter” is a foundational basis for the description of phase tran-
sitions. An order parameter is a measure that determines the level of order at the boundary
between two distinct phases. This parameter can be zero in one phase and non-zero in the other
and therefore serves as a critical indicator of the state of the system. The order parameter quan-
tifies the amount of order in phase transitions, such as solid to liquid (melting), liquid to gas
(evaporation), or magnetic transitions in materials, and can help predict or describe the emer-
gent properties of a system undergoing a phase change.
In the domain of critical phenomena in physics, order parameters have been crucial for charac-
terizing transitions from one state to another. For example, in the Ising model of magnetism,
the order parameter, M, which typically represents the net magnetization of the system and is
the sum of all the individual magnetic moments (or spins) in the material, is utilized to distin-
guish a transition from a disordered state to an ordered magnetic state. An ordered state in a
magnetic system might signify that all of the magnetic moments (spins) are aligned, whereas in
a disordered state, they would be randomly oriented.70
In neural systems, transitions of interest often involve moving from a de-synchronized to a syn-
chronized state of neuronal firing. This occurs despite the fact that neural systems inherently
operate far from thermodynamic equilibrium. The order parameter used in this study aligns
with the Kuramoto model of coupled oscillators. The Kuramoto order parameter quantifies the
degree of phase synchronization within a population of oscillators, such as neurons, providing
a measure of system synchronization. In more detail, the Kuramoto order parameter is a pow-
erful measure of the degree of phase synchronization within a population of oscillators, such as
neurons. This measure shows how well the oscillators are in phase with each other and provides
clear indications of the level of system synchronization. The order parameter, denoted as ”r”,
typically ranges from 0 (no synchronization) to 1 (full synchronization). Mathematically, this
order parameter is calculated by averaging the exponential of each oscillator’s phase, which is
then normalized by the total number of oscillators. This calculation takes into account both the
amplitude and phase of the oscillators, which provides a comprehensive measure of synchro-
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nization.3,73,74,98,103,105
In summary, critical phenomena analysis and the order parameter concept are multidisciplinary
tools offering valuable insights into complex systems ranging from magnetism to neural net-
works. This approach offers a quantifiable set of tools to analyze the intricacies associated with
neural avalanches, improving our comprehension of their involvement in neural function and
information processing. Taken together, the analysis based on the physics of critical phenom-
ena, considering neural avalanches and order parameters, may shed light on the understanding
of the E/I ratio.
To this end, in 2.3 we initially measured the transition in a leaky integrate-and-fire network
by introducing a Kuramoto order parameter. This parameter is based on the coupling between
sequences of spikes and the phase of temporal fluctuations of the population-average voltage
(PAV).
In this work, we showed that by increasing the coupling between neurons, i.e., the connection
strengthK, a second-order transition from desynchronized firing with low spike-phase coupling
(SPC) to a synchronized firing state with high spike-phase coupling is observed at the critical
value Kc. This finding is independent of the network’s inhibition, as demonstrated in 2.4.
In this study (2.4), we investigated the effects of inhibition on network behavior and whether
the probability of finding the network in the critical regime increases or decreases. To deter-
mine differences between inhibition levels, we utilized the order parameter (defined in 2.3) to
measure the network’s transition. We then conducted dynamical range analysis to identify dif-
ferences between inhibition percentages (i.e., different E/I ratio).
Here, the term dynamic range refers to the range over which an order parameter changes as a
function of a control parameter, such as connection strength K.
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1.3 Effects of Optogenetic Stimulation onGammaActivity in
The Visual Cortex

Substantial E/I balance has been documented in various contexts, e.g., somatosensory cortex141,
auditory cortex138,151,152, cortical up states both in vitro119 and in vivo49, gamma oscillations in
vitro and in vivo9, as well as spontaneous activity92. Studies have also shown the stability of the
ratio between excitatory and inhibitory synapses on various dendritic branches of neurons.57 For
a more comprehensive understanding of the precision and presynaptic origins of this balance,
exploring optogenetic techniques shows promise. Optogenetics is a method of neuromodula-
tion that involves a combination of techniques from optics and genetics, enabling the control
and monitoring of individual neural activities in living tissue with the ability to measure the
effects of manipulation in real-time.31,147,148
In summary, the balance between excitatory and inhibitory activity is highly dynamic, sensi-
tive to context and not static. This has been historically difficult to understand because of the
lack of tools to selectively modulate neural circuits in real-time, but optogenetics enable us to
overcome this issue.4
In more detail, this method has completely revolutionized the field by allowing researchers to
selectively target either excitatory or inhibitory neurons in a specific region of the brain. This
is achieved through the use of specific promoters for certain types of neurons. For instance,
the CaMKIIa promoter can be employed to target excitatory neurons, while the Gad2 promoter
can be used to target inhibitory neurons. Then, by genetically engineering only the specific
subtype of neurons, researchers can independently modulate the activity of either the excitatory
or inhibitory neurons to understand how each contributes to the overall E/I balance.4,80,139,148
Optogenetics also enables real-time manipulation and monitoring. Researchers can introduce
a sudden imbalance, such as overexciting a particular neural circuit, and then monitor how the
system compensates. Does it increase inhibitory signaling? How quickly? These were ques-
tions that were previously challenging to address.136
However, while optogenetics is a powerful tool, it is not without its ethical and technical chal-
lenges. The implantation of optical fibers through surgery limits its application, and the in-
troduction of foreign genes into an organism’s genome raises concerns about long-term effects.
Furthermore, translating findings from animal models to humans is not always a straightforward
process. Despite these challenges, optogenetics remains one of the most promising techniques
for advancing our understanding of the brain.34
In vitro and in vivo studies have extensively documented the E/I balance in gamma oscilla-
tions.9 On the other hand, advances in optogenetic techniques have deepened our understanding
of the critical mechanisms underlying gamma oscillations, particularly for visual processing and
cognition. In particular, there is a correlation between gamma band activity and the speed of
visual change detection in humans, and extensive research investigating the correlation between
gamma oscillations and visual stimuli, highlighting its importance in understanding cognitive
processes.54,106,115,118
In addition, the researchers investigated the visual dependence of the power spectrum on the
local field potential within the primary visual cortex (V1). The results showed a positive cor-
relation between the amplitude of gamma oscillations and the power of a visual stimulus. In
other words, as the strength of the visual stimulus increased, so did the intensity of gamma
oscillations within the modeled network. This relationship highlights the potential adaptability
of neural circuits in V1, where they may modulate their activity based on the robustness of the
sensory input, further highlighting the complex dynamics of perceptual processing at the corti-
cal level.63 To understand how each neuron is involved in the individual activity, it is possible
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to activate only one type of neuron and monitor the overall activity or another type of neuron
in a region. The response can show how the inhibitory and excitatory neurons, which are in
balance, contribute to the outcome. Optogenetics allows scientists to activate only one type of
neuron.
Neural activity and behavioral studies have examined the effects of optogenetic stimulation un-
der different stimuli. In one study, activity in the primary motor (M1) and ventral premotor
(PMv) cortices of two macaque monkeys was monitored during awake resting periods and dur-
ing reaching and grasping movements. The study used optogenetic manipulation to examine
cortical dynamics during these states. In a separate investigation, the scientists used optogenetic
methods to activate excitatory neurons in the primary visual cortex of the awake macaque, con-
ducting experiments with and without concurrent visual stimulation.79,91
The visual cortex is an extremely complex, multi-layered structure composed of a diverse array
of excitatory and inhibitory neurons. Optogenetic techniques enable researchers to precisely
target and either activate or suppress specific layers or categories of cells within this complex
structure. This precise control is essential for analyzing their individual contributions to vi-
sual information processing or for understanding the balance between excitation and inhibition.
Investigations of this type are crucial, as they potentially offer deep insights into the neural
underlying mechanisms of various visual functions, including object recognition, motion per-
ception, and higher-level visual decisions such as pattern recognition. Through such targeted
stimulation or inhibition, the subtle roles of different neural components in complex visual pro-
cessing can be better understood.
In the last study (paper 2.5), we investigated the induction of gamma oscillations by optoge-
netic stimulation in different layers of the visual cortex and examined the local field potential
(LFP) responses to simultaneous optogenetic and visual stimuli. Our investigation centered on
gamma oscillation in the visual cortex following optogenetic stimulation.
Our experiments initially involved the stimulation of excitatory cells with opsins, which may
have triggered the inhibitory cell activation. The goal is the investigation of either a decrease
or minimal effect on the magnitude of the gamma oscillations. We aimed to evaluate whether
optogenetic activation can induce gamma oscillations across diverse levels of the visual cortex
and comprehend the correlation between these oscillations and different laser intensities.
We subsequently used modeling to identify significant parameters that influence the stimulus
response. According to the Wilson-Cowan model144, the key parameter affecting our model
appears to be the variations in the injected current.
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1.4 Objective of the Thesis
This research aims to investigate the role of synaptic plasticity in enabling neural circuits to
identify and learn repetitive spatio-temporal spike patterns in their input signals. In addition,
it will investigate the learning of spatio-temporal spike patterns with a focus on the balance
between excitation and inhibition. Also, one important part of this study is looking into the
excitation-inhibition (E/I) ratio to see how it affects the network’s dynamic range.
Moreover, this thesis will investigate the effects of optogenetic stimulation on excitatory neu-
rons within the visual cortex, specifically in regions V1 and V4. A key component of this study
is to determine whether such targeted neural interactions induce observable changes in gamma
power frequency. Through these varied approaches, the study aims to provide essential insights
into the mechanisms of neuronal adaptability.

The specific objectives are:

1. Learning of Spatio-Temporal Spike Patterns:

• Investigating whether combining types of synaptic plasticity can result in a balance be-
tween excitation and inhibition.

• Proposing a biologically plausible mechanism for learning spatiotemporal spike patterns.

• Exploration of strategies for addressing the stability vs. plasticity dilemma in spatiotem-
poral spike patterns.

2. Excitatory / Inhibitory Ratio and Dynamic Range:

• Formulation of an order parameter for the measurement of phase transitions in neural
networks.

• Investigation of inhibitory effects on dynamic range.

3. Effects of Optogenetic Stimulation on Gamma Activity in the Visual Cortex:

• Investigation of how stimulation of excitatory neurons in V1 and V4 affects gamma
power.

• Development of models to account for variations in gamma behavior between layers V1
and V4.
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Abstract

Spiking model neurons can be set up to respond selectively to specific spatio-temporal

spike patterns by optimization of their input weights. It is unknown, however, if existing syn-

aptic plasticity mechanisms can achieve this temporal mode of neuronal coding and compu-

tation. Here it is shown that changes of synaptic efficacies which tend to balance excitatory

and inhibitory synaptic inputs can make neurons sensitive to particular input spike patterns.

Simulations demonstrate that a combination of Hebbian mechanisms, hetero-synaptic

plasticity and synaptic scaling is sufficient for self-organizing sensitivity for spatio-temporal

spike patterns that repeat in the input. In networks inclusion of hetero-synaptic plasticity that

depends on the pre-synaptic neurons leads to specialization and faithful representation of

pattern sequences by a group of target neurons. Pattern detection is robust against a range

of distortions and noise. The proposed combination of Hebbian mechanisms, hetero-synap-

tic plasticity and synaptic scaling is found to protect the memories for specific patterns from

being overwritten by ongoing learning during extended periods when the patterns are not

present. This suggests a novel explanation for the long term robustness of memory traces

despite ongoing activity with substantial synaptic plasticity. Taken together, our results pro-

mote the plausibility of precise temporal coding in the brain.

Author summary

Neurons communicate using action potentials, that are pulses localized in time. There is

evidence that the exact timing of these so called spikes carries information. The hypothe-

sis, however, that computations in brains are indeed based on precise patterns of spikes is

debated, particularly because this would require the existence of suitable detectors. While

theoretically, individual neurons can perform spike pattern detection when their input

synapses are carefully adjusted, it is not known if existing synaptic plasticity mechanisms

indeed support this coding principle. Here, a combination of basic but realistic mecha-

nisms is demonstrated to self-organize the synaptic input efficacies such that individual

neurons become detectors of patterns repeating in the input. The proposed combination

of learning mechanisms yields a balance of excitation and inhibition similar to observa-

tions in cortex, robustness of detection against perturbations and noise, and persistence

of memory against plasticity during ongoing activity without the learned patterns. The
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proposed learning mechanism enables groups of neurons to incrementally acquire sets of

patterns thereby faithfully representing their ‘which’ and ‘when’ in sequences. These

results suggest that computations based on spatio-temporal spike patterns might emerge

without any supervision from the synaptic plasticity mechanisms present in the brain.

Introduction

Despite decades of research, it is still debated which coding schemes are used in central ner-

vous systems. While in early sensory areas of cortex, stimuli appear to be represented mostly

by spike rates, it cannot be disputed that temporal information is faithfully processed. In fact,

experimental studies on visual, auditory, olfactory, and somato-sensory cortex indicate that

neurons can respond rather deterministically to inputs, underlining the possibility of precise

spike codes. [1–8]

While this can in principle be achieved by modulated spike rates in large populations of

neurons it is tempting to hypothesize that at least in higher areas, as, i.e., frontal cortex, tempo-

rally precise responses of individual neurons play an important role.

A range of theoretical studies attempted to elucidate mechanisms that could support precise

coding of spatio-temporal patterns [9, 10]. It was found that with suitable synaptic weights,

even simple integrate-and-fire neurons are sensitive to specific spatio-temporal input spike

patterns. For instance, the Tempotron [9] was introduced as an extension of the Perceptron

[11] to perform classification and detection of spatio-temporal patterns with a spike response

to patterns only from a given set with a supervised algorithm for potentiating and depressing a

neuron’s afferents. The number of patterns that a neuron can learn to classify depends on their

length, the time constants of the neurons and the synaptic inputs [12]. While in the Tempotron

the action potential is allowed to occur anywhere during the time of the learned patterns, it

was later shown that neurons can be forced to fire also at a specific time [10, 13] during a

specific pattern’s presence, which can be achieved by several more or less realistic synaptic

mechanisms [14, 15]. Both the Tempotron and the Chronotron employ supervised learning

mechanisms based on label and time, respectively.

Supervised learning of spatio-temporal patterns seems at odds with reality, where the input

is not labeled, impinges on the neuron continuously, and is subject to distortions and noise. In

particular, it would need to explain how synaptic plasticity mechanisms become informed

which aspect of the data should be taken into account when a label comes only long after the

patterns. A recent study addressed this latter problem. It showed that neurons can recognize

spatio-temporal patterns embedded in a background of noise using only weak supervision

where the known number of repetitions of a pattern is used for optimizing synaptic efficacy

[16]. Based on the N-methyl-D-aspartate (NMDA) receptor [17–19], a learning rule was pro-

posed [16] that yields similar results as obtained by optimization. The biological plausibility of

this correlation-based rule, however, is questionable. It does not respect Dale’s rule since syn-

apses can change their sign, it is still supervised, and it requires a careful selection of potential

weight changes such that only a given small percentage of potential changes become effective.

Therefore, it remains an open question if existing mechanisms of synaptic plasticity can be

identified which enable neurons to specialize on statistically dominant patterns in the temporal

stream of their inputs in an entirely unsupervised manner.

We use basic Hebbian mechanisms for the plasticity of both, excitatory and inhibitory neu-

rons which for excitatory synapses resemble the NMDA-receptor. Dale’s law is enforced, i.e.,
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inhibitory and excitatory neurons can not change into one another throughout the learning

process.

The instability of Hebbian mechanisms for excitatory synapses is contained by a combina-

tion of three known mechanisms. First, upper bounds on synaptic efficacies are imposed. Sec-

ond, we implement synaptic scaling: It has been shown that neurons do not remain silent for

long periods, but scale their weights to achieve a genetically intended spike rate [20]. Third, we

employ (post-synaptic) hetero-synaptic plasticity which provides negative changes of efficacy

(i.e. long term depression; LTD) through by a competition for resources for weight increases

that are provided by the post-synaptic neuron (e.g. receptors).

When several target neurons are present, we also include pre-synaptic hetero-synaptic plas-

ticity, which induces competition for resources provided by the pre-synaptic neuron. This

mechanism serves specialization of target neurons in subsets of all patterns [21].

The combination of these realistic mechanisms turns out to be sufficient for the self-organi-

zation of pattern detection in single neurons. At times when no pattern is present excitatory

and inhibitory inputs become globally balanced. During the time when a learned pattern is

present we find detailed balance, where excitatory and inhibitory inputs cancel each other in

temporal detail. These results parallel findings of the global and detailed balance of excitation

and inhibition in cortex [22–24].

The resulting synaptic efficacies are then shown to ensure robust pattern recognition that is

resistant to temporal jitter and noise. When basing learning on jittered patterns and also on

Poisson rate modulations instead of precisely repeating patterns we obtain even more robust

pattern detection. These results underline that the proposed mechanisms can be based on

imprecise patterns and temporally modulated rate codes.

Next, we wondered if and how learned memory traces vanish during ongoing plasticity

when only random patterns are presented which contain no statistically dominant structures.

We find extremely long memory persistence already for a single output neuron. This leads to

the question if the proposed mechanisms might contribute to solving the stability-plasticity

problem [25], such that they would support incremental learning where patterns occur rarely

and are intermingled with random activity and/or different patterns. We investigated this for

groups of output neurons where competition for patterns is induced by pre-synaptic hetero-

synaptic plasticity [26]. Thereby the output neurons specialize on different subsets of patterns

such that the group as a whole self-organizes faithful representation of the ‘which’ and ‘when’

of patterns in the input. The memory persistence in this setting is finally shown to support

incremental learning of sets of patterns in neuronal populations.

Results

In all simulations, we consider simple leaky integrate and fire neurons [27, 28] with a fixed

membrane time constant of 15 ms and pre-synaptic spikes originating from 500 input neurons

(80% excitatory and 20% inhibitory). They provide input currents via kernels that have the

shape of alpha-functions. For each synapse, the amplitudes of the input currents depend on a

single parameter, the synaptic weight. The kernels have different time constants for excitatory

and inhibitory synapses. The signs of the weights are not allowed to change during learning,

i.e., Dale’s law is enforced.

Single post-synaptic neuron

Synaptic plasticity is based on correlations between the input-kernels and deflections of the

membrane potentials with respect to a threshold. For changes of the inhibitory synapses, posi-

tive deflections increase the weights, and negative deflections lead to their decay. For changes
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of the excitatory synapses, we let only positive deflections contribute, mimicking NMDA-

dependent mechanisms. Without further constraints, this Hebbian mechanism is unstable for

excitatory efficacies.

Runaway instabilities are avoided by a combination of three simple but biologically highly

plausible mechanisms: First, unbounded growth is made impossible by clipping the weights at

upper limits for excitatory synapses. Second, positive weight changes for excitatory synapses

are quenched when the long time activity exceeds a pre-determined rate, which mimics synap-

tic scaling [20, 29]. Third, the negative weight changes for excitatory synapses are induced by

hetero-synaptic plasticity. Specifically, we include post-synaptic hetero-synaptic plasticity

where the weight changes of different afferents are made dependent such that the resources

needed for strong increases of the post-synaptic contributions to synaptic efficacies are taken

from synapses which would otherwise increase only weakly. Thereby the latter synapses’ effica-

cies become reduced. Note, however, that this does not imply strict normalization of excitatory

weights (see Materials and methods).

It turns out that these ingredients are sufficient for robust self-organization of spatio-tem-

poral spike pattern detection in single neurons. As an example, Fig 1 shows the membrane

potential (MP) of a single neuron before and after learning a random pattern of length 50 ms

that has the same statistics as the random background but repeats in every training epoch of

length 1000 ms.

Fig 2 captures the combined effect of the plasticity mechanisms on the inputs to a post-syn-

aptic neuron. After convergence of the weights, we separated the excitatory and inhibitory

inputs to see how their respective contributions lead to firing only during the pattern (Fig 2A).

In particular, the antagonistic effect of correlations based Hebbian plasticity of excitatory and

inhibitory synapses leads to global and detailed balance. Fig 2A indicates that inhibitory and

excitatory inputs cancel each other outside of the embedded pattern in the mean (global bal-

ance). Averaging these inputs on epochs (Fig 2C) explicitly shows that in the mean fluctuations

are removed, which corresponds to global balance. In contrast, during the time of the embed-

ded pattern, the respective contributions to the membrane potential both increase but remain

mostly balanced also across time (detailed balance). This balance is the fixed point of the

weight dynamics. Fig 2B depicts the spike-triggered average of the inhibitory and excitatory

inputs, respectively, underlining the detailed balance during the learned pattern. In fact, only

some residual imbalance between excitatory and inhibitory afferents allow the post-synaptic

neuron to fire during this period of time. The detailed balance during the embedded pattern is

quantified by the anti-correlation between excitatory and inhibitory afferents which is substan-

tial and minimal close to zero time shift (Fig 2D). Last not least, the synaptic scaling enforces

the desired mean firing rate of 2Hz leading to two spikes during the pattern. Thereby, synaptic

scaling limits the growth of total excitation which additionally is constrained by clipping syn-

aptic weights at a maximal value. Note that in this model pre-synaptic hetero-synaptic plastic-

ity is the only source of LTD for excitatory synapses.

To quantify the performance of the learning mechanism for ensembles of random patterns,

we consider the average percentage R of spikes that correctly detect the pattern:

R ¼
np
s ðLÞ

ns þ z

� �

m

; ð1Þ

where ns is the total number of spikes during a testing period and np
s the spikes’ number related

to the presence of the pattern to be detected. Since patterns can induce spikes also shortly after

the pattern due to the finite decay time of the excitatory synaptic kernel, the time window for

testing if spikes occur inside the pattern is extended by L ms after the pattern has ended.
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Adding an arbitrary small number z to the denominator ensures a definite result (R = 0)

when no spikes occur at all. The ratio is averaged for an ensemble of independent embedded

patterns μ.

Occasionally, we also consider a variant of this criterion R� where the average is taken only

on the epochs in which there is at least one spike occurring in post-synaptic neuron:

R� ¼
np
s ðLÞ

ns

� �

m̂

; ð2Þ

where m̂ refers to the ensemble of independent embedded patterns for which the post-synaptic

neuron elicited at least one spike during the pattern presentation.

Before embedded patterns are shown in this study’s simulations, only random spike pat-

terns are shown; thus, postsynaptic neurons have already achieved r0 mainly because of

Fig 1. Learning of one embedded pattern. (A) Input activity in the raster plot. Five hundred afferents (80% excitatory and 20% inhibitory) send inputs

to one post-synaptic neuron. The excitatory neurons’ rate is 5 Hz, and the inhibitory neurons’ rates are 20 Hz. There is a random embedded pattern of

length 50 ms in the red area between black vertical lines. (B) Membrane potential versus time. The black trace shows that after learning the fluctuations

outside of the embedded pattern are attenuated as compared to the case where the weights were learned from random background alone. As result two

spikes occur during embedded pattern time (between the vertical black lines). The green line is for resting potential, red is for threshold, blue is

membrane potential after weight initialization by learning with only random patterns, and black is for after learning.

https://doi.org/10.1371/journal.pcbi.1010876.g001
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synaptic-scaling. Fig 3A depicts the number of spikes in a single postsynaptic neuron at each

learning cycle with only random input spike patterns. There are no output spikes in the first

learning cycles since weight vectors are small in magnitude. However, on average, the neuron

learns to fire at r0 Hz after a few learning cycles. Then we show an embedded pattern in each

cycle after 2000 learning cycles and calculate the cosine between the weight vector at learning

cycle 2000 and the new weight vector (Fig 3B). While the neuron has achieved r0 at learning

cycle 2000, the weight vectors are changed when the embedded patterns start to be shown. Fig

3C shows that neurons learn to fire only in response to the embedded pattern and remain

silent otherwise. Extending the testing window by L = 15 ms reveals that the performance

Fig 2. Balance of excitation and inhibition. (A, C) A fixed repeating pattern is embedded between 500 ms and 550 ms, i.e. duration Lem = 50 ms. (B, D) Averages

over different learned patterns of lengths Lem = 50, 100, and 300 ms starting from 500 ms (using 500 epochs). (A) Excitatory and inhibitory inputs and the membrane

potential after convergence of self-organization with this pattern. (B) Spike triggered average of respective inputs for different pattern lengths after convergence. In the

more extended patterns the minimum of inhibitory inputs follows the maximum of excitatory inputs. (C) Average contribution of excitatory and inhibitory inputs

from 500 epochs. (D) Cross-correlation between inhibitory and excitatory inputs for neurons that where exposed to learned patterns. In all figures, the length of the

training epoch is 1000 ms, and the desired number of spikes is 2, i.e., the desired firing rate is r0 = 2 Hz.

https://doi.org/10.1371/journal.pcbi.1010876.g002
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becomes perfect. Fig 3D shows that using longer embedded patterns allows neurons to learn

them faster: a more extended embedded pattern leaves more room for residual excitatory-

inhibitory imbalances and more contribution to the weight changes; therefore, it can find the

embedded pattern more rapidly.

Noise and memory robustness

We wondered if and how the memory for the originally learned pattern decays when synaptic

plasticity is present during long periods of random inputs where an already learned pattern

does not re-appear. Note that plasticity was switched off when we tested whether it remembers

the originally learned pattern. Fig 4A shows that even after 60000 learning cycles, > 80 percent

of spikes would still occur during the embedded pattern time (chance level is 0.05). In particu-

lar, after dropping to this value R remains constant for a period that would correspond to more

Fig 3. Convergence of learning. There is no embedded pattern till learning cycle 2000 in afferents, and there is a 50 ms embedded pattern in afferent

from learning cycle 2001 shown in afferents beginning from 500 ms. (A) Number of elicited spikes versus learning cycle, on average the post-synaptic

neuron fires two times in response to the noisy background. (B) The cosine between the current weight vector and the initial weight vector at learning

cycle 2000. (C) Learning performance R versus learning cycle, for L = 0 and L = 15 ms. A 50 ms pattern is embedded between 500 and 550 ms. (D) R

versus learning cycle, L = 15 ms. Patterns duration, Lem, are 50, 100, and 300 ms, shown in afferents from 500 ms. R is an average of 500 simulations, in

which there are 500 afferents, and the length of the training epoch is 1000 ms. The desired firing rate is r0 = 2 Hz.

https://doi.org/10.1371/journal.pcbi.1010876.g003
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than 16 hours, with practically no further decay and diffusing in weight vectors. This striking

memory persistence can be understood by considering that due to the synaptic scaling inher-

ent the neurons will change synapses until the pre-determined long-term firing rate is achieved

also for random patterns (red in Fig 4B). Since the inputs have no structure, the weights mostly

become only scaled, which per se cannot erase the selectivity for the learned pattern. When the

learned pattern is then again presented to the afferents, the neuron fires additional spikes dur-

ing the pattern, which leads to a much higher firing rate for the pattern (green in Fig 4B).

This firing with higher rate cannot be considered a real rate code since also with the scaled

weights the system remains deterministic. That is, the spikes during the pattern will then still

be at precise temporal positions, albeit we will have more spikes than when learned with regu-

larly occurring patterns. Generally, the first spikes in these bursts occur earlier. Furthermore,

in many simulations we find the spikes to occur at a similar position as after learning with reg-

ularly occurring patterns (not shown). If now the activities of many such neurons would feed

again into a subsequent detector neuron it can (as we show for rate based patterns below) still

learn to respond to the corresponding pattern, particularly when the pattern is short.

The changes between a new weight vector and the initial weight vector can be in amplitude

and angle. In order to keep the memory, the learned weight vector should not change its direc-

tion in weight space. If the cosine of the angle remains close to one, the neuron would still

remember the pattern, while the change in the number of spikes is caused by increasing the

norm of a weight vector. As Fig 5A shows the norm of the weight vector indeed changes dra-

matically while the angle changes are rather insignificant (Fig 5B).

Taken together, we find that when learning is continued with random input the neuron

achieves the desired firing rate mostly by scaling its synapses up and then randomly fires in

response to the noisy input.

Taking these findings into account both learning and persistence of pattern selectivity can

heuristically be understood in combination. Let’s first consider the weight changes caused by

Fig 4. Long term robustness of memory traces. (A) R as memory criterion versus learning cycle: Without learned patterns in afferents, learning

continues, and every 50 cycles, learning is paused, and the learned pattern is placed in the background, then R is computed as a memory criterion. (B)

Number of spikes versus learning cycle. Neuron elicits more spikes when the embedded pattern is in the afferents (green) than the situation without

the pattern (red). Patterns duration is 50 ms, shown in afferents starting from 500 ms, L = 15 ms, and this figure is based on an average of 500

simulations.

https://doi.org/10.1371/journal.pcbi.1010876.g004
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stochastic background only. Here, the instability of Hebbian excitatory plasticity drives a

subset of weights to large values until the desired number of spikes occurs in the mean (Figs

3A and 5C). Simultaneous Hebbian plasticity of inhibition ensures that global balance is

achieved. Then, the neuron is in the fluctuation driven regime, with rather strong excitatory

and inhibitory weights which leads to large fluctuations of the membrane potential (Fig 1,

blue lines). After achieving this balance further weight changes induced by the stochastic

background induce mainly some random walk confined around this fixed point (green line

in Fig 5C).

Fig 5. Stability of memory. (A, B) Without learned patterns in afferents, learning continues. (A) Average of the ratio of the norm of the

current weight vector divided by the norm of the learned pattern weight vector (w0). (B) Average of the cosine between the current weight

vector and w0. (C) Average of weight values in each stage of learning: First neurons learned to fire 2 Hz while there is no embedded pattern

in afferents till the learning cycle 2000. WB (gray line in (C)) is the average of sorted weights for this case. Then in each simulation an

embedded pattern is present in the afferents for 10000 learning cycles. WBP (blue line) is the mean of sorted weights obtained after neurons

learned the embedded patterns. Next there is again no embedded pattern in afferents for 20000 learning cycles, and WBPB shows the

resulting weight vector at this learning cycle, however, displayed using the ranks from WBP. Finally, there is again the original embedded

pattern in the afferents for further 20000 learning cycles; WBPBP shows the resulting averaged weights with the same sorting. In the mean

the sorting is conserved, and the values return to the same size. (D) The scatter plot from all simulations demonstrates that most of the

weights remain roughly the same, i.e. learning a pattern leads to a fixed point in weight space. (E) The neurons first learn the first embedded

pattern for the 10000 learning cycles, and then there is another different embedded pattern (second pattern) in afferents for another 10000

learning cycles. This figure shows the R-value for the second 10000 learning cycles. This figure is based on an average of 500 simulations.

https://doi.org/10.1371/journal.pcbi.1010876.g005
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This raises the question if the fixed point of the weights learned from random input alone is

too stable to allow for subsequently learning a particular pattern. Fig 3 demonstrates that learn-

ing is indeed possible also with this initialization. Intuitively, when only random input is pre-

sented the weights perform a random walk around the fixed point, but when a repeating

pattern is introduced an additional drift systematically shifts the weights away from this fixed

point until the desired number of spikes occur only for the pattern and none in response to the

background [30]. Note, that this entails that some of the weights originally acquired from the

background (Fig 5C) decay. This weight dynamics continues until the spikes occur only in the

period of the repeating pattern. Then the remaining weight changes cause diffusion around

this new fixed point (red and blue line in Fig 5C). Hence, also with such an initialization the

neuron can learn to fire in response to the embedded pattern. The learning speed, however, is

reduced. Fig 3C shows that the R-value approaches one, and Fig 3B that the cosine between

the new weight vector and the initial weigh vector changes.

In order to understand why the memory for the learned pattern persists when learning con-

tinues without the embedded pattern being present note that the weights for pattern detection

are specific for the repeating pattern and at the same time guarantee that the background

alone will not elicit spikes. When learning continues without the repeating pattern all weights

are mainly scaled up by both the mechanisms of excitatory plasticity, synaptic scaling and the

instability of the Hebbian term. In consequence the norm of the weight vector grows (Fig 5A)

while its direction is preserved (Fig 5B). Thereby the structure of the learned weights persists.

The trained neuron (with weight vector WBP) has been responding to noisy input for a long

time; therefore, weight vectors will be changed to WBPB (Fig 5C). To show that the embedded

pattern is stored in particular synapses, we subsequently present again the embedded pattern

and continue learning to determine whether weight vectors (WBPBP) are oriented toward WBP.

Fig 5D shows that the most components of weight vectors persist. This illustrates how the

memory is protected from being overwritten by noise. It will, however, become overwritten if

the trained neuron receives another embedded pattern (Fig 5E).

The plausibility of spike pattern coding depends on its robustness against noise and pattern

distortions. For neurons that have learned a particular pattern without noise we examined the

dependency of detection performance on three types of perturbations:

First: we removed spikes inside the embedded patterns and examined if neurons can still

recognize the embedded pattern. Fig 6A shows the robustness against removing spikes inside

the embedded pattern.

Second: during learning, the neuron receives inhibitory input at a frequency of 20 Hz and

excitatory input at a frequency of 5 Hz (ratio 4 to 1). For testing we added S random spikes per

second to excitatory input neurons and a × S spikes per second to inhibitory neurons. The

new rates becomes rnewE ¼ rE þ S and rnewI ¼ rI þ 4S. Fig 6B shows that the performance R

decays when rnewE > 10 Hz. Here we define r� ¼
rnew
r .

Third: in this part, we examine the robustness of detection against jitter noise. For this pur-

pose, we shuffle the times of the spikes in the afferents using a Gaussian distribution with zero

mean and σ standard deviation. Fig 6C shows that the algorithm is robust until σ = 5 ms, and

after that, performance starts to decay.

Next, we wondered if precise patterns are required for self-organizing pattern selectivity.

First, we perturbed the training patterns by jittering the spikes according to a Gaussian distri-

bution with mean zero and a standard deviation of 20 ms. We found that this does not hamper

learning. Fig 7A shows the R-value in each learning cycle; the blue line is for testing with the

original pattern, the green line with the jittered patterns. The red line represents R�, i.e. we

dropped contributions to R from the epochs where no spikes at all occur. Then, we converted
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each afferent’s time code input to rate code input (i.e. Poisson spike rates). For this purpose we

first convolved each spike with a Gaussian distribution with a zero mean and a standard devia-

tion of 20 ms. The resulting function is then used as modulated firing rate of a Poisson point

process. This results in an ensemble of spatio-temporal patterns based on the original pattern

that has the statistics of Poisson processes, including failures and a Fano factor of 1. These

distorted patterns are then used for learning and testing. This transformation is leading to a

similar result (Fig 7B, the blue line is for testing with the original pattern, the green line for

testing with Poisson spike rates including no spikes, the red when epochs with no spikes are

dropped).

It turns out that with the corresponding weights pattern detection becomes more robust

with respect to jitter noise (Fig 7C, the black and gray lines are for testing with different σ for

jittered and Poisson spike rates, respectively). These results demonstrate that codes based on

temporal rate modulations and spatio-temporal pattern detection by individual neurons are

compatible.

Fig 6. Testing noise robustness. (A) Removing spikes. (B) Increasing firing rates. (C) Jitter noise. Patterns durations are 50, 100, and 300 ms, shown in

afferents starting from 500 milliseconds. This figure is based on an average of 500 simulations, in which there are 500 afferents, the length of the training

epoch is 1000 ms, and r0 = 2 Hz.

https://doi.org/10.1371/journal.pcbi.1010876.g006
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Diversification by pre-synaptic hetero-synaptic plasticity

In the approach presented so far a single neuron can become a detector for more than only

one pattern, along the lines of the Tempotron [9] (Fig 8A, 8B and 8C). Its activity would then,

however, obscure which individual pattern was present at which time. The number of patterns

a single neuron can learn depends on the desired firing rate. As shown in Fig 8C, 60 percent of

the ensemble learns two patterns when r0 is two, but when it is nine, almost 50 percent of the

ensemble learns at least three patterns (Note there are for independent embedded patterns.).

Here the memory for the case of two embedded patterns and a single post-synaptic neuron is

tested too. When synaptic plasticity is active throughout extended periods of random inputs

when previously learned patterns do not reappear, memory for them decays. We turned off

Fig 7. Learning and testing with jittered patterns and Poisson spike rates. (A) The training patterns are perturbed by jittering the spikes with a

Gaussian distribution with a standard deviation of σ = 20 ms and a zero mean. Blue represents testing with the original pattern (R), the green line

represents testing with jittered data including simulations with no spikes (i.e. R), and the red line represents the performanc when testing with jittered

data but dropping episodes with no spikes (i.e. R�). (B) Learning from Poisson spike rates: the blue line represents R when testing with the original

pattern, the green line represents testing with Poisson spike rates, including those with no MP spikes (R), and the red line shows R� where episodes with

no spikes are ignored. (C) The black and gray lines represent tests of jittered and Poisson spike rates where the weights were trained with σ = 20 ms,

respectively. This figure is based on an average of 500 simulations with 500 afferents. The training epoch is 1000 ms, Lem = 50 ms, L = 15 ms, and r0 = 2

Hz.

https://doi.org/10.1371/journal.pcbi.1010876.g007
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plasticity when we investigated whether it recalls the first learned patterns. Fig 8D indicates

that even after 10000 learning cycles, more than 80% of spikes would still occur within the

embedded pattern duration (chance level is 0.1). Here, we consider R as the summation of the

R-values for patterns one, R1, and two, R2. Therefore R = R1 + R2.

Fig 8. Learning more than one embedded pattern. (A) Input activity in the raster plot, five hundred afferents (80% excitatory and 20% inhibitory) send inputs to one

post-synaptic neuron. The excitatory neurons’ rate is 5 Hz, and the inhibitory neurons’ rates are 20 Hz. There are two random embedded patterns of length 50 ms in

the red and blue areas (between black vertical lines), r0 = 4 Hz, and the length of the training epoch is 1000 ms. (B) Membrane potential versus time. The black trace

shows that after learning the neuron responds to both embedded patterns. The green line is for resting potential, red is for threshold, blue is for before learning, and

black is for after learning. (C) During learning, all embedded patterns are in the epoch, and we compute the percentages of neurons that can detect only one of the

patterns (blue), two (green), three (red), and four of them depending on the target rate r0. This figure is based on an average of 100 simulations with 500 afferents. The

training epoch is 1000 ms, Lem = 50 ms, L = 15 ms. (D) First, the neuron learns two embedded patterns, and then R as a memory criterion vs. learning cycle is

computed: Learning continues without learned patterns in afferents, and every 50 cycles, learning is paused, and the learned patterns are placed in the background,

then R is computed as a memory criterion. There are two 50 ms embedded patterns, shown in afferents starting from 400 ms and 800 ms, L = 15 ms, and this figure is

based on an average of 500 simulations. r0 = 4 Hz.

https://doi.org/10.1371/journal.pcbi.1010876.g008
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For a faithful representation of a sequence of patterns, as e.g. the phonemes in spoken

human language, it is therefore desirable that different neurons in a network become special-

ized for different subsets of patterns such that as a whole a network represents precisely the

which and when of patterns in a sequence. If successful, such a system could, e.g., be used for

unsupervised speech recognition [16].

As a first step into this direction we wondered which realistic synaptic mechanism might

enforce the specialization of different neurons in a network for different pattern sets. As a sim-

ple example we consider several target neurons that receive input from the same set of input

neurons. We found that already synaptic competition induced by pre-synaptic hetero-synaptic

plasticity [26] yields sufficient selectivity for different patterns in such an ensemble of target

neurons such that identity and order of patterns are represented faithfully (for details of the

computational implementation see Materials and methods).

To quantify the performance, we use the rank of a matrix where each row represents one of

the neurons, and each column one of the patterns. The matrix element in each row is set to 1 if

the corresponding neuron is active for that pattern, and to 0 otherwise. The rank of this matrix

provides the number of linearly independent row vectors. When it meets the number of the

different patterns in a given stimulus the population of neurons faithfully represents the pres-

ence and the order of the patterns. Therefore, we introduce the ratio of the rank of this matrix

to the number of patterns as performance measure O.

As an example, we trained networks of different sizes with four patterns where always all

patterns were present in each training epoch. We found that the pre-synaptic competition

leads to selectivity for all four patterns as soon as 7 post-synaptic neurons were present. In con-

trast, without this pre-synaptic competition, separation does not become complete (Fig 9A).

We then tested the persistence of learned selectivities (with 7 neurons) when learning is

continued with random input. We tested performance (with plasticity switched off) and found

practically no decay of O even when learning was continued 10X longer than it takes for learn-

ing all 4 patterns.

This result motivated us to test if learning a set of patterns is possible from learning epochs

that contain only subsets of all patterns. First results indicate that such incremental learning is

indeed possible. As an example, we considered 4 embedded patterns and 7 post-synaptic neu-

rons. Each embedded pattern has a 0.2 probability of being present in each learning cycle in

the epoch. Note that thereby some learning cycles have no embedded pattern in the epoch.

Also, we randomly chose locations from ([85, 85 + Lem), [175, 175 + Lem), . . .[895, 895 + Lem]

ms) to put the embedded patterns in them. As Fig 9B shows the relative rank O goes to one,

indicating that patterns can be learned also incrementally and the R value goes to one for all

post-synaptic neurons Fig 9C.

We then tested how many post-synaptic neurons are required to separate different numbers

of embedded patterns. Fig 9D shows a linear increase in the number of post-synaptic neurons

necessary for selecting different numbers of embedded patterns (where O ⩾ 0.96). However,

most of the post-synaptic neurons respond to only two of the embedded patterns. Here we

look at which post-synaptic neuron fires for which patterns and count them. As shown in Fig

10, most neurons respond to a few embedded patterns; on average, 8 respond to only one, 19

to two, and 3 to three embedded patterns.

Discussion

Neurons respond faithfully to input sequences [31]. That is, they are rather deterministic

devices and with suitable synaptic efficacies, individual neurons can, in principle, serve as

detectors for specific spatio-temporal input spike patterns. This opens the possibility that
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coding and computation in brains are at least in part based on temporally precise action

potentials.

In the past, this hypothesis has been investigated in simple integrate and fire models. Super-

vised learning rules were proposed that enable neurons to signal the presence of a pattern [9]

and to fire at predefined time points during a specific pattern [10, 13, 32]. It was further dem-

onstrated that relatively weak supervision can be sufficient for learning the synaptic weights

for pattern detection [16]. Here, only knowledge about the number of pattern occurrences is

needed for the specialization of a neuron. While a learning rule for this ‘aggregate label learn-

ing’ was rigorously derived, the proposed biological realization suffers from several rather

unrealistic assumptions. In particular, excitatory and inhibitory plasticity are not treated

Fig 9. Self-supervised neural networks. (A) The system’sO (rank/4) versus the number of post-synaptic neurons after learning. (B)O versus learning cycle (There are

7 post-synaptic neurons). Black line: Each pattern is shown in each learning cycle in a fixed position. Gray line: Each pattern is shown in the epoch with the probability

of 0.2 at a random place. (C) Each row shows the mean R values for the case of 7 post-synaptic neurons. (D) O: number of post-synaptic neurons to separate different

numbers of embedded patterns (O is computed when the number of post-synaptic neurons equals or exceeds the number of embedded patterns.) (A), and (D) are

based on an average of 50 simulations. (B) and (C) are based on an average of 500 simulations. In all simulations, the epoch length is 1000 ms, the embedded patterns’

duration is 50 ms, L = 15 ms, and r0 = 2 Hz. In (A), (B), and (C), there are 4 different independent embedded patterns in each simulation.

https://doi.org/10.1371/journal.pcbi.1010876.g009
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separately, and Dale’s law was not observed. When the signs of synapses may change, this has

also a negative impact on the excitatory and inhibitory balance. For some patterns, there may

be only few inhibitory neurons remaining in the system after learning. When there is a lack of

inhibition, however, the potential can take a value close to the threshold, increasing the chance

of getting random spikes outside the embedded patterns. Also, a selection criterion was used,

by which independently of their sign, only the largest 10% of changes were taken into account,

for which no realistic interpretation was provided.

Unsupervised learning of spatio-temporal input spike patterns has been investigated mostly

in the context of spike-timing dependent plasticity (STDP) [33–35]. The model in Masquelier

2018 [36] discusses the ability of STDP of excitatory synapses to make neurons become spike pat-

tern detectors. It requires quite careful tuning of parameters. A model closer in spirit to the pres-

ent one can be found in a rather brief technical report [37]. It combines some (calcium based

additive) homeostatic plasticity with a caricature of correlation based learning solely for excit-

atory synapses. It is demonstrated to mimic STDP and admittedly also requires careful choice of

parameters. Most importantly, because of the lack of inhibition both previous models cannot

exhibit balance of excitation and inhibition and therefore can neither be expected to be robust

against perturbations nor to be stable with respect to continuous learning without patterns.

Therefore, it remains an open question if the synaptic plasticity mechanisms present in real

neuronal networks support a robust coding scheme that is based on spatio-temporal patterns

of spikes.

Fig 10. Contingent of neurons responding to multiple embedded patterns. Average count of post-synaptic neurons

versus the number of embedded patterns detected. This figure is based on an average of 50 simulations with epoch

length 1000 ms, 30 post-synaptic neurons, and 10 independent embedded patterns, having a duration of 50 ms each,

(L = 15 ms, and r0 = 2 Hz.)

https://doi.org/10.1371/journal.pcbi.1010876.g010
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We found that a combination of membrane potential dependent Hebbian mechanisms,

hetero-synaptic competition, and synaptic scaling indeed makes individual neurons sensitive

for statistically dominant spatio-temporal patterns in their afferents without any supervision.

The hetero-synaptic competition implies a threshold for long-term depression (LTD) depend-

ing on the ensemble of plasticity signals, which could be related to the Bienenstock-Cooper-

Munroe (BCM) rule [38]. Along the same line the synaptic scaling regulates weight changes

such that with too high post-synaptic firing rates the synapses decay. In contrast, the set of

mechanisms considered here can not reproduce STDP, since mono-synaptic LTD-mecha-

nisms are not taken into account.

Performance is shown to be robust to temporal jitter, missing spikes, and additional noise.

In particular, also spatio-temporal patterns consisting of Poisson spike rate modulations are

captured surprisingly well by the proposed plasticity mechanisms and lead to robust detection

(Fig 7B and 7C).

The proposed combination of learning mechanisms yields a detailed balance of excitation

and inhibition where this is possible: during the learned pattern. This fits nicely to experimen-

tal observations [22] revealing a negative correlation between excitatory and inhibitory inputs.

Outside the pattern, global balance is achieved [24].

Balance is a natural consequence of Hebbian mechanisms when they are simultaneously

present in both excitatory and inhibitory synapses, and the otherwise unstable growth of excit-

atory efficacies is constrained. While this has been noted before [39], we here show that Heb-

bian plasticity can select synaptic efficacies that make neurons detectors for spatio-temporal

patterns when realistic constraints are taken into account. In particular, we found that a subtle

interplay of the instability of Hebbian mechanisms for excitatory synapses and synaptic scaling

enforces a local imbalance during the learned patterns which leads to specific and temporally

precise spike responses.

The excitatory-inhibitory balance protects memory for rate patterns in neural networks

[39, 40]. Our simulations now demonstrate that also the memory for spike patterns is pro-

tected from being overwritten by noise (Figs 4, 5D and 5E).

After successful learning of patterns, the random background input does not lead to spikes

in individual neurons. When then plasticity is continuously present for a long time during

which only random inputs are present, the input weights mainly become scaled up until the

desired number of spikes is reached, i.e., the plasticity mechanisms considered here are consis-

tent with synaptic scaling [20]. Obviously, scaling alone preserves the memory for the learned

patterns, which will then induce far more spikes than the background. In other words, the

plasticity mechanisms discussed here lead to a very long memory persistence already in a sin-

gle neuron such that selectivity is preserved and sensitivity becomes even enhanced. We tested

the memory persistence also in groups of neurons that specialized for subsets of the input pat-

terns via pre-synaptic hetero-synaptic plasticity. Also here, we observed practically no decay.

This finding suggests that in groups of neurons incremental learning of sets of patterns

should be possible, wherein each successive training epoch only a subset or even none of all

patterns is present. We could confirm this hypothesis for simple cases; however, the question if

the combination of plasticity mechanisms discussed here indeed provides a solution for the

notorious stability-plasticity dilemma [25] in spatio-temporal pattern learning will require

more systematic investigations which go beyond the scope of this paper.

The fact that biologically realistic plasticity mechanisms can support the self-organization

of spatio-temporal pattern detection by individual neurons underlines the possibility that such

temporal codes are indeed present in nervous systems. Particularly the ability to learn patterns

underlying Poisson spike rates demonstrates that such a temporal coding scheme can be con-

sistent with rate codes. We speculate that this transformation of temporally modulated rates to
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spike pattern codes could explain the increase in sparsity observed in the early visual cortex

when natural contexts are included [41] as well as the extreme sparsity of activations in higher

cortical areas.

Materials and methods

Neuron model

In this work, we employ the leaky integrate and fire (LIF) model. The dynamic of the mem-

brane potential of a single neuron V(t) which is receiving current from N afferents is:

tm
d
dt

VðtÞ ¼ � VðtÞ þ RmIextðtÞ ð3Þ

where τm and Rm are time constant and resistance of the membrane, respectively. Whenever

the neuron arrives at or passes the threshold it evokes spike output and resets to resting poten-

tial. Resting potential is zero in this study, and Iext is the external current from excitatory (E)

and inhibitory (I) afferents:

IjðtÞ ¼
XNE

i¼1

wE
ji

X

tli<t

KEðt � tliÞ �
XNI

i¼1

wI
ji

X

tli<t

KIðt � tliÞ ð4Þ

where wE;I
ji represent the respective i0th afferent’s excitatory and inhibitory synaptic strength to

output neuron j. NE and NI are the numbers of excitatory and inhibitory afferents, respectively

(N = NE + NI). Note that at time tli, there is a spike in afferent i, and at this time, afferent i starts

to send input to the post-synaptic neuron j amounting to wji × K. The shape of the kernel is an

alpha-function with the following equation:

Kðt � tliÞ ¼ Inorm exp �
t � tli
tr

� �

� exp �
t � tli
td

� �� �

yðt � tliÞ ð5Þ

where θ is the Heaviside step function. τr and τd are time constants of synaptic current, which

are different for excitatory and inhibitory synapses. Inorm ¼ ZZ=Z� 1

Z� 1
normalises K to unit ampli-

tute, where Z ¼
td
tr

.

Learning algorithm

We assume that a synapse’s efficacy is the product of pre- and post-synaptic components.

wji ¼ aijbij ð6Þ

where aij is provided from the pre-synaptic neuron i, and bij is provided by the post-synaptic

neuron j (Fig 11). If we have N pre-synaptic neurons (i = 1, . . ., N) and M post-synaptic neu-

rons (j = 1, . . ., M)

dwji

dt
¼ aij

dbij
dt

þ
daij
dt

bij: ð7Þ

Here, Dale’s law is imposed: when δa and δb would change the sign of a and b, respectively, we

set them to zero. We assume that correlations between pre-synaptic input and post-synaptic

membrane potential drive weight changes. By considering only the spike at time tli the correla-

tion between i0th afferent and the j0th post-synaptic neuron’s potential Vj(t) is:

W
�l
ij ðtÞ ¼ Kðt � tliÞf½VjðtÞ � V0�þ

þ q½VjðtÞ � V0��
g ð8Þ
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where V0 is the modification threshold [42] that is set to zero in all simulations of this study. q
is zero for excitatory afferents and 1 for inhibitory ones. In every time step, all ni spikes in the

i0th afferent are used for updating the weights.

WijðtÞ ¼
Xni

l¼1

W
�l
ij ðtÞ: ð9Þ

As a result, we compute the correlations for all spikes l and integrate them to determine the

eligibility ε [16] via

tε

dεijðtÞ
dt

¼ � εijðtÞ þ Wij
ð10Þ

which is the basic signal for weight changes at synapse (i, j).
For inhibitory synapses weight changes are set to be simply proportional to ε. For excitatory

synapses changes are assumed to depend only on the positive part [εij]+ which mimics the

characteristics of the NMDA receptor [17–19]. Also for excitatory weights we take synaptic

scaling into account. That is, neurons tend to fire and to implement a specific firing rate r0 that

is genetically determined [20, 29]. That is, if a post-synaptic neuron’s long-term firing rate r�
j is

less than the desired r0, it scales its afferent excitatory weights up, and if it is more than the

desired r0, it scales its afferent excitatory weights down. The long-term firing rate r�
j is

Fig 11. Illustration of synaptic competition induced by hetero-synaptic plasticity. (A) Competition induced by

post-synaptic hetero-synaptic plasticity. Excitatory pre-synaptic neurons i target a post-synaptic neuron j. We assume

that the resources required for increasing the post-synaptic components bij of the weights wji = aijbij are limited and

therefore distributed in a competitive manner. That is, we assume hetero-synaptic plasticity where afferent synapses

that receive large eligibility signals εij increase their efficacy while synapses that receive weaker (but for excitatory

synapses always positive) signals will instead weaken. (B) Pre-synaptically induced competition is assumed to follow the

same principle. The signals for the changes of the pre-synaptic components aij, however, are assumed to depend on the

realized amount of potentiation at the post-synaptic side, i.e., to take the post-synaptic hetero-synaptic competition into

account. We found that this choice is more parameter tolerant and yields more robust memory than a symmetric

version where pre- and post-synaptic hetero-synaptic plasticity are based on the same eligibility signal which, however,

can also realize self-organized spike pattern detection (not shown).

https://doi.org/10.1371/journal.pcbi.1010876.g011
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determined by

tr�

dr�
j

dt
¼ � r�

j þ
X

tli

dðt � tliÞ ð11Þ

where tr� is the time constant for the long-term firing rate. Changes of synapses are subject to

limitations of the material provided by the respective pre and post-synaptic neurons (e.g.,

release sites, vesicles, receptor densities). Plausibly, this leads to competition for changes of dif-

ferent synapses, which affects the respective pre- and post-synaptic components a and b differ-

ently. In the current approach we include pre- and post-synaptic competition only for the

changes of excitatory weights thereby modeling pre- and post-synaptic versions of hetero-syn-

aptic plasticity [21, 26, 43, 44].

Single post-synaptic neuron. To compute weight change (Eq (7)) when there is only a

single post-synaptic neuron (j = 1), we have bi1 ≕ bi, εi1 ≕ εi, and ai1 ≕ ai. For simplicity we

here set ai = 1 and δaij = 0 (for the full version see next section).

Here inhibitory synapses are changed by

tI
dbIi
dt

¼ � bI
i þ cIεi

ð12Þ

where τI is the time constant for inhibitory synapses and cI the learning rate.

For excitatory synapses we subtract the mean of the plasticity signals [εi]+, to mimick post-

synaptic hetero-synaptic plasticity:

~εi ¼ εi �
1

N

XN

i¼1

εi: ð13Þ

Note that this does not imply strict normalization since Dale’s law prevents negative changes

that otherwise would turn excitatory synapses to inhibitory synapses. The excitatory afferents’

weights then change according to the following equation:

tE
dbEi
dt

¼ � bEi þ cE~ε i þ abE
i ðr0 � rÞ ð14Þ

where τE is the time constant for excitatory synapses and cE the learning rate. We consider cE

less than cI; therefore, inhibitory neurons adapt faster to ensure balance wherever possible

(globally and detailed), and excitation can not conflict with the relatively slow limiting mecha-

nism of synaptic scaling.

More than one post-synaptic neuron. When there is more than one post-synaptic neu-

ron each afferent has different eligibility for each post-synaptic neuron (Eq (9)). Therefore aij
needs to be taken into account (Eq (7)).

For inhibitory synapses we use:

tI
dbIij
dt

¼ � bI
ij þ cIεij

tI
daIij
dt

¼ � aI
ij þ cIεij

ð15Þ
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As for single target neurons j the changes of excitatory synapses are subject to post-synaptic

hetero-synaptic plasticity that we realize by subtracting the mean of eligibilities:

~ε ij ¼ εij �
1

N

XN

i¼1

εij: ð16Þ

With this the post-synaptic components change by

tE
dbEij
dt

¼ � bE
ij þ cE~ε ij þ abE

ijðr0 � rÞ: ð17Þ

We assume that also pre-synaptic neurons have finite resources for increasing their contribu-

tions to synaptic efficacies (aij), as e.g., release sites or vesicle densities. Fig 11 illustrates this

pre- and post-synaptic competition. We restrict the competition to excitatory neurons that up-

regulate synapses because this requires resources, whereas decreases of efficacies may even

release resources. To apply the competition, we first identify the signals that would scale up

excitatory synapses. The pre-synaptic competition then is implemented by subtraction of the

mean

Bij ¼ ½~ε ij�þ
�
yð
P

jyð½~ε ij�þ
Þ � 1Þ

P
jyð½~ε ij�þ

Þ þ z

XM

j¼1

½~ε ij�þ ð18Þ

where θ is a Heaviside function, z is a small number (z<<1), and M is the number of post-

synaptic neurons. Therefore

tE
daEij
dt

¼ � aE
ij þ Bij þ aaE

ijðr0 � rÞ: ð19Þ

Simulation details. For simplification and efficiency of simulations, we consider changes

over epochs e with duration T ms instead of applying weight changes in each integration time

step. Thereby Eq (8) is replaced by:

W
l
ij ¼

Z T

0

dtKðt � tliÞf½VjðtÞ � V0�þ
þ q½VjðtÞ � V0��

g ð20Þ

and the differential equations of the form

t
dy
dt

¼ � y þ x ð21Þ

change to a moving average

yðe þ 1Þ ¼ gyðeÞ þ ð1 � gÞx̂ðeÞ: ð22Þ

where x̂ðeÞ is the sum of contributions of x in each epoch e and γ ’ 1 − T/τ.

In all simulations, there are 500 afferents (80% excitatory and 20% inhibitory), and the

learning epoch length is 1000 ms. Afferent and embedded pattern spikes are generated ran-

domly with Poisson point processes in which the excitatory rate (rE) is 5 Hz, and the inhibitory

rate (rI) is 20 Hz. Except for Fig 9B (gray line), all embedded patterns are in each epoch in

every learning cycle.

In the network model, the initial synaptic efficacies of aij and bij are chosen from a Gaussian

distribution with a mean of 0.1 and standard deviations of 10−2 (negative numbers are set to
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zero). In the single post-synaptic neuron model, they are chosen from a Gaussian distribution

with a mean of 10−2 and standard deviations of 10−3 (negative numbers are set to zero).

Synaptic scaling depends on firing rates averaged over long times. Since we perform on-line

learning we use a low pass filter such that the rate estimation rj(c + 1) of post-synaptic neuron j
used for learning in epoch e + 1 is a running average of the actual rates r̂ in previous epochs:

rjðe þ 1Þ ¼ g�rjðeÞ þ ð1 � g�Þr̂ jðeÞ ð23Þ

The parameter γ� is 0.9 for all figures which corresponds to a time constant of 10s. While

much smaller values of this parameter do not change the asymptotic results this value was

found to yield more rapid convergence.

Note that plasticity is not instantaneous but depends on an accumulation of signals for

weight changes over some time which here is termed ‘eligibility’. We implement also this by a

Fig 12. Learning performance for embedded patterns presented at different rates. Learning performance R versus learning cycle, for L = 15

ms. A 50 ms pattern is embedded between 500 and 550 ms and shown each 10 cycles (f0 = 0.1), 50 cycles (f0 = 0.02), and 100 cycles (f0 = 0.01). R

is an average of 100 simulations, in which there are 500 afferents, and the length of the training epoch is 1000 ms. The desired firing rate is r0 =

2 Hz.

https://doi.org/10.1371/journal.pcbi.1010876.g012
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low pass filter:

εijðe þ 1Þ ¼ gεijðeÞ þ ð1 � gÞŴijðeÞ: ð24Þ

Initial conditions are rj(0) = 0 and εij(0) = 0. The parameter γ is 0.99 for all figures correspond-

ing to a time constant of ’ 100s. This parameter limits learn-ability of patterns that are pre-

sented only rarely. E.g. for the value used in this paper learning becomes difficult when a

pattern is shown only every hundredths epoch of 1000ms length (Fig 12).

Because synaptic strength cannot become arbitrarily large due to the synapses’ structure

and other constraints, we cut weights changes that would carry excitatory synapses out of the

bounds which are set to plus one.

Besides, Dale’s rule dictates that excitatory and inhibitory synapses cannot turn into each

other; therefore, we assume synaptic weights to become zero if weight changes would turn

their kind during the learning. As a result, subtracting the mean value in equations Eqs (13)

and (18) will not change a synapse’s type (Eq (7)). To numerically integrate Eq (3), we use

Euler method with Δt = 0.1 ms. The parameters are found in Table 1.

Note that in the epoch approach, we implement the following equations, and the continu-

ous version can be obtained by linearization. Therefore:

dwij ¼ aijdbij þ daijbij þ daijdbij ð25Þ

Single post-synaptic neuron:

Inhibitory synapses:

dbI
i ¼ cIεi ð26Þ

Excitatory synapses:

dbE
i ¼ ð1 � bÞbE

i expðaðr0 � rÞÞ þ cE~ε i � bE
i ð27Þ

Table 1. List of parameters.

Symbol Description Value

τm membrane time constant 15 ms

Rm membrane resistance 1

ter Rise time of excitatory currents 0.5 ms

tir Rise time of inhibitory currents 1 ms

ted Decay time of excitatory currents 3 ms

tid Decay time of inhibitory currents 5 ms

rE Rate of excitatory neurons 5 Hz

rI Rate of inhibitory neurons 20 Hz

N Number of pre-synaptic neurons 500

NE Number of pre-synaptic excitatory neurons 400

NI Number of pre-synaptic inhibitory neurons 100

cI Inhibitory learning rate 10−3

cE Excitatory learning rate 0.9 × 10−3

Δt time step 0.1 ms

α scaling factor 0.01

β scaling coefficient 0.9 × 10−4

https://doi.org/10.1371/journal.pcbi.1010876.t001
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More than one post-synaptic neuron

Inhibitory synapses:

dbI
ij ¼ cIεij

daI
ij ¼ cIεij

ð28Þ

Excitatory synapses:

dbE
ij ¼ ð1 � bÞbE

ijexpðaðr0 � rÞÞ þ cE~ε ij � bE
ij

daE
ij ¼ ð1 � bÞaE

ijexpðaðr0 � rÞÞ þ cEBij � aE
ij

ð29Þ

where β is scaling coefficient.
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Bottou: An Introduction to Computational Geometry. MIT press; 2017.

12. Rubin R, Monasson R, Sompolinsky H. Theory of spike timing-based neural classifiers. Physical review

letters. 2010; 105(21):218102. https://doi.org/10.1103/PhysRevLett.105.218102 PMID: 21231357
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ABSTRACT

Brains learn new information while retaining previously acquired information. It is not known by what mechanisms synapses
preserve previously stored memories while they are plastic and absorb new content. To understand how this stability-plasticity
dilemma might be resolved, we investigate a one layer self-supervised neural network that incrementally learns to recognize
new spatio-temporal spike patterns without overwriting existing memories. A plausible combination of Hebbian mechanisms,
hetero-synaptic plasticity, and synaptic scaling enables unsupervised learning of spatio-temporal input patterns by single
neurons. Acquisition of different patterns is achieved in networks where differentiation of selectivities is enforced by pre-synaptic
hetero-synaptic plasticity. But only when the training spikes are both, jittered and stochastic past memories are found to persist
despite ongoing learning. This input variability selects a subset of weights and drives them into a regime where synaptic scaling
induces self-stabilization. Thereby our model provides a novel explanation for the stability of synapses related to preexisting
contents despite ongoing plasticity, and suggests how nervous systems could incrementally learn and exploit temporally precise
Poisson rate codes.

Significance statement
Activity-dependent changes in synaptic efficacy are thought to underlie learning. While ongoing synaptic plasticity is necessary
for learning new content, it is detrimental to the traces of previously acquired memories. Here, we show how memories
for spatiotemporal patterns can be protected from overwriting. A combination of biologically plausible synaptic plasticity
mechanisms turns single neurons into detectors of statistically dominant input patterns. For networks, we find that memory
stability is achieved when the patterns to be learned are temporally sloppy and noisy, as opposed to being frozen. This variability
drives the relevant synaptic weights to large efficacies, where they become self-reinforcing and continue to support the initially
learned patterns. As a result, such a network can incrementally learn one pattern after another.

Introduction

Memory persistence depends on the stability of synaptic weight patterns in the neuronal networks that encode memories1.
In order to learn from and adapt to new experiences, however, a brain is required to be plastic as well. In fact, plasticity is a
permanent mechanism, and neurons constantly modify their synapses also to fire at the desired biological firing rate2, 3. Thus,
it is essential to investigate how neural networks maintain stability in the face of ongoing plasticity to understand learning,
memory consolidation and retrieval.
Moreover, deeper insights into the balance between stability and plasticity in biological neural networks has the potential to
lead to the development of more robust and efficient artificial neural networks. In particular, stable networks may fail to learn
new information, while hyperplastic networks may suffer from forgetting, which occurs if previously learned information is
"forgotten" when new information is learned.4–6 Therefore, it is a matter of question what mechanisms are required for a neural
network to be both stable and plastic, the notorious so-called stability-plasticity dilemma (SPD)7.
In the past biologically more or less plausible algorithms were proposed for learning spatio-temporal spike patterns. A basic
Tempotron can distinguish between patterns based on their duration and synaptic time constants8, however, utilizes a supervisory
signal. While the Tempotron provides no spike timing information, the supervised learning algorithms for Chronotrons can
train neurons to fire at specific times during a pattern9–11. Toward a biological learning algorithm, as a network always receives
input, it is required to be quiescent when receiving random input and to fire when a specific embedded pattern is present. This
can be achieved through aggregate label learning based on the N-methyl-D-Aspartate (NMDA) receptors12–14 by selecting
synapses with a sufficiently significant correlation between input and membrane potential15. Also aggregate label learning
requires some information about the presence of patterns. The selection of synapses can be done completely unsupervised
based on pre- and post-synaptic hetero-synaptic plasticity16. In fact, a combination of fundamental but realistic mechanisms,
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including synaptic scaling, Hebbian mechanisms, and hetero-synaptic plasticity, was demonstrated to allow individual neurons
to become detectors of repetitive patterns in the input without any supervision. It was found that the memory for the learned
pattern is retained if the pattern is not shown again and only noise is presented afterwards which allow for learning also rarely
presented consistent patterns. In fact, if the learned embedded patterns are not presented to the neuron and the scaling term is
large enough, all weights are scaled up and some synaptic efficacies will reach their maximal values, until the neuron fires
at the desired rate. This explains why memory is maintained when learning continues with random input patterns16. In stark
contrast, however, if a different embedded pattern is presented after learning a first pattern, this model encounters catastrophic
forgetting: the memory for the original pattern becomes lost, and the new pattern is learned. This raises the question which
mechanisms might alleviate the stability-plasticity dilemma (SPD) for neuronal networks that serve spike pattern detection.
In this study, we address the SPD in the context of spatio-temporal spike patterns. First, we identify realistic mechanisms
enabling neurons to learn spatio-temporal spike patterns. Then, we investigate the conditions for which a learned weight
distribution remains stable during ongoing plasticity without the learned patterns in the input. Finally, we find that with these
conditions new patterns are indeed learnable while the weight vectors of previously learned patterns are maintained, which
allows for incremental learning.

Results
Neurons receive input from a large number of excitatory and inhibitory neurons. For simplicity, we in the following demonstrate
our results with the simple example of 400 excitatory and 100 inhibitory neurons which all spike with Poisson statistics
and fixed rates (5Hz and 20Hz, respectively). Embedded patterns are short epochs with the same statistics, however contain
consistent patterns which either have fixed spike positions or are noisy versions of a fixed pattern. We wondered if existing
plasticity mechanisms are able to make target neurons selective for these patterns (see Materials and Methods).
The learning algorithm employs two types of synaptic plasticity for which the signs of the weights remain unchanged throughout
the learning process, i.e., Dale’s law is enforced. First, we consider homeostatic plasticity that is applied to excitatory synapses
and works to regulate the firing rate to match the biological firing rate2, 3. This means that when the long-term firing rate
exceeds the desired rate, all synapses undergo a process of down-scaling, and they are scaled up when the firing rate is lower
than desired. This synaptic scaling is crucial for the maintenance of system stability. However, because it is universally applied
to all synapses, regardless of their efficacy, it is not sufficient to identify embedded patterns, that is, spike timing is not specific
under synaptic scaling.
To determine whether a neuron has learned or memorized a particular pattern, we look at the timing of the spikes in the
post-synaptic neurons. If all output spike occur during the embedded pattern presented in the input, we can conclude that the
neuron has learned and remembered that pattern. To evaluate how well the learning mechanism and the memory recall work in
the recognition of random patterns in groups, we examine the average percentage of spikes that correctly identify the patterns,
which is denoted by R.

R =

〈
np

s (L)
ns +ζ

〉
µ

, (1)

where ns is the total number of spikes observed during a test period and np
s is the number of spikes related to the presence of the

pattern to be detected. To account also for spikes that may occur shortly after the pattern due to the finite decay time of the
excitatory synaptic kernel, the test window is extended by L ms after the pattern ends. To ensure a definitive result (R = 0) when
no spikes are observed, a small arbitrary positive value ζ << 1 is added to the denominator. The ratio is then averaged over
an ensemble of inputs denoted by µ , where each input contains the embedded patterns and independent random background
spikes.
Furthermore we consider Hebbian mechanisms of synaptic plasticity and their potential role in the self-organization of spike
pattern selectivity. Hebbian mechanisms affect both excitatory and inhibitory synapses and depend on correlations between
input kernels and deviations of the membrane potential from a given threshold. For changes in inhibitory synapses, weight
enhancement is driven by positive deflections, while negative deflections contribute to their attenuation. For excitatory synapses,
we allow only positive deflections to contribute, mimicking NMDA-dependent processes. It is well understood that without any
further constraints, this approach would lead to an instability of excitatory synaptic efficacy. This is avoided by a combination
of two simple but biologically plausible mechanisms.
First: By initially capping excitatory synaptic weights at their upper limits, unbounded growth is effectively prevented.
Second: Decreases in excitatory synaptic weights are induced by hetero-synaptic plasticity where pre- and post-synaptic
components of each synapse are modified differently. Hetero-synaptic plasticity couples the weight changes of different
synapses in such a way that the resources required for significant increases in efficacy are drawn from components with
otherwise small increases. In pre-synaptic hetero-synaptic plasticity a large increase of a pre-synaptic component constrains or
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Figure 1. Learning of one embedded pattern. A: the input activity and B: membrane potential of a neuron in response to input
from 500 afferents, with 80% excitatory and 20% inhibitory neurons. The excitatory neurons fired at a rate of 5 Hz, while the
inhibitory neurons fired at 20 Hz. A 50 ms random pattern is embedded in the red area between two black vertical lines. The
membrane potential of the neuron is in black trace showing that learning reduced fluctuations in the membrane potential
outside the embedded pattern, compared to the case where the weights were learned from the random background alone. As a
result, two spikes occurred during the embedded pattern time, between the vertical black lines. The green line represents the
resting potential, the red line represents the threshold, the blue line represents the membrane potential after weight initialization
by learning with random patterns only, and the black line represents the membrane potential after learning. C: Learning
performance R versus learning cycle, for L = 0 and L = 15 ms (based on an average of 500 simulations).

even inverts a potential increase of all synaptic components originating from the pre-synaptic neuron to which these components
belong. In post-synaptic hetero-synaptic plasticity it is the post-synaptic neuron that provides the limited resources for
efficacy increases such that a substantial increase in one post-synaptic component comes at expense of the other post-synaptic
components that target the same neuron. Note that these implementations of hetero-synaptic plasticity do not imply strict
normalization of excitatory weights (see Materials and Methods).

1 Single post-synaptic neuron, excluding pre-synaptic hetero-synaptic plasticity
With the mechanisms mentioned above (for details see Material and Methods), we first determine whether a single post-synaptic
neuron has the ability to learn embedded patterns based on post-synaptic hetero-synaptic plasticity. We then investigate the
stability and plasticity of the system.
Figure 1A shows the membrane potential of the neuron before and after learning a random fixed pattern of length 50 ms that
has the same statistics as the random background. Note that spikes are elicited already before learning the pattern because we
always initialize the weights by applying the plasticity mechanisms with random spike patterns with the same statistics (Poisson
process with fixed firing rates: 5Hz for the 400 excitatory input neurons, and 20 Hz for the 100 inhibitory input neurons).
Thus, the post-synaptic neurons already fire with average rate r0, mainly due to synaptic scaling before the training patterns
are presented. The embedded patterns used for the subsequent learning are taken from the same processes for inhibitory and
excitatory neurons, but are fixed and repeated in every stimulation. Figure 1C shows that the R-value, used as a measure of
convergence, is approaching one. This shows that the neurons learn to fire only when presented with the embedded pattern and
remain inactive otherwise. When the test window is extended by L =15 ms, the performance becomes perfect. To evaluate the
robustness and stability of the memory trace over time, the embedded pattern used for training is not presented to the neuron,
and learning continues (figure 2).
Figure 2A shows that after 20,000 learning cycles with only random input spikes and without the learned embedded pattern,
still over 80% of the spikes would occur during the embedded pattern, exceeding the chance level of 0.05 by far. With realistic
parameters the memory in this simulation would persists for over 5 hours without any decay or diffusion of the weight vector.
This striking stability is explained by synaptic scaling that scales the excitatory synaptic efficacies up until a predetermined
long-term firing rate is reached also for the random patterns (as shown by the red line in figure 2B). Weights are only scaled
because the random inputs lack structure and therefore do not lose their selectivity for the learned pattern. That is, the weight
vector mainly becomes larger and when the learned pattern is presented (only for testing) the neurons fire far more spikes,
resulting in a much higher firing rate (as shown by the green line in figure 2B). To further evaluate this result, we consider
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Figure 2. A: R as a memory criterion versus the learning cycle without learned patterns in afferents, learning continues, and
every 50 cycles, learning is paused, and the learned pattern is placed in the background. Then R is computed as a memory
criterion. B: Number of spikes versus learning cycle; the post-synaptic neuron elicits more spikes when the embedded pattern is
in the afferents (green) than in the absence of the pattern (red). (C and D) Without learned patterns in afferents, learning
continues. C: Average of the ratio of the norm of the current weight vector divided by the norm of the learned pattern weight
vector (w0). D: Average of the cosine between the current weight vector and w0 E: First, neurons learned to fire at 2 Hz, while
there was no embedded pattern in afferents until the learning cycle 5000 (WB). Then, in each simulation, an embedded pattern
is present in the afferents for 10,000 learning cycles (WBP). Next, there is again no embedded pattern in afferents for 20000
learning cycles (WBPB). Finally, there is again the original embedded pattern in the afferents for another 20000 learning
cycles(WBPBP). The scatter plot from all simulations demonstrates that most of the weights remain roughly the same, i.e.,
learning a pattern leads to a fixed point in weight space. F: The neurons first learn the first embedded pattern for the 10000
learning cycles, and then there is another different embedded pattern (the second pattern) in afferents for another 10000
learning cycles. This figure shows the R-value for the second 10000 in learning cycles. This figure is based on an average of
500 simulations.
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Figure 3. Representation of four embedded patterns by seven post-synaptic neurons. Ω versus learning cycle (There are 7
post-synaptic neurons). Red and Blue lines: Each pattern is shown in each learning cycle in a fixed position. Green and Gray
lines: Each pattern is shown in the epoch with the probability of 1/4 at a random position. Note that in this case some learning
cycles have no embedded pattern in the epoch. Also, we randomly chose locations from
([85 85+Lem), [175 175+Lem), ...[895 895+Lem] ms) to position the embedded patterns. (The data are from every 50’th
learning cycles. This figure is based on the average of 500 simulations.)

the cosine of the weight vector from last learning cycle with patterns embedded in the input and each further learning cycle
with random spikes alone (i.e. without the learned pattern in the input, figure 2C). The simulation results show that the cosine
remains constantly high, which demonstrates the stability of the memory. The same procedure is used to calculate the norm of
the weight vector, showing that the unstructured data leads to a gain in synaptic strength (figure 2D). However, the memory is
stored in the same synapses because when we subsequently use the embedded pattern again for relearning, the weights return to
their fixed point (figure 2E). However, this system is not able to preserve the memory for the first pattern if another different
embedded pattern is repeatedly presented (figure 2F).

2 Neural network, including Pre-synaptic hetero-synaptic plasticity

In principle, a single neuron is capable of learning many embedded patterns along the lines of the Tempotron8. However,
a system with only one post-synaptic neuron cannot identify when and which patterns are in the input. This would require
and ensemble of output neurons which acquire different selectivities. It was already shown that for this purpose pre-synaptic
hetero-synaptic plasticity is essential16.
For investigation of the conditions under which plasticity and stability meet, we consider a simple network with several
post-synaptic neurons and include also pre-synaptic hetero-synaptic plasticity.
We find that synaptic competition induced by pre-synaptic hetero-synaptic plasticity is sufficient to faithfully represent pattern
identity and order in an ensemble of target neurons with shared input from a set of input neurons if during learning all patterns
are presented in each epoch.
To quantify this, we use a matrix-based approach to evaluate the performance of the population of neurons. The matrix has
rows representing neurons and columns representing patterns, with matrix elements set to 1 if a neuron is active for a particular
pattern and 0 otherwise. The rank of this matrix reflects the number of linearly independent row vectors. We propose a
performance measure, denoted Ω, which is the ratio of the matrix rank to the number of patterns. When the rank of the matrix
is equal to the number of patterns, it indicates that the population of neurons accurately represents the presence and order of the
patterns in a stimulus. In this study, Ω is utilized as a criterion for evaluating learning, plasticity, and stability.
As a simple example, we trained a network with seven post-synaptic neurons using four embedded patterns in each training
epoch. We found that when the pre-synaptic competition was present, all four patterns were selectively represented by the
neurons, regardless of their consistent presentation (figure 3). In the absence of pre-synaptic competition, the patterns were not
effectively distributed among the neurons16. Therefore, hetero-synaptic plasticity promotes the functional specialization of
output neurons to different subsets of patterns, facilitating the self-organization of a precise representation of the "which" and
"when" aspects of input patterns by the neuronal ensemble.
The fact that specialization (Ω → 1) takes place also when each pattern is shown intermittently (i.e., not in each epoch, the
green line in figure 3) indicates the robustness of memories not only against the absence of patterns but also against the presence
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Figure 4. Learning, Plasticity and Stability. Green: Poisson spike rate. Red: Initial fixed pattern. A, B, and C represent
learning (0 to 2), plasticity (2 to 3), and stability (2 to 1), respectively. Blue lines show baselines. Green and red lines show the
performance of learning with Poisson rate patterns and the original noiseless and temporally precise patterns, respectively. A:
After learning noise, the network continues learning with two different embedded patterns for 30,000 learning cycles. B: The
network continues learning with the third embedded pattern, while the first two are no longer shown. C: The network continues
learning with only one of the embedded patterns, with initial conditions from the last learning cycles of A. Every 50 learning
cycles, learning is stopped and Ω is computed for all two embedded patterns in A and C, and for all three embedded patterns in
B. There are 7 post-synaptic neurons and the results are averages over 500 simulations.

of different patterns. This raises the question under which conditions true incremental learning is possible without overwriting
previous memories. We find that this is indeed the case, however only when the patterns are given as Poisson rate modulations,
as opposed to precise pattern repetitions.
To generate a temporally modulated Poisson spike pattern, a given fixed time-coded spike input of each afferent was converted
into rate-coded input by first convolving of each spike with a Gaussian distribution characterized by a mean of zero and a
standard deviation of 2 ms. The resulting function then served as a modulated firing rate for a Poisson point process. This
procedure generates for each given fixed pattern an ensemble of spatio-temporal patterns with the statistics of a Poisson point
process including failures and a Fano factor equal to 1. These modified patterns were then used for learning, plasticity and
stability purposes.
In figure 4A, the initial learning phase involves 7 target neurons learning two embedded patterns. Subsequently, in figure 4B,
learning continues with a third embedded pattern, without presenting the previously learned patterns again. The system’s ability
to recognize all patterns is tested every 50 cycles to assess memory retention. In figure 4C, we start with the initial conditions
from the last learning cycle in figure 4A, but with only one of the two embedded pattern for ongoing learning. Every 50 learning
cycles, the learning process is paused and the system’s ability to recognize both initial patterns is tested.
To understand the superior stability of memories for patterns when learned from temporally modulated Poisson rate patterns

we investigated the weight matrix w = ab and its components a and b. In particular, we tested the hypothesis that stability
relates to the orthogonality of the weight vectors. As a graded measure O of ’orthogonality’ we consider the volume spanned by
the M weight vectors in the N-dimensional input space. We normalized the weight vectors leading to a matrix Y . The volume is
then given by the product of the square roots of the M largest eigenvalues λi of X = YY T :

O =
M

∏
i=1

|λi(X)|
1
2 (2)

If the M normalized vectors are all mutually orthogonal this volume is O = 1, if one or more weight vectors are linearly
dependent on the others this volume collapses to zero (O = 0). Figure 5 A, B and C shows that without patterns in the input the
weights are close to zero which is expected for random positive vectors. However, when then two rigid patterns are learned
the weight vectors become more orthogonal while the orthogonality is close to one for jittered noisy (Poisson rate) patterns
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Figure 5. Orthogonality with and without pre-synaptic hetero-synaptic plasticity for original fixed patterns and Poisson spike
rates. Red: with pre-synaptic hetero-synaptic plasticity and original patterns. Green: with pre-synaptic hetero-synaptic
plasticity and Poisson spike rates. Blue: without pre-synaptic hetero-synaptic plasticity and original patterns. Gray: without
pre-synaptic hetero-synaptic plasticity and Poisson spike rates. (A) The orthogonality measure is applied to the overall synaptic
efficacy (i.e. w = ab), (B) to the pre-synaptic part (i.e. a), and (C) to the post-synaptic part (i.e. b). Initial weights: Random
weight vectors in the first learning cycle. Noise: inputs are random spikes for 2000 learning cycles. 0+2: After learning noise,
the network continues learning with two distinct embedded patterns for 30,000 learning cycles. 2+1: The network continues
learning with the third embedded pattern, while the first two are no longer shown (30,000 learning cycles) and so on. D:
Averaged Ω with pre-synaptic hetero-synaptic plasticity and Poisson spike rates (green dots) and the corresponding baseline
line in blue dots. There are 7 post-synaptic neurons and the results are averages over 500 independent simulations.

and increases even further when subsequently a third pattern is incrementally learned. Also, we see that without pre-synaptic
hetero-synaptic plasticity the weights stay practically linearly dependent for both cases. Figure 5D shows averaged Ω far from
baseline at each incremental learning step evaluating learning, plasticity, and stability.
To better understand why the system maintains stability and plasticity simultaneously, we show the weight distribution of a
target neuron at (0+2, 2+1, and 3+1 stages) using weight sorting when the system has learned two patterns (Figure 6: the red
line is (0+2). The averaged sorted weight vectors, w = ab, for the (0+2) stage are represented by the red line. The green and
blue lines, respectively, represent the averaged weight vector for the (2+1) and (3+1) stages (using the same sorting as the
red line).As shown in figure 6, the decrease in the weight vector amount is much smaller in the learning with rate code than
in the original patterns. However, some intermediate weight vectors are amplified in noise learning. The study shows that
pre-synaptic hetero-synaptic plasticity is essential but insufficient for memory retention. The advantage of introducing noise is
that some important spikes in certain learning cycles are missed, resulting in an identical input-output correlation across all
synapses on average. As a result, the effects of synaptic scaling overshadow hetero-synaptic plasticity. As a result, large weight
vectors scale up more than when the network learns the original pattern; therefore, post-synaptic neurons search for the new
embedded pattern within smaller and zero-weight vectors.

Discussion
Selectivity for spatio-temporal patterns can self-organize in simple one-layer networks of integrate and fire neurons through a
combination of Hebbian plasticity mechanisms, synaptic scaling for excitatory synapses and hetero-synaptic plasticity16. We
found that the competition for weight increases of the pre-synaptic components of excitatory synapses that are controlled by the
pre-synaptic neuron (termed ’pre-synaptic hetero-synaptic plasticity’) have a tendency to orthogonalize the weight vectors of
the receiving neurons in input space (figure 5, 0+2). When the patterns, however, are to be learned one after the other, our
simulations demonstrate that the weights of the output neurons of a network stay fully orthogonal only if the patterns are
stochastic variants of the original pattern. We showed this by generating the training patterns from a Poisson process with
temporally modulated firing rates obtained from convolving the originally fixed pattern with a Gaussian function. In this case,
the orthogonality of the weights is preserved also when the patterns are learned incrementally. The orthogonality then supports
minimal interference with previously learned weight vectors17, 18. This novel mechanism realizes the balance of stability and
plasticity, in particular, the robustness of already present memories against ongoing learning together with the ability to absorb
new contents (4).
Take together, we proposed a biologically realistic solution to the stability-plasticity dilemma for networks that learn to
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Figure 6. Weight vector distributions for the Poisson rate (A) and for the original pattern (B). First, there is no embedded
pattern in the afferents for 2000 learning cycles. Then, there are two embedded patterns in the afferent for 30,000 learning
cycles (0+2). The red line shows the average sorted weights for this case (w = ab). Then, in each simulation, there is another
distinct embedded pattern in the afferents for 30,000 learning cycles, and the first two learned patterns are not shown, and the
average of the sorted weights is obtained in this learning cycle ( 2+1, the green line, and using the ranks from the red line).
Finally, there is again another distinct embedded pattern in the afferents for 30,000 learning cycles, and the blue line shows the
resulting weight vector at this learning cycle (using the ranks from the red line). There are seven post-synaptic neurons, and this
figure is averaged over 500 simulations.

detect spatio-temporal spike patterns without any supervision. This approach relies on the balance between excitatory and
inhibitory inputs that naturally emerges during learning16 and is believed to be necessary for maintaining memory19. However,
the dependence of the balance between stability and plasticity on the balance between excitation and inhibition remains
to be investigated. In particular, inhibitory neurons try to inhibit excitatory activity, and memory is maintained until the
excitatory/inhibitory balance is entirely destroyed and neurons burst; however, investigating this question is beyond the scope
of this paper.
To our knowledge this is the first approach towards a biologically realistic model for incremental self-supervised learning
of spatio-temporal spike patterns. Previous approaches were proposed for recurrent networks20, 21 and rate-based models17

which relied also on systematic orthogonalization of weight vectors, however by different mechanisms. Furthermore, our
approach relies heavily on mechanisms for synaptic scaling mechanism which has been also proposed before as a mechanisms
for stabilizing long term memories, however in rate based models and with a w2 dependence of scaling21 which in our case is
detrimental (not shown) for performance of learning.
Last but not least, our results align with previous research22 emphasizing the critical role of noise in the input for incremental
learning by driving weights to become orthogonal, and it serves to minimize their overlap for different output neurons. In
summary, we have shown that accounting for noise and hetero-synaptic plasticity is sufficient for incremental learning.

Materials and Methods
Signal transmission is more effective when pre-synaptic neurons release more neurotransmitters and fire more frequently, and
also when post-synaptic neurons have more receptors and sensitivity. Therefore, the efficacy of a synapse,w ji (pre-synaptic
neuron i targeting a post-synaptic neuron j), can be expressed in terms of the combination of pre-synaptic and post-synaptic
components.

w ji = ai jbi j. (3)

where the resources for ai j are provided by the pre-synaptic neuron i and bi j is supported by the post-synaptic neuron j. In the
following we assume N pre-synaptic neurons (i = 1, ...,N) and M post-synaptic neurons ( j = 1, ...,M).
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The efficacy of a synapse can be modified separately in the pre- and the post-synaptic components through synaptic plasticity,
resulting in changes in the total efficacy of the synapse in transmitting signals between neurons.

dw ji

dt
= ai j

dbi j

dt
+

dai j

dt
bi j. (4)

Here, we first consider the homeostatic plasticity of synaptic strength to maintain the overall stability of neuronal activity,
referred to as synaptic scaling, in order to modify the synapse. It has been shown that neurons regulate their excitatory synaptic
weights to achieve the biologically desired firing rate, r0

3, 23. It allows the neuron to decrease or increase synaptic effectiveness
when the long-term firing rate, r j, is greater or less than r0.

τE
daE

i j

dt
=−aE

i j +αaE
i jtanh(r0 − r j). (5)

τE
dbE

i j

dt
=−bE

i j +αbE
i jtanh(r0 − r j). (6)

where α and τE are the scaling factor and time constant, respectively. Note that the sub- and superscript E indicate excitatory
synapses. The long-term firing rate r j is determined by

τr
dr j

dt
=−r j +∑

t l
i

δ (t − t l
i ). (7)

where τr is the time constant for the long-term firing rate. At the time t l
i there is a spike in the afferent i, and at that time the

afferent i begins to send input to the post-synaptic neuron j equal to w ji ×K.
The kernel shape, K, is an alpha function with the equation:

K(t − t l
i ) = Inorm

[
exp

(
−

t − t l
i

τd

)
− exp

(
−

t − t l
i

τr

)]
θ(t − t l

i ). (8)

In this equation, θ represents the Heaviside step function. τr and τd denote the time constants for rise and decay respectively
associated with the synaptic current, with different values for excitatory (τE

d ,τ
E
r ) and inhibitory synapses (τ I

d ,τ
I
r ). The term

Inorm = ηη/η−1

η−1 normalizes the amplitude of K to unity, where η = τd
τr

. Note that the parameters are chosen to be as close to the
biologically plausible range as possible.
While synaptic scaling is effective in stabilizing the firing activity of a network, it is insufficient for learning the information
encoded in the input. Therefore, a correlation-based learning rule inspired by the N-Methyl-D-Aspartate (NMDA) receptor12–14

has been proposed in previous works15, 16. In the weakly supervised learning rule15 neurons are able to learn embedded patterns,
and in 16 an unsupervised version following Dale’s rules and operate in an unsupervised manner16.
In more detail, the correlation between the input from pre-synaptic neuron i and output membrane potential of post-synaptic
neuron j, denoted as Vj(t), provides the signal for modifying the synaptic strength, denoted as εi j(t) which is referred to as
eligibility15:

τε

dεi j(t)
dt

=−εi j(t)+ϑi j. (9)

In this context, ϑi j(t) represents the correlation between the input from the afferent i and the output neuron j, reflected by the
membrane potential Vj.

ϑi j(t) =
ni

∑
l=1

K(t − t l
i ){[Vj(t)−V0]++q[Vj(t)−V0]−}. (10)

In the simulations discussed in this paper, V0 represents the modification threshold24 and is consistently set to zero. The
parameter q takes a value of zero for excitatory afferents and a value of 1 for inhibitory afferents16. During each time step, all
spikes ni in the i-th afferent (eliciting before time t) are employed to update the synapses. Note, Vj(t) is described by the simple
leaky integrate and fire neurons differential equation25, 26:

τm
d
dt

Vj(t) =−Vj(t)+RmIext
j (t). (11)
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where τm and Rm are the membrane time constant and resistance, respectively. The external current, Iext
j , is determined by the

synaptic strength of the excitatory and inhibitory afferents, denoted by wE
ji and wI

ji, respectively:

Iext
j (t) =

NE

∑
i=1

wE
ji ∑

t l
i <t

KE(t − t l
i )−

NI

∑
i=1

wI
ji ∑

t l
i <t

KI(t − t l
i ). (12)

where NE and NI represent the number of excitatory and inhibitory afferents, respectively, and N = NE +NI . The external
current is determined by the convolutions of the input spike trains with their respective synaptic kernels (Eq. 8), KE(t) and
KI(t).
Despite the continuous positive signal in excitatory synapses, hetero-synaptic plasticity provides selectivity and specificity in
this context. Here, we consider that the resources required to enhance the pre-and post-synaptic components ai j and bi j of the
weights w ji = ai jbi j are inherently limited. As a result, we propose that these resources are distributed competitively, reflecting
the limited availability and competitive nature of their allocation. The hetero-synaptic plasticity of both pre- and post-synaptic
regions is a function of the induced eligibility signal. The post-synaptic hetero-synaptic plasticity, obtained by subtracting the
mean of the eligibilities, affects changes in the post-synaptic components bi j.

ε̃i j = εi j −
1
N

N

∑
i=1

εi j. (13)

Nevertheless, it is hypothesized that the signals governing the changes in the pre-synaptic components ai j depend on the
magnitude of the potentiation observed on the post-synaptic side16. The signal for pre-synaptic competition then is implemented
by subtraction of the mean.

Bi j = [ε̃i j]+−
θ(∑ j θ([ε̃i j]+)−1−ζ )

∑ j θ([ε̃i j]+)+ζ

M

∑
j=1

[ε̃i j]+. (14)

where θ is a Heaviside function, ζ is a small positive number (ζ << 1), and M is the number of post-synaptic neurons.
Therefore

τE
daE

i j

dt
=−aE

i j +αaE
i jtanh(r0 − r j)+ cEBi j. (15)

τE
dbE

i j

dt
=−bE

i j +αbE
i jtanh(r0 − r j)+ cE

ε̃i j. (16)

where τE is the time constant for excitatory synapses and cE the learning rate. For inhibitory neurons:

τI
daI

i j

dt
=−aI

i j + cI
εi j. (17)

τI
dbI

i j

dt
=−bI

i j + cI
εi j. (18)

where τI is the time constant for inhibitory synapses and cI is the learning rate. Note that the sub and superscript I indicate
inhibitory synapses. We consider cE to be smaller than cI ; therefore, inhibitory neurons can adapt more quickly to maintain
balance at both global and detailed levels, and excitation cannot conflict with the relatively slow limiting mechanism of synaptic
scaling16.
Here, the Hebbian plasticity of inhibition is essential for maintaining a global balance within neural systems. The neuron is
placed in a fluctuating regime by this balance, where the excitatory and inhibitory weights exhibit significant strength. Once this
balance is achieved, further weight adjustments driven by the stochastic background restrict the weights to a fixed point balance
via a random walk process. Furthermore, the integration of a frequent pattern induces an additional drift that systematically
shifts the weights away from the fixed point until the target number of spikes is induced by the pattern alone, independent of the
response of the background activity 16, 27.
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Simulation Details
In all simulations, 80% of the afferents are excitatory and 20% inhibitory (400 excitatory and 100 inhibitory neurons). Afferent
and embedded pattern spikes are generated randomly with Poisson point processes in which the excitatory rate (rE ) is 5 Hz, and
the inhibitory rate (rI) is 20 Hz. In each learning cycle, the learning epoch length is 1000 ms. To optimize the simulations,
changes over epochs e with a duration of T ms are considered instead of implementing weight changes at each integration step.
Consequently, equation (10) is replaced by

ϑ
l
i j =

∫ T

0
dtK(t − t l

i )[Vj(t)−V0]++q[V j(t)−V0]−. (19)

Differential equations of this form:

τ
dy
dt

=−y+ x. (20)

Transition to a moving average:

y(e+1) = γy(e)+(1− γ)x̂(e). (21)

where x̂(e) is the sum of contributions of x in each epoch e and γ ≃ 1−T/τ .
Synaptic scaling relies on firing rates averaged over long periods of time. In online learning, a low-pass filter is used to ensure
that the rate estimate r j(c+1) of the post-synaptic neuron j for learning in epoch e+1 is based on the running average of the
actual rates r̂ from previous epochs:

r j(e+1) = γ
∗r j(e)+(1− γ

∗)r̂ j(e). (22)

The parameter γ∗ is set to 0.9 for all numbers, which corresponds to a time constant of 10s. Although smaller values do not
change the asymptotic results, this value allows for faster convergence.
Plasticity is not immediate; it depends on the accumulation of signals for weight changes over time, called ’eligibility’15. A
low-pass filter is used to implement this:

εi j(e+1) = γεi j(e)+(1− γ)ϑ̂i j(e). (23)

The initial conditions are r j(0) = 0 and εi j(0) = 0. The parameter γ is 0.99 for all figures, which corresponds to a time constant
of about 100s. This parameter limits the learnability of infrequently presented patterns patterns16.
Due to structural limitations and other factors, synaptic strength cannot increase indefinitely. As a result, we restrict weight
changes to prevent excitatory synapses from exceeding the upper limit of one.
Dale’s rule states that excitatory and inhibitory synapses cannot convert into each other. Therefore, we consider synaptic
weights to be zero if weight changes during learning would change their type. This ensures that subtracting the mean in Eq (13)
and Eq (14) does not affect the type of a synapse. We use the Euler method with a time step of ∆t for the numerical integration
of Eq (12), and the associated parameters are available in table 1.
Note, for the network model, the initial synaptic efficacies ai j and bi j are drawn from a Gaussian distribution with a mean of
0.1 and 10−2 standard deviations, while negative values are set to zero. In the single post-synaptic neuron model, they are
drawn from a Gaussian distribution with a mean of 10−2 and standard deviations of 10−3, with negative values set to zero. In
cases where there is only a single post-synaptic neuron, all values of ai j are initially set to 1. Since there is no pre-synaptic
hetero-synaptic plasticity, these ai j values will remain at their initial value of 1, regardless of the number of learning cycles.
In the epoch-based approach, we use the following equations, which can be linearized to obtain the continuous version:

δwi j = ai jδbi j +δai jbi j +δai jδbi j. (24)

Inhibitory synapses

δaI
i j = cI

εi j. (25)

δbI
i j = cI

εi j. (26)
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Table 1. List of parameters.

Symbol Description Value

τm Membrane time constant 15 ms
Rm Membrane resistance 1
τE

r Rise time of excitatory currents 0.5 ms
τ I

r Rise time of inhibitory currents 1 ms
τE

d Decay time of excitatory currents 3 ms
τ I

d Decay time of inhibitory currents 5 ms
rE Rate of excitatory neurons 5 Hz
rI Rate of inhibitory neurons 20 Hz
N Number of pre-synaptic neurons 500
NE Number of pre-synaptic excitatory neurons 400
NI Number of pre-synaptic inhibitory neurons 100
cI Inhibitory learning rate 10−3

cE Excitatory learning rate 0.9×10−3

∆t Time step 0.1 ms
α Scaling factor 0.01
T Epoch duration 1000 ms
χ Decay term 10−4

Excitatory synapses

δaE
i j =−χaE

i j +αaE
i jtanh(r0 − r j)+ cEBi j. (27)

δbE
i j =−χbE

i j +αbE
i jtanh(r0 − r j)+ cE

ε̃i j. (28)

where χ is a decay term.
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ABSTRACT

The relationship between ratios of excitatory to inhibitory neurons and the brain’s dynamic range of cortical activity is crucial.
However, its full understanding within the context of cortical scale-free dynamics remains an ongoing investigation. To provide
insightful observations that can improve the current understanding of this impact, and based on studies indicating that a fully
excitatory neural network can induce critical behavior under the influence of noise, it is essential to investigate the effects
of varying inhibition within this network. Here, the impact of varying inhibitory-excitatory neuron ratios on neural avalanches
and phase transition diagrams, considering a range of synaptic efficacies in a leaky integrate-and-fire model network, is
examined. Our computational results show that the network exhibits critical, sub-critical, and super-critical behavior across
different synaptic efficacies. In particular, a certain excitatory/inhibitory (E/I) ratio leads to a significantly extended dynamic
range compared to higher or lower levels of inhibition and increases the probability of the system being in the critical regime.
In this study, we used the Kuramoto order parameter and implemented a finite-size scaling analysis to determine the critical
exponents associated with this transition. To characterize the criticality, we studied the distribution of neuronal avalanches at
the critical point and found a scaling behavior characterized by specific exponents.

Introduction
The balance between excitatory and inhibitory neuronal activity, commonly referred to as the E/I balance, is a fundamental
feature of neural network operation that has a significant impact on network dynamic stability, modulation of neural responses,
and facilitating information processing1–3. The balance of these synaptic membrane currents is widely recognized as essential
for the spontaneous activity of neurons and their responses to sensory stimuli4–10. On the other hand, disturbances of the
cortical E/I balance in the brain emerged as a contributor to neurological diseases, such as epilepsy11, Parkinson’s disease
(PD)12, Tourtette’s syndrome13, autism14, and schizophrenia15–17.
Although synaptic plasticity can balance a neuron’s input after a synaptic connection18, 19, hyper-excitation could theoretically
occur if the neural network has a significantly higher proportion of excitatory neurons than inhibitory neurons. On the other
hand, an excess of inhibitory neurons can inhibit normal brain activity, resulting in reduced responsiveness or diminished
functionality of neural circuits.1, 20, 21 Therefore, maintaining an optimal ratio of excitatory and inhibitory neurons is critical
to ensuring a balanced interplay of excitation and inhibition in the brain. In addition, experimental studies have shown that
approximately 20% of neurons are inhibitory GABAergic neurons in the cortex22–28.
The activities of inhibitory neurons have been identified as the source of various oscillatory rhythms29, and pharmacologically
blocking them causes an epileptic seizure in cortical activity30. Moreover, it has been shown that excitation and inhibition are
balanced in detail and globally1, 2, 4, 5, 18, 31, providing a basis for neuronal oscillations and avalanches32–34. A neural avalanche
refers to a sequential propagation of neuronal firing activity within a network in a correlated manner, initiated by the firing of a
single neuron or a small group of neurons. The neural avalanche dynamic may critically depend on the E/I balance, as shown in
experiments in cortical cultures, anesthetized rats, and awake monkeys35–37.
Neuronal oscillations and neural avalanches exhibiting global behavior embedded in neuronal activity patterns were observed in
vitro32, 36, 38 and in vivo39. Numerous studies show that optimal operations including phase synchrony36, information storage40,
communication, and information transition32, optimal communication32, 34, 41–44, transition capability34, computational power42,
and dynamic range34, 45 are found when the brain works near criticality. A critical point sets a boundary between an ordered
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and a less ordered state with different scaling behaviors38. At criticality, neural networks display power law distribution in a
statistical collective behavior of the system, for instance, neural avalanche.
Studies show that avalanche size, and lifetime distributions are indicators of long-range correlation32. The widely varying
profile of neural avalanche distribution in size is described by a single universal scaling exponent, β in size, P(S)∼ Sβ , and a
single universal exponent in duration, τ , P(T )∼ T τ , where S and T denote the size, and the duration of avalanches, respectively.
Power-law distributions in neuronal avalanches appeared in cortex slice cultures of rats in vitro35, 36, rat cortical layer 2/3 at the
beginning and end of the second week postnatal46, Local Field Potentials (LFPs) of anesthetized cats47, 48, newborn rats36, and
monkeys39, 48.
Despite numerous experiments and modeling studies aimed at establishing the plausibility of the critical brain state and
exploring the E/I ratio as a fundamental mechanism in brain dynamics, the impact of inhibition on both dynamics remains to be
further investigated.
In this study, we address this problem by quantitatively analyzing the properties of a phase transition, including the order of the
transition and its dynamic range, by varying the inhibition percentages systematically.
The order parameter is crucial in describing the transition between states in both critical equilibrium phenomena, e.g. Ising
magnetic, which is a disordered-ordered transition49, and systems out of equilibrium phase, e.g. neural systems, which is a
desynchronized-synchronized transition50–52 defined based on the Kuramoto order parameter53–55.
In particular, we recently introduced the Kuramoto-based order parameter spike-phase coupling (SPC), which can detect the
different levels of network-level synchrony in a purely excitatory leaky integrate-and-fire network56. Here, the SPC refers to
the coupling between spike sequences57, 58 and the phase of temporal fluctuations of a macroscopic observable of the network,
namely the population average voltage (PAV )59. The study showed that an estimation of the strength of SPC, represented as
’m’, is equal to the average of the instantaneous phases of PAV for all spikes in the firing time series throughout the entire
neuronal network56. The m-value is zero when synaptic efficacy, K, is minimal and reaches one when it is substantial, resulting
in complete synchronization of the network56.
In this study, we take into account the inhibition in the network and show a significant level of inhibition can prevent the network
from being synchronized. In particular, when there is a dominance of excitation in a network with few or no inhibitions, the
changes in m with respect to K are usually the same. This means that a significant value for K can result in full synchronization
(m ≈ 1) in the network. In contrast, when inhibition is the dominant factor, complete synchronization is impossible, and m
saturates at values below one, regardless of increasing K. As inhibition increases, m remains the same at a small value for all
levels of synaptic efficacy.
Moreover, in line with results from previous studies suggesting that a balance of excitation and inhibition in cortical networks
promotes criticality, thereby maximizing dynamic range and improving input processing35 we investigate the effects of varying
the ratio of excitatory to inhibitory neurons, focusing on the dynamic range. It is shown that certain inhibition ratios increase
the probability of the system operating in the critical regime, thereby extending its dynamic range.

Results
In the studied network, both excitatory and inhibitory neurons receive a Gaussian input characterized by an identical mean and
standard deviation. The input’s mean value effectively maintains the membrane potential below the threshold, yet the non-zero
standard deviation or noise can stochastically drive the neurons to the threshold. Once a neuron reaches or exceeds a specific
threshold, it fires and then returns to its resting state. This behavior suggests that neurons oscillate between their resting state
and activation threshold. In this research, the activation threshold and resting state are represented by numerical values one and
zero, respectively. When excitatory neurons fire, they increase the potential of their neighboring connections by an amount
K, while inhibitory neurons decrease it by the same amount. To investigate balance and criticality, we use two key variables:
coupling strength (K) and inhibitory percentage (I). Specifically, the network displays critical behavior when the coupling
strength (K) is equal to the critical value (Kc). The neurons are distributed on a lattice with periodic boundary conditions and
simulations are performed on lattices with N = 1600, 2500, and 3600 neurons where N = L×L for T = 2×107 time steps
(see Methods section).
Here we first, compare the spike and PAV time series generated by the model for different K values. The PAV is defined as
follows:

PAV (t) =
1
N

N

∑
i=1

xi(t) (1)

where N denotes the total number of neurons within the network, while xi(t) refers to the membrane voltage of the i′th neuron
at time t . Fig. 1 shows spikes and the associated PAV for three different synaptic efficacies when 20 percent of the neurons
in the network are inhibitory (I = 20). This illustration shows that the branching pattern becomes apparent when the system

2/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569071doi: bioRxiv preprint 



0

50

(a)
K = 0.005 (sub-critical)
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K = 0.022 (critical)
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 time step 106
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(c)
K = 0.045 (super-critical)

Fig. 1. The time series data is presented for spike number (in red) and the product of PAV and L (PAV multiplied by L, denoted
in green): (a) in the sub-critical state with K = 0.005, (b) at the critical point with K = 0.022, and (c) within the super-critical
domain at K = 0.045. The network’s size (L) is 50, which corresponds to a total of 2500 neurons, of which 20 percent are
inhibitory.

operates in the critical and super-critical regimes. In contrast, within the sub-critical regime, all PAV fluctuations are suppressed
close to the threshold of the neuron. This behavior is a result of the irregularities observed in the spike patterns. The following
sections provide detailed explanations on how to determine critical, sub-critical, and super-critical regimes. Additionally, the
sections shed light on the contributions of excitatory and inhibitory neurons to the overall network dynamics, with a focus
on the order parameter and the analysis of neural avalanches. The first step involves determining the transition type based on
varying percentages of inhibition. Next, neural avalanche analysis is conducted to investigate the impact of inhibitory neurons
on the observed behaviors.

Order parameter and dynamical range
This section will begin by reviewing the definition of the order parameter for a pure excitatory neural network56. The mentioned
definition has a crucial role in quantifying the synchronization within the network. Moreover, by employing the order parameter,
we can characterize the critical points where the network transitions between various states of synchronization. The systematic
comparison of different states within the network is possible by employing this parameter, particularly when considering
various inhibition levels. Such comparative analysis enhances our understanding of how the percentage of inhibitory neu-
rons affects the overall dynamics and helps develop a comprehensive understanding of the network’s behavior. Here, SPC
measures the connection between the PAV and the timing of neuronal spikes. To calculate the SPC, three steps will be performed:

1. The instantaneous phase of PAV is calculated for each spike in the spike train of every neuron in the network. This is
performed using the Hilbert transform, and the results are then averaged to obtain a mean instantaneous phase value for j′th
neuron in the network (M j).

M j =
1

n j
s

n j
s

∑
l=1

exp(iφ j
l (t)) (2)

where n j
s shows the number of spikes for neuron j and i =

√
−1. Here, φ

j
l (t) is the instantaneous phase of PAV corresponding

to the l′th spike of the j′th neuron and is extracted from the Hilbert transform of the PAV time series.
2. The phase-locking value (PLV ) is calculated by averaging over all M j values60.

PLV (N) =
1
N

N

∑
j=1

M j (3)
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where N is the number of neurons in the network (N = L×L). The PLV functions as a synchronization metric. A PLV value of
zero indicates either a lack of spikes or complete desynchronization (when ns → ∞), while a value of one (in absolute terms)
indicates perfect phase locking and synchronization between the spikes. This step assists in evaluating the alignment of the
phases of different spikes, which provides a measure of coherence within the system.
3. The absolute value of PLV is used to estimate the SPC. This absolute value is used as the order parameter (m) to describe the
synchronized behavior of the network.

m(N) = |PLV (N)| (4)

Fig. 2a shows variations of order parameter, m, with respect to the control parameter, K for a particular lattice size, L = 40. It
shows that including inhibitory neurons has a dual effect. First, it widens the transitional region between de-synchronized and
synchronized states, effectively increasing the range of conditions under which these transitions occur (the horizontal length
between the stochastic and synchronized parts of the transition region expands). Second, it leads to a reduction in the value
of the parameter m, especially for stronger coupling strength at high levels of inhibition. To further investigate, we evaluate
this expansion by the dynamic range, providing insight into how the varying ratio of excitatory and inhibitory neurons affects
the system’s behavior. While the transition between states remains continuous across all examined ratios, a distinct pattern
emerges, specifically at an inhibitory ratio of 20%. To quantify these transitions for different inhibition percentages, we employ
the dynamical range, denoted by ∆h:

∆h = 10log10

(
K(0.9)
K(0.1)

)
(5)

Here, K(x) is the value of K for which the order parameter curve attains a value that is x times the maximum of m, or more
specifically:

m(K(x)) := x ·max(m) (6)

The calculation of the dynamic range for different inhibitory percentages and lattice sizes requires determining the order
parameter at higher K, where it becomes saturated and independent of K, as shown in Fig 2b. The black dashed lines in the
figure assist in identifying the key parameters K(0.9) and K(0.1), which are then used to compute the dynamical range, as given
in Equation (5). Additionally, Fig 2c shows the dynamic range as a function of different inhibition ratios. The figure shows that
the dynamic range reaches its maximum value for I = 20%, a result that is consistent for all lattice sizes examined. The results
of the study show that while inhibitory neurons in the system may initially prevent or postpone synchronization, the introduction
of an optimal level of inhibition can actually expand the dynamic range of the system. This is particularly noticeable when the
control parameter is significantly larger than that of networks with other inhibitory percentages and the system is still not in
synchronized phase. Therefore, inhibition performs a subtle function, both restricting and perhaps enhancing the operational
flexibility of the system. The depicted transition between different states of synchronization is continuous, highlighting the
gradual shift in behavior as the parameters vary. We prove that this system undergoes a continuous transition and critical
behavior by using the finite-size scaling theory. This approach provides a better and more detailed comprehension of the
system’s behavior. In this context, we examine the interplay between the order parameter, coupling strength, and lattice size,
considering the network’s composition of 20 percent inhibitory neurons. Here, the relationship between the order parameter,
coupling strength, and lattice size is assumed as follows:

m(L,K) = L−β/νM (|K −Kc|L1/ν) (7)

β and ν are the critical exponents corresponding to order parameter and correlation length, respectively. M (x) is the scaling
function. For systems of large sizes, the behavior of M (x) is expected to be as follows:

M (x)∼ xβ as x → ∞ (8)

In the infinite size limit when K > Kc, the following relation is necessary for a continuous phase transition.

m ∼ (K −Kc)
β (9)

Fig. 3a shows the order parameter as a function of the control parameter parameter K for inhibition level of 20% at lattice sizes
L = 40,50, and 60. Fig. 3b illustrates the collapsing of the data over a range of lattice sizes for 20% inhibition percentages.
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Fig. 2. (a) The dependence of the order parameter m on the parameter K is shown for lattices of linear size L = 40 and
different inhibition percentages: 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%. (b) The plot of m as a function of K, with
vertical lines indicating the values of K(0.9) and K(0.1) for L = 60 and an inhibition percentage of 5%. (c) Analysis of the
dynamic range ∆h over different lattice sizes and inhibition percentages.
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50, 60 and inhibition ratio 20% around the critical point. (b) Rescaled m−K curves showing collapse for different lattice sizes
and inhibition ratio 20%.
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The observed behavior shows a distinct class of universality, differing from both mean-field directed percolation with β = 1 and
ν = 0.5, and directed percolation with β = 0.580(4) and ν = 0.729(1) in 2+1 dimention61. In more detail, the result suggests
that synchronization within the system is suppressed by the inhibitory neurons’ attenuating effect on excitatory activity. The
underlying mechanisms of this effect can be understood in terms of the synchronized activity between excitation and inhibition.
Here, inhibitory inputs can balance the excitatory input received by an excitatory neuron when both types of neurons are
active simultaneously. As a result, while synchronization between excitatory and inhibitory neurons may initially prevent the
synchronized phase within the system, which is measured by the m-value, the implementation of an optimal level of inhibition
can indeed expand the dynamic range. This effect is especially noticeable when the control parameter is significantly large and
the system has not yet been synchronized. Therefore, it might be a result of a different phase between excitatory and inhibitory
activity.

Inhibition effects on neuronal avalanches
In the current study, the introduction of inhibition into the network resulted in the same type of transition from desynchronized
to synchronized behavior in a pure LIFM56. However, this led us to question how inhibition operates within the coupling
domains, leading to the emergence of criticality, a region we specifically call the critical domain. Our recent studies investigated
the emergence of criticality using temporal complexity and avalanche analysis62–64 in a leaky integrate-and-fire model following
finite-size scaling56.
In this study, we perform neural avalanche analysis to determine the possibility of criticality emergence by considering different
percentages of inhibition in the system. In more detail, an avalanche is characterized by two main features: its size, represented
by S, and its lifetime, commonly known as duration, represented by T (see the Methods section). Neural systems exhibit diverse
sizes and durations, where their probability distributions follow a power-law pattern32. This behavior is characterized by a
single universal scaling exponent: τ for size, represented by p(S) = S−τ , and α for duration, represented by p(T ) = T−α which
follwos a shape collapse in cultured slices of cortical tissue38.
Despite the power-law behavior of avalanche size and duration, demonstrating criticality behavior in avalanche data requires
universal scaling65. Therefore, we perform a scaling analysis over different network sizes and different inhibition percentages.
According to the single scaling theory, in the case of a network with a size of L, the probabilities are expressed as follows65:

p(S) = L−µτS (SL−µ),

p(T ) = L−zµαT (T L−zµ),

⟨S⟩(T ) = LµF (T L−zµ), (10)

where µ is the scaling exponent of the size of avalanches versus the linear size of the lattice and z is the dynamical exponent
which determines the scaling relations of the duration and size of the avalanches. Here ⟨S⟩(T ) is the average of avalanche size
conditioned on a given duration65. Here S (x), T (x), and F (x) represent universal functions. Their behavior in the large x
limit (x → ∞, corresponding to small L) is described as follows:

p(S) ∼ S−τ ,

p(T ) ∼ T−α ,

⟨S⟩(T ) ∼ T 1/z, (11)

Moreover, the scaling theory requires the following exponentiation relationship38, 66:

α −1
τ −1

=
1
z

(12)

in which the mean field prediction for the scaling exponents are τ = 3/2,α = 2.0, and 1/z = 2.065. We perform this analysis
on the neural avalanche patterns for networks in which 5%, 10%, 15%, and 20% of the neurons are inhibitory.
Fig. 4 shows neural avalanches for inhibition percentage of 20 that follow a scaling relationship and collapse into a single
function. A value of ≈ 2.0 for µ suggests that the avalanche size grows directly to the lattice size.
Moreover simulations show that inhibitory neurons broaden control parameter’s domain, corresponding to critical behavior
(Table. 1). Neural avalanches show power-law behavior over a broad range of K values, especially when the inhibition
percentage I is set to 20%. Furthermore, the parameters that describe the phase transitions vary for each inhibitory percentage.
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Fig. 4. The figure displays the collapse of avalanche data through the scaling relation. Panel (a) display the plotted avalanche
sizes whereas panels (b) present the duration probabilities p(T ) and the conditional average of avalanche size versus duration
shown as (c). The results are presented at the critical point K of square lattices with linear sizes of L = 40, 50, and 60, and
inhibitory percentages of I = 20%. The slope of maximum avalanche size vs. lattice size was used to obtain µ ..

I = 5 I = 10 I = 15 I = 20

ν 1.05±0.05 1.85±0.15 1.78±0.05 3±0.1
β 0.32±0.17 0.55±0.05 0.33±0.03 0.85±0.05
Kc 0.0052±0.0001 0.0072±0.0005 0.0115±0.001 0.022±0.002

Table 1. Exponents for data collapsing for different inhibitory percentages.
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Discussion
Inhibitory neurons and neuronal avalanches play a crucial role in understanding complex neural networks. In our previous
research, we studied a purely excitatory network and showed a dynamic transition of neuronal behavior from an asynchronous
state to a fully synchronized state, with a distinct and complex critical phase between these two phases. Furthermore, we
quantified this transition using the Kuramoto order parameter.56

Moreover, previous research emphasizes the importance of the E/I ratio in network dynamics, especially at high connectivity
levels67 and have shown that the local excitation-inhibition ratio strongly influences whole-brain dynamics, the structure of
spontaneous activity and information transmission68.
In this context, our primary focus in this study was to examine the impact of different E/I ratios on the emergence of criticality
and phase transition. It is shown that an optimal ratio (20%) facilitates critical behavior in the network. Inclusion of 20%
inhibitory neurons expands the coupling parameter domain in which neural avalanches satisfy the scaling relation, increasing
the probability of finding the network in a critical state and maximizing the dynamic range.
The observed effects might be associated with a subset of inhibitory neurons that are in the same phase as excitatory neurons. This
prevents synchronization at larger connectivity values (K) compared to networks with different inhibitory neuron percentages.
As a result, the difference between K that leads to synchronized and desynchronized states expands, resulting in a more
extensive range of dynamic behavior. However, excessive levels of inhibition can prevent the emergence of synchronization. In
such scenarios, the system can be pushed into a permanent desynchronized state. This might emphasize the intricate balance
necessary for optimal control parameter between excitatory and inhibitory neurons.
The study results, although they concentrate on a particular computational model, also provide insight into broader principles
that may apply to other network topologies, especially in the context of criticality, which manifests itself as transitions between
desynchronized and synchronized states. Fundamentally, different levels of inhibition can significantly modify the network’s
dynamic range. The degree of inhibition could, for example, limit the dynamic range at low percentages of inhibition and
possibly lead to a lack of transitions in networks dominated by inhibitory activity. It is possible that for another topology,
another optimal inhibitory percentage exists, maximizing the dynamic range. This indicates that modulation of neural activity
via E/I ratios is a complex process, with different network topologies leading to different outcomes. However, the evolutionarily
precise objective function that results in this specific E/I ratio in the cortex is still a matter of further investigation. However,
this objective function might drive neural systems toward critical points69, 70, the dynamic behavior of the order parameter
despite synaptic plasticity needs to be investigated.
Taken together, although the results of this study are derived from a model with a defined set of parameters and lattice structure,
the identified patterns in the model suggest a likely framework for understanding how E/I ratios might modulate cortical
scale-free dynamics and contribute to the broader discussion of brain dynamics.

Methods
Model description
In this study, we employ the Leaky Integrate and Fire Model (LIFM) 56, 62–64, 71, 72. The dynamic of the membrane potential of a
single neuron xi(t), which is residing on a two-dimensional square lattice of linear size L with the periodic boundary condition,
is

ẋi =−γxi(t)+S+σξi(t), (13)

where 1/γ is the membrane time constant, assumed to be the same for both excitatory and inhibitory neurons for simplicity. S
denotes a constant that drives the membrane potential to the steady-state xi = S/γ in the absence of the third term on the right
side of the equation, and ξ (t) is a continuous Gaussian noise having a mean of zero and a variance of one, as defined by

⟨ξ (t)⟩=0,
⟨ξ (t)ξ (t ′)⟩=δ (t − t ′), (14)

where σ represents noise intensity, which can drive x(t) to the threshold, in this case S < γ , and leads the neuron to fire. In
this context, (S+σξi(t))/γ can be interpreted as the input to each neuron. We randomly distribute NE excitatory and NI
inhibitory neurons, N = NE +NI , on the lattice. In principle, inhibitory neurons could have two types of inhibitory-inhibitory,
inhibitory-excitatory, and excitatory-inhibitory connections. Here, however, there is no link between inhibitory neurons, i.e., no
inhibitory-inhibitory connections exist.
The initial membrane potential for all neurons in the network is a random value between 0 and 1 from a uniform distribution.
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Fig. 5. The probability distribution function for the spike time intervals of a single neuron. The simulation time is 109 steps.

Considering the reset mechanism by setting the threshold to one; whenever the membrane potential reaches or passes the
threshold, i.e., x = 1, it jumps back to the resting state, x = 0. If the firing neuron is inhibitory, K (control parameter) is
subtracted from the membrane potential of its adjacent neurons, and if it is excitatory, K is added to the membrane potential
of its adjacent neurons. The quantity K > 0 controls whether the system is in a sub-critical, critical, or super-critical state.
We refer to K as a control parameter in which Kc leads to power-law behavior in the model. The simulations in the current
paper are based on the following parameters: S = 0.001, γ = 0.001005, and σ = 0.0001, and the lattice with linear sizes of
L = 40, 50, and 60. The integration time step for the numerical solution was ∆t = 0.01 (Euler method), and the simulations
lasted for 2×107 steps.
Implementing the above parameter concludes that only noise and control parameter make neurons pass or reach the threshold.
However, for the case of a single neuron, as illustrated in Fig. 5, the neuron preferentially fires within a particular time called Tp,
the peak in the figure, and spike time intervals follow the Poissonian distribution. Considering a single neuron in the network
leads to a change in the amount of this peak per phase with different Kc.

Neural Avalanches
The term "neural avalanche" refers to the sequential propagation of neuronal firing activity within a network in a correlated
manner, initiated by firing a single neuron or a small group of neurons. This activity can cause a network to behave in a
synchronized manner. To identify neuronal avalanches, we identify time points where there is an absence of firing activity
across all neurons in the system for a continuous duration of at least five time steps (δ t = 5). As shown in Fig. 6, the initiation
of an avalanche is marked by the first firing event within the network, indicated by the dashed lines. In this context, a neural
avalanche is defined by two key parameters: its size, represented by the number of spikes within the avalanche, and its duration,
representing the time span from the initial firing to the last firing event. To comprehensively analyze these neural avalanches,
we assess the probability of their occurrence over different sizes, P(S), and durations, P(T ).
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Chapter 3

Discussion

3.1 Learning of Spatio-Temporal Spike Patterns

This part of the discussion refers to the papers presented in 2.1 and 2.2.
To achieve balance in neural networks, the interplay of Hebbian mechanisms in both excitatory
and inhibitory synapses appears to be crucial. While Hebbian plasticity at excitatory synapses
could lead to escalating and potentially unstable neural activity, its simultaneous presence at in-
hibitory synapses and the biological upper limit at excitatory synapses to the maximum amount
of a synapse efficacy serve as a counterbalance, leading to a balance between excitation and
inhibition. Although this has been suggested before1, we have shown that Hebbian plasticity
can select for synaptic efficiencies that allow neurons to detect spatio-temporal spike patterns.
This constraint on the uncontrolled growth of excitatory efficacy is particularly valuable be-
cause it provides a plausible path to the stability that is essential for biological neural systems.
It prevents the network from diverging into states of an excessive increase in firing, allowing
instead the dynamic yet stable behavior that is crucial for complex processes such as learning
and memory formation. This further deepens our understanding of the self-organization capa-
bilities of neural networks and offers promising avenues for future research.
Our research has shown how a synergistic combination of realistic neural mechanisms, con-
sisting of membrane potential-dependent Hebbian processes, heterosynaptic competition, and
synaptic scaling, contributes to the self-organization of pattern recognition in individual neu-
rons. When a learned pattern is absent, our results confirm that excitatory and inhibitory signals
are finely tuned in a global balance.2 When a previously learned pattern appears, neural mech-
anisms achieve a detailed balance in which excitatory and inhibitory inputs are tightly balanced
over time.3 These findings extend and confirm the existing literature on the dynamic balance
between excitation and inhibition in neural cortices. Furthermore, the results clearly show that
this detailed balance is particularly prominent during pattern recognition, further confirming it
as a stable state within the neural network. The tight balance allows post-synaptic neurons to
fire, albeit minimally, indicating the anti-correlation between excitatory and inhibitory signals.
Importantly, our model shows that no supervision is required to tune the synaptic weights es-
sential for pattern recognition. While previous models required careful parameter tuning and
were often based on unrealistic assumptions, such as the non-separation of excitatory and in-
hibitory plasticity or the ignoring of Dale’s Law, our framework offers a biologically plausible
approach.4–9 It is important to acknowledge that while our model has its strengths, there are
aspects, particularly concerning real data, that could be explored in further research. Here, one
illustration involves deciphering patterns from authentic neural spike trains, which can provide
insights into how the brain processes speech recognition.
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Our study has implications for future research in unsupervised learning of spatiotemporal input
spike patterns. Although previous models have examined similar phenomena through the lens
of spike-timing dependent plasticity (STDP), they have typically lacked the balanced excitation-
inhibition relationship that we show is critical for robust and continuous learning.5–7 Moreover,
by exploring the complex interaction of neural mechanisms and their role in pattern recogni-
tion, this study serves as a stepping stone to a more comprehensive understanding of neural
self-organization and computational neuroscience.
Indeed, the biologically plausible plasticity mechanisms that can facilitate the self-organization
of spatiotemporal pattern recognition in individual neurons lend considerable credibility to the
hypothesis that such intricate temporal coding schemes are naturally employed in biological
neural networks. This is not only important in the context of computational neuroscience but
also suggests ways in which natural systems deal with information and complexity.
Our research shows that these neural networks are more flexible, capable of processing both rate
and temporal codes. Remarkably, the ability to learn underlying patterns even in the presence
of Poisson spike rates suggests that temporal coding can coexist with, and even function as a
complement to, rate-based coding schemes. This generalized coding strategy seems to combine
two coding paradigms that are often considered mutually exclusive, suggesting that a more de-
tailed understanding of neural coding may be needed.
In essence, our research reveals the possibility of self-organized pattern detection in biological
neurons. This discovery provides a foundation for a more unified understanding of the various
coding strategies employed in complex neural architectures.
Our research provides valuable insights into the field of neural networks and machine learning
by introducing the first biologically plausible model for incremental self-supervised learning
of spatio-temporal spike patterns. Our study highlights the instrumental role of pre-synaptic
hetero-synaptic plasticity in the orthogonalization of weight vectors in receiving neurons.10,11
When patterns are learned sequentially, the weight vectors maintain their orthogonal orienta-
tion, especially if the subsequent patterns are stochastic variations of the original. This process
of orthogonalization provides two benefits: the preservation of existing memories and the facil-
itation of the acquisition of new information, thus achieving a balance between neural stability
and plasticity.
In greater detail, it was observed that the orthogonal nature of weight vectors remains unchanged
when learning patterns are generated through a Poisson process, even when learned incremen-
tally. This finding supports the network’s robustness to perturbations of pre-existing weight
configurations and is consistent with previous studies that focus on the need for minimal per-
turbations between old and new learning. A feature of our model is its reliance on a unique
balance between excitatory and inhibitory inputs, a harmony that naturally manifests during
the learning process. This balance is crucial for memory maintenance, lending credence to
earlier work suggesting its importance.1 While this paper does not delve into the intricate re-
lationship between the stability-plasticity balance and the excitation-inhibition equilibrium, it
lays the groundwork for future investigations into this vital area. Our work differs from prior
research that mainly focuses on recurrent networks and rate-based models.12 Although these
previous approaches also used orthogonalization mechanisms, they employed different strate-
gies and were not specifically designed for spatiotemporal spike patterns. Moreover, our model
is greatly improved by synaptic scaling mechanisms, which is in contrast with other models
that depend on scaling with (w2) and were found not necessary for learning in the context of
spatio-temporal spike patterns.13

Importantly, we agree with previous research that emphasizes the crucial impact of input noise
on incremental learning.5 In our model, noise not only drives the weight vectors towards or-
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thogonality, but also minimizes their overlap across different output neurons, further optimizing
the learning process.
In summary, our study presents a solid, biologically accurate resolution to the long-standing
stability-plasticity problem in neuronal networks tasked with learning spatio-temporal patterns
in a self-organizing manner. We demonstrate that the crucial components for effective incre-
mental learning entail the careful balance of excitatory and inhibitory inputs, as well as the
insightful integration of heterosynaptic plasticity and noise. These results lay the groundwork
for further research to explore these mechanisms in more detail and to develop more effective
and adaptive neural network architectures.

3.2 Excitatory / Inhibitory Ratio and Dynamic Range

This part of the discussion refers to the papers presented in 2.3 and 2.4.
While previous research has explored the role of synaptic plasticity in guiding neural systems
towards criticality14,15, our study expands on this by investigating the impact of inhibitory neu-
rons on shaping phase transitions. Though we have gained valuable insights into how inhibition
influences the emergence of criticality, further research is needed to examine the interplay be-
tween synaptic plasticity and the dynamic behavior of the order parameter.
Although criticality can be seen in a purely excitatory network16,17, to understand criticality in
neuronal systems, it is necessary to quantitatively characterize critical behavior in such systems.
This can be done by determining factors such as the order of the transition and its universality
class in a locally coupled leaky integrate-and-fire (LIF) network.
We observed a shift in neuronal activity from asynchronous states to synchronization. As we
manipulated the inter-neuronal control parameter (synaptic efficacy, K), we observed a grad-
ual transition from irregular spiking (subcritical phase) to synchronous spiking (supercritical
phase). This shift is characterized by a complex critical phase transition, which we quantified
using the Kuramoto order parameter.18,19 However, the analysis of finite-size scaling led to
the estimation of critical exponents for this transition and its resulting universality class, which
does not fit into previously established classifications. It differs from that of mean-field directed
percolation and directed percolation in 2 + 1.20 Mean-field directed percolation is a theoretical
model that predicts how certain types of processes, such as the spread of a disease, will play
out over time in a large-scale, averaged system. Directional percolation in 2+1 dimensions is
another model describing similar events, but in a specific framework considering the directions
and dimensions of the events.
We showed in our study that the phase locking value (PLV) works as an order parameter in
the LIF model, specifically in connecting spikes to PAV phases. This relationship holds true
regardless of the system’s inclusion of inhibitory neurons. However, the values of the phase
transition parameters differ for each inhibitory percentage.
This transition is significant as it demonstrates correlations with frequently observed phenom-
ena in actual neural systems, particularly the emergence of neural avalanches widely considered
indicative of critical neural dynamics in the cortex, occurring in both in vivo and in vitro stud-
ies.14,40,96,146 . Additionally, inhibitory neurons were incorporated to enhance comprehension
of the elements that contribute to critical behavior in complex neural networks. Our results
indicate that inhibitory neurons play a critical role in enhancing the network’s ability to exhibit
criticality. Our study demonstrated that an inhibitory neuron ratio of 20% provides optimum
enhancement of the system’s dynamic range. This suggests that inhibition facilitates two pur-
poses: balancing excitatory activity and creating an environment in which critical behavior can
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occur more easily. This means that the critical behavior emerges in a wide range of parameter
K. Although our focus was on a specific inhibitory ratio in a lattice, future studies could ex-
plore its impact on other network types. It is possible that another optimal inhibitory percentage
maximizes the dynamic range for another network topology. However, which evolutionarily
precise objective function results in this specific E/I ratio in the cortex needs to be investigated.
This result could be due to inhibitory neurons being in phase with excitatory neurons, prevent-
ing synchronization at substantial connectivity levels (K), unlike in networks with a varied
percentage of inhibitory neurons. The mechanism expands the leanth between the synchro-
nized and desynchronized states in the phase transiton diagram, presenting a wider range of
dynamic behaviors within the system. An important point to note, however, is that an excess
of inhibitory influences can suppress the system’s ability to synchronize, potentially pushing
it into a persistently desynchronized state. Therefore, a well-balanced interplay between exci-
tatory and inhibitory neurons is crucial for enhancing network complexity and critical behavior.

3.3 Effects of Optogenetic Stimulation onGammaActivity in
The Visual Cortex

This part of the discussion refers to the paper presented in 2.5.
Our research aimed to understand the role of gamma oscillations in the visual cortex through
optogenetic stimulation combined with visual cues. Our findings emphasize the essential role of
gamma oscillations, specifically low gamma oscillations, in cortical functioning. We observed
a boost in low gamma power in both layers (II and IV) of the visual cortex upon optogenetic
stimulation. The concurrent presentation of visual stimuli resulted in varying effects across
these layers.
To analyze the experimental data, the Wilson-Cowan model21 which has previously been used
to explain enhanced gamma oscillations22, and phase-amplitude coupling23 was utilized, indi-
cating that differences in excitatory currents among these layers could account for the variation
in responses.
Our modeling goal was to provide a descriptive approach rather than a quantitative one and a
conceptual representation of our empirical findings, focusing on variables contributing to ob-
served gamma oscillation power variations. More specifically, the laser stimulus is considered
a source of external current into the neuronal populations and is applied to neurons during laser
onset.24
Our research indicates that stimulation of excitatory neurons affects gamma oscillations. Al-
though optogenetic stimulation was directed towards excitatory neurons, inhibitory neurons are
also likely to be involved, possibly leading to a modulation of gamma power.
More specifically, due to the opsin type utilized in our experiment, optogenetic laser stimula-
tion induces excitation in the excitatory neurons. When both the visual and optogenetic stimuli
are present at the same time, the neurons’ excitation causes different patterns of activity in the
network in layers II and IV. This disparity in activity might be a direct consequence of the dis-
tinct network architectures in these layers. The neural networks of the primary and secondary
visual cortices differ, revealing various stages of visual processing that take place in these re-
gions. These areas have individual features regarding neuronal subtypes, connections, receptive
fields, and reactions to visual stimuli.25
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3.4 Future perspective
Learning of Spatio-Temporal Spike Patterns

• Exploring key parameters for applying spatio-temporal spike pattern learning algorithm
to real-world data.
The focus here is on delineating the critical parameters for implementing a spatio-temporal
spike pattern (STSP) learning algorithm when dealing with real-world datasets. The goal
is to bridge the gap between theoretical STSP models and their practical applications,
which is essential for advancing machine learning methods towards real-world complex-
ity. Real-world data often presents challenges such as noise, incomplete information,
and dynamic changes over time, which can significantly affect the performance of spike
pattern learning algorithms. To address these issues, I propose to investigate a number of
parameters, including spike timing, neuronal arrangement, learning rates, and threshold
adjustments. Optimizing these parameters could improve the robustness and accuracy of
the algorithm in various application scenarios. It may also be helpful to consider cross-
homeostatic rules rather than the classical form of homeostatic plasticity.26 This research
has the potential to significantly impact how neural network models are calibrated and
implemented to solve complex, time-sensitive, and spatially-oriented problems in various
domains.

• Investigation of the rule of E/I balance in the stability/plasticity dilemma. Inhibitory neu-
ronsmaintainmemory by trying to inhibit excitatory activity until the excitatory/inhibitory
balance is completely destroyed and neurons burst.
In more details, inhibitory neurons play a critical role in memory by attempting to sup-
press the activity of excitatory neurons. This prevents neural networks from becoming
overactive or saturated with information, which could lead to forgetting. This delicate
balance is an ongoing process in which the network self-regulates to avoid excitatory
dominance and maintain functional stability. However, if this balance is tipped too far
toward inhibition, excitatory inputs may not be sufficient to maintain circuit activity. This
can lead to a loss of information and memory. On the other hand, if inhibitory systems
are weakened, runaway excitatory activity may destabilize neural circuits and lead to
excessive plasticity, which undermines the ability of the network to maintain long-term
memory.
This research focuses on understanding the mechanisms by which inhibitory control can
modulate this balance and how dysregulation leads to bursts of neural activity that po-
tentially erase stored information. This study may shed light on memory disorders and
potentially help develop treatments that can restore or improve cognitive function by
modulating the E/I balance.

Excitatory / Inhibitory Ratio and Dynamic Range

• Consideration of synaptic plasticity and investigation of the dynamic behavior of the or-
der parameter despite synaptic plasticity at each time phase.
This research is devoted to investigating how the order parameter evolves over time de-
spite the continuous changes induced by synaptic plasticity. At each time step, synaptic
efficacy is modified, leading to a change in the overall behavior of the neural circuit. This
dynamic interplay poses a challenge for predicting system behavior because traditional
models of neural activity often assume static synaptic strengths and may not account for
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the continuous adaptation inherent in real neural systems.
This study examines the time-dependent nature of synaptic plasticity and its impact on
global patterns of neural activity. This involves tracking the order parameter through
different phases of learning and memory, from the initial encoding of information to its
long-term consolidation and potential forgetting. Understanding these dynamics can pro-
vide insights into the fundamental principles governing the rules of synaptic modification
and the functioning of neural circuits.
The incorporation of models of synaptic plasticity into our analyses aims to provide a
more accurate and comprehensive picture of how neural systems adapt over time, which
is crucial for the development of better learning algorithms in artificial intelligence and
for informing therapeutic strategies for neurological disorders characterized by synaptic
dysfunction.

Effects of Optogenetic Stimulation on Gamma Activity in The Visual Cortex

• Modeling the experiment in a more quantitative rather than descriptive way,

• Designing multi-array experiments and determining the exact rule of inhibition in the
gamma power in each layer.

• Investigating how gamma power is modulated in response to preferred and non-preferred
stimulus.
The effects of optogenetics on gamma activity in the visual cortex provide a rich under-
standing of the underlying mechanisms of visual processing and neuronal circuits.
This research approach involves a quantitative analysis of this phenomenon that goes be-
yond descriptive accounts to model the precise influences that optogenetically induced
changes have on the gamma oscillations.
First, I propose to model the experiment using quantitative frameworks that allow precise
characterization of gamma activity modulation by optogenetic stimulation. This includes
the development of computational models that predict gamma oscillation patterns based
on different intensities and frequencies of optogenetic stimuli. The simulation of these
models will be used to understand the relationship between optogenetic stimulation pa-
rameters and changes in gamma power.
Second, multi-array experiments will be designed to dissect the layer-specific effects of
inhibition on gamma power within the visual cortex. Through the application of opto-
genetic tools to selectively inhibit neurons in different cortical layers, we will be able to
characterize the distinct contributions of each layer to the generation and modulation of
gamma oscillations. The precise rule of inhibition and its effect on gamma oscillatory
activity will be determined by analyzing the changes in gamma power with respect to
different spatial and temporal patterns of optogenetic inhibition.
Lastly, this investigates how gamma power differentially responds to preferred versus
non-preferred visual stimuli. This involves the presentation of visual cues that are either
aligned or not aligned with the known preferences of the stimulated neuronal popula-
tions. The differential responses measured will reveal how intrinsic visual processing
and attention mechanisms are reflected in the gamma activity and how they can be artifi-
cially modulated through optogenetic stimuli. The expected outcomes will significantly
advance our understanding of the functional significance of gamma oscillations and their
role in sensory perception.
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Chapter 4

Conclusion

This comprehensive study of neural networks, ranging from the learning of spatio-temporal
spike patterns to the critical role of the excitatory/inhibitory ratio in neural dynamics and the
modulation of gamma oscillations in the visual cortex using optogenetics, has led to several
insights.
Firstly, in the domain of spatio-temporal spike pattern learning, it has been shown that neu-
ral networks exhibit an intrinsic tendency toward self-regulation and stability through a subtle
interplay of Hebbian mechanisms, hetero-synaptic plasticity, and synaptic scaling at both exci-
tatory and inhibitory synapses. This also facilitates the dynamic behavior required for complex
processes such as learning and memory. The results highlight the unsupervised learning ca-
pabilities of neural systems, thus eliminating the need for external supervision or unrealistic
assumptions prevalent in previous models. Additionally, the inherent flexibility of these net-
works was demonstrated by their dual encoding capabilities for rate and temporal coding.
Secondly, The examination of the fundamental dynamics of neural networks, specifically the
occurrence of neural avalanches, highlights the role of the E/I ratio in achieving system criti-
cality. Moreover, the existence of an optimal level of inhibitory neurons expands the range of
dynamics in the system.
Lastly, the optogenetic study, particularly in the responses of different layers to combined op-
togenetic and visual stimuli, explained through the Wilson-Cowan model, indicates a complex
modulation of excitatory currents within the cortex that is dependent on the layer.
Across all these investigations, one dominant fact remains: neural networks are complex, self-
regulating, and highly adaptive. The self-organized learning of spike patterns, the E/I ratio that
might drive critical dynamics, and the delicate modulation of cortical oscillations each highlight
the inherent complexity of neural systems. These results are contributions to our understanding
of neural networks and computational neuroscience, yet there is still vast uncharted territory
that requires further exploration.
In the future, it will be essential to address the limitations of current models and approaches,
particularly in the realistic simulation of synaptic dynamics and the more accurate incorpora-
tion of biological details. Future research efforts should focus on these aspects and address the
unexplored interactions between synaptic plasticity, inhibitory mechanisms, and the resulting
neural behaviors. Furthermore, taking a more comprehensive approach and combining these
various viewpoints could lead to the development of a unified theory that has the potential to
greatly impact both neuroscience and artificial intelligence applications.
In essence, exploring these diverse aspects of neural functionality not only reveals the remark-
able complexity and adaptive capabilities inherent in neural systems but also sets the stage for
future interdisciplinary research that advances our understanding of both biological intelligence



Conclusion 95

and its potential synthetic counterparts.
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