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Title Figure: Representation of the environment of the autonomous vehicle using an
occupancy grid map. The environment is discretized into cells, with each
cell containing a Bernoulli distributed random variable that represents the
occupancy of the cell. The vehicle is localized in its environment, shown
as a blue vehicle in the center of the image.
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Abstract

Making autonomous driving possible requires extensive information about the surround-
ings as well as the state of the vehicle. While specific information can be obtained
through singular sensors, a full estimation requires a multi sensory approach, including
redundant sources of information to increase robustness. This thesis gives an overview
of tasks that arise in sensor fusion in autonomous driving, and presents solutions at
a high level of detail, including derivations and parameters where required to enable
re-implementation. The thesis includes theoretical considerations of the approaches as
well as practical evaluations. Evaluations are also included for approaches that did not
prove to solve their tasks robustly. This follows the belief that both results further the
state of the art by giving researchers ideas about suitable and unsuitable approaches,
where otherwise the unsuitable approaches may be re-implemented multiple times with
similar results. The thesis focuses on model-based methods, also referred to in the fol-
lowing as classical methods, with a special focus on probabilistic and evidential theories.
Methods based on deep learning are explicitly not covered to maintain explainability
and robustness which would otherwise strongly rely on the available training data. The
main focus of the work lies in three main fields of autonomous driving: localization,
which estimates the state of the ego-vehicle, mapping or obstacle detection, where driv-
able areas are identified, and object detection and tracking, which estimates the state of
all surrounding traffic participants. All algorithms are designed with the requirements
of autonomous driving in mind, with a focus on robustness, real-time capability and
usability of the approaches in all potential scenarios that may arise in urban driving.

In localization the state of the vehicle is determined. While traditionally global po-
sitioning systems such as a Global Navigation Satellite System (GNSS) are often used
for this task, they are prone to errors and may produce jumps in the position estimate
which may cause unexpected and dangerous behavior. The focus of research in this the-
sis is the development of a localization system which produces a smooth state estimate
without any jumps. For this two localization approaches are developed and executed in
parallel. One localization is performed without global information to avoid jumps. This
however only provides odometry, which drifts over time and does not give global posi-
tioning. To provide this information the second localization includes GNSS information,
thus providing a global estimate which is free of global drift. Additionally the use of
LiDAR odometry for improving the localization accuracy is evaluated.

For mapping the focus of this thesis is on providing a computationally efficient mapping
system which is capable of being used in arbitrarily large areas with no predefined size.
This is achieved by mapping only the direct environment of the vehicle, with older
information in the map being discarded. This is motivated by the observation that the
environment in autonomous driving is highly dynamic and must be mapped anew every
time the vehicles sensors observe an area. The provided map gives subsequent algorithms
information about areas where the vehicle can or cannot drive. For this an occupancy
grid map is used, which discretizes the map into cells of a fixed size, with each cell
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estimating whether its corresponding space in the world is occupied. However the grid
map is not created for the entire area which could potentially be visited, as this may be
very large and potentially impossible to represent in the working memory. Instead the
map is created only for a window around the vehicle, with the vehicle roughly in the
center. A hierarchical map organization is used to allow efficient moving of the window
as the vehicle moves through an area. For the hierarchical map different data structures
are evaluated for their time and space complexity in order to find the most suitable
implementation for the presented mapping approach.

Finally for tracking a late-fusion approach to the multi-sensor fusion task of estimat-
ing states of all other traffic participants is presented. Object detections are obtained
from LiDAR, camera and Radar sensors, with an additional source of information be-
ing obtained from vehicle-to-everything communication which is also fused in the late
fusion. The late fusion is developed for easy extendability and with arbitrary object
detection algorithms in mind. For the first evaluation it relies on black box object de-
tections provided by the sensors. In the second part of the research in object tracking
multiple algorithms for object detection on LiDAR data are evaluated for the use in the
object tracking framework to ease the reliance on black box implementations. A focus
is set on detecting objects from motion, where three different approaches are evaluated
for motion estimation in LiDAR data: LiDAR optical flow, evidential dynamic mapping
and normal distribution transforms.

The thesis contains both theoretical contributions and practical implementation con-
siderations for the presented approaches with a high degree of detail including all neces-
sary derivations. All results are implemented and evaluated on an autonomous vehicle
and real-world data. With the developed algorithms autonomous driving is realized for
urban areas.
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Kurzfassung

Um autonomes Fahren zu ermöglichen, sind umfangreiche Informationen über die Umge-
bung und den Zustand des Fahrzeugs erforderlich. Während bestimmte Informationen
durch einzelne Sensoren gewonnen werden können, erfordert eine vollständige Schätzung
einen multisensorischen Ansatz, der redundante Informationsquellen einschließt, um die
Robustheit zu erhöhen. Diese Arbeit gibt einen Überblick über die Aufgaben, die beim
autonomen Fahren in der Sensorfusion zu lösen sind, und stellt Lösungen mit einem
hohen Detaillierungsgrad vor, einschließlich Ableitungen und Parametern, die für eine
Implementierung erforderlich sind. Die Arbeit enthält sowohl theoretische Überlegungen
zu den Ansätzen als auch praktische Bewertungen. Enthalten sind dabei auch Ansätze,
die sich als nicht robust genug erwiesen haben, um im autonomen Fahren zum Einsatz zu
kommen. Dies folgt der Überzeugung, dass beide Arten von Ergebnissen den Stand der
Technik vorantreiben, indem sie den Forschern Hinweise auf geeignete und ungeeignete
Ansätze geben, wo die ungeeigneten Ansätze ansonsten mehrfach mit ähnlichen Ergeb-
nissen neu implementiert würden. Der Schwerpunkt der Arbeit liegt auf modellbasierten
Methoden, die im Folgenden auch als klassische Methoden bezeichnet werden, mit einem
besonderen Fokus auf probabilistischen und evidenzbasierten Theorien.

Methoden, die auf Deep Learning basieren, werden explizit nicht behandelt, um die
Erklärbarkeit und Robustheit zu erhalten, die ansonsten stark von den verfügbaren
Trainingsdaten abhängen würden. Der Schwerpunkt der Arbeit liegt in drei Haupt-
bereichen des autonomen Fahrens: Lokalisierung, die den Zustand des Ego-Fahrzeugs
schätzt, Kartierung bzw. Hinderniserkennung, bei der befahrbare Bereiche identifiziert
werden, und Objekt-erkennung und -verfolgung, die den Zustand aller umliegenden
Verkehrsteilnehmer schätzt. Alle Algorithmen werden mit Blick auf die Anforderun-
gen des autonomen Fahrens entwickelt, wobei der Schwerpunkt auf Robustheit,
Echtzeitfähigkeit und Nutzbarkeit der Ansätze in allen möglichen Szenarien liegt, die
im Stadtverkehr auftreten können.

In der Lokalisierung wird der Zustand des Fahrzeugs bestimmt. Während traditionell
oft globale Positionierungssysteme wie ein globales Navigationssatellitensystem (GNSS)
für diese Aufgabe verwendet werden, sind diese anfällig für Fehler und können Sprünge
in der Positionsschätzung erzeugen, die zu unerwartetem und gefährlichem Verhalten
führen können. Der Schwerpunkt der Forschung in dieser Arbeit liegt auf der En-
twicklung eines Lokalisierungssystems, das eine glatte Zustandsschätzung ohne Sprünge
erzeugt. Hierfür werden zwei Lokalisierungsansätze entwickelt und parallel ausgeführt.
Eine Lokalisierung wird ohne globale Informationen durchgeführt, um Sprünge zu ver-
meiden. Diese liefert jedoch nur Odometrie, die über die Zeit driftet und keine globale
Positionierung liefert. Um diese Informationen zu erhalten, wird die zweite Lokalisierung
mit GNSS-Informationen durchgeführt und liefert so eine globale Schätzung, die frei
von globaler Drift ist. Zusätzlich wird die Verwendung von LiDAR-Odometrie zur
Verbesserung der Lokalisierungsgenauigkeit bewertet.

In der Kartierung liegt der Schwerpunkt dieser Arbeit auf der Bereitstellung eines ef-
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fizienten Kartierungssystems, das in beliebig großen Gebieten ohne vordefinierte Größe
eingesetzt werden kann. Dies wird erreicht, indem nur die unmittelbare Umgebung
des Fahrzeugs kartiert wird, wobei ältere Informationen in der Karte verworfen wer-
den. Dies wird durch die Beobachtung motiviert, dass die Umgebung im autonomen
Fahren sehr dynamisch ist und jedes Mal neu kartiert werden muss, wenn die Sensoren
des Fahrzeugs ein Gebiet beobachten. Die bereitgestellte Karte gibt den nachfolgen-
den Algorithmen Informationen über Bereiche, in denen das Fahrzeug fahren kann oder
nicht. Dazu wird eine Grid-Map verwendet, die die Karte in Zellen einer festen Größe
unterteilt, wobei jede Zelle schätzt, ob der ihr entsprechende Bereich in der Welt belegt
ist. Die Grid-Map wird jedoch nicht für den gesamten Bereich erstellt, der potenziell
besucht werden könnte, da dieser sehr groß sein kann und möglicherweise nicht im Ar-
beitsspeicher dargestellt werden kann. Stattdessen wird die Karte nur für ein Fenster um
das Fahrzeug herum erstellt, wobei sich das Fahrzeug ungefähr in der Mitte befindet.
Eine hierarchische Kartenorganisation wird verwendet, um ein effizientes Verschieben
des Fensters zu ermöglichen, wenn sich das Fahrzeug durch ein Gebiet bewegt. Für die
hierarchische Karte werden verschiedene Datenstrukturen hinsichtlich ihrer Rechenzeit-
und Speicherkomplexität bewertet, um die am besten geeignete Implementierung für den
vorgestellten Mapping-Ansatz zu finden.

Schließlich wird für das Tracking ein Late-Fusion-Ansatz für die Multi-Sensor-Fusion
der Schätzung der Zustände aller anderen Verkehrsteilnehmer vorgestellt. Die Objek-
terkennung erfolgt durch LiDAR-, Kamera- und Radarsensoren, wobei eine zusätzliche
Informationsquelle aus der Vehicle-to-Everything-Kommunikation gewonnen wird, die
ebenfalls in der Late-Fusion zusammengeführt wird. Die Late-Fusion wurde für eine
einfache Erweiterbarkeit und mit Blick auf beliebige Objekterkennungsalgorithmen en-
twickelt. Für eine erste Bewertung stützt sie sich auf die von den Sensoren gelieferten
Black-Box-Objekterkennungen. Im zweiten Teil der Forschung zum Objekt-Tracking
werden mehrere Algorithmen zur Objekterkennung auf LiDAR-Daten für die Verwen-
dung im Rahmen des Objekt-Trackings bewertet, um die Abhängigkeit von Black-Box-
Implementierungen zu verringern. Ein Schwerpunkt liegt auf der Erkennung von Objek-
ten anhand ihrer Bewegung, wobei drei verschiedene Ansätze zur Bewegungsschätzung
in LiDAR-Daten bewertet werden: LiDAR-Optical-Flow, Evidential-Dynamic-Mapping
und Normal-Distribution-Transforms.

Die Arbeit enthält sowohl theoretische Beiträge als auch praktische Überlegungen zur
Implementierung zu den vorgestellten Ansätzen mit einem hohen Detaillierungsgrad ein-
schließlich aller notwendigen Ableitungen. Alle Ergebnisse werden auf einem autonomen
Fahrzeug und realen Daten implementiert und evaluiert. Mit den entwickelten Algorith-
men wird autonomes Fahren im urbanen Raum realisiert.
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1
Introduction

Enabling an autonomous vehicle to navigate safely through complex urban areas requires
information about its surroundings as well as the position of the vehicle and its current
movement. Depending on the desired level of automation the requirements on this
knowledge differs. Many current mass-produced vehicles integrate a number of advanced
driver assistance systems (ADAS). While these systems rely on sensory surveillance of the
scene, the required robustness and level of scene understanding is much lower compared
to full self driving and it is often obtained by a single sensor. Infrequent failures of the
systems are undesired but acceptable as the responsibility to drive safely lies with the
driver in these systems.

This however changes when higher levels of autonomy are desired, as shown in Fig.1.1.
Here, the driver remains fully responsible for monitoring the environment until level 2
automation, after which the responsibilities are slowly shifted away from the driver
towards the autonomous system until full autonomous driving is reached. In this work
the focus lies on the development of systems that do not rely on driver intervention,
with the ultimate goal of aiding in the development of a fully autonomous vehicle.

To reach this goal a much more thorough understanding of the surroundings as well as
the state of the vehicle is required. Obtaining this information is however a difficult task.
Sensors observe different parts of the surroundings as well as the vehicle state, however
individually this only results in partial information. Instead many sensors built into
the vehicle are combined to obtain it, each measuring different characteristics. Every
sensor measures parts of the environment or parts of the state of the vehicle, however all
sources of information contain inaccuracies, may even be contradictory and in itself do
not result in a complete understanding of the current scene. Only by combining the data
and taking into account all the different characteristics of the sensors and the information
they produce is it possible to obtain this understanding. This process is called multi-
sensor fusion, although in this work it will be referred to as sensor fusion to improve
readability. For sensor fusion to obtain a good estimate it is imperative to have prior
knowledge of the uncertainties of each measurement that contributes to the estimate.
By taking into account how accurate a measurement is when combining it with other
sources a significantly higher accuracy can be achieved compared to an estimation on a
single source or a fusion that does not utilize uncertainty. It is useful in many different
applications, however in autonomous driving there are three main tasks to be solved:
localization, mapping and tracking. Localization is the task of estimating the state of the
ego vehicle, which contains its pose and dynamics including the velocity, acceleration and
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SAE Level 0

No automation

The human driver
performs all driving
aspects of driving
tasks, e.g. steering,
acceleration, etc.

SAE Level 1

Driver
assistance

The vehicle features
a single automated
system for driver
assistance, such as
steering or
acceleration/
deceleration and with
the anticipation that
the human driver
performs all
remaining aspects of
the drving tasks.

SAE Level 2

Partial
automation

ADAS. The vehicle
can perform steering
and acceleration/
deceleration.
However, the human
driver is required to
monitor the driving
environment and can
take control at any
time.

SAE Level 3

Conditional
automation

The vehicle can
detect obstacles in
the driving
environment and can
perform most driving
tasks. Though,
human override is still
required.

SAE Level 4

High
automation

The vehicle can
perform all aspects of
the dynamic driving
task under specific
scenarios.
Geofencing is
required. Human
override is still an
option.

SAE Level 5

Full automation

The vehicle performs
all driving tasks under
all conditions and
scenarios without
human intervention.

The human drivers monitor the driving environment The automated system monitors the driving environment.

Figure 1.1: Levels of driving automation as defined by the Society of Automotive Engineers(SAE).
(Figure partially adopted from [Yeong et al., 2021].)

turn rate of the vehicle. Mapping refers to the estimation of the vehicles’ environment.
Finally tracking describes the estimation of the pose, dynamics and size of dynamic
objects in the vicinity of the vehicle. Solving these tasks lays the groundwork for all
subsequent tasks that arise in autonomous driving that finally lead to a safe control of
the autonomous vehicle. While the localization is a prerequisite for most autonomous
driving functionality, the map containing obstacles and the state of dynamic objects are
especially used for vehicle control and path planning in order to avoid collisions and plan
efficient driving paths. The integration of the tasks in a full autonomous driving stack
is shown in Fig. 1.2. These three tasks are introduced in detail in the following.

1.1 Sensor Fusion Tasks in Autonomous Driving
The first task is the localization of the vehicle, where the position and dynamic properties
of the vehicle such as its velocity, acceleration and turn rate are estimated. The resulting
vehicle state estimate is used by virtually every algorithm on the autonomous vehicle
either directly or indirectly. This leads to a strong requirement for robustness and
accuracy. Especially the algorithms responsible for vehicle control rely on an accurate
and smooth estimation of the recent movement of the vehicle. Inaccuracies or even
jumps may lead to over-corrections that feel unpleasant and unnatural for potential
passengers and may even produce dangerous situations. The localization relies on many
different sensors that measure its relative movement, such as inertial measurement units
(IMU), or its absolute position in the world, such as global navigation satellite systems
(GNSS). However additional sensors such as wheel speed sensors, and sensors measuring
the steering wheel angle aid in the estimation as well.

The second task is the mapping of the vehicles surroundings, where the state of the
vehicles’ environment is estimated. The specific state that is estimated depends on what
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Figure 1.2: Full autonomous driving stack in which the sensor fusion is integrated. (Figure
partially adopted from [Folkers et al., 2022].)

the map is used for, however the main objective of the mapping is to give information
about where the vehicle can or cannot drive. Most mapping approaches limit the en-
vironment estimation to static obstacles such as trees, houses or traffic signs, although
there exist approaches that extend this representation to also take into account moving
obstacles such as other vehicles. For the mapping sensors are utilized that measure the
surroundings of the vehicle. Light Detection and Ranging (LiDAR) are most commonly
used, however Radar and Camera sensors may supply additional information that can be
fused to obtain a more complete understanding of the surroundings including semantic
information.

Finally the third task is the detection and tracking of other traffic participants. This
task involves identifying other traffic participants in the surroundings of the vehicle and
to estimate their classification, pose, size and dynamic properties such as velocity and
acceleration. The state that is estimated is therefore very similar to the one estimated
in the localization, however no intrinsic measurements are available. Instead the state
must be estimated from external sensors such as LiDAR, Camera and Radar. Obtaining
robust estimates of all surrounding traffic participants is therefore a challenging task
and remains an active field of research. In recent years there has been a surge in re-
search specifically in the area of deep neural networks. However these approaches lack
explainability and rely on a large amount of training data to ensure operability under
all scenarios. Situations not present in the training data may result in unexpected re-
sults. To avoid these shortcomings the focus of this work is on developing and exploring
model-based approaches without the use of deep learning.

1.2 Thesis Contribution
Contributions are made in all of the fields of sensor fusion mentioned above. The work
in these fields focuses on approaches for real-world applications. The algorithms are
developed for a demonstrator with the goal to offer a shuttle service for urban areas
[Folkers et al., 2022]. Thus the algorithms take into account the challenges that arise
in these areas. Compared to highway scenarios where systems like the Drive Pilot by
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Figure 1.3: Architecture of the sensor fusion stack for autonomous driving. Intrinsic sensory input
is shown in red, extrinsic input in blue. The modules corresponding to localization functionality
are shown in green, mapping is shown in purple while object detection and tracking is shown in
orange.

Mercedes Benz [Mercedes-Benz, 2023] and the Driver Assistance by BMW [BMW, 2023]
have made significant progress in offering full self driving, urban areas still offer many
unsolved areas of research. While highways are highly structured with strict rules to
be followed, urban areas are often cluttered scenes, with less structure in the motion of
other traffic participants. In addition urban areas contain many underpasses, bridges and
overgrown areas, making sensors that rely on satellite reception (i.e. GNSS) unreliable
in some situations. An overview of the entire sensor fusion stack is shown in Fig. 1.3.
The contributions made in these fields are listed in the following.

1.2.1 Localization
For the localization a system is proposed specifically for the requirements that exist in
autonomous driving. It provides a vehicle state estimate that is highly accurate over
short periods of time while also being smooth without any jumps. This is done to accom-
modate subsequent algorithms that rely on a continuous and accurate estimate of the
vehicles’ recent movement. To obtain a smooth localization however, GNSS information
can not be included in the estimate as this inherently produces jumps. Therefore the
resulting localization has no external reference and only estimates relative movement or
odometry. Thus it drifts over time and does not give global position information. There
are however algorithms such as a routing algorithm that relies on a global position esti-
mate to choose the best route to a desired destination. To provide this global information
a second localization is performed in parallel which includes GNSS information in its
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estimate. This localization gives its state in a global reference system and can thus be
used for routing between a passenger pickup and its destination or to take into account
static information about the environment. As this localization takes into account GNSS
data it will not drift over time, however it may produce jumps especially in areas with
weak GNSS signal. By offering both types of localization each module may choose which
one to use depending on whether a jump-free and smooth localization is beneficial or
whether global positioning without drift is required. Both approaches are evaluated for
the use on the demonstrator vehicle in multiple real-world scenarios. Additionally the
use of LiDARs to aid in the reduction of drift over time is evaluated by utilizing LiDAR
odometry. As the vehicle moves through an area it will measure large parts of the envi-
ronment in multiple subsequent scans, enabling the use of scan matching approaches to
align these measurements. This alignment can be used as additional information for the
localization, and as each alignment takes into account previous information, the inherent
drift caused by only using relative measurements is reduced.

1.2.2 Mapping

Creating a map of the vehicles’ surroundings in autonomous driving poses some task-
specific difficulties as well. Areas that are mapped are often assumed to have a fixed
size, limited to the area for which the mapping algorithm was developed. Especially
in autonomous driving this is however not always possible. The area that should be
mapped depends on the desired route of the passengers and this can potentially cover
a very large area between the origin and the destination. Depending on the distance it
is often infeasible to map the entire area. However due to the highly dynamic nature of
the mapped areas in autonomous driving it is not necessary to map the entire area and
keep all information in memory. As an example, parked vehicles may block parts of a
street when first visiting an area, and then be gone at a later time. Therefore to make
decisions based on the environment it is important to always have updated information
available, meaning that areas that were previously mapped need to be mapped again
upon revisiting. Instead of keeping the entire history in the map this thesis thus uses
a moving-window approach where the mapped area is reduced to the direct vicinity of
the vehicle. For this a special hierarchical map structure is used where the map is split
into multiple submaps. The main contribution of this work is the comparison between
different data structures used in the hierarchical map. Autonomous driving requires
fast, real-time capable algorithms and any processing time saved in each algorithm can
be utilized for more complex estimations in others. Thus an evaluation is performed to
compare processing time and memory demands to find the optimal implementation for a
hierarchical moving-window implementation of the mapping algorithm. This evaluation
is again performed on real-world data to optimize for the use on the demonstrator vehicle.

1.2.3 Object Detection and Tracking

Detecting other traffic participants in the vehicles vicinity and estimating their state,
also referred to as object tracking, are among the most crucial and challenging tasks in
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autonomous driving. Due to their difficulty a number of approaches are evaluated in this
thesis. The thesis contains both positive and negative results of these evaluations, to
give an overview of approaches and their strengths and weaknesses in different scenarios.
In the current research climate negative results are however often not publishable. This
lead to the conscious decision to write this thesis as a monograph to share both positive
and negative results in the search for an object detection and tracking approach.

Contributions are made in two parts. Firstly a late fusion framework is given for fusing
information from several commonly used sensors. The term late fusion refers to the fact
that information is first processed for each sensor individually and fused at the latest
possible stage, as opposed to early or mid fusion, where information is combined at earlier
stages. A late fusion is however independent of the specific object detection algorithm,
making it easier to extend it to multiple sensors and evaluate the performance of different
object detection algorithms, which makes it the ideal approach for this thesis. The main
sensors used in this work are multiple LiDARs built into the sides, front and back of the
vehicle, however the late fusion allows fusion of objects detected by a camera and Radar
as well. Additionally it enables the fusion of information communicated by other vehicles
over vehicle-to-everything (V2X) communication. By combining all available sensors as
well as utilizing communicated information obtained by other vehicles a robust tracking
system is proposed, that is still able to operate when single sensors malfunction.

Secondly multiple object detection algorithms on LiDAR data are implemented and
evaluated for the use on the available data of the demonstrator vehicle. A focus is put
on algorithms that do not rely on knowledge about the specific objects classes that may
occur but rather on a general approach to determine moving objects. The difficulty
in this thesis in particular lies in the available sensor data, as the vehicle is equipped
with LiDARs with a very limited vertical field of view. Thus only 2D object detection
algorithms are evaluated. The applicability of these algorithms to certain scenarios
as well as measures to improve their performance by additional sensors or additional
computational power are discussed.

1.3 Publications Overview

While the thesis is written as a monography parts are based on previously published
work, which is cited in the corresponding chapters and extended and textually adapted
for better readability. An overview over the autonomous driving stack was published in
[Folkers et al., 2022]. The results in the field of jump-free localization were published
in [Clemens et al., 2020]. Work regarding a moving-window grid mapping approach was
published in [Wellhausen et al., 2021]. In addition in [Höffmann et al., 2022] a global
localization system is utilized which is based on the localization system presented in
this thesis. While no authorship was claimed due to the focus of the paper being on the
presented autonomous lawnmower, the described global localization system was partially
developed as a part of this thesis.
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1.4 Thesis Outline
The remainder of the thesis is structured as follows. In Chap. 2 different methods
commonly used in sensor fusion are introduced. This especially includes the Bayes filter
and the Kalman filter as a specific implementation. Vehicle state representations are
discussed and the ⊞-method is introduced for handling manifolds as part of the state.
In addition grid mapping is introduced. In Chap.3 an overview over the research vehicle
as well as the used sensors is given.

Chap. 4 begins the description of contributions made in this thesis and covers the
implementation of the two localization approaches used in this work. In addition the
use of a LiDAR to decrease localization drift when estimating odometry or when no
GNSS is available is evaluated. In Chap.5 the moving-window mapping implementation
is presented. A theoretical analysis is given for the time and space complexity when
different data structures are used as storage. This is then evaluated on real-world data
and suggestions are given for suitable data structures. Chap. 6 first introduces the
late fusion approach for fusing information from different sources. Second it introduces
multiple object detection approaches on LiDAR data. Finally Chap. 7 concludes the
thesis by summarizing the work and giving an outlook on possible extensions and future
work.
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2
Methods in Sensor Fusion

While many ways exist to fuse sensor data, some standard approaches have been estab-
lished that find use in many fields. In the following an overview over these methods
is given to serve as a basis for the developed methods in this work. For an overview
over methods in sensor fusion with a special focus on handling uncertain information the
reader is also referred to [Clemens, 2018]. The following overview takes inspiration from
this work with an additional focus on methods used in autonomous driving, extending
it where necessary. First an overview is given over Bayes filters and the Kalman filter as
a specialization. Second suitable representations for vehicle states are presented. Third
grid mapping is introduced. Finally the handling of timestamped data in sensor fusion
algorithms is discussed.

2.1 Bayes Filter

A Bayes filter is a probabilistic technique for state estimation from uncertain measure-
ments and control processes [Russell and Norvig, 2010]. The goal is to estimate a state
xt ∈ S given the measurements z0:t = z0, ..., zt, with zi ∈ Z, i = 0, ..., t and the con-
trol sequence u1:t = u1, ..., ut, with ui ∈ U , i = 1, ..., t. While S is the state space, Z
and U are the measurement and control space respectively, and t denotes the current
point in time. Note that in autonomous driving, the control is often a measured process
as well, where inertial measurements are used to more precisely predict the movement
of the vehicle. The state estimation is expressed as a probabilistic problem to model
sensor and process noise. Obtaining a state estimate at time t given all measurements
and controls can be expressed as a conditional probability p(xt|z0:t, u1:t). Two assump-
tions are required to enable efficient computation: (i) the measurement zt depends only
on the current state xt and (ii) the current state depends only on the previous state
xt−1 and the current control ut, which is also referred to as the Markov assumption
[Thrun et al., 2005, Sect.2.4.4]. Using these two assumptions, the probability for a mea-
surement, also referred to as measurement model, can be expressed as p(zt|xt), while the
probability for a state transition with the current control is given by p(xt|ut, xt−1), also
known as the motion model.

To now derive a recursive method for state estimation, first the Bayes rule is utilized:

P (X|Y ) ∝ P (Y |X)P (X) (2.1)
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Using this rule as well as (i), we may formulate the state estimation as follows:

p(xt|z0:t, u1:t) ∝ p(zt|xt, z0:t−1, u1:t)p(xt|z0:t−1, u1:t)
= p(zt|xt)p(xt|z0:t−1, u1:t)

(2.2)

Using (ii) and the law of total probability, we obtain the prior p(xt|z0:t−1, u1:t):

p(xt|z0:t−1, u1:t) =
∫

S
p(xt|ut, xt−1)p(xt−1|z0:t−1, u1:t−1)dxt−1 (2.3)

Since the term p(xt−1|z0:t−1, u1:t−1) is the posterior from the previous step, this results in
a recursive algorithm where the full measurement and control sequence is not required.
Together, (2.2) and (2.3) form the recursive Bayes filter. Equation (2.3) is often referred
to as the prediction step, which uses the current control input and the previous state to
propagate the state forward in time. On the other hand, equation (2.2) can be seen as
the correction step, which uses the current measurement to correct errors accumulated
in the prediction step. While the Bayes filter gives a framework for probabilistic state
estimation, there are multiple implementations of it, with one of the most frequently used
one being the Kalman filter. This approach and two of its specializations are presented
in the following.

2.1.1 Kalman Filter (KF)

The Kalman filter [Kalman, 1960; Thrun et al., 2005, Sect. 3.2] is an implementation of
the Bayes filter. It consists of two steps, a state prediction step, which in autonomous
driving relates to the prediction of the vehicles movement, and a measurement (or correc-
tion) step, where the state is corrected based on current measurements. In autonomous
driving the prediction is usually performed based on the type of vehicle that is esti-
mated, taking into account its physical properties and limitations. Whenever possible
this is often modeled as a measured process instead of relying on a static control input,
where inertial measurements precisely measure the current movement of the vehicle.
Corrections on the other hand are solely performed using sensor data. The Kalman
filter predicts what a sensor would measure if the current state was correct, and when
this does not fit the received sensor measurement the state is corrected to reduce this
discrepancy.

The Kalman filter makes multiple assumptions to enable efficient calculation. First,
the filter assumes linear motion, and the noise has to be Gaussian distributed with zero
mean:

xt = Atxt−1 +Btut + ϵt, ϵt ∼ N (0, Rt) (2.4)

Here, the Matrix At models the influence of the old state on the new state, while matrix
Bt does the same for the control. Additionally, the Gaussian process noise ϵt with
covariance Rt is added to the state estimate.

Second, the filter assumes a linear measurement model, again with Gaussian noise and
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zero mean:
zt = Ctxt + δt, δt ∼ N (0, Qt) (2.5)

Here, the Matrix Ct transforms the state into the measurement space, while δt is the
Gaussian process noise and the Matrix Qt is its measurement noise.

The Kalman filter estimates the Normal Distribution xt|z0:t, u1:t ∼ N (µt,Σt). More
specifically, the mean µt and the covariance Σt need to be estimated. For this the
prediction and correction step are executed periodically. In the prediction, the previous
mean µt−1 and covariance Σt−1 are predicted to the current time t using the control ut:

µ̄t = Atµt−1 +Btut, (2.6)
Σ̄t = AtΣt−1A

T
t +Rt (2.7)

Using these predicted values, the Kalman Gain is calculated, which weighs the influence
of new measurements against the existing estimate:

Kt = Σt−1C
T
t (CtΣ̄tC

T
t +Qt)−1 (2.8)

Using this factor, the prediction is corrected in the correction step by

µt = µ̄t +Kt(zt − Ctµ̄t), (2.9)
Σt = (I −KtCt)Σ̄t, (2.10)

where I is an identity Matrix.

While the result is always the optimal solution as long as the assumptions 2.4 and 2.5
of linear models with Gaussian noise hold, there are only very few real-world problems
where a linear motion and measurement model can be assumed. To overcome this
restriction, several extensions to the Kalman filter have been proposed, most notably
the extended Kalman filter and the unscented Kalman filter. Both of these extensions
find application in this thesis and are introduced in the following.

2.1.2 Extended Kalman Filter (EKF)

The extended Kalman filter [Jazwinski, 2007; Thrun et al., 2005, Sect. 3.3] removes the
requirement for a linear motion and measurement model by linearizing them using first
order Taylor series expansion. While this linearization requires both models to be rea-
sonably linear locally around the linearization point, this assumption is significantly less
restrictive and holds for many real-word applications. To allow non-linear models, a
number of changes are required. First, the motion model 2.4 becomes

xt = g(ut, xt−1) + ϵt, ϵt ∼ N (0, Rt), (2.11)
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where the function g : U × S → S is the non-linear state transition function using the
previous state and the control input. Similarly, 2.5 becomes

zt = h(xt) + δt, δt ∼ N (0, QT ), (2.12)

with h : S → Z being the non-linear measurement function mapping the current state
to the measurement space.

Using these two non-linear functions, the extended Kalman filter updates the state as
follows:

µ̄t = g(ut, µt−1) (2.13)
Σ̄t = GtΣt−1G

T
t +Rt (2.14)

Here, the linearization is used in the Jacobian Gt = ∂g
∂µt−1

of the state transition function.
It is calculated using first order Taylor series expansion from the linearization point µt−1.
Next, the Kalman gain is calculated using

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)−1. (2.15)

Here, the Jacobian Ht = ∂h
∂µ̄t

is again calculated using first order Taylor series expansion.
Using the Kalman gain, the prediction is corrected with

µt = µ̄t +Kt(zt − h(µ̄t)), (2.16)
Σt = (I −KtHt)Σ̄t. (2.17)

As can be seen the extended Kalman filter is very similar to the standard Kalman
filter, with the major change being the substitution of the linear mapping between state
space and measurement space or state space and control space with non-linear map-
pings. While in theory the extended Kalman filter is simple to implement, the difficulty
often lies in obtaining the Jacobians, which may be difficult to obtain depending on the
corresponding function. Additionally while the assumption of locally linear models holds
well enough for many applications, for very non-linear models this approximation fails.
In these cases, an unscented Kalman filter may be used instead.

2.1.3 Unscented Kalman Filter (UKF)
In the unscented Kalman filter [Julier and Uhlmann, 1997; Thrun et al., 2005, Sect.3.4],
a deterministic sampling method is used for linearization instead of calculating the Ja-
cobian by Taylor series expansion. Samples are drawn around the linearization point
according to the current covariance, and propagated through the measurement and mo-
tion model to estimate the resulting distribution.

For prediction first sigma points are generated around the previous estimate µt−1 by

Xt−1 =
(
µt−1 µt−1 + γ

√
Σt−1 µt−1 − γ

√
Σt−1

)
, (2.18)

12



Bayes Filter

with γ = a2(n + k) − n. While n is the dimensionality of the state space, a and k are
scaling parameters which determine the spread of the sigma points from the previous
mean. This results in 2n+ 1 sigma points, with one being the mean µt−1 and one being
generated for every dimension of the state space in both directions around the mean.
Each sigma point is propagated through the control function g by

X̄ ∗
t = g(ut,Xt−1). (2.19)

From these sigma points the predicted mean and covariance is calculated by

µ̄t =
2n∑
i=0

w[i]
mX̄

∗[i]
t , (2.20)

Σ̄t =
2n∑
i=0

w[i]
c

(
X̄ ∗[i]
t − µ̄t

) (
X̄ ∗[i]
t − µ̄t

)T
+Rt. (2.21)

Given the predicted mean and covariance the correction step is prepared by sampling
around these predicted values. This is done by

X̄t =
(
µ̄t µ̄t + γ

√
Σ̄t µ̄t − γ

√
Σ̄t

)
. (2.22)

From these sigma points an estimated measurement is generated by propagating the
sigma points through the measurement function and calculating the mean ẑt and its
uncertainty St by

Z̄t = h(X̄t), (2.23)

ẑt =
2n∑
i=0

w[i]
mZ̄

[i]
t , (2.24)

St =
2n∑
i=0

w[i]
c

(
Z̄ [i]
t − µ̄t

) (
Z̄ [i]
t − µ̄t

)T
+Qt. (2.25)

The Kalman Gain Kt is then calculated by

Σ̄t
x,z =

2n∑
i=0

w[i]
c

(
X̄ [i]
t − µ̄t

) (
Z̄ [i]
t − µ̄t

)T
, (2.26)

Kt = ¯Σx,z
t S−1

t . (2.27)

With the Kalman Gain the corrected new mean µt and covariance Σt are calculated
by

µt = µ̄t +Kt(zt − ẑt), (2.28)
Σt = Σ̄t −KtStK

T
t . (2.29)
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While the UKF generally outperforms the EKF where parts of the models are highly
non-linear, this improvement comes at a significant increase in computational complex-
ity. With every sample being propagated through the measurement and motion model,
computation time becomes a limiting factor especially where the state has a high dimen-
sionality.

2.2 Vehicle State Representation

One of the most prominent tasks in autonomous driving is the estimation of a vehicle
state. This may be the state of the ego vehicle or that of other traffic participants. In
both cases, very similar states need to be estimated, with minor differences that will
be discussed in Chap. 4 and Chap. 6 for the specific scenarios. A minimal vehicle state
consists of the pose, which contains the position and orientation of the object as well
as its velocity. With this information, a simple trajectory prediction is possible. While
the position and velocity are estimated in euclidean space, and are therefore an element
of R3, for the rotation a suitable representation requires some additional considerations.
Rotations in 2D or 3D are part of the special orthogonal group SO(2) and SO(3) re-
spectively, which are manifolds with a complex topology unlike a vector space. Since the
Kalman filter is designed for states in a euclidean space, when estimating rotations there
are some measures that need to be taken in order to ensure correct results. In the fol-
lowing, different representations of rotations will be considered. Subsequently, a method
for encapsulating rotations for filtering using the so-called ⊞-method is introduced.

2.2.1 Rotations in 2D

While the vehicle moves in three dimensional space, in some scenarios it can be beneficial
to reduce the estimation of object states to two dimensions, causing the orientation to be
part of the special orthogonal group SO(2) instead. The simplest representation for a 2D
rotation is through an angle ψ ∈ R,−π ≤ ψ < π. While this representation gives a clear
understanding of the corresponding rotation in 2D space, there are some difficulties that
need to be considered when using this representation. Firstly, there is no inherent way
to apply this rotation to a vector. Secondly there are discontinuities between −π and π
where a small change in rotation results in a large difference in the representation. Lastly
concatenating rotations requires normalization to keep the resulting angle between −π
and π.

Instead an over-parameterized representation can be chosen. The most commonly
used representation is the 2D rotation matrix, defined as

R =

cosψ − sinψ
sinψ cosψ

 . (2.30)

Using this representation applying a rotation RA→B to a vector pA ∈ R2 can be done
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by matrix-vector multiplication as

pB = RA→B · pA. (2.31)

A rotation matrix can be inverted by transposing the matrix

R(B→A) =
(
R(A→B)

)−1
=
(
R(A→B)

)T
, (2.32)

with R(A→B)R(B→A) = I. Finally, rotations may be concatenated by matrix multiplica-
tion

R(A→C) = R(B→C)R(A→B). (2.33)

Using a rotation matrix for state representation the optimization or estimation algo-
rithm would need to be aware of the structure of the matrix introduced in (2.30), which
complicates the estimation problem. Additionally the dimensionality of the state would
grow. Therefore for 2D state representation in this thesis angles are used directly, while
rotation matrices are used in order to rotate vectors. Handling the resulting discontinu-
ities in state estimation is explained in Sect. 2.2.3.

2.2.2 Rotations in 3D

Similar to rotations in 2D multiple possible representations exist for rotations in three
dimensional space, each with different drawbacks and benefits. A major difference be-
tween representations is the amount of parameters used to represent a rotation in 3D. A
minimal representation has three parameters, one for each degree of freedom in SO(3).
This however always comes at the cost of the representation containing singularities
[Stuelpnagel, 1964], where multiple values for a parameter on one axis lead to similar
resulting rotations. Thus, changes in the parameter space will not necessarily result in
a proportional change in the state space. In the most extreme case a gimbal lock may
occur [Lepetit et al., 2005, Sect. 2.2], where the three parameters only allow rotations
around two axes. To avoid this over-parameterized representations can be used that use
more than three parameters in order to represent rotations in SO(3) without containing
singularities. An overview over commonly used representations and a discussion on their
usability in a Kalman filter is given in the following.

One of the most prominent and intuitive representations are Euler angles. Euler
angles represent the rotation using three angles that determine the rotation around the
x-,y- and z-axis, also called roll, pitch and yaw as a vector [ϕ θ ψ]T ∈ R3. Using this
representation, it is possible to directly understand from the parameters what kind of
rotation is performed. This makes it comparably easy to use, however, the representation
comes with a number of downsides. First, there exist singularities at the poles, where
a large change in the parameter space only has a minor influence on the state space.
Second, using Euler angles for optimization or state estimation using Kalman filters
comes with the additional difficulty of discontinuities around ±π. Here, a jump in the
representation exists, which only leads to minimal changes in the state space. To use
Euler angles for these applications, special handling of these jumps is required.
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An alternative representation is the so-called scaled-axis representation. Any rotation
in SO(3) can be expressed as a vector v ∈ R3, ∥v∥ = 1 which defines the axis around
which the rotation is performed and an angle α ∈ R which defines the angle of rotation.
In the scaled-axis representation, this angle is however encoded directly in the vector,
by scaling the vector v using

u = αv. (2.34)

This representation is minimal in the amount of parameters used, however it is again
not singularity-free and to use it for multiple subsequent rotations is difficult as there is
no simple way to calculate the resulting combined rotation.

Instead, a rotation matrix may be used to define a rotation. To represent a three-
dimensional rotation from frame A to frame B, a matrix R(A→B) ∈ R3×3 is required. This
matrix has to be an orthogonal matrix with determinant 1. Using this representation,
a number of operations can be easily defined. First, to rotate a vector pA = [x y z]T
expressed in frame A to frame B, matrix-vector multiplication is performed by

pB = R(A→B)pA. (2.35)

Second, a rotation can be inverted by transposing the matrix

R(B→A) =
(
R(A→B)

)−1
=
(
R(A→B)

)T
, (2.36)

with R(A→B)R(B→A) = I. Third, rotations may be concatenated by matrix multiplica-
tion

R(A→C) = R(B→C)R(A→B). (2.37)

The rotation matrix can be extended to represent full transformations, where a transla-
tion t(A→B) ∈ R3 from frame A to B is additionally applied. For this, a transformation
matrix is constructed by

T (A→B) =

R(A→B) t(A→B)

01×3 1

 (2.38)

Using this, a transformation is again applied using matrix-vector multiplication, however
the vector pA is embedded using homogeneous coordinates. As such the transformation
is given by

pB = T (A→B)

pA
1

 , (2.39)

where pB is also in homogeneous coordinates. Using rotation matrices, no discontinu-
ities or singularities exist, however the rotation is now significantly over-parameterized.
While a rotation matrix uses nine parameters, there exist representations that do not
contain singularities with only four parameters. Additionally, requiring the matrix to be
orthogonal with determinant 1 is difficult to model in optimization tasks.
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One representation with only four parameters is a quaternion. It is based on the idea,
that every rotation can be described by an axis v = [vx vy vz]T ∈ R3 similar to the scaled
axis representation. However in this case the axis vector is normalized to ∥v∥ = 1 and an
angle parameter α ∈ R is added. The rotation quaternion [Titterton and Weston, 2004,
Sect. 3.6.4] is defined as

q = cos α2 + (vxi+ vyj + vzk) sin α2 , (2.40)

where i, j, k are complex units for which holds i2 = j2 = k2 = ijk = −1. To describe a
valid rotation in SO(3), the quaternion has to be a unit quaternion. As such, the set of
valid rotation quaternions Ĥ is defined as

Ĥ = {q ∈ H, ∥q∥ = 1}, (2.41)

where H is the set of all quaternions. To rotate a vector pA = [x y z]T expressed in
frame A to frame B using a quaternion q(A→B), a pure quaternion p̄A is constructed
from pA by setting the vector part v to pA and the real part α to zero. The rotation is
then performed by

p̄B = q(A→B)p̄Aq(A→B)−1
, (2.42)

where p̄B again is a pure quaternion where the vector part is the rotated vector pB. For
a quaternion q(A→B), the inverse q(B→A) can be calculated using

q(B→A) = q(A→B)−1 = q(A→B)∗
, (2.43)

where q(A→B)∗ is the conjugate of q(A→B). To obtain the rotation defined by combining
two quaternions q(A→B) and q(B→C), the concatenation is calculated as

q(A→C) = q(B→C)q(A→B). (2.44)

While the quaternion is still over-parameterized with four parameters, it uses signifi-
cantly fewer than the rotation matrix without having singularities. Just like rotation
matrices, quaternions require special handling to ensure that they remain valid rotation
quaternions with ∥q∥ = 1 when used in optimization tasks.

2.2.3 Encapsulating Rotations using the ⊞-Method

To use rotations in SO(2) or SO(3) in a Kalman filter difficulties arise due to disconti-
nuities and additional difficulties are encountered in 3D due to singularities. In order to
handle these manifolds in the state, the ⊞-method is used to encapsulate the manifold
state space [Hertzberg et al., 2013]. In this method the state representation is separated
from the representation of updates of the state. A key assumption behind this method
is that updates to the state are performed in short intervals, which leads to the update
being small. Thus discontinuities and singularities do not occur in the representation of
the rotation describing the update, regardless of which representation is used, as these

17



Chapter 2: Methods in Sensor Fusion

occur only for large updates. Updates to the state using the ⊞-method depend on the
specific representations used, which is shown in detail in the following first for rotations
in 3D and then for 2D rotations.

While many representations exist for the SO(3) state space, there is no single ideal
representation to choose. When using a minimal representation like Euler Angles, sin-
gularities and discontinuities exist. These can be avoided by using quaternions or ro-
tation matrices, however then the state space is over-parameterized. Algorithms that
calculate updates to the rotation are not aware of the constraints that result from this
over-parameterization (e.g. ∥q∥ = 1 for quaternions). As such, the updates may re-
sult in invalid parameters, and a normalization to restore the constraints will lead to
sub-optimal updates.

To avoid these issues, the ⊞-method is used to encapsulate the manifold state
space [Hertzberg et al., 2013]. The rotation is globally represented using an over-
parameterized representation such as quaternions, while updates are applied using
a minimal representation. Updates are done in small intervals and are therefore
numerically small. The manifold space appears like a vector space locally, which enables
algorithms such as the Kalman filter, where a vector space is expected, to calculate
the updates on this local vector space. With these updates being small, they are far
away from problematic singularities and discontinuities. The global representation in
the manifold space on the other hand accumulates these updates and may contain
arbitrary rotations, as the over-parameterization ensures that no singularities occur.
Two operators are defined to map from manifold state S to the vector space Rn and
vice versa, where n determines the degrees of freedom in S. These are defined as

⊞ : S × Rn → S, (2.45)
⊟ : S × S → Rn. (2.46)

The ⊞-operator updates the state S using an element from the vector space. In-
tuitively, this operation applies an update to the state, much like an addition. The
⊟-operator calculates a difference between two states on the manifold space, which is
expressed as an element of the vector space. This can be seen as a subtraction. There
are a number of constraints these operators have to satisfy, with x ∈ S and given the
deviations are sufficiently small:

x⊞ 0 = x (2.47)
x⊞ (y ⊟ x) = y, ∀y ∈ S, (2.48)

(x⊞ δ) ⊟ x = δ, δ ∈ Rn, (2.49)
∥(x⊞ δ1) ⊟ (x⊞ δ2)∥ ≤ ∥δ1 − δ2∥, δ1, δ2 ∈ Rn. (2.50)

The most common state space in this work is SO(3), which occurs in any state where
a 3D-pose is estimated. In this work, a quaternion is used for global representation of the
manifold space, while a scaled-axis representation is used for representing deviations in
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the vector space. This combination has multiple advantages. The global representation
remains small compared to using rotation matrices, however it is still possible to perform
basic operations directly on the representation as shown in (2.42) - (2.44). For the vector
space the choice is largely arbitrary as long as it is minimal, as this deviation is not used
for further processing besides calculating the update on the manifold space. It does
however influence how the covariance of the rotation in the state is interpreted, as this
is expressed with respect to the chosen representation.

Both ⊞ and ⊟ can be defined for any combination, however in the following they are
given only for the combination used in this work. The equations for combining rotation
matrices with scaled axis can be found in [Hertzberg et al., 2013], while the combination
of quaternions and Euler angles is shown in [Clemens and Schill, 2016]. A more thorough
discussion on the use of different combinations including the combination of quaternions
and Euler angles is additionally given in [Clemens, 2018].

For quaternions and scaled axes, the operators are defined as [Hertzberg et al., 2013]

x⊞ d = x exp d

2 (2.51)

y ⊟ x = 2 log (x−1y), (2.52)

with x ∈ Ĥ and y ∈ Ĥ being quaternions, and d = [dx dy dz]T ∈ R3 being a scaled axis.
The functions exp : R3 → Ĥ and log : Ĥ→ R3 are defined as

exp d = cos∥d∥+ (dxi+ dyj + dzk)sin∥d∥
∥d∥

, (2.53)

log q =


0, qv = 0
tan−1(∥qv∥/q0)

∥qv∥ qv, qv ̸= 0, q0 ̸= 0
± π/2

∥qv∥qv, qv ̸= 0, q0 = 0,
(2.54)

with q ∈ Ĥ. The symbols q0 ∈ R and qv ∈ R3 represent the real part and the vector part
of the quaternion respectively. The functions exp and log map between the different
spaces. The function exp converts an element in the vector space to the manifold space,
while the log functions performs the opposite conversion.

Similar to rotations in 3D the ⊞-method can also be applied to 2D rotations in order
to avoid issues with discontinuities around π and −π [Hertzberg et al., 2013]. For this
the global representation of the orientation in the state is chosen to be an angle ψ ∈ R.
To avoid issues with discontinuities, periodic equivalents ψ + 2πk, k ∈ Z are treated as
the same value, and as such the internal representation can exceed the bounds of π and
−π. Thus adding a rotation to the global representation is a simple addition, while the
⊟ operator must take into account that the internal representation is not normalized to
the correct bounds. The ⊞-operator is thus defined as

x⊞ δ = x+ δ. (2.55)
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The ⊟-operator on the other hand is defined as

y ⊟ x = vπ(y − x), (2.56)

where vπ(δ) := δ−2π⌊ δ+π2π ⌋. This definition gives the smallest angular difference between
x and y, which is an intuitive result.

With these functions defined, it is now possible to update a manifold state using small
deviations both in 2D and 3D. It should however be noted, that most frequently the
state is a composite of many different spaces, some of which may be manifold while
others are simple vector spaces. In the latter case the ⊞ and ⊟ operators reduce to a
simple addition and subtraction for the vector parts of the state, defined as

x⊞ d = x+ d, (2.57)
y ⊟ x = y − x. (2.58)

In some cases, the state may also be composed of multiple manifolds S1 and S2. In those
cases, the operations are performed component-wise on the corresponding parts of the
state. This is defined as x1

x2

⊞

d1

d2

 =

x1 ⊞S1 d1

x2 ⊞S2 d2

 , (2.59)

y1

y2

⊟

x1

x2

 =

y1 ⊟S1 x1

y2 ⊟S2 x2

 . (2.60)

In most sensor fusion algorithms, simply representing the state of an object is not
sufficient. Instead, a lot of information is contained in the uncertainty of the estimate.
Most multivariate probability distributions are however defined on the vector space. To
represent uncertainty of the manifold elements, normal distributions can be defined on
⊞-manifolds [Hertzberg et al., 2013]. For this, an element µ ∈ S of the manifold is used
as mean, while the multivariate normal distribution N is defined on the vector space Rn
and then mapped to the manifold around µ using the ⊞ operator. This is defined as

NS(µ,Σ) = µ⊞N (0,Σ), (2.61)

where Σ ∈ Rn×n is the covariance matrix.

Many sensor fusion algorithms require derivations of functions, for example for opti-
mization or state estimation using the EKF. For this, the derivation in the vector space
around the element of the manifold is required, even when the original space is a mani-
fold. In the example of an EKF this is the case since updates of the state are calculated
on the vector space, and therefore the derivatives are required on the same space. The
derivatives of functions on a manifold space in the vector space can be obtained by

20



Grid Mapping

[Hertzberg, 2015, Appx. B.1].

d

dx
f(x) = d

dδ
(f(x⊞ δ) ⊟ f(x)) , (2.62)

calculated at δ = 0, with δ ∈ Rn. Here, the function f : S → X is a function on the
manifold space S which maps to a manifold space X .

While the thesis contains derivatives for all functions where they are required, two
of the most common operations and their derivatives when working with a SO(3) state
space are given here. When rotating a vector with a quaternion the two relevant deriva-
tions are given by

f(q, v) = qvq−1, (2.63)
∂f

∂q
= −R[v]×, (2.64)

∂f

∂v
= R, (2.65)

where [v]× is the skew-symmetric matrix of v and R is the rotation matrix corresponding
to the rotation defined in q. Additionally often two rotations are concatenated. The
derivative is defined as

f(q1, q2) = q1q2, (2.66)
∂f

∂q1
= RTq2 , (2.67)

∂f

∂q2
= I. (2.68)

For a thorough overview of commonly used operations and their derivations on ⊞-
Manifolds the reader is referred to [Sola et al., 2018].

2.3 Grid Mapping
Grid maps are one of the most commonly used methods for representing information
about the environment. It is an approximate representation, where information about
the environment is aggregated in cells to handle large sets of data. The environment is
discretized in square cells in 2D or cubes in 3D. Their size can be either fixed or variable,
with each cell representing the state of the entire area it covers. This abstraction leads
to a loss of information depending on the resolution of the grid map, however this is
often required when using high-frequent high-resolution measurements like LiDAR data
to enable real-time capabilities. One of the most frequently used types of grid maps is
the so called occupancy grid map [Elfes, 1989; Thrun et al., 2005, Chap.9]. Here, a grid
map y = y1:M ∈ YM is used to represent the state of world, where y represents the grid
map containing all cells, M determines the amount of cells and Y is the set of possible
states. Each cell yi ∈ Y = {o, f} , 1 ≤ i ≤ M can represent occupied space denoted o
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or free space denoted f . Any sensor that measures larger parts of the environment can
be used to build such a map, however the most common implementations use LiDAR,
Radar, ultrasonic or a combination of these sensors. While it is possible to build grid
maps that assign binary labels of either free or occupied, it is difficult to build and reason
on those grid maps, as cells may be measured multiple times, sometimes with conflicting
results. To overcome this shortcoming, occupancy grid maps make use of a probabilistic
framework, with each grid cell being a Bernoulli-distributed random variable, where the
parameter of this distribution is estimated. This is defined as

yi|x0:t, z0:t ∼ Bernoulli(πi), 1 ≤ i ≤M, (2.69)

where πi ∈ [0, 1] represents the probability of a cell to be occupied, depending on the
states x0:t and all previous measurements z0:t. As the states x0:t are fixed, this type of
mapping is referred to as mapping with known pose [Thrun et al., 2005, Sect. 9.2]. To
estimate the posterior P (yi|x0:t, z0:t), a recursive approach [Thrun et al., 2005, Sect.9.2],
maximum likelihood estimation (MLE) or maximum a posteriori estimation (MAP)
[Thrun et al., 2005, Sect. 9.4] can be used. In the recursive approach, the posterior
P (yi|x0:t, z0:t) is estimated by fusing the previous estimate P (yi|x0:t−1, z0:t−1) with the
result of the inverse sensor model P (yi|xt, zt) probabilistically. The inverse sensor model
attempts to determine the state of the map while being conditioned on measurements
that were produced by measuring this world. This model can be difficult to formulate
depending on the sensor. In contrast, MLE and MAP rely on the forward sensor model
p(zt|xt, y). This model instead formulates the probability of a measurement given the
current map. To perform MLE or MAP, they solve

y∗ = arg max
y∈YM

t∏
j=0

p(zj |xj , y)P (y). (2.70)

The prior P (y) is assumed to be uniformly distributed in MAP, while it is ignored for the
estimation in MLE. This way of estimating the map is called forward model mapping,
since it only uses the forward sensor model. While this method can be easier to use, due
to the forward model being more intuitive to formulate, the map estimation is performed
as an optimization problem in each step instead of being an iterative process. Therefore,
this method of map estimation can be computationally demanding.

Instead of estimating the occupancy of a cell, another approach is to estimate the
fullness θi ∈ [0, 1] of a cell. This approach can be used whenever highly precise measure-
ments are taken, such as LiDAR measurements. With the noise of the measurement being
significantly smaller than the error introduced by the discretization process, the measure-
ment noise can be neglected. This reduces the map generation to θi = ki/(ki+li), with ki
indicating how often an endpoint of a scan hit the cell and li representing how often the
cell was traversed but not hit, which would indicate that it is free [Clemens, 2018]. This
particular simplification enables the use of an highly efficient algorithm which simply
increments the counters according to the current measurement zt.

One particular problem these approaches have in common is that no distinction can
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be made between cells for which no information is available and cells that are measured
with conflicting results. In both cases the result would be a uniform distribution P (f) =
P (o) = 0.5, making the cases indistinguishable. To overcome this shortcoming, belief
function theory can be utilized [Dempster, 1968; Dempster, 1967]. Instead of estimating
the state of a cell by determining the probability of a binary variable yi ∈ {o, f} each
cell is represented by an evidential variable. In this variable, belief mass can not only be
assigned to each individual element of the set of possibilities ΘY := {o, f}. Instead the
full frame of discernment contains all subsets, including the empty set ∅ and the superset
ΘY . Depending on the subset different properties can be expressed. While belief mass
on the sets {o} and {f} represents whether the cell is occupied or free, belief mass on ∅
indicates a conflict in information where a cell was measured as free as well as occupied.
On the other hand, belief mass on the superset ΘY indicates that no information is
available for this cell. With this additional distinction, more informed decisions can be
made about the environment [Reineking and Clemens, 2014].

This representation can be extended to gain additional information about the environ-
ment by extending the frame of discernment to include dynamics [Steyer et al., 2018].
The modified set Θ = {f, s, d} allows hypotheses for free as well as statically and dy-
namically occupied areas and any combination of these hypotheses. In addition, within
each cell a velocity is estimated, giving more detailed information about the dynamics
within the environment. This is in contrast to the previously mentioned methods where
dynamics are not considered and need to be excluded before building the grid map. The
capabilities and applicability of this extension are further explored in Chap. 6.

2.4 Coordinate Systems

In autonomous driving, there exist a number of relevant coordinate systems in which data
is expressed. In the following, an overview is given on all relevant coordinate systems
that are used in this work.

2.4.1 Vehicle Frame

The vehicle frame, denoted with V is positioned on the center of the vehicles rear axle,
with the origin in the ground plane. It is a cartesian coordinate system where the x-
axis is pointed in driving direction, the y-axis towards the left of the vehicle, and the
z-axis points upwards. The IMU is positioned right above the origin of the vehicle
frame to avoid frequent transformations that would be required to compensate an offset.
The positioning on the rear axle is done to simplify computations and reduce undesired
measurements of latitudinal acceleration experienced during turns. During a turn the
rear axle is always positioned orthogonally to the circular path the vehicle is following
as long as the wheels do not drift, which is assumed in this thesis. This is not the case
for any other point on the vehicle, which would cause the acceleration to be measured
on different axes. This would need to be compensated, making the vehicle models more
complicated. Additionally, since the front axle is used for steering it shifts during a turn
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which would causes undesired changes in the measured acceleration if the IMU (and thus
the vehicle frame) was positioned on this axle, although this effect would be minimal.

2.4.2 Navigation Frame

The navigation frame, also referred to in this thesis as the odometry frame and denoted
with N is one of the most commonly used coordinate system in this work. It is a cartesian
frame and its origin and orientation are initialized as zero, which reflects the fact that
the vehicle has not moved in the beginning. In this frame the odometric vehicle state is
estimated, which is a jump-free estimate of the vehicle pose and dynamics, as explained
in Sect. 4.2. Since the vehicle state is expressed in this frame, most computations in this
work are performed in the odometry frame.

2.4.3 Global Frame

In contrast to the odometry frame, which is always centered wherever the vehicle was
started by initializing the position as zero, the global frame, denoted as G has a fixed
reference. The global frame is a polar coordinate system which is centered in the center
of the WGS84 reference ellipsoid [Wendel, 2007, Sect. 3.1]. The orientation is however
not expressed in the coordinate system centered in the center of earth, as this would lead
to unintuitive axes of rotation since the z-axis points towards the top of the ellipsoid.
Instead the orientation is expressed in the east-north-up frame centered in the object
for which the orientation is described. This leads to a consistent description of the
orientation, with the z-axis pointing towards the sky orthogonally from the point on the
ellipsoid at the position of the object. This effectively makes the rotation of the z-axis
the rotation around the ”up” axis, which is consistent with the odometry frame. The
x-axis points east, while the y-axis points north.

2.4.4 Sensor Frames

Many different sensor frames exist on the vehicle, with each camera, LiDAR and radar
defining its own coordinate system, denoted C, L and R respectively. The LiDAR and
radar coordinate systems are simple cartesian coordinate systems and the data can easily
be transformed to the vehicle or odometry frame for further processing. The camera on
the other hand measures on its 2D image plane. For the camera frame it is therefore
more complicated as this sensor measures in 2D and no direct transformation to the
vehicle frame is possible. A coordinate system is still fixed in the origin of the camera,
with the z-axis pointing in the direction the camera is measuring in, while x points
towards the right and y points downwards. Measurements in the camera are however
expressed in pixel coordinates on the image plane. Converting these measurements to the
3D coordinate system is only possible under certain conditions using prior knowledge,
additional sensors (e.g. stereo camera) or strong assumptions. The handling of these
measurements is described in detail in Sect. 6.2.4.
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2.5 Measurement Scheduling
Within a complex real-time system such as an autonomous vehicle, it is important to
consider each sensor measurement according to the time it was measured. This is however
not necessarily the time at which the data is available to the algorithm. Many factors
play a role such as delays within the sensor between measuring and transmitting the
data, delays within the network of the vehicle or delays due to multi-threading within
the software stack of the vehicle. As a result, measurements from different sensors will
often arrive out of order with a moderate delay. Especially when using Kalman filtering
it is however difficult and tied to additional computational costs to retroactively fuse
measurements into the state estimate. The current state is assumed to only depend
on the previous state as well as the current measurement. The history is encoded in
the relationships between parts of the state within the cross-covariance matrix. To
include an old measurement would require the state to be re-estimated using all previous
measurements in the correct order.

To overcome this issue the measurements are sorted before being handed over to the
individual algorithms. It is however not possible to sort measurements in real-time, as
it is unknown if even older messages will be received after obtaining a measurement.
Therefore a delay d ∈ R+ needs to be introduced which is long enough to compensate
for out of order measurements but still short enough to allow for a reactive autonomous
driving system. To not loose any data during this delay a number of queues qi, i ∈ S are
created, where S is the set of all available sensors on the vehicle. As new measurements
arrive they are placed into their respective queue. All queues are checked periodically to
evaluate whether any queue contains measurements older than d. When a measurement
exceeds this delay it is automatically processed as it is assumed that no measurements
arrive with a larger delay.

This implementation results in an autonomous system with a delay of d, where in this
thesis d = 20ms is chosen. However the true delay can often be reduced significantly.
Whenever all queues contain an entry the most recent measurement can be processed
until one queue is empty. This is due to the fact that the measurements for each sensor
are expected to arrive in order. Thus when each queue is filled the ordering of all
available measurements can be determined until one queue is empty again. Using this
method the true delay of the system is variable and can go up to d, however often it will
remain significantly lower.
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Testing the capabilities and limitations of sensor fusion approaches is a difficult task, as
the results often depend on many variables and slight changes in the input data may
alter it significantly. Therefore, testing on simulated data is only done for select cases
where all relevant error sources can be modeled sufficiently well. Often, approaches
can be tested on publicly available datasets such as the KITTI Vision Benchmark Suite
[Geiger et al., 2012] or Waymo Open Dataset [Sun et al., 2020], which already contain
real-world data. However, to fully test an approach for autonomous driving, the algo-
rithm needs to be executed on an autonomous vehicle where the sensor fusion result is
used for decision making and vehicle control. Therefore, all algorithms in this work are
developed to be used in real-time on an autonomous vehicle. The vehicle and its sensors
are presented in the following.

The vehicle itself is a customized VW Passat GTE. It is equipped with a number of
sensors which provide information about the vehicle as well as its surroundings. The
sensors built into the vehicle are shown in Fig. 3.1. The resulting coverage of the sur-
roundings with the available sensors is shown in Fig. 3.2. Note that while ultrasound
sensors and area view cameras are also built into the vehicle these are mainly useful
in parking scenarios due to the low range of ultrasound sensors and the placement and
strong distortion of the area view cameras. Thus these sensors are not used in this work.
The sensor information is processed on a custom PC, which is built into the trunk of the
vehicle. The specific sensor models used can be found in Tab.3.1 including their approx-
imate original prices. In addition to the sensors noted here the vehicle comes equipped
with ultrasound, radar, area view camera, wheel speed and steering wheel angle sensors,
which are however included in the series production vehicle with no additional cost at-

Figure 3.1: The VW-Passat and its built in sensors.
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6× LiDAR, 145◦
up to 300 m

Front
Camera,148◦

3× Radar, 40◦
up to 80 m

Figure 3.2: Sensor coverage of the sensors used in this thesis (not to scale).

Sensor type Amount Sensor model Price per sensor Year

IMU 1 ADIS 16488 1000€ 2021
LiDAR 6 SCALA Gen 1 10000€ 2018
Front Camera 1 LI-AR0233-GW5200-GMSL2 600€ 2022
GNSS Receiver 3 u-blox (2xF9P, 1xM8T) 400€, 75€ 2019
V2X 1 Nordsys WaveBee 8000€ 2021

Table 3.1: Custom sensors in the vehicle, their approximate original prices and the time at which
they were integrated in the research vehicle.

tached. However accessing these sensors is possible by connecting to the modified CAN
Bus. Note that especially the LiDAR was originally very expensive. Since six LiDARs
are required for a full coverage this accounted for a significant portion of the sensor
cost. However with recent developments in sensor technology similar LiDARs with more
layers are available around 2000€. This indicates that this sensor has the potential to be
cost efficient enough to be utilized in autonomous vehicles on a larger scale in the future
which would not be the case with the previous cost. The individual types of sensors are
introduced in the following, to give an overview about the available information for the
sensor fusion system.

3.1 Inertial Measurement Unit (IMU)

An inertial measurement unit (IMU) enables the precise measurement of an object’s
motion characteristics, including its acceleration and turn rate. The IMU achieves this
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through the integration of various sensors, such as accelerometers, gyroscopes, and often
magnetometers, each responsible for measuring specific aspects of the object’s move-
ment. In this work, microelectromechanical systems (MEMS) IMUs are considered due
to their low cost and size while providing high accuracy [Otegui et al., 2020]. The ac-
celerometer measures accelerations along specific axes. It operates on the principle of
inertia, measuring the displacement of a mass within the sensor which is proportional
to the acceleration of the sensor. In a 3-axis IMU, three accelerometers are oriented
orthogonally. By measuring the accelerations along these axes simultaneously, the IMU
can precisely determine the object’s linear motion in three-dimensional space.

Gyroscopes are responsible for measuring angular rate, which refers to the object’s
rate of rotation around its axes. Gyroscopes utilize the principles of angular momentum
to detect rotational movement. While traditionally gyroscopes used to measure angular
momentum using a spinning mass mounted to a gimbal, modern MEMS IMUs use a tun-
ing fork configuration, where two masses are attached using a spring, with the rotational
axis in between. Any rotation will assert force in different directions for the two masses,
while a linear movement would result in a similar force for both. From the difference in
force, the angular momentum is calculated.

In addition to the data from accelerometers and gyroscopes, some IMUs also inte-
grate magnetometers. Magnetometers measure the Earth’s magnetic field and provide
information about the object’s orientation relative to the magnetic north. However, as
the IMU is mounted within a vehicle which has an interfering magnetic field itself, this
information is not used in this work.

The IMU is a crucial sensor in accurately estimating a vehicles movement over short
periods of time. With the sensor measuring acceleration and turn rate, to determine a
velocity or even position of the vehicle the sensor data must be accumulated over time.
This accumulates errors over time, however over short periods it is highly accurate and
gives information at a very high frequency, often significantly above 100Hz, with the
IMU used in this thesis measuring at 800Hz.

3.2 Vehicle Speed and Steering Angle

In addition to the IMU the vehicle comes equipped with several sensors which give
additional information about the vehicle odometry. These additional sensors are built
into the vehicle by the manufacturer and the specific hardware is unknown, however the
information still proves useful for sensor fusion. The sensor data is obtained using the
vehicle Controller Area Network (CAN) bus. Firstly, the vehicle calculates a velocity
both for the vehicle as a whole and for each tire individually. This is done by wheel
encoders that measure the rate at which the wheels turn. In combination with some
wheel slip compensation and knowledge about the wheel circumference this is used to
determine the velocity. Note that a velocity can also be determined from accumulating
IMU measurements, however in contrast to the IMU the wheel odometer does not suffer
from sensor drift which occurs when noisy, relative measurements are accumulated into
a higher order estimate. The frequency at which the odometer provides data is however
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Figure 3.3: Visualization of the global positioning using GNSS and RTK. On the left: Distance
to four Satellites shown as a circle and the resulting unambiguous intersection. On the right:
Correction of GNSS position using RTK.

significantly lower at 50Hz. Thus this combination of sensors is an ideal scenario for
sensor fusion approaches to obtain a highly accurate estimate at a high frequency without
sensor drift.

Secondly, the vehicle provides information about the steering wheel angle. To make
this angle usable, a calibration is performed to convert it to the actual steering angle of
the wheels. The information provided by the steering angle is partially redundant to the
turn rate provided by the gyroscope, however again the measurement rates differ and
combining the two information sources leads to a more robust estimate of the movement
of the vehicle.

3.3 Global Navigation Satellite System (GNSS)

A Global Navigation Satellite System (GNSS) is a network of satellites that enables
precise positioning, navigation, and timing services on a global scale. It is available any-
where with a clear view of the sky, making it an almost indispensable tool for autonomous
navigation on earth.

The GNSS system uses constellations of satellites orbiting the Earth. The most well-
known and widely used GNSS systems include the United States’ Global Positioning
System (GPS) and Russia’s Global Navigation Satellite System (GLONASS) and Galileo
from the European Union, however there are multiple more like, BeiDou (China) and
NavIC (India). To aid in obtaining a strong GNSS signal modern receivers often use a
combination of multiple different systems, which is also the case in this thesis.

30



Light Detection and Ranging (LiDAR)

To calculate a position, a GNSS receiver is built into the vehicle, which is equipped
with an antenna that receives signals from multiple satellites. This signal contains
information about the position of the satellite as well as the time of sending. Using
this information as well as the time of flight of the signal, which travels at the speed
of light, a distance to each satellite can be calculated. When three or more satellites
are received, this information can be used to triangulate the position of the receiver as
shown in Fig. 3.3. In modern receivers more information like the phase and wavelength
is used to calculate a more accurate position. Current openly available GNSS systems
reach accuracies of around 1-2 meters in good conditions. This is however not sufficient
for autonomous driving, where at least a lane-accurate localization is required. To boost
GNSS performance, real-time kinematic positioning (RTK) is used. A reference station
is placed within the range of the vehicle, which first measures its own position very
precisely over an extended period of time. After this initialization it can be used to
determine errors in the GNSS signal that are created from atmospheric disturbances.
A correction signal is then sent to the vehicle, which is utilized to correct the errors in
the signals the vehicle receives. Using this method, an accuracy of a few centimeters is
reached.

Unlike IMU or odometer measurements, the measurement obtained by the GNSS
receiver contains an absolute position directly without the need to accumulate measure-
ment (and with it errors) over time. In addition a velocity can be determined from the
Doppler effect observable over time. Especially the absolute measurement of the posi-
tion is immensely useful as otherwise obtaining a globally correct position without drift
would require much more sophisticated algorithms. For this thesis a two-receiver setup is
used, which allows for direct heading estimation using GNSS measurements. The head-
ing is calculated from the relative position measured between the two receivers, which is
explained in detail in Sect. 4.3. The rate at which GNSS measurements arrive is compa-
rably limited, often between 1-10Hz, although modern receivers can reach up to 100Hz.
The receivers used in this thesis provide data at 10Hz. Thus using GNSS as the only
source of information for positioning results in large inaccuracies during times where
no current data is available. Additionally GNSS coverage can not be guaranteed in all
situations making it a difficult sensor to work with in autonomous driving as the system
can not rely on global positioning information to be available at all times. Especially
when no clear view to the sky is available the satellite data can not reach the GNSS
receiver. However other issues occur as well in autonomous driving especially in urban
areas. Driving next to large buildings causes reflections of the satellite signal, leading to
incorrect assumptions about the distance to the satellite. This is called a multipath error
and can be reduced by modern hardware, for example by checking the direction from
which a signal was received, however it can not currently be fully eliminated. Dealing
with these shortcoming is discussed in detail in Chap. 4.
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Figure 3.4: Comparison of data obtained by a 128-layer LiDAR with data from a 4-layer LiDAR.
On the left: A point cloud from the Waymo dataset which includes a 128-layer LiDAR mounted
to the top of the vehicle [Sun et al., 2020]. On the right: A point cloud of the same scene from
a 4-layer LiDAR.

3.4 Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) is a remote sensing technology that measures
distances by emitting laser pulses and analyzing their reflections. The system calculates
the distance by measuring the time it takes for the laser pulse to travel to an object
and return, utilizing the principle of time-of-flight. The majority of currently available
commercial LiDARs are so called scanning LiDARs, which utilize a spinning sensor
to scan the field of view (FOV) sequentially. This is done in horizontal layers, with
the amount of layers ranging from only a single layer (2D LiDAR) to more than 100
layers. Depending on the amount of layers, the resulting point cloud contains vastly
different amounts of information, as can be seen in Fig. 3.4. Most research vehicles
for autonomous driving use a 360 degree LiDAR mounted to the top of the vehicle,
which measures on at least 32 layers. This is made evident by most publicly available
autonomous driving datasets containing a top-mounted 3D LiDAR [Sun et al., 2020;
Geiger et al., 2012; Caesar et al., 2020]. To keep the vehicle close to a series production,
this is not the case in this thesis. Instead, six Scala LiDARs are almost seamlessly built
into the exterior of the car as seen in Fig. 3.1. Each LiDAR has a horizontal FOV of
145 degrees and a vertical FOV of 3.2 degrees. They measure along four layers spread
evenly over this field of view, although each scan only contains three layers, alternating
between the top three and the bottom three.

The coverage reached with this setup can be seen in Fig. 3.2. With every part of
the surroundings being covered by at least one LiDAR, this sensor is ideal for obstacle
avoidance and object detection on the vehicle. However, with only a 3.2 degree opening
angle and only three layers per scan, the information that can be extracted from it
is limited when compared to top-mounted 360 degree scanners. This limitation is a
driving factor in selecting suitable approaches for both obstacle avoidance and object
detection in this work. While the LiDAR is useful in determining the location of objects
or obstacles in the environment, it is difficult to determine semantic information from it.
Especially determining object classes such as cars, pedestrians or bikes is crucial for safe
and predictive driving. However without any texture information to use for classification
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determining object classes is often not possible. Thus using only LiDAR sensors would
result in limited understanding of the environment.

3.5 Camera
To provide the missing texture information about the environment a front-facing camera
is built into the research vehicle. This is used to gain information about upcoming
traffic signs, available lanes and to aid in object detection and classification. The data
provided by the camera is complementary to the point clouds generated by the LiDARs.
In contrast to LiDARs the Camera data measures its environment on a 2D image plane.
Thus every point in the world is projected to a flat surface, losing the information
about the location of the point in the world. On the other hand color information is
available, making texture information usable for tasks like object classification. Cameras
are a highly potent sensor in autonomous driving, as they provide information similar
to what a human uses when driving. Since humans are very good at determining other
objects in the environment and where the vehicle can drive, it could be argued that
most information required for autonomous driving can be gathered from camera data.
However the goal in autonomous driving is not to match human performance but to
achieve the highest possible safety. As a result, to make the system as robust as possible
the addition of other sensors is desirable and it is unlikely that autonomous vehicles will
ever solely rely on camera data.

A difficulty in using cameras is, that the most accurate models rely on a large amount
of training data, which is only available to a small number of very large companies
leading the developments in autonomous driving. This data is used to train deep neural
networks, which are also not a focus of this thesis due to their lack of explainability,
and thus the Camera is only used to support the LiDAR detections and add additional
information to it. It is used for object detection in front of the vehicle, however this
object detection is seen as a black box in this work and object detection or tracking
algorithms do not depend on the existence of camera data. This is especially important
as no full coverage of the environment by cameras exists on the vehicle, with only one
front-facing camera being used.

Four additional Area View Cameras are built into the car by the manufacturer, how-
ever they have very limited resolution and their positions make them unusable for most
tasks, so their data is not used in this work.

3.6 Vehicle-to-Everything (V2X)
An emerging technology in autonomous driving is the Vehicle-to-Everything (V2X) com-
munication. Instead of placing the burden of detecting every aspect of the environment
on every single vehicle, the idea here is that every relevant piece of infrastructure and
as many traffic participant as possible estimates their own state and broadcasts this for
others to use. While this is still far from reality, first concepts are proposed in this work
to use this information to aid object tracking. For communication between vehicles, ded-
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icated V2X hardware is used. A choice can be made between using a cellular network
like 4G or when available 5G, or using Dedicated Short-Range Communication (DSRC)
with a range of roughly 500 meters [Bae et al., 2020]. Since 4G may not be available
everywhere, the vehicle is equipped with the latter, enabling it to communicate with any
vehicles in its direct vicinity.

Communication between intelligent vehicles enables sharing of a large variety of useful
information. While the simplest case is sharing the ego state (e.g. position, orientation,
velocity) with other vehicles, other information that is more difficult to obtain can be
broadcast as well. Other detected objects, surrounding traffic signs or even raw sensor
data like LiDAR measurements are examples of data that could potentially be shared
among vehicles to increase the robustness of each individual vehicle. In this thesis the
focus is set on broadcasting the ego state as a first proof of concept that this can be
used to increase robustness and eliminate misdetections. Determining the ego state is
a much simpler task than detecting other traffic participants and estimating their state
from those measurements. Thus by broadcasting this information an additional source
of highly certain information becomes available to the fusion algorithm of all other
traffic participants, where they would otherwise rely on less certain information. By
fusing the received information with available sensor data a more robust estimate of the
traffic participant can be estimated. An additional benefit is the possibility of receiving
broadcasted states of vehicles that are not currently observable due to occlusion, for
example at sharp corners with low visibility, which could otherwise go unnoticed, thus
causing collisions.

34



4
Localization

To navigate a vehicle through highly complex and often narrow streets, a very precise
understanding of the current location and dynamics of the vehicle are required. The task
of determining these is solved by the localization. Obtaining an accurate localization is
one of the most crucial tasks in autonomous driving, as nearly all subsequent algorithms
require information about the positioning of the vehicle, or about its current or recent
movement. For many of these tasks, accuracy of the localization is a driving factor
in simplifying or even enabling finding a solution. Many algorithms use the recent
movement of the vehicle as input to transform the results from the last iteration to the
current step, for example to use it as an initialization point. For some, the accuracy of the
localization even directly influences the capabilities of the algorithm. Route planning
for example requires lane-accurate global positioning, and algorithms such as LiDAR
optical flow which is presented in Sect. 6.3.1 depend on an accurate estimate of the
vehicle movement to be able to detect changes in the environment.

However, accuracy is not the only requirement. Especially in autonomous driving a
continuous, jump-free estimate is necessary to ensure safe driving. A sudden change in
the position estimate may lead to a drastic response from the vehicle control as it tries
to realign itself with a previously estimated lane or avoid obstacles which now shifted
according to the jump. This requirement of a jump-free estimation strongly restricts the
possible solutions applicable for localization in autonomous driving, as many approaches
inherently produce jumps in the estimated position. An overview of these approaches
can be found in Sect. 4.1.

A common denominator in all approaches that produce jumps is, that they view the
localization task as a problem where a global solution is the wanted result. As mea-
surements arrive, the current estimate is corrected towards the globally correct solution.
Whenever the previous estimate contained inaccuracies, e.g. due to sensor drift, the
solution will jump upon correction. As a result, such an approach is not suitable for
many tasks in autonomous driving.

However, many tasks in autonomous driving do not require a global solution. A large
number of algorithms only make use of the relative movement of the vehicle, also called
odometry. Odometry is not corrected using any global reference system and as such it
does not jump. Over time it will however accumulate an error, which means it is not
globally correct. Over short periods of time this error remains small and as such the
odometry can be used to obtain a relative movement of the vehicle.

As can be seen from these observations, there is no single solution which satisfies all
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Figure 4.1: Architecture of the localization system.

requirements for autonomous driving. Instead, a localization architecture is used, which
calculates both a global solution as well as an odometry. This architecture is shown in
Fig.4.1. The global filter and the odometry filter largely use the same input and the same
models, with the exception of global filter being updated using RTK data. As such, the
global filter estimates the vehicle state in the global WGS84 frame, while the odometry
filter creates a result in a local frame which is centered in the starting position. This
local frame is referred to as the odometry frame. To make global information usable for
the vehicle, it is transformed to the odometry frame, which is explained in Sect. 4.4.

In the following, the localization system is explained in detail. First, an overview over
the current state of the art is given in Sect. 4.1. Then the odometry and the global filter
are explained in Sect. 4.2 and Sect. 4.3. Finally, the use of LiDAR odometry is evaluated
to aid localization and reduce drift for the odometry filter as well as the global filter in
GNSS-denied areas.

4.1 State-of-the-art

The task of localization has been extensively studied in a wide variety of fields, ranging
from aviation, over robotics and ground vehicles to underwater localization. Many dif-
ferent approaches exist, and the applicability depends on the available sensors as well
as the requirements set by the particular application. In the following an overview over
these methods and a discussion on their suitability for this thesis is given. The focus is
set on approaches for autonomous driving, where the sensor setup is comparable to the
one on the research vehicle presented in Chap. 3.

Traditionally, much research has been done in the direction of inertial navigation
systems in combination with global navigation systems (INS/GNSS) [Groves, 2013;
Breßler et al., 2016]. In this approach, an inertial measurement unit (IMU) is used
together with a global navigation satellite system (GNSS) to calculate a global vehicle
state. While the IMU gives a precise estimate of the vehicles movements over a short
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period of time, this will drift over time, which is then corrected using the GNSS
information. The GNSS positioning is locally less precise and arrives at a much lower
frequency, however it does not drift over time. By combining the two sensors a global
estimate without drift can be calculated, which is still locally precise due to the inclusion
of the IMU measurements. While this is a comparably mature field of research, some
advancements were still made in recent years. In [Dai et al., 2020] a recurrent neural
network (RNN) is utilized to estimate the error made by the INS system when GNSS is
not available in order to minimize the prediction error. In [Jin et al., 2021] a INS/GNSS
system aided by a camera is presented for fast initialization of the localization system.
A rough orientation is estimated from subsequent GNSS measurements while the vehicle
is moving, giving an initial guess for the parameters of the visual inertial odometry.
By subsequently comparing the estimated trajectory of the INS/GNSS system with
the one estimated by the visual-inertial system these parameters are refined until
convergence. In [Chiang et al., 2020] INS/GNSS is integrated with a simultaneous
localization and mapping (SLAM) algorithm, which is another possible approach for
solving the localization problem which is introduced in the following. The combination
of INS/GNSS ensures lane-level accuracy even in areas with little to no GNSS reception,
utilizing a LiDAR for calculating the SLAM.

One possibility to localize the vehicle is by utilizing a pose-graph representation of the
trajectory. It consists of nodes that represent the vehicle poses at certain points in time,
that are connected by measurements of the movement between the nodes. The types of
measurements used vary between approaches, with the simplest implementation using
only odometry measurements directly provided by the vehicles sensors, such as inertial
measurements and the velocity. However, when using only relative measurements the
estimate will drift over time, with no way to correct the error. To circumvent this issue,
SLAM can be used [Grisetti et al., 2010]. In this approach, the task of generating a
map of the environment and finding the correct location within this map are viewed as
dependent on each other and are solved simultaneously. This is done by additionally
representing measurements of the environment in the pose-graph. The type of measure-
ments used vary, however the most common approaches are visual SLAM (vSLAM) and
LiDAR SLAM, where measurements are obtained by camera and LiDAR respectively.
Whenever an area is visited twice, similar measurements are associated and loop closure
is performed in order to obtain a globally consistent map.

One of the state of the art approaches for vSLAM is the ORB-SLAM2 algorithm
[Mur-Artal and Tardós, 2017]. Features are extracted from an RGB-D image at regu-
lar intervals and matched to existing features using bundle adjustment (BA). This is
performed on a local scale to reduce drift and on a global scale to perform loop clo-
sure. The approach is extended in ORB-SLAM3 [Campos et al., 2021] to improve ini-
tialization speed, place recognition and overall localization accuracy. While ORB-SLAM
relies on feature extraction for determining movement, there are also approaches that
work directly on the image. The Direct Sparse Odometry with Loop Closure (LDSO)
[Gao et al., 2018] calculates a sparse representation of the environment directly from the
camera image. It is an extension of the DSO [Gao et al., 2018] where the photometric
error is used to determine odometry from changes in subsequent images. In LDSO a
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pose-graph representation is used for solving the SLAM problem, while loop-closure is
performed using a feature-based bag-of-words approach. A similar approach is presented
in [Engel et al., 2014] where the full image without any feature-based abstraction is used
directly in order to build a depth map of the environment against which new images are
matched. These depth-maps are stored in a pose-graph of keyframes to solve the SLAM
problem.

Instead of using a camera, a LiDAR is often utilized for measuring the environment.
In [Hess et al., 2016] the 2D-SLAM framework Cartographer is presented, which uses
scan matching between subsequent scans to obtain an odometry, while using global
scan matching on submaps to calculate loop closures. Another approach is LOAM
[Zhang and Singh, 2014], where a 3D-LiDAR is used to aid localization. In this work
the SLAM problem is split into calculating an odometry and creating a map. As such,
no loop closure is performed and the result is an odometry with reduced drift. This
work is extended in LIO-SAM [Shan et al., 2020] to use a factor-graph which enables
loop-closure and inclusion of additional sensors. Finally, a combination of both LiDAR
and Camera can be considered, which is implemented in LIMO [Graeter et al., 2018].
Here, the LiDAR is used for extracting depth information of the camera features. For
odometry estimation, bundle adjustment is used between key frames. In this approach,
only odometry is estimated without loop closure.

Instead of estimating motion directly from observations of the environment, filter-
based approaches can be used to fuse information from different sensors in a more loosely-
coupled way. In this case, the mapping and localization task are not seen as a joint
problem, and the localization is solved separately. Using Kalman filtering as introduced
in Sect.2.1.1, uncertain measurements can be probabilistically fused into a state estimate
without the need for complicated vehicle model assumptions. A benefit of the Kalman
filter is that it allows incorporating arbitrary information sources, making it applicable
for both odometry estimation as well as global positioning.

To now make a selection from existing approaches the requirements for autonomous
driving need to be taken into account. While all approaches besides the simple pose-
graph implementation can localize the vehicle with sufficient accuracy, in most ap-
proaches it is possible to produce jumps in the state estimate. An example of such a
jump when using GNSS for localization is shown in Fig. 4.2. In the classical GNSS/INS
fusion this happens due to errors in the GNSS information. Especially in urban driving
this may happen near large structures or under bridges, where non-line-of-sight (NLOS)
and multipath errors lead to inaccurate GNSS solutions. In addition, whenever the
GNSS signal is lost for a while, for example in GNSS-denied areas, the localization will
start to drift without the global correction. Upon receiving global information again,
this drift will be corrected, leading to potentially large jumps. Even when using no
global correction for local sensor drift, there are still possible sources for jumps. When
calculating a SLAM, this happens during loop-closure. As an area is seen twice and the
old and new measurements are associated, this allows for a correction of the previously
estimated trajectory in the pose graph. This may lead to the node representing the
current position in the graph being moved in order to fit the associated measurement.
When using a Kalman filter which only incorporates odometry measurements without
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Figure 4.2: Example of the position as estimated by the GNSS receiver in difficult situa-
tions. (Maps generated using UMap based on OpenStreetMaps data. Figure adopted from
[Clemens et al., 2020].)

global corrections, jumps may still occur in the state estimate [Sun et al., 2018]. This is
due to the growing uncertainty over the actual position in the world. As the position is
not observable only from relative measurements, this uncertainty grows unbounded and
eventually leads to instabilities in the filter.

As such, there are two observations to be made.

• No existing localization system which includes global correction data is jump-free,
as the estimate will always jump whenever global correction data was unavailable
for an extended period of time or when the correction data is erroneous.

• Even when only odometry is estimated, there still occur jumps, either due to
loop closure, or in the case of Kalman filters due to growing uncertainty over the
position.

To address the first observation, a localization system is proposed which splits the two
tasks of obtaining a jump-free odometry and a global localization. For this two Kalman
filters are executed in parallel, one estimating odometry without any global correction
and one global filter which performs INS/GNSS. However, as per the second observation,
jumps still occur in state-of-the-art odometry estimation. Therefore, a variant of the
Kalman filter is introduced, which avoids unbounded covariance growth, and therefore
does not suffer from jumps caused by filter instability. In the following the odometry
filter is introduced in Sect. 4.2, followed by the global filter in Sect. 4.3.

39



Chapter 4: Localization

4.2 Odometry Filter

The Odometry filter fuses all measurements of the relative vehicle movement into a state
estimate. The resulting estimate contains precise information about the movement of
the vehicle over a short period of time. It will however drift over longer periods of
time, limiting its use to algorithms that only rely on short-term movement. The drift is
however minimal, making it usable even over stretches of more than 100 meters, which
is sufficient for most algorithms that do not rely on a global positioning. The work
surrounding the odometry filter was first published in [Clemens et al., 2020] and textu-
ally adapted and partially extended for this thesis for better readability. Additionally
this thesis is extended to contain the Jacobians of the transition function as well as the
measurement functions. As shown in Chap. 3, the vehicle is equipped with a number
of sensors for measuring vehicle movement. While the IMU measures acceleration and
turn rate, additional sensors in the wheels and steering wheel provide a velocity and
steering angle. These measurements are fused in a ⊞-Kalman filter, which uses the ⊞-
method as described in Sect. 2.2.3. This is used here as the orientation of the vehicle
is part of the special orthogonal group SO(3), which is a manifold. This Kalman filter
estimates the state containing a pose in 3D, which consists of a 3D position and orienta-
tion. Additionally, the velocity of the vehicle is estimated. Lastly, as IMU data contains
significant biases which change over time, these are estimated in the state to correct the
measurements accordingly. Thus, the state space is defined as

S = R3 × SO(3)× R3 × R3 × R3. (4.1)

The state xt at time t is defined as

xt =



rt

qt

vt

āt

ω̄t


. (4.2)

Here, the position is given by rt ∈ R3 and the orientation qt ∈ SO(3) is represented by a
quaternion. In vt ∈ R3 the velocity is represented in body-fixed coordinates. In āt ∈ R3

and ω̄t ∈ R3 the biases of the accelerometer and the gyroscope are estimated.
In the following, first the motion and measurement models are given. In the second

part, the problem of growing uncertainties in the position as well as the heading of the
vehicle is discussed and a solution proposed.

4.2.1 ⊞-Kalman Filter for Odometry Estimation

The motion model, often referred to as the prediction step of the Kalman filter, predicts
the state xt−1 to the current time t given the control ut. The control input is often
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assumed to be some fixed process like driving forward a certain distance, with a certain
process noise to model inaccuracies in the execution. In this thesis the process is driven
by the acceleration at ∈ R3 and turn rate ωt ∈ R3 measured by the IMU, denoted
ut =

[
aTt ωTt

]T
∈ R6. As a result, the motion model is defined as

f(xt, ut) =



rt + qtvtq
−1
t ·∆t

qtexp((ωt − ω̄t) · ∆t
2 )

vt + ∆vt
āt

ω̄t


, (4.3)

with ∆vt = (at− āt + q−1
t gqt− [ωt − ω̄t]× vt) ·∆t. Here, g ∈ R3 is the gravity vector, ∆t

refers to the time between t and t− 1, and exp is defined as shown in (2.53). It should
be noted, that the measured acceleration and turn rate are influenced by the rotation of
the earth. The compensation of those influences are explored in [Groves, 2013, Sect.5.3].
However, this influence is negligible as the vehicle is equipped with a MEMS IMU, where
the noise is significantly larger than the produced error [Schmid et al., 2012].

To perform an update of the Kalman filter, the covariance Rt ∈ R15×15 of the state
transition as well as the Jacobian Jt ∈ R15×15 around the current estimate is required.
The covariance Rt of the state update is defined as a matrix where its diagonal R̄t
contains the following vector

Rt =



03×1

03×1

03×1

∆t · ˆ̄a
∆t · ˆ̄ω


, (4.4)

with each entry being a 3-dimensional vector, and ˆ̄a ∈ R3 and ˆ̄ω ∈ R3 being the random
walk for the acceleration bias and turn rate bias respectively. For the state transition
Jacobian, the function f(xt) is derived with respect to all elements of the state. The
resulting Jacobian is defined as

Jt = ∂f

∂x
=


I3×3

∂fr

∂q
∂fr

∂v 03×3 03×3

03×3
∂fq

∂q 03×3 03×3 −I3×3∆t
03×3

∂fv

∂q
∂fv

∂v −I3×3∆t ∂fv

∂ω̄

06×9 I6×6

 , (4.5)
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where the non-zero and non-identity parts of the Jacobian are defined as

∂fr
∂q

= −R[v]×∆t, (4.6)

∂fr
∂v

= R∆t, (4.7)
∂fq
∂q

= exp((ω − ω̄)∆t), (4.8)

∂fv
∂q

= [Rg]×∆t, (4.9)

∂fv
∂v

= I − [ω − ω̄]×∆t. (4.10)
∂fv
∂ω̄

= [v]T×∆t. (4.11)

With the state transition function, transition covariance and Jacobian defined, the
state transition can be implemented both for an EKF, where the Jacobian is required
and for an UKF where the linearization is done using sigma point propagation. The
resulting prediction is corrected using multiple sensor measurements. The measurement
functions including their Jacobians are presented in the following.

4.2.2 Steering Angle

The vehicle measures the current steering wheel angle, which can be converted to the
steering angle zsat ∈ R. Using a single track model [Rajamani, 2011], this steering angle
can be related to the speed vxt in x-direction and turn rate ωzt around the z-axis, as well
as its bias ω̄zt . The relation is defined as

ωzt − ω̄zt = vxt
b
· tan zsat , (4.12)

where b denotes the wheel base. Solving this for zsat gives the measurement function

hsa(xt) = tan−1ω
z
t − ω̄zt b
vxt

. (4.13)

This measurement is assumed to be affected by additive, normally distributed noise with
covariance Qsat with zero mean. The Jacobian of the measurement function is given by

Jsa = ∂hsa

∂x
=
[
01×3 01×3

∂hsa

∂v 01×3
∂hsa

∂ω̄

]
, (4.14)
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with

∂hsa

∂v
=
[
vxt · b

(vx
t )2+(ωz

t )2·b2 0 0
]
, (4.15)

∂hsa

∂ω̄
=
[
0 0 (ωt − ω̄t) · b

(vx
t )2+(ωz

t )2·b2

]
. (4.16)

4.2.3 Vehicle Speed

The vehicle speed is provided by the vehicle, which measures its own longitudinal ve-
locity st ∈ R using odometers in the wheels. In addition, two pseudo-measurements are
introduced along the y- and z-axis where zero velocity is expected. This models the
constraints of a land vehicle, which cannot drive laterally [Groves, 2013, Sect. 15.4.1].
Lateral movement can still happen when the vehicle drifts, however this is not an in-
tended movement and when minimal drifting occurs it is modeled in the measurement
noise. The measurement is defined as

zvt =
[
st 0 0

]T
, (4.17)

while the measurement function hv : X → R3 is defined as

hv(xt) = vt. (4.18)

The measurement is again assumed to be affected by additive, normally distributed noise
with covariance Qvt and zero mean. The Jacobian of the measurement function is given
by

J =
[
03×3 03×3 I3×3 03×3 03×3

]
. (4.19)

4.2.4 Zero Update

When the vehicle stops, additional information about the vehicle state can be inferred
from the accelerometer and gyroscope measurements. The accelerometer always mea-
sures the gravity, as that force is continually experienced. In the case where the vehicle
is not moving, gravity should be measured according to the currently estimated attitude,
pointing downward in the navigation frame. However the bias of the accelerometer must
be considered. The gyroscope on the other hand should measure only the turn rate bias
when no movement is performed. Accordingly, the measurement is

zzut =
[
aTt ωTt

]T
, (4.20)

while the measurement function is defined as

hzu(xt) =

āt − q−1
t gqt

ω̄t

 . (4.21)
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The Jacobian for the zero update is given by

J = ∂hzu

∂x
=

03×3 [R−1 − g]× 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

 . (4.22)

This update is only applicable when the time at which the vehicle stops and starts
driving can be reliably detected. In this work the detection is performed using accelerom-
eter measurements as well as velocity measurements. When both indicate a stop, the
zero update is performed. In addition, it is only applicable when the global z-axis is
known. This is not the case in general when only calculating odometry, as no direct
relation exists to the global coordinate system. For the use of this localization algorithm
it is therefore required to perform an initialization where the vehicle start on a flat,
horizontal surface. When no such surface is available, the zero update is disabled.

4.2.5 Moving Reference Kalman Filter

With these models a Kalman filter can be implemented that estimates odometry from
a wide range of sensors. There is however a practical limitation when implementing
a Kalman filter for pure odometry. Parts of the state are unobservable and therefore
accumulate uncertainty over time. This is the case for both the position estimate rt as
well as the rotation around the z-axis qzt . These parts of the state are estimated based
on derived measurements that are accumulated to a higher order estimate. No absolute
information on these parts is available from measurements, either directly or indirectly.
Note that while the rotation around the z-axis is unobservable, the rotation around
the x- and y-axis are observable from measuring the gravity vector which is roughly
orthogonal to the x-y plane. While growing uncertainty over the unobservable parts is
the correct and expected behavior, there are a number of issues that arise, which need
to be addressed for localization of an autonomous vehicle.

Firstly, the estimated uncertainty quickly looses any meaningful information for any
subsequent algorithm. As the uncertainty grows larger and the vehicle moves further
from the origin, the covariance reflects the possible area where the vehicle may have
moved and its resulting orientation, considering that all measurements are noisy. This
space grows large quickly and using it to make decisions in subsequent algorithms is
therefore difficult. Secondly, the growing covariance leads to numerical issues in the
filter. As the covariance grows, the cross-covariance grows as well. When the vehicle
comes to a stop, parts of the state become easier to observe, such as the IMU biases. In
combination with the large uncertainty of the position estimate, a large correction of the
position estimate results, which reflects the better IMU bias estimate. This correction
in the position is the numerically correct result, however when the position uncertainty
is large enough, it produces jumps in the state estimate as shown in Fig. 4.3. The initial
motivation to calculate odometry instead of a INS/GNSS was to overcome jumps in the
state estimate. As such, even while being the correct solution, measures need to be taken
to avoid producing jumps in the state estimate.
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Figure 4.3: Position estimate of the vehicle for a stop after a distance of 746 and 1803 m. (Axes
scales are meters, Figure adopted from [Clemens et al., 2020].)

To overcome both the aforementioned issues, the odometry localization can be mod-
ified to always estimate the covariance towards a recent reference state. This is similar
to a sliding window, where only the data within a certain time frame is used to calculate
the odometry. Using a Kalman filter there is however no inherent way to only include
recent measurements besides calculating the current state based on all measurements
in the sliding window in every time step. Excluding a single measurement from the
state estimation is not possible due to the Markov assumption used in both the EKF
and the UKF as shown in Sect. 2.1.1. The influence a single measurement had on the
estimate is lost as no history is kept besides the accumulated covariance. Calculating
the entire estimate again with the measurement excluded is an option, however this is
computationally expensive and may not be feasible depending on the dimensionality of
the state, the measurement frequency and the sliding window size.

Instead, two Kalman filters can be used in parallel to achieve similar functionality
as a sliding window in a Kalman filter. The filters are reset periodically so the state
is always calculated only based on a limited amount of measurements. The underlying
idea is that the covariance is always calculated with respect to a certain previous state.
In the standard case, this reference state is located in the starting pose of the vehicle.
Whenever a filter is reset by setting its covariance to zero, the reference state is moved
to the current pose of the vehicle. Note that this new reference state is only used for
the covariance, while the vehicle pose is still estimated with respect to the odometry
frame. Resetting a filter while the vehicle is in motion is however not a safe operation,
as the first few measurements may lead to unexpected behavior when the filter is not
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(a) normal processing

(b) before reference change

(c) after reference change

Figure 4.4: Temporal relation between the estimates of both filters and their reference states.
The relations between the time points are t2 = t1 + τ , t4 = t2 + τ = t1 + 2τ , and t2 < t3 < t4.
(Figure adopted from [Clemens et al., 2020].)

stabilized around an estimate yet. A safe reset can however be achieved by using two
filters in parallel. One filter, referred to as the active filter, is used as a stable filter that
is well initialized and always gives a jump-free estimate. The second filter is used for
moving the reference state forward in time and is referred to as the passive filter. This
filter resets its covariance periodically in order to move the reference state forward. It is
however not used as active output and therefore the instabilities that may occur during
reset do not affect the localization performance. To now use the new reference state
in the active filter, the covariance that was prepared in the passive filter is periodically
transferred to the active filter. This behavior is visualized in Fig.4.4. As shown, the two
filters always have a shifted reference state. As the active filter moves far from its own
reference, the reference of the passive filter is transferred to the active filter, while the
passive filter is reset, making the current state its new reference state.

In combination, the two filters produce a localization where the reference state is
periodically shifted forward in time, while avoiding instabilities around the reset points.
By keeping the reference state towards which the covariance is calculated in a limited
range, the covariance no longer grows unbounded, fixing the numerical issues mentioned
before. In addition, the covariance of the position and rotation around the z-axis now
contain meaningful information. They give the accumulated uncertainty since the last
reset which can now be used by subsequent probabilistic algorithms. In the following,
the process of resetting the passive filter and transferring its uncertainty to the active
filter is explained in detail in the context of a ⊞-KF.
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Figure 4.5: Difference in coordinate systems during the covariance transfer. (Figure adopted
from [Clemens et al., 2020].)

4.2.6 Uncertainty Transfer

When transferring the uncertainty from the passive to the active filter, special care needs
to be taken that the mean of the active filter does not change in the process, as this
would again lead to jumps in the state estimate. In addition, since the mean of the
active filter and the passive filter may diverge over time, the covariances are expressed
in different coordinate systems. Simply copying the covariance of the passive filter to
the active filter is therefore not an option, as the uncertainty would potentially affect
different axes. Instead, the covariance of the passive filter needs to be transformed to the
coordinate system of the active filter. This process is visualized in Fig. 4.5. To project
the covariance of the passive filter x̃t to the mean xt of the active filter, x̃t is passed
through the function

g(x̃t, ŷt) =



r̂t + q̂tr̃tq̂
−1
t

q̂tq̃t

v̂t + ṽt

ˆ̄at + ˜̄at
ˆ̄ωt + ˜̄ωt


, (4.23)

where ·̃ denotes elements of x̃t and ·̂ refers to the elements of ŷt. The parameter ŷt
represents the difference between origins of xt and x̃t, which is obtained by

ŷt = ĝ(xt, x̃t) =



rt − qtq̃−1
t r̃t(qtq̃−1

t )−1

qtq̃
−1
t

vt − ṽt
āt − ˜̄at
ω̄t − ˜̄ωt


. (4.24)

It is important to note that the parameter ŷt is fixed in (4.23) and does not change with
the parameter x̃t. By passing x̃t through g(x̃t, ŷt), the resulting mean will be equal to
that of xt, while the covariance of x̃t is projected to the frame of xt.

In the UKF this is done using sigma point propagation. The algorithm is shown in
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Change Reference UKF

Input: µt, Σt, µ̃t, Σ̃t

// Transfer uncertainty of passive filter to active filter
1: ŷt ← ĝ(µt, µ̃t)
2: S̃t ← (µ̃t µ̃t ⊞

√
Σ̃t µ̃t ⊞−

√
Σ̃t)

3: S∗
t ← g(S̃t, ŷt)

4: µt ←MeanOfSigmaPoints(S∗
t )

5: Σt ←
∑2M

i=0 w
[i](S∗[i]

t ⊟ µt)(S∗[i]
t ⊟ µt)⊤

// Reset uncertainty of passive filter
6: r̂t ← rt, q̂z

t ← qz
t

7: St ← (µt µt ⊞
√

Σt µt ⊞−
√

Σt)
8: S̃∗

t ← g̃(St, r̂t, q̂
z
t )

9: µ̃t ←MeanOfSigmaPoints(S̃∗
t )

10: Σ̃t ←
∑2M

i=0 w
[i](S̃∗[i]

t ⊟ µ̃t)(S̃∗[i]
t ⊟ µ̃t)⊤

11: return µt, Σt, µ̃t, Σ̃t

Figure 4.6: Algorithm for changing the reference in a UKF. S denotes the set of sigma
points, w is the set of corresponding weights, M denotes the number of degrees of freedom
of the state space (here M = 15), and MeanOfSigmaPoints is implemented according
to [Hertzberg et al., 2013, Tab. 3]. (Figure adopted from [Clemens et al., 2020])

Change Reference EKF

Input: µt, Σt, µ̃t, Σ̃t

// Transfer uncertainty of passive filter to active filter
1: ŷt ← ĝ(µt, µ̃t)
2: µt ← g(µ̃t, ŷt)
3: Σt ← GtΣ̃tG

⊤
t

// Reset uncertainty of passive filter
4: r̂t ← rt, q̂z

t ← qz
t

5: µ̃t ← g̃(µt, r̂t, q̂
z
t )

6: Σ̃t ← G̃tΣtG̃
⊤
t

7: return µt, Σt, µ̃t, Σ̃t

Figure 4.7: Algorithm for changing the reference in an EKF. (Figure adopted from
[Clemens et al., 2020])
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line 1-5 of Fig. 4.6. For the EKF the transfer is done using linearization of the function
g(x̃t, ŷt) using its Jacobian Gt = ∂g

∂x̃t
. This is shown in Line 1-3 of Fig.4.7. The Jacobian

is given by

Gt = ∂g

∂x̃t
=


R̂ 03×3 06×9

03×3 R̂

09×6 I9×9

 , (4.25)

where R̂ is the rotation matrix constructed from the pose of ŷt.

4.2.7 Passive Filter Reset

After transferring the covariance from the passive filter to the active filter, the passive
filter needs to be reset to move the reference state forward. However, not the entire
covariance needs to be reset, since large parts of the state are observable and therefore
do not suffer from unbounded growth. Instead, only the unobservable parts of the
covariance need to be reset, namely the position and the rotation around the z-axis.
By leaving the observable parts of the covariance untouched, the filter keeps a better
understanding of relationships between parts of the state, leading to more accurate state
updates. The reset is performed by passing xt through the function

g̃(xt, r̂t, q̂zt ) =



r̂t

qxt q
y
t q̂
z
t

vt

āt

ω̄t


. (4.26)

Note that r̂t, q̂zt are given as input and therefore remain fixed, resulting in zero covariance
in those parts of the state. This effectively resets the covariance, moving the reference
state to the current state. In the UKF this is again done by sigma point propagation.
The corresponding algorithm is defined in Fig. 4.6, line 6-10. In the EKF the covariance
is updated by linearization using the Jacobian G̃t = ∂g̃

∂xt
. The Jacobian is defined as

G̃t = ∂g̃

∂xt
=



03×15

03×3


1 0 0
0 1 0
0 0 0

 03×9

06×9 I9×9


. (4.27)

The corresponding algorithm is given in line 4-6 in Fig. 4.7.
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Table 4.1: Datasets used for the evaluation. (Table partially adopted from [Clemens et al., 2020].)

Name Duration Distance Med. Speed Max Speed Trajectory

Parking Lot 5:17 1.57 km 17.9 km/h 37.5 km/h Fig. 4.8a
Braunschweig 27:21 15.02 km 39.2 km/h 66.3 km/h Fig. 4.8b

Bremen 36:39 20.36 km 36.2 km/h 79.9 km/h Fig. 4.8c
BS to HB 1:29:19 126.53 km 84.4 km/h 172.7 km/h Fig. 4.8d

4.2.8 Evaluation

The evaluation of the odometry localization was performed on multiple datasets which
were recorded using the VW Passat GTE described in Chap. 3. For ground truth the
positioning obtained by the GNSS receiver is used, in this case not corrected using RTK
as no correction data is available in the datasets. While the GNSS may contain drift and
errors itself, the influence is minimal while the GNSS reception is good and thus these
errors are tolerable for an evaluation of the odometry. The datasets were additionally
checked for errors in the GNSS estimate, and areas with noticeable errors in the GNSS
positioning were excluded from the evaluation. The datasets are listed in Tab.4.1, while
the ground truth trajectories are shown in Fig. 4.8. The datasets were selected to
reflect different driving situations. The Parking Lot features low driving speeds with
many sharp turns. The Braunschweig dataset contains areas that resemble driving in
the countryside, where medium speeds are reached. The Bremen dataset represents an
inner city scenario again with medium speeds. Finally, the BS to HB dataset contains a
highway drive from Braunschweig to Bremen at high speeds. The evaluation compares
five approaches for odometry estimation. As baseline a single-track model is integrated
using

tt+1 = rt + qt
[
st 0 0

]T
q−1
t ·∆t, (4.28)

qt+1 = qtexp
([

0 0 st
b · tan zsat

]T
· ∆t

2

)
. (4.29)

To evaluate the difference a jump-free localization makes in the presented scenarios, both
an EKF and a UKF are evaluated using a naive implementation (denoted EKF/UKF
naive), as well as the modified implementation with a moving reference state (denoted
EKF/UKF mov ref). Note, that besides the filter switching, both versions of the EKF
and the UKF use the same measurement and state transition models. For the moving
reference implementation, the time τ between filter switches is set to 10s to allow the
filter to be properly initialized. In this time, the covariance will be sufficiently built up
to allow corrections to be applied, however the covariance will not grow large enough
that jumps are produced.

In order to evaluate odometry, special metrics are required to take into account that
only the localization performance over shorter periods of time are relevant. Looking
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(a) Parking Lot (b) Braunschweig

(c) Bremen (d) BS to HB

Figure 4.8: Ground-truth trajectories of the evaluation datasets. The red squares in (c) indicate
the areas of focus in the evaluation. (Maps generated using UMap based on OpenStreetMaps
data. Figure adopted from [Clemens et al., 2020].)

at the absolute error in the estimated pose is meaningless, as a small error in heading
in the start of the estimation would lead to very large errors later on. Even if the
relative localization performance after the initial error would be superior, this would
not be reflected in the evaluation result. Instead, the performance is evaluated over
short trajectories as proposed in [Geiger et al., 2012], with the evaluation script taken
from [Zhang and Scaramuzza, 2018]. The segment lengths were chosen between 100m
and 2000m to evaluate performance both over short periods of time and after significant
distances. The trajectories are aligned with the ground truth using their poses at the
start of the trajectory and the error in the last pose of the segment is summed up over
all trajectories to obtain an error value. This is shown in Fig. 4.9.

In the first dataset containing a drive on a parking lot (shown in Fig. 4.9a), the mov-
ing reference implementations consistently achieve similar or better localization results
when compared to their naive counterparts. However, the differences in the results
are relatively minor, and even the single-track model integration performs well on this
dataset, sometimes even outperforming other approaches. This is likely due to a strong
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(a) Parking Lot (b) Braunschweig

(c) Bremen (d) BS to HB

Figure 4.9: Average translation error of a pose relative to the previous pose at a specific distance.
(See [Geiger et al., 2012; Zhang and Scaramuzza, 2018] for further details on the error calcula-
tion. Figure adopted from [Clemens et al., 2020].)

non-linearity in this datasets with many sharp turns, in addition to the fact that the
total length is only 1.57km. Since the velocity and steering obtained by the vehicle are
very precise over shorter periods with only little drift, the single track model works well
here.

On the second dataset containing a drive through Braunschweig (see Fig. 4.9b), the
differences between the approaches become more apparent. The moving reference im-
plementations noticeably outperform their naive counterparts, and especially for longer
segments the performance of the single track model deteriorates. There are especially
some very large error values for the naive EKF, indicating that the filter starts to become
unstable. This is due to the length of the drive, where the covariance grows large enough
over time to allow large corrections.

A similar picture can be seen in the Bremen dataset (see Fig.4.9c). Again the moving
reference implementations outperform the naive versions, with the naive implementa-
tions showing signs of instabilities as well. This dataset is even longer than the Braun-
schweig dataset and contains many stops, which generally lead to more instabilities.
Therefore a worse performance of the naive implementations is to be expected.

Finally, in the highway dataset from Braunschweig to Bremen, the differences between
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Figure 4.10: Example for a stop of the vehicle after a distance of 746 m since the last stop (top)
and after 1803 m (bottom). (Axes scales are meters. Figure adopted from [Clemens et al., 2020].)

the moving reference implementations and the naive ones becomes drastic, as the naive
filters become fully unstable over such a long drive of 126km. Here it becomes very
apparent why a special handling of the covariance is needed when estimating odometry
over such long periods of time.

This evaluation clearly shows that the proposed moving reference methods outperform
their naive counterparts, however the issue that it was meant to solve was the jumping
state estimate that may occur in the naive case. A closer look at the jumps that occur
showed that they are caused by the vehicle stopping. When the vehicle is stopped,
parts of the state such as the IMU biases can be observed better, allowing the filter to
correct them. Since they are connected in the filter via the cross covariance, this leads
to corrections in the position estimate, that become large as the uncertainty over the
position grows. To evaluate the performance of the moving reference implementation in
these stops we take a closer look at some stops that occur in the Bremen dataset, marked
as a red square in Fig. 4.8c. The corresponding trajectories are shown for the evaluated
algorithms in Fig. 4.10. In this figure, two stops are evaluated, one after driving 746 m
since the last stop, which occurred after driving a total of 10,927 m, and one after 1803 m
since the last stop, with a total distance of 5,082 m. As can be seen, the moving reference
implementation no longer produces jumps in these scenarios, and careful evaluation of
the entire trajectory shows that the localization is now fully jump-free even for the long
highway dataset.

In addition to the relative localization, an evaluation on the absolute trajectory error is
performed for completeness. In order to obtain this error, the trajectories are aligned by
an SE(2) transformation using the method proposed in [Zhang and Scaramuzza, 2018].
The results are shown in Tab. 4.2. The absolute errors show a similar result as the
relative evaluation, with the single-track model drifting heavily when the trajectory is
longer. The moving reference implementation shows improvements in the absolute error
for every dataset besides the Bremen evaluation, where the EKF naive implementation
performs slightly better. Overall the UKF moving reference implementation produces
the lowest errors for all but the highway dataset, indicating that the better approximation
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Table 4.2: Absolute root mean square (RMS) translation error. Table adopted from
[Clemens et al., 2020].

Algorithm Park. Lot Braunschw. Bremen BS to HB

single-track 12.2 m 316.8 m 1,997.5 m 21,810.3 m
EKF naive 15.8 m 277.1 m 188.8 m 2,827.9 m

EKF mov ref 9.5 m 165.2 m 195.0 m 2,691.4 m
UKF naive 8.2 m 160.3 m 280.5 m 7,645.9 m

UKF mov ref 7.3 m 106.9 m 174.3 m 3,973.1 m

Table 4.3: Runtime of the algorithms. Table adopted from [Clemens et al., 2020].

Algorithm Park. Lot Braunschw. Bremen BS to HB

single-track 1.24s 5.45s 6.59s 18.16s
EKF naive 3.12s 16.24s 20.15s 52.65s

EKF mov ref 4.83s 25.61s 31.86s 85.26s
UKF naive 7.49s 42.53s 50.37s 135.09s

UKF mov ref 13.09s 74.07s 90.36s 207.31s

of non-linearity has some benefits in urban driving.
Lastly, a runtime evaluation is performed. All algorithms are run on an Intel Xeon

E5-2699 CPU (2.20GHz, single-threaded). The results can be seen in Tab. 4.3. As
expected, the single track model performs best in terms of computation time. The
moving reference implementations perform all computations for two filters, so a factor
of 2 is expected for the runtime. There is however some static overhead for both the
naive and the moving reference implementations, reducing this factor slightly. The UKF
overall requires more computations than the EKF due to the sigma point propagation,
resulting in a significantly longer runtime. Overall all algorithms are still real-time
capable, with the UKF moving reference needing 207s for a dataset that is 1h30m long.

4.2.9 Conclusion

In this section a localization system for estimating odometry was presented. It uses low
to mid cost sensors as shown in Chap. 3 in order to perform jump-free localization. For
this, a ⊞-Kalman filter was used, where the equations were given for both an EKF and
a UKF. To avoid issues caused by unbounded growth of the covariance of the position as
well as the rotation around the z-axis, a moving reference Kalman filter was proposed.
In this approach, two filters run in parallel, with the active filter generating the local-
ization output, while the passive filter is periodically reset. This is used to move the
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reference state forward, effectively bounding the covariance growth. The covariance of
the passive filter is then periodically transferred to the active filter to move its reference
state forward. An evaluation was performed on four different datasets reflecting multiple
common scenarios in autonomous driving. It was shown, that the moving reference im-
plementations not only performs jump-free odometry estimation but also perform better
in terms of relative and absolute localization performance. Finally, all algorithms were
shown to be real-time capable. They were implemented on the research vehicle shown in
Chap.3 and the resulting localization is actively used as part of the autonomous driving
stack.

4.3 Global Filter

While the Odometry localization achieves high levels of accuracy on a local scale and
is thus used for all subsequent algorithms that require precise localization over a short
time frame, some algorithms need global information to function. This is especially the
case for routing algorithms, where a valid route depends on the current location in the
world. For global localization, in this work an INS/GNSS fusion is performed using a
⊞-Kalman filter, as presented in [Höffmann et al., 2022]. This allows for probabilistic
fusion of the inertial measurements used in Sect. 4.2 with the global GNSS data. The
GNSS is aided by RTK, providing highly precise measurements with centimeter accuracy.
This localization runs fully decoupled from the odometry localization, however it does
receive the same data as input and uses many of the same models. There are however
some key differences, which will be discussed in the following.

First, the state space needs to be modified. Instead of estimating a position in Carte-
sian coordinates, a global position pt =

[
φt λt ht

]T
is estimated, with φt and λt

being the latitude and longitude, while ht represents the height above the WGS84 ellip-
soid which approximates the shape of the earth with respect to the sea level, excluding
variables such as mountains. However, with most computations on the state being per-
formed in vector space, using the polar coordinates as a representation is not ideal as it
requires frequent conversions. Instead, changes to the position are accumulated in the
vector space and periodically converted to polar coordinates. This is done by estimating
the position rt =

[
ret rnt rut

]
in the east-north-up (ENU) frame, with the coordinate

system centered at a past position pt−k. This reference position is periodically moved to
the current position in order to avoid conversion inaccuracies that arise when the refer-
ence position is far away. With the position now expressed in vector space, a conversion
is required to obtain the global position. This is however performed less frequently
and as such does not add much overhead. The conversion is defined as [Wendel, 2007,
Sect. 8.2.3]

pt = pt−k +


rn

t
Rn

t−k
+ht−k

re
t

(Re
t−k

+ht−k·cosφt−k)

rut

 , (4.30)
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where Rnt−k and Ret−k denote the earth’s north-south and east-west curvature radius
respectively, each at the reference position in time t− k.

The rotation of the vehicle is again represented using a quaternion qt, however this no
longer represents the rotation in the local odometry frame. Instead, the orientation is
estimated in the ENU frame, centered in the position of the vehicle. The state space is
therefore defined as

S = R3 × SO(3)× R3 × R3 × R3. (4.31)

The state xt at time t is defined accordingly as

xt =



rt

qt

vt

āt

ω̄t


, (4.32)

Note that this state is identical to the odometry state, with the only difference being
the coordinate systems in which the position and rotation are expressed. Therefore the
motion model from the odometry filter as well as the measurement models remain the
same.

To obtain a global estimate, the measurements of the GNSS receiver need to be fused
into the state. The measured values are the latitude φgt , longitude λgt and height hgt of
the antenna. To update the state this measurement needs to be converted to the ENU
frame located in pt−k. This is done using [Wendel, 2007, Chap. 8.2.2]

zgt =


(λgt − λt−k) · (Ret−k + ht−k) · cosφt−k

(φgt − φt−k) · (Rnt−k + ht−k)
(hgt − ht−k)

 . (4.33)

To account for the offset of the antenna from the vehicle frame origin, the body-fixed
position ra1 of the antenna is transformed using the estimated orientation of the vehicle
in the ENU frame. This gives the measurement function

hg(xt) = rt + qtr
a1q−1

t . (4.34)

The measurement is assumed to be affected by additive, normally distributed noise with
covariance Qgt and zero mean. The Jacobian of the measurement function is defined as

Jg = ∂hg

∂x
=
[
I3×3 −

(
Rt
[
ra1]

×

)
03×9

]
. (4.35)

In addition to the global position, information is contained in the GNSS measurements
about the orientation of the vehicle in the world. While this is not possible with stan-
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dard GNSS unless it is inferred from multiple measurements with the assumption of
moving forward, this vehicle is equipped with multiple GNSS antennas. By measuring
the position zrt of the second antenna in the ENU frame centered in the position of the
first antenna, the orientation in the world can be estimated. For this, the measurement
is given by

ẑrt = zrt
∥zrt ∥

, (4.36)

where a unit vector is used since the actual distance is not relevant. The direction of the
vector gives the orientation of the vehicle. The corresponding measurement function is
defined as

hr(xt) = qt
ra1 − ra2

∥ra1 − ra2∥
q−1
t , (4.37)

with ra2 describing the position of the second antenna in the body-fixed frame of the
vehicle. The measurement is assumed to be affected by additive, normally distributed
noise with covariance Qrt and zero mean. The corresponding Jacobian is given by

Jr = ∂hr

∂x
=
[
03×3 −

(
Rt
[
ra1−ra2

∥ra1−ra2∥

]
×

)
03×9

]
. (4.38)

In addition to being able to update the global orientation directly, the dual receiver
setup enables an accelerated initialization process. In the standard implementation with
one GNSS receiver, initially the orientation is unknown. As the vehicle starts to move,
and with the assumption that it moves forward or by obtaining the driving direction
from the wheel sensors, the orientation can be inferred. Consequently the initialization
process always requires a short drive to initialize the heading, which can be cumbersome.
With the dual receiver setup, the orientation is measured directly on system startup and
the filter is initialized accordingly. This leads to a significant improvement in usability
of the system.

4.3.1 Evaluation

Evaluating the performance of the global filter is a difficult task, as the result has to be
compared to a ground truth that is at least an order of magnitude more accurate than the
evaluated algorithm. As the RTK system provides centimeter accuracy, the requirement
for the ground truth system is very high. In fact, no ground truth system exists that does
not require additional costly hardware, that can provide ground truth over stretches of
multiple kilometers. In the work of [Höffmann et al., 2022] the global localization system
is evaluated on a small scale using such a reference system, however this evaluation was
performed on an industrial lawn mower at low speeds with a limited range. In this work,
a qualitative evaluation is performed on multiple datasets containing various difficult
scenarios where the GNSS quality is very low or where no GNSS is received at all. This
is meant to complement the previously performed quantitative evaluation on the mower.

The evaluation data is similar to the setup presented in Sect. 4.2, with the main
difference being the inclusion of the two receiver RTK system, which provides centimeter
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(a) Parking Lot (b) Highway (c) Garage

Figure 4.11: Trajectories estimated by the global localization. (Maps generated using UMap
based on OpenStreetMaps data.)

Table 4.4: Overview of the Datasets.

Name Duration Distance Max. Speed Trajectory

Parking Lot 11:11 3.04 km 49.2 km/h Fig. 4.11a
Highway 42:28 25.8 km 101.4 km/h Fig. 4.11b
Garage 21:27 8.0 km 60.9 km/h Fig. 4.11c

accurate positioning as well as heading for the vehicle. The RTK is calculated on the
receivers, and fused into the localization as described above. In the evaluation GNSS
is only used in the filter when RTK is available. When no RTK solution is found, the
measurements are discarded to avoid errors introduced by faulty measurements and the
filter relies on dead-reckoning without global correction. In this evaluation, the u-blox
F9P receivers were used.

The evaluation was performed on three datasets, which are listed in Tab.4.4. The first
dataset is a drive on a parking lot with many sharp turns. The speed is comparably low
and the GNSS signal strong. The second dataset contains a drive through Chemnitz on
various urban streets as well as a long stretch of highway. This dataset contains higher
speeds as well as multiple sections with poor GNSS signal. In addition, it contains
drives under bridges, where no GNSS data is available. The last dataset was recorded
in large parts in a multi-level parking garage with very poor GNSS reception. The car
was thereafter driven over urban roads for multiple kilometers at medium speeds.

In the following, multiple difficult scenarios are observed more closely to evaluate the
performance of the global localization in such cases. Firstly, looking at the parking lot
dataset in Fig. 4.11a, no significant jumps can be detected in the estimate, which shows
a smooth trajectory. In the case of the global filter this is not guaranteed, however
especially with good GNSS signal this is the expected result. As comparison, the GNSS
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Figure 4.12: GNSS signal strengths of the Parking Lot scenario. Light blue trajectories were
corrected using RTK, while all other colors have impaired accuracy. (Maps generated using
Google Earth Pro.)

(a) Bridge 1 (b) Bridge 2

Figure 4.13: Showcase of two problematic areas where no GNSS signal is available. The trajectory
in red shows the global state estimate where no RTK was available. Light blue trajectories are
aided by RTK, while orange and dark blue show the incoming GNSS position estimate with
reduced GNSS quality, which are discarded. (Maps generated using Google Earth Pro.)

signal strength is plotted in Fig. 4.12. As can be seen, the whole scenario is performed
with RTK, with the exception of one stretch of about four meters. Over the duration of
11 minutes, no visible drift or deviations from the repeating path are visible.

The highway dataset is considerably longer and therefore contains multiple parts where
poor or no GNSS signal is present. Two of those scenarios are shown in Fig. 4.13.
As can be seen here, while the GNSS gives erroneous measurements and shows strong
drifts and jumps, the global filter detects this and no longer uses these measurements
for state updates. Instead, the filter performs dead reckoning. This is expected to
contain drift, which is visible in both scenarios, where at the end of the bridge the
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(a) State Estimate (b) GNSS position estimate

Figure 4.14: Showcase of two problematic areas where no GNSS signal is available. (Maps
generated using Google Earth Pro.)

estimate jumps as soon as RTK is received again. This is however expected behavior
and does not influence the safety of the autonomous system as it is not used for vehicle
control. The last dataset contains a long drive through a parking lot that stretches over
multiple floors. The resulting state estimate for this part of the drive can be seen in
Fig. 4.14a. The corresponding GNSS position estimates given by the GNSS receiver are
shown in Fig. 4.14b. This evaluation clearly demonstrates the difficulty of localizing in
this scenario, with the GNSS receiver giving strongly erroneous measurement. Again,
these measurements are excluded in the global filter and dead reckoning is performed.
However, even with no GNSS correction for an extended period of time, the estimate
only drifts by a few meters, which can be seen upon exiting the garage onto a parking
deck in point A and exiting the garage onto the street in point B. The rest of the drive
from point B was performed to show the stability of the filter even after a prolonged
time without any GNSS corrections. As shown in Fig. 4.11 the drive was completed
successfully and closer inspection of the trajectory showed no unexpected behavior.

In addition to this evaluation a test drive was performed to test the behavior of the
initialization when the vehicle is already moving. For this the vehicle was accelerated to
20 km/h before the localization system was started. The result can be seen in Fig. 4.15.
As can be seen the trajectory is smooth immediately after system startup and the filter
is stable even without any initialization procedure.

4.3.2 Conclusion

For obtaining a global state estimate the ⊞-Kalman filter presented in Sect. 4.2 was
modified to include measurements from two RTK-corrected GNSS receivers. The result is
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Figure 4.15: Evaluation of the global filter initialization. Starting position marked with a red A.

a robust global localization system with a very simple initialization procedure, which even
allows on the fly initialization while moving. The performance of the localization was
evaluated qualitatively on three datasets which contained a number of difficult sections
that were investigated more closely. In all scenarios the localization remained robust,
however there was some expected drift when no GNSS updates were performed due to
poor signal strength or when no signal was received. As with the odometry localization,
the resulting global localization system was implemented on the research vehicle and is
used in real time as part of the autonomous driving stack.

4.4 Transforming Global Information to the Odometry Frame

Most algorithms in autonomous driving rely on the odometry estimate for localization as
this is expressed in cartesian coordinates and does not contain jumps. However there are
tasks where global information is required, which then needs to be transformed to the
odometry frame to make it usable for the algorithm. An example of this are lane bound-
aries defined in a previously measured high definition map. These boundaries are used
for vehicle control as additional information where the vehicle can drive, however the
vehicle control is performed in the odometry frame to make use of the jump-free local-
ization. Thus the boundaries expressed in the global frame must be transformed to the
odometry frame. This transformation is however not fixed, as the odometry drifts over
times while the global estimate does not. Thus the transformation must be calculated
with respect to the most recent localization estimates from both filters. Additionally
the global information is expressed in the WGS84 frame and must be converted to a
cartesian frame to make use of it.

To transform a point p̄G =
[
φ̄ λ̄ h̄

]T
from the global frame G to the odometry

frame N the assumption is used that the required global information is close to the
vehicle and can thus be expressed on the vector space around the position of the vehicle
without considering the curvature of the earth. The transformation is performed by

T V→N
t RG→V

t −
(
pGt ⊟ p̄G

)
, (4.39)
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where T V→N
t is given by the odometry localization, RG→V

t is given by the global localiza-
tion and pGt is the current global position estimate, also given by the global localization.
The ⊟-operator is defined as

a⊟ b =


(aλ − bλ) · (c1 + bh) · cos(bφ)

(aφ − bφ) · (c2 + bh)
ah − bh

 , (4.40)

where c1 is the east-west curvature of the WGS84 ellipsoid in the position of a and c2 is
the corresponding north-south curvature [Wendel, 2007, Chap. 8]. They are calculated
by

c1 = 1
a
·
√

1− e2 · sin(aφ)2, (4.41)

c2 = a · (1− e2)
(1− e2 · sin(aφ)2)

3
2
, (4.42)

with a = 6378137 and e = 0.0818191908426 [Wendel, 2007, Chap. 3.1].

4.5 Visual/LiDAR Inertial Odometry

To aid the localization visual odometry is often utilized in current research. The per-
ceived movement of the environment in the sensor data is used to determine how the
vehicle moved between the two measurements. By creating this connection between past
and current measurements the odometry localization no longer relies solely on relative
measurements and instead directly measures its movement over a short period of time.
Similarly this approach can aid in global localization in GNSS-denied areas to reduce
sensor drift and avoid larger jumps in the state estimate. In previous research performed
using a Camera, IMU, speed and steering measurements, [Serov et al., 2022] found, that
no notable improvements over the odometry localization presented in Sect. 4.2 could
be gained when using a medium-cost IMU. However an increase in accuracy could be
achieved when less precise IMU measurements were used.

4.5.1 Truncated Signed Distance Functions (TSDF)

In this work a similar evaluation is performed for LiDAR odometry. For this evalua-
tion truncated signed distance functions (TSDF) [Curless and Levoy, 1996] are utilized.
Similar to the work presented in [Daun et al., 2019] the TSDF is utilized to build a
grid map of the environment. In this grid each cell contains the distance to the closest
measured point, with cells in front of the measured obstacle having a positive distance
and cells behind the measurement having a negative distance. The distance is truncated
with all cells outside of the truncated area containing the maximum defined distance.
This is visualized in Fig. 4.16. The TSDF map is built up over time and for each new
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Figure 4.16: Example of a TSDF Map. In greyscale the (absolute) truncated distance to previous
measurements is shown, while the current measurement is shown in blue and the optimized scan
is shown in red. Note that the red points overlap with the blue measurement, as the optimization
resulted only in a minimal change in this example.

scan a matching step is performed, where the current scan is aligned with the TSDF
map to minimize the total distance from previous measurements. The resulting pose is
then fused using the Kalman filter to obtain a new state estimate, and the TSDF map
is updated using the LiDAR scan. This approach is explained in detail in the following
and subsequently evaluated for the use on the research vehicle.

To build a TSDF map of the environment the mapping system is utilized, which is
explained in detail in Chap. 5. This is generally used to build an occupancy map of
the environment to determine drivable areas, however it is implemented as a generalized
framework and cell types and measurement updates can be exchanged. First the scan
SL = {m0, ...,mN} ,mi ∈ R2, N ∈ N is used to determine an upper and lower bound for
each scan point mi, between which the TSDF is to be estimated. For this a truncation
distance ϕ ∈ R is defined, which bounds how far away cells are updated. The distances
are calculated along the scan line on which the LiDAR measures. As such the upper
bound ui and lower bound li in which cells are updated are calculated by

uLi = mi + ϕ · mi

|mi|
(4.43)

lLi = mi − ϕ ·
mi

|mi|
. (4.44)

These bounds are transformed from the LiDAR frame to the navigation frame using

uNi = T V→N · TL→V · uLi , (4.45)
lNi = T V→N · TL→V · lLi , (4.46)
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where T V→N is the vehicle pose in the navigation frame obtained by the odometry
localization and the pose of the LiDAR in the vehicle TL→V is a fixed transformation
given by the LiDAR configuration. These bounds are calculated for each point mi in
the scan to determine the first and last point to be updated in the TSDF map. These
points are transformed from coordinates in the navigation frame to map coordinates by
discretizing them to integer indices in a grid. This step is described in detail in Chap. 5.
The resulting points in the map are used to draw a pixel line using the Bresenham
algorithm [Bresenham, 1998]. This pixel line contains indices of cells that are on the
measurement line leading from the LiDAR sensor to the hit point mi, however only
when their distance to the hit is smaller than ϕ. For each cell the distance di to mi

is calculated and the cell is updated according to the update function presented in
[Daun et al., 2019] in equations (4)-(6).

To perform the matching step of the current scan given the previously estimated map
a non-linear optimization problem is solved, which is defined by

arg min
T̄V →N

N∑
i=1

(
Φ
(
T̄ V→N · TL→Vmi

))
, (4.47)

where Φ obtains the distance in the TSDF map for a point expressed in the navigation
frame. For this all cells around the point are retrieved from the map and bi-linear
interpolation is performed. The optimization problem can be solved by any non-linear
optimizer such as the Ceres Solver [Agarwal et al., 2023]. In this work however a self-
implemented version of a gradient-based optimization is used which iteratively modifies
the pose in each dimension, choosing the best new pose as the next starting point. When
the result no longer improves the step size in each dimension is reduced to refine the
pose. This results in a locally optimal pose, however this is sufficient with a precise initial
guess. Since the initial guess is given by the odometry localization it is sufficiently precise
to only require minor refinement. An example of a result of the LiDAR scan before and
after pose refinement is shown in Fig. 4.17.

The refined pose estimate is then used to correct the state estimate of the Kalman
filter. As the resulting pose T̄ V→N is the same pose estimated in the Kalman filter
(although reduced to two dimensions) the measurement function is simple to define.
First the measurement is given by

zlot =


rxt

ryt

ψt

 , (4.48)

where xt ∈ R and yt ∈ R are the x-and y-position of the vehicle and ψt ∈ R is the
orientation. As the measurement is given in 2D the measurement function performs a
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Figure 4.17: Two example results of TSDF scan matching. In greyscale the (absolute) truncated
distance to previous measurements is shown, while the current measurement is shown in blue
and the optimized scan is shown in red.

reduction in the state space. This is given by

hlo(xt) =


rxt

ryt

atan2
(
2 · (qt,w · qt,z + qt,x · qt,y), 1− 2 · (q2

t,y + q2
t,z)
)
 . (4.49)

The measurement is assumed to be affected by additive, normally distributed noise with
covariance Qlot and zero mean. The presented scan matching approach does not inher-
ently produce an uncertainty measure, and thus the covariance is determined manually.
Different covariances are evaluated in the following evaluation. The derivation especially
of the orientation is not trivial, however the evaluation is performed using a UKF and
thus no derivations are required. To use the update with an EKF numerical derivation
can be used to obtain derivatives instead.

4.5.2 Evaluation

The performance of the TSDF scan matching is evaluated similarly to the odometry
localization, however only the Parking Lot data set shown in Fig. 4.8a is reused, as the
other datasets do not contain LiDAR data. In addition a second data set was added
containing a drive through Borgfeld, Germany, which is a suburban city scenario. The
trajectories of the datasets are shown in Fig. 4.18.
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(a) Parking Lot (b) Borgfeld

Figure 4.18: Ground-truth trajectories of the evaluation datasets. (Maps generated using Google
Earth Pro.)

The datasets were recorded using the research vehicle presented in Chap. 3. However
the IMU used differs between the two. The Parking Lot data was recorded using an
ADIS IMU while the Borgfeld dataset was recorded using a lower cost UM7 IMU. As the
focus of this work lies in the relative difference scan matching makes in the localization
performance this difference in sensor equipment does not influence the validity of the
results. Similar to the odometry evaluation the localization accuracy is determined by
comparing to the ground truth recorded using GNSS. The evaluation was performed
using a regular Moving Reference UKF as reference and the same filter additionally
corrected using the TSDF matching measurement. For scan matching two approaches
are compared: one where the map is continuously built over time (scan-to-map matching)
and one where the map is only built on the previous scan (scan-to-scan matching).
While the map built from all scans is expected to contain more accurate information it is
subject to the odometry drift and over time this may deteriorate the map and with it the
matching quality. Thus both approaches are evaluated. As the covariance of the resulting
pose is not determined by the matching algorithm a comparison between two covariances
is performed. For the first evaluation a positional standard deviation of σr = 0.25 m and
a rotational standard deviation of σa = 5 deg are used. The results are shown in Fig.4.19.
The second evaluation is performed using σr = 0.025 m and σa = 0.5 deg. The results of
the second evaluation are shown in Fig. 4.20. The corresponding resulting trajectories
are shown in Fig. 4.21 and Fig. 4.22.

As can be seen in these evaluations the scan matching does not improve the localization
result and in fact in some cases even leads to significantly worse results. Especially the
scan-to-map matching performed on the Parking Lot dataset shown in Fig.4.22a fails to
produce good results and fully deteriorates over time when the filter assumes the LiDAR
odometry to be more precise. This is likely caused by the odometry drift which causes
the TSDF map in this scenario to be cluttered with noise. Thus in that scenario scan-to-
scan matching performs better. This is however only the case in this specific scenario.
Overall the scan-to-scan matching performs significantly worse than the scan-to-map
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(a) Parking Lot (b) Borgfeld

Figure 4.19: Evaluation with σr = 0.25 m and σa = 5 deg.

(a) Parking Lot (b) Borgfeld

Figure 4.20: Evaluation with σr = 0.025 m and σa = 0.5 deg.

(a) Parking Lot (b) Borgfeld

Figure 4.21: Resulting trajectories of the first evaluation with σr = 0.25m and σa = 5 deg.
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(a) Parking Lot (b) Borgfeld

Figure 4.22: Resulting trajectories of the second evaluation with σr = 0.025m and σa = 0.5 deg.

approach. This indicates that the added information gained by accumulating past scans
in the TSDF map provides significant improvements to the scan matching results. It
also indicates that the scan matching relies heavily on a complete representation of the
environment, which is not immediately provided by the available LiDAR.

For both evaluations the moving reference UKF without scan matching strongly out-
performs even the scan-to-map matching. In fact when the filter believes the measured
scan matching pose to be more accurate the resulting localization becomes less accurate.
Due to the very high accuracy achieved by the moving reference filter it is however not
unexpected that the LiDAR was not able to improve the results. The data obtained by
the LiDAR is relatively sparse due to the small vertical field of view and small changes
in the vehicle pitch or roll can change where the LiDAR measures points, which would
result in a incorrect pose estimate even for an optimal scan matching result. Taking
these changes into account with full 3D matching is however not feasible with the avail-
able sparse LiDAR data. While Fig.4.17 shows a matching result where the initial guess
was significantly offset from the correct estimate, this was only chosen for easier visual-
ization purposes. A further example is shown in Fig. 4.23 to visualize how accurate the
initial guess obtained by the odometry is and how difficult it can be to find the optimal
solution.

As is shown here the optimal solution is not clear and the initial guess is already close
to or on the seemingly best estimate. The scan matching only results in minor updates
of the vehicle pose. On average the scan matcher is however not able to find a more
accurate solution than the one calculated by the moving reference filter. In the original
paper, TSDF scan matching was used as a tool to perform LiDAR SLAM. This relies
much less on a highly precise result in every step as long as a loop closure is performed
regularly. During loop closure accumulating errors on the trajectory are eliminated,
which is not possible in this work. However SLAM is not usable to aid the odometry
localization as the loop closure introduces jumps in the state estimate.

Overall it was therefore not possible to improve the odometry localization accuracy
using TSDF-based scan matching. Therefore the results shown in [Serov et al., 2022]
on camera-based visual odometry were confirmed on LiDAR data as well. With the
available combination of IMU, speed and steering measurements the precision of the
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Figure 4.23: Difficult TSDF matching example where bushes are observed. The initial guess is
shown in blue, the scan matching result is shown in red. No clear optimal solution is visible.

localization is high and difficult to improve, especially with the available 4-layer LiDAR
that only allows for 2D scan matching. Results on the public Visual Odometry/SLAM
dataset in the KITTI Vision Benchmark Suite [Geiger et al., 2012] indicate that with
a 3D LiDAR significantly higher accuracies can be achieved. Thus the use of LiDAR
odometry will be evaluated in future work using a 3D LiDAR with a higher vertical FOV
and more layers.
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5
Mapping

Autonomous driving requires a high level of understanding about the vehicles surround-
ings to enable safe driving in often complex and dynamic areas. This task can be divided
into one where the static environment is estimated and one where all other traffic par-
ticipants that may be moving around the ego-vehicle are detected and tracked. In this
chapter the algorithm for the estimation of the static environment is presented, which
is referred to as mapping in the following. This is used by subsequent algorithms to
determine drivable areas in the surroundings, preventing collisions with any unmoving
obstacle. The second task of detecting and tracking other traffic participants is discussed
in Chap. 6, however its results influence the mapping to a certain extent. The sensor
data generally contains both dynamic and static parts of the environment and needs to
be filtered using the tracked traffic participants to avoid integrating dynamic parts into
the static environment map.

For static environment estimation a grid-mapping approach as introduced in Sect. 2.3
is used in order to estimate an occupancy map. This is built up using scan points
obtained from the six LiDARs built into the research vehicle as shown in Chap. 3. The
grid map discretizes the environment in 20 cm × 20 cm cells with each cell estimating
whether the corresponding space in the world is occupied or free. An example of such
a map can be seen in Fig. 5.1. The mapping performed here is mapping with a known
pose, which stands in contrast to SLAM approaches where the mapping and localization
problem are seen as a joint problem to be solved at the same time, influencing each other.
The decision to perform mapping with a known pose was made to avoid jumps in the
localization estimate that occur during loop closure of SLAM approaches. However it
influences how the mapping is performed, as a SLAM approach would ensure a consistent
map even over longer periods of time. When performing mapping with known pose the
performance of the mapping approach strongly relies on the underlying localization. In
this case the odometry estimation proposed in Sect. 4.2 is used. While this localization
is accurate over short distances, it still introduces drift over time, which is reflected in
the map, especially after revisiting places that were previously estimated. To avoid drift
the global localization could be utilized, however this suffers from jumps which again
would influence the mapping performance as the vehicle might shift closer or further from
previously detected obstacles due to the jumps. This may produce dangerous behavior
caused by the vehicle control. In autonomous driving the map can however be estimated
only for a limited time window instead of building a full map of the entire traversed
environment. This is due to the environment being highly dynamic and quick to change,
which means old information becomes obsolete after a short time. Therefore the drift
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Figure 5.1: Example of an occupancy grid map. The occupancy of each cell is shown in grayscale,
with the current pose of the ego vehicle indicated by the blue vehicle.

introduced by the odometry localization does not influence the mapping performance.
To perform mapping over a limited time window LiDAR scans are added when they
first arrive and then substracted from the map as they become too old. The result is a
short-term map which accurately reflects the current state of the environment while not
taking into account more than a fixed amount of previous data.

Grid mapping is often utilized in robotics with limited space that needs to be mapped
or in autonomous driving scenarios with a limited range. This allows for pre-allocation
of the memory required to store the entire map, which speeds up map operations sig-
nificantly. However for a generalized mapping framework in autonomous driving with a
large range, additional measures are needed to allow processing over these potentially
very large areas. As the mapped area becomes larger the memory required for the map
grows, and at some point it becomes impossible to allocate a map in memory which is
large enough to cover the entire area. An alternative approach is to use a map repre-
sentation which does not rely on any pre-allocation of memory and instead allocates it
on demand, however this usually comes at a significant disadvantage when it comes to
processing speed. In this work a system is used which still utilizes pre-allocated mem-
ory, however this is only done in a limited area. For this a moving-window approach is
used as published in [Wellhausen et al., 2021] where the mapped area is restricted to a
window roughly around the current position of the ego-vehicle.

In the following, first an overview of the current state of the art in mapping systems is
given. Secondly the implementation of the short term grid map is explained and lastly
the moving-window approach is introduced and evaluated.
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5.1 State-of-the-art

Mapping the environment is part of virtually every autonomous driving stack, with
grid maps being used as the de-facto standard for representing the environment. The
information that is estimated in this map is however different depending on the use-
case, the equipped sensors and the information required by subsequent algorithms. The
standard occupancy grid map [Elfes, 1989] has been in use for many years already, where
within each cell the probability is estimated for the space in the world to be occupied.
There are however many extensions to this approach, where additional information is
estimated within each cell, or where the map is structured differently. One example of
an extension to the classical occupancy grid map is the evidential grid map which makes
use of the Dempster-Shafer theory [Dempster, 1967; Shafer, 1976]. This was initially
utilized in autonomous driving in [Pagac et al., 1998], however it has since been utilized
in a number of publications. In [Capellier et al., 2018] evidential maps are used to fuse
LiDAR and Camera data into a grid map, utilizing semantic labels to improve handling
of dynamic data. In [Richter et al., 2020] it is utilized for creating a semantic grid map
estimating the type of object contained in different parts of the environment, which is
performed solely on stereo camera data. In [Tanzmeister and Wollherr, 2016] evidential
maps are utilized to estimate the dynamic properties of the environment, determining a
velocity for each part of the environment and differentiating between static and dynamic
cells. Overall many use cases exist for evidential maps and as such this is considered
in the design of the mapping system, allowing easy integration of different cell types as
well as mapping algorithms.

Another point of interest in current research is the map organization. One main
issue in utilizing grid maps is the large amount of cells as well as the high memory
consumption that results from discretizing the surroundings in a fine grid of cells. In
[Jungnickel et al., 2016] and [Garcia et al., 2014] this is tackled by using dynamic grid
resolutions. Instead of representing the entire environment using a uniform cell size a
choice can be made to represent more interesting areas with a higher resolution, while
others are represented only roughly. While this significantly reduces memory consump-
tion it comes at the cost of additional upkeep when the map resolution is re-evaluted.
Additionally cell access becomes more difficult when the cell structure is not previously
known, again raising computational demand. In the work of [Jo et al., 2018] a quadtree
is used to subdivide the globe into areas until the contained area is sufficiently small.
When an area is observed a node is created in the quadtree which contains the grid map
for that area. This is done to enable updates of a global map between multiple vehicles.
While the global representation in a quadtree is not required in this work, the idea of
using an additional data structure to control where the grid map should be extended is
very interesting and is further explored in this work. In [Buerkle et al., 2020] a map-
ping approach is presented where submaps are utilized, however here the submaps do
not have a uniform cell size. Instead submaps that are further from the vehicle have a
lower resolution. In addition the map is not estimated in the world frame but in the
vehicle frame. This leads to a system where only the direct surroundings are mapped.
The memory is handled very efficiently using the dynamic resolution however additional
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computations are required to transform the map between measurements as the contents
within the world shift according to the movement of the vehicle. Another approach uti-
lizing submaps is presented in [Stoyanov et al., 2013]. In this a 3× 3 grid of submaps is
used, which is roughly centered around the vehicle. Each of these submaps contains the
map of the corresponding space in the world. As the vehicle moves towards new areas
submaps are discarded behind the vehicle, while new submaps are created in the front.
This allows for efficient data storage of only the relevant parts of the environment while
not compromising on computation time by using complex data structures. In addition
the map is estimated in the world coordinate system and does not require shifting cells
between measurements. In this work a similar approach is utilized. The main contri-
bution of this thesis is an evaluation of different data structures that can be used for a
similar mapping system. By using different combinations of data structures the memory
consumption and computation time can be tuned for different tasks. By evaluating the
mapping with different data structures on multiple relevant tasks a suggestion is given
which combinations are suitable under certain circumstances.

5.2 Short-term Grid Mapping

In this work a short-term grid map is utilized which integrates LiDAR measurements as
they become available, and removes them from the map after a certain time. This is done
to counteract the influence of the drift caused by the odometry localization, which would
result in an inaccurate map upon revisiting an area. The short-term map is estimated by
determining the fullness θi ∈ [0, 1] of each cell as explained in Sect. 2.3. This approach
works under the assumption that the noise produced by the LiDAR measurement is
significantly smaller than the error introduced by the discretization of the grid map,
which is a reasonable assumption for modern LiDAR systems. Thus the measurement
noise is disregarded and instead the map estimation reduces to

θi = ki/(ki + li), (5.1)

with ki indicating how often an endpoint of a scan hit the cell and li representing how
often the cell was traversed but not hit, which would indicate that it is free. Thus the
estimation of the state within each cell only depends on the counters ki and li. To
estimate these counters the current LiDAR scan SL = mN

0 , ...,m
N
D with D ∈ N as well as

the pose of the LiDAR in the navigation frame TL→N = T V→NTL→V are required. The
transformations T V→N and TL→V are obtained by the odometry localization and the
extrinsic calibration of the LiDAR respectively. With this transformation the LiDAR
scan SL is transformed to the navigation frame by

SN = TL→NSL, (5.2)

with the transformation being performed on each point in the scan. Given the origin of
the LiDAR and the positions in the world that were hit, the ray along which the LiDAR
measured is known. These rays are however in the navigation frame. With the goal
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being to obtain all cells that are traversed by this ray, the position of the LiDAR and all
endpoints where the rays hit an obstacle must be discretized to map coordinates. This
is done by

pM =
⌊
(pN − oN ) · 1

δ

⌋
, (5.3)

where δ is the edge length of each cell in the map and oN is the origin of the map in
the navigation frame. This is performed for all scan points as well as the position of
the LiDAR in the navigation frame rN . For each endpoint mM

i all traversed cells are
obtained using the Bresenham algorithm [Bresenham, 1998] between rM and mM

i . The
result is a list of map coordinates of cells that were traversed, with the last cell being
the hit cell. The counter li is increased for the traversed cells, while ki is only increased
for the hit cell. As a special case of a 4-layer LiDAR, there are multiple scan lines
that measure along the same measurement angle. When one of the hits on this line is
closer to the LiDAR than the others (e.g. due to a low obstacle only hit by the lowest
layer) the information about the cell being hit would effectively be overwritten by the
other scan lines, and only a 1/4 probability for the cell to be occupied would result. To
avoid this issue the map is only updated as described above for the closest hit along
one measurement angle. For all other hits the traversed cells are not updated, however
for the hit cell the hit counter ki is still increased to maintain the information about all
measured obstacles. To later remove a scan, the updated cells are stored together with
the increased counter in a queue and removed again after a certain time, reversing the
performed updates.

5.3 Moving-window Grid Mapping

As discussed it is not necessary to keep old information in the map indefinitely due to
changing environments and odometry drift. Instead a fixed size of s × s is defined as a
window for the map which is the minimum size that should be covered, and this window
is used for keeping information. It roughly moves with the vehicle and parts of the map
that fall outside of the active window are discarded. Other shapes than squares could
be considered, however since the vehicle may turn and the maps orientation is world-
fix a square is a good choice. The work presented in this section was first published
in [Wellhausen et al., 2021], however it was rewritten and partially extended to better
match the scope of the thesis.

The total number of cells required to cover the desired square is calculated by D =
(s/δ)2, where δ is the edge length of a single cell. In this work the parameters are chosen
as s = 350m and δ = 0.2m, which results in D = 17502 = 3062500 cells. A world-fix
representation is chosen for the map. A vehicle-fix representation is not chosen here
due to the added computational cost of shifting cells according to the vehicle movement
and due to a loss in accuracy caused by interpolation when cells are transformed and
mapped to new cells.

To implement the moving-window grid map a hierarchical submap approach is chosen
with two layers as shown in Fig. 5.2a. Submaps are used to reduce computational cost
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(a) Hierarchical organization into
submaps.

(b) Change of the considered window with the moving
vehicle.

Figure 5.2: A grid map structured using submaps. (a) illustrates the hierarchical organization,
where the map is divided into submaps (top) with each submap containing multiple cells (bot-
tom). (b) shows the movement of the considered window (blue outline). Each colored square
corresponds to a submap. New submaps are added (green outlined squares) as the vehicle moves,
while old submaps are discarded (red crosses). (Figure adopted from [Wellhausen et al., 2021].)

when the active mapping window is moved forward. Without submaps this would require
moving every single cell, while using submaps it reduces to moving much fewer submaps.
On the outer layer a grid map is used to store the submaps. The inner layer stores the
grid cells that estimate the state of the corresponding space in the world. As the vehicle
moves through the world full rows of submaps are allocated in front of the vehicle,
while rows behind the vehicle are discarded to move the mapped window forward. This
is visualized in Fig. 5.2b. While the layers store very different information, the data
structures used can be the same since both layers can be seen as a grid. The inner
layer operates much like a regular grid map, however on the outer layer some additional
handling is required in order to delegate cell access to the correct submap and to handle
allocation and deletion of submaps. The specific operations are defined in the following,
however first the structure of the hierarchical map is explained. The amount of submaps
K allocated on the top level to cover an area of s× s meters depends on the amount of
cells L within each submap in each dimension. It is calculated by

K =


√
D

L


2

, (5.4)

which gives the total amount of submaps in the outer layer. The true amount of required
submaps in a single dimension

√
D
L is rounded up as no partial maps can be allocated,

which would make submap allocation and handling more difficult and add computa-
tional overhead. Therefore K submaps are unlikely to cover the minimum mapped area
perfectly, but is guaranteed to cover at least the defined size. As an example, choosing
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L = 2562 each submap contains 256× 256 = 65536 cells. With the total amount of cells
D = 3062500 from above this results in K = 72 = 49 submaps. Since the actual area
covered by all submaps may be larger than the minimum size s, the number of cells
D̂ will usually differ from the theoretical number D that is needed to cover the area
perfectly. The true amount D̂ is obtained by D̂ = L · K. In this example this leads
to a true amount of D̂ = 17922 = 3211264 cells in the map, which covers a length of√
K · L · δ = 7 · 256 · 0.2m = 358.4m in each dimension. The size of the entire map

expressed in terms of cells in each dimension is therefore given by
√
D̂. The size of each

submap is given by
√
L, while

√
K gives the number of submaps in each dimension.

With the structure of the map defined next the access of individual cells withing the
map is explained. Given a position pN ∈ R2 in the navigation frame the corresponding
cell index in the map is computed by

pM =
⌊
pN

δ

⌋
. (5.5)

This assumes that the origin of the map and the navigation coordinate system are the
same. Note that while the active mapping window moves around, the origin of the map
is not moved with it but stays constant. To access the cell with index pM first the correct
submap index s ∈ R2 is needed, which is calculated by

s =
pM − pMorig√

L
, (5.6)

where pMorig represents the origin, or bottom left corner, of the currently active window in
global map coordinates. With this submap index the correct submap is obtained from
the outer layer, however within this submap the global index pM is meaningless as each
submaps indices start at zero. The index of the point within the submap is obtained by

pC = pM − pMorig − s ·
√
L. (5.7)

Accessing a cell using a coordinate in the navigation frame is the most common operation
on the map, however occasionally the position in the navigation frame that corresponds
to a cell index is needed. In order to compute this, (5.5) to (5.7) can simply be inverted.
Note that this will however yield the position of the bottom left corner of the cell.
When the center of the cell is desired, δ

2 must be added to the resulting position in each
dimension.

As shown in Fig.5.2b the window needs to be moved according to the movement of the
vehicle whenever its distance to the center of the current window becomes too large. As
the window is always shifted in rows of submaps the distance threshold is the length of
one submap in world coordinates, i.e.

√
L · δ. After the shift the vehicle is again roughly

in the center of the window. To perform the shift all submaps in the outer layer need to
be shifted within the grid map according to the movement of the vehicle. This operation
is done efficiently by storing the submaps as pointers in the outer layer, removing the
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Figure 5.3: Schematics of the different underlying data structures for a partially filled grid map.
The array stores all rows one behind the other. The hashmap uses a bucket array with linked
lists for collision resolution. The quadtree partitions the map into hierarchically organized 2× 2
blocks. (Figure adopted from [Wellhausen et al., 2021].)

need to copy the entire submap to a different cell. Submaps that would fall outside of
the window after moving them are discarded, while depending on the data structure new
submaps may be allocated in new areas within the window. These data structures are
introduced in the following.

5.3.1 Data Structures

The used data structures have a strong influence on the behavior of the system. To
select suitable ones the main requirement is a sufficiently fast random cell access using
the index calculated above. In this work 2D arrays (ar), hashmaps (hm) and quadtrees
(qt) are evaluated. In Fig. 5.3 the data structures and their memory management is
visualized. To implement a 2D array the intuitive structure is to use an array for each
row or column in the grid. This however leads to the memory being fragmented, which
has downsides in allocation and deallocation as well as other memory management such
as copying. Instead a single array is used which stores the grid row-wise back to back in
a single memory block. This enables cell access by calculating the memory index from
the map index using

a(x, y) = x · r + y, (5.8)

where x and y are the x- and y-index of the cell within a submap or of the submap
within the outer grid and r denotes the number of cells in each row of the grid. Note
that for this cell access to work the entire map must be allocated fully in memory, even
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including unused cells. While this allocates memory for a lot of unused space the cell
access becomes very efficient.

Hash maps [Cormen et al., 2009, Chap. 11] store its elements in buckets, where the
bucket index is computed by a hash function. This hash function converts a complex
value such as the x and y index of the cell to a single index of the bucket. When designing
the hash function ideally it should distribute the incoming data evenly on the available
buckets, as collisions generally lead to slower cell access. In this work the hash function
proposed in [Teschner et al., 2003] is used, which is defined as

b(x, y) = (73856093 · x) ∨̇ (19349663 · y) modn , (5.9)

where n represents the number of buckets used in the hash map and ∨̇ is the bit-wise XOR
operation. The amount of buckets is usually chosen to be smaller than the maximum
number of elements and can be increased over time when needed. This reduces memory
consumption, however it leads to hash collisions where two or more different elements
are mapped to the same bucket. To handle this buckets usually contain linked lists of
all elements mapped to the bucket. Due to this structure memory is mostly allocated
on demand with the exception of some empty buckets being pre-allocated. Due to hash
collisions cell access becomes slower however, as in some cases a linked list must be
traversed.

Quadtrees [de Berg et al., 2008, Chap. 14] use a tree structure to store its elements.
This representation is suitable whenever a spacial distribution of the data is possible.
Each node in the tree has 4 children until the lowest level of the tree is reached, where
the nodes are called leafs and do not have children. For representing a grid map the map
is repeatedly partitioned into 2 × 2 blocks until the area covered by each leaf matches
the defined cell size or submap size depending on the layer where this representation is
used. Quadtrees allow dynamic memory allocation, with children only being allocated
on demand. Thus the representation does not allocate unnecessary memory, however it
comes at a cost of slower cell access. To reach a certain cell the tree needs to be traversed
from the root node to the leaf. The cost of this operation depends on the depth of the
tree.

5.3.2 Theoretical Analysis

Having introduced all evaluated data structures this section gives a theoretical analysis
of their time and space complexity. This is done for each data structure individually as
well as for their use in a hierarchical structure as proposed in this work. An overview of
the results is given in Tab. 5.1, Tab. 5.2 and Tab. 5.3. Additionally the overhead caused
by the practical implementations of the data structures are discussed. While the array
fully allocates all cells, the hashmap and quadtree only allocate used cells. For the whole
map the number of used cells is denoted as D̃ while for a single submap it is denoted
as L̃. The number of used submaps is represented as K̃ while L̄ refers to the average
number of cells over all submaps.

First the time complexity is evaluated. For an array, the position of a cell in the
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Table 5.1: Complexity of the different data structures without hierarchical organization. (Table
adopted from [Wellhausen et al., 2021].)

array hashmap quadtree

Time O(1)
Best: O(1)

O(logD)
Worst: O(D̃)

Space O(D) O(Ñ) O(D̃)

Table 5.2: Time complexity for different combinations of data structures. (Table adopted from
[Wellhausen et al., 2021].)

inner

array hashmap quadtree

ou
te

r

array O(1)
Best: O(1)

O(logL)
Worst: O(L̃)

hashmap
Best: O(1) Best: O(1) Best: O(logL)

Worst: O(K̃) Worst: O(K̃ + L̃) Worst: O(K̃ + logL)

quadtree O(logK)
Best: O(logK)

O(logK + logL)
Worst: O(logK + L̃)

memory is computed directly from the cell index. Therefore the time complexity is
O(1). Additionally there is an overhead caused by calculating the memory position
using (5.8), however this is minor. No additional overhead is caused by accessing new
elements as the map is fully allocated initially.

For a hash map the best-case time complexity for accessing a cell is O(1) as well. The
bucket index is computed using (5.9) and in the best case the element is the first in
the contained linked list. However when hash collisions occur a single linked list may

Table 5.3: Space complexity for different combinations of data structures. (Table adopted from
[Wellhausen et al., 2021].)

inner

array hashmap quadtree

ou
te

r

array O(K · L) O(K · L̄) O(K · L̄)

hashmap O(K̃ · L) O(K̃ · L̄) O(K̃ · L̄)

quadtree O(K̃ · L) O(K̃ · L̄) O(K̃ · L̄)
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contain many elements. In the worst case all elements are sorted into the same bucket,
resulting in a linked list containing all elements. This linked list must be traversed until
the correct element is found, resulting in a worst case complexity of O(D̃). There are
some additional overheads in the implementation of a hashmap. Similar to the array the
bucket index is calculated, which is however a simple computation. When performing a
cell access, during the traversal of the linked list a check must be performed to evaluate
whether the current element is the one that should be accessed. This again depends
on the number of elements in the list. Finally during insertion memory needs to be
allocated which adds overhead in itself. Additionally when too many collisions occurred
the amount of buckets n may be increased. For this all bucket pointers must be moved
and the bucket indices recomputed as (5.9) depends on n.

For a quadtree, cell access is achieved by traversing the tree from root node to the
requested leaf node. This operation has a fixed complexity of O(logD) and does not
depend on the amount of cells D̃ that have been allocated but only on the maximum
number of possible cells D. This is due to the map having a fixed depth that is traversed
each time. Some overheads exist in the quadtree implementation. In each node four
child nodes exist and the arithmetic operation to compute the correct child adds some
overhead. During insertion of new elements additional overhead is caused by allocating
the new leaf node as well as all branch nodes that may not have been created previously.
The complexity of this is bounded by O(logD), however as the tree is filled over time,
on average much fewer nodes need to be allocated.

Next the space complexity of each individual data structure is evaluated. For the 2D
array there are clear disadvantages regarding the space requirements. With the entire
grid being fully allocated the space complexity is given by O(D). This includes both
used cells and unused cells, thus allocating a large amount of space that is not required
in theory. Hashmaps on the other hand allocate space on demand. Cells that have not
been observed are not allocated, which potentially saves a large amount of memory. The
space complexity is thus given by O(D̃). Some overhead exists due to buckets being
allocated as well as pointers for storing successors in the linked list. Lastly, quadtrees
behave similarly to hashmaps in terms of memory consumption. Cells are allocated on
demand, while unused cells are not represented, resulting in a space complexity of O(D̃).
Some overheads are caused by the tree structure, as the branch nodes and root node
are allocated while not representing actual cells in the map. Each branch node as well
as the root node contains four extra pointers for their successors, where the amount of
extra branch nodes depends on how many cells are allocated in the map. The approach
benefits from the usual structure of points in LiDAR scans however, with points usually
being clustered together, while other areas are empty and would not be represented in
the tree.

Lastly the combined data structures are compared when used in a hierarchical map
with an outer and an inner layer. For the time complexity this structure results in an
additive complexity, as shown in Tab. 5.2. For space complexity the combination results
in a multiplicative increase as shown in Tab. 5.3. In this comparison the amount of
elements in the outer layer is given by the amount of submaps K, while on the inner
level it is given by the amount of cells in one submap L. For hashmaps in particular
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Figure 5.4: Time complexity of different combinations of data structures with varying submap
sizes

√
L for a fixed desired total number of cells D = 1 7502. The actual number of cells D̂

may vary. A filling level of 50% is assumed for the outer and inner data structures resulting in
K̃ = 0.5K and L̃ = 0.5L. For combinations with hashmap, the solid lines show the best case
and the dotted lines show the worst case. Some combinations have the same or almost the same
time complexity and thus overlap in the plot. Those are ar+ar, hm+hm, hm+ar, and ar+hm
(each best case); ar+hm and qt+hm (both worst case); qt+ar and qt+hm (best case); as well as
ar+qt and hm+qt (best case). (Figure adopted from [Wellhausen et al., 2021].)

the worst case time complexity does not depend on the maximum amount of submaps
or cells but instead on the used submaps K̃ and cells L̃. For the space complexity of the
hashmap and quadtree the number of used cells is again relevant, which results in K̃ for
the outer layer. On the inner layer however all submaps must be considered. Thus the
average number of used cells over all instantiated submaps L̄ is used.

The time complexity when combining the data structures in a hierarchical map de-
pends on the number of submaps as well as the number of cells per submap. Depending
on the data structure the number of submaps is given by K or K̃ while the number of
cells is given by L or L̄. When a large submap size is used, with only very few total
submaps, the complexity depends largely on the inner data structure. On the other
hand this relation is reversed when a large number of small submaps are used. The
theoretical complexity both in the best case and the worst case is given in Fig. 5.4 for
different sizes of submaps

√
L, while the size of the map

√
D is kept constant. Both

the hash map and the array have a best case complexity of O(1), thus any combination
of these data structures will also have the same complexity. The quadtree complexity
depends on the depth of the tree, which is evened out in the qt+qt combination, re-
gardless of submap size. Both arrays and hash maps in the best case do not depend
on the amount of elements in the map. This results in increasing time complexity for
larger submap sizes whenever either of these is used on the outer layer, while the inner
layer is size-dependent. This is due to the complexity of the inner layer becoming more
relevant with larger submap sizes. On the other hand the time complexity decreases
when a size-dependent data structure is used on the outer layer with a size independent

82



Moving-window Grid Mapping

structure on the inner layer. One interesting result can be observed in the combination
of hashmap+hashmap in the worst case. Here the optimal complexity is reached at a
submap size of 25, and becomes worse with both smaller and larger submap sizes. The
theoretically optimal submap size is at L = K =

√
D.

Overall a clear relationship between time complexity and space complexity emerges.
High space complexity leads to lower computational demand and vice versa. This also
holds for combinations of data structures in a hierarchical map. For the data structure
used on the inner layer it is largely irrelevant that the overall map structure is hier-
archical. The performance is similar to using a single non-hierarchical map. However
especially on the outer layer an interesting behavior can be seen when using hashmaps or
quadtrees. The resulting map has large parts that are completely unallocated, where full
submaps have not been used yet. Especially in combination with an array on the inner
layer the performance may be interesting to observe. Here the speed of the cell access
that the array offers is combined with the space-saving properties of the hashmap and
quadtree. All proposed combinations of data structures and their runtime and memory
requirements are evaluated in the following on real-world data obtained by the research
vehicle.

5.3.3 Evaluation

The evaluation of the different data structures and their combination in a hierarchical
map was performed on different real-world datasets that showcase different environments.
A highway dataset shows the performance on a short stretch of 7.8km of highway, with
speeds of up to 93 km/h. The observed environment contains few features, which is
reflected in the LiDAR data and the resulting map. The Braunschweig dataset contains
data from a rural area. It covers 15km which were driven at medium speeds of up to
66km/h. The surroundings have differing amount of structures that are measured by
the LiDAR. Finally the Borgfeld dataset contains a drive through a city scenario. The
dataset covers 4.5 km at lower speeds of up to 51 km/h. The surroundings have rich
structures and produce comparably dense LiDAR scans. The choice to use self-recorded
data was made for commonality with the work presented in Chap.4 and Chap.6. However
as the evaluation shows the results do not depend on the evaluated scenario, indicating
that the results are applicable to other datasets with similar sensor setups as well.

All data was recorded using the demonstrator vehicle presented in Chap.3. To provide
the state estimation of the vehicle the odometry localization presented in Sect.4.2 is used
as a UKF. For the implementations of the data structures the array is realized using
the vector implementation of the standard template library (STL), while hashmaps are
implemented using an unordered map, also from the STL. The quadtree does not have a
standard implementation and is thus self-implemented. All evaluations were performed
on an Intel Core i7-7700K CPU with 32GB of RAM. The algorithms run single threaded.
The size of the map is set to s = 350m and the cell resolution is chosen as δ = 0.2m. The
size of the submaps is varied in the evaluation as it is a driving factor in the differences
between the different combinations. The data provided by the LiDAR provides data on
three layers at once in 3D, the vertical field of view is however very small and as such
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the 3D information is discarded in this work by projecting the points to the horizontal
2D plane. In the following the evaluated map operations are presented, followed by
the evaluation on the hierarchical map structure presented here. Finally an additional
evaluation is performed for comparison, where the presented data structures are used as
a single map holding all cells at once.

The evaluated operations on the map are meant to reflect typical tasks in autonomous
driving. The incoming LiDAR data is first used in a scan matching step, which is meant
to align the LiDAR data with the map in order to refine the state estimation. For this
a gradient search with a beam endpoint model is used [Thrun et al., 2005, Sect. 6.4]. In
this evaluation the scan matching is only used to obtain the performance measures and
is discarded afterwards without influencing the state estimation. The second evaluated
task is a map update using the new scan. This is done as described in Sect. 5.2. Moving
the active submap grid is seen as part of the map update in the evaluation. For the array
this is simply done by swapping all submap pointers to their new position and clearing
the submaps at the border, erasing any need for costly memory allocation. For the
hashmap and quadtree the outer storage needs to be rebuilt as their internal structure
changes significantly with the shift. The last evaluated operation is the map retrieval.
This is the task of obtaining all used cells from the map. Unused cells are not retrieved
as they do not contain any information. Each step is timed and the runtime compared.
Additionally the memory consumption of the different data structure combinations is
calculated. First the evaluation is performed on the hierarchical map. The results are
shown in Fig. 5.5.

As expected the use of arrays leads to a very high memory consumption. On the
other hand they excel in the map update and scan matching task. Especially the use of
arrays as the inner data structure where the cells are stored results in fast processing in
these two tasks. When combining arrays on both layers a very fast map update and scan
matching is performed, however the map size is significantly larger compared to all other
combinations. The sudden increase in allocated space between submap sizes 28 and 29 is
caused by the ceil function in (5.4), which results in a large difference between D and D̂
in this case. While this combination is very fast for the map update and scan matching,
map retrieval is comparably slow. This is caused by the full allocation of the map. While
only the used cells are retrieved, in the array all cells are allocated. To decide whether
they are used each cell must be accessed, slowing down the map retrieval significantly.
To reduce the map size and allocate memory in a more sensible matter hashmaps and
quadtrees can be used, where only relevant cells or submaps are allocated, depending on
the layer where the data structure is used. This is visualized in Fig. 5.6. The reductions
in memory consumption are clearly visible in Fig. 5.5, however the resulting processing
speed is reduced compared to using an array.

Especially the combinations of quadtrees and hashmaps on the outer layer with arrays
on the inner layer were predicted to be promising combinations. They combine fast cell
access on the lower level with a deliberate allocation of the used submaps, which saves
a lot of space depending on the submap size. The evaluation shows that ideal behavior
is achieved around a submap size of 26 where the small submaps lead to an almost ideal
allocation of cells with little unused overhead. Here the speed of the map update and
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(a) Highway

(b) Braunschweig

(c) Borgfeld

Figure 5.5: Allocated space as well as map update, scan matching, and map retrieval speed for
different datasets. Each plot shows the median value of all time steps. (Figure adopted from
[Wellhausen et al., 2021].)

scan matching are close the the array+array combination, although slightly worse, which
is expected. Especially in the map retrieval the combination shows its strengths, which
is much faster compared to all other combinations when small submap sizes are used.
This is caused by the fast cell access on arrays on the inner layer, while only having
allocated a small amount of unused cells that need to be iterated, significantly reducing
the overhead compared to the array+array combination.

As a comparison the mapping was evaluated on the same scenarios by using a single-
layer map where the entire map is stored in one data structure without the use of
submaps. The evaluation was performed on the Borgfeld dataset, as the other two
datasets cover an area that is too large to represent in a single map. For the Borgfeld
dataset a map of D = 163842 = 268435456 cells was used, with a cell size of δ = 0.2m.
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(a) ar-ar (b) hm-ar (c) ar-hm (d) hm-hm

Figure 5.6: Comparison of allocated submaps and cells with different data structures. For better
visualization, the figures only show a section of the map and not the whole square window. In
case of allocated cells, black corresponds to a high and white to a low occupancy probability.
(Figure adopted from [Wellhausen et al., 2021].)

Table 5.4: Results for a single map instead of a hierarchical one for the Borgfeld dataset (median
values over all time steps). (Table adopted from [Wellhausen et al., 2021].)

array hashmap quadtree

allocated space (MByte) 4 096 171.67 221.57

update (ms) 1.49 4.09 2.65

scan matching (ms) 5.21 8.47 10.41

map retrieval (ms) 708.73 297.16 255.89

This roughly covers an area of 3km2. The results are shown in Tab.5.4. The performance
of the array as a single map is comparable with the performance in a hierarchical map.
This is likely due to the array access using close to no computational resources. The
driving factor here is likely other computational overhead, and thus no differences are
visible.

For the quadtree the computation time is comparable to using quadtrees in a hier-
archical map with larger submaps. In the hierarchical map the outer layer needs to
be rebuilt whenever the window is moved. This produces a significant overhead which
is reduced for larger submaps, thus resulting in more similar execution time for larger
submaps. Overall the submap approach slightly outperforms the single map approach
due to the lower depth of the quadtrees in this case.

For the hashmap the map update speed is slower in a single map organization, while
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scan matching is performed faster. In a single hashmap simple cell access would be
expected to be faster as only one access to the hashmap is required as opposed to two.
However the map update not only accesses the map but also allocates new cells, which
may result in allocation of new buckets in the hashmap. This causes elements to be
redistributed between buckets, which is computationally expensive for large maps. On
the other hand the scan matching does not allocate new cells. This operation is thus
faster in a single map approach.

In addition Tab.5.4 gives the memory allocated in the final map as well as the average
time for map retrieval. These values are however largely meaningless in this evaluation
as the map is much too large to work with and are only given for completeness. Among
the evaluated data structures the hashmap is the only one that could in theory be used
for arbitrarily large areas as it is automatically extended when new elements are inserted.
Both the array and the quadtree have pre-defined maximum sizes. However as the single
map evaluation shows the hashmap approach becomes less efficient especially in the map
update with a larger map size and should thus also not be used as a single map.

5.3.4 Recommendation

From all evaluated data structure combinations three of them stood out to be useful in
certain tasks. The combination of arrays on both layers outperforms all other approaches
in simple processing speed of new data. This comes at the cost of a high memory
demand and a resulting slow map retrieval. Using quadtrees or hashmaps on the outer
layer instead with arrays on the inner layer creates a compromise between processing
speed and map retrieval speed, while also using significantly less memory. The usability
of these different combinations depends on the use case in which the map is utilized.
In most cases a map is built which is retreived and sent to subsequent algorithms for
further processing. In this case a combination of a quadtree or hashmap with an array
on the inner layer is preferable. If the mapping is meant to be performed without regular
retrieval of the map, for example for building a reference map for later use, using arrays
on both layers produces the best performance.

While these findings were generated without any parallel processing, in general the
read-only cell access performance of the different data structures would be similar in
a parallelized mapping approach. Write operations when using parallelization need to
ensure synchronized access of the cell as well, which again does not change the findings.
There are however advantages of using arrays for parallelization, especially when the cells
accessed by each thread are disjunct. First, the required memory in an array is already
allocated, while hashmaps and quadtrees allocate memory on demand which needs to be
synchronized between threads, resulting in potential delays in execution. Additionally
in an array the memory is allocated in a single block for each submap. This speeds
up data transfer between the CPU and GPU, which is often a limiting factor in GPU
programming. To further decrease the impact of the data transfer a larger submap
size should be used to increase the size of the data blocks that are transfered at once.
A combination of hashmaps or quadtrees on the outer layer with arrays on the inner
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layer may additionally reduce the overhead caused by the data transfer, as it causes less
unused submaps to be allocated, which do not need to be transferred.

5.3.5 Conclusion
In this work different data structures for grid mapping in large-scale environments were
evaluated, with a focus on applications in autonomous driving. To enable mapping
in large scenarios a moving-window approach was chosen which only focuses on the
immediate surroundings of the vehicle. A world-fixed map is created, however the map
is only calculated and kept in a fixed window, which is moved with the vehicle roughly
in its center. This is done by utilizing a hierarchical map structure where the map is
divided into submaps. As the vehicle moves, submaps behind the vehicle are continuously
discarded, while new ones are allocated in the front of the vehicle.

All coordinate transformations between the navigation frame, the global grid map
storing submaps and the submaps storing the cells are given in this work. In the evalua-
tion three different data structures are compared for use in this hierarchical map, namely
a 2D-array, a hashmap and a quadtree. As its main contribution this thesis evaluates
the performance of each combination of these data structures in a hierarchical map, both
on a theoretical level and in practical use. The theoretical analysis of the different data
structures covers their time and space complexity as well as possible overheads, both for
isolated use and for combinations in a hierarchical map. The practical evaluation was
performed on multiple real-world datasets and evaluates the performance of all different
combinations of data structures in a hierarchical map. This was evaluated on typical
map operations that are relevant to autonomous driving, namely the map generation,
scan matching and map retrieval. In addition the memory consumption was evaluated.
The results showed multiple interesting combinations of data structures, with arrays
being the best for the inner layer. On the outer layer arrays perform best when the map
is not retrieved regularly. However when this is required the hashmap and the quadtree
outperform arrays on the outer layer as long as small submaps are used. The moving-
window grid mapping approach with the proposed data structures is actively used in the
autonomous driving stack on the research vehicle presented in Chap. 3.
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Object Detection and Tracking

Another crucial functionality required for autonomous driving is the detection and track-
ing of other traffic participants within the vicinity of the vehicle. While the map
created in Chap. 5 determines whether areas are traversable or not, no information
is contained about the underlying dynamics of the surroundings. In fact, most ap-
proaches do not consider dynamics at all and instead make the assumption of a static
environment, leading to inconsistent estimates when dynamic objects are measured
[Reineking and Clemens, 2014]. Therefore dynamic objects are handled separately in
this work.

For handling dynamic objects two tasks need to be solved. First, the objects need to
be detected. This can be done in any number of different sensors, where each sensor
measures different aspects of the object. In this work, object candidates are generated
using LiDAR, Radar, Camera and V2X data. While for the first part of this section the
object detection will be seen as a black box, with each sensor detecting objects indepen-
dently, in Sect. 6.3 different object detection algorithms for the LiDAR are explored to
avoid the reliance on the black box detections.

After detection the object candidates with their different properties need to be fused
into a single consistent estimate and their object state including the pose, size and
dynamics must be estimated. This is also referred to as object tracking or multi-object
tracking. There are multiple stages at which this fusion may take place. The simplest
case is a so called late fusion, where the objects are detected completely independently
and then combined and fused together. No information is exchanged between the sensors
during object detection, making the detections independent from each other. The fusion
is performed at the latest possible stage in the sensor processing chain, thus coining the
name late fusion. On the other end of the spectrum an early fusion may be used for object
detection and tracking. Instead of detecting objects with each sensor individually, the
data from multiple sensors is combined directly within a common representation. Using
this approach the object detection may leverage much richer features that were recorded
using multiple sources. This can lead to more accurate object detections, which in turn
improves tracking performance [Gadzicki et al., 2020]. The distinction between early
and late fusion is however not rigid. A mixed approach can be used in order to allow
accurate object detection on a richer representation while other sensors may perform
object detection separately [Malawade et al., 2022]. In this work however a late fusion
is utilized. This allows for fusion of arbitrary sources of information, whereas in an
early fusion including new information sources would often require significant changes
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to the fusion algorithm. However a mixed approach is evaluated in Sect. 6.3.2, where
the LiDAR points from different sensors are fused into a joint representation early and
Radar data could be included as well.

In the following first the state-of-the-art of object detection and tracking is given in
Sect. 6.1. Secondly the late fusion approach is presented in Sect. 6.2. Finally the object
detection approaches are given in Sect. 6.3.

6.1 State-of-the-art
Object detection and tracking has been an important field of research since long before
the emergence of autonomous vehicles. In recent years the interest in this field has
grown further especially with recent improvements in deep learning technology. While
the focus of this work is on classical approaches, in the following an overview will be
given on both classical and deep-learning based approaches. First the current state-of-
the art on tracking approaches is presented, while recent advancements for LiDAR object
detection will be given thereafter. The overview focuses on LiDAR-based algorithms as
the vehicle is equipped with six LiDARs that allow full coverage of the environment,
making this the main sensor for object detection. Camera-based detection is out of the
scope of this thesis and only seen as a black-box instead.

6.1.1 Multi-Object Tracking
The field of multi-object tracking has been researched thoroughly and is a comparably
mature field of research in autonomous driving, with many of the utilized technologies
such as Kalman filtering [Kalman, 1960] or Monte Carlo sampling-based approaches
[Liu and Chen, 1998] being used for many years. However there are still advancements
in the field. An overview over multi-object tracking approaches is given in the following,
with a focus on extended object tracking, where the tracked object is represented to have
a spacial extent as opposed to point tracking where only single points are considered.
Especially in autonomous driving the extent of the tracked objects is a crucial property,
making extended object tracking the more suitable approach.

In [Luo et al., 2021] an overview over multi-object tracking approaches is given. This
work focuses on probabilistic approaches, as uncertainty in sensor measurements is a
crucial information and including this in the state estimation has significant advantages
when the noise is estimated well. In addition probabilistic approaches give an uncertainty
measure for the resulting state estimate which can be used by subsequent algorithms and
provides very valuable information. Variants of the Kalman filter are among the most
frequently used methods in object tracking and have been used in a large number of works
surrounding object tracking in autonomous driving. In [Chen and Shao, 2021] an EKF
is utilized for visual tracking of vehicles in an image. In this work intersection over union
is used for determining which detected vehicle belongs to which tracks, while a Kalman
filter is used to predict the state of the vehicle forward. Upon successful association the
state estimate is corrected using the associated measurement. In [Guo and Zhao, 2022]
an adaptive cubature Kalman filter (CKF) is used for tracking in autonomous driving,
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where the objects are detected using deep learning on an image. After detection the
object is fused with the current state estimate to obtain a smooth estimate which takes
into account the motion model of vehicles. In fact there are countless object tracking
approaches that utilize different variants of the Kalman filter, such as [Steyer et al., 2017;
Mobus and Kolbe, 2004; Zhang et al., 2022] to name a few more. The Kalman filter
allows for both the motion of the vehicle as well as the measurement of the vehicle state
to be modeled precisely. Both of these processes are well defined and as such they can be
modeled with high precision, making the Kalman filter a precise tool for object tracking.
Due to this they are utilized in this work as well.

There are however other approaches also suitable for multi-object tracking, such as
the particle filter. This is for example used in [Fang et al., 2019] for tracking of vehicles
on a road and [Santos et al., 2019] for tracking of an unmanned aerial vehicle. However
a particle filter is generally less computationally efficient than a Kalman filter which is a
significant consideration in autonomous driving where computational power is limited.
With the Kalman filter already being suitable for efficient state estimation the particle
filter is therefore not used in this work.

Further advancements in the field of multi-object tracking were achieved through the
use of random finite sets (RFS) [Mahler, 2007] which allows modeling the uncertainty
of associations between object tracks and measurements. This is used in the Probabil-
ity Hypothesis Density (PHD) filter [Mahler, 2007], where the PHD is the first order
moment of an RFS and models an intensity function over the state space. The PHD is
propagated in time, allowing track association in dynamic and cluttered environments.
This approach is highly useful in these scenarios when point tracking is performed, where
track association is a highly difficult task. However in this thesis extended object track-
ing is considered, where the object association problem is significantly simpler to solve as
the extent of the objects carries additional information which can be utilized for associ-
ation. In addition in autonomous driving there is a natural distance being kept between
traffic participants which further simplifies the association problem. Therefore the PHD
filter is not considered in this thesis.

6.1.2 LiDAR Object Detection

While LiDAR object detection was traditionally often done in 2D due to the available
LiDAR sensors measuring only in one dimension, this has shifted in recent years due
to emerging LiDAR technologies enabling measurements on many layers. As such re-
cent research on 2D object detection is limited when compared to 3D object detection,
however it is still utilized in many scenarios due to reduced computational demands and
reduced sensor cost. In [Chen et al., 2020] a deep-learning based 2D detection algorithm
is proposed which uses a Region proposal Convolutional Neural Network (RCNN) for de-
tection. In the approach a pseudo-image is generated from the point cloud by projecting
it to the ground plane and discretizing it into an image. On this image regions of interest
are detected by a CNN, which correspond to other traffic participants. In addition the
authors propose a second object detection network which does not rely on the pseudo
image representation but rather uses the raw LiDAR points, which is much faster to
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process due to the sparseness of the data. It is based on ResNet [He et al., 2016], al-
though with some changes to achieve real-time performance. The models in this work
were trained on a self-recorded dataset, as no suitable public dataset is available for 2D
object detection on LiDAR data.

For 3D object detection using deep learning significantly more research exists, which
is driven by a number of available public datasets such as KITTI [Geiger et al., 2012],
Waymo [Sun et al., 2020] and nuScenes [Caesar et al., 2020]. A comprehensive
overview of deep-learning based approaches for 3D object detection is given in
[Zamanakos et al., 2021]. Different representations for the point clouds are used
to reduce computational load, although some approaches such as [Shi et al., 2019;
Yang et al., 2019; Yang et al., 2020] utilize the raw or down-sampled point clouds
directly for detection. Other approaches such as [Zeng et al., 2018; Barrera et al., 2020]
project the data to a plane in order to reduce dimensionality of the data for detection,
while the 3D information is recovered retroactively. These approaches could in theory
also be utilized for 2D object detection, as they do not directly utilize the 3D data for
detection, however the data provided by 3D LiDARs is still denser even when projected
to a plane, giving the detection algorithm more features to work with. Additional
approaches such as [Zhou and Tuzel, 2018; Shi et al., 2023; Lang et al., 2019] utilize
voxels or pillars for geometric abstraction of the point cloud data in order to reduce
computational load. Additionally in [Team, 2020] an object detection tool is given for
easy evaluation of different object detection implementations which supports multiple
state-of-the-art implementations and supports multiple public datasets. As this
overview shows much research is done in the field of 3D object detection and this field is
still evolving quickly. However even with many publicly available datasets the training
data available is limited and most object detection algorithms restrict the amount of
different object labels that are supported. To ensure high detection performance in all
driving situations a vast amount of training data is required, while only limited data
is currently publicly available. In combination with the lack of explainability and with
no comprehensive data sets available of 4-Layer LiDARs built into the sides, front and
rear of the vehicle a conscious choice was made to not utilize either 2D or 3D object
detections based on deep learning.

While current research is heavily focused on 3D object detection using deep learning,
some recent works still utilize classical approaches for this task, both in 2D and in
3D. For 3D object detection [Sualeh and Kim, 2019] propose to use ground removal,
clustering and box fitting in order to detect other vehicles in the environment. The work
utilizes multiple 3D LiDARs mounted on various locations on the top of the vehicle.
The object detection is paired with a tracking approach using the interacting motion
model unscented Kalman filter (IMM-UKF) to track the vehicle. By utilizing an IMM
different models can be assumed for different motion patterns, increasing the tracking
accuracy. In [An et al., 2019] a 4-layer LiDAR is utilized, however the data is reduced
to two dimensions and detection is performed on contour information in the point cloud
data. For this a contour is extracted from the measured points and made into object
hypotheses, which are then tracked by using dynamic time warping in order to find
associations between contours from frame to frame. While the shows promising results,
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it is developed for the detection of other cars. However especially in urban driving the
detection of bikes and pedestrians is a crucial task, both of which do not have clearly
defined contours when measuring them with a LiDAR. As such an approach solely relying
on contour information is unsuitable for this task.

In [Guo et al., 2019] a feature-based approach is proposed. For this a clustering is
performed on the available 4-layer LiDAR data, which is again projected to a 2D plane.
On these clusters one or two lines are fitted and depending on the number and orientation
of the lines the objects are either classified as a vehicle, a bicycle or a pedestrian. While
this approach performs well on the evaluation data, it strongly relies on a large number of
fine-tuned parameters and it is unclear if it would be possible to add more object classes
in the future. As the resulting object detection framework would be very difficult to
extend this approach is not explored further in this work despite its strong performance
on the evaluation data set.

In [Steyer et al., 2017] a 2D object detection approach is presented which utilizes evi-
dential dynamic maps that estimate the dynamics of the surroundings of the ego vehicle
and use this information for generating object candidates. For this both LiDAR and
Radar data is utilized in order to estimate the dynamics for each cell in a grid map.
This is done using particles, where each particle represents potential dynamics of the
cell. The inclusion of dynamics in the object detection task is an interesting approach,
as this contains much information about the object and may aid in distinguishing be-
tween objects and other structures, which is often not a trivial task on 2D LiDAR data.
Therefore this approach is further investigated for the use when only LiDAR data is
available in Sect. 6.3.

6.2 Object Tracking using Late Fusion

Object tracking is performed using a ⊞-Kalman filter similar to the filter introduced in
Sect. 4.2. In fact the underlying estimation problem is very similar in nature, with the
goal being the estimation of a vehicle pose as well as its dynamics. Therefore, some
similar models are used, with the distinction that the state of the vehicle is strictly
measured from external sensors. The state to be estimated is defined as

xt =



rt

ψt

st

vt

at

ωt


, (6.1)

with rt ∈ R2 denoting the position of the vehicle in 2D and ψt ∈ SO(2) representing
the rotation around the z-axis of the vehicle (yaw). The symbol st ∈ R2 represents the
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size of the object represented by a rectangular bounding box, while vt ∈ R2 denotes
the body-fix velocity of the vehicle. Lastly, at ∈ R2 and ωt ∈ R denote the body-fix
acceleration and turn rate of the vehicle respectively. The state space is thus defined as

S = R2 × SO(2)× R2 × R2 × R2 × R. (6.2)

Note that a choice was made for the object tracking to estimate the vehicle state in
2D instead of using the 3D state as introduced for localization. This choice was made
based on the available data for object detection. With the LiDAR only measuring with a
vertical FOV of 3.2 degrees, very limited 3D information is available. This is however not
enough to confidently measure an object height. In fact for most tasks no 3D information
is required. With the other traffic participants moving on a roughly flat road, they can
be assumed to always be moving at the same height as the ego vehicle.

Another change to the state vector is the addition of the size of the vehicle, which
is unknown when estimating other traffic participants. A case can be made that this
is not a property that needs to be filtered, as this is a fixed value and once the vehicle
was fully observed it is known and does not change. However, with the LiDAR giving
comparably sparse measurements it is not always possible to determine the correct size
initially. Instead it is viewed as an uncertain property and filtered over time. However,
some measures need to be taken in order to avoid shrinking objects. This is discussed
in Sect. 6.2.3. For the Kalman filter again the motion model as well as the measurement
models are presented in the following. The motion model is defined as

f(xt) =



rt +Rtvt ·∆t
ψt ⊞ ωt ·∆t

st

vt + at ·∆t
at

ωt


, (6.3)

with Rt describing the 2D rotation matrix resulting from the SO(2) rotation defined
by ψt and ∆t denoting the time since the last update. The state transition noise Mt is
defined as

M̄t = ∆t



r̂t

ψ̂t

ŝt

v̂t

â

ω̂


, (6.4)
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with M̄t describing the principal diagonal of the covariance Mt. The corresponding
Jacobian for the motion model is given by

J = ∂f

∂x
=



I2×2
∂fr

∂ψ 02×2
∂fr

∂v 02×2 02×1

01×2 1 01×2 01×2 01×2 ∆t
02×2 02×1 I2×2 02×2 02×2 02×1

02×2 02×1 02×2 I2×2 I2×2∆t 02×1

03×7 I3×3


. (6.5)

In this Jacobian the non-trivial derivations are given by

∂fr
∂ψ

=

− sin(ψ) · vx − cos(ψ) · vy
cos(ψ) · vx − sin(ψ) · vy

 ·∆t (6.6)

∂fr
∂v

= Rt ·∆t, (6.7)

where Rt ∈ SO(2) is the 2D rotation matrix corresponding to the rotation defined by ψt.
With the motion model defined, the estimated object can now be predicted forward in
time according to (6.3). Note that this model is not fully applicable to pedestrians who
may present more unpredictable behavior. Modeling pedestrian behavior is however out
of the scope of this work.

To now fuse different sources of information about the tracked objects into one consis-
tent estimate, the measurement models for different information sources are given in the
following. For such a fusion to work it is however important that the state estimation
and the detection algorithms are aware with respect to which reference point the objects
are described. The handling of the reference point is thus explained first.

6.2.1 Reference Point

The choice and handling of the reference point of a detected or tracked object is crucial
in the object state estimation task. An incorrect choice of a reference point may lead
to jumping position estimates, incorrect sizes and incorrect dynamics estimates. An
example of the fusion of objects with different reference points is given in Fig.6.1, where
it can be seen that an incorrect choice of reference points may lead to an incorrect shift
in the position estimate. In this example an object is observed fully by the red box
and partially by the green box. If the reference point is chosen in the center the fused
estimate takes into account both reference points, with the new estimate lying between
the two reference points. This falsely results in a shift in position, with the blue box
now covering areas that were observed by neither measurement. Choosing the bottom
right as a reference point instead the result is positioned correctly.

It is therefore important to specify a reference point whenever a 2D object is repre-
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Figure 6.1: Fusion of object estimates with incorrect reference points (left) and with correctly set
reference points (right). Two measured objects (red and green) are fused to obtain a combined
estimate (blue). Reference points are shown as black dots.

CenterLeft Front LeftRear Left

Rear Right Right Front Right

FrontRear

Figure 6.2: Possible reference points on a 2D bounding box.

sented. The choice of the best reference point is always dependent on the current scene
and what parts of the object are observed. Therefore multiple options must be available
to choose from for the reference point. These are shown in Fig.6.2. To choose from these
points, many approaches exist. In the simplest case the distance of the sensor to each
reference point on the object is calculated and the point with the smallest distance is
chosen as reference point. The idea behind this is that the closer the point is to the sen-
sor the better it is observable. This is however not the case when occlusion is considered.
In that case it may happen that closer parts of an object are partially occluded, making
the chosen reference point unreliable. Instead the choice of the reference point can be
aided by the mapping approach presented in Chap. 5. To determine whether measured
object borders around a potential reference point reflect the real object boundaries or
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whether they are estimated incorrectly due to occlusion, a check can be performed on
the cells adjacent to the perceived object boundaries. Since the occupancy grid map
contains information about how often a cell was traversed or measured recently, it can
be used to determine whether the area next to the boundary was measured to be free.
If it was measured in the LiDAR scan to be free the object boundary can be observed
in that position and it can be used as a reference point. If it was not measured it is
currently occluded and a different reference point must be chosen. Using this method a
correct reference point can be chosen for an object detected by a LiDAR.

6.2.2 LiDAR Object List

Using a late fusion approach any object source can be fused into the state estimate, as
long as the measurement model can be formulated. This includes detections that are
not generated as part of the sensor fusion stack but in external software as a black box.
This is the case for the Scala LiDAR sensors built into the research vehicle as shown
in Sect. 3.4. The built-in object detection measures full object state estimates including
a pose, size and velocity estimate. These estimates are meant to be used as is and are
specifically designed and optimized for object detection on large roads at higher speeds,
such as highways. The detection performance in urban areas is therefore significantly
impaired. In addition to the low detection performance of a single scanner, no inherent
way of combining the estimates from multiple scanners is offered by the scanners. This
feature is available for purchase which includes building additional hardware into the
vehicle. This is however not included in the demonstrator vehicle setup and as such the
combination of the different measurements must be performed in the sensor fusion. To
overcome these weaknesses of the detected objects, the estimated LiDAR object states
are fused using a late fusion. It allows to use all objects measured by any scanner as
measurements, and by combining them strengthens the detection performance, as some
scanners may generate better estimates than others. For this first an object association
is required, which is described in the following.

Object Association The objects given by the scanners are already tracked and the
measurement contains a unique tracking id. This is however only unique within one
scanner. When data from multiple scanners is combined, a mapping m : N× N → N is
required, which maps from a scanner id and the unique object id within that scanner
to a unique filter id within the sensor fusion stack. In this mapping, multiple pairs of
scanner ids and object ids can map to the same filter id, in order to associate different
tracks from scanners to the same filter. The mapping is obtained by first checking the
intersection of the two objects. If either object is sufficiently covered by the other one
they are associated to the same filter id. To keep computations simple this is checked by
evaluating whether the center point of either object lies within the bounding box of the
other. This effectively means that at least a quarter of the object is contained within the
other object, which is a reasonable threshold to assume that the object can be associated.
To check whether the center point c1V of the first object O1 is contained in the bounding
box of the second object O2, the center point is first transformed from vehicle coordinates
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to the coordinate system of O2. This is done by the simple transformation

c1O2 = T V→O2c1V , (6.8)

where T V→O2 is the transformation obtained by combining rt and ψt of O1 into a
transformation matrix. With the center point of O1 now expressed in the coordinate
system of O2 the check whether it is within the object boundaries simply reduces to

inside(c1O2, O2) =
(
−s2x2 > c1O2

x >
s2x
2

)
∧
(
−s2y2 > c1O2

y >
s2y
2

)
, (6.9)

where s2 is the size estimate of the second object. This check is performed in both
directions to cover cases where a smaller object is contained within a significantly larger
object. There are however cases where the size of one or both objects could not be
determined correctly by the detection algorithm, for example when only the front was
visible in the sensor data. In this case the size in one dimension will be close to zero
and overlap is less likely. To still associate objects in these cases a distance threshold is
applied on the center point. Any objects closer than the threshold are associated

close(c1, c2) = ∥c1− c2∥ < tcl, (6.10)

with tcl being the distance threshold. The choice of threshold is difficult as there is a
significant difference between reasonable values for vehicles and pedestrians. As with the
motion model it is however not as important to perfectly model pedestrians, partially
because they move comparably slow and are easy to avoid without estimating them
perfectly. Another reason is that detecting pedestrians in the sparse data available from
the LiDAR is extremely challenging and as such the focus is shifted away from this
task. Therefore some wrong associations of pedestrians in a group are tolerated. As a
consequence for this thesis a threshold of tcl = 1m was chosen. To determine whether
two objects are associated, both checks are performed as

associated(O1, O2) = close(c1V , c2V ) ∨ inside(c1O2, O2) ∨ inside(c2O1, O1). (6.11)

When no association is found a new Kalman filter is initialized with the current LiDAR
measurement as its estimate. When an association to a filter is found the measurement
is instead fused into the existing state estimate which is described in the following.
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LiDAR Object Fusion To fuse objects into the state estimate, first the measurement
is defined by

zot =



rV

ψV

sO

vO

aO

ωO


, (6.12)

where rV represents the position of the reference point, while ψVt represents the ori-
entation, both given in the vehicle frame. Additionally, sO, vO, aO and ωO represent
the size, velocity, acceleration and turn rate in the object frame respectively. To fuse
the measurement it is important that the reference point of the measured object and
the state estimate are the same. Therefore, the reference point of the state estimate is
shifted to match the reference point of the measurement. It is important to perform
the change in this direction, as this ensures that the reference point is observable in
the current scan. To perform this change on the object state it is passed through the
function

hc(xt, tt) =



Tt · tt
ψt

st

vt

at

ωt


, (6.13)

where Tt is the transformation matrix corresponding to the estimated object pose, while
tt is the offset from the previous reference point to the new one. Here the covariance is
zero as there is no uncertainty added during the process and the Jacobian is given by

Jc = ∂hc

∂x
=


I2×2

∂fr

∂ψ 02×2 02×2 02×2 02×1

01×2 1 01×2 01×2 01×2 ∆t
07×2 07×1 I7×7

 . (6.14)

The derivation ∂fr

∂ψ is given by

∂fr
∂ψ

=

− sin(ψ) · vx − cos(ψ) · vy
cos(ψ) · vx − sin(ψ) · vy

 . (6.15)

With both the measurement and the state estimate expressed in the same reference
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point they can be combined in the filter. The measurement function ho : S → S is
defined as

ho(xt) =



T V→N · rt
ψt ⊟ ∥RV→N

z ∥

st

vt

at

ωt


, (6.16)

where T V→N is the transformation from navigation to vehicle frame obtained by the
odometry localization presented in Sect.4.2 and ∥RV→N

z ∥ is the 2D rotation angle which
corresponds to the rotation around the z-axis of the ego vehicle in the navigation frame.
The measurement is assumed to be affected by additive, normally distributed noise with
covariance Qot and zero mean, which is estimated by the LiDAR. The Jacobian of the
measurement function is given by

Jo = ∂ho

∂x
=

RV→N
z 02×8

08×2 I8×8

 , (6.17)

where RV→N
z is the 2D rotation matrix representing the rotation of the ego vehicle in

the navigation frame. With the motion model and the measurement model for LiDAR
objects defined the object tracking framework is already functional. In fact it can be
used with any detection algorithm that measures the object state directly and is not
reliant on a specific object detection. However for a first test the fusion is performed on
the detected objects given by the black box implementation of the Scala LiDARs.

The evaluation is performed qualitatively to showcase scenarios in which the object
detection and tracking work well and also where they fail to produce good results. In
Fig. 6.3 the fusion of three detected objects into a state estimate is shown. In this figure
a vehicle is detected by multiple LiDAR sensors, each estimating a different object
state. All detections are fused into the state, with the resulting estimate shown in
green. In Fig. 6.3a the simplest case is shown where only a single LiDAR measures the
object. this is fused with the previous estimate, creating the current state estimate. In
Fig. 6.3b a slightly more complex case is shown, where two LiDARs measure the same
object. As can be seen in this figure, both detections are correctly associated with the
same filter, leading to a single estimate for both measurements. In Fig. 6.3c a case is
shown where the object is measured by three different sensors, however one sensor only
partially observes the object. As can be seen all objects are correctly associated to
the same state estimate with no second state estimate being generated for the partial
measurement. The resulting state estimate reflects measured properties from all three
measurements. The partial measurement however does not reflect the actual size of the
object. This may happen when only a part of the object is visible, for example when
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(a) One object fused into the es-
timate

(b) Two objects fused into the es-
timate

(c) Three objects fused into the
estimate

Figure 6.3: Object detections and resulting state estimate. Detected object in red, tracked object
in green. Note that the green bounding box is partially covered by the red bounding boxes due
to similar values in the measurement and the result.

it is measured on the edge of the FOV of the LiDAR. In the naive model presented
above this would lead to a reduction in the estimated object size, which is however not
a logical explanation for the measurement, as the object was previously measured to
be larger and no traffic participants that are to be estimated in this work can shrink.
Therefore, significant reductions in the size of the measurement compared to the estimate
are handled separately in the filter. This is explained in detail in the following.

6.2.3 Object Size

As mentioned in Sect. 6.2 the size of an object is seen as part of the state in this
work and as such is estimated probabilistically by the Kalman filter. Including the
size in the state has clear advantages. The size of an unknown traffic participant is
an uncertain variable and is measured with some uncertainty which can be taken into
account in a probabilistic state estimator. Additionally by including it in the state no
extra mechanism is required for size estimation, which simplifies the process as well as
the maintainability. Difficulties arise when an object is measured twice with significantly
different sizes, as shown in Fig. 6.3c. In a standard Kalman filter, the probabilistic
combination of the two measurements would result in an estimate with a reduced size.
With the object size specifically this is however not the desired result, as objects are
not expected to shrink and the largest measured object size is the best current estimate
excluding measurement noise. To reflect this within the filter the measurement model
is modified in cases where a measurement is significantly smaller than the estimate. For
this a maximum allowed shrinkage θs ∈ [0, 1] is defined, which determines how much
smaller the measurement can be compared to the state. This is given by

smaller(x, z) = xx · θs > zx ∧ xy · θs > zy, (6.18)
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where xx and xy refer to the x and y size of the current state, while zx and zy denotes
the size of the current measurement. Note that even if one dimension is large enough to
be included in the measurement the check still rejects the entire measurement. This is
due to the fact that measurements that measure an incorrect size in one dimension are
generally less reliable in estimating the other dimension as well.

To exclude the size from the state estimation problem, first a reduced measurement
is defined as

zort =
[
rV ψV vO aO ωO

]T
. (6.19)

Secondly, the size is removed from the measurement function, which is defined as

hor(xt) =



T V→N · rt
ψt ⊟ ∥RV→N

z ∥

vt

at

ωt


, (6.20)

Lastly, both the covariance and the Jacobian are reduced to reflect the changes in the
measurement. For this, the matrix MR ∈ R8×10 is defined as

MR =

I3×3 03×2 03×5

05×3 05×2 I5×5

 , (6.21)

with the reduced covariance defined as Qort = MRQot (MR)T and the Jacobian defined
as Jor = MRJo.

With this version of the measurement update the size is disregarded, while the pose,
velocity, acceleration and turn rate are still updated. This allows the tracking system to
handle cases as shown in Fig. 6.3c, where one of the associated detections was only par-
tially observed. Often such partial observations have a lower detection quality compared
to detections where the full L-shape of the vehicle is visible. Excluding such partial
measurements is however not desired, as this would often lead to tracks being lost when
the object is partially observed for an extended period of time.

The object tracking system that results from the given motion and measurement
models performs well in cases where the objects can be well observed by the LiDAR.
Especially when the L-shape is visible a detection is given with a very high accuracy.
There are however many cases where the object detection built into the LiDAR fails to
detect objects, misdetects their properties or gives false positives or negatives.

Some such cases are shown in Fig. 6.4. In Fig. 6.4a an example is shown where the
downside of a late fusion comes into play. The object that is to be detected is right next
to the ego vehicle, and its entire side is visible. With the detection being performed on
each LiDAR individually the object is however not seen as a whole in any scan. Instead
it is split, resulting in a small object detected at the front, and no detection at all in the
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(a) One partially detected ob-
ject, resulting in incorrect object
bounds

(b) Two detected objects without
sufficient overlap, resulting in two
tracked objects

(c) An object behind the car that
is not detected by the LiDAR

Figure 6.4: Examples of misdetections made by the LiDAR. Detected object in red, tracked object
in green.

back. In Fig. 6.4b an example is shown where the object association was unsuccessful.
Instead of obtaining a single track for both detections, two tracked objects are created.
This is a drawback of the association function as defined in (6.11). Neither center point
is contained in the other track, and the distance threshold is not met either. The result
is however not critical to the systems safety, as both objects have correctly estimated
dynamics. Over time as the tracks overlap more they will be merged and create a single
consistent object again. Lastly, Fig. 6.4c shows one of the cases where an object is seen
fully but not detected. This shows a significant drawback of the presented approach, as
it fully relies on a blackbox object detection with no way of including missed detections
like this. While the presented approach gives a good baseline to work with, to improve
tracking performance an improved object detection implementation is required which is
explored further in Sect. 6.3.

In addition to an improved object detection a multi-sensory approach is explored in
this work. In the following the additional sensors are introduced and their measurement
models given. This includes a front-facing camera, a radar and information obtained by
V2X communication.

6.2.4 Camera

A camera is the ideal sensor to use in combination with LiDARs to obtain additional
information about surrounding traffic participants. While a LiDAR gives highly precise
location and shape information in a 3D world frame, it is difficult to classify objects
solely based on the geometric data contained in a scan. While object classification based
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Figure 6.5: Example output of the camera-based object detection overlaid onto the image. Red
boxes represent cars while blue boxes show pedestrians.

on LiDAR data is out of the scope of this thesis, the camera provides this information
for objects within its field of view, which gives subsequent algorithms valuable additional
information. In addition to difficulties with object classification, object bounds are often
not clear in LiDAR data. When two objects are close together it becomes impossible to
determine whether a single or multiple objects are contained in a scan, as there is no
color information and as such no texture available from which to derive boundaries. A
camera excels in these tasks. Object detection and classification in camera images is a
topic that has been very thoroughly investigated and is still an active area of research.
With the recent surge of deep learning-based approaches the performance of camera
based object detection and classification has greatly improved, making them essential
in the recent advancements in the field of autonomous driving. While the camera-based
object detection is out of the scope of this work, the fusion of such objects into the
state estimate via late fusion is investigated. By fusing the camera estimate with other
estimates such as the LiDAR detections, the aforementioned strengths of the camera
are utilized, while its main weakness of not containing 3D information is mitigated by
the LiDAR detection. Similar to the LiDAR object detection, for the late fusion the
camera detection is seen as a blackbox. The result is a 2D bounding box in the camera
image for each object, including a classification of the object. An example of an object
detection can be seen in Fig. 6.5. In addition a confidence is given for each detection to
be an object. The contained information is highly valuable for object tracking, however
to make it usable for the filter is difficult as the camera measures in 2D on the image
plane. Connecting this to the vehicle coordinate system requires a calibration of the
camera both intrinsically and extrinsically, which is described in the following.

Intrinsic Calibration The intrinsic calibration determines the distortion parameters to
correct distortion in an image. These effect are introduced by the light entering the
camera through a lens, which is called radial distortion or fish-eye effect, and by the
sensor not being aligned with the lens, called tangential distortion. In addition to the
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Figure 6.6: Visualization of the ambiguity of the size of an object seen in an image.

distortion parameters a camera matrix C is determined, which is defined as

C =


fx 0 cx

0 fy cy

0 0 1

 . (6.22)

This matrix contains four parameters. The parameters fx and fy represent the focal
length (or more precisely the image width) which give the distance of the image plane
to the optical lens in pixels. For square pixels it will hold that fx = fy, while any non-
uniform pixels will result in different focal lengths in each dimension. The parameters cx
and cy on the other hand describe the center point of the image, which determines where
the focal point lies on the image sensor. This value is given in pixels as well. Using this
camera matrix, a point in 3D is projected to the 2D image plane by

px

py

w

 = C ·


X

Y

Z

 , (6.23)

where px and py are the resulting pixel coordinates and w is a scale factor. As this is
a projection from a 3D space to a 2D space, information is lost which is impossible to
recover without additional information. This in turn means that information given in
the 2D space, such as object bounding boxes, can not be converted to 3D space directly
without making some assumptions. Instead, a pixel on the camera plane can be seen
as a ray in the 3D world. Somewhere along this ray lies something that reflected the
light which was measured by the sensor. This means that scale in the world can not
be determined from a camera image. This is visualized in Fig. 6.6. This shortcoming
makes working with camera detections less intuitive than e.g. LiDAR detections, where
the object state is measured directly. There exist many implementations of an intrinsic
camera calibration, with one of the most commonly used implementations being the
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Figure 6.7: Visualization of the parameters of the lens equation.

camera calibration in OpenCV [Bradski, 2000], which determines all the aforementioned
parameters.

Extrinsic Calibration In addition to the intrinsic calibration an extrinsic calibration is
needed, which determines the pose of the camera within the vehicle. Such a calibration is
required for the LiDAR sensors as well, however in the demonstrator the LiDAR sensors’
poses were determined by the manufacturer. Determining the pose of the camera is a
difficult task. Simply measuring it is not an option as even minor errors in the orientation
would lead to large positional errors when measuring distant objects. This is caused by
the lever-arm between the camera and the object, which is highly sensitive to rotational
changes. Instead a calibration process is needed in order to obtain an accurate camera
pose. This is however made difficult by the fact that the camera measures significantly
different data than other available sensors with a known pose like the LiDAR. One
way of combining the two sensors is to detect a common object in both sensors. This
gives the transformation from the LiDAR to the camera frame by solving the equation
TL→C =

(
TC→O

)−1
TL→O. However, with the camera measuring in 2D and the LiDAR

measuring in 3D, detecting a common object in 3D requires a specially prepared object.
While it is not generally possible to retrieve 3D information from a 2D image, this can
be circumvented by detecting objects of a known size in the world. The reason this is
possible is shown in figure Fig. 6.7. When measuring an object in the world generally
only the image distance b and the size of the object in the image B are known. On
the other hand the distance of the object from the camera g and the size of the object
in the world G are unknown. From the intercept theorems [French, 2004, Chap. 7], the
relationship between these values can be described by

G

g
= B

b
. (6.24)

Thus if the size of the object in the world is known, the distance of the object to the sensor
can be determined. This can be utilized to determine the location of points in the world,
and in fact, when using certain markers like ArUco markers [Garrido-Jurado et al., 2016],
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a full 3D pose can be estimate in a camera image. Therefore, for detecting the objects
pose from an image, an ArUco marker is attached to a known position on the object and
detected, yielding the transformation TC→O.

On the other hand the object needs to be detected in LiDAR data as well. To perform
this detection the object is placed on a flat surface. A cube is used as an object, which
means that when estimating the pose of it on a flat surface, only the yaw needs to
be determined, as it inherently does not have any roll or pitch on a flat surface. For
yaw estimation a line is fitted on the measured points of the object, which has one
side facing the sensor. This gives the full orientation of the object, while the position
is given by the leftmost measured point on the object front, with the z-position being
zero. With this algorithm the pose of the object is detected in the LiDAR frame, given
the missing transformation TL→O. The full transformation TC→L can now be used to
make the camera information usable by the tracking algorithm. In addition, as the
transformation TL→V is known, this calibration indirectly connects the camera frame to
the vehicle frame through the transformation TC→V = TL→V TC→L.

Camera Fusion There are two options for using 2D camera detections to update the
filter. The first option is to estimate an object in the 3D world from its 2D bounding
box representation. While this is the more intuitive solution it requires assumptions that
introduce large uncertainties in the filter update. The second is to project the object
track into the image plane using the camera matrix to estimate how it should look within
an image. While this is more unintuitive, this fits well in the Kalman filter framework,
as the measurement function transforms the current state estimate to the measurement
space, which is exactly what is done for the transformation from object tracks to the
image. The filter thus calculates what the camera would have measured if the current
estimate was correct, using the deviation from the actual measurement to update the
state estimate. Therefore in this work this approach is used.

As the object has an unknown and possibly complex shape, determining its 2D bound-
ing box in an image cannot be done exactly. As an approximation a 2D bounding box
in world coordinates is used, which is also the representation of the object in the filter.
This shape fits well for other vehicles, while it only roughly approximates pedestrians or
bikers, however this is acceptable. To update the filter using this method the measure-
ment function is explained in the following. As with the LiDAR object update, first an
object association is performed in order to determine which measurement by the camera
corresponds to which object track. To perform this association a measure for similarity
is required for comparing 2D bounding boxes with the estimated object tracks. While for
the LiDAR object association this could simply be performed by detecting overlapping
objects or checking simple closeness, for the camera it becomes more difficult as there
are more ambiguities and the measurement is in a different space. Therefore, an asso-
ciation score is calculated for every pair of camera detection and object track. From all
combinations the best are selected as associations. The score is calculated by projecting
the tracked object into the camera image and calculating how similar its bounding box
would be to the measured box. For this the corners of the object are transformed to the
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camera coordinate system using the extrinsic calibration by

cCi = T V→CcVi , (6.25)

with i ∈ [1, .., 4] determining the corner of the object. The corner is then projected to
the 2D image by

cIi = f ·

cx + cC
i x

cC
i z

cy + cC
i y

cC
i z

 . (6.26)

The equations for determining the left, right, top and bottom boundary of the 2D
bounding box is given by

bbl = min(cI1x, ..., cI4x),
bbr = max(cI1x, ..., cI4x),
bbt = min(cI1y, ..., cI4y),
bbb = max(cI1y, ..., cI4y).

(6.27)

With the boundaries defined, a similarity can be calculated. For this the overlap between
two bounding boxes is calculated. However, as the height of objects is unknown and
cannot be estimated correctly given the available LiDAR data, the height of the bounding
box estimated in (6.27) will be incorrect. On the other hand the estimated width will
reflect the object well. Therefore, the overlap between two objects o1 and o2 is only
calculated along the x-axis by

intersection(o1, o2) = max(0,min(o1r, o2r)−max(o1l, o2l)), (6.28)

where ×l is the left pixel boundary of the object while ×r is the right one. The over-
lapping area is however not a suitable score to determine the similarity of two bounding
boxes. Instead, the overlap is compared to the total area as a percentage of overlap.
The total area is calculated by

totalArea(o1, o2) = max(o1r, o2r)−min(o1l, o2l), (6.29)

which is then used to calculate the percentage overlap by

score(o1, o2) = 100
totalArea(o1, o2) · intersection(o1, o2). (6.30)

To now obtain the best object association any optimization technique may be used.
Here, every filter may be assigned one or zero detected bounding boxes with which the
filter is updated. The total score over all associations is calculated and maximized. This
can either be done by optimization or simply by calculating the score for all options.
An example of an association result is shown in Fig. 6.8. Note that while there are three
vehicles in the scene the black box LiDAR object detection was only able to detect the
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Figure 6.8: Camera and LiDAR object detections of the same scene and their association. Tracked
object shown as a green bounding box in the top. Detected camera objects are shown as bounding
boxes in the camera image as well as projected to the world in the top, visualized as angular
ranges by blue lines. Red lines visualize the angular range where an object association was found.

vehicle directly in front. Thus only one object association was found as there was only
one tracked object in the scene.

After obtaining the object association, the detected bounding boxes are used to update
the filter. For this, the measurement zct is defined as

zct =
[
pl pr

]
, (6.31)

where pl and pr are the left and right pixel coordinate of the bounding box in the image.
The measurement function is calculated very similarly to the object association. It
projects the estimated state into the camera image and calculates the image bounding
box from them. Accordingly, the measurement function is not trivial to define. It iterates
over all corners, projects them onto the image and calculates the bounding box according
to (6.25) - (6.27). The measurement is assumed to be affected by additive, normally
distributed noise with covariance Qct with zero mean. Determining the Jacobian Jc for
this measurement function is not trivial as there are many parts to the measurement
function. In fact only parts of the measurement function are derivable due to the usage
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of the min and max function. To obtain this derivative, numerical derivation around the
current state xt is performed to obtain the Jacobian.

The result is a tracking system which is able to use the data from a camera for two
purposes. Firstly, by associating the camera data with the available tracked objects the
classification performed on camera data can be used for them, which provides valuable
information for subsequent algorithms. Secondly, the state estimate can be updated
using the camera data. Upon evaluating the tracking result clear downsides of the
measurement update became apparent however, and as such it is not actively used
as part of the sensor fusion stack. The update allows for changes in the state in all
dimension, which gives the filter too much freedom in updating the state to match the
measurement. As an example, the size of an object may be falsely estimated, however
the filter instead moves the reference point of the state closer or further away from
the camera in order to change its apparent size in the image. To circumvent this the
update could be constrained to the size, however even here caution must be taken as
the dimension in which the size can be increased must be constrained as well. An object
that is estimated too small can have its size altered either in x- or y-direction and both
will eventually cause the object to appear the same size as the measurement. The only
direction in which the object size should be increased is perpendicular to the viewing
direction of the camera, which matches the orientation of the image plane. However
constraining the Kalman filter update to this dimension is out of the scope of this work
and will be considered in future work instead.

6.2.5 Radar

The Radar is a very useful sensor in the context of autonomous driving. The data it
provides complements that of LiDARs and Cameras well, as it provides information
about the dynamics of the sensors surroundings. Combining this with the highly precise
positional information provided by the LiDAR and the detailed texture information
obtained by the camera allows for very detailed estimation of the entire object state.
An ideal sensor setup for autonomous driving would include all three sensors, and the
demonstrator used for this work includes a Radar as well, however it only provides
limited information compared to currently commercially available Radars. The Radar
is built in by the car manufacturer and no access is available to the sensor data. Instead
only preprocessed information is available containing up to four objects in the vicinity
as well as their velocity in x-direction of the ego vehicle. This data is fused with the
tracked objects as part of the late fusion, however the Radar system is designed for
highway scenarios and as such objects often remain undetected. In Sect. 6.3 an attempt
is made to recover the dynamics information that would be obtained by a Radar only
from LiDAR point clouds, however directly measuring these properties is beneficial in
any case. In the following the measurement function for the preprocessed Radar data as
provided by the demonstrator vehicle is given.

The Radar measures the point in the world pt ∈ R2 where an object was detected and
its relative velocity v̂t,x ∈ R along the x-axis of the ego vehicle. As such the measurement
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is defined as

zrt =

 pt
v̂t,x

 . (6.32)

The measurement is assumed to be affected by additive, normally distributed noise with
covariance Qrt with zero mean. For the measurement function it is not fully defined which
point on the tracked object is measured by the radar, as the state estimate contains a full
bounding box while the radar only measures a point and a velocity. As such the closest
point on the rectangle describing the tracked object is calculated and a large uncertainty
is assumed for this part of the measurement. To obtain the closest point, all positions
of corners on the tracked object are calculated and their distance to the origin of the
ego vehicle is calculated. The corner with the lowest distance is kept and its position
in x-direction is used as the position in the measurement function. To obtain the set of
corners C = {c1, ..., c4} the following function is used, which gives them in the vehicle
coordinate system:

C = corners(xt) =

TO→V
t

sx/2
sy/2

 , TO→V
t

 sx/2
−sy/2

 , TO→V
t

−sx/2
−sy/2

 , TO→V
t

−sx/2
sy/2

 .
(6.33)

From this the closest point is simply determined by

closest(C) = min({∥c1∥, .., ∥c4∥}) (6.34)

Note that while in theory the closest point of the object could lie between two corners,
this is irrelevant as it is used to determine the minimal x-coordinate which will always
be found in a corner. The measurement function is therefore defined as

hr(xt) =


closest(corners(xt))x(

TN→V
t TO→N

t

)
y(

TN→V
t vt

)
x
− v̄t,x

 , (6.35)

where
(
TN→V
t TO→N

t

)
y

gives the y-position of the center of the object in vehicle coordi-
nates, vt is the currently estimated velocity of the tracked object and v̄t,x is the velocity
in x-direction of the ego vehicle obtained by the localization. As with the measure-
ment function for the camera measurements, this function has derivable parts, but it is
not derivable analytically. Therefore, again numerical derivation is used to obtain the
derivative around the current object state xt.

The result is a method which directly updates the dynamics of the tracked object.
An example of this can be seen in Fig. 6.9. In this scene three vehicles are tracked by
the late fusion, however the radar only detected the one in front of the ego vehicle. The
detected velocity is used to update the object, and as can be seen in the figure, the
resulting velocity estimate closely resembles the dynamics estimated by the radar. Note
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Figure 6.9: Tracked objects shown as green bounding boxes with their estimated velocity shown
in blue. The velocity detected by the radar is shown as a red line originating from the point
where it was detected.

that the size of both objects in front of the vehicle is not estimated correctly as they are
only seen from the front or back and as such no length information is available.

6.2.6 V2X

One emerging approach to aid in object detection and tracking is to enable communi-
cation between the ego vehicle and other vehicles with varying degrees of intelligence as
well as with surrounding infrastructure. This is made possible by V2X communication,
which is introduced in Chap. 3. By enabling communication with any nearby V2X-
capable objects, this technology offers a chance to make autonomous driving safer in the
future. In fact many car manufacturers such as Volkswagen, Volvo and Mercedes are
now building vehicles equipped with V2X technology [Volkswagen, 2020; ADAC, 2020].
As more and more manufacturers make use of this technology, the benefits for the safety
of autonomous driving grow. While V2X communication cannot replace a robust and
reliable object detection and tracking, any object that communicates its own state is a
potential source for errors eliminated. Robust object detection especially remains rele-
vant while this technology is not mandatory in all vehicles, however it also provides a
layer of redundancy that would likely remain in autonomous vehicles after widespread
adoption of V2X technology. The information being communicated as well as its quality
varies depending on the sensors as well as the algorithmic implementation on the vehicle.
It may vary from standard GNSS solutions with only meter-accurate positioning to a
state estimate similar to the one presented in Chap.4 which achieves centimeter-accurate
positioning. Especially when standard GNSS is used, the accuracy can be low enough
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that further processing is required in order to correctly consider the other traffic partic-
ipant in the ego vehicle control. Therefore, the data obtained from V2X is fused as part
of the late fusion into the state estimate of the corresponding traffic participant. The
corresponding measurement model is given in the following.

As mentioned before, the contents of the V2X message strongly depends on the sensor
equipment of the vehicle. However, in the following first the case is presented with
another vehicle with a full sensor setup which estimates its own full vehicle state. The
reduced measurement update is given thereafter. The measurement zvt is defined as

zvt =



r̄t

ψ̄t

s̄t

v̄t

āt

ω̄t


. (6.36)

To fuse the measurement into the existing state estimate, first an association is performed
to find the corresponding tracks for each measurement. This is done using the closeness
and overlap check in (6.11). Since objects obtained from V2X communication have a
known source this association is only performed once, after which the filter and the
V2X messages from that vehicle are permanently associated. If no association is found
however, a new filter is created.

Before the measurement can be fused into the state the reference point of the filter is
shifted to match the measurement. This is done as explained in Sect. 6.2.1.

As the measurement contains all parts of the state directly, the measurement function
is simply defined by

hv(xt)X = xt, (6.37)

where the covariance Qvt is determined by the sender vehicle and zero mean is assumed.
The Jacobian Jv ∈ R10×10 for the measurement function is simply given by the Identity
matrix Jv = I10×10.

To enable fusion of vehicles with less sophisticated equipment the measurement is
reduced to only include a pose and the size of the object. This can be estimated by any
vehicle simply using a GNSS antenna which is standard equipment for any V2X-capable
vehicle, although the size of the vehicle must be configured.

The reduced measurement is therefore defined by

zvrt =


r̃t

ψ̃t

s̃t

 . (6.38)
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Accordingly the measurement function is given by

hvr(xt) =


rt

ψt

st

 . (6.39)

Here the covariance is not estimate by the other vehicle and as such the covariance Qvt
is seen as a tuning parameter as no information is available about the quality of the
solution. It is however assumed to have zero mean. The Jacobian is given by

Jvr =
[
I5×5 05×5

]
. (6.40)

With these measurement models V2X communication can be included in the late
fusion seamlessly. Especially when using the reduced measurement model where the
other vehicle is only equipped with a simple inaccurate GNSS antenna the multi-sensor
fusion shows improvements in object tracking accuracy. This is shown in Fig.6.10 where
two examples are shown where a vehicle is detected by the LiDAR sensors, while it
also publishes its own state using V2X communication. In Fig. 6.10a an example is
shown where the LiDAR estimates the vehicle well, but the size is slightly too small.
The object received using V2X communication on the other hand is not positioned
correctly, while the size is correct. Through fusion a solution is found which better
reflects all parts of the vehicle state. A similar behavior is seen in Fig. 6.10b, however
here the LiDAR detection only detected the side of the vehicle and as such the size
would not be reflected well using only the LiDAR measurement. The V2X position is
again significantly shifted, however through fusion again an accurate object estimate
is obtained. Another advantage of V2X communication is being able to detect objects
that are not visible to the vehicle, such as objects behind a sharp turn or just below the
highest point of an incline. Neither the Camera nor the LiDAR is able to detect such
an object, as both require line of sight. This is not the case for V2X communication,
and as such the objects would be considered in vehicle control even before they become
visible, which significantly improves driving safety in certain areas. Overall the usage
of V2X data for object tracking is a highly promising approach to improve reliability of
the object tracking system. As the technology continues to improve and becomes more
widely accepted, it has the potential to aid in the emergence of full self driving vehicles.

6.2.7 Conclusion

In this section a late fusion approach for multi-object tracking was presented. It estimates
the state of each traffic participant using a ⊞-Kalman filter. Motion and measurement
models are presented including the corresponding Jacobian to allow implementation in
both an EKF and a UKF. While the presented approach enables the fusion of many
different sources of information in a modular and simple framework, it strongly relies on
the quality of the underlying object detection from each sensor. This object detection was
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(a) Fusion result with multiple slightly in-
correct LiDAR objects and an incorrect
V2X object position

(b) Fusion result with an incorrect LiDAR
object size and an incorrect V2X position

Figure 6.10: Tracking result by fusing V2X objects with LiDAR objects. Tracked objects shown
in green, detected objects in red and the V2X objects are visualized as a purple car while the
ego vehicle is shown as a blue car. The current LiDAR scan is shown in black as a reference.

seen as a blackbox, with the detections being directly used for tracking. This approach
is acceptable for the Camera and Radar data as they are only used to refine the object
tracks but not for initialization due to the nature of data contained in the measurements.
However in the case of the LiDAR object detection, the overall performance of the system
is strongly reliant on a high accuracy. Since the LiDAR objects are used to initialize
object tracks, false positives and false negatives have a strong influence on the system
performance. Unfortunately the built-in object detection of the LiDARs only performs
well in certain scenarios, while many scenarios are not well covered by it. Therefore
in the following section different algorithms are evaluated to improve the quality of the
LiDAR object detection. The presented late fusion for multi-object tracking is actively
used as part of the autonomous driving software stack on the research vehicle.

6.3 Dynamics and Object Detection

Object Detection on sparse 3D point clouds with only very few layers or even 2D point
clouds is a difficult task even for humans. The LiDAR takes only a slice from the environ-
ment and represents it as a point cloud, which leads to many ambiguities and structures
that are very hard to identify. One example of this is shown in Fig. 6.11a. While human
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(a) Scene in which it is difficult to deter-
mine other traffic participants

(b) Same scene a few frames later, dy-
namic objects circled in red

Figure 6.11: Visualization of the difficulty of object detection on the available LiDAR data. A
and B are cars, while C is a pedestrian and D a bicycle.

performance is not a perfect comparison, the difficulty to detect these object for humans
indicates that this problem is difficult to solve algorithmically as well. With very little
structure available to use for classification it is difficult to distinguish traffic participants
from static structures. Therefore a one-shot detection on a single LiDAR point cloud
was not attempted in this work as it offers little chance of success. Instead this work
focuses on determining areas of motion in the environment and using this additional
information for object detection. To get an idea of the benefit of estimating motion in
LiDAR scans, the scene from Fig. 6.11a is shown again in Fig. 6.11b after some time has
passed. As can be seen most of the scene remained static between the scans excluding
sensor noise, however there are some areas where movement can be observed, which
is circled in red. For the vehicle shown in B the movement is very noticeable, while
the movement of the pedestrian in C is already rather subtle, although still noticeable.
Especially for the car in A and the bicycle in D it is noticeable that they are dynamic
as they were not measured previously. As such, by taking into account multiple LiDAR
scans motion can be detected directly from the scan data which in turn enables the
detection of objects. In this work three different LiDAR-based approaches for dynamics
estimation and object detection are presented and their applicability to the scenario of
urban autonomous driving is evaluated.

6.3.1 LiDAR Optical Flow

To estimate motion in the environment of the vehicle a frequently utilized approach is to
estimate optical flow on a camera image. By estimating how pixels in the image moved
between two frames it can be inferred how the vehicle moved between the frames and
how dynamic objects in the view of the camera moved. Optical flow on camera images
is widely adopted in many different applications [Zhai et al., 2021], however for object
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(a) Transformed scan points in the same coordi-
nate system. Old scan shown in green, current
scan in red. Associated points present in both
scans shown in yellow

(b) Optical Flow calculated on LiDAR images.
Color determines the direction while intensity
shows the estimated velocity

Figure 6.12: Two LiDAR scans and the resulting optical flow between them. The ego vehicle
position is shown as a blue car.

detection and tracking in autonomous driving it has some major drawbacks. First, it
is difficult to differentiate between ego motion of the vehicle and motion of other traffic
participants. Estimating how pixels are expected to move from frame to frame given the
ego motion is possible to a certain extent. However, since the distance of objects in the
image is unknown a certain inaccuracy is expected. Second, the motion is estimated in
pixel coordinates in an image. This can be used to reconstruct movement in the world
either by utilizing two frames to imitate a stereo camera or by making assumptions about
the world, however both approaches add a large amount of uncertainty to the estimation
process.

In this work the optical flow is therefore estimated on LiDAR data instead. For this the
LiDAR data is mapped using a grid map with static cell size as well as a static map size
for each frame. For the optical flow calculation the grid map is converted to an image.
For this each cell is represented as a pixel with a binary value that determines whether
the corresponding cell was hit by a scan point. This is done for two consecutive scans,
resulting in two images that represent the current state of the vehicles surroundings.
In contrast to the optical flow on camera data the ego motion can be compensated
almost completely in this approach. Using the localization from Sect. 4.2 a precise
transformation can be obtained between the two scans, resulting in static areas having
no estimated flow. Moving traffic participants on the other hand will be tracked by
the flow, resulting in high flow in areas where dynamic objects are contained. This is
visualized in Fig. 6.12. As can be seen there are static areas in the surroundings that
show little to no flow, while the objects that are moving in the scene are clearly visible.
In the following the calculation of the flow and subsequent measures to extract object
candidates and their properties are presented in detail.
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First, in order to create images from the LiDAR scans, the previous scan S
Lt−1
t−1 =

{m1, ...,mN} , N ∈ N in the previous LiDAR frame Lt−1 is transformed to the vehicle
frame Vt at the time where the new scan was taken. This is done by the following
transformation using the LiDAR extrinsic calibration as well as the ego-motion estimated
by the localization

SVt
t−1 = TN→VtT Vt−1→NTL→V S

Lt−1
t−1 , (6.41)

where the transformation is applied to the scan by transforming each point individually.
Second, the new scan is transformed from the LiDAR frame to the vehicle frame by

SVt
t = TL→V SLt

t . (6.42)

After transformation both scans are in a common coordinate system as visualized in
Fig. 6.12a.

After transforming the scan points they are converted to an image. For this an image
of a static size is created. In this image each pixel represents an area of o×o centimeters.
Depending on the resolution of the LiDAR this can be tuned, however for this imple-
mentation it was set to 20 × 20 centimeters. The total considered area of w × h meters
is fixed depending on the needs of the object detection, where in this thesis an area of
70× 55 meters was used. From these values the size of the image is calculated bysx

sy

 =

wo
h
o

 . (6.43)

In this image the vehicle frame is fixed in

0
h
2

 with the x-axis of the vehicle frame aligned

with the image x-axis. The scan points of both scans, which are now all expressed in
the same vehicle coordinate system, are projected to their own image by discretization
using the cell size o.

Next the area in which an optical flow is calculated is reduced to the area visible in
both scans. This is calculated from the opening angle of the LiDAR and is also visible as
a blue mask in Fig.6.12a. It is calculated by drawing lines along the opening angle of the
LiDAR using the Bresenham algorithm for line drawing [Bresenham, 1998]. Afterwards
the rest of the area is filled using flood fill to obtain a mask for the observed area. This
mask is used to discard any scan points that are not observable in both scans. Without
their removal the flow estimation would attempt to match points from one scan where
its counterpart in the second scan is not observed anymore, resulting in incorrect flow
around the edges of the FOV of the LiDAR.

From the resulting images the flow is calculated using the Gunnar Farneback’s al-
gorithm [Farnebäck, 2003] as implemented in the image processing library OpenCV
[Bradski, 2000]. The result can be seen in Fig. 6.12b. For each pixel a vector is cal-
culated which represents its estimated movement. The direction as well as distance of
movement in pixels is represented in this vector. From this information the velocity and
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Figure 6.13: Neighborhood relations in DBSCAN with a minimum number of neighbors of 3 for
core points.

direction of travel of the corresponding object can directly be inferred. This becomes
more apparent in Fig. 6.14c where two vehicles travel in the same direction and are thus
colored similarly, however one with less intensity due to its slower movement.

After obtaining the flow image containing information about movement of all parts
of the surroundings, object detection can be performed. The flow already contains
a lot of information which the object detection can utilize to create suitable object
candidates. One modular approach is to identify clusters of points in the image with
certain shared characteristics. In the simplest case this may be points that are close
to each other, however some clustering algorithms allow for additional properties to be
checked in order to define closeness of points. One such algorithm is the DBSCAN
algorithm [Ester et al., 1996]. It is a density-based clustering algorithm which builds
clusters wherever dense points are located. For this the distance between all points is
checked and a threshold determined below which points are seen as neighbors. The
algorithm is visualized in Fig. 6.13. When a point has enough neighbors it is flagged as
a core point, marked in red in the image, and all points in its vicinity are added to the
cluster. Points that are directly reachable from a core point but do not have enough
neighbors are added to the cluster but not as core points, which is the case for A and C
in the figure. Therefore the cluster is not extended from these points. Points that are
not a neighbor of any core point are marked as outliers.

While in this example the neighborhood is visualized as spacial proximity it can be
defined as any function. To utilize the dynamics estimated in the optical flow in this
work neighborhood is defined on proximity as well as direction of the flow vector. The
absolute velocity is not considered in the clustering as there are many cases where this
is inaccurate, which would lead to an incorrect neighborhood calculation. Therefore the
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(a) Transformed scan points in the
same coordinate system

(b) Optical Flow calculated on Li-
DAR images

(c) Resulting clusters, one color for
every cluster

Figure 6.14: Result of the optical flow and clustering on a simple example.

neighborhood functions are defined as

closeness(p1, p2) = ∥p1− p2∥ < tc, (6.44)
direction(v1, v2) = ∥atan2(v1) ⊟ atan2(v2)∥ < td, (6.45)

neighbor(m1,m2) = closeness(m1p,m2p) ∧ direction(m1v,m2v), (6.46)

where tc is the threshold determining closeness and td the threshold for the direction and
pi, vi and mi represent the position, velocity and a combined representation respectively.
This check is performed for all pairs of pixels in the flow to obtain a list of neighbors for
each pixel. With the neighborhoods defined, the DBSCAN can be performed to obtain
clusters. An example is shown in Fig. 6.14. As can be seen in the results the clustering
separates areas that are close together with similar dynamic properties. The flow clearly
shows areas dynamic properties, in this case there are two bikers riding in front of the
vehicle. The clustering automatically discards areas without enough dynamics or where
the dynamics of close points does not match. The result are two clusters containing each
of the two bikers.

However, in the example shown in Fig. 6.15 it becomes apparent that the flow cal-
culated on the LiDAR images is also often inaccurate. In Fig. 6.15a it is visible that
there is only a single dynamic object in the view of the scanner, which is marked in
orange. In the flow in Fig. 6.15b there are however many areas that were detected to
have movement, leading to a large number of clusters in Fig. 6.15c. This makes working
with the clustering result very difficult as there may be a very large number of object
candidates that are invalid.

To overcome this issue the detections are filtered over time and used for object tracking,
which is explained in the following. For this all required information is already contained
in the clusters. A bounding box is calculated that includes all cluster points, where the
orientation is given by the average flow. The velocity is estimated from the average
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(a) Transformed scan points in the
same coordinate system

(b) Optical Flow calculated on Li-
DAR images

(c) Resulting clusters, divided by
color. Amount of colors are lim-
ited, causing some colors to be
reused for multiple clusters

Figure 6.15: Result of the optical flow and clustering on a more challenging example where the
flow contains a lot of noise.

flow vectors, which are converted from pixel coordinates to world coordinates. First the
orientation is determined from the direction of travel by

ψ = atan2
((

N∑
i=0

vi

)
· 1
N

)
, (6.47)

where N is the number of points contained in the cluster. After obtaining the orientation
of the object the cluster points pVi are rotated to be aligned with the object coordinate
system and the object bounds are calculated.

pOi = Rψp
V
i , (6.48)

top = max(pO1,x, ...pON,x), (6.49)
bottom = min(pO1,x, ...pON,x), (6.50)

left = max(pO1,y, ...pON,y), (6.51)
right = min(pO1,y, ...pON,y), (6.52)

where Rψ is the rotation matrix constructed from the angle ψ. The position of the
cluster is set to the center, calculated byrx

ry

 = R−1
ψ

 top+bottom
2

left+right
2

 . (6.53)
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(a) Optical flow and resulting
bounding box

(b) Clusters calculated from the
optical flow

(c) Resulting tracked objects

Figure 6.16: LiDAR optical flow used for tracking. The two vehicles driving in front of the ego
vehicle are correctly identified and tracked.

The velocity is estimated by

v = R−1
ψ

((
N∑
i=0

vi

)
· 1
N

)
× o

N ·∆t
, (6.54)

where ∆t is the passed time between processed LiDAR scans. Finally, the size is esti-
mated by sx

sy

 =

top− bottom
left− right

 . (6.55)

With the attributes of the object determined it can be used for object tracking. To
avoid generating objects for a large number of false positives as seen in Fig. 6.15 the
detected objects are not used directly for tracking. Instead they are created as object
candidates. Each object candidate needs to be observed a certain number of times in
order to be accepted as a valid detection, where in this thesis three observations are
required. For this each object candidate found in previous frames is predicted to the
current time according to its estimated velocity. Afterwards an object association is
performed using (6.11). When an association is found the known object is replaced by
the new detection and a counter increased. After the object candidate is confirmed by
enough measurements it is used in the late fusion to update existing object tracks or
initialize a new one as explained in Sect. 6.2.2. If an object is not observed for a certain
time frame it is erased from the object candidates.

The object tracking performance on the resulting detections is evaluated on a selection
of scenes obtained from the demonstrator vehicle. The first scene is a scenario where the
vehicle is standing at a junction with two vehicles and a pedestrian crossing in front of
the ego vehicle. In the flow the vehicles are estimated well and thus the clusters represent
the dynamics, pose and size of the objects well. The pedestrian is however not estimated
well. It is marked in red in Fig. 6.16c which has insufficient detected flow in Fig. 6.16a.
This is a general problem of the approach, which is only suitable for detecting sufficiently
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(a) Optical flow and resulting
bounding box

(b) Clusters calculated from the
optical flow

(c) No resulting tracked objects

Figure 6.17: Optical flow used for tracking. A turning car is not identified as a full cluster,
leading to a missed detection and thus no tracked object.

dynamic objects. Anything traveling at low speeds will not be detected as they would
be indistinguishable from estimated dynamics created by measurement noise.

Another scenario is shown in Fig. 6.17, where the ego vehicle is driving on a street
and a van merges slowly onto the street in front. Due to its slow speed as well as a high
turn rate the vans movement is detected poorly in the flow. This leads to the cluster
being split and no object candidate being generated as the flow is spread too far over
the cluster. Consequently the object is not tracked, even though in the scan it is easily
visible. In addition there are a number of false positives in the clustered image, with one
of them being made into an object candidate. As this object candidate is not observed
more often it is however not used to create a tracked object.

Overall the evaluation showed that this approach is not suitable for object tracking
in autonomous driving. The flow estimation algorithm often does not sufficiently differ-
entiate between slow movement, sensor noise and measurement inaccuracies introduced
by the ego motion. This results in a large number of false positives, but also in false
negatives which are often more dangerous in autonomous driving. Filtering out false
positives by only allowing object candidates that have been observed multiple times
works well to mitigate some of these shortcomings, however the false negatives remain.
Additionally turning objects are not estimated well in the flow and pose a threat for the
ego vehicle as shown in Fig. 6.17. Therefore additional options are explored for object
detection in the following.

6.3.2 Evidential Dynamic Mapping and Tracking
Using evidential mapping a second approach is evaluated in the following to obtain an
accurate description of the surrounding dynamics. This is largely based on the works
[Tanzmeister and Wollherr, 2016; Steyer et al., 2018] where a LiDAR and a Radar are
used in order to estimate the dynamic properties and perform object tracking. In this
work this is adapted to a multi-LiDAR setup where no Radar information is avail-
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Figure 6.18: Example of an evidential dynamic map. Free areas are shown in green, statically
occupied areas in red and dynamically occupied areas in red. Areas not currently observed as
free that were previously free are marked in turquoise.

able. With no Radar available the dynamic properties of the environment are no longer
measured directly, making the estimation problem more difficult. Dynamics are only
observable over time, by generating possible dynamics for each cell and validating their
correctness in subsequent scans. This is an ideal application for particle-based estima-
tion, where multiple particles represent potential dynamics contained in a cell. This
approach is presented in detail in [Tanzmeister and Wollherr, 2016] and serves as a ba-
sis for this work. The result is a grid map where in each cell the dynamics of the
corresponding space in the world are estimated. This is visualized in Fig. 6.18.

The estimation of this map is based on the Dempster-Shafer theory [Dempster, 1968;
Shafer, 1976]. It allows for the representation of uncertain knowledge about the envi-
ronment. It especially allows the representation of multiple different properties and a
combination of them. In this case the frame of discernment is defined as

Θ = {F, S,D} , (6.56)
2Θ = {∅, {F} , {S} , {D} , {S,D} , {F,D} , {F, S} ,Θ} , (6.57)

which allows for the following hypotheses:

• {F} free area

• {S} statically occupied area

• {D} dynamically occupied area

• {S,D} occupied, either dynamic or static

• {F,D} either free or dynamically occupied, may become free in the future

• {Θ} no information available
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The hypothesis {F, S}, while part of 2Θ, is not possible in reality and is therefore left out.
These hypotheses are estimated using particles. In each step the currently estimated map
is predicted based on its current state by propagating the particles forward depending
on their estimated dynamics. After prediction the map is updated using the current
measurements, where the currently estimated particles are validated by comparing them
to the measurement. Finally the particles are resampled. These steps are not explained
in detail in this work, however they are explained thoroughly in [Steyer et al., 2018].
One thing to note is however the lack of a Radar in this work. In the original work the
update of the map is performed with a Radar in addition to the LiDAR data. Wherever
the Radar measures dynamics the belief mass on {D} in that cell is increased. This
leads to more particles being kept in that cell during resampling. Additionally particles
are weighted when a velocity measurement is available for their corresponding cell. This
significantly speeds up the convergence of particles towards an estimate. In this work
particles are initially largely initialized with random velocities and directions, leading
to a large spread of particles after predicting the map. This is reduced over time as
measurements restrict the potential velocities, however this is expected to be slower
compared to the version where Radar is included.

For generating object candidates the approach presented in [Steyer et al., 2017] is
implemented in this work. In this work the evidential map is used to create bounding
box representations of contained dynamic objects. Initially all dynamic cells are clustered
using the DBSCAN approach presented in Sect. 6.3.1. When there are already tracked
objects estimated, the object update is however approached in the opposite way. Instead
of finding suitable object candidates in the cells and updating the estimate with it, the
cells are initially associated with available tracks by comparing their velocity as well
as their spatial closeness to the track. From the cells associated to a track the object
detection is generated, which is then used to update the filter. This is described in detail
in [Steyer et al., 2017] and used in this work to evaluate object detection on evidential
dynamic maps when only LiDAR data is available.

The evaluation is performed on data obtained from the demonstrator vehicle presented
in Chap. 3. The calculations are parallelized on a GPU, enabling real-time performance
of the adapted algorithm on this data. In this evaluation a NVIDIA RTX 3060 was
used. To evaluate the convergence behavior when only using LiDAR data, the maximum
amount of particles P per cell is increased between runs. First a maximum of P = 50
particles per cell is used as proposed by [Tanzmeister and Wollherr, 2016]. Additionally,
P = 200 particles per cell are used for comparison, where the algorithm still performs
in real-time. Finally P = 400 particles are evaluated to give an idea whether additional
hardware would improve the performance of the approach, even though it is not real-
time capable anymore on the used hardware. The real-time capability was determined
in a runtime evaluation, performed for 50, 200 and 400 maximum particles, where the
average and maximum computation time per LiDAR frame was determined. The results
are shown in Tab. 6.1. As can be seen using 50 and 200 particles results in real-time
capable processing of the LiDAR data. LiDAR data arrives at 25Hz, giving the algorithm
40ms to process it before the next scan arrives to be processed. However, using 200
particles the worst case is at 42ms, which already slightly exceeds the time between
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(a) Particles and resulting dynamic map for P = 50.

(b) Particles and resulting dynamic map for P = 200.

(c) Particles and resulting dynamic map for P = 400.

Figure 6.19: Sequence showing a vehicle turn on an intersection. Comparison of the particle dis-
tribution depending on the maximum number of particles per cell. The particle color represents
the represented direction of travel.
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50 particles 200 particles 400 particles

avg (ms) 19 25 38
max (ms) 26 42 60

Table 6.1: Runtime evaluation for processing of a LiDAR scan.

LiDAR frames. On average the 25ms are however significantly below this threshold and
as such this configuration is still suitable for real-time use. The configuration with 400
particles shows an average runtime of just below 40ms, however it may increase to up
to 60ms, resulting in significant delays in execution and a high usage of the GPU. This
configuration is therefore not suitable for use on the vehicle.

The results of the first evaluation can be seen in Fig. 6.19. Here, a vehicle enters the
FOV of the ego-vehicle from the left and performs a right turn on an intersection. As can
be seen, especially when using 50 particles per cell the approach is very slow to converge
on a velocity estimate. The vehicle is in the scene for a long time before the particles
converge to a velocity estimate, and even in the final frame no strong convergence can
be seen. The resulting velocity estimates and determined object bounding box for the
third frame can be seen in more detail in Fig. 6.20a. When using a maximum of 200
particles the estimate already converges significantly quicker, with the particles being
bundled around the correct dynamic area. In the first part of the sequence the particles
are still spread but even in the second part the particles have converged, with the last
part having a very large number of particles correctly estimating the vehicles dynamics.
The resulting velocities and estimated bounding box can be seen in Fig. 6.20b. In the
evaluation with 400 particles even the first scene shows a slight convergence towards the
correct dynamic estimate. Both the second and third scenes have a strong convergence,
with the last scene even containing particles outside of the correct object bounding box
that estimate the correct velocity. This is not ideal as the resulting bounding box in
Fig. 6.20c accordingly is too large, indicating that the resampling needs to be tuned
differently when using so many particles. This is however out of the scope of this work
as the case with 400 particles is only shown for comparison of the convergence behavior
and not meant to be used for object tracking as it is not real-time capable.

While no object tracking is possible even in the last frame when only using 50 maxi-
mum particles, objects are detected significantly earlier when using 200 or 400 particles.

This is shown in Fig.6.21-Fig.6.23, where the estimated velocities and tracked objects
are shown for the earlier two frames. Using 400 particles the particles converge suffi-
ciently even in the first frame, which is not the case when only using 200 particles. In the
second evaluated frame the objects are however estimated well in both cases. This shows
that the estimation of the surrounding dynamics can be significantly improved and sped
up by using a larger number of particles as expected. However even in the second frame
the vehicle was visible for a long period of time before the algorithm using a maximum
of 200 particles per cell was able to detect it, which may result in dangerous situations
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(a) Object detection result for P = 50

(b) Object detection result for P = 200

(c) Object detection result for P = 400

Figure 6.20: Estimated cell velocities shown as red arrows (left) and the resulting detected object
shown as green bounding boxes (right) for different maximum numbers of particles per cell.
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(a) Velocity and object detection on first scene

(b) Velocity and object detection on second scene

Figure 6.21: Object detection results for P = 50 in the first two frames where the velocity
estimate had less time to converge. On the left: velocity estimate shown as red arrows. On the
right: detected bounding boxes.

in autonomous driving. With 400 particles a faster convergence can be reached, how-
ever the computation time per scan cycle exceeds the real-time limit of 40ms, and on
the autonomous vehicle other algorithms may use the graphics card as well. Therefore
using the full capacity of the GPU is undesirable and a 400 particle setup is not used
for further evaluations.

The presented case above showed a vehicle turning on an intersection, which is a
comparably simple case for the algorithm, as the dynamics are easily observable. Addi-
tionally the vehicle is seen from both the side and the front during the turn, simplifying
the estimation. In the following two scenarios are evaluated where the vehicle is only
seen from the side or the front. This evaluation is performed with a maximum amount
of particles per cell of P = 200. The result is shown in Fig. 6.24. Here two examples are
shown where an object is observed only from the front and only the side. In the first
example Fig. 6.24a the objects are only seen from the front. In this case the dynam-
ics estimation works well and a tracked object is created accordingly for both vehicles
visible in the scene. This case is ideal for the particle estimation as the particles that
estimate the correct velocity will match the measurement in the next scan while the
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(a) Velocity and object detection on first scene

(b) Velocity and object detection on second scene

Figure 6.22: Object detection results for P = 200 in the first two frames where the velocity
estimate had less time to converge. On the left: velocity estimate shown as red arrows. On the
right: detected bounding boxes.

other particles do not. The object is only partially observed but the part that is visible
is estimated well by the bounding box and the velocity indicated by the red line points
in the correct direction.

In the second example shown in Fig. 6.24b a vehicle crosses from the right side of
the ego-vehicle to the left. This object is not estimated well by the dynamic mapping
and as a result no tracked object is created even after having almost crossed the entire
intersection. There are two factors that come into play in this missed detection. First,
detecting objects that are observed from the side are inherently difficult to estimate
for this approach. This is because the same space is occupied for a long time by the
vehicle, and measured by the scanner. A point on the front of the observed side would
be measured again in the next scan, where the measurement would hit a spot further in
the middle of the vehicle, until finally the vehicle passes that spot. Until that moment
the vehicle could be believed to be static however, which is indicated by the red trail
of static belief behind the detection. This leads to a slower convergence of the particle
filter and can lead to it not converging on an accurate dynamics estimate at all when
the object is not observed well. This leads to the second problem in this detection,
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(a) Velocity(left) and object detection(right) on first scene

(b) Velocity and object detection on second scene

Figure 6.23: Object detection results for P = 400 in the first two frames where the velocity
estimate had less time to converge. On the left: velocity estimate shown as red arrows. On the
right: detected bounding boxes.

being that the scanner do not measure the object well. This can be inferred from the
green scan lines going towards the object. There are only a few places where the scanner
measured a hit on the vehicle, while the turquoise areas were not measured in the scan.
This is a shortcoming of the used LiDAR which potentially has problems measuring on
certain object surfaces. As a result of these two factors the object could not be tracked.

Overall the evidential dynamic mapping was able to estimate the dynamics of the
surroundings of the ego vehicle more accurately compared to the LiDAR optical flow.
As expected the approach is however slow to converge on an accurate estimate of dy-
namic objects. This can be improved by increasing the particle count, however there
are still limits especially when objects are only partially observed. It also leads to an
increased computational load, making the approach no longer real-time capable on the
research vehicle when a maximum amount of particles per cell of P = 400 is chosen.
From this evaluation it is clear that the approach can not be used for robust object
detection with the available sensory equipment. The use of a radar would improve the
convergence significantly, likely making the approach usable for object tracking on the
research vehicle. Potentially a LiDAR with a higher resolution would be able to aid in
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(a) Objects seen from the front

(b) Object seen from the side

Figure 6.24: Results for different object detection scenarios. Left: particles shown as colored
dots. Middle: velocity estimate shown as red arrows. Right: resulting bounding boxes shown in
green.

faster convergence as well, as the object might be measured fully without the missed
measurements shown in Fig. 6.24b, although this depends on the surface of the mea-
sured object. While the sensor setup was fixed in the context of this work, an additional
vehicle will be equipped for autonomous driving in the future which will include radars
as well as higher resolution LiDARs, taking into account the findings in this work.

6.3.3 Environment Estimation using Normal Distributions Transformation
(NDT)

Utilizing dynamics in the environment for object detection proved a promising direction
of research, with evidential dynamic mapping producing good results especially when a
large number of particles are used. However it was still too slow to converge on current
GPUs. Therefore in the following an approach is evaluated which only classifies points
as dynamic or static in order to reduce the complexity of the problem and speed up the
estimation process. While the velocity information is valuable for object detection it can
also be done simply on spatial information, taking into account only dynamic points,
while the velocity is estimated over time from positional changes. In the following this
classification is performed by estimating an expected distribution of measurements in the
environment over time. As new measurements are included and the distributions esti-
mated more accurately a very precise knowledge of where measurements occur is formed.
New measurements in areas outside of existing distributions are therefore likely to be-
long to dynamic objects. This is realized by estimating normal distributions transforms
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Figure 6.25: Example of a NDT map shown as ellipsoids, with the current scan shown as red
lines.

(NDT) [Biber and Straßer, 2003], which were originally introduced for scan matching.
In that approach a normal distribution is calculated for every cell in a grid map, estimat-
ing where points have been measured in the past. For scan matching the NDTs are used
in an optimization algorithm to match the current measurement against the estimated
NDT map, transforming the scan to maximize the probability for the measurement. In
this work they are instead used to classify points as dynamic and static. To determine
this the probability for each point is simply calculated from the existing normal distri-
butions, where a high probability for a point means the area was previously measured
as occupied as well, and is therefore likely static. Another possibility is that the area
was simply not observed previously, which can however be determined in the grid map
by checking whether the cell was measured previously.

To obtain a NDT representation of the environment the library ndt map1 is used. It
estimates a 3D representation of the environment, which was modified for this work to
estimate distributions in 2D. An example of such a map can be seen in Fig. 6.25. The
estimation is always limited to the last five scans to avoid inaccuracies introduced by the
drift of the odometry localization. In order to classify dynamic and static parts of the
environment the closest cell to each point in the current scan is obtained and its likelihood
calculated from the estimated normal distribution. A threshold is defined to determine
what likelihood represents a dynamic point. An example of the resulting classification
can be seen in Fig.6.26. As can be seen the classification is not ideal due to strong sensor
noise and many areas that are not estimated well or at all by the NDT. However for the
dynamic object circled in the figure the classification is correct as the new measurement
on the object fall outside of the previously estimated normal distributions. In fact the

1https://github.com/OrebroUniversity/perception_oru.git, accessed on 24.12.2023.
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Figure 6.26: Current NDT map on the left with the resulting point classification shown on the
right. Dynamic points are colored green, while static points are colored red.

Figure 6.27: Example of a classification problem where many points are misclassified due to the
difficulty of the approach with objects that are only seen from the side.

approach estimates dynamic points relatively reliably, however it has clear shortcomings
in estimating many static points as dynamic. It can be seen in Fig. 6.26 on the bottom
right of both images where the LiDAR measures a different part of the environment
than before, which is however still static. The algorithm can not distinguish between
something being seen from a different angle, therefore hitting it in a different position and
object that move. The same thing holds true for measurement noise, which is difficult
to distinguish from movement in some cases. This is mitigated to a certain extent by
including measurement noise in the NDT estimation. However especially in areas far
from the sensor the NDT is not estimated perfectly due to significantly sparser data,
which results in static points falling outside of previously estimated normal distributions.
This again results in many points being mistaken as dynamic by the algorithm. Lastly
the algorithm is not well suited for estimating vehicles crossing an intersection from side
to side. An example of this can be seen in Fig. 6.27. When the object is mostly seen
from the side points on the object continuously fall into previously estimated NDTs,
thus making them seem like static points. This is a systematic issue with this approach
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however, which is not simple to resolve and makes the approach difficult to use for
scenarios including crossings.

In conclusion the algorithm is not well suited for object detection in autonomous
driving. While the dynamic classification works well on vehicles driving in the same
or opposite direction as the ego vehicle, there are many shortcomings in other scenarios
that make it difficult to distinguish robustly between dynamic and static objects. Sensor
noise, occlusion, or changes in the measurement caused by a shifting measurement origin
cause a large number of misclassifications and the approach is not suited well to estimate
objects that are only measured from the side.

6.3.4 Conclusion and Discussion

Overall none of the presented algorithms solve the object detection task to a degree that
satisfies the robustness requirements present in autonomous driving. The reasons are
plentiful and dependent on the specific algorithm, however the main issue appears to
lie within the available sensor setup. With only four layers the data obtained by the
LiDARs is very sparse and only shows a small slice of the world. Therefore contour
information is largely unavailable with the exception of the standard L-shape which can
be observed only when another vehicle is close enough and measured at a sufficient an-
gle. An attempt was made to remedy this lack of information by taking into account
not just single scans but series of scans, in order to detect objects based on moving
areas in the environment. This showed some promising results especially when using
evidential dynamic mapping to estimate velocities in the environment. However, the ap-
proach showed a slow convergence towards the correct velocity estimates. This may be
improved by including a Radar in the sensor setup which provides raw velocity measure-
ments instead of the currently available preprocessed dynamic objects, however this was
not available in this work. Additionally denser LiDAR measurement data would have
improved the convergence behavior as the objects would be measured more reliably and
as such particles would be resampled using a more realistic distribution. Therefore the
inclusion of a 3D LiDAR with significantly more layers and potentially a higher vertical
resolution would provide a large benefit to this as well as all other approaches.

Classical algorithms were used both to maintain explainability of the results and be-
cause insufficient training data is available with a similar sensor setup. The creation of a
dataset large enough to train a robust object detection that can handle any traffic par-
ticipant which might be encountered in urban driving is difficult. The available public
datasets are unusable for this sensor setup as they use 3D LiDARs mounted to the top of
the vehicle with significantly more layers available. This shift in sensor viewpoint as well
as the much denser data makes these datasets unusable. It is however possible that this
object detection task could be solved better using deep learning approaches. By utiliz-
ing Long short-term memory (LSTM) networks [Hochreiter and Schmidhuber, 1997] or
feeding multiple scans into the network the dynamic information could even be included
in the estimation problem. In future work the performance of neural networks for object
detection on the available data will be evaluated as this proved to be a difficult problem
for classical methods to solve robustly. The detection depends on many factors which
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cannot be fully modeled in model-based approaches, while a deep-learning approach
could potentially learn them, given sufficient training data. Additionally feature-based
detection algorithms will be evaluated for the object detection task on single LiDAR
frames. These approaches again rely on a large labeled dataset in order to train for the
predefined object classes, however this is required for training neural networks regardless
and as such no additional data generation is needed.
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7
Conclusion

This chapter summarizes the work presented in this thesis. It gives an overview of the
results that were achieved and provides an outlook on possible additions and future work
on the presented topics.

7.1 Summary

In this thesis an overview of sensor fusion tasks in autonomous driving was given. Ap-
proaches were presented to solve the three main tasks in autonomous driving: localization
of the vehicle, mapping of the environment and object detection and tracking of other
traffic participants. All topics were solved using multi-sensor approaches, both to im-
prove performance and to add robustness which is crucial in autonomous driving. The
thesis focuses on classical approaches for these tasks as opposed to deep-learning based
approaches to maintain explainability of all algorithms and to reduce the reliance on
comprehensive training data set that cover all relevant scenarios which is often difficult
to obtain.

For the localization of a vehicle a system consisting of two localization algorithms was
proposed, one estimating an odometry, while the other provides global positioning. Both
utilize the so called ⊞-Kalman filter to estimate the vehicle state, where the ⊞-method
is used to correctly estimate the orientation of the vehicle which is part of the special
orthogonal group, or rotation group SO(3). The separate filters are used due to different
requirements on localization systems in autonomous driving that are inherently incom-
patible. On one hand a smooth, jump free pose estimate is required for many subsequent
tasks such as vehicle control to ensure safe driving and avoid undesired maneuvers due
to a sudden change in the state estimate. On the other hand a global position free of
drift in an external reference frame is required to enable route planning and consider
preexisting information about street signs, lane boundaries and more. This is not possi-
ble to guarantee with current sensors as the inclusion of the GNSS data used for global
positioning inherently produces jumps whenever the GNSS reception is lost for a while
and then restored, leading to the sensor drift in that time frame being corrected. The
odometry filter makes use of the observation that most subsequent algorithms rely on
a precise relative location, while not requiring an absolute pose estimate. Therefore a
moving reference Kalman filter was proposed, which estimates odometry without includ-
ing GNSS measurements. Generally when only estimating odometry the position and
rotation around the z-axis are unobservable, leading to growing uncertainty over those
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parts of the state. By moving the reference towards which the uncertainty is estimated
forward in time it was shown that resulting issues from the growing uncertainty were re-
solved while maintaining a very high localization accuracy with low drift. For the global
localization a second filter was implemented, which largely uses the same models, how-
ever this filter utilizes GNSS measurements to obtain a global positioning. Additionally
it does not make use of the moving reference implementation as the state is fully ob-
servable when GNSS is available. This filter was shown to produce accurate results even
in difficult areas with problematic GNSS reception. Finally the performance of LiDAR
odometry using Truncated Signed Distance Function-based scan matching was evaluated
on the available data recorded by the research vehicle. This evaluation however showed,
that including scan matching in the state estimation did not improve the localization
result given a medium-cost IMU, wheel speed and steering wheel measurements, instead
introducing additional drift in many situations.

In mapping the focus of this thesis was on implementing a computationally efficient
mapping system for estimating occupied and free areas in the vicinity of the vehicle. For
this the observation was made that in autonomous driving there is little benefit in main-
taining a map of the entire traversed area. The environments are changing constantly
due to occlusion of parking cars or other traffic participants. In addition the traversed
areas may be very large, making it impossible in some cases to keep the entire area in
memory. Instead a moving-window implementation was explored in this work, which
only keeps information in a window that is roughly centered around the vehicle while
discarding everything else. For this a hierarchical map organization was utilized based
on submaps, that makes it computationally efficient to move the active mapping window
as the vehicle travels through an area. For the hierarchical map different data structures
were evaluated on both the outer layer of the map containing the submaps and the inner
layer that stores the cells. The evaluation was performed for 2D arrays, hashmaps and
quadtrees. It showed different behaviors depending on the task the mapping algorithm
is intended for. When the map is to be built up and extracted for subsequent algorithms
regularly, which is often the case in autonomous driving, a combination of a hashmap or
quadtree on the outer layer with 2D arrays on the inner layer performed best. When the
only goal is to build a map of the environment however, which can be used afterwards or
is only extracted occasionally a combination of 2D arrays on both layers showed the best
performance, although this is comparably inefficient in terms of memory requirements.

For object detection and tracking first an object tracking framework using a late fu-
sion was presented. This late fusion relies on object detections from multiple sensors to
estimate the state of other traffic participants. For this, similar to the localization, it
makes use of ⊞-Kalman filters, with each traffic participant being estimated by its own
filter. The late fusion supports LiDAR, Camera and Radar data. In addition the use
of V2X communication in the tracking framework was explored and showed promising
results. Equations as well as their derivatives for implementing the late fusion in either
a UKF or an EKF were given for all measurement models as well as the motion model.
Second a number of object detection algorithms based on LiDAR data were explored
in order to remove the reliance on black box object detection implementations of the
sensors. The explored object detection algorithms are based on the observation that
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within the available data the most distinct feature of an object is its movement between
two measurements. Thus the focus in this thesis was put on approaches that estimate
dynamics in the environment in order to generate object detections from this. First
a method based on LiDAR optical flow was evaluated which showed some promising
results, however in some cases movement in the environment was indistinguishable from
sensor noise in the LiDAR making the result too inconsistent for robust tracking. Second
an approach was evaluated which estimates a grid map where the dynamic is estimated
within each cell using particles. This was originally proposed to be used with a LiDAR
and Radar, however with no raw Radar available it was evaluated for the use when only
LiDAR is available. While the approach showed great promise and good object detection
results, this comes at the cost of high computational demand. With the currently avail-
able hardware it was not possible to obtain robust results in real-time, however when a
high number of particles were used the classification performance of the dynamic grid
mapping improved drastically, indicating that with better hardware or the inclusion of
radar sensors this approach would likely be suitable. Finally an approach was evaluated
that estimated the distribution of LiDAR measurements in the world using Normal Dis-
tribution Transforms. This was based on the idea that measurements made sufficiently
outside of the estimated NDTs would likely belong to dynamic objects. While this ap-
proach was able to detect objects where the front was visible, it was unable to detect
objects seen from the side as the resulting NDTs from one scan would still cover most
of the side of the object in the next scan.

7.2 Outlook

While future work specific to the presented modules was presented in the corresponding
chapters, an overview of future work in the field of sensor fusion in autonomous driving
is given in the following.

The results of this thesis showed that the performance of the modules depends strongly
on the utilized sensors. Their accuracy, the field of view of each sensor and the resolution
are driving factors in the performance of the sensor fusion algorithms. While the use
of multi-sensor fusion mitigates the reliance on each sensor to a certain extent, some
reliance still exists and will be explored in future work. Following the results of works
presented in this thesis strong evidence points towards the available sensor equipment
leaving the largest room for improvements, especially in object detection. As a result an
updated sensor setup for planned new autonomous vehicles was proposed based on the
presented findings. This especially includes a full coverage of the environment by four
Radar sensors attached to the corners of the vehicle. In addition the coverage by cameras
will be increased similarly, with additional cameras being built into the sides as well as
the back of the vehicle. Finally improved LiDARs will be used in a similar setup as in
this thesis. These have an equal horizontal FOV, however the vertical FOV is increased
significantly from 3.2 degrees to 10 degrees and the horizontal resolution reaches up to
0.125 degrees between two measurements, which is currently at 0.25 degrees. In addition
these LiDARs measure on 16 layers instead of 4, generating a significantly denser 3D
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point cloud of the environment, although still less dense than the data contained in
public datasets such as the Waymo or nuScenes dataset where a top-mounted 3D LiDAR
is used. With this new equipment some of the algorithms evaluated or developed in this
work will be reevaluated. Especially in object detection and tracking many shortcomings
were produced by the quality of the available data. Reevaluating the performance of the
evidential dynamic mapping approach given both the improved LiDARs as well as the
added Radars is promising given the results produced with the current setup. Similarly
the LiDAR optical flow may benefit from the denser LiDAR measurements and could
be fused with Radar measurements to obtain a more robust estimate of the dynamics in
the environment.

The improved sensor setup additionally enables other directions of research that will be
explored in the future. With the LiDAR measuring on 16 layers over 10 degrees vertical
FOV the information contained in each scan is significantly improved. While the current
sensor setup provides little contour information and largely depends on detecting objects
from motion in concurrent scans, this is not the case with the new LiDAR. In its data
contours of the entire object in 3D are visible more clearly, enabling the use of object
detection and classification methods that work on shapes. In addition to classic methods,
the deep learning-based object detection on 3D point clouds has gotten a large amount
of attention in the past years and thus will be evaluated for the use on the new vehicle
as well. With most research utilizing a 3D LiDAR mounted to the top of the vehicle,
the focus here will be put on developing an object detection that is able to make use of
the six LiDARs mounted to the sides, front and back of the vehicle.

In addition to the planned work on object detection and tracking there are other
fields that benefit from an improved sensor setup. While the static environment is
currently only estimated as an occupancy grid map due to the spare data of the LiDARs
with a small opening angle, the new setup will measure significantly larger parts of the
environment vertically. This allows for more distinctions in the representation of the
environment. In combination with a full coverage of the surroundings with cameras, it is
possible to create a refined semantic representation. This includes information about the
road boundaries, the location and height of curbstones that was previously not possible
to be observed by the LiDARs, and the precise location of road signs that are identified
in the camera.

Regardless of the sensor setup one future topic of research is the prediction of move-
ment of other traffic participants. The current object tracking approach allows the
prediction based on the currently estimated dynamics, however real traffic participants
follow complex behavior and decision making. To improve the prediction further infor-
mation about the environment and the state of the object must be considered. This
includes available lanes on a road and especially on crossings. It also includes detected
turn signals and skeletal data of pedestrians and bikers that can be used to predict
an upcoming lane change or turn. The presented algorithms and results in this thesis
serve as a solid basis for these future tasks. While many are already actively in use on
an autonomous vehicle, others serve as important insights in the preparation for future
developments.
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