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Deutsche Zusammenfassung

Visual Question Answering (VQA) ist die Beantwortung natürlichsprachlicher
Fragen zu Bildinhalten. VQA-Modelle verarbeiten zwei Eingabemodalitäten,
um eine Antwort zu erzeugen: Vision (das Bild) und Language (die Frage).
Die Antwort eines VQA-Modells wird als Visually Grounded (VG) bezeichnet,
wenn sie auf den für die Frage relevanten Teilen des Bildes basiert. Dieser
Prozess wird manchmal intuitiv mit “right for the right reasons” beschrieben.
Auf konzeptioneller Ebene ist die Notwendigkeit von VG naheliegend und
seine Rolle offensichtlich. In der Praxis aber sind VQA-Modelle berüchtigt
für ihren Mangel an VG, und das obwohl ihre Leistung sich stetig verbessert.
Es stellt sich also die Frage, wie VQA-Modelle ohne VG überhaupt richtig
funktionieren können, und welche Rolle VG in VQA tatsächlich einnimmt.

Wie in vielen, wenn nicht gar allen Bereichen des Maschinellen Lernens,
basieren moderne Modelle in VQA fast ausschließlich auf Deep Learning
(DL). Während DL in allen Bereichen des maschinellen Lernens, inklusive
VQA, zu noch nie dagewesenen Leistungen beitragen, sind DL-Modelle mit
einer erheblichen Einschränkung konfrontiert: dem sogenannten Shortcut-
Learning. Ein Shortcut kann als unbeabsichtigter Lösungsweg eines gegebenen
Problems beschrieben werden. Zur Veranschaulichung können wir Parallelen
zu der menschlichen Strategie ziehen, das Einmaleins auswendig zu lernen
(unbeabsichtigter Lösungsweg), anstatt das zugrundeliegende Konzept der
Multiplikation zu erlernen (beabsichtigter Lösungsweg). Der unbeabsichtigte
Lösungsweg, d.h. der Shortcut, funktioniert perfekt für die Zahlen in der
gelernten Tabelle. Sobald wir jedoch mit anderen Zahlen konfrontiert wer-
den, funktionieren diese Abkürzungen nicht mehr und nur der beabsichtigte
Lösungsweg kann konstant zur richtigen Lösung führen. Analog zu diesem
Beispiel sind Shortcuts in DL-Modellen dadurch gekennzeichnet, dass sie in
Standard-Benchmarks gut funktionieren, aber sich nicht für eine Anwendung
unter anspruchsvolleren Konditionen verallgemeinern lassen. In diesem Zusam-
menhang kann Shortcut-Learning demnach auch als eine der Generalisierung
entgegengesetzte Kraft interpretiert werden.
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In VQA wurden Shortcut-Learning und Generalisierung vor allem im Zu-
sammenhang mit Datensatz-Bias und dem notorischen Mangel an VG in
modernen VQA-Modellen untersucht. Einer der bekanntesten und einfachsten
Wege, diesen Mangel an VG aufzudecken, sind sogenannte Out-of-Distribution
Tests, die so konzipiert sind, dass sie Fragen mit anderen Antwortverteilungen
enthalten als in den Trainingsdaten gegeben sind. Damit wird versucht, die
Notwendigkeit von VG als Teil des beabsichtigten Lösungswegs hervorzuheben,
von welchem erwartet wird, dass er sich gut auf diese Tests verallgemeinern
lässt.

Trotz der offensichtlich wichtigen Bedeutung von VG für VQA auf konzeptio-
neller Ebene, sowie der klaren Auswirkungen seines Fehlens auf Generalisie-
rungsszenarien, wurde die Rolle von VG in VQA in der Praxis noch nicht klar
genug herausgearbeitet. In dieser Dissertation untersuchen wir die Rolle von
VG im Kontext von VQA Generalisierung und Shortcut Learning. Unsere
Beiträge zum Forschungsgebiet umfassen die folgenden Teilaspekte:

1. Wir stellen ein neuartiges System namens “VQA by Lattice-based
Retrieval” (VLR) vor, dessen Ziel es ist, den beabsichtigten Lösungsweg
des VQA Tasks zu approximieren, indem VG für die Erzeugung der
Antwort explizit eingefordert wird.

2. Wir stellen eine neuartige Metrik zur Messung von Visual Grounding
in VQA Systemen vor.

3. Wir geben einen umfassenden Überblick über die Qualität von VG in
einer Vielzahl von VQA-Architekturen.

4. Wir decken problematische Evaluierungsmethodiken in der VG For-
schung auf, welche das Potenzial haben, die allgemeine Wahrnehmung
der Relevanz von VG für VQA nachhaltig zu beeinflussen.

5. Wir entwickeln ein neues Konzept namens “Visually Grounded Reaso-
ning” (VGR), welches VG und VQA Reasoning formal als Schlüssel-
komponenten etabliert, die die VQA-Leistung im Kontext der VQA-
Generalisierung und des Shortcut Learnings beeinflussen.

Wir beginnen die Reise dieser Dissertation mit einer konzeptionellen Vor-
stellung davon, was die Rolle VGs und seine Einflüsse in VQA sein sollten,
aber erkennen schon bald, dass es abgesehen von den Beeinträchtigung durch
Shortcut Learning auch noch andere fundamentale Einschränkungen in der
gegenwärtigen VG-Forschung gibt, wenn es darum geht VG in VQA zu messen
und VGs Einflüsse zu bewerten, was einer gründlichen Analyse im Weg steht.
Wir adressieren diese Einschränkungen mit Hilfe unserer oben beschriebenen
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Beiträge und erlangen dabei ein viel klareres Verständnis dafür warum der
Einfluss von VG auf die VQA-Leistung sich so schwer erfassen lässt, und wie
VGs Rolle durch entsprechend ausgearbeitete Evaluierungsszenarien in den
Vordergrund gerückt werden kann. Unsere gesammelten Erkenntnisse und
Untersuchungen führen uns dann im letzten Kapitel schließlich zur Einführung
eines theoretischen Modells, das die Rolle von VG im Rahmen von VQA-
Generalisierung und Shortcut Learning klar beschreibt, was das Ende unserer
Reise markiert.





Abstract

Visual Question Answering (VQA) is the task of answering natural language
questions about image contents. VQA models process two input modalities to
produce an answer: vision (the image) and language (the question). A VQA
model’s answer is called Visually Grounded (VG), if it is based on question-
relevant parts of the image. This process is sometimes more intuitively
described as being right for the right reasons. On a conceptual level, the
necessity of Visual Grounding is clear and its role seems obvious, but in
practice, VQA models are notorious for their lack of Visual Grounding, while
still achieving increasingly better performances. So the question is, how would
VQA even be able to function properly without Visual Grounding and what
role does it really play in VQA?

Like in many, if not all, of today’s machine learning fields, modern models in
VQA are based almost exclusively on Deep Learning (DL). While delivering
unprecedented achievements throughout all areas of machine learning, includ-
ing VQA, DL models face a significant limitation called shortcut learning. A
shortcut can be characterized as an unintended solution to a given problem.
As an analogy, let us consider the human strategy of learning the results of
the multiplication table by heart (unintended solution) instead of learning the
underlying mathematical concept of multiplication (intended solution). The
unintended solution, i.e., the shortcut, works perfectly fine for numbers in the
learned table. However, as soon as we are presented with different numbers,
these shortcuts fail and the intended solution thrives in comparison. Simi-
larly, shortcuts in DL models are characterized by working well in standard
benchmarks, but fail to generalize to more challenging conditions. In this
vein, shortcut learning can also be seen as an opposing force to generalization.

In VQA, shortcut learning and generalization have been investigated in the
context of dataset biases and the notorious lack of Visual Grounding in modern
VQA models. One of the most prominent and straightforward ways to expose
this lack of Visual Grounding have been so-called Out-of-Distribution tests,
which are designed to contain questions with different answer distributions
than encountered in the training data, thereby attempting to emphasize
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the need for Visual Grounding to be part of the intended solution that will
generalize well to these tests.

Despite the obvious importance of Visual Grounding for VQA on a conceptual
level and the obvious implications of its lack for generalization scenarios, the
role of Visual Grounding in VQA in practice is still not clearly understood.
In this thesis, we thoroughly investigate the role of Visual Grounding in VQA
generalization and shortcut learning. Our contributions include the following
achievements:

1. We introduce a novel system called “VQA by Lattice-based Retrieval”,
or VLR, whose goal is to align with the intended solution for the VQA
task by explicitly necessitating Visual Grounding for answer inference.

2. We propose a novel metric for measuring Visual Grounding in VQA
systems.

3. We report a large-scale overview of Visual Grounding quality across a
wide variety of VQA architectures.

4. We uncover problematic evaluation methodologies in Visual Grounding
research that have the potential to interfere with the general perception
of how important Visual Grounding is for VQA.

5. We develop a novel concept called “Visually Grounded Reasoning”, or
VGR, that formally establishes Visual Grounding and VQA Reasoning
as two key components that influence VQA performance in the context
of VQA generalization and shortcut learning.

We set out on this thesis’ journey with a conceptual idea of what Visual
Grounding’s role and impact in VQA should be, but learn soon that — apart
from the interference of shortcut learning with these expectations — there
are also other fundamental limitations of contemporary Visual Grounding
research, when it comes to measuring Visual Grounding in VQA and properly
evaluating its impact, that impede an in-depth analysis. We address these
limitations with our contributions and in the process gain a much clearer un-
derstanding about why the impact of Visual Grounding on VQA performance
has been so difficult to grasp and how its role can be better highlighted with
appropriately designed evaluation scenarios. Finally, in the last chapter, this
thesis culminates in the definition of a theoretical model (VGR) that clearly
describes the role of Visual Grounding in the context of VQA generalization
and shortcut learning, thereby marking the end of our journey.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Field of Visual Question Answering

Visual Question Answering (VQA) (Antol et al., 2015) is the task of answering
natural language questions about image contents (see Figure 1.1). With the
integration of multi-modal input consisting of language and vision, VQA
stands at the intersection of multiple major fields of computer science. As
such, VQA has garnered considerable research interest in recent years, most
notably from communities of Computer Vision (CV), Natural Language
Processing (NLP) and Artificial Intelligence (AI).

VQA-related approaches are applicable to various potential use-cases in
human-computer interactions (HCI) and robotics. Systems leveraging VQA-

Figure 1.1 – Examples of the Visual Question Answering task. Image taken
from Antol et al. (2015)
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Figure 1.2 – Structure of a typical VQA system. Two input modalities,
vision and language, are merged during processing by the model, which finally
produces a probability distribution over answer alternatives. The most likely
option is then picked as the model’s answer to the given question about the
image.

driven advances can improve independent living for the visually impaired
(Chen et al., 2022) and establish more intuitive interfaces for media retrieval
(Liu et al., 2021). Robotic designs can benefit from VQA-inspired methods by
fusing a detailed visual scene representation (Chang et al., 2021) with language
processing as the most natural way for humans to provide instructions or
describe their surroundings (Kenfack et al., 2020).

The challenges that VQA addresses have been framed as Visual Turing Tests
for Artificial Intelligence (Geman et al., 2015; Malinowski et al., 2015), thereby
associating progress made in this field as highly relevant milestones on the
road towards believable, human-like AI.

1.1.2 VQA and Visual Grounding

The VQA Model Blueprint. VQA models are characterized by two
input modality streams: vision (image representation) and language (question
representation). The VQA task is typically cast as a classification problem.
Accordingly, a model’s desired output – a textual answer to the question – is
commonly realized by a probability distribution over predetermined answer
alternatives defined by a given dataset (e.g., Goyal et al. (2017); Hudson and
Manning (2019)). Figure 1.2 illustrates the typical design of today’s VQA
systems.

VQA as an Information Retrieval Task. While classification is by
far the more popular design choice in VQA, the task of VQA can also
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be framed as an information retrieval problem, with the vision modality
carrying the knowledge base and the language modality representing a query
to it. When interpreting VQA in this manner, we notice a fundamental
characteristic that is intuitively understood by humans: successful production
of the correct answer necessarily involves extracting relevant, query-specified
piece(s) of information from the knowledge base. In VQA context, this
intrinsic characteristic of involving relevant pieces of visual information in the
extraction and production of the answer is called Visual Grounding (VG).
The successful manifestation of VG during answer production is sometimes
described as being right for the right reasons (Ross et al., 2017; Ying et al.,
2022), although, it should be noted that correctness of the returned answer is
not a necessary consequence of proper VG. Proper VG is simply characterized
by a model’s meaningful reliance on question-relevant visual information
during answer inference, regardless of the produced answer.

Visual Grounding and Shortcut Learning in Deep Neural Networks
(DNNs). Contrary to the framing of VQA as an information retrieval task,
where VG assumes an obvious and central role without which a correct answer
is improbable, we find that the role of VG in modern VQA systems is not
as easily understood, and its impact – or even necessity – substantially less
obvious. This is owed to the fact that most successful VQA models today are
not conceptualized as information retrieval systems utilizing human-defined
decision rules, but are conceived as powerful classifiers based on complex
DNNs that are increasingly often trained end-to-end. Common practices of
discriminative training for complex DNN-based classifiers have been shown to
regularly result in so-called shortcut learning in Computer Vision (Beery et al.,
2018) and Natural Language Processing (Niven and Kao, 2019). Shortcuts can
be described as unintended solutions for a given task that do not transfer well
to certain generalization conditions (Geirhos et al., 2020). It can be argued
that shortcut learning is an influential contributor to DNNs tremendous
success in task-specific benchmarks in various fields. The reason for this
lies in the way benchmarks are typically constructed: Common benchmarks
are created under data assumptions called “independently and identically
distributed”, or i.i.d., which refers to train and test samples being drawn from
the same distribution (i.e., a common source dataset). Tests created under
these conditions are also referred to as In-Distribution (ID) tests. As ID tests
stem from the same distribution as train sets, there is a good chance that
any shortcuts that might have been learned in training can also be exploited
in ID tests. Since benchmarks represent the most straightforward way of
comparing model performances and tracking research progress, the extent
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of a model’s shortcut exploitations can often go unnoticed without explicit
efforts to uncover them. As a result, such inconspicuous contributions of
shortcut learning to benchmark success can give rise to a misplaced sense
of confidence in high-scoring models which regularly perform poorly when
evaluated in real-life scenarios falling outside the i.i.d. dataset. Scenarios
to uncover shortcut exploitation can be simulated by creating diverse test
variations known as Out-of-Distribution (OOD) tests. Performance on such
OOD tests are generally characterized by their significant challenge for any
model trained under i.i.d. conditions without taking special precautions. Such
precautions may include explicit enforcement of human-intended decision
rules to solve a given task. In VQA, we identify VG as one of such intended
decision rules a model should absorb based on human intuition (but regularly
does not).

1.1.3 The Impact of VG in VQA

Influence of VG. In VQA, high-scoring results in the primary performance
metric of answer accuracy1 in ID testing can give the impression that a model
must have learned all relevant human-intended decision rules, including VG.
Perhaps it is this misconception that contributes to the fact that VG itself is
rarely attempted to be explicitly quantified when new benchmark-topping
VQA systems are introduced. The omission of such investigations into the
involvement of a known axiomatic decision rule like VG and the resulting lack
of insight into a VQA model’s decision making process, however, unnecessarily
hurts a model’s predictability. Consequently, under-evaluated models are
more likely to surprise us with unexpected behavior when challenged in
OOD scenarios designed to test their generalization capabilities and uncover
shortcut exploitation. While accuracy in specially designed OOD tests can
be a good indicator for shortcut exploitation, in the case of VG, designing
tests that successfully and cleanly isolate VG’s influence on accuracy is a
challenging task in itself. This is because in the absence of capable VQA
reasoning, VG on its own is not expected to affect answer accuracy in any
significant capacity. When illustrating this point within the framing of VQA
as a retrieval task we find that we cannot expect a correct answer, if the system
does not understand what type of information the query is requesting from
the knowledge base. Hence, measuring VG directly instead of via proxies like
accuracy tests (even OOD) is the preferable and more definitive method for
confirming to what degree it has manifested in the model. Nevertheless, model

1Answer accuracy is calculated as the percentage of correctly returned answers, unless
specified otherwise.
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Figure 1.3 – Over-reliance on language causing image content to be ignored
when producing the answer. Figure taken from Agrawal et al. (2018).

behavior (seemingly) revealing a lack of VG has regularly been illustrated via
accuracy-based proxy tests in pertinent VQA literature, of which we describe
two notable examples in the following.

Observations of VQA model behavior attributed to a lack of VG.
A VQA system is considered “well-grounded” if it infers an answer to a given
question by relying on image regions that are relevant to the question and
plausible to humans when considering the inference process necessary to
resolve said question. Hence, visually grounded inference in VQA can be
broken down into two aspects: (1) The model’s answering process is impacted
by the contents of the input image in a principle capacity. (2) The model’s
answering process relies on relevant image content.

Various works have reported observations of problematic behavior in VQA
systems that are linked to missing support for the aforementioned properties:

1. Many VQA models have been shown to suffer large performance drops
in OOD testing where relevant image contents tied to the answer deviate
from contents predominantly seen in training for the same question
types. Figure 1.3 shows Q/A examples of a VQA model (“SAN” (Yang
et al., 2016)) seemingly ignoring visual evidence in the image and instead
selecting an answer that dominates the sample distribution for the given
question in training. This behavior can be attributed to an over-reliance
on the language modality (Goyal et al., 2017; Agrawal et al., 2018, 2016),
and therefore points to a lack of property (1).

2. Gupta et al. have observed different answers to the same question after
manipulation of image regions that are plausibly irrelevant to the given
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question. Figure 1.4 illustrates this phenomenon. The depicted behavior
suggests that while the model’s decision is meaningfully influenced by
visual information, it appears to not be based on information that is
relevant to the question, which points to a lack of property (2).

Figure 1.4 – Alterations of irrelevant image contents (ball, right) impact the
model’s answer. Figure taken from Gupta et al. (2022).

These findings illustrate how shortcut learning can manifest itself in VQA
models and how insufficient VG might hurt a model’s capacity to provide
consistent and reliable performances outside of commonly benchmarked ID
accuracy.

Attempts at VG-focused Remedies. Solutions for improving OOD
generalization in VQA have been a topic of great interest in the community.
Following observations made in Example 1 above, one line of research attempts
to provide remedies to shortcut exploitation based on the assumption that
wrong answers given in OOD tests must mean that models do not accurately
ground their reasoning in the image, i.e., do not rely on (relevant) image
content when inferring an answer. Hence, improving VG is being motivated
as a natural solution for improving OOD generalization in VQA. Surprisingly,
however, prominent methods like Selvaraju et al. (2019) and Wu and Mooney
(2019), which were designed to strengthen VG in model training, have been
shown to achieve accuracy improvements on OOD tests when trained with
both meaningful, as well as, nonsensical visual region relevance cues (Shrestha
et al., 2020), raising doubts about the true significance of VG for answer
performance, even in OOD scenarios. Moreover, Ying et al. (2022) have found
no advantage of using existing VG metrics to predict OOD performance instead
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of doing so with ID accuracy, adding to the obscurity of VG’s involvement
in VQA generalization even further. Consequently, the importance of VG’s
role in generalization scenarios has yet to be conclusively determined and
demonstrated, a task we accomplish in Part III of this thesis.

The role of VG in VQA. Motivated by these conflicting accounts of
empirical reports implying VG’s lack of utility, and the described theoretical
necessity of VG’s involvement in reliable VQA, we formulate the goal of this
work as follows. The purpose of this thesis is to shed light onto VG’s mystery
role in VQA and unveil its long suspected value in generalization settings
in practice. To support this endeavor, we develop a variety of methods and
empirical procedures. In the course of this thesis, we uncover that VG does
in fact play a crucial role in generalization scenarios.

1.2 Contributions

In this thesis, we seek to develop new insights into the role of VG in VQA in
general, and its importance in OOD settings in particular. The contributions
of this work are summarized as follows:

1. Visually Grounded VQA: A modular and transparent VQA system
developed under an information retrieval paradigm. Our system largely
separates reasoning, Visual Grounding and answer accuracy, thereby
enabling us to isolate and analyze each part involved in a rule-based
VQA system. As this system represents an approximation of shortcut-
free VQA in the sense that it is specifically designed to make use of
human-intended decision rules to solve the task, it constitutes a valuable
tool and baseline system for our investigations.
We further develop a number of new VQA generalization tasks that
demonstrate our system’s advantages in the context of VQA generaliza-
tion. We share these tasks with the research community2 to encourage
development in this direction.

2. Measuring Visual Grounding: The lack of a general, unified, straightfor-
ward metric to quantify VG capabilities across a wide variety of VQA
model architectures further complicates the proper assessment of VG’s
impact in practice. We propose a VG metric that is both faithful and
plausible in its explanations and can be applied to most VQA model
architectures without significant adaptation efforts.

2https://github.com/dreichCSL/GQA generalization splits
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We share our implementation of FPVG with the research community3

for easier adoption of our new metric.

3. Information Infusion with Symbolic Features: Standard sub-symbolic
visual features used for image representation in VQA are black boxes
w.r.t. their informational payload, making it difficult to understand and
control the information carried by the visual modality. We propose a
method we call “Information Infusion” and use it in combination with
symbolic feature representations to fully control the visual information
flow, which opens up a number of options for in-depth VG analysis.

4. Efficacy of VG-methods: VG-methods employed with the goal of im-
proving OOD performance have come under scrutiny in related work
(Shrestha et al., 2020; Ying et al., 2022). We show that problems in the
commonly used evaluation scheme hinder a clear assessment of their
impact on the model, which is adding to the confusion about VG’s
utility.
We share our implementation with the research community4 to facilitate
reproduction of the involved experiments and encourage adoption of
the introduced “True VG” methodology in VG analysis.

5. Visually Grounded Reasoning: We propose a theoretical model that
defines VQA inference as a co-dependency involving VG and VQA
Reasoning. On the back of this model, we investigate the common
practice of using OOD testing as a way of assessing inherent VQA
model characteristics including VG and VQA Reasoning strength. We
show why typically used OOD tests are not ideal to fully understand and
measure the involvement of either of the two and propose a test design
that does accentuate their involvement. Finally, our investigations lead
us to new insights of the relationship between VG and VQA Reasoning,
as well as their combined effect on model accuracy.

1.3 Structure of this Thesis

The remainder of this thesis is structured as follows:

Part I — Background

Chapter 2: Background on VQA, VG and shortcut learning.

3https://github.com/dreichCSL/FPVG
4https://github.com/dreichCSL/TrueVG
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Part II — Methods: Novel approaches that highlight and measure
Visual Grounding in VQA

Chapter 3: VLR: Description of our information retrieval-based VQA system.

Chapter 4: FPVG: Description of our VG metric.

Chapter 5: Symbolic features & Information Infusion: Our technique for
manipulating image representations in VQA input feature space.

Part III — Investigations & Insights: Findings of our investiga-
tions into the role of Visual Grounding in VQA generalization and
shortcut learning

Chapter 6: Overview of VG strength and OOD performance in a large variety
of common VQA architectures. Initial attempts at understanding the
connection between VG and OOD performance.

Chapter 7: Investigations into the full potential of VG-boosting methods in
VQA.

Chapter 8: Definition of the concept of Visually Grounded Reasoning in VQA
and the introduction of a test scenario that necessitates involvement of
VG.

Part IV — Conclusion

Chapter 9: Summary of this thesis and closing remarks.





Part I

Background





Introduction

In Part I of this thesis, we provide background information on the field of
Visual Question Answering, Visual Grounding and shortcut learning.

In Chapter 2.1 and Chapter 2.2, we formally introduce the task of Visual
Question Answering and give an overview of influential milestone modeling
approaches proposed in recent years.

Chapter 2.3 describes prominent datasets used to track progress in the field
of VQA.

Chapter 2.4 gives an introduction of the concept of shortcut learning in Deep
Neural Networks and discusses its relationship to generalization.

In Chapter 2.5, we introduce the concept of Visual Grounding and establish its
connection to shortcut learning, generalization and OOD testing. We further
describe a number of existing datasets and methods involved in research about
shortcut exploitation in VQA as well as VG research.





Chapter 2

Background: Visual Question
Answering, Visual Grounding and

Shortcut Learning

2.1 Introduction to Visual Question Answer-

ing Modeling

In contemporary research, the task of Visual Question Answering (VQA) is
typically cast as a classification problem. It is under this modeling paradigm
that VQA research has achieved the most substantial progress in recent years.

Conceptually, VQA models are characterized by two input modality streams:
Vision (image representation) and language (question representation). The
answer is delivered as a single class output of the model. As such, the problem
of VQA can be formalized as the following function transformation:

F : (Q, I) ↦→ A (2.1)

The function transformation F is realized by a VQA model, mapping its input
questions Q and images I to answers A. Concretely, for a given VQA model,
we have

fV QA(q, i) = P (a|q, i), (2.2)

with fV QA ∈ F being an instantiated VQA model with inputs q ∈ Q and
i ∈ I. By far the most common way VQA models determine an output answer
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is by selecting the most likely candidate a in a probability distribution P over
a set of pre-defined answer alternatives A:

a = argmax
a∈A

P (a|q, i) (2.3)

2.1.1 Vision and Language Representations

Most contributions to contemporary VQA systems share commonalities in
aspects of input pre-processing for vision and language.

Visual representation. Most modern VQA models are not designed to
process raw (digitized) images as visual input representation. Instead, power-
ful image processing models are used in a decoupled pre-processing step to
provide a sophisticated, featurized image representation for the VQA model
to leverage. These image processing models are typically trained indepen-
dently on a large number of images (one million and more) to perform more
general tasks like image or object recognition based on popular datasets like
ImageNet (Deng et al., 2009) and MS COCO (Lin et al., 2014). The exact
makeup of an image representation that acts as input to a VQA model varies
in structure and ranges from grid-based visual features (Yang et al., 2016;
Jiang et al., 2020) over object-based bag of vectors (Anderson et al., 2018) to
highly structured scene-graph representations (Hudson and Manning, 2019;
Hu et al., 2019). Attempts at replacing external image processing modules
altogether follow a more holistic modeling approach that integrates training
for task-appropriate image processing of the raw image into the VQA model.
For instance, Kim et al. (2021) proposes to process the input image within the
VQA model as small image patches (Dosovitskiy et al., 2021) with promising
results. In practice, however, object-based representations extracted from an
object detector still are the de-facto standard for visual representations in
VQA since their popularization by Anderson et al. (2018).

Question representation. The input question is originally given as text
in natural language, which requires a transformation into numerical vectors
prior to processing. In most cases, VQA models leverage an independently
optimized transformation process to attain meaningful mappings of text into
numerical space. The question is then represented as a sequence of so-called
word embeddings. These word embeddings are a vectorized, distributed
representation of a word that is characterized by the word’s semantic context.
Embeddings acting as input to a VQA model are usually obtained from
independently trained models such as word2vec (Mikolov et al., 2013), GloVE
(Pennington et al., 2014) or BERT (Devlin et al., 2019). These models have
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Figure 2.1 – Single-hop inference in “Bottom-Up Top-Down”, where a one-
time attention operation (single-hop) is employed to determine the weight
(i.e., question-relevance) of each visual object. The two VQA input modalities,
vision and language, are then merged accordingly. The model finally produces
a probability distribution over answer alternatives from which the most likely
option is picked as answer to the question. Image taken from Anderson et al.
(2018).

usually been trained in a self-supervised fashion on vast amounts of general
text data consisting of billions of words.

2.2 Mechanisms of Inference

VQA systems have showcased impressive gains in answer accuracy performance
in recent years and the pursuit of which has spawned a wide variety of modeling
approaches. In the follwing, we give an overview of some of the most influential
mechanisms of inference in recent VQA model design.

2.2.1 Question-guided Attention

Intuitively, the inference process of a VQA system can be understood as a
navigation over image content. In its simplest form, this process can be realized
in a VQA system by a question-guided attention mechanism (Bahdanau et al.,
2015) over the visual input representation. The idea behind this mechanism
is to empower the model with the ability to focus on question-relevant parts
of the visual input representation while discounting other parts.

Single-hop inference. In the classic Bottom-Up Top-Down (UpDn) model
(Anderson et al., 2018), depicted in Figure 2.1, question-guided attention
(“Top-down attention weights” in the figure) is realized as a one-time operation
to determine the weight — or question-relevance — of each element in the
visual input (represented as a bag of visual objects) w.r.t. the given question
(represented as a single question vector assembled by an RNN that processes
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Figure 2.2 – The MAC cell (image taken from Hudson and Manning (2018)).
The Control unit attends to different aspects of the question in each cell.
Image information relevant to the currently processed aspects of the question
is extracted in the Read unit and then integrated by the Write unit into the
memory state, which informs the next inference step.

the question). This type of mechanism is called single-hop inference, as the
entire question-guided navigation over image content is captured by a single
attention operation.

Multi-hop inference. Questions such as “What color is the dog to the
right of the man wearing a bowtie?” require humans to take more than
just a single glance at the image before answering. Hence, such questions
might be better handled with a modeling mechanism that allows for multi-hop
inference to incorporate all information laid out as part of the question. The
MAC network Hudson and Manning (2018) implements such a mechanism by
stringing together RNN-based cells called “Memory, Attention, Composition”,
or MAC cells (pictured in Figure 2.2). The MAC network decomposes the
question into a fixed number of inference steps that each involve an attention
operation over image content w.r.t. different aspects of the question.

2.2.2 Bilinear Pooling

Extensive pairwise interactions between all feature elements of the two input
modalities in VQA can be modeled with bilinear models to obtain a rich joint
input representation. An efficient way to realize this mechanism in DNNs is
by low-rank bilinear pooling (Kim et al., 2016), which significantly reduces
the number of parameters otherwise needed to be learned in a straightforward
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Figure 2.3 – Multi-head attention over rich, bilinearly mapped joint repre-
sentations of vision and language is the key contribution of BAN (image from
Kim et al. (2018)). Step 1 shows “two-glimpse” attention (i.e., two-headed)
which produces two bilinear attention maps from an input of ϕ visual features
and ρ question features. Step 2 pictures the creation of BAN’s joint input
representation that is the basis for VQA classification.

bilinear operation1. The Bilinear Attention Network (BAN, Kim et al. (2018))
pictured in Figure 2.3 combines this concept of low-rank bilinear pooling with
multiple attention heads (i.e., attention mechanisms over the same input but
involving different weight matrices per head).

2.2.3 Self-attention and Co-attention

While MAC applies an additional attention mechanism over the question
to highlight different aspects in its interactions with the image in a small
capacity, BAN manages to model the exhaustively rich interaction between all
question and image feature dimensions via bilinear pooling. Both approaches,
however, do not model interactions between elements within the same modal-
ity. Therefore, MCAN (Modular Co-Attention Networks) (Yu et al., 2019b)
proposes to use Transformer-inspired (Vaswani et al., 2017) multi-headed
self-attention layers to model intra-modality interactions (Figure 2.4, left),
producing much richer individual modality representations. The resulting
representations are then combined with a form of question-guided attention
(Figure 2.4, right) over the image representation, where each (self-attended)
question element is used to identify (self-attended) image elements relevant
to it. This type of inter-modal interaction between all elements in both
modalities is called co-attention.

1In an unoptimized bilinear Neural Network layer, the size of the involved weight matrix
is dependent on the result of the Kroneker product between two input modality matrices
and thus consists of an impractically large number of learnable parameters for VQA tasks.
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Figure 2.4 – Transformer-inspired multi-headed self-attention (left) and
guided-attention units (right) are the building blocks of MCAN (image taken
from Yu et al. (2019b)). Additional details in Chapter 2.2.3.

2.2.4 Large-Scale Pre-Training with Transformers

As seen with MCAN, leveraging Transformer-based concepts of multi-headed
self-attention and the Transformer’s capacity to stack layers easily have shown
great potential in learning rich representations for VQA through profuse intra-
and inter-modality interaction modeling. Expanding in this direction, the
LXMERT model (Learning Cross-Modality Encoder Representations from
Transformers), shown in Figure 2.5, adopts the strength of Transformers
and BERT-like (Devlin et al., 2019) training regiments to learn rich multi-
modal representations for VQA. LXMERT (and other similar Transformer-
based Vision+Language (V+L) models like ViLBERT (Lu et al., 2019) and
OSCAR (Li et al., 2020)) is inspired by the uni-modal language model
BERT (Devlin et al., 2019), a Transformer-based modeling milestone in the
NLP field. BERT is designed to learn rich language representations by pre-
training with large amounts of text data. The resulting model is fine-tuned
with smaller datasets for solving specific downstream (NLP-related) tasks.
LXMERT follows this kind of pre-training/fine-tuning scheme for V+L tasks
and additionally includes vision and cross-modality encoders alongside a
language encoder. Similar to MCAN, cross-modality representations involve
both self-attention layers for intra-modal interaction modeling as well as
vision and language-guided attention for inter-modal interaction modeling.
One of LXMERT’s key differences to MCAN is the learning scheme which
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Figure 2.5 – LXMERT: Transformer-based model pre-training picturing sev-
eral pre-training objectives (right) to learn rich cross-modality representations
for V+L tasks and VQA in particular (image from Tan and Bansal (2019)).

involves pre-training the encoders with several datasets consisting of various
V+L tasks (i.e., in addition to VQA-specific datasets which MCAN uses).
Its pre-training procedure includes a number of uni-modal and multi-modal
learning objectives, including masked language modeling and a standard VQA
task loss (w.r.t. answer correctness). After the lengthy pre-training process
on large amounts of data, LXMERT’s cross-modality encoding is leveraged
in training (also called “fine-tuning” in this context) a comparably simple
classification head for VQA tasks using only task-specific data.

2.2.5 Relation Modeling with Scene Graphs

Powerful Transformer-based models like LXMERT provide the means for
learning rich joint-modality representations, but do not offer intuitive interpre-
tations regarding their inference process. Multi-hop inference, such as seen for
MAC, offers a sensible and interpretable way to model the process of resolving
a question that implicitly involves interpreting question-referred relations be-
tween objects in an image in a sequential fashion. The common bag-of-objects
image representation in VQA, however, typically provides only rudimentary
spatial information in the shape of location coordinates of the input objects
and lacks explicit information about semantic relationships between objects
in the scene. As a result, cases where questions explicitly refer to semantic
relationships between objects, models with multi-hop inference may not reap
the full benefits from their sequential processing. Scene graph representations
of images (Zitnick and Parikh, 2013; Yang et al., 2018; Chang et al., 2021),
where objects are represented as nodes and relationships as edges, can help
remedy this shortcoming, but require the adoption of dedicated modeling
techniques such as proposed in Graph Attention Networks (Veličković et al.,
2018), to process them effectively. Various models have adopted inference over
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Figure 2.6 – NSM’s traversal process over a symbolic scene graph guided by
sequentially constructed inference instructions from the input question (image
from Hudson and Manning (2019)).

scene graphs with success in particular for compositional VQA, i.e., the type
of questions requiring correct interpretation of relations (Liang et al., 2021;
Li et al., 2019b; Hu et al., 2019). A notable example for a model that imple-
ments sequential multi-hop inference by iterative traversal of scene graphs
is the Neural State Machine, or NSM (Hudson and Manning, 2019). NSM’s
key contribution is its graph traversal-based inference over an intricately
rich symbolic representation of the visual modality, which compiles object
names, their attributes and relationships in a probabilistic scene graph. A
demonstration of its functionality is shown in Figure 2.6.

2.2.6 Disentangled Inference

So far, the discussed inference mechanisms target modality fusion as a central
aspect of modeling inference in VQA. Among them, NSM takes a special
place as a model that focuses more on actual navigation of the given image
information than on a cross-modal transformation into a joint representation
which inherently encapsulates inference. In this sense, NSM can be interpreted
as trying to close the gap between classification-based and retrieval-based
VQA, where modalities remain disentangled throughout inference and answers
are retrieved from the visual knowledge base rather than selected from a
global answer set via answer classification. Another neuro-symbolic model
that more fully embraces modality disentanglement and retrieval-like answer
production is proposed with DFOL (Differentiable First-Order Logic) in
Amizadeh et al. (2020c). An illustration of the system is shown in Figure 2.7.
Informed by a symbolic image representation similar in content richness to
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Figure 2.7 – Retrieval-like VQA by evaluation of first-order logic-based scene
descriptions in DFOL (image taken from Amizadeh et al. (2020c)). See Chapter
2.2.6 for a detailed description.

NSM’s scene graph (“Visual Oracle” in Figure 2.7), DFOL evaluates first-
order logic-based (FOL) reformulations of the input question generated by
an independently trained semantic parser. These reformulations embody a
kind of visual description of plausible answers to the question. Questions
with a binary answers, such as the one pictured in Figure 2.7, are evaluated
via queries to the Visual Oracle according to each partial description in the
FOL formulation. Figure 2.7 illustrates how DFOL aggregates probabilities
of each object in the Visual Oracle of being a “man” (first FOL description in
red) and being positioned to the left of all other objects in the image (second
FOL description in blue), which then informs the answer. More challenging
query-type questions, such as “What color is the chair?” (not pictured here),
require evaluation of one FOL reformulation per color answer possibility.
Essentially, this question would be represented by FOL formulations such as
“there is a red, blue, brown, ... chair”, which are each evaluated to determine
the likeliest statement, thereby implying the answer. The evaluation of a
FOL description, i.e. DFOL’s central inference procedure, relies heavily on
queries to specific information content in the image, which are processed in
a sequential multi-hop manner. Importantly, vision and language remain
disentangled throughout the entirety of DFOL’s inference.

We note that in Chapter 3 of this thesis, we introduce our own concept for a
retrieval-based VQA system.
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Dataset #imgs #questions #unique image type QA source
answers

VQAv1 205k+50k 614k+150k >23k real-world + abstract scenes crowd-sourced
VQAv2 205k 1.1m >23k real-world crowd-sourced
GQA 113k 22m 1.88k real-world template-based

GQA balanced 86k 1.08m 1.84k real-world template-based
CLEVR 100k 1m 28 rendered template-based

Table 2.1 – Statistics of VQA datasets. All numbers were taken from respective
publications. Exception: Numbers for GQA balanced represent only data points
with fully released annotations (i.e., excludes benchmark tests).

2.2.7 Interpretable Inference in Monolithic Models

Finally, the Meta Module Network (MMN) proposed in Chen et al. (2021) mar-
ries two concepts seen in earlier architectures: Dedicated question parsing and
DNN-based multi-hop inference. An externally trained question parser trans-
forms the question into a straightforward sequence of instructions (also called
a “program”) to inform navigation over the visual input. These programs
essentially replace the original question as input to MMN’s main DNN-based
multi-hop inference process. MMN’s inference transparency benefits greatly
from this setup, as the question parser produces explicit, interpretable infer-
ence steps, which is unlike other similar DNN-based architectures employing
multi-hop inference such as MAC or NSM. Furthermore, in contrast to DFOL,
which also parses the question into interpretable functions, MMN leverages
the generated programs as question input to a powerful DNN-based model
with Transformer-inspired neural modules to achieve strong performances in
compositional VQA tasks.
A notable aspect of MMN’s training process is its auxiliary objective func-
tion that optimizes the model’s ability to identify visual objects relevant to
each processed inference step as a secondary task. The inclusion of such an
objective function can be interpreted as an attempt to improve the model’s
plausibility in its Visual Grounding, which is a concept we will discuss in
depth in Chapter 2.5.

2.3 Datasets for Visual Question Answering

In this section, we introduce three datasets that are routinely used to track
progress in VQA research. A summary of their traits and statistics is given
in Table 2.1.
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Figure 2.8 – Questions about real-world images and abstract scenes (third
from left) in the VQA dataset. Image from Antol et al. (2015).

2.3.1 The VQA Dataset

The VQA dataset proposed in Antol et al. (2015) consists of questions about
real-world images from the MS COCO image database (Lin et al., 2014), as
well as additional images depicting abstract scenes. MS COCO itself is a
popular benchmark for object detection and object recognition tasks. Figure
2.8 shows a few representative examples of images and questions in the VQA
dataset.

The VQA dataset consists of a mixture of real-world (205k images) and
abstract images (50k images). In total, 764k questions and about 10 million
answers2 were collected from human subjects: Three questions per image
and 10 answers for each question (one answer per subject). Each question
can have up to 10 unique answers, depending on the agreement between
subjects. The total collected number of unique answers for real-world images
exceeds 23k, i.e., many of the collected answers occur multiple times. In
evaluations, this set is usually truncated (e.g., only the most frequent 1k
answers are considered). Per the authors’ recommendation for evaluating
a model’s answer accuracy, a predicted answer should evaluate as correct
if at least three subjects agreed with it. The formal specification of this
recommendation is given in relevant parts of this thesis (Chapter 7.8.1).

The VQA dataset aims to represent a mixture of both Information Retrieval-
based VQA and commonsense-based VQA. The former is represented by
questions that can be accurately answered by extracting and validating relevant
image content (“Is the man wearing shorts and eating ice-cream?”), while the
latter requires additional commonsense knowledge to help interpret relevant
image content (e.g., “Is the man feeling warm?”). Both types of questions
represent significant use-cases in practical VQA.

2This number includes additionally collected answers from subjects when not looking at
images (used for analytical purposes).
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Figure 2.9 – Illustration of a scene graph from the GQA dataset, which
serves as foundation for generating questions and answers for the dataset.
GQA focuses on retrieval-based, compositional VQA (image from Hudson and
Manning (2019)).
Example questions:
Is the bowl to the right of the green apple?
What type of fruit in the image is round?

In response to reports of shortcut exploitation (definition provided in Chapter
2.4) facilitated by the dataset’s sample distributions in the first version of the
VQA dataset (=VQAv1) (Zhang et al., 2016; Kafle and Kanan, 2017; Agrawal
et al., 2016), a second iteration to this dataset, VQAv2, was introduced in
Goyal et al. (2017) to improve on this issue. VQAv2 adds a considerable
number of new QA-Image triplets (a new total of 1.1m questions) to re-balance
the dataset’s biased prior distribution and counteract shortcut exploitation by
VQA models. We discuss this phenomenon in more detail in Chapter 2.5.1.

2.3.2 The GQA Dataset

The GQA dataset (Hudson and Manning, 2019) was proposed for composi-
tional VQA and represents a retrieval-based VQA benchmark with focus on
visual scene understanding. GQA consists of real-world images taken from
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Visual Genome (Krishna et al., 2016), a large-scale crowd-sourced database for
various image processing tasks. Similar to the VQA dataset, Visual Genome
also uses images from MS COCO, and therefore GQA and the VQA dataset
have some overlap in this regard.

GQA consists of 113k real-world images and over 22 million questions. Each
image is accompanied by an annotated scene graph (Johnson et al., 2015)
that provides information about objects, attributes and relations in the
image. Unlike in the VQA dataset, questions in GQA are not crowd-sourced
but generated using an extensive linguistic grammar, i.e., templates, in
conjunction with image information provided by the given scene graphs. The
Q/A templates themselves were either manually constructed or derived from
questions in VQAv1.
Each question is further accompanied by a functional program consisting of a
number of reasoning steps to be executed like navigational instructions on the
respective scene graph to answer the question. A large majority of questions
also list pointers to visual evidence in the image that is relevant for producing
the correct answer (we call these “relevance annotations”). Each question
is coupled with a single answer. The total number of unique answers in the
dataset is about 1.9k.
Figure 2.9 shows an example image and a couple of typical questions in this
dataset.

Special precautions were taken to reduce unwanted statistical biases that had
been previously identified in the VQAv1 dataset (cf. Agrawal et al. (2016);
Goyal et al. (2017)). This resulted in the creation of the “balanced” split
which achieves a more uniform answer distribution within each question group.
The “balanced” split consists of a down-sampled 1.7 million questions.

2.3.3 The CLEVR Dataset

Similar to GQA, the diagnostic CLEVR dataset (Johnson et al., 2016) was
proposed for compositional VQA and retrieval-based reasoning. While the
high visual complexity of real-world images in GQA and VQA pose a significant
challenge in these datasets, CLEVR intentionally avoids this kind of visual
complexity to focus on aspects of scene understanding and reasoning.

The CLEVR dataset consists of 100k synthetic images depicting a small num-
ber of simple 3D shapes, rendered with the graphics tool Blender (Blender Foun-
dation, 2016). The arrangement of the shapes is based on a randomly sampled
scene graph consisting of three to ten objects. The scene graphs are accom-
panied by annotations of object positions and four attribute types like shape
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Figure 2.10 – Rendered image and synthesized questions in the CLEVR
dataset (image from Johnson et al. (2016)).

and color. Similar to GQA’s question generation, which drew inspiration from
CLEVR, one million questions were synthetically generated using question
templates and the scene graphs as foundation. Each generated question is
accompanied by a functional program. The answer set in CLEVR consists of
28 unique entries. Figure 2.10 shows an example image with a few questions
in this dataset.

2.4 Shortcut Learning and Generalization

Generally speaking, VQA models solve their task by employing so-called
decision rules that they have learned during training. Decision rules essentially
describe relationships between a model’s input (image and question) and its
output (the answer), with the most fundamental decision rule in VQA being
the general mapping of image and question to an answer. The choice of a
model’s architecture (Chapter 2.2), the employed training approach (e.g.,
Chapter 2.5.3), as well as the used training datasets (e.g., Chapter 2.3 and
Chapter 2.5.1), all have a profound impact on the kinds of decision rules a
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Figure 2.11 – “Taxonomy of decision rules. Among the set of all possible
rules, only some solve the training data. Among the solutions that solve the
training data, only some generalize to an i.i.d. test set. Among those solutions,
shortcuts fail to generalize to different data (o.o.d. test sets), but the intended
solution does generalize” (image and caption copied from Geirhos et al. (2020)).

model will acquire in training. One particularly undesirable type of decision
rule in VQA (and machine learning in general, cf. Schölkopf et al. (2012);
Pfungst and Rahn (1911); Torralba and Efros (2011); Geirhos et al. (2020))
is called the shortcut.

Geirhos et al. (2020) defines shortcuts as “decision rules that perform well
on standard benchmarks but fail to transfer to more challenging testing
conditions, such as real-world scenarios”. Following this definition, we describe
the process of shortcut learning as a model’s acquisition of such decision
rules in training. We further refer to the successful leveraging of shortcuts
in tests as shortcut exploitation. Shortcuts are characterized by working
particularly well on tests that are independent and identically distributed
(i.i.d., also called ID or In-Distribution tests) w.r.t. the training data. This
property typically manifests in benchmark datasets that divide all available
data samples into train and test set in randomized fashion (e.g., the VQA
dataset described in Chapter 2.3).
Shortcut exploitation can significantly impact a model’s performance and
contribute to high scores on i.i.d. benchmark tests without actually reflecting
the model’s ability to solve the underlying task, thus giving a false sense
of accomplishment. One straightforward way to expose a model’s reliance
on shortcuts are so-called Out-of-Distribution tests (o.o.d. or OOD tests),
which are tests that are constructed systematically different from the original
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training & test datasets. Figure 2.11 illustrates the taxonomy of decision
rules in the context of solving ID (i.i.d.) and OOD (o.o.d.) test sets.
The field of VQA uses various OOD tests to help uncover shortcut exploitation,
some of which we describe in detail in the next section (Chapter 2.5).

Besides preventing shortcut learning to manifest in VQA models, uncovering
shortcut exploitation constitutes an equally important step towards improving
VQA generalization. Both aspects have been investigated extensively (e.g.,
Kervadec (2021); Dancette et al. (2021); Manjunatha et al. (2019); Agarwal
et al. (2020); Agrawal et al. (2018)). While, strictly speaking, generalization
is not a part of shortcut learning, the two concepts are inherently linked
to one another. Shortcut learning is characterized by its interference with
a model’s adoption of more desirable (human-)intended decision rules that
are intuitively understood to solve the underlying task (instead of only the
presented dataset). Avoiding shortcut learning and encouraging a model to
acquire intended decision rules therefore represents a promising direction in
the pursuit of stronger generalization capabilities. By this line of thinking, we
can also reasonably assume that an understanding of the extent of shortcut
learning in a model can also serve as a meaningful indication of a model’s
behavior in general real-world scenarios, as well as highlight issues to address
to further improve model generalization.

Human-intended decision rules that align with well-understood axiomatic
procedures involved in solving the underlying VQA task are likely to benefit
a model’s performance in generalization scenarios, including OOD settings.
One such prominent axiomatic decision rule in VQA manifests as a model’s
reliance on question-relevant input image regions when inferring an answer
to a question, and is sometimes more intuitively described as being “right
for the right reasons”. This decision rule is called Visual Grounding, and we
discuss it in detail in the next section.

2.5 Visual Grounding in VQA

Visual Grounding (VG) in VQA measures a VQA system’s inherent proclivity
to base its inference on question-relevant image regions. Proper3 VG in

3In theory, we can differentiate between general VG in VQA, which is characterized by a
model’s meaningful reliance on any visual information during answer inference (as opposed
to no involvement of the vision modality), and proper VG, which is characterized by a
model’s meaningful reliance on question-relevant visual information. This thesis focuses
on investigations of proper VG. Therefore, we only differentiate between “(proper) VG”
and “no (general/proper) VG” (i.e., we conflate “no general VG” and “no proper VG” as
negative VG cases).
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Figure 2.12 – Illustration of Visual Grounding. Model-attended image regions
of two VQA systems during inference. Even though both systems return the
same correct answer, only VLR’s inference (right, introduced in Chapter 3) is
correctly grounded on relevant parts of the image, while MAC (left, Hudson
and Manning (2018)) focuses on image regions that seem insufficient to inform
a correct answer.

a VQA model is defined by a meaningful involvement of question-relevant
image regions — or rather the visual features that represent them — in a
model’s inference process. On a conceptual level, proper VG is an axiomatic
requirement of VQA by definition of the VQA task. Figure 2.12 shows an
example of how VG quality can manifest differently in two VQA systems.
The depicted system on the right (VLR, introduced in Chapter 3) bases its
inference on plausibly question-relevant image regions and exhibits “good”
VG for the example questions. The system on the left (MAC (Hudson and
Manning, 2018)), on the other hand, seemingly fails to do the same, hence
exhibiting “bad” VG. Notice how the actual impact of VG quality on VQA
performance is not really evident in these given examples, as both systems
ultimately output the same correct answers. This phenomenon spawned one
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Dataset #imgs #questions Source

VQAv2 205k 1.1m VQAv1 / Original
GQA-101k (VisFIS) 62k 161k GQA (balanced)
GQA-large (VisFIS) 82k 1.07m GQA (balanced)
VQA-HAT (VisFIS) 21k 60k VQAv1

CLEVR-XAI (VisFIS) 10k 140k CLEVR-XAI / CLEVR
GQA-OOD 82k 997k GQA (balanced)

Table 2.2 – Dataset statistics of various ID/OOD dataset splits.

of the overarching questions that VG research in VQA is trying to answer:
How does VG impact VQA performance?

Given the axiomatic nature of VG’s role in VQA, a disregard of plausibly
necessary information to answer a question like those illustrated in Figure
2.12 would be expected to frequently cause a model to arrive at incorrect
conclusions. Therefore, correct answers that are consistently produced with
low VG quality can reasonably be considered evidence of a model’s reliance
on various statistical dataset biases and spurious patterns that it learns to
exploit during training (cf. Geirhos et al. (2020); Kervadec (2021)). As
shortcut exploitation has the potential to severely limit the utility of a model
to conditions set by the (training) dataset, there is a natural push in research
towards avoidance of their manifestation. A direct evaluation of VG in a VQA
model is one way of tracking the extent to which VG-related shortcuts might
be exploited in a given dataset. Another more practical and straightforward
way to uncover shortcut exploitation is by VQA evaluation with specifically
designed test scenarios that aim at reducing shortcut opportunities, thereby
revealing this shortcoming in the model by poor performances. We describe
both of these types in more detail in the following.

2.5.1 Uncovering shortcut exploitation with OOD eval-
uation.

Generally speaking, shortcut exploitation works well in test settings where
samples originate from the same distribution as the training data (i.e., so-
called i.i.d. settings). It tends to fail, however, in generalized settings where
samples deviate from these learned biases. Here, the model cannot rely on
shortcuts anymore to perform and actual interpretation of relevant input
information is required to be consistently successful.
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With this issue in mind, various generalized settings have been proposed in an
effort to uncover bias and shortcut exploitation in VQA and thereby estimate
a model’s generalization performance:

• VQAv2: Goyal et al. (2017) propose an overhaul of the popular
VQAv1 dataset (Antol et al., 2015) that re-balances prior distributions
of question-image-answer tuples by including additional images that
result in different answers to the same question. This extension of the
dataset is intended to reduce language-bias manifestation in particular,
as many test questions in VQAv1 could be answered by learning the
question-answer priors independent of the image contents. Note, that
VQAv2 is not typically employed as an OOD test, but we mention it
here for its de-biasing efforts.

• VQA-CP: Agrawal et al. (2018) propose an algorithm called “Changing
Priors” (CP) to re-distribute samples in the VQAv1/v2 datasets and
thereby enforce differences in answer prior distributions in train and test
sets for each question type. This results in a new OOD test scenario.
VQA-CP’s introduction is motivated by reports of problematic VG in
VQA models, and OOD testing is proposed with the express intent to
encourage VG research in VQA models.

• VisFIS (various datasets): Inspired by the CP-based re-distribution
approach used in the creation of VQA-CP, Ying et al. (2022) also
employs CP to re-distribute samples and create new ID/OOD test
splits for the purpose of VG research. New data splits are created for
three VQA datasets, namely 1) GQA (balanced) (Hudson and Manning,
2019), 2) VQAv1-based HAT (Das et al., 2016), and 3) a derivative of
CLEVR called CLEVR-XAI (Arras et al., 2022).

• GQA-OOD: Also based on GQA (balanced), Kervadec et al. (2021)
propose an ID/OOD split created with a re-distribution method that
categorizes samples based on question type and associated answer
frequency in the test set. Here, ID or “head” subsets consist of high
frequency answers (given the question type). Low frequency answers
are assigned to the OOD or “tail” subset. The training set remains
unchanged from the original split with this approach. GQA-OOD is
based on the premise that shortcut exploitation should not be able to
succeed for questions with rare answers, because rare answers require
proper reasoning (which the authors frame as the opposite of shortcut
learning, cf. also Kervadec (2021), p. 14). Hence, the “tail” subset
represents an OOD generalization scenario.
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Statistics of these datasets are listed in Table 2.2.
VQA models have consistently been reported to perform significantly worse in
OOD settings compared to the corresponding ID tests, thereby demonstrating
the widespread issue of shortcut exploitation in VQA models.

2.5.2 Measuring Visual Grounding in VQA

By OOD testing. OOD tests in general, and specifically the CP-based
OOD settings from Chapter 2.5.1, have regularly served as a means to gauge
the impact of VG capabilities of VQA models (Selvaraju et al., 2019; Wu
and Mooney, 2019; Ying et al., 2022). This evaluation practice is encouraged
by (anecdotal) evidence of model behavior in OOD settings which reveals a
model’s evident insensitivity towards image information (see, e.g., Agrawal
et al. (2018); Selvaraju et al. (2019)), thereby reaffirming the interpretation
that lack of VG is the main reason behind a model’s lower OOD performance
and that strengthening VG must lead to improved OOD generalization. In this
vein, gains in OOD accuracy have similarly been interpreted as confirmation
that improvements to VG are causing these gains (e.g., Selvaraju et al. (2019);
Wu and Mooney (2019)), although such conclusions have since been shown to
be unreliable (Shrestha et al., 2020).
It is worth noting that even though VG research for VQA models has been
the main purpose behind the introduction of several of the listed OOD tests,
the methods that are used to create these tests do not actually focus on
selecting questions specifically based on their VG requirements. It turns out
that redistribution methods that only focus on disaligning answer priors in
train and OOD test naturally expose some VG-related shortcut learning, but,
they far from isolate the impact of VG-related shortcut exploitation on VQA
performance. These insights are part of the main contributions of this thesis
and we present and discuss them in great detail in Chapter 8.

By dedicated VG metric. Aside from using ID/OOD accuracy evaluations
to estimate VG strength in VQA models, other more specialized metrics and
measurement techniques have been proposed to quantify VG in VQA systems.
Dedicated VG metrics broadly follow two approaches:

(1) Determining and comparing visual input feature importance (FI) scores
which measure the relevance of input features for answering a question.
Model-based FI-scores are compared with a reference, i.e., annotation-
based FI-scores.
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(2) Running multiple VQA evaluations with modulated visual feature inputs
and comparing model outputs to determine the importance of features
to the model.

Examples of VG metrics that belong to approach (1) use FI-scoring methods
that are based on a) a model’s internal attention mechanism (Bahdanau
et al., 2015) (e.g., as part of the VG metric proposed in Hudson and Manning
(2019)), or b) gradient-based FI-scores determined by GradCAM (Selvaraju
et al., 2017) (e.g., as part of the VG metric proposed in Shrestha et al. (2020)).
In feature modulation methods (approach (2)), VG quality is determined
by comparing model behavior for selective permutations of input features
to estimate their importance to the model’s answer inference in an indirect
way. Here, the reference (i.e., the annotation-based FI) typically guides the
decision on which feature permutations to evaluate (e.g., DeYoung et al.
(2020), adopted for use in VQA in Ying et al. (2022)).
In Chapter 4, we discuss VG metrics in greater detail and introduce our own
VG metric called FPVG (Faithful & Plausible VG), which is categorized as a
feature modulation method.

2.5.3 Improving Visual Grounding in VQA

The concept of VG quality enhancement in VQA models constitutes a straight-
forward path to fundamental improvements w.r.t. shortcut exploitation. In
Chapter 2.2, we have already seen various VQA model designs that evolve the
way of how visual information is processed during answer inference. In many
cases, these developments can be interpreted as an implicit strife for better
VG quality. Some models address such motivations more explicitly by report-
ing VG measurements (PVR, Li et al. (2019a)) and/or including specialized
auxiliary training objectives that focus on VG-related advancements in their
models (MMN, Chen et al. (2021)). For the vast majority of models, however,
no deeper investigations are presented into how well VG has manifested as a
result of the proposed model architecture. Architectural evolution has been
primarily driven by overall VQA performance improvements as measured
by answer accuracy, without explicit considerations for generalization sce-
narios (like OOD settings) or VG quality (as is evident by a general lack of
VG evaluation in model reports). This research routine has consequently
given rise to retrospective adjustments that attempt to improve an already
existing model’s generalization performance by application of special training
paradigms that help strengthen a model’s VG quality. In the following, we
describe two such influential training approaches, which we will use in later
chapters of this thesis.
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HINT. Human Importance-aware Network Tuning, or HINT (Selvaraju
et al., 2019), attempts to strengthen VG by aligning model-determined feature
importance (FI) scores of visual inputs with those determined by human
annotations.
Model-based FI-scores are calculated by a variant of GradCAM (Selvaraju
et al., 2017), which is an FI-measurement technique originally proposed in
the context of image recognition. The importance of a visual input object r
for ground-truth answer αr

gt is calculated as:

αr
gt =

|F |∑︂
i=1

∂ogt
∂F r

i

, (2.4)

where the sum accumulates the gradients of the ground-truth answer loss ogt
w.r.t. visual input object r’s features F r. The gradients are summed in order
to obtain a single importance score per visual input object, as opposed to
one score per feature dimension.
Human-based FI-scores for each given visual input object are determined
by a function involving overlap of the detected bounding boxes of visual
input objects with human-annotated question-relevant regions in the image.
The higher the calculated overlap of the detected object with the annotated
relevant image region, the higher the resulting human importance score for
the detected object. Note that the process for determining human-based
FI-scores is a central theme of our investigations in Chapter 7.
The two resulting importance scores are then compared by aligning their
internal rankings and accumulating score differences where object ranks differ.
The resulting ranking loss is then finally added to the regular VQA answering
loss as a weighted term.

HINT was shown to have significant accuracy impact on the OOD test in VQA-
CP, but further analysis in Shrestha et al. (2020) revealed that improvements
were not actually the result of VG improvements and were instead attributed
to a form of training regularization. We discuss further insights for HINT as
a result of our own analyses in later chapters.

VisFIS. Visual Feature Importance Supervision, or VisFIS (Ying et al.,
2022), is an ensemble of VG-related training objectives that are calculated
alongside the common answer-class-dependent cross-entropy (CE) loss func-
tion in VQA model training. VisFIS consists of the following four training
objectives:

1. Sufficiency. The idea behind this objective function is that visual
input consisting of only relevant objects is expected to still be able to
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inform the correct answer output. It is calculated as a regular CE-loss
for training samples with modified visual input that only represents
question-relevant objects.

2. Uncertainty. The idea here is that questions accompanied by visual
input consisting of only irrelevant objects should not produce a confident
answer. It is calculated as the Kullback-Leibler divergence between 1)
the uniform answer class output distribution of the VQA model, and 2)
the model’s output distribution for training samples with visual input
that only consists of irrelevant objects.

3. Invariance. Question-irrelevant visual input objects should be of low
importance to the model’s decision when measured with FI-scoring
methods. This objective is calculated as an L1 loss that penalizes the
model for high weights on irrelevant visual input objects.

4. Alignment. Model-based FI-scores should align with annotation-based
FI-scores. Accordingly, this objective is calculated as a cosine similarity
loss function, comparing importance valuations of visual input objects
given by 1) annotations, and 2) an FI method of choice.

Accuracy improvements for this method on three newly proposed OOD tests
(described in Chapter 2.5.1) have been reported stronger than for all other
evaluated VG methods, including HINT.

2.5.4 VG in VQA vs. other research areas

The definition of Visual Grounding in the context of VQA may differ from
its definition in other fields. If adopted to the field of VQA, such definition
differences can have a profound impact on how VG is measured and what
kind of influence it ultimately has on VQA modeling and model performance.
An awareness of the definition of VG in each given body of work is therefore
of prime importance. As described in Chapter 2.5, in this thesis, we define
(proper) VG as a model’s meaningful reliance on (question-relevant) visual
features in its process of answer inference.
As a notable example of a different definition, we make reference to research
in the field of Referring Expressions (RE) (Kazemzadeh et al., 2014). Unlike
in VQA, in RE research, VG is not interpreted as a measurement of model-
intrinsic quality. Rather, it is defined in the context of explicit localization of
task-relevant image regions. This marks a subtle but crucial difference to VG
in VQA, where VG describes a model’s intrinsic characteristic of relying on
relevant image regions for inference of the answer.
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It is worth pointing out that even within the field of VQA VG is sometimes
reduced to the aforementioned aspects of RE research, and is thus sometimes
being framed as a localization task. Notable examples can be found in the
context of VQA applications for the visually impaired (Chen et al., 2022), as
well as VQA models that are explicitly trained to localize relevant objects
independent of their direct involvement in answer inference, like in MMN
(Chen et al., 2021). While improving VQA models by some involvement of
a localization task during training may also have a positive impact on VG
in VQA (i.e., VG defined as an intrinsic quality of the model), the subtle
differences in goals of these tasks still need to be carefully noted in order to
determine suitable evaluations and correctly assess resulting model behavior.

2.6 Summary

In this chapter, we established this thesis’ background in the field of Visual
Question Answering, Visual Grounding and shortcut learning. Many of
the introduced principles, methods and datasets will be referenced in later
chapters.

Building on these existing foundations, we introduce our own contributions
and additions to the body of research in VQA and VG in the remainder of
this thesis.



Part II

Methods





Introduction

In Part I, we provided background information on the field of Visual Question
Answering, Visual Grounding and related research in the area of shortcut
learning, as it pertains to this thesis. In Part II, we describe our development
of a number of novel methods and processes that we leverage for performing
a thorough analysis of VG’s role in VQA generalization and shortcut learning.
Part II is organized as follows:

In Chapter 3, we introduce “VQA by Lattice-based Retrieval” (VLR), a
VQA system that follows an information retrieval-based design. VLR’s
implementation closely aligns with human-intended decision rules for VQA
and involves a heavy reliance on VG.

In Chapter 4, we fill the need for a dedicated, meaningful and accurate metric
to measure faithful and plausible VG in VQA. We introduce our VG metric
“Faithful and Plausible Visual Grounding” (FPVG) and verify its properties
and advantages over other existing metrics in a series of experiments.

In Chapter 5, we describe the construction of symbolic visual features for VQA,
which enable us to gain insights into model behavior related to informational
content carried in the visual modality. We further introduce a procedure
we call “Information Infusion” to easily manipulate image content through
surgical feature modifications, which we rely on in Part III of this thesis.

The following publications share results and content with this part:

• Visually Grounded VQA by Lattice-based Retrieval (Reich et al., 2022)

• Measuring Faithful and Plausible Visual Grounding in VQA (Reich
et al., 2023)

• Uncovering the Full Potential of Visual Grounding Methods in VQA
(Reich and Schultz, 2024)





Chapter 3

Visually Grounded VQA by
Lattice-based Retrieval

In this chapter, we describe VLR (“VQA by Lattice-based Retrieval”), a
VQA system that breaks with the dominant VQA modeling paradigm of
classification and investigates VQA from the standpoint of an information
retrieval task. As such, VLR directly ties VG into its core search procedure.
VLR operates over a weighted, directed, acyclic graph, a.k.a. “lattice”,
which is derived from the scene graph of a given image in conjunction with
region-referring expressions extracted from the question. VLR’s conception
is primarily motivated by our investigations into the role of VG in VQA.
In taking a step back from high-performing classification-based black box
designs, we aim to get a clearer understanding of the interplay of fundamental
components of a VQA system through empirical investigations of and with a
system that is conceptually employing the kind of visually grounded reasoning
that classification-based VQA systems are expected to learn and exhibit. As
such, VLR represents a reference system that inherently prevents excessive
shortcut exploitation from developing by more closely enforcing human-based
decision rules for VQA.

We give a detailed analysis of this approach and discuss its distinctive prop-
erties and limitations. Aside from its usefulness in VQA analysis, VLR —
as a practical VQA system — also displays the strongest VG characteristics
among examined systems and exhibits exceptional generalization capabilities
in a number of related scenarios.
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Figure 3.1 – Illustration of Visual Grounding. Attended image regions of two
VQA systems during inference. VLR’s inference is correctly grounded while
MAC focuses on parts that seem insufficient for producing the correct answer
(which both systems do).

3.1 Introduction

A VQA system requires proper handling of two types of inputs: 1) language,
which encodes the query we seek to answer, and 2) images, which encode the
search space for the query and act as knowledge base storing the answer. A
third piece that completes this task is an inference engine that models the
interaction between the two modalities and enables extraction of an answer.
In this context, Visual Grounding (VG) can be described as a measure of how
well the inference engine manages to tie region-referring expressions given in
the question to relevant regions in the image and, consequently, produces an
answer that is in fact based on these very regions. Systems with strong VG are
considered intuitively interpretable (see Figure 3.1) and suggest heightened
scene understanding. Improving VG in VQA makes models appear more
trustworthy (Selvaraju et al., 2019) and can improve accuracy (e.g. Ying et al.
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(2022)), while VG that fails to manifest regularly can foreshadow a system’s
struggles in certain scenarios as we find in Chapter 3.4.4 and later again in
Chapter 6.

Some highly influential milestones in VQA system designs (e.g. Anderson
et al. (2018); Yang et al. (2016); Hudson and Manning (2019)), have been
successful with designing their system’s inference procedure closer to that
of a human’s inference process. While these designs might in theory implic-
itly enable a system to learn visually grounded inference, explicit efforts to
improve VG performance and evaluation thereof have in practice taken a
back seat on the road to overall accuracy improvements on popular VQA
benchmarks such as Antol et al. (2015) and Hudson and Manning (2019).
This is presumably because the involved test scenarios cannot appropriately
reward a model’s adherence to human-intended decision rules, such as VG,
with improved accuracy and a higher benchmark ranking (see also Chapter
2.4 for additional background).
Traditionally, VQA system designs have focused on creating a powerful dis-
criminative classifier, often in the shape of an elaborate deep neural network,
which is trained by minimizing an answer performance-related loss function
like cross-entropy. Learning to produce correct answers via discriminative
classification over a predefined answer set allows these models to identify
complex patterns in the training data that help them select the correct answer.
However, as image processing methods are still performing imperfectly in
complex real-world scenarios and thus only produce sub-par image repre-
sentations that VQA models have to use as (inaccurate) knowledge base to
reason over, VQA systems may have to forego correct visual grounding for
(seemingly random or unreasonable) patterns, or shortcuts, that will lead to
correct answer selection (e.g. Figure 3.1). This line of reasoning suggests that
building models with strong accuracy and strong VG, or VQA models that
are “right for the right reasons”, is harder to accomplish than focusing on
strong accuracy alone — especially for classifier-based systems.

Accuracy has long been the primary performance metric driving development
of novel VQA systems, with strong VG being a “nice-to-have” property that
is often overlooked in the presence of improved accuracy. In this chapter,
we take a step back of accuracy-driven VQA system development and put
our primary focus on implementing a VQA system structure that prioritizes
correctness of human-intended decision rules in general and VG in particular.

To this end, we address the challenge of “right for the right reasons” and
design a VQA system that puts VG quality in the inference and answering
process center stage. We break with the dominant VQA modeling paradigm
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Figure 3.2 – VQA system designs (simplified): The predominant classification
design (r) and our lattice-based retrieval approach (l).

of classification and investigate VQA from the standpoint of an information
retrieval task (Figure 3.2). Here, we frame the retrieval process of our system
as a (scene) graph search problem and look to the field of Automatic Speech
Recognition (ASR) for solutions, which has a long history of employing graph
search algorithms for speech decoding. We adopt a concept that is integral
to the ranking of recognition hypotheses in ASR: the word lattice. Using
symbolic features detected in the image (and represented in a scene graph),
as well as inference instructions extracted from the question, we construct a
weighted, directed, acyclic search graph, a.k.a. lattice. In this VQA-lattice,
each path represents an alternative sequence of salient image regions, weighted
by their recognition scores for object/attribute/relationship identities. The
exact make-up of these scores depends on the region-referring expressions
extracted from the question. Inspired by search procedures in ASR once more,
we rank the paths through the VQA-lattice according to their likelihood using
the Viterbi algorithm, and finally extract an answer via deterministic logic
based on the 1-best path.

Approaching the VQA task in the manner described above manages to tie
VG principles directly into VLR’s core search procedure for the answer, cre-
ating a highly visually grounded VQA system as evidenced by evaluations
on the compositional VQA focused GQA dataset (Hudson and Manning,
2019). Moreover, following a retrieval-based paradigm with focus on incor-
porating human-intended decision rules enables VLR to successfully handle
anti-shortcut generalization challenges that classifier-based systems heavily
struggle with.

Contributions. We summarize the contributions of this chapter as follows:

• We propose a conceptually new VQA approach that is motivated by a
strife for strong VG through assimilation of human-based decision rules,
named “VQA by Lattice-based Retrieval” (VLR).

• We show that VLR achieves significantly stronger intrinsic VG quality
than reference systems of various designs.
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• We examine VLR’s distinctive strengths in various newly developed
generalization and Out-of-Distribution scenarios, showing it is partic-
ularly well equipped for real-world deployment where such challenges
are encountered and exploitation of shortcuts is expected to be less
beneficial.

• We share the newly developed generalization tasks with the research
community to encourage development in this direction1.

• VLR sets itself apart from other VQA systems by employing a quasi
open-vocabulary answer production that is not restricted to a specially
learned, pre-determined answer vocabulary set.

3.2 VQA System Designs

In this section, we discuss VLR’s similarities with existing models in VQA, as
well as designs that are influenced by an explicit motivation to improve VG.

General designs. VLR follows a straightforward modular system design
that shares some resemblance with existing VQA approaches. In particular
the isolation of the question interpretation process has been realized in related
models by learning to produce a program sequence from the question which is
subsequently leveraged to realize an interaction with the input image features
(Hu et al., 2017, 2018; Mascharka et al., 2018; Johnson et al., 2017; Li et al.,
2019a; Zhao et al., 2021; Chen et al., 2021). Our approach differs from these
models in particular in the choice of image representation: we operate on
scene graphs and use symbolic features instead of (spatial) sub-symbolic visual
features.
Like VLR, other recent approaches increasingly employ scene graphs as im-
age representation due to their effectiveness in compositional VQA tasks
(Hudson and Manning, 2019; Hu et al., 2019; Liang et al., 2021; Shi et al.,
2019; Kim et al., 2020; Li et al., 2019b). VLR shares similarities with the
neuro-symbolic methods NSM (Hudson and Manning, 2019), PVR (Li et al.,
2019a) and NS-VQA (Yi et al., 2018) in particular. However, while NSM
is trained end-to-end and does not have an explicit mechanism to produce
and rank inference paths, VLR is a fully modular system with inference path
production and ranking capabilities. And, unlike NS-VQA, which uses a
discrete structural scene representation, and PVR, which uses region-based
sub-symbolic visual features, VLR operates on a probabilistic, symbolic scene

1https://github.com/dreichCSL/GQA generalization splits
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graph representation as its knowledge base.
With the exception of NS-VQA, all of the above systems have in common an
answer production process that determines the output answer by means of a
discriminative classifier, defined over a preset answer vocabulary. NS-VQA
is different in this regard, as it queries a discrete, structured database for
answers in an artificial, constricted scenario (i.e., the CLEVR diagnostic
dataset described in Chapter 2.3.3). All mentioned systems are trained using
an objective function that serves to directly improve answer performance on
the training dataset, which makes them prone to manifest shortcut learning
(Geirhos et al., 2020).
Finally, VLR’s retrieval-based design resembles DFOL (Amizadeh et al.
(2020a), see also Chapter 2.2.6), which proposes a formalism based on pred-
icate logic for (neuro-)symbolic reasoning in VQA. Our work distinguishes
itself from DFOL in particular by 1) the introduced graph search concepts
that originated in ASR, 2) our more sophisticated Question Parser, and
3) our explicit conceptualization of VLR as a retrieval-based VQA system
enforcing human-based decision rules to avoid shortcut learning. Combined,
these design differences make VLR more capable of successfully handling a
wider array of generalization scenarios than DFOL (see also Chapter 3.4.4
and Chapter 3.4.4).

VG-motivated models. Various systems focus on improving VG perfor-
mance in the context of the GQA dataset, which we use as reference points in
our evaluations: The module-based approach PVR (Li et al., 2019a) improves
VG by deriving explicit inference instructions (similar to our work’s Question
Parser) and including additional supervision for strengthening correct ground-
ing during training of their classifier. Similarly, MMN (Chen et al. (2021),
description in Chapter 2.2.7) also uses a Question Parser and employs a scored
alignment between predicted object importance and annotated relevant ob-
jects in each inference step as additional learning signal. MAC-Caps (Urooj
et al., 2021) proposes to use visual capsule modules (Sabour et al., 2017) for
question-conditioned selection of detected image properties to improve VG
performance.

3.3 System Description

In Chapter 1.1.2, we explored how framing VQA as a retrieval task can help
us to intuitively understand the aciomatic necessity of VG to the VQA task
for producing correct answers. We draw on this insight to motivate VLR’s
system design. When framing VQA as a retrieval task, system modularity
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Figure 3.3 – Overview of our system’s components. VLR consists of a number
of modules and steps (in bold), described in detail in Chapter 3.3. The Scene
Graph Generator generates a probabilistic scene graph that acts as VLR’s
visual knowledge base (Chapter 3.3.2). The Question Parser (pictured at the
bottom) parses the input question into queries (Chapter 3.3.1). The VQA
lattice is constructed by extraction of the queried probabilities from the scene
graph. Once the lattice is constructed, the best path through the lattice is
determined using the Viterbi algorithm. Finally, the answer is produced based
on the final object of this path (Chapter 3.3.3).

presents itself as an obvious design choice: both the question and image
can be processed independently from each other to generate the query and
knowledge base, respectively. The interaction between the two, i.e. the actual
retrieval process, can then be handled by a third component. Following this
outline, we build three modules that together make up VLR:

1. Question Parser: Parses the question into standardized query format.

2. Scene Graph Generator: Generates a scene graph from the input image
which acts as the knowledge base.

3. Rank & Answer: Executes the query on the knowledge base and produces
the answer.

An overview of the entire system as well as the involvement of each module
during processing of an example question is shown in Figure 3.3. In the
following sections, we describe each of the three modules and VLR’s answering
process in detail.
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3.3.1 Question Parser

The Question Parser (QP) parses the question into a sequence of operations
(also called “program”, cf. Hudson and Manning (2019); Yi et al. (2018))
that are subsequently used in the construction of the VQA-lattice. In VLR,
an “operation” is essentially a query to the scene graph to acquire specific
recognition scores which are used in the construction of the VQA-lattice as
node emissions or transition probabilities (see Chapter 3.3.3 for details). We
use GQA-provided operation sequences (op-seqs) for training and evaluation
of the QP. An “operation” is a tuple given as (operation type, argument).
Here, operation types take on values such as “select”, “filter” or “relate”, while
arguments consist primarily of names for objects, attributes and relationships,
as well as some functional symbols like logical-or and underscore (where the
latter represents a wildcard entry). We determined 136 unique operation types
in GQA, and a much higher number of arguments. These can be combined in
various ways to form a myriad of unique operation tuples.

Model Description. The QP DNN is based on a pointer-generator architec-
ture with “coverage” mechanism, similar to See et al. (2017). This network
is, at its core, a seq2seq encoder-decoder model with attention mechanism
and certain extensions that enable it to “copy” a token from the input to the
output sequence. The “coverage” mechanism (Tu et al., 2016) tracks to what
degree input words have already been involved in the production of previous
output elements in the sequence. Integrating “coverage” in training helps to
significantly reduce token repetitions in the output sequence, which is a com-
mon issue in networks that employ a copy mechanism. The implementation
of this architecture is motivated by two concrete goals:

1. Reduced data requirements: We avoid having to train an unnecessarily
large output layer for generating all possible op-seq variants. Since an
operation tuple can refer to any object, attribute and relationship by
name, the output vocabulary of a vanilla seq2seq model without a copy
mechanism would have to be much larger to cover all possible entity
names. This would present a more challenging learning problem with
higher data requirements, as well as stronger dependency on exhaustive
program annotations.

2. Open vocabulary: The copy functionality of the QP adds the capability
to handle previously unseen entity names (e.g. new object names)
reasonably well (see Chapter 3.4.4), whereas a vanilla seq2seq model
(e.g., used in Yi et al. (2018); Amizadeh et al. (2020a); Zhao et al.
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(2021)) would not be able to output any word outside of its preset
vocabulary.

These advantages of the pointer-generator network over a vanilla seq2seq net-
work as basis for VLR’s QP directly benefit VLR’s generalization capabilities,
which coincides with our motivation for minimizing opportunities for shortcut
learning.

Model Specifications and Training. We include essential information
regarding QP’s training process here and defer to Appendix B.1 for additional
details, including results of isolated evaluations of this module.

As model input to the QP, we use pre-trained GloVe word embeddings
(Pennington et al., 2014) to encode words in the question. The softmax
output layer of the model consists of 162 classes, which includes a number of
classes (20) representing pointers to input question word positions that are
accessed by the copy mechanism. To train the copy mechanism, we leverage
a combination of regular expressions and GQA’s annotated pointers (from
question words to operation arguments). These are used to determine whether
or not a token in the output program sequence should be a pointer to a certain
question word.

3.3.2 Scene Graph Generator

The Scene Graph Generator (SGG) produces a graph-based, semantic repre-
sentation of the raw image. This resulting scene graph represents detected
objects (alongside their attributes) as nodes and relationships among objects
as edges between them (cf. Johnson et al. (2015)). An image’s scene graph
represents the visual knowledge base that informs VLR’s reasoning process.
In the following, we provide key information about the structure of VLR’s
SGG and defer to Appendix A for detailed implementation details, as well
as results of isolated evaluations of each of the three underlying tasks (i.e.,
object, attribute and relationship detection).

The SGG is divided into three sub-modules that each handle object detection,
attribute recognition and relationship detection, respectively. A Faster R-
CNN model (Ren et al., 2015) handles object detection and (sub-symbolic)
visual feature extraction. This model’s softmax output distributions (a 1702-
dim vector for 1702 object classes per detected object) is used to populate the
scene graph for an image. Each object’s attributes (617 classes), as well as
relationships among detected objects (310 classes), are separately determined
by their respective modules. These modules consist of individual models
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which produce class distributions that are similarly included in the scene
graph to populate attribute and relationship information for each object.

An abstract depiction of the construction of a scene graph by our SGG is
shown in Figure 3.3, second vertical section from the left, which illustrates
that relationship and attribute recognition is conducted based on outputs of
the used object detector.

3.3.3 Rank & Answer

The Rank & Answer module (R&A) is responsible for determining the top
ranked visually grounded inference paths and determining an answer to the
given question. R&A consists of three parts:

1. VQA-lattice construction

2. Finding/ranking paths through the lattice

3. Producing the answer based on the best path

For each question, VLR first constructs a VQA-lattice which can be described
as a question-driven reorganization and condensation of the original scene
graph. After ranking paths through this lattice by (visual) likelihood given
the query, the most likely path is used to determine the answer in a rule-based
fashion. The visual objects traversed in this most likely path represent VLR’s
Visual Grounding w.r.t. the question, i.e., these are the objects that VLR
relied on to arrive at the answer.
We take a detailed look at each of R&A’s parts in the following.

Lattice Construction. An Automatic Speech Recognition (ASR) lattice
is defined as a “weighted, directed, acyclic graph in which each complete path
represents an alternative hypothesis, weighted by its recognition score for a
given utterance” (Ljolje et al., 1999). Accordingly, we define a VQA-lattice
as a weighted, directed, acyclic graph, where each complete path represents
an alternative sequence of regions (objects) ending at the final answer region
in an image, weighted by the image-based recognition scores from the scene
graph as queried by the question. The source of recognition scores used in the
VQA-lattice is determined by queries extracted from the question (i.e., the
program generated by the QP). These queries - or operation tuples - which
consist of an “operation” and an “argument” (cf. Chapter 3.3.1), specify
what the nodes in the scene graph should be queried about. For instance, the
QP-extracted operation tuple (“select”, “apple”) would query each node in the
scene graph about its object recognition score for “apple”. Similarly, (“filter
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color”, “green”) would query each node about its attribute recognition score
for “green”. Queries about whole object categories like “animal” or “furniture”
are handled by summing the recognition scores for all classes belonging to
the category. Negations (e.g. “not white”) are handled by subtracting the
recognition score of the negated class from 1. Finally, operations involving
relationships query the relationship-specific edges between any two nodes in
the scene graph.

Rank. Once the lattice is constructed, the search task can be defined
as finding the path through the lattice that maximizes the probability of
the object/attribute/relationship detection models when applied to regions
(objects) in the image according to the operations given by the QP. In contrast
to ASR, where the goal is to find the maximum likelihood sequence of words
given an audio signal, in VQA we want to find the maximum likelihood
sequence of regions in an image, given both the image and a language-based
description of the regions of interest (as given by the QP). We accomplish
this, in accordance with ASR, by using the Viterbi algorithm, which is given
as:

V0,r = P (q0|r) ∗ π0 (3.1)

Vt,r = max
x∈I

(P (qt|r) ∗ ax,r ∗ Vt−1,x) (3.2)

where t is the current inference step (=operation tuple), r and x are individual
regions in the image, I is the set of regions in a given image, P (qt|r) is the
conditional probability of an image region r matching a language-based region
description q from the QP (e.g., object or attribute identity) and a is the
transition probability from image region x to r (i.e., a specific relationship
between them). Like object or attribute scores, transition probabilities
between image regions depend on the QP program and are provided by
the relationship model (in SGG). If the current program step describes a
relationship between objects, the probability for the specified relationship is
extracted from the scene graph. If the current program step does not involve
relationships, ax,r is set to 1 if and only if x=r and 0 otherwise. This forces
the algorithm to stay with the same image region when processing subsequent
attributional or positional descriptions of a queried object (e.g., a “car” that
is “red”).

The Viterbi path, i.e. the most likely sequence of image regions given the
image and the question, is then retrieved from back pointers that remember
the identity of the chosen region x in Equation (3.2):

xT = VT,x
x∈I

(3.3)
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xT−1 = BkPtr(xt, t) (3.4)

with BkPtr being a function that returns region x used in Equation (3.2) for
t > 1 or r if t = 1.

As is typical in information retrieval approaches, VLR can also produce a
rank ordered list of the best path candidates after a search over the VQA-
lattice. VLR accomplishes this by implementing the parallel List Viterbi
Decoding Algorithm (LVA) presented in Seshadri and Sundberg (1994), which
determines the n-best Viterbi paths in a given lattice. Note, however, that
this feature has no concrete use-case in the presented work.

Answer. VLR’s answer production module uses rule-based logic and con-
tains no learnable parameters. To produce the answer to the question, the
system depends on the final region(s) of the 1-best Viterbi path(s).
GQA splits QA-pairs into five structural categories: query, choose, compare,
logical and verify. Among those categories, query type questions denote “open”
vocabulary questions (with a large number of possible answers), whereas all
other types constitute “binary” questions (with either “yes”/“no” answers,
or the answer given as one of two options presented as part of the question).
VLR’s extraction of the answer for “query”-type questions, is a simple query
to the scene graph for the class with the largest softmax score2 in the object’s
class distribution (e.g., an object or attribute name defined in the scene
graph). This query to the scene graph might be restricted to subsets of object
(or attribute) classes, depending on QP-determined operations. For instance,
the QP-determined op-seq might have restricted the search to the object
category of “furniture” before querying the name of the final object in the
scene graph, which allows a search space reduction to qualifying object names
for the answer.
Some questions require the construction of two separate lattices and paths
(e.g., “logical-and” type questions asking about existence of two separate
objects). In these cases VLR produces one 1-best Viterbi path per lattice and
then applies the final operation considering the ending nodes of both paths
to answer the question.
Lastly, “verify”-type binary questions, which query object existence in the
image, are answered by comparing the geometric average of all multiplied
probabilities in the 1-best Viterbi path with a threshold value, which is
determined on a small development set.

2Remember that in the scene graph, objects, attributes and relationships are all rep-
resented by softmax distributions over possible classes (=names). E.g., in case of object
classes, the softmax distribution size is 1702, i.e., one value per object name found in GQA.
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Accuracy VG

System Binary Open Overall Grounding

N2NMN (Hu et al., 2017) n/a n/a n/a 55.44
UpDn (Anderson et al., 2018) 74.60 47.30 60.51 94.42
MAC (Hudson and Manning, 2018) 77.90 48.37 62.66 94.90
PVR (Li et al., 2019a) 80.67 49.29 64.47 97.44
MMN (Chen et al., 2021) 81.89 50.92 65.91 98.22
DFOL (Amizadeh et al., 2020a) 67.55 44.74 55.78 114.37
VLR 69.94 46.17 57.67 128.41

Table 3.1 – Accuracy per question type and overall VG results on GQA’s
balanced validation set, sorted by Grounding. Higher is better in all columns.
For detailed descriptions of the used metrics, see Chapter 3.4.3 and Chapter
3.3.3. N2NMN and PVR results are taken from Li et al. (2019a) and use
different visual features. All other models use visual features produced by
VLR’s SGG.

In addition to the answer, VLR also returns the (ranked) Viterbi path(s),
providing the user with a highly transparent view at the inner workings of
the QA-process.

3.4 Experiments

In this section, we evaluate VLR’s potential in aspects of answer accuracy,
VG quality (measured with multiple VG metrics described below) and gener-
alization performance using specially developed test scenarios.

3.4.1 Ablation-type Study of VLR

In Appendix B.3.1, we conduct a detailed ablation-type study of VLR. We
quantify the impact of inaccuracies in each of VLR’s modules on VLR’s overall
VQA performance. Starting from a VLR setting that uses only ground-truth
inputs (scene graph and question program), we systematically, module by
module, replace these ground-truth inputs with our module-predicted inputs.
Among other insights, we find that improvements to the scene graph generator
show the biggest potential for boosting VLR’s performance. We defer to
Appendix B.3.1 for additional results and discussions.
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3.4.2 General Evaluation

Preliminaries. We report results for a number of VQA systems on GQA’s
balanced split in Table 3.1. Accuracy is categorized by QA-type (binary or
open). The VG metric used here is GQA’s “Grounding” metric (more details
in Chapter 3.4.3).
With exception of N2NMN and PVR (for which results are taken from Li
et al. (2019a)), we trained all models with the same VLR-produced 1024-dim
region-based visual features for a fairer comparison. As mentioned in Chapter
3.2, MMN, PVR and DFOL use modular program generators that separately
parse the question into a sequence of operations, similar to VLR’s Question
Parser.

As VLR and DFOL share certain similarities, comparisons between the two
systems are of particular interest. Unfortunately, DFOL’s officially shared
implementation does not contain code for their program generator and instead
uses ground-truth programs from GQA. Therefore, results for DFOL need
to be taken with a grain of salt, as they might be somewhat inflated. We
can gauge the positive accuracy impact that may have resulted from using
ground-truth programs by looking at an equivalent setting in VLR’s model
ablations in Appendix B.3.1 (Table B.3.1, Systems VLR vs. VLR-2). Here,
accuracy shows an absolute improvement of around 2.5%. We surmise that
accuracy we report for DFOL might include a similar boost from using ground-
truth programs. Results for DFOL reported with other metrics might also be
similarly impacted.

Results discussion. As shown in Table 3.1, VLR’s accuracy performance
falls behind most of the reference systems, but surpasses all of them in VG
quality. Given that there is no direct optimization of answer accuracy via
minimization of a pertinent loss function involved in VLR, this somewhat
lower accuracy is not surprising. However, comparing VLR to the similar
DFOL model (which, contrary to VLR, does involve model optimization
guided by answer performance), we find that VLR achieves somewhat higher
accuracy, even without accounting for DFOL’s accuracy advantage from using
ground-truth programs.

In contrast to the expected accuracy disadvantage compared to classifier-based
VQA models, VLR’s architectural focus on implementing human-intended
decision rules with intrinsic reliance on VG quality is reflected clearly in its
dominating VG performance. We take a deeper look at this development as
well as VLR’s answer performance in various generalization scenarios and
Out-of-Distribution (OOD) settings in more detail below.
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3.4.3 Visual Grounding Evaluation

VG Metrics

Our primary VG quality evaluation is performed with two attention-based
VG metrics:

1. The official “Grounding” metric from GQA3: The “Grounding” score
represents the average VG score over all questions. A question’s VG
score is calculated as the sum of score contributions of each visual input
object (here: up to 100 detected objects). An input object’s score
contribution is calculated as its bounding box overlap percentage with
each annotated question-relevant reference object, multiplied with the
input object’s assigned attention score. Formally:

V Gscore(qi) =

o∈Oqi∑︂
j

r∈Rqi∑︂
k

(overlap(oj, rk) ∗ attention(oj)) (3.5)

Grounding =
1

n

n∑︂
i

V Gscore(qi), (3.6)

where n is the number of questions, q is the question, o is a visual input
object in the set of all detected objects Oq for the given image, and r is
a reference object in the set of all question-relevant reference objects
Rq.

2. A generic IoU-based metric4: For each detected input object, we check
if it has an IoU > 0.5 with any annotated question-relevant object. If
yes, we add that input object’s attention score to the VG score for that
question (i.e., a question’s VG score lies between 0 and 1).

Both metrics aim to measure how much “attention” a model puts on visual
input objects that were determined to represent question-relevant objects
given in GQA’s grounding annotations.

We use a third attention-based VG metric to compare VLR with MAC-Caps
(Urooj et al., 2021), which attempts to improve VG in MAC (Hudson and
Manning, 2018) using visual capsule modules (Sabour et al., 2017). For the
comparison with MAC-Caps, we use the F1-score based metric that was
introduced alongside the model (code available at Urooj (2021)). This metric

3Original metric description in Hudson and Manning (2019). Official code can be
downloaded at https://cs.stanford.edu/people/dorarad/gqa/evaluate.html

4IoU (Intersection over Union) is a standard evaluation metric used in the field of Object
Detection. IoU is also known as the Jaccard index.

https://cs.stanford.edu/people/dorarad/gqa/evaluate.html
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measures Precision, Recall and F1-score of IoU@0.5-based matches between
ground-truth objects and certain objects determined in the visual input by a
form of attention thresholding.

VG measurements are based on attention maps which are interpreted as
feature importance weight distributions over visual input objects. These
maps are extracted for each evaluated model as follows:

• UpDn natively produces a single attention map which we use as-is.

• For MAC we select the map produced in the final reasoning step before
the answer is generated.

• DFOL produces a relevance distribution over objects in each inference
step. Here, we use the map produced for the final state (or an average
thereof for multiple final states).

• MMN uses a transformer-based architecture, employing multiple layers
with multi-head attention. We take the average of all attention maps
involved in the inference process after the encoding layer, i.e., an average
over 7 self-attention layers with 8 attention heads each for one inference
step. We use the resulting averaged map representing the final inference
step as MMN’s attention distribution.

• VLR does not employ a native attention mechanism, so we uniformly
distribute 100% attention weight among the final object(s) in the 1-best
Viterbi path(s), as the answer is fully dependent on them.

We evaluate multiple metrics for the following reasons: First, the Grounding
metric (Equation 3.6) is ill-defined and can create scores of > 100% due to
their algorithm allowing attention weights of each input region to be factored
in more than once. We still adopt this metric to be able to compare with
previously published results, e.g., Li et al. (2019a); Hudson and Manning
(2019). Secondly, additional metrics can serve as a way to solidify the results.

Categories for Relevant Objects

GQA annotates question-relevant objects in three categories: Objects refer-
enced in the question (Q), in the short (often one word) answer (A), and
the full sentence answer (FA). We evaluate VG for each of these categories,
as well as a combined category containing all annotated question-relevant
objects (Q+A+FA). In each case, the grounding scores are averaged over all
involved questions.
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Line System QP SG Q A FA Q+A+FA Grounding Acc

1 Det.Obj. n/a VLR 91.45 92.34 91.66 91.49 n/a n/a

2 UpDn n/a VLR 23.72 39.32 28.78 29.90 94.42 60.51
3 MAC n/a VLR 25.10 38.56 29.32 30.37 94.90 62.66
4 MMN MMN VLR 30.34 29.94 29.14 30.34 98.22 65.91
5 DFOL GQA VLR 39.04 39.57 42.41 43.56 114.37 55.78
6 VLR VLR VLR 49.05 48.47 52.99 54.28 128.41 57.67

7 VLR-2 GQA VLR 57.47 31.90 55.11 61.23 132.00 60.16
8 VLR-7 VLR GQA 62.97 46.16 63.29 70.04 149.82 79.88
9 VLR-Oracle GQA GQA 70.93 50.94 70.75 78.46 162.73 91.78

Table 3.2 – VG results, discussed in Chapter 3.4.3. Higher is better in all
columns. VLR exhibits strong VG in all categories and metrics (Line 6). Best
result in bold (only considering non-Oracle systems, i.e., Lines 2-6). Note,
that Line 1 does not show VG measurements but lists average percentages of
question-relevant objects in the detected input scene graph (i.e., on average
about 8% of relevant objects are not detected).

Results Discussion

Detailed results for the evaluated systems are listed in Table 3.2. IoU-based
VG scores for all relevance categories (Q, A, FA and Q+F+FA) show that
VLR manifests much stronger VG quality compared to other models in all
categories. Most scores improve by > 20% relative compared to the best
performing reference system DFOL. Importantly, VLR is significantly more
committed to relying on relevant final answer region(s) to produce its answer
(Table 3.2, column “A”).

Comparisons of VLR and MAC-Caps with MAC-Caps’ VG metric are listed in
Table 3.3 and suggest a major difference in VG quality. It should be noted that
MAC-Caps was designed and evaluated based on grid-based visual features
(as opposed to object-based features). Both MAC and MAC-Caps results
in this table are based on grid-based features and were taken from Urooj
et al. (2021) (and their Appendix). VLR uses object-based features, which
evidently presents a substantial advantage over such models in object-centric
VG evaluation, as illustrated by the large evaluation differences.

Results for various Oracle-based5 variants of VLR (Table 3.2, Lines 7-9)
show that its VG quality (measured over the entire inference path) improves
further alongside accuracy, in particular with better scene graphs, while

5Oracle: Systems evaluated with ground-truth annotations to varying degrees instead
of using fully model-predicted inputs. E.g., using GQA’s scene graph annotations as input
instead of the model-generated scene graph.
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improvements in QP have less of an impact. For instance, replacing QP-
generated programs (Line 8) with Oracle (i.e., ground-truth) programs (Line
9) shows only improvements of around 10% relative in all VG measurements.
This is consistent with trends we observed for accuracy measurements (see
also VLR’s ablation study in Appendix B.3.1) and reaffirms the strong bond
between perception modules and VG in VLR.

3.4.4 Generalization & Out-of-Distribution

Compositionality and a retrieval-based design enable VLR to side-step some
of the most prominent challenges that current classification-based VQA
approaches struggle with, in particular certain content generalization and
OOD scenarios. We investigate these scenarios in the following.

Generalization Experiments

We perform experiments with re-partitioned GQA train/test sets to investigate
how VQA systems handle four generalization settings that simulate challenges
typically encountered in a practical real-world setting. Note that the underly-
ing perception module (our SGG) remains unchanged for all systems in these
experiments. We give an overview of the settings here and defer to Appendix
B.4 for details on the implementation of the applied re-distribution method.
The data splits are accessible on GitHub6.

• Generalization to new object names. We test a model’s ability to
handle previously unseen object names in questions. Akin to a similar
setting used in Hudson and Manning (2019), we remove all QA-samples
from training that contain any object name from the food or animal
category in the question. The test set then contains only these types of
questions.

6https://github.com/dreichCSL/GQA generalization splits

System Prec Rec F1 Ground Acc

MAC 1.97 2.28 2.11 41.68 57.09
MAC-Caps (Urooj et al., 2021) 2.53 3.10 2.79 45.54 55.13
VLR 53.76 30.41 38.85 128.41 57.67

Table 3.3 – VG comparison of MAC, MAC-Caps and VLR, using the VG
metric from Urooj et al. (2021), calculated for the final step of inference in the
“Q+A+FA” category. MAC and MAC-Caps results are taken from Urooj et al.
(2021), VLR is evaluated by us. Higher is better in all columns.
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• Generalization to linguistic variants. Similar to Hudson and
Manning (2019), we test model generalization to variants of questions
that are equivalent in terms of inference but are linguistically differently
formulated (e.g. “Do you see a car?” vs. “Are there any cars in the
image?”). Equivalent questions are re-partitioned such that we only
train on questions of one linguistic variant and test on questions of the
other variant.

• Generalization to new answer options. Unlike classifier-based
approaches, VLR does not learn a pre-fixed answer vocabulary. This
means that it can — in theory — produce an infinite amount of unique
answers without retraining the system itself, while classifier-based sys-
tems are restricted to a pre-fixed set of answers. We illustrate this by
removing all QA-samples with answers that are food or animal names
from training and then test on QA-samples with answers from only
those categories.

• Low-resource training. To test a model’s transferability, we simulate
the massive input space of VQA under real-world conditions by causing
a shortage of exhaustive (Question,Image,Answer) training tuples and
disaligning train/test priors (similar to certain OOD conditions, but in
a less controlled manner). Concretely, we limit training samples per
answer option to 1000 (test set remains unchanged).

Results discussion. Results of the four generalization experiments are
shown in Table 3.4. All models used in this section were trained with the
same data. Note that DFOL, which can only be evaluated with ground-
truth programs (due to the missing release of its question parser), cannot
be reasonably evaluated in these scenarios, as performance of the question
parser is a major factor here.

System Objects Ling. Variants Answers Low-Resource

Train/Test 763k/23k 801k/20k 862k/11k 311k/132k

UpDn 35.75 (65.66; -45.6%) 58.20 (64.33; -9.5%) 0.0 (57.62; -100%) 49.72 (60.51; -17.8%)
MAC 34.99 (64.91; -46.1%) 58.37 (64.05; -8.9%) 0.0 (57.96; -100%) 49.11 (62.66; -21.6%)
MMN 41.71 (69.31; -39.8%) 57.27 (65.31; -12.3%) 0.0 (61.36; -100%) 51.24 (65.91; -22.3%)
VLR 56.40 (60.99; -7.5%) 52.19 (56.85; -8.2%) 39.88 (51.63; -22.8%) 51.58 (57.67; -10.6%)

Table 3.4 – Generalization experiments, discussed in Chapter 3.4.4. Accuracy
numbers in parenthesis represent results (and relative difference) when training
in a regular setting (i.e., with the unmodified GQA balanced train set). Higher
is better for accuracy, lower is better for relative percentage differences.
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Table 3.4 shows that VLR achieves the highest accuracy in three of the
four experimental settings. Notably, VLR surpasses all evaluated models
by large margins when generalizing to new objects and answers, which is
a direct consequence of VLR’s retrieval-based design and the QP’s pointer-
generator architecture that supports an open vocabulary (unlike, e.g., MMN’s
parser). For linguistic variants, most systems exhibit similar relative accuracy
degradation (compared to a model trained on all available data). In the Low-
Resource setting, VLR suffers a much smaller relative drop than other systems.
VLR performs well in this scenario, because it does not need to learn patterns
for (Question,Image,Answer) triples; it only needs to learn to accurately parse
the question in isolation, which is a much less data-intensive learning task
and not directly dependent on (Question,Image,Answer) coverage7.

Out-of-Distribution Testing

We now investigate performance of VLR in a dedicated Out-of-Distribution
(OOD) setting, which was introduced in Ying et al. (2022) as GQA-101k.
This data set was created to measure OOD performance in GQA akin to what
the VQA-CP split (Agrawal et al., 2018) does for the VQA dataset (Antol
et al., 2015). GQA-101k follows VQA-CP’s “changing priors” methodology
for re-distributing questions in GQA’s balanced split (see also Chapter 2.5.1).

Evaluations in Table 3.5 show VLR’s exceptional performance on GQA-
101k, with VLR’s In-Distribution (ID) and OOD accuracy surpassing other
evaluated models. Moreover, VLR’s achievements in both ID and OOD
testing are virtually on par, while all other models exhibit a substantial
gap between their ID/OOD results. VLR’s performance shows that it can
effectively nullify the ID/OOD accuracy gap, thereby successfully meeting
expectations for a VQA-system focused on implementing human-intended
decision rules for inference.

3.5 Limitations

In this section, we discuss design-related limitations of VLR regarding its
application and extension to new use-cases.

7It is worth mentioning that the QP’s independence from images and answers of a
VQA-focused dataset means that it can in principle leverage VQA-unrelated text data
sources and benefit from relevant new developments in the Natural Language Processing
(NLP) field, such as the recent breakthrough of Large Language Models (LLM).
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System ID OOD

UpDn (Anderson et al., 2018) 55.21 34.57
MAC (Hudson and Manning, 2018) 54.90 33.08
MMN (Chen et al., 2021) 54.84 37.64
VLR 55.55 56.33

Table 3.5 – Accuracies in Out-of-Distribution testing on the GQA-101k data
split. Higher is better.

(1) Dependency on annotations: VLR learns from program annotations that
map a question onto a functional notation defined for question types in
GQA. Although the performed generalization experiments show VLR
to have comparably lower requirements in terms of training data size,
it still usually requires additional program annotations when retraining
for new scenarios.

(2) Generalization to new question types: This limitation is related to (1).
VLR can handle compositional questions used in GQA. Although an im-
portant subset of question types in the VQA-field fall into this category,
VLR will struggle when faced with questions that significantly deviate
from GQA in terms of program structure, thus requiring retraining
(with additional annotations). Note that this point pertains to the
program structure of questions, which is different from VLR’s ability to
generalize well to new content and — to a lesser degree — linguistic
variants in already learned question types.

(3) Handling sophisticated inference: As a retrieval-based system, VLR han-
dles questions that can be answered directly based on retrieved paths in-
volving objects/regions and their properties in an image. More involved
inference, such as questions that require external world-knowledge and
common-sense reasoning to be correctly answered, cannot be handled
efficiently by VLR.

(4) Generalization to new answer types: Unlike classifier-based VQA sys-
tems, VLR can generalize to output answers it has never seen in training

— but only if the answer type is supported (e.g., returning the name
of an object; confirming an object’s existence). VLR uses rule-based
logic in its answer production. If different types of answers need to be
produced (such as counting objects), the answer production has to be
manually expanded to add support. Such extension may not necessarily
require much effort to implement. E.g., support for “counting”-type
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questions could be relatively quickly realized by combining already
integrated mechanisms. Concretely, by running an n-best Viterbi search
and adding a new rule that counts paths that have a unique final path
object and exceed the probability threshold for object existence (note:
the same threshold mechanism is used for “verify”-type questions).

3.6 Summary and Conclusion

In this chapter, we have introduced “VQA by Lattice-based Retrieval” (VLR),
a modular, transparent system based on concepts from the field of Automatic
Speech Recognition and Information Retrieval, that largely embodies an
implementation of human-based decision rules for VQA, thereby acting as an
approximation of a model that is less prone to shortcut learning.

In breaking with the predominant VQA learning paradigm of classification and
designing a system from the standpoint of an Information Retrieval approach,
we have shown that VLR manifests significantly better Visual Grounding
in the inference process than various reference systems. A number of newly
constructed evaluation settings have shown VLR’s strong generalization
capabilities in terms of handling new object names, linguistic variants, low-
resource training and most notably its distinctive ability to produce answers
never seen in training. VLR’s exceptional performance in a dedicated OOD
scenario further adds to its distinguishing strengths and confirms the intended
behavior in an anti-shortcut setting.

Despite the discussed limitations of the approach and its shortcomings in ID
accuracy compared to state-of-the-art models, VLR — as a retrieval-based
system — offers some unique advantages that set it apart from other VQA
systems. We can see VLR as a viable alternative to current classifier-based
VQA systems in practical use-cases that require a) strong Visual Grounding
(e.g., in voice user interfaces and robotics: in order to handle follow-up queries
about visual objects; interaction with queried objects anywhere in the inference
path; more explainable/predictable interaction), b) robust generalization
performance in various scenarios (e.g., in embedded applications such as
children toys), and c) an open answer vocabulary, which can be useful for
querying large and changing varieties of image contents (e.g., in multimedia
search applications). In terms of theoretical considerations, we envision VLR
and this study of its properties w.r.t. some of VQA’s most prominent issues
(VG, generalization, OOD scenarios) to support analytical investigations and
general progress in these areas.



Chapter 4

Measuring Faithful and Plausible
Visual Grounding in VQA

Metrics for Visual Grounding (VG) in Visual Question Answering (VQA)
systems primarily aim to measure a system’s reliance on relevant parts of
the image when inferring an answer to the given question. Lack of VG
has been a common problem among state-of-the-art VQA systems and can
manifest in over-reliance on irrelevant image parts or a disregard for the
visual modality entirely (Goyal et al., 2017; Agrawal et al., 2018). Although
inference capabilities of VQA models are often illustrated by a few qualitative
illustrations, most systems are not quantitatively assessed for their VG
properties. An easily calculated criterion for meaningfully measuring a
system’s VG can help remedy this shortcoming, as well as add another valuable
dimension to model evaluations and analysis. To this end, we propose a new
VG metric that captures if a model a) identifies question-relevant objects
in the scene, and b) actually relies on the information contained in the
relevant objects when producing its answer, i.e., if its Visual Grounding is
both “faithful” and “plausible”. The proposed metric is called Faithful &
Plausible Visual Grounding (FPVG) and is straightforward to determine for
most VQA model designs.

In this chapter, we introduce FPVG and establish its properties through a
series of experiments. Code to support the metric calculations on the GQA
data set is shared on GitHub1.

1https://github.com/dreichCSL/FPVG
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Figure 4.1 – Faithful & Plausible Visual Grounding (FPVG): The VQA
model’s answer given all objects in the image (Aall) should equal its answer
when given only relevant objects w.r.t. the question (Arel), and should differ
when given only irrelevant objects (Airrel). In the pictured example, the model
returns the same answer (“cell phone”) when the visual input consists of all
or only relevant objects, and returns a different answer (“cup”) when given
only irrelevant objects. Hence, the question is deemed faithfully and plausibly
grounded under FPVG’s definition.

4.1 Introduction

Metrics that quantify a VQA model’s VG characteristics aim to capture its
internal reasoning process based on methods of model explanation. These
explanations generally vary in properties of plausibility and faithfulness.
Plausible explanations of a model’s behavior prioritize human interpretability
by making use of illustrations that are intuitively understood by humans, such
as providing a clear inference path over relevant objects in an image that lead
to the answer decision. However, plausible explanations might not accurately
reflect a model’s actual decision-making process. Faithful explanations, on the
other hand, prioritize a more accurate reflection of a model’s decision-making
process, possibly at the expense of human interpretability. Examples of
plausible explanation methods are attention mechanisms (Bahdanau et al.,
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2015) over visual input objects and certain other model outputs that may be
the result of multi-task objectives that teach the model to produce inference
paths without conclusive involvement in the main model’s answer decision
(Chen et al., 2021). Faithful explanation methods may employ testing schemes
with modulated visual inputs followed by comparisons of the model’s output
behavior across test runs (DeYoung et al., 2020; Gupta et al., 2022). While the
latter types of metrics are particularly suited for the use-case of object-based
visual input in VQA, they often a) require large compute budgets to evaluate
the required number of input permutations (e.g., SwapMix (Gupta et al., 2022),
Leave-One-Out (Li et al., 2016)); b) might evaluate in unnecessary depth,
like in the case of Softmax-score-based evaluations (DeYoung et al., 2020);
and/or c) evaluate individual properties separately and without considering
classification contexts, thereby missing the full picture (DeYoung et al. (2020);
Ying et al. (2022), see also Chapter 4.3.4).

In this chapter, we propose a VG metric that is both faithful and plausible in
its explanations. Faithful & Plausible Visual Grounding (FPVG) quantifies
a model’s faithful reliance on plausibly relevant image regions. An example
illustrating this concept is shown in Figure 4.1. FPVG is based on a model’s
answering behavior for modulated sets of image input regions, similar to other
faithfulness metrics (in particular DeYoung et al. (2020)), while avoiding
their above-mentioned shortcomings, which we discuss in detail in Chapter
4.3.4. A metric to meaningfully quantify VG in VQA models is an essential
pre-requisite for accurate VG analysis. The development of FPVG is therefore
crucial to our investigations of VG in this thesis.

In the remainder of this chapter, we first provide a broader context for VG
metrics in VQA by reviewing existing methods, after which we introduce
FPVG and establish its properties and advantages over other VG metrics.

4.2 Measuring Visual Grounding in VQA

4.2.1 Visual Grounding Metrics

Various metrics have been proposed to measure VG in VQA models. We
roughly group these into “direct” and “indirect” methods.

Direct Methods

The most widely used methods measuring the importance of image regions to
a given question are based on a model’s attention mechanism (Bahdanau et al.,
2015), or use gradient-based sensitivities (in particular variants of GradCAM
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(Selvaraju et al., 2017)). VG is then estimated, e.g., by accumulating impor-
tance scores over matching and relevant annotated image regions (Hudson
and Manning, 2019), or by some form of rank correlation (Shrestha et al.,
2020). Aside from being inapplicable to non-attention-based VQA models
(e.g., symbolic methods like Yi et al. (2018); Mao et al.), attention scores have
the disadvantage of becoming harder to interpret the more attention layers
are employed for various tasks in a model. This gets more problematic in
complex Transformer-based models that have a multitude of attention layers
over the input image (OSCAR (Li et al., 2020; Zhang et al., 2021), LXMERT
(Tan and Bansal, 2019), MCAN (Yu et al., 2019b), MMN (Chen et al., 2021)).
Additionally, attention mechanisms have been a topic of debate regarding the
faithfulness of their explanation (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Gradient-based sensitivity scores can theoretically produce faithful
explanations, but require a careful choice of technique and implementation
for each model individually to achieve meaningful measurements in practice
(Adebayo et al., 2018; Feng et al., 2018). Various works define their own
VG metric based on attention measurements (e.g., GQA-Grounding (Hudson
and Manning, 2019), VLR2 (Chapter 3), MAC-Caps (Urooj et al., 2021)) or
GradCAM-based feature sensitivities (Shrestha et al., 2020; Wu and Mooney,
2019; Selvaraju et al., 2019; Han et al., 2021), implicitly assuming faithful
measurements without thorough analysis or validation of the metric’s actual
properties.

Indirect Methods

This category includes methods that measure VG based on a model’s predic-
tions under particular test (and train) conditions, e.g., with perturbations of
image features (Yuan et al., 2021; Gupta et al., 2022; Agarwal et al., 2020;
DeYoung et al., 2020; Alvarez-Melis and Jaakkola, 2017), or specially designed
Out-of-Distribution (OOD) test sets that are thought to uncover a model’s
insufficient VG properties (Agrawal et al., 2018; Kervadec et al., 2021; Ying
et al., 2022).

4.2.2 Right for Right Reasons

VG can be considered a sub-problem of the VQA desiderata gathered under
the term “Right for Right Reasons” (RRR) (Ross et al., 2017; Ying et al.,
2022). RRR may additionally include investigations of causal behavior in a
model that goes beyond (and may not be strictly dependent on) VG and may

2Note that VLR was conceived before FPVG and therefore used other metrics to evaluate
VG.
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involve probing the model for its robustness and consistency in explanations,
e.g., via additional (follow-up) questions (Patro et al., 2020; Selvaraju et al.,
2020; Ray et al., 2019; Park et al., 2018).

4.3 Faithful & Plausible Visual Grounding

In this section, we develop a formal definition of FPVG, followed by a
motivation of its design and the intuition behind it. We then empirically
validate FPVG’s property of faithfulness3 by comparison of its VG quality
categorizations with that of various other faithful VG metrics. Finally, we
illustrate FPVG’s advantages over related metrics.

4.3.1 Metric Formulation

We propose a new metric to determine the degree of Faithful & Plausible
Visual Grounding (FPVG) in a VQA model MV QA w.r.t. a given VQA data
set S. Here, S consists of tuples sj of question, image and answer (q, i, a)j.
Each such tuple in S is accompanied by annotations indicating relevant regions
in image i that are needed to answer the question q. MV QA is characterized by
its two modality inputs (i and q) and a discrete answer output (a). Without
loss of generality, here, we expect image i to be given as an object-based
representation (e.g., bag of objects, scene graph) in line with the de-facto
standard for VQA models4.

FPVG requires evaluation of MV QA under three test conditions. Each con-
dition differs in the set of objects representing image i in each sample sj of
the test. Three tests are run: 1) with all available objects (iall), 2) with only
relevant objects (irel), and 3) with only irrelevant objects (iirrel). Formally,
we define one dataset variant for each of these three conditions:

sjall = (q, iall, a)j, sjall ∈ Sall (4.1)

sjrel = (q, irel, a)j, sjrel ∈ Srel (4.2)

sjirrel = (q, iirrel, a)j, sjirrel ∈ Sirrel (4.3)

3Only faithfulness needs explicit validation. The property of plausibility does not require
further validation as it is achieved by FPVG’s definition to evaluate a model’s reliance on
an annotated set of plausibly relevant image regions.

4In principle, FPVG can be easily adapted to work with any model (VQA or otherwise)
that follows a similar input/output scheme as the standard region-based VQA models, i.e.,
an input consisting of N entities where a subset can be identified as “relevant” (“irrelevant”)
for producing a discrete output.
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The relevance of an object in i is determined by its degree of overlap with
any of the objects referenced in relevance annotations for each individual
question (for details on the concrete process, see Appendix C.1). FPVG is
then calculated on a data point basis (i.e., for each question) as

FPV Gj = Eq(âjall , âjrel) ∧ ¬Eq(âjall , âjirrel) , (4.4)

where âj is the model’s predicted answer for sample sj and Eq(x, y) is a
function that returns True for equal answers. FPVG takes a binary value
for each data point. A positive FPVG value for sample sjall is only achieved
if MV QA’s output answers are equal between test runs with samples sjall
and sjrel , and unequal for samples sjall and sjirrel (remember that the three
involved samples only differ in their visual input). The percentage of “good”
(i.e., faithful & plausible) and “bad” FPVG is then given as FPV G+ and
FPV G−, respectively:

FPV G+ =
1

n

n∑︂
j

FPV Gj (4.5)

FPV G− = 1 − FPV G+, (4.6)

where n is the total number of samples (i.e., questions).

We further sub-categorize FPVG to quantify correctly (⊤) and incorrectly (⊥)
predicted answers âjall as FPV G⊤

{+,−} and FPV G⊥
{+,−}, respectively. Hence,

samples are assigned one of four categories, following their evaluation behavior.
The resulting categories are formally defined as follows:

FPV G⊤
+ =

1

n

n∑︂
j

(FPV Gj ∗ Eq(âjall , aj)) (4.7)

FPV G⊥
+ =

1

n

n∑︂
j

(FPV Gj ∗ (1 − Eq(âjall , aj))) (4.8)

FPV G⊤
− =

1

n

n∑︂
j

((1 − FPV Gj) ∗ Eq(âjall , aj)) (4.9)

FPV G⊥
− =

1

n

n∑︂
j

((1 − FPV Gj) ∗ (1 − Eq(âjall , aj))) (4.10)

Equations 4.7–4.10 sum to 1. Figure 4.2 shows an illustration for each of the
four categories.
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Figure 4.2 – Examples for the four FPVG sub-categories defined in Chapter
4.3.1. Each sub-category encapsulates specific answering behavior for a given
question in FPVG’s three test cases (Aall, Arel, Airrel). Categorization depends
on grounding status (“FPVG”) and answer correctness (“Acc”). E.g., questions
that return a correct answer in Aall and Arel and an incorrect answer in Airrel

are categorized as (a). The model’s behavior in cases (a) and (b) satisfies the
criteria for the question to be categorized as faithfully & plausibly visually
grounded.

4.3.2 Intuition behind FPVG

The intuition behind tests based on object selections in Srel (relevant objects)
and Sirrel (irrelevant objects) is as follows:

Testing on relevant objects Srel. In the context of FPVG, the output of
a well-grounded system is expected to remain steady for Srel, i.e., the model
is expected to retain its original prediction from Sall, if it relies primarily
on relevant visual evidence. Hence, a change in output indicates that the
model has changed its focus to different visual evidence, presumably away
from irrelevant features (which are dropped in Srel) onto relevant features —
a sign of “bad” grounding.

Testing on irrelevant objects Sirrel. In the context of FPVG, the output
of a well-grounded system is expected to waver for Sirrel, i.e., the model is
expected to change its original prediction in Sall, as this prediction is primarily
based on relevant visual evidence which is unavailable in Sirrel.

Summarizing expectations for well-grounded VQA. A VQA model that
relies on question-relevant objects to produce an answer (i.e., a well-grounded
model that values visual evidence) should:

1. Retain its answer as long as the given visual information contains all
relevant objects.
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2. Change its answer when the visual information is deprived of all relevant
objects and consists of irrelevant objects only.

During (1), answer flips should not happen, if the model relied only on relevant
objects within the full representation Sall. However, due to tendencies in VQA
models to ignore visual evidence, lack of flipping in (1) could also indicate
an over-reliance on the language modality (implies indifference to the visual
modality). To help rule out those cases, (2) can act as a fail-safe that confirms
that a model is not indifferent to visual input.

The underlying mechanism can be described as an indirect measurement of
the model’s feature valuation of relevant objects in the regular test run Sall.
The two additional experimental setups with Srel and Sirrel help approximate
the measurement of relevant feature valuation for Sall.

FPVG and accuracy. FPVG classifies samples sjall ∈ Sall as “good” (faith-
ful & plausible) or “bad” grounding by considering whether or not the changed
visual input impacts the model’s final decision, independently of answer cor-
rectness. Many VQA questions have multiple valid (non-annotated) answer
options (e.g., “man” vs. “boy” vs. “person”), or might be answered incor-
rectly on account of imperfect visual features. Thus, it is reasonable to expect
that questions can be well-grounded, but still produce an incorrect answer,
as shown in Figure 4.2, (b). Hence, FPVG categorizes samples into two main
grounding categories (FPV G+ and FPV G−). To enable a more fine-grained
analysis, answer correctness is considered in two additional sub-categories
(FPV G⊤, FPV G⊥) within each grounding category, as defined in Equations
4.7–4.10.

4.3.3 Validating FPVG’s Faithfulness

FPVG achieves plausibility by its definition to evaluate a model’s reliance on
an annotated set of plausibly relevant objects and therefore does not require
further validation. In this section, we validate that FPVG’s sample catego-
rization is also driven by faithfulness by verifying that questions categorized
as FPV G+ are more faithfully grounded than questions in FPV G−. To
measure the degree of faithful grounding for each question, we first determine
an importance ranking among the question’s input objects. Then we estimate
how well this ranking matches with the given relevance annotations.
Three types of approaches are used in VQA to measure object importance by
direct or indirect means:
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1. Measuring attention (direct): Attention over input objects gives a sense
of importance the model assigns to each object (used, e.g., in Li et al.
(2019a); Urooj et al. (2021); Hudson and Manning (2019)).

2. Measuring gradients (direct): Gradient-based methods like GradCAM
are close to the model’s inner workings as they involve estimating a
direct link between the importance of the input features and a model’s
output decision (used, e.g., in Selvaraju et al. (2019); Wu and Mooney
(2019); Shrestha et al. (2020)).

3. Feature manipulation (indirect): Manipulations are typically realized
by omission of input entities (i.e., vectors representing objects). The
manipulated image representation can be zero-padded to maintain the
model’s size expectations, as is commonly done for variable length inputs
in sequence modeling. Other variants used in VQA include replacing
omitted objects with certain other values (e.g., constants (Ying et al.,
2022), object features from other images (Yuan et al., 2021; Gupta et al.,
2022)).

We consider one representative method from each of these three categories:
VQA-model UpDn’s attention and the feature manipulation method Leave-
One-Out (LOO5) (Li et al., 2016) were found to deliver the most faithful
measurements of feature importance in similar experiments with UpDn on
GQA in Ying et al. (2022). We use these two methods and also include
GradCAM for completeness.

We measure UpDn’s behavior on GQA’s balanced validation set. Table 4.1
lists the ranking match degree between object importance rankings (based
on Sall) and relevance annotations, averaged over questions categorized as
FPV G+ and FPV G−, respectively. The “relevant” (“irrelevant”) category
produces a high score if all relevant (irrelevant) objects are top-ranked by
the used method (see Appendix C.2 for details). Hence, faithfully grounded
questions are expected to score highly in the “relevant” category, as relevant
objects would be more influential to the model’s decision.

Results in Table 4.1 show that object importance rankings over the same set
of questions and model vary greatly across methods. Nonetheless, we find
that data points in both FPV G+ and FPV G− achieve on average favorable
scores across all three metrics with mostly considerable gaps between opposing

5LOO evaluates a model N times (N=number of input objects), each time “leaving-out-
one object” of the input and observing the original answer’s score changes. A large score
drop signifies high importance of the omitted object.
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relevant irrelevant

Method FPV G+ ↑ FPV G− ↓ FPV G+ ↓ FPV G− ↑

Attention 60.9 26.6 16.7 51.2
GradCAM 10.4 8.5 53.7 67.4
LOO 29.8 16.0 52.0 71.7

Table 4.1 – Ranking match percentage between feature importance rankings
and relevant/irrelevant objects for questions in FPV G+ and FPV G−. Model:
UpDn.

categories (i.e., FPV G+ and FPV G−). This is in line with expectations and
confirms that FPVG’s data point categorization is driven by faithfulness.

4.3.4 Comparison with Existing Metrics

Two metrics to measure faithfulness in a model, “sufficiency” and “compre-
hensiveness”, were proposed in DeYoung et al. (2020) and used in the context
of VQA in similar form in Ying et al. (2022).
“Sufficiency” and “comprehensiveness” are similar to FPVG and therefore
deserve a more detailed comparison. They are calculated as follows.

Definition

Let a model Mθ’s answer output layer be represented as softmax-normalized
logits. A probability distribution over all possible answers is then given
as p(a|q, iall) = mθ(q, iall). The max element in this distribution is Mθ’s
predicted answer, i.e., â = argmax

a
p(a|q, iall), where the probability for the

predicted answer is given by pâall = Mθ(q, iall)â.

Sufficiency is defined as the change of output probability of the predicted
class given all objects vs. the probability of that same class given only relevant
objects:

suff = pâall − pârel (4.11)

Comprehensiveness is defined as the change of output probability of the
predicted class given all objects vs. the probability of that same class given
only irrelevant objects:

comp = pâall − pâirrel (4.12)



4.3 Faithful & Plausible Visual Grounding 75

A faithfully grounded model is expected to achieve low values in suff and
high values in comp.

Object relevance and plausibility

The definition of what constitutes relevant or irrelevant objects is crucial to the
underlying meaning of these two metrics. FPVG uses annotation-driven object
relevance discovery and subsequently determines a model’s faithfulness w.r.t.
these objects. Meanwhile, Ying et al. (2022) estimates both metrics using
model-based object relevance rankings (e.g., using LOO), hence, measuring the
degree of faithfulness a model has towards model-based valuation of objects
as determined by an object importance metric. A separate step is then needed
to examine these explanations for “plausibility”. In contrast, FPVG already
incorporates this step in its formulation, which determines if the model’s
inference is similar to that of a human by measuring the degree of faithful
reliance on plausibly relevant objects (as defined in annotations).

Advantages of FPVG

FPVG overcomes the following shortcomings of suff and comp:

1. Suff and comp are calculated as an average over the data set inde-
pendently of each other and therefore do not evaluate the model for
presence of both properties in each data point.

2. Suff and comp only consider prediction probabilities of the maximum
answer class in isolation, which means that even a change in model out-
put as significant as a flip to another class may be declared insignificant
by these metrics (for instance, this can happen for suff if the output
distribution’s max probability pâall is similar to pârel).

Shortcoming 1. Figure 4.3, left, illustrates why isolating the two properties
can cause inaccurate readings (1). The analyzed model assigns “good” suff
scores (defined in Ying et al. (2022) as < 1% absolute probability reduction
from pâall to pârel) to a large number of questions (left two quadrants in Figure
4.3, left). However, many of these questions also show “bad” comp (< 20%
absolute drop from pâall to pâirrel) (lower left quadrant in Figure 4.3, left),
which reflects model behavior that one might observe when visual input is
ignored entirely. Thus, the full picture is only revealed when considering
both properties in conjunction, which FPVG does. Further evidence of the
drawback stemming from (1) is pictured in Figure 4.3, right, which shows
average LOO-based ranking match percentages (cf. Chapter 4.3.3) for data
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Figure 4.3 – Left: Percentage of samples with best (worst) suff & comp
scores (medium scores not pictured). Many samples with the suff property
lack comp and vice-versa (gray). Right: LOO-based ranking match percentages
for samples in suff , comp and FPVG (higher is better). Model: UpDn.

points categorized as “best” suff or comp and FPVG. Data points in FPVG’s
categories score more favorably than those in suff and comp, illustrating a
more accurate categorization.

Shortcoming 2. Figure 4.4, left, illustrates problem (2). A large percentage
of questions with best (=low) scores in suff flip their answer class (i.e.,
suff ’s “best” category fails to reach 0% flipped percentage), even when
experiencing only minimal class probability drops (< 1% absolute). Similarly,
some percentage of questions with best (=high) comp scores fail to flip their
answer (i.e., comp’s “best” category fails to reach 100% flipped percentage),
even though the class probabiliy dropped significantly (>= 40% absolute
drop). Both described cases show that failure to consider class probabilities
in the context of the full answer class distribution negatively impacts the
metric’s quantification of a model’s VG capabilities w.r.t. actual effects on
its answer output behavior. FPVG’s categorization avoids this issue by being
defined over actual answer changes (Figure 4.4, right: flipped prediction
percentages per VG category are always at the expected extremes, i.e., 0% or
100%).
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Figure 4.4 – Sample distribution and answer class flip percentages depending
on metric categorization. X-axis: VG quality categories based on suff &
comp (left) and FPVG (right). Y-axis: percentage of flipped answers in each
category. Note that in this figure, FPVG’s formulation is interpreted in terms
of suff (Equation 4.4, right side, left term) and comp (right term). Model:
UpDn.

Summary. FPVG avoids shortcomings (1) by taking both suff and comp
into account in its joint formulation at the data point level, and (2) by looking
at actual answer output changes (Figure 4.4, right) and thus implicitly
considering class probs over all classes and employing meaningful decision
boundaries for categorization. Additionally, relying on answer flips instead of
an abstract softmax score makes FPVG more intuitively interpretable.

4.3.5 Discussion on other existing metrics

FPVG relies on the method of feature deletions to determine “faithful” reliance
on a “plausible” set of inputs. Other VG metrics exist that instead rely on
GradCAM (Shrestha et al., 2020) or a model’s attention mechanism (Hudson
and Manning, 2019) to provide a “faithful” measurement of input feature
importance. The two mentioned metrics leverage these measurements to
determine if a model relies on “plausibly” relevant objects. For instance,
Shrestha et al. (2020) calculates a ranking correlation between the measured
GradCAM scores and the rankings based on (plausible) object relevance
annotations. The metric in Hudson and Manning (2019) sums all of a model’s
attention values assigned to visual input objects that have been determined
to represent plausible objects.
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While “plausibility” is straightforwardly achieved by appropriate selection of
plausibly relevant reference objects (which would be the same across these
metrics), the property of “faithfulness” is more difficult to obtain and heavily
dependent on the employed feature importance technique. Investigations in
Ying et al. (2022) cast doubt on the faithfulness of GradCAM measurements,
with feature deletion techniques and attention mechanism scoring most favor-
ably in faithfulness in the explored setting. However, as discussed in Chapter
4.2, the faithfulness of attention measurements has not been without scrutiny,
and is not straightforward to extract correctly in models that make heavy
use of attention mechanisms (such as Transformers). Based on this evidence,
we find the method of feature deletions to be the most sensible and versatile
choice to achieve faithfulness of measurements in FPVG across a wide range
of model architectures in VQA.

4.4 Limitations

Plausibility of explanations in FPVG is assumed to be provided by accurate,
unambiguous and complete annotations of relevant objects per evaluated
question. Although the GQA data set provides annotations in the shape of
relevant object pointers during the inference process for a question, these
annotations may be ambiguous or incomplete. For instance, a question about
the color of a soccer player’s jersey might list pointers to a single player in
an image where multiple players are present. Excluding only this one player
from the image input based on the annotated pointer would still include other
players (with the same jersey) for the Sirrel test case. In such cases, FPVG’s
assumptions would be violated and its result rendered inaccurate. In this
context, we also note that FPVG’s behavior has not been explicitly explored
for cases with ambiguous relevance annotations.
We note that the expectation for having such complete annotations may not
be achievable in practice. Each sample’s relevance annotation would require
verification that no combination of non-relevant object pointers can still lead
to the correct answer for the given question (any potentially problematic
questions could then be removed from the evaluation). This verification could
be done automatically, but only if 1) object-level image annotations provide
tags for all pictured objects, or alternatively 2) the involved object detector
model is accurate enough to recognize all pictured objects correctly. Both of
these possibilities are, at this point in time, unrealistic expectations in itself,
in particular when dealing with rich real-world images, which is the case in
GQA.
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Secondly, FPVG creates its visual input modulations by matching annotated
objects with objects detected by an object detector. Different object detectors
can produce bounding boxes of varying accuracy and quantity depending
on their settings. When using a new object detector as a source for visual
features, it might be necessary to re-adjust parameters used for identifying
relevant/irrelevant objects (see Appendix C.1 for settings used in this work).
When doing so, the integrity of FPVG can only be retained when making
sure that there are no overlapping objects among relevant & irrelevant sets.

Thirdly, comparing VQA models with FPVG across visual features produced
by different object detectors might be problematic/inaccurate in itself, as 1)
different numbers of objects are selected for relevant & irrelevant sets, and 2)
different Q/A samples might be evaluated (e.g., due to missing detections of
any relevant objects). If possible, when using a new/different object detector,
we recommend including FPVG evaluations for some reference model(s) (e.g.,
UpDn) as an additional baseline to enable an improved assessment of a model’s
FPVG measurements that are trained with a different object detector’s visual
features.

4.5 Summary

In this chapter, we introduced Faithful & Plausible Visual Grounding (FPVG),
a metric that facilitates and streamlines the analysis of VG in VQA systems.
While its property of plausibility is inherently given by the metric’s definition
over plausibly relevant objects, we empirically established its faithfulness with
a series of experiments and comparisons with other faithful VG metrics.

FPVG embodies a streamlined VG metric with meaningful properties and a
crucial tool for accurate and efficient VG analysis of VQA models. As such,
FPVG is an essential milestone for our investigations into VG’s role in VQA
in general and OOD scenarios in particular.





Chapter 5

Information Infusion with
Symbolic Features

The input to a VQA model’s visual modality is typically represented by
high-dimensional sub-symbolic feature vectors that were extracted from a
separately trained object detector (OD) like Faster R-CNN Ren et al. (2015).
This kind of object-based image representation realizes a reasonable level
of symbolization of the raw image space, which facilitates semantic analysis
of a model’s internal workings, including VG. Nevertheless, the deeper sub-
symbolic nature of the extracted feature vectors still obstructs views into
a crucial aspect of any input modality: information content. While spatial
location information that each vector’s features represent in the raw image is
usually provided, interpretation of information content represented by the
features is hidden by their sub-symbolic nature. As a result, influence of the
visual modality on the VQA process cannot be cleanly isolated. Not only does
this impede analysis, but it can also cultivate misleading interpretations based
on problematic assumptions regarding the input’s informational content.

In order to enable easy interpretation of information content carried by the
visual modality, we propose to replace sub-symbolic features with symbolic
ones that reflect the carried information by using a higher form of symbolism.
The ability to control and investigate the information content that the visual
modality provides to a VQA model opens up a number of options for deep
analysis related to VG that are otherwise closed off when using standard
sub-symbolic features. This includes the use of image annotations to repre-
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sent input images to isolate the Object Detector’s (OD) performance as an
influential error source.

In this chapter, we describe the construction of symbolic features that are
required for in-depth analysis into VG in Part III. Symbolic features allow
a closer inspection of the visual modality’s informational payload, thereby
enabling us to investigate VG based on verifiably represented content instead
of content that is only assumed to be present in features, based on represented
image location alone. Furthermore, symbolic features can be easily manip-
ulated by a procedure we call “Information Infusion”, which we leverage in
experiments in Part III.

5.1 Symbolic features

In this section, we describe the structure of our symbolic features, the three
instantiations we experiment with in this thesis, and lastly the process of
“Information Infusion”, which can be described as surgical manipulation of
image content.

5.1.1 Structure

Figure 5.1 – Symbolic features. For a description see text.

In order to establish a firm handle on the informational content of the visual
input, we engineer object-based symbolic visual features. Each constructed
symbolic feature vector represents an object in the scene (as detected by an
OD) and carries information about its name (e.g., apple, banana), attributes
(e.g., red, round) and location in the image. This information is encoded by
two stacked 300-dimensional GloVe word embeddings (Pennington et al., 2014)
and a 4-dimensional vector containing the bounding box location coordinates.
Figure 5.1 illustrates an example of the described structure.
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5.1.2 Feature extraction

Symbolic features in this thesis are derived from classification outputs of the
scene graph generator (SGG) described in detail in Appendix A. We include a
few essential details about this SGG for easier understanding of the following
sections and defer to the appendix for a full description.

SGG details

Our SGG uses a Faster R-CNN model for 1) object detection of up to 100
objects belonging to 1702 object classes, and 2) bounding box coordinate
regression per object. Attribute recognition for each detected object is done for
each of the 39 attribute categories present in GQA separately. Each attribute
category (e.g., color, shape, material) consists of two or more attribute classes
(e.g., in the color category: red, blue, etc.), with an overall total of 617 classes.

5.1.3 Feature Vector Construction

In this work, we experiment with three symbolic visual representations that
vary in informational content (structure remains identical):

• Detection (DET) features are created using outputs of SGG. We use
the maximum class from SGG’s object detection as object name (a 300D
GloVe embedding) and the (normalized 4D) bounding box coordinates
as location information. For determining attribute information (the
second 300D GloVe embedding), each of the 39 attribute categories
provides its maximum class. To represent the attribute information of
all categories in a single word embedding, we take the average of all
recognized attribute name embeddings.

• Oracle (ORA) features are created accordingly, but without any
involvement of SGG. These features are based on GQA’s scene graph
annotations which contain each object’s name, attributes and location.

• Infusion (INF) features are created by targeted manipulation of
DET features (details below).

5.2 Information Infusion

In addition to interpretability advantages of symbolic features over sub-
symbolic representations, they provide one more crucial advantage over stan-
dard sub-symbolic features: easy information manipulation. Since we know
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where and how information is stored in the vector, altering visual content and
thereby controlling the model’s knowledge base is straightforward. Specifically,
we intend to introduce new information and correct wrong detections in given
visual representation in our experiments. We call this process “Information
Infusion”. The resulting features are named Infusion (INF) features. The
following two manipulation types are used in this work:

1. Introduction of new objects: Introducing a new object vector constructed
from scratch based on image annotations. VQA models typically impose
a strict limit for the number of input objects. New objects are either
simply appended to the list of exisiting objects (if said object limit was
not exhausted) or replace the object with the least confident object
class recognition. Further requirements are that any replaced object
cannot be relevant to the current question (this affects VG experiments
in particular).

2. Alteration of existing objects: Modifications of object name information
is performed by simple replacement of the respective 300D GloVe em-
bedding. For modifications of attribute information, we first determine
the attribute category of the new attribute to be infused. Then, the
embedding contributions of the detected attribute of that category is
replaced with an equivalently weighted embedding of the new attribute.

5.3 Summary

Symbolic features open up additional options for VQA analysis. In particular
the described procedure of Information Infusion is helpful in our VG-centric
research endeavors, as visual features play a key role for VG manifestation
in a VQA model. Specifically, we apply Information Infusion in Chapter
7 and Chapter 8, where it is instrumental in unveiling the true impact of
VG-methods on VQA models as well as for the creation of a VG-centric OOD
test.



Part III

Investigations & Insights





Introduction

In Part II, we introduced methods and processes needed for our diagnostic
journey into VG in VQA. We now leverage these methods and processes to
deepen our understanding of VG. Part III is organized as follows:

In Chapter 6, we start out by establishing an overview of VG capabilities across
various VQA architectures using our metric FPVG. We find that modern
VQA models, although high performing in ID accuracy, are still lacking in VG
quality. We finish the chapter with investigations of the connection between
OOD and VG, articulating initial insights into the impact of VG on OOD
accuracy.

In Chapter 7, we find that current evaluation practices for VG-boosting
methods are problematic due to problematic assumptions w.r.t. presence of
relevant information in a VQA model’s visual input. We empirically show that
VG-methods are much more potent when underlying assumptions are better
aligned with actual data conditions encountered in train and test scenarios.

In Chapter 8, we formally show that current OOD tests are unsuitable as
proxies for estimating VG quality and its impact on models by VQA accuracy
alone. We demonstrate how existing OOD tests offer plenty of opportunities
for VG-related shortcut exploitation despite acting as proxies for measuring
shortcut-free behavior in VQA models in related works. Based on these
findings, we develop a test scenario that properly reflects the significance of
VG in the context of shortcut learning in VQA.

The following publications share results and content with this part:

• Measuring Faithful and Plausible Visual Grounding in VQA (Reich
et al., 2023)

• Uncovering the Full Potential of Visual Grounding Methods in VQA
(Reich and Schultz, 2024)





Chapter 6

Visual Grounding Evaluations

Improving answer accuracy in OOD scenarios has been a primary motivator
for VG research in VQA (e.g., Agrawal et al. (2018); Selvaraju et al. (2019);
Wu and Mooney (2019); Ying et al. (2022)). Behind such motivation lies
an assumption that strengthening VG quality in VQA models will have bias
mitigating effects and prevent shortcut learning. In other words, improve-
ments in a model’s VG quality are expected to naturally translate to better
performances on OOD tests, which are designed to penalize models that rely
on shortcut exploitation and reward those that have learned to apply the
intended decision rules (see also Chapter 2.4). Nevertheless, the identification
of a clear correlation between OOD accuracy and metrics of VG quality —
which would facilitate a proper definition of the nature of their connection
— is still eluding the field, where evidence of incongruency between the two
metric types have been reported (Shrestha et al., 2020; Ying et al., 2022).
In this chapter, we perform experiments with VLR and FPVG to establish
an understanding about the state-of-the-art of VG in current VQA model
architectures. We then conduct experiments to investigate how OOD perfor-
mance is influenced by VG and report clear tendencies that show impact of
VG quality on OOD performance.
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6.1 VG Quality in Current VQA Models

In this chapter, we apply FPVG in evaluations of influential model representa-
tives of various VQA architectures to build an overview of the state-of-the-art
of VG quality across VQA model designs.

6.1.1 Experiment Setup

Dataset. The GQA dataset (Hudson and Manning (2019), described in
Chapter 2.3.2) provides detailed grounding information for a majority of its
questions, which benefits a comprehensive analysis of VG. In the following
experiments, we use GQA’s “balanced” split (943k samples) for training, but
include the full train split (14m samples) where required in official training
instructions for certain models. Standard answer accuracy evaluation is
performed on the full balanced val set (132k samples) for all models. Reported
numbers for all FPVG-related results are based on a subset thereof, and size
depends on the used visual features (SG-generated features: 114k samples;
VinVL features: 110k samples). For more details on how these subsets were
determined, see Appendix C.1.

VQA Models. For our VG overview, we choose VQA models from a wide
variety of model designs from recent years. Detailed descriptions for most
models are provided in Chapter 2.2. Concrete training details can be found
in Appendix C.3. The following models are evaluated:
UpDn (Anderson et al., 2018) is an attention-based model that popularized
the contemporary standard of object-based image representation. MAC
(Hudson and Manning, 2018) is a multi-hop attention model for multi-step
inference, well-suited for visual reasoning scenarios like GQA. MCAN (Yu
et al., 2019b), MMN (Chen et al., 2021) and OSCAR+ (Zhang et al., 2021)
are all Transformer-based (Vaswani et al., 2017) models. MMN employs a
modular design that disentangles inference over the image information from
the question-based prediction of inference steps as a functional program in a
separate process, thereby improving interpretability compared to monolithic
systems like MCAN. MMN also makes an effort to learn correct grounding
using an auxiliary loss. OSCAR+ uses large-scale pre-training on multiple
Vision+Language (V+L) datasets and is subsequently fine-tuned on GQA’s
balanced train set. We use the official release of the pre-trained OSCAR+
base model (which is based on proprietary visual features) as starting point
for fine-tuning. DFOL (Amizadeh et al., 2020c) is a neuro-symbolic method
that disentangles vision from language processing via a separate question
parser similar to MMN and our VLR model. We introduced VLR in Chapter
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Model Acc ↑ Accall↑ Accrel↑ Accirrel↓ FPV G⊤
+↑ FPV G⊥

+ FPV G⊤
−↓ FPV G⊥

− FPV G+↑
MAC 60.23 59.20 58.12 44.33 15.40 7.19 43.81 33.60 22.59
UpDn 55.53 57.99 58.51 44.32 15.76 9.68 42.23 32.33 25.44
UpDn+HINT 55.56 57.95 57.88 42.98 16.31 9.72 41.64 32.33 26.03
MCAN 66.18 65.78 67.3 44.62 20.18 6.20 45.60 28.02 26.37
OSCAR+ 70.52 69.96 71.79 50.24 20.37 6.00 49.58 24.05 26.37
MMN 68.49 68.23 64.37 43.93 21.93 5.86 46.29 25.92 28.22
DFOL 55.79 57.45 57.36 36.70 20.19 10.03 37.25 32.53 30.22
UpDn+VisFIS 57.09 60.01 63.71 43.25 20.38 12.20 39.63 27.79 32.58
VLR 57.25 57.39 61.29 35.99 24.55 11.68 32.83 30.93 36.23

UpDn* 65.22 64.81 68.28 43.00 23.90 9.29 40.92 25.89 33.19

Table 6.1 – FPVG results for various models, sorted by FPV G+. All models
were trained by us. Accuracy (Acc) is calculated on the GQA balanced val set
(132k samples), while all other columns are calculated on an FPVG-dependent
subset thereof (white rows: 114k samples; grey rows: 110k samples). Blue
arrows indicate desirable behavior for well-grounded VQA in each metric
category1(best results in bold). Gray colored rows use VinVL visual features,
others use our own. Bottom line: Results for UpDn* trained with VinVL
features are included to allow an easier assessment of OSCAR+ (w/ VinVL)
results.

3 as a modular, symbolic method that prioritizes strong VG over accuracy by
following a retrieval-based design paradigm instead of the commonly employed
classification-based design in VQA.

VG-methods. In addition to these main models, we include two VG-
methods that focus on grounding improvements and are both applied to
UpDn model training: HINT (Selvaraju et al., 2019) aligns GradCAM-based
(Selvaraju et al., 2017) feature sensitivities with annotated object relevance
scores. VisFIS (Ying et al., 2022) adds an ensemble of various RRR/VG-
related objective functions (including some data augmentation) to the training
process.

Visual Features. Apart from OSCAR+, all models are trained using the
same object-based 1024-dim visual features generated by VLR’s Scene Graph
Generator (see Appendix 9.2 for details). For OSCAR+, we fine-tune the
officially released pre-trained base model, which was trained with improved
visual features designed specifically for V+L tasks called VinVL (Zhang et al.,
2021).
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Accall↑ FPV G+↑
Model ID OOD ID OOD

UpDn 51.40±0.58 30.83±1.96 17.50±0.87 19.33±0.73
HINT 51.28±0.39 31.34±0.55 18.06±1.23 19.59±0.68
VisFIS 53.28±0.44 33.42±1.03 25.10±0.78 25.18±0.94
MAC 52.10±0.46 31.31±0.50 15.40±0.51 16.72±0.22
MMN 52.28±0.43 36.48±0.56 18.74±0.32 17.88±0.60
VLR 55.64 56.38 37.56 38.51

Table 6.2 – Accuracy (i.e., Accall) and FPV G+ for models evaluated with
GQA-101k over five differently seeded training runs.

6.1.2 Results Discussion

Results are listed in Table 6.1, with models sorted by FPV G+ (last column).
Our first observation is that FPVG and accuracy are not indicative of one
another, confirming that our metric for grounding is complementary to
accuracy and adds a second angle to VQA model analysis that looks beyond
answer correctness. Secondly, we see that (neuro-)symbolic methods like
DFOL, and VLR in particular, stand out among (non-VG-boosted) VQA
models in terms of FPVG, even while trailing in accuracy considerably.
Thirdly, we find that methods that boost grounding characteristics, like VisFIS,
show promise for closing the gap to symbolic methods — if not exceeding
them. Lastly, we observe that FPV G+ is generally low in all evaluated
models, indicating that there is still ample room for VG improvements in
VQA.

6.2 VG Quality and OOD Performance

We use FPVG to gain insights into the challenge of OOD settings by analyzing
VQA models with GQA-101k (Ying et al., 2022), a dataset proposed for OOD
testing. GQA-101k consists of a repartitioned train/test set based on balanced
GQA and was created following a similar methodology as the OOD split
called VQA-CP (Agrawal et al., 2018).

Results in Table 6.2 show median values and maximum deviation thereof
over five differently seeded training runs per model type (note that VLR uses

1FPVG sub-categories FPV G⊥
+ and FPV G⊤

− have no intuitively sensible ranking
directive under the FPVG motivation and therefore lack a blue arrow.
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c2i ratio for FPV G+ c2i ratio for FPV G−

Model ID OOD ID OOD

UpDn 1.35±.09 0.77±.05 1.11±.03 0.43±.04
HINT 1.36±.07 0.85±.05 1.11±.02 0.43±.01
VisFIS 1.40±.06 0.84±.06 1.23±.02 0.47±.02
MAC 1.44±.06 0.77±.05 1.16±.02 0.45±.01
MMN 1.91±.05 1.21±.12 1.11±.02 0.57±.02
VLR 1.91 2.12 1.09 1.05

Table 6.3 – Correct to incorrect (c2i) answer ratios for questions categorized
as FPV G{+,−}. Note that this table is not intended to serve as a ranking of
VQA model performance, as c2i ratios are not suitable for that purpose. We
use the table to analyze and discuss the differences in model behavior w.r.t.
VG (see text). Data set: GQA-101k.

deterministic inference, so no additional runs were performed for it). Table
6.3 lists correct-to-incorrect (c2i) answer ratios for six model types trained
and evaluated on GQA-101k. The c2i ratios are determined for each test
set (ID/OOD) and FPV G{+,−}. They are calculated as number of correct
answers divided by number of incorrect answers, hence, a c2i ratio of > 1
reflects that correct answers dominate the considered subset of test questions.
In the following analysis, we leverage the listed c2i ratios to investigate and
illustrate the connection between VG and (OOD) accuracy.

6.2.1 Understanding the connection between FPVG
and accuracy

In Table 6.1 and 6.2 we observe a somewhat unpredictable relationship
between FPV G+ and accuracy. We analyze the c2i ratios in Table 6.3 to gain
a better understanding of this behavior. Table 6.3 shows that FPVG-curated
c2i ratios can vary substantially across model types (e.g., UpDn vs. MMN).
These ratios can be interpreted as indicators of how effectively a model can
handle and benefit from correct grounding. Large differences between models’
c2i profiles explain why the impact of VG on accuracy can vary significantly
across models. E.g., MMN has a much stronger c2i profile than UpDn, which
explains its higher OOD accuracy even with lower FPV G+.
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Figure 6.1 – Performance drops when comparing ID to OOD (questions in
FPV G{+,−}, left), and when comparing FPV G+ to FPV G− (questions in
ID/OOD, right). Data set: GQA-101k.

6.2.2 Understanding the connection between FPVG
and OOD performance

The inter-dependency of VG and OOD performance plays an important role
in VQA generalization. FPVG can help us gain a deeper understanding.

More OOD errors when VG is bad. Figure 6.1, left, depicts relative c2i
ratio degradation when comparing ID to OOD settings. All models suffer a
much higher c2i drop for questions categorized as FPV G− than FPV G+. In
other words, models make more mistakes in an OOD setting in general, but
they tend to do so in particular when questions are not correctly grounded.
Note, that VLR is affected to a much lower degree due to its quasi-insensitivity
to Q/A priors.

VG is more important to OOD than ID. Figure 6.1, right, shows ac-
curacy sensitivity towards changes in grounding quality, i.e., when comparing
FPV G+ to FPV G−. We draw two conclusions: 1) All models suffer from
c2i degradation, hence, they all tend to make more mistakes for questions
categorized as FPV G− than FPV G+. 2) This tendency is (considerably)
more pronounced in OOD which provides evidence that OOD performance is
particularly sensitive to grounding.

Summary. Our analysis shows that VQA models have a clear tendency to
make mistakes in OOD for questions that are not faithfully grounded. This
tendency is consistently observed across various model types and model
instances. Our findings support the idea that weak visual grounding is
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detrimental to accuracy in OOD scenarios in particular, where the model is
unable to fall back on learned Q/A priors to find the correct answer (as it can
do in ID testing). Furthermore, we note that VisFIS, which boasts considerable
improvements in FPVG and strong improvements in accuracy over basic UpDn,
is unable to overcome these problematic tendencies. This suggests that VG-
boosting methods alone might not be enough to overcome a model’s fixation
on language-based priors, which is exacerbating the performance gap between
ID/OOD.

6.3 Conclusion

In this chapter, we have shown that FPVG can be a valuable tool in analyz-
ing VQA system behavior, as demonstrated in particular by the presented
investigations of the VG-OOD relationship. Here, we found that VG plays
an important role in OOD scenarios, where, compared to ID scenarios, bad
VG leads to considerably more errors than good VG, thus providing us with
a compelling argument for pursuing better-grounded models.

Furthermore, we investigated VQA systems of various architectural designs
and found that many models struggle to reach the level of faithful & plausible
VG that systems based on symbolic, programmed inference like VLR provides.
Of notable interest is also VLR’s strong OOD performance which reaches
an equilibrium with its ID accuracy, something that other methods are still
far away from achieving. This discrepancy in performance between learned
and programmed inference can be interpreted as indication of two issues: 1)
learned decision rules, as employed by all evaluated classification-based VQA
models, are overshadowed by shortcut learning, and 2) while clear tendencies
of VG influence on OOD performance were discovered, the extent of VG’s
contributions towards bias mitigation could not be universally quantified for
some currently unknown reasons. We further investigate these matters in
greater detail in Chapter 8, where we develop a clear understanding of the
source of this mystery and show why commonly used OOD tests are ill-suited
for analyzing VG’s impact on shortcut behavior in VQA models.





Chapter 7

Uncovering the Full Potential of
Visual Grounding Methods

Visual Grounding (VG) methods in VQA attempt to improve VQA per-
formance by strengthening a model’s reliance on question-relevant visual
information. The presence of such relevant information in the visual input
is typically assumed in training and testing. This assumption, however, is
inherently problematic when dealing with imperfect image representations
common in large-scale VQA, where the information carried by visual features
frequently deviates from expected ground-truth contents. As a result, training
and testing of VG-methods is performed with largely inaccurate data, which
obstructs proper assessment of their potential benefits.

In this study, we demonstrate that current evaluation schemes for VG-methods
are impaired due to the problematic assumption of availability of relevant
visual information. Our experiments show that these methods can be much
more effective when evaluation conditions are corrected. Our findings suggest
that the potential value of VG in VQA models has been misrepresented by
problematic evaluation methodologies.

Code and data to reproduce experiments and results reported in this chapter
has been released on GitHub1.

1https://github.com/dreichCSL/TrueVG



98 Uncovering the Full Potential of Visual Grounding Methods

7.1 Introduction

Visual Grounding (VG) in VQA has garnered interest not only as a key
aspect to furthering understanding and rationalization of a VQA model’s
inference procedure, but also as a way to improve Out-of-Distribution (OOD)
performance by preventing certain dataset biases to form. Various works
have reported evidence of problematic tendencies in VQA models that point
to a disregard of relevant image regions during answer inference and the
manifestation of Q/A distribution biases in the model (Agrawal et al., 2018;
Goyal et al., 2017; Agrawal et al., 2016). We have shown in Chapter 6 that
a lack of VG quality in VQA models negatively impacts OOD performance.
Similarly, weak VG has been tied to a general unpredictability of answering
behavior (Gupta et al., 2022). To alleviate these issues, methods have been
developed that seek to strengthen a model’s reliance on question-relevant
visual features. These VG-methods, of which we describe two in Chapter
2.5.3, either modify the training procedure of existing models (e.g., HINT
(Selvaraju et al., 2019), SCR (Wu and Mooney, 2019), VisFIS (Ying et al.,
2022)), or are integrated directly into specialized model architectures such as
MMN (Chen et al. (2021), described in Chapter 2.2.7), PVR (Li et al., 2019a)
and VLR (Chapter 3).

On a technical level, the goal of VG-methods in VQA is to align a model’s
internal valuation of visual input feature importance (FI) with human-based
FI, which is given as guidance in training. These human-based FI scores
can be inferred from a question’s visual relevance annotations, which may be
given as highlighted regions in the raw image (e.g., spatial heat maps as in
VQA-HAT (Das et al., 2016)), or explicit pointers to ground-truth objects (as
in GQA (Hudson and Manning, 2019)). Notably, relevance annotations are
not given in input feature space directly, and therefore a mapping function is
required to identify corresponding visual features and determine FI scores.
The predominant approaches for such a mapping between image and feature
space rely exclusively on spatial matching : Visual input features receive their
FI scores depending on spatial overlap between the region they represent
and question-relevant annotated locations in the raw image (cf. Selvaraju
et al. (2019); Wu and Mooney (2019); Shrestha et al. (2020); Ying et al.
(2022)). High-scoring features can then be identified as relevant cue objects2.
In this approach, the actual visual content carried by the cue objects is
simply assumed to be appropriate without further semantic verification and

2Visual feature vectors for VQA are commonly generated by object detectors such as
Faster R-CNN (Ren et al., 2015) and are therefore assumed to represent objects in an
image.
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Figure 7.1 – Example of Impaired VG in training: Left: VG-methods in VQA
teach the model to rely on specified visual input features without verifying
presence of relevant visual information (here: the correct identity of the depicted
animal), which leads to incongruity in training. Right: Example of True VG.
Ideally, the model should be taught to rely on question-relevant visual features
with accurate content.
Example of Impaired VG in testing: Consider the five solid colored squares
(left) as a model’s visual input and a test question as follows: 1) “Is the truck’s
back door open?”: VG on the truck is required, but the input does not contain
a truck (missing object detection is signified by the red dashed square). 2)
“What is the cow doing?”: VG on the cow is required, but the input does not
contain a cow (wrong object recognition is signified by the red colored square).
In both cases, impact of proper VG on accuracy cannot be cleanly evaluated.

therefore does not influence their score. In this work, we report evidence that
such incomplete verification can result in grossly mismatched cues, thereby
leading to inadequate guidance in VG-method training, as illustrated in Figure
7.1, left. Similarly, tests performed under such unchecked conditions fail to
accurately evaluate the originally intended use case that VG-methods were
designed for, as question-relevant content is often missing in the input and
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proper VG impossible. While work such as Shrestha et al. (2020) and Ying
et al. (2022) investigate the underlying effects of VG-method application in
detail, we are unaware of any study that also considers the impact of these
problematic conditions in their analysis. This is insofar an issue as research
on VG-methods involves perhaps the most influential and prominent works
among any reports that focus on the VG property in VQA models and their
impact on OOD generalization (in particular Selvaraju et al. (2019); Wu and
Mooney (2019)). As such, reported impact of VG-methods on OOD testing
might have a profound effect on the general perception of how important
the VG property actually is for OOD generalization. The findings in this
chapter suggest that the overall value of VG for OOD scenarios has been
severely misrepresented by the use of problematic evaluation methodologies
in VG-method research that fail to uncover the full potential of said methods.
This is further exacerbated by a general lack of reports being accompanied by
thorough VG measurements which would allow a more appropriate assessment
of VG efficacy (the lack of thorough VG measurements in related investigations
was similarly criticized by Shrestha et al. (2020)). We hope our work can help
raise awareness of these issues by its thorough investigation of the mentioned
training and testing impairments, and encourage a re-evaluation of the benefits
of VG for OOD generalization.

7.1.1 Contributions

In this chapter, we seek to develop a better understanding of the benefits of
VG-methods in VQA when training and testing conditions properly support
their intended use-case. We identify two impairments and their causes in
current evaluation practices for VG-methods and outline our “True VG”
methodology to fix them. Our approach establishes a new framework for
evaluating VG-methods more thoroughly. Finally, a comprehensive analysis
examines the impact of “True VG” settings, providing new insights into the
unfulfilled potential of VG-methods.

We summarize the contributions of this chapter as follows:

• We show that the impact of VG-methods on VQA accuracy is mis-
represented by commonly used but problematic training and testing
procedures that involve severe VG mismatches.

• We propose a new methodology for training and testing VG-methods
under corrected conditions with rectified VG misalignments, which
results in improved VG and VQA performance (code is provided).

• We provide an in-depth study of VG-method impact in ID/OOD scenar-
ios that is comprehensive in terms of datasets, methods and assessment.
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7.2 Background

VG-Methods in VQA. VG-boosting methods used for bias mitigation
operate under the assumption that strengthening a model’s reliance on rele-
vant visual input will in turn weaken the influence of dataset-inherent biases
towards Q/A priors and thereby improve OOD performance in VQA. Hence,
evaluations on ID/OOD splits like VQA-CP (Agrawal et al., 2018) and the
methodically similarly constructed splits introduced in Ying et al. (2022)
are often used to evaluate VG-method effectiveness for VQA. VG-boosting
training-schemes may involve data augmentation with modulations of (rel-
evant) visual input in image space (Gokhale et al., 2020) or feature space
(Gupta et al., 2022), or training the model with objective functions that
encourage an inference alignment with relevant image features for answer
production, such as HINT (Selvaraju et al., 2019) and SCR (Wu and Mooney,
2019). VisFIS (Ying et al., 2022) combines both types of approaches in an
ensemble of multiple objective functions.

Relevance annotations and Feature Matching. VG-methods typically
leverage annotations to point out question-relevant parts in the input image.
VQA-HAT Das et al. (2016) gathers such annotations in the form of spatial
heat maps. These heat maps are recorded by tracking a user’s computer
mouse during de-blurring of image regions needed to answer crowd-sourced
questions from the VQA dataset (Antol et al., 2015).
Template-based questions found in GQA (Hudson and Manning, 2019) and
CLEVR-XAI (Arras et al., 2022) are generated in conjunction with an un-
derlying visual scene graph and provide semantic relevance annotations of
involved objects (or image regions) as a natural byproduct.
Computational approaches attempt to determine relevance annotations by
employing a mapping between image region annotations and question words
(Gokhale et al., 2020), or by leveraging human-sourced textual explanations
for the answer to a given question (VQA-X (Park et al., 2018), used in Wu
and Mooney (2019)).

In all cases, the image-based relevance annotations are subsequently used to
identify relevant cue objects in a model’s visual input feature space. The
mapping from annotations to input features has traditionally been based
entirely on the features’ receptive field, i.e., the image location that the
features represent (Selvaraju et al., 2019; Wu and Mooney, 2019; Shrestha
et al., 2020; Ying et al., 2022). The work in this chapter goes one step further
and examines VG-methods that consider cue objects that additionally match
the content of the relevant ground-truth object. To the best of our knowledge,
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the effects of such semantic matching on VG-method efficacy in VQA has
not been explicitly investigated before.

7.3 Impaired Visual Grounding

We posit that evaluations of VG-boosting methods in VQA follow a problem-
atic methodology, which consequently causes an incomplete and potentially
misleading understanding of the benefits of VG and VG-boosting methods in
VQA.
Specifically, we investigate the following issues:

(I1) Impaired testing: Current evaluations of VG-methods hide their
full potential by diluting tests with questions that are impossible to
correctly ground due to missing relevant visual information. Examples
for impaired testing are given in the caption of Figure 7.1 (bottom
paragraph).

(I2) Impaired training: Impact of VG-boosting methods is muted due to
training with a large percentage of unsuitable training samples that are
missing relevant visual information necessary for teaching consistently
correct inference alignments. This problem is illustrated in Figure 7.1.

We further identify two underlying causes for these issues:

(C1) Noisy features: Impacts I1 and I2. Object misrecognitions and missing
detections of relevant objects in the input image representation occur
frequently in large-scale object detection tasks. We find that only 30%
of the used training questions (and 27%/26% of ID/OOD tests) in our
GQA experiments contain all necessary question-relevant information.3

(C2) Fuzzy spatial matching of cue objects: Impacts I2. Spatial identifi-
cation of relevant cue objects may declare irrelevant objects as relevant
on account of their close vicinity to the reference location, even if the
represented visual content is inadequate and therefore irrelevant (as
illustrated in Figure 7.1). We identify a question-average of 2.6 cue
objects in GQA training using semantic matching, which is inflated
to 5.4 cue objects using spatial matching (counted based on a thresh-
old of IoU > 0.5; matching methods defined in Chapter 7.4.2). This
means that on average more than half of the objects that were declared
question-relevant by spatial matching are in fact irrelevant.

3These numbers are based on success rates of semantic matching (see 7.4.2 for a
description), i.e., only 30% of training questions are accompanied by visual input that
contains matches for all question-relevant ground-truth objects.
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7.4 Experiment Setup

We empirically show that addressing impairments I1 & I2 outlined in Chap-
ter 7.3 provides new insights into the efficacy of VG-methods in VQA. In
this section, we describe our methodology for fixing these impairments for
analytical purposes.

7.4.1 Approach

Enhancing the testing process (I1). Developing a complete understanding
of the potential of VG-methods requires their evaluation on target cases
where proper VG is feasible in principle. A basic requirement for this is
that question-relevant information needs to be fully represented in the visual
input. Therefore, we determine “True Visual Grounding” (TVG) test subsets,
which are verified to only contain questions that are accompanied by complete
relevant visual features (i.e., features that match all question-relevant reference
annotations in both location & content).

Enhancing the training process (I2). VG-methods operate under the
assumption that given training targets, i.e., visual features and their FI scores,
are viable. Hence, training samples are expected to provide 1) relevant visual
features carrying the content that is needed to answer the given question,
and 2) FI scores that highlight them correctly in the set of all input features.
Object detection-based visual features are noisy (see C1 in Chapter 7.3) and
(parts of) the set of cue objects highlighted by spatial matching might be
irrelevant and/or incomplete (see C2 in Chapter 7.3), thus resulting in failure
to meet this requirement in many cases. We ensure availability of relevant
visual content in the input by “infusing” missing information. These infused
features can then be paired with perfect FI scores as guidance for VG-methods
in training.

7.4.2 From relevance annotations to cue objects

Relevance annotations point out the location (and in GQA also the identity)
of ground-truth objects in the raw image that are relevant for answering a
given question. In object-based VQA, the raw image and the actual image
representation that is fed to the VQA model are not in the same space. Hence,
a mapping is needed to identify cue objects in the input representation that
match the relevance annotations. We use two types of mapping methods in
this chapter:
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(M1) Spatial matching. Cue objects are identified (scored) by measuring
bounding box overlap (IoU) of (detected) visual input objects with
relevant ground-truth objects.

(M2) Semantic matching. Scoring additionally involves verification that the
content of the spatially matched cue object matches the ground-truth
object’s identity (i.e., its name and attributes).

Typically, spatial matching is used in scoring relevant cue objects when rele-
vance annotations point out relevant bounding boxes (such as in GQA). One
of the reasons M2 has been neglected so far is the difficulty of interpreting
sub-symbolic features w.r.t. their visual content. To circumvent this road-
block in this chapter, we leverage symbolic features that enable controlled
and interpretable encoding of feature content (see Chapter 5).

Determining FI scores. Spatial and semantic matching are used to deter-
mine FI scores for each visual input object. These FI scores are subsequently
used as guidance by VG-methods.
In spatial matching, the FI score for each visual input object od is set to
the highest IoU match with any ground-truth question-relevant object ogt.
Concretely:

sod = maxr∈GT IoU(od, o
r
gt), (7.1)

where GT is the set of question-relevant ground-truth objects. In this context,
the calculated FI score sod can be interpreted as a measure of confidence
that the object is relevant to the question, which is a reasonable way of
compensating for the lack of insight into the object’s actual informational
content.
In semantic matching, any detected object that sufficiently matches the
location (IoU > 0.5) and fully matches the content of any ground-truth
question-relevant object, is identified as question-relevant with full confidence.
We therefore assign the maximum FI score to such input objects. Similarly,
input objects that do not meet these requirements all receive the minimum
FI score.

7.4.3 Symbolic features

To gain a firm grasp on the informational content of the visual input, we
engineer object-based symbolic visual features instead of using standard sub-
symbolic features, which are commonly extracted from a late layer of an
object detector like Faster R-CNN Ren et al. (2015). The process for creating
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Figure 7.2 – Symbolic features.

symbolic features used in this chapter was described in Chapter 5. We include
an overview here for better context.

Each symbolic feature vector represents an object in the image and carries
information about its name, attributes and location. We encode each object
with two stacked 300-dim GloVe word embeddings Pennington et al. (2014)
and 4-dim for coordinates. Figure 7.2 shows an illustration of the makeup of
symbolic feature vectors. We construct three symbolic visual representations:

• Detection (DET) features are assembled from outputs of a scene
graph generator. They represent the standard use case.

• Infusion (INF) features are based on DET features, but are minimally
“infused” with relevant, question-dependent information to enable what
we call “True VG”, i.e., training where the required feature content is
present in the input and thus intended conditions for VG-methods are
met. Note, that Infusion is applied in training only.
For each training question, we identify which relevant ground-truth
objects are a) misrecognized (i.e., a meaningful spatial match (IoU >
0.5) exists in DET but semantic match does not), or b) missing entirely
(no meaningful spatial match exists). Missing objects are introduced as
new objects, assembled from image annotations. Misrecognized objects
are adjusted to match the content of the corresponding ground-truth
object (e.g., by replacing wrong object names and/or attributes with
those given in annotations).

Concrete implementation-related details for these features in the context of
this chapter’s experiments are described in Appendix D.1. The used scene
graph generator is described in detail in Appendix A.

7.4.4 Used Datasets

Primary experiments are performed with the GQA dataset Hudson and Man-
ning (2019), which provides detailed scene graphs and semantic relevance
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Test True VG Subsets

Dataset Train Dev ID OOD TVG-ID TVG-OOD

GQA-CP-large 580k 107k 161k 161k 43k 42k
VQA-HAT-CP 32k 6k 4.1k 5.9k 1.1k 1.6k

Table 7.1 – Sample counts for the used ID/OOD splits.

annotations for most of its questions. Moreover, the GQA dataset uses
template-generated questions that explicitly refer to information given in its
scene graph annotations, thereby creating ideal conditions for our investiga-
tions.
In secondary experiments, we use the VQAv1-based (Antol et al., 2015)
VQA-HAT dataset (Das et al., 2016), which provides relevance annotations as
spatial heat maps over raw images without exact ties to specific ground-truth
objects. The crowd-sourced commonsense-type questions in VQAv1 generally
exhibit a much weaker connection to the image annotations than questions in
GQA.

Specifically, we use the two ID/OOD data splits GQA-CP-large and VQA-
HAT-CP from Ying et al. (2022), which were both created with the “Changing
Priors” (CP) approach used in the creation of the OOD split VQA-CP in
Agrawal et al. (2018). The CP approach redistributes all samples from the
original dataset such that the new train and OOD test set have different prior
distributions of answers for every question type. Note that we only train with
questions that have meaningful relevance cues for all used visual feature types
(i.e., we do not use questions for which zero relevant objects were detected at
IoU > 0.5) to achieve a fair comparison across model variants. Training set
numbers listed in Table 7.1 reflect this selection. Similarly, all test sets for
VQA-HAT-CP are reduced to the more challenging “other”-type questions
(as opposed to questions with yes/no or number answers), as recommended
for testing with the VQA dataset in Teney et al. (2020).

7.4.5 Used VQA Models

The classic single-hop attention-based model UpDn (Anderson et al., 2018)
traditionally takes center-stage in VQA’s VG research on account of its no-frills
design which minimizes the risk of results being influenced by an unexpected
interplay between VG-methods and additional complex mechanisms. We
additionally confirm GQA results with the more powerful Transformer-based
model LXMERT (Tan and Bansal, 2019) in a separate section. For training
details of both models see Appendix D.2.
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7.4.6 Used VG-methods

We evaluate four VG-methods:

(1) AttAlign aligns a model’s attention weights over visual input objects
with the human-based FI scores. The model is trained by adding a
cosine similarity-based loss to the standard VQA task loss.

(2) HINT (Selvaraju et al., 2019) aligns GradCAM (Selvaraju et al., 2017)
determined FI score rankings in the model with those given by human-
based FI scores.

(3) SCR (Wu and Mooney, 2019) identifies a set of (ir)relevant objects
by ranking human-based FI scores. The model is penalized if 1) an
irrelevant object receives a higher GradCAM determined FI score (w.r.t.
the ground-truth answer) than the top-scoring relevant object, and 2)
if the top-scoring relevant object gets an even higher score for wrong
answers.

(4) VisFIS (Ying et al., 2022) is a high-performing ensemble of “Right for
Right Reasons” objectives, which includes cosine similarity-based FI
alignment between human-based and model-based FI scores, as well
as data augmentation based on (ir)relevant object sets determined by
thresholding human-based FI scores.

7.5 Impact on VQA Performance

Detailed numerical results for tests on UpDn models are listed in Table 7.2 for
reference. Important accuracy results that we discuss in detail in this section
are illustrated in Figure 7.3. Note that all models are tested exclusively
with DET features, even when trained with INF features. In the following
discussion, we highlight certain results to illustrate the problem with Impaired
VG.

7.5.1 Impairment 1: Testing

We first evaluate impact of VG-methods on the True VG (TVG) tests, which
only contain questions that are accompanied by complete relevant visual
content. Figure 7.3 shows VQA performance impact on UpDn when trained
with a VG-method. The left column shows impact on full ID/OOD tests
(labeled “Impaired”), while the right column shows impact on TVG tests
(“True”). In comparison, Figure 7.3 shows that impact of VG-methods is
considerably more pronounced in TVG testing (right column), confirming
that Impairment 1 is indeed problematic for evaluating VG-methods, as their
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Figure 7.3 – Accuracy improvements (in absolute percent) from VG-methods
compared to respective UpDn baselines. Numerical results are listed in Table 7.2
(baselines listed in first two lines). Training (y-axis): DET features with spatial
matching (“Impaired”, top row), and INF features with semantic matching
(“True”, bottom row). Striped bars: INF features with spatial matching.
Testing (x-axis): Full test (“Impaired”) or TVG subset (“True”).

impact is significantly muted in testing. Moreover, these results suggest that
VG-methods can be considerably more effective than previously suggested
in related work where VG-method analysis is conducted based on impaired
evaluation practices (Shrestha et al., 2020; Ying et al., 2022).

7.5.2 Impairment 2: Training

Training with INF features and semantically-matched cues. Figure
7.3, y-axis, shows accuracy improvements when applying VG-methods in
training under “Impaired VG” and “True VG” settings. “Impaired” train-
ing is performed with DET features and spatially matched cues (=standard
case), while “True” training is performed with INF features and semantically
matched cues (=intended case). Comparing top and bottom rows in Figure
7.3 reveals considerably greater impact of VG-methods in True VG training
(bottom row), particularly for TVG tests in OOD. This shows that Impair-
ment 2 is indeed a source of significant result distortion which may lead to
misjudgement of a VG-method’s efficacy.
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Spatially vs. semantically matched cues. Striped bars in the bottom
row in Figure 7.3 illustrate the results of “True VG” training using FI scores
from spatial matching instead of semantic matching. Differences between the
two matching types are particularly noticeable in TVG testing (bottom right)
and demonstrate that using semantically matched cues can amplify impact of
VG-methods substantially.

7.5.3 Impaired VG vs. True VG

In summary, evaluations in “Impaired VG” settings (Figure 7.3, top left)
present rather weak evidence to suggest that VG-methods are particularly
beneficial to VQA performance, while “True VG” (bottom right) reveals that
they can in fact be very effective when relevant visual information is present
in the input. Particularly interesting here is the strong positive impact of the
AttAlign method, which has been repeatedly declared ineffective in previous
work, where conclusions were drawn based on the demonstrated, impaired
evaluations (cf. Selvaraju et al. (2019); Ying et al. (2022)).

UpDn Training Accuracy (All / TVG) FPV G+ (spatial / semantic)

VG-method Features ID OOD TVG-ID TVG-OOD

n/a DET 62.12 / 75.22 43.18 / 55.92 26.82 / 12.92 25.32 / 12.92
INF 61.16 / 78.78 45.40 / 62.54 32.19 / 18.07 31.03 / 17.35

VisFIS DET 62.51 / 76.83 44.06 / 57.60 30.68 / 14.81 29.52 / 14.47
INF-spa 61.84 / 80.71 47.93 / 66.40 34.59 / 18.77 33.55 / 18.14
INF-sem 61.33 / 81.37 48.67 / 68.84 37.15 / 22.51 36.66 / 22.32

AttAlign DET 61.18 / 74.63 42.30 / 55.25 27.98 / 13.43 26.16 / 12.96
INF-spa 61.18 / 79.19 46.30 / 63.99 33.37 / 18.01 31.86 / 17.35
INF-sem 60.74 / 80.12 46.84 / 66.17 35.79 / 21.42 35.21 / 21.10

HINT DET 61.32 / 74.68 41.77 / 54.83 25.67 / 12.51 24.69 / 12.31
INF-spa 61.37 / 79.40 46.41 / 63.43 32.83 / 18.34 31.94 / 17.53
INF-sem 61.24 / 79.17 46.47 / 64.17 33.81 / 18.95 33.11 / 18.55

SCR DET 61.84 / 75.16 42.89 / 56.13 26.34 / 12.98 25.21 / 12.28
INF-spa 61.08 / 78.92 46.15 / 63.92 33.04 / 18.66 32.11 / 17.91
INF-sem 61.28 / 79.18 46.63 / 64.34 33.10 / 18.76 32.11 / 18.09

Table 7.2 – For reference: UpDn results on GQA-CP-large. The most relevant
results from this table are illustrated in Figure 7.3 and Figure 7.4. For
discussions of these results, see the respective figures and surrounding text.
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7.6 Impact on Visual Grounding Quality

Following recommendations by Shrestha et al. (2020) to confirm VG improve-
ments with a dedicated metric, we investigate the impact of VG-methods on
a model’s VG quality using FPVG (introduced in Chapter 4).

7.6.1 Relevance matching in FPVG

FPVG measures a model’s VG quality by confirming the model’s reliance
on question-relevant objects during answer inference. As with VG-method
training, identifying question-relevant cue objects is a defining step in FPVG
(which it is in any VG metric that aims to measure “plausible” VG, i.e., a
model’s VG w.r.t. visual objects deemed plausibly relevant to answer a given
question). The identification of relevant objects in FPVG follows the same
procedure as the determination of FI scores for VG-method training (see
Chapter 7.4.2), i.e., it can be performed by spatial or semantic matching.
FPVG was originally introduced with spatial matching on sub-symbolic visual
features. Given that semantic matching provides the means of more accurately
pinpointing the set of question-relevant (and irrelevant) objects in the visual
input, we expect it to be able to provide more precise VG measurements than
location matching. We report FPVG results for both spatial and semantic
matching, but surmise that semantic matching leads to a better-defined VG
measurement in principle4.

As only the TVG subsets provide full semantic matches, we discuss FPVG
results on those subsets.

7.6.2 Discussion

Full numerical results for FPVG are listed in Table 7.2. We highlight the
most important results in Figure 7.4.

True VG training produces stronger VG than Impaired VG. Figure
7.4, left, shows FPV G+ measurements (i.e., the percentage of well-grounded
questions in testing) in each evaluated UpDn model. True VG models

4We note that FPVG’s goal is to quantify a certain desired manifestation of VG in VQA,
which is described as a model’s faithful reliance on plausibly question-relevant objects
during answer inference (cf. Chapter 4). It is vital to identify these objects correctly in order
to produce a meaningful measurement in accordance with this goal. Semantic matching
leverages more available information from given relevance annotations to identify relevant
input objects than spatial matching does. Therefore, we conclude that semantic matching
provides more accurate object matches which enables more precise VG measurements with
FPVG.
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Figure 7.4 – FPV G+ measured on TVG subsets (ID/OOD) for UpDn. Nu-
merical results are listed in Table 7.2. Left: Absolute FPV G+ measurements.
Right: FPV G+ improvements (in absolute percent) compared to respective
UpDn baselines. Columns categorize the matching method used for FPVG
(see Chapter 7.6). Striped bars show results for INF-based models trained with
spatial matching.

(blue bars) achieve considerably higher levels of FPV G+ than Impaired VG
models (yellow bars) across all examined settings. This includes baseline
models trained without VG-methods, which confirms that VG manifestation
in models is generally held back when question-relevant information is not
consistently provided.

True VG training enables considerably higher FPV G+ improvements
than Impaired VG. Figure 7.4, right, shows FPV G+ improvements from
training with VG-methods compared to respective UpDn baselines. Improve-
ments are considerably stronger in True VG models (blue) than in Impaired
VG models (yellow). This is especially true for FPVG with semantically
matched targets (see right column of each block, labeled “semantic”).
We interpret these results as additional evidence confirming the influence of
Impairment 2 (muted impact of VG-methods due to Impaired VG training).
In other words, VG-methods function more effectively in True VG training,
where they can consistently align a model’s inference with accurate and
recurring (i.e., more stable) visual cue objects.

Training with semantic matching has a considerably more positive
effect on FPV G+ than spatial matching. Striped bars in Figure 7.4
show FPV G+ results for INF models trained with VG-methods and spatial
matching. FPV G+ is substantially more boosted with semantic matching
(shown as blue bars). This illustrates that VG-methods can improve a model’s
VG quality more effectively when training with more accurate guidance.



112 Uncovering the Full Potential of Visual Grounding Methods

4
2
0
2

Im
pa

ire
d

Impaired True
ID OOD

VisF
IS

HINT
SC

R
4
2
0
2

Tr
ue

VisF
IS

HINT
SC

R

Tr
ai

ni
ng

Testing

Figure 7.5 – Accuracy improvements (in absolute percent) for LXMERT+VG-
methods compared to baseline LXMERT. Numerical results are listed in Table
7.3 (baselines listed in first two lines). Training (y-axis): DET features with
location-matched cues (“Impaired”) or INF features with content-matched cues
(“True”). Striped bars mark results when using location-matched cues instead.
Testing (x-axis): Full test (“Impaired”) or True Grounding subset (“True”).
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Figure 7.6 – FPV G+ measured on TVG subsets (ID/OOD) for LXMERT.
Numerical results are listed in Table 7.3. Left: Absolute FPV G+ measurements.
Right: FPV G+ improvements (in absolute percent) compared to respective
LXMERT baselines. Columns categorize the matching method used for FPVG
(see Chapter 7.6). Striped bars show results for INF-based models trained with
spatial matching instead of semantic matching.

7.7 Corroborating Evaluations: LXMERT

We conduct the same tests for LXMERT that we did for UpDn. These
evaluations overall corroborate the insights gained for UpDn. All numerical
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results for LXMERT on GQA-CP-large are listed in Table 7.3 for reference.
Certain important results are illustrated in Figure 7.5 (changes in accuracy)
and Figure 7.6 (FPV G+ measurements), respectively. Observations made for
LXMERT’s evaluations generally match those for UpDn without providing
additional insights. We summarize notable model behavior in the following:

1. Overall more favorable model behavior when training with VG-methods
in True VG settings (compared to Impaired VG) in both accuracy and
FPV G+.

2. Strong negative impact to FPV G+ when applying HINT in True VG
settings, as well as a lack thereof in Impaired VG setting (see Figure
7.6, right, yellow vs. blue bars).

W.r.t. (1): We observe no accuracy improvements for VisFIS under Impaired
VG settings (see Figure 7.5, top row), while under True VG settings, improve-
ments are made in particular in OOD settings (bottom row). W.r.t. (2):
While accuracy degradations for HINT in True VG and Impaired VG settings
are comparable on the TVG subsets (see Figure 7.5, right column), we find
that FPV G+ measurements are expectedly negatively impacted (to a similar
degree as accuracy) only in True VG training (see Figure 7.6, right, blue
vs. yellow bars). Similarly, observed VisFIS-driven accuracy improvements
for True VG are accompanied by expected FPV G+ improvements, while
measurements for Impaired VG show contradicting readings. In other words,
model accuracy and FPV G+ exhibit stronger signs of a positive correlation
with each other in True VG settings.

LXMERT Training Accuracy (All / TVG) FPV G+ (spatial / semantic)

VG-method Features ID OOD TVG-ID TVG-OOD

n/a DET 67.83 / 80.29 51.79 / 64.18 26.80 / 12.88 25.73 / 12.52
INF 64.95 / 82.75 52.69 / 69.90 32.83 / 18.80 33.10 / 18.86

VisFIS DET 64.19 / 78.21 47.43 / 60.87 27.14 / 13.41 26.80 / 13.10
INF-spa 63.55 / 81.52 51.37 / 68.47 32.50 / 18.69 32.81 / 18.48
INF-sem 64.10 / 83.87 53.27 / 72.73 33.68 / 20.33 34.63 / 20.62

HINT DET 64.43 / 78.27 48.64 / 62.03 26.27 / 12.85 25.65 / 12.39
INF-spa 63.32 / 80.31 50.76 / 67.53 30.90 / 17.40 30.93 / 17.46
INF-sem 63.32 / 80.30 50.97 / 67.66 30.89 / 17.36 30.73 / 17.54

SCR DET 67.82 / 80.32 51.87 / 64.57 26.60 / 12.84 25.59 / 12.41
INF-spa 64.97 / 82.72 52.77 / 70.00 32.76 / 18.85 33.14 / 18.73
INF-sem 64.97 / 82.71 52.77 / 70.00 32.76 / 18.85 33.14 / 18.73

Table 7.3 – For reference: LXMERT results on GQA-CP-large. The most
relevant results from this table are illustrated in Figure 7.5 and Figure 7.6.
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In summary, we observe a more congruent connection between accuracy and
FPVG under True VG settings.

7.8 True VG Analysis with VQA-HAT

In this section, we adopt the True VG methodology for the VQAv1-based
VQA-HAT-CP datset.

7.8.1 Preliminaries

Model training. The UpDn training setup for VQA-HAT follows the settings
used in Ying et al. (2022) (see also Appendix D.2). We report averages and
max deviation from the mean for five differently seeded training runs for each
evaluated model variants.
Visual features. We create symbolic features based on object detector
outputs shared by Anderson et al. (2018), which provide object names and
attributes for 36 objects per image.
Evaluation. Accuracy calculations for VQA-HAT follow Antol et al. (2015):
A question is 100% correct if the returned answer was given by at least 3
of 10 annotaters per question and otherwise contributes fractional scores
(calculated as min(#annotaters with returned answer

3
, 1))to overall accuracy.

7.8.2 Dataset Challenges

There are significant challenges to handle when evaluating VQA-HAT with
True VG methodology.

Sparse image annotations

Infusion uses an image’s object-level annotations to verify semantic matches
between question-relevant objects and detected input objects. Furthermore,
annotations act as source for infusing missing information. For VQA-HAT,
we use the official MS-COCO image annotations Lin et al. (2014), which is
the underlying image database for the VQAv1 dataset. MS-COCO annotates
images with 80 different object names (GQA: 1702 classes). No attribute
annotations are provided.

Relevance annotations

VQA-HAT’s relevance annotations are given as spatial heat maps, as opposed
to GQA’s unambiguous pointers to annotated objects in the image. As
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relevant ground-truth objects are not directly provided in VQA-HAT, but
required for Infusion, the first step here is to identify them in the image
annotations corresponding to each heat map.

A commonly used metric to determine object importance in VQA-HAT’s
heat maps was introduced in Selvaraju et al. (2019). We adopt this metric
to first calculate importance scores for all ground-truth objects in the image
annotations and then apply a threshold to determine which objects are
question-relevant. Concretely, the importance score for ground-truth object o
is calculated as:

scoreo = Ein(o)/(Ein(o) + Eout(o)), (7.2)

where E{in,out} is the averaged pixel-level importance value inside and outside
the ground-truth object’s given bounding box in the provided heat map.
Following Ying et al. (2022), we apply a threshold of 0.55 to these scores
to establish the relevance status of each ground-truth object. Finally, FI
scores for the visual input are determined with the same spatial or semantic
matching procedure used for GQA (as described in Chapter 7.4.2).

7.8.3 Discussion

We highlight the most relevant results in Figure 7.7. Full numerical results
for VQA-HAT-CP are listed in Table 7.4 and Table 7.5 for reference. As with
GQA, we investigate both accuracy and FPV G+ changes for indicators that
show how True VG evaluations improve our understanding of VG-method
impact.
Contrary to GQA, impact of True VG settings for VQA-HAT is considerably
less pronounced and the observed trends are incongruous. For instance, strong
improvements in FPV G+ for VisFIS and AttAlign (Figure 7.7, right) do
not consistently translate to better accuracy (Figure 7.7, left), as they did
for GQA. Furthermore, differences in accuracy impact between full tests
(=Impaired test case) and the TVG subsets (=True/intended test case) are
inconsistent across VG-methods, unlike for GQA, where they are strongly
amplified for all VG-methods in True VG training (comparing bottom row in
VQA-HAT’s Figure 7.7, left, with GQA’s Figure 7.3).
In summary, we observe no overarching, consistent benefits from adapting the
True VG methodology to VQA-HAT, neither from a) introducing annotated
object information in training, nor b) in testing cases where this annotated
information is already present (TVG subsets). Definitive conclusions that
explain these observations cannot be drawn due to the much less favorable
dataset conditions compared to GQA, which hinder a proper True VG setup,
combined with the different, more challenging nature of VQA-HAT’s questions.
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Figure 7.7 – VQA-HAT-CP: Accuracy and FPV G+ measurements (all values
based on averages over five differently seeded UpDn models). Numerical results
are listed in Table 7.4 (accuracy) and 7.5 (FPV G+). See captions of Figure
7.3 and Figure 7.4 for a general description of these histograms.

VQA-HAT uses commonsense-type questions with less explicit references to
relevant objects in the scene than GQA’s retrieval-type questions. While
the latter type can be expected to work well with symbolic features carrying
object-centric information, the requirements for the former type’s appropriate
informational content is much less clear. This complicates the determination
of what an optimal analytical setup for VG in VQA-HAT might entail.

In conclusion, we recommend performing True VG analysis with the GQA
dataset, where the dataset conditions are more favorable and the VG task is
better defined.
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UpDn Training Accuracy

VG-method Features ID OOD TVG-ID TVG-OOD

n/a DET 35.28±0.36 24.38±2.21 38.00±1.23 26.84±2.61
INF 35.24±0.56 25.65±2.06 37.80±1.07 28.56±2.27

VisFIS DET 35.52±2.89 24.13±2.94 38.49±3.71 27.40±3.00
INF 36.12±1.09 24.87±1.49 39.99±2.12 28.62±1.68

AttAlign DET 35.10±1.25 23.97±2.14 38.14±0.77 26.74±1.90
INF 33.46±1.38 23.13±2.33 37.83±2.05 26.63±2.85

HINT DET 35.61±0.66 25.26±1.96 37.88±0.86 27.33±2.44
INF 35.85±0.34 26.21±0.98 38.95±0.58 28.90±1.82

SCR DET 35.81±1.26 26.32±1.87 37.71±1.43 28.88±1.37
INF 36.23±0.51 25.66±1.80 38.22±0.94 28.34±1.96

Table 7.4 – For reference: Accuracies for UpDn evaluated on VQA-HAT-
CP (only “other”-type questions). We report average results and maximum
deviation over five differently seeded training runs per model variant. The
most relevant results from this table are illustrated in Figure 7.7, top row.

UpDn Training FPV G+ (spatial) FPV G+ (semantic)

VG-method Features TVG-ID TVG-OOD TVG-ID TVG-OOD

n/a DET 22.39±1.92 20.45±3.06 7.39±1.02 6.24±1.01
INF 23.80±2.40 21.44±4.02 8.52±1.54 8.37±1.50

VisFIS DET 30.82±11.99 30.66±9.68 11.83±3.25 12.79±2.33
INF 35.46±3.97 33.47±3.64 19.48±1.74 18.73±2.82

AttAlign DET 27.46±1.45 26.72±1.96 8.86±1.43 9.94±1.97
INF 28.61±3.22 27.67±2.26 15.38±3.45 15.25±2.46

HINT DET 22.63±2.74 19.81±3.87 7.85±2.32 6.68±2.02
INF 24.77±2.40 22.49±3.02 9.34±1.21 8.42±1.03

SCR DET 23.09±2.22 21.23±2.70 7.94±1.04 7.84±2.11
INF 23.59±1.66 20.98±2.96 8.38±0.99 8.27±1.46

Table 7.5 – For reference: FPV G+ measurements for UpDn evaluated on
VQA-HAT-CP (only “other”-type questions). We report average results and
maximum deviation over five differently seeded training runs per model variant.
The most relevant results from this table are illustrated in Figure 7.7, bottom
row.
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7.9 Limitations of True VG

Transferability to other datasets. As demonstrated for VQA-HAT,
transferability of the introduced True VG methodology is conditioned on the
availability of appropriate annotations and may be better suited to question
types where the notion of what constitutes “relevant content” is well-defined
and understood (such as in GQA). This limits the transferability of the
methodology (and arguably poses a challenge for VG research in VQA as
a whole). For future research and in order to properly evaluate True VG
on different types of questions and datasets, such as the commonsense-type
questions of the VQA dataset, it is at minimum necessary to ensure a high
quantity (several 100k) of unambiguous and high-quality relevance annotations
(as opposed to vague heat-maps), as well as an appropriate richness of image
annotations that cover all annotated question-relevant objects. It should be
verified that all annotated questions can in fact be answered correctly by
a human who is only presented with the identified relevant objects. The
availability of such combined annotations facilitates a much more thorough
investigation of a model’s capabilities to infer an answer from relevant image
regions, regardless of the type of questions. This would provide a solid
foundation from which then investigations could be launched to develop a
better understanding about what level of visual descriptiveness is required to
achieve (additional) VG-induced performance improvements in datasets with
various types of questions.

Usability of Infusion and semantic matching beyond analysis. Our
experiments are based on non-standard symbolic features, which are not
the first choice for image representations in current high-performing VQA
models. While the evaluated fixes to Impaired VG in this work are leading to
improvements in accuracy and VG and are useful for analysis of VG-methods,
they cannot be applied to, e.g., higher performing symbolic features as is. We
could imagine future work that investigates how feature content interpretation
and Infusion can be applied to standard symbolic features to unshackle these
ideas from its bond with symbolic features and make them useful beyond
analysis.

7.10 Summary

In this chapter, we have shown that current training and testing practices
for VG-methods in VQA are impaired and therefore unable to reflect their
full potential benefits for VQA models. We have proposed a methodology
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to optimize evaluation conditions to allow for a more thorough analysis of
VG-method impact. Our investigations have shown that when conditions
are optimized, VG-methods can elicit considerably stronger performance
improvements in VQA models in both VG and accuracy, boosting OOD
performance in particular.

The findings presented in this chapter show that the potential influence of VG
on OOD scenarios has been severely misrepresented by the use of problematic
evaluation methodologies in VG-method research. Our analysis may therefore
have a profound impact on the general perception of how valuable VG actually
is for OOD generalization.





Chapter 8

Visually Grounded Reasoning

In the course of this thesis, we have introduced a number of methods that
facilitate investigations of the influence of Visual Grounding (VG) on Visual
Question Answering (VQA) models. In this chapter, we use these methods to
great effect for defining and empirically validating a novel theoretical model
that provides new insights into the role of VG in VQA generalization in the
context of shortcut (SC) learning.

In Chapter 8.2, we derive a definition of a concept we call “Visually Grounded
Reasoning” (VGR) in VQA: The VGR Proposition, which we formulate as
a propositional logic statement, formally defines the integral roles of VG
and Reasoning in VQA SC learning. Using the VGR Proposition, we are
able to show that current Out-of-Distribution (OOD) tests do not provide
a reliable basis for conclusions regarding VG-related SC learning in VQA
models, despite frequently being employed in such context (Chapter 8.4.2).
Our findings also explain why a strong correlation between OOD accuracy and
VG has been eluding the field so far (as observed in Shrestha et al. (2020) and
Ying et al. (2022) as well as in our own VG investigations in Chapter 6). Based
on these insights, we propose an approach to build so-called “shortcut-free”
(SC-free) tests in accordance with the VGR Proposition. We show that our
SC-free tests are much less likely to be solved by VG-related SC exploitation
and are thus better suited for unveiling and analyzing VG-related SC learning
in VQA models (Chapter 8.5.1). An evaluation of training recommendations
to succeed on such an SC-free test completes our investigations.
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8.1 Introduction

Deductive reasoning is a logical process that involves drawing a conclusion
from a set of premises. In the context of VQA, we may map this generic
description onto a more concrete process: VQA models operate based on
a learned set of decision rules (cf. Chapter 2.4) that dictate their logical
process of deductive reasoning at test time. Models pass to conclusions (i.e.,
return answers) through the application of these decision rules, while relying
on premises represented by 1) the model’s “understanding” of the world
as learned in training, and 2) current observations represented by image
information and the given question1. While interpretations such as these may
help develop an intuitive understanding of VQA model behavior, an exact
technical definition that encapsulates the VQA Reasoning process is more
challenging to devise. The lack of such a technical definition, in turn, makes
it difficult to quantify a model’s reasoning capabilities in isolation, which is a
prerequisite for accurately measuring a VQA model’s progress in this respect.

In an effort to measure VQA Reasoning in their work, Kervadec (2021) cir-
cumvents this issue by opting to identify VQA Reasoning by “what it is not”,
and settles on defining it as “the opposite of exploiting biases and spurious
correlation in the training data” and, therefore, the opposite of exploiting SCs2

(Kervadec (2021), p. 14). Consequently, Kervadec (2021) argues that VQA
Reasoning can be quantified as accuracy in Out-of-Distribution (OOD) tests
(Kervadec (2021), p. 15), which are widely used to uncover SC exploitation

1This description is an analogy between VQA Reasoning and the structure of a logical
argument called the syllogism, a common form of deductive reasoning which consists of a
major and a minor premise (i.e., a general truth about the world (major premise) and an
observation of an instance belonging to that world (minor premise)), as well as a conclusion
w.r.t. the observation. Example of a syllogism (Mill, 1851): “All men are mortal”, is a
general truth. “Sokrates is a man”, is an observation. “Therefore, Sokrates is mortal.”, is
the conclusion.

2Shortcut exploitation in Deep Learning (DL) is framed as undesirable behavior due
to its negative impact on generalization and stimulation of unintended model behavior
(Geirhos et al., 2020). However, this does not mean that SCs cannot be helpful in certain
circumstances in practice. For instance, when crucial information is missing from the
input, leveraging SCs in the form of dataset biases may lead to correct answers, while
instead following an inference process that heavily depends on the correctness of presented
observations (i.e., the model input) may not. Human reasoning can involve making an
informed decision about whether resorting to “educated guessing” provides a better chance
of success in certain situations. In the context of this thesis, we consider this type of
decision making with its added layer of complexity as out of scope, and focus on the
distinction of unintended SC exploitation vs. intended observation-driven inference. Hence,
in this thesis, we adopt Kervadec (2021)’s interpretation that SC exploitation does not
constitute VQA Reasoning.
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and estimate VG impact (see Chapter 2.4 and Chapter 2.5.1).
For Kervadec (2021)’s argument to be logically sound, OOD tests are neces-
sarily assumed to consist of questions that cannot be answered correctly when
exploiting SCs, including dataset biases, as the mentioned VQA Reasoning
definition implies that correct answers in OOD tests can only be the result of
correct VQA Reasoning. A similar line of thinking is implied by the common
use of OOD testing as a way to infer VG quality in models by their OOD
accuracy, i.e., without the use of a dedicated VG metric (Agrawal et al., 2018;
Selvaraju et al., 2019; Zhang et al., 2016; Goyal et al., 2017; Agrawal et al.,
2016). In the course of this chapter, we show why the assumption that OOD
accuracy reflects VG quality is highly problematic and that it may be the
main reason why the role of VG in VQA has not been clearly understood so
far.

We begin our investigations by building on the principle idea of circumventing
the need for an exact definition of VQA Reasoning and its quantification
by some dedicated Reasoning metric. We use this idea as a starting point
to develop a theoretical model that ultimately explains the role of VG in
the VQA inference process. Our theoretical model, called Visually Grounded
Reasoning (VGR), frames VQA inference as a co-dependency between three
parties that describes VQA model behavior in the context of SC learning.
These three involved parties are Answer Accuracy, VQA Reasoning (here-
after “Reasoning”) and Visual Grounding (VG). Notably, our model formally
establishes VG as a crucial component in SC learning in VQA that must
be considered separately from Reasoning to properly explain VQA model
behavior.

8.2 Visually Grounded Reasoning

In the following, we capture the dependencies between Accuracy, Reasoning
and VG in VQA using formal propositional logic statements. We do this in
the context of “SC-free” testing. SC-free testing for VQA involves tests that
require the use of human-intended decision rules to be solved correctly. In
other words, an ideal SC-free test cannot be solved by shortcut exploitation
(cf. definitions in Geirhos et al. (2020)). In this work, we identify Reasoning
and Visual Grounding as two necessary types of human-intended decision
rules to solve an ideal SC-free test. Below, we develop a model that explains
the role of each component in that context.
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Case Reasoning Answer Validity

1 ✗ ✗ True
2 ✗ ✓ False
3 ✓ ✗ True
4 ✓ ✓ True

Table 8.1 – Truth table representing VQA-OOD behavior (i.e., presumably
SC-free) under the definition of Reasoning by Kervadec et al. (2021). Note
that Case 2 is invalid under this definition, i.e., a True answer cannot result
from False Reasoning.

8.2.1 Reasoning

Following Kervadec’s proposition to measure Reasoning by accuracy in SC-
free testing, we define VQA behavior for SC-free tests with the following logic
statement:

Hypothesis 1.

Answer → Reasoning (8.1)

Reformulated as contraposition:

¬Reasoning → ¬Answer (8.2)

In words: A correct answer implicates correct Reasoning. Incorrect Reasoning
results in a wrong answer. Table 8.1 lists the formal truth table for Hypothesis
1.

8.2.2 Visual Grounding

Under Kervadec’s Hypothesis 1, SC-free behavior is made out to be defined
by only two factors, Answer Accuracy and Reasoning. Notably, Hypothesis 1
does not explicitly mention VG, even though VG is an axiomatic component
of VQA modeling by definition of the VQA task, which is to answer questions
about image contents. Moreover, the process of answering questions while
bypassing correct VG is by definition of the VQA task a SC. We infer from
this argument that VG must take a significant role in the explanation of
SC-free behavior. As Hypothesis 1 does not explicitly mention VG, VG must
necessarily be implicitly included in Reasoning in order for Hypothesis 1 to
truly describe SC-free behavior as it originally set out to do — lest it be
considered invalid.
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Case Visual Grounding Answer Validity

1 ✗ ✗ True
2 ✗ ✓ False
3 ✓ ✗ True
4 ✓ ✓ True

Table 8.2 – Truth table representing VQA-OOD behavior (i.e., presumably
SC-free) under the definition of VG in Hypothesis 2. Note that Case 2 is invalid
under this definition, i.e., a True answer cannot result from False VG.

In order to show that VG’s involvement cannot be part of Reasoning in
Hypothesis 1 and needs to be established as a separate component, we first
establish an argument for VG in its own right and circle back to Hypothesis
1’s validity later on.

We first describe VG involvement in SC-free testing with a logic statement of
its own. On grounds of the axiomatic nature of VG’s involvement in VQA,
we posit that a correct Answer necessarily requires correct VG in an SC-free
scenario.

Hypothesis 2.

Answer → V G (8.3)

Reformulated as contraposition:

¬V G → ¬Answer (8.4)

In words: A correct answer implicates correct VG. Incorrect VG results in a
wrong answer.
The truth table for Hypothesis 2 is shown in Table 8.2. Note that unlike
Hypothesis 1, Hypothesis 2 is not intended to fully encapsulate SC-free testing
behavior in VQA on its own, but rather to describe only the VG aspect of it.

8.2.3 The VGR Proposition

Combining the two Hypotheses for Reasoning and VG, we arrive at our
proposition for describing VQA behavior in ideal SC-free testing.

VGR Proposition.

Answer → Reasoning ∧ V G (8.5)
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Reasoning Visual Grounding Answer Hypothesis 1 Hypothesis 2 VGR Proposition
Case (RE) (VG) (A) A → RE A → V G A → RE ∧ V G FPVG

1.1 ✗ ✗ ✗ True True True BGW
1.2 ✗ ✓ ✗ True True True GGW
2.1 ✗ ✗ ✓ False False False BGC
2.2 ✗ ✓ ✓ False True False GGC
3.1 ✓ ✗ ✗ True True True BGW
3.2 ✓ ✓ ✗ True True True GGW
4.1 ✓ ✗ ✓ True False False BGC
4.2 ✓ ✓ ✓ True True True GGC

Table 8.3 – All 8 cases of VQA model behavior under the defined logic system
for SC-free testing, the VGR Proposition. Evaluation of Answers, given the
status of VG and Reasoning, and their corresponding categorization with
FPVG. Strikethrough lines represent cases that are invalid under the confines
of the VGR Proposition.

Reformulated as contraposition:

¬(Reasoning ∧ V G) → ¬Answer (8.6)

In words: A correct answer necessitates both, proper Reasoning and VG.
Without both, proper Reasoning and VG, the answer cannot be correct. Table
8.3 lists the formal truth table for the VGR Proposition, which we discuss in
detail further down.

8.2.4 Hypothesis 1 is flawed as description of SC-free
test behavior.

With the VGR Proposition defined, we can now circle back to Kervadec’s
original Hypothesis 1 that was presented as a complete description of SC-free
testing behavior. Table 8.3 lists all eight cases, or permutations, of the three
involved aspects, i.e., Answer Accuracy, Reasoning and VG. Here, we find
that on the basis of Hypothesis 1 (which conflates VG and Reasoning) Case
4.1 represents valid behavior in SC-free testing. However, Case 4.1 refutes the
axiomatic involvement of VG in VQA as defined by Hypothesis 2. Concretely,
Hypothesis 2 states that Case 4.1 (i.e., a correct Answer given based on
incorrect VG) is in fact an SC and thus invalid SC-free testing behavior. As
a result, we surmise that VG cannot be conflated with Reasoning as done
in Kervadec’s Hypothesis 1 and must be explicitly considered alongside of
it as a separate component on equal footing, thereby establishing the VGR
Proposition.
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GGC Good Grounding, Correct Answer
GGW Good Grounding, Wrong Answer
BGC Bad Grounding, Correct Answer
BGW Bad Grounding, Wrong Answer

FPV G+ Good Grounding (GGC + GGW)
FPV G− Bad Grounding (BGC + BGW)

Accuracy GGC + BGC

Table 8.4 – FPVG categories.

8.3 Model Behavior in SC-free Testing

In this section, we bridge the gap from theoretical VQA model behavior in
ideal SC-free tests under the VGR Proposition to VQA model behavior that
can actually be observed and measured in practice during experimentation
with OOD tests.

To interpret VQA model behavior in practice, we use FPVG (Chapter 4), our
metric for measuring VG in VQA, which provides a crucial second angle for
result categorization on top of Accuracy. In FPVG, every evaluated question is
assigned one of four categories based on measurements of a) Answer Accuracy
(correct or wrong) and b) VG (good or bad). These four categories are
summarized by two overarching VG-based categories, FPV G+ and FPV G−.
All FPVG categories and their meaning are listed in Table 8.4 for reference.

Within the confines of the VGR Proposition, we can identify general patterns
of VQA model behavior (in terms of measured VG and Accuracy) that a
model is bound to exhibit when it is tested with an SC-free test that conforms
to VGR. By confirming the presence of these patterns in concrete test results,
we can then verify whether a used test set is SC-free according to VGR.

To facilitate the identification of the desired model behavior, we map the
first four FPVG categories listed in Table 8.4 onto the eight cases of model
behavior described by the VGR Proposition in Table 8.3. For instance, the
first FPVG category in Table 8.4, “GGC” represents Case 4.2 of valid model
behavior in Table 8.3 (see entry in rightmost column). Based on the mapping
in column “FPVG” in Table 8.3, we can unambiguously determine an expected
categorization (i.e., general patterns) of results in SC-free testing under VGR
in practice. We summarize these patterns as the following Corollaries.
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8.3.1 Corollaries of SC-free Testing Behavior

Corollary 1: BGC is zero. When mapping FPVG’s four categories onto
VGR Proposition’s logic system in Table 8.3, we find that one of the categories
has no valid matches under the VGR Proposition, namely the category of
BGC (i.e., questions that evaluate as correctly answered despite bad VG).
Cases 2.1 and 4.1 in Table 8.3 match the conditions for BGC, but are invalid
under the VGR Proposition. This lack of a valid mapping suggests that the
category of BGC captures cases that exploit shortcuts. Formally, this category
violates the VGR Proposition for ideal SC-free tests. Hence, the portion of
questions aligning with the BGC category should be “zero”3 in ideal SC-free
testing, regardless of the tested VQA model:

BGC = 0 (8.7)

Corollary 2: GGC equals Accuracy. Since BGC = 0 in ideal SC-free
tests, we can reformulate FPVG’s formula for Accuracy (defined in Table 8.4,
bottom line) as follows:

Acc = GGC + BGC

= GGC
(8.8)

Corollary 3: Accuracy measures true SC-free performance. Only
one valid condition matches category GGC in Table 8.3: Case 4.2. Hence,
we can unambiguously determine that all questions in GGC have met the
conditions described by Case 4.2, as no other valid conditions match this
category. The conditions for Case 4.2 are met if a model answers a question
correctly while using correct Reasoning and correct VG, which is our definition
of SC-free accuracy. By application of Corollary 2, which states that GGC
equals Accuracy, we find:

Acc = GGC

= AccSC−free

(8.9)

Thus, Accuracy measures true SC-free performance.

Corollary 4: Accuracy cannot surpass FPVG+. This result is derived
by applying Corollary 2 to FPVG’s formula of VG (i.e., FPV G+, Table 8.4,

3In practice, a small percentage of questions is expected to be assigned to BGC due to
other factors that are difficult to control, including inaccurate annotations and randomly
coinciding answer behavior supporting such assignment.
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Line 5):

FPV G+ = GGC + GGW

= AccSC−free + GGW

≥ AccSC−free

(8.10)

In other words, per the VGR Proposition, models cannot achieve higher
Accuracy than FPV G+ in an ideal SC-free test.

8.3.2 Limitation: Theory vs. Practice

The VGR Proposition and its four corollaries describe VQA model behavior in
SC-free testing assuming ideal, fully controlled testing conditions. Such ideal
conditions are unlikely to be fully enforced in empirical testing and therefore
a small degree of transgressions of the corollaries4 are to be expected and
may be unavoidable. Formally, the VGR Proposition does not account for
the impact of deviations from ideal testing conditions that are encountered in
practice, as these are not straightforward to quantify. Therefore, when using
the VGR Proposition for analysis of a test set in practice, we recommend
considering how closely the corollaries are approximated, rather than verifying
strict and exact observance, when determining their violation.

8.4 Do current OOD Tests reflect SC-free

VQA performance?

In this section, we investigate if current OOD tests are appropriate measures
of shortcut learning in VQA models under the VGR Proposition. An OOD
test is deemed inappropriate for SC-free testing under the VGR Proposition,
if there is a VQA model that produces OOD test results that are in gross
violation of VGR.

8.4.1 Experiment Preliminaries

Datasets. We evaluate three OOD dataset splits that are based on GQA’s
balanced split (Hudson and Manning, 2019) and VQA-HAT (Das et al., 2016),
which itself is based on VQAv1 (Antol et al., 2015). GQA and the VQA
dataset are described in detail in Chapter 2.3. All data splits have been
introduced as proxies for quantifying the problem of shortcut learning in VQA

4Such as mentioned above for Corollary 1, where, in practice, we do not expect BGC to
be exactly zero, even though Corollary 1 calls for that.
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Testing

Dataset Train Dev ID OOD

VQA-HAT-CP 32k 6k 3.3k 4.7k
GQA-CP-large 580k 107k 139k 137k
GQA-OOD 828k 20k 29k 15k

Table 8.5 – Sample counts for the evaluated data splits.

models. Sample counts are listed in Table 8.5.
GQA-CP-large and VQA-HAT-CP (Ying et al., 2022) are ID/OOD splits
which were created by a (re)distribution of questions in VQA-HAT and GQA,
respectively, following the “Changing Priors” (CP) approach described in
Agrawal et al. (2018). CP redistributes all samples from a dataset such that
the new train and OOD test set have different prior distributions of answers
for every question type. The third dataset, GQA-OOD (Kervadec et al.,
2021), does not modify GQA’s train set, but redistributes questions in GQA’s
val set based on answer frequencies per question type. Rare and frequent
answers per question type in GQA’s val set are categorized as tail (OOD)
and head (ID), respectively.

Visual relevance annotations that point out question-relevant objects in the
scene and are required for measuring VG quality are available for all three
data splits we use: GQA provides these for most of its questions in the form
of detailed VG references (including rich image annotations of the question-
relevant objects). VQA-HAT provides relevance annotations in the form of
human-provided heat maps of relevant image regions for a small subset of
questions in VQAv1, which is reflected in the size of the dataset (see Table
8.5).

VQA Models. We run experiments with two VQA models: UpDn (Ander-
son et al., 2018), a classic, single-hop attention-based model, and LXMERT
(Tan and Bansal, 2019), a Transformer-based (Vaswani et al., 2017), BERT-like
model (Devlin et al., 2019) trained following a pre-train/fine-tune paradigm.
Both models are described in Chapter 2.2.
Models are trained with each of the three datasets. LXMERT’s pre-training
was performed twice (once for each GQA-based split) to ensure the intended
sample distributions in each individual split. LXMERT was not (pre-)trained
with VQA-HAT-CP on account of its small size.
Since the same training procedures were used here as in Chapter 7 (UpDn,
LXMERT), we defer to that chapter for additional training details.
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OOD Training ID OOD

Dataset Model Acc FPV G+ GGC GGW BGC BGW Acc FPV G+ GGC GGW BGC BGW

GQA-CP-large UpDn 64.54 22.99 17.50 5.50 47.05 29.96 45.48 21.98 13.79 8.19 31.69 46.33
LXMERT 69.60 23.71 19.50 4.21 50.10 26.19 53.38 23.40 16.35 7.05 37.04 39.57

GQA-OOD UpDn 63.48 25.41 19.17 6.24 44.31 30.28 42.91 26.14 15.62 10.52 27.29 46.58
LXMERT 65.85 25.41 19.98 5.42 45.87 28.72 46.76 24.85 15.83 9.02 30.93 44.22

VQA-HAT-CP UpDn 52.63 11.42 7.04 4.38 50.45 38.13 35.87 11.99 6.25 5.74 34.59 53.42

Table 8.6 – Accuracy and FPVG results for three current OOD tests, evaluated
with UpDn and LXMERT. Analysis of the OOD results reveals that all three
tests violate the VGR Proposition (e.g., very high BGC violates Corollary 1)
and are therefore unsuitable to measure SC-free performance (see discussion in
Chapter 8.4.2).
Sidenote: Reported accuracy numbers for VQA-HAT-CP are lower than GGC
and BGC results indicate (GGC+BGC normally equals accuracy). This is
because accuracy for VQA-HAT-CP is calculated, as is customary for this
dataset, based on fractional correctness scores (see metric definition in Chapter
7.8.1), while FPVG categories do not use such fractional scores.

Visual Features. We use symbolic visual features in all evaluated models.
Symbolic features are described in Chapter 5. We use the same concrete
feature instances that were created and used in Chapter 7.

8.4.2 Result Discussion

Results for ID/OOD splits are listed in Table 8.6. The examined three tests
are intended to uncover SC exploitation and act as a proxy measure for a
model’s Reasoning, VG and generalization capabilities. Therefore, we would
expect VQA model behavior to align with the SC-free testing behavior which
we derived from the VGR Proposition. Remarkably, however, results in Table
8.6 show that all three examined OOD tests violate the four VGR corollaries
of expected model behavior:

• Violation of Corollary 1: BGC represents a substantial share of questions,
when it should approximate zero.

• Violation of Corollary 2 & 3: GGC is considerably lower than Accuracy,
when it should be in similar range.

• Violation of Corollary 4: FPV G+ is far lower than Accuracy, when it
should be similar or higher.

This means that, according to the VGR Proposition, all three OOD tests
are unsuitable for quantifying SC-free behavior, and their accuracy-based
evaluation does not provide clear and reliable evidence that a model in fact
avoids shortcut exploitation.
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While in clear violation of the VGR Proposition, results in Table 8.6 do provide
some positive indication that these OOD tests at least move in the intended
direction of presenting less opportunities to models for exploiting SCs than ID
tests: High BGC numbers in all ID tests (44% to 51% of questions) indicate
that models benefit a great deal from exploiting SCs. In comparison, OOD
tests exhibit considerably lower BGC (27% to 38% of questions). Nevertheless,
the BGC category still covers a substantial amount of questions in OOD
testing, indicating successful SC exploitation. This suggests that there are
factors involved that hinder an analysis of a model’s SC behavior on the
basis of Accuracy on these tests alone. Furthermore, these results provide
important indicators as to why a strong linear correlation between Accuracy
and VG has been eluding the field so far (see, e.g., investigations in Shrestha
et al. (2020); Ying et al. (2022) and Chapter 2.5.1), namely that correct VG
is not a strict requirement for a correct answer in these OOD tests.

Conclusion. We believe this to be a significant finding, as evaluations
with existing OOD tests like GQA-OOD, GQA-CP-large and VQA-HAT-CP
contradict the VGR Proposition in particular by exhibiting a large percentage
of questions in the BGC category. This raises strong questions regarding the
suitability of these tests for evaluating certain model properties for which
they are employed:

1. Determining the impact of VG: Various works have explained low(er)
accuracy in OOD (vs. ID) testing with a model’s disregard of rele-
vant visual information (notably Agrawal et al. (2018); Goyal et al.
(2017); Selvaraju et al. (2019)). Consequently, approaches to strengthen
a model’s VG have been introduced that successfully improve OOD
accuracy (Wu and Mooney, 2019; Selvaraju et al., 2019; Ying et al.,
2022). As a twist in this narrative, Shrestha et al. (2020) showed that
methods in Wu and Mooney (2019); Selvaraju et al. (2019) achieve
similar OOD accuracy gains even when intentionally learning wrong
VG. Similarly, (Ying et al., 2022) reported that VG measurements and
OOD accuracy lack a strong correlation. Such reports of inconsistent,
unpredictable impact of VG are particularly harmful to the notion
of VG as a necessary component in VQA generalization5, especially
because these findings are reported against the backdrop of OOD tests
that were created to reflect VG-related shortcomings of VQA models
(Agrawal et al., 2018, 2016; Johnson et al., 2016; Zhang et al., 2016;
Goyal et al., 2017) and are therefore expected to be directly affected

5OOD testing in VQA is also framed as generalization, see Teney et al. (2020)
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by changes to VG quality. Our results help understand such reports by
showing that, contrary to the mentioned underlying expectations for
OOD tests, proper VG can actually still be bypassed by SC exploitation
to produce a large number of correct answers. This means, there is no
clear dependency relationship between VG and accuracy. Therefore,
neither must changes to VG quality be reflected in accuracy, nor can we
expect to find a strong correlation between VG and OOD accuracy. As
a result, conclusions concerning the impact of VG in VQA, which are
based only on accuracy in these OOD tests, should not be considered
reliable.

2. Determining generalization capabilities: OOD evaluations have been
described as a way to evaluate a model’s ability to generalize beyond
dataset biases and used in that context (e.g., Teney et al. (2020), Hudson
and Manning (2019)). Such framing of OOD testing assumes that a
model’s reliance on such dataset biases (which constitute unintended
decision rules and are therefore shortcuts by definition) should not lead
to success in those tests. However, our investigations have revealed
extensive successful exploitation of dataset biases in OOD tests, which
suggests that OOD accuracy may not be particularly indicative of a
model’s generalization skills in this context.

3. Determining Reasoning capabilities: Estimating a model’s Reasoning
capabilities by OOD accuracy is one of the main motivations behind
the introduction of Kervadec et al.’s test GQA-OOD. In the context of
their definition of Reasoning as “the opposite of SC learning” (Kervadec
(2021) and Chapter 8.1), GQA-OOD would not be expected to allow
SC exploitation to significantly influence accuracy. However, as shown
above, extensive SC exploitation is still involved in generating the
majority of correct answers, suggesting that accuracy results in these
tests may not be particularly indicative of a model’s Reasoning skills
under Kervadec (2021)’s definition.

In summary, we caution against interpreting model accuracy on these OOD
tests as reliable evidence for conclusions in the contexts discussed above.

8.5 SC-free Testing in VGR

Considering the findings made above, we propose a new test split called
GQA-AUG (AUG for augmentation). In addition to a random Q/A prior
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distribution in its OOD test split, GQA-AUG is also specifically designed to
require the use of proper VG.

8.5.1 Creating an SC-free test for VQA using augmen-
tation

The three investigated OOD tests in Sec. 8.4 focus on controlling Q/A
prior distributions in OOD tests. Our investigations have revealed that this
approach is unsuitable for SC-free testing in VQA. This is because VQA
models run considerable risk of VG-related SC exploitation which these tests
do not explicitly account for. In the following, we outline our approach for
creating a new test set that only includes questions that are unlikely to resolve
to a correct answer without leveraging correct VG. We then show that such a
test set is a much more accurate manifestation of SC-free testing under VGR.

GQA-AUG creation. We use the Information Retrieval-based GQA
dataset as starting point to develop the new test split GQA-AUG. We focus
on GQA’s query-type questions, which we consider the hardest question type
in GQA due to their higher number of plausible answer options in the dataset
(as opposed to, say, verify-type questions about an object’s existence, where
the only plausible answers in the training data are “yes” or “no”). If we
assume a uniform answer distribution in testing, query-type questions such as
“What color is the pictured vehicle?” are on average less likely to be resolved
correctly without successful retrieval of the required information from relevant
visual input. Thus, generally speaking, correct answers for query-type ques-
tions in particular have a stronger innate dependency on correct VG, which
makes these questions an obvious choice for our test. It is worth noting that
in VQA practice this stronger requirement for VG in query-type questions
does not automatically insulate them from being solved by SC exploitation.
E.g., SC exploitation can still occur in large numbers if Q/A-prior-based SCs
(“educated guesses”) also offer a likely (or even more likely) option for success,
as we have observed in the GQA-based tests examined above.

With this in mind, we propose GQA-AUG, an SC-free test under the
VGR Proposition, based on GQA. We create this test by the following steps
(illustration shown in Figure 8.1):

1. Identify query-type questions in GQA’s balanced val set with answers
consisting of object names (e.g., dog, car, etc.) which are explicitly tied
to image content in given relevance annotations. We call this set of
questions AUG-ID.
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Figure 8.1 – Example of samples in the GQA-AUG dataset (creation process
described in Chapter 8.5.1). GQA-AUG-ID (lower left) contains the original
GQA test sample with detected symbolic feature representation (shown at the
top) and ground-truth answer (“cat”). GQA-AUG-OOD (lower right) contains
new samples that differ in both answer (“dog”, “bird”, ...) and feature content
(appropriately modified to support the answer). The question is not changed.

2. Identify the name category (e.g., animal, vehicle, etc.) of the original
name/answer.

3. Generate new Q/A samples by replacing the answer with up to ten
uniquely sampled names from the same object category (e.g., cat →
dog, bird, etc.). The question remains the same.

4. Generate new image representations for each new Q/A sample to support
the new answer. Concretely, we replace relevant parts of the image
representation such that it aligns with the new answer (e.g., if the
original image supported the original answer “cat”, we replace relevant
image content to support the new answer “dog”, “bird”, etc.). We call
this set of resulting questions AUG-OOD.

This approach of creating new query-type questions alongside visual feature
augmentation is intended to minimize the possibility of correct answers being
returned without correct VG. At the same time, step 3 reduces the possibility
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Testing

Dataset Train Dev AUG-ID AUG-OOD

GQA-AUG 828k 20k 17k 161k

Table 8.7 – Sample counts for GQA-AUG. We use questions from GQA’s
balanced train set as train/dev set in our experiments.

that educated guesses based on learned Q/A priors (in GQA’s balanced split)
can be exploited to return a correct answer.

It is worth mentioning two other image augmentation techniques used in
VQA for training (MUTANT (Gokhale et al., 2020)) and training and testing
(SwapMix (Gupta et al., 2022)). Our image augmentation process is restricted
to testing and distinguishes itself by operating in controlled, symbolic feature
space which allows more exact feature content manipulation than both MU-
TANT and SwapMix. These two approaches either manipulate raw images
before input to an object detector (MUTANT), or copy object-based features
from other images based on annotations of the image without controlling for
actually represented content in feature space (SwapMix), making them less
exact than our approach.

GQA-AUG Statistics. Dataset numbers for the GQA-AUG test splits are
listed in Table 8.7. AUG-ID consists of 17k unmodified query-type questions
taken from the GQA balanced val split. Based on AUG-ID, we synthesize
161k new samples using the augmentation process described above, i.e., up
to ten generated samples per question in AUG-ID, based on the number of
unique object names in the involved object category. On average, AUG-OOD
modifies 4.2 query-related objects per question. The average of all question-
relevant objects per question in AUG-OOD is 6.6. In 35.7% of questions in
AUG-OOD the set of question-relevant objects overlaps fully with the set of
modified objects.

8.5.2 Is AUG-OOD an SC-free test?

In this section, we seek to verify if AUG-OOD is an SC-free test according to
the VGR Proposition. For experiments, we use the same UpDn and LXMERT
model instances (without retraining) as for GQA-OOD in Section 8.4. Table
8.8 shows evaluation results for GQA-AUG for the two models.
We validate each of the four corollaries of the VGR Proposition in the following.
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AUG-ID AUG-OOD

Dataset Model Acc FPV G+ GGC GGW BGC BGW Acc FPV G+ GGC GGW BGC BGW

GQA-AUG UpDn 40.60 32.80 20.17 12.63 20.43 46.77 15.73 26.72 12.07 14.65 3.65 69.63
LXMERT 43.11 30.80 19.47 11.34 23.64 45.55 13.31 18.93 8.39 10.54 4.92 76.15

Table 8.8 – Accuracy and FPVG results for GQA-AUG. AUG-OOD results
show a close approximation of the VGR Proposition (e.g., very low BGC
approximates Corollary 1), supporting its categorization as an SC-free test.
Detailed discussion in Chapter 8.5.2.

Corollary 1: Low BGC All models in Table 8.9 post low numbers in
BGC for AUG-OOD. In particular, the values in BGC are substantially lower
than those observed in other OOD tests (Sec. 8.4). This is in line with our
stipulations for SC-free tests, which states that correct answers should in
theory not be returned without being based on question-relevant information.

Corollary 4: Accuracy is not higher than FPVG+ Corollary 4 is met
by all models except VLR which exceeds FPV G+ by a small margin. We
consider this within acceptable range (see discussion in Sec. 8.3.2). A non-
ideal BGC value (exceeding zero) observed for both models is contributing to
this result. It is also worth pointing out that AUG-ID results show excessive
violation of Corollary 4 in both models, reaffirming that the original set of
questions (AUG-ID) is not suitable for SC-free testing.

Corollary 2&3: Accuracy is equal to GGC While Accuracy is not
exactly equal to GGC (because some residual BGC still exists), Corollary 2 &
3 are far better approximated in AUG-OOD than in the OOD tests examined
in Sec. 8.4.

8.5.3 AUG-OOD Summary

We have shown that results on AUG-OOD approximate the VGR-derived
corollaries of SC-free testing to a substantially higher degree than other
examined OOD tests. In conclusion, we find AUG-OOD to be a significantly
better approximation of SC-free testing than other OOD tests examined in
this work.
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Accuracy (FPV G+) FPVG (AUG-OOD)

Model Features AUG-ID AUG-OOD GGC GGW BGC BGW

UpDn DET 40.60 (32.80) 15.73 (26.72) 12.07 14.65 3.65 69.63
LXMERT DET 43.11 (30.80) 13.31 (18.93) 8.39 10.54 4.92 76.15
MMN DET 44.10 (39.78) 20.66 (26.79) 16.59 10.20 4.07 69.15
MAC DET 41.61 (31.33) 15.45 (21.42) 9.63 11.78 5.81 72.77
VLR n/a 39.16 (46.57) 79.35 (77.25) 75.45 1.80 3.90 18.85

Table 8.9 – GQA-AUG: Results for five models trained with DET features.

8.6 Improving Performance on GQA-AUG

8.6.1 Baseline VQA Models

In order to get a broader overview of baseline VQA performances on AUG-
OOD, we evaluate three additional VQA models of different architectural
designs: MAC (Hudson and Manning, 2018) is a multi-hop attention-based
model developed for GQA-type Visual Reasoning. MMN (Chen et al., 2021)
is a Transformer-based model which uses question programs generated by
an independently trained question parser instead of the otherwise common
word embeddings used for raw question input. Our VLR system (Chapter 3)
uses symbolic, programmed inference with focus on VG and GQA’s IR-type
questions. UpDn and LXMERT have already been introduced in Chapter
8.4.1. All five models are trained and tested with the same GQA-AUG data
split (sample counts listed in Table 8.7).
Training procedures for UpDn and LXMERT are referenced in Chapter 8.4.1,
MAC and MMN follow the general training procedures referenced in Chapter
6. VLR’s setup is described in Chapter 3. As mentioned earlier in this chapter,
all models are trained with symbolic visual features, which we introduced in
Chapter 5 and used in Chapter 7.

Result Discussion

Results for all five models trained with detected symbolic visual features
(DET) are listed in Table 8.9. Our first observation is that results for the three
additional models (MAC, MMN, VLR) exhibit tendencies that are similar to
what we found for UpDn and LXMERT, thus re-confirming GQA-AUG as an
SC-free test.

We further find relatively high GGW numbers compared to GGC in most
models. In the context of VGR, we interpret this as an indication of unused
VG potential that may be untapped because of underdeveloped Reasoning
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capabilities. We can describe Reasoning in the context of GQA-AUG as
a model’s ability to correctly answer IR-type questions by involvement of
correct VG. VLR is the only model in the table that was designed specifically
to implement human-intended decision rules under an IR-based paradigm,
which is reflected by its exceptional success on AUG-OOD.

While initial evaluation results for AUG-OOD are satisfactory in terms of
approximation of the VGR Proposition, answer accuracy on this test is quite
low for all classifier-based models. This is in stark contrast to the high
performance of VLR, which is based on programmed rule-based inference
instead of learned inference. VLR implements human-intended decision rules
and thereby avoids the possibility of learning to exploit shortcuts (cf. Geirhos
et al. (2020)). We interpret the contrasting results between VLR and the
other four models as an indicator that these four models have forgone the
adoption of human-intended decision rules of inference in favor of learning to
exploit shortcuts — which is what an SC-free test is supposed to evaluate. In
other words, AUG-OOD is working as intended.

In the following, we investigate if better performance on AUG-OOD is achiev-
able through adequate training. According to the VGR Proposition, high
accuracy on this test signifies the manifestation of both VG and appropriate
Reasoning: In theory, this would mean that the model’s inference process
relies on human-intended decision rules and avoids shortcut exploitation.
Hence, we seek to answer the question: Can we train these models to pick up
human-intended decision rules?

8.6.2 Learning IR-type Reasoning

GQA can be categorized as an IR-type VQA dataset, as the vast majority
of its questions are generated by filling in question-templates with explicit
information taken from annotated scene graphs of involved images. Therefore,
we see no obvious dataset-related reasons preventing a model to learn IR-
type Reasoning capabilities to perform well on AUG-OOD, when simply
trained with GQA. Consequently, we look for the problem’s source elsewhere.
Following the VG analysis in Chapter 7, we form the hypothesis that proper
adoption of IR-type Reasoning is prevented by inconsistently presented visual
targets in the input from which models learn not only much stronger proper
VG (as shown in Chapter 7), but human-intended decision rules for performing
Information Retrieval (for the VQA task), as well.

To test this hypothesis, we adopt the True VG methodology introduced
in Chapter 7 and train each model with input features that are minimally
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Accuracy (FPV G+) FPVG (AUG-OOD)

Model Features AUG-ID AUG-OOD GGC GGW BGC BGW

UpDn INF 42.42 (41.95) 63.36 (65.80) 60.28 5.52 3.08 31.12
LXMERT INF 42.73 (41.59) 58.93 (57.43) 54.81 2.62 4.12 38.45
MMN INF 44.41 (43.93) 58.62 (57.16) 54.38 2.78 4.24 38.59
MAC INF 41.60 (43.00) 62.83 (63.74) 60.00 3.74 2.83 33.42
VLR n/a 39.16 (46.57) 79.35 (77.25) 75.45 1.80 3.90 18.85

Table 8.10 – GQA-AUG: Results for five models trained with Information
Infusion. Accuracy and FPV G+ on AUG-OOD is significantly improved
compared to standard training, while the VGR Proposition is even better
approximated. Discussion in 8.6.2.

modified to contain verified, relevant image content according to the GQA-
provided relevance annotations. This method corresponds to the “Information
Infusion” approach described in Chapter 5 which was shown to improve
training conditions for VG-boosting training methods such as VisFIS (Ying
et al., 2022), HINT (Selvaraju et al., 2019) and SCR (Wu and Mooney, 2019).
As it turns out, Infusion-based training not only greatly improves general VG
quality in models, but also boosts adoption of Reasoning capabilities for IR
tasks such as AUG-OOD.

Result Discussion

Numerical results for Infusion-trained (INF) models are listed in Table 8.10.
We highlight some of the AUG-OOD results in Figure 8.2. We make the
following observations.

Accuracy is greatly improved. The left two plots in Figure 8.2 show
that all four re-trained models experience substantial gains in AUG-OOD
accuracy (green) and FPV G+ (red), while AUG-ID accuracy (see Table 8.10)
remains mostly stable. The latter result is not unexpected, as AUG-ID testing
does not control for correct alignment between answer and feature content of
question-relevant objects6, hence any impact of improved IR-type Reasoning
that might also be beneficial for AUG-ID is muted. In AUG-OOD, on the
other hand, this alignment between answer and visual objects is enforced by
design, and Reasoning improvements are reflected clearly.
As a sidenote, it is worth emphasizing that training with Infusion does not

6These effects of Infusion have been discussed in detail in Chapter 7. AUG-ID aligns
with the “impaired” test case and shows similar result tendencies.
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Figure 8.2 – Illustration of AUG-OOD results listed in Table 8.10. Left:
Accuracy and FPV G+ on AUG-OOD for DET and INF models. Right: GGC
and GGW percentages of FPV G+ in each DET and INF model. Discussion
in 8.6.2.

involve any changes to the training set’s Q/A prior distribution, meaning,
the same Q/A samples are used in both DET and INF. That is to say,
improvements on AUG-OOD are not the result of any answer distribution
shifts in the training data.

GGC has increased while GGW has shrunk. As illustrated by the
two right-hand plots in Figure 8.2, in models trained with Infusion, GGC
is considerably higher than GGW and approaching FPV G+. Additionally,
FPV G+ (and therefore GGC) aligns much closer with accuracy in INF models
than in DET models (notice the differences between red and green bars per
model in Figure 8.2, left). This further improves the approximation of the
four VGR corollaries. We interpret the more effective involvement of VG (as
reflected by increased dominance of GGC over GGW in Figure 8.2, right)
as evidence of improved Reasoning: The models have learned to draw on
relevant feature content to return correct answers.

VGR Corollaries are better approximated. Finally, these results show
that the four VGR Corollaries are even better approximated after Infusion
training, thus providing continued validation of GQA-AUG’s suitability as
SC-free test under the VGR Proposition.
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8.7 Analyzing Model Properties with AUG-

OOD and VGR

Based on the VGR Proposition and the observed results for AUG-OOD above,
we have concluded that INF-trained models have developed significantly
stronger Reasoning and VG. In the following, we verify this conclusion once
more from another angle. The investigation in this section serves as further
demonstration of how VQA model behavior on AUG-OOD can be explained
and understood with the help of the VGR Proposition, thereby further
confirming its relevance to VQA model analysis.

8.7.1 Reasoning in AUG-OOD

According to the VGR Proposition, both Reasoning and VG are supposed to
be necessary to achieve correct answers in AUG-OOD. Since Corollary 2 states
that AccSC−free = GGC7, we also know that GGC reflects correct Reasoning
(as well as correct VG). By comparing the unleveraged share of correct VG
reflected in GGW to the leveraged share reflected in GGC (remember that
FPV G+ = GGC + GGW ), we can determine the strength of Reasoning as a
measure of how completely VG is leveraged in models. We demonstrate this
for concrete model results in the following.

A lack of Reasoning in DET models is reflected in AUG-OOD results (Table
8.11) by a dominance of GGW over GGC (accordingly: low accuracy compared
to FPV G+). Improved Reasoning from INF training manifests in far greater
dominance of GGC over GGW and a closer alignment of accuracy with
FPV G+ (see all INF models in Table 8.11).

According to these interpretations, DET models should see only moderate
accuracy impact from pure VG improvements to the models, as their Reasoning
evidently cannot fully utilize VG. INF models, on the other hand, should see
strong impact to accuracy from VG changes, as their Reasoning knows how
to properly leverage and rely on VG. In the following, we investigate if this
expected model behavior can indeed be observed in practice.

8.7.2 VG manipulation

We attempt to isolate effects from changing VG quality in a model on AUG-
OOD results. Concretely, we manipulate VG quality in INF models using the
VG-method VisFIS (Ying et al. (2022), described in detail in Chapter 2.5).

7As discussed in Chapter 8.3.2, we accept an approximation of this rule in practice.



8.7 Analyzing Model Properties with AUG-OOD and VGR 143

Accuracy (FPV G+) FPVG (AUG-OOD)

Model VG-method Features AUG-ID AUG-OOD GGC GGW BGC BGW

UpDn n/a DET 40.60 (32.80) 15.73 (26.72) 12.07 14.65 3.65 69.63
n/a INF 42.42 (41.95) 63.36 (65.80) 60.28 5.52 3.08 31.12

VisFIS DET 42.63 (41.39) 16.96 (33.00) 13.98 19.02 2.97 64.02
VisFIS INF 42.28 (44.98) 67.56 (68.74) 64.86 3.88 2.71 28.56

VisFIS-Rm DET 40.48 (27.43) 9.02 (14.82) 5.45 9.37 3.57 81.61
VisFIS-Rm INF 42.62 (36.74) 51.94 (54.30) 47.92 6.38 4.02 41.68

Table 8.11 – GQA-AUG: UpDn trained with VisFIS with regular and ran-
domized guidance (“Rm”).

VisFIS has the capacity to improve FPV G+ in models, as shown in Chapter
6 and Chapter 7. Similarly, we can reduce FPV G+ by training VisFIS with
randomized (=inaccurate) feature importance (FI) scores8.

8.7.3 Model behavior when improving VG

Results for UpDn INF models in Table 8.11 show that training with VisFIS
improves both FPV G+ and AUG-OOD accuracy to a similar degree (e.g.,
UpDn INF improves by about 3% in FPV G+ and about 4% in accuracy,
after VisFIS training). DET models, on the other hand, show only weak
reception for VG quality improvements, particularly when compared to the
magnitude of the observed VG improvements (e.g., UpDn DET improves by
about 6% in FPV G+ but only about 1% in accuracy, after VisFIS training).
These results confirm our outlined expectations and can be interpreted as
follows: 1) INF models have learned the kind of Reasoning that is necessary to
solve AUG-OOD. They are now held back primarily by their VG capabilities,
and thus improving VG further promises strong additional gains in AUG-
OOD accuracy. 2) DET models lack the required Reasoning capabilities to
efficiently leverage VG improvements, as discussed above. Improving VG
alone thus only has a muted effect on these models and model development
should focus on improving Reasoning first.

8FI-scores act as guidance that VG-methods like VisFIS use to guide a model’s infer-
ence. The scores signify the question-relevance of each visual input object. Hence, by
randomization of these scores (shuffling them), a model learns to strengthen its reliance on
random input objects instead of actually question-relevant ones.
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8.7.4 Model behavior when reducing VG

According to our VGR-based expectations, deliberately reducing VG in INF
models should cause a similarly sized reduction of AUG-OOD accuracy. We
verify this in additional experiments. Results for INF models trained with
“VisFIS-Rm” (randomized VisFIS) in Table 8.11 show that the expected im-
pact on AUG-OOD accuracy alongside a reduction of FPV G+ does indeed
manifest (both FPV G+ and accuracy drop by about 11% (UpDn INF →
UpDn INF VisFIS-Rm)). This confirms our expectation that a reduction
of VG would cause a similarly sized reduction in AUG-OOD accuracy, thus
demonstrating the requirement of VG as noted by the VGR Proposition.
Meanwhile, Reasoning capabilities remain mostly unaffected by VisFIS train-
ing. Changes in Reasoning would be reflected by changes to GGC’s share
of FPV G+ (remember that FPV G+ = GGC + GGW ). Here, GGC’s share
drops only slightly from about 94% (UpDn INF VisFIS) down to 89% (UpDn
INF VisFIS-Rm).
Similarly, DET models trained with “VisFIS-Rm” also show the expected
behavior of a model with lower Reasoning, namely that a VG reduction
impacts accuracy to a much lesser degree than the size of the VG change
might suggest (FPV G+ is reduced by about 12% (UpDn DET → UpDn DET
VisFIS-Rm), while accuracy drops only about 7%).

8.7.5 Summary

Our investigations in this section illustrate how the VGR Proposition helps
to explain and understand VQA model behavior, which can lead to a better
sense of direction for improving performance. The presented results confirm
the expected co-dependency of Reasoning and VG, as described by the VGR
Proposition. Both properties are required to achieve high AUG-OOD accuracy,
and the effects of both model properties can be identified in the results.

8.8 Conclusion

We have introduced the VGR Proposition, a propositional logic statement
for Visually Grounded Reasoning that formally defines VQA model behavior
in shortcut-free testing, which revolves around two axiomatic concepts in
VQA: Visual Grounding and Reasoning. The VGR Proposition states that
in the absence of shortcut opportunities a VQA model requires both correct
Reasoning and correct Visual Grounding to produce a correct answer to a
given question.
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In utilizing the VGR Proposition, we have shown that current Out-of-
Distribution tests are unreliable tools for inferring a VQA model’s shortcut
exploitation and Visual Grounding from answer accuracy, a purpose for which
they are commonly employed. Considering this finding, we have presented
an approach for creating VQA tests that better approximate an alignment
between answer accuracy and a model’s SC-exploitation-free behavior in
accordance with VGR.

In summary, in this chapter we have formally established Visual Grounding
as a key component of VQA and gained significant insights into its role in
VQA generalization and shortcut learning.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, we have investigated the role of Visual Grounding (VG) in
Visual Question Answering (VQA) generalization and shortcut learning. We
have developed various methods and methodologies to assist us in our analysis
of VG which has led to a number of novel insights and findings. We summarize
the thesis’ contributions to the field in the following.

In Chapter 3, we have introduced “VQA by Lattice-based Retrieval”
(VLR), a VQA system that breaks with the predominant classifier-based mod-
eling paradigm in the VQA field and follows an Information Retrieval-based
design. VLR’s implementation closely aligns with human-intended decision
rules for VQA which explicitly necessitates VG for answer inference. As a
result, VLR’s propensity for shortcut exploitation is significantly reduced: we
have shown that VLR does not suffer from the typical, large performance gap
between In-Distribution (ID) and Out-of-Distribution (OOD) test accuracy,
unlike other evaluated classifier-based VQA models. Similarly, VLR was also
shown to outperform other models on a number of generalization tasks which
we have specially developed. We have officially shared these tasks with the
research community1.

With the introduction of our novel VG metric “Faithful and Plausible
Visual Grounding” (FPVG) in Chapter 4, we have filled the need for a

1https://github.com/dreichCSL/GQA generalization splits
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dedicated, meaningful and accurate metric to measure faithful and plausible
VG in VQA. A thorough verification and discussion of its properties as well
as advantages over other existing metrics via a series of experiments has
attested FPVG with a strong foundation of reliability for subsequent analyses
conducted in this thesis. We have shared our implementation of FPVG with
the research community2 for easier adoption of our new metric.

Sub-symbolic visual features extracted from a late network layer of an object
detector are widely used as visual input for VQA models. While useful in
providing an expressive image representation, their sub-symbolic and opaque
nature impede a proper analysis of the visual modality’s influence in VQA
by obstructing a clear view at the actual content they are carrying. To
facilitate deeper investigations into the relevance of visual content for the
manifestation of VG, we have described the construction of symbolic visual
features for VQA in Chapter 5. Based on these symbolic features, we have
developed a method we coined “Information Infusion” which enables
easy manipulation of represented image content through surgical feature
modifications. In Chapters 7 and 8, we have shown how Infusion can be
applied in training to improve VQA models in both VG quality and answer
accuracy on Out-of-Distribution (OOD) tests in particular. Furthermore, its
application as a data augmentation technique in the creation of a new type
of OOD tests has been proposed in Chapter 8.

In Chapter 6, we have reported a large-scale overview of VG quality in a
wide variety of VQA architectures using our metric FPVG. Our results have
shown that modern VQA models, although boasting impressive performances
in In-Distribution (ID) accuracy, are producing correct answers without the
support of proper VG in many cases, which is strong evidence of widespread
shortcut exploitation. We have concluded this analysis with investigations of
the connection between VG quality and OOD accuracy where, with the help
of FPVG, we have uncovered clear tendencies that reflect the importance of
a model’s VG capabilities for its performance in OOD scenarios: even though
each analyzed model architecture was shown to leverage VG quality to a
different degree, they all shared a performance sensitivity to VG quality in
OOD testing that was much weaker pronounced in ID testing, thus reinforcing
the notion that VG plays a significant role in VQA generalization in particular.

In Chapter 7, we have explored a suspicion that common evaluation prac-
tices for VG-boosting methods may be problematic and that this may be
a contributing factor to the unpredictable nature of VG’s impact on VQA
performance. In our investigations of current evaluation practices for VG-

2https://github.com/dreichCSL/FPVG
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boosting training methods, we have shown that training and testing is largely
performed with data samples that do not actually allow the manifestation of
proper VG on account of missing relevant visual content. We have introduced
a methodology, coined as “True VG”, to correct this issue and facilitate a
more thorough evaluation of VG-methods. The subsequent analysis has led
to novel insights regarding the potential of VG-methods for improving VQA
performance in OOD accuracy and VG quality in particular. Notably, we
have shown that VG-methods are considerably more potent than previous
reports suggested, when training and testing conditions are aligned with their
intended use-case which involves presence of relevant visual input informa-
tion. We have shared our implementation with the research community3 to
facilitate reproduction of the involved experiments using the introduced True
VG methodology.

Finally, in Chapter 8, we have formally derived the VGR Proposition, a
novel propositional logic statement describing VQA model behavior on tests
that require the application of human-intended decision rules to be solved
successfully, which we coined “shortcut-free tests”. The VGR Proposition
establishes Visual Grounding and Reasoning as two key components of VQA
generalization by highlighting the significance of their influences on evaluations
of shortcut-free VQA performance. The inception of the VGR Proposition has
enabled us to examine a number of prominent OOD tests w.r.t. their value for
VG-centric generalization research. By application of the VGR Proposition in
our analysis, we have found that the common practice of interpreting answer
accuracy on the examined tests as a direct reflection of 1) a model’s VG
quality, and 2) VG’s influence on generalization, follows a flawed concept: we
have shown that these tests still offer plenty of opportunities for VG-related
shortcut exploitation in particular, which makes VG’s impact on accuracy
unpredictable. Following these findings, we have proposed an approach for
developing new OOD test scenarios that properly reflect the significance of
VG in the context of shortcut learning in VQA. Experiments have shown that
our test setup prevents VQA models from achieving high accuracy without
utilizing proper VG, which is in line with theoretical model behavior described
by the VGR Proposition.

In conclusion, the ideas behind VGR represent the culmination of this thesis.
Along the way, we have developed a number of novel methods, shared their
implementations with the community and conducted extensive experiments
and analyses, all of which combined allowed us to gain significant insights
into the role of VG in VQA generalization, as summarized above.

3https://github.com/dreichCSL/TrueVG
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9.2 Closing Remarks

Shortcut learning and the exploitation of dataset biases and spurious correla-
tions presents a significant challenge in the pursuit of strong generalization
capabilities in VQA models.

A VQA model’s inference process can be described as the application of various
acquired decision rules leading to the model’s output. In this context, shortcut
learning is characterized by a model’s acquisition of decision rules based solely
on their accuracy-related efficacy on limited training data, instead of their
plausibility to humans (cf. Geirhos et al. (2020)). This is problematic for a
model’s generalization capabilities insofar as human-intended decision rules
are expected to generalize far better to new settings than decision rules that
were formed on the basis of dataset biases and spurious correlations which are
prevalent in current VQA datasets. Visual Grounding in a VQA model, i.e., a
model’s faithful reliance on plausibly relevant visual information to answer a
question, is one such human-intended decision rule and is therefore considered
an indicator of a model’s generalization capabilities. While the enforcement
of VG in VQA models may not always lead to answer accuracy improvements
in typical In-Distribution benchmarks, and its impact may be muted even in
certain Out-of-Distribution tests, we argue that such meaningful indicators
of generalization prowess in models should not be ignored in the absence of
exhaustive generalization testing. This is especially true for VQA, where the
development of tests to evaluate models in every possible scenario remains
out of reach due to the high task complexity.

The role of VG in VQA generalization is that of a meaningful indicator of a
model’s generalization capabilities by VG’s definition as a human-intended
decision rule. We hope this thesis is able to contribute to the establishment
of VG in VQA as a significant model property that implicates and improves
a model’s utility and reliability in the vast, real world.
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Beygelzimer, Florence d’Alché Buc, Emily B. Fox, and Roman Garnett,
editors, NeurIPS, pages 5901–5914, 2019.

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 3543–3556, Minneapolis,
Minnesota, June 2019.

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik G. Learned-Miller, and
Xinlei Chen. In defense of grid features for visual question answering.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10264–10273, 2020.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma,
Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3668–3678, 2015.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C. Lawrence Zitnick, and Ross B. Girshick. CLEVR: A Diagnostic Dataset
for Compositional Language and Elementary Visual Reasoning. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1988–1997, 2016.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman,
Li Fei-Fei, C. Lawrence Zitnick, and Ross B. Girshick. Inferring and
executing programs for visual reasoning. In ICCV, pages 3008–3017. IEEE
Computer Society, 2017.



158

Kushal Kafle and Christopher Kanan. Visual question answering: Datasets,
algorithms, and future challenges. Computer Vision and Image Under-
standing, 163:3–20, 2017.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Refer-
ItGame: Referring to objects in photographs of natural scenes. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 787–798, Doha, Qatar, October 2014. Associa-
tion for Computational Linguistics.

Franklin Kenghagho Kenfack, F. A. Siddiky, Ferenc Bálint-Benczédi, and
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
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Appendix A

Scene Graph Generation

In this Appendix, we report additional details for the Scene Graph Generator
(SGG) that was developed as part of VLR (Chapter 3). SGG provides image
representations for the vast majority of experiments performed throughout
this thesis.

A.1 SGG1: Object detection and visual fea-

ture extraction

SGG1 handles object detection and provides region-based visual features that
are used as basis for modeling attribute and relationship detection, as well
as for training other reference VQA models. We use a Faster R-CNN (Ren
et al., 2015) model with ResNet101 (He et al., 2016) backbone and an FPN
(Lin et al., 2017) for region proposals. The model is built using Facebook’s
Detectron2 framework (Wu et al., 2019). The ResNet101 backbone model
was pre-trained on ImageNet (Deng et al., 2009).

Training details The model was trained for GQA’s 1702 object classes
using 75k training images (images in GQA’s balanced train partition). Train-
ing lasted for 1m iterations with mini-batch of 4 images, using a multi-step
learning rate starting at 0.005, reducing it by a factor of 10 at 700k and
again at 900k iterations. No other parameters were changed in the official
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System mAP mAP mAP mAP
@[.5 : .95] @0.5 @0.75 small/med/large

SGG1 5.54 9.45 5.76 3.32 / 6.13 / 9.92
UpDn n/a 10.2 n/a n/a

Table A.1 – Object detection performances with Faster R-CNN models using
MS COCO evaluation metrics.

Detectron2-provided training recipe for this model architecture. Training
took about 7 days on an RTX 2080 Ti.

Output We use the softmax output distribution (a 1702-dim vector for
1702 object classes) for each post-NMS1 detected object to populate a scene
graph. Up to 100 objects per image are selected as follows: per-class NMS is
applied at 0.7 IoU for objects that have any softmax object class probability
of > 0.05.

We also use this model to extract 1024-dim object-based sub-symbolic visual
features, which we use in SGG2&3 (attribute recognition, relationship detec-
tion models) and for training other VQA reference models which are used
in certain comparisons in this thesis. These sub-symbolic visual features are
extracted from a layer in the object classification head of the Faster R-CNN
model which acts as input to the final fully-connected softmax-activated
output layer. This is done for each surviving object (i.e., for the set of objects
determined by per-class NMS and top-100 capping).

Results SGG1’s object detection evaluation using metrics2 defined for the
MS COCO dataset (Lin et al., 2014) are shown in Table A.1. We also
include one more data point in Table A.1 to share a very rough comparison
to UpDn’s (Anderson et al., 2018) object detection model that was widely
used in other VQA-related works to extract object-based sub-symbolic visual
features. UpDn’s object detector was trained on a heavily cleaned subset
of Visual Genome (Krishna et al., 2016) (on which GQA is based) and uses
1600 object classes. Note that evaluation results for this object detector are
not published in their paper but instead listed in UpDn’s official repository
(Anderson, 2018).

1Non Maximum Suppression (NMS) is a widely used technique for meaningfully selecting
one detected bounding boxes from among an often impractically large set of overlapping
bounding boxes, which are deemed duplicate detections of the same object.

2https://cocodataset.org/#detection-eval
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Note on object categories in VLR Object categories take on a central
role in the GQA dataset. Many questions refer to objects by their category
instead of their object class identity (e.g. “Is someone standing next to the
red piece of furniture?”). Category recognition scores are used in VLR’s
inference procedure in Chapter 3. To determine category recognition scores
for detected objects, we simply sum softmax scores of all object classes that
belong to the requested category. Like for attribute recognition (see SGG2
below), we determine the categories, as well as the members (object class
names) in each category, based on implicit declarations in GQA. Note that
there is no explicit definition of the used categories and their members in
GQA given as part of the official annotations, but this information can be
inferred by appropriate processing of the QA annotation files.

A.2 SGG2: Attribute recognition

We identified a total of 617 individual attribute names and 39 overarching
attribute categories in GQA, including a category containing all unassigned
attributes (“others” in Table A.2). We train a separate softmax regression
model for each of these 39 attribute categories, using the sub-symbolic visual
features from SGG1 as input features. Classifier sizes range from a maximum
of 427 classes (“other” category) to a minimum of 2 classes (e.g., “weight”,
“height”), with most classifiers covering 3 or less classes. Categories and
category membership were determined based on their declaration in GQA.

Training details Input to each category model is a detected object’s 1024-
dim sub-symbolic visual feature vector, extracted with SGG1. For training
and evaluation, the detected objects are labeled with attributes as follows:
We first determine, if a SGG1-detected bounding box matches an (attribute-
)annotated bounding box in GQA. If yes, we assign any annotated attribute
labels belonging to the ground-truth bounding box to that detected object.
A detected bounding box has found a match if it exceeds an IoU of 0.75 with
a ground-truth bounding box. The labeled samples are then used to train
and evaluate every category model they have labels for.

We train all models using the Adam optimizer with a learning rate of 0.001
and apply L2 regularization to avoid overfitting. As loss function we use a
common cross-entropy loss. Models are trained using early stopping with
patience of 5 epochs.
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Output Attributes for detected objects in the scene graph are created as
follows: we feed a detected object’s 1024-dim visual feature vector into each
of the 39 models and extract the softmax activation output distribution over
each category’s classes. The resulting 39 distributions then represent the
complete attribute information of an object in the image’s scene graph.

Results Results for all 39 category models, as well as sample sizes of train,
dev and test sets are listed in Table A.2.

Note on attribute categories in VLR Like object categories, attribute
categories are used extensively in GQA. In VLR, categories that are mentioned
in the question (and/or later in the functional program which is generated
by the question parser) can, e.g., help narrow down answer options for a
given question. A question such as “What color is the chair?” causes VLR’s
Answer Production sub-module to select an answer from classes (attribute
names) belonging to the “color” category. Like for object categories, attribute
categories and category membership are determined based on implicit decla-
rations in GQA. Note that a few attributes are part of multiple categories
(e.g. the attribute “little” is a class in categories “size” and “age”), which
is why the total number of classes in all trained attribute models is slightly
higher than the number of unique attribute names.

A.3 SGG3: Visual relationship detection

We identified 310 relationship names in GQA (e.g., “wearing”, “holding”),
including 17+2 spatial relationships (e.g., “behind”). Due to the overwhelming
frequency of the two spatial relationship classes “to the left|right of” in the
annotations (see their counts in Table A.4), we place them in a separate
category. Hence, all relationship names are split into three categories (spatial
types, left-right and others).

Relationships are a directed connection between two objects, i.e., they do not
have the commutative property (e.g., “man wearing shirt” is not the same as
“shirt wearing man”). We therefore frame relationship detection as a sequence
classification problem.
Using sub-symbolic visual features and bounding box coordinates of detected
objects from SGG1, we train an LSTM model with a softmax output layer
for each of the three categories. We additionally train a binary classifier for
each category that learns to predict whether or not a given object pair has
any relationship in the respective category. Input features for these binary
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Attribute Classes Samples Chance Accuracy
Category train,dev,test (=Prior)

activity 15 11205,1244,1787 0.30 0.61
age 3 11610,1290,1754 0.46 0.75
brightness 2 11062,1229,1737 0.85 0.90
cleanliness 4 3887,431,596 0.58 0.70
color 26 456607,50734,71627 0.24 0.53
company 2 522,57,80 0.64 0.57
depth 2 420,46,64 0.62 0.69
event 3 143,15,20 0.60 0.70
face 4 3919,435,608 0.97 0.98
fatness 3 2078,230,327 0.57 0.53
flavor 4 1257,139,237 0.71 0.83
gender 2 887,98,154 0.68 0.76
hardness 2 562,62,90 0.54 0.80
height 2 16250,1805,2559 0.73 0.90
length 2 12920,1435,2041 0.67 0.84
liquid 5 608,67,94 0.53 0.67
location 2 579,64,71 0.82 0.86
material 41 67030,7447,10778 0.30 0.65
opaqness 2 7613,845,1076 0.99 1.00
orientation 2 393,43,68 0.53 0.65
others 427 141885,15765,22644 0.05 0.37
pattern 3 5085,564,893 0.79 0.79
place 5 647,71,101 0.31 0.75
pose 9 31410,3489,4774 0.38 0.64
race 2 656,72,96 0.62 0.62
realism 2 381,42,70 0.61 0.59
room 3 482,53,72 0.43 0.50
shape 5 12031,1336,1749 0.63 0.74
size 6 50809,5645,7779 0.54 0.72
sport 4 6705,745,955 0.61 0.97
sportActivity 8 8325,925,1233 0.28 0.78
state 6 3393,377,540 0.46 0.64
texture 2 19,2,9 0.78 0.56
thickness 2 2843,315,432 0.56 0.68
tone 2 10885,1209,1733 0.85 0.86
type 3 6442,715,917 0.64 0.97
weather 9 11477,1275,1691 0.63 0.76
weight 2 1980,219,307 0.85 0.84
width 2 1156,128,219 0.74 0.76

Avg (std) - - 0.58 (0.14) 0.73 (0.14)
Weighted avg (std) - - 0.31 (0.21) 0.59 (0.20)

Table A.2 – Attribute recognition with softmax regression models, results
sorted by category name. One model per category. See text (A.2) for details.
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models consist of GloVe word embedding vectors representing the detected
objects’ class names.

Training details For training and evaluation, detected object pairs from
SGG1 are labeled with relationships as follows: We first determine, if an
SGG1-detected bounding box matches a (relationship-)annotated bounding
box in GQA. If yes, we assign any annotated relationship labels belonging to
the ground-truth bounding box to that detected object, but only if the target
object in that relationship has also been matched by another detected object.
A detected bounding box matches with a ground-truth bounding box if it
exceeds an IoU of 0.75 with it. A labeled relationship (i.e. an ordered pair of
objects) is used to train and evaluate the category model that contains the
labeled relationship class.
For recognition of relationships in the three categories, we train an LSTM,
each with 512 hidden units followed by a dropout layer (drop rate of 0.3)
and a softmax output layer. Input to the LSTMs is a sequence consisting of
two object’s 1028-dim vectors (1024-dim visual features, 4-dim bounding box
coordinates, taken from SGG1). The vectors are ordered according to the di-
rected relationship of the involved objects (i.e., relationship subject→object).
For detection of presence of a relationship given an ordered pair of objects
(subject, object), we train LSTM models, which are architecturally similar
to the recognition models, but use a sigmoid activation in the output layer
instead of a softmax activation. We train one model per relationship category.
In contrast to the recognition models, the input features consist of 100-dim
GloVe word embedding vectors representing the SGG1-detected 1-best object
name (i.e., the maximum softmax entry in the 1702-dim object class distri-
bution). The vectors are appended by the respective 4-dim bounding box
coordinates. The intuition behind using word embeddings instead of visual
features is that language-based semantics of relationships between objects can
provide a richer basis to model prior probabilities of relationships between
objects than the observed visual features.

Note that to train/evaluate the binary classifiers, we also need samples of the
negative class, i.e., examples of object pairs that are not in the relationship
category of the positive class. We select these negative samples from among
object pairs that only have relationships in other categories but not in the
category in question.

Output Similar to SGG1&2, we use a model’s softmax output to define a
probability distribution over relationship classes between two objects. Note
that a probability distribution is only generated with recognition models if
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Relationship Class Samples Prec Rec F1
Category test

Spatial pos 10.5k 0.40 0.85 0.55
neg 139k 0.99 0.90 0.94

Spatial pos 134k 0.99 0.97 0.98
(left|right) neg 15k 0.81 0.94 0.87

Other pos 9k 0.44 0.90 0.59
neg 141k 0.99 0.93 0.96

Table A.3 – Results of relationship detection models per category. These
binary models determine whether or not an ordered pair of objects has any
relationship in that category. We list Precision, Recall and F1-score for a
positively/negatively classified relationship detection in a category.

Relationship Classes Samples Chance Acc
Category train,dev,test (=Prior)

Spatial 17 69k, 8k, 11k 0.27 0.55
Spatial (left|right) 2 861k,96k,134k 0.5 0.997
Other 297 55k, 6k, 9k 0.40 0.77

Table A.4 – Results of relationship recognition models per category. These
models assume there is a relationship between two objects (given as an ordered
pair) in the respective category and determine which one it is.

the respective detection model outputs the positive class for a given ordered
object pair, thus predicting the existence of a relationship between the two
objects. Otherwise, we set all values for that relationship category to zero in
the scene graph representation.

Results Results for recognition models are shown in Table A.4, results for
detection models are shown in Table A.3.

A.4 Scene Graph Representation in VLR

We represent the scene graph internally as a collection of matrices to improve
computational efficiency in VLR (Chapter 3) as follows:
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Nodes All objects in the scene graph are represented in a matrix of dimen-
sions (#obj in img, #obj classes). Object attributes are represented in a
matrix of dimensions (#obj in img, #attr categories, #max attr class in cat).
Each object class (1702 total) and attribute class (617 total across 39 cate-
gories) receives a softmax score from their respective classifier, which is then
stored in these matrices.

Edges All relationships are represented in a matrix of dimensions (#obj in img,
#obj in img, #rel classes). Each object in the image can be in a relationship
(310 total across 3 categories) with another object, but not itself. Each
relationship class receives a softmax score from the classifiers described in
A.3.



Appendix B

VLR Implementation and
Experiment Details

This Appendix contains complementary information to Chapter 3.

B.1 Question Parser

In this section, we give some additional details of the model setup and training
process for VLR’s Question Parser, which is described in Chapter 3.3.1.

Pre- and Post-processing

For training the QP, we pre-process the operation sequences in a separate
step, which in particular involves splitting each operation tuple into multiple
tokens. For instance, the operation tuple “(relate; cat,next to,s)” would be
represented as a sequence of four tokens. A post-processing step of the QP
output is then required to revert the QP’s output sequence into the original
tuple format. Subsequent modules (namely VLR’s R&A in Chapter 3.3.3)
process the operation sequence (i.e., the program) in the original GQA tuple-
based format. Note that there are instances where the pre-/post-processing
steps introduce issues to the final QP output, which can cause problems
during construction of the VQA-lattice. To quantify this, we isolate and
report the impact of this step in our ablation study (labeled “VLR*” in Table
B.2).
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Model specifications and Training

We use 50-dim, pre-trained GloVe word embedding vectors to encode words
in the question. As recurrent layers in the encoder/decoder, we use a GRU
(Cho et al., 2014) with 128 units. Question length is limited to 20 tokens
which matches 99.5% of our training data. The total question counts before
removal are 849k (train), 94k (dev) and 132k (test). Output sequences in
the test set are 7.4 tokens long on average. The softmax output layer of
the model consists of 162 classes. Here, 20 classes are reserved for pointers
to input question words, 1 class to signal empty/no operation, 93 classes
are used for operation terms that occurred > 100 times in training (without
thresholding, there were 136 terms). The remainder of classes is used for
explicit modeling of the most frequently occurring (multi-) words in operation
arguments, as well as non-word functional tokens like underscore, which never
appear in the input question and thus cannot be copied from it. We use a)
regular expressions and b) GQA’s annotated pointers (from question words
to operation arguments) to determine whether or not a token in the target
sequence should be a pointer to a certain question word in the input sequence
at train time.

Results

The QP reaches 97.02% element accuracy and 79.60% full program accuracy
on the test set (GQA balanced val set: 132k questions with average output
sequence length of 7.4 tokens per question program).

B.2 Rank & Answer

In this section, we give some additional details about the inner workings of
VLR’s lattice construction process described in Chapter 3.3.3.

Lattice Construction

GQA uses 12 unique, fundamental operation types (e.g., “filter”, “select”;
note: not to be confused with complex operation types like “filter color”, etc),
of which 9 (such as “query”, “and”) are used in VLR for determining the
final operations in the answer production module that produces the answer
to the question (see also Chapter 3.3.3, “Answer” paragraph).



B.2 Rank & Answer 177

Figure B.1 – Illustration of elementary operations used in the construction
of the VQA-lattice. Matrix operations are used to extract node emission and
transition probabilities, which are subsequently used in the VQA-lattice. For
additional description see B.2. Depicted numbers were randomly chosen.

Elementary Operations

VLR internally maps all operation types to (combinations of) two elementary
query operations: “select” and “relate”. These elementary operations are
essentially queries to the scene graph representation matrices (described
in Appendix A.4) and extract 1) node emission and 2) node transition
probabilities. These are then used in the VQA-lattice for a given question
and image. An illustration of how these elementary operations work is shown
in Figure B.1 and described below.

Select. An operation sequence (representing the parsed question) consists
of at least two operation tuples. Each tuple consists of an operation type
and an argument value (also described in Chapter 3.3.1 and 3.3.3, “Lattice
Construction” paragraph). To execute an elementary operation, we first use
the argument value to create a “Selection Array”. In Figure B.1, left, the
argument value is “cat” which results in the creation of a one-hot “Selection
Array” that is 1 at the object class position for “cat” and 0 everywhere
else. Taking the dot product of this one-hot vector and the object matrix
then results in the node emission probabilities for all 100 detected objects
in the image. The middle image in Figure B.1 illustrates the same process
for arguments that query object categories (which encompass multiple object
classes). Queries about attributes are done in a similar fashion and also result
in node emission probabilities for each detected object.

Relate. The second elementary operation, “relate” (Figure B.1, right)
extracts transition probabilities from the scene graph to populate edges
between nodes in the VQA-lattice as a hollow matrix (square matrix with
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diagonal entries all equal to zero), representing the fact that each node in the
lattice can theoretically transition to any other node except itself.

Note that if node emissions are extracted by queries to the Attribute Matrix,
we always insert the identity matrix to represent the transition probabilities of
this step (Viterbi requires transition probabilities in each step), as no actual
transition to other nodes is happening when attributes are queried.

Limitation

VLR uses word-based symbolic representations for classes and categories.
This means, in particular, that class names queried by operations need to
match class names used in the SGG module, in order to get a correct match
(or even a match at all). This strict requirement can be relaxed by introducing
a normalization step before the matching procedure to align names in the
query with the names used in the scene graph. We apply some normalization
(lemmatization of plural/singular forms of object names), which treats most
mismatches encountered with VLR in GQA. Although other mismatches
are rare in GQA (< 1% of questions), it might be helpful to include a
normalization step in other scenarios.

B.3 Experiments

B.3.1 VLR Ablation Study

The modular nature of VLR allows for an in-depth ablation-type evaluation.
We list a number of module combinations in Table B.2, which we discuss
below.

Preliminary Note on Scene Graph Variants

Rows in the ablation Table B.2 can be interpreted as representing the varying
degrees of involvement of GQA ground-truth annotations in the ablation
(roughly: the higher the variant number, the larger the reliance on annota-
tions). For VLR’s ablation study (Table B.2) we create four scene graph
variants, populated to varying degrees by entries from automatic detections
vs. ground-truth annotations. For easier reference, we list these four scene
graph variants in Table B.1.
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Scene Graph Variant VLR-detected GQA-annotated

VLR, VLR-1, VLR-2 obj, attr, rel -
VLR-3, VLR-4 obj, attr rel
VLR-5, VLR-6 obj attr, rel
VLR-7, VLR-8, VLR-Oracle - obj, attr, rel

Table B.1 – Additional information on the scene graph variants used in the
VLR ablation experiments in Table B.2, see B.3.1 for details.

System QP Scene Graph Binary Open Grounding Acc

VLR VLR VLR (obj,attr,rel) 69.94 46.17 128.41 57.67

VLR-1 VLR* VLR (obj,attr,rel) 72.35 47.52 130.45 59.53
VLR-2 GQA VLR (obj,attr,rel) 73.58 47.59 132.00 60.16
VLR-3 VLR VLR (obj,attr); GQA (rel) 70.11 50.88 137.67 60.18
VLR-4 GQA VLR (obj,attr); GQA (rel) 75.18 53.40 141.19 63.93
VLR-5 VLR VLR (obj); GQA (attr,rel) 76.86 56.52 138.84 66.36
VLR-6 GQA VLR (obj); GQA (attr,rel) 82.99 59.65 142.23 70.95
VLR-7 VLR GQA (obj,attr,rel) 84.06 75.97 149.82 79.88
VLR-8 VLR* GQA (obj,attr,rel) 89.46 79.88 152.89 84.52
VLR-Or GQA GQA (obj,attr,rel) 96.47 87.38 162.73 91.78

Table B.2 – Ablation study for VLR. Shows VLR’s performance for various
combinations of using annotated (=Oracle) and predicted scene graphs and
operation sequences. “GQA” entries stand for Oracle inputs from GQA an-
notations. “VLR*” is defined in B.1. Here, we skip the learned QP but still
go through pre- and post-processing (see B.1) which introduces some errors.
“VLR-Or” represents VLR using full Oracle input (=GQA annotations), which
acts as the upper bound of VLR.

Ablation: Rank & Answer (R&A)

The upper-bound performance of VLR when running in full Oracle mode
(GQA-annotated scene graph and programs) is 91.78% accuracy (TB.2, VLR-
Or). Errors occur, e.g., due to 1) issues in annotations, or 2) when processing
uncommon operation tuples that are not explicitly handled in R&A’s lattice
construction procedures or answer production.

Ablation: Question Parser (QP)

Using the GQA scene graph and QP-generated programs results in a steep
drop in accuracy to 79.88% or 13% relative reduction (VLR-Or →VLR-7).
Closer analysis reveals in particular problems w.r.t. inaccurate program
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pointers input question words that cannot be correctly resolved, as well as
general classification errors of the QP. Comparing VLR programs with GQA
ground-truth programs, executed on a fully VLR-detected scene graph (VLR-2
→VLR), the mentioned accuracy drop shrinks significantly to 4% relative,
suggesting a certain overlap between challenging visual scenes and questions
that are more difficult to process.

Ablation: Object Detection (SGG1)

Object detection is by far the most influential component in terms of accuracy
impact. If an undetected object is queried somewhere in the question, VLR’s
ability to arrive at the correct answer is heavily impaired.

VLR’s SGG1 detects on average 91.49% of all objects in GQA’s annotated
inference chain, and 92.34% of objects needed to answer a question (detection
determined for IoU > 0.5). This means that a significant number of questions
cannot be reasonably answered correctly on account of critical objects missing
in the scene graph. All numbers are listed in Chapter 3.4.3, Table 3.2, Line 1.

Aside from object detection issues, correct object classification (or recognition)
for a large variety of objects such as that found in GQA (1702 object classes)
is clearly a challenge (cf. A.1 for object recognition results).
To evaluate the impact of object recognition quality on VLR’s overall accuracy,
we create a scene graph variant that consists of SGG’s detected object
locations and recognized object classes, but uses all annotated attributes and
relationships from matching ground-truth objects (“matching”: bounding
box with highest IoU > 0.5). As expected, this heavily impacts VLR’s
overall accuracy which falls from 91.78% to 70.95% (-23% relative) for Oracle
programs (VLR-Or →VLR-6), and from 79.88% to 66.36% (-17% relative)
for VLR-generated programs (VLR-7 →VLR-5).

Ablation: Attribute recognition (SGG2)

Similar to object detection, attribute recognition is important for identifying
objects referenced in an operation sequence. We replace the ground-truth
attributes in the partial Oracle scene graph from VLR-6&5 with detected
outputs from the SGG2 module (i.e., the attribute models). Although the
impact of this change on VLR’s accuracy is not as strong as when introducing
detected objects, we still observe a large drop from 70.95% to 63.93% (VLR-6
→VLR-4), and from 66.36% to 60.18% (VLR-5 →VLR-3).
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Ablation: Relationship detection (SGG3)

Finally, we integrate outputs from SGG3 (relationship models) into the scene
graph to arrive at a fully VLR-generated scene graph without annotation
involvement. There is a smaller sized accuracy reduction compared to the
introduction of attribute recognitions: We observe performance drops from
63.93% to 60.16% (VLR-4 →VLR-2) for Oracle programs, and 60.18% to
57.67% (VLR-3 →VLR) to reach VLR’s final overall accuracy without any
annotation involvement in either input modality.

B.3.2 Model Training

In this section we include details for training procedures of models used in
evaluations and comparisons in Chapter 3. In general, all models use GQA’s
balanced train set for training and the balanced val set for testing. A small
dev set (either some part of the train set or separately provided in case of
experiments on GQA-101k (Ying et al., 2022)) is used for model selection.
Note that with exception of GQA-101k’s test sets (which mix questions from
balanced train and val sets), all images that are used in testing are unseen
during training of our visual perception module (=SGG). All trained models
use our same 1024-dim object-based visual features (for 100 objects/image
max) as input.

MMN

MMN (Chen et al., 2021) consists of two main modules that are trained
separately: A program parser and the actual inference model, which takes the
predicted program from the parser as input. We mostly follow the settings in
the official code-base but detail some aspects of our customization here.

For the program parser, we run training for 20 epochs (official setting: 10
epochs) and choose the best model (lowest loss on dev set). For the inference
model, we run up to 15 epochs of bootstrapping (using the balanced train set)
with Oracle programs and another up to 12 epochs of fine-tuning with parser-
generated programs. We use early stopping of 1 epoch and select the model
by best accuracy on the dev set (using Oracle programs in bootstrapping
mode and predicted programs in fine-tuning mode).

Training on generalization/OOD splits is done accordingly. Notably, the
program parser was always retrained on each new split (same as for VLR).
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DFOL

DFOL (Amizadeh et al., 2020b) uses a vanilla seq2seq program parser, but
neither code nor generated output for this is provided in the official code base.
Thus, evaluations are run with ground-truth programs from GQA. DFOL is
trained on a loss based on answer performance to learn weights in its visual
encoding layers that produce an image representation similar to the one used
by VLR, given high-dimensional visual features as input.

Training is done based on the official instructions for a complex 5-step curricu-
lum training procedure. We train the first 4 curriculum steps with the entire
∼14 million questions in the “all” training data partition, as specified in the
instructions. As this is extremely resource intensive, we train for one epoch in
each curriculum step. Finally, we run the 5th step with the “balanced” train
data only (∼1m questions) for several epochs until training finishes by early
stopping of 1 epoch.

Note that due to missing code for the program parser, DFOL cannot be
reasonably evaluated in our generalization/OOD experiments, as the program
parser’s performance is crucial to a realistic evaluation for this model (like in
VLR).

MAC

MAC (Hudson and Manning, 2018) is a monolithic VQA model based on a
recurrent DNN architecture. The model takes a constant number of inference
steps per question for its interaction with the visual knowledge base. We
follow the official training guidelines given in the official code base and use
4-step inference. We train the model on GQA’s balanced train set and use
early stopping of 1 epoch based on accuracy on a dev set to select the best
model. Training on generalization/OOD splits is done accordingly.

UpDn

UpDn (Anderson et al., 2018) is a classic attention-based model with a single
attention step guiding the merge of vision and language modalities. We
use the implementation shared by (Shrestha et al., 2020). Following the
instructions there, we train UpDn for 40 epochs and select the best model
based on accuracy on a dev set. Training on generalization/OOD splits is
done accordingly.
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B.4 Dataset Creation for Generalization Ex-

periments

Three of four generalization splits used in Chapter 3.4.4 are straightforward
to create based on the given description. However, the creation of the fourth
split, “linguistic variants”, is significantly more involved. For reproducibility,
we describe in detail how we created the data partitions for this experiment.
We tried to replicate the “structural” generalization experiment from Hudson
and Manning (2019), but found this to be infeasible with the short description
given in that paper. Hence, we developed a process for re-partitioning the
train/test data for our experiment.

B.4.1 Step 1: Determining question sets for each lin-
guistic variant

As starting point, we use the four explicitly mentioned linguistic variant pairs
mentioned for the “structural” data split in Hudson and Manning (2019).
Concrete examples are listed in Table B.3. We first determine all questions
that belong to each linguistic variant for each of the four example pairs
(training vs. test) listed in Table B.3 as follows:

1. Pair 1: Based on a question’s (GQA-annotated) functional program, we
determine all questions containing relationship names in passive form
(“cover-ed”) vs. present participle form (“cover-ing”).

2. Pair 2: We determine all questions starting with “Do/Does” vs. “Is/Are”.

3. Pair 3: We determine all questions containing an attribute category
name (like “material”, “shape”, etc.) vs. no such term.

4. Pair 4: We determine all questions containing the word “called” vs.
“name of”.

At this point, we have two sets of questions for each of the four variant pairs
from the table. Note, this procedure is performed for the GQA balanced train
set and val set separately.

B.4.2 Step 2: Using program templates to determine
equivalent inference

The GQA-annotated functional programs can be generalized as templates by
using placeholders in the program’s arguments (e.g., for objects, attributes,
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training test

What is the OBJ covered by? What is covering the OBJ?
Is there a OBJ in the image? Do you see any OBJ in the photo?
What is the OBJ made of? What material makes up the OBJ?

What’s the name of the OBJ that is ATTR? What is the ATTR OBJ called?

Table B.3 – Linguistic variant pairs used for re-partitioning the train/test set.
For each pair (=row) we list examples of each of the two linguistic variants
(=column). Questions belonging to a linguistic variant will be either in the
new train or test partition.

relationships). For instance, “(select: car), (verify color: red)” can be gener-
alized to “(select: OBJ), (verify color: ATTR)”. We use these templates for
generalized matching of inference chains between questions. To identify ques-
tions with equivalent inference programs, we now determine those templates
that occur for questions in both variants of a variant pair from step 1. Note
that we only select templates that occurred at least 100 times for each variant
of a given variant pair. We found this threshold to be necessary because
of incorrect program annotations in GQA that did not match the question.
Without the threshold, this issue was compromising the experimental setup
by causing the selection of large amounts of questions that did not actually
have an equivalent inference match in the other variant group.

B.4.3 Step 3: Selecting questions for the new parti-
tions

After having determined the set of qualifying inference templates for each
of the variant pairs, we now create the new train and test partitions. Note
that no questions are moved between GQA’s balanced train set and val set.
Instead, the new partitions are created only by removing questions from a
set. This retains GQA’s integrity of keeping only unseen images in the test
partition. In particular, the images in test are unseen in object detector
training of our SGG).

We first select questions for each of the four linguistic variant pairs and then
combine all selections to create the final train/test partitions.

Train set re-partitioning For re-partitioning GQA’s balanced train set,
we select all questions with matching inference templates from the “test”-
labeled variant subsets in Table B.3 and remove them from the balanced train
set.
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Test set re-partitioning For re-partitioning GQA’s balanced val set, we
only select questions with matching inference templates from the “test”-
labeled variant subsets in Table B.3.





Appendix C

FPVG Implementation and
Experiment Details

This Appendix contains complementary information to Chapter 4 and Chapter
6.

C.1 Determining Relevant Objects

FPVG can only be meaningfully evaluated with questions for which the
used object detector found both relevant and irrelevant objects. If, e.g., no
question-relevant objects were detected, the question is excluded from FPVG
evaluation. Hence, different subsets of the test (here: GQA’s balanced val set)
are evaluated depending on the used object detector. Table C.1 lists some
statistics related to this for each of the object detectors used in our FPVG
evaluations throughout this thesis. The set of relevant objects is determined
by IoU > 0.5 between detected & annotated bounding box. The set of
irrelevant objects excludes all detected bounding boxes that cover > 25% of
any annotated relevant object to avoid any significant inclusion of relevant
image content.

C.2 Feature importance ranking scores

Scores in Table 4.1 (Chapter 4) were calculated as follows:
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#obj #obj (average)
Object Detector #questions max all | rel | irrel

Detectron2 (Wu et al., 2019) 114k 100 91 | 5 | 62
VinVL (Zhang et al., 2021) 110k 100 45 | 2 | 31

Table C.1 – Object detector bbox statistics for FPVG evaluation.

A question’s “relevant” score measures how many of N annotated relevant
objects in set relN are among the topN relevant objects (as determined and
ranked by the used metric). It is calculated as topN∩relN

relN
, where a higher value

is desirable for FPV G+). A question’s “irrelevant” score measures how many
of M annotation-determined irrelevant objects in set irrelM are among the
topM metric-determined relevant objects. It is calculated as topM∩irrelM

irrelM
, with

a lower value being desirable for FPV G+.

C.3 Model Training

In this section we include details for training procedures of models used in
this work’s evaluations. Generally, we use GQA’s balanced train set to train
all models and the balanced val set for evaluations. A small dev set (either
a small, randomly excluded partition of the train set (20k questions), or
separately provided in case of experiments on GQA-101k (Ying et al., 2022))
is used for model selection.

C.3.1 Visual Features

Detectron2-based visual features are generated by our object detector de-
scribed in detail in Appendix A (and Appendix A.1, in particular).

Note that with exception of GQA-101k’s repartitioned test sets (which mix
questions from balanced train and val sets), no images used in testing were
used in training (the latter generally applies to evaluations on GQA’s original
balanced set).

In chapters that refer to this appendix, most models are trained with the
mentioned Detectron2-based visual features (1024-dim object-based visual fea-
tures for a maximum of 100 detected objects/image) as input. For OSCAR+,
we use the officially released pre-trained base model which uses VinVL visual
features (Zhang et al., 2021).
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C.3.2 MMN

MMN (Chen et al., 2021) consists of two main modules that are trained
separately: A program parser and the actual inference model, which takes the
predicted program from the parser as input. We mostly follow the settings in
the official code-base but detail some aspects of our customization here.

For the inference model, we run up to 5 epochs of bootstrapping (using
GQA’s “all” train set (14m questions)) with Oracle programs and another
up to 12 epochs of fine-tuning with parser-generated programs (from the
official release), using GQA’s balanced train set (1m questions). We use early
stopping of 1 epoch and select the model by best accuracy on the dev set
(using Oracle programs in bootstrapping mode and predicted programs in
fine-tuning mode). The program parser was not retrained.

C.3.3 DFOL

DFOL (Amizadeh et al., 2020c) uses a vanilla seq2seq program parser, but
neither code nor generated output for this is provided in the official code base.
Thus, evaluations are run with ground-truth programs from GQA. DFOL is
trained on a loss based on answer performance to learn weights in its visual
encoding layers that produce an image representation similar to the one used
by VLR (Reich et al., 2022), given high-dimensional visual features as input.

Training is done based on the official instructions for a complex 5-step curricu-
lum training procedure. We train the first 4 curriculum steps with the entire
14 million questions in GQA’s “all” training data partition, as specified in the
instructions. As this is extremely resource intensive, we train for one epoch
in each step. Finally, we run the 5th step with the “balanced” train data only
( 1m questions) until training finishes by early stopping of 1 epoch.

C.3.4 MAC

MAC (Hudson and Manning, 2018) is a monolithic VQA model based on
a recurrent NN architecture which allows specification of the number of
inference steps to take over the knowledge base. We follow the official training
procedure guidelines given in the released code base and use 4-step inference.
We train the model on GQA’s balanced train set and use early stopping of 1
epoch based on accuracy on a dev set to select the best model.
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C.3.5 UpDn, HINT, VisFIS

UpDn (Anderson et al., 2018) is a classic, straightforward attention-based
model with a single attention step before merging vision and language modal-
ities. We use the implementation shared by Ying et al. (2022). Following the
scripts there, we train UpDn for 50 epochs and select the best model based
on accuracy on a dev set.

HINT (Selvaraju et al., 2019) and VisFIS (Ying et al., 2022) are two VG-
improvement methods. VisFIS is trained according to the released scripts.
HINT is trained according to Shrestha et al. (2020) (using the VisFIS code-
base), i.e. we continue training the baseline UpDn model with HINT (using
GQA annotations to determine importance scores) for 12 more epochs and
select the best resulting model (accuracy on dev set).

C.3.6 VLR

VLR (Chapter 3) is a modular, symbolic method that requires a full scene
graph as visual representation. Similar to DFOL and MMN, it makes use of
a (trained) question parser to produce instructional inference programs. The
actual inference module does not require training. Training of the question
parser and creation of the scene graph is described in Chapter 3. The used
scene graph is described in Appendix A.

C.3.7 MCAN

MCAN (Yu et al., 2019b) is a Transformer-based model that uses co-attention
layers and a form of multi-hop reasoning to hone in on attended vision and
language information. We use the model implementation by Yu et al. (2019a)
to train the “small” model (6 layers).

C.3.8 OSCAR+

OSCAR (Li et al., 2020) is a SOTA Transformer-based model that leverages
pre-training on various V+L tasks and data sets. The subsequent release
of new and elaborately trained visual features, known as VinVL (Zhang
et al., 2021), further elevated its performance. We use this stronger version
of OSCAR, called OSCAR+, in our evaluations. For training, we leverage
the officially released pre-trained model and the VinVL features. Fine-tuning
is done on GQA’s balanced val set according to instructions accompanying
the official release.
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Note that we included results of UpDn (named “UpDn*”, last line in Chapter
6, Table 6.1) trained with these stronger VinVL features, in accordance with
our recommendation in the Limitation section (Chapter 4.4) for new/different
visual feature sources.





Appendix D

Implementation Details for
Chapter 7

D.1 Scene graph detection and symbolic fea-

ture creation

D.1.1 Visual feature generation

Symbolic features used in GQA evaluations were created based on classi-
fication outputs of the scene graph (SG) generator described in detail in
Appendix A. The used SG-detector uses a Faster R-CNN (Ren et al., 2015)
model for object detection for 1702 object classes. Attribute recognition for
each detected object is done for each of the 39 attribute categories separately.
Each category consists of two or more attribute classes (617 classes in total).
Features for up to 100 objects are extracted per image.

For VQA-HAT evaluations and symbolic feature creation, we use the shared
feature set generated with the object detector (OD) described in Anderson
et al. (2018). The visual features from this OD provide the detected object
class (one out of 1600 total) and up to one attribute class (out of 400 total)
for 36 objects per image.

D.1.2 Symbolic feature creation

The different types of symbolic features are created as follows:
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DET features use the maximum class from object detection as object name
(300D GloVe embedding) and the normalized 4D bounding box coordinates
as location information. For determining attribute information (300D GloVe
embedding), each category’s maximum class is involved. To represent the
attribute information of all categories in a single word embedding, we take
the average of all recognized attribute names.
Note that in VQA-HAT evaluations we do not use bounding box information
(following Ying et al. (2022)). Furthermore, whenever no attribute information
was provided, a word embedding for the “UNKNOWN” token (the average
over all word embeddings) was used.

INF features use DET features as foundation. Modifications to object name
information is realized by simple replacement. For attribute information
modification in GQA evaluations, we first determine the attribute category of
the annotated attribute that needs to be infused into an existing feature vector.
Then, the embedding contributions of the (wrongly) recognized attribute of
that category is replaced with an equivalently weighted embedding of the
(correct) annotated attribute.

D.2 Model Training Details

For UpDn and LXMERT model training and evaluations, our experiments
make use of implementations shared by Ying et al. (2022) (UpDn, LXMERT,
VG-methods) and Tan and Bansal (2019) (LXMERT).

D.2.1 UpDn

UpDn models are trained for 50 epochs with 256 batch size for GQA-CP-
large and 64 for VQA-HAT-CP. Model selection after 50 epochs is based on
performance on the held-out dev set. We train either with or without one
of the four examined VG-methods (VisFIS, AttAlign, HINT, SCR). Other
hyperparameters, including training parameters specific to each VG-method
were adopted from Ying et al. (2022).

D.2.2 LXMERT

Pre-training. We pre-train LXMERT (Tan and Bansal, 2019) from scratch
for 30 epochs with 256 batch size, using all three types of symbolic features
(DET, ORA, INF) to create three individual models. Model selection after 30
epochs is based on performance on the held-out dev set. We use the original
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implementation and training scheme described in the original paper, with a
few changes:

1. We exclude the attribute-related loss (unsuitable for more than a single
attribute per object).

2. We restrict pre-training to the GQA-CP-large train set (see Table 7.1)
to retain ID/OOD distributional integrity in our experiments.

3. Instead of the original setting of 36 objects, we use 100 visual objects
(as provided by the used SG-detector).

4. We use a smaller version of the model to speed up training and adapt
to the reduced amount of training data: Hidden layer dimensions are
reduced from 768 to 128. Intermediate layer size is reduced from 3072
to 512. Number of attention heads per self-attention layer is reduced
from 12 to 4.

Pre-training is done individually for each feature type (DET, ORA, INF).
VG-methods are not applied in pre-training.

Fine-tuning. For fine-tuning, we train each model for 35 epochs with 64
batch size and use LXMERT’s proposed two-layer classifier with softmax-
based answer output. Model selection after 35 epochs is based on performance
on the held-out dev set. Fine-tuning affects all LXMERT weights, not just
the added VQA classifier.





Dissertation Revision

The following changes were made to the original first draft of this dissertation.
Note that the reviewers’ assessment of the dissertation’s scientific merit was
performed based on the original draft, i.e., before these changes.

Changes

• Added a section to draw attention to the ablation-type study performed
for VLR in Chapter 3.4.1.

• Added a clarification about how dataset percentage numbers in Chapter
7.3, paragraph “Noisy features”, were determined.

• Changed the used terminology throughout Chapter 7. In particular,
“Flawed VG” was replaced with “Impaired VG”. Other parts of the
dissertation, where this terminology was used, were adjusted accordingly.

• Updated the bibliography to include our publication “Uncovering the
Full Potential of Visual Grounding Methods in VQA” (Reich and Schultz,
2024), which was recently accepted at ACL 2024.
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