
University of Bremen
28359 Bremen, Germany
Group of Computer Architecture
Faculty of Mathematics and Computer Science

DOCTORAL THESIS

Accurate Binary-Level Symbolic
Execution of Embedded Firmware

Sören Tempel

June 14, 2024
Date of the Defense

First Examiner: Prof. Dr. Rolf Drechsler
Second Examiner: Prof. Dr. Emmanuel Baccelli

Revised version with modifications outlined in Appendix B.

Abstract

Symbolic execution is an automated software testing technique that has enabled the
discovery of numerous bugs in conventional, non-embedded software. Unfortunately, its
application to embedded firmware is presently limited due to unique challenges asso-
ciated with this domain. Central to many of these challenges is the tight integration
of hardware and software components. Due to this tight integration, firmware interacts
on a low abstraction level with both the processor and the peripherals provided by a
hardware platform. In order to support these interactions, a symbolic execution engine
needs to implement the reference manuals specifying processor and peripheral behav-
ior. These specifications have an enormous complexity; hence, prior work approximates
peripheral behavior and abstracts processor instruction execution. Unfortunately, these
approximations may induce inaccuracies, which can result in bugs being missed in the
tested firmware. This dissertation accomplishes a more accurate analysis by contribut-
ing a binary-level symbolic execution approach that is faithful to both the specification
of peripheral behavior and processor instruction execution. This is achieved by facili-
tating machine-readable formal descriptions of instruction semantics and an established
modeling standard for the description of peripheral behavior. Conducted experiments
have resulted in the discovery of 16 previously unknown bugs in a popular embedded
operating system, thereby illustrating the effectiveness of the proposed approach.

II

Acknowledgements

I would like to thank Rolf Drechsler for creating a great atmosphere for conducting
scientific research and guiding me throughout the process. Furthermore, I am grateful
to Vladimir Herdt for supervising early work on this thesis and to Christoph Lüth for
supporting me in the final years.

Additionally, I would like to thank my current and former colleagues from the Group
of Computer Architecture and the Cyber Physical Systems DFKI department. In par-
ticular, Tobias Brandt for contributions to the formal RISC-V model presented in this
thesis, as well as Pascal Pieper and Sallar Ahmadi-Pour for in-depth discussions and
input. Special thanks to colleagues and friends of mine who provided valuable feedback
on various early drafts of this thesis, especially Lorenz Hüther and Tristan Bruns.

Last, but not least, I would like to express my gratitude for friends and family sup-
porting me through the years of my studies. In particular, I thank my partner Julia
Hunter for her continuous support that helped me immensely to complete this thesis.

III

Die Universität, deren Bestimmung
dem inhumanen Betrieb der Mas-
sengesellschaft genau entgegengesetzt
ist, muß sich mit aller Macht dagegen
wehren, zu dessen Vorhalle zu werden.

Max Horkheimer

IV

Contents

1. Introduction 1
1.1. Challenges . 4
1.2. Research Questions . 6
1.3. Contributions . 7

1.3.1. Contribution Domains . 7
1.3.2. Published Results . 10

1.4. Outline . 12

2. Preliminaries 13
2.1. Embedded Systems . 13
2.2. Instruction Set Architectures . 15
2.3. Symbolic Execution . 17

3. Integration of SystemC TLM with Symbolic Execution 21
3.1. Combining VPs with Symbolic Execution 23

3.1.1. The Case for SystemC TLM . 24
3.1.2. SymEx-VP Architecture . 25

3.1.2.1. Overview . 25
3.1.2.2. Clover . 27
3.1.2.3. Instruction Set Simulator 27
3.1.2.4. SystemC Integration . 29
3.1.2.5. SymbolicCTRL . 30

3.1.3. Peripheral Modeling Example . 30
3.1.3.1. SiFive UART . 30
3.1.3.2. Injecting Concolic Values 32

3.1.4. Usage Scenario . 35
3.1.4.1. Setup . 35
3.1.4.2. Testing & Debugging 36

3.1.5. Evaluation . 39
3.1.6. Related Work . 41
3.1.7. Discussion and Future Work . 42

V

Sören Tempel Contents

3.1.8. Conclusion . 43
3.2. Injecting Symbolic Values using Peripheral Overlays 43

3.2.1. SystemC TLM Overlays . 45
3.2.2. Implementation . 46

3.2.2.1. Integration with SymEx-VP 46
3.2.2.2. Peripheral Overlay Example 47

3.2.3. Evaluation . 50
3.2.3.1. RIOT-based Example Application 51
3.2.3.2. Test Setup . 51
3.2.3.3. Test Results . 52

3.2.4. Related Work . 53
3.2.5. Conclusion . 53

4. Formal ISA Semantics for Extending the Analysis 54
4.1. A Flexibel Formal Model for the RISC-V ISA 56

4.1.1. Preliminaries . 57
4.1.1.1. Formal ISA Models . 57
4.1.1.2. Free Monads and EDSLs 58

4.1.2. Modeling an ISA . 58
4.1.2.1. A First Model . 59
4.1.2.2. Our Approach . 62

4.1.3. Modeling the RISC-V ISA . 66
4.1.3.1. Instruction Decoder . 66
4.1.3.2. Formal Model . 68
4.1.3.3. Custom Interpreters . 70

4.1.4. Performance Evaluation . 72
4.1.5. Related Work . 74

4.1.5.1. Formal Specifications 74
4.1.5.2. Modular Interpreters 75
4.1.5.3. Binary Software Analysis 76

4.1.6. Discussion and Future Work . 76
4.1.7. Conclusion . 77

4.2. Binary Symbolic Execution using Formal Semantics 78
4.2.1. ISA Semantics for Symbolic Execution 79

4.2.1.1. Formal Semantics for Binary Code 79

VI

Sören Tempel Contents

4.2.1.2. Formal Symbolic Execution of RISC-V Binary Code . . 82
4.2.2. Evaluation . 85

4.2.2.1. Extensibility Case Study 86
4.2.2.2. Performance Benchmarks 88

4.2.3. Related Work . 92
4.2.4. Discussion and Future Work . 94
4.2.5. Conclusion . 94

4.3. Generation of Instruction Set Simulators 95
4.3.1. Approach . 96

4.3.1.1. Overview . 96
4.3.1.2. ISA Model . 97
4.3.1.3. Interface Model . 99
4.3.1.4. Code Generation . 100

4.3.2. Evaluation . 103
4.3.2.1. Generalizability . 103
4.3.2.2. Conformance . 105
4.3.2.3. Performance . 106

4.3.3. Related Work . 107
4.3.4. Discussion and Future Work . 108
4.3.5. Conclusion . 109

5. Error Detection Techniques for Firmware Testing 110
5.1. Detection of Spatial Memory Safety Violations 112

5.1.1. Background . 113
5.1.1.1. Memory Safety . 114
5.1.1.2. HardBound . 114

5.1.2. VP-based HardBound Integration 115
5.1.2.1. Overview . 115
5.1.2.2. Metadata Propagation 116
5.1.2.3. TLM Integration . 117
5.1.2.4. Compiler Pass . 118

5.1.3. Evaluation . 119
5.1.3.1. RIOT HardBound Setup 120
5.1.3.2. Results . 120

5.1.4. Related Work . 123

VII

Sören Tempel Contents

5.1.5. Conclusion . 124
5.2. Minimally Invasive Stack Overflow Detection 124

5.2.1. Stack Overflow Detection Algorithm 126
5.2.2. Implementation . 127

5.2.2.1. Overview . 127
5.2.2.2. Stack Usage Database 129
5.2.2.3. Operating System Integration 130

5.2.3. Evaluation . 131
5.2.3.1. Integration . 132
5.2.3.2. Stack Overflows . 132
5.2.3.3. Stack Size Estimation 133
5.2.3.4. Performance Impact . 135

5.2.4. Related Work . 136
5.2.5. Discussion and Future Work . 137
5.2.6. Conclusion . 137

5.3. Reliable Memory Safety using Safe C Dialects 138
5.3.1. Background Information on Checked C 139
5.3.2. Methodology . 140

5.3.2.1. Conversion Bug Example 142
5.3.2.2. Conversion Bug Classification 143

5.3.3. Evaluation . 144
5.3.3.1. Setup . 144
5.3.3.2. Results . 145

5.3.4. Related Work . 148
5.3.5. Discussion and Future Work . 148
5.3.6. Conclusion . 149

6. Input Generation Heuristics for Applications in the IoT 151
6.1. Input Specification Language for Message Formats 152

6.1.1. Scheme-based Input Specification Language 154
6.1.2. Overview and Implementation . 156
6.1.3. Evaluation . 157
6.1.4. Conclusion . 158

VIII

Sören Tempel Contents

6.2. Symbolic Execution of Stateful Network Protocols 159
6.2.1. Approach . 160

6.2.1.1. Overview . 160
6.2.1.2. Multipacket Exploration 162
6.2.1.3. Control Peripheral . 165
6.2.1.4. Input Format Specification 166
6.2.1.5. State Machine Specification 168
6.2.1.6. Summary . 171

6.2.2. Evaluation . 171
6.2.2.1. Experimental Setup . 171
6.2.2.2. Results . 173
6.2.2.3. Interpretation . 174
6.2.2.4. Encountered Errors . 176

6.2.3. Related Work . 177
6.2.4. Discussion and Future Work . 179
6.2.5. Conclusion . 180

6.3. Visualizing Symbolic Execution Results 181
6.3.1. Concolic Line Coverage . 182
6.3.2. Implementation . 183

6.3.2.1. Taint Tracking . 183
6.3.2.2. Coverage Support . 183
6.3.2.3. Visualization . 184

6.3.3. Case Study . 184
6.3.3.1. Concolic Execution Setup 185
6.3.3.2. Test Results . 185
6.3.3.3. Visualization . 186

6.3.4. Related Work . 187
6.3.5. Conclusion . 188

7. Conclusion 189
7.1. Summary . 189
7.2. Future Work . 192

A. Acronyms 194

B. Modifications 197

IX

Chapter 1.

Introduction

An embedded system performs computational tasks as part of a larger enclosing product,
e.g. a vehicle or an industrial control system [121, Definition 1.1]. Contrary to general-
purpose computer systems (such as personal computers), embedded systems can di-
rectly cause harm in the physical world if they malfunction. Such malfunctions are often
caused by bugs in the software that performs the computational tasks of the embedded
system [135]. Some of these software bugs may turn into vulnerabilities that impact
important security goals. For example, a logic bug could allow for a denial-of-service
attack, thereby impacting the availability of the system [75, Section 3.1.5]. Depending
on the enclosing product of the embedded system, this can have severe consequences
and—in the worst case—put human lives at risk.

For this reason, it is paramount to prevent the occurrence of such security vulnera-
bilities. The importance of achieving this goal has become even more relevant in recent
years with the emergence of the Internet of Things (IoT) [97]. In the IoT, embedded sys-
tems collect information about their surrounding environment and share this information
with other systems to reach a common objective [121, Definition 1.3]. Therefore, while
it was previously uncommon to be able to directly exchange data with them, embedded
systems are becoming increasingly interconnected. This expands the attack vector and
affects their threat model, as nowadays it must be assumed that an attacker can com-
municate with an embedded system over a network connection [75, Section 16.1.1]. As
such, the system’s input handling routines must be capable of processing arbitrary input
received via such a network connection. However, given the complexity of network proto-
cols used in this domain, these input handling routines are susceptible to software bugs
and vulnerabilities [159]. The existence of such vulnerabilities in embedded IoT systems
is especially critical considering the fact that common protection mechanisms, which
attempt to mitigate the exploitation of vulnerabilities, are not widely available on em-
bedded systems [128, 204]. The lack of these protection mechanisms can be attributed to
the fact that embedded systems are optimized for characteristics such as chip size, power

1

Sören Tempel Introduction

consumption, or production cost. Compared to conventional general-purpose computer
systems, these optimizations lead to severe constraints regarding available computing re-
sources. For example, instead of multiple gigabytes of memory, embedded systems only
have a few kilobytes of memory at their disposal [24]. Additionally, hardware features
required for the implementation of protection mechanisms (e.g. hardware-enforced iso-
lations) are often unavailable [204, Figure 3]. Therefore, we cannot rely on techniques
that mitigate the exploitation of security vulnerabilities during production deployment
of an embedded device. Instead, it must be ensured that such vulnerabilities are found
and fixed before the embedded system is deployed in a production environment, where
undetected vulnerabilities can have severe consequences.

In order to find vulnerabilities in safety-critical systems, it has become an established
practice to appoint security experts who perform audits of the system and conduct
manual penetration tests [75, Chapter 13]. However, given the ever-increasing complexity
of these systems, the use of automated software testing techniques is gaining popularity
among practitioners to discover software bugs that may lead to vulnerabilities. In the
following paragraphs, an overview of existing techniques in this regard is provided to
establish a broad context of prior work.

Static Analysis The term static analysis refers to a software analysis technique which
does not execute the tested software, but instead focuses on analyzing its source code. A
variety of static analysis tools for different programming languages have been proposed
in prior work [52, 120, 19]. Since these tools do not execute the software, they are
comparatively easy to employ on a given code base. However, this also comes with the
drawback that these static analysis tools produce false-positives as they cannot reason
about reachability, i.e. they report bugs in a program that do not constitute an actual
problem [40, Section 2.1]. As such, extra effort is required to investigate which reported
problems correspond to real bugs.

Fuzzing Contrary to static analysis, dynamic software testing techniques actually ex-
ecute the tested software. Therefore, these techniques are not subject to false-positives.
Instead, they produce a witness (i.e. an input value) which certifies the existence of a
bug and with which the bug can be reproduced. A popular automated dynamic software
testing technique is fuzzing [123, 140, 23]. The main idea behind fuzzing is to test the
software with randomly generated input values, checking if it emits unintended behav-
ior on these inputs (e.g. crashes) [138]. Early work on fuzzing was conducted in 1990 by

2

Sören Tempel Introduction

Miller et al. [124]. Nowadays, the technique is widely adopted and has found thousands
of bugs in popular open source projects [164]. Unfortunately, as it relies fundamentally
on random testing, it does not reason about the structure of the tested program and is
thus incapable of satisfying complex input constraints.

Formal Methods In comparison to static analysis and fuzzing, formal methods attempt
to mathematically reason about a given software and its desired properties. Prior work
subsumes “mathematically based languages, techniques, and tools” for specification and
verification under this umbrella term [44]. Examples in this regard include: theorem
proving [18], model checking [111], or abstract interpretation [50]. While formal methods
such as theorem proving provide strong guarantees, employing them on complex existing
systems that were not explicitly designed for their application is challenging. This is
especially problematic in the embedded domain, where some components (e.g. device
drivers) may be vendor-supplied and hence cannot be modified for testing or verification
purposes. As such, formal methods are not well suited for finding vulnerabilities in
existing embedded systems.

Symbolic Execution Similar to fuzzing, symbolic execution is an automated dynamic
software testing technique. However, compared to fuzzing, it is more formal as per the
definition given in the previous paragraph. That is, it takes the program structure into
account and thereby enables formal reasoning about execution paths through the tested
software. This is achieved by executing the software with symbolic input values, which
correspond to a set of possible concrete values at a given point in time during program
execution (e.g. all values x with x ≥ 10). The set is continuously constrained in accor-
dance with the program structure, i.e. the constraints enforced by the program upon its
input [10, Section 1]. Based on tracked constraints, it is possible to enumerate reach-
able execution paths for a symbolic input value by formally reasoning about branches
that depend on this value using a Satisfiability Modulo Theories (SMT) [14] solver. For
example, an SMT solver query can be constructed to determine if there is a concrete
assignment for a symbolic value x so that a given branch condition becomes satisfiable.
By employing this technique for every branch, symbolic execution can ideally enumerate
all execution paths through the program. Unfortunately, in practice, this is often not
feasible due to state explosion issues [10, Section 5]. Symbolic execution was originally
proposed in 1975 [27, 104], but was initially limited by SMT solver capabilities and has
only gained increased relevance in recent years with advances in SMT solving [33].

3

Sören Tempel Introduction

From these outlined automated software testing techniques, this thesis explores the use
of symbolic execution for uncovering vulnerabilities in software for embedded systems. In
this regard, we deem state explosion and SMT scalability issues to be less of a problem
in this domain, as the software complexity is inherently limited by the constraints of
utilized devices (e.g. available memory). While symbolic execution has already been
successfully employed to test software for non-constrained conventional devices [32, 41,
61], its application to the embedded domain is presently limited [54, 49, 88]. This is
due to unique challenges associated with this domain, which will be discussed in the
following.

1.1. Challenges
There is a difference between software for general-purpose computer systems and em-
bedded systems. Prior work uses the term firmware for the latter to distinguish the
two [68, 122, 210, 45, 54]. Due to the constraints of devices used in the embedded
domain, conventional operating systems (e.g. Linux) cannot be used on these devices.
Instead, a variety of operating systems specifically tailored to this domain exist [79].
Some embedded devices are even programmed “bare-metal” without using any operat-
ing system at all. Therefore, compared to conventional devices, the ecosystem in the
embedded domain is much more heterogeneous. Since symbolic analysis presupposes ex-
ecution of the tested software, it needs to support this diverse ecosystem. Prior work
focuses on symbolic execution of conventional software running in user space (instead
of kernel space); this is achieved by relying on the homogeneous interfaces used by this
software, which are standardized through POSIX [95].1 In the embedded domain, there
typically is no distinction between kernel and user space and the few embedded oper-
ating systems (e.g. Tock [114]) that implement such a distinction do not implement a
standardized interface between the two. Therefore, symbolically executing firmware for
the embedded domain also requires supporting low-level interactions with the utilized
hardware platform, which—in the conventional domain—are normally encapsulated by
the kernel. These interactions are performed via architecture-specific instructions, e.g.
to configure interrupt handlers. A large body of prior work in the symbolic execution do-
main operates directly on source code [162, 31] or an intermediate representation of this
source code [32, 61]. In both cases, it is challenging to support architecture-specific low-

1POSIX is a standardized operating system interface specification which is implemented by the ma-
jority of general-purpose operating systems for conventional devices like Linux, BSD, or macOS.

4

Sören Tempel Introduction

level instructions [49, p. 310]. For accurate execution of these instructions, a symbolic
execution engine must instead operate directly on the binary-level [207, Section 4.3].
Additionally, it must be taken into account that embedded systems often utilize cus-
tom instructions to achieve domain-specific optimizations [51, Section 2]. Naturally, it
must therefore be possible to easily extend the binary-level symbolic analysis to support
such custom instructions. Performing symbolic execution on the binary-level requires
implementing the Instruction Set Architecture (ISA) specification for a chosen hardware
platform. These specifications define the semantics of binary instructions and have an
enormous complexity, e.g. 6300 pages for the specification of ARMv8-A [4]. Therefore,
implementing them is challenging, especially considering that the implementation must
be correct, as otherwise bugs may be missed in the tested software.

Unfortunately, operating at the binary-level comes with its own set of challenges. Most
importantly, error detection becomes more difficult. This is due to the fact that crucial
information for error detection is lost during the compilation process, e.g. information
on types [39]. For example, a buffer overflow is challenging to detect at the binary-level
as, without any information about the buffer’s size, it just looks like a normal memory
access. However, detecting buffer overflows is paramount in the embedded domain as
the majority of firmware is written in unsafe programming languages like C/C++ which
are subject to these errors [181]. Additionally, as most embedded systems offer little to
no protection mechanisms against buffer overflow vulnerabilities, they are also trivially
exploitable [204]. The lack of protection mechanisms also affects error detection as the
majority of memory corruptions (such as buffer overflows) will occur silently and do
not result in an observable crash on most embedded systems [128]. Apart from buffer
overflows, error classes also differ in the embedded domain due to the constraints of
embedded devices. For example, some embedded devices may be battery-powered [24,
Section 4.2]. In this case, it must be ensured that it is not possible to drain this battery
via a crafted input which results in excessive computations to be performed. Similarly,
memory is severely limited on these devices; therefore, an excessive use of memory would
also constitute an error and could easily lead to an exploitable vulnerability like a stack
overflow [149]. Reasoning about low-level details such as memory use, power consump-
tion, or timing also requires the symbolic analysis to be performed on the binary-level
as, otherwise, reliably reasoning about these properties is challenging.

Lastly, embedded systems are—per definition—integrated with an enclosing product
and interact with the environment of this product. These interactions are performed via
hardware peripherals (e.g. sensors) which are attached to the embedded system [121,

5

Sören Tempel Introduction

Chapter 3]. The firmware interacts on a low abstraction level with these peripherals,
either through custom instructions or Memory-Mapped Input/Output (MMIO). Such
environment interactions need to be supported by the symbolic analysis [10, Section 4].
Especially considering that inputs retrieved from hardware peripherals may be attacker-
controlled and hence of interest for finding vulnerabilities. Depending on the usage sce-
nario, different embedded systems use different hardware peripherals, and some may
even use custom peripherals for specialized use cases. Supporting such a diverse set of
peripherals is challenging, especially considering the lack of common abstractions for
interacting with them [207, Section 8.1.1]. Prior work attempts to resolve this challenge
by approximating peripheral behavior [35, 68, 122, 66]. Unfortunately, approximations
make the analysis unsound and subject to false-positives, thereby requiring additional
manual effort to identify real bugs. Furthermore, the approximations require driver-
specific refinements and are therefore incompatible with the heterogeneous embedded
ecosystem. Instead, accurate peripheral models are required that are faithful to the real
hardware peripheral and hence do not result in false-positives during automated soft-
ware testing using symbolic execution. Nevertheless, given the complexity and diversity
of these peripherals, creating such accurate peripheral models is an open challenge [207,
Section 8.1.1], especially considering that they need to be adapted for symbolic execution
(e.g. to operate with symbolic values).

1.2. Research Questions
From the outlined challenges, we can deduce the following research questions regarding
an application of symbolic execution to firmware for constrained embedded devices:

RQ1 Is it feasible to create accurate, non-approximated models of hardware peripherals,
and is it viable to integrate such peripheral models with symbolic execution?

RQ2 How can we implement a binary-level symbolic execution that can cope with the
complexity of modern ISA specifications, and is it feasible to extend this approach
to additional instructions?

RQ3 How, despite operating on the binary-level, where crucial information for error
detection is no longer available, can we detect bugs in the executed code?

RQ4 Does binary-level symbolic execution scale to real-world applications in the IoT,
and what are possible optimizations and heuristics specifically for this domain?

6

Sören Tempel Introduction

Environment Modeling

Chapter 3

Formal Semantics

Chapter 4

Path Analyzers

Chapter 5

Applications

Chapter 6

RQ1

RQ2

RQ3

RQ4

Integration with SystemC TLM [195]
Symbolic overlays for existing models [188]

Formal ISA semantics for binary analysis [184]
Symbolic execution using formal semantics [185]
Simulator generation from formal descriptions [187]

Detection of spatial violations [191]
Minimally invasive stack overflow detection [192]
Synergies with safer programming languages [197]

Input specification for binary formats [193]
Testing of stateful IoT applications [194]
Visualizing a performed analysis [196]

Figure 1.1.: Contributions of this thesis in relation to the research questions.

1.3. Contributions
Based on the research questions, this section describes the contributions of this thesis.
The main contribution is a novel symbolic execution approach that is specifically tailored
to firmware for embedded systems. Conducted research on accurate symbolic execution
of such firmware has led to the publication of 11 peer-reviewed research articles and
research contributions in different domains. The relation between research questions,
contribution domains, and published research articles is outlined in Figure 1.1. Based on
Figure 1.1, contributions within each domain will be further described in the following.

1.3.1. Contribution Domains

Conceptually, we can distinguish four contribution domains, each of which relates di-
rectly to one of the research questions presented in Section 1.2. Contributions within
each domain depend on previous research in a prior domain. For example, it is not
possible to conduct research on symbolic execution of IoT applications without having
accurate models of peripherals utilized in the IoT. Therefore, due to the central role of
peripheral modeling, we begin with a description of our contributions in this domain.

7

Sören Tempel Introduction

Environment Modeling The majority of software is not self-contained; it interacts
heavily with its surrounding environment (e.g. to obtain input from a user or to display
the result of a performed computation) [10, Section 4]. In the case of embedded firmware,
such interactions are performed through peripherals provided by the utilized hardware
platform. In order to accurately support these interactions, executable models of these
hardware peripherals are required. Hardware can be modeled on different abstraction
levels; lower levels offer higher accuracy, while higher levels provide better simulation
performance. For dynamic software testing techniques (like symbolic execution), exe-
cution speed is essential. Therefore, this thesis facilitates SystemC TLM, a hardware
modeling language that operates on a high abstraction level through Transaction-Level
Modeling (TLM) [180]. SystemC is standardized by the IEEE and thus well-suited to
address the challenges described in Section 1.1, as it enables reuse of existing (vendor-
supplied) SystemC models. For similar reasons, SystemC is also a popular choice for
the creation of Virtual Prototypes (VPs) [113, Section 2]. A VP provides an executable
model of an entire hardware platform, including provided peripherals. In the context of
RQ1, this thesis contributes an integration of VPs and SystemC hardware models with
symbolic execution. More specifically, a TLM extension for injecting symbolic values
into the simulation via the peripheral interface is presented [195]. Additionally, an over-
lay mechanism is proposed that eases the integration of existing SystemC models with
this extension mechanism [188].

Formal Semantics Apart from peripherals, firmware also interacts on a low abstraction
level with the Central Processing Unit (CPU) through architecture-specific instructions,
for example to implement interrupt handlers. The semantics of these architecture-specific
instructions are given by the ISA specification; to accurately support these instructions,
a symbolic execution engine needs to be faithful to this specification [207, Section 4.3]. In
order to cope with the complexity of modern ISAs, we make use of formal descriptions of
ISA specifications that describe the ISA in formal instead of natural language. Contrary
to natural language specifications, formal language specifications are explicitly designed
to be unambiguous and therefore machine-readable [150, 5, 26, 161, 22]. As such, they
can, for example, be used to automatically generate simulators for a given ISA. These
generated simulators can then be easily extended to support custom instructions, as
long as these instructions can be described in terms of the existing formal language.
With regard to RQ2, we contribute a novel executable formal model which is specifically
tailored to the creation of binary analysis tools as custom ISA interpreters [184]. Based

8

Sören Tempel Introduction

on this executable formal model, we propose a novel symbolic execution approach which
leverages the language primitives of this formal model as an abstraction layer for binary-
level symbolic execution [185]. Lastly, we illustrate that such formal models of instruction
semantics can also be integrated with VPs through code generation [187].

Path Analyzers The contributions in the prior domains enable the exploration of em-
bedded firmware using symbolic execution. Conceptually, a symbolic execution engine
enumerates reachable execution paths through a program based on a specific input
source. Additionally, it is necessary to classify and analyze these execution paths (e.g.
to determine if a path violates a desired property). Such techniques are known as path
analyzers in the symbolic execution domain [41]. In the context of RQ3, we contribute
a path analyzer for error detection in embedded firmware. As the majority of firmware
is written in the C/C++ programming language [79, Table 1], which does not provide
memory safety, we focus on violations of spatial memory safety (e.g. buffer overflows) in
this regard [191]. Since protection mechanisms, which mitigate the exploitation of buffer
overflows, are not widely available on embedded devices, it is paramount to discover
them early as they are trivially exploitable. Prior work has also proposed converting ex-
isting C/C++ code to safer languages to improve firmware security [65, 47, 114]. To this
end, we contribute a methodology which makes use of these safer languages to ease the
detection of errors in embedded firmware [197]. Lastly, we also propose a path analyzer
for estimating stack memory usage of embedded firmware. Using this analyzer, we can
detect stack overflows in firmware without any instrumentation of the firmware [192].

Applications Based on the prior contributions in the presented domains, we can now
employ our symbolic execution approach to test complex real-world firmware to conduct
research on RQ4. For this purpose, we focus on an application of our symbolic execu-
tion approach to firmware in the IoT. In this domain, the main attack vector is the
network stack, which provides an implementation of complex network protocols such
as MQTT-SN [176]. In order to test such protocol implementations, we contribute a
specification language for specifying partially symbolic message formats of network pro-
tocols [193]. Based on an extended version of this specification language, we conduct
extensive experiments with stateful network protocol implementations provided by the
RIOT and Zephyr IoT operating systems, as part of which we discovered three previously
unknown bugs [194]. Finally, we also present a visualization for conducted experiments
which enables refinements of created message format specifications [196].

9

Sören Tempel Introduction

1.3.2. Published Results

The outlined research in the four contribution domains has led to the publication of
research results in the form of peer-reviewed articles, presentations at workshops, un-
covered bugs in tested software, as well as open source software and evaluation artifacts.

Research Articles In total, the outlined research work resulted in the publication of 11
research articles. As visualized in Figure 1.1, the work presented in Chapter 3, Chapter 4,
Chapter 5, and Chapter 6 has been previously published in the following peer-reviewed
scientific venues:

[184] Sören Tempel, Tobias Brandt, and Christoph Lüth. “Versatile and Flexible Mod-
elling of the RISC-V Instruction Set Architecture.” In: Trends in Functional
Programming. Ed. by Stephen Chang. Boston, MA, USA: Springer International
Publishing, Jan. 2023, pp. 16–35. isbn: 978-3-031-21314-4. doi: 10.1007/978-
3-031-38938-2_2.

[187] Sören Tempel, Tobias Brandt, Christoph Lüth, and Rolf Drechsler. “Minimally
Invasive Generation of RISC-V Instruction Set Simulators from Formal ISA Mod-
els.” In: 2023 Forum on Specification & Design Languages. FDL. Turin, Italy,
Sept. 2023, pp. 1–8. doi: 10.1109/FDL59689.2023.10272224.

[188] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “An Effective Methodology
for Integrating Concolic Testing with SystemC-based Virtual Prototypes.” In:
2021 Design, Automation & Test in Europe Conference & Exhibition. DATE.
Grenoble, France, Feb. 2021, pp. 218–221. doi: 10.23919/DATE51398.2021.94
74149.

[191] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Automated Detection of
Spatial Memory Safety Violations for Constrained Devices.” In: Proceedings of the
27th Asia and South Pacific Design Automation Conference. ASPDAC. Taipei,
Taiwan, Jan. 2022, pp. 160–165. doi: 10.1109/ASP-DAC52403.2022.9712570.

[192] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “In-Vivo Stack Overflow De-
tection and Stack Size Estimation for Low-End Multithreaded Operating Systems
using Virtual Prototypes.” In: 2021 Forum on Specification & Design Languages.
FDL. Antibes, France, Sept. 2021, pp. 1–7. doi: 10.1109/FDL53530.2021.956
8384.

10

https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.1109/FDL59689.2023.10272224
https://doi.org/10.23919/DATE51398.2021.9474149
https://doi.org/10.23919/DATE51398.2021.9474149
https://doi.org/10.1109/ASP-DAC52403.2022.9712570
https://doi.org/10.1109/FDL53530.2021.9568384
https://doi.org/10.1109/FDL53530.2021.9568384

Sören Tempel Introduction

[193] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “SISL: Concolic Testing
of Structured Binary Input Formats via Partial Specification.” In: Automated
Technology for Verification and Analysis. Ed. by Ahmed Bouajjani, Holík Lukáš,
and Zhilin Wu. ATVA. Beijing, China: Springer International Publishing, Oct.
2022, pp. 77–82. isbn: 978-3-031-19992-9. doi: 10.1007/978-3-031-19992-9_5.

[194] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Specification-Based Sym-
bolic Execution for Stateful Network Protocol Implementations in IoT.” In: IEEE
Internet of Things Journal. IoT-J 10.11 (Jan. 2023), pp. 9544–9555. doi: 10.11
09/JIOT.2023.3236694.

[195] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “SymEx-VP: An Open Source
Virtual Prototype for OS-agnostic Concolic Testing of IoT Firmware.” In: Journal
of Systems Architecture. JSA (May 2022), pp. 1–12. issn: 1383-7621. doi: 10.1
016/j.sysarc.2022.102456.

[196] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Towards Quantification
and Visualization of the Effects of Concretization During Concolic Testing.” In:
IEEE Embedded Systems Letters. ESL 14.4 (Dec. 2022), pp. 195–198. doi: 10.1
109/LES.2022.3171603.

[197] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Towards Reliable Spatial
Memory Safety for Embedded Software by Combining Checked C with Concolic
Testing.” In: 2021 58th ACM/IEEE Design Automation Conference. DAC. San
Francisco, California, Dec. 2021, pp. 667–672. doi: 10.1109/DAC18074.2021.9
586170.

Additionally, the following research article has been submitted to the International Con-
ference on Software Engineering and Formal Methods (SEFM’24), but is—at the time
of writing—still under review and hence unpublished:

[185] Sören Tempel, Tobias Brandt, Christoph Lüth, and Rolf Drechsler. “Accurate
and Extensible Symbolic Execution of Binary Code based on Formal ISA Seman-
tics.” In: International Conference on Software Engineering and Formal Methods.
SEFM. Aveiro, Portugal, Nov. 2024, pp. 1–18. Under Review.

Miscellaneous Apart from the outlined articles, research results have also been pre-
sented at five workshops. Additionally, performed experiments have led to the discovery
of 16 previously unknown bugs in the popular RIOT [9] operating systems. In order

11

https://doi.org/10.1007/978-3-031-19992-9_5
https://doi.org/10.1109/JIOT.2023.3236694
https://doi.org/10.1109/JIOT.2023.3236694
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1109/LES.2022.3171603
https://doi.org/10.1109/LES.2022.3171603
https://doi.org/10.1109/DAC18074.2021.9586170
https://doi.org/10.1109/DAC18074.2021.9586170

Sören Tempel Introduction

to allow researchers and practitioners to employ symbolic execution for testing their
embedded systems, all tooling developed as part of the conducted research has been re-
leased as open source software. Furthermore, whenever possible, artifacts for performed
evaluations have also been published as part of the research results. Both open source
repositories and evaluation artifacts are referenced in the corresponding chapters.

1.4. Outline
This thesis starts with a preliminaries chapter (Chapter 2) which provides background
information on key topics and technologies that form the basis of the research conducted
in this thesis. This includes an introduction to the design and development of embedded
systems in the context of electronic design automation. The introduction focuses on the
modeling of these systems using established methods such as virtual prototyping and
SystemC. This introduction is followed by a discussion of ISA specifications. The ISA
mandates the interface between the hardware and the software of a computer system.
Given the close integration of software and hardware in the embedded domain, this
interface specification is central for testing the firmware of embedded systems. Addi-
tionally, Chapter 2 provides a more detailed, example-driven introduction to symbolic
execution.

In the following chapters, the contributions of this thesis are developed alongside
the contribution domains as outlined in Figure 1.1. The first chapter in this regard
(Chapter 3) focuses on environment modeling; to this end, it presents an integration
of SystemC hardware peripheral models with symbolic execution. The following chapter
(Chapter 4) improves upon this integration by leveraging formal models of ISA semantics
to ease extending the analysis to different embedded systems. Based on the symbolic
execution engine developed in these chapters, multiple path analyzers are discussed
which enable error detection in firmware for embedded systems (Chapter 5). Finally,
different real-world applications are tested using the developed techniques. In order to
improve input generation for this use case, domain-specific heuristics and optimizations
are presented (Chapter 6).

The thesis is concluded in Chapter 7. In this chapter, results with regard to the
outlined research questions are summarized, and potential opportunities for future work
are laid out.

12

Chapter 2.

Preliminaries

This chapter provides preliminary background information on key topics and technolo-
gies of this thesis and serves as a prerequisite for the following chapters. This includes
an introduction to the design and development of embedded systems, ISA specifications,
and symbolic execution.

2.1. Embedded Systems
As defined in Chapter 1, an embedded system performs computational tasks as part of
a larger enclosing product [121, Definition 1.1]. The complexity of these systems is con-
tinuously increasing, especially with the recent emergence of the IoT. In the IoT, virtual
things (i.e. software) collect information on physical things (i.e. the surrounding physi-
cal environment) via sensor peripherals provided by the embedded system. The vision
behind the IoT is to build a new “global infrastructure for the information society” that
enables advanced services by interconnecting physical and virtual things [97]. Realizing
this vision requires building large networks of interconnected embedded devices. In order
to make building such networks financially viable, the characteristics of each device used
in this domain must be scaled down to reduce their production cost and physical size.
This causes these devices to be severely constrained in terms of available computing re-
sources (e.g. available memory) compared to conventional desktop devices. For example,
instead of multiple gigabytes of memory, these devices only have kilobytes of memory at
their disposal. Prior work by Bormann et al. on RFC 7228 therefore introduces the term
constrained devices to refer to devices of this kind and presents a classification of these
devices according to energy sources and available memory [24]. The latter classification
is shown in Table 2.1 where three device classes from RFC 7228 are presented. These
classes differ in the severity of their memory constraints; in this regard, Table 2.1 distin-
guishes between available code and data size. The most constrained device class is C0,
the least constrained device class is C2. However, even devices of the least constrained

13

Sören Tempel Preliminaries

Table 2.1.: Classification of constrained devices from RFC 7228 [24, Table 1].

Device Class Data Size Code Size

Class 0 (C0) Less than 10KiB Less than 100KiB

Class 1 (C1) Around 10KiB Around 100KiB

Class 2 (C2) Around 50KiB Around 250KiB

device class only have access to roughly 50KiB of data size and 250KiB of code size.
Therefore, conventional software and conventional operating systems (such as Linux)
cannot be used on these devices. Instead, an entire ecosystem of operating systems and
software optimized for these constraints exists [79].

The constraints also complicate the design of new embedded systems, as it must
be ensured that software components are compatible with hardware constraints. This
is further amplified by the importance of the time-to-market, i.e. the time span from
the initial conception of a product to its availability on the consumer market, which
must be as short as possible. As such, it is paramount to reduce the development time
of embedded systems and to facilitate early development and evaluation of software
components in order to examine their compatibility with hardware constraints. These
aspects must already be considered during the design process of an embedded system. As
illustrated in Figure 2.1, a traditional design process first conceives and implements the
hardware, and then—as soon as the hardware becomes available—the development of
software components begins. This traditional design flow has two problems: it results in
a longer time-to-market as software can only be developed after hardware development
is completed, and software cannot be evaluated early, making it challenging to adjust
or refine the hardware based on such evaluations (e.g. equip the hardware with more
memory). In order to overcome these challenges, it is becoming increasingly popular
to leverage VPs for the development of new embedded systems [160, Section 1]. A VP
provides an executable model of an entire hardware platform, including the provided
peripherals. This allows software development to begin before the physical hardware
becomes available, thereby reducing the time-to-market and enabling early evaluations
of software components [160, Section 1.3]. This is illustrated on the right-hand side of
Figure 2.1. In a VP-based design flow, the VP is developed first and then, based on

14

Sören Tempel Preliminaries

Figure 2.1.: Illustration of a VP-based hardware design flow [82, Figure 1.1].

the VP, software and hardware components are developed in parallel. This allows for a
significant reduction of the time-to-market.

In order to enable early software development, a VP needs to provide executable
models of hardware peripherals. For example, models of sensors that are used to collect
information on the surrounding physical environment of an embedded system. Without
such executable models, software interacting with these peripherals cannot be developed
and tested during the early stages of the development process. Within the VP domain,
such peripheral models are predominantly created in SystemC [180], a C++ class library
for modeling hardware systems. More specifically, this thesis uses SystemC TLM, which
models peripherals on a high abstraction level using a bus abstraction [100]. Interactions
with peripherals are modeled by exchanging TLM transactions over this bus abstraction,
e.g. to read or write a register of the modeled peripheral. Compared to standard hardware
description languages like VHDL [59] or Verilog [58], which operate on the Register-
Transfer Level (RTL), the higher abstraction provided by TLM eases the creation of
new peripheral models and allows for better simulation performance. This is beneficial
for an integration with symbolic execution, as simulation performance is a vital property
in this domain to mitigate state explosion issues, i.e. explore as much of the software as
possible in as little time as possible.

2.2. Instruction Set Architectures
Apart from hardware models, a VP also needs to implement the ISA of a chosen hard-
ware platform. An ISA specification covers different aspects, including the instructions
of a processor, its state (number and types of registers), and its memory model. As

15

Sören Tempel Preliminaries

Programming Language

Compiler

Binary Code

CPU Architecture

Microarchitecture

Gates & Circuits

Physics

ISA

Hardware

Software

Figure 2.2.: Relation of the ISA to other software and hardware abstraction layers.

illustrated in Figure 2.2, the ISA is therefore the central interface between the hard-
and software and conceptually forms the boundary between the two. Software in high-
level programming languages (e.g. C/C++) is translated by a compiler to binary code,
which then uses the instructions of a specific ISA (e.g. x86). These instructions are then
implemented in hardware by the CPU. In order to execute software in binary form,
it must first be loaded into memory. Afterward, the CPU fetches one instruction at
a time from memory, decodes it, and then executes it. This process is known as the
fetch-decode-execute cycle [175, Section 14.3].

As per Chapter 1, this thesis proposes direct symbolic execution of embedded firmware
in binary form. In order to execute binary code firmware symbolically, we need to im-
plement symbolic semantics for the binary code instructions mandated by the utilized
ISA. Additionally, we need to ensure that instruction operands (registers or memory
values) can be represented as symbolic values. For this purpose, we need to build a cus-
tom Instruction Set Simulator (ISS). Naturally, the implementation of such a simulator
is ISA-specific, as different ISAs mandate different instructions with different seman-
tics. A variety of different ISAs exist; popular examples include ARM, MIPS, x86 or
IBM Power. In recent years, a new ISA, called RISC-V [153, 154], has gained popularity
in both industry and academia. Contrary to the aforementioned examples, RISC-V is
developed as an open standard free from patents and royalties. Initially, the ISA was

16

Sören Tempel Preliminaries

developed at the University of California but is now managed by the non-profit RISC-V
International organization (formerly known as RISC-V Foundation). Due to its open-
ness, RISC-V serves as the basis for a lot of research involving ISAs and for this reason, it
is also extensively used in the contribution domains of this thesis. Furthermore, RISC-V
is a modular ISA, meaning the specification consists of a mandatory base instruction and
optional extensions that can be implemented on top and combined as needed. As such,
the specification is constantly expanding through the standardization of new instruc-
tion set extensions. This requires developers of binary analysis tools to “catch up” by
implementing these new extensions. Since this is a manual error-prone process, RISC-V
benefits from an extensible symbolic execution approach that can easily support new
instruction set extensions. RISC-V’s modularity also allows it to scale to different use
cases, from embedded devices to desktop hardware and supercomputers. In order to ac-
commodate these different use cases, three configurations of the ISA are available, which
differ in regarding the register width. These configurations are known as RV32, RV64,
and RV128 and provide 32-bit, 64-bit, and 128-bit register widths respectively. Since
this thesis concerns itself with embedded devices, it focuses on the 32-bit configuration
of the RISC-V ISA.

2.3. Symbolic Execution
Symbolic execution is a dynamic software testing technique that attempts to enumerate
reachable execution paths through a program based on a specific input source. This is
achieved by treating variables—corresponding to the input source—as symbolic values.
Symbolic values represent a set of possible concrete values, e.g. all values x with x > 10.
This set is continuously constrained during software execution to match the constraints
enforced by the tested program upon its input. For example, if a branch with the con-
dition x > 12 is taken, then, from that point onward, the symbolic variable x can only
refer to values that are greater than 12. Based on the tracked constraints, it is possible
to formally reason about branch points in the program using an SMT solver. That is,
we can consult the SMT solver to determine if a branch condition, which depends on a
symbolic value x, can be satisfied under the current constraints. Contrary to other dy-
namic software testing techniques, such as fuzzing, symbolic execution requires custom
interpretation of the tested software in order to have it operate on symbolic values. The
advantage of this is that it enables symbolic execution to take the program structure into
account for input generation and allows it to perform formal reasoning. By formally rea-

17

Sören Tempel Preliminaries

1 int myfunc(int a) {
2 int ret = 0;
3

4 if (a > 8) {
5 ret = a - 7;
6 }
7

8 if (a < 5) {
9 ret = a - 2;
10 }
11

12 return ret;
13 }

Listing 2.1.: Example code for illustrating symbolic execution of a C/C++ function.

soning about every branch point, we can ideally enumerate all execution paths through a
program. Unfortunately, completeness is often not achievable in practice as the number
of paths through a program grows exponentially with the number of branches in the
tested code (path explosion) [10, Section 5].1

Path explosion is commonly referred to as the “biggest challenge facing symbolic ex-
ecution” [33, p. 87]. In order to mitigate this issue, a variety of symbolic execution
algorithms and heuristics have been proposed in prior work [10]. In this thesis, we em-
ploy Dynamic Symbolic Execution (DSE), a variant of symbolic execution that is driven
by concrete execution. More specifically, we utilize a DSE flavor that mixes concrete
and symbolic execution and is hence commonly referred to as concolic execution [10,
Section 2.1]. Concolic execution concretely explores one path at a time, but tracks con-
straints on symbolic values and branches that depend on them alongside the execution
in a binary tree. Based on this tree, an SMT query can be constructed that, if satisfi-
able, yields an input value that results in the discovery of a new branch. For example,
such a query can be constructed by negating the condition of a branch for which only
the true but not the false case has been explored. If the resulting query is satisfiable
under the path constraints, then the concrete execution is restarted with the input value
returned by the SMT solver. This is best illustrated using an example. Consider the

1Path explosion is also commonly referred to as “state explosion”. In this thesis, the two terms are
used interchangeably.

18

Sören Tempel Preliminaries

PC: T

PC: (a > 8)

PC: (a > 8)

∧(a < 5)

T

PC: (a > 8)

∧¬(a < 5)

F

T

PC: ¬(a > 8)

PC: ¬(a > 8)

∧(a < 5)

T

PC: ¬(a > 8)

∧¬(a < 5)

F

F

Figure 2.3.: Binary tree for exploration of the myfunc function from Listing 2.1.

C/C++ function myfunc as defined in Listing 2.1. This function takes a single function
parameter of type int and has two branches that depend on this parameter. If we want
to explore this function, we would need to treat this parameter as an unconstrained
symbolic value. For the initial concrete exploration using DSE, the value can therefore
be arbitrary (e.g. random). Independent of the concrete value for the initial exploration,
we would encounter two branches during this initial exploration, which would be tracked
in an execution tree. At the end of execution, we can then negate one of these using an
SMT solver and restart execution until all branches have been negated (i.e. all paths
have been explored). Figure 2.3 illustrates the final binary tree that would be iteratively
built alongside execution. In Figure 2.3, each node corresponds to an executed branch
in Listing 2.1 and shows the path constraints (PC) enforced by the taken branch. The
path constraints are updated according to encountered branch conditions, depending on
whether the branch condition is assumed to be false (F) or true (T), as specified by the
edges in Figure 2.3. The nodes in the first level show the path constraints enforced by
the branch in Line 4 - Line 6 of Listing 2.1, the nodes in the second level show the path
constraints of the branch in Line 8 - Line 10. Each path in Figure 2.3, from the root node
to a terminal node, represents an execution path for myfunc. The path leading to the
terminal node with condition (a > 8) ∧ (a < 5) is not reachable, as the condition is not
satisfiable. Therefore, a symbolic execution engine would discover three execution paths
through the function myfunc based on an unconstrained symbolic function parameter.

In order to track constraints alongside execution, symbolic execution requires custom
software interpretation. As per Chapter 1, the symbolic execution proposed in this thesis
operates directly at the binary code level. That is, it symbolically executes instructions
mandated by the ISA (see Section 2.2). For an implementation of concolic execution,

19

Sören Tempel Preliminaries

the instruction operands are treated as concolic values: tuples with a concrete and an
optional symbolic part. This allows tracking symbolic constraints alongside the concrete
execution. Additionally, concolic values allow for efficient concretization (i.e. conversions
of symbolic values to concrete ones) by discarding the optionally symbolic part from the
tuple. As discussed in Section 2.2, execution and decoding/parsing are heavily inter-
twined for machine code. Among other things, we make heavy use of concretization for
converting fetched memory words to concrete values for instruction decoding; therefore,
efficient concretizations are paramount for our symbolic execution approach. In the fol-
lowing chapters, we use the term “symbolic execution” to refer to the general concept
and “concolic execution” to refer to a specific instantiation of this concept in the context
of our symbolic execution implementation.

20

Chapter 3.

Integration of SystemC TLM with
Symbolic Execution

Any software that performs a meaningful function needs to interact with its surrounding
environment, e.g. to obtain input for a computation from a user or to display the results
of a performed computation. In order to accomplish these interactions, software relies
on the surrounding software stack and provided hardware peripherals, accessed through
the abstractions supplied by this software stack. For example, software may obtain input
from a hard drive through the file system abstraction provided by a utilized operating
system. Dynamic software testing techniques need to support these interactions in order
to properly analyze the tested software. Specifically for symbolic execution, the chal-
lenge in this regard is that symbolic values need to propagate across the boundaries of
interfaces provided for such interactions. As an example, if a program writes symbolic
values to a file, a later read of this file should return symbolic values with the same con-
straints [10, Section 4]. Interactions with the environment, that need to be supported by
the symbolic execution engine, depend on the kind of software that is being tested. Prior
work on symbolic execution of software for conventional operating systems (e.g. Linux,
BSD, macOS) focuses on the interfaces mandated by the POSIX standard [32, 41, 8].
For example, the KLEE symbolic execution engine provides an abstract symbolic model
for the POSIX file system interface [32, Section 4.1]. Unfortunately, as explained in Sec-
tion 1.1, the embedded software ecosystem is much more heterogeneous and no widely
adopted interface specification (like POSIX) exists in this domain. Instead, embedded
firmware interacts directly with the hardware and the provided peripherals through
MMIO and architecture-specific low-level instructions. A symbolic execution engine for
embedded firmware needs to support such hardware environment interactions.

While doing so would be possible on real hardware, dynamic software testing tech-
niques which depend on hardware are severely limited by the constraints imposed upon

21

Sören Tempel Integration of SystemC TLM with Symbolic Execution

them by the characteristics of constrained embedded devices, e.g. slow execution speed
(see Section 2.1). A solution to this problem is emulation of the embedded firmware on
a more potent, non-constrained system. However, emulators like QEMU [16], on which
dynamic analysis tools such as S²E [41] and FIRMADYNE [37] are based, only offer lim-
ited support for peripherals and thus do not support a wide range of embedded firmware
images. For this reason, prior work proposed hybrid emulation where code interacting
with peripherals is forwarded from an emulator to the real hardware [127, 49, 109]. Un-
fortunately, constantly transferring the execution state between the emulator and the
real hardware results in a performance penalty. An alternative direction pursued in prior
work is approximating peripheral behavior, thereby reducing the effort required to cor-
rectly model utilized peripherals within an emulator and often achieving device-agnostic
firmware execution, but trading this advantage for soundness of the performed analysis
(i.e. results can include false-positives) [35, 68, 54]. Additionally, such approaches require
driver-specific refinements, which is a laborious process and complicates the application
of this technique to a wide range of different firmware images with different device driver
implementations. Yet another approach includes targeting specific Hardware Abstrac-
tion Layers (HALs) but this approach is only applicable to firmware images using a
certain HAL and thus not agnostic [45]. A detailed survey of prior work in this domain
is provided by Fasano et al. [66].

The aforementioned survey also acknowledges shortcomings of prior work in regard
to environment modeling and suggests the widespread adoption of modeling standards
to mitigate them [66, Section 6]. By facilitating such standards, existing accurate and—
ideally verified—models of hardware behavior can be reused and integrated with sym-
bolic execution engines for firmware testing purposes. Hardware modeling is its own
area of research with a large body of existing work [121, Chapter 2]. A comparatively
recent development in this domain are VPs [113]. VPs model the entirety of a hardware
platform, including peripherals provided by this platform. As explained in Section 2.1,
peripheral models for VPs are predominantly created using the hardware modeling stan-
dard SystemC [160, Section 2.5.2]. SystemC [180] is based on the C++ programming
language and allows modeling hardware peripherals on a higher abstraction level than
traditional Hardware Description Languages (HDLs) such as VHDL [59] or Verilog [58].
This is achieved through TLM, a modeling technique where peripheral interactions are
described based on a bus abstraction [100]. Operating on a high abstraction level through
TLM eases the creation of peripheral models and also allows achieving high simulation
speed, an important characteristic for dynamic software testing techniques such as sym-

22

Sören Tempel Integration of SystemC TLM with Symbolic Execution

bolic execution. For this reason, this chapter investigates the use of TLM in combination
with the SystemC standard for modeling interactions with the environment during sym-
bolic execution of embedded firmware.

Section 3.1 presents an integration of symbolic execution with an existing VP for the
RISC-V architecture. This integration makes use of a TLM extension mechanism for
transporting symbolic values over the bus abstraction. In order to ease the integration
of existing standard-conforming SystemC peripheral models with this extension mecha-
nism, Section 3.2 presents an overlay mechanism that achieves this integration without
requiring peripheral modifications. Thereby easing the adaptation of vendor-supplied
peripheral models for which source code may not be available.

3.1. Combining VPs with Symbolic Execution
In this section, we present SymEx-VP, a symbolic execution engine for agnostic testing
of embedded firmware. As the name suggests, SymEx-VP employs a combination of
symbolic execution and virtual prototyping, thereby addressing challenges outlined in
Section 1.1 regarding the handling of environment interactions during dynamic testing of
firmware in the embedded domain. SymEx-VP is based on riscv-vp, an existing open
source VP for the RISC-V architecture which was initially developed by Herdt et al. in
prior work [85]. This VP provides an executable model for hardware platforms such as
the SiFive HiFive Unleashed1 or the SiFive HiFive12. Apart from SystemC TLM periph-
eral models for these platforms, a central component of any VP is the ISS. As explained
in Section 2.1, VPs are intended to facilitate early development of software components
for embedded systems. For this purpose, they need to support accurate simulation of
software in binary form. In this context, the ISS component of a VP is responsible for
executing the instructions mandated by the ISA of the chosen hardware platform. The
aforementioned hardware platforms are based on the open standard RISC-V architec-
ture introduced in Section 2.2; thus, the existing riscv-vp already provides an ISS for
this architecture. Unfortunately, a unique characteristic of symbolic execution is that
it requires custom software interpretation (refer to Section 2.3 for details). As such, for
the integration of VPs and symbolic execution, the existing ISS had to be modified to
support symbolic firmware execution.

In order to integrate VPs with symbolic executions, this section proposes a sym-

1https://www.sifive.com/boards/hifive-unleashed
2https://www.sifive.com/boards/hifive1

23

https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive1

Sören Tempel Integration of SystemC TLM with Symbolic Execution

bolic ISS for the RISC-V architecture and an integration of SystemC TLM hardware
models with symbolic execution through a TLM extension mechanism. The proposed
contributions are implemented in SymEx-VP and, based on this implementation, case
studies are conducted to illustrate that such an integration is beneficial for automated
testing of embedded firmware. In fact, to the best of our knowledge, SymEx-VP is
the only symbolic execution with support for accurate peripheral models via a ded-
icated hardware modeling language (SystemC). In order to stimulate future research
in this direction, SymEx-VP is available as open source software on GitHub: https:
//github.com/agra-uni-bremen/symex-vp. More information on the integration
of VPs with symbolic execution, as well as a description of case studies conducted to
evaluate this integration, will be provided in the following sections.

3.1.1. The Case for SystemC TLM

VPs provide an executable virtual model of a physical hardware platform and allow
early execution of software targeting this platform. As explained in Section 2.1, they
are a popular tool for the development of new embedded systems, as the early creation
of VPs enables the development of both hardware and software components in parallel,
thereby reducing the time-to-market [160, Section 1.3]. This is achieved by utilizing
VPs to simulate the behavior of the targeted hardware platform, thus allowing software
development to begin before the physical hardware is available. Since embedded software
is tightly integrated with the hardware, simulating execution of the software—which
interacts with the hardware—requires accurate models of hardware behavior. As per
Section 1.1, such accurate models are also paramount to symbolically execute embedded
firmware which interacts with a wide range of different peripherals.

Conceptually, hardware can be modeled on different abstraction levels (e.g. the trans-
action, register transfer, or circuit level) [121, Section 2.9]. In regard to these different
abstraction levels, there is a trade-off between model accuracy and simulation perfor-
mance. Lower abstraction levels (e.g. RTL) allow for more accurate hardware models
but achieve worse simulation performance than higher abstraction levels (e.g. TLM).
For both, automated firmware testing and the creation of VPs, we desire high simula-
tion performance [113, Section 1.3]. Therefore, we want to operate on a high abstraction
level. For each abstraction level, a variety of languages exists [121, Section 2.9]. When
operating on a high level, it is naturally possible to model hardware using general-

24

https://github.com/agra-uni-bremen/symex-vp
https://github.com/agra-uni-bremen/symex-vp

Sören Tempel Integration of SystemC TLM with Symbolic Execution

purposes programming languages such as C++.3 However, such languages do not provide
us with a common Application Programming Interface (API) for creating hardware mod-
els, thereby making it difficult to reuse existing models. For this reason, as suggested
in prior work, we want to build upon modeling standards to overcome this limitation
and enable reuse of existing (ideally verified) peripheral models for automated firmware
testing using symbolic execution [66, Section 6]. In an industrial setting, it is then even
possible to use vendor-supplied peripheral models for testing purposes.

In this context, SystemC is a good fit as it is a widely adopted modeling standard
maintained by the IEEE [180]. The standard itself supports hardware modeling on dif-
ferent abstraction levels. We make use of SystemC TLM in this thesis, which operates
on the transaction level [100]. As SystemC is an established standard, there is also a
large body of prior work on the verification of SystemC hardware models [110, 78, 42].
This work is complementary to our own as it allows verifying model accuracy, thereby
ensuring that no bugs are missed in the tested firmware due to inaccuracies of the uti-
lized hardware models. For these reasons, we contribute an integration of VPs, which
utilize SystemC TLM hardware models, with symbolic execution.

3.1.2. SymEx-VP Architecture

In this section, we provide more details on the implementation and architecture of
SymEx-VP and illustrate how we modified the existing riscv-vp [85] from prior work
by Herdt et al. in order to achieve an integration of VPs with symbolic execution.

3.1.2.1. Overview

An overview of the SymEx-VP software architecture is provided in Figure 3.1. Since
our architecture is based on SystemC TLM, the central component of our architecture
is the TLM bus. Similar to standard SystemC-based VPs, provided peripherals (e.g.
sensors) are connected to this bus. The instructions of the firmware executed by the
VP are interpreted by the ISS. The firmware executed by the ISS communicates with
peripherals attached to the TLM bus via load/store instructions (i.e. MMIO). These
instructions are converted by the memory interface to TLM transactions and forwarded
to the targeted peripheral via the TLM bus (see Section 2.1). A special SymbolicCTRL
peripheral is provided to allow the executed firmware to communicate with SymEx-VP,

3Though it is challenging to model hardware-level concurrency in these languages [21, Section 1.3.3.2].

25

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Clover
SymEx-VP

SMT
Solver

Exploration
Engine

Execution
Paths ISS

Memory
Interface

TLM Bus

(2) Handles
Concolic

Values via
TLM Ext.

Sensor,
UART, …

Symbolic
CTRL

Firmware

(4) uses

(3) collects

(5) restarts

(1) executes concolicly

Figure 3.1.: Overview of our Clover-based SymEx-VP software architecture.

thereby allowing the firmware to influence and configure the performed symbolic analysis
(see Subsection 3.1.2.5).

SymEx-VP diverts from the standard SystemC TLM architecture by utilizing a mod-
ified ISS which operates on symbolic—instead of concrete—values. More specifically, as
discussed in Section 2.3, SymEx-VP implements concolic execution and thus oper-
ates on concolic values. As such, RISC-V instructions executed by the ISS have con-
colic operands. These concolic operands originate via performed load/store instructions
(i.e. MMIO interactions) in provided peripherals. Peripherals can inject concolic values
via the TLM extension mechanism. This mechanism allows transporting arbitrary C++

classes alongside standard TLM transactions, thereby enabling modeling of more com-
plex bus protocols that do more than just copying blocks of data [180, Section 14.2]. We
use this mechanism to transport our C++ class for representing concolic values over the
TLM bus. TLM transactions with an attached extension are detected by the memory
interface, which then extracts the concolic values from the extension and passes them
to the ISS. The tested firmware is then executed based on these concolic values, and
branches as well as constraints on these values are collected by the ISS and passed to
a separate component called Clover. Clover provides an implementation of well-known
concolic execution algorithms.

26

Sören Tempel Integration of SystemC TLM with Symbolic Execution

As soon as the SystemC simulation stops (i.e. firmware execution ends), SymEx-VP
consults Clover to determine new assignments for concolic values based on the collected
branches. For this purpose, Clover iteratively creates an execution tree consisting of col-
lected branch conditions. Based on this execution tree, a DSE algorithm selects a ran-
dom branch condition from this tree to negate, generates an SMT query for this negated
branch condition, and solves this query to generate a new assignment for involved con-
colic values. The entire SystemC simulation is then restarted by the exploration engine
with these new assignments. This process is ideally repeated until all paths through the
program have been discovered or a given time budget is exceeded.

3.1.2.2. Clover

In order to implement this proposed architecture on top of the existing riscv-vp, the
ISS needs to be modified to execute machine code instructions concolicly. As such,
the data type used for instruction operands needs to be changed from a concrete to
a concolic one. The implementation of these data types and algorithms is not specific to
SystemC; therefore, we encapsulated them in an independent concolic testing library we
named Clover. The Clover library provides us with concolic data types and implements
operations (e.g. addition or subtraction) on these types. Furthermore, it provides a DSE
(Section 2.3) implementation and an interface for the Z3 [125] SMT solver. The Clover
solver interface for Z3 is based on KLEE, an existing open source symbolic execution
engine described further in prior work by Cadar et al. [32]. By re-using the KLEE solver
interface, we can benefit from existing KLEE query optimizations—implemented on top
of existing SMT solvers—such as the counterexample cache [32, Section 3.3]. Clover is
written in roughly 1000LOC of C++ and includes a slightly modified and stripped-down
version of KLEE, it is also freely available on GitHub.4 We hope that by providing core
concolic execution components as a separate library, we can ease the integration of our
approach with other existing VPs.

3.1.2.3. Instruction Set Simulator

Based on the data types provided by Clover, we had to modify the ISS of the existing
riscv-vp to make use of these data types and thus execute RV32 instructions based on
concolic operands. For this purpose, we had to switch the underlying data type, stored by
the register file and the memory, from concrete integers to concolic values (as provided

4https://github.com/agra-uni-bremen/clover

27

https://github.com/agra-uni-bremen/clover

Sören Tempel Integration of SystemC TLM with Symbolic Execution

1 case Opcode::BEQ: {
2 //----------[CONCRETE BEQ IMPL.]----------
3 if (regs[RS1] == regs[RS2]) {
4 pc = last_pc + instr.B_imm();
5 trap_check_pc_alignment();
6 }
7 break;
8 //----------[CONCOLIC BEQ IMPL.]----------
9 auto compare = regs[RS1]->eq(regs[RS2]);
10 auto is_true = eval(res->concrete);
11 if (is_true) {
12 pc = last_pc + instr.B_imm();
13 trap_check_pc_alignment();
14 }
15

16 track_and_trace_branch(is_true, compare);
17 break;
18 //------------------[END]-----------------
19 }

Listing 3.1.: Concrete and concolic implementation of BEQ instruction.

by Clover). Furthermore, we had to modify each RISC-V instruction implementation
(provided by riscv-vp) to operate on these concolic values by utilizing the data types
supplied by Clover. For branch instructions, we additionally implemented tracking of
encountered branch conditions as a prerequisite for our DSE (Section 2.3) algorithm
implementation.

For illustrative purposes, a comparison of the concrete and concolic RISC-V BEQ
branch instruction implementation is provided in Listing 3.1. The instruction compares
two register operands for equality and jumps to a specified address (relative to the pro-
gram counter) if the two register operands are equal. The original concrete implemen-
tation of this instruction is shown in Line 3 - Line 7. This implementation compares two
32-bit integers using the == operator (Line 3) and if they are equal, it modifies the pro-
gram counter accordingly (Line 4) and checks if it is still aligned correctly (Line 5). The
concolic implementation of this instruction is shown in Line 9 - Line 17. Compared to the
concrete implementation, it operates on concolic—instead of concrete—values. In order
to compare the register operands, it constructs a new equality expression (Line 9) and

28

Sören Tempel Integration of SystemC TLM with Symbolic Execution

evaluates the concrete part of this expression in Line 10. If the concolic register operands
are equal, it performs the same jump as the concrete implementation (Line 11 - Line 14).
However, contrary to the concrete implementation, it always tracks the result of the
evaluation and the equality expression itself via track_and_trace_branch in Line 16.
This allows iteratively creating an execution tree, similar to the one visualized in Fig-
ure 2.3. When execution terminates, a DSE algorithm is employed to select a random
branch condition from this tree and negates it using an SMT solver, thereby determining
a new assignment for concolic input values (see Section 2.3).

SymEx-VP supports RV32IMAC_zicsr, i.e. the 32-bit base instructions [153, Chap-
ter 2], the compressed instructions [153, Chapter 16], the atomics instructions [153,
Chapter 8], the multiplication instructions [153, Chapter 7], and the Control and Sta-
tus Register (CSR) instructions [153, Chapter 9] of the RISC-V specification. Notably,
SymEx-VP therefore supports the same extensions as the SiFive HiFive 1.

3.1.2.4. SystemC Integration

Apart from the SystemC-independent Clover library, our architecture also contains
SystemC-specific components. Most importantly, the TLM extension for transporting
concolic values over the TLM bus. We have implemented our extension for concolic values
as an ignorable extension, i.e. “any component other than the component that added the
extension is permitted to behave as if the extension were absent” [180, Section 14.21.1.1].
Therefore, existing SystemC TLM components, which receive a TLM transaction with
our extension attached, will continue to work without any modifications. Nonetheless,
our extension enables the injection of concolic test inputs by modifying existing periph-
erals to return concolic values on MMIO operations abstracted via TLM transactions
(an example will be provided in Subsection 3.1.3).

As depicted in Figure 3.1, the executed firmware is then explored based on injected
concolic values. For this purpose, the ISS collects branches which depend on these val-
ues. Upon simulation termination, the DSE implementation in Clover is used to negate
a random branch condition and generate new input values. This requires restarting the
SystemC simulation, which is not natively supported by SystemC version 2.3.3. There-
fore, we have modified SystemC to include support for in-place simulation restarting
and proposed our modifications to SystemC developers. A refined version of these mod-
ifications is currently in the process of being integrated by SystemC developers.5

5https://github.com/accellera-official/systemc/issues/8

29

https://github.com/accellera-official/systemc/issues/8

Sören Tempel Integration of SystemC TLM with Symbolic Execution

3.1.2.5. SymbolicCTRL

In order for the SystemC simulation to be restarted with new input values, the executed
firmware needs to signal the end of the current execution to the VP. Since firmware does
not terminate, this requires the verification engineer to select an appropriate termination
point as part of the test setup. This termination point is specified by having the firmware
communicate with the VP via a MMIO register provided by a special SymbolicCTRL
peripheral. Upon receiving a write transaction for this register, the VP will terminate
execution and restart the SystemC simulation with new input values. Similarly, the
SymbolicCTRL peripheral also provides a dedicated MMIO register to allow the firmware
to signal an error condition. This allows classifying enumerated execution paths in the
VP. For example, the firmware may signal an error condition upon invocation of a panic
handler or an assertion failure. A detailed discussion of error detection techniques is
provided in Chapter 5.

Lastly, the SymbolicCTRL peripheral also allows injecting a fixed amount of uncon-
strained symbolic bytes into the firmware execution via MMIO. This enables a verifica-
tion engineer to write custom test harnesses that tests individual functions (i.e. units)
of a firmware by passing symbolic bytes, retrieved from the SymbolicCTRL peripheral,
directly to these functions (see Subsection 3.1.5).

3.1.3. Peripheral Modeling Example

In this section, we will demonstrate how peripherals are modeled in SymEx-VP using
SystemC TLM and how the aforementioned TLM extension for concolic values is used to
inject concolic inputs through peripherals. For this purpose, we will present a simplified
SystemC model of the SiFive Universal Asynchronous Receiver-Transmitter (UART)
peripheral as used by the HiFive1 [171, Chapter 17]. We chose this peripheral because
it is comparatively simple and thus well suited for illustrative purposes. Furthermore, it
is widely supported by existing embedded operating systems. For this reason, a concolic
UART peripheral allows testing the input handling routines of these systems, including
the network stack via a Serial Line Internet Protocol (SLIP) [155] network interface. More
information on SLIP and network stack testing will be provided in Subsection 3.1.4.

3.1.3.1. SiFive UART

The SiFive UART is specified in the SiFive FE310-G000 Manual [171]; it has two 8-bit
transmit and receive FIFOs with a configurable watermark for interrupts. Advanced fea-

30

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Table 3.1.: Memory map of the UART on the SiFive HiFive1 [171, Table 49].

Offset Name Description

0x00 txdata Transmit data register

0x04 rxdata Receive data register

0x08 txctrl Transmit control register

0x0C rxctrl Receive control register

0x10 ie UART interrupt enable

0x14 ip UART interrupt pending

0x18 div Baud rate divisor

tures, such as hardware flow control or parity bits, are not supported. The memory map
of the SiFive UART is shown in Table 3.1, it consists of seven 32-bit memory-mapped reg-
isters. The first two (txdata and rxdata) are used to interact with the transmit/receive
FIFOs, the watermark for these is configured via the txctrl and rxctrl registers. The
UART uses a single interrupt to signal ready-to-receive/ready-to-transmit. Interrupts
are enabled via the ie register. The ip register is used to distinguish between ready-
to-transmit/ready-to-receive in a UART-specific interrupt handler. The remaining div
register allows configuring the baud rate [171, Section 17.9].

In order to model memory-mapped registers, loosely-timed6 SystemC peripheral mod-
els will register a callback function, which is invoked for each transaction received for
this peripheral via the TLM bus [180, Section 11.1.1]. An exemplary implementation
of this function is shown in Listing 3.2. The function takes two parameters: a generic
TLM payload, which represents the transaction that should be performed (Line 1), and
a delay for annotating timing information (Line 2). The TLM generic payload is a C++

class that includes the memory address which should be accessed in the peripheral and
information on how this access should be performed (e.g. whether the register should
be read or written). Based on the targeted memory address, the code in Listing 3.2

6Loosely-timed and approximately-timed are different SystemC coding styles [180, Section 10.3]. We
focus on the former since accurate timing analysis is not the focus of this section.

31

Sören Tempel Integration of SystemC TLM with Symbolic Execution

performs a case distinction for each memory-mapped register supported by the SiFive
UART (Line 6 - Line 30). Depending on the TLM transaction command, the internal
value for this register is then either modified (TLM write command) or its current value
is returned (TLM read command). The excerpt in Listing 3.2 focuses on the latter TLM
command and presents the handling for the rxdata and ip register. Other registers
have been omitted since they are not used to pass environmental input to the firmware.
In Listing 3.2, both the transmit and receive FIFOs of the SiFive UART are imple-
mented using separate queues (tx_fifo and rx_fifo). The oldest element from the
receive queue can be retrieved by reading the rxdata register (Line 7 - Line 18). If the
receive queue is empty, the Most Significant Bit (MSB) is set in the register to indi-
cate this condition (Line 9). This is possible since the register is 32-bit wide, but only
8-bit are used for receiving data from the underlying FIFO. The implementation for the
memory-mapped ip register checks if either the receive or the transmit queue exceeds
the configured watermark and if so, sets the pending interrupt register bits accordingly
(Line 19 - Line 25). Lastly, the address—given in the TLM transaction—is converted to
a pointer, which points to one of the internal 32-bit variables representing the different
memory-mapped registers (Line 32). The data stored in this internal variable is then
copied to the data pointer of the TLM transaction (Line 33 - Line 34), thereby allowing
the initiator of the TLM transaction to access the value of the targeted memory-mapped
register.

3.1.3.2. Injecting Concolic Values

In accordance with prior work, we believe the majority of errors to occur in input han-
dling routines of embedded IoT firmware [159]. In the SiFive UART context, we therefore
focus on the rxdata register as this is the register used to pass (potentially) untrusted
input from the environment to the firmware. As such, the firmware must be able to han-
dle arbitrary data received from this memory-mapped register. Other memory-mapped
registers, provided by the SiFive UART, are not directly controlled by the environment
and thus do not inherit this requirement.

In order to explore all program states reachable through environmental input via the
rxdata register, we inject concolic values into the firmware execution upon reading this
register. This is achieved by utilizing the TLM extension for concolic values (Subsec-
tion 3.1.2) in our SystemC peripheral model for the SiFive UART. Using this extension,
we refine the handling of the TLM read command for this register. For this purpose, we
change the underlying data type for the receive queue (rx_fifo) from a uint8_t to a

32

Sören Tempel Integration of SystemC TLM with Symbolic Execution

1 void transport(tlm::tlm_generic_payload &trans,
2 sc_core::sc_time &delay) {
3 auto cmd = trans.get_command();
4 auto addr = trans.get_address();
5 if (cmd == tlm::TLM_READ_COMMAND) {
6 switch (addr) {
7 case RXDATA_REG_ADDR:
8 if (rx_fifo.empty()) {
9 this->rxdata = 1 << 31; // set MSB
10 } else {
11 uint8_t next_byte;
12 next_byte = rx_fifo.front();
13 rx_fifo.pop();
14

15 // Zero-extend to 32-bit (MSB unset)
16 rxdata = (uint32_t)next_byte;
17 }
18 break;
19 case IP_REG_ADDR:
20 ip = 0; // reset IP register value
21 if (tx_fifo.size() < WATERMARK(txctrl))
22 ip |= UART_TXWM; // ready-to-transmit
23 if (rx_fifo.size() > WATERMARK(rxctrl))
24 ip |= UART_RXWM; // ready-to-receive
25 break;
26 case TXDATA_REG_ADDR:
27 case TXCTRL_REG_ADDR:
28 case RXCTRL_REG_ADDR:
29 // ...
30 }
31

32 auto reg = addr2pointer(addr);
33 auto ptr = trans.get_data_ptr();
34 memcpy(ptr, reg, sizeof(uint32_t));
35 }
36 // ...
37 }

Listing 3.2.: Blocking transport for a SiFive UART SystemC peripheral.

33

Sören Tempel Integration of SystemC TLM with Symbolic Execution

1 case RXDATA_REG_ADDR:
2 // Check if RX interrupt is enabled since many
3 // UART drivers drain rxdata before first use.
4 if (rx_fifo.empty() || !(ie & UART_RXWM)) {
5 rxdata = 1 << 31; // set MSB
6 } else {
7 std::shared_ptr<ConcolicValue> next_byte;
8 next_byte = rx_fifo.front();
9 rx_fifo.pop();
10

11 // Zero-extend to 32-bit (MSB unset)
12 auto reg = symbolic_byte->zext(32);
13

14 auto ext = new SymbolicExtension(reg);
15 trans.set_extension(ext);
16 rxdata = solver.getValue(reg->concrete);
17 }

Listing 3.3.: Inject concolic values on rxdata read using TLM extension.

ConcolicValue. In the SystemC module constructor for the peripheral, the receive queue
is then initialized with a fixed amount of unconstrained symbolic values. By retaining
the rx_fifo but filling it with values of a different type, we can refrain from modifying
the handling of other registers (e.g. the ip register) which use the aforementioned queue.
As such, only the implementation of the rxdata register needs to be adjusted to operate
on concolic values. The resulting code is shown in Listing 3.3. The code in Listing 3.3
would be used to replace Line 7 - Line 18 in Listing 3.2. Similar to Listing 3.2, the imple-
mentation in Listing 3.3 takes the oldest element from the queue and zero-extends it to
32-bit to ensure that the MSB is unset (Line 11 - Line 12). In Listing 3.3, zero-extension
is achieved through an operation on the concolic value (not through a type cast). Lastly,
a C++ object for the TLM extension for concolic values is created in Line 14 and added
to the TLM transaction object in Line 15. As per Subsection 3.1.2, the TLM extension
is ignorable, thus the internal rxdata value also needs to be updated (Line 16) to ensure
that the initiator of the TLM transaction can also choose to ignore the extension.7

Instead of injecting a fixed number of symbolic bytes, via the data bits of the rxdata
7The concrete value, stored in the rxdata register, would be copied to the data pointer of the TLM
transaction as done in Line 34 of Listing 3.2.

34

Sören Tempel Integration of SystemC TLM with Symbolic Execution

register, it is also possible to declare the entire 32-bit rxdata register as symbolic. While
this would allow reasoning about variable-size inputs (since the MSB empty bit would be
part of the symbolic expression), our experiments indicate that doing so heavily increases
the state space which ultimately leads to the state explosion problem (Section 2.3). The
majority of input handling routines which receive data from a UART (e.g. an IPv6 [56]
implementation receiving data via SLIP [155]) also mandate a minimum input size and
thus discard all inputs below this size early, without performing any interesting input
processing. For this reason, we deem states reached through inputs below a certain size
to be negligible. We further concern ourselves with input generation heuristics and state
space explosion in Chapter 6.

3.1.4. Usage Scenario

In the following, we will illustrate how firmware for constrained IoT devices can be tested
using SymEx-VP. For this purpose, we utilize the concolic SiFive UART peripheral
described in Subsection 3.1.3 to test the network stack of the RIOT [9] operating system
via SLIP [155].

3.1.4.1. Setup

SLIP is a network protocol standardized by the Internet Engineering Task Force (IETF)
which allows transmitting Internet Protocol (IP) datagrams over a serial line interface,
e.g. as provided by the SiFive UART. For this purpose, SLIP defines a framing format
which allows determining the start/end of an IP datagram within a continuous stream of
bytes. The framing format consists of two control characters: a character which identifies
the end of a frame and a character to escape the former control character within the
primary data of an IP datagram [155, p. 2]. In order to transmit concolic SLIP frames
over our SiFive UART, we terminate our fixed-size concolic input with the SLIP end
frame control character. Furthermore, we need to ensure that this control character is
always escaped within the primary data of the concolic IP datagram.8 Unfortunately,
expressing the SLIP escaping rules as a symbolic expression for each symbolic byte leads
to complex SMT queries. We mitigate this problem by constraining the symbolic bytes
within a frame to never match the end frame control character.9

8Otherwise, the concolic testing engine would generate inputs below our desired minimum size.
9Our setup is thus unable to generate truly arbitrary inputs. This limitation can be best addressed by
utilizing a different network peripheral that does not rely on input escaping (e.g. Ethernet).

35

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Based on this SLIP-aware variant of the concolic SiFive UART, we can test the network
stack of different IoT operating systems. To illustrate our bug finding workflow with
SymEx-VP, the following subsections describe the discovery of a globally reachable
failing assertion we found in RIOT’s network stack. The default network stack of the
RIOT operating system is called GNRC [9, Section 10], it is further described in a
publication by Lenders et al. [112]. Since RIOT provides a modular operating system
architecture, each component of the RIOT network stack is implemented in a separate
module and runs in its own operating system thread [112, Section 4]. In order to mitigate
the state explosion problem, it makes sense to employ a divide-and-conquer strategy and
test these modules separately. However, instead of writing a custom test harness for each
module, we use the existing examples/gnrc_minimal application provided by RIOT and
target individual network protocol implementations by constraining our symbolic input
accordingly.

3.1.4.2. Testing & Debugging

We focus on testing the ICMPv6 [76] implementation, as used by the gnrc_minimal
example application. In order to do so, the upper layers of the input network packet
are treated as concrete, thereby having SymEx-VP always explore paths within the
ICMPv6 implementation. Furthermore, the application is configured to use a SLIP net-
work interface, based on our SiFive UART model, and compiled for the SiFive HiFive1.
The resulting Executable and Linkable Format (ELF) binary is then executed with
SymEx-VP’s hifive-vp executable, which models the SiFive HiFive1 and aims to be
binary-compatible with this platform. The executed RIOT firmware image will read con-
colic input bytes from the rxdata register of the SLIP-aware SiFive UART. These bytes
are then passed to the GNRC network stack and processed as an IPv6 [56] datagram
with an encapsulated ICMPv6 payload. After processing a single packet, execution is ter-
minated. Lastly, the SymEx-VP exploration engine will restart the program with new
inputs until either all paths have been explored or an error is encountered. Since the up-
per layers of the network packet are partially concrete, exploration will focus on RIOT’s
ICMPv6 implementation (gnrc_icmpv6). After executing 75 paths in 52 seconds, a ker-
nel panic in RIOT is encountered, thus SymEx-VP aborts further exploration.10 The
kernel panic is caused by a failing assertion; however, without any further debugging,
the reason for the assertion failure is unclear.
10SymEx-VP detects this kernel panic through a modified panic handler which signals an error condi-

tion to the SymbolicCTRL peripheral.

36

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Figure 3.2.: Screenshot of a debugging session with SymEx-VP’s GDB stub.

Similar to other symbolic execution engines (e.g. KLEE [32]), SymEx-VP is capable
of generating a test case for each encountered error [32, Section 4.3]. In SymEx-VP,
these test cases are plain-text files which assign each symbolic variable (as identified by
a unique variable name) a concrete value. Based on these test cases, the encountered
error (i.e. the failing assertion in RIOT) can be debugged further. For this purpose,
SymEx-VP supports a replay mode which allows replaying generated test cases in the
VP environment. In replay mode, SymEx-VP performs concrete execution and the
generated test cases are used as environmental inputs by the modeled peripherals.

During concrete execution in replay mode, it is possible to attach a debugger to
SymEx-VP via a provided GDB11 stub. In Figure 3.2 a debugging session with a graph-
ical GDB frontend12 for the aforementioned kernel panic in RIOT is illustrated. The
screenshot is divided into three sections: the source code (top left), general debugging
information (top right), and the GDB output (bottom). As illustrated at position 1 ,
the debugging session was created by configuring a breakpoint for the panic handler and

11https://www.gnu.org/software/gdb/
12https://gdbgui.com

37

https://www.gnu.org/software/gdb/
https://gdbgui.com

Sören Tempel Integration of SystemC TLM with Symbolic Execution

executing the firmware concretely until it hits this breakpoint. At position 2 , the source
code for the assert statement (which causes the invocation of the panic handler) is shown.
The assertion occurs in Line 316 of ipv6/nib/nib.c and is part of the function gnrc_-
ipv6_nib_handle_pkt. The source file is part of RIOT’s Neighbor Discovery Protocol
(NDP) [172] implementation for IPv6. NDP is based on ICMPv6 and is thus explored by
the generated test inputs. Since the assertion at position 2 is failing, the netif (network
interface) pointer must be NULL. This can be confirmed by inspecting the local variable
values for the currently selected function at position 3 . Since the netif pointer is passed
as a function parameter to gnrc_ipv6_nib_handle_pkt (Line 312), it must already be
NULL in the caller. At position 4 , the backtrace which leads to the assertion failure
is shown. The currently selected function in the backtrace is marked with a bold font.
From the backtrace we can deduce that gnrc_icmpv6_demux is responsible for passing
the netif pointer to gnrc_ipv6_nib_handle_pkt. By inspecting the function param-
eters of each executed function at position 5 we can conclude that the NULL pointer
first appears as a function parameter in the _demux function of the gnrc_ipv6 module
and must thus originate in the _receive function. The _receive function attempts to
extract information about the network interface based on metadata which must be set
by the utilized network interface module. Unfortunately, RIOT’s implementation of the
SLIP network interface did not set this metadata and thus caused the assertion failure
in the NDP implementation. The outlined assertion failure was previously unknown; it
was fixed by RIOT developers in Git commit 3384c32 by adjusting the SLIP network
interface implementation to correctly configure this metadata information.13

Since this bug originates in the low-level SLIP implementation, which receives data
directly from the utilized SiFive UART, this bug illustrates the importance of testing IoT
firmware directly through peripheral inputs instead of operating on a higher abstraction
level. Furthermore, the preceding discussion demonstrates that SymEx-VP is capable
of finding deep bugs in real-world firmware for constrained devices. The illustrated bug
occurs after passing concolic input bytes from the UART to the SLIP network interface
all the way through the IPv6 and ICMPv6 implementations and ultimately ends up
causing an error in the NDP implementation. The complexity of the discussed bug also
shows the benefits of the debugging facilities provided by SymEx-VP. Due to support
for test case generation, test case replaying, and GDB-based debugging, it is possible to
easily debug issues found through concolic testing.

13https://github.com/RIOT-OS/RIOT/commit/3384c327a7c82afde033033f00123ad9700aae7d

38

https://github.com/RIOT-OS/RIOT/commit/3384c327a7c82afde033033f00123ad9700aae7d
https://github.com/RIOT-OS/RIOT/commit/3384c327a7c82afde033033f00123ad9700aae7d

Sören Tempel Integration of SystemC TLM with Symbolic Execution

3.1.5. Evaluation

In the following, we focus on the quantitative dimension by providing evidence that
SymEx-VP can be used not only with RIOT but also with other operating systems and
Software Development Kits (SDKs) for the embedded domain. We believe this property is
important to ensure that SymEx-VP integrates well with the heterogeneous ecosystem
described in Section 1.1. For this purpose, we employ SymEx-VP for testing a variety
of different firmware images with minimally invasive changes for integration purposes.
This is achieved by injecting concolic values via the MMIO peripheral interface using our
provided SystemC TLM extension. In order to illustrate the advantages of this approach,
we compare it to concolic unit tests of individual firmware units (i.e. functions) [162].
For this purpose, we use a manually created test harness where concolic values originate
in the harness using the SymbolicCTRL peripheral (see Subsection 3.1.2). The evaluation
is designed to be reproducible and artifacts are available on Code Ocean [199].

In total, we tested ten different components of four embedded operating systems
and SDKs using SymEx-VP. We focus specifically on IoT operating systems since, in
accordance with Chapter 1, we believe these to be the most complex kind of embedded
firmware images. Regarding IoT operating systems, we focused primarily on RIOT14

and Zephyr15 since we believe these two to be the most common operating systems with
RISC-V support in the IoT domain. Furthermore, we performed tests with the more
complex Apache NuttX16 operating system and the zig-riscv-embedded17 bare-metal
Constrained Application Protocol (CoAP) [167] firmware which uses a HiFive1 SDK for
the Zig18 programming language. All tests have been performed using the hifive-vp
model, provided by SymEx-VP, which targets the SiFive HiFive1 platform.

We tested different components of these operating systems by executing them for
30min with SymEx-VP. The results of the performed tests are shown in Table 3.2.
For each tested operating system, we list the test target (i.e. the tested component),
the test type, the amount of code modified for the test setup, the time spent in the
SMT solver, the amount of execution paths found, and the number of paths found
per second. Regarding the test type, we distinguish between the aforementioned tests
of individual component units (UNIT) and tests of entire existing applications where

14https://riot-os.org
15https://zephyrproject.org/
16https://nuttx.apache.org/
17https://github.com/nmeum/zig-riscv-embedded
18https://ziglang.org

39

https://riot-os.org
https://zephyrproject.org/
https://nuttx.apache.org/
https://github.com/nmeum/zig-riscv-embedded
https://ziglang.org

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Table 3.2.: Execution statistics for applications from different IoT operating systems.

Execution Paths

OS Target Test Type LOC modified Solver Time #Paths Paths/s

Riot

default UART 46 19min 6275 3.5
gnrc_minimal SLIP 67 25min 1241 0.7
sock_dns UNIT 198 22min 7019 3.9
jsmn UNIT 135 13min 15954 8.9
ipv6_addr UNIT 132 10min 14541 8.1

Zephyr
shell UART 52 6min 7159 4.0
ipaddr UNIT 95 17min 7029 3.9
json UNIT 129 8min 16874 9.4

NuttX shell UART 43 2min 1357 0.7

Zig zig-hifive1 UART 34 6min 8822 4.9

values are injected through the UART/SLIP peripheral introduced in Subsection 3.1.3
and Subsection 3.1.4. As shown in Table 3.2, UNIT tests have a higher integration effort
(as measured in LOC). For UART/SLIP-based tests types, we only need to modify the
existing firmware image to signal the end of current execution and invocations of the
panic handler to SymEx-VP as described in Subsection 3.1.2.5. For UNIT tests, it is
additionally necessary to write a test harness for selected units of the tested component
since concolic values do not originate automatically in the MMIO peripheral interface
for these tests. For some test targets, the desired units are not accessible directly and
require mocking certain data structures, thereby increasing the integration effort. This
is, for example, the case for the sock_dns RIOT component which receives input via a
UDP [146] socket data structure that had to be mocked and modified to return concolic
values.

Depending on the test target, a side effect of injecting concolic values via the MMIO
peripheral interfaces is an increase in solver time. In Table 3.2, the target where the
most time was spent in the SMT solver was the gnrc_minimal RIOT target which is
an existing example application providing a minimal configuration of RIOT’s GNRC
network stack. For this application, concolic values originate in the SLIP peripheral and
are passed through the entire network stack. Compared to testing of individual units,
this enforces more complicated constraints on these values and thus results in increased
solver time. Nonetheless, this demonstrates that our approach is capable of also execut-

40

Sören Tempel Integration of SystemC TLM with Symbolic Execution

ing these complex firmware images. In general, the bottleneck in terms of performance
(as measured by execution paths per second) is primarily the SMT solver, not the perfor-
mance penalty caused by the detailed reasoning about low-level hardware details enabled
by SystemC. The two Zephyr targets (shell and json) as well as the Apache NuttX
operating system and the zig-hifive1 firmware image differ in this regard. For these
targets, more time is spent with concrete execution than with solving constraints. This
is likely due to the fact that we currently restart the SystemC simulation for each new
generated input and these targets have more complex boot code compared to RIOT.
This boot code has to be re-executed for each execution path. In future work, this could
be mitigated through the use of simulation snapshots, i.e. by only executing the boot
code once.

In summary, our experiments illustrate that SymEx-VP is capable of executing a
wide range of different firmware images from low-end IoT firmware (such as RIOT) to
complex real-time operating systems (such as Apache NuttX). By injecting concolic val-
ues through the MMIO peripheral interface, we can test new applications with minimal
integration effort. Nonetheless, it is also possible to test individual firmware units with
SymEx-VP, thereby trading integration effort for performance (as measured in dis-
covered execution paths per second). By operating on the RISC-V machine code level,
SymEx-VP is also capable of executing code written in different programming lan-
guages. While the majority of tested firmware images are written in C, our experiments
also demonstrate our ability to execute code written in other languages (e.g. the Zig pro-
gramming language). We believe this to be important since safer alternatives to C/C++

(such as Zig and Rust) are on the rise in the embedded domain [114].

3.1.6. Related Work

An overview of prior work on employing dynamic verification techniques for testing em-
bedded firmware images is provided by Fasano et al. [66]. According to this publication,
prior work has already experimented with emulation-based firmware testing, for example
by utilizing QEMU [16]. Unfortunately, QEMU does not provide a modeling language
for hardware peripherals (e.g. SystemC) and does thus not support reasoning about low-
level behavior of a wide range of peripherals. In order to address this deficiency, existing
publications propose hybrid emulation which combines execution in QEMU with exe-
cution on real hardware, thereby enabling execution of code interacting with hardware
peripherals [210, 127, 109]. A popular approach in this regard is Avatar2 [127], which

41

Sören Tempel Integration of SystemC TLM with Symbolic Execution

is the successor to Avatar [210], and forwards program state to the real hardware using
GDB. A disadvantage of hybrid emulation is the performance penalty induced by mov-
ing program state between an emulator and the real hardware. Prior work by Koscher
et al. attempts to improve the performance of this technique [109]. However, it also re-
mains challenging to propagate concolic or symbolic values across the emulator/device
boundary.

A different direction pursued in prior work is executing LLVM Intermediate Repre-
sentation (IR) to achieve symbolic execution of firmware images using the KLEE [32]
symbolic execution engine [49, 54]. In this regard, Inception [49] also utilizes hybrid
emulation while Fie [54] approximates peripheral behavior through peripheral models.
Peripheral approximation (also referred to as rehosting) is also pursued in other publica-
tions to address challenges regarding utilized peripherals [77, 35, 68, 122, 66]. Feng et al.
present P²IM, which automatically generates peripheral models during execution [68].
Mera et al. extend P²IM with support for Direct Memory Access (DMA) [122]. A dif-
ferent approximation approach is taken by Cao et al. which return concolic values to
approximate peripheral inputs [35]. All of these approaches do not use accurate periph-
eral models and are therefore not sound, i.e. test results can include false-positives.

While the publications discussed so far are largely independent of the utilized op-
erating system or SDK, prior work has also experimented with operating on a higher
abstraction level to deal with peripheral interactions. An example of this approach is
HALucinator which operates on a HAL and thus does not need to model or approximate
low-level peripheral behavior [157]. Unfortunately, this approach is not agnostic, i.e. only
applicable to firmware images using a certain HAL.

3.1.7. Discussion and Future Work

In this section, we have primarily focused on environmental modeling via SystemC in
a dynamic testing context. Regarding future work, the concolic testing engine provided
by Clover presently only implements basic concolic testing techniques. For example, as a
memory model we currently employ address concretization, which means that symbolic
values are concretized when they are used as memory addresses, thus potentially causing
some paths to be missed [10, Section 3.2]. Furthermore, we employ a path selection
algorithm which selects random nodes from the execution tree but prefers upper nodes in
the tree and does not use advanced search heuristics. We plan to improve the underlying
concolic testing engine, provided by Clover, in future work.

42

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Additionally, we have not yet optimized SymEx-VP for performance. As illustrated
in Subsection 3.1.5, we already achieve decent execution performance for RIOT and
Zephyr but in more complex firmware images (e.g. the one provided by Apache NuttX)
fewer execution paths are discovered per second. The major limitation in this regard is
that we restart the SystemC simulation for each new input, thereby re-executing the
boot code every time. In future work, we plan to investigate whether it is feasible to
store different SystemC simulation states instead of restarting the simulation every time.

3.1.8. Conclusion

We presented SymEx-VP, an open source VP-based symbolic execution engine specif-
ically tailored to challenges regarding firmware testing (Section 1.1) and the first to
support accurate peripheral models by utilizing a hardware modeling language (Sys-
temC). SymEx-VP uses concolic testing to explore different paths through firmware
images and injects concolic values into the executed firmware through the MMIO pe-
ripheral interface (Subsection 3.1.2). Peripherals are modeled in SymEx-VP using the
existing SystemC TLM hardware modeling language. SystemC TLM models peripherals
based on a bus abstraction; by utilizing a TLM extension mechanism, we can transport
concolic values over this bus. We illustrated that this TLM extension can be used in con-
junction with existing SystemC peripheral models by presenting an example integration
for the SiFive UART (Subsection 3.1.3). Based on this model, we have demonstrated that
components of existing firmware images can be tested and debugged using SymEx-VP
(Subsection 3.1.4). We have also provided evidence that our TLM extension mechanism
allows us to employ SymEx-VP—with minimal integration effort—for testing a vari-
ety of different operating systems in the heterogeneous embedded and IoT ecosystems
(Subsection 3.1.5). The presented SymEx-VP is fully open source and thereby serves
as a foundation for enabling research on advanced symbolic execution techniques for the
embedded domain.

3.2. Injecting Symbolic Values using Peripheral Overlays
In Section 3.1, we have presented an integration of SystemC-based VPs with symbolic
execution for the purpose of automated firmware testing. This integration allows us to
model peripheral behavior on a high abstraction level through SystemC TLM, thereby
addressing challenges regarding environment interactions described in Section 1.1. In

43

Sören Tempel Integration of SystemC TLM with Symbolic Execution

order to integrate SystemC TLM hardware models with symbolic execution, we have
proposed an extension mechanism for transporting symbolic values over the TLM bus.
Using this extension mechanism, Subsection 3.1.3 presented a symbolic variant of the
SiFive UART. The symbolic UART model allows injecting symbolic values into the
SystemC simulation with minimal changes to the firmware image itself, thereby enabling
tests of a wide range of different firmware images and achieving compatibility with
the heterogeneous embedded ecosystem. Unfortunately, we had to modify an existing
SystemC model of the SiFive UART to integrate it with symbolic execution. In an
industrial context, modifications of existing peripheral models are challenging for the
following reasons:

1. Existing SystemC models may be vendor-supplied; in this case, it can be difficult to
sufficiently understand and modify the existing model to integrate it with symbolic
execution. In the worst case, the source code may not even be available, rendering
such modifications practically impossible.

2. Modifications of an existing model, especially if it is complex and vendor-supplied,
may introduce bugs. Furthermore, if the model was formally verified, proofed prop-
erties may no longer hold after the modifications. This is crucial as incorrect hard-
ware models may lead to bugs being missed in the tested firmware.

3. When employing virtual prototyping to develop new embedded systems, one would
need to maintain two variants of a peripheral: the concrete, unmodified variant
(for concrete simulation) and the symbolic variant (for symbolic simulation). This
can be laborious and increases development time, thereby negatively affecting the
time-to-market of an embedded system (see Section 2.1).

In order to overcome these limitations, we contribute an overlay mechanism that im-
proves upon our prior work as described in Section 3.1. Overlays intercept TLM transac-
tions to process the symbolic extension before and after the transaction is routed to the
existing SystemC-based peripheral. This allows augmenting existing peripherals with
our TLM extension without requiring modifications of these peripherals. Therefore, the
overlay mechanism reduces the integration effort, as existing SystemC peripherals can be
reused unmodified. A case study, conducted with an exemplary SystemC TLM model,
demonstrates the advantages of this approach.

44

Sören Tempel Integration of SystemC TLM with Symbolic Execution

SystemC TLM Bus

Overlay 2Overlay 1 Memory
Interface

Peripheral 2Peripheral 1 ISS

CT CT CT

CT

Figure 3.3.: Example integration of overlays with SystemC TLM.

3.2.1. SystemC TLM Overlays

SystemC TLM models hardware behavior at the transaction level based on a bus abstrac-
tion (see Section 2.1). Hardware peripherals, modeled in SystemC TLM, communicate
by exchanging TLM transactions, which are transported over the bus. The central com-
ponent for their transport is the TLM bus. Conceptually, the bus acts as a router; it is
responsible for transporting transactions from an initiator (where the transaction origi-
nates) to a target (which processes the transaction) [21, Section 16.5]. Usually, multiple
targets (such as UARTs, sensors, or memory) are attached to the same bus. In order to
determine, to which target the transaction should be forwarded, the bus consults the
transaction address encapsulated in the TLM payload. Essentially, the bus thereby acts
as an address decoder which implements the memory map of the modeled embedded
system [21, Section 16.6]. For example, if a sensor peripheral is mapped into mem-
ory from address 0x10000000 to 0x10001000 and a TLM transaction—received by the
router—has an address within this range, then it is forwarded to this sensor peripheral.

In Section 3.1, we leveraged a TLM extension mechanism to transport symbolic val-
ues alongside TLM transactions. As we have seen in Subsection 3.1.3.2, this extension
needs to be added to existing TLM payloads using the standardized set_extension
method [180, Section 14.21]. While previously, this was achieved by modifying the ex-
isting TLM model this is by no means a necessity as we can also add the extension
separately during forwarding of the transaction to the target. Instead of modifying the
bus itself for this purpose, we inject a new component between the bus and the target
peripheral. We refer to this new component as an overlay for the target peripheral. Fig-

45

Sören Tempel Integration of SystemC TLM with Symbolic Execution

ure 3.3 illustrates the use of overlays in a VP context. In this figure, two peripherals
are provided. Firmware simulated by the VP’s ISS interacts with these peripherals us-
ing MMIO through the memory interface. However, contrary to the standard SystemC
architecture described previously, the peripherals are not attached directly to the TLM
bus. Instead, a new overlay component is added between the peripherals and the bus.
This component intercepts all TLM transactions and is responsible for adding the ex-
tension for symbolic values to outgoing transactions that are sent from the peripheral.
The advantage of this approach is that the peripherals themselves do not need to be
modified. This is illustrated in Figure 3.3 where components modified for an integration
with concolic testing (CT) are colored blue while unmodified components are colored
green. By leaving the existing peripheral models as-is, the proposed overlay mechanism
resolves the challenges identified in Section 3.2.

3.2.2. Implementation

This section describes an integration of SymEx-VP, as presented in Section 3.1, with
our proposed TLM overlay mechanism. Furthermore, an exemplary symbolic overlay for
an existing SystemC model is discussed.

3.2.2.1. Integration with SymEx-VP

Figure 3.4 provides an overview of our integration of SystemC TLM overlays with
SymEx-VP. The software architecture is largely unmodified, compared to the one pre-
sented in Subsection 3.1.2. This is a good thing as it illustrates that our proposed overlay
mechanism can be integrated into existing VPs in a minimally invasive way. As described
in Subsection 3.2.1, overlays are attached between the SymEx-VP TLM bus and the
peripherals (e.g. sensors or UARTs) provided by SymEx-VP (see the bottom left corner
of Figure 3.4). The peripherals themselves remain unmodified and interact with existing
SymEx-VP components, e.g. the interrupt controller as before. As a result, this over-
lay mechanism reduces the effort required to integrate new SystemC peripherals with
SymEx-VP. More specifically, as SymEx-VP is based on riscv-vp [85] from prior
work, this also eases porting existing riscv-vp peripheral models for RISC-V hardware
platforms to SymEx-VP. As such, the overlay mechanism improves the overall process
for integrating existing VPs with symbolic execution. Therefore, it eases applying our
proposed symbolic execution approach to additional hardware platforms and architec-
tures. In the following section, we will illustrate an example peripheral integration. For

46

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Figure 3.4.: Overview on our overlay mechanism integration with VPs.

this purpose, we propose a methodology where the symbolic overlay is iteratively refined
in order to explore an exemplary embedded firmware.

3.2.2.2. Peripheral Overlay Example

As an example peripheral, we will again consider the SiFive UART, as used previously in
Subsection 3.1.3. To summarize its functionality, it provides memory-mapped registers
to receive and transmit data as well as configuration registers to enable interrupts and
configure the watermark level (how many elements should be received before triggering
an interrupt). The UART provides two small FIFOs to store received and process trans-
mitted characters. In order to receive data, the rxdata register is read and returns a
32-bit value where the highest bit indicates if the FIFO is empty (the bit is set) and the
lower 8-bit are the received character (if not empty).

Listing 3.4 shows a basic embedded software driver, that copies data from an RX

47

Sören Tempel Integration of SystemC TLM with Symbolic Execution

1 void copy_driver() {
2 //-------------------------[VARIANT-1]---------
3 char c = read_rx_uart();
4 write_tx_uart(c);
5 //-------------------------[VARIANT-2]---------
6 char c = read_rx_uart();
7 assert (c != '#'); // assume sender filters '#'
8 write_tx_uart(c);
9 //-------------------------[VARIANT-3]---------
10 while (!empty_rx_uart()) {
11 char c = read_rx_uart();
12 assert (c != '#'); // assume sender filters '#'
13 write_tx_uart(c);
14 }
15 //-------------------------[END]---------------
16 }

Listing 3.4.: Example embedded software to illustrate overlay design and refinement.

to a TX FIFO. The implementation is presented in three different variants, from sim-
ple to more sophisticated. The driver implementation is interrupt-driven and triggered
whenever the RX FIFO receives new data. Listing 3.5 shows the corresponding sym-
bolic overlay for the UART to support the respective variant of the software driver. For
clarity and brevity, we employ a slight pseudocode notation (in particular regarding the
assume function that adds symbolic constraints) and omit irrelevant details (such as
the constructor). In order to make use of overlays, we propose a methodology where the
overlay is iteratively refined. For this purpose, we start with a coarse overlay and refine
it on demand as necessary to support the tested embedded software.

The first software variant simply copies a single character from the RX to the TX FIFO
(Line 3 - Line 4 in Listing 3.4). To support such a scenario, the overlay simply returns an
arbitrary value on a read access (Line 10 in Listing 3.5). For the next variant, we assume
a scenario where the received characters are constrained according to an environment
model, i.e. we assume that the character ’#’ is never received. With variant 1 of the
overlay, the variant 2 software would hit a spurious error because the assertion in Line 7
should not fail under the current environment assumptions. In order to support such
a scenario, the outgoing UART data can be constrained accordingly by the overlay

48

Sören Tempel Integration of SystemC TLM with Symbolic Execution

1 class UARTOverlay : public sc_core::sc_module {
2 UART &uart; // reference to concrete UART
3 // ...omit constructor...
4 void transport(tlm::tlm_generic_payload &trans,
5 sc_core::sc_time &delay) {
6 // process symbolic extension
7 auto addr = trans.get_address();
8 if (addr == RX_ADDR) {
9 //-------------------------[VARIANT-1]----------
10 auto data = SymbolicUint32(); // any value
11 //-------------------------[VARIANT-2]----------
12 auto data = SymbolicUint32(); // any value
13 assume ((data & 0xff) != '#'); // avoid '#'
14 //-------------------------[VARIANT-3]----------
15 auto data = SymbolicUint32(); // any value
16 assume ((data & 0xff) != '#'); // avoid '#'
17 if (uart.empty()) {
18 assume (data & (1 << 31)); // empty
19 } else {
20 assume (!(data & (1 << 31))); // not empty
21 }
22 //-------------------------[END]----------------
23 // pack the symbolic value into a TLM extension
24 auto ext = new SymbolicExtension(data);
25 trans.set_extension(ext);
26 }
27 // call the normal UART
28 isock->b_transport(trans, delay);
29 }
30 };

Listing 3.5.: Example overlay to illustrate overlay design and refinement.

49

Sören Tempel Integration of SystemC TLM with Symbolic Execution

(Line 13), as shown in variant 2 of the overlay implementation. The software variant 3
adds another layer of complexity (Line 10 - Line 14). Now, the copy process continues
until the RX FIFO is empty (which makes this driver more generic).19 Using variant
2 of the overlay, the software could spin infinitely in the copy loop because the empty
bit is unconstrained symbolic and therefore independent of the actual UART status.
This problem is fixed by the variant 3 refinement (Line 17 - Line 21) where an additional
check is added to ensure that the underlying UART is not empty. As such, this last
variant also demonstrates the benefits of having access to the actual peripheral from
the overlay. Furthermore, the last variant covers the main functionality from the receive
part of the UART which is the essential functionality regarding a symbolic analysis, as
received data is potentially untrusted and needs to be properly processed by the software
without it inhibiting unwanted behavior. The remaining omitted functionality is mainly
responsible for configuring the UART and processing interrupts.

The motivational example demonstrates that symbolic overlays can be compact and
yet enable comprehensive symbolic exploration of embedded firmware that interacts
extensively with a peripheral (such as a UART) on a low abstraction level. From a design
flow perspective, the example also indicates that peripheral models and overlays can be
developed side by side, which eases maintenance and testing. That is, in a VP-based
design flow (see Section 2.1), the concrete peripheral models can still be used normally
in the concrete VP and changes to peripheral models are immediately available in both
the concrete and the symbolic VP.

3.2.3. Evaluation

In order to evaluate our overlay mechanism and the proposed methodology for overlay
refinements, we can conduct a case study with an example application for the RIOT [9]
operating system. This application interacts with a sample sensor peripheral—modeled
in SystemC TLM—for which an overlay is created and iteratively refined as part of the
case study. RIOT is a popular multithreaded operating system for programming con-
strained devices; in this domain, prior work even considers it to be the “most prominent
open source operating system” [79, p. 732]. Furthermore, the RIOT supports the SiFive
HiFive1 hardware platform modeled by SymEx-VP. Therefore, we can conduct a sym-
bolic analysis of RIOT-based firmware using the overlay-enhanced version of SymEx-VP
presented in Subsection 3.2.2.

19We assume that the TX FIFO has a sufficiently large buffer and processes characters fast enough.

50

Sören Tempel Integration of SystemC TLM with Symbolic Execution

In the following, we present more details on the exemplary RIOT application (Sub-
section 3.2.3.1), then discuss our test setup (Subsection 3.2.3.2), and lastly present the
obtained results (Subsection 3.2.3.3).

3.2.3.1. RIOT-based Example Application

For our case study, we consider an exemplary interrupt-driven application that peri-
odically processes sensor data. The sensor data is generated by a custom TLM sensor
model; the modeled sensor triggers an interrupt whenever new sensor data is available.
The returned sensor data conforms to a filter, which is a memory-mapped register of the
sensor that is configured by the firmware. A producer-consumer scheme is employed by
the application to process this data. For this purpose, two RIOT threads are used which
communicate with each other through RIOT’s interprocess communication mechanism.
The producer thread reads data from the sensor and passes received data to the con-
sumer thread which processes the data and ultimately writes it to the UART. Assertions
are used to perform sanity checks on the data, for instance, to check that sensor values
are within a certain expected range. Considering that RIOT is a multithreading operat-
ing system, we believe that these kinds of producer-consumer patterns are common in
embedded firmware that utilizes RIOT.

3.2.3.2. Test Setup

In order to ensure termination of the testing process, as the application is interrupt-
driven and hence non-terminating, we bounded the number of processing iterations in
the application. The testing process continues until all bugs are fixed. Since we start
with coarse overlays that over-approximate the behavior of the real peripherals, spurious
bugs are expected. Whenever encountering a spurious bug, a refinement of the overlays
is necessary.

For our case study, an overlay is only required for the custom sensor peripheral (it acts
as the only input device). Overlays for other SiFive HiFive1 peripherals are not necessary;
they remain concrete. This includes the UART, since it only acts as an output device,
but also other peripherals which are accessed by RIOT during the operating system
initialization phase. Therefore, we only iteratively refine the custom sensor peripheral
overlay according to the methodology introduced in Subsection 3.2.2.2. Contrary to the
motivational example in Subsection 3.2.2.2, the tested firmware itself is not refined; it is
assumed to be production-ready.

51

Sören Tempel Integration of SystemC TLM with Symbolic Execution

Table 3.3.: Evaluation results for different overlay refinements.

Iteration #Instrs Runtime #Paths Bug

I1 127 477 1.11 s 1 SB

I2 1 370 415 13.58 s 13 RB

I3 341 805 972 170min 3270 -

3.2.3.3. Test Results

Table 3.3 presents the results of our conducted case study. The first column shows the
overlay refinement iteration. The next three columns show the number of executed in-
structions (column: #Instrs), overall runtime (column: Runtime), and number of discov-
ered execution paths (column: #Paths). Please note that, by using symbolic expressions,
symbolic execution can cover a large set of different inputs on a single path. The last
column indicates if a bug was found and, if so, if the bug was a spurious (SB) or a real
bug (RB). In total, three refinement iterations (I1, I2, and I3) were performed until no
more bugs were detected (in I3). All experiments were performed on a Linux system
with an Intel i7-8565U processor.

In I1 the sensor overlay returns fully unconstrained data. While this abstraction is too
coarse (since the sensor model filters data according to a configuration setting), we left
it for demonstration purposes. As expected, a spurious bug (in the form of an assertion
failure in the tested firmware) is detected fast; in fact, on the first path after executing
around 127K instructions. We refined the sensor overlay accordingly to consider the filter
setting of the modeled sensor, resulting in I2. Now a real application bug is detected
(caused by a false assumption regarding potential values returned by the sensor in the
application code) after 13 paths and around 1.4M instructions. For I3, we fixed the
aforementioned bug and discovered no further bugs. In total 3270 paths were explored
in I3 with around 341M executed instructions in 170 minutes. The conducted case study
demonstrates that our proposed approach can be effective for finding bugs in embedded
firmware that interacts on a low abstraction level with the hardware.

52

Sören Tempel Integration of SystemC TLM with Symbolic Execution

3.2.4. Related Work

Handling of peripheral interactions during dynamic testing (e.g. symbolic execution) of
embedded firmware is an active and ongoing subject of research [207, Section 8.1.1].
The overlay approach, presented in this section, is conceptually similar to prior work
on rehosting where peripheral behavior is approximated and these approximations are
iteratively refined [77, 35, 68]. A survey of prior work on rehosting is provided by Fasano
et al. [66]. However, rehosting approaches commonly operate on a higher abstraction level
and do not use a modeling standard such as SystemC. Initial work towards facilitating
SystemC peripheral models was done by Herdt et al., but this prior work requires manual
adaptation of such models and does not support the SystemC simulation kernel [84].
Similarly, there is prior work that uses models manually extracted from the QEMU [16]
simulator [90]. Related work has also introduced instruction-level models of software-
visible hardware behavior for formal security verification [91]. Lastly, prior work in the
hardware/software co-verification domain has experimented with operating on an even
lower abstraction level by making use of Verilog [58] hardware models [129]. In this
context, symbolic execution is also increasingly used to test hardware instead of software
designs, both at the RTL [143, 1] and VP level [119, 86]. However, to the best of our
knowledge, an approach that directly integrates symbolic execution with SystemC-based
VPs, for the purpose of testing embedded software, is not available.

3.2.5. Conclusion

In conclusion, we have presented a TLM overlay mechanism to ease the integration
of existing SystemC TLM hardware models with symbolic execution. To this end, the
conducted case study demonstrates the applicability and effectiveness of our proposed
approach for this purpose. In future work, we want to further ease the adoption of existing
models by investigating automated methods to derive peripheral overlays from existing
SystemC TLM peripherals. A starting point in this regard might be a half-automated
approach that leverages peripheral interface descriptions. Additionally, we plan to devise
automated methods to refine overlays or localize the exact source of a spurious error.
Presently, this is a manual procedure, although employment of the existing VP-based
debug infrastructure turned out to be advantageous for this purpose. Compared to the
modeling approach presented in Section 3.1, we envision that TLM overlays will further
ease adoption of our symbolic execution approach.

53

Chapter 4.

Formal ISA Semantics for Extending
the Analysis

Chapter 3 focused on environment modeling for embedded firmware using the SystemC
hardware modeling language. For this purpose, the chapter contributed an integration of
VPs with symbolic execution. While the chapter was centered around modeling of hard-
ware peripherals using SystemC, the combination with VPs also required an integration
of symbolic execution with the ISS of the utilized VP (see Subsection 3.1.2.3). The ISS
is responsible for executing binary code instructions specified by the ISA of the targeted
hardware platform. As explained in Section 2.3, symbolic execution requires custom soft-
ware interpretation and, therefore, a custom implementation of the ISA (i.e. a custom
variant of the ISS). In Subsection 3.1.2.3, a symbolic ISS for the RISC-V architecture
was presented. This ISS was written in C++ and obtained through manual modifications
of the existing concrete and manually-written ISS provided by riscv-vp [85].

Unfortunately, manual creation of a symbolic ISS makes it challenging to extend the
proposed symbolic execution approach to additional instructions. However, especially
in the embedded domain, it is paramount to be able to easily extend the analysis to
additional instructions as—due to the tight integration of hardware and software in this
domain—embedded systems often use domain-specific instructions for optimization pur-
poses [51, Section 2]. Presently, the symbolic semantics need to be specified manually
in C++ for each new instruction which is a laborious process and an obstacle for extensi-
bility. This also becomes apparent when one considers the possibility of employing the
proposed symbolic execution approach for other mainstream ISAs such as ARM. Com-
pared to RISC-V, these architectures have an enormous complexity. For example, the
ARMv8-A ISA specification consists of 6300 pages of mostly natural language [4]. Im-
plementing a symbolic ISS manually requires reading and understanding the instruction
semantics specified in this document and then manually translating this specification

54

Sören Tempel Formal ISA Semantics for Extending the Analysis

to C++ code. Naturally, this is a cumbersome process that is error-prone and requires
additional verification and testing effort to ensure correctness of the implementation.
Correctness of the symbolic ISS is paramount as otherwise the symbolic execution may
miss paths through the tested firmware, which in turn means that vulnerabilities may
remain undetected and could thus be exploited once the firmware is deployed in a pro-
duction environment. Lastly, for the design of new embedded systems, the symbolic
execution approach proposed in Chapter 3 also requires maintaining two variants of the
VP’s ISS: a concrete one for software development and a symbolic one for software test-
ing using symbolic execution. This creates additional development overhead and may
negatively impact the time-to-market of a new embedded system (see Section 2.1).

The underlying problem of the outlined challenges is the manual translation of the
ISA specification to an executable ISS that implements this specification. This process
is manual because the specification is given in natural language, which is not machine-
readable as it can be ambiguous. In order to overcome this challenge, a large body of
prior work has proposed giving ISA specifications in formal instead of natural language,
i.e. language that is unambiguous and therefore machine-readable [57, 150, 5, 161, 26].
The formal language itself describes the ISA semantics in terms of several language prim-
itives. The most comprehensive approach in this regard is Sail which formally describes
a wide range of different architectures (ARM, RISC-V, MIPS, IBM Power, and x86)
using the same language primitives [5]. Sail has even been adopted as the official formal
model for the RISC-V architecture. In general, RISC-V has sparked a lot of research on
formal specification due to its open and modular nature. Different formal specifications
for different purposes exist for this architecture; a survey of existing formal RISC-V
specifications was conducted by the RISC-V Foundation in 2019 [152].

Naturally, formal ISA specifications can be used for all kinds of purposes, including
code generation, formal verification, documentation, and simulation. In this chapter, we
investigate the use of formal ISA specifications for symbolic execution of binary code,
thereby addressing the outlined shortcomings of the symbolic execution approach pre-
sented in Chapter 3. We contribute a novel executable RISC-V formal model that is
specifically tailored to the creation of binary analysis tools in the lineage of prior work
on modular interpreters [116, 177, 93]. Based on this new formal model, we propose a
symbolic execution approach that achieves extensibility by building a symbolic ISS on
top of the language primitives provided by this formal model. Lastly, we propose an in-
tegration of this enhanced symbolic execution approach with our prior work on modeling
of hardware peripherals using VPs (Chapter 3) through C/C++ code generation.

55

Sören Tempel Formal ISA Semantics for Extending the Analysis

4.1. A Flexibel Formal Model for the RISC-V ISA
This section describes a flexible framework for the creation of binary analysis tools that
can be extended to additional instructions and retargeted to other ISAs. This is achieved
by building these analysis tools on top of a formal description of ISA semantics. Prior
work has already proposed the use of formal descriptions for this purpose [117]. How-
ever, building a symbolic execution engine on top of formal descriptions is challenging as
symbolic execution requires a flexible value representation within the formal language.
That is, it cannot be assumed that instructions operate on fixed-width concrete integers
and therefore it is insufficient to only provide a formal description of the concrete opera-
tional semantics. Otherwise, it is not possible for instruction operands to be represented
as symbolic values.

In order to overcome this challenge, we contribute a highly flexible and versatile
model of the RISC-V ISA in the functional programming language Haskell1. As opposed
to existing models [117, 161, 22], the interpretation of the ISA and the representation
of instruction operands can be varied. To this end, we define a Haskell-based Embed-
ded Domain-Specific Language (EDSL) via a free monad construction that facilitates
a custom expression language to express operations on instruction operands (see Sub-
section 4.1.1.2). The idea is that the free monad models the computation given by a
sequence of operations from the ISA, where the model of computation (i.e. the interpre-
tation) can be varied, from simple state transitions that simulate the ISA faithfully to
custom analyses. Furthermore, the custom expression language enables us to vary the
representation of instruction operands, thereby also enabling the implementation of sym-
bolic execution as an instantiation of a custom analysis. To the best of our knowledge,
our approach is the first that enables the creation of symbolic execution engines as cus-
tom interpreters for a formal ISA model. We motivate the advantages of this approach
by modeling a simple ISA first (Subsection 4.1.2.1) and then extend this approach to
the real-world RISC-V architecture (Subsection 4.1.3). Afterward, we conduct a case
study with dynamic information flow tracking (Subsection 4.1.3.3) to illustrate the im-
plementation of custom ISA interpreters and evaluate the performance (i.e. simulation
speed) of our implementation (Subsection 4.1.4). Based on the presented formal model,
we contribute a novel symbolic execution engine in Section 4.2.

1https://haskell.org

56

https://haskell.org

Sören Tempel Formal ISA Semantics for Extending the Analysis

4.1.1. Preliminaries

In the following, we provide background information on formal ISA models and the
free monad abstraction which we use for our proposed formal model of the RISC-V
architecture.

4.1.1.1. Formal ISA Models

Traditionally, ISAs have been specified in natural language. However, as natural lan-
guage is ambiguous and thus not machine-readable, it has become popular to specify
the ISA in a formal language—one which has unambiguous semantics—thereby obtain-
ing a machine-readable formal ISA model. Formal models can be used for all kinds of
purposes, including verification, testing, documentation, and simulation [152]. Consid-
ering these different use cases, formal models come in a variety of languages (and we
give a more comprehensive overview in Subsection 4.1.5), but we can broadly distinguish
between the following:

1. Models using a Domain-Specific Language (DSL), designed specifically for this
purpose, such as Sail [5].

2. Models using a universal non-executable modeling language, such as the logic
supported by a theorem prover.

3. Models using a universal, general-purpose (often functional) programming lan-
guage.

For our work, we chose the third approach, as DSLs (such as Sail) come with their own
custom-built tooling, which does not support our use case well. Furthermore, their formal
description is often abstract, which means they are not as concise or convenient to work
with as models written in general-purpose programming languages. Similarly, contrary
to general-purpose programming languages, theorem provers do not provide much pro-
gramming support. Instead, they allow reasoning about models (proving properties such
as correctness, completeness, and so on). For this reason, we chose a formal model in a
functional programming language (namely Haskell) as the basis of our work. This allows
us to model the ISA at a high level of abstraction, while at the same time providing
access to a rich ecosystem of existing libraries to process the ISA model conveniently and
in a flexible, modular fashion. For example, for the symbolic execution engine presented
in Section 4.2, we make use of an existing Haskell wrapper for the Z3 [125] SMT solver

57

Sören Tempel Formal ISA Semantics for Extending the Analysis

library. However, should we in the future choose to expand on proofs and correctness,
existing work to either generate Haskell from a proof assistant (e.g. Coq [18]) or import
Haskell into a proof assistant would make this possible, so this option remains open for
future work.

4.1.1.2. Free Monads and EDSLs

Conceptually, an ISA is essentially a low-level imperative programming language with
predefined bit-vector data types (words of a given length). The semantics of imperative
programs covers different aspects (stateful computations, continuations, exceptions, etc.)
each of which can be modeled in Haskell using monads [177, 116, 115]. Combining these
monads is a notoriously tricky exercise. Early work on interpreting imperative programs
used monad transformers for this effect [116], but more recent work uses free monads for
better performance and extensibility (see Subsection 4.1.5.2 for a detailed comparison).

Free monads enable the creation of EDSLs [92], i.e. DSLs which are embedded into
an existing (often functional) general-purpose programming language.2 Since EDSLs are
tightly integrated with a chosen host language—Haskell in our case—they allow reuse
of existing functionality provided by this host language, thereby easing the implementa-
tion of DSLs. Similar to the aforementioned prior work on the semantics of imperative
programs, we facilitate free monads to create an EDSL for describing ISA semantics.

When implementing an EDSL through free monads, the basic operations of the EDSL
are defined through type constructors. The free monad allows for the composition of
these type constructors, thus yielding an embedded language that supports the defined
operations. The category-theoretic construction of free monads was given by Kelly [102],
and first described in the context of functional programming by Swierstra [179]. In
our implementation, we use an enhanced version of this concept as implemented by
the freer-simple3 Haskell library. More information on this enhanced version of the
concept is provided in publications by Kiselyov et al. [105, 106].

4.1.2. Modeling an ISA

We motivate our approach and its advantages by applying it to an intentionally simple
ISA. The ISA implements a 32-bit load-store architecture with five instructions; each of
these can be thought of as representing a class of similar instructions in a real ISA:

2Functional languages are popular for this purpose because of their declarative nature.
3https://hackage.haskell.org/package/freer-simple

58

https://hackage.haskell.org/package/freer-simple

Sören Tempel Formal ISA Semantics for Extending the Analysis

1. LOADI imm reg: Load immediate into register reg.

2. ADD dst src1 src2: Add two registers into dst.

3. LW dest addr: Load word from memory at addr into register dest.

4. SW addr src: Store word from register src into memory at addr.

5. BEQ reg1 reg2 off : Relative branch by off if registers reg1 and reg2 are equal.

The ISA supports 16 general-purpose registers, word-addressable memory, and a pro-
gram counter which points to the current instruction in memory. All registers and mem-
ory values are 32-bit wide and treated as signed values by all instructions. Instruction
fetching and decoding are not discussed. The instruction set is modeled as a Haskell
data type (where Word and Addr are type synonyms for 32-bit integers):

1 newtype Reg = Reg { reg :: Int } deriving (Ord, Eq)
2 data INSTR
3 = LOADI Word Reg
4 | ADD Reg Reg Reg
5 | LW Reg Addr
6 | SW Addr Reg
7 | BEQ Reg Reg Word

4.1.2.1. A First Model

The execution model formally describes how instructions are executed. It specifies the
system state, and how instructions change the system state (including the control flow).
Listing 4.1 provides a simple Haskell execution model for our exemplary ISA. The ar-
chitectural state System, upon which instructions are executed, is a tuple consisting of
two finite maps for the memory and register file as well as a concrete program counter.
Instruction execution itself is implemented as a pure function which performs a pattern
match on the instruction type and returns a new system state, embedded into a state
monad (State System a).

Unfortunately, this primitive ISA model has multiple shortcomings. Consider a simple
software analysis task for which we want to extend our model to track the number of
memory accesses during program execution. For this, we merely need to extend the
system state with an access counter, and increment the counter whenever memory access
takes place (operations LW and SW). A possible implementation of this modification is

59

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 type System = (Registers
2 , Mem
3 , ProgramCounter)
4

5

6 execute :: INSTR -> State System ()
7 execute i = modify $
8 \(regs, mem, pc) -> case i of
9 LOADI imm r -> (insert r imm regs,
10 mem, nextInstr pc)
11 ADD rd rs1 rs2 -> let
12 v1 = regs ! rs1
13 v2 = regs ! rs2
14 in (insert rd (v1+v2) regs,
15 mem, nextInstr pc)
16 LW r addr -> let
17 w = mem ! addr
18 in (insert r w regs, mem,
19 nextInstr pc)
20 SW addr r -> let
21 v = regs ! r
22 in (regs, insert addr v mem,
23 nextInstr pc)
24 BEQ r1 r2 off -> let
25 v1 = regs ! r1
26 v2 = regs ! r2
27 br = if v1 == v2
28 then pc+off
29 else nextInstr pc
30 in (regs, mem, br)

Listing 4.1.: Concrete Haskell model of our simple ISA from Subsection 4.1.2.

60

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 type System' = (Registers
2 , Mem
3 , ProgramCounter
4 , Int)
5

6 execute' :: INSTR -> State System' ()
7 execute' i = modify $
8 \(regs, mem, pc, counter) -> case i of
9 LOADI imm r -> (insert r imm regs, mem,
10 nextInstr pc, counter)
11 ADD rd rs1 rs2 -> let
12 v1 = regs ! rs1
13 v2 = regs ! rs2
14 in (insert rd (v1+v2) regs,
15 mem, nextInstr pc, counter)
16 LW r addr -> let
17 w = mem ! addr
18 in (insert r w regs, mem,
19 nextInstr pc, succ counter)
20 SW addr r -> let
21 v = regs ! r
22 in (regs, insert addr v mem,
23 nextInstr pc, succ counter)
24 BEQ r1 r2 off -> let
25 v1 = regs ! r1
26 v2 = regs ! r2
27 br = if v1 == v2
28 then pc+off
29 else nextInstr pc
30 in (regs, mem, br, counter)

Listing 4.2.: Memory accesses analysis through modifications of Listing 4.1.

61

Sören Tempel Formal ISA Semantics for Extending the Analysis

shown in Listing 4.2. Note how, even though our extension to the previous solution did
not modify the control flow of the program in any way, we still had to restate the control
flow for all supported instructions of our ISAs. For our small ISA, this inconvenience
seems feasible, but considering that a real ISA often has more than 80 instructions, the
task of modifying the execution becomes cumbersome and error-prone.

Hence, our aim is to give a modular, abstract representation of ISA semantics, based
upon which we can then implement software analysis techniques that require a differ-
ent kind of interpretation with minimal effort. Such techniques may include symbolic
execution [10] or dynamic information flow tracking [178].

4.1.2.2. Our Approach

In summary, the problem with the previously outlined approach is that the model of
the semantics (a state transition given by a state monad) is given in a concrete and
monolithic form: there is no separation between the different aspects of the semantics.
However, the semantics of an ISA has multiple aspects: memory access, register access,
arithmetic, and control flow, and most analyses only concern one or two of them (e.g.
memory access, or arithmetic). Yet, if we want to change the representation of the state,
this affects all operations; similarly, if we wish to reason about, e.g. integer arithmetic
to show the absence of integer overflow, we need to re-implement all operations.

Thus, we intend to give the semantics of our ISA by combining constituting parts,
which we can change individually. To this end, we define an EDSL which represents the
operations of an abstract machine implementing the ISA, e.g. loading and storing words
into registers, using a free monad as introduced in Subsection 4.1.1.2.

The operations comprising the EDSL are given by a parameterized type Operations,
see Listing 4.3.4 The Operations data type models the ISA in abstract terms; the free
monad Free Operations describes combinations of these, which are an abstract repre-
sentation of the control flow of a (sequence of) ISA operations. This representation is
given by a function controlFlow :: INSTR -> Free Operations (), which defines the
control flow for a given instruction (see Listing 4.4); by composing these, we obtain the
control flow for a program (the sequence of operations). To reconstruct the concrete exe-
cution of the ISA instructions from the previous section (Listing 4.1), we need to map the
operations in the free monad to concrete monadic effects, in our case in Haskell’s pure
State monad. An example implementation of a function which performs this mapping is

4For convenience, we add a smart-constructor for each constructor of the data type.

62

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 data Operations r
2 = LoadRegister Reg (Word -> r)
3 | StoreRegister Reg Word r
4 | IncrementPC Word r
5 | LoadMem Addr (Word -> r)
6 | StoreMem Addr Word r
7 deriving Functor
8

9 loadRegister :: Reg -> Free Operations Word
10 loadRegister r = Free (LoadRegister r Pure)
11

12 storeRegister :: Reg -> Word -> Free Operations ()
13 storeRegister r w = Free (StoreRegister r w (Pure ()))
14

15 incrementPC :: Word -> Free Operations ()
16 incrementPC v = Free (IncrementPC v (Pure ()))
17

18 loadMem :: Addr -> Free Operations Word
19 loadMem addr = Free (LoadMem addr Pure)
20

21 storeMem :: Addr -> Word -> Free Operations ()
22 storeMem addr w = Free (StoreMem addr w (Pure ()))

Listing 4.3.: Overview of provided EDSL operations for describing the ISA.

63

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 controlFlow :: INSTR -> Free Operations ()
2 controlFlow = \case
3 LOADI imm r -> storeRegister r imm >> incrementPC instrSize
4 ADD rd r1 r2 -> do
5 v1 <- loadRegister r1
6 v2 <- loadRegister r2
7 storeRegister rd (v1+v2)
8 incrementPC instrSize
9 LW r addr -> do
10 v <- loadMem addr
11 storeRegister r v
12 incrementPC instrSize
13 SW addr r -> do
14 v <- loadRegister r
15 storeMem addr v
16 incrementPC instrSize
17 BEQ r1 r2 off -> do
18 v1 <- loadRegister r1
19 v2 <- loadRegister r2
20 if v1 == v2 then incrementPC off else incrementPC instrSize

Listing 4.4.: Interpreting an in ISA instruction in the free monad.

64

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 execute :: State -> Free Operations () -> State
2 execute st = flip execState st . iterM go where
3 go = \case
4 LoadRegister reg f -> gets (\(rs,_,_) -> rs ! reg) >>= f
5 StoreRegister reg w c ->
6 modify (\(rs, mem, pc) -> (insert reg w rs, mem, pc)) >> c
7 IncrementPC w c -> modify (\(rs,mem,pc) -> (rs,mem,pc+w)) >> c
8 LoadMem addr f -> gets (\(_,mem,_) -> mem ! addr) >>= f
9 StoreMem addr w c ->
10 modify (\(rs,mem,pc) -> (rs, insert addr w mem, pc)) >> c

Listing 4.5.: Evaluating the control flow using the State monad.

provided in Listing 4.5. Since we have now separated the control flow and semantics of
effects, we could also use any other (monadic) effects for the evaluation without changing
the control flow. Reconstructing the example from Listing 4.2 just requires adjustments
in the semantics without restating the control flow as shown in Listing 4.6 (performed
adjustments are highlighted using underlined text).

While this is a major advantage in terms of reusability, there is still room for improve-
ment. In particular, we are not able to change the semantics of the expression-level calcu-
lations an operation performs, since the data type of our EDSL assumes concrete types,
which entails they are already evaluated. Hence, we generalize our Operations type to
allow a representation of the evaluation of expressions, much like we did for the instruc-
tions (except that the evaluation of expressions is not monadic and hence we do not need
a free monad here). For that, we need to introduce a simple expression language that re-
places all the constant values, e.g. the constructor StoreRegister :: Reg -> Word -> r
becomes StoreRegister' :: Reg -> Expr w -> r. Additionally, we need to adjust the
Operations type so that it becomes polymorphic in the word type.

Listing 4.7 shows the necessary changes, e.g. the execute''' function is now provided
with an expression-interpreter evalE, which is used to evaluate expressions generated
by the control flow. The Operations are now polymorphic in the word type and the
semantics of the internal computations can be changed by adjusting evalE; this allows
our approach to be used to implement software analysis techniques on the ISA level.
In the next section, we will present an application of our approach to the RISC-V ISA,
and utilize the resulting RISC-V model to implement one exemplary software analysis
technique as a case study.

65

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 execute' :: State'' -> Free Operations () -> State''
2 execute' st = flip execState st . iterM go where
3 go = \case
4 LoadRegister reg f -> gets (\(rs,_,_,_) -> rs ! reg) >>= f
5 StoreRegister reg w c -> modify
6 (\(rs, mem, pc, counter) ->
7 (insert reg w rs, mem, pc, counter)) >> c
8 IncrementPC w c -> modify
9 (\(rs, mem, pc, counter) -> (rs, mem, pc+w, counter)) >> c
10 LoadMem addr f -> do
11 v <- gets (\(_,mem,_, counter) -> mem ! addr)
12 modify (\(rs, mem, pc, counter) -> (rs, mem, pc, succ counter))
13 f v
14 StoreMem addr w c ->
15 modify (\(rs, mem, pc, counter) ->
16 (rs, insert addr w mem, pc, succ counter)) >> c

Listing 4.6.: Executing and counting memory accesses.

4.1.3. Modeling the RISC-V ISA

As an application of our approach, we created an abstract model of the RISC-V ISA.
RISC-V is an emerging Reduced Instruction Set Computer (RISC) architecture which
has recently gained traction in both academia and industry. As explained in Section 2.2,
RISC-V is developed as an open standard free from patents and royalties. It is designed in
a modular way: the architecture consists of a base instructions set and optional extensions
(e.g. for atomic instructions) which can be combined as needed [153].

We refer to our model of the RISC-V architecture as LibRISCV. As the name sug-
gests, LibRISCV is a Haskell library that can be used to implement different inter-
preters for RISC-V software. As such, the library provides an instantiable framework
for versatile interpretation of RISC-V software in binary form. Figure 4.1 illustrates
how the concepts from Subsection 4.1.2.2 are applied to RISC-V to achieve versatile
interpretation. The figure will be further described in the following subsections.

4.1.3.1. Instruction Decoder

As depicted in Figure 4.1, our RISC-V implementation receives binary code as an input
value. This binary code constitutes RISC-V machine code and is converted to an alge-

66

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 data Expr a = Val a | Add (Expr a) (Expr a) | Eq (Expr a) (Expr a)
2

3 data Operations' w r
4 = LoadRegister' Reg (Expr w -> r)
5 | StoreRegister' Reg (Expr w) r
6 | IncrementPC' (Expr w) r
7 | LoadMem' Addr (Expr w -> r)
8 | StoreMem' Addr (Expr w) r
9

10 evalE :: Expr Word -> Word
11 evalE = \case
12 Val a -> a
13 Add e e' -> evalE e + evalE e'
14 Eq e e' -> if evalE e' == evalE e then 1 else 0
15

16 execute''' :: (Expr Word -> Word) -> State''
17 -> Free (Operations' Word) () -> State''
18 execute''' evalE st = flip execState st . iterM go where
19 go = \case
20 LoadRegister' reg f -> gets (\(rs,_,_,_) -> Val $ rs ! reg) >>= f
21 StoreRegister' reg w c -> modify
22 (\(rs, mem, pc, counter) ->
23 (insert reg (evalE w) rs, mem, pc, counter)) >> c
24 IncrementPC' w c -> modify
25 (\(rs,mem,pc,counter) -> (rs,mem,pc+ evalE w, counter)) >> c
26 LoadMem' addr f -> do
27 v <- gets (\(_,mem,_, counter) -> mem ! addr)
28 modify (\(rs,mem,pc,counter) -> (rs, mem, pc, succ counter))
29 f $ Val v
30 StoreMem' addr w c -> modify (\(rs,mem,pc,counter)
31 -> (rs, insert addr (evalE w) mem, pc, succ counter)) >> c

Listing 4.7.: Operations type with simple expression language.

67

Sören Tempel Formal ISA Semantics for Extending the Analysis

Binary
Code

RISC-V
Instructions

Abstract
Semantics ··

·

1st Actual
Semantics

nth Actual
Semantics

Instr.
Decoder

Formal
Model

Concrete
Interpreter

Symbolic
Interpreter

Custom
Interpreters

Figure 4.1.: Application of our ISA modeling approach to the RISC-V architecture.

braic data structure representing instructions mandated by the RISC-V standard using
an instruction decoder. Contrary to imperative programming languages, execution and
decoding/parsing are heavily intertwined for machine code. We can only decode the next
instruction after finishing execution of the current instruction (fetch-decode-execute cy-
cle) [175, Section 14.3]. For example, when executing a branch instruction, the next
fetched instruction depends on the result of the branch. We make use of lazy evaluation
to model the fetch-decode-execute cycle as part of our control flow description. That is,
the fetching of the next instruction is itself—non-strictly—modeled, using free monads
as outlined in Subsection 4.1.2.2.

Contrary to existing work on formal models (e.g. Sail [5]), a description of RISC-V
instruction decoding is not part of our EDSL. Instead, the LibRISCV instruction de-
coder is automatically generated from riscv-opcodes5, an existing formal language
which describes how binary code is mapped to RISC-V instructions (without modeling
instruction semantics). Based on algebraic data types, returned by the instruction de-
coder, we specify the abstract semantics of RISC-V instructions through a formal ISA
model described in the following.

4.1.3.2. Formal Model

An overview of the ISA model provided by LibRISCV is available in Figure 4.2. As
illustrated in Figure 4.1, the central component of the formal model is the description
of the abstract instruction semantics, which represents the lazily-generated control flow
of the RISC-V ISA operations. As discussed in Subsection 4.1.2.2, we use free monads

5https://github.com/riscv/riscv-opcodes

68

https://github.com/riscv/riscv-opcodes

Sören Tempel Formal ISA Semantics for Extending the Analysis

Arch State

Decoder

LibRISCV

Memory

Register File

Expression
Language

ELF Loader

RISC-V Decoder

Abstract
Semantics

Interpreter RISC-V Software

interprets

abstracts
operations

loads

creates

stores

instantiates
with

custom type

Figure 4.2.: Overview of the RISC-V ISA model provided by LibRISCV.

for this purpose. For the implementation of free monads, we use the freer-simple li-
brary. The library provides an improved implementation of the free monad approach
referenced in Subsection 4.1.1.2. Within the abstract description of instruction seman-
tics, all operations on register/memory values are abstracted using a generic expression
language. The expression language is implemented as an algebraic data type with an
associated evaluation function, as illustrated in Listing 4.7. The algebraic data type,
used by the expression language, is parameterized over a custom type. The architectural
state (i.e. memory and register file) is also parameterized over this type. As shown in
Figure 4.2, the abstract description of instruction semantics is based on an instruction
type that is generated by the aforementioned instruction decoder. The decoder is re-
sponsible for loading RISC-V software in ELF binary form and for decoding/parsing
instruction words—contained in the ELF file—according to the RISC-V specification.

Based on the abstract semantics, we can provide different interpreters which imple-
ment the actual semantics for decoded RISC-V instructions as illustrated in Figure 4.1,
such as concrete or symbolic execution of modeled instructions. The actual semantics
implement the state transition for each modeled instruction while the abstract semantics
only describe the control flow. Each interpreter instantiates the expression language with
a type. Based on this type, an interpreter for the formal ISA model (i.e. the expression

69

Sören Tempel Formal ISA Semantics for Extending the Analysis

language and the free Operations monad) needs to be supplied. Presently, LibRISCV
provides a formal model for the 32-bit variant of the RISC-V base instruction set (40 in-
structions). Based on this formal model, we have implemented a concrete interpreter for
RISC-V instructions. Both the model and the concrete interpreter are written in roughly
1500LOC and can be obtained from GitHub.6 Using the concrete interpreter, we were
able to successfully execute and pass the official RISC-V ISA tests for the 32-bit base
instruction set.7 These tests include multiple test programs (one for each instruction)
which check if the implemented behavior of an instruction conforms to the specification.
Passing these tests indicates that our model correctly captures the semantics of the
base instruction set. In the following, we illustrate how custom interpreters—beyond the
standard concrete interpretation—can be implemented on top of our abstract model,
thereby making use of its flexibility.

4.1.3.3. Custom Interpreters

Our model of the RISC-V ISA is designed for maximum flexibility and versatility, along
the lines sketched in Subsection 4.1.2.2. This allows implementing different interpreta-
tions of the ISA on top of our abstract model with minimal effort. Conceptually, each
custom interpreter implements actual semantics for the abstract semantics provided
by the formal ISA model (see Figure 4.1). In order to implement a custom RISC-V
interpreter, an evaluator for the expression language and an interpreter for the free
Operations monad need to be provided. As an example, dynamic information flow track-
ing [178], where data-flow from input to output is analysed, can be implemented using
the following polymorphic data type:

1 data Tainted a = MkTainted Bool a
2

3 instance Conversion (Tainted a) a where
4 convert (MkTainted _ v) = v

The product type Tainted tracks whether a value of type a is subject to data-flow analy-
sis. Furthermore, a conversion to Word32 is implemented through an instance declaration
for the Tainted type. This conversion is the only class constraint imposed by our abstract
model on the type used by the custom interpreter.8

6https://github.com/agra-uni-bremen/libriscv
7https://github.com/riscv/riscv-tests
8This constraint is necessary as the instruction decoder operates on Word32 values.

70

https://github.com/agra-uni-bremen/libriscv
https://github.com/riscv/riscv-tests

Sören Tempel Formal ISA Semantics for Extending the Analysis

A sample evaluator of the expression language for Tainted Word32 looks as follows:9

1 evalE :: Expr (Tainted Word32) -> Tainted Word32
2 evalE (FromImm t) = t
3 evalE (FromInt i) = MkTainted False $ fromIntegral i
4 evalE (AddU e1 e2) = MkTainted (t1 || t2) $ v1 + v2
5 where (MkTainted t1 v1) = evalE e1; (MkTainted t2 v2) = evalE e2

The evaluator performs standard concrete integer arithmetic on the Word32 encapsulated
within the Tainted type. However, if one of the operands of the arithmetic operations is
a tainted value, then the resulting value is also tainted. This enables a simple data-flow
analysis for initially tainted values. Based on the evaluation function, an interpretation of
the control flow is shown in the following, where f ⇝ g denotes a natural transformation
from f to g (as provided by the freer-simple library):

1 type ArchState = (REG.RegisterFile IOArray (Tainted Word32)
2 , MEM.Memory IOArray (Tainted Word8))
3

4 type IftEnv = (Expr (Tainted Word32) -> Tainted Word32, ArchState)
5

6 iftbehavior :: IftEnv -> Free Operations (Tainted Word32) ~~> IO
7 iftbehavior (evalE , (regFile, mem)) = \case
8 (ReadRegister idx) -> REG.readRegister regFile idx
9 (WriteRegister idx reg) -> REG.writeRegister regFile idx (evalE reg)
10 (LoadWord addr) -> MEM.loadWord mem (convert $ evalE addr)
11 (StoreWord addr w) -> MEM.storeWord mem (convert $ evalE addr)
12 (evalE w)

This function operates on a polymorphic register and memory implementation. Expres-
sions are evaluated using evalE, and then written to the register file or memory. When
execution terminates, we can inspect each register and memory value to check whether
it depends on an initially tainted input value. As shown, the interpreter only implements
a subset of the Operations monad and the expression language; a complete implemen-
tation is provided in the example/ subdirectory on GitHub.10 Colleagues have already
implemented dynamic information flow tracking for RISC-V machine code in prior work
based on the riscv-vp simulator mentioned in Chapter 3 [142]. For this prior imple-
mentation, they had to modify riscv-vp extensively to allow for such an analysis to be

9The FromImm, FromInt, and AddU constructors belong to our expression abstraction.
10https://github.com/agra-uni-bremen/libriscv/tree/tfp-2023/example

71

https://github.com/agra-uni-bremen/libriscv/tree/tfp-2023/example

Sören Tempel Formal ISA Semantics for Extending the Analysis

performed. This was necessary because riscv-vp does not separate instruction seman-
tics from instruction execution. In this context, the case study provided here serves to
demonstrate that such techniques can be more easily implemented on top of an abstract
formal model as custom interpreters for this model.

4.1.4. Performance Evaluation

Free monads introduce a well-known performance problem [105, Section 2.6]. As our
approach is focused on implementing interpreters, simulation performance is important
when executing real-world software. To evaluate simulation speed, we conduct a com-
parison with existing RISC-V simulators and specifically quantify the impact of the
utilized freer-simple library on simulation performance. For this purpose, we leverage
the existing Embench 1.0 benchmark suite [70]. Embench contains multiple benchmark
applications which perform different computation-intensive tasks (e.g. checksum calcula-
tion). We compiled all applications for the 32-bit RISC-V base instruction set, executed
them with different RISC-V simulators, and measured execution time in seconds. The
results are shown in Table 4.1. All experiments have been conducted on an Intel Xeon
Gold 6240 running an Alpine Linux 3.17 Docker image. Artifacts for the performed
evaluation are available on Zenodo [183].

For each benchmark application in Table 4.1, we list the execution time in seconds for
different RISC-V simulators. In order to specifically quantify the performance impact of
the freer-simple library, we use a modified version of LibRISCV as a baseline where
we manually removed the dependency on freer-simple and evaluate the ISA directly
in Haskell’s IO-monad. As such, this baseline version is conceptually similar to the prim-
itive model presented in Subsection 4.1.2.1, i.e. the interpretation cannot be varied and
it unconditionally performs concrete execution of RISC-V instructions. To contextualize
the obtained results, we performed further experiments with existing Haskell implemen-
tations of the RISC-V ISA, namely Forvis [22] and GRIFT [161]. Contrary to our own
work, these implementations do not utilize free monads (see Subsection 4.1.5). Lastly,
Table 4.1 also contains evaluation results for the aforementioned riscv-vp, which is
written in the C++ programming language [85]. To summarize benchmark results, Ta-
ble 4.1 provides the geometric mean on a per-simulator basis in the bottom row.

Naturally, the C++ implementation (riscv-vp) has the lowest execution time over
all benchmark applications. On average, it is roughly three times faster than our own
Haskell implementation of the RISC-V ISA (LibRISCV). This is to be expected as, con-

72

Sören Tempel Formal ISA Semantics for Extending the Analysis

Table 4.1.: Execution time comparison in seconds with existing RISC-V simulators.

Benchmark baseline libriscv forvis grift riscv-vp

aha-mont64 21.68 41.32 53.81 351.85 14.15

crc32 8.71 16.61 21.08 148.69 5.75

cubic 28.80 57.99 71.90 614.11 19.20

edn 80.16 160.36 193.93 1 680.24 53.62

huffbench 8.31 15.41 20.18 108.62 5.60

matmult-int 41.71 82.72 96.94 820.24 28.07

minver 13.87 26.93 33.87 272.13 9.16

nbody 24.55 48.85 58.78 529.97 16.50

nettle-aes 8.91 16.19 19.99 118.77 5.93

nettle-sha256 6.94 12.50 15.68 89.82 4.43

nsichneu 4.19 7.63 9.30 59.18 2.79

picojpeg 13.99 26.30 38.66 203.55 9.73

qrduino 11.85 23.33 30.91 200.08 8.52

sglib-combined 7.94 14.33 18.52 106.38 5.24

slre 6.82 12.56 15.88 91.89 4.55

st 16.18 32.48 38.65 344.91 10.94

statemate 1.69 3.26 5.20 23.68 1.39

ud 14.44 27.10 33.47 222.35 9.42

wikisort 7.57 14.49 18.32 136.27 5.09

Geometric mean 12.07 23.02 29.37 197.96 8.16

73

Sören Tempel Formal ISA Semantics for Extending the Analysis

trary to Haskell, C++ is not garbage collected. Nonetheless, and despite the employment
of free monads, LibRISCV is—on average—still faster than Forvis and GRIFT. While
LibRISCV and Forvis have similar execution time results, GRIFT is slower even though
it is also written in Haskell. We attribute this to the fact that GRIFT represents the
semantics as “symbolic expressions in a bitvector expression language” which is “sub-
optimal for fast simulation” [71]. The performance impact of the free monad abstraction
(used in LibRISCV) can be estimated by comparing simulation performance with the
baseline column in Table 4.1. As discussed above, the baseline column represents the
execution time for a LibRISCV variant which does not use the freer-simple library.
The gathered data indicates that LibRISCV is two times slower than the baseline ver-
sion, confirming that free monads have a significant impact on simulation performance.
Nonetheless, LibRISCV is still faster than existing Haskell implementations (Forvis and
GRIFT) and approximately only three times slower than a primitive C++ implementa-
tion (riscv-vp). As such, we believe the induced performance penalty to be acceptable
for our use case as the advantages of free monads outweigh this disadvantage by far.

4.1.5. Related Work

In the following, we discuss related work on formal ISA semantics, modular interpreters
for imperative programming languages, and software analysis tools.

4.1.5.1. Formal Specifications

Formal semantics for ISAs is an active research area with a vast body of existing research.
Specifically regarding RISC-V, a public review of existing formal specifications was con-
ducted by the RISC-V foundation in 2019 [152]. From this review, Sail [5] emerged as the
official formal specification for the RISC-V architecture. Sail is a custom DSL for describ-
ing different ISAs and comes with tooling for automatically generating simulators from
this description. However, we believe a functional specification in a programming lan-
guage like Haskell to be more suitable for rapid prototyping of custom interpreters. Sim-
ilar to our own work, existing work on GRIFT [161], Forvis [22], and riscv-semantics [26]
models the RISC-V ISA using a Haskell EDSL. Forvis and riscv-semantics are explicitly
designed for readability and thus only use a subset of Haskell. As opposed to our own
work, Forvis executes instructions directly and does not separate the description of in-
struction semantics from their execution. Prior work on riscv-semantics is closer to our
own work and uses type classes to define the abstract semantics and then uses monads,

74

Sören Tempel Formal ISA Semantics for Extending the Analysis

implementing these type classes, to describe the actual semantics [26, Section 1]. Unfor-
tunately, the central RiscvMachine type class of riscv-semantics is parameterized over
a bit-width and can thus only be instantiated with concrete fixed-with integers [26, Fig-
ure 2]. Therefore, this prior work does not achieve the same flexibility as our own work
on LibRISCV and hence cannot be used to implement symbolic semantics. Similarly,
prior work on GRIFT uses a bit-vector expression language to provide a separate descrip-
tion of instruction semantics. However, GRIFT’s expression language is also designed
around natural numbers as it focuses on “concrete representation of the semantics” [71].
For this reason, it is not possible to represent register/memory values abstractly using
GRIFT (i.e. not as natural numbers but, for example, as SMT expressions). To the
best of our knowledge, our formal RISC-V model is the first executable model which
focuses specifically on flexibility and thereby enables non-concrete execution of RISC-V
instructions.

4.1.5.2. Modular Interpreters

Early work on modular interpreters for imperative languages [116] used monad trans-
formers to compose the monads used to interpret the imperative features in a modular
way. Monad transformers can be thought of as monads with a hole; instead of a monad
m modeling a feature f (say, stateful computation), we give a monad transformer m'
modeling the addition of feature f to an existing monad. This allows us to combine
features in a “stack” of monads, and is implemented in Haskell in the mtl11 library.

However, this approach has three drawbacks: firstly, the monad transformer already
specifies the interaction with the other monad, so the approach is not truly composi-
tional; secondly, it is not truly extensible, as once the monad stack is composed, no more
monads can be added (this would result in a new monad stack); and thirdly, there is a
severe performance cost for larger monad stacks [105, Section 4]. For these reasons, we
use free monads with extensible effects which do not suffer from these drawbacks, even
though lowering the performance penalty of free monads (cf. Subsection 4.1.4) is still an
open challenge.

Our work is intended as a framework for abstract interpretation on machine code.
Leveraging monads for this purpose, it is related to work on monadic abstract inter-
preters [165]. Besides the use of monad transformers in that work, there is one crucial
difference: for software, abstract interpretation techniques extract the control flow graph

11https://hackage.haskell.org/package/mtl

75

https://hackage.haskell.org/package/mtl

Sören Tempel Formal ISA Semantics for Extending the Analysis

of the program. Prior work by Sergey et al. uses continuation-passing style semantics for
this [165]. We model the control flow implicitly using lazy evaluation; the next instruction
is only fetched and decoded once it is needed.

4.1.5.3. Binary Software Analysis

Due to the utilization of free monads, we believe our RISC-V ISA model to be a versatile
tool for implementing dynamic software analysis techniques that operate directly on the
machine code level. Prior work has already demonstrated that it is feasible to implement
techniques such as symbolic execution [84] or dynamic information flow tracking [142]
for RISC-V machine code. However, this prior work does not leverage functional ISA
specifications and thus relies on manual modifications of existing interpreters and is not
easily applicable to additional RISC-V extensions or other ISAs (ARM, MIPS, etc.). For
this reason, the majority of existing work on binary software analysis does not operate
directly on the machine code level and instead leverages intermediate languages and lifts
machine code to these languages [29, 41, 169].

This prior work therefore operates on a higher abstraction level and can thus not reason
about architecture-specific details (e.g. instruction clock cycles) during the analysis. By
building dynamic software analysis tools on an abstract ISA model, we can bridge the
gap between the two approaches; we can operate directly on the machine code level while
still making it easy to extend the analysis to additional instructions or architectures. This
is especially important for modular ISAs like RISC-V.

4.1.6. Discussion and Future Work

So far, we have only applied our approach to the RISC-V architecture. Nonetheless,
we believe the concepts described in Subsection 4.1.2.2 to be applicable to other archi-
tectures as well. We have, focused on the RISC-V architecture due to its simplicity as
we consider the main contribution of this section to be the implementation of custom
interpreters on top of a formal ISA model. A possible direction for future work would
be focusing more on modeling aspects by supporting additional RISC-V extensions (es-
pecially from the privileged specification [154]), further RISC-V variants (e.g. 64- and
128-bit RISC-V), and maybe even additional ISAs (e.g. ARM). Alternatively, it would
also be possible to perform further experiments with additional interpreters for our ab-
stract ISA model. We are specifically interested in complementing our prior work on
SymEx-VP, as presented in Chapter 3, with the formal ISA model proposed here. This

76

Sören Tempel Formal ISA Semantics for Extending the Analysis

integration should ease extending SymEx-VP to additional RISC-V extensions or even
additional architectures. More broadly, one end goal of our work in this regard would be
facilitating formal ISA models for the implementation of binary software analysis tools
along the lines sketched in Subsection 4.1.5.3. Advances in this regard are presented in
Section 4.2 and Section 4.3. Compared to the prevailing prior work on binary software
analysis tools—which lifts machine code to an intermediate representation—we believe
that building these tools on top of a formal ISA model also allows easier proofs of their
correctness. An interesting direction for future work would therefore be investigating the
issue of correctness of custom ISA interpreters. As illustrated in Figure 4.1, correctness
proofs are paramount as we need to ensure that both the abstract and the actual seman-
tics correctly implement the behavior mandated by the modeled ISA. Considering that
our approach is specifically designed to support multiple actual semantics—through cus-
tom interpreters—manual validation is infeasible. Instead, it may be possible to leverage
existing proof-assistant definitions for ISAs [5] to prove the correctness of created ISA
interpreters through computer-aided theorem proving.

4.1.7. Conclusion

We have presented a flexible approach for creating functional formal models of instruc-
tion set architectures. The functional paradigm gives a natural and concise way to model
the instruction format on different levels of abstraction, and the structuring mechanisms
allow us to relate these levels. This way, by leveraging free monads, our approach sep-
arates instruction semantics from instruction execution. Contrary to prior work, our
approach does not make any assumptions about the representation of memory/register
values. Therefore, it can be used to implement software analysis techniques such as dy-
namic information flow tracking or symbolic execution; achieving the benefits outlined
in Section 4.1.

We have demonstrated our approach by creating an abstract formal model of the
RISC-V architecture. Based on this formal RISC-V model, we have created a concrete
interpreter—which passes the official RISC-V ISA tests—for the 32-bit base instruction
set and a custom interpreter for information flow tracking as a case study. An evaluation
conducted with the Embench benchmark suite indicates that our concrete interpreter is
faster than prior executable Haskell models of the RISC-V architecture. In future work,
we would like to model additional extensions of the RISC-V architecture, perform further
experiments with additional interpreters for our model, and investigate correctness proofs

77

Sören Tempel Formal ISA Semantics for Extending the Analysis

for these interpreters through computer-aided theorem proving. To stimulate further
research in this direction, we have released our formal RISC-V model as open source
software on GitHub.

4.2. Binary Symbolic Execution using Formal Semantics
In this section, we present a new symbolic execution engine which is based on the for-
mal LibRISCV ISA model described in the previous section. This execution engine
improves upon our prior work on the creation of symbolic ISSs as presented in Chap-
ter 3. Instead of specifying the symbolic semantics manually for each instruction (see
Subsection 3.1.2.3), we build upon the language primitives provided by LibRISCV and
use them as an abstraction layer. This is similar to existing work which transforms the
code to be tested to an IR, such as LLVM IR, and then symbolically executes this IR [49,
54, 41]. In this case, the IR acts as an abstraction layer for the formulation of symbolic
instruction semantics. For a given piece of software in binary form, the IR is obtained
through a lifter which transforms binary code instructions to the IR abstraction [144].
As such, symbolic semantics do not need to be specified manually for every instruction
mandated by the targeted ISA but instead only for the more general IR abstractions.
Furthermore, operating on a higher abstraction level—through an IR—also eases retar-
geting the analysis to different architectures, as the IR itself is architecture-independent.
However, this established approach results in unique challenges when symbolically ex-
ecuting software for embedded devices. Contrary to software for conventional devices
(laptops, desktops, and servers), embedded software interacts with the hardware on a
low abstraction level through highly architecture-specific instructions, e.g. to configure
interrupt handlers. These instructions are essential for the functioning of embedded soft-
ware as they are used to implement context switching or dispatching of event handlers
(see Section 1.1). As these instructions and their impact on the state of the underly-
ing hardware platform are highly architecture-specific, they cannot be represented in
an architecture-independent IR. For this reason, early work on symbolic execution of
such software (e.g. Fie [54]) did not support code using such instructions. More recent
work on Inception [49] attempts to mitigate this issue through a custom architecture-
dependent lifting process and essentially models the low-level hardware state (registers,
stack pointer, etc.) within the IR [49, Section 2.2]. Inception thereby sacrifices a major
benefit of the IR-based symbolic execution approach—architecture independence—and
is subject to errors and inaccuracies in the IR-based ad hoc implementation of the

78

Sören Tempel Formal ISA Semantics for Extending the Analysis

hardware state.12 The symbolic ISS, presented in Chapter 3, was not subject to these
limitations as it accurately executes binary code directly, but—contrary to Fie and
Inception—it is challenging to extend it to additional instructions.

We aim to bridge the gap between IR-based symbolic execution approaches and our
own aforementioned prior work. That is, we want to operate directly on binary code in-
structions (thereby supporting software embedded devices) while still making it possible
to easily extend the analysis to additional instructions and thereby reduce manual effort.
For this purpose, we contribute a novel symbolic execution approach which utilizes the
language primitives of our LibRISCV ISA model as an abstraction layer. Because of the
faithful representation of the ISA semantics, we can directly relate the symbolic execu-
tion to the binary code while still making it easy to extend it to additional instructions
through the utilization of the language primitives. In the following, we present a proto-
type implementation of this approach called BinSym and demonstrate its extensibility
by conducting a case study with the RISC-V M-extension [153, Chapter 7]. Furthermore,
we conduct an experimental comparison with IR-based symbolic execution approaches
proposed in prior work. As part of the experiments, we uncovered several previously un-
known inaccuracies in the RISC-V lifter provided by prior work on angr [169], thereby
illustrating that lifter-induced programming errors and inaccuracies are by no means an
academic issue.

4.2.1. ISA Semantics for Symbolic Execution

In the following, we present our approach and make a case for using formal ISA semantics
as a building block for the implementation of symbolic execution engines for binary code.
Furthermore, we introduce BinSym, a prototype implementation of our approach which
symbolically executes RISC-V binary code.

4.2.1.1. Formal Semantics for Binary Code

While early works on symbolic software execution required access to the source code [32,
162, 31], it is nowadays becoming increasingly popular to operate directly on binary
code [169, 61, 41]. Doing so enables program analysis through symbolic execution, even
if the source code is not available. Furthermore, it ensures that the same code is being
tested that is later deployed in a production environment, thereby enabling reliable
reasoning about low-level details such as memory use or timing, which are particularly

12Any inaccuracy in the lifter may lead to bugs being missed in the tested software [88, Section 2.2].

79

Sören Tempel Formal ISA Semantics for Extending the Analysis

important in the embedded domain. In order to track performed computations and to
formally reason about branch points in a program, executing binary code symbolically
requires implementing symbolic semantics for the binary code instructions provided by
the targeted ISA. Since mainstream ISAs mandate hundreds of instructions, this can be
a cumbersome and error-prone task, especially considering that the symbolic semantics
need to conform to the ISA specification. Otherwise, bugs may be missed in the tested
software. In order to simplify the implementation of symbolic semantics, existing work
does not operate directly on ISA instructions but instead uses IRs (e.g. DBA [13] or
Valgrind VEX [133]) as an abstraction [144]. As illustrated by the gray arrows on the
left-hand side of Figure 4.3, binary code for a given ISA is transformed to this IR using
a lifter. The lifter receives binary code as an input and produces IR as an output, its
implementation is therefore ISA-specific. Conceptually, the lifter thus implicitly provides
an ad hoc implementation of the ISA semantics. This implementation is manually written
and not based on a formal model of instruction semantics. Therefore, it is—as we will
see in Subsection 4.2.2.2—subject to errors. Since the IR is architecture-independent,
behavior that cannot be expressed in an architecture-independent way (e.g. interrupt
handling) is lost during the lifting process [49, Section 2.2]. This prevents the symbolic
execution engine, which implements symbolic semantics on the IR abstraction, from
reasoning about architecture-specific behavior, which is paramount when testing software
for embedded devices.

Fundamentally, the issue with the prevailing IR-based approach is that ISA semantics
and symbolic semantics are specified on different abstraction levels. Therefore, the sym-
bolic execution cannot be directly related to the binary code. We attempt to overcome
this issue by formulating both the ISA semantics and the symbolic semantics on the
same abstraction level. As illustrated by the black path on the right of Figure 4.3, we
achieve this by leveraging existing formal models of ISA semantics [5, 26, 161]. These
formal models provide us with an accurate machine-readable specification that is faith-
ful to the ISA and its mandated instruction semantics. Conceptually, formal models
describe instruction semantics in formal—instead of natural—language using language
primitives. Instead of operating on an IR, our approach uses these language primitives
as an abstraction for both the description of ISA semantics and the description of sym-
bolic semantics. Since both semantics are specified on the same abstraction level, we can
symbolically reason about low-level ISA details such as register file accesses or program
counter changes for interrupt handling. At the same time, we do not need to manually
specify symbolic semantics for every ISA instruction, which would be cumbersome for

80

Sören Tempel Formal ISA Semantics for Extending the Analysis

Formal Model

Binary Code

Intermediate
Representation

Language
Primitives

Symbolic
Execution

Concrete
Execution

Symbolic Semantics ISA Semantics
Symbolic Semantics

LifterISA Semantics

Figure 4.3.: Comparison of IR-based symbolic execution (left) and our approach (right).
In the existing IR-based approach, we cannot refer back to the binary code
from the symbolic execution engine because the ISA semantics are encoded
implicitly in the lifter. In our approach, because of the faithful representation
of the semantics with a formal model, both symbolic and concrete execution
can be related to the binary code.

ISAs with hundreds of instructions. Instead, we only need to specify symbolic semantics
for a handful of language primitives as the instructions are formally described in terms
of these primitives. This enables our approach to accurately operate on the instruction-
level while still allowing the analysis to be easily extended to additional instructions or
even architectures.

Prior work on Sail [5] has demonstrated that it is feasible to describe different architec-
tures (ARM, RISC-V, MIPS, IBM Power, and x86) using the same language primitives.
Related work has also already used formal models of instruction semantics for concrete
software execution [5, 26, 161], but our work is—to the best of our knowledge—the first
which proposes using them for binary analysis through DSE. Building both symbolic
and concrete execution on the same abstraction also allows for their composition and
the reuse of existing components. In the following, we demonstrate this property by
presenting a prototype implementation of our outlined symbolic execution approach.

81

Sören Tempel Formal ISA Semantics for Extending the Analysis

4.2.1.2. Formal Symbolic Execution of RISC-V Binary Code

In order to evaluate our proposed approach, we have created a prototype implementa-
tion that we refer to as BinSym. BinSym symbolically executes binary code for the
open standard RISC-V [153] architecture. We chose RISC-V for our work because, due
to its openness, it has enabled a large body of research on formal ISA specifications.
Furthermore, RISC-V is a modular architecture, i.e. it consists of a base instruction set
and optional extensions, which are implemented on top and can be combined as needed.
Therefore, it benefits from an extensible symbolic execution approach as the specification
is constantly expanding, requiring binary analysis tools to “catch up” by implementing
new extensions. Without formal specifications, this is a manual, error-prone process.

As discussed previously, a variety of different formal ISA specifications for the RISC-V
architecture have emerged in recent years [152]. Naturally, for our BinSym implemen-
tation, we build upon the LibRISCV formal specification presented in Section 4.1, as
it was specifically designed for an application of symbolic execution. In Section 4.1,
LibRISCV has already been used for concrete execution of 32-bit RISC-V machine
code; parts of this concrete interpreter can be reused in BinSym. A comprehensive dis-
cussion of existing work on formal ISA semantics, in the context of binary analysis, is
provided in Subsection 4.2.3.

Language Primitives The premise of our proposed symbolic execution approach is to
use the primitives of a formal ISA model as an abstraction layer. In the following, we
introduce the language primitives that LibRISCV provides to formally describe the
semantics of RISC-V instructions. As an example, we discuss the formal description of
the BEQ (branch-if-equal) instruction. We chose a branch instruction here since these
instructions are central to symbolic execution for reasoning about branch points in a
program. The BEQ instruction is formally described in LibRISCV as follows:13

1 instrSemantics BEQ = do
2 rs1 <- decodeRS1 >>= readRegister
3 rs2 <- decodeRS2 >>= readRegister
4 imm <- decodeImmB
5

6 runIfTrue (rs1 `Eq` rs2) $ do
7 writePC (pc `Add` imm)

13For clarity, the description has been slightly simplified.

82

Sören Tempel Formal ISA Semantics for Extending the Analysis

The formal description starts off by specifying the operands of the instruction (Line 2 -
Line 4). The RISC-V BEQ instruction has two register operands and one immediate
operand, which are encoded in the instruction and extracted in Line 2, Line 3, and
Line 4. The register operands specify the values that should be compared for equality,
while the immediate operand specifies the amount by which the program counter (PC)
is incremented if they are equal [153, Section 2.5]. The comparison and increment of
the program counter are performed in Line 6 - Line 7. Conceptually, the instruction
is formally described in terms of two kinds of primitives: stateful constructs (decode,
readRegister, runIfTrue, and writePC) as well as arithmetic and logic expressions (Eq
and Add). In LibRISCV, the former are modeled using a monad while the latter is just
a polymorphic algebraic data type. In the following, we provide more details on these
primitives and describe how we use them for symbolic execution.

Expression Abstraction In order to build a symbolic execution tool as a custom ISA
interpreter, we need to evaluate arithmetic and logic operations as SMT bit-vector ex-
pressions. For this purpose, we use existing Haskell bindings for the popular SMT solver
Z3 [125] and map constructs of the existing LibRISCV bit-vector expression language
to SMT bit-vector operations using pattern matching:

1 evalE :: Z3.MonadZ3 z3 => E.Expr Z3.AST -> z3 Z3.AST
2 evalE (E.FromInt n v) = Z3.mkBitvector n v
3 evalE (E.ZExt n v) = evalE v >>= Z3.mkZeroExt n
4 evalE (E.SExt n v) = evalE v >>= Z3.mkSignExt n
5 evalE (E.Add e1 e2) = binOp e1 e2 Z3.mkBvadd
6 evalE (E.Sub e1 e2) = binOp e1 e2 Z3.mkBvsub
7 evalE (E.Eq e1 e2) = binOp e1 e2 Z3.mkEq >>= fromBool
8 evalE (E.Slt e1 e2) = binOp e1 e2 Z3.mkBvslt >>= fromBool
9 --- ...

However, we do not want to use SMT expressions for all register and memory values
during symbolic execution of binary code. When executing binary code, there is no clear
distinction between code and data. Conceptually, the next instruction (i.e. code) is also
just a fixed-width value loaded from memory. Representing instructions as SMT values
would result in a significant performance penalty as they would need to be converted
to a concrete value—on each instruction fetch—in order to be decoded, an expensive
operation referred to as concretization. To overcome this limitation, we use concolic exe-
cution in our prototype implementation. As explained in Section 2.3, concolic execution

83

Sören Tempel Formal ISA Semantics for Extending the Analysis

allows for efficient concretization for instruction decoding. This is achieved by execut-
ing the program with concolic values: tuples with a concrete and an optional symbolic
part. Arithmetic and logic operations from the LibRISCV expression language are then
performed on both parts. In order to implement concolic execution, we therefore com-
pose the evalE function shown above (which performs symbolic expression evaluation)
with the existing LibRISCV expression evaluator for concrete execution. The resulting
function performs concolic expression evaluation.

Stateful Constructs In addition to the expression abstraction, we also need to provide
symbolic semantics for the stateful constructs of LibRISCV. As we have seen in the
example BEQ description, these constructs are used to interact with the hardware state
(e.g. the register file or memory). In LibRISCV, they are specified using a Generalized
Algebraic Data Type (GADT) [208]. The resulting data type is called Operations and
is defined as follows:

1 data Operations v r where
2 WriteRegister :: v -> v -> Operations v ()
3 ReadRegister :: v -> Operations v v
4 StoreMem :: ByteSize -> v -> v -> Operations v ()
5 LoadMem :: ByteSize -> v -> Operations v v
6 RunIf :: E.Expr v -> Operations v () -> Operations v ()
7 -- Additional LibRISCV Operations constructors omitted for clarity.

The Operations type is parameterized over a generic type v which is instantiated with
a type representing the values on which the constructs operate (i.e. concolic values in
our case) and a type r which specifies the return type of the operation. Based on these
types, Operations defines constructors used to describe interactions with the hardware
state. For example, WriteRegister (Line 2) takes a register index as well as a value
that should be written to the register (both represented as a generic type v) and returns
an Operations instance parameterized over v that has no meaningful return type, i.e.
returns the unit type (). As illustrated in the prior BEQ example, these constructors are
used within the formal instruction description. Recall that LibRISCV composes con-
structors through the use of free monads [105], thus allowing for compositional semantics
(see Subsection 4.1.2.2). We achieve concolic execution through an interpretation of the
free monad, i.e. the composed constructors of the Operations data type. For this pur-
pose, we implemented custom variants of the register file and the memory that are

84

Sören Tempel Formal ISA Semantics for Extending the Analysis

capable of operating on concolic values. We were able to partially reuse existing imple-
mentations from LibRISCV for this purpose. For example, LibRISCV offers a poly-
morphic implementation of a register file which is parameterized over a value type. We
then map constructors such as ReadRegister, WriteRegister, LoadMem, or StoreMem
to the custom implementation of our register file and memory. This enables us to ex-
ecute RISC-V instructions with operands representing concolic values. As explained in
Section 2.3, we can then use these operands to symbolically reason about branches in the
program. For this purpose, we need to implement custom handling of branch conditions.
Such branch conditions are denoted via the RunIf constructor from the Operations
data type (Line 6), we have already seen it in use through the runIfTrue abstraction
in the formal BEQ description. For concolic execution, we interpret the constructor as
follows: we take the branch according to the concrete value, but if the concolic value
has a symbolic part, then we track the branch condition in an execution trace. From
this execution trace, we iteratively build an execution tree, where each node is a branch
point in the program with a condition that depends—directly or indirectly—on a sym-
bolic value. This binary tree is then used to implement a dynamic symbolic execution
algorithm, which iteratively restarts execution with new input values, as outlined in
Section 2.3.

Summary We have presented BinSym, an exemplary prototype implementation of
our accurate and extensible symbolic execution approach for the RISC-V architecture.
BinSym is written in roughly 1000LOC in Haskell and implements standard dynamic
symbolic execution [10, Section 2.1] with random path selection [10, Section 2.2] and
an address concretization memory model [10, Section 3.2]. The implementation is freely
available on GitHub.14

4.2.2. Evaluation

In the following, we evaluate our approach using the presented BinSym symbolic ex-
ecution engine. Regarding the evaluation, we are interested in the following research
questions: (a) can the symbolic analysis be easily extended to support additional in-
structions? (b) does instruction-level symbolic execution offer competitive performance
in comparison with IR-based symbolic execution?

14https://github.com/agra-uni-bremen/binsym

85

https://github.com/agra-uni-bremen/binsym

Sören Tempel Formal ISA Semantics for Extending the Analysis

4.2.2.1. Extensibility Case Study

A major advantage of IR-based symbolic execution approaches is that they can be easily
extended to additional instruction set extensions or even architectures, as doing so only
requires changes to the lifter and not to the symbolic execution engine itself. In the
following, we demonstrate that we can achieve the same property in our approach using
the language primitives of a formal ISA model; the key here is the compositionality of
the LibRISCV semantics. For this purpose, we conduct a case study with our BinSym
symbolic execution engine and the underlying LibRISCV formal model used by our
prototype implementation. In order to support additional instructions in our prototype,
we first need to express these instructions in the formal language used by LibRISCV.
As long as these additional instructions can be expressed in terms of the existing lan-
guage primitives, no changes are necessary to BinSym. However, some instructions may
require modifications of the language primitives, for example, new operations in the
LibRISCV expression abstraction. In this case, BinSym will also need to be modified
to provide symbolic semantics for these operations. Fortunately, the modular design of
our prototype implementation makes it easy to perform such modifications. In the fol-
lowing, we conduct a case study with the standardized RISC-V instruction set extension
for integer multiplication and division (the M-extension) to demonstrate this property.

The M-extension specifies eight additional RISC-V instructions for multiplication and
division [153, Section 7]. In order to formally describe these instructions, we added five
additional constructors to the expression abstraction:

1 data Expr a =
2 -- Existing LibRISCV constructors omitted for clarity.
3 Mul (Expr a) (Expr a) |
4 UDiv (Expr a) (Expr a) |
5 SDiv (Expr a) (Expr a) |
6 URem (Expr a) (Expr a) |
7 SRem (Expr a) (Expr a)

The added constructors are binary operations which perform the following arithmetic
operations: multiplication, unsigned/signed division, and unsigned/signed division with
remainder. Furthermore, we added support for these new constructors to the existing
LibRISCV interpreter for concrete execution. As explained in Subsection 4.2.1.2, this
is necessary as we reuse this interpreter for concolic execution. The concrete interpreter
also passes the official RISC-V ISA for the M-extension, which indicates that it has been

86

Sören Tempel Formal ISA Semantics for Extending the Analysis

modeled correctly.15 Based on the added multiplication and division operations, we were
able to formally describe the eight instructions of the M-extension using the LibRISCV
language primitives. The formal description of all eight instructions requires 60 lines
of Haskell code and is available as part of the publication artifacts. As an example,
the formal description of the DIVU instruction—which performs division of unsigned
integers—looks as follows [153, Section 7.2]:

1 instrSemantics DIVU = do
2 (r1, r2, rd) <- decodeAndReadRType
3 let cond = fromImm r2 `Eq` fromInt 0
4 runIfElse cond
5 do $ WriteRegister rd (fromInt 0xFFFFFFFF)
6 do $ WriteRegister rd (r1 `UDiv` r2)

The DIVU instruction interprets the register operands as unsigned integers and divides
them using the new UDiv operation (Line 6). As per the RISC-V specification, the
instruction also has special handling for division by zero and returns 232− 1 in this case
(i.e. 0xFFFFFFFF, see Line 5) [153, Table 7.1]. Naturally, this case distinction within the
instruction is also included in the symbolic reasoning performed by the BinSym symbolic
execution engine (e.g. if the divisor is an unconstrained symbolic value). In order to
support the formally described eight additional instructions from the M-extension in
BinSym, we needed to add symbolic semantics for the new division and multiplication
operations. As explained in Subsection 4.2.1.2, this is achieved by mapping them to Z3
expressions:

1 evalExpr :: Z3.MonadZ3 z3 => E.Expr Z3.AST -> z3 Z3.AST
2 -- ...
3 evalExpr (E.Mul e1 e2) = binOp e1 e2 Z3.mkBvmul
4 evalExpr (E.SDiv e1 e2) = binOp e1 e2 Z3.mkBvsdiv
5 evalExpr (E.UDiv e1 e2) = binOp e1 e2 Z3.mkBvudiv
6 evalExpr (E.SRem e1 e2) = binOp e1 e2 Z3.mkBvsrem
7 evalExpr (E.URem e1 e2) = binOp e1 e2 Z3.mkBvurem
8 -- ...

No additional changes are necessary in BinSym to support the M-extension as otherwise,
the formal description for these new instructions only relies on existing LibRISCV
language primitives.
15The RISC-V tests provide extensive unit tests for each instruction, including common edge cases.

Refer to https://github.com/riscv/riscv-tests for more information.

87

https://github.com/riscv/riscv-tests

Sören Tempel Formal ISA Semantics for Extending the Analysis

Note that the outlined changes to the LibRISCV expression abstraction were only
necessary as the original LibRISCV version—presented in Section 4.1—only supported
the RISC-V base instruction set. We envision that LibRISCV will support all com-
mon RISC-V extensions in the future and prior work on similar formal ISA models has
demonstrated that this is feasible [5, 26, 161]. Nonetheless, the ability to extend the sym-
bolic analysis to additional instructions is an important property to also support custom
domain-specific instructions, support for which is particularly relevant when analyzing
software for embedded systems [51, Section 2]. In this context, the case study serves to
demonstrate that our approach can be easily extended to support additional instruc-
tions. In the next section, we evaluate the performance of our prototype implementation
and also use instructions of the M-extension for this purpose.

4.2.2.2. Performance Benchmarks

Given the large state space of real-word applications, good execution performance is
a vital property of any symbolic execution engine. In the symbolic execution domain,
we can distinguish concrete and symbolic execution performance. Symbolic execution is
only performed when the executed code interacts with symbolic variables. As explained
in Subsection 4.2.1.2, we reuse the concrete interpreter from LibRISCV for concrete
instruction execution in our BinSym symbolic execution engine. The performance of
this concrete interpreter has already been evaluated in Subsection 4.1.4. Therefore, we
focus on symbolic execution performance in this section. For this purpose, we perform
experiments with synthetic benchmarks that interact heavily with symbolic variables
and compare the execution time with existing symbolic execution engines.

Since BinSym executes 32-bit RISC-V binary code symbolically, we only conduct a
comparison with prior work that also supports RISC-V. Apart from our own work on
SymEx-VP (Chapter 3), we are presently aware of the following engines which fulfill
this criterion: angr [169] which lifts RISC-V binary code to Valgrind VEX [133] and
BinSec [61] which lifts binary code to DBA [13].16 Comparing these engines is challeng-
ing; they implement different symbolic execution algorithms and target different kinds of
software. For example, SymEx-VP is explicitly designed to test software for embedded
devices, while BinSec was primarily designed for and evaluated on Unix programs (i.e.
software for non-embedded devices). Additionally, BinSec implements static symbolic
execution while SymEx-VP and BinSym implement DSE [10]. In order to compare
16Technically, BAP [29] also supports RISC-V binary code but the public open source release was

insufficiently documented for us to get its symbolic execution plugin to work.

88

Sören Tempel Formal ISA Semantics for Extending the Analysis

Table 4.2.: Average execution time as an arithmetic mean for five synthetic bench-
mark applications, each executed with four symbolic execution engines five
times respectively. The last column specifies the standard derivation. Engines
marked with a † symbol did not discover all execution paths on the given
benchmark (compare the #Paths column).

Benchmark Engine #Paths Mean Time Derivation

base64-encode

BinSym 6250 169.7 s 0.88 s
SymEx-VP 6250 217.5 s 1.81 s

BinSec 6250 229.2 s 2.27 s
angr † 125 32.8 s 0.41 s

bubble-sort

BinSym 720 52.1 s 0.03 s
SymEx-VP 720 44.2 s 0.42 s

BinSec 720 82.3 s 0.44 s
angr 720 256.6 s 1.16 s

is-prime

BinSym 101 98.2 s 0.44 s
SymEx-VP 101 129.5 s 0.53 s

BinSec 101 135.7 s 1.52 s
angr 101 207.3 s 1.92 s

insertion-sort

BinSym 5040 67.0 s 0.02 s
SymEx-VP 5040 122.3 s 0.83 s

BinSec 5040 128.4 s 0.90 s
angr 5040 392.8 s 1.64 s

uri-parser

BinSym 1390 53.8 s 0.41 s
SymEx-VP 1390 67.2 s 0.43 s

BinSec 1390 94.5 s 0.54 s
angr † 1386 321.9 s 1.76 s

89

Sören Tempel Formal ISA Semantics for Extending the Analysis

Figure 4.4.: Visualization of the raw data from Table 4.2, i.e. average execution time as
an arithmetic mean over five executions per benchmark (lower is better).

these different tools, we came up with a set of synthetic portable benchmarks that are
operating system independent (e.g. sorting algorithms or parsers). Similar benchmark
applications have been used in prior work for evaluation purposes [49, Section 4.2]. Since
we focus on symbolic execution performance, these benchmarks operate on a fixed-size
input of symbolic variables. The size of the symbolic input has been adjusted across all
benchmarks to yield similar execution time results. Furthermore, to account for differ-
ences regarding implemented symbolic execution algorithms, special care has been taken
to ensure that all benchmarks are fully explorable within a reasonable time span, i.e. that
all engines can discover the same amount of execution paths on all benchmarks.17 Sim-
ilarly, the benchmark applications also do not access memory with symbolic addresses,
thereby avoiding that different memory models affect the evaluation results [25]. Lastly,
all tested symbolic execution engines have been configured to use Z3 [125] as an SMT
solver to increase comparability and avoid benchmarking the underlying solvers of these
engines.

In total, we executed five synthetic benchmark applications as 32-bit RISC-V binary
code with four symbolic execution engines. Each benchmark application has been ex-
ecuted five times with each engine in a Docker container on an Intel Xeon Gold 6240
system running Ubuntu 22.04. The arithmetic mean over all five executions as well as
the standard derivation per benchmark and execution engine are given in Table 4.2.

17Otherwise, some symbolic execution engines may discover more time-consuming paths that are not
explored by other engines, thus distorting the benchmark results.

90

Sören Tempel Formal ISA Semantics for Extending the Analysis

Furthermore, the results are visualized as a grouped bar chart in Figure 4.4. In Fig-
ure 4.4, the absolute execution time—as the arithmetic mean over all five executions—is
given in seconds on the y-axis while the x-axis lists the benchmark applications. For
each benchmark application, four bar charts are given which correspond to the afore-
mentioned symbolic execution engines; from left to right: BinSym (blue), SymEx-VP
(yellow), BinSec (green), and angr (red). For the base64-encode benchmark, no re-
sults are given for angr as it failed to discover 6125 execution paths (see Table 4.2).
These execution paths were found by all other tested engines. This is a programming
error in angr’s RISC-V lifter, which may cause angr to miss bugs in tested software and
illustrates the importance of implementing the ISA semantics correctly. Similarly, angr
also misses four paths on the uri-parser, but these four paths do not impact the exe-
cution time results in Figure 4.4 significantly. Nonetheless, the uri-parser benchmark
results also affirm that there are bugs in angr’s lifter for the RISC-V architecture. We
have further investigated and reported these bugs to angr developers.18 The bugs and
the benchmark results can be reproduced using the paper artifacts [186].

Regarding the interpretation of the results, the standard derivation (given in Ta-
ble 4.2) is negligible and execution time results are consistent across all benchmark
applications: angr is by far the slowest engine, BinSec, SymEx-VP, and BinSym have
similar execution time results, with BinSym being faster than BinSec and SymEx-VP
on most benchmarks. An exception in this regard is the bubble-sort benchmark, where
SymEx-VP is slightly faster than BinSym. We attribute this to the fact that this
benchmark is solver-intensive and—contrary to BinSym—SymEx-VP employs addi-
tional SMT solver optimizations on top of Z3 that have been pioneered by KLEE (e.g.
a counterexample cache), which seem to be beneficial for this particular benchmark [32,
Section 3.3]. SymEx-VP is slower than BinSym on all other benchmarks because it ex-
ecutes software in a SystemC [180] simulation environment. SystemC is a C++ library for
modeling hardware peripherals, it is used by SymEx-VP to support execution of embed-
ded firmware, which interacts closely with such peripherals but comes with a significant
performance penalty (see Section 3.1). BinSym does not support hardware peripheral
models and is therefore faster. Similarly, angr is the slowest symbolic execution engine as
it is the only engine which is written in an interpreted scripting language (Python), while
all other engines are written in compiled languages (C/C++, OCaml, and Haskell). As
prior work pointed out, this makes angr slower but easier to modify—similar to the prior
SystemC remark—a not to be underestimated aspect which is difficult to account for

18https://github.com/angr/angr-platforms/pull/64

91

https://github.com/angr/angr-platforms/pull/64

Sören Tempel Formal ISA Semantics for Extending the Analysis

in an empirical performance evaluation [144, Section 6.4]. Furthermore, BinSec spawns
a new Z3 process for each query when configured to use the Z3 solver while BinSym,
SymEx-VP, and angr use the API provided by the Z3 library. Since the benchmarks
require solving a lot of queries, as they focus on evaluating symbolic execution perfor-
mance, process forking overhead can contribute significantly to the overall execution
time.

In conclusion, the benchmarks nonetheless demonstrate that the well-known perfor-
mance costs associated with free monads [105, Section 2.6] are not a bottleneck for the
implementation of a symbolic execution engine, as BinSym offers competitive execu-
tion time performance compared to existing symbolic execution engines for binary code.
Especially in comparison to our own prior work on SymEx-VP, which implements the
same symbolic execution algorithms without the utilization of formal ISA semantics.
Comparing these results with additional prior work is difficult as different design deci-
sions contribute to the performance of a symbolic execution engine and isolating them
is challenging [144, Section 6.2]. Most importantly, the comparison with BinSec is lim-
ited as it only provides preliminary support for the Z3 solver, forking a new Z3 process
for each query and thereby incurring a significant performance penalty. Furthermore, we
also uncovered bugs in angr’s manually-written lifter for the RISC-V architecture. These
bugs can cause angr to miss programming errors in real-world software and illustrate the
importance of implementing the ISA correctly. By leveraging formal models of instruc-
tion semantics, we make a significant contribution towards ensuring the correctness of
symbolic execution engines with regard to the ISA specification.

4.2.3. Related Work

There is a large body of related work on symbolic execution [10]. Early works in this
domain required access to the source code [32, 162, 31]. The most popular source-based
symbolic execution tool is KLEE [32]. KLEE requires the source code to be translated
to LLVM IR using the LLVM compiler infrastructure and then symbolically executes
the IR. Initial work on symbolic execution of binary code builds upon KLEE and there-
fore transforms binary code to LLVM IR through an ISA-specific lifting process [41, 54,
49]. In recent years, additional tools have emerged that use other IRs such as Valgrind
VEX [133, 169], DBA [13, 61], or even custom ones [29]. As discussed in Section 4.2, it is
challenging to support ISA-specific instructions in such approaches. Unfortunately, these
instructions are commonly used in embedded software and without supporting them such

92

Sören Tempel Formal ISA Semantics for Extending the Analysis

software cannot be symbolically executed. Prior work on Inception acknowledges this
problem and attempts to mitigate it by modeling the architecture state (register file,
pending interrupts, et cetera) within the lifted IR [49]. Contrary to our work, this model
is manually written and not based on a formal specification; thus, its implementation
is error-prone and not easily extensible. A comparison of source-based and lifting-based
approaches is provided by Poeplau et al. [144]. As an alternative to binary lifting, prior
work on Qsym has achieved symbolic execution through binary instrumentation and
tightly couples it with native instruction-level execution [209]. However, this work is
not applicable to the embedded domain, as native execution on a constrained embed-
ded device is significantly slower than emulation. Similar to BinSym our own work on
SymEx-VP also operates directly on binary code and symbolically executes RISC-V bi-
nary code, however, SymEx-VP manually specifies symbolic semantics for each RISC-V
instruction and is therefore not extensible. Furthermore, as the symbolic semantics are
specified manually, there is a large margin for error, which we mitigate in our work
through machine-readable formal models of instruction semantics.

Prior work has presented different approaches for providing formal ISA semantics [5,
161, 26]. The most comprehensive work in this domain is Sail which provides formal
semantics for ARM, RISC-V, MIPS, IBM Power, and x86 using a custom DSL [5].
Contrary to other prior work, Sail is not directly executable; the DSL needs to be
translated to C or OCaml in order to achieve binary code execution. As execution is
the focus of our work, we build upon an executable formal model which is written in
a general-purpose programming language. Several executable formal models have been
presented in related work [26, 161]. We made use of work on LibRISCV (presented in
Section 4.1) for the prototype implementation of our symbolic execution approach, as it is
specifically tailored to the creation of custom ISA interpreters in the lineage of prior work
on modular interpreters [116, 115, 177]. Modular interpreters specify program semantics
in a composable and modular way and therefore ease the creation of custom program
interpreters. Related work on Tsl has applied these concepts to the creation of abstract
interpreters [117]. Furthermore, Goel et al. also utilize formal semantics for automated
proofing of properties on x86 binary code [73]. This approach is based on a partial, formal
model of the x86 architecture [74]. It is closely related to our work as it also performs
symbolic execution but focuses on completeness to prove properties about the executed
code; therefore, its applicability to real programs is limited, e.g. efficient handling loops
is posed as a challenge for future work [73, Section 6]. In contrast, our approach is
specifically designed for program analysis utilizing DSE to improve scalability.

93

Sören Tempel Formal ISA Semantics for Extending the Analysis

4.2.4. Discussion and Future Work

In future work, we would like to expand the underlying formal ISA model for the RISC-V
architecture provided by LibRISCV. With our enhancements, LibRISCV supports the
32-bit base instruction set and the M-extension. We would be interested in modeling ad-
ditional standardized extensions; prior work on similar executable Haskell models has
demonstrated that this is feasible [26, 161]. In this context, it is also deemed worthwhile
to investigate if such executable ISA models can be expanded to support additional
architectures such as MIPS or ARM. Apart from such modeling aspects, we are also
interested in correctness. That is, we would like to prove that the symbolic instruction
semantics of our BinSym prototype implementation conform to the RISC-V specifi-
cation. Doing so requires proofing the formal model of LibRISCV and the symbolic
interpreter provided by BinSym for the formal model. For this purpose, we want to
leverage existing theorem prover definitions for Coq and Isabelle provided by prior work
for different ISAs [5]. Compared to prior work on IR-based symbolic execution, employ-
ment of formal ISA semantics eases performing such proofs.

4.2.5. Conclusion

We have presented a novel approach for symbolic execution of binary code that accu-
rately operates on the instruction-level. In order to cope with the complexity of modern
ISAs, we leverage formal models of instruction set semantics and thereby allow the
analysis to be easily extended to additional instructions. By operating directly on bi-
nary code instructions, our approach can easily support architecture-specific interactions
with the low-level hardware state (e.g. register file accesses for interrupt handling), which
are common in the embedded domain. This is an improvement over prior work on IR-
based symbolic execution which does not support such interactions (as it operates on
a portable architecture-independent IR) and is therefore incapable of symbolically exe-
cuting embedded software. In comparison to our own prior work on SymEx-VP, which
also does not operate on an IR, the compositionality of the semantics of the underlying
formal model makes our proposed approach easily support additional instruction set ex-
tensions, which is not possible with SymEx-VP. In future work, we plan to expand the
comprehensiveness of the formal ISA model we used in our prototype implementation.
Additionally, we want to investigate correctness proofs for both the formal ISA model
and the symbolic semantics specified on top of it. As evident by our experiments with
prior work on angr, correctness is vital in this domain, as otherwise bugs may be missed.

94

Sören Tempel Formal ISA Semantics for Extending the Analysis

4.3. Generation of Instruction Set Simulators
In Section 4.2, we have presented a novel symbolic execution approach which derives
a symbolic ISS from a formal ISA model. For this purpose, we built a custom ISA
interpreter on top of a free monad construction in the Haskell programming language.
Naturally, this ISA interpreter is also written in Haskell and therefore as-is incompatible
with the SystemC environment modeling approach presented in Chapter 3 which is
based on C/C++. In this section, we outline a path towards an integration of SystemC
hardware models with our formal RISC-V ISA model. For this purpose, we pursue a
complementary direction regarding the use of formal ISA models: code generation. That
is, instead of building an ISS as a custom ISA interpreter directly in Haskell, we generate
a C/C++ ISS from the LibRISCV Haskell description. Thereby achieving an integration
of LibRISCV with VPs such as SymEx-VP or riscv-vp. This allows us to bridge the
gap between our contribution in the environment modeling domain (Chapter 3) and our
work on formal semantics for symbolic execution (Section 4.1 and Section 4.2). In this
section, our contributions towards this goal are:

1. An improved version of the LibRISCV ISA model, originally presented in Sec-
tion 4.1, which has been enhanced for the purpose of code generation.

2. A C/C++ code generator that generates a minimal ISS which can be easily inte-
grated with different existing simulators.

3. A modified version of the popular Spike [200] and riscv-vp [85] simulators, which
use a generated ISS (instead of a manually written one).

To the best of our knowledge, the ISS generation approach presented here is the first
which is easily applicable to a variety of existing RISC-V simulators. Thereby easing the
application of our proposed symbolic execution approach to additional VPs and simula-
tors in general. The experiments we have conducted with Spike [200] and riscv-vp [85]
confirm the feasibility of our approach for this purpose. Furthermore, performed bench-
marks indicate that an ISS generated using our tooling achieves competitive simulation
speed compared to a manually written one while still passing the official RISC-V ISA
tests.

95

Sören Tempel Formal ISA Semantics for Extending the Analysis

Instruction Set Simulator

MemIf

RegFile

ExecStateIn
te

rfa
ce

M
od

el

Instruction
Execution

Unit

SystemC TLM Bus

Peripherals Memory

Code Gen.

ISA Model

Firmware

utilizes

generates requires executes

Figure 4.5.: Overview of our minimally invasive ISS generation approach.

4.3.1. Approach

In the following, we present our approach for minimally invasive generation of ISSs from
formal ISA models. For this purpose, we first provide a high-level overview and then
discuss different components of our approach in greater detail.

4.3.1.1. Overview

Figure 4.5 provides an overview of our approach and includes an illustration of the soft-
ware architecture of an ISS with some VP-specific components (e.g. a SystemC TLM
bus). Components added for the application of our approach are highlighted using a
dashed box. The ISS in Figure 4.5 consists of different internal components and is re-
sponsible for executing a firmware image as faithful to a real processor as possible. Re-
garding the internal ISS components, we differentiate between the instruction execution
unit (which is responsible for the execution part of the fetch-decode-execute cycle) and

96

Sören Tempel Formal ISA Semantics for Extending the Analysis

architectural state components (e.g. the register file) which are required for instruction
execution but are conceptually separate components. We concentrate on the generation
of the instruction execution unit, where the majority of modifications for an integration
with symbolic execution occur (see Subsection 3.1.2.3 and Section 4.2). While we focus
on concrete execution for now, we can prospectively ease the application of our proposed
symbolic execution approach to additional VPs and simulators by generating the execu-
tion unit from a formal model. In order to generate this component, the code generation
tool needs to be able to emit code that interacts with the architectural state components
to yield code which implements the instruction semantics (e.g. to write a register). Since
the API of these components is highly simulator- and vendor-specific—and we want to
be able to support different existing simulators—we leverage a custom interface model
for our approach. This interface model provides a generic API for common operations
(e.g. writing/reading registers or accessing memory). The generic API itself is a set of
C function prototypes which define a simulator-agnostic interface for performing these
common operations (see Subsection 4.3.1.3). These functions need to be implemented
manually once on a per-simulator basis by mapping them to the internal interfaces pro-
vided by the simulator. Since simulator-specific code is abstracted through the generic
API, the code generation tool is itself applicable to different RISC-V simulators (see
Subsection 4.3.2.1). While we believe the outlined approach to be practical for different
ISAs, we focus on the RISC-V to allow for an integration with riscv-vp and—in future
work—SymEx-VP. In the next subsection, we present enhancements of LibRISCV to
allow its utilization for code generation purposes.

4.3.1.2. ISA Model

As discussed in Section 4.3, we are using the existing LibRISCV formal ISA model for
our approach. The benefit of LibRISCV in the context of code generation is that—in
contrast to prior work—it describes instructions semantics in isolation without providing
a formal description of other ISA aspects such as memory behavior or decoding. This
allows us to only generate the code implementing instruction semantics (the instruction
execution unit) from the formal specification while retaining other parts as-is, thereby
making our approach minimally invasive and easing the integration with existing simu-
lators. Furthermore, for an implementation of symbolic execution, we primarily need to
make modifications to the code implementing instruction semantics and do not need to
change the decoder, for example.

As per Section 4.1, LibRISCV leverages a Haskell EDSL for the formal description

97

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 semantics LBInst{rd=dest, rs1=reg, imm=off} = do
2 base <- readRegister reg
3 byte <- loadByte (base `Add` off)
4 writeRegister dest (SExtByte byte)

Listing 4.8.: Simplified description of LB instruction semantics in LibRISCV.

of RISC-V instruction semantics. Recall that this EDSL consists of two components:
(1) primitives for describing interactions with architectural state components (e.g. the
memory) and (2) an expression language for performing operations on memory/register
values. In order to illustrate the interaction with architectural state components, the
formal description of the RISC-V LB instruction in this EDSL is provided in Listing 4.8.
The semantics of this instruction are described in terms of the readRegister (Line 2),
loadByte (Line 3), and writeRegister (Line 4) primitives which correspond to changes
of the architectural state. Furthermore, operations on retrieved register/memory values
are modeled using the aforementioned expression language, i.e. the Add and SExtByte
constructors in Listing 4.8. For the purpose of code generation, we need to map con-
structors of the LibRISCV expression language to C/C++ expressions. Additionally, we
need to map the readRegister, writeRegister, etc. primitives to functions provided
by our interface model.19

In order to do so, we further enhanced the existing ISA model for code generation
purposes. As discussed in Section 4.1, LibRISCV was originally intended for building
custom ISA interpreters directly in Haskell. For this reason, it originally separated in-
struction decoding from instruction execution (i.e. the decoding is not part of the formal
model; see Subsection 4.1.3.1). This can be illustrated by considering the formal de-
scription of the LB instruction in Listing 4.8 again. The semantics of this instruction are
defined over a record type constructor (LBInst) in Line 1 which represents a decoded LB
instruction. The different members of this record type are assigned to variables; the val-
ues of these variables correspond directly to integer values (e.g. 15 for accessing register
x15) and are hence not captured by the formal description. To overcome this limita-
tion, we added additional primitives to LibRISCV to express decoding operations as
part of the instruction semantics descriptions. The resulting, enhanced description of
the LB instruction is shown in Listing 4.9. Contrary to the description in Listing 4.8,

19Note that this is conceptually similar to the BinSym symbolic execution implementation presented
in Subsection 4.2.1.2. In technical terms, both the symbolic execution as well as the code generation
are just interpreters for the free monad construction provided by LibRISCV.

98

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 semantics LBOpcode = do
2 dest <- decodeRD
3 base <- decodeRS1 >>= readRegister
4 off <- decodeImmI
5

6 byte <- loadByte (base `Add` off)
7 writeRegister dest (SExtByte byte)

Listing 4.9.: Description of the LB instruction with our LibRISCV changes.

1 semantics LBOpcode = do
2 (dest, base, off) <- decodeAndReadIType
3 byte <- loadByte (base `Add` off)
4 writeRegister dest (SExtByte byte)

Listing 4.10.: Final refinement of LB instruction semantics in LibRISCV.

this version is only parameterized over the instruction opcode (LBOpcode) and then uses
the new primitives decodeRD, decodeRS1, and decodeImmI to obtain additional infor-
mation about the current instruction (Line 2 - Line 4). Since the description is now more
verbose, we added an abstraction to define the instruction type, as mandated by the
RISC-V specification [153, Section 2.2], as part of the formal description. The actual de-
scription of the LB instruction—using our enhanced version of LibRISCV—is therefore
less verbose and depicted in Listing 4.10. Notably, it has the same length as the original
description (Listing 4.8).

The new instruction decoding primitives that we have added to the LibRISCV ISA
model allow us to map these to decoding functions provided by RISC-V simulators
using our interface model. More details on interface modeling will be provided in the
next subsection.

4.3.1.3. Interface Model

The interface model is the central prerequisite for generating a simulator-agnostic ISS
as the generated implementation of instruction semantics will need to interface with ex-
isting components of a simulator (e.g. the register file). Since the C/C++ code—emitted
by our code generation tool—should be simulator-agnostic, we introduce the interface
model as an additional abstraction layer within the simulator. The interface model pro-
vides a generic C/C++ API for accessing the aforementioned components; this API is

99

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 /* Register file */
2 uint32_t read_register(void *core, unsigned idx);
3 void write_register(void *core,
4 unsigned idx,
5 uint32_t value);
6

7 /* Byte-addressable memory */
8 uint8_t load_byte(void *core, uint32_t addr);
9 uint16_t load_half(void *core, uint32_t addr);
10 uint32_t load_word(void *core, uint32_t addr);
11 /* ... */

Listing 4.11.: Excerpt of the generic API provided by the interface model.

used by the code generator tool and needs to be implemented manually once for each
targeted simulator. An excerpt of the generic API is shown in Listing 4.11, the full
API description is available separately.20 As illustrated in this figure, the API consists
of a set of C functions which are parameterized over a void pointer. These void point-
ers are converted to simulator-specific types internally in the implementation of these
functions. We decided against utilizing C++ abstractions (such as abstract classes) for
this purpose to also support RISC-V simulators that are purely written in C. Presently,
the generic API consists of 19 C functions and provides an interface for the register
file, the program counter, the memory, and the decoder of a RISC-V simulator. Relying
solely on a functional abstraction eases implementing this generic API as an imple-
mentation is essentially a mapping of the defined generic functions to simulator-specific
ones. Therefore, these functions will be inlined by the C/C++ compiler in the common
case and hence the additional interface model abstraction has minimal to no impact on
simulation performance (see Subsection 4.3.2.3). We will further discuss the interface
model implementation for Spike and riscv-vp in Subsection 4.3.2.1. In the following,
we will introduce our simulator-agnostic code generation tool and illustrate how this
tool interacts with the interface model.

4.3.1.4. Code Generation

We use the previously described ISA and interface models to implement a simulator-
agnostic code generation tool. As depicted in Figure 4.5, the tool generates a simulator-
20https://github.com/agra-uni-bremen/formal-iss/tree/fdl-2023#readme

100

https://github.com/agra-uni-bremen/formal-iss/tree/fdl-2023#readme

Sören Tempel Formal ISA Semantics for Extending the Analysis

LibRISCV ISA Model

Unparser for C/C++

Code
Generator

Architectural
State Primitives

Expression
Language

AST C/C++ Code

passed to passed to

creates

generates

Figure 4.6.: Interaction between the code generator and the LibRISCV ISA model.

agnostic instruction execution unit, i.e. the code implementing the RISC-V instruction
semantics. For this purpose, we build on the formal description of these semantics pro-
vided by LibRISCV. As discussed in Subsection 4.1.3, the formal ISA model consists
conceptually of two components: primitives for describing interactions with the architec-
tural state components and an expression language for describing operations on regis-
ter/memory values that were obtained through these primitives. All instruction seman-
tics are formally described using these components. In order to automatically generate
code from this formal description, we need to build a code generator in Haskell which
receives these EDSL components as inputs. As discussed in Subsection 4.1.3.3, the code
generator then acts as an interpreter for the LibRISCV EDSL, transforming its compo-
nents into the desired representation. As part of this transformation, we generate code
for all 26 primitives of the EDSL, e.g. mapping the readRegister primitive to C/C++

code retrieving a register value through the interface model. Therefore, the desired rep-
resentation is a C/C++ Abstract Syntax Tree (AST) in our case. The creation of this
AST from the formal ISA model is illustrated in Figure 4.6.

As depicted in Figure 4.6, code implementing instruction semantics is created from
this generated AST using an unparser (also called a pretty printer). Conceptually, an
unparser is the opposite of a parser. As shown in Figure 4.6, it serializes a given AST to
a chosen output format (C/C++ source code in our case) [94, 201, 87]. By employing an

101

Sören Tempel Formal ISA Semantics for Extending the Analysis

unparser, we can ensure the syntactic correctness of the generated code, compared to—
for example—generating the code directly through string concatenation. This enables
straightforward adjustments of the generated code and eases the application of our
approach to simulators written in other programming languages. The implementation
of the unparser (i.e. the translation from the AST to the C/C++ code) makes use of
the existing language-c21 Haskell library. As shown in Figure 4.6, our code generation
tool is in this context responsible for generating an AST that is passed to the unparser
provided by language-c. The generation of this AST is based on the formal instruction
semantics obtained from LibRISCV.

As part of the AST generation, we create one C/C++ function for each formally de-
scribed RISC-V instruction. As an example, the generated function that implements the
LB instruction is shown in Listing 4.12. Each generated function receives a void pointer
to a simulator-specific processor abstraction (core), the program counter of the current
instruction (instrPC), and a void pointer to a simulator-specific instruction abstraction
(instr) as function arguments. Naturally, since the code is automatically generated, it
heavily nests function calls and is not optimized for human readability. Nonetheless, it is
possible to illustrate the interaction with the aforementioned generic API of the interface
model using this example. The function body shown in Line 5 - Line 8 of Listing 4.12
uses the write_register, read_register, and load_byte functions from the generic
API (see Listing 4.11) to interact with the register file and memory implementation.
These functions receive the processor abstraction (core) as a void pointer function ar-
gument and cast this pointer to a simulation-specific type internally to implement the
operation.22 Furthermore, the generated code in Listing 4.12 also obtains information
about the instruction (register and immediate) using the instr_rs1 and instr_immI
functions of the interface model. Arithmetic operations are performed on these values
by mapping the Add operation from LibRISCV’s expression language (see Listing 4.10)
to the + operator provided by C/C++. Similarly, the sign-extension from Listing 4.10
(SExtByte) is implemented in Listing 4.12 using integer type casts.

By leveraging the interface model, the code generation tool itself remains entirely
simulator-agnostic. The tool is a standalone Haskell binary written in roughly 750LOC
which depends on the LibRISCV Haskell library (for the formal RISC-V model) and
the language-c library (for C/C++ unparsing). In the next section, we illustrate that

21https://hackage.haskell.org/package/language-c
22Refer to Subsection 4.3.2.1 for more information on the simulator-specific implementation of the

interface model for Spike and riscv-vp.

102

https://hackage.haskell.org/package/language-c

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 static inline void exec_lb(void * core,
2 uint32_t instrPC,
3 void * instr)
4 {
5 write_register(core, instr_rd(instr),
6 (int32_t)(int8_t)load_byte(core,
7 read_register(core,
8 instr_rs1(instr))+instr_immI(instr)));
9 }

Listing 4.12.: Automatically generated C/C++ code for the LB instruction.

we can easily employ this tool—and our general approach—for automatically generating
an execution unit for different existing RISC-V simulators, thereby demonstrating that
minimally invasive ISS generation is possible.

4.3.2. Evaluation

In the following, we evaluate our approach in terms of generalizability, conformance, and
simulation performance. In this regard, we have concerned ourselves with the following
research questions: (a) is the approach generalizable in the sense that it can be applied to
different RISC-V simulators? (b) does the generated ISS conform to the instruction se-
mantics mandated by the RISC-V specification? (c) does the original, manually written,
ISS have better simulation performance than the generated one? We present experi-
ments, designed to answer these questions, in the following subsections. Each subsection
concerns itself with one research question.

4.3.2.1. Generalizability

Our proposed ISS generation approach is specifically designed to be easily applicable
to a variety of different RISC-V simulators. In order to evaluate the suitability of our
approach for this purpose, we have employed it to generate a new ISS for the popular
Spike [200] and riscv-vp [85] simulators. The existing ISS of these simulators was man-
ually written by the developers in C++ and was not generated from a formal specification.
In the following, we provide more background information on these two simulators and
describe the changes that were necessary to integrate them with our ISS generation
approach.

103

Sören Tempel Formal ISA Semantics for Extending the Analysis

Spike was one of the first simulators for the RISC-V architecture and was initially
developed by the University of California. Similar to riscv-vp, it simulates the execu-
tion of RISC-V machine code on a host system. In this regard, it focuses on achieving
a high simulation speed at the cost of simulation accuracy. For this reason, it does not
use a hardware modeling language like SystemC and therefore only has limited support
for additional hardware peripherals. Contrary to Spike, riscv-vp provides a full virtual
prototype of common RISC-V hardware platforms, including peripherals provided by
these platforms. Additionally, riscv-vp focuses more on simulation accuracy and there-
fore also uses the SystemC hardware modeling language. The entire execution of RISC-V
machine code is performed within a SystemC simulation, which eases reasoning about
low-level details (e.g. timing). More information on riscv-vp is available in a publica-
tion by Herdt et al. [85]. We chose Spike and riscv-vp for our experiments because
they represent two ends of a spectrum (Spike focuses on simulation performance while
riscv-vp focuses on simulation accuracy) and their implementations therefore differ
significantly. This allows us to demonstrate that our approach is applicable to a variety
of existing simulators, from full VPs to performance-oriented simulators like Spike.

In order to employ our ISS generation approach for these simulators, we first had to
manually implement an interface model for each simulator (see Subsection 4.3.1.3). As
part of this implementation, we need to map the simulator-agnostic API for interacting
with simulator components (e.g. the register file) to the internal simulator-specific API.
An excerpt of the interface model implementation for riscv-vp is shown in Listing 4.13.
As illustrated in this figure, the interface model casts a provided void pointer to a
simulator-specific type for representing a RISC-V processor (struct rv32::ISS) and
afterward calls methods of this type to implement the semantics of the interface model.
The implementation presented in Listing 4.13 is specific to riscv-vp but the Spike
interface model has a similar complexity. The complete implementation of both interface
models is available as part of the artifacts. Apart from the interface model, we also had to
connect the generated functions, which implement the semantics of RISC-V instructions
(see Listing 4.12), with the existing fetch-decode-execute cycle implementations of Spike
and riscv-vp. Spike already generates functions for the implementation of RISC-V
instructions using build scripts, which we have adjusted accordingly. Contrary to Spike,
riscv-vp uses a switch/case statement to execute decoded instructions, which—similar
to Spike—we now generate using a script. In total, we modified roughly 150 lines in
riscv-vp to implement the interface model and the build system changes. In Spike, we

104

Sören Tempel Formal ISA Semantics for Extending the Analysis

1 static inline uint32_t
2 read_register(void *c, unsigned idx)
3 {
4 return ((struct rv32::ISS*)c)->regs[idx];
5 }
6

7 static inline void
8 write_register(void *c, unsigned idx, uint32_t v)
9 {
10 ((struct rv32::ISS*)c)->regs[idx] = v;
11 }
12

13 static inline uint8_t
14 load_byte(void *c, uint32_t addr)
15 {
16 auto mem = ((struct rv32::ISS*)c)->mem;
17 return mem->load_byte(addr);
18 }

Listing 4.13.: Excerpt of the interface model implementation for riscv-vp.

modified 200 lines for the same purpose.23 The integration process took a programmer
with domain knowledge less than a day. As such, the experiments demonstrate that
minimal effort is required to apply our approach to different RISC-V simulators, thereby
illustrating its generalizability.

4.3.2.2. Conformance

With the modifications outlined in the previous section, our enhanced versions of Spike
and riscv-vp use an ISS that has been automatically generated from the LibRISCV
ISA model, instead of a manually written one. Naturally, it is possible that the ISA model
does not correctly capture the RISC-V instruction semantics or that our code genera-
tion tool or interface model implementations contain bugs. Therefore, it is paramount
to ensure that the generated ISS still conforms to the RISC-V specification. In order to
test conformance to the specification, we utilize the official RISC-V ISA tests for the

23Naturally, automatically generated lines are not included in this metric, since they do not correspond
to any manual integration effort.

105

Sören Tempel Formal ISA Semantics for Extending the Analysis

32-bit base instruction set.24 These tests include multiple test programs (one per instruc-
tion) which validate the behavior of RISC-V instruction implementations using manually
written test cases. Both our modified versions of Spike and riscv-vp pass the RISC-V
ISA tests for RV32I. This indicates that our enhanced version of the LibRISCV ISA
model still conforms to the RISC-V ISA tests and that our code generator and interface
model do not introduce any severe bugs. In future work, we would like to expand our
conformance tests by showing equivalence between the generated ISS and the manually
written one.

4.3.2.3. Performance

Since our approach replaces a manually written ISS with an automatically generated
one, there is the possibility that the code generation tool does not account for opti-
mizations included in the manually written code. Simulation speed is of importance for
RISC-V simulators in order to be able to execute and test complex RISC-V software in
a reasonable time span. In order to evaluate the impact of our approach on simulation
speed, we use our modified version of riscv-vp (see Subsection 4.3.2.1) and perform
a simulation speed comparison with the original unmodified version of this simulator
(referred to as the baseline version in the following). In prior work, performance bench-
marks for riscv-vp have been conducted using the Embench benchmark suite [83];
therefore, we also use Embench for our experiments. Embench is an open source bench-
mark suite which is specifically tailored to the embedded domain, it consists of multiple
benchmark programs which perform computation-intensive tasks (such as checksum cal-
culation) [70]. We conduct our experiments with Embench 1.0 on a Linux system with
an Intel i7-8565U processor.

Since benchmark results for a simulator can differ depending on the workload of
the host system, we executed each benchmark application 25 times with both variants
of riscv-vp. Benchmark results are presented as a grouped bar chart in Figure 4.7.
The arithmetic mean of absolute execution time in seconds is given on the y-axis of
Figure 4.7; the x-axis lists the benchmark programs of the Embench suite. For each
benchmark program, two bar charts are presented: the left bar chart (blue) represents
the results for the baseline version, the right bar chart (orange) represents our modified
version of riscv-vp (i.e. uses an ISS generated using our approach). Both bar charts
specify the arithmetic mean for the execution time of a given benchmark application

24https://github.com/riscv/riscv-tests

106

https://github.com/riscv/riscv-tests

Sören Tempel Formal ISA Semantics for Extending the Analysis

Figure 4.7.: Execution time benchmarks performed for an unmodified version of
riscv-vp and a version generated using our approach. Each benchmark
application has been executed 25 times. The bars represent the arithmetic
mean over all executions (lower is better); error bars show the standard
derivation.

over 25 executions. The error bars in Figure 4.7 specify the standard derivation.
In total, 19 benchmark applications have been tested with both variants of riscv-vp.

Comparing the results for each benchmark application, the execution time for the gen-
erated riscv-vp variant is either slightly lower or the same as the execution time of
the baseline version. This indicates that an ISS generated using our approach does not
have worse simulation performance than a manually written one. Since the generated
instruction semantics are the same for both Spike and riscv-vp (only the interface
model differs), we do not provide a comparison of Spike variants in this thesis.

4.3.3. Related Work

We have already discussed related work regarding formal ISA models in Subsection 4.1.5.
Additionally, we have examined prior work on the application of such models to binary
analysis in Subsection 4.2.3. In this section, we focus on related work regarding code
generation based on formal ISA models. In this regard, prior work by Reid has proposed
deriving test suites and Verilog code for the ARM-v8 architecture from a custom formal
model [150]. Similarly, prior work on Sail also supports code generation but operates
on a higher abstraction level and supports a larger variety of use cases. Specifically,
Sails supports generation of both executable code for different programming languages
(C and OCaml) as well as generation of theorem proving languages (Coq, Isabelle,

107

Sören Tempel Formal ISA Semantics for Extending the Analysis

and HOL4) [5]. The key difference between our work and prior work (for which Sail
is representative) is that the latter focuses on completeness and therefore goes beyond
the description of instruction semantics. For example, Sail includes formalization of
additional ISA details such as address translation algorithms or instruction decoding.
This contributes to the complexity of these formal models and makes it difficult to
integrate them with existing simulators. As such, Sail thus instead generates a new
standalone ISA simulator [5, Section 5].

Apart from work on formal models, related work in the electronic design automa-
tion domain leverages Architecture Description Languages (ADLs) for processor de-
scriptions [151, 67, 212]. Compared to formal ISA models, these ADLs focus more on
microarchitectural details (such as pipelining or caching). For this reason, it is also chal-
lenging to integrate them with existing simulators and VPs. Therefore, similar to Sail,
these languages are primarily used to generate new simulators instead of aiming for an
integration with existing ones. To the best of our knowledge, the generation approach
presented here is the first which is easily applicable to a variety of existing simulators,
from full VPs like riscv-vp to performance-focused simulators like Spike.

4.3.4. Discussion and Future Work

In this section, we focused on a minimally invasive integration of formal ISA models
with existing RISC-V simulators. Especially in the VP domain, formal models have not
yet been used to their full potential. In order to ease usage of formal ISA models for VP
generation, we focused on minimizing the integration effort. Our work towards this goal
was motivated by enabling usage of our proposed symbolic execution approach (see Sec-
tion 3.1 and Section 4.2) with additional VPs and simulators. However, so far, we have
only generated an ISS which performs concrete execution. Nonetheless, the approach
can be easily extended to also generate a symbolic ISS; we believe this to be primarily
an engineering effort. Due to this underlying motivation, we focused primarily on gener-
ating code implementing the instruction semantics. In future work, it would be possible
to extend the formal model to cover more parts of the ISA (e.g. memory behavior or de-
coding). This would make our code generation approach more comprehensive. However,
in this regard, there is a trade-off between the comprehensiveness of the formal model
and the effort required to integrate it with existing simulators. The premise of our work
is that by focusing on the code implementing the actual instruction semantics—where
the majority of changes for an integration with symbolic execution occur—we can ease

108

Sören Tempel Formal ISA Semantics for Extending the Analysis

the integration with existing simulators.
Additionally, in terms of comprehensiveness, we only focused on the 32-bit RISC-V

base instruction set in this section. As discussed in Subsection 4.1.6, it would be pos-
sible to extend the underlying LibRISCV ISA model to support additional RISC-V
extensions and RISC-V variants (e.g. 64-bit) in future work. In Subsection 4.2.2.1, we
have demonstrated that it is possible to model additional extensions (specifically the
M-extension) using LibRISCV, but we have not yet integrated this extension with our
code generation approach. In terms of additional extensions, it would be especially in-
teresting to also support parts of the RISC-V privileged architecture specification [154],
instead of concentrating on the user-level ISA [153].

4.3.5. Conclusion

In this section, we have presented a novel approach for generating the ISS of RISC-V sim-
ulators from a formal ISA model. Contrary to prior work, our approach is designed to be
as minimally invasive as possible through a simulator-agnostic interface model (Subsec-
tion 4.3.1.3), a self-contained formal ISA model (Subsection 4.3.1.2), and a code genera-
tor for this model (Subsection 4.3.1.4). By focusing exclusively on the code implementing
the actual instruction semantics, we can prospectively ease the integration of our sym-
bolic execution approach with additional simulators and VPs. Conducted experiments
confirm that our code generation approach is applicable to different RISC-V simulators
(Spike and riscv-vp) with minimal effort (Subsection 4.3.2.1). Furthermore, we were
able to show that an ISS—generated using our approach—still passes the RISC-V ISA
tests (Subsection 4.3.2.2) and offers similar simulation speed performance as a manually
written one (Subsection 4.3.2.3). In future work, we want to generate both a concrete
and a symbolic ISS and, more generally, consider an application of our approach to addi-
tional VP-based firmware analysis tasks. To stimulate further research in this direction,
we have released our code generation tool25 as well as our modified versions of Spike26

and riscv-vp27 as open source software.

25https://github.com/agra-uni-bremen/formal-iss
26https://github.com/agra-uni-bremen/spike-libriscv
27https://github.com/agra-uni-bremen/libriscv-vp

109

https://github.com/agra-uni-bremen/formal-iss
https://github.com/agra-uni-bremen/spike-libriscv
https://github.com/agra-uni-bremen/libriscv-vp

Chapter 5.

Error Detection Techniques for
Firmware Testing

In Chapter 3 and Chapter 4 we have presented a symbolic execution approach which
is capable of analyzing low-level firmware for embedded devices. Based on a specific
hardware peripheral input source (e.g. a UART), we can now enumerate execution paths
that are reachable in the firmware through this input source by injecting a symbolic value
using our SystemC TLM extension. Additionally, we need to check the properties of each
executed path in order to uncover bugs in the tested software. Prior work uses the term
path analyzer to refer to the component that is responsible for checking each path [41].
While this prior work has also presented multiple path analyzers, these existing analyzers
are tailored to the conventional domain and designed to be used with operating systems
such as Microsoft Windows. In this chapter, we therefore present novel path analyzers
which are specifically designed for the detection of programming errors in firmware for
embedded devices.

As discussed in Section 2.1, embedded devices are severely constrained regarding avail-
able computing resources (e.g. memory) [24]. Due to these constraints, embedded de-
vices are often programmed using the C programming language [79, Table 1]. The C
programming language is a popular choice for programming these devices as it gives
programmers control over low-level machine details, thereby enabling optimization to
reduce the use of scarce resources. Unfortunately, C is an inherently unsafe program-
ming language, i.e. the C language specification leaves some behavior undefined. In this
case, an attacker can rely on specifics of the utilized compiler and hardware platform to
exploit the undefined behavior. The textbook example in this regard are memory corrup-
tions caused by the lack of memory safety in the C programming language (e.g. buffer
overflows or use-after-frees) [28]. Prior work by Szekeres et al. provides a detailed sys-
tematization of knowledge regarding the exploitation of such memory corruptions [181].

110

Sören Tempel Error Detection Techniques for Firmware Testing

Detecting memory corruptions during automated firmware testing using symbolic ex-
ecution is vital, as they can be trivially exploited by an attacker. Unfortunately, it is
challenging to detect memory corruptions in embedded firmware. Conventional operat-
ing systems (e.g. Linux, BSD, or macOS) provide a variety of protection mechanisms
which cause software to crash on many memory corruptions. For example, when the
memory corruption leads to a violation of memory protections as enforced by a Mem-
ory Management Unit (MMU). As discussed in Chapter 1, embedded systems are often
lacking these techniques because hardware features (like an MMU) are not widely avail-
able. Therefore, the majority of memory corruptions occur silently and do not result
in an observable crash [128]. Additionally, development tools which utilize software in-
strumentation to ease detection of memory corruptions and similar programming errors
(e.g. Valgrind [133] or AddressSanitizer [163]) are tightly integrated with conventional
operating systems and—at the time of writing—do not support embedded systems [128,
p. 4].

In order to overcome this challenge, we contribute three path analyzers to detect mem-
ory corruptions in embedded firmware during automated software testing with symbolic
execution. The first analyzer presented in Section 5.1 relies on a tight integration with the
virtual hardware (the VP) and detects memory corruptions during the execution of in-
structions which interact with the memory (e.g. LW or SW). For this purpose, the analyzer
requires instrumentation of the tested firmware through a compiler pass. Such instru-
mentation may not always be possible, for example when the source code is not available.
Therefore, Section 5.2 presents an analyzer which does not require instrumentation but
can only detect a particular kind of memory corruption: stack overflows. On embed-
ded systems, call stacks are typically statically allocated and do not grow dynamically.
Hence, it is possible to exhaust the stack, thereby causing a memory corruption [149].
Detecting stack overflows requires us to reason about memory consumption; thus, this
path analyzer also allows us to estimate stack memory usage of executed paths. Mem-
ory usage is an important characteristic in the embedded domain as utilized devices are
severely constrained in terms of available memory (see Section 2.1). However, as symbolic
execution is commonly not complete, both analyzers are intended for testing purposes
since we cannot prove the absence of memory corruptions. In order to fully prevent such
corruptions from occurring in a production environment, prior work has proposed the
use of safer programming languages which offer memory safety (i.e. guarantee the ab-
sence of memory corruptions) through runtime bounds checks [114, 48, 137]. Prior work
on safe C dialects attempts to ease the application of such language-based techniques

111

Sören Tempel Error Detection Techniques for Firmware Testing

to existing C code by retrofitting these safety features on top of the C programming
language. Nonetheless, employing these dialects requires conversions and annotations of
the existing C source code [65, 47, 99]. In Section 5.3 we provide evidence that symbolic
execution can aid in this conversion process and that these dialects make previously
silent memory corruptions observable. We evaluated our path analyzers by conducting
experiments with the RIOT [9] operating system in which we uncovered 13 previously
unknown bugs which have been reported to and acknowledged by RIOT developers. We
choose RIOT for our experiments as a survey by Hahm et al. considers it to be the “most
prominent open source OS” with multithreading support in the constrained embedded
domain [79, Section 7.3.2]. The ability to identify memory corruptions in this popular
operating system illustrates the effectiveness of our proposed path analyzers.

5.1. Detection of Spatial Memory Safety Violations
This section concerns itself with the general detection of spatial violations (e.g. buffer
overflows) which can lead to memory corruptions, and—in the worst case—allow an
attack to gain remote code execution. A spatial violation occurs when a pointer derefer-
ence is not within the memory allocated originally allocated to that pointer. The term
spatial memory safety refers to a guaranteed absence of such spatial violations [65, Sec-
tion 1]. The C/C++ family of programming languages, which is popular in the embedded
domain, does not provide spatial memory safety. Due to the popularity of this program-
ming language family, a large body of prior work concerns itself with the detection of
spatial violations, some of these prior works even attempts to achieve spatial memory
safety [133, 163, 131, 65, 60]. Unfortunately, all of these approach come with drawbacks
(changes to the in-memory representation of pointers, additional runtime overhead, or
manual effort).

In recent years, techniques which achieve spatial memory safety in hardware—instead
of software—have yielded promising results and are gaining traction [60, 130, 206]. A
detailed overview of prior work in this regard is provided by Jero et al. [98]. In this
domain, early work on HardBound has achieved spatial safety by tracking bounds in-
formation for pointers in hardware and propagating them for instructions that are used
to implement pointer arithmetic [60]. Every time a pointer is dereferenced through a
load/store instruction, the bounds information can be consulted to check if the derefer-
ence is still within the bounds of the memory object originally allocated to that pointer.
Inspired by prior work on Mondrian [205], more recent work on CHERI [206] general-

112

Sören Tempel Error Detection Techniques for Firmware Testing

izes this concept by allowing memory protection at a byte-granularity. In this context,
achieving spatial memory safety is just an application of this concept [206, Section 5.1].
CHERI has been adopted by ARM as part of their Morello research prototype and is
therefore attracting a growing community of researchers [203]. Unfortunately, similar
to the techniques referenced in the prior paragraph, hardware-based approaches come
with a drawback: they need custom hardware, and outside of Morello (which is still a
prototype) this hardware is presently not available.

However, in the embedded domain employment of custom hardware with custom
domain-specific instructions is common [51, Section 2]. Furthermore, approaches which
detect spatial violations in hardware integrate well with our VP-based symbolic execu-
tion approach (Section 3.1) as we can easily implement these approaches in the virtual
hardware provided by the VP. Doing so allows us to check each path executed by our
VP-based symbolic execution engine for spatial violations. Conceptually, we are there-
fore facilitating a hardware-based approach for achieving spatial memory safety as a
path analyzer for symbolic execution. For this purpose, we contribute a HardBound
implementation modeled in SystemC TLM in this section. We chose HardBound over
CHERI as we deemed it easier to implement, and we are specifically interested in spa-
tial safety and not in the more general concept of byte-granular memory protections.
HardBound requires a custom compiler pass to communicate initial bounds information
from the software to the hardware. Unfortunately, the compiler pass implementation
from the original HardBound paper is not open source; thus, we also contribute the first
open source implementation of a HardBound compiler pass. In order to evaluate our
implementation, we perform experiments with RIOT [9] where we uncover seven previ-
ously unknown spatial violations. To stimulate further research on this topic, we have
released both our compiler pass as well as our VP-based HardBound implementation on
GitHub.1,2

5.1.1. Background

The following subsections serve as a brief primer on the general theoretical concept of
memory safety and HardBound as a technique for achieving memory safety in hardware.

1https://github.com/agra-uni-bremen/hardbound-llvm
2https://github.com/agra-uni-bremen/hardbound-vp

113

https://github.com/agra-uni-bremen/hardbound-llvm
https://github.com/agra-uni-bremen/hardbound-vp

Sören Tempel Error Detection Techniques for Firmware Testing

5.1.1.1. Memory Safety

Existing publications on memory safety issues of the C/C++ programming language
family distinguish spatial memory safety and temporal memory safety as follows [65,
Section 1]:

Temporal safety is ensured when memory is never used after it is freed. Spatial
safety is ensured when any pointer dereference is always within the memory
allocated to that pointer.

The C/C++ programming language family offers neither spatial nor temporal memory
safety. Lack of memory safety allows attackers to perform unintended computations
which are central to many security vulnerabilities [28]. Prior work by Szekeres et al.
provides a formal model for attacks exploiting memory safety issues [181]. A variety of
different techniques have been proposed by prior work which attempt to address the lack
of memory safety in the C/C++ programming languages [65, 60, 131]. As explained in
the Section 5.1, our proposed approach is based on a combination of HardBound and
symbolic execution, the former will be further described in the following.

5.1.1.2. HardBound

HardBound enforces spatial memory safety for C programs through a hardware periph-
eral. Enforcement is achieved by enhancing values representing C pointers with bounds
information tracked in hardware. Contrary to software-only approaches, HardBound
does not modify the C pointer representation and allows bounds checks to be performed
efficiently in hardware. Conceptually, each register and memory value in HardBound
is a triplet (value, base, bound) where value represents the original pointer value and
base/bound represent the lower/upper bound of the bounded pointer. We will refer to
the additional base and bound information as HardBound metadata in the following.
The HardBound metadata is used by a custom hardware peripheral to perform bound-
ary checks on each load/store instruction. As such, it is ensured that each load/store is
within the pointer bounds as specified by the base and bound metadata. For this reason,
spatial violations cannot occur on bounded pointers [60].

Since the C type system is inaccessible at the binary level, the executed software must
communicate which values represent pointers (and their respective HardBound meta-
data) to the hardware peripheral. In the original HardBound paper, this is achieved
through a custom setbound instruction. The insertion of setbound instructions is auto-

114

Sören Tempel Error Detection Techniques for Firmware Testing

1 load_addr R2, 0x1000
2 setbound R2, 0x1000, 4
3

4 load_byte R3, R2 # load at 0x1000, success
5 addi R2, R2, 2 # R2: (0x1002, 0x1000, 0x1004)
6 load_byte R3, R2 # load at 0x1002, success
7 addi R2, R2, 2 # R2: (0x1004, 0x1000, 0x1004)
8 load_byte R3, R2 # load at 0x1004, fail

Listing 5.1.: HardBound example usage [60, Figure 2].

mated using “simple intra-procedural compiler instrumentation” [60, p. 103]. The hard-
ware peripheral is in turn responsible for propagating metadata initial set by the exe-
cuted software. As an example, consider pointer arithmetic as performed using an addi
instruction in the pseudo assembler code in Listing 5.1. In this example, a pointer to
a four byte value at address 0x1000 is created (Line 1 - Line 2). The pointer is then
incremented (Line 5 - Line 7) and dereferenced (Line 4 - Line 6), on each increment the
metadata must be propagated. Ultimately, the load in Line 8 fails as the pointer value
is no longer within the propagated bounds.

5.1.2. VP-based HardBound Integration

In the following subsections, we will describe how HardBound support can be inte-
grated into a standard SystemC TLM architecture. For this purpose, we build upon
the SymEx-VP symbolic execution engine described in Chapter 3. This VP targets the
RISC-V architecture and allows symbolic execution of 32-bit RISC-V machine code.

5.1.2.1. Overview

Figure 5.1 provides an overview of our proposed architecture. As explained in Section 3.1,
both the ISS and the symbolic execution engine are already provided by SymEx-VP.
The latter provides us with symbolic types, a path explorer for finding new paths through
the executed software, and an SMT solver for solving constraints on symbolic types. In
order to employ HardBound as a path analyzer, we had to integrate it with the symbolic
ISS provided by SymEx-VP. By relying on implicit C++ type conversion, we were able
to keep required SymEx-VP modifications to a minimum, ultimately only extending
around 700LOC. This illustrates that a non-intrusive integration is possible.

115

Sören Tempel Error Detection Techniques for Firmware Testing

ISS SymEx

Peripherals TLM Bus Memory

HardBound
Metadata

MemIf

RegFile

ExecUnit Path
Explorer

SMT
Solver

Symbolic
Types

Software Compiler
Pass

Executes

Instruments

Initializes

Restarts

Figure 5.1.: Overview of our HardBound implementation for SymEx-VP.

In the context of the HardBound integration, the ISS is the main component of the
VP as it is responsible for fetching, decoding, and executing RISC-V instructions. As
such, it executes a given RISC-V software provided in binary form. Execution is based on
symbolic input values, supplied by the symbolic execution engine (referred to as SymEx
in Figure 5.1). After simulation terminates, the symbolic execution engine determines
new assignments for symbolic input variables and restarts the ISS—and thereby also
the software—with these new variable assignments. New variable assignments result in
the discovery of new paths through the executed software. On each path, performed
load/store instructions are bounds checked using the provided HardBound metadata
(see Subsection 5.1.1.2). This metadata is initialized by the executed software through
special instructions inserted by a compiler pass. The ISS is responsible for propagating
it correctly during execution, as previously illustrated in Subsection 5.1.1.2.

5.1.2.2. Metadata Propagation

Since our work is based on SymEx-VP, our ISS supports symbolic execution. As such,
instruction operands may represent symbolic values. We modified the ISS to also track

116

Sören Tempel Error Detection Techniques for Firmware Testing

and propagate HardBound metadata alongside these symbolic values. During software
execution, the ISS interacts with the stored metadata to perform bounds checks. Recall
that HardBound metadata is only required for values representing C pointers. These
values may be stored in either memory or registers. As such, the register file (RegFile)
and the memory interface (MemIf) had to be modified (see center of Figure 5.1). The
register file is responsible for storing register values. The memory interface is responsi-
ble for interactions with memory-mapped peripherals through the SystemC TLM bus.
We modified both—the memory interface and the register file—to ensure they store
associated HardBound metadata for memory and register values representing pointers.
The main execution unit (ExecUnit) of the ISS accesses this metadata and propagates
it when executing instructions which are used to implement C pointer arithmetic. For
example, an instruction adding a constant to a bounded pointer value must itself return
a bounded pointer value with associated HardBound metadata (see Listing 5.1).

Implementation of metadata propagation was the most invasive change made to
SymEx-VP as we had to switch the underlying data type, used by the execution unit
for instruction operands, from symbolic expressions to a tuple which additionally tracks
the HardBound metadata. The modifications required for this change were kept to a
minimum by relying on implicit C++ type conversions, thereby allowing implicit con-
versions from symbolic expressions—with associated HardBound metadata—to plain
symbolic expressions. As the majority of RISC-V instructions are not commonly used to
manipulate pointer values, we were able to refrain from modifying the implementation
of these instructions. As such, only the implementation of instructions which are used
by C compilers to implement pointer arithmetic had to be modified in the execution
unit. For the RISC-V architecture, we thus implemented metadata propagation for the
following instructions: ADD, ADDI, and SUB. In the following subsection, we will explain
how propagated metadata interacts with SystemC TLM in the HardBound context.

5.1.2.3. TLM Integration

Storing and propagating HardBound metadata in the ISS allows us to perform bounds
checks on load/store instructions. In the SystemC context, these instructions are imple-
mented through SystemC TLM based on a bus abstraction. The ISS communicates with
devices attached to the TLM bus (e.g. memory or memory-mapped peripherals) using
TLM transactions created by a memory interface. In order to avoid modifications of pe-
ripherals attached to the TLM bus, we are not propagating HardBound metadata over
TLM and instead perform a transparent conversion within the memory interface itself

117

Sören Tempel Error Detection Techniques for Firmware Testing

using an internal mapping δ : addr 7→ {(base, bound)}. HardBound metadata (base and
bound) can be updated by storing new metadata at addr using a store instruction. Load
instructions return HardBound metadata if a mapping addr→ (base, bound) exists in δ

for the loaded addr. HardBound metadata originates in the executed software through
custom setbound instructions. While the ISS is responsible for the storage and propaga-
tion of HardBound metadata, it is incapable of initializing the metadata, as information
regarding pointer bounds is difficult to infer at the binary level. Therefore, the software
itself communicates initial metadata values to the ISS upon pointer creation. This is
achieved through the aforementioned setbound instructions. For each created pointer,
these instructions are automatically inserted into the tested software by a compiler pass.

5.1.2.4. Compiler Pass

Conceptually, the compiler pass performs an analysis detecting the creation of pointers,
infers the size of the values pointed to, and communicates this information to the VP.
In order to ease supporting MMIO, we deviated from the compiler pass implementation
in the original HardBound paper regarding the handling of pointer casts. Normally,
creating a pointer from an integer (e.g. (int *)0x1000) is an unsafe operation as no
bounds information is associated with the memory address 0x1000 [60, Section 6.1].
This is, however, a common idiom to communicate with memory-mapped peripherals
from low-level C code. For this reason, we relaxed the handling of these unsafe casts
in the compiler pass. This prevented the addition of manual setbound invocations for
memory-mapped peripheral accesses.

Furthermore, the original HardBound paper does not provide a detailed description of
how direct array accesses are handled in the compiler pass. Consider an array access such
as buf[i] = n, since no pointer exists in this example code, no HardBound metadata is
available for ensuring spatial memory safety. To mitigate this problem, we have written
two compiler passes. The first transforms any array access of the form buf[i] = n to
a pointer-based access of the form *(buf + i) = n. The second pass communicates
pointer bounds, upon pointer creation, to the VP.

Listing 5.2 illustrates the transformations performed by the two compiler passes. The
original code (Line 9) performs a direct array access on buf. The first compiler pass
rewrites this to a pointer-based access (Line 11 - Line 12). The second compiler pass
inserts an appropriate call to a setbound function which communicates the bounds of
ptr to the VP (Line 14 - Line 16).3

3On a technical note, we intercept RISC-V ecall instructions in the VP to set bounds information

118

Sören Tempel Error Detection Techniques for Firmware Testing

1 static char buf[BUFFER_SIZE];
2

3 int add_to_buffer(char c) {
4 static size_t index = 0;
5 if (index >= BUFFER_SIZE)
6 return -1;
7

8 // ------- [[Original Code]] -------
9 buf[index] = c;
10 // ------- [[1st Compiler Pass]] -------
11 char *ptr = &buf[0];
12 *(ptr + index) = c;
13 // ------- [[2nd Compiler Pass]] -------
14 char *ptr = &buf[0];
15 setbound(&ptr, ptr, sizeof(buf));
16 *(ptr + index) = c;
17 // ------- END -------
18

19 index++;
20 return 0;
21 }

Listing 5.2.: Performed HardBound compiler pass transformations.

5.1.3. Evaluation

We evaluate our approach by applying it to the RIOT operating system. We used RIOT
as an evaluation target since prior work by Hahm et al. considers it to be one of the
“most prominent open source” operating systems with multithreading support in this
domain [79, Section 7]. Furthermore, RIOT employs a code quality management process
and automated unit tests, thereby aiming for high code quality [9, Section 14]. This
allows us to evaluate whether our approach is capable of finding real bugs missed during
manual code review and unit testing. RIOT supports a variety of hardware platforms. For
our experiments we utilize the constrained SiFive HiFive1 platform which uses RISC-V
and is supported by both RIOT and SymEx-VP. RIOT itself is further described in a
publication by Baccelli et al. [9].

from the software. The original HardBound paper uses custom instructions.

119

Sören Tempel Error Detection Techniques for Firmware Testing

In accordance with prior work, we believe input handling routines of the network
stack to be the biggest attack vector of a networked IoT operating system [159]. Our
experiments therefore focus on RIOT components which are part of this network stack.
In the following, we will further describe how we employed HardBound in the RIOT
context to analyze these components and which memory safety violations we were able
to uncover through our analysis.

5.1.3.1. RIOT HardBound Setup

HardBound is intended to be deployable with “minimally invasive changes to the com-
piler and runtime” [60, Section 3.2]. In the following, we describe the necessary changes
for an integration with RIOT. As a first step, we had to ensure that the RIOT build
system utilizes our LLVM-based compiler pass. Fortunately, RIOT already supports
compilation with LLVM. For this reason, we only had to modify the employed com-
piler flags via a build system configuration variable. The original HardBound paper also
acknowledges that library functions performing memory allocations, e.g. malloc, need
to be modified to include appropriate setbound calls [60, Section 3.2]. While usage of
malloc in RIOT is discouraged, we still had to modify the RIOT module used to allo-
cate memory for network packets to set the appropriate bounds for each returned packet.
This allows us to discover spatial violations potentially occurring when accessing these
packets.

Overall, our HardBound setup for the RIOT operating system was straightforward
and only required the outlined changes, which we believe to be negligible in terms of
effort required. For our experiments, we boot RIOT on our HardBound extended VP
and perform boundary checks in the VP during the execution of RIOT software. More
details are provided in the next subsection.

5.1.3.2. Results

RIOT follows a modular software architecture, modules which should be enabled are
selected at compile-time [9, Section 4]. We tested multiple RIOT modules which are
part of the network stack using our proposed software testing technique. Similar to the
prior evaluation conducted in Subsection 3.1.5, we distinguish two test types:

1. UNIT tests, conducted using custom test drivers which invoke functions from the
public module API. In this case, symbolic values are created directly in the test
driver.

120

Sören Tempel Error Detection Techniques for Firmware Testing

Table 5.1.: Spatial memory safety violations found in RIOT modules.

Id Module Test #Paths Time #instr

#15927 uri_parser UNIT 48 11 s 408646

#15930 uri_parser UNIT 156 35 s 1311034

#15945 clif UNIT 227 50 s 1847765

#15947 clif UNIT 10 2 s 91302

#16018 gnrc_rpl SLIP 75 143 s 3378636

#16062 gnrc_rpl SLIP 72 307 s 3444769

#16085 gnrc_rpl SLIP 855 3532 s 46262378

2. SLIP tests, conducted using existing RIOT example applications. Symbolic values
are introduced through a custom SLIP [155] network interface, which is imple-
mented in the VP.

We tested different modules of the RIOT network stack using both approaches. We used
UNIT tests for utility modules, used indirectly by network protocol implementations.
SLIP tests were used for freestanding implementations of network protocols, which di-
rectly process input received through the IP. In total, we tested the following three RIOT
network modules which implement internet protocols that we believe to be in common
use in the low-end IoT context on constrained devices:

1. The uri_parser module, which provides a non-destructive parser for Uniform
Resource Identifier (URI) references as defined in RFC 3986 [17].

2. The clif module, which provides a parser for the CoRE Link Format as used in
REST architectures for constrained devices and defined in RFC 6690 [166].

3. The gnrc_rpl module, which provides an implementation of the Routing Protocol
for Low-Power and Lossy Networks (RPL) as defined in RFC 6550 [2].

In these modules, we found seven previously unknown spatial memory safety violations,
all of which have been discovered using our proposed combination of symbolic execution

121

https://github.com/RIOT-OS/RIOT/issues/15927
https://github.com/RIOT-OS/RIOT/issues/15930
https://github.com/RIOT-OS/RIOT/issues/15945
https://github.com/RIOT-OS/RIOT/issues/15947
https://github.com/RIOT-OS/RIOT/issues/16018
https://github.com/RIOT-OS/RIOT/issues/16062
https://github.com/RIOT-OS/RIOT/issues/16085

Sören Tempel Error Detection Techniques for Firmware Testing

Table 5.2.: Description of spatial safety violations found in RIOT network modules.

Module Bug Description

uri_parser #15927: During parsing of the userinfo part of a URI the parser did not check if the
input is long enough to even contain a complete userinfo if the URI contained an @
character, thereby performing an out-of-bounds read on the provided input buffer.
#15930: The uri_parser module attempted to parse data after the hier-part of the
URI, even if none was present. For example, on an input like a:// the parser would
perform an out-of-bounds read due to missing bounds checks.

clif #15945: During parsing of key-value pairs, the module did not check if a value was
actually present after the key has been read, thereby performing an out-of-bounds read.
#15947: During parsing of link attributes, the clif module did not check whether
any attributes were present, thus performing an out-of-bounds read on the input buffer.

gnrc_rpl #16018: RPL messages are parsed by casting buffers to packed structs. Unfortunately,
gnrc_rpl did not check if the buffer was large enough to contain the struct in some
instances.
#16062: During validation of RPL options, gnrc_rpl did not check if the input is
large enough to contain a given option. Attempts to access this option resulted in an
out-of-bounds read.
#16085: The gnrc_rpl module separates option parsing from option validation. Simi-
lar to #16062, the option parsing code was also lacking proper bounds checks, resulting
in an out-of-bounds read.

and HardBound. These findings were reported to and acknowledged by RIOT developers.
Further information regarding the discovery of individual issues is provided in Table 5.1.
For each discovered issue, we list the identifier in the public RIOT issue tracker4, the
module in which it was found, the employed test method, the number of paths enumer-
ated until it was found, and the total execution time. As a complexity metric, we also
include the total amount of RISC-V instruction executed.

In modules which we tested through UNIT tests, spatial memory safety violations
are discovered faster, and fewer instructions are executed. This is due to the fact, that
fewer constraints are tracked as we only test individual functions. With SLIP tests,
issue discovery takes longer as the input is passed through the entire network stack,
thereby imposing more constraints on symbolic input variables. However, as discussed

4https://github.com/RIOT-OS/RIOT/issues

122

https://github.com/RIOT-OS/RIOT/issues/15927
https://github.com/RIOT-OS/RIOT/issues/15930
https://github.com/RIOT-OS/RIOT/issues/15945
https://github.com/RIOT-OS/RIOT/issues/15947
https://github.com/RIOT-OS/RIOT/issues/16018
https://github.com/RIOT-OS/RIOT/issues/16062
https://github.com/RIOT-OS/RIOT/issues/16085
https://github.com/RIOT-OS/RIOT/issues/16062
https://github.com/RIOT-OS/RIOT/issues

Sören Tempel Error Detection Techniques for Firmware Testing

in Subsection 3.1.5, SLIP-based tests allow us to test an entire application as-is, thereby
reducing the integration effort. Additionally, given the complexity of routing protocols
(such as RPL), this indicates that our approach is also capable of finding spatial memory
safety violations in complex real-world code for constrained devices.

5.1.4. Related Work

Prior work has primarily focused on the detection of spatial memory safety violations on
conventional devices. Popular approaches in this regard include EXE [34], which utilizes
compiler instrumentations to detect spatial memory safety violations, and KLEE [32]
which symbolically executes LLVM IR, the intermediate language used by the LLVM
compiler infrastructure. As such, KLEE-based approaches do not capture low-level ma-
chine details and operate on a higher abstraction level than our approach, which sym-
bolically executes machine code directly. As discussed at length in Section 4.2, this has
multiple drawbacks, including decreased symbolic execution performance (see Subsec-
tion 4.2.2.2).

With the focus on conventional systems, the aforementioned publications also do not
address challenges specific to constrained embedded devices. Prior work by Muench et al.
discusses these challenges further [128]. They identified “silent memory corruptions” as
the predominant issue in this domain, most of which would be detected by conventional
operating systems through employed protection mechanisms lacking on embedded de-
vices to reduce production costs [128, Section 3]. They also propose heuristics to improve
error detection in this domain and combine these heuristics with fuzzing to automatically
discover memory corruptions [128, Section 6]. Our approach does not rely on heuristics
and we believe symbolic execution to be preferable over fuzzing on embedded devices as
the state space is smaller due to limitations on code size. This might mitigate the state
explosion problem known from conventional devices [10, Section 1.2].

This hypothesis is confirmed by Davidson et al. who present Fie, a symbolic execution
framework for finding vulnerabilities in embedded firmware [54]. Fie targets MSP430
microcontrollers and attempts to achieve a “complete analyses for simple firmware pro-
grams” [54, Section 3]. Specifically, this prior work was able to fully verify memory safety
for 53 of 99 firmware images in their test corpus [54, Section 1]. Fie is based on KLEE
and therefore also executes LLVM IR symbolically. For this reason, Fie operates on a
higher abstraction level than our own approach, which symbolically executes RISC-V
machine code directly. This comes with the drawback that Fie cannot take low-level

123

Sören Tempel Error Detection Techniques for Firmware Testing

machine details into consideration. As an example, Fie fails to execute paths which in-
clude inline assembly, usage of which we believe to be common on embedded devices (see
Section 4.2). Furthermore, Fie does not use accurate models of hardware peripherals.
Instead, it approximates peripheral behavior through given memory and interrupt spec-
ifications, which results in potential false-positives [54, Section 6]. Since our approach is
based on SystemC, we have existing models of peripherals at our disposal and can easily
model new ones (see Chapter 3).

Lastly, prior work by Herdt et al. provides symbolic execution of embedded bina-
ries [84]. However, this publication does not support unmodified SystemC peripherals.
Furthermore, the employed path analyzer is only capable of detecting spatial violations
in buffers allocated dynamically through malloc. Contrary to our own approach, this
publication therefore misses overflows in data structure not allocated dynamically (e.g.
buffers allocated on the stack) [84, Section 4.4.2].

5.1.5. Conclusion

In this section, we concerned ourselves with the early detection of spatial memory safety
violations on constrained embedded devices. We proposed and implemented a VP-based
software testing technique for this purpose which uses symbolic execution to enumerate
reachable program paths and checks each path for spatial violations through a SystemC-
based HardBound implementation (Subsection 5.1.2). We illustrated an architecture for
achieving a non-intrusive integration of HardBound with existing SystemC-based VPs
and implemented this architecture on top of SymEx-VP. We have also released our
HardBound extended version of SymEx-VP on GitHub to stimulate further research.
Our main contribution is a new path analyzer for an existing symbolic execution en-
gine. As per Subsection 5.1.4, our approach is novel as it addresses challenges specific to
embedded devices not addressed in prior work. We applied our approach to an operat-
ing system for constrained embedded devices (RIOT), where we found seven previously
unknown bugs, which had been missed by unit testing and manual code review (Sub-
section 5.1.3).

5.2. Minimally Invasive Stack Overflow Detection
In Section 5.1, we presented a path analyzer for the detection of spatial memory viola-
tions to prevent memory corruptions from occurring in a production environment. The

124

Sören Tempel Error Detection Techniques for Firmware Testing

path analyzer required excessive instrumentation and minor modifications of the tested
firmware. Such modifications may not always be possible, e.g. if the source code is not
available. Furthermore, the instrumentations are specifically intended for testing pur-
poses only as hardware with HardBound support is presently not available. Meaning,
the tested firmware differs from the one deployed in a production environment, thus
potentially causing divergent behavior to be observed during testing. In this section, we
present a path analyzer which does not require any modifications of the tested firmware.
However, as a trade-off, we only focus on the detection of a particular kind of memory
corruption in this section: stack overflows (i.e. overflows of the call stack).

As per Section 2.1, memory is severely limited on embedded devices. In order to avoid
fragmentation of available memory, firmware for constrained devices does not use dy-
namic memory allocation but instead allocates all memory statically. In a multithreaded
environment, this creates an interesting problem regarding the allocation of stack space
for different threads executed by the firmware. As the stack space is also statically al-
located at compile-time, the programmer must choose an appropriate maximum stack
size before deploying the software. If the code executed in a given thread does not use
the allocated stack space in its entirety, memory is wasted thus potentially causing in-
creased production costs. If the stack size—chosen by the programmer—is too small for
the thread using it, a stack overflow might occur. Stack overflows are a kind of memory
corruption [181], similar to other memory corruptions, they occur silently on embedded
devices [128]. In the worst case, an undetected stack overflow might allow an attacker
to subvert program control flow and achieve remote code execution.

In order to detect stack overflows during automated testing with symbolic execution,
we need a path analyzer which reasons about stack memory usage of each executed path.
For this purpose, we built upon prior work by Park et al. which proposes a stack size es-
timation and stack overflow detection technique [136]. The implementation presented in
the aforementioned prior work requires custom compilers and software instrumentation.
We improve upon this technique by illustrating that sanity checks originally performed
in the software—using code inserted by a custom compiler—can also be performed in
the execution environment. Thereby allowing the analysis to be performed without any
instrumentation or modification of the executed software. In contrast to prior work on
stack overflow detection using formal methods [149, 101, 36], we focus on bug hunting
using symbolic execution and thereby ease application to existing software. We demon-
strate the effectiveness of our approach by performing experiments with RIOT where
we identified two previously unknown stack overflows under specific configurations.

125

Sören Tempel Error Detection Techniques for Firmware Testing

1: procedure check_stack(func)
2: thread← current_thread()

3: required← current_stackuse+ func.stackuse

4:

5: if required > thread.stacksize then
6: handle_stack_overflow()

7: else if required > max_stackuse[thread] then
8: max_stackuse[thread]← required

9: end if
10: end procedure

Figure 5.2.: Stack overflow detection and stack size estimation algorithm [136].

5.2.1. Stack Overflow Detection Algorithm

In this section, we present a dynamic algorithm for detecting stack overflows and esti-
mating thread stack usage. This algorithm on prior work by Park et al. [136]. In order to
identify stack overflows in a multithreaded operating system, the following information
is required:

1. The currently active thread executed by the operating system at a particular point
in time.

2. The allocated thread stack size, i.e. the total size of the stack memory region for
the currently active thread.

3. The amount of used thread stack memory at a particular point in time during
execution of a thread.

Notably, the same information is required to estimate stack size requirements of executed
threads. Figure 5.2 presents an algorithm from prior work for stack overflow detection
and stack size estimation which utilizes the aforementioned information. The algorithm
exploits the fact that information is stored on a per-function basis on the stack. The al-
gorithm runs before each function execution, which is paramount to preemptively detect
stack overflows, thereby preventing the system from malfunctioning.

Firstly, the algorithm determines the currently active thread (Line 2) on which the
given function is about to be executed. Afterward, in Line 3, the amount of stack space
required to execute the function safely is computed. This computation is based on the

126

Sören Tempel Error Detection Techniques for Firmware Testing

amount of stack space currently in use and the stack space required by the given function
(e.g. memory used for local function variables). The resulting value is then compared
to the total thread stack size in Line 5. If the required thread stack size exceeds the
total allocated thread stack size, execution of the current function would lead to a stack
overflow and a stack overflow handler is invoked in Line 6. Otherwise, the maximum
stack usage for the current thread is updated, if it exceeds a previously measured value
(Line 7 - Line 8).

Prior work by Park et al. presents an implementation of this algorithm which re-
lies on a modified C compiler and instrumentations of the executed software [136]. In
Subsection 5.2.2, we propose a VP-based implementation of this algorithm which al-
lows performing the analysis without any instrumentation or modification of the tested
software.

5.2.2. Implementation

In the following, we present an implementation of the outlined stack overflow detection
and stack size estimation technique which is tightly integrated with virtual prototyping.

5.2.2.1. Overview

Figure 5.3 shows an overview of our approach. In order to integrate the stack overflow
detection and stack size estimation algorithm with a SystemC-based VP, only the ISS
has to be modified. The ISS (left to the center of Figure 5.3) is responsible for fetching,
decoding, and executing instructions. On each instruction execution, we check if the cur-
rently executed instruction—as specified by the program counter register—corresponds
to the entry address of a new function. If so, we execute the algorithm from Subsec-
tion 5.2.1 before executing the instruction specified by the current program counter.

As per Subsection 5.2.1, the following information needs to be obtained and managed
by the VP alongside software execution for an implementation of the algorithm: (1)
the currently active thread, (2) the allocated thread stack size, and (3) the amount of
thread stack memory in use. Figure 5.3 provides an overview of the components required
to extract this information. Extracting the currently active thread (1) and the allocated
thread stack size (2) is an operating system specific process. Our architecture provides an
abstract operating system support component (left to the center of Figure 5.3) which is
responsible for extracting this information. Commonly, metadata information for threads
is stored in so-called Thread Control Block (TCB) by the operating system (right to the

127

Sören Tempel Error Detection Techniques for Firmware Testing

VP Core SW

Stack Usage Database stack-usage-db

ISS
Minimum
SP Values

OS
Support

TCBs
Debug
Info

Function
Stackuse

TLM Bus Memory

Generates

Reads

Utilizes Reads

Loaded intoSW Instructions

Figure 5.3.: Architectural overview of our proposed approach.

center of Figure 5.3). The operating system support component accesses these TCBs to
extract the active thread and the total thread stack size for operating system threads.
This component needs to be manually implemented for the specific operating system
utilized by the executed software. We present an exemplary operating system support
component implementation for RIOT in Subsection 5.2.3.

Regarding the extraction of currently used stack memory (3), recall that the stack
is just a memory region where the executed software stores information about active
functions (e.g. local variables). From the VP perspective, an access to information on
the stack is just a load/store instruction relative to the current position in the stack
memory region. Instruction set architectures provide a general purpose register, called
the Stack Pointer (SP), to store the current position in the stack memory region. As
such, the amount of currently used stack memory can be determined by consulting this
register. Assuming the stack grows downward, the maximum stack usage of a given
thread can be determined by storing the minimum SP value measured on a per-thread
basis (left to the center of Figure 5.3).

On each executed instruction, the VP consults a generated database to check if the
instruction address matches the start address of a function. This database is referred
to as “Stack Usage Database” at the bottom left of Figure 5.3. The database provides
a mapping Function Address 7→ Function Stack Usage and is thus used by the VP to
predict the total required stack space for each function before executing it, i.e. as done in

128

Sören Tempel Error Detection Techniques for Firmware Testing

Line 3 of Figure 5.2. The stack usage database is generated through a custom tool called
stack-usage-db using information extracted from the compiled software (bottom right
of Figure 5.3). This process is further described in the following section.

5.2.2.2. Stack Usage Database

Modern versions of the GCC compiler toolchain support a command-line flag called
-fstack-usage. This flag causes the compiler to emit stack usage information for indi-
vidual functions. In C, the compilation process involves compiling separate translation
units into separate object files, these object files are then passed to a linker which gener-
ates an executable file from the object files [96, Section 5.1.1]. With the -fstack-usage
command-line flag activated, GCC outputs a separate file with stack usage information
for each compiled translation unit in addition to the object file.

An example stack usage file is shown in Listing 5.3. The file consists of multiple lines,
each representing information about a function defined in the associated translation unit.
Each line consists of three fields providing different information. The first field states the
source file where the function is defined, the line/column number, and the function name.
The second field states the stack usage in bytes. The third is a qualifier which further
specifies how the function uses the stack. A function may have unbounded stack usage if
it uses Variable Length Arrays (VLAs) where the size of an object on the function stack
depends on a variable (e.g. a function parameter) [96, Section 6.7.5.2]. Functions with
an unbounded stack are not supported by our approach but are automatically identified
by our tooling—using the aforementioned qualifier—and cause an error message to be
emitted. The experiments we performed with RIOT indicate that VLAs are not widely
used in the low-end IoT domain.

The problem with the format shown in Listing 5.3, is that it does not contain any
information about text segment addresses of these functions because this information is
only available after linking all object files into a binary. However, as per Subsection 5.2.2.1
functions must be identified by their address. For this reason, we wrote a tool—referred
to as stack-usage-db in Figure 5.3—which merges multiple -fstack-usage files into a
single stack usage database which is indexed by function text segment addresses. In order
to identify the text segment addresses of utilized functions, the tool operates on a linked
ELF binary. It iterates over all function symbols defined in the binary and determines the
-fstack-usage file for a given symbol from DWARF [55] debug information contained in
the binary. That is, the DWARF source line information, which describes where a symbol
is defined, is compared against the first field of all -fstack-usage files generated by the

129

Sören Tempel Error Detection Techniques for Firmware Testing

1 nano-vfprintf.c:392:1:__sfputc_r 0 static
2 nano-vfprintf.c:403:1:__sfputs_r 32 static
3 nano-vfprintf.c:348:1:__sprint_r 16 static
4 stdio.h:503:5:_vfprintf_r 176 static
5 stdio.h:206:5:vfprintf 0 static

Listing 5.3.: Example -fstack-usage file generated by GCC.

compiler. If the -fstack-usage file for a given symbol was found, the stack usage in
bytes for the function represented by this symbol is added to the database. Thereby
iteratively creating a mapping Function Address 7→ Function Stack Usage. Lastly, the
database generated by the stack-usage-db tool is passed to the VP on simulation start.
This enables the VP to determine whether a new function is being executed (by checking
if the database contains a function starting at program counter) and allows determining
the stack usage requirements of this function. The source code of the stack-usage-db
tool is available on GitHub.5

5.2.2.3. Operating System Integration

Apart from stack usage information about individual functions, the VP also needs to
determine the currently executed thread and its associated stack size. As discussed in
Subsection 5.2.2.1, extracting this information requires operating system specific code
because multithreaded systems represent information about threads in different ways.
However, to implement a scheduler, the operating system will store metadata information
for threads in TCBs. TCBs are stored in memory; therefore, it is possible for the VP
to extract information about a specific thread by accessing the memory location where
this information is stored.

Similarly, operating systems often include symbols to allow a debugger to determine
the currently active thread, the offset of information in the TCBs, et cetera. Our ap-
proach relies on the operating system to provide such symbols. As part of the operating
system support component, we extract the address of these symbols in the executed ELF
file using libdwfl from elfutils6 directly in the VP. For example, this allows us to
determine the memory address of the variable which stores the currently active thread.
In the VP context, a SystemC TLM read transaction is then emitted for this address,
thereby causing the VP to retrieve the active thread ID from guest memory. Embedded

5https://github.com/agra-uni-bremen/stack-usage-db
6https://sourceware.org/elfutils/

130

https://github.com/agra-uni-bremen/stack-usage-db
https://sourceware.org/elfutils/

Sören Tempel Error Detection Techniques for Firmware Testing

operating systems (such as RIOT) store the allocated total stack size in the TCB as well,
thus also allowing the VP to access this information via the operating system support
component.7 The next section further describes extraction of information from TCBs
using RIOT as an example operating system.

5.2.3. Evaluation

In order to evaluate our technique, we have implemented it on top of riscv-vp [85],
i.e. the concrete VP on which SymEx-VP is based (see Chapter 3). In total, we had to
modify roughly 600LOC in riscv-vp, which shows that a non-intrusive integration of
our technique into existing VPs is possible. Similar to Subsection 5.1.3, we then evaluated
our implementation by applying it to the RIOT operating system. We choose RIOT for
our experiments because multithreading is a core concept of this operating system. Most
importantly, RIOT’s default network stack (GNRC) implements each network protocol
as a separate thread. Different protocol implementations communicate with each other
using message passing, a form of interprocess communication. For example, the IPv6
and UDP implementation run in separate threads and the IPv6 thread passes network
packets to the UDP thread for further processing [112]. As such, RIOT-based embedded
applications consist of multiple threads. Each thread has its own statically allocated
thread stack, thus the preallocated stack space has a significant impact on RIOT’s
memory footprint. In 2018, a minimal RIOT configuration required 3.2 kB of ROM and
2.8 kB of RAM, of which 2.2 kB were thread stack space [9, Section 8]. Presently, RIOT
thread sizes are approximated through predefined macros such as THREAD_STACKSIZE_-
DEFAULT. Our hypothesis regarding stack size estimation is therefore that RIOT threads
are overprovisioned in terms of thread stack size, i.e. they do not use the entirety of
stack space assigned to them.

In the following, we will describe how we integrated our technique with RIOT (Subsec-
tion 5.2.3.1) and discuss stack overflows we encountered in RIOT during this integration
(Subsection 5.2.3.2). Furthermore, we will report results on the measured thread stack
size in preexisting RIOT test applications and compare our results with the approxi-
mated preallocated stack space (Subsection 5.2.3.3). Lastly, we will evaluate the perfor-
mance impact our proposed technique has on VP execution speed (Subsection 5.2.3.4).
The artifacts for this evaluation are available on Zenodo [190].

7If this information is not available in the TCB, it can be supplied separately.

131

Sören Tempel Error Detection Techniques for Firmware Testing

5.2.3.1. Integration

As described in Subsection 5.2.2, our approach does not require instrumentations or
modifications of the tested software. Instead, we extract information about active threads
by reading guest memory from the VP. RIOT already provides dedicated debug symbols
which allow a debugger to determine information about active threads. For example,
RIOT provides a symbol which allows retrieving an identifier for the currently active
thread. This information is already used by debuggers, such as OpenOCD8, to allow for
selective debugging of individual RIOT threads. Based on these symbols, we extract the
TCBs for RIOT threads and offsets for information stored inside the TCBs.

In RIOT, all thread stack spaces are disjunct. We infer the currently active thread
from the SP value by iterating over all thread stack spaces and checking to which stack
space the current SP value belongs. Alternatively, it would also be possible to determine
the current thread by ID. However, RIOT uses a dedicated stack for handling interrupts
(referred to as Interrupt Service Routine (ISR) stack in the following). Code executed on
the ISR stack does not belong to any thread and has no thread ID. As such, identifying
the current thread by SP allowed us to allow reasoning about ISR stack usage. This
enabled the detection of ISR stack overflows, on which we elaborate in the following.

5.2.3.2. Stack Overflows

As part of our experiments, we uncovered two overflows of RIOT’s ISR stack. Both
occurred under specific operating system configurations. For debugging purposes, RIOT
includes multiple builtin printf invocations which are abstracted through a preprocessor
DEBUG macro and normally disabled. These debug statements can be enabled on a per-file
basis. When doing so, the stack space of the associated thread is normally increased by
THREAD_EXTRA_STACKSIZE_PRINTF. This is necessary as the printf family of functions
has a comparatively large stack usage. Unfortunately, this approach does not work for
the ISR stack since this stack is not allocated in a C file as a static char array but instead
preallocated in the linker script. As such, the size of the ISR thread stack is not increased
when debugging is enabled. Therefore, enabling debug statements in functions executed
on the ISR stack causes stack overflows and can lead to hard-to-debug malfunctioning
during debugging. We encountered this issue while debugging the RIOT thread creation
code from core/thread.c. We have also reported this issue to RIOT developers.9

8http://openocd.org/
9https://github.com/RIOT-OS/RIOT/issues/16395

132

http://openocd.org/
https://github.com/RIOT-OS/RIOT/issues/16395

Sören Tempel Error Detection Techniques for Firmware Testing

RIOT also includes a build configuration, called DEVELHELP, which enables more help-
ful error messages but does not allow for verbose debugging of individual files. As an
example, the trap handler for the RISC-V architecture prints the value of differs RISC-V
CSRs, using printf, if DEVELHELP is enabled and an unknown trap is encountered. This
is useful for easily determining where an unexpected trap occurred. However, since the
trap handler is also executed on the ISR stack and the ISR stack is too small to execute
printf functions, this code path also results in a stack overflow. We encountered this
stack overflow as we initially raised a custom trap in the VP when encountering stack
overflows. Since this trap is unknown to RIOT, it would cause RIOT to attempt to
print the aforementioned debug information which would then result in a stack overflow
on the ISR stack and a nested raise of the corresponding trap. We also reported this
issue to RIOT developers, one way of fixing it would be switching to a more stack space
efficient method for printing CSR values in the trap handler.10 The fact that we man-
aged to identify two edge cases where a stack overflow occurs in RIOT illustrates the
effectiveness of our proposed technique.

5.2.3.3. Stack Size Estimation

In order to evaluate the stack size estimation aspect of our proposed technique, we
measured the maximum stack usage for preexisting test cases for RIOT’s network stack
GNRC. The results are shown in Table 5.3. Each application starts multiple threads and
was executed until a predefined cancellation point was reached (e.g. TestRunner_end).
For each thread in each test case, Table 5.3 shows the measured maximum stack usage
and the configured stack size in bytes. Lastly, the percentage of configured stack space
that was actually used by the test case is shown in the last column of Table 5.3.

The majority of executed test cases use less than 50% of the configured stack space.
This confirms our initial hypothesis that RIOT threads are overprovisioned in terms of
stack size (see Subsection 5.2.3). It is also noticeable that stack sizes are often reused
and not tailored to a specific application. Most notably, all executed test cases use the
default main thread stack size of 1024B. Please note though that the executed test cases
are not specifically designed to yield the worst case stack usage. As such, measurements
from Table 5.3 only indicate the maximum stack usage measured, but not necessarily
the worst possible stack usage. Nonetheless, they serve as a good indicator and may help
developers in iteratively optimizing the stack sizes of their application.

10https://github.com/RIOT-OS/RIOT/issues/16448

133

https://github.com/RIOT-OS/RIOT/issues/16448

Sören Tempel Error Detection Techniques for Firmware Testing

Table 5.3.: Stack size estimated for RIOT’s GNRC test cases.

Stack Size

Test Case Thread Maximum Configured Used

gnrc_ipv6_nib

ISR 128B 512B 25%
idle 76B 256B 29.69%
ipv6 544B 1024B 53.12%
main 716B 1280B 55.94%

mockup_eth 516B 1024B 50.39%

gnrc_ndp

ISR 128B 512B 25%
idle 72B 256B 28.12%
main 456B 1280B 35.62%

test-netif 440B 1024B 42.97%

gnrc_rpl_p2p

ISR 96B 512B 18.75%
idle 80B 256B 31.25%
ipv6 228B 1024B 22.27%
main 304B 1280B 23.75%

gnrc_sock_udp

ISR 176B 512B 34.38%
idle 80B 256B 31.25%
ipv6 388B 1024B 37.89%
main 576B 1280B 45%
udp 304B 1024B 29.69%

134

Sören Tempel Error Detection Techniques for Firmware Testing

Table 5.4.: Benchmarks results for tests/bench_runtime_coreapis.

Benchmark Modified VP Baseline Slowdown

nop loop 0.71 s 0.33 s 53.52%
mutex_init 0.0 s 0.0 s 0%
mutex lock/unlock 14.8 s 6.7 s 54.73%
thread_flags_set 7.22 s 3.3 s 54.29%
thread_flags_clear 3.98 s 1.61 s 59.55%
thread flags set/wait any 19.96 s 8.5 s 57.41%
thread flags set/wait all 17.37 s 7.33 s 57.8%
thread flags set/wait one 21.31 s 8.91 s 58.19%
msg_try_receive 10.75 s 4.26 s 60.37%
msg_avail 3.03 s 0.99 s 67.33%

Average - - 52.32%

5.2.3.4. Performance Impact

As discussed in Subsection 5.2.2, our approach relies on sanity checks performed during
the execution of RISC-V instructions and thus has an impact on execution performance.
We measured this impact by executing RIOT benchmarks specifically designed to gather
performance statistics.

The utilized benchmark performs multiple consecutive invocations of different func-
tions from the RIOT API. In Table 5.4 we compare our implementation against the
original unmodified riscv-vp version as presented in prior work [85]. All tests have
been performed on an Intel i7-8565U system running Alpine Linux. The first column in
Table 5.4 (Benchmarks) shows the executed benchmark function, the second the time it
took to execute it with our implementation (Modified VP), and the third the execution
time with the original riscv-vp (Baseline). The fourth column (Slowdown) displays the
relative slowdown caused by our implemented stack overflow detection and stack size
estimation technique. On average, execution is slowed down by 52.32% through our
employed technique.

We believe this to be an acceptable overhead during development. Currently, our
implementation performs sanity checks for each executed instruction to implement the
algorithm from Subsection 5.2.1. The performance impact may be reduced by only per-
forming these checks after jump instructions.

135

Sören Tempel Error Detection Techniques for Firmware Testing

5.2.4. Related Work

Prior work has already proposed a variety of techniques to prevent stack overflows and/or
reduce stack usage on embedded systems. One solution for reducing stack usage is to
resize thread stacks dynamically as needed [20, 103, 15]. In this regard, Biswas et al. pro-
pose adding additional sanity checks to the compiled software to detect stack overflows
and resize the stack segment if an overflow is imminent [20]. Similarly, Kim et al. mea-
sure stack usage periodically at runtime and perform stack reallocations if needed [103].
Behren et al. present an operating system which adopts a dynamic stack allocation
technique [15]. Unfortunately, these techniques impact runtime behavior and can also
cause memory fragmentation, both of which we believe to be undesirable, especially on
constrained devices which provide real-time guarantees.

For this reason, a different branch of research focuses on determining worst case stack
usage prior to software deployment. A popular approach for doing so is static anal-
ysis [149, 101, 30]. Regehr et al. and Brylow et al. present such an approach which
specifically focuses on interrupt-driven embedded software [149, 30]. However, static ap-
proaches cannot handle recursive functions and indirect function calls. This problem
is mitigated in prior work by requiring programmers to provide annotations for loop
bounds and indirect calls. For example, prior work by Kästner et al. requires program-
mers to manually add annotations in the formal AIS language [101]. Unfortunately,
manual effort makes it more laborious to employ such techniques.

Lastly, different dynamic testing approaches for finding stack overflows have been
proposed [136, 211, 148]. Regehr uses random testing to determine worst case stack usage
and compares results with the aforementioned static approach by the same author [148].
Prior work by Zhang et al. relies on memory protection mechanisms provided by the
processor [211]. Related work by Park et al. uses a modified C compiler to add sanity
checks to the preamble of each compiled function to detect stack overflows and estimate
worst case stack size [136]. This hinders adaption of such approaches. In order to ease
employment in the constrained embedded domain, we believe it to be desirable to detect
stack overflows during normal testing already performed today with VPs in early stages
of software development. Contrary to prior dynamic testing approaches, our approach
enables an analysis that requires no modification or instrumentation of the executed
software.

136

Sören Tempel Error Detection Techniques for Firmware Testing

5.2.5. Discussion and Future Work

The evaluation demonstrates that our approach is capable of uncovering stack overflows
in real-word software for constrained devices. As such, we have demonstrated that the
technique is a suitable path analyzer for reasoning about stack overflows and estimat-
ing stack sizes. So far, we have only implemented the proposed algorithm on top of
riscv-vp, we have not yet integrated it with symbolic execution and SymEx-VP (see
Chapter 3). However, we believe that such an integration is primarily an engineering
effort. Nonetheless, such an integration would be beneficial since symbolic execution al-
lows us to enumerate (ideally all) reachable programs paths automatically. In regard to
constrained devices, this is especially interesting when considering our proposed stack
size estimation technique. Due to memory limitations, the state space on constrained
devices is often smaller than on conventional ones, potentially even allowing for a com-
plete analysis using symbolic execution in this domain [54]. If a complete analysis is
possible, this could allow offering guarantees regarding the estimated thread stack size.

5.2.6. Conclusion

We presented a stack overflow detection and stack size estimation technique for multi-
threaded operating systems which we implemented using VPs in a way that does not
require software instrumentation (Subsection 5.2.2). This allows finding stack overflows
and gives programmers an estimate regarding thread stack usage during early software
development. Compared to the work presented in Section 5.1, the proposed technique
only detects a particular kind of memory corruption (stack overflows) but does not re-
quire software modifications. By avoiding software instrumentation, we can ensure that
the observed behavior does not change when deploying the software in a production
environment. Our implementation is specifically tailored to constrained devices where
stack overflows would normally go undetected due to the lack of memory protections. In
this regard, our technique enabled us to find two previously unknown stack overflows in
the low-end IoT operating system RIOT, which we reported to RIOT developers (Sub-
section 5.2.3.2). Additionally, preliminary results obtained using our stack size estima-
tion technique indicate that existing RIOT application potentially overestimate thread
stack sizes, thereby wasting memory (Subsection 5.2.3.3). We intend to further improve
our proposed technique in future work by combining it with symbolic execution and
SymEx-VP. Our current implementation is freely available on GitHub.11

11https://github.com/agra-uni-bremen/fdl21-stackuse-vp

137

https://github.com/agra-uni-bremen/fdl21-stackuse-vp

Sören Tempel Error Detection Techniques for Firmware Testing

5.3. Reliable Memory Safety using Safe C Dialects
In Section 5.1 and Section 5.2, we have presented path analyzers for detecting mem-
ory corruptions. These analyzers are specifically tailored to the embedded domain and
intended to be used during automated software testing with symbolic execution. Un-
fortunately, for complex whole system analysis (e.g. testing the network stack of the
RIOT operating system), symbolic execution is commonly not complete due to path
explosion issues. Therefore, we cannot guarantee the absence of memory corruptions
and instead focus on bug hunting. Nonetheless, due to the disastrous consequences of
memory corruptions, we want to ensure that we include runtime checks in our firmware
to prevent memory corruptions from occurring in a production environment. Therefore,
in this section, instead of focusing on the detection of memory corruptions during auto-
mated software testing, we intend to guarantee their absence (i.e. achieve spatial memory
safety). As discussed in Chapter 5, a promising direction in this regard is the utiliza-
tion of programming language which achieve spatial memory safety through runtime
bounds checks. In the embedded domain, new safe languages like Rust12 are becoming
increasingly popular for this reason [114].

However, rewriting a large existing code base (like the RIOT operating system) in an
entirely new programming language like Rust is a major effort. For this reason, there is
a vast body of prior work on so-called safe C dialects. These dialects attempt to extend
the C programming language with facilities for writing memory-safe C code [65, 47, 99].
Contrary to new languages like Rust, they do not require full rewrites of an existing code
base but instead rely on annotations (e.g. to specify pointer bounds) and minor local
conversions. A recent advancement in this domain is Checked C [65] which is under on-
going development by Microsoft and provides facilities for writing memory-safe C code.
Compared to other safe C dialects, Checked C is a fully backward compatible extension
of the standard C programming language. In order to distinguish the two, we refer to
the latter as legacy C in the following. Due to backwards compatibility, conversion from
legacy C to Checked C can occur incrementally and on demand. Moreover, incremental
conversions enable developers to selectively convert critical parts to Checked C first,
thereby improving applicability to larger programs. While Checked C developers are
actively working on tooling for partially automating the conversion process, this tooling
is intended for “simple cases” and programmers still need to annotate bounds manu-
ally [156, Section 2]. As such, the conversion process relies on manual effort, which is

12https://www.rust-lang.org/

138

https://www.rust-lang.org/

Sören Tempel Error Detection Techniques for Firmware Testing

susceptible to errors and thus requires cross-validations. We refer to errors introduced
during the conversion process as conversion bugs. The majority of these accidentally
introduced conversion bugs are hopefully discovered through existing unit tests. How-
ever, especially when considering bugs caused by incorrectly specified pointer bounds,
preexisting test cases may not be sufficient to check all relevant edge cases.

In order to uncover conversion bugs, we propose to combine Checked C with symbolic
execution to obtain an effective methodology for finding execution paths containing
conversion bugs. Experiments conducted with the RIOT operating system in this re-
gard show that Checked C also allows us to make previously silent memory corruptions
observable. Hence, as a useful by-product, we can also facilitate the additional runtime
bounds checks inserted by the Checked C compiler as a path analyzer for discovering
spatial violations. Apart from conversion bugs, we were therefore able to discover four
previously unknown memory corruptions in RIOT’s network stack as part of conducted
experiments.

5.3.1. Background Information on Checked C

Checked C is a backwards-compatible extension of the C programming language with
a focus on extending C with facilities for writing memory safe C code. As discussed in
Subsection 5.1.1.1, memory safety has two aspects: temporal safety and spatial safety [65,
Section 1]. Similar to HardBound, Checked C presently only focuses on spatial safety.
Spatial memory safety is achieved in Checked C through the addition of new pointer
types (referred to as checked pointers in the following). From these new pointer types,
pointer arithmetic is only allowed on values of a specific checked pointer type, this type
is called _Array_ptr in Checked C. Pointers of this type must have associated pointer
bounds information. Bounds are specified through so-called bounds expressions which
describe the memory range that can be accessed through a given variable [65].

Generally speaking, converting existing legacy C code to Checked C involves changing
raw C pointers to checked pointer types and annotating pointer bounds through bounds
expressions where necessary. Fully converted code parts can be marked as checked re-
gions, these regions can be held “blameless for any spatial safety violation” [65, Sec-
tion 1], i.e. no spatial safety violations can arise due to code marked as a checked region.
Since Checked C extends legacy C with new syntactic constructs, a custom compiler is
required. We utilize the LLVM-based reference implementation.13

13https://github.com/microsoft/checkedc-clang

139

https://github.com/microsoft/checkedc-clang

Sören Tempel Error Detection Techniques for Firmware Testing

Figure 5.4.: Proposed methodology for using symbolic execution to ease conversions.

5.3.2. Methodology

This section presents our methodology on combining Checked C with symbolic execution
to attain more reliable spatial memory safety for embedded firmware. Figure 5.4 provides
an overview of the methodology. The starting point is an embedded firmware written
in legacy C that is converted to Checked C (position 1 in Figure 5.4). We expect this
process to occur incrementally based on logical firmware modules, as a full conversion
at once is deemed difficult and may not be achievable. For this reason, the embedded
firmware will typically consist of both Checked C and legacy C code parts. After each
increment, the newly converted modules are tested through symbolic execution using
our SymEx-VP symbolic execution engine (position 2 in Figure 5.4). As described in
Chapter 3, SymEx-VP follows a standard symbolic execution methodology, it operates
on the binary level and searches for inputs that will cause an execution error (e.g. failed
Checked C bounds checks in our case). More specifically, this approach enables us to
discover two kinds of bugs in the (partially) converted code base:

1. Real spatial memory safety violations which were already present in the unmodified
original legacy C code base and can result in—potentially exploitable—undefined
behavior without Checked C.

140

Sören Tempel Error Detection Techniques for Firmware Testing

1 bool
2 parse(char *input, size_t len)
3 {
4 char *end = input + len;
5 char *buf = input;
6
7 // Advance buf til seperator is found
8 while (buf < end) {
9 if (*buf == '.' || *buf == ',')
10 break;
11 buf++;
12 }
13 if (buf == end)
14 return false;
15
16 // Extract key and value relative to buf
17 char *key = input;
18 char *value = buf+1;
19
20 // Consult seperator for further parsing
21 if (*(value - 1) == '.')
22 return parse_period(/* ... */);
23 else
24 return parse_comma(/* ... */);
25 }

bool
parse(_Array_ptr<char> input : count(len), size_t len)
_Checked {
_Array_ptr<char> end = input + len;
_Array_ptr<char> buf : bounds(input, end) = input;

// Advance buf til seperator is found
while (buf < end) {
if (*buf == '.' || *buf == ',')
break;
buf++;

}
if (buf == end)
return false;

// Extract key and value relative to buf
_Array_ptr<char> key : bounds(input, buf) = input;
_Array_ptr<char> value : bounds(buf+1, end) = buf+1;

// Consult seperator for further parsing
if (*(value - 1) == '.')
return parse_period(/* ... */);

else
return parse_comma(/* ... */);

}

Listing 5.4.: Implementation of an input parser in legacy C (left) and Checked C (right).

2. Conversion bugs which were introduced while converting the legacy C code base
to Checked C, i.e. bugs which result in crashes that cannot be reproduced with
the original unmodified legacy C code base.

The latter are closely related to Checked C bounds expression which are used to spec-
ify pointer bounds to achieve spatial memory safety in Checked C. For each bug,
SymEx-VP returns a counterexample, i.e. a test case to reproduce the bug (position 3

in Figure 5.4). As previously demonstrated in Subsection 3.1.4.2, SymEx-VP provides
an extensive debugging interface which can be used to inspect generated test cases. This
allows developers to classify the bug accordingly and provide a fix for the embedded
firmware. The conversion process continues incrementally until no more bugs are found
and all required firmware modules have been converted (position 4 in Figure 5.4). In
the following, we present an example to illustrate the conversion process and conver-
sion bugs (Subsection 5.3.2.1). Afterward, we provide a classification of conversion bugs
(Subsection 5.3.2.2).

141

Sören Tempel Error Detection Techniques for Firmware Testing

5.3.2.1. Conversion Bug Example

The distinction between real spatial memory safety violations and conversion bugs is best
illustrated using an example. We believe spatial memory safety violations (e.g. buffer
overflows) to be well understood and described in existing literature [181]. Therefore,
the following example will focus on Checked C conversion bugs, it will also illustrate
modifications required to convert existing legacy C code to Checked C. We must stress
that the example is kept simple for clarity; thus, the path leading to the included con-
version bug would be discovered by a proper unit test. However, similar bugs may arise
in paths that are difficult to reach under specific conditions and thus not covered by
existing unit tests.

Consider a parser for an input of the form foo.bar or foo,bar where foo is some kind
of key and bar is some kind of value. An exemplary implementation of such a parser is
presented in Listing 5.4. The figure contains both, the original legacy C implementation
(on the left-hand side of Listing 5.4) and a version converted to Checked C (on the right-
hand side). The two versions are similar and use the same line numbers but the Checked
C version uses checked pointer types with bounds expressions for Checked C _Array_ptr
types on which pointer arithmetic is performed. Furthermore, the Checked C function
is marked as a checked region in Line 3 using the _Checked keyword, i.e. it can be held
“blameless for any spatial safety violation” [65, Section 1]. Both implementations start off
by skipping over given input characters until a period or comma character is encountered
(Line 8 - Line 12). If no such character is found, false is returned (Line 13 - Line 14).
Afterward, key (Line 17) and value (Line 18) variables are declared, the Checked C
implementation constrains the bounds of these variables according to the parser format.
Lastly, the separation character is again consulted (relative to the value variable) in
Line 21 to determine whether the extracted value should be further processed with the
parse_period or the parse_comma function.

The legacy C code in Listing 5.4 does not contain any spatial memory safety viola-
tions. However, during the conversion to Checked C a conversion bug was introduced:
the code in Line 21 for accessing the separation character causes a bounds violation as
value - 1 is one character outside of the bounds specified for the value variable. Re-
consider the initial input example foo.bar, here the variable key would be constrained
to the first three characters while the variable value would be constrained to the last
three characters. As such, accessing the period character as “the character before the first
value character” (as done in Line 21) constitutes an out-of-bounds access. Fortunately,

142

Sören Tempel Error Detection Techniques for Firmware Testing

this access is still within the bounds of the input buffer and thus does not constitute
a memory safety violation in the legacy C implementation. However, in the Checked C
implementation, the access will result in program termination due to a failing bounds
check. This failing bounds check can be fixed either by widening the pointer bounds of
the value variable or by accessing the separation character as *buf in Line 21.

Even though the example illustrates that converting existing legacy C code to Checked
C is comparatively straightforward, it also demonstrates that subtle bugs can be intro-
duced during the conversion process. These bugs may even occur in lines which have not
been modified and are therefore easy to miss during manual code review. If undetected,
such bugs impact reliability in a production environment by causing crashes. In the worst
case, such crashes can allow for a denial-of-service attack which impacts the availability
of the system. In the following, we further discuss different kinds of conversion bugs.

5.3.2.2. Conversion Bug Classification

We distinguish the following classes of conversion bugs:

1. Narrowing bugs can occur when narrowing pointer bounds. They occur because
either (a) a pointer bound was set too narrow, or (b) existing code has not been
properly adjusted to respect the newly introduced pointer bounds (the latter was
demonstrated by the example in Subsection 5.3.2.1).

2. Widening bugs occur when pointer bounds have been set too wide. The Checked C
compiler already integrates static analysis techniques to detect such bugs. Using so-
called subsumption checks, Checked C ensures the correctness of specified pointer
bounds. These checks allow assignments to narrow down—but not to widen—
pointer bounds, thereby preventing widening bugs, but not narrowing bugs [65,
Section 4].

3. Functional bugs refer to bugs that change the functional behavior and are not
detected by Checked C (because they have no impact on spatial memory safety).
Functional bugs can occur when code is rewritten to handle present limitations of
Checked C, e.g. the same variable cannot have different bounds at different points
in the program [65, Section 3.7].

In terms of conversion bugs, we focus on the detection of narrowing bugs. Narrowing
is explicitly encouraged by Checked C to allow programmers to divide and constrain
accessible data as they desire. As an example, the key variable in Listing 5.4 narrows the

143

Sören Tempel Error Detection Techniques for Firmware Testing

bounds of the input variable. Detection of narrowing bugs ultimately concerns itself with
finding a path where an access, which violates the defined pointer bounds, is performed.
Contrary to widening bugs, this is difficult to detect via static analysis, as it requires
reasoning about performed accesses, not about the bounds expressions themselves.

An undetected narrowing bug will cause a bounds check failure at runtime and thus
impact reliability of the embedded firmware. In the worst case, an undetected narrowing
bug can be exploited as part of a denial-of-service attack which impacts the availability
of the system. Depending on the enclosing product of the embedded system, this can
have potentially disastrous consequences. Contrary to spatial memory safety violations,
narrowing bugs are introduced during the conversion process and cannot occur in the
original firmware. By combining Checked C with symbolic execution, we can detect both
spatial violations and narrowing bugs. Both are observable during symbolic execution
through failing Checked C bounds checks. We further distinguish and demonstrate these
two use cases in Subsection 5.3.3. We leave the detection of functional bugs for future
work, but we believe that symbolic execution is a suitable foundation for this use case.

5.3.3. Evaluation

Similar to the prior evaluations conducted in Subsection 5.1.3 and Subsection 5.2.3,
we evaluate our proposed methodology by applying it to the RIOT operating system.
Apart from its popularity, we also choose the RIOT as a test target because it employs a
modular software architecture. Therefore, RIOT’s architecture allows for an incremental
conversion of the existing source code to Checked C on a per-module basis. This is bene-
ficial for an application of our methodology. In the following, we provide more details on
our test setup (Subsection 5.3.3.1) and present our obtained results (Subsection 5.3.3.2).

5.3.3.1. Setup

In our evaluation, we consider the network stack of RIOT, which is a crucial and cen-
tral component of every IoT system. In particular, we focus on core network modules,
including IPv6, ICMPv6, DNS, and utility libraries such as URI parsers. Following our
methodology, we incrementally converted these modules to Checked C. In accordance
with prior research, our analysis focused on input handling routines of the network stack,
which receive input from a network connection, since these are deemed most vulnerable
to potentially exploitable spatial violations such as buffer overflows [159]. In total, we
incrementally converted 53 functions in 6 different RIOT modules.

144

Sören Tempel Error Detection Techniques for Firmware Testing

In the spirit of Subsection 3.1.5, we employed a two-step methodology for testing the
incrementally converted code using SymEx-VP. That is, we conducted both unit and
integration tests. As a first step, we created specialized unit tests which target specific
functions and modules. For unit testing, we therefore created a respective test harness
(which is a piece of C code) that calls the software under test with symbolic input values.
As a second step, we utilized existing RIOT example applications for more extensive
integration testing by introducing symbolic input values directly into the network stack
using the previously presented SLIP network interface. Recall that SLIP is a network
protocol for the transmission of IP packets over a serial line [155]. In our setup, we pack
symbolic data into an IPv6 packet on the SymEx-VP side, encapsulate it in a SLIP
frame, and pass it through a UART into the RIOT SLIP network driver. The driver
processes the SLIP frame and forwards it to the network stack. Since the network stack
awaits input indefinitely, we terminate execution after one packet has been processed.

We register a custom abort handler in RIOT to notify SymEx-VP about detected
errors. The abort handler is called if a Checked C bounds check fails at runtime, but also
if existing RIOT assertions fail. Based on the concrete input emitted by SymEx-VP, we
can create a test case to reproduce and debug the source of an error, and thereby classify
the bug kind (i.e. real spatial memory bug, Checked C conversion bug introduced by our
conversion process, or other logic bug). Please note, that we target the RISC-V archi-
tecture in this evaluation (and hence the low-level routines in the RIOT code, such as
context switching, use RISC-V specific code), but the higher-level network stack routines
themselves are written in platform independent C code. As RIOT supports executing
high-level application code as a native x86 Linux binary, we can utilize conventional
development tools for detecting spatial violations which are not available on bare-metal
RISC-V (e.g. Valgrind [133] or AddressSanitizer [163]) to classify discovered bugs. This
is achieved by evaluating whether a generated concrete input also results in the detection
of a spatial or logic bug using these tools with an unmodified version of RIOT. If not,
this serves as an indication that the bug was introduced during the conversion.

5.3.3.2. Results

Table 5.5 lists all errors that we have found in network-related RIOT modules. The table
has five columns: (1) the bug identifier (column: ID), (2) the RIOT component where the
bug has been found (column: Component), (3) the type of test (UNIT test or using the
SLIP interface) that led to the detection, (4) the number of (symbolic) execution paths
explored by SymEx-VP until the bug was found (column: #Path), and (5) the overall

145

Sören Tempel Error Detection Techniques for Firmware Testing

Table 5.5.: Spatial violations (M1 - M2), real logic bugs (L1 - L2), and Checked C con-
version bugs (C1 - C3) that our approach found in different RIOT modules.

ID Component Test #Paths Time

M1 uhcp UNIT 282 64.50 s

M2 sock_dns UNIT 5 1.28 s

L1 gnrc_nib SLIP 75 52.37 s

L2 gnrc_netif SLIP 67 47.95 s

C1 gnrc_icmpv6 SLIP 66 45.31 s

C2 uri_parser UNIT 196 40.00 s

C3 clif UNIT 17 3.84 s

execution time in seconds required to find the bug (column: Time). All experiments have
been conducted on a Linux system with an Intel Xeon Gold 6240 processor.

In total, we found 7 unique errors, four of these being real bugs, which are further
classified into spatial memory (M1-M2) and logic bugs (L1-L2), and three being conver-
sion bugs (C1-C3). Logic bugs constitute failing C assertions and can also be detected
without Checked C, all other bugs are specific to Checked C. All real bugs (M1, M2, L1,
L2) that we detected have been previously unknown and have already been confirmed
by the RIOT developers. This demonstrates the effectiveness of our combined testing
approach. Moreover, to trigger certain bugs, specific input parameters are required which
we deem difficult to discover using other techniques. Usage of SymEx-VP has also been
beneficial in supporting the Checked C conversion procedure. Despite being cautious
during the conversion process, we discovered three conversion flaws with SymEx-VP.
We would like to point out that, due to the manual conversion process, such kinds of
bugs can be easily added accidentally. Undetected, they would result in a runtime check
failure and thus abort the embedded software application, thereby impacting reliability
and—in the worst case—allow for a denial-of-service. Table 5.6 provides a more detailed
description for each of the 7 bugs, including references to the RIOT bug tracker.14

14https://github.com/RIOT-OS/RIOT/issues

146

https://github.com/RIOT-OS/RIOT/issues

Sören Tempel Error Detection Techniques for Firmware Testing

Table 5.6.: Summary of all real and conversion bugs discovered using our approach.

Type Bug Description

Real Memory Bug M1 [#15353]: Buffer overflow during parsing of the IPv6 network
prefix. The uhcp module contained a memset invocation with an in-
correct length parameter, resulting in a stack-based buffer overflow.
M2 [#15345]: A bounds check performed in the RIOT DNS imple-
mentation was incorrect. This allowed for a two byte out of bounds
buffer access during DNS response parsing.

Real Logic Bug L1 [#15171]: The RIOT Neighbour Information Base (NIB) im-
plementation for IPv6 contained a failing assertion. This assertion
could only be reached when using a SLIP network interface.
L2 [#15221]: Failure to release a mutex on return. The RIOT
gnrc_netif module, which provides an abstraction for network in-
terfaces, contained a path where a mutex was locked but not un-
locked on return. Reaching this specific path resulted in a deadlock
(detected via a timeout mechanism).

Conversion Bug C1: The RIOT ICMPv6 implementation parses protocol headers
by casting packed structs on pointers. Most of these casts require a
dynamic Checked C bounds check. In one instance, RIOT performed
a bounds check after casting the pointer, thereby resulting in a
failing Checked C bounds check.
C2: RIOT provides a non-destructive parser for URI references. The
parser splits the URL into different parts (scheme, host, port, etc.)
but in one instance accesses data outside the host part. However,
this access was still within the bounds of the underlying URL buffer
and did thus not constitute a real memory safety violation. This is
conceptually similar to the issue described in Subsection 5.3.2.1.
C3: The RIOT clif module provides a parser which increments
a uint8_t pointer contiguously. This causes the pointer bounds to
be narrowed on each increment, at one point the previous pointer
value was accessed after performing an increment thus resulting in
a spurious bounds violation.

147

https://github.com/RIOT-OS/RIOT/issues/15353
https://github.com/RIOT-OS/RIOT/issues/15345
https://github.com/RIOT-OS/RIOT/issues/15171
https://github.com/RIOT-OS/RIOT/issues/15221

Sören Tempel Error Detection Techniques for Firmware Testing

5.3.4. Related Work

We believe Checked C to be one of the most recent advancements in the safe C dialect
domain. Naturally, prior work has also presented alternative safe C dialects, such as
Cyclone [99] and Deputy [47]. Contrary to Checked C, these dialects are either not fully
compatible with legacy C or no longer in active development. Apart from safe C dialects,
existing literature also considers alternative techniques for achieving memory safety in
legacy C code, e.g. [131, 60]. An initial evaluation done by Checked C developers indicates
that Checked C has a runtime overhead of 8.6% and an executable size overhead of 7.4%
on average [65]. We consider these overheads to be low, compared to other techniques
proposed in prior work, which is why we believe Checked C to be a promising technique
for achieving spatial memory safety in the embedded domain.

In terms of application to existing systems, Checked C itself has previously primar-
ily been applied to conventional operating systems, such as FreeBSD [63]. Its appli-
cation to the embedded domain is presently limited, however, we believe Checked C
to be a promising candidate for this domain as—due to the lack of other protection
mechanisms—embedded firmware benefits immensely from language-based safety and
security techniques. This hypothesis also confirmed by previous work on the application
of prior safe C dialects to other embedded operating systems. In this regard, prior work
by Paul et al. employs Deputy in conjunction with the Contiki operating system [137].
Similarly, Cooprider et al. employ Deputy for securing the TinyOS operating system [48].
This prior work illustrates the benefits of using safe C dialects for embedded firmware.
However, we consider these approaches complementary to our own since they do not
address conversion bugs. To the best of our knowledge, we are unaware of related work
which utilizes other software validation techniques in combination with Checked C or
any other safe C dialect to improve reliability of converted code.

5.3.5. Discussion and Future Work

Our experiments demonstrate the effectiveness and potential of our proposed methodol-
ogy for integrating the Checked C conversion process with symbolic execution to achieve
reliable spatial memory safety. Nonetheless, there is still room for improvement, which
we discuss in the following. Due to state explosion issues, symbolic execution is generally
unable to guarantee the absence of errors because the complete state space is commonly
not covered. Therefore, it is rather a bug hunting technique. While our experiments
demonstrated its capabilities in this regard, we cannot prove the complete absence of

148

Sören Tempel Error Detection Techniques for Firmware Testing

failing checked C bounds checks. Checked C itself avoids spatial violations leading to
potentially exploitable undefined behavior, but undiscovered reachable failing bounds
checks can still impact reliability. In order to further improve our technique, we plant to
investigate whether it is possible to achieve completeness by testing small components
(e.g. individual functions) in isolation.

In this regard, another interesting research direction is to optimize the runtime checks
inserted by the Checked C compiler to reduce code size and lessen the runtime perfor-
mance impact imposed by Checked C. The reference compiler for Checked C already
employs static analysis techniques to prove spatial memory safety of certain operations
at compile-time and thus avoid generation of runtime checks [65, Section 3.3]. We en-
vision to utilize symbolic execution (and potentially other formal techniques) to prove
that certain runtime checks are not necessary. An incremental approach that starts with
isolated functions and combines the results in a compositional way seems promising.
Moreover, it would be interesting to investigate the strengthening of the static analysis
employed by the Checked C compiler with guarantees on the enumerated paths provided
via symbolic execution techniques.

Yet another important direction is to investigate dedicated techniques for detection
of functional bugs which may be introduced by the Checked C conversion process. We
believe that symbolic execution is a suitable foundation to develop effective bug hunting
techniques for finding such bugs efficiently as well. This can be complemented with
complete proof techniques to enable equivalence proofs of the converted Checked C
software with the legacy C software. While prior work has already utilized symbolic
execution for the purpose of equivalence checking, limitations with regard to scalability
still remain [147]. An incremental approach, that performs the equivalence proofs in a
compositional way module by module (following the incremental Checked C conversion
process), might be a viable solution to tackle this problem.

5.3.6. Conclusion

In this section, we proposed to combine Checked C with symbolic execution to attain
more reliable spatial memory safety for embedded firmware. We employ symbolic ex-
ecution to safeguard the incremental conversion process from legacy C to Checked C.
Beside conversion bugs, our approach enables detection of spatial memory bugs which
have been present in the original embedded firmware. In comparison to our prior work
presented in Section 5.1 and Section 5.2, employment of Checked C is not only useful for

149

Sören Tempel Error Detection Techniques for Firmware Testing

testing purposes but also offers protection against memory corruptions in a production
environment. The effectiveness of our approach was demonstrated by applying it to the
network stack of the RIOT operating system. We found four previously unknown bugs in
the RIOT network stack, which have been confirmed and fixed by RIOT developers, and
three conversion bugs added accidentally that otherwise would have caused a spurious
bounds check failure at runtime.

150

Chapter 6.

Input Generation Heuristics for
Applications in the IoT

In prior chapters, we have developed an accurate symbolic execution approach for em-
bedded firmware and have described parts of its implementation including handling of
environment models (Chapter 3), binary code instructions (Chapter 4), and path ana-
lyzers (Chapter 5). In these prior chapters, we have conducted experiments to evaluate
the corresponding contributions. However, we have not yet concerned ourselves with
scalability issues of symbolic execution (path explosion) which prior work refers to as
the “biggest challenge facing symbolic execution” [33, p. 87]. In order to mitigate path
explosion issues, domain-specific heuristics and optimizations are needed. In this chap-
ter, we concern ourselves with conducting experiments and providing heuristics for a
particular kind of embedded firmware: IoT applications. IoT applications collect infor-
mation about their surrounding environment and exchange this information with other
systems to achieve a common goal [121, Definition 1.3]. For information exchange, IoT
applications utilize IP-based network protocols which were specifically designed for the
constraints of devices used in this domain (e.g. MQTT-SN [176]) [24].

Due to their complexity, implementations of these network protocols provide a large
attack vector. Unfortunately, it is challenging to test these implementations using dy-
namic software testing techniques such as fuzzing [139, 132] or symbolic execution [174,
173, 6]. Due to their large state space it is infeasible to explore the entirety of the imple-
mentation, instead automated dynamic software tests are often performed with a fixed
time budget. Therefore, it is vital to ensure that the most relevant execution paths are
explored first [33, p. 87]. Otherwise, critical errors may be missed within the allocated
time budget during automated software testing. For this reason, domain-specific search
heuristics and optimizations are needed. When testing network protocol implementa-
tions, it must be taken into account that the input space is regulated by the protocol

151

Sören Tempel Input Generation Heuristics for Applications in the IoT

specification. That is, the majority of inputs are rejected early on without performing
any interesting input processing. This is especially challenging when considering stateful
protocols (such as MQTT-SN) where valid input depends on the current state of the
protocol state machine (i.e. prior messages).

Prior work on fuzzing attempts to address this issue through the use of protocol spec-
ifications based on which input is generated [12, 107, 134]. Unfortunately, creating such
protocol specifications can be a cumbersome manual process; therefore, existing work
also concerns itself with the automatic creation of such specifications [46]. In this section,
we explore a different direction by attempting to ease the creation of protocol specifi-
cations through the utilization of symbolic execution. Contrary to fuzzing, symbolic
execution takes the program structure into account, this enables us to only partially
specify the protocol’s input format by treating unspecified parts as unconstrained sym-
bolic values. We then leverage an SMT solver—used in symbolic execution for formal
reasoning—to automatically fill in the leftover gaps based on extracted program con-
straints. To this end, we present an EDSL for the creation of partial protocol input
format specifications in Section 6.1. In Section 6.2, we extend this EDSL to also allow
the specification of the protocol state machine, thereby enabling verification engineers
to express changes of the protocol input space based on the current protocol state. We
evaluate this approach by conducting experiments with stateful network protocol imple-
mentations (such as MQTT-SN) provided by the Zephyr and RIOT operating systems.
As part of the conducted experiments, we uncovered three previously unknown bugs
in stateful network protocol implementations provided by the RIOT operating system.
Lastly, we concern ourselves with the process of refining creating protocol specifications.
Presently, creating a protocol specification is a manual process and therefore susceptible
to errors. Specifically, if the specification is too narrow, bugs in the tested software may
be missed; if it is too broad, then interesting deeper parts of the implementation may
not be reached and—again—bugs may be missed. Therefore, in Section 6.3, we propose
visualizing the conducted symbolic analysis to enable incremental refinements of created
protocol specifications.

6.1. Input Specification Language for Message Formats
Prior work considers the security of a computer system to be “defined by what compu-
tations can and cannot occur in it under all possible inputs” [159, p. 22]. In the case of
IoT applications, the input space for a network protocol implementation is given by the

152

Sören Tempel Input Generation Heuristics for Applications in the IoT

protocol specification. In order to optimize input generation for this domain, we need
to take the protocol specification and its defined input space into account. A protocol
specification covers different aspects, regarding the input space, the message format and
the state machine specification are of relevance. In this section, we concern ourselves
with the former and present an approach for constraining the input in accordance with
a message format specification, thereby reducing the search space and ensuring that
deeper parts of the tested code are reached earlier.

There is a large body of prior work on fuzzing of applications expecting the generated
input to satisfy complex input format specifications [7, 202, 72, 141, 12]. Contrary to
symbolic execution, fuzzing performs no formal reasoning and instead relies solely on
randomly generated values to create test inputs, thus requiring even more time to satisfy
input formats. Prior work on fuzzing attempts to address this problem by randomizing
individual rules of a specified grammar [7, 202, 72] or individual fields of specified input
blocks [141, 12]. Due to the lack of formal reasoning, it is necessary in both cases to
manually provide a detailed description of the utilized input format, which can be cum-
bersome and error-prone. Inaccuracies in the provided input specification will cause the
tested software to reject generated inputs early, i.e. without performing interesting input
processing. We propose using symbolic execution—or more specifically—concolic testing
(which combines fuzzing and symbolic execution) to ease the creation of input format
specifications by allowing verification engineers to only partially specify the targeted
structured input format. That is, unspecified parts of the input format can be treated
as unconstrained symbolic values, thereby allowing an SMT solver to automatically fill
in the leftover gaps based on extracted program constraints.

We present the Scheme-based Input Specification Language (SISL), an EDSL to pro-
grammatically specify structured binary input formats which are often used in security
critical domains (such as the IoT). Furthermore, we illustrate that our proposed language
can be easily integrated into existing concolic testing frameworks by presenting an ex-
emplary integration for SymEx-VP (Chapter 3), a concolic testing engine for embedded
RISC-V software. Lastly, we evaluate our EDSL by providing evidence that the minimal
effort, required to create partial specifications, is outweighed by the gain in coverage
and that our proposed EDSL is expressive enough to describe a wide range of structured
binary input formats. To the best of our knowledge, SISL is the first input format spec-
ification language designed explicitly for symbolic execution. The SISL tooling is open
source and can be obtained from https://agra-uni-bremen.github.io/sisl/.

153

https://agra-uni-bremen.github.io/sisl/

Sören Tempel Input Generation Heuristics for Applications in the IoT

6.1.1. Scheme-based Input Specification Language

SISL is an EDSL [92] for partially specifying parameterizable binary input formats for
concolic software testing. As the name suggests, SISL is based on and embedded into the
Scheme [168] programming language which, in turn, is a Lisp dialect. Conceptually, SISL
is similar to the LibRISCV EDSL which is embedded into the Haskell programming
language and was presented in Section 4.1. For SISL, we choose Scheme as the basis of
our language since it supports hygienic macros which allow defining custom syntactic
constructs within the language framework, thereby easing the creation of EDSLs [11].

Similar to block-based fuzzers [12, 141], SISL allows specifying binary input formats as
a sequence of variable-width bit blocks. Contrary to existing work on fuzzing, SISL tar-
gets concolic testing and therefore supports distinct block types to distinguish concrete
and symbolic values in the specified input format. Symbolic field values can optionally
be constrained with symbolic expressions, hence allowing expressing the relationship be-
tween different symbolic fields (e.g. X < Y must hold for two symbolic fields X and Y).
Unconstrained symbolic fields can be used to leave parts of the input format unspecified,
therefore allowing the concolic testing engine to fill in these gaps based on program exe-
cution and thus easing the creation of input format specifications. Defined input formats
can also be nested, e.g. to express encapsulation in a network protocol context.

An example SISL input specification is provided in Listing 6.1 where a specification
for the ICMPv6 message format is presented. ICMPv6 is a binary network protocol
implemented on top of IPv6. For this reason, the SISL specification in Listing 6.1 defines
two input formats. First, the IPv6 message format is defined in Line 1 - Line 9 using
SISL’s define-input-format keyword. This keyword defines a new input format and
requires specifying the input format name, optional input format parameters, and the
input format fields. In Line 1 the input format name is given as ipv6-packet, a next-hdr
parameter is defined, and the special &encapsulate keyword is used to denote that the
format encapsulates an additional payload format. In Line 2 - Line 9 the fields of the
IPv6 packet format are defined. Each field definition takes at least two parameters: a
field name (expressed as a Scheme symbol) and a field size in bits. Fields can either
be concrete or symbolic. Concrete fields require the field value as a third argument.
Symbolic fields support an optional third parameter to express symbolic constraints.
For the ipv6-packet definition, six concrete fields are defined in Line 2 - Line 7. The
majority of these fields (Line 3, Line 4, Line 6, and Line 7) use a concrete integer literal as
a field value. The version field (Line 2) uses a predefined variable as a field value and the

154

Sören Tempel Input Generation Heuristics for Applications in the IoT

1 (define-input-format (ipv6-packet next-hdr &encapsulate payload)
2 (make-uint 'version-field 4 ipv6-version-value)
3 (make-uint 'traffic-class 8 0)
4 (make-uint 'flow-label 20 0)
5 (make-uint 'payload-length 16 (input-format-bytesize payload))
6 (make-uint 'next-header 8 next-hdr)
7 (make-uint 'hop-limit 8 42))
8 (make-symbolic 'src-addr 128)
9 (make-symbolic 'dst-addr 128))
10

11 (define-input-format (icmpv6-packet &encapsulate body)
12 (make-symbolic 'type 8 `((Or
13 (Eq type ,icmpv6-nbr-sol)
14 (Eq type ,icmpv6-nbr-adv))))
15 (make-symbolic 'code 8)
16 (make-symbolic 'checksum 16))
17

18 (write-format
19 (ipv6-packet
20 icmpv6-next-header
21 (icmpv6-packet
22 (make-input-format
23 (make-symbolic 'body (bytes->bits 32))))))

Listing 6.1.: Excerpt of a SISL input specification for the ICMPv6 message format.

value of the payload-length field depends on the byte size of the payload parameter.
Furthermore, the ipv6-packet definition also uses two symbolic fields for the source
and destination address of the IPv6 header format (Line 8 - Line 9). IPv6 addresses
have a complex internal structure which is cumbersome to express, by declaring them as
symbolic the correct value for these fields will be inferred by the concolic testing engine
during execution.

The second input format, defined in Listing 6.1, is the ICMPv6 message format
(Line 11 - Line 16). This definition is analog to the ipv6-packet definition, with the
exception that it only consists of symbolic fields (Line 12 - Line 16). Furthermore, the
symbolic type field (Line 12 - Line 14) demonstrates the expression of symbolic con-
straints on a symbolic field values. Symbolic constraints are expressed as a list of KQuery

155

Sören Tempel Input Generation Heuristics for Applications in the IoT

Software SymEx-VP

Input
Parser

Concolic
Structures

Processing
Logic

SISL
Spec.

Low-Level
Spec.

Concolic
Values

SISL
Parser

SMT
SolverGenerates

Reads

Constraints

Executes with Concolic Values

Passed via MMIO

Creates

Figure 6.1.: Overview of our SISL-based concolic testing setup using SymEx-VP.

expressions, a textual representation of symbolic constraints from prior work [32]. In
Line 12 - Line 14, the type field is constrained so that it either has the value of the
variable icmpv6-nbr-sol or icmpv6-nbr-adv. These two variables refer to constants
from the IPv6 NDP specification, thereby enabling targeted concolic testing of an NDP
implementation with this SISL specification.

In order to enable such tests, the two described input formats are instantiated in
Line 18 - Line 23 of Listing 6.1 with specific parameters as part of the write-format
procedure invocation. In this case, the next-hdr of the ipv6-packet is instantiated
with the value of the variable icmpv6-next-header and the payload parameter is set
to an instance of an icmpv6-packet which itself has its body parameter set to an input
format with 32 unconstrained symbolic bytes.

6.1.2. Overview and Implementation

We have integrated our proposed EDSL with SymEx-VP as presented in Chapter 3.
An overview of the interaction between SISL, the tested software, and SymEx-VP
is provided in Figure 6.1. The central component of Figure 6.1 is the high-level SISL
specification written in Scheme. As discussed in Subsection 6.1.2, this specification is
created manually by a verification engineer. Based on the human-readable SISL input
specification, a machine-readable low-level specification is automatically generated. This
low-level specification is then provided to and read by SymEx-VP, which constrains
utilized concolic values according to the specification. Since SymEx-VP targets embed-
ded RISC-V software in binary form, the constrained concolic input values are passed to
the executed software via MMIO peripheral interfaces, e.g. via a network peripheral (see
Section 3.1). The software binary is then explored by SymEx-VP based on these input

156

Sören Tempel Input Generation Heuristics for Applications in the IoT

Table 6.1.: Comparison of concolic testing with SISL and the original SymEx-VP.

Application SISL SymEx-VP

Name ALOC SLOC #Paths Solver Time #Paths Solver Time

Zephyr-CoAP 25383 24 23411 226min 22999 232min

Zephyr-IPv6-NDP 31066 30 15122 338min 1736 453min

Zephyr-MDNS 31238 35 19585 242min 2287 452min

values. The left side of Figure 6.1 shows a schematic representation of relevant software
components performing input processing. Conceptually, the input parser of the software
will process the concolic inputs and create data structures based on them. Since the
inputs are concolic, the created data structures will also contain concolic values. Based
on these concolic values, execution paths through both the input parser and the software
processing logic (which processes data structures created by the input parser component)
will be enumerated by SymEx-VP. Recall that SymEx-VP employs a standard DSE
concolic testing technique where branches in the software are tracked and negated by
an SMT solver to discover new assignments for concolic input values (see Section 2.3).

By constraining concolic input values prior to execution using SISL, we can (a) reduce
the amount of generated input values which are rejected by the software’s input parser
early on and do not reach the processing logic and (b) reduce the amount of time spent
in the SMT solver by using partially instead of fully symbolic inputs, thus reducing the
complexity of SMT queries.

6.1.3. Evaluation

We evaluate our proposed input specification language by applying it to Zephyr1. Zephyr
is a popular operating system for programming constrained embedded devices in the IoT.
For this reason, Zephyr provides input handling routines for structured binary input
formats used by different network protocols in this domain. We performed experiments
with three different protocol message formats (CoAP, IPv6 NDP, mDNS) using example
Zephyr applications. Generated input values were passed directly to the Zephyr network
stack through a SLIP [155] network peripheral provided by SymEx-VP. The results

1https://zephyrproject.org/

157

https://zephyrproject.org/

Sören Tempel Input Generation Heuristics for Applications in the IoT

of our experiments are shown in Table 6.1. For each application, we list the amount
of RISC-V assembler instructions (ALOC) in the binary and the amount of SISL lines
(SLOC), required for the created input format specification, as a complexity metric.
We executed each application for 8 h using the created input specification with our
SISL enhanced version of SymEx-VP and with the original SymEx-VP (i.e. entirely
unconstrained symbolic input). For both executions, we list the amount of discovered
paths through the program (as a coverage metric, column: #Paths) and the amount
of time spent solving constraints on symbolic values (a known bottleneck of concolic
testing, column: Solver Time).

The results in Table 6.1 demonstrate that partial SISL input specifications reduce the
amount of solver time, thereby allowing the discovery of more execution paths through a
given program in a given time span. The gain in path coverage increases with application
complexity (as measured in assembler instructions, column: ALOC). We deem the effort
required to create partial input specifications to be comparatively low, since complex
parts of the input format can be marked as unconstrained symbolic and will thus be
inferred during execution. For example, even for a complex input format like mDNS
(which is encapsulated in an IPv6 and UDP packet) only 35 lines of SISL specification
were required. The utilized SISL specifications and Zephyr applications are available as
part of the artifacts [189].

6.1.4. Conclusion

In this section, we have presented SISL, an EDSL for creating input format specifications
for testing network protocol implementations. SISL is based on the Scheme programming
language and eases the creation of input format specifications by allowing the format
to be partially specified. By combining these specifications with concolic testing, left-
over gaps are treated as unconstrained symbolic values. Therefore, they are subject
to symbolic reasoning based on extracted program constraints. This eases the creation
of new protocol specifications. Conducted experiments with Zephyr indicate that our
EDSL is expressive enough to support different binary input formats and the manual
labor required to employ our EDSL is outweighed by the benefits in terms of increase
in path coverage.

158

Sören Tempel Input Generation Heuristics for Applications in the IoT

6.2. Symbolic Execution of Stateful Network Protocols
In Section 6.1, we have presented a specification language for describing inputs formats
in order to optimize input generation, during symbolic execution, for testing network
protocol implementations. Unfortunately, popular network protocols used in the IoT do-
main (e.g. MQTT-SN [176]) are stateful. For this reason, their expected message format
differs depending on the current state of the protocol state machine (i.e. prior messages).
As such, stateful network protocol implementations cannot be tested using the approach
described in Section 6.1. In this section, we enhance this approach to support stateful
network protocol implementations. Such implementations require multiple packets to
be sent—within the same session—to be comprehensively tested. When sending only a
single packet, deeper parts of the implementation are not reached as state (required to
reach certain parts of the code) is not established and thus critical errors may be missed.
Reasoning about multiple packets further increases the state space, thereby aggravating
path explosion problems.

There is some prior work on symbolic execution of network protocol implementa-
tions [8, 34, 6, 174, 173]. Unfortunately, only few existing works concern themselves
with testing of stateful network protocol implementations [6, 174, 173]. Therefore, the
majority of prior work does not mitigate path explosion issues caused by the stateful na-
ture of these network protocols. The closest related work is SymbexNet by Song et al.
which proposes multi-packet exchange symbolic execution [173]. However, SymbexNet
is not aware of the protocol state machine and while it can reason about multiple packets,
it treats parts of the packet sequence (every packet except the last one) as concrete to
mitigate state explosion issues. Heavy reliance on concretization can cause SymbexNet
to miss paths and therefore bugs in the tested software.

In order to symbolically execute stateful network protocol implementations, we en-
hance our work presented in Section 6.1. For this purpose, we extend the EDSL to also
describe the network protocol state machine, in addition to the message format. This
enables us to explore stateful network protocol implementations which require multiple
input packets to be sent in order to be comprehensively tested. Furthermore, we con-
tribute a state-aware exploration algorithm for symbolic execution of stateful network
protocols. This algorithm is based on protocol specifications created using our EDSL.
We employ our approach to test different stateful network protocol implementations
provided by two popular IoT operating systems (RIOT and Zephyr). Our experiments
indicate that our approach achieves high code coverage with minimal specification and

159

Sören Tempel Input Generation Heuristics for Applications in the IoT

VP Core SymEx

State Spec. Input Spec.

Network
Peripheral

Sensor
Peripheral

SystemC TLM Bus

Control
Peripheral ISS

RISC-V Software

Exploration
Engine

Symbolic
Variables

Path
Constraints

Uses

Includes
Declares

Stops Collects

Resolves using
constraint solver

Calculates new
assignments for

Peripheral access
via LW, SW, …

ExecutesConfigures

Restarts

Figure 6.2.: Overview of our specification-based symbolic execution approach.

integration effort. The effectiveness of our approach is further affirmed by the fact that
we managed to uncover three critical and previously unknown bugs in network protocol
implementations of the RIOT operating system.

6.2.1. Approach

In order to overcome challenges regarding state space explosion, during the execution of
stateful network protocols, we present a specification-based symbolic execution approach
which is specifically tailored to embedded IoT applications.

6.2.1.1. Overview

An overview of our proposed approach is provided in Figure 6.2. Naturally, our imple-
mentation is based on SymEx-VP as presented in Chapter 3. The existing SymEx-VP
architecture has been modified to implement support for specification-based symbolic
execution of stateful network protocols. Components which have been modified for this
purpose are shown in a dashed box in Figure 6.2. In total, we changed around 2500LOC
across 31 files in SymEx-VP.

160

Sören Tempel Input Generation Heuristics for Applications in the IoT

In summary, the central components of the SymEx-VP architecture are the VP core
and the symbolic execution abstraction (referred to as SymEx in Figure 6.2). The sym-
bolic execution engine is responsible for test input generation based on tracked symbolic
path constraints, the VP core is responsible for software execution and peripheral mod-
eling. Both components have multiple subcomponents. The central subcomponent of
the VP core is the ISS. The ISS is responsible for executing instructions of a software
under test in 32-bit RISC-V machine code. The software, executed by the ISS, communi-
cates with peripherals using load/store instructions (i.e. via MMIO). SymEx-VP models
peripherals using SystemC TLM [180] which describes hardware peripherals based on
transactions exchanged over a bus. For this reason, all modeled peripherals are attached
to a TLM bus. In Figure 6.2, a network and a sensor peripheral are attached to the
bus. Furthermore, a special control peripheral is available which allows the executed
software to configure certain aspects of the performed symbolic execution via MMIO
(see Subsection 6.2.1.3).

During software execution, the ISS collects constraints on symbolic values and commu-
nicates them to the symbolic execution engine. In order to implement the DSE algorithm
introduced in Section 2.3, the executed software needs to signal the end of execution to
the ISS. This is achieved via the symbolic control peripheral which then stops the ISS.
After the ISS has been stopped, the exploration engine is used to determine new as-
signments for utilized symbolic variables. Lastly, software execution is restarted with
these new values. This process is ideally repeated until all paths through the executed
software have been explored.

We have enhanced this existing architecture to add support for specification-based
symbolic execution of network protocols. For this purpose, we have modified a network
peripheral provided by SymEx-VP to constrain inputs according to a provided input
specification. Constrained inputs are partially symbolic, e.g. individual protocol fields
may be declared as symbolic variables. The constrained input is passed through the
TLM bus to the executed software via a SystemC TLM extension mechanism. As such,
symbolic values originate in the network peripheral and no software modifications are re-
quired to inject them into the simulation. In order to facilitate testing of stateful network
protocols, we combine the SISL input specification language (described in Section 6.1)
with a novel state specification language. The latter allows constraining inputs differently
based on the current protocol state. For example, an MQTT-SN implementation would
expect different input packets depending on whether a connection was already estab-
lished. More details on the specification languages are provided in Subsection 6.2.1.4 and

161

Sören Tempel Input Generation Heuristics for Applications in the IoT

Subsection 6.2.1.5. Furthermore, the SymEx-VP exploration engine had to be modified
to support symbolic execution with multiple input packets (Subsection 6.2.1.2). The
algorithm used in this regard will be presented in the next section.

6.2.1.2. Multipacket Exploration

Stateful network protocol implementations establish program state based on received
network packets. Therefore, it is vital to generate multiple partially symbolic network
packets in order to comprehensively test these network protocol implementations. Oth-
erwise, code that requires prior state to be established in order to be reachable will not
be tested sufficiently and critical bugs may be missed during testing. Instead of test-
ing software with a single symbolic network packet, we propose using symbolic packet
sequences. A packet sequence is a fixed-length sequential arrangement of k network pack-
ets. Based on symbolic packet sequences, we propose multipacket exploration of stateful
network protocol implementations where the packet sequence length (i.e. the number
of packets) is increased incrementally. Symbolic execution is then only performed up
to a certain depth as given by the current packet sequence length k. That is, software
execution is suspended after the executed software processed network packet k. We refer
to paths where execution was suspended as partially explored paths. By increasing the
sequence length incrementally, we can reduce the initial state space and limit the com-
plexity of generated SMT queries, hence cutting down solver time. A similar approach
is also utilized by bounded model checking [43] and prior work on SymbexNet [173].

Figure 6.4 illustrates reachability of execution paths based on the current packet se-
quence length using a symbolic execution tree where each node represents a branch
condition. For each branch condition, we track the path constraints (omitted in Fig-
ure 6.4) and the packet sequence length k with which it was initially discovered. For
each packet sequence with length k ≥ 1 ∧ k ≤ 3 a subset of possible execution paths is
shown in Figure 6.4. The red nodes in Figure 6.4 indicate the point in time at which the
software has signaled that it has finished processing of a network packet and is about
to process the nth network packet next. Software execution is suspended at this point
if n exceeds the current search depth k. Execution paths for which execution was sus-
pended are classified as partially explored and re-explored later when the search depth
k is increased.

After suspending execution, we run the DSE algorithm from Section 2.3, thereby ex-
ploring execution paths reachable with the current packet sequence length k. This allows
us to explore the execution tree in its breadth, we explore its depth by incrementally

162

Sören Tempel Input Generation Heuristics for Applications in the IoT

1: k ← 1

2: vars← random_values()

3: while true do
4: while ¬is_empty(vars) do
5: execute(k, vars)

6: if coverage_stagnant() then
7: break

8: end if
9: vars← negate_random_branch(k)

10: end while
11:

12: k ← k + 1

13: while partial_path_exists(k − 1) do
14: vars← random_partial_path(k − 1)

15: execute(k, vars)

16: if coverage_stagnant() then
17: break

18: end if
19: end while
20:

21: vars← negate_random_branch(k)

22: end while

Figure 6.3.: Multipacket exploration algorithm for symbolic software execution.

163

Sören Tempel Input Generation Heuristics for Applications in the IoT

PC: T
k = 1

PC: …
k = 1

PC: …
k = 2

… …

PC: …
k = 1

… …

PC: …
k = 2

PC: …
k = 3

… …

PC: …
k = 2

… …

1st packet processed

1st packet processed
2nd packet processed

Figure 6.4.: Execution tree for exploration with packet sequence of length k.

increasing the packet sequence length k. The algorithm we propose in this regard is
shown in Figure 6.3. In Line 2, we initialize all symbolic values with random values (as
required by the DSE algorithm from Section 2.3). Afterward, we enter the exploration
loop, which is executed until a timeout occurs (Line 3 - Line 22).

The exploration loop performs the following computations:

1. Exploration with current sequence length. The exploration starts out by executing
the software with the configured variables vars and stops when the kth packet has
been processed by the software (Line 5). During execution, all branches which de-
pend on symbolic variables are collected and for each branch the sequence length
k, with which it was initially discovered, is tracked. After execution has been sus-
pended, a random branch for a packet sequence of length k is selected, negated,
and symbolic variables are assigned to trigger this branch (Line 9). For this pur-
pose, we currently use a depth-first search algorithm, a survey of algorithms for
selecting a branch to negate is provided by Baldoni et al. [10, Section 2.2]. This
process is repeated until the coverage is stagnant (Line 6 - Line 8) or all branches
for a packet sequence of length k have been negated, in which case vars would be
empty (Line 4).

164

Sören Tempel Input Generation Heuristics for Applications in the IoT

2. Re-execution of partial paths. After exploring the execution tree in its breadth,
the packet sequence length is incremented (Line 12) to explore its depth. In this
regard, the algorithm re-executes paths which were only partially explored with
k = k − 1. That is, it reuses the variable assignment which previously lead to
suspension of software execution (Line 14) and restarts the execution until the
next partial termination (Line 15). This allows initial discovery of branches which
are only reached after processing an additional packet. The process is repeated
until the coverage is stagnant (Line 16 - Line 18) or all partially explored paths
have been re-executed (Line 13).

3. Exploration with increased sequence length. After discovering initial branches for a
sequence of length k, the execution tree is explored in its breadth again by negating
an initial random branch for k + 1 (Line 21) and then resuming execution at 1).
Thereby exploring code in the protocol implementation which can only be reached
after sending at least k + 1 network packets.

In summary, the algorithm explores paths reachable with a fixed search depth of k

network packets and increments k whenever coverage stagnation is detected. Regarding
the detection of coverage stagnation, we use a metric based on branch coverage where
we consider exploration to be stuck when no new branches have been discovered within
a configured amount of execution paths.

6.2.1.3. Control Peripheral

Since we execute bare metal embedded software directly, we cannot rely on common
operating systems abstractions (such as system calls or sockets). Therefore, we need to
instrument the executed RISC-V software to detect successful processing of symbolic
network packets, as retrieved from the provided network interface. This is necessary as
we need to determine when the executed software finished processing of an input packet
in order to implement the algorithm from Subsection 6.2.1.2. For this purpose, we use
the control peripheral, which is a small SystemC peripheral that allows the executed
RISC-V software to communicate with the symbolic execution engine. By writing to
a memory-mapped register, the executed software can indicate one of the following
execution conditions:

1. Packet processed. A single network packet was processed and the software will now
attempt to retrieve an additional network packet.

165

Sören Tempel Input Generation Heuristics for Applications in the IoT

2. Termination. A network packet was processed but no further packet will be re-
trieved (e.g. because the connection was closed).

3. Error. An error state was reached, i.e. the software panic handler was invoked (e.g.
due to a division by zero).

Executed paths are classified by the symbolic execution engine according to the indi-
cated condition. Paths with condition 1) are considered partially explored and treated
according to the algorithm described in Subsection 6.2.1.2, paths with condition 2) or
3) are not explored further. If a path with an error condition is encountered, this error
is communicated to the verification engineer, who can then investigate it further. More
information regarding software instrumentation is provided in Subsection 6.2.2.1.

6.2.1.4. Input Format Specification

As discussed in Subsection 6.2.1.2, our exploration algorithm is based on symbolic packet
sequences. Unfortunately, it is infeasible to make all network packets of a symbolic packet
sequence unconstrained symbolic since this would result in complex path constraints
which will not be solvable in a timely manner. Instead, our approach relies on partially
symbolic network packets. For this purpose, we leverage the SISL Scheme-based EDSL,
which was presented in Section 6.1, and allows expressing network protocol formats
based on variable-length bit fields. Using this EDSL, individual fields of a network pro-
tocol can be declared as symbolic by a verification engineer. This allows targeted testing
of network protocol implementations and reduces the complexity of path constraints.
In the aforementioned prior work, the EDSL has only been applied to test protocols
with a single input packet. We enhance the EDSL with state specification facilities (pre-
sented in Subsection 6.2.1.5) to not only describe the protocol message format, but also
the protocol state machine. Thereby enabling tests of stateful protocol implementations
which require multiple packets to be sent in order to be comprehensively tested. In the
following, we describe how the EDSL can be used to describe the message format of
the MQTT-SN protocol as a prerequisite for the enhancements presented in Subsec-
tion 6.2.1.5.

An example input specification for the SUBACK message from the MQTT-SN [176]
protocol is provided in Listing 6.2. In the IoT, MQTT-SN messages are commonly en-
capsulated in UDP [146] datagrams. Therefore, the example input specification from
Listing 6.2 contains both a UDP (Line 1 - Line 5) as well as an MQTT-SN SUBACK
(Line 7 - Line 15) input format specification. First, the UDP message format is defined

166

Sören Tempel Input Generation Heuristics for Applications in the IoT

1 (define-input-format (udp-fmt dst-port &encapsulate body)
2 (make-uint 'src 16 2342)
3 (make-uint 'dst 16 dst-port)
4 (make-uint 'size 16 (+ 8 (input-format-bytesize body)))
5 (make-symbolic 'cksum 16))
6

7 (define-input-format (suback-fmt msg-id)
8 (make-uint 'len 8 8)
9 (make-uint 'type 8 mqtt-suback)
10 (make-uint 'flags 8 0)
11 (make-symbolic 'topicid 16)
12 (make-uint 'msgid 16 msg-id)
13 (make-symbolic 'code 8 `((And
14 (Uge ,code 0)
15 (Ule ,code 3)))))
16

17 (write-format
18 (udp-datagram
19 1883 ;; MQTT-SN port
20 (suback-fmt
21 2342)))

Listing 6.2.: Excerpt of an input specification for MQTT-SN SUBACK messages.

in Line 1 - Line 5 using the define-input-format keyword. This keyword defines a new
input format and requires specifying the input format name, optional input format pa-
rameters, and the input format fields. In Line 1, the input format name is given as
udp-fmt, a dst-port format parameter is declared, and the &encapsulate keyword is
used to denote that the UDP input format encapsulates an additional body format.
Afterward, the UDP message format fields are declared in Line 2 - Line 5. Each field
definition takes at least two parameters: a field name (expressed as a Scheme symbol)
and a field size in bits. Fields can either be concrete or symbolic. Concrete fields require
the field value as a third argument. Symbolic fields support an optional third parameter
to express symbolic constraints. In accordance with the UDP protocol specification [146,
p. 1], the specified UDP format consists of four 16-bit fields (Line 2 - Line 5). Of these
four fields, only the last (chksum) is unconstrained symbolic. All other fields (src, dst,
and size) are concrete. Regarding field values, src uses an integer literal, the dst value

167

Sören Tempel Input Generation Heuristics for Applications in the IoT

depends on the dst-port parameter, and the size field value is calculated from the
body format size plus the size of the UDP format itself.

The format of the MQTT-SN SUBACK message is defined in Line 7 - Line 15. The
definition is analog to the UDP message format definition described previously. However,
the SUBACK format also demonstrates the definition of constrained symbolic fields. The
code field declared in Line 13 - Line 15 is constrained to only represent symbolic values x
with x ≥ 0∧x ≤ 3. This matches the range of valid MQTT-SN return codes as specified
in the MQTT-SN standard [176, Section 5.3.10]. Since both the UDP and the MQTT-SN
SUBACK format depend on parameters, they need to be instantiated with concrete values
for these parameters. For example, the SUBACK format depends on an id parameter which
allows associating a client request with a broker response to this request. An example
instantiation is provided in Line 18 - Line 21, where the UDP format is instantiated with
a dst-port value of 1883 and encapsulates a SUBACK format. The SUBACK format itself
is instantiated with the msgid value 2342.

6.2.1.5. State Machine Specification

Since our proposed specification-based symbolic execution approach focuses on test-
ing stateful network protocol implementations, it is insufficient to only consider input
formats for a single message. As discussed previously, stateful network protocols im-
plement a protocol state machine and expect different messages formats based on the
current protocol state. In order to comprehensively test complex stateful network pro-
tocol implementations (like MQTT-SN), we enhance the aforementioned SISL input
specification language with facilities for describing the protocol state machine. Concep-
tually, the enhanced version of the EDSL allows specifying the protocol state machine in
R7RS Scheme [168]. This allows sending different partially symbolic network packets to
the tested software based on the current protocol state. Transitions in the state machine
are triggered based on network packets received from the tested software. For each state
machine transition, a response message format is defined using the input specification
language presented in Subsection 6.2.1.4.

An excerpt of the state machine specification for the MQTT-SN protocol is shown
in Listing 6.3. Protocol state machines are defined using the define-state-machine
keyword (Line 1). States for a state machine are defined using the define-state key-
word (Line 4 - Line 21). The start state for the MQTT-SN machine (pre-connected)
is defined explicitly in Line 2. Each defined state has a unique name and receives the
network packet sent by the software in this state via the input parameter. Based on the

168

Sören Tempel Input Generation Heuristics for Applications in the IoT

1 (define-state-machine mqtt-machine
2 (start pre-connected)
3

4 (define-state (pre-connected input)
5 (switch (mqtt-msg-type input)
6 ((CONNECT)
7 (if (mqtt-will? input)
8 (-> (make-resp will-topic-fmt) will-topic-req)
9 (-> (make-resp connack-fmt) connected)))))
10

11 (define-state (will-topic-req input)
12 ...)
13

14 (define-state (connected input)
15 (switch (mqtt-msg-type input)
16 ((SUBSCRIBE)
17 (-> (make-resp (suback-fmt (msg-id input)))
18 subscribed))
19 ((DISCONNECT)
20 (-> (make-resp disconn-fmt)
21 disconnected))))
22 ...
23)

Listing 6.3.: Excerpt of a state machine specification for the MQTT-SN protocol.

network packet input received by the software, different transitions can be triggered in
each state. State machine transitions are defined using the -> operator. For each state
transition, the returned input specification format as well as the state the machine should
transition to are specified. For example, in the connected state, the MQTT-SN message
type is extracted from the input packet (Line 15). If the message received by the tested
software is a MQTT-SN SUBSCRIBE message (Line 16), then the state machine responds
with the suback-fmt input specification (as defined in Listing 6.2) and transitions to
the subscribed state (Line 17 - Line 18). For this purpose, the suback-fmt specification
is instantiated with the message identification extracted from the associated SUBSCRIBE
message received by the client. Alternatively, it is also possible for the client to request
a disconnect in the connected state. In this case, the state machine specification ac-

169

Sören Tempel Input Generation Heuristics for Applications in the IoT

Software SymEx-VP SPS

Concrete packet
Forward packet

Triggers
State

Transition
Input Specification

Symbolic Packet

Figure 6.5.: Illustration of the communication with the State Protocol Server (SPS).

knowledges the disconnect with a disconnect-fmt input specification and transitions
to the disconnected state (Line 20 - Line 21). Symbolic values are introduced into the
simulation of the tested software in each state depending on the specification of the
returned input formats using the EDSL described in Subsection 6.2.1.4.

In order to explore the tested software based on these symbolic values, we integrated
the presented input and state specification languages with the network peripheral of
SymEx-VP as illustrated in Figure 6.2. While the proposed state and input specifi-
cation languages are based on R7RS Scheme, SymEx-VP itself is written in C++. In
order to integrate these components, we have written a State Protocol Server (SPS) in
Scheme which is responsible for triggering state machine transitions based on received
input packets. SymEx-VP communicates with SPS using inter-process communication
over a socket. The interactions between the tested software, SymEx-VP, and SPS are
illustrated in Figure 6.5. The tested software initiates the communication by sending a
concrete network packet via the network interface peripheral provided by SymEx-VP.
SymEx-VP then intercepts this concrete packet and forwards it, in the form of a con-
crete byte vector, to SPS. SPS then executes the transitions for the current state based on
the received input and returns the input specification (Subsection 6.2.1.4) in a low-level
machine-readable format to SymEx-VP. SymEx-VP converts this low-level input spec-
ification format to a partially symbolic network packet and passes this network packet
to the tested software via the network interface. The executed software is then explored
based on the symbolic fields of the network packet according to multipacket exploration
algorithm from Subsection 6.2.1.2.

170

Sören Tempel Input Generation Heuristics for Applications in the IoT

6.2.1.6. Summary

In summary, we have presented a specification-based symbolic execution approach for
stateful network protocol implementations. This approach is based on the SymEx-VP
symbolic execution engine and is therefore specifically tailored to the IoT domain. By
leveraging SystemC, we can model peripherals and sensors and thus comprehensively test
IoT applications which communicate sensor data over stateful protocols like MQTT-SN.
We contribute a new exploration strategy for SymEx-VP which tests software based
on symbolic packet sequences up to an incrementally increased search depth (Subsec-
tion 6.2.1.2). In order to mitigate issues regarding state space explosion, we have utilized
an EDSL which allows specifying symbolic fields within packets of a packet sequence
(Subsection 6.2.1.4). Furthermore, we contributed a novel EDSL for describing protocol
states machines, thereby varying the format of packets within a sequence based on input
received by the tested software (Subsection 6.2.1.5).

6.2.2. Evaluation

We evaluate our specification-based symbolic execution approach by applying it to differ-
ent network protocol implementations provided by two popular IoT operating systems.
Our experiments show that we can achieve a significant increase in code coverage with
minimal manual effort using our proposed approach. Additionally, we were also able to
uncover previously unknown bugs in the tested implementations.

6.2.2.1. Experimental Setup

We perform experiments with stateful network protocol implementations provided by the
aforementioned Zephyr and RIOT operating systems. For our experiments, we use our
modified version of SymEx-VP (Subsection 6.2.1.1) in conjunction with a SLIP [155]
network peripheral. SLIP is a protocol standardized by the IETF which allows transmit-
ting Internet Protocol datagrams over a UART. Since SymEx-VP utilizes the SiFive
HiFive1 hardware platform, we use a SystemC peripheral model of the SiFive UART for
this purpose on the SymEx-VP side. Both RIOT and Zephyr already include a driver
for the SiFive UART as well as an implementation of the SLIP protocol. As per Subsec-
tion 6.2.1.1, this allows us to inject symbolic values into the simulation of RIOT/Zephyr
applications over the SystemC model of the SiFive UART using a TLM extension mecha-
nism. The injected symbolic values represent partially symbolic network packets accord-
ing to a provided specification (see Subsection 6.2.1.4 and Subsection 6.2.1.5). Tested

171

Sören Tempel Input Generation Heuristics for Applications in the IoT

applications are then explored based on a sequence of these packets according to the
algorithm described in Subsection 6.2.1.2.

Since we inject symbolic values into the simulation via a SLIP network peripheral,
we can keep modifications of tested software to a minimum. Purely for the purpose of
injecting symbolic values, no software modifications are necessary. However, to employ
our multipacket exploration algorithm (Subsection 6.2.1.2), the tested software needs
to be instrumented in order to signal complete processing of an input packet. For this
purpose, the tested software interacts via MMIO with the control peripheral described
in Subsection 6.2.1.3. As such, we added a driver for the control peripheral to both
RIOT and Zephyr and modified existing code to signal execution conditions via the
driver to SymEx-VP. For example, we modified RIOT’s panic handler to signal an
error condition to SymEx-VP via the control peripheral. Since the MMIO interface
of the control peripheral is structured around a single memory-mapped register, only
around 100LOC were added to RIOT and Zephyr for this purpose.

Regarding tested stateful network protocol implementations, we performed tests with
MQTT-SN [176], DHCPv4 [62], and DHCPv6 [126]. Since all of these protocols require
encapsulation, we have also created input specifications for the IPv6 [145], IPv6 [56], and
UDP [146] protocols. In total, we have thus employed our proposed input specification
languages for six different network protocols. Our experiments focus on the MQTT-SN
protocol (for which we have tested two implementations) since we consider it the most
complex and most popular stateful network protocol in the IoT domain. For each tested
network protocol implementation, we started out by creating an input and state specifi-
cation based on the protocol standard. Afterward, we modified SymEx-VP to measure
code coverage based on executed instructions. We then executed tested protocol imple-
mentations using SymEx-VP and iteratively refined our input and state specification
to maximize achieved coverage. This process took a graduate student about one working
day per protocol.

In order to put achieved code coverage into perspective, we compare our coverage
results with a baseline where the same applications are executed without employment of
our state specification language. For our baseline, upper protocol layers are also specified
but for the application layer protocol unconstrained symbolic data is returned and no
different input formats are used based on the current protocol state. In both cases, the
exploration algorithm described in Subsection 6.2.1.2 is used and coverage is considered
stagnant if no new branch has been discovered within 50 execution paths. By using the
same exploration strategy, memory model, et cetera, we can isolate the effects of the

172

Sören Tempel Input Generation Heuristics for Applications in the IoT

state specification language on coverage. This allows us to specifically assess the benefits
of our state specification language, which we consider our most central contribution. For
both setups, we executed our selected benchmark applications with a 2 h time budget on
an Intel Xeon Gold 6240 running Alpine Linux Edge, results are presented in the next
section.

6.2.2.2. Results

The results are shown in Table 6.2. In total, we have tested four benchmark applications
(three RIOT and one Zephyr application). For RIOT, we tested two MQTT-SN imple-
mentations (emcute and asymcute) and RIOT’s default DHCPv6 implementation. For
Zephyr, we have performed experiments with the DHCPv6 implementation provided by
the operating system. All information required to reproduce our results (including the
utilized input and state specifications) is available as part of the artifacts [198].

The rows in Table 6.2 present the results for each benchmark application. As a com-
plexity metric, we list the amount of RISC-V assembler instructions contained in the
binary of each application (column: ALOC). As discussed in Subsection 6.2.2.1, we
distinguish two configurations regarding symbolic execution: with and without our pro-
posed state specification language. In each configuration, the benchmark applications
were executed symbolically with a 2 h time budget. In order to compare these two con-
figurations, Table 6.2 provides execution statistics for the symbolic analysis performed
in this time span. Most importantly, achieved code coverage in the form of instruction
coverage (column: IC), i.e. the percentage of executed unique RISC-V instructions.2

Furthermore, Table 6.2 presents the amount of partially symbolic network packets sent
in each configuration (column: #Pkts) and the amount of discovered execution paths
(column: #Paths). For each benchmark, we then compare the difference between the
two configurations regarding the aforementioned execution statistics. For the majority
of tested applications (emcute, asymcute, and dhcpv6), use of our state specification
language results in a roughly 20% - 30% increase in instruction coverage. An increase
of 7% can be observed for Zephyr’s DHCPv6 implementation. Results are interpreted
further in Subsection 6.2.2.3.

In order to illustrate how collected instruction coverage metrics develop over time,
supplementary plots are provided in Figure 6.6. The provided plots are based on the

2Since both RIOT and Zephyr compile the entire operating system to a single binary we only measure
coverage across source files relevant to the tested protocol implementation (as identified by text
segment addresses).

173

Sören Tempel Input Generation Heuristics for Applications in the IoT

Table 6.2.: Execution statistics for IoT protocol implementations with a 2 h time budget.

Application

Benchmark ALOC Configuration IC #Pkts #Paths

RIOT emcute 13983

w/o State Spec. 50% 866 358

w. State Spec. 83% 2311 383

Difference +33% +1445 +25

RIOT asymcute 16703

w/o State Spec. 56% 1418 562

w. State Spec. 75% 1752 434

Difference +19% −334 −128

RIOT DHCPv6 16203

w/o State Spec. 40% 1170 419

w. State Spec. 65% 1340 470

Difference +25% +170 +51

Zephyr DHCPv4 18519

w/o State Spec. 57% 1051 413

w. State Spec. 64% 1079 405

Difference +7% +28 −8

same data used for Table 6.2, however, the table only provides instruction coverage re-
sults after termination and does not illustrate how this coverage increases over time. In
Figure 6.6, one plot is provided for each benchmark application. For each plot, the accu-
mulated instruction coverage is specified on the y-axis while the current execution path
is given on the x-axis. As such, each plot shows the accumulated instruction coverage
achieved after execution of each listed execution path. Within each plot, we compare
the aforementioned configurations. Instruction coverage without a state specification is
plotted in blue while coverage with employment of the state specification language is
plotted in red. For all benchmarks, coverage diverges towards 100% with periods of
stagnation in between.

6.2.2.3. Interpretation

Our results show that a significant increase in code coverage can be achieved through
employment of specification-based symbolic execution using our proposed state specifi-
cation language. For implementations of the popular MQTT-SN IoT protocol, we were
able to achieve a 33% and 19% increase in code coverage for two RIOT implementations
(emcute and asymcute). Hence, demonstrating that the increase in code coverage is not
specific to a singular implementation of the MQTT-SN protocol. We deem the increase
to be significant and to outweigh the manual effort required to create the required input

174

Sören Tempel Input Generation Heuristics for Applications in the IoT

0 100 200 300 400 500 600
0
20
40
60
80
100

#Paths in emcute

IC

0 100 200 300 400 500 600
0
20
40
60
80
100

#Paths in asymcute
IC

0 100 200 300 400 500 600
0
20
40
60
80
100

#Paths in dhcpv6

IC

0 100 200 300 400 500 600
0
20
40
60
80
100

#Paths in dhcpv4

IC

W. State Spec. W/o State Spec.

Figure 6.6.: Plots comparing achieved instruction coverage over time for symbolic exe-
cution with and without employment of our state specification language.

175

Sören Tempel Input Generation Heuristics for Applications in the IoT

and state specifications, especially considering that—once created for a given protocol—
they can be reused for different implementations of that protocol. Furthermore, our
experiments illustrate that our proposed specification languages are applicable to other
protocols by performing tests with a DHCPv4 and a DHCPv6 implementation. For
DHCPv6, we achieved a similar increase in code coverage of 25%. For DHCPv4, the
increase in coverage is only 7% this is because the DHCPv4 protocol has fewer messages
types and is thus less complex than DHCPv6 or MQTT-SN. The data in Table 6.2 also
illustrates that sending more packets or executing more paths does not necessarily result
in higher coverage. For example, for the emcute benchmark, an increase in instruction
coverage by 19% can be observed, although 334 fewer packets were sent, and 128 fewer
paths were discovered. This serves to show that our proposed approach results in the
discovery of more “interesting” paths, i.e. paths which result in higher instruction cov-
erage. As plotted in Figure 6.6, employment of our state specification language results
in an increased code coverage at any point in time during symbolic execution. An ex-
ception in this regard is only the tested DHCPv4 implementation, which briefly achieves
a minimally higher coverage without our state specification. We attribute this diver-
gence to the fact that the provided state specification might be too narrow given the
smaller state space of the protocol. In terms of re-usability, we were also able to apply
our specification-based symbolic execution approach to different operating systems in
the IoT domain (RIOT and Zephyr).

6.2.2.4. Encountered Errors

As discussed in Chapter 5, detection of common programming errors (such as memory
corruptions) is difficult on embedded systems as they do not support runtime protec-
tion mechanisms commonly available on conventional devices. For this reason, faults
caused by programming errors are often not detected at runtime [128]. Unfortunately,
we have not yet integrated the error detection techniques, presented in Chapter 5, with
our specification-based symbolic execution approach. This is because, in this section, we
focus primarily on code coverage for the symbolic execution of stateful network proto-
cols. Nonetheless, we were still able to uncover previously unknown bugs in RIOT as
part of our conducted experiments (without any additional error detection techniques).
All encountered bugs have been confirmed and fixed by RIOT developers. We further
describe each encountered issue below and provide a reference to the bug report in the
public bug tracker of the RIOT operating system:

176

Sören Tempel Input Generation Heuristics for Applications in the IoT

• An out-of-bounds memory read occurring during option parsing in RIOT’s DHCPv6
implementation. This issue was discovered as a load access fault was ultimately
triggered, which caused an invocation of RIOT’s panic handler.3

• On certain inputs, RIOT’s asymcute module would not unlock a mutex on a return
path. This causes a deadlock where asymcute is no longer able to process any
further packets, thus allowing for a denial of service. The issue was discovered via
a timeout mechanism in SymEx-VP.4

• When checking for acknowledgments of MQTT-SN packets, RIOT’s asymcute im-
plementation would not take the request type into account. Matching only oc-
curred based on the message ID. As such, RIOT would, for example, match a
SUBACK response to a PUBLISH request (which is incorrect). This caused a NULL
pointer dereference in RIOT which resulted in a load fault and thus a panic handler
invocation.5

In summary, our proposed methodology allows for a significant increase in code coverage
with minimal manual effort for the symbolic execution of complex stateful network
protocol implementations, like MQTT-SN, in the IoT. The fact that we were able to
uncover three previously unknown bugs in the popular and well-tested RIOT operating
system further affirms the effectiveness of our proposed symbolic execution approach.

6.2.3. Related Work

Dynamic automated testing of network protocol implementations is an active research
area with a vast body of existing research. The majority of existing work utilizes fuzzing
to automatically generate test inputs for network protocol implementations. Fuzzing-
based approaches rely on random input generation and are thus often incapable of sat-
isfying predefined structured input formats (such as network packet formats). In order
to mitigate this issue, prior work on fuzzing mutates existing network packets, e.g. by
transforming individual protocol fields [139, 80, 38]. Since this approach requires sniffing
existing network packets, related work has also proposed fuzzing of network protocol
implementations based on created protocol and input specifications [12, 107, 134]. Fur-
thermore, prior work on fuzzing has experimented with inferring protocol state machines
using machine learning techniques, thereby reducing manual effort [170, 182, 69].

3https://github.com/RIOT-OS/RIOT/pull/18307
4https://github.com/RIOT-OS/RIOT/pull/18289
5https://github.com/RIOT-OS/RIOT/pull/18434

177

https://github.com/RIOT-OS/RIOT/pull/18307
https://github.com/RIOT-OS/RIOT/pull/18289
https://github.com/RIOT-OS/RIOT/pull/18434

Sören Tempel Input Generation Heuristics for Applications in the IoT

Nonetheless, fuzzing remains limited by the inability to satisfy complex input con-
straints. Contrary to fuzzing, symbolic execution does perform formal reasoning on
symbolic expressions and is thus also capable of solving more complex input constraints.
Popular symbolic execution engines include KLEE [32], S²E [41], or angr [169]. How-
ever, similar to fuzzing, the majority of existing work focuses on symbolic execution of
software for conventional desktop systems and is thus not directly applicable to the em-
bedded IoT domain. KLEE, for example, executes LLVM IR (the intermediate language
of the LLVM compiler infrastructure) symbolically and thus does not allow execution
of inline assembly, which is common in the embedded domain. Furthermore, KLEE fo-
cuses on environmental modeling for POSIX [95] systems and does therefore not support
low-level interactions with hardware peripherals.

As discussed in Section 6.2, employment of symbolic execution for testing stateful
network protocol implementations is limited by state space explosion issues. Existing
work on SymNV addresses this problem by allowing developers to mark individual fields
as symbolic [174]. SymNV is extended further in prior work to support exploration
of stateful network protocol by combining concrete and symbolic execution and only
treating the last packet of a packet sequence as symbolic [173]. Our proposed multipacket
exploration algorithm retains symbolic values across the sequence and instead relies more
heavily on input specification to reduce the state space. Furthermore, the aforementioned
existing work is specific to conventional devices.

Prior work attempts to leverage existing symbolic execution engines for the embed-
ded domain through a process called “rehosting” where peripheral behavior is only ap-
proximated up to a point where it is sufficiently accurate to execute a single firmware
image [54, 45, 68]. That is, instead of modeling the entire hardware platform (as done
in virtual prototyping with SystemC). A survey of existing rehosting techniques is pro-
vided by Fasano et al. [66]. To the best of our knowledge, there is no prior work which
provides symbolic execution of stateful network implementations for embedded devices,
either through rehosting (as proposed in prior work) or peripheral modeling (as per-
formed in this section). The closest related work we are aware of is KleeNet [158] which
provides symbolic execution for network protocols of the Contiki [64] IoT operating sys-
tem. However, KleeNet only supports Contiki’s native target (i.e. x86) and is incapable
of executing low-level code interacting with peripherals. Furthermore, since KleeNet ex-
ecutes tests on an architecture that is different from the production environment, it will
miss architecture-specific bugs (e.g. misaligned loads).

178

Sören Tempel Input Generation Heuristics for Applications in the IoT

6.2.4. Discussion and Future Work

In this section, we focused on increasing code coverage for stateful network protocol
implementations through specification-based symbolic execution. Nonetheless, we were
able to uncover three previously unknown bugs in the popular and well-tested RIOT
operating systems. However, since prior work has shown that programming errors of-
ten remain undetected at runtime—without instrumentation—in the embedded IoT do-
main [128], it is advantageous to integrate our specification-based symbolic execution
technique with error detection techniques. We believe this to be a complementary issue
as, conceptually, error detection techniques check each path—explored through symbolic
execution—for an error case. In this context, our specification-based symbolic execution
approach is complementary as it focuses on increasing coverage on enumerated paths.
In Section 5.3, we have presented an error detection technique for spatial memory safety
violations, but have not yet integrated it with specification-based symbolic execution.
Apart from spatial violations, it would also be interesting to detect functional errors
in protocol implementations, which prior work has achieved through rule-specifications
that could be integrated into our state specification language in future work [173, 174].

Regarding code coverage, our approach relies heavily on the input and state specifi-
cations created by verification engineers. Creating a good input and state specification
is challenging. If the specification is too narrow, important paths may be missed and
coverage may become stagnant quickly. If too much data is declared as unconstrained
symbolic, then the complexity of path constraints increases and execution slows down
since more time is spent in the SMT solver. For this reason, it is important to iteratively
refine created input and state specifications. In order to ease this process, it would be
worthwhile to provide a visualization of the performed symbolic execution which illus-
trates how fields of an input packet affect coverage, thereby assisting in the creation of
protocol specifications. Initial work towards such a visualization is presented later on in
Section 6.3.

A further limitation of our specification-based symbolic execution approach is the
manual effort required to create input and state specifications. However, our experi-
ments indicate that specifications can be partially reused. For example, we were able to
reuse our UDP and IPv6 specifications for all experiments conducted with RIOT. Since
our EDSLs are based on R7RS Scheme, we envision that re-usable specifications for
common network protocols (like IPv6 or UDP) will be provided as R7RS libraries [168,
Section 5.6].

179

Sören Tempel Input Generation Heuristics for Applications in the IoT

Lastly, the experimental setup described in Subsection 6.2.2.1 could be improved fur-
ther. Presently, we inject symbolic network packets via a SLIP-based network peripheral
into the simulation. We used SLIP for this purpose as it is widely supported by existing
IoT operating systems and trivial to implement. However, a drawback of SLIP is that it
relies on byte stuffing, i.e. requires escaping of certain control bytes in the packet data.
Unfortunately, expressing these escaping rules as symbolic expressions is cumbersome
and increases their complexity. For this reason, we presently constrain input bytes to
never match the four control bytes and thus cannot generate inputs containing them.
This could be addressed in future work by using a network peripheral which does not rely
on byte stuffing, e.g. Ethernet. Furthermore, it would be desirable to remove the need
for firmware modifications from our experimental setup in future work, thereby enabling
developers to perform tests on the exact same binary that will be used in production.

6.2.5. Conclusion

We have presented a novel specification-based symbolic execution approach for testing
stateful network protocol implementations. Our proposed approach is specifically tai-
lored to the low-end IoT domain. In this domain, we have conducted experiments with
stateful network protocol implementations provided by the IoT operating systems RIOT
and Zephyr. For complex stateful network protocols (like MQTT-SN) our experiments
show that a significant increase in code coverage of 20% - 30% can be achieved using
our proposed approach. The effectiveness of our approach is affirmed further by three
critical and previously unknown bugs that we were able to uncover in network protocol
implementations provided by the RIOT operating system. The central contributions of
this work include: a novel exploration algorithm for symbolic execution of stateful net-
work protocol implementations (Subsection 6.2.1.2) and an EDSL for specifying the state
machine of stateful network protocols (Subsection 6.2.1.5). To stimulate further research
on this topic, we have released the implementation of our proposed specification-based
symbolic execution approach—and all associated tooling—as open source software.6,7

6https://github.com/agra-uni-bremen/sps
7https://github.com/agra-uni-bremen/sps-vp

180

https://github.com/agra-uni-bremen/sps
https://github.com/agra-uni-bremen/sps-vp

Sören Tempel Input Generation Heuristics for Applications in the IoT

6.3. Visualizing Symbolic Execution Results
Section 6.1 and Section 6.2 presented a specification-based symbolic execution approach
which uses protocol specifications to optimize input generation for embedded IoT appli-
cations. A challenge in this regard is the creation of “good” protocol specifications. On
the one hand, if the specification is too narrow (i.e. too strongly constrained), then bugs
in the tested software will be missed because inputs triggering them will not be generated.
On the other hand, if the specification is too broad (i.e. too loosely constrained), then
bugs in the tested software will be missed because deeper parts of the implementation—
where they most commonly occur—are not reached within a fixed time budget. For
the experiments conducted in Subsection 6.2.2.1, we have incrementally refined created
protocol specifications. In this section, we want to improve upon this proposed approach.

In order to refine a protocol specification, the symbolic analysis conducted with a prior
version of the specification must be evaluated. Coverage metrics are commonly used to
assess the quality of performed tests [108]. Therefore, we have also used them for this
purpose in Subsection 6.2.2.1. However, while coverage metrics indicate which parts of
the code base have not been tested sufficiently, they do not include information on why
these parts have not been reached. A potential reason for incompleteness in the symbolic
execution domain are concretizations, i.e. the conversion of a symbolic value to a con-
crete one. Concretizations provide a trade-off between completeness and efficiency and
can, for example, be used when SMT queries become too complex for the solver to han-
dle in a timely manner [53]. They impact completeness as branch conditions, executed
after the concretization point, are only concretely evaluated and not subject to symbolic
reasoning [10, Section 2.1]. In the context of the creation of protocol specifications, it
is useful to identify where concretizations took place in order to refine the specification
accordingly. For example, reducing the use of symbolic fields within a protocol specifica-
tion and employing divide-and-conquer to avoid concretization due to query complexity.
Prior work attempts to communicate properties of a performed symbolic analysis through
graph-based visualizations [3, 81, 89]. Unfortunately, the aforementioned prior work has
largely been evaluated using smaller example code and is not deemed suitable for larger
applications, e.g. the network stack of the RIOT operating system.

We attempt to address scalability issues by instead relying on coverage metrics and
attempting to augment them with additional symbolic execution specific information.
While we believe this technique to be applicable to different properties of a symbolic
execution analysis, we focus on concretization in this section. More specifically, we con-

181

Sören Tempel Input Generation Heuristics for Applications in the IoT

tribute a new coverage metric by enhancing the existing line coverage metric with infor-
mation about concretizations. We refer to this combination as concolic line coverage in
the following. Concolic line coverage identifies code parts where concretization initially
occurs. Since concretization affects all lines which thereafter operate on the concretized
value, we perform taint tracking to quantify all affected lines. Similar to existing front
ends for coverage metrics, we also contribute a code-based visualization of concolic line
coverage that eases identifying source lines affected by concretization. Based on the vi-
sualization, protocol specifications can be systematically refined to avoid concretization.

6.3.1. Concolic Line Coverage

Standard line coverage measures the amount of executed lines in percent. Concolic line
coverage augments line coverage with concretization information. As explained in Sec-
tion 6.3, concretization does not only affect a single line. Therefore, in order to identify
all operations that depend on a concretized value, we employ taint tracking. A concretiza-
tion of a previously symbolic value causes this value to become tainted. All operations,
conducted on a tainted value, propagate this tainting information. Meaning, an opera-
tion receiving a tainted value as an input will also return a tainted value as an output.
We refer to these operations as tainted operations in the following. Tainted operations
allow identifying lines which depend—directly or indirectly—on a concretized value.

Based on tainted operations, concolic line coverage checks—for each executed line—if
it has been executed at least once with a symbolic value (S), a concretized value (C),
and/or a normal concrete value (N). Since each line is executed multiple times under
potentially different path constraints, it is possible for the same line to satisfy multiple
of the aforementioned properties.8 Let LC be the set of executed lines, as measured by
line coverage, then the additional information gathered by concolic line coverage is best
formalized as the binary relation R ⊆ LC × {S,C,N}. Using this relation, concolic line
coverage itself can be defined over the set L of total source code lines with LC ⊆ L as
follows:

|{l ∈ LC | (l, C) 6∈ R}|
|L|

· 100

In summary, we distinguish lines executed with symbolic, concrete, and concretized
values. In this context, concolic line coverage is the percentage of executed lines which

8Similarly, since path conditions differ in each execution, it is sufficient for a line to be executed once
with a concretized value in order for the execution engine to potentially miss a path which is only
reachable under the current path constraints.

182

Sören Tempel Input Generation Heuristics for Applications in the IoT

have not been executed with a concretized value (as defined in Section 6.3). Full concolic
line coverage is reached if all lines have been executed with either concrete or symbolic
values (i.e. no line has been executed with a concretized value), in both cases it is
guaranteed that no paths have been missed due to concretization.

6.3.2. Implementation

We have implemented our proposed coverage metric on top of the SymEx-VP symbolic
execution engine (see Chapter 3). As described previously, SymEx-VP performs concolic
execution of 32-bit RISC-V binary code. For an integration with concolic line coverage,
we modified roughly 1000LOC in SymEx-VP. We further describe performed changes
below.

6.3.2.1. Taint Tracking

In order to implement the generation of concolic line coverage metrics, we had to add
taint tracking support for concretization to SymEx-VP. This was achieved by modi-
fying the data type used by the concolic execution engine to represent concolic values.
Apart from a symbolic expression and a concrete value, our modified version of this
data type also tracks whether the value is tainted. Accordingly, we also had to modify
functions implementing operations on concolic values (e.g. addition or subtraction) as
these operations need to propagate tainting information correctly. For example, an ad-
dition operation that adds a non-tainted and a tainted concolic value must itself return
a tainted value as a result. Fortunately, SymEx-VP generates the majority of functions
performing operations on concolic values from function templates; thus, we were able to
keep modification to a minimum.

Implementing tainting for concolic values in SymEx-VP allows marking them as
tainted when a concretization is performed. In the execution unit of SymEx-VP, it is
then possible to identify tainted operations by iterating over all operands of an executed
binary code instruction (as defined by the instruction type) and checking whether any
of these operands are tainted.

6.3.2.2. Coverage Support

Apart from taint tracking for concretization, we also had to track coverage information
in SymEx-VP. As per Subsection 6.3.1, concolic line coverage is based on standard
line coverage. In order to track line coverage, we had to extract information about

183

Sören Tempel Input Generation Heuristics for Applications in the IoT

functions, source files, and source lines during execution of RISC-V machine code in
SymEx-VP. Similar to debuggers such as GDB, we rely on the DWARF debugging
format to extract information about the source code for executed machine code [55]. For
this purpose, we added a coverage component to SymEx-VP. This component is passed
the address of an executed instruction, including tainting information, and then extracts
the aforementioned source code information using libdwfl from elfutils9. Based on
the extracted information, the coverage component populates internal tables to track
how often a given line in a given file/function has been executed and whether it includes
a tainted operation.

After program execution terminates, tracked coverage information is stored in the
JSON format on a per source file basis. More specifically, we utilize the JSON format
used by GNU gcov and extended this format to store information about concretization
and symbolic execution as discussed in Subsection 6.3.1.

6.3.2.3. Visualization

In order to visualize the collected concolic line coverage metrics, we implemented a cus-
tom front end for the aforementioned JSON format. This visualization front end receives
the JSON files as an input and creates HTML files as an output. For each source file, an
HTML page is generated which displays the source code and colors source lines according
to their properties (concretized, executed, unexecuted). In this regard, it is intentionally
similar to existing visualization for line coverage metrics. This should ease interpretation
of concolic line coverage metrics as verification engineers are already familiar with such
visual representations from the concrete testing context. The visualization is further
described using an exemplary case study in Subsection 6.3.3, a screenshot is provided in
Figure 6.7.

6.3.3. Case Study

This section evaluates our proposed approach by applying it to the RIOT operating
system and thereby illustrates how concolic line coverage and the associated visualization
can aid verification engineers in understanding the effects of concretization on their
performed tests.

9https://sourceware.org/elfutils/

184

https://sourceware.org/elfutils/

Sören Tempel Input Generation Heuristics for Applications in the IoT

6.3.3.1. Concolic Execution Setup

In our case study, we test the implementation of a network protocol through concolic
execution using our modified version of SymEx-VP. Similar to prior experiments con-
ducted in this chapter, we utilize the RIOT operating system for evaluation purposes.
More specifically, we make use of RIOT’s CoAP implementation (called nanocoap).
CoAP is a network protocol commonly used in this domain to implement client-server
architectures [167].

For our performed tests, we wrote a test harness for nanocoap which passes a fixed-
size buffer with concolic values to the parsing function of nanocoap (i.e. coap_parse).
This test harness was executed with a short 5min time budget. Regarding the con-
cretization strategy, we utilized address concretization for our performed tests. Address
concretization is a popular memory model for concolic execution, in this memory model,
concretization is performed when a symbolic value is used to address memory. This re-
duces the complexity of tracked constraints but—like any form of concretization—can
cause the engine to miss paths [10, Section 3.2]. In this exemplary case study, it is
therefore important for the verification engineer to identify code parts where address
concretization is performed, as well as identifying code parts that depend on a memory
value loaded from a concretized memory address.

6.3.3.2. Test Results

Executing the described test harness with our modified version of SymEx-VP resulted
in the discovery of 358 paths in our specified time budget. The generated concolic line
coverage reported concretization in two files:

1. nanocoap.c which provides the coap_parse function targeted by our test harness.
In this file 67 lines were executed and 32 of these executed lines depended on
concretized values.

2. byteorder.h which provides utility functions for byte order conversions used
by nanocoap.c. In this file 10 lines were executed and all of them depended on
concretized values.

We then generated a visualization from the JSON files emitted by SymEx-VP. While
inspecting this visualization, we focused on the coap_setup function from nanocoap.c
as this is the entry point of our test harness. The relevant part of the visualization for
this function is shown in Figure 6.7, it will be further explained in the following.

185

Sören Tempel Input Generation Heuristics for Applications in the IoT

Figure 6.7.: Concretization visualization for a simplified option parsing loop in RIOT’s
nanocoap CoAP implementation.

6.3.3.3. Visualization

The visualization in Figure 6.7 consists of four columns: the source line number, a source
line classifier, the amount of times the line has been executed, and the source code.10

As per Subsection 6.3.1, the classifier specifies if a line has been executed at least once
with a symbolic value (S) and/or a concretized value (C). Additionally, the source code
lines are colored. Green lines have been executed at least once, red lines have not been
executed at all, and blue lines have been executed at least once with a concretized value.
Source lines that create a new concretized value from a previously symbolic value (i.e.
perform address concretization) are marked with a bold font.

The code in Figure 6.7 is responsible for CoAP option parsing. A CoAP option consists
of an option number and an option value. The length of the option value is specified
by an option length. The option number and an option value are both encoded using

10The code has been reformatted for clarity, thus there are line number gaps. Please also note that the
discrepancy in the execution count between loop header (Line 100) and body (Line 101) are due to
the fact that the loop header counts how often the loop is entered and not loop iterations.

186

Sören Tempel Input Generation Heuristics for Applications in the IoT

a single byte [167, Section 3.1]. This byte is extracted in Line 102 by dereferencing a
pointer into the buffer of concolic values as created by the test harness. Afterward, the
individual components (option number and option value) are extracted in Line 110 -
Line 134. Finally, the pointer is advanced in Line 136 to parse the next option.

The visualization indicates that concretization occurs initially in Line 102, all other
blue-colored lines are tainted because they depend indirectly on a value concretized in
Line 102. Concretization in Line 102 must occur due to the utilized address concretization
memory model. For this to be the case, the pkt_pos variable in Line 102 must be a
symbolic value. This occurs when the previous loop iteration adds option_len to pkt_-
pos in Line 136 because option_len is a symbolic value read from the buffer allocated
by the test harness. In this case, pkt_pos would be symbolic in the next loop iteration
and dereferencing it in Line 102 will result in concretization due to the utilized memory
model. All other tainted lines depend, directly or indirectly, on the concretized pkt_pos
value.

This case study illustrates how concolic line coverage and our generated visualization
can aid a verification engineer in quickly identifying sources of concretization and their
impact on concolic execution. In the illustrated scenario, the verification engineer could
then change the configuration of the concolic execution engine to use a different memory
model to reduce concretization. A survey of different memory models is provided by
Baldoni et al. [10, Section 3].

6.3.4. Related Work

Prior work utilizes interactive graph-based visualizations to communicate properties of
the performed symbolic execution to the verification engineer. Hentschel et al. present
a Symbolic Execution Debugger (SED) which enables interactive debugging of Java
programs and visualizes different paths through the program using execution trees [81].
Additional related work presents other graph-based visualizations without focusing on
interactive debugging. In this regard, Honfi et al. present SEViz [89] which generates
symbolic execution trees for .NET programs and Angelini et al. present SymNav [3] which
generates an interactive visualization consisting of different interface elements including
control flow graphs. Compared to these prior approaches, our own work differs in two
core aspects: (1) we focus on concolic execution instead of symbolic execution thereby
visualizing different aspects of the performed analysis (namely concretization instead of
propagation of symbolic values and discovered paths) (2) instead of utilizing graph-based

187

Sören Tempel Input Generation Heuristics for Applications in the IoT

visualizations we propose a code-based visualization using custom coverage metrics,
thereby easing application to larger codebases by quantifying performed concretizations.

6.3.5. Conclusion

In conclusion, we have presented a coverage metric and a visualization of this metric,
which eases evaluating the results of a performed symbolic analysis. As such, these
techniques can guide verification engineers in the process of refining manually created
protocol specifications for the specification-based symbolic execution approach presented
in Section 6.1 and Section 6.2. The case study from Subsection 6.3.3 demonstrates the
usefulness of our proposed metric and the associated visualization. We plan to further
improve this visualization in future work by augmenting it with additional information.
In this regard, one envisioned enhancement would be identifying concretized variables in
an executed source line. Presently, the entire source line is highlighted and it is up to the
verification engineer to identify which variables in that highlighted line are subject to
concretization. Our experiments with the RIOT operating system indicate that—relative
to the amount of executed lines—only a minority of lines are executed using concretized
values when employing address concretization. In this regard, our visualization helps to
identify these lines and thereby eases identifying the effects of concretization on tested
code. In order to allow others to make use of our approach, we have released both
our modified version of SymEx-VP and our visualization front end as open source on
GitHub.11,12

11https://github.com/agra-uni-bremen/coverage-vp
12https://github.com/agra-uni-bremen/jcovr

188

https://github.com/agra-uni-bremen/coverage-vp
https://github.com/agra-uni-bremen/jcovr

Chapter 7.

Conclusion

Symbolic execution is an automated software testing technique that has yielded promis-
ing results for finding software bugs. Unfortunately, its application to embedded firmware
is presently limited due to unique challenges associated with this domain [207, 128, 204].
This thesis presented a novel approach for addressing these challenges. To this end,
we contributed an integration with SystemC hardware models, formal ISA semantics,
custom error detection techniques, and input generation heuristics for testing IoT net-
work protocol implementations. Compared to prior work, these contributions enable an
accurate analysis that is faithful to both the ISA specification (through formal seman-
tics) and the peripheral behavior (through SystemC hardware models). In the following,
contributions will be summarized and opportunities for future work will be laid out.

7.1. Summary
Chapter 3 concerned itself with challenges related to environment modeling. Software
does not operate in a vacuum; it interacts heavily with its surrounding environment. In
the embedded domain, these interactions are performed through hardware peripherals.
Since symbolic execution is a dynamic testing technique, it needs to support these inter-
actions. For this purpose, Chapter 3 contributed an integration of symbolic execution
with SystemC TLM hardware models by facilitating VPs. This proposed approach is
implemented in SymEx-VP, a VP performing binary-level symbolic execution of 32-bit
RISC-V [153, 154] machine code. SymEx-VP is binary-compatible with the SiFive Hi-
Five1 hardware platform and performed experiments demonstrate that it can symbol-
ically analyze different firmware images targeting this platform. Symbolic values can
be injected into firmware simulation through the hardware peripheral interface, using a
presented SystemC TLM extension, thereby avoiding firmware modifications for input
injection purposes. Existing SystemC models can be easily integrated with this TLM
extension using a proposed overlay mechanism.

189

Sören Tempel Conclusion

Apart from hardware models, SymEx-VP also provides a symbolic ISS to execute
RISC-V binary code instructions with symbolic operands. This ISS was manually written
in C++; therefore, it is difficult to extend it to additional instructions or even architec-
tures. Furthermore, it is challenging to reason about the correctness and accuracy of the
implementation, which is important as any inaccuracies may lead to bugs being missed
in the tested firmware. In order to address these challenges, Chapter 4 proposed binary-
level symbolic execution using formal descriptions of ISA semantics. For this purpose, it
contributed a formal RISC-V model that is specifically tailored to the creation of custom
ISA interpreters. On top of this model, the chapter presented a novel symbolic execu-
tion engine which uses the language primitives of the formal model as an abstraction
layer, thus achieving extensibility. While this engine is written in Haskell, the chapter
also outlined a path towards an integration with SymEx-VP through code generation.
Conducted experiments show that, in comparison to prior work, symbolic binary code
execution based on formal ISA semantics achieves competitive symbolic execution per-
formance. Furthermore, they resulted in the discovery of bugs in an existing symbolic
execution engine, thus illustrating the necessity of correctly implementing the ISA.

Building on the symbolic execution approach developed in the prior chapters, Chap-
ter 5 concerned itself with error detection techniques for embedded firmware. Concep-
tually, a symbolic execution engine enumerates reachable execution paths based on a
specific input source. Additionally, it is necessary to check each executed path for de-
sired properties. Regarding these properties, the chapter focused on the detection of
memory corruptions, as the majority of embedded firmware is written in the C program-
ming language which is not memory safe. Due to the lack of protection mechanisms for
embedded systems, many memory corruptions do not result in an observable crash at
runtime [128]. In order to make them observable, the chapter contributed an integration
with HardBound, a technique for achieving memory safety in hardware [60]. As this
technique requires firmware instrumentation, the chapter also pursued an alternative
direction for detecting a particular kind of memory corruption (stack overflows) with-
out instrumentation. Lastly, the chapter investigated the use of symbolic execution to
guide incremental conversions of C source code to safer programming languages, thereby
protecting against memory corruptions in a production environment. Experiments con-
ducted with the RIOT [9] operating system uncovered 13 previously unknown and highly
critical bugs in parts of RIOT’s network stack.

Finally, Chapter 6 applied the contributed symbolic execution techniques to complex
IoT applications. Specifically, it focused on testing network protocol implementations

190

Sören Tempel Conclusion

provided by existing IoT operating systems. Popular protocols used in this domain are
stateful (e.g. MQTT-SN [176]) and hence have a large state space, which causes state
explosion issues. In order to mitigate these issues, the chapter contributed heuristics and
optimizations to improve input generation for this domain. For this purpose, it relied on
manually created protocol specifications written in a novel EDSL, which is based on the
Scheme programming language. This allows optimizing input generation for a specific
protocol, thereby reducing the input space and ensuring that inputs which reach deeper
parts of the source code are generated earlier. Experiments conducted with the Zephyr
and RIOT operating systems confirmed the feasibility of the approach for this purpose
and resulted in the discovery of three previously unknown bugs. Lastly, to ease the
creation of “good” protocol specifications, the chapter proposed incremental refinements
of created specifications by visualizing the results of prior symbolic executions runs.

We are confident that the conducted research has been impactful with regard to securing
firmware in the embedded domain by uncovering potentially security-critical bugs in
such firmware. This is especially evident by the 16 previously unknown bugs that have
been found, using the proposed techniques, in different components of the popular IoT
operating system RIOT. The following table summarizes all bugs found in this thesis:

Component Description Bug Report

gnrc_ipv6_nib Failing assertion with a SLIP interface #15171
gnrc_netif Deadlock due to missing mutex unlock #15221
sock_dns Out-of-bounds read on input buffer #15345
udhcpc Stack-based buffer overflow #15353
uri_parser Out-of-bounds read on input buffer #15927
uri_parser Out-of-bounds read on input buffer #15930
clif Out-of-bounds read on input buffer #15945
clif Out-of-bounds read on input buffer #15947
gnrc_rpl Packed struct cast without prior bounds check #16018
gnrc_rpl Packed struct cast without prior bounds check #16062
gnrc_rpl Packed struct cast without prior bounds check #16085
riscv_common Overflow of the ISR stack #16395
riscv_common Overflow of the ISR stack #16448
asymcute Deadlock due to missing mutex unlock #18289
gnrc_dhcpv6_client Memory corruption during option parsing #18307
asymcute Type confusion and NULL pointer dereference #18434

191

https://github.com/RIOT-OS/RIOT/issues/15171
https://github.com/RIOT-OS/RIOT/issues/15221
https://github.com/RIOT-OS/RIOT/issues/15345
https://github.com/RIOT-OS/RIOT/issues/15353
https://github.com/RIOT-OS/RIOT/issues/15927
https://github.com/RIOT-OS/RIOT/issues/15930
https://github.com/RIOT-OS/RIOT/issues/15945
https://github.com/RIOT-OS/RIOT/issues/15947
https://github.com/RIOT-OS/RIOT/issues/16018
https://github.com/RIOT-OS/RIOT/issues/16062
https://github.com/RIOT-OS/RIOT/issues/16085
https://github.com/RIOT-OS/RIOT/issues/16395
https://github.com/RIOT-OS/RIOT/issues/16448
https://github.com/RIOT-OS/RIOT/issues/18289
https://github.com/RIOT-OS/RIOT/issues/18307
https://github.com/RIOT-OS/RIOT/issues/18434

Sören Tempel Conclusion

7.2. Future Work
This thesis employed the proposed binary-level symbolic execution approach for testing
RISC-V binary code. For future work, it would be interesting to investigate its appli-
cation to additional architectures (e.g. ARM). Doing so would ease using the proposed
approach in conjunction with a wider range of firmware images targeting different hard-
ware platforms. The utilization of formal descriptions of ISA semantics (Chapter 4) and
SystemC TLM overlays (Chapter 3) should serve as a solid foundation for future work in
this direction. Regarding usage of formal ISA descriptions, it is also deemed worthwhile
to investigate a closer integration of the error detection techniques presented in Chap-
ter 5 and the formal LibRISCV ISA model from Chapter 4. For example, by formally
describing the HardBound mechanism for achieving spatial memory safety in hardware
using the language primitives provided by LibRISCV. Prior work on CHERI [206] and
Sail [5] has demonstrated that it is possible to describe such hardware features in a for-
mal language. In the context of formal binary-level symbolic execution, this is deemed
beneficial as it eases composing HardBound-based error detection with additional tech-
niques proposed in this thesis (e.g. the specification-based symbolic execution approach
from Chapter 6). Presently, due to the monolithic architecture of SystemC-based VPs,
it is challenging to combine and compose these different techniques in a modular way.
Additionally, a formal description of HardBound would also allow the utilization of theo-
rem provers to reason about the correctness of the employed error detection. A necessary
prerequisite in this regard is the integration of the LibRISCV ISA model with theo-
rem prover definitions provided by prior work. This endeavor is an interesting direction
for future work, as it would allow proofing the correctness of the symbolic instruction
semantics implemented on top of LibRISCV. As evident by the bugs found in an ex-
isting symbolic execution engine in Chapter 4, correctness of the symbolic instruction
semantics is essential, as otherwise the symbolic execution engine may miss bugs in the
tested firmware.

Lastly, it would be interesting to further optimize the symbolic execution algorithms
implemented in our SymEx-VP symbolic execution engine. Presently, SymEx-VP im-
plements Dynamic Symbolic Execution (DSE) and restarts firmware simulation for each
newly generated input. For complex embedded operating systems, this can result in
a significant performance penalty as the boot code is re-executed for each new input.
Therefore, it would be worthwhile to investigate the use of snapshotting and similar
techniques to improve simulation performance. A challenge in this regard is the close

192

Sören Tempel Conclusion

integration of SymEx-VP and the SystemC simulation kernel. For our DSE implemen-
tation, we implemented an in-process simulation restarting feature for SystemC, which
is presently in the process of being integrated into the SystemC reference implemen-
tation. In order to implement an effective snapshot mechanism, further changes to the
simulation kernel may be necessary. In this regard, it is also deemed worthwhile to ex-
tend the symbolic reasoning to the SystemC kernel itself. Presently, only the firmware
is symbolically executed; hardware models themselves are not subject to symbolic rea-
soning. Expanding the symbolic reasoning to include the SystemC models, would allow
reasoning about information flow within the models (e.g. when the firmware writes a
symbolic value to a hardware register). Prior work has already made use of symbolic
execution for testing hardware models [119, 118], but it remains to be seen whether it
is feasible to symbolically reason about both firmware and hardware at the same time.
Achieving this composition would further expand the completeness and accuracy of the
symbolic execution approach proposed in this thesis.

193

Appendix A.

Acronyms

ADL Architecture Description Language. 108

API Application Programming Interface. 25, 92, 97, 99, 100, 102, 104, 120, 135

AST Abstract Syntax Tree. 101, 102

CoAP Constrained Application Protocol. 39, 157, 185, 186

CoRE Constrained RESTful Environments. 121

CPU Central Processing Unit. 8, 16

CSR Control and Status Register. 29, 133

DHCPv4 Dynamic Host Configuration Protocol version 4. 172, 176

DHCPv6 Dynamic Host Configuration Protocol version 6. 172, 173, 176, 177

DMA Direct Memory Access. 42

DNS Domain Name System. 144

DSE Dynamic Symbolic Execution. 18, 19, 27–29, 81, 88, 93, 157, 161, 162, 164, 192,
193

DSL Domain-Specific Language. 57, 58, 74, 93

EDSL Embedded Domain-Specific Language. 56, 58, 62, 63, 65, 68, 74, 97, 98, 101,
152–154, 156, 158, 159, 166, 168, 170, 171, 179, 180, 191

ELF Executable and Linkable Format. 36, 69, 129, 130

FIFO First In, First Out. 30–32, 47, 48, 50

194

Sören Tempel Acronyms

GADT Generalized Algebraic Data Type. 84

HAL Hardware Abstraction Layer. 22, 42

HDL Hardware Description Language. 22

HTML HyperText Markup Language. 184

ICMPv6 Internet Control Message Protocol version 6. 36, 38, 144, 154, 155

IEEE Institute of Electrical and Electronics Engineers. 8, 25

IETF Internet Engineering Task Force. 35, 171

IoT Internet of Things. 1, 6, 7, 9, 13, 32, 35, 36, 38–41, 43, 120, 121, 129, 137, 144,
151–153, 157, 159, 160, 166, 171, 172, 174, 176–181, 189–191

IP Internet Protocol. 35, 121, 145, 151

IPv6 Internet Protocol version 6. 35, 36, 38, 131, 144, 145, 154–158, 172, 179

IR Intermediate Representation. 42, 78–81, 85, 86, 92–94, 123, 178

ISA Instruction Set Architecture. 5, 6, 8, 12, 13, 15–17, 19, 23, 54–60, 62–66, 68–70, 72,
74, 76–83, 86, 88, 91–101, 105–109, 189, 190, 192

ISR Interrupt Service Routine. 132, 133, 191

ISS Instruction Set Simulator. 16, 23–27, 29, 46, 54, 55, 78, 79, 95, 96, 99, 103–109,
115–118, 127, 161, 190

mDNS multicast Domain Name System. 157, 158

MMIO Memory-Mapped Input/Output. 6, 21, 25, 26, 29, 30, 39–41, 43, 46, 118, 156,
161, 172

MMU Memory Management Unit. 111

MSB Most Significant Bit. 32, 34, 35

NDP Neighbor Discovery Protocol. 38, 156, 157

POSIX Portable Operating System Interface. 4, 21, 178

195

Sören Tempel Acronyms

RISC Reduced Instruction Set Computer. 66

RPL Routing Protocol for Low-Power and Lossy Networks. 121, 123

RTL Register-Transfer Level. 15, 24, 53

RX Receive ’X’. 47, 48, 50

SDK Software Development Kit. 39, 42

SISL Scheme-based Input Specification Language. 153–158, 161, 166, 168

SLIP Serial Line Internet Protocol. 30, 35, 36, 38, 40, 121–123, 145, 157, 171, 172, 180,
191

SMT Satisfiability Modulo Theories. 3, 4, 17–19, 27, 29, 35, 39–41, 57, 75, 83, 90, 91,
115, 152, 153, 157, 162, 179, 181

SP Stack Pointer. 128, 132

SPS State Protocol Server. 170

TCB Thread Control Block. 127, 128, 130–132

TLM Transaction-Level Modeling. 8, 15, 22–26, 29–32, 34, 39, 43–46, 50, 51, 53, 96,
110, 113, 115, 117, 130, 161, 171, 189, 192

TX Transmit ’X’. 48, 50

UART Universal Asynchronous Receiver-Transmitter. 30–33, 35, 36, 38, 40, 43–48, 50,
51, 110, 145, 171

UDP User Datagram Protocol. 40, 131, 158, 166–168, 172, 179

URI Uniform Resource Identifier. 121, 144

VLA Variable Length Array. 129

VP Virtual Prototype. 8, 9, 14, 15, 22–25, 27, 30, 37, 43, 46, 47, 50, 53–55, 95–97, 104,
108, 109, 111, 113, 115, 116, 118, 120, 121, 124, 127, 128, 130–133, 135–137, 161,
189, 192

196

Appendix B.

Modifications

This published version of the dissertation has been slightly revised. As required by
the 2022 promotion regulations of the University of Bremen, this chapter outlines the
performed modifications:

• The document has been reformatted for a one-side layout as, contrary to the sub-
mitted version, which was optimized for print, it is published as a digital document.

• In the submitted version, the paper “Freer Monads, More Extensible Effects” by
Kiselyov et al. was referenced twice in the bibliography; this has now been fixed.

• In Chapter 1, the publication status of the work from Section 4.2 has been updated.

• Additional information on source code and artifacts has been added to Section 4.2.

• The discussion of the evaluation results presented in Section 4.2 has been expanded.

• Subsection 4.2.3 has been expanded to discuss prior work by Goel et al. [73, 74].

• Figure 4.7 has been reformatted slightly to allow a further increase of the font size.

• An appendix outlining the performed modifications has been added to the table
of contents. The existing glossary has been subsumed under this new appendix.

197

Bibliography

[1] Alif Ahmed, Farimah Farahmandi, and Prabhat Mishra. “Directed test generation
using concolic testing on RTL models.” In: 2018 Design, Automation & Test in
Europe Conference & Exhibition. DATE. 2018, pp. 1538–1543. doi: 10.23919
/DATE.2018.8342260.

[2] Roger Alexander et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. RFC 6550. Mar. 2012. doi: 10.17487/RFC6550.

[3] Marco Angelini et al. “SymNav: Visually Assisting Symbolic Execution.” In:
2019 IEEE Symposium on Visualization for Cyber Security (VizSec). Vancouver,
Canada, Oct. 2019, pp. 1–11. doi: 10.1109/VizSec48167.2019.9161524.

[4] ARM Limited. ARM Architecture Reference Manual. ARMv8, for ARMv8-A
architecture profile. v8.2 Beta. 2017. url: https://documentation-service.a
rm.com/static/5f8ee9d2f86e16515cdbe545.

[5] Alasdair Armstrong et al. “ISA Semantics for ARMv8-a, RISC-V, and CHERI-
MIPS.” In: Proceedings of the ACM on Programming Languages. POPL 3 (Jan.
2019). doi: 10.1145/3290384.

[6] Hooman Asadian, Paul Fiterău-Broştean, Bengt Jonsson, and Konstantinos Sag-
onas. “Applying Symbolic Execution to Test Implementations of a Network Pro-
tocol Against its Specification.” In: 2022 IEEE Conference on Software Testing,
Verification and Validation. ICST. 2022, pp. 70–81. doi: 10.1109/ICST53961
.2022.00019.

[7] Cornelius Aschermann et al. “NAUTILUS: Fishing for Deep Bugs with Gram-
mars.” In: The Network and Distributed System Security Symposium 2019. NDSS.
San Diego, California, Feb. 2019. url: https://www.ndss-symposium.org/wp
-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf.

[8] Thanassis Avgerinos et al. “Automatic Exploit Generation.” In: Communications
of the ACM 57.2 (Feb. 2014), pp. 74–84. issn: 0001-0782. doi: 10.1145/25602
17.2560219.

198

https://doi.org/10.23919/DATE.2018.8342260
https://doi.org/10.23919/DATE.2018.8342260
https://doi.org/10.17487/RFC6550
https://doi.org/10.1109/VizSec48167.2019.9161524
https://documentation-service.arm.com/static/5f8ee9d2f86e16515cdbe545
https://documentation-service.arm.com/static/5f8ee9d2f86e16515cdbe545
https://doi.org/10.1145/3290384
https://doi.org/10.1109/ICST53961.2022.00019
https://doi.org/10.1109/ICST53961.2022.00019
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1145/2560217.2560219

Sören Tempel Bibliography

[9] Emmanuel Baccelli et al. “RIOT: An Open Source Operating System for Low-End
Embedded Devices in the IoT.” In: IEEE Internet of Things Journal. IoT-J 5.6
(Dec. 2018), pp. 4428–4440. issn: 2327-4662. doi: 10.1109/JIOT.2018.2815038.

[10] Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques.” In: ACM
Comput. Surv. 51.3 (May 2018). issn: 0360-0300. doi: 10.1145/3182657.

[11] Michael Ballantyne, Alexis King, and Matthias Felleisen. “Macros for Domain-
Specific Languages.” In: Proceedings of the ACM on Programming Languages
4.OOPSLA (Nov. 2020). doi: 10.1145/3428297.

[12] Greg Banks et al. “SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr.”
In: Information Security. Ed. by Sokratis K. Katsikas et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 343–358. isbn: 978-3-540-38343-7. doi:
10.1007/11836810_25.

[13] Sébastien Bardin et al. “The BINCOA Framework for Binary Code Analysis.” In:
Computer Aided Verification. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 165–170. isbn: 978-3-
642-22110-1. doi: 10.1007/978-3-642-22110-1_13.

[14] Clark Barrett and Cesare Tinelli. “Satisfiability Modulo Theories.” In: Handbook
of Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Hel-
mut Veith, and Roderick Bloem. Cham: Springer International Publishing, 2018,
pp. 305–343. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8_11.

[15] Rob von Behren et al. “Capriccio: Scalable Threads for Internet Services.” In:
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles.
SOSP. Bolton Landing, NY, USA: Association for Computing Machinery, 2003,
pp. 268–281. isbn: 1-58113-757-5. doi: 10.1145/945445.945471.

[16] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator.” In: Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference. ATEC.
Anaheim, CA: USENIX Association, 2005, p. 41. url: https://www.usenix.o
rg/legacy/events/usenix05/tech/freenix/bellard.html.

[17] Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. Jan. 2005. doi: 10.17487/RFC398
6.

199

https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3428297
https://doi.org/10.1007/11836810_25
https://doi.org/10.1007/978-3-642-22110-1_13
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/945445.945471
https://www.usenix.org/legacy/events/usenix05/tech/freenix/bellard.html
https://www.usenix.org/legacy/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC3986

Sören Tempel Bibliography

[18] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Berlin, Hei-
delberg: Springer Berlin Heidelberg, Mar. 2004. isbn: 978-3-540-20854-9. doi:
10.1007/978-3-662-07964-5.

[19] Al Bessey et al. “A Few Billion Lines of Code Later: Using Static Analysis to
Find Bugs in the Real World.” In: Communications of the ACM 53.2 (Feb. 2010),
pp. 66–75. issn: 0001-0782. doi: 10.1145/1646353.1646374.

[20] Surupa Biswas et al. “Memory Overflow Protection for Embedded Systems Using
Run-Time Checks, Reuse, and Compression.” In: ACM Trans. Embed. Comput.
Syst. 5.4 (Nov. 2006), pp. 719–752. issn: 1539-9087. doi: 10.1145/1196636.11
96637.

[21] David C. Black and Bill Bunton. SystemC: From the Ground Up. second. Springer
US, 2010. isbn: 978-0-387-69957-8. doi: 10.1007/978-0-387-69958-5.

[22] Bluespec, Inc. Forvis: A Formal RISC-V ISA Specification. Version 0c5590a.
GitHub. Mar. 7, 2020. url: https://github.com/rsnikhil/Forvis_RISCV-
ISA-Spec (visited on 02/01/2024).

[23] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. “Directed Greybox Fuzzing.” In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS. Dallas, Texas,
USA: Association for Computing Machinery, 2017, pp. 2329–2344. isbn: 978-1-
4503-4946-8. doi: 10.1145/3133956.3134020.

[24] Carsten Bormann, Mehmet Ersue, and Ari Keränen. Terminology for Constrained-
Node Networks. RFC 7228. May 2014. doi: 10.17487/RFC7228.

[25] Luca Borzacchiello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.
“Memory models in symbolic execution: key ideas and new thoughts.” In: Software
Testing, Verification and Reliability 29.8 (2019). doi: 10.1002/stvr.1722.

[26] Thomas Bourgeat et al. “Flexible Instruction-Set Semantics via Abstract Monads
(Experience Report).” In: Proceedings of the ACM on Programming Languages
7.ICFP (Aug. 2023). doi: 10.1145/3607833.

[27] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—a Formal Sys-
tem for Testing and Debugging Programs by Symbolic Execution.” In: SIGPLAN
Not. 10.6 (Apr. 1975), pp. 234–245. issn: 0362-1340. doi: 10.1145/390016.808
445.

200

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1196636.1196637
https://doi.org/10.1145/1196636.1196637
https://doi.org/10.1007/978-0-387-69958-5
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.17487/RFC7228
https://doi.org/10.1002/stvr.1722
https://doi.org/10.1145/3607833
https://doi.org/10.1145/390016.808445
https://doi.org/10.1145/390016.808445

Sören Tempel Bibliography

[28] Sergey Bratus et al. “Exploit Programming: From Buffer Overflows to Weird
Machines and Theory of Computation.” In: Usenix ;login: 36 (2011), pp. 13–21.
url: https://www.usenix.org/system/files/login/articles/105516-Brat
us.pdf.

[29] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. “BAP:
A Binary Analysis Platform.” In: Computer Aided Verification. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 463–469. isbn: 978-3-642-22110-1. doi: 10.1007/978-3-642-22110-
1_37.

[30] Dennis Brylow, Niels Damgaard, and Jens Palsberg. “Static checking of interrupt-
driven software.” In: Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001. 2001, pp. 47–56. doi: 10.1109/ICSE.2001.919080.

[31] Jacob Burnim and Koushik Sen. “Heuristics for Scalable Dynamic Test Genera-
tion.” In: 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. 2008, pp. 443–446. doi: 10.1109/ASE.2008.69.

[32] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.”
In: Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation. OSDI. San Diego, California: USENIX Association, 2008,
pp. 209–224. url: https://www.usenix.org/conference/osdi-08/klee-una
ssisted-and-automatic-generation-high-coverage-tests-complex-syste
ms.

[33] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Testing:
Three Decades Later.” In: Communications of the ACM 56.2 (Feb. 2013), pp. 82–
90. issn: 0001-0782. doi: 10.1145/2408776.2408795.

[34] Cristian Cadar et al. “EXE: Automatically Generating Inputs of Death.” In:
ACM Trans. Inf. Syst. Secur. 12.2 (Dec. 2008). issn: 1094-9224. doi: 10.1145
/1455518.1455522.

[35] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. “Device-Agnostic Firmware
Execution is Possible: A Concolic Execution Approach for Peripheral Emulation.”
In: Annual Computer Security Applications Conference. ACSAC. Austin, USA:
Association for Computing Machinery, 2020, pp. 746–759. isbn: 978-1-4503-8858-
0. doi: 10.1145/3427228.3427280.

201

https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1109/ICSE.2001.919080
https://doi.org/10.1109/ASE.2008.69
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/3427228.3427280

Sören Tempel Bibliography

[36] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.
“End-to-End Verification of Stack-Space Bounds for C Programs.” In: Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI. Edinburgh, United Kingdom: Association for Computing
Machinery, 2014, pp. 270–281. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291
.2594301.

[37] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. “Towards
Automated Dynamic Analysis for Linux-based Embedded Firmware.” In: The
Network and Distributed System Security Symposium 2016. NDSS. San Diego,
California, Feb. 2016. url: https://www.ndss-symposium.org/wp-content/u
ploads/2017/09/towards-automated-dynamic-analysis-linux-based-embe
dded-firmware.pdf.

[38] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory Corruptions in IoT Through
App-based Fuzzing.” In: The Network and Distributed System Security Symposium
2018. NDSS. San Diego, California, Feb. 2018. url: https://www.ndss-sympo
sium.org/wp-content/uploads/2018/02/ndss2018_01A-1_Chen_paper.pdf.

[39] Xingman Chen et al. “MTSan: A Feasible and Practical Memory Sanitizer for
Fuzzing COTS Binaries.” In: 32nd USENIX Security Symposium (USENIX Se-
curity 23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 841–858. isbn:
978-1-939133-37-3. url: https://www.usenix.org/conference/usenixsecur
ity23/presentation/chen-xingman.

[40] Brian Chess and Jacob West. Secure Programming with Static Analysis. Addison-
Wesley Professional, June 2007. isbn: 978-0-321-42477-8.

[41] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: A Platform
for in-Vivo Multi-Path Analysis of Software Systems.” In: Proceedings of the
Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS. Newport Beach, California, USA:
Association for Computing Machinery, 2011, pp. 265–278. isbn: 978-1-4503-0266-
1. doi: 10.1145/1950365.1950396.

[42] Alessandro Cimatti, Andrea Micheli, Iman Narasamdya, and Marco Roveri. “Ver-
ifying SystemC: A software model checking approach.” In: Formal Methods in
Computer Aided Design. 2010, pp. 51–59. isbn: 978-0-9835678-0-6.

202

https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1145/2594291.2594301
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-1_Chen_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-1_Chen_paper.pdf
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-xingman
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-xingman
https://doi.org/10.1145/1950365.1950396

Sören Tempel Bibliography

[43] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. “Bounded
Model Checking Using Satisfiability Solving.” In: Formal Methods in System
Design 19.1 (2001), pp. 7–34. doi: 10.1023/A:1011276507260.

[44] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State of the Art
and Future Directions.” In: ACM Comput. Surv. 28.4 (Dec. 1996), pp. 626–643.
issn: 0360-0300. doi: 10.1145/242223.242257.

[45] Abraham A. Clements et al. “HALucinator: Firmware Re-hosting Through Ab-
straction Layer Emulation.” In: 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp. 1201–1218. isbn: 978-1-
939133-17-5. url: https://www.usenix.org/conference/usenixsecurity20
/presentation/clements.

[46] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. “Prospex: Protocol Specification Extraction.” In: 2009 30th IEEE Sym-
posium on Security and Privacy. IEEE S&P. 2009, pp. 110–125. doi: 10.1109
/SP.2009.14.

[47] Jeremy Condit et al. “Dependent Types for Low-Level Programming.” In: Pro-
gramming Languages and Systems. Ed. by Rocco De Nicola. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 520–535. isbn: 978-3-540-71316-6.

[48] Nathan Cooprider et al. “Efficient Memory Safety for TinyOS.” In: Proceedings
of the 5th International Conference on Embedded Networked Sensor Systems.
SenSys. Sydney, Australia: ACM, 2007, pp. 205–218. isbn: 978-1-59593-763-6.
doi: 10.1145/1322263.1322283.

[49] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. “Inception:
System-Wide Security Testing of Real-World Embedded Systems Software.” In:
27th USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 309–326. isbn: 978-1-939133-04-5. url:
https://www.usenix.org/conference/usenixsecurity18/presentation/co
rteggiani.

[50] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints.” In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. POPL. Los Angeles, California: Asso-

203

https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1145/242223.242257
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://doi.org/10.1109/SP.2009.14
https://doi.org/10.1109/SP.2009.14
https://doi.org/10.1145/1322263.1322283
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani

Sören Tempel Bibliography

ciation for Computing Machinery, 1977, pp. 238–252. isbn: 978-1-4503-7350-0.
doi: 10.1145/512950.512973.

[51] Enfang Cui, Tianzheng Li, and Qian Wei. “RISC-V Instruction Set Architecture
Extensions: A Survey.” In: IEEE Access 11 (2023), pp. 24696–24711. doi: 10.1
109/ACCESS.2023.3246491.

[52] Pascal Cuoq et al. “Frama-C.” In: Software Engineering and Formal Methods. Ed.
by George Eleftherakis, Mike Hinchey, and Mike Holcombe. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 233–247. isbn: 978-3-642-33826-7.

[53] Robin David et al. “Specification of Concretization and Symbolization Policies
in Symbolic Execution.” In: Proceedings of the 25th International Symposium on
Software Testing and Analysis. ISSTA. Saarbrücken, Germany: Association for
Computing Machinery, 2016, pp. 36–46. isbn: 978-1-4503-4390-9. doi: 10.1145
/2931037.2931048.

[54] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. “FIE
on Firmware: Finding Vulnerabilities in Embedded Systems Using Symbolic Ex-
ecution.” In: 22nd USENIX Security Symposium (USENIX Security 13). Wash-
ington, D.C.: USENIX Association, Aug. 2013, pp. 463–478. isbn: 978-1-931971-
03-4. url: https://www.usenix.org/conference/usenixsecurity13/techni
cal-sessions/paper/davidson.

[55] Debugging Information Format Committee. DWARF Debugging Information
Format. Version 4. Tech. rep. Debugging Information Format Committee, 2010.
url: http://www.dwarfstd.org/doc/DWARF4.pdf.

[56] Steve E. Deering and Bob Hinden. Internet Protocol, Version 6 (IPv6) Specifi-
cation. RFC 8200. July 2017. doi: 10.17487/RFC8200.

[57] Ulan Degenbaev. “Formal Specification of the x86 Instruction Set Architecture.”
PhD thesis. Saarbrücken, Saarland: Universität des Saarlandes, Feb. 2012. doi:
10.22028/D291-26338.

[58] Design Automation Standards Committee. IEEE Standard for Verilog Hardware
Description Language. Tech. rep. IEEE, 2006, pp. 1–590. doi: 10.1109/IEEEST
D.2006.99495.

[59] Design Automation Standards Committee. IEEE Standard for VHDL Language
Reference Manual. Tech. rep. IEEE, 2019, pp. 1–673. doi: 10.1109/IEEESTD.2
019.8938196.

204

https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1145/2931037.2931048
https://doi.org/10.1145/2931037.2931048
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
http://www.dwarfstd.org/doc/DWARF4.pdf
https://doi.org/10.17487/RFC8200
https://doi.org/10.22028/D291-26338
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1109/IEEESTD.2019.8938196

Sören Tempel Bibliography

[60] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. “Hard-
Bound: Architectural Support for Spatial Safety of the C Programming Lan-
guage.” In: Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS. Seat-
tle, WA, USA: Association for Computing Machinery, 2008, pp. 103–114. isbn:
978-1-59593-958-6. doi: 10.1145/1346281.1346295.

[61] Adel Djoudi and Sébastien Bardin. “BINSEC: Binary Code Analysis with Low-
Level Regions.” In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Christel Baier and Cesare Tinelli. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 212–217. isbn: 978-3-662-46681-0. doi: 10.1007/9
78-3-662-46681-0_17.

[62] Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131. Mar. 1997. doi:
10.17487/RFC2131. url: https://www.rfc-editor.org/info/rfc2131.

[63] Junhan Duan, Yudi Yang, Jie Zhou, and John Criswell. “Refactoring the FreeBSD
Kernel with Checked C.” In: 2020 IEEE Secure Development (SecDev). 2020,
pp. 15–22. doi: 10.1109/SecDev45635.2020.00018.

[64] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. “Contiki - a lightweight and
flexible operating system for tiny networked sensors.” In: 29th Annual IEEE
International Conference on Local Computer Networks. 2004, pp. 455–462. doi:
10.1109/LCN.2004.38.

[65] Archibald Samuel Elliott, Andrew Ruef, Micheal Hicks, and David Tarditi.
“Checked C: Making C Safe by Extension.” In: 2018 IEEE Cybersecurity Devel-
opment (SecDev). Sept. 2018, pp. 53–60. doi: 10.1109/SecDev.2018.00015.

[66] Andrew Fasano et al. “SoK: Enabling Security Analyses of Embedded Systems via
Rehosting.” In: Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security. ASIA CCS. Virtual Event, Hong Kong: Association
for Computing Machinery, 2021, pp. 687–701. isbn: 978-1-4503-8287-8. doi:
10.1145/3433210.3453093.

[67] A. Fauth, J. Van Praet, and M. Freericks. “Describing instruction set processors
using nML.” In: Proceedings the European Design and Test Conference. ED&TC
1995. 1995, pp. 503–507. doi: 10.1109/EDTC.1995.470354.

205

https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.17487/RFC2131
https://www.rfc-editor.org/info/rfc2131
https://doi.org/10.1109/SecDev45635.2020.00018
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1109/EDTC.1995.470354

Sören Tempel Bibliography

[68] Bo Feng, Alejandro Mera, and Long Lu. “P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling.”
In: 29th USENIX Security Symposium (USENIX Security 20). USENIX Associ-
ation, Aug. 2020, pp. 1237–1254. isbn: 978-1-939133-17-5. url: https://www.u
senix.org/conference/usenixsecurity20/presentation/feng.

[69] Paul Fiterau-Brostean et al. “Analysis of DTLS Implementations Using Protocol
State Fuzzing.” In: 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 2523–2540. isbn: 978-1-939133-17-5. url:
https://www.usenix.org/conference/usenixsecurity20/presentation/fi
terau-brostean.

[70] Free and Open Source Silicon Foundation. Embench: A Modern Embedded Bench-
mark Suite. url: https://www.embench.org/ (visited on 01/24/2023).

[71] Galois Inc. GRIFT - Galois RISC-V ISA Formal Tools. Version ab2cf5b. GitHub.
Aug. 4, 2023. url: https://github.com/GaloisInc/grift/tree/ab2cf5bd6f
2650bdf2fcd6470a4ffdcd4fba6176 (visited on 02/01/2024).

[72] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. “Grammar-Based
Whitebox Fuzzing.” In: PLDI. Tucson, AZ, USA: Association for Computing
Machinery, 2008, pp. 206–215. isbn: 978-1-59593-860-2.

[73] Shilpi Goel and Warren A. Hunt. “Automated Code Proofs on a Formal Model of
the X86.” In: Verified Software: Theories, Tools, Experiments. Ed. by Ernie Cohen
and Andrey Rybalchenko. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 222–241. isbn: 978-3-642-54108-7. doi: 10.1007/978-3-642-54108-7_12.

[74] Shilpi Goel, Warren A. Hunt, and Matt Kaufmann. “Engineering a Formal,
Executable x86 ISA Simulator for Software Verification.” In: Provably Correct
Systems. Ed. by Mike Hinchey, Jonathan P. Bowen, and Ernst-Rüdiger Olderog.
Cham: Springer International Publishing, 2017, pp. 173–209. isbn: 978-3-319-
48628-4. doi: 10.1007/978-3-319-48628-4_8.

[75] Dieter Gollmann. Computer Security. Third. John Wiley & Sons, Ltd., 2011.
isbn: 978-0-470-74115-3.

[76] Mukesh Gupta and Alex Conta. Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification. RFC 4443. Mar. 2006.
doi: 10.17487/RFC4443.

206

https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.embench.org/
https://github.com/GaloisInc/grift/tree/ab2cf5bd6f2650bdf2fcd6470a4ffdcd4fba6176
https://github.com/GaloisInc/grift/tree/ab2cf5bd6f2650bdf2fcd6470a4ffdcd4fba6176
https://doi.org/10.1007/978-3-642-54108-7_12
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.17487/RFC4443

Sören Tempel Bibliography

[77] Eric Gustafson et al. “Toward the Analysis of Embedded Firmware through Au-
tomated Re-hosting.” In: 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019). Chaoyang District, Beijing: USENIX As-
sociation, Sept. 2019, pp. 135–150. isbn: 978-1-939133-07-6. url: https://www
.usenix.org/conference/raid2019/presentation/gustafson.

[78] Ali Habibi and Sofiène Tahar. “Design and verification of SystemC transaction-
level models.” In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 14.1 (2006), pp. 57–68. doi: 10.1109/TVLSI.2005.863187.

[79] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. “Operat-
ing Systems for Low-End Devices in the Internet of Things: A Survey.” In: IEEE
Internet of Things Journal. IoT-J 3.5 (Oct. 2016), pp. 720–734. issn: 2327-4662.
doi: 10.1109/JIOT.2015.2505901.

[80] Xing Han, Qiaoyan Wen, and Zhao Zhang. “A mutation-based fuzz testing ap-
proach for network protocol vulnerability detection.” In: Proceedings of 2012 2nd
International Conference on Computer Science and Network Technology. 2012,
pp. 1018–1022. doi: 10.1109/ICCSNT.2012.6526099.

[81] Martin Hentschel, Reiner Hähnle, and Richard Bubel. “Visualizing Unbounded
Symbolic Execution.” In: Tests and Proofs. Ed. by Martina Seidl and Nikolai
Tillmann. Cham: Springer International Publishing, 2014, pp. 82–98. isbn:
978-3-319-09099-3. doi: 10.1007/978-3-319-09099-3_7.

[82] Vladimir Herdt, Daniel Große, and Rolf Drechsler. Enhanced Virtual Prototyping.
Featuring RISC-V Case Studies. Springer Cham, Oct. 2021, p. 247. isbn: 978-
3-030-54830-8. doi: 10.1007/978-3-030-54828-5.

[83] Vladimir Herdt, Daniel Große, and Rolf Drechsler. “Fast and Accurate Per-
formance Evaluation for RISC-V using Virtual Prototypes.” In: 2020 Design,
Automation & Test in Europe Conference & Exhibition. DATE. 2020, pp. 618–
621. doi: 10.23919/DATE48585.2020.9116522.

[84] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. “Early Concolic
Testing of Embedded Binaries with Virtual Prototypes: A RISC-V Case Study.”
In: Proceedings of the 56th Annual Design Automation Conference 2019. DAC.
Las Vegas, NV, USA: Association for Computing Machinery, 2019. isbn: 978-1-
4503-6725-7. doi: 10.1145/3316781.3317807.

207

https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://doi.org/10.1109/TVLSI.2005.863187
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/ICCSNT.2012.6526099
https://doi.org/10.1007/978-3-319-09099-3_7
https://doi.org/10.1007/978-3-030-54828-5
https://doi.org/10.23919/DATE48585.2020.9116522
https://doi.org/10.1145/3316781.3317807

Sören Tempel Bibliography

[85] Vladimir Herdt, Daniel Große, Pascal Pieper, and Rolf Drechsler. “RISC-V based
virtual prototype: An extensible and configurable platform for the system-level.”
In: Journal of Systems Architecture. JSA 109 (2020). issn: 1383-7621. doi:
10.1016/j.sysarc.2020.101756.

[86] Vladimir Herdt, Hoang M. Le, Daniel Große, and Rolf Drechsler. “Verifying
SystemC Using Intermediate Verification Language and Stateful Symbolic Simu-
lation.” In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38.7 (2019), pp. 1359–1372. doi: 10.1109/TCAD.2018.2846638.

[87] Lars Hermerschmidt, Stephan Kugelmann, and Bernhard Rumpe. “Towards More
Security in Data Exchange: Defining Unparsers with Context-Sensitive Encoders
for Context-Free Grammars.” In: 2015 IEEE Security and Privacy Workshops.
2015, pp. 134–141. doi: 10.1109/SPW.2015.29.

[88] Grant Hernandez et al. “FirmUSB: Vetting USB Device Firmware Using Domain
Informed Symbolic Execution.” In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS. Dallas, Texas, USA:
Association for Computing Machinery, 2017, pp. 2245–2262. isbn: 978-1-4503-
4946-8. doi: 10.1145/3133956.3134050.

[89] David Honfi, Andras Voros, and Zoltan Micskei. “SEViz: A Tool for Visualizing
Symbolic Execution.” In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation. ICST. Graz, Austria, Apr. 2015, pp. 1–8.
doi: 10.1109/ICST.2015.7102631.

[90] Alex Horn et al. “Formal co-validation of low-level hardware/software interfaces.”
In: 2013 Formal Methods in Computer-Aided Design. 2013, pp. 121–128. doi:
10.1109/FMCAD.2013.6679400.

[91] Bo-Yuan Huang et al. “Formal Security Verification of Concurrent Firmware
in SoCs using Instruction-Level Abstraction for Hardware.” In: 2018 55th
ACM/ESDA/IEEE Design Automation Conference. DAC. 2018, pp. 1–6.
doi: 10.1109/DAC.2018.8465794.

[92] Paul Hudak. “Building domain-specific embedded languages.” In: ACM Comput.
Surv. 28.4es (Dec. 1996). issn: 0360-0300. doi: 10.1145/242224.242477.

[93] Paul Hudak. “Modular domain specific languages and tools.” In: Proceedings.
Fifth International Conference on Software Reuse (Cat. No.98TB100203). 1998,
pp. 134–142. doi: 10.1109/ICSR.1998.685738.

208

https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1109/TCAD.2018.2846638
https://doi.org/10.1109/SPW.2015.29
https://doi.org/10.1145/3133956.3134050
https://doi.org/10.1109/ICST.2015.7102631
https://doi.org/10.1109/FMCAD.2013.6679400
https://doi.org/10.1109/DAC.2018.8465794
https://doi.org/10.1145/242224.242477
https://doi.org/10.1109/ICSR.1998.685738

Sören Tempel Bibliography

[94] John Hughes. “The design of a pretty-printing library.” In: Advanced Functional
Programming. Ed. by Johan Jeuring and Erik Meijer. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 53–96. isbn: 978-3-540-49270-2. doi: 10.1007/3-5
40-59451-5_3.

[95] IEEE Computer Society and The Open Group. IEEE Standard for Information
Technology–Portable Operating System Interface (POSIX(TM)) Base Specifica-
tions, Issue 7. Tech. rep. IEEE, 2018, pp. 1–3951. doi: 10.1109/IEEESTD.2018
.8277153.

[96] International Organization for Standardization. Programming languages – C.
Standard. Geneva, CH: International Organization for Standardization, Dec.
1999. url: https://www.iso.org/standard/29237.html.

[97] ITU-T. Overview of the Internet of things. ITU-T Y.4000/Y.2060. June 15, 2012.
url: https://handle.itu.int/11.1002/1000/11559.

[98] Samuel Jero et al. “TAG: Tagged Architecture Guide.” In: ACM Comput. Surv.
55.6 (Dec. 2022). issn: 0360-0300. doi: 10.1145/3533704.

[99] Trevor Jim et al. “Cyclone: A safe dialect of C.” In: USENIX 2002 Annual
Conference. Monterey, California: USENIX Association, June 2002, pp. 275–288.
url: https://www.usenix.org/legacy/publications/library/proceedings
/usenix02/jim.html.

[100] John Aynsley. OSCI TLM-2.0 Language Reference Manual. Tech. rep. Open
SystemC Initiative (OSCI), July 2009, pp. 1–184. url: https://www.acceller
a.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf.

[101] Daniel Kästner and Christian Ferdinand. “Proving the Absence of Stack Over-
flows.” In: Computer Safety, Reliability, and Security. Ed. by Andrea Bondavalli
and Felicita Di Giandomenico. Cham: Springer International Publishing, 2014,
pp. 202–213. isbn: 978-3-319-10506-2. doi: 10.1007/978-3-319-10506-2_14.

[102] Gregory Maxwell Kelly. “A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on.” In: Bulletin of
the Australian Mathematical Society 22.1 (Aug. 1980), pp. 1–83. issn: 1755-1633,
0004-9727. doi: 10.1017/S0004972700006353.

209

https://doi.org/10.1007/3-540-59451-5_3
https://doi.org/10.1007/3-540-59451-5_3
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
https://www.iso.org/standard/29237.html
https://handle.itu.int/11.1002/1000/11559
https://doi.org/10.1145/3533704
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/jim.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/jim.html
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://doi.org/10.1007/978-3-319-10506-2_14
https://doi.org/10.1017/S0004972700006353

Sören Tempel Bibliography

[103] Sang Cheol Kim, Haeyong Kim, JunKeun Song, and Pyeongsoo Mah. “A Dy-
namic Stack Allocating Method in Multi-Threaded Operating Systems for Wire-
less Sensor Network Platforms.” In: 2007 IEEE International Symposium on
Consumer Electronics. 2007, pp. 1–6. doi: 10.1109/ISCE.2007.4382142.

[104] James C. King. “A New Approach to Program Testing.” In: SIGPLAN Not. 10.6
(Apr. 1975), pp. 228–233. issn: 0362-1340. doi: 10.1145/390016.808444.

[105] Oleg Kiselyov and Hiromi Ishii. “Freer Monads, More Extensible Effects.” In:
SIGPLAN Not. 50.12 (Aug. 2015), pp. 94–105. issn: 0362-1340. doi: 10.1145/2
887747.2804319.

[106] Oleg Kiselyov, Amr Sabry, and Cameron Swords. “Extensible Effects An Al-
ternative to Monad Transformers.” In: Proceedings of the 2013 ACM SIGPLAN
Symposium on Haskell. Vol. 48. Jan. 2014, pp. 59–70. doi: 10.1145/2578854.2
503791.

[107] Takahisa Kitagawa, Miyuki Hanaoka, and Kenji Kono. “AspFuzz: A state-aware
protocol fuzzer based on application-layer protocols.” In: The IEEE symposium
on Computers and Communications. 2010, pp. 202–208. doi: 10.1109/ISCC.20
10.5546704.

[108] George Klees et al. “Evaluating Fuzz Testing.” In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. CCS. Toronto,
Canada: Association for Computing Machinery, 2018, pp. 2123–2138. isbn: 978-
1-4503-5693-0. doi: 10.1145/3243734.3243804.

[109] Karl Koscher, Tadayoshi Kohno, and David Molnar. “SURROGATES: Enabling
Near-Real-Time Dynamic Analyses of Embedded Systems.” In: 9th USENIX
Workshop on Offensive Technologies (WOOT 15). Washington, D.C.: USENIX
Association, Aug. 2015. url: https://www.usenix.org/conference/woot15/w
orkshop-program/presentation/koscher.

[110] Daniel Kroening and Natasha Sharygina. “Formal verification of SystemC by
automatic hardware/software partitioning.” In: Proceedings. Second ACM and
IEEE International Conference on Formal Methods and Models for Co-Design,
2005. MEMOCODE ’05. 2005, pp. 101–110. doi: 10.1109/MEMCOD.2005.1487
900.

210

https://doi.org/10.1109/ISCE.2007.4382142
https://doi.org/10.1145/390016.808444
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1109/ISCC.2010.5546704
https://doi.org/10.1109/ISCC.2010.5546704
https://doi.org/10.1145/3243734.3243804
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://doi.org/10.1109/MEMCOD.2005.1487900
https://doi.org/10.1109/MEMCOD.2005.1487900

Sören Tempel Bibliography

[111] Daniel Kroening and Michael Tautschnig. “CBMC – C Bounded Model Checker.”
In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Erika Erika Ábrahám and Klaus Havelund. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 389–391. isbn: 978-3-642-54862-8. doi: 10.1007/978-3-
642-54862-8_26.

[112] Martine Lenders et al. “Connecting the World of Embedded Mobiles: The RIOT
Approach to Ubiquitous Networking for the Internet of Things.” In: Computing
Research Repository abs/1801.02833 (Aug. 2018). doi: 10.48550/arXiv.1801.0
2833.

[113] Rainer Leupers et al. “Virtual platforms: Breaking new grounds.” In: 2012 Design,
Automation & Test in Europe Conference & Exhibition. DATE. 2012, pp. 685–
690. doi: 10.1109/DATE.2012.6176558.

[114] Amit Levy et al. “Multiprogramming a 64kB Computer Safely and Efficiently.”
In: Proceedings of the 26th Symposium on Operating Systems Principles. SOSP.
Shanghai, China: ACM, 2017, pp. 234–251. isbn: 978-1-4503-5085-3. doi: 10.1
145/3132747.3132786.

[115] Sheng Liang and Paul Hudak. “Modular denotational semantics for compiler
construction.” In: Programming Languages and Systems. Ed. by Hanne Riis
Nielson. ESOP. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 219–
234. isbn: 978-3-540-49942-8. doi: 10.1007/3-540-61055-3_39.

[116] Sheng Liang, Paul Hudak, and Mark Jones. “Monad Transformers and Modular
Interpreters.” In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL. San Francisco, California, USA:
Association for Computing Machinery, 1995, pp. 333–343. isbn: 0-89791-692-1.
doi: 10.1145/199448.199528.

[117] Junghee Lim and Thomas Reps. “TSL: A System for Generating Abstract Inter-
preters and Its Application to Machine-Code Analysis.” In: ACM Trans. Program.
Lang. Syst. 35.1 (Apr. 2013). issn: 0164-0925. doi: 10.1145/2450136.2450139.

[118] Bin Lin, Zhenkun Yang, Kai Cong, and Fei Xie. “Generating high coverage tests
for SystemC designs using symbolic execution.” In: 2016 21st Asia and South
Pacific Design Automation Conference. ASPDAC. 2016, pp. 166–171. doi:
10.1109/ASPDAC.2016.7428006.

211

https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.48550/arXiv.1801.02833
https://doi.org/10.48550/arXiv.1801.02833
https://doi.org/10.1109/DATE.2012.6176558
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1007/3-540-61055-3_39
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1109/ASPDAC.2016.7428006

Sören Tempel Bibliography

[119] Bin Lin et al. “Concolic testing of SystemC designs.” In: 2018 19th International
Symposium on Quality Electronic Design. ISQED. 2018, pp. 1–7. doi: 10.1109
/ISQED.2018.8357256.

[120] V. Benjamin Livshits and Monica S. Lam. “Finding Security Vulnerabilities in
Java Applications with Static Analysis.” In: 14th USENIX Security Symposium
(USENIX Security 05). Baltimore, MD: USENIX Association, Aug. 2005. url:
https://www.usenix.org/legacy/events/sec05/tech/livshits.html.

[121] Peter Marwedel. Embedded System Design. Fourth. Cham: Springer International
Publishing, 2021, pp. 1–433. isbn: 978-3-030-60910-8. doi: 10.1007/978-3-03
0-60910-8_1.

[122] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. “DICE: Automatic Emu-
lation of DMA Input Channels for Dynamic Firmware Analysis.” In: 2021 IEEE
Symposium on Security and Privacy. IEEE S&P. 2021, pp. 1938–1954. doi:
10.1109/SP40001.2021.00018.

[123] Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities.” In: Communications of the ACM 33.12 (Dec. 1990),
pp. 32–44. issn: 0001-0782. doi: 10.1145/96267.96279.

[124] Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities.” In: Communications of the ACM 33.12 (Dec. 1990),
pp. 32–44. issn: 0001-0782. doi: 10.1145/96267.96279.

[125] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver.” In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by C. R.
Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-
3_24.

[126] Tomek Mrugalski et al. Dynamic Host Configuration Protocol for IPv6 (DHCPv6).
RFC 8415. Nov. 2018. doi: 10.17487/RFC8415.

[127] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. “Avatar
2: A multi-target orchestration platform.” In: The Network and Distributed Sys-
tem Security Symposium 2018. NDSS. San Diego, California, Feb. 2018. url:
https://www.ndss-symposium.org/wp-content/uploads/2018/07/bar2018
_1_Muench_paper.pdf.

212

https://doi.org/10.1109/ISQED.2018.8357256
https://doi.org/10.1109/ISQED.2018.8357256
https://www.usenix.org/legacy/events/sec05/tech/livshits.html
https://doi.org/10.1007/978-3-030-60910-8_1
https://doi.org/10.1007/978-3-030-60910-8_1
https://doi.org/10.1109/SP40001.2021.00018
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.17487/RFC8415
https://www.ndss-symposium.org/wp-content/uploads/2018/07/bar2018_1_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/07/bar2018_1_Muench_paper.pdf

Sören Tempel Bibliography

[128] Marius Muench et al. “What You Corrupt Is Not What You Crash: Challenges
in Fuzzing Embedded Devices.” In: The Network and Distributed System Security
Symposium 2018. NDSS. San Diego, California, Feb. 2018. url: https://www
.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muen
ch_paper.pdf.

[129] Rajdeep Mukherjee, Mitra Purandare, Raphael Polig, and Daniel Kroening. “For-
mal techniques for effective co-verification of hardware/software co-designs.” In:
2017 54th ACM/EDAC/IEEE Design Automation Conference. DAC. 2017, pp. 1–
6. doi: 10.1145/3061639.3062253.

[130] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. “WatchdogLite:
Hardware-Accelerated Compiler-Based Pointer Checking.” In: Proceedings of An-
nual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. CGO. Orlando, FL, USA: Association for Computing Machinery, 2014,
pp. 175–184. isbn: 978-1-4503-2670-4. doi: 10.1145/2581122.2544147.

[131] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
“SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.” In:
SIGPLAN Not. 44.6 (June 2009), pp. 245–258. issn: 0362-1340. doi: 10.1145/1
543135.1542504.

[132] Roberto Natella. “StateAFL: Greybox fuzzing for stateful network servers.” In:
Empirical Software Engineering 27.7 (Oct. 2022), p. 191. issn: 1573-7616. doi:
10.1007/s10664-022-10233-3.

[133] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation.” In: Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI. San
Diego, California, USA: Association for Computing Machinery, 2007, pp. 89–100.
isbn: 978-1-59593-633-2. doi: 10.1145/1250734.1250746.

[134] Nuno Neves et al. “Using Attack Injection to Discover New Vulnerabilities.” In:
International Conference on Dependable Systems and Networks (DSN’06). 2006,
pp. 457–466. doi: 10.1109/DSN.2006.72.

[135] Dorottya Papp, Zhendong Ma, and Levente Buttyan. “Embedded Systems Se-
curity: Threats, Vulnerabilities, and Attack Taxonomy.” In: 2015 13th Annual
Conference on Privacy, Security and Trust. PST. 2015, pp. 145–152. doi:
10.1109/PST.2015.7232966.

213

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://doi.org/10.1145/3061639.3062253
https://doi.org/10.1145/2581122.2544147
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1109/DSN.2006.72
https://doi.org/10.1109/PST.2015.7232966

Sören Tempel Bibliography

[136] Sung Ho Park, Dong Kyu Lee, and Soon Ju Kang. “Compiler-Assisted Maximum
Stack Usage Measurement Technique for Efficient Multi-threading in Memory-
Limited Embedded Systems.” In: Computers, Networks, Systems, and Industrial
Engineering 2011. Ed. by Roger Lee. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 113–129. isbn: 978-3-642-21375-5. doi: 10.1007/978-3-642-21
375-5_10.

[137] Tomsy Paul and G. Santhosh Kumar. “Safe Contiki OS: Type and Memory
Safety for Contiki OS.” In: 2009 International Conference on Advances in Recent
Technologies in Communication and Computing, pp. 169–171. doi: 10.1109
/ARTCom.2009.126.

[138] Mathias Payer. “The Fuzzing Hype-Train: How Random Testing Triggers Thou-
sands of Crashes.” In: IEEE Security Privacy 17.1 (Jan. 2019), pp. 78–82. issn:
1558-4046. doi: 10.1109/MSEC.2018.2889892.

[139] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. “AFLNET: A
Greybox Fuzzer for Network Protocols.” In: 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification. ICST. 2020, pp. 460–
465. doi: 10.1109/ICST46399.2020.00062.

[140] Van-Thuan Pham et al. “Smart Greybox Fuzzing.” In: IEEE Transactions on
Software Engineering 47.9 (2021), pp. 1980–1997. doi: 10.1109/TSE.2019.294
1681.

[141] Van-Thuan Pham et al. “Smart Greybox Fuzzing.” In: IEEE Transactions on
Software Engineering 47.9 (Sept. 2021). doi: 10.1109/TSE.2019.2941681.

[142] Pascal Pieper, Vladimir Herdt, Daniel Große, and Rolf Drechsler. “Dynamic
Information Flow Tracking for Embedded Binaries using SystemC-based Virtual
Prototypes.” In: 2020 57th ACM/IEEE Design Automation Conference. DAC.
2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218494.

[143] Sonal Pinto and Michael S. Hsiao. “RTL functional test generation using factored
concolic execution.” In: 2017 IEEE International Test Conference. ITC. 2017,
pp. 1–10. doi: 10.1109/TEST.2017.8242038.

[144] Sebastian Poeplau and Aurélien Francillon. “Systematic Comparison of Sym-
bolic Execution Systems: Intermediate Representation and Its Generation.” In:
Proceedings of the 35th Annual Computer Security Applications Conference. AC-

214

https://doi.org/10.1007/978-3-642-21375-5_10
https://doi.org/10.1007/978-3-642-21375-5_10
https://doi.org/10.1109/ARTCom.2009.126
https://doi.org/10.1109/ARTCom.2009.126
https://doi.org/10.1109/MSEC.2018.2889892
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/TEST.2017.8242038

Sören Tempel Bibliography

SAC. San Juan, Puerto Rico, USA: Association for Computing Machinery, 2019,
pp. 163–176. isbn: 978-1-4503-7628-0. doi: 10.1145/3359789.3359796.

[145] Jon Postel. Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791.

[146] Jon Postel. User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/RFC0
768.

[147] David A. Ramos and Dawson R. Engler. “Practical, Low-Effort Equivalence
Verification of Real Code.” In: Computer Aided Verification. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 669–685. isbn: 978-3-642-22110-1. doi: 10.1007/978-3-642-22110-
1_55.

[148] John Regehr. “Random Testing of Interrupt-Driven Software.” In: Proceedings of
the 5th ACM International Conference on Embedded Software. EMSOFT. Jersey
City, NJ, USA: Association for Computing Machinery, 2005, pp. 290–298. isbn:
1-59593-091-4. doi: 10.1145/1086228.1086282.

[149] John Regehr, Alastair Reid, and Kirk Webb. “Eliminating Stack Overflow by
Abstract Interpretation.” In: ACM Trans. Embed. Comput. Syst. 4.4 (Nov. 2005),
pp. 751–778. issn: 1539-9087. doi: 10.1145/1113830.1113833.

[150] Alastair Reid. “Trustworthy Specifications of ARM® V8-A and v8-M System
Level Architecture.” In: 2016 Formal Methods in Computer-Aided Design (FM-
CAD). Oct. 2016, pp. 161–168. doi: 10.1109/FMCAD.2016.7886675.

[151] Sandro Rigo, Guido Araujo, Marcus Bartholomeu, and Rodolfo Azevedo. “ArchC:
a SystemC-based architecture description language.” In: 16th Symposium on
Computer Architecture and High Performance Computing. 2004, pp. 66–73. doi:
10.1109/SBAC-PAD.2004.8.

[152] RISC-V Foundation. ISA Formal Spec Public Review. Version d42ce01. GitHub.
June 18, 2020. url: https://github.com/riscvarchive/ISA_Formal_Spec
_Public_Review (visited on 02/01/2024).

[153] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume I: User-Level
ISA. Ed. by Andrew Waterman and Krste Asanović. Document Version 20191213.
Dec. 2019. url: https://github.com/riscv/riscv-isa-manual/releases/d
ownload/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

215

https://doi.org/10.1145/3359789.3359796
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768
https://doi.org/10.1007/978-3-642-22110-1_55
https://doi.org/10.1007/978-3-642-22110-1_55
https://doi.org/10.1145/1086228.1086282
https://doi.org/10.1145/1113830.1113833
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/SBAC-PAD.2004.8
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Sören Tempel Bibliography

[154] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture. Ed. by Andrew Waterman and Krste Asanović. Document Version
20190608-Priv-MSU-Ratified. June 2019. url: https://github.com/riscv/ri
scv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/ri
scv-privileged-20190608.pdf.

[155] John Romkey. Nonstandard for transmission of IP datagrams over serial lines:
SLIP. RFC 1055. June 1988. doi: 10.17487/RFC1055.

[156] Andrew Ruef et al. “Achieving Safety Incrementally with Checked C.” In: Prin-
ciples of Security and Trust. Ed. by Flemming Nielson and David Sands. Cham:
Springer International Publishing, 2019, pp. 76–98. isbn: 978-3-030-17138-4.
doi: 10.1007/978-3-030-17138-4_4.

[157] Ahmad-Reza Sadeghi, Christan Wachsmann, and Michael Waidner. “Secu-
rity and Privacy Challenges in Industrial Internet of Things.” In: 2015 52nd
ACM/EDAC/IEEE Design Automation Conference. DAC. June 2015, pp. 1–6.
doi: 10.1145/2744769.2747942.

[158] Raimondas Sasnauskas et al. “KleeNet: Discovering Insidious Interaction Bugs
in Wireless Sensor Networks before Deployment.” In: Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works. IPSN. Stockholm, Sweden: Association for Computing Machinery, 2010,
pp. 186–196. isbn: 978-1-60558-988-6. doi: 10.1145/1791212.1791235.

[159] Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Anna Shubina. “The
Halting Problems of Network Stack Insecurity.” In: USENIX ;login: 36.06 (2011),
pp. 22–32. url: https://www.usenix.org/publications/login/december-2
011-volume-36-number-6/halting-problems-network-stack-insecurity.

[160] Tom De Schutter. Better Software. Faster!: Best Practices in Virtual Prototyping.
Synopsys Press, Mar. 2014. isbn: 978-1-61730-013-4.

[161] Benjamin Selfridge. “GRIFT: A richly-typed, deeply-embedded RISC-V seman-
tics written in Haskell.” In: SpISA 2019: Workshop on Instruction Set Architecture
Specification. Portland, Oregon, Sept. 2019. url: https://www.cl.cam.ac.uk
/~jrh13/spisa19/paper_10.pdf.

216

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://doi.org/10.17487/RFC1055
https://doi.org/10.1007/978-3-030-17138-4_4
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1145/1791212.1791235
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf

Sören Tempel Bibliography

[162] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Test-
ing Engine for C.” In: Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ESEC/FSE. Lisbon, Portugal: Associa-
tion for Computing Machinery, 2005, pp. 263–272. isbn: 1-59593-014-0. doi:
10.1145/1081706.1081750.

[163] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. “AddressSanitizer: A Fast Address Sanity Checker.” In: Presented as
part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12).
Boston, MA: USENIX, 2012, pp. 309–318. url: https://www.usenix.org/con
ference/atc12/technical-sessions/presentation/serebryany.

[164] Kostya Serebryany. OSS-Fuzz - Google’s continuous fuzzing service for open source
software. Vancouver, BC, Aug. 2017. url: https://www.usenix.org/confere
nce/usenixsecurity17/technical-sessions/presentation/serebryany.

[165] Ilya Sergey et al. “Monadic Abstract Interpreters.” In: Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. PLDI. New York, NY, USA: Association for Computing Machinery, June
2013, pp. 399–410. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.2491979.

[166] Zach Shelby. Constrained RESTful Environments (CoRE) Link Format. RFC
6690. Aug. 2012. doi: 10.17487/RFC6690.

[167] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application
Protocol (CoAP). RFC 7252. June 2014. doi: 10.17487/RFC7252.

[168] Alex Shinn, John Cowan, and Arthur A. Gleckler. Revised7 Report on the Al-
gorithmic Language Scheme. Tech. rep. Scheme Language Steering Committee,
July 2013. url: https://small.r7rs.org/attachment/r7rs.pdf.

[169] Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis.” In: 2016 IEEE Symposium on Security and Privacy. IEEE
S&P. 2016, pp. 138–157. doi: 10.1109/SP.2016.17.

[170] Guoqiang Shu, Yating Hsu, and David Lee. “Detecting Communication Proto-
col Security Flaws by Formal Fuzz Testing and Machine Learning.” In: Formal
Techniques for Networked and Distributed Systems – FORTE 2008. Ed. by Kenji
Suzuki, Teruo Higashino, Keiichi Yasumoto, and Khaled El-Fakih. Berlin, Hei-

217

https://doi.org/10.1145/1081706.1081750
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.17487/RFC6690
https://doi.org/10.17487/RFC7252
https://small.r7rs.org/attachment/r7rs.pdf
https://doi.org/10.1109/SP.2016.17

Sören Tempel Bibliography

delberg: Springer Berlin Heidelberg, 2008, pp. 299–304. isbn: 978-3-540-68855-6.
doi: 10.1007/978-3-540-68855-6_19.

[171] SiFive Inc. SiFive FE310-G000 Manual. v3p2. Mar. 2021, pp. 1–118. url:
https://sifive.cdn.prismic.io/sifive/4faf3e34-4a42-4c2f-be9e-c77ba
a4928c7_fe310-g000-manual-v3p2.pdf.

[172] William A. Simpson, Dr. Thomas Narten, Erik Nordmark, and Hesham Soliman.
Neighbor Discovery for IP version 6 (IPv6). RFC 4861. Sept. 2007. doi: 10.17
487/RFC4861.

[173] JaeSeung Song, Cristian Cadar, and Peter Pietzuch. “SymbexNet: Testing Net-
work Protocol Implementations with Symbolic Execution and Rule-Based Speci-
fications.” In: IEEE Transactions on Software Engineering 40.7 (2014), pp. 695–
709. doi: 10.1109/TSE.2014.2323977.

[174] JaeSeung Song, Tiejun Ma, Cristian Cadar, and Peter Pietzuch. “Rule-Based
Verification of Network Protocol Implementations Using Symbolic Execution.” In:
2011 Proceedings of 20th International Conference on Computer Communications
and Networks. ICCCN. 2011, pp. 1–8. doi: 10.1109/ICCCN.2011.6005945.

[175] William Stallings. Computer Organization and Architecture: Designing for Per-
formance. Ninth. Pearson Education Inc., 2012. isbn: 978-0-13-293633-0.

[176] Andy Stanford-Clark and Hong L. Truong. MQTT For Sensor Networks (MQTT-
SN). Protocol Specification. Standard. Version 1.2. Nov. 14, 2013. url: http:
//mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.

[177] Guy L. Steele. “Building Interpreters by Composing Monads.” In: Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL. Portland, Oregon, USA: Association for Computing Machin-
ery, 1994, pp. 472–492. isbn: 0-89791-636-0. doi: 10.1145/174675.178068.

[178] Gookwon Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. “Secure
Program Execution via Dynamic Information Flow Tracking.” In: Proceedings
of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS. Boston, MA, USA: Association for
Computing Machinery, 2004, pp. 85–96. isbn: 1-58113-804-0. doi: 10.1145/10
24393.1024404.

218

https://doi.org/10.1007/978-3-540-68855-6_19
https://sifive.cdn.prismic.io/sifive/4faf3e34-4a42-4c2f-be9e-c77baa4928c7_fe310-g000-manual-v3p2.pdf
https://sifive.cdn.prismic.io/sifive/4faf3e34-4a42-4c2f-be9e-c77baa4928c7_fe310-g000-manual-v3p2.pdf
https://doi.org/10.17487/RFC4861
https://doi.org/10.17487/RFC4861
https://doi.org/10.1109/TSE.2014.2323977
https://doi.org/10.1109/ICCCN.2011.6005945
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1145/1024393.1024404

Sören Tempel Bibliography

[179] Wouter Swierstra. “Data Types à la carte.” In: Journal of Functional Program-
ming 18.4 (July 2008), pp. 423–436. issn: 0956-7968. doi: 10.1017/S09567968
08006758.

[180] System C Standardization Working Group. IEEE Standard for Standard SystemC
Language Reference Manual. Tech. rep. IEEE, 2012, pp. 1–638. doi: 10.1109
/IEEESTD.2012.6134619.

[181] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal War in
Memory.” In: 2013 IEEE Symposium on Security and Privacy. IEEE S&P. May
2013, pp. 48–62. doi: 10.1109/SP.2013.13.

[182] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. “Model-Based
Testing IoT Communication via Active Automata Learning.” In: 2017 IEEE
International Conference on Software Testing, Verification and Validation. ICST.
2017, pp. 276–287. doi: 10.1109/ICST.2017.32.

[183] Sören Tempel, Tobias Brandt, and Christoph Lüth. Artifacts for the 2023 Trends
in Functional Programming Publication: Versatile and Flexible Modelling of the
RISC-V Instruction Set Architecture. Apr. 2023. doi: 10.5281/zenodo.7817414.

[184] Sören Tempel, Tobias Brandt, and Christoph Lüth. “Versatile and Flexible Mod-
elling of the RISC-V Instruction Set Architecture.” In: Trends in Functional
Programming. Ed. by Stephen Chang. Boston, MA, USA: Springer International
Publishing, Jan. 2023, pp. 16–35. isbn: 978-3-031-21314-4. doi: 10.1007/978-
3-031-38938-2_2.

[185] Sören Tempel, Tobias Brandt, Christoph Lüth, and Rolf Drechsler. “Accurate
and Extensible Symbolic Execution of Binary Code based on Formal ISA Seman-
tics.” In: International Conference on Software Engineering and Formal Methods.
SEFM. Aveiro, Portugal, Nov. 2024, pp. 1–18. Under Review.

[186] Sören Tempel, Tobias Brandt, Christoph Lüth, and Rolf Drechsler. Benchmarks
for comparing binary-level symbolic execution speed. Apr. 2024. doi: 10.5281/z
enodo.10925791.

[187] Sören Tempel, Tobias Brandt, Christoph Lüth, and Rolf Drechsler. “Minimally
Invasive Generation of RISC-V Instruction Set Simulators from Formal ISA Mod-
els.” In: 2023 Forum on Specification & Design Languages. FDL. Turin, Italy,
Sept. 2023, pp. 1–8. doi: 10.1109/FDL59689.2023.10272224.

219

https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.5281/zenodo.7817414
https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.5281/zenodo.10925791
https://doi.org/10.5281/zenodo.10925791
https://doi.org/10.1109/FDL59689.2023.10272224

Sören Tempel Bibliography

[188] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “An Effective Methodology
for Integrating Concolic Testing with SystemC-based Virtual Prototypes.” In:
2021 Design, Automation & Test in Europe Conference & Exhibition. DATE.
Grenoble, France, Feb. 2021, pp. 218–221. doi: 10.23919/DATE51398.2021.94
74149.

[189] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. Artifacts for the 2022 ATVA
Paper: SISL: Concolic Testing of Structured Binary Input Formats via Partial
Specification. Zenodo, July 2022. doi: 10.5281/zenodo.6802198.

[190] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. Artifacts for the FDL21
Paper: In-Vivo Stack Overflow Detection and Stack Size Estimation for Low-
End Multithreaded Operating Systems using Virtual Prototypes. Sept. 2021. doi:
10.5281/zenodo.5091709.

[191] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Automated Detection of
Spatial Memory Safety Violations for Constrained Devices.” In: Proceedings of the
27th Asia and South Pacific Design Automation Conference. ASPDAC. Taipei,
Taiwan, Jan. 2022, pp. 160–165. doi: 10.1109/ASP-DAC52403.2022.9712570.

[192] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “In-Vivo Stack Overflow De-
tection and Stack Size Estimation for Low-End Multithreaded Operating Systems
using Virtual Prototypes.” In: 2021 Forum on Specification & Design Languages.
FDL. Antibes, France, Sept. 2021, pp. 1–7. doi: 10.1109/FDL53530.2021.956
8384.

[193] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “SISL: Concolic Testing
of Structured Binary Input Formats via Partial Specification.” In: Automated
Technology for Verification and Analysis. Ed. by Ahmed Bouajjani, Holík Lukáš,
and Zhilin Wu. ATVA. Beijing, China: Springer International Publishing, Oct.
2022, pp. 77–82. isbn: 978-3-031-19992-9. doi: 10.1007/978-3-031-19992-9_5.

[194] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Specification-Based Sym-
bolic Execution for Stateful Network Protocol Implementations in IoT.” In: IEEE
Internet of Things Journal. IoT-J 10.11 (Jan. 2023), pp. 9544–9555. doi: 10.11
09/JIOT.2023.3236694.

[195] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “SymEx-VP: An Open Source
Virtual Prototype for OS-agnostic Concolic Testing of IoT Firmware.” In: Journal

220

https://doi.org/10.23919/DATE51398.2021.9474149
https://doi.org/10.23919/DATE51398.2021.9474149
https://doi.org/10.5281/zenodo.6802198
https://doi.org/10.5281/zenodo.5091709
https://doi.org/10.1109/ASP-DAC52403.2022.9712570
https://doi.org/10.1109/FDL53530.2021.9568384
https://doi.org/10.1109/FDL53530.2021.9568384
https://doi.org/10.1007/978-3-031-19992-9_5
https://doi.org/10.1109/JIOT.2023.3236694
https://doi.org/10.1109/JIOT.2023.3236694

Sören Tempel Bibliography

of Systems Architecture. JSA (May 2022), pp. 1–12. issn: 1383-7621. doi: 10.1
016/j.sysarc.2022.102456.

[196] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Towards Quantification
and Visualization of the Effects of Concretization During Concolic Testing.” In:
IEEE Embedded Systems Letters. ESL 14.4 (Dec. 2022), pp. 195–198. doi: 10.1
109/LES.2022.3171603.

[197] Sören Tempel, Vladimir Herdt, and Rolf Drechsler. “Towards Reliable Spatial
Memory Safety for Embedded Software by Combining Checked C with Concolic
Testing.” In: 2021 58th ACM/IEEE Design Automation Conference. DAC. San
Francisco, California, Dec. 2021, pp. 667–672. doi: 10.1109/DAC18074.2021.9
586170.

[198] Sören Tempel, Herdt Vladimir, and Rolf Drechsler. Artifacts for the IEEE In-
ternet of Things Journal Publication: Specification-based Symbolic Execution for
Stateful Network Protocol Implementations in the IoT. Zenodo, Jan. 2023. doi:
10.5281/zenodo.7515748.

[199] Sören Tempel, Herdt Vladimir, and Rolf Drechsler. SymEx-VP: An open source
virtual prototype for OS-agnostic concolic testing of IoT firmware. Code Ocean,
Apr. 2022. doi: 10.24433/CO.7255660.v1.

[200] University of California. Spike, a RISC-V ISA Simulator. Version 7c89063.
GitHub. Jan. 24, 2024. url: https://github.com/riscv/riscv-isa-sim
(visited on 02/01/2024).

[201] Philip Wadler. “A prettier printer.” In: Jeremy Gibbons and Oege de Moor. The
Fun of Programming. Palgrave, Mar. 2003. isbn: 0-333-99285-7.

[202] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. “Superion: Grammar-Aware
Greybox Fuzzing.” In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering. 2019. doi: 10.1109/ICSE.2019.00081.

[203] Robert N. M. Watson et al. Arm Morello Programme: Architectural security goals
and known limitations. Tech. rep. UCAM-CL-TR-982. University of Cambridge,
Computer Laboratory, July 2023. doi: 10.48456/tr-982.

[204] Jos Wetzels. “Internet of Pwnable Things: Challenges in Embedded Binary Se-
curity.” In: USENIX ;login: 42.02 (2017), pp. 73–77. url: https://www.usenix
.org/publications/login/summer2017/wetzels.

221

https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1109/LES.2022.3171603
https://doi.org/10.1109/LES.2022.3171603
https://doi.org/10.1109/DAC18074.2021.9586170
https://doi.org/10.1109/DAC18074.2021.9586170
https://doi.org/10.5281/zenodo.7515748
https://doi.org/10.24433/CO.7255660.v1
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.48456/tr-982
https://www.usenix.org/publications/login/summer2017/wetzels
https://www.usenix.org/publications/login/summer2017/wetzels

Sören Tempel Bibliography

[205] Emmett Witchel, Josh Cates, and Krste Asanović. “Mondrian Memory Pro-
tection.” In: Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS. San
Jose, California: Association for Computing Machinery, 2002, pp. 304–316. isbn:
1-58113-574-2. doi: 10.1145/605397.605429.

[206] Jonathan Woodruff et al. “The CHERI capability model: Revisiting RISC in an
age of risk.” In: 2014 ACM/IEEE 41st International Symposium on Computer
Architecture. ISCA. 2014, pp. 457–468. doi: 10.1109/ISCA.2014.6853201.

[207] Christopher Wright et al. “Challenges in Firmware Re-Hosting, Emulation, and
Analysis.” In: ACM Comput. Surv. 54.1 (Jan. 2021). issn: 0360-0300. doi:
10.1145/3423167.

[208] Hongwei Xi, Chiyan Chen, and Gang Chen. “Guarded Recursive Datatype Con-
structors.” In: SIGPLAN Not. 38.1 (Jan. 2003), pp. 224–235. issn: 0362-1340.
doi: 10.1145/640128.604150.

[209] Insu Yun et al. “QSYM: A Practical Concolic Execution Engine Tailored for
Hybrid Fuzzing.” In: 27th USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, Aug. 2018, pp. 745–761. isbn: 978-1-
939133-04-5. url: https://www.usenix.org/conference/usenixsecurity18
/presentation/yun.

[210] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti. “Avatar:
A Framework to Support Dynamic Security Analysis of Embedded Systems’
Firmwares.” In: The Network and Distributed System Security Symposium 2014.
NDSS. San Diego, California, Feb. 2014. url: https://www.ndss-symposium
.org/ndss2014/programme/avatar-framework-support-dynamic-security-
analysis-embedded-systems-firmwares/.

[211] Rui Zhang et al. “An Improved RTEMS Supporting Real-Time Detection of
Stack Overflow.” In: Wireless and Satellite Systems. Ed. by Min Jia, Qing Guo,
and Weixiao Meng. Cham: Springer International Publishing, 2019, pp. 283–293.
isbn: 978-3-030-19153-5. doi: 10.1007/978-3-030-19153-5_29.

[212] Vojin Zivojnovic, Stefan Pees, and Heinrich Meyr. “LISA-machine description
language and generic machine model for HW/SW co-design.” In: VLSI Signal
Processing, IX. 1996, pp. 127–136. doi: 10.1109/VLSISP.1996.558311.

222

https://doi.org/10.1145/605397.605429
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/3423167
https://doi.org/10.1145/640128.604150
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.ndss-symposium.org/ndss2014/programme/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares/
https://www.ndss-symposium.org/ndss2014/programme/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares/
https://www.ndss-symposium.org/ndss2014/programme/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares/
https://doi.org/10.1007/978-3-030-19153-5_29
https://doi.org/10.1109/VLSISP.1996.558311

	Introduction
	Challenges
	Research Questions
	Contributions
	Contribution Domains
	Published Results

	Outline

	Preliminaries
	Embedded Systems
	Instruction Set Architectures
	Symbolic Execution

	Integration of SystemC TLM with Symbolic Execution
	Combining VPs with Symbolic Execution
	The Case for SystemC TLM
	SymEx-VP Architecture
	Overview
	Clover
	Instruction Set Simulator
	SystemC Integration
	SymbolicCTRL

	Peripheral Modeling Example
	SiFive UART
	Injecting Concolic Values

	Usage Scenario
	Setup
	Testing & Debugging

	Evaluation
	Related Work
	Discussion and Future Work
	Conclusion

	Injecting Symbolic Values using Peripheral Overlays
	SystemC TLM Overlays
	Implementation
	Integration with SymEx-VP
	Peripheral Overlay Example

	Evaluation
	RIOT-based Example Application
	Test Setup
	Test Results

	Related Work
	Conclusion

	Formal ISA Semantics for Extending the Analysis
	A Flexibel Formal Model for the RISC-V ISA
	Preliminaries
	Formal ISA Models
	Free Monads and EDSLs

	Modeling an ISA
	A First Model
	Our Approach

	Modeling the RISC-V ISA
	Instruction Decoder
	Formal Model
	Custom Interpreters

	Performance Evaluation
	Related Work
	Formal Specifications
	Modular Interpreters
	Binary Software Analysis

	Discussion and Future Work
	Conclusion

	Binary Symbolic Execution using Formal Semantics
	ISA Semantics for Symbolic Execution
	Formal Semantics for Binary Code
	Formal Symbolic Execution of RISC-V Binary Code

	Evaluation
	Extensibility Case Study
	Performance Benchmarks

	Related Work
	Discussion and Future Work
	Conclusion

	Generation of Instruction Set Simulators
	Approach
	Overview
	ISA Model
	Interface Model
	Code Generation

	Evaluation
	Generalizability
	Conformance
	Performance

	Related Work
	Discussion and Future Work
	Conclusion

	Error Detection Techniques for Firmware Testing
	Detection of Spatial Memory Safety Violations
	Background
	Memory Safety
	HardBound

	VP-based HardBound Integration
	Overview
	Metadata Propagation
	TLM Integration
	Compiler Pass

	Evaluation
	RIOT HardBound Setup
	Results

	Related Work
	Conclusion

	Minimally Invasive Stack Overflow Detection
	Stack Overflow Detection Algorithm
	Implementation
	Overview
	Stack Usage Database
	Operating System Integration

	Evaluation
	Integration
	Stack Overflows
	Stack Size Estimation
	Performance Impact

	Related Work
	Discussion and Future Work
	Conclusion

	Reliable Memory Safety using Safe C Dialects
	Background Information on Checked C
	Methodology
	Conversion Bug Example
	Conversion Bug Classification

	Evaluation
	Setup
	Results

	Related Work
	Discussion and Future Work
	Conclusion

	Input Generation Heuristics for Applications in the IoT
	Input Specification Language for Message Formats
	Scheme-based Input Specification Language
	Overview and Implementation
	Evaluation
	Conclusion

	Symbolic Execution of Stateful Network Protocols
	Approach
	Overview
	Multipacket Exploration
	Control Peripheral
	Input Format Specification
	State Machine Specification
	Summary

	Evaluation
	Experimental Setup
	Results
	Interpretation
	Encountered Errors

	Related Work
	Discussion and Future Work
	Conclusion

	Visualizing Symbolic Execution Results
	Concolic Line Coverage
	Implementation
	Taint Tracking
	Coverage Support
	Visualization

	Case Study
	Concolic Execution Setup
	Test Results
	Visualization

	Related Work
	Conclusion

	Conclusion
	Summary
	Future Work

	Acronyms
	Modifications

