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Abstract

The rising availability of computational power allows for a steady improvement of

simulation techniques. As the awareness for the limits of our natural resources in-

creases, the use of numerical simulation for understanding existing materials and

their mechanical behavior is receiving increasing attention. Recently, Diebels and

Rjasanow 2019 incorporate knowledge about a material (glass fiber reinforced poly-

mers) w.r.t. the physical scale into a multi-scale approach, leading to a chain of

conclusions. They study the microstructure of the composite material on the mi-

croscale, develop modelling and simulation techniques for mechanical properties on

the micro- and macro scale. Microstructure models help us to gain knowledge at one

scale and deducing to the following. In this context, this work contributes to the

exploration of mechanical properties of microscopically heterogeneous materials.

I analyze 2D or 3D data of materials’ microstructure by means of stochastic geometry

and fit geometric microstructure models. First, I model polycrystalline metals using

a Laguerre tessellation. Second, glass fiber reinforced polymers are modeled by a

union of cylinders. This modelling step enables the connection between a geometrical

microstructure model and a simulation of mechanical properties of microscopically

heterogeneous materials.

In ultrasonic non-destructive testing, the scattering theory (Hirsekorn 2014) origi-

nally predicts the scattering in a polycrystal w.r.t. grain mean diameters and the

frequency of an ultrasonic wave. I implement a new simulation technique for the

computation of a scattered ultrasonic time-domain signal in a fitted Laguerre tessel-

lation. Hence, this approach allows to simulate the noise which appears in ultrasound

signals caused by microstructers. An investigation of scattering due to microstruc-

tural variation in a polycrystal is now possible, which should be employed in context

of non-destructive material testing in the future.
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Destructive sample extraction from composite components for estimation of fiber ori-

entation distribution belongs to the state-of-the-art. We demonstrate success in two

main scenarios: First, virtual experiments for tensile tests now can replace destruc-

tive tensile testing. Second, we demonstrate that truly non-destructive scanning of

regions of interests is now possible.
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Zusammenfassung

Die zunehmende Verfügbarkeit von Rechenleistung ermöglicht eine beständige Ver-

besserung von Simulationswerkzeugen. Das ansteigende Bewusstsein für Ressourcen-

knappheit erzwingt die Integration der Simulationswerkzeuge, um die vorhandenen

Werkstoffe besser zu verstehen. Diebels and Rjasanow 2019 integrieren in einem

Multiskalenansatz das Wissen über ein Material (glasfaserverstärkte Polymere) in

Bezug auf die physikalische Skala und bilden so eine Kette von Schlussfolgerungen.

Sie untersuchen die Mikrostruktur des Verbundwerkstoffs auf der Mikroskala und

entwickeln Modellierungs- und Simulationstechniken für mechanische Eigenschaften

auf der Mikro- und Makroskala. Dieser Ansatz profitiert durch Mikrostrukturmod-

elle, da diese dazu beitragen, den Werkstoff auf einer Skala zu verstehen, um somit

das Wissen auf die nächste Ebene zu übertragen. Damit trägt diese Arbeit zur

Erforschung der mechanischen Eigenschaften von mikroskopisch heterogenen Mate-

rialien bei.

Ich analysiere 2D- oder 3D-Daten der Mikrostruktur von Werkstoffen auf Basis

der stochastischen Geometrie und passe geometrische Mikrostrukturmodelle an.

Zum einen modelliere ich polykristalline Metalle durch ein Laguerre-Mosaik. Zum

Zweiten werden die glasfaserverstärkten Polymere durch eine Vereinigung von Zylin-

dern modelliert. Dieser Modellierungsschritt gewährleistet die Schnittstelle zwis-

chen den Mikrostrukturen und einer Simulation von mechanischen Eigenschaften

der mikroskopisch heterogenen Materialien.

Mithilfe der Streutheorie (Hirsekorn 2014) kann die Streuung in einem Polykristall

abhängig vom mittleren Korndurchmesser und der Frequenz der Ultraschallwelle

geschätzt werden. Ich implementiere ein neues Simulationsverfahren zur Berechnung

des gestreuten Ultraschallsignals in der Zeit-Domäne in einem angepassten Laguerre-

Mosaik, was eine Untersuchung des simulierten mikrostrukturellen Rauschens er-

möglicht. Eine Untersuchung der Streuung aufgrund mikrostruktureller Variationen

III



in einem Polykristall ist nun möglich, was in Zukunft im Rahmen der zerstörungs-

freien Materialprüfung eingesetzt werden soll

Die zerstörungsfreie Probenentnahme aus Verbundbauteilen zur Abschätzung der

Faserorientierungsverteilung gehört zum Stand der Technik in Wissenschaft und Pro-

duktionsumgebung. Wir demonstrieren Erfolg in zwei Szenarien: Virtuelle Zugver-

suche können nun die realen Experimente ersetzen; wirklich zerstörungsfreies Scan-

nen und Analysieren der interessierenden Regionen ist nun möglich.

IV



Acknowledgement

I need to thank my family for endless support. I am grateful for this unconditional

love. Also, I need to thank my second family, with Katja Schladitz and Jörg Wenzel

ahead. Katja, it was a pleasure to have this mixture of work, spending free time

and in general running life with you. I appreciate the many helpful talks with you

and the proofreading done by you.

I have enjoyed the great support of Ronald Rösch. It was a pleasure to work with

my supervisors, Hans-Georg Stark and Peter Maaß. Also, I need to thank Martin

Spies, for providing the initial topic idea of the ultrasonic scattering in polycrystals.

I would like to thank Sigrun Hirsekorn for the trust and the valuable explanations

and discussions regarding the scattering theory. I would also like to thank Claudia

Redenbach for her attentive manner and some advice during my work. Also, I

appreciate the support by Joachim Ohser and Markus Rauhut.

At different stages of this thesis, I have worked at different institutions, where I’ve

been able directly or indirectly to continue. I need to acknowledge the follow-

ing places: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik in Kaisers-

lautern, Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren in Saarbrücken,

Deutsche Gesellschaft für Zerstörungsfreie Prüfung in Berlin, Hochschule Darm-

stadt, Technische Hochschule Aschaffenburg, Hochschule Kaiserslautern, and of

course Universität Bremen.

After all this, I know about my stubbornness as well as about my patience, which

are sometimes curse and blessing at the same time. Thank you to all my friends,

especially to Tobias Bühler and Oliver Wirjadi. Oliver, thank you for your patience

and the proofreading, you have done. All of you are great companions.

V



Contents

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Publications and Contributions of the Author . . . . . . . . . . . . . 6

I Preliminaries 9

2 Modelling of Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 General Outline of Stochastic Microstructure Modelling . . . . . . . . 13

2.2.1 Microstructure Models . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Geometric Characteristics . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Estimation of the Characteristics Based on Image Data . . . . 19

3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Analysis and Modelling of Microstructure . . . . . . . . . . . . . . . . 21

3.1.1 Polycrystalline Metals . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Glass Fiber Reinforced Polymers . . . . . . . . . . . . . . . . 24

3.2 Simulation of Material Properties . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Ultrasonic Scattering in Polycrystals . . . . . . . . . . . . . . 28

3.2.2 Simulation Techniques for GFRP . . . . . . . . . . . . . . . . 29

4 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

VI



Contents

II Publications 41

VII



Contents

1 Introduction

The fast technological progress impacts our life strongly in many ways. On the one

side, the technical and aesthetic requirements on construction elements grow. Si-

multaneously, the demand for more reliable and exact testing techniques to ensure

the increased quality requirements rises. Moreover, the apparent limitation of var-

ious resources drives the need for long-lasting and well constructed products. On

the other side, computational power increases rapidly and computational techniques

improve. These developments call and allow for mirroring all design, construction,

and production steps, as well quality management in the virtual world.

Hawking and Mlodinow 2010 discuss the general idea of a scientific model which

describes a particular subject. The authors claim that humans cannot be absolutely

certain about any subject, and thus the models should be measured by their useful-

ness. Thus, the desired models should be as sophisticated as needed to describe the

specific subject, but not more than required.

This requires for structure models and simulation methods suitable to the physical

scale where the question arises. More precisely, the detailedness and accuracy of a

microstructure model or a simulation technique is useful w.r.t. the problem solution

and the corresponding physical scale, and is inefficient in the best case or is even

useless otherwise. Typically, a product evolves in a sequence of production stages,

i.e. starting with design and selection of materials, subsequently predicting prod-

uct properties and finally allowing for a robust, objective, and reproducible quality

assurance. This leads to the incorporation of models and methods at distinct pro-

duction stages and enforces a multi-scale approach (Diebels and Rjasanow 2019).

Diebels and Rjasanow 2019 demand a bottom-up validation of physical scale levels,

where a level is validated by data and analysis from lower scales.

In general, Figure 1 emphasizes the common idea of the contributing publications in

this thesis. I analyze material images which depict material structure at a nm-µm
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modelling, as discussed by Diebels and Rjasanow 2019.

Virtual, digital or computational material design is an entire research area aiming

to study real world materials in a virtual environment, see e.g. Huber et al. 2022;

Jeulin 2021; Lee 2016. This approach saves material resources, on the one hand, but

requires virtual representations of both the real material and the experimental set-

up, on the other hand. Every real world material requires its own handling, including

structural modelling as well as the simulation of desired material properties. This

implies a variety of material models as large as the real world materials’ variety.

In this context, two main applications give the motivation for the investigations,

which I present here. The following publications deal with materials whose proper-

ties are determined to a significant extent by geometric or crystallographic proper-

ties.

First, polycrystalline metallic alloys are fundamental for many construction elements

where the weight is negligible but extreme load bearing capabilities and long life cy-

cles are demanded. Polycrystals form a system of grains whose size distribution is

a decisive feature for the material’s macroscopic behavior. Ultrasonic testing is a

non-destructive testing technique where an ultrasonic wave of a certain frequency

propagates in the material and reflects whenever the wave faces obstacles, i.e. de-

fects. The propagating wave is scattered by the polycrystalline grain structure,

causing energy loss and velocity fluctuations. Thus, defect detection and evaluation

gets more difficult the more the propagating wave interacts with the polycrystalline

microstructure due to its wavelength (Mason and McSkimin 1947, Truell et al. 1969,

Stanke and Kino 1984). A 3D tessellation of a volume parcels space in a structure

similar to the polycrystalline structure, with grains and boundaries between them

(Alpers et al. 2015, Šedivỳ et al. 2018). For our application, the main idea is to find

an appropriate 3D tessellation as a representative of a single phase polycrystal, and

to use this 3D tessellation for simulation of ultrasonic backscattering.

Simulation techniques allow for prediction of scattering effects and thus support

a deeper understanding of ultrasonic wave propagation in polycrystalline media.

Recently, realistic models for polycrystalline microstructure have become computa-

tionally more accessible. The upper row of Figure 1 gives a short visual summary

of my work regarding this application. Figure 1 references the publications Dobro-

volskij and Schladitz 2022, Andrä et al. 2019, and Baranowski et al. 2019. Each of
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the gray arrows indicates the work flow of the corresponding publication.

Second, glass fiber reinforced polymers (GFRP) are widely used in production of

construction elements where light weight and strength are requested. Glass fibers

are thin and long and usually embedded in a macroscopically homogeneous polymer

matrix. Thus, this composition improves the load bearing capability of the material

in certain directions. The orientation distribution of embedded fibers mainly deter-

mines the load which can be resisted by the material and thus needs to be controlled

and analyzed.

Injection molding is a complex process in which the liquid material flows, cools down,

and finally forms the desired part. This process determines the orientation of the

incorporated glass fibers. During the molding process, the liquid material is injected

at designated points. Fibers align with the flow. However, rheological effects and

fiber-fiber-interactions cause deviations from this general rule (Yasuda et al. 2005).

The difficulty of controlling and predicting the resulting spatial distribution of the

fibers increases with the complexity of the shape of the component, the fiber volume

content, and the fiber length. In principle, the local fiber orientation can be analyzed

by the analysis of polished 2D sections (Chiu et al. 2013, Section 11.6.4). A sliced

fiber of circular cross-section appears as an ellipse in a 2D section, and thus the

orientation of this fiber can be estimated. The estimated orientation is however

not unique, and small errors in the 2D sections can lead to large estimation errors.

X-ray micro computed tomography allowing for analysis of the fiber component in

3D and at high resolutions is therefore highly preferable.

The misalignment of fibers needs to be understood. Furthermore, it is still a chal-

lenge to derive locally well resolved orientation estimation in large components with-

out extracting samples of a size that actually means destroying the component. This

application is addressed in two publications, see Figure 1 in the lower two rows.

In both applications, GFRP and polycrystalline metals, I use image processing algo-

rithms in order to analyze either 2D or 3D images of the real material’s microstruc-

ture. A wide variety of tools had to be used and assembled into complex and widely

differing algorithms as images from four imaging methods had to be processed, while

the general workflow for all these tasks is similar. Moreover, the analysis aimed at

different goals, too – size and shape distributions of compact objects on the one

hand and local orientation distribution of a fibrous component on the other.
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The derived geometric properties enable the next step: setting up the model that

represents the real material virtually. In both applications, stochastic geometry

(Jeulin 2021) provides the necessary mathematical tools. Randomly packed straight

cylinders model the fibrous component of the GFRP material. The model allows

for a broad variation of its parameters, i.e. length and thickness of fibers, volume

fraction of the fiber component, and mean fiber orientation. A random Laguerre

tessellation models the polycrystalline microstructure, where cells represent grains.

The grain volume distribution determines the polycrystal’s microstructure. Thus, a

change of cell volume distribution allows adapting the virtual model to the observed

real polycrystal.

My personal contribution also comprises simulation of materials properties in the

first application. Here, I interpret the analytical scattering coefficients grain-wise

and establish a previously non-existent relationship between them and a numeri-

cal approximation method for ultrasonic wave propagation. This method allows

studying ultrasonic scattering depending on both frequency and microstructure.

1.1 Structure of the Thesis

This manuscript is designed in two main parts: the preliminary part and the sec-

ond part consisting of three attached published articles. The preliminary part of-

fers the reader a description of a framework with a fundamental understanding of

analysis and modeling of microstructures. Also, we describe the interface between

microstructure modelling and the simulation tools. More precisely, the first part

consists of three chapters. In chapter 2, I present the mathematical background

required for geometric analysis and modelling of microstructures. The applications

with the specific process of data analysis and modelling, as well as the simulation

of material properties, follow up in chapter 3. In the last chapter 4, I summarize

the diverse results, draw the conclusion, and give a short outlook regarding the

applications.

The preliminary part does not contain figures, but the publications in the second

part of this thesis contain several illustrative opportunities. I might invite the reader

to take a look for better understanding into the publications.
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1.2 Publications and Contributions of the Author

Ultrasonic Backscattering in Polycrystalline Microstructures,

Dobrovolskij and Schladitz 2022

Dobrovolskij, D. and K. Schladitz (2022). “Simulation of Ultrasonic

Backscattering in Polycrystalline Microstructures”. In: MDPI Acoustics 4,

pp. 139–167.

Contribution

This peer reviewed work is almost completely mine, except for two aspects.

First, the input image data comes from external institutions. Second, K.

Schladitz guided and supervised the publication process.

Publication Status and Availability

Published as a full length and open access article in a special issue ”Elastic

Wave Scattering in Heterogeneous Media“ of Acoustics Journal of Multidisci-

plinary Digital Publishing Institute (MDPI).

Description

I analyze two single-phase polycrystals: a fine-grained titanium based on 3D

computed X-ray diffraction data, and a coarse-grained Inconel-617 based on

2D light-microscopic images of planar sections. Then, we fit to each of both

polycrystals a Laguerre tessellation. These parametrized models allow to gen-

erate realizations with adjustable number of cells and cell size distribution.

This enables studying the interaction of the microstructure with ultrasonic

waves by numerical simulations.

I propose a completely new simulation approach for computing a backscattered

time-domain ultrasonic signal. Assuming a testing frequency, this simulation

of a propagating ultrasonic wave accounts for backscattering contributions

from each single cell. We superpose all the contributions at a receiver posi-

tion and derive a backscattering response from the microstructure. Based on

the simulation results, I conclude, that the mean grain diameter of a poly-

crystal does not suffice to explain the microstructural ultrasonic noise. This

contradicts common knowledge specific to the ultrasonic testing community.

Consequently, the testing frequency should be chosen not only depending on

the mean grain diameter, but on the entire grain volume distribution.
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Fiber Orientation Analysis in Injection Molded Samples,

Andrä et al. 2019

Andrä, H., D. Dobrovolskij, K. Schladitz, S. Staub, and R. Müller (2019).

“Modelling of Geometrical Microstructures and Mechanical Behaviour of Con-

stituents”. In ”Multi-scale Simulation of Composite Materials: Results from

the Project MuSiKo“, Springer, pp. 31–56.

Contribution

I planned and revised the acquisition of 3D image data based on the sample

provided by project partners. I analyzed the image data, passed on required

parameters to project partners, and wrote an essential part of the contribution.

Publication Status and Availability

This chapter belongs to a book, which is dedicated to recent insights in the

field of engineering and understanding of GFRP.

Description

We analyzed a sequence of five samples from an injection molded plate with

a constant plate thickness of 2 mm. The plate material consists of 20 weight

percent short glass fibers which are embedded in a polybutylene terephthalate

(PBT) matrix. The radius of the processed glass fibers varies from 10 to 12 µm

and their length is considered as constant with 250 µm. During the injection

molding occur a misorientation of a central layer due to rheological effects.

We found a dependency of the misoriented central layer in the sample w.r.t.

inlet position. The thickness of this layer varies from 60 to 110 µm. The layer

thickness is computed by averaging the differently oriented fiber component

over the entire sample size. Also, the orientation distribution of the fibers

in the misoriented central layer depends on its positioning towards the inlet.

We simulate the fiber orientation in a plate and show results of comparable

quality to those from X-ray scans. The co-authors used our orientation anal-

ysis for generating of a representative volume elements (RVEs) of a GFRP.

Then, these results are analyzed w.r.t. damaging on a microscale and verified

on larger scales (mm to cm) by simulated and real tensile testing experiments.

In this interdisciplinary project, we validated a simulation technique for ho-

mogenization on the microscale and thus justified to shift cycling tensile tests

from real to virtual.
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Analysis of large GFRP components, Baranowski et al. 2019

Baranowski, T., D. Dobrovolskij, K. Dremel, A. Hölzing, G. Lohfink, K.

Schladitz, and S. Zabler (2019). “Local fiber orientation from X-ray region-

of-interest computed tomography of large fiber reinforced composite compo-

nents”. In: Composites Science and Technology 183, p. 107786.

Contribution

This peer reviewed article is a result of a project funded by the Fraunhofer

Society. It involves work from representatives of a GFRP part production

company, an automotive company, and two research institutions. On the

project organization level, I worked on the attuning to requirements of all

project partners in order to write this contribution. I analyzed the extensive

amount of data, matched imaged data of varying resolution and different X-ray

measurement set-ups. I wrote the analysis and results parts of the publication.

Publication Status and Availability

The original publication is first published in Journal ”Composites Science

and Technology“. A preprint of identical content is available on arXiv

(https://arxiv.org/pdf/2005.06431).

Description

We analyze data from a half meter long GFRP automotive bearing part. A

novel X-ray scanning device allows for scanning of large GFRP parts. To the

best of our knowledge and for the first time, we proved the accessibility of

micrometer precision in the 3D imaged data without a destructive extraction

of a sample before scanning. The GFRP part is scanned at varying resolutions

by the same X-ray device, as well as by another X-ray device. All scans

are performed without any extraction of samples, meaning non-destructive

testing. We acquired and analyzed data of varying resolution of 45 down to

3 µm. I analyzed the acquired 3D images and compared them w.r.t. image

resolution vs. quality of fiber orientation decrease. The analysis results show

an evidence of the misoriented central layer, as previously stated in Andrä et

al. 2019. I prove that consistent estimation of orientation distribution of the

glass fiber component w.r.t. all acquired resolutions is possible. Moreover, we

validate the simulation of injection molding by comparison of the estimated

and the simulated orientation distributions.
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Part I

Preliminaries
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2 Modelling of Microstructure

In general, solid materials and their physical properties are determined by their in-

ner structure. This inner structure is called microstructure. Vander Voort et al.

2004 define microstructure as a structure of a material’s prepared surface, which

can be imaged by an optical microscope above 25 times magnification. We assume

that another imaging device can capture the same microstructure, except for an

error caused by measurement inaccuracy and sample preparation. Then, this work

is dedicated to the spatial microstructure characterization and the consequences for

some of the material properties. I study image data of material microstructures and

apply stochastic modelling in order to find a suitable and compact microstructure

representation. The stochastic modelling approach addresses the randomness of a

heterogeneous structure on the microscopic scale. As discussed by Jeulin 2021, there

are two reasons justifying the stochastic modelling approach. First is the quantifi-

cation of influence caused by random structure at small scale and the corresponding

characteristics at the global scale. The second is the influence of local variation of

imaged microstructure caused by limited sample size and number. Following this

argumentation, Jeulin 2021 suggests the probabilistic approach for microstructure

representation for heterogeneous media.

The stochastic modelling procedure requires a specific model choice which needs to

be suitable for the considered material. Then, the chosen model is defined by one

or more objects following parametric statistical distributions. A high number of

involved model parameters implies a more complex model and accordingly a com-

plex modelling procedure. The number of parameters yields from the specification

of objects and the considered distributions. The modelling procedure comprises a

model fitting. While model fitting, parameters need to be estimated from acquired

material data. The model fit ensures optimal parameters for a stochastic represen-

tation of the microstructure of a specific material. Then, a random structure can
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be realized. The realization can be depicted in a visual 3D image and thus become

visually observable.

In the literature, there are attempts for acquisition of digital material data sets

which serve as a virtual material representation, as demonstrated by Bhandari et al.

2007. In this digitalization method, the discrete acquired data of the microstructure

becomes transformed into a finite element mesh. The fundamental difference of the

two approaches lies in the presence or absence of limitations to one digital sample

representation and the sample size. Comparing to the digitalization method, the

stochastic modelling approach has the following advantages:

• The random structure is scalable in terms of physical object size and the

number of observed objects.

• The discretized image resolution of the random structure can be changed.

• The parametrized model can be studied w.r.t. material properties allowing

for virtual material design, as for instance Diebels and Rjasanow 2019 do

successfully.

Usually, virtual material design has a context given by the material’s application

in a specific engineering field. In this context, questions might emerge from one or

multiple of the following areas: acoustic, mechanical, thermal, electric, chemical,

particle flow or multibody system’s properties. Each of these fields sets up various

requirements for the considered material’s model and thus determines the required

model characteristics. Materials arrange themselves in patterns which depend on

the considered scale and the material itself. Multi-scale modelling is a research field

which attempts to solve problems by involving considerations at different scale of

time or space (Horstemeyer 2010). The upper scale requires the knowledge from the

lower scale in order to be analyzed. According to Diebels and Rjasanow 2019, each

of the smaller scales provides information to the upper scales. In this context, the

stochastic model can provide information at lower scale in order to analyze properties

of the material at higher scale. Moreover, the here proposed stochastic model can

be customized at a smaller scale, leading to a change of materials properties at

higher scale. Figure 1 indicates the dependence of the material’s characteristics on

the scale by the horizontally aligned arrows. Altogether, the stochastic modelling

approach is advantageous in the context of virtual material design, as it increases

its informative value and allows for virtual studies.

11



2.1 Data Acquisition

A physical property of a certain material is determined by the inner structure of the

material. Thus, we need to analyze the inner structure w.r.t. the arising question

about the physical property. This leads to analysis of image data of the microstruc-

ture in order to determine the characteristics of the topological structure, before

model fitting. Even before the analysis of image data, we need to think about the

data acquisition. The image data should reveal the topological structure. Simulta-

neously, the measurement error should be as small as possible for the data acquisi-

tion technique. Each acquisition technique operates differently and correspondingly

introduces its own measurement error. Our knowledge about the acquisition tech-

nique and the microstructure of interest is always limited by our insight in evidence.

This means, there is nothing more precise than a ground truth. We can verify the

acquired image data by the ground truth, if the ground truth exists. Either, the

ground truth exists due to previous measurements, e.g. as a result of another ac-

quisition technique, or as a result of a simulation technique. If the ground truth is

unavailable, then other reasonable data can serve as a less precise approximation. In

general, the acquired data or measurement results need a validation by some other

data, where at least a reasonable comparison of magnitude is possible.

Each physical scale of material demands measurement techniques which can cope

with specifics of the particular physical scale. The utilized acquisition technique

differs due to

• the acquisition equipment,

• feasibility limitations,

• preparation of sample,

• type of acquired data (e.g. dimensionality, data type).

The arising question about the microstructure of material determines mainly the

data we want to acquire in order to yield some insight. In any case, once the data is

acquired, it determines the steps ahead: the geometric characterization of the data

and the model fit. The analysis depends significantly on the type of data. Typically,

the observed data should reveal the general spatial pattern of random character.

The idea usually is, to study the observed data and to derive a probabilistic model

12



serving as a parametrized representative of the observed structure. Before that, we

introduce the general idea of a model fit and the corresponding mathematical terms,

so that we can use them in the data analysis part and the model fit procedure. The

acquired data is usually a 2D or a 3D image data on a regular grid consisting of

marked points on this grid.

2.2 General Outline of Stochastic Microstructure

Modelling

The characterization of random geometric objects requires an exact mathematical

definition of the space and corresponding metrics. The Bertrand paradox (Bertrand

1889; Walz 2004) is an impressive historical proof for this statement. In stochastic

microstructure modelling, the most central and essential concept is the random

closed set, also called RACS in literature. There exists a stack of literature on

the topic stochastic microstructure modelling. Separated by motivation, there is

the theoretically oriented work by Daley and Vere-Jones 2003; Schneider and Weil

2008, and the application oriented ones by Chiu et al. 2013; Jeulin 2021; Ohser and

Mücklich 2000; Ohser and Schladitz 2009; Torquato 2013.

The modelling procedure usually starts by studying observed data and choosing

a suitable model. Jeulin 2021 points out what is mathematically needed for the

conceptual building of random structures. In order to define random closed sets,

we need to define an analogy to a classical a random variable whose values are

sets. A classical variable is a measurable mapping from an abstract probability

space (Ω, A, P ) into a measurable space (E, Σ), where Σ is a suitable σ-algebra. A

natural choice for a σ-algebra is the Borel-σ-algebra B(E) generated by the open

subsets of E. In our case, E is the space F of closed subsets of Rn. We need to

equip F with a σ-algebra and want to use the Borel-σ-algebra. To this end, we need

open subsets of F . Therefore, we introduce a topology on F .

We follow for the precise definitions Schneider and Weil 2008 in particular chapter

2, where a probability space is a triple (Ω, A, P ) of a sample space (or a set)

Ω, a σ-algebra A, and a positive measure (the probability) P , with P (Ω) = 1. A

σ-algebra A is a family of sets A ∈ A satisfying the following axioms:
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i) Ω ∈ A, ∅ ∈ A

ii) ∀A ∈ A, AC ∈ A with the complementary set AC = Ω \ A

iii) For any finite and denumerable set Ai ∈ A :
⋃

i=1,...,n
Ai ∈ A and therefore

⋂
i=1,...,n

Ai ∈ A.

A Borel-σ-algebra is a version of a σ-algebra, where the generating set consists of

the open sets of a topological space. We now define a topology on F in order to use

the Borel-σ-algebra B(F). Let C, F , and G be the systems of compact, closed, and

open subsets of Rn, each including the empty set ∅. For sets A, A1, . . . , Am ⊂ R
n

we define

FA = {F ∈ F : F ∩ A = ∅},

FA = {F ∈ F : F ∩ A 6= ∅},

FA
A1,...,Am

= FA ∩ FA1
∩ . . . ∩ FAm

, m = 0, 1, . . . ,

where FA
A1,...,Am

= FA for m = 0. The desired topology on the space F is the one

generated by the system

{FC : C ∈ C} ∪ {FG : G ∈ G}.

This definition corresponds to Schneider and Weil 2008, i.e. Definition 2.1.1 (topol-

ogy of closed convergence).

Any of the systems, either {FC : C ∈ C} or {FG : G ∈ G}, generates the Borel-σ-

algebra B(F) (Schneider and Weil 2008, Lemma 2.1.1).

Finally, a random closed set is a measurable mapping Z : (Ω, A, P ) → (F , B(F)).

In the following, we will need special cases of random closed sets.

We need one further definition for the characterization of random closed sets. Let

C be is the system of compact subsets of Rn. The Choquet capacity TZ : C → R

of the random closed set Z on (Ω, A, P ) is defined as

TZ(C) = P{C ∩ Z 6= ∅},

for all compact subsets of C ∈ C, whereat TZ ∈ [0, 1] and TZ(∅) = 0. Assuming

the monotone convergence of Ci to C for i ∈ N and Ci ∈ C, implying Ci+1 ⊂ Ci
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and
⋂

i∈N Ci = C. Then, the Choquet capacity converges T (Ci) → T (C). Hence,

the Choquet capacity determines the distribution of a random closed set. Jeulin

2021 defines a model of a random structure by its Choquet capacity. The Choquet

capacity ensures the statistical evaluation of the compact sets by moments of the

probability function (Jeulin 2021; Ohser and Schladitz 2009).

A point process (PP) could be defined as a locally finite random closed set. In

order to allow for multiple or marked points, PP are usually defined as random

counting measures. Let N be the set of all counting measures on R
n and N the

corresponding Borel-σ-algebra (for details see Schneider and Weil 2008, chapter 3),

then a PP on R
n is defined as a measurable mapping from the probability space

(Ω, A, P ) to (N, N ).

Let C ′ = C \ {∅} be is the system of nonempty compact subsets of Rn. We consider

a marked PP X̃ with the mark space C ′. Then,

X :=
∑

(x,C)∈X̃

δx+C

defines a germ-grain process, if the local finiteness of the counting measures on

the right side is guaranteed.

To complete the definitions of basic concepts used in the following, we finally define

a mosaic M in R
n as a countable system of subsets, that satisfy the following

conditions:

i) M is a locally finite system of nonempty topological sets;

ii) the sets K ∈ M are compact, convex and have interior points;

iii) the sets of M cover the space

⋃

K∈M

K = R
n

iv) If K, K ′ ∈ Mand K 6= K ′, then int K ∪ int K ′ = ∅.
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2.2.1 Microstructure Models

Stochastic PP are fundamental in stochastic geometry, as they are a basic ingredient

to many spatial models. Stochastic PPes have been applied to many areas such as

astronomy for planet and star distributions, plants in fields, cells in biological tissues

or material cracks, as pointed out by Jeulin 2021. A stochastic PP is a sequence of

random variables that are indexed by a well-defined set.

A Poisson PP is the simplest PP and is briefly a point process that defines a perfect

disorder. More precisely, a Poisson PP defines a random variable N(K) for a Borel

set K with the intensity θ(K). This parameter describes the number of independent

points of the process in the compact set K. Then, the Poisson distribution is:

P{N(K) = n} =
θ(K)n

n!
exp(−θ(K)).

A constant intensity w.r.t. translation along space means a proportionality w.r.t.

the Lebesgue measure. This means simultaneously the stationarity of the process.

A Poisson PP is homogeneous as the Lebesgue measure is invariant to rotations of

the compact set K.

A Laguerre tessellation of Rn is an extension of a marked PP, as by definition to

each random point xk is attached a random radius Rk. Let P be a Poisson PP in

R
n with intensity θ. Then, a Laguerre tessellation is a union of cells defined by

C(xk, Rk) = {x ∈ R
n|d(x, xk) − Rk < d(x, xl) − Rl, xk ∈ P, xl ∈ P, xk 6= xl},

where d denotes the Euclidean distance. The inequality defines which x belong to

cell C. This process generates a random set with non-overlapping cells based on a

PP, where the ”perfect disorder“ is not present anymore.

In order to generate a realization of a Laguerre tessellation, we apply the force bi-

ased (FB) collective rearrangement algorithm (Ohser and Schladitz 2009). The FB

algorithm realizes a hard-core process, where a packing of non overlapping spheres

is computed. This algorithm starts with a Poisson PP, where each point serves as a

generator. The algorithm attaches to each generator point a radius and rearranges

the resulting spheres in an observation unit window until the spheres do not overlap,

and the sphere packing satisfies the preset volume fraction.
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The sphere packing serves as a set of cell generators. Then, the cells emerge by

bisectioning the distances between each pair of neighboring generators.

Also, the Random Sequential Addition (called RSA by Torquato 2013, SSI by

Chiu et al. 2013) is a process which allows for generation of a random set of non-

overlapping objects, which is also called a hard-core process. The RSA is defined by

the following sequence:

1. Define a random closed set by

a) its shape and size distributions

b) and its uniformly distributed random position in the observation window.

2. Check for object intersection with already placed objects and accept if no

intersections occur, and go back to step 1a. Otherwise, the object placement

is rejected, and the number of rejections incremented.

3. If the number of rejections is lower than a preset number of rejections in a

row, or the desired volume fraction is not reached, then go back to step 1a.

Otherwise, the random sequential addition finishes the computation.

This sequence generates a macroscopically homogeneous random packing of topo-

logical objects.

2.2.2 Geometric Characteristics

A realization of a model becomes comparable to existing image data by a generation

of an image of the realization. The compact sets represent objects of certain shape

and size. Quantitative measures give these objects a numerical meaning. Thus, by

measuring the objects observed in acquired image data, we can numerically compare

these to the corresponding characteristics of the chosen stochastic model, yielding

a quantitative measure for the quality of the chosen models. The corresponding

measures are the so-called Minkowski functionals and are summarized in Table 1.

Minkowski functionals suffice the experimentally required constraints: the invariance

by translation, continuity and additivity of a random closed set.

In some cases it is necessary to quantify a structure, which consists of non-separable

objects, e.g. a porous medium or a mineralogical texture. The Crofton relation
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space measure description w.r.t. a compact set A

R `(A) length

R
2

A(A) area
L(A) circumference
N(A) connectivity

R
3

V (A) volume
S(A) surface area
M(A) integral of mean curvature
N(A) integral of total curvature or connectivity number

Table 1: Minkowski functionals for isolated objects (Jeulin 2021).

(Ohser and Schladitz 2009) determine the specific measurements, which are sum-

marized in Table 2. The specific measurements are evaluated in the context of

stationary processes and keep the properties of Minkowski functionals. The specific

measurements have the subscript L for length, A for area, and V for volume, w.r.t.

the considered space and the entire random process. More precisely, the quantities

are normalized by the corresponding measure corresponding to the dimensionality

of the stationary random set. These measures are also called as intrinsic volumes,

e.g. by Ohser and Schladitz 2009.

space measure description

R
LL specific length
NL specific number of connected components

R
2

AA area fraction
LA specific boundary length
NA density of the Euler number

R
3

VV volume fraction
SV specific surface area
MV density of the integral of mean curvature
χV density of the Euler number

Table 2: Specific measures for a stationary random set or its parts, as discussed by
Jeulin 2021.

The considered measures depend on various aspects of the fitting procedure: the

model and the considered objects, as well as the image data of the microstructure

and its analysis. Hadwiger 1959 proves the existence of n + 1 linear independent

specific measures in n dimensions. Consequently, a sequence of measures needs to

be evaluated in order to evaluate a microstructure numerically.
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Once an average object is topologically well described and a distribution of the

variation of the objects is known, we can have a recourse to a random PP and a

generation of well-defined objects. We start by a random PP leading to a paramet-

ric distribution. A sequence of random variables yields correspondingly a sequence

of distribution functions with a variety of parameters. This sequence belongs then

to the same stochastic PP. All parameters determine the parametric space. Conse-

quently, the parameter variation entails a change of the model appearance, which

can be measured by the Minkowski functionals or specific measures. Practically, the

model and parameter choice depend on the morphological analysis of the structure

to be modelled. The parameter space is determined by the number of parameters.

Mathematically, a material model is found if a distance between a representative of

real material and its model is minimal. Minimization is an iterative process, the

complexity of which depends on the number of parameters which need to be fit.

The observation window is usually in stochastic geometry uniformly sized, and the

observed microstructure gets its physical meaning after scaling up this observation

window. A representative volume element (RVE) is the smallest volume of the

material which can represent the material’s characteristics over its entire volume,

as discussed by Jeulin 2021. This means, the RVE is large enough to capture small

local deviations in material’s characteristics and simultaneously non-sensitive to

those variations due to averaging out over the accounted volume.

2.2.3 Estimation of the Characteristics Based on Image

Data

In context of stochastic microstructure modelling, there are mainly two types of

data. First, the measured data coming from the acquisition technique and having a

data structure specific to the acquisition device. More precisely, the size of the 2D-

or 3D-images is determined by the physical dimensions of the built-in components,

leading to a specific size and resolution of the image. The resolution is the physical

scale equivalent to one pixel or voxel. Thus, the resolution is a decisive parameter

which ensures a well depicted microstructure. Usually, a small resolution number

leads to well depicted objects, as a high number of grid points allow for a better

visibility of an object. Also, the field of view is limited by the sensor or detector

size, which is a built-in component of the device. Field of view mainly determines,
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the size of area or volume which can be imaged. Altogether, a high resolution and a

large field of view allow for an image of well depicted objects in a large neighborhood,

allowing for a large observation window of the structure to be studied. The coloring

scheme of the images is predetermined by the technical abilities of a particular device

as well. The range of depicted color values impacts the perceived quality of image

data. In our context, the color range usually corresponds to 28 = 256 or 216 = 65 536

color values. A region of interest defines a particular depicted region of a sample, if

the sample is not scanned entirely.

Second, the image data is generated after the realization of a model with a specific

parameter choice. In this case, the virtual resolution can be chosen as needed but is

limited due to the raising data amount which needs to be processed consequently.

The color range can also be chosen as variable as needed. The number of realized

objects, which are depicted is called region of interest (see Ohser and Schladitz 2009)

and is related to the physical field of view. All in all, the choice on the resolution, the

color range and the number of observed objects depends on the physically acquired

data since it needs to be comparable.

We use the software packages MAVI (Fraunhofer ITWM, BV 2021) and ToolIP for

all image processing routines. The difference between these two tools is due to their

abilities to process the data differently. MAVI enables an application of algorithms

to single images and provides a 3D visualization of results. However, ToolIP allows

for an application of a sequence of algorithms with preset parameters for a stack of

data sets where no user interaction is indispensable. Also, we use R for all other

analysis steps.
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3 Applications

3.1 Analysis and Modelling of Microstructure

In both applications, the polycrystalline microstructure and the GFRP, I aim at

finding a geometric model consisting of random compact sets following parametric

random distributions. Jeulin 2021 indicates these models as those which require

prior general properties, as the invariancy w.r.t. distribution. The considered mod-

els, the polycrystalline microstructure as well as the GFRP, require a PP. But, the

points of a Poisson PP are statistically independent by definition, meaning no spa-

tial interaction between points. This fact enforces an introduction of a repulsion,

which on the one hand distorts the PP with its analytical properties, but introduces

features which are useful in the context of real materials.

3.1.1 Polycrystalline Metals

In the first application, we analyze two different data sets of two polycrystals. We

rely on the microstructure data provided by independent third parties. We received

two types of data, which show the microstructure of two alloys, i.e. Inconel-617 and

titanium. These two imaging techniques share the physical scale of the depicted

microstructure, which is nanometer to micrometer, as also indicated in Figure 1.

Each acquisition technique has specific limitations due to experimental issues, which

enforces a sample size limitation and/or limitations w.r.t. material of the sample. In

our case, the coarse grained Inconel-617 is captured by a light microscope and the

fine grained titanium by a X-ray diffraction contrast tomography (DCT). In general,

the choice of imaging technique depends on the microstructure scale and material

characteristics, e.g. the microstructure of Inconel-617 is impossible to capture by

DCT, probably due to its coarse grains consisting of subgrains.
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A polycrystalline microstructure is homogeneous and isotropic if the metallic mate-

rial has not been welded or similarly treated, see work by Tromans 2011 for examples.

A polycrystal has its typical granular microstructure, which can be modelled by a

3D tessellation. A Laguerre tessellation suits this purpose, as it generates cells of

distinct size due to the attached radii, see publications by Fan et al. 2004 and Re-

denbach 2009. Typically, a log-normal distribution suits the polycrystalline grain

volumes, as well as the corresponding sphere packing, which is needed for the gener-

ation of the Laguerre tessellation. After all, the parametrized Laguerre tessellation

yields a realization consisting of non-overlapping convex polyhedra. These param-

eters are either expected number of cells in the observation window, or the mean

volume of a cell, and its variance.

We employ stochastic models following suggestions from literature. More precisely,

Torquato 2013 and Chiu et al. 2013 portray tessellations as a suitable model for

polycrystals, i.e. Voronoi and Delaunay tessellations. The Laguerre tessellation is a

weighted version of the Voronoi tessellation. The cell generators are the same for

both tessellations. But, the sectioning rule between two neighboring cells is governed

by a weight which is attached to the generator. We build up on this knowledge and

accordingly utilize the control mechanism of the cell volume during the generation

of a Laguerre tessellation. Fan et al. 2004 investigate several polycrystals w.r.t.

to numerical measures, which are typical for this closely packed granular media.

More precisely, they study the average number of faces, edges, and the volume per

cell, as well as the coefficient of variation (CV). The CV is the ratio of variance

to average of cell volume. We use this coefficient while generating the packing

of non-overlapping spheres, which serves as controlling mechanism for the desired

distribution of cell volume. The force biased collective rearrangement algorithm

ensures this condition. Although, the for this purpose required packing of spheres is

computationally expensive, it is necessary since cell volume is of prime importance

in the context of ultrasound applications. More precisely, it is the grain diameter

which impacts the propagating ultrasound wave and causes its energy loss for high

wave frequencies.

Coarse Grained Inconel-617

First, the data from a light microscope reveals the microstructure of Inconel-617

by the depicted grain size distribution in 2D sections, i.e. the Feret diameter of the
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observed grains. More precisely, quantitative analysis of the acquired data yields

discrete distribution of the aforementioned diameter. For the acquisition of this type

of data, a laboratory equipment requires a light microscope and the necessary tools

for cutting the metal and surface preparation. The surface preparation includes

etching and polishing, which leads to a visibility of grain boundaries.

In case of Inconel’s polycrystalline microstructure, we build on the available data

and accordingly study the corresponding grain diameter in 2D sections. The actual

micrograph images are studied in a previous study by Walte et al. 2015. This data

provides a discrete distribution of Feret diameters in 2D sections of the observed

microstructure. More precisely, a Feret diameter is the maximum linear distance

fitting into a grain’s planar section. The discrete distribution appears to be log-

normal, which aligns with previous studies of polycrystals, see the work of Fan et

al. 2004. The log-normal distribution is a two-parametric distribution. These two

parameters are equal to the mean value and a standard deviation of the natural

logarithm of the random variable. We summarize this model fitting approach in

three main stages:

1. choosing the initial number of cells in a region of interest,

2. adapting the number of spheres to be packed until the Feret diameter in 2D

sections fits for a fixed coefficient of variation,

3. choosing in a naive grid search the mean cell volume and its standard devi-

ation and computing the realization of Laguerre tessellations until these two

parameter correspond to the observed in micrographs.

By this approach, we can find a suitable coefficient of variation for the 3D La-

guerre tessellation, which fits the observation in micrographs. This approach is

time-consuming and requires numerous manual data analysis steps.

Fine Grained Titanium

Second, the X-ray DCT data shows the granular structure of titanium providing

the entire three-dimensional size distribution of the grains, including the orientation

of each single grain. For this sophisticated acquisition technique, a synchrotron

radiation facility is needed. Also, the sample preparation is demanding. Moreover,

this imaging technique is suitable for a limited number of polycrystals, only, i.e.
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polycrystals with a low subgrain misorientation, a low density and subatomic number

(see Ludwig et al. 2009 for more details). The acquired DCT data is available as

a three-dimensional image, where an image is a regular grid of pixels or voxels.

To each of the discrete points is assigned a color value. In this DCT image, each

voxel belongs to exactly one set of pixels, which are called labels. Each scanned

grain is assigned exactly to one label during the reconstruction procedure. The

number of depicted labels corresponds to the number of grains, plus one label for

the background. Correspondingly, the 3D image is a label image, where the depicted

sample consists of enumerated grains.

The microstructure of the entire titanium sample is available in a 3D data set,

allowing for a relatively accessible modelling procedure. This simple data structure

allows for counting the pixels per label and multiply by the physical resolution,

leading to the volume per grain. This grain volume yields a discrete distribution of

log-normal shape. The standard deviation of the grains’ volume and the mean value

yield immediately the desired coefficient of variation for the Laguerre tessellation.

In the last step, the suitable number of cells per region of interest and the coefficient

of variation can be used to generate a model’s realization, which is large enough for

the simulation purpose.

3.1.2 Glass Fiber Reinforced Polymers

In the second application, we acquire and analyze image data from three different

X-ray devices. All three devices are laboratory set-ups with different specifications.

Andrä et al. 2019 utilize X-ray device which is a well known equipment with a

large experimental experience in the past. The X-ray device for large components,

as presented by Baranowski et al. 2019 is a completely novel set-up at the point

of publication. The acquired data is validated by image data of the same large

component acquired by a third X-ray device. Two of the three devices require a

sample extraction, which is state of the art, at least in the research environment.

In this case, a small sample of approximately some millimeters along each of the

three dimensions needs to be cut out from the component. Then, the sample can be

placed on the sample holder of an X-ray device and be scanned. After a sequence

of rotations of this sample, single scanning projections are collected and can be

reconstructed, leading to a 3D image of the sample. An X-ray device has its own
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internal coordinate system, which is composed of the source, the sample stage, and

the detector local coordinate systems. Based on this composition, single projections

are collected and can be reconstructed. The sample itself has no own coordinate

system which would allow for identification of precise sample orientation. Hence, the

coordinate system of the reconstructed 3D image depends on how the sample was

mounted on the sample holder prior to scanning. All three devices produce a slightly

different X-ray intensity, and depict slightly different scanned values due to different

technical components built into the X-ray set-up. The imaging technique of all X-ray

devices is tainted by the partial volume effect, which has been studied by Hoffman et

al. 1979. Shortly, the size of small objects is underestimated due to change of X-ray

absorption inside and outside the object. This effect can be reduced by increasing

resolution, but not eliminated. The acquired image data has the dimensionality

and data type in common, where all 3D images are gray value images, even if their

histograms vary slightly. This is due to the technical components but also due to

the imaged material, which absorbs differently depending on the chemical and/or

geometrical composition of the material to be scanned.

The microstructure of a GFRP is anisotropic in general, and heterogeneous macro-

scopically, as discussed by Diebels and Rjasanow 2019. GFRP consists of glass fibers

and a polymer matrix, where the geometric arrangement of both components are

variable and depend on the material purpose. 3D image data of the GFRP samples

are analyzed by Andrä et al. 2019 and Baranowski et al. 2019. The 3D image data is

acquired in different laboratories, but has in common the data type. All 3D images

are gray value images with a range of 216 gray values. Wirjadi et al. 2016 gives

an overview of possible tools for orientation analysis in gray value images. Given a

mask for the glass fiber component, the gray values are averaged over a neighbor-

hood inside the mask leading to a local orientation. The orientation distribution

leads to an estimation of the orientation tensor. The orientation tensor is a quantity

and is usually required in context of engineering applications. The quality of the

estimation depends on the resolution of the image, as a fiber should be depicted by

at least 5 voxels per its diameter, see the work by Pinter et al. 2016.

Otherwise, the orientation determination becomes distorted due to a poor or non-

precise mask. The data sets of the GFRP samples differ in their histograms, partially

due to the differences in samples themselves, the resolution, the size of images, and

the alignment of the coordinate system. In the publication Andrä et al. 2019, we
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study five samples having each a volume of 23 mm3, which are depicted by 1 0243

voxels respectively. The samples are extracted from one plate of a constant thickness,

and are scanned by the same device with a resolution of 1.2−1.3µm. Thus, we treat

the data sets equivalently, so that the processing steps affect the results in the same

way. The processing steps are:

1. Denoising the image data by a 5 × 5 × 5 median filter.

2. We calculate the mask by a computation of Frangi’s index, which calculates a

local eigenvalue decomposition of the Hessian matrix, see Frangi et al. 1998.

The idea is to detect the fibrous structure by the eigenvalue with the small-

est magnitude. This approach allows for a better segmentation of the pixels

belonging to the fiber core.

3. Based on the gray value images, we estimate the thickness of misoriented

central layer by gray value projections along the mold flow direction.

4. Using the thickness of misoriented layer, we separate the image data in layers.

5. Then, we determine the mean fiber direction in layers and their corresponding

orientation tensors.

In Baranowski et al. 2019, we analyze a large amount of data from one sample

component. This half meter large sample component has a complex 3D shape. 3D

images from four regions of interest are acquired at different laboratories by two

X-ray devices. The main difference w.r.t. previous publication is the fact, that

no destructive sample extraction has been undertaken and samples with various

geometrical complexity have been scanned. We acquire overall eight data sets, where

five of them are referencing to one region of interest but resolve parts of this region

at varying resolution, which reaches from 3 to 44 µm. At the highest resolution, the

physically largest region of interest we scanned leads to a data set of 1 944×8 832×

1 944 voxel at a 16-bit color depth. This leads to a data size of approx. 67 GB, which

is in the best case cumbersome to handle even during the simplest image loading

procedure. We compute the local fiber orientation and the orientation tensor w.r.t.

the resolution change. We omit the computation of a designated fiber mask in case of

the coarse resolution, since the fiber component cannot be reasonably separated from

the polymer matrix. We compare the derived orientation results w.r.t. resolution

change. The determined local orientation looses its significance and washes out
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as the resolution drops. This comparison is founded on a manually carried out

registration of corresponding regions of interest. An automatic comparison, in terms

of image registration (Brown 1992), is in this case not possible yet, due to a missing

alignment in coordinate systems of the data sets and the large amount of data.

While modelling the microstructure of GFRP, we rely on the prior modelling knowl-

edge about GFRP. The GFRP are mainly characterized by the definition of single

objects and their distribution in the observation window. This is possible due to the

fact of entirely artificial production of the GFRP material. Thus, the topology of a

cylinder of an expected radius and an expected length is assumed to suite the shape

of short glass fibers. If a straight cylinder of a known radius and length is placed

in an observation window, then its position is well-defined by its, radius, length,

and an orientation. Then, the orientation distribution, the length distribution and

a radius distribution, yields a stochastic model for the GFRP material, which can

be realized by the previously described RSA algorithm.

Thus, we utilize the cylinder model in context of new data in order to answer

new questions. Similar to the sphere packing in Laguerre tessellations, we also

use here a hard core PP. The used RSA places cylinders of a constant radius and

length in an observation window and checks for possible overlaps with the already

existing cylinders. If there is no overlap, then the process keeps adding cylinders,

and otherwise the process removes the overlapping cylinder and attempts again.

The process finishes after reaching a preset volume density of placed cylinders, or

no further cylinders can be added. In the best case, the RSA achieves a realization of

a cylinder packing w.r.t. the volume ratio and spatial orientation distribution of the

fiber component. Andrä et al. 2019 successfully demonstrate the application of RSA

in order to model GFRP, where the co-authors generate a layered microstructure

model by application of the RSA.

3.2 Simulation of Material Properties

In context of simulation, the computation time and precision of the algorithms

shifted in past years from weeks to hours. Thus, the simulation techniques are

becoming common in various disciplines. We introduce this section as one of the

last due to the procedure follow up, since the simulation part requires a material
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model. But, the simulation of a specific physical behavior of a material is closer to

the original question about the material itself and thus indispensable. A simulation

can sufficiently build up on the microstructure model, if the microstructure model

provides the necessary detailedness. In the following, we give a short overview of

simulation techniques, as we utilized them to gain insights about metallic polycrys-

tals and GFRP materials.

3.2.1 Ultrasonic Scattering in Polycrystals

The metal changes its inner structure while a change of the state of matter. The most

natural crystalline materials arrange themselves in a collection of grains, which are

separated by grain boundaries. Nuclei are distributed in the liquid metal and initiate

solidification at certain physical conditions, as discussed by Desch 1912. During this

solidification period, each of the grains grows in random crystallographic orientation

until neighboring grains meet and form a grain boundary. After the solidification

state, whenever a wave propagates in this polycrystal, the energy of the propagating

wave becomes scattered at the grain boundaries due to the shift of crystal orientation

in neighboring grains, as pointed out by Hirsekorn 2014.

Many technical components are products of metallic polycrystals and hold security

relevant tasks in mechanical constructions. Non-destructive testing techniques en-

sure a defect-free, and long-lasting lifetime of these components. Ultrasonic testing

is one of the possible non-destructive testing techniques. It is advantageous due

to its relatively high penetration depth and its ability to serve as a mobile device.

Since an ultrasonic wave is a pressure wave, it interferes with the microstructure of

the polycrystal. Hirsekorn 2014 points out, that the scattering of ultrasound wave

is caused by energy flux at grain boundaries. Scattering of the propagating wave is

one of the contributions to the general attenuation, or total loss. Besides scattering,

absorption, diffraction, geometrical and coupling losses contribute to the total loss of

energy, as Truell et al. 1969 discusses. That means, that scattering is experimentally

not measurable as separate from the other contributions. However, the propagating

wave becomes attenuated w.r.t. to the penetration depth and is usually captured in

an attenuation value. The attenuation value is a material dependent constant and

is experimentally acquired.
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In publication (Dobrovolskij and Schladitz 2022), we investigate the backscattering

in metallic polycrystals. Hirsekorn 2014 follows the idea of unified scattering theory

(Stanke and Kino 1984) and solves the elastodynamic equation of motion for closely

packed scatterers. The assumption of small deviations due to microstructural vari-

ations leads to a formulation of scattering coefficients. Hirsekorn 2014 formulates

the scattering coefficient as a function of scattering direction, w.r.t. incoming and

scattered wave. We interpret the scattering coefficient as a spatial function and de-

ploy this spatial scattering function in context of simulation of backscattered wave

contributions.

We assume one of the simplest scenarios of ultrasonic testing, a puls-echo technique.

In puls-echo technique, the transducer operates simultaneously as a generator and

receiver of longitudinal (or pressure) waves at a mid-band frequency. The emitted

wave becomes scattered by closely packed scatterers, which are in our microstructure

model the cells of the Laguerre tessellation, and grains in polycrystalline microstruc-

ture of a metal. The transducer is simulated by a sequence of discrete source points

which emit the propagating wave. Then, we compute the usual and the scattered

displacement field at the center point of each cell caused by the propagating wave of

a specific frequency inside the frequency bandwidth. We use the reciprocity relation

as introduced by Auld 1979 for computation of the resulting displacement on the

receiver, which is derived by accounting for the scattered and the non-scattered dis-

placement fields. We superpose then the contributions over all cells of the Laguerre

tessellation and the entire bandwidth. Finally, we transform the computed result

into time domain by an application of a Fourier transform.

3.2.2 Simulation Techniques for GFRP

The approach as described shortly in Section 2.2.3, and in detail by Andrä et al.

2019, leads to a microstructure volume of 23 mm3 with a 20% fiber content. The

glass fibers are embedded in a PBT, which is modelled by an elastoplastic material.

This model allows for an expansion of micro-cracks and cavities. Thus, the elasto-

plastic material model is able to handle a composition of plastic and elastic energy,

and a regularization damage component. This material model accounts for dam-

age accumulation in the polymer component. Real PBT samples are undertaken

in cycling loading tests, where the deformation and mechanical load is measured.
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The measurements show a good agreement with the simulated tensile test under

consideration of the elastoplastic material model.

Then, a RVE is defined by these two components: the PBT matrix and the glass fiber

component. An image of the RVE is resolved by 10243 voxels, where a fiber diameter

is resolved by 5 voxels. The deformation field is computed on the microscopic level

by a finite element approach. Thus, a homogenization step allows for accounting

of appropriate microstructure characterization on the macroscopic level. Then on

macroscopic level, real and virtual tensile tests are conducted and result in a good

agreement. This means that virtual cyclic tensile tests can replace real ones in the

future.

As already portrayed in Section 2.2.3, we estimate the local fiber orientation based

on the local gray values in the reconstructed three-dimensional CT-image. Besides of

modelling the microstructure, we used the gray value 3D images of GFRP material

for validation of a simulation technique of an injection molding process. Injection

molding is a complex process, since it usually depends on many parameters: geom-

etry of the component to be molded, the aspect ratio of fiber length l to fiber radius

d, the percentage of fiber content Φ and the technical abilities of the production

device. The component shape introduces an uncertainty in the distribution of fiber

orientation as the suspension flow changes due to junction. The suspension is clas-

sified as dilute, semi-dilute or concentrated by the factor Φl/d. In general, a larger

aspect ratio l/d introduces a higher chance of fibers being bent while the injection

molding procedure. A higher volume fraction of fibers rises the chance of interaction

between fibers. The technical abilities could be the number and placement of inlets

of the suspension. Altogether, the injection molding is a complex procedure and its

understanding and prediction reduces costs in production, as published by Lu et al.

2006. Our work (Baranowski et al. 2019) shows tangible reassurance of the injection

molding simulation carried out by the commercial software Moldflow. More pre-

cisely, we compare the simulation results to the computed orientation tensor values

from the gray value CT images in a 0.6 cm × 2.3 cm region.
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4 Wrap-up

4.1 Summary

In general, stochastic geometry allows for geometric microstructure modelling based

on observations. Prior to modelling, one should know Man sollte wissen was das

Mikrostrurmodell leisten muss, um das physikalische Phänomen zu erklären. It is

advantageous to have a suitable idea in mind, which suits the purpose of investiga-

tion, prior to starting the modelling process. Usually, a virtual investigation begins

with the need to understand or explain some phenomena about a particular mate-

rial. At this stage, any kind of conjecture about the phenomena to be explained

and the microstructure of the material is helpful, as it leads to decisive choices of

experiments, in particular acquisition techniques and the data. Once the data is

acquired, its analysis should reveal a spatial pattern of random character. Then,

an appropriate model choice is to be made. A broad variety of literature serves

for this purpose: Chiu et al. 2013; Jeulin 2021; Ohser and Mücklich 2000; Ohser

and Schladitz 2009; Torquato 2013. The detailedness and accuracy of a stochastic

model needs to be as high to be sufficiently high to link to materials’ properties

and thus enable us to answer the arising questions. Then these steps contribute

to a multi-scale modelling and help to understand complex material behavior. In

the following, we summarize our results in the context of metallic polycrystals and

GFRP materials.

We initiate our investigation with a need for explanation for backscattering of ul-

trasonic waves in a polycrystalline microstructure. The grain diameter is the most

decisive parameter in the context of ultrasonic scattering. Hence, we use the corre-

sponding parameter, the cell volume, for the model fitting procedure. For the model

fitting, we use the log-normal distribution, which has two parameters, as a distri-

bution of cell volume. We carry the model fit out for two polycrystals. First, we
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analyze the microstructure of coarse polycrystal Inconel-617 based on 2D sectioning

image data, which is acquired by a light microscope. For this model fit, we compute

a sequence of model realizations, section them and thus compare the 2D grain diam-

eter distribution stepwise until reaching the desired model parametrization. Second,

we study the 3D DCT data of fine polycrystalline microstructure of titanium. This

data allows for a relatively accessible model fitting procedure, where we compute

model realization and compare the 3D volume of the cells to the grains’ volume.

These two microstructures are important in the context of ultrasonic backscattering

investigation, as they feature different grain size, on average. Coarse microstruc-

ture is known to be difficult in the context of non-destructive ultrasonic testing, as

the propagating wave becomes stronger attenuated by coarse microstructure. This

phenomenon is also called microstructural noise. I implemented a novel simulation

technique in order to compute the backscattered ultrasonic response based on the

microstructure, which is represented by a realization of a Laguerre tessellation. In

this simulation, each cell represents a scatterer of a volume equivalent diameter and

contributes w.r.t. the frequency, its relative position to the receiver and its diameter.

These results are the subject of the work by Dobrovolskij and Schladitz 2022.

We study GFRP components on a microscopic level in order to explain the macro-

scopic loading and failure conditions of the microscopically heterogeneous material.

A large amount of 3D image data is acquired by X-ray devices. On the one hand,

a plate with a constant plate thickness is scanned by a laboratory X-ray device.

An image analysis part allows for a determination of layers and the corresponding

orientation tensors. Based on this knowledge, we fit a stochastic microstructure

model, which serves in two ways in this study. Firstly, based on this microstructure

model, microscopic failure mechanisms are simulated and are found to correspond

well to real measurements. Secondly, cyclic tensile tests are conducted virtually and

compared to real measurements. The bearing capacities consist and consequently

the real tensile testing routing can be avoided in the future. Diebels and Rjasanow

2019 dedicate a book to the understanding of GFRP materials, their behavior dur-

ing mechanical loading and the processes during failure. In this book, we contribute

a chapter (Andrä et al. 2019) where we publish our results. On the other hand,

a large and complexly shaped bearing component from automotive application has

been scanned by a novel laboratory X-ray device. Different regions of interest of this

component have been scanned at different resolutions. We can confirm the usability

of the non-destructive scanning for complex and large components. Then, we an-
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alyze the excessive amount of 3D gray value images and determine the orientation

tensors. Also, we show the accessibility for determination of local glass fiber dis-

tribution. However, the locally determined orientation tends to lose its significance

w.r.t. the decreasing resolution, as the local orientation becomes washed out due

to the averaging over a larger neighborhood. Also, we use the locally determined

orientation tensor information for validation of injection molding procedure. The

results agree well despite the fact of the complex region of interest, where fibers

and the embedding matrix are bent. We publish these results in the work done by

Baranowski et al. 2019.

4.2 Conclusion

To conclude, we adhere as closely as possible to the strategy of the minimum of

detailedness and effort to answer a question or to come closer to the answer of that

question. In context of both applications, we can hold on the made progress. I

demonstrate success in the analysis of 2D or 3D data materials’ microstructures,

the subsequent modelling of 3D geometrical microstructure, and simulation of me-

chanical properties of material based on the microstructure models. The analysis of

2D or 3D data is essential and reasonable, as it leads to the model fit of microstruc-

ture by means of stochastic geometry. The stochastic geometry ensures finding a

quantifiable and thus suitable model representation of the material’s microstructure.

After a model fitting, simulation methods can be applied. I execute this approach

for two entirely different materials: fine and coarse grained polycrystalline metals

and a composite material, a GFRP.

The proposed approach leads to the following insights regarding the polycrystals:

• The coarse grained Inconel-617, and fine grained titanium feature a log-normal

grain distribution, which corresponds to previous research by Fan et al. 2004.

• The studied polycrystals can be successfully modelled by a Laguerre tessel-

lations following a well-defined parametric log-normal distribution of cell vol-

umes.
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• The model can be fit, taking as a reference either a distribution of 2D diameters

or a 3D grain volume distribution. A distribution of 2D diameters increases

the computation effort and the amount of required data analysis.

• I implement a novel numeric simulation technique for computation of backscat-

tered time-domain signals based on the previously fitted Laguerre tessellations.

• I analyze the computed domain-signals in order to estimate the variation of

backscattered signal w.r.t. generated Laguerre tessellations in a first attempt

of quantification.

The proposed approach suits well the idea of multi-scale modelling, as the gener-

ated microstructure model shows a similar behavior to the microstructural noise for

specific frequency regions at the macroscopic scale, where the variation of signal

amplitude increases. This behavior is still not verified by real experiments.

In context of GFRP, we gain the following insights:

• A GFRP off-shelf-part can be truly non-destructive scanned by a new X-ray

device.

• The micro computed tomography allows for acquisition of regions of interest

at resolutions from 45 to 3 µm.

• Analyzing the glass fiber component, we show a consistency of the orientation

distribution in data acquired at all resolutions, as well as in data from two

different X-ray devices.

• We confirm a presence of misoriented central layer in all analyzed samples.

Moreover, we can quantify the change of orientation of the fiber component

w.r.t. the inlet position in a simple plate sample.

• We employ the orientation distribution of the fiber component and generate

geometric models consisting of non-overlapping straight cylinders.

• The generated model serves as an input in a finite element method for simu-

lation of the microscopic deformation field.

34



• Then, a homogenization step allows for a generation of a virtual sample for

cyclic tensile testing. The cyclic tensile tests correspond well to the results from

real tensile tests. Thus, the simulation of mechanical load bearing capacity

can replace real tensile tests.

• We verify the orientation distribution of the glass fiber component simulated

by a commercial software moldflow. To this end, we compare the locally deter-

mined orientation tensor components determined from gray value 3D images

to the simulated.

In context of multi-scale modelling, we certainly make large progress as we can ac-

quire reliable data of the composite material’s microstructure, find a suitable model

representation of the fiber component, use this geometrical model in a simulation

technique and verify it by real experiments. This means a consistency along the

physical scale, which I stated in the introduction.

4.3 Outlook

In future work regarding the microstructural noise in polycrystals, several aspects are

open to investigate. There is still the question to answer, if the observed distribution

of cell diameters can be efficiently accounted for by a few moments of the observed

distribution. In our investigation we did not go beyond the negotiation, that the

first moment, i.e. the mean grain diameter is not sufficient in context of ultrasonic

microstructural noise. The chances are that the uncertainty is higher if the model

fit is based on a distribution of 2D diameter than the 3D measure of grains. As the

acquisition of 3D DCT data is expensive and available just for a narrow range of

polycrystals, the uncertainty caused by 2D data should be quantified in the future.

The proposed simulation technique of backscattered ultrasonic signals might be

verified by real experiments. Here is a large gap to close, since physical methods do

not exist for measuring the isolated effect of ultrasound scattering. A possible, even

if complex attempt to quantify the attenuation in its contributing parts: absorption,

diffraction, geometrical and coupling losses, and the scattering.

The gain of insights regarding the GFRP materials is high, i.e. for GFRP with short

glass fibers and up to 20 weight percents. This is due to the previously available

knowledge about GFRP materials, but also due to large researching effort from

35



interdisciplinary contributors involved in the projects. Diebels and Rjasanow 2019

dedicate a book to the understanding of GFRP materials, their behavior during

mechanical loading and the processes during failure, where our contribution is a

part of. However, our analysis of the data available does not tap the full potential

(Baranowski et al. 2019). The exploitation of the acquired data to the full potential

is currently beyond the computational possibilities. One possible attempt to face

this problem could be to utilize machine learning methods.
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Abstract: Ultrasonic testing of polycrystalline media relies heavily on simulation of the expected
signals in order to detect and correctly interpret deviations due to defects. Many effects disturb
ultrasonic waves propagating in polycrystalline media. One of them is scattering due to the granular
microstructure of the polycrystal. The thus arising so-called microstructural noise changes with grain
size distribution and testing frequency. Here, a method for simulating this noise is introduced. We
geometrically model the granular microstructure to determine its influence on the backscattered
ultrasonic signal. To this end, we utilize Laguerre tessellations generated by random sphere packings
dividing space into convex polytopes—the cells. The cells represent grains in a real polycrystal. Cells
are characterized by their volume and act as single scatterers. We compute scattering coefficients
cellwise by the Born approximation. We then combine the Generalized Point Source Superposition
technique with the backscattered contributions resulting from the cell structure to compute the
backscattered ultrasonic signal. Applying this new methodology, we compute the backscattered
signals in a pulse-echo experiment for a coarse grain cubic crystallized Inconel-617 and a fine grain
hexagonal crystallized titanium. Fitting random Laguerre tessellations to the observed grain structure
allows for simulating within multiple realizations of the proposed model and thus to study the
variation of the backscattered signal due to microstructural variation.

Keywords: microstructural noise; grain size distribution; model fitting; Laguerre tessellation

1. Introduction

Metallic alloys tailor-made for extremely demanding applications like in turbine
blades are particularly expensive, as corrosion resistance and mechanical strength are
achieved using noble metals and applying sophisticated manufacturing methods. Hence,
it is essential to keep the manufacturing process stable and to ensure the construction
elements to be defect-free and long-lasting.

Ultrasonic testing is a non-destructive testing technique particularly popular due to
its high penetration depth compared to other non-destructive methods like Eddy current,
magnetic particle inspection or X-ray based ones [1]. Moreover, ultrasonic testing can
be conducted using mobile devices. These two properties enable for instance inspection
of thick and very large metallic components like ship propellers in place [2]. However,
ultrasonic testing relies heavily on correct interpretation of the measured signals. This work
contributes to improving this interpretation by quantifying the so-called microstructural
noise due to scattering of ultrasonic signals by the granular microstructure of metal alloys.

Metal alloys and many ceramics feature so-called polycrystalline microstructures
consisting of grains defined by their local crystallographic orientation [3] and size [4,5].
Ultrasonic waves are scattered at grain interfaces [6]. As a consequence, ultrasonic signals
measured in a polycrystal comprise all echos caused by the microstructure. This hampers
the detection of defects due to overlap of many echos.
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A wave is attenuated in the medium in which it propagates [7]. The scattering at grain
boundaries introduces a flux of energy from the propagating wave and thus contributes to
attenuation [8]. Truell et al. [7] describe the relations between scattering and attenuation in
complex media formally:

“The term “attenuation” is used throughout to mean energy losses (as
measured by amplitude decay) arising from all causes when ultrasonic waves
are propagated through a solid medium. These “total” losses can be classed
broadly as scattering and absorption arising from the intrinsic physical character
of the solid under study, as well as diffraction, geometrical, and coupling losses.”

There have been a variety of attempts to quantify the scattering caused by microstruc-
ture, starting with very simple microstructural models. Truell et al. [7] and Ishimaru [9]
define the scattering cross-section of a volume element as observed scattered power flux
density along a spatial direction. According to this definition, Truell et al. [7] calculate
normalized cross-sections for a variety of examples where a homogeneous isotropic sphere
is embedded in a homogeneous isotropic matrix, as for example a magnesium sphere
embedded in stainless steel.

Rose [10] captures microstructural noise in the context of scattering in polycrystals
by placing point-shaped scatterers with random scattering coefficients at random spatial
positions. This strategy is further pursued in [11,12]. Microscopic inhomogeneities in
a polycrystal are thus captured using prior knowledge about the number of scatterers,
while their relative positions are ignored. Hirsekorn [13] describes scattering in a system
of closely packed scatterers as a function depending on scatterers’ volume and stresses
the need for ultrasonic scattering simulation methods using an explicitly given system of
closely packed scatterers as theoretically anticipated.

More recently, the granular microstructure of polycrystalline materials is modeled
by spatial tessellations [14–21]. Ultrasonic wave propagation is simulated in extruded
2D [22] or just 2D [23] tessellations only, even in rather recent publications. Ryzy et al. [24]
and Van Pamel et al. [25–27] simulate ultrasonic wave propagation in truly 3D structures.
Both groups apply NEPER [28] to first generate 3D Poisson Voronoi tessellations and then
regularize them by shifting the cell generators. In [27], even an exponentially decaying
two-point correlation function as assumed in analytical models is derived that way. Subse-
quently, displacement fields are computed in finite element mesh (FEM) representations
of the regularized cell systems. To this end, Van Pamel et al. [25–27] use the GPU based
FE software POGO [29], while Ryzy et al. [24] rely on the commercial software package
PZFLEX (Weidlinger Associates Inc., Washington, DC, USA). Despite the computational
load, in [27], the displacements are calculated for a system of more than 10,000 cells. How-
ever, the tessellation models are not fitted to an observed real polycrystalline microstructure.
Thus, material specific behavior is restricted to the mean cell or grain size and usage of the
respective elastic material constants.

We describe a complete simulation workflow for simulating the microstructural noise
caused by the grain structure of the investigated material. More precisely, our simulation
accounts for the spatial and size distribution of the grains. We model the microstructure
including the scatterer volumes, simulate backscattering from the entire microstructure,
and compute time domain signals. We make heavy use of the Born approximation of the
scattering field when it is small compared to the incident field. This assumption holds in
our case of microstructural noise, as long as the wavelength of the propagating wave stays
larger than the scatterers’ dimensions.

Stanke and Kino [8] developed a unified theory for elastic wave propagation in
polycrystalline materials accounting accurately for microscopic inhomogeneities in the case
of time-harmonic elastic waves, in particular phase velocity variations and attenuation due
to scattering. The polycrystal is represented by the geometric correlation function.

We combine the scattering theory from [8] with an explicit spatial microstructure
model as used in [5] to simulate the backscattered transient ultrasonic signal. To this
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end, we use microstructural information from light-microscopy and diffraction computed
tomography. Both techniques are destructive in the sense that samples need to be cut
and further prepared to obtain as detailed microstructural information as needed here.
Based on the quantitative geometric information thus derived, we fit microstructure models
specifically to the considered materials. More precisely, we derive a virtual representation
of a polycrystalline single-phase alloy as a realization of a random tessellation model.
The cells of the tessellation represent the grains and cell volumes follow the grain volume
distribution observed in the real material. In enlarged volumes, generated from the fitted
tessellation model, we compute the backscattering contributions of all cells, superpose
them in Fourier space, and transform the power spectrum back into time domain.

We apply the model based spectral simulation approach to a cubically crystallized
Inconel-617 observed in light-microscopic images of planar sections through the microstruc-
ture and a hexagonally crystallized titanium given as fully three-dimensional X-ray diffrac-
tion computed tomography data set. We model both alloys as a single-phase polycrystal.
The titanium features fine grains, while the Inconel’s microstructure is coarse. We expect
our study to contribute to a deeper understanding of the relation between material depen-
dent 3D microstructure and the ultrasonic wave propagation. This contributes to better
interpretation of measured ultrasonic signals.

This paper is organized as follows: In Section 2 we describe the general virtual
experiment. We summarize the needed scattering theory (in Section 2.1) including the
geometric correlation function (in Section 2.1.1) and scattering coefficients (in Section 2.1.2).
Section 2.2 is dedicated to modeling the single-phase polycrystalline microstructures using
random Laguerre tessellations (in Section 2.2.1) with log-normally distributed grain volume
(in Section 2.2.2) and fitting the model to real microstructures (in Section 2.2.3). In Section 2.3,
we close the gap between the fitted microstructure model and computing of ultrasonic
signals in its realizations. In Section 3, we model the microstructures of the Inconel-617 (in
Section 3.2) and the titanium (in Section 3.3). Section 4 summarizes our findings including
microstructure model parameters and ultrasonic signals for the Inconel-617 (in Section 4.1)
and for the titanium (in Section 4.2). Results and future topics are finally discussed in
Section 5, followed by the conclusion in Section 6.

2. Methods

We perform a virtual ultrasonic pulse-echo-test in an explicitly given 3D microstructure
generated by a stochastic microstructure model as sketched in Figure 1. The microstructure
model’s parameters are determined by fitting to the grain size distribution observed in
images. Using the found model parameters, we generate representative realizations of
the model. In these 3D microstructures, we finally simulate numerically the ultrasonic
testing by the pulse-echo-technique as sketched in Figure 1. We do not simulate the
back wall response. Instead, we compute the backscattered contribution from the entire
microstructure for each realization of the model. We superpose the response signals in
frequency domain yielding a spectrum. Finally, we apply the Fourier transform resulting
in a time-domain signal. Altogether, a set of 3D microstructures leads to a corresponding
set of time-domain signals.

This paper devises a method for computing ultrasonic microstructural noise based
on a geometric model of the investigated polycrystalline material. More precisely, we
simulate scattering due to individual grains. Note that this is not the same as the so-called
grain noise well-known from ultrasonic experiments. The difference is due to the virtual
experiment being still much simpler than the real one as it does not capture at all multiple
scattering—a non-negligible source of microstructural noise in real ultrasonic experiments.
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the grains are accounted for by the geometric correlation function. Ensemble averaging
is applied to the Born series terms. Finally, the energy flux is derived as an infinite sum,
time averaged over one vibration cycle. The n-th order Born approximation of energy
flux is the corresponding n-th partial sum, n = 0, 1, . . .. It represents the incident and
scattered waves’ interaction with the microscopic inhomogeneity of the material. Hirsekorn
uses the lowest non-zero order Born approximation to derive an analytical expression of
the ensemble averaged total energy flux due to scattering waves for both, incoming and
outgoing waves [13]. Thus, using this approach, only first-order scattering events are taken
into account, no multiple scattering. The sum of outgoing and incoming waves equals zero
due to the conservation of energy [13]. Here, we consider the outgoing waves, only, as we
aim at revealing the backscattered wave contributions.

2.1.1. Geometric Correlation Function

Ensemble averaging in polycrystals incorporates microstructural features by multiple-
point correlation functions of the local crystal orientations. In order to be feasible, ap-
proximations use a variety of simplifications, e.g., only 2-point or pair-correlations. If the
orientations of grains are assumed to be independently distributed, then the 2-point ori-
entation correlation boils down to the orientation distribution function multiplied by
the geometric 2-point correlation—the probability of two points falling into the same
grain [42,43]. The latter depends exclusively on the distance of the considered points if the
structure is macroscopically homogeneous and isotropic.

Stanke and Kino [8] incorporate the 2-point correlation function W(r) into their unified
theory of elastic wave propagation assuming it to decline exponentially: W(r) = exp

(

−r/¯̀),
where r is the distance of a point pair and ¯̀ is the mean chord length of the grains, also
called mean free path length or correlation distance. This simple shape of the orientation
correlation is convenient yet not realistic, see [44,45] and references therein. Following [8],
Hirsekorn [13,40] derives from ¯̀ the effective volume Veff of a scatterer as

Veff =

π
∫

ψ=0

2π
∫

θ=0

∞
∫

r=0

exp
(

− r
¯̀

)

dr dθ dψ = 8π ¯̀3.

Roughly speaking, Veff can be interpreted as the volume that scatters if the correlation
length is ¯̀. Plugging in Veff into the Born approximation yields the scattering coefficients
reported in [13].

We aim at emphasizing the contribution of individual grains to microstructural noise.
Thus, we follow [13,40] in treating the grains as homogeneous and completely independent
scatterers. However, we observe the effective scatterers’ volumes Veff directly as the cell
volumes in our tessellation model realizations. The effective diameter deff of a cell or grain
is derived as the diameter of the sphere of volume Veff

deff = (6/πVeff)
1/3. (1)

2.1.2. Spatial Scattering Function

Evaluating the second order term of the Born approximation and utilizing Equation
(1) yields analytical representation of scattering coefficients η(ϑ, ϕ, ω) with ω = 2π f being
the corresponding circular frequency and f a fixed frequency. (ϑ, ϕ) ∈ [0, π]× [−π, π] are
the spherical polar coordinates of the local coordinate system, whereat η(ϑ, ϕ, ω) maps the
scattering coefficients along spatial directions around a scattering volume Veff. Thus, we
call this analytical representation of scattering behavior spatial scattering function.



Acoustics 2022, 4 145

The following notation is used throughout: Denote by kP, kS the wave numbers for the
pressure (P) and shear (S) waves, respectively. The subscript is made of incoming�outgoing
wave, which is either pressure or shear, respectively. The spatial scattering functions are:

ηP�P(ϑ, ϕ, ω) =
k8

Pd3
effπ

3√
6(4π$ω2)

2
1

(

1 + k2
P(1 + cos ϑ)

d2
eff

2
3√

6

)2

(

A2 cos4 ϑ + A1 sin4 ϑ + 2(A5 + 2A6) sin2 ϑ cos2 ϑ
)

(2)

ηP�S(ϑ, ϕ, ω) =
k3

Pk5
Sd3

effπ
3√
6(4π$ω2)

2
1

(

1 + (k2
P + k2

S + 2kPkS cos ϑ)
d2

eff

4
3√

6

)2

(

A6(2 − sin2 ϑ) + A4 sin2 ϑ + (A2 + A1 − 2A5 − 4A6) sin2 ϑ cos2 ϑ
)

(3)

ηS�P(ϑ, ϕ, ω) =
k5

Pk3
Sd3

effπ
3√
6(4π$ω2)

2
1

(

1 + (k2
P + k2

S + 2kPkS cos ϑ)
d2

eff

4
3√

6

)2

(

A4 sin4 ϑ sin4 ϕ + A6(sin4 ϑ cos4 ϕ + cos4 ϑ)

+2(A9 + 2A10) sin2 ϑ cos2 ϑ cos2 ϕ

+2(A7 + 2A8) sin2 ϑ sin2 ϕ(sin2 ϑ cos2 ϕ + cos2 ϑ)
)

(4)

ηS�S(ϑ, ϕ, ω) =
k8

Sd3
effπ

3√
6(4π$ω2)

2
1

(

1 + k2
S(1 + cos ϑ)

d2
eff

2
3√

6

)2

(

A8 + A10 + (A8 − A10) sin2 ϑ sin2 ϕ

+(A6 + A4 − 2A7 − 4A8) sin2 ϑ sin2 ϕ(sin2 ϑ cos2 ϕ + cos2 ϑ)

+2(A6 − A9 − 2A10) sin2 ϑ cos2 ϑ cos2 ϕ
)

(5)

with $ being the materials’ density. Equations (2)–(5) presume a specific incoming pres-
sure or shear wave given by wave vector (0, 0, 1)T in both cases, and either the pressure
polarization vector (0, 0, 1)T or shear polarization vector (1, 0, 0)T . This presumption sets
up the relation between single scatterers and the transducer, which is the source of the
incoming wave. As in [13,46], this models how single scatterers and the transducer interact.
Here, A1, . . . , A10 denote the ensemble averaged elastic constants from [40] listed in Table 2
below.

The spatial scattering functions are defined in intrinsic coordinates, with the origin of
the local coordinate system in the center of scattering volume Veff. In terms of Cartesian
coordinates (x1, x2, x3)

T = r(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)T , the positive x3-axis of the local
coordinate system is aligned with the positive z-axis of the global coordinate system.
Figure 3 shows the spatial scattering function for a single scatterer in nickel (see also
Table 1). In the following, we use Cartesian coordinates and the base unit mm−1 in all
graphical representations of the spatial scattering functions.

In [13], the normalized scattered wave coming from a point in the material is plotted
in two dimensions, in [31] the same is done for the normalized scattered wave coming
into a scatterer. These quantities depend however on all three spatial directions. We
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the cell volume distribution this model allows. Note that Fan [5] builds on a collective
rearrangement packing, too [61,62].

For the sake of independence, we sketch the mechanism of the force biased packing
algorithm: At the beginning of the packing, spheres with an outer soft shell and an inner
hard core are placed in the container. The shells are allowed to overlap. Spheres push each
other away with forces depending on the overlap. In a collective rearrangement step, they
move according to the cumulative forces of repulsion. Then, the outer shells of the spheres
decrease while the cores grow up to the size that just prevents overlap of the cores. These
steps are iterated. The packing ends if the desired packing density—proportion of the
volumes of the sphere system and the container—is reached or the shells have disappeared
or the number of iterations has reached a predefined limit. See Figure 5 for the volume
rendering of a thus derived sphere system.

Figure 5. Volume renderings of force biased packings of 500 spheres in the unit window [0, 1]3.
Both with volume fraction VV = 52.1%. Left: with constant sphere volume V = 0.011. Right: with
log-normally distributed sphere volumes (µvs = −7.67 and σvs = 1.26).

The cell structure modeling the polycrystal is then derived from the sphere packing
by the Laguerre mechanism: We denote by xi ∈ R

3 the center and by ri ∈ R the radius of
sphere i for i = 1 . . . NC. Then (xi, ri)

NC
i=1 is a set of generators with non-negative weights.

A point y ∈ R
3 is assigned to the cell C(xi, ri) generated by xi if its weighted distance to xi is

smaller than to any other generator. The point y is assigned to the i-th cell if ‖xi − y‖2 − r2
i

is less than ‖xj − y‖2 − r2
j for all j 6= i. The wall between two neighboring generators is the

perpendicular bisector between their respective spheres, see Figure 4 for an illustration of
the mechanism.

That way, our random system of non-overlapping spheres divides the space into
convex cells C(xi, ri) with diameters deff,i of volume equivalent sphere as given by (1).
Additionally, we equip each cell with its center of mass mi.

2.2.2. Grain Size Distribution

Grain sizes in polycrystalline materials are usually assumed to be log-normally dis-
tributed [4,63]. In Laguerre tessellations generated by dense sphere packings, the cell size
distribution is dominated by the size distribution of the generating spheres [5,52]. We there-
fore model the sphere volumes vs according to a log-normal distribution. The probability
density function h of the log-normal distribution with parameters (µ, σ) is:

h(vs|µ, σ) =
1

vsσ
√

2π
exp

(

− (ln vs − µ)2

2σ2

)

.
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Expected sphere volume vs = VV/NV and the sphere volume standard deviation σvs are
then [52]

vs = exp(µ + σ2/2) , (7)

σvs = (exp(σ2)− 1) exp(2µ + σ2) . (8)

On the other hand

µ =
1
2

log
(

V
2
/(cv2

s + 1)
)

, (9)

σ =
√

log(cv2
s + 1) (10)

with cvs = σvs /V denoting the coefficient of variation of the sphere volume.
Note that the coefficients of variation of the resulting grain volumes cvg and the

generating spheres cvs surely differ with cvg > cvs. For very dense sphere packings as
in [5], the difference is small as the cells do not differ strongly from their generating sphere.
If the sphere packing density VV is lower, the difference grows. We use the cubic polynomial
in cvs fit to cvg for the densely packed case from [5]. See [52] for a more general discussion.

2.2.3. Fitting the Geometric Model Based on 2D Image Data

Model fitting solely based on 2D image data is an ill-posed problem. In [56] an
optimization based on a goodness-of-fit criterion for 2D slices is devised to avoid costly sim-
ulations of the full 3D Laguerre tessellations. However, [56] aims at exact reproduction of
the observed 2D cell structure. Here, we can use a simpler approach, closer to [50]: We sim-
ulate 3D tessellations, compare 2D slices cut from them with our 2D observations, and alter
the parameters to reduce the differences. This is repeated till the fit is sufficiently good.

First, we estimate the expected number of grains per volume NV . There is no straight
forward method to do so based on the observed grain number in planar sections NA in
case of Laguerre tessellations generated by sphere packings. However, for the special case
of a spatial Voronoi tessellation generated by a Poisson point process [47] (10.74) yields:

NA = 1.46 N2/3
V . (11)

Following the recommendation from [47] to use this approximation for the non-Poisson
case, too, we set the initial number of cells to the value which is expected for the Poisson
Voronoi tessellation case. The initial guess for the coefficient of variation of the sphere
volume distribution is set to 1.5 as this is about the center of the range cvg ∈ [1.09, 2.13] for
the grain volumes reported by [5].

We generate a force biased sphere packing using mean sphere volume VV/NV and
cvs = 1.5, derive the Laguerre tessellation, extract planar sections, and compare them with
the 2D micrographs based on the Feret diameters of the cells. We adjust the number of
spheres in the random packing based on comparison of the maximal Feret diameters and
iterate till the mean maximal Feret diameter (or the cell density) is met.

In the second step, the coefficient of variation of the sphere volumes cvs is fit by a
simple grid search. Again, we compute sphere packings and derive the corresponding
Laguerre tessellations. We take five section planes in each of the three coordinate directions,
measure the maximal Feret diameters, and compare the mean maximal Feret diameter
and the standard deviation of the maximal Feret diameters in these 2D sections with the
corresponding characteristics measured in the 2D micrographs. We finally choose the value
for cvs yielding the best agreement.

2.3. Simulation of Wave Propagation

We simulate the wave propagation in momentum space by calculating displacement
at scatterers’ positions, as drafted in Figure 1. First, we compute the displacement induced
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by a propagating wave. We discretize the surface covered by the transducer by Nt source
points yk ∈ R

3, k = 1, . . . , Nt. After all, we evaluate the energy contribution along these
particular spatial directions, i.e., m − y. Here, uI ∈ R

3 is the incoming polarization vector
and cI ∈ R the group velocity, both determined by vectors y and m. The displacement
uα ∈ R

3 due to propagation of an elastic plane wave can be modelled at scatterers’ positions
as a superposition of all source points by

uα(m, ω) =
UI

4π

Nt

∑
k=1

uI exp
(

(−jω‖m − yk‖)/cI)

‖m − yk‖
(12)

with α indicating incoming pressure (P) or shear (S) waves, j the complex unity and UI

denoting the amplitude of the propagating wave.
The second contribution is the displacement due to scattering at scatterers’ position.

We define the latter following Equation (8) in [64], namely:

uα,sc(m, ω) =
UI

4π

exp
(

(−jω‖m − y‖)/cI)

‖m − y‖
(

uI +RSuR
S +RPuR

P

)

(13)

with RS and RP being the reflection coefficients. Thereby, all polarization vectors contribute
to the result—those of the incoming (I) as well as those of the reflected (R) waves. We adapt
Equation (13) by replacing the reflection coefficients by the scattering coefficients given
analytically in Section 2.1.2. This yields

uα,sc(m, ω) =
UI

4π

Nt

∑
k=1

exp
(

(−jω‖m − yk‖)/cI)

‖m − yk‖
(

uI + ηα�S(ϑk, ϕk, ω) uR
S + ηα�P(ϑk, ϕk, ω) uR

P

)

. (14)

The polarization vectors uR
α ∈ R

3 of the reflected contributions are evaluated in
direction of the corresponding slowness vectors. Červený [65] defines the reflected slowness
vector as a function of incoming slowness vector and thus the reflected contributions are
governed by the corresponding slowness vectors i.e., sR

α (m − y). Also, the direction of
reflected slowness vectors governs the scattering coefficients. The scattering coefficients in
Equations (2)–(5) are derived as

ϑk = arctan
(

sy(m − yk)

sx(m − yk)

)

ϕk = arctan





sz(m − yk)
√

s2
x(m − yk) + s2

y(m − yk)





where the subscripts x, y, z represent the components of sR
α . In Equation (14), the angle and

frequency specific scattering coefficients depend on the single crystal parameters, but the
group velocity cI on the polycrystal’s material parameters.

2.3.1. Reciprocity Relations

We follow [66] in applying the reciprocity relations for computing the displacement at
the receiver’s surface. In [66], a formalism for scattering of ultrasonic waves at scatterers
is derived, in particular for the Born approximation. There, the received signal is defined
as the integral over the scatterer’s entire surface. Here, the displacement at the receiver
is expressed by the superposition of displacement velocity jω u and stress tensor σ at all
scatterers’ positions mi:

u(ω) =
jω

4

NC

∑
i=1

(

uα,sc(mi, ω) σ − uα(mi, ω) σ
α,sc

)

· n̂ , (15)
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where n̂ ∈ R
3 is the normal to the scatterer’ surface. Note that, although we account for

one discrete point per scatterer, only, this scatterer is nevertheless assumed to be spherical.
Thus, the point first reached by the wave is the one with surface normal pointing towards
the transducer. Usually, transmitter and receiver are differentiated [66,67]. In our setting of
a pulse-echo experiment, the transmitter however equals the receiver.

2.3.2. Modelling of the Bandwidth

In general, wave propagation is a time-dependent phenomenon. In [68], transient
signals are computed based on the static continuous wave displacement method. We model
the bandwidth fm by

fm =

{

sin2
(

π
f− fl
fr− fl

)

, fl < f < fr

0 , else.

Basically, we assume a transducer with a mid-band frequency f = 2πω and model fm.
This yields the transducer specific harmonic displacement field in Equation (15) for a
bandwidth fl < f < fr. Figure 6 shows the variety of frequencies we use in the following
virtual experiments.

Figure 6. Simulated frequency bandwidth with left bound fl = 0.5 f and right bound fr = 1.5 f .

In the virtual experiments, we assume the ultrasonic transducer in pulse-echo tech-
nique emitting and receiving pressure wave, which mimics varying mid-band frequencies.
Finally, we transform the result into the time domain by MATLAB’s inverse Fast Fourier
Transform (FFT) [69,70].

2.3.3. Evaluation Tools

A microstructure model fit yields a predefined number of microstructure realizations
(cell systems) [5,52]. We aim at simulating ultrasonic specifics in these cell systems, as scat-
tering. In ultrasonic testing, scattering regimes are roughly characterized in terms of the
testing frequency f , the material dependent wave propagation velocity vα, and the effective
scatterer diameter deff, as follows [8]:

• the low-frequency Rayleigh regime
π f
vα

deff � 1,

• the stochastic regime
π f
vα

deff ≤ 1 and

• the high-frequency geometric limit
π f
vα

deff > 1 .

We use the Born approximation to compute backscattered wave contributions, valid
in the low-frequency Rayleigh regime [13]. Accordingly, we set an upper fixed boundary
for the Rayleigh regime at 0.3, which yields

deff = 0.3
vα

π f
. (16)

By this, we assume that scatterers’ size remains within the Rayleigh regime and the modeled
scattering contributions are reasonable. Equation (16) corresponds to the hypothetical
boundary below which the cell’s diameter stays in the Rayleigh scattering regime. We
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denote this boundary by bR and check whether the microstructure realizations observe
this boundary.

3. Materials

We calculate the microstructural scattering for two metals—Inconel-617 and titanium.
The first is represented by 2D micrographs, only, whereas for the latter three-dimensional
diffraction computed tomography (DCT) data is available. The Inconel-617 alloy features
coarse grains with average 2D diameter 185 µm whereas the titanium’s microstructure is
much finer with just 33 µm. We extract random 2D slices along all three spatial directions
from the DCT data and compute the average of observed grain 2D diameters for this
particular comparison.

3.1. Computation Environment

First, we describe the environment used for the computations. According to the
workflow sketched in Figure 2, we choose the number of realizations of the stochastic
microstructure model. These can be generated in parallel. The tessellations are generated
on a machine with eight CPUs and 16 GB RAM.

The computation of the wave fields with and without microstructural scattering, is
the most time consuming step due to the high testing frequencies. These induce very fine
discretizations of the transducer surface and of the frequency bandwidth of the transducer.
Small grains increase the number of cells per considered volume and thus increase the
computation time, too.

The loop has to be traversed three times in order to cover all dependencies: The
backscattering contributions for each frequency step (bandwidth), each of the spatially
arranged scatterers, and all discretization points of the transducer. For these steps, in par-
ticular the ω-loop (red box in Figure 2), a C++ parallelization using openmp [71,72] is
executed on nodes with 16 CPUs and 60 GB RAM of Fraunhofer ITWM’s linux cluster [73].

3.2. Inconel-617

Inconel is the trade name for a group of nickel-chromium alloys with exceptional
strength, metallurgical stability, and oxidation resistance at high temperatures [74]. Inconel
alloys are therefore used e. g. in aerospace solutions, in gas turbines for combustion cans,
as well as for petrochemical processing and heat-treatment equipment. Here, we analyze a
macroscopically homogeneous sample of this alloy and treat its microstructure as a single
phase. Microstructural information is provided by a stack of micrographs featuring bright
grains separated by dark grain boundaries, see Figure 7.

Figure 7. Micrograph of the Inconel-617 under investigation, cell boundaries are emphasized by
etching. Micrographs from [32] courtesy of Thomas Schwender (Fraunhofer IZFP).

Based on these micrographs, the maximal Feret diameters of the cells were determined,
only, due to the notorious cell boundary reconstruction problem. In [32], isotropy of the
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Table 3. Summary of the Inconel-617 microstructure model (cvs = 3.5 and 16,000 cells) realizations.

Realization std
i

(Veff(Ci)) min
i

(deff(Ci)) max
i

(deff(Ci))

Nr. (mm3) (µm) (µm)

1 0.0715 62 1039

2 0.0739 64 1131

3 0.0693 45 967

4 0.0693 57 1002

5 0.0723 60 1032

6 0.0701 62 896

7 0.0684 59 956

8 0.0729 59 1137

9 0.0669 61 860

10 0.0656 56 1099

mean 0.0700 58.5 1011

Figure 12 also emphasizes the variation of the realizations. The boxplots are to be read
as follows: The box includes 50% of cell’s diameters, lower and upper boundaries represent
the 25th and 75th percentiles, respectively, the central horizontal line the mean value,
and whiskers capture the remaining cells. More important, Figure 12 shows where the cell
sizes exceed the Rayleigh boundary bR. In particular, Figure 12 reveals that e.g., testing
frequency 5 MHz, is not an appropriate choice for the analyzed Inconel-617.

Figure 12. Effective cell diameters in ten realizations of the Inconel-617 microstructure model.
The solid and dashed horizontal lines correspond to the upper boundaries of the Rayleigh regime
for the pressure and shear waves, respectively. Colors code the frequency, see legend. Clearly,
the Rayleigh regime is violated in the 5 MHz case.

Figure 13 shows the spatial scattering function for a single scatterer with mean diame-
ter deff = 329 µm and the crystallographic structure of Inconel-617. We assume an elastic
wave propagating from top to bottom, which corresponds to the direction of the local
coordinate system’s positive z-axis. The general shape of the spatial scattering functions
remains similar, the local minima and maxima of the backscattering coefficient do not
change. The ratio however changes from forward to backward scattered contribution.
The frequency of the incoming longitudinal waves is set to 0.5 and 2.25 MHz, below and
above the Rayleigh boundary according to Equation (16). Note the scale difference of three
magnitudes for the spatial scattering functions w.r.t. testing frequency in Figure 13a,b.
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We enlarge the volume eightfold, doubling the edge length in each of the three spatial
directions. This yields the expected number of cells N =0.860 mm3 20,146 mm−3 = 17,344
in a cube of edge length 0.95 mm. Next, we determine the parameters of the log-normal
distribution of sphere volumes—µ = −11.2 and σ = 1.3. We generate again ten realizations
of the stochastic model, see Table 4. The mean effective diameter of the cells in the derived
tessellations is 36.4 µm.

To validate the model, we compare the distributions of the sphericity (6) of the ob-
served titanium grains and the simulated cells, see Figure 15b. The Laguerre tesellation
cells tend to be more spherical than the real grains. This is not surprising. On the one hand,
cells from Laguerre tessellations generated by densely packed spheres are convex and
with high coefficient of variation tend to be regular, meaning more spherical [52]. On the
other hand, in the DCT data, we find also non-convex grains featuring rough surfaces, see
Figure 16 for an example. Non-convex cell shapes can be captured e.g., by generalized
balanced power diagrams [15,19]. However, this is beyond the scope of this contribution.

Figure 16. Rendering of a non-convex grain observed in the DCT data of the titanium sample.

Table 4. Results for the titanium model realizations (cvs = 2.34 and 17,344 cells).

Nr. std
i

(Ci) min
i

(deff(Ci)) max
i

(deff(Ci))

in 104(µm3) (µm) (µm)

1 5.540 5 79

2 5.607 7 81

3 5.888 7 83

4 6.426 7 108

5 5.908 7 88

6 5.615 6 81

7 6.509 7 112

8 6.496 7 104

9 5.922 7 91

10 5.897 7 81

mean 5.980 6.7 90.8
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4.2.2. Model Based Scattering Investigation in Titanium

Figure 17 illustrates, how much the realizations vary. The distribution’s overall shape
is very similar in the ten realizations, but the minimum and maximum values are less
representative for the distribution. Figure 17 shows also, where cell sizes exceeding the
Rayleigh boundary occur. For example bR, in particular for testing frequency 50 MHz,
shows that this frequency is a bad choice for this titanium alloy.

Figure 17. Effective cell diameters in ten realizations of the microstructure model for the titanium.
Clearly, the Rayleigh regime is violated in the 50 MHz case.

Figure 18 shows this difference as spatial scattering function for the mean effective
grain diameter (deff = 36.4 µm) for two frequencies. The scattering coefficients increase
significantly for frequency 30 MHz, by at least two orders of magnitude. Note, that the
chosen two frequencies (5 MHz in Figure 18a and 30 MHz in Figure 18b) represent different
scattering regimes assuming the same effective grain diameter. Figure 18a represents
scattering clearly in the Rayleigh regime with characteristic value kreff = 0.09, generated
by the frequency of 5 MHz, corresponding to wavelength 1.2 mm. In Figure 18b, for the
frequency of 30 MHz corresponding to wavelength 0.2 mm, the characteristic value is
kreff = 0.57, indicating scattering beyond the Rayleigh boundary.

(a) ηP�P(ϕ, ϑ, 2π 5 MHz ) (b) ηP�P(ϕ, ϑ, 2π 30 MHz )

Figure 18. Spatial scattering function ηP�P(ϕ, ϑ, 2π f ) (in mm−3) for a single scatterer size
deff = 36.4 µm, testing frequency (a) f = 5 MHz, deffπ f /vα = 0.09 and (b) f = 30 MHz,
deffπ f /vα = 0.57, respectively. Thus, according to Equation (16), for f = 30 we are in the stochas-
tic regime.
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4.3. Summary

We summarize here the achieved results. In both applications—Inconel-617 and
titanium—model fitting based on 2D and 3D image data, generating the dense sphere
packings consumes most computation time.

The spatial scattering function varies with testing frequency, incoming and scattered
wave modes with their respective propagation characteristics, and additionally the material
dependent parameters as effective grain diameter, elastic constants, and material density.
The range of the backscattering coefficients varies, too, and is largest for ηS�S. The general
shape of spatial scattering function stays similar for the cubic and hexagonal crystal systems
considered here (see Table 1 and Figures 3, 13 and 18), respectively. Distinctive points are
aligned for cubic and hexagonal crystallographic structures along the x1, x2, x3 axes or the
spatial diagonals in the local coordinate system, respectively. The scattering coefficient
graphs are symmetric w.r.t. the propagation direction of the incoming longitudinal wave
and both scattered waves, i.e., ηP�P and ηS�P, for cubic crystallized systems.

Regarding the scattering theory, an insight is that the scattering coefficients form a
closed shape which we call a spatial scattering function. That fact might be interesting
for other applications where the goal is the reconstruction of 3D ultrasonic signals. Also,
the spatial scattering function might play a role in development of multiple scattering
approaches, in the future. The direction dependent scattering contributions can be incor-
porated in signal analysis in order to reduce the present noise level introduced by local
microstructure. Of course, this approach requires the knowledge about the alloy’s structure,
i.e., the phases with their microstructural features. Anyhow, the scattering contributions of
incident and scattered waves are more pronounced in certain spatial directions [7], which
our analytical results confirm. The spatial scattering function might be exploited in order
to analyze the directivity’s maxima/minima. This insight allows for prediction of spatial
directions which are more prone or robust w.r.t. microstructural scattering in average.

The simulated backscattered time-domain signals are consistent if we compare the
change of frequency’s magnitude and the backscattered signal’s one. A change by one
magnitude of frequency—0.5 to 5 MHz for Inconel-617, and 5 to 50 MHz for titanium—
increases backscattering by three to four magnitudes. Figures 14 and 19 reveal strong
variation of the backscattered signals in both, phase shift and amplitude, for the same testing
frequency. Moreover, some microstructure realizations lead to a prominent backscattering
contribution for distinct frequencies. For the Inconel-617 (Figure 14), the violet and black
marked time-domain signals yield significantly stronger backscattering for 2.25 and 5 MHz
compared to 1 MHz. For the titanium (Figure 19), the black time-domain signal behaves
similarly for 30 and 50 MHz compared to the lower frequencies.

5. Discussion

We describe here a method for simulating backscattered wave contributions caused
by the microstructure of the polycrystal in which the wave propagates. In contrast to
previous studies, we fit a microstructure model to image data of real polycrystals. We
study two polycrystals—Inconel-617 and titanium—differing significantly in grain size
and crystallographic structure. The microstructures of both, the coarse-grained cubic
Inconel-617 and the fine-grained hexagonal titanium, are modeled by Laguerre tessellations
generated by sphere packings.

Model fitting consists of choosing mean and coefficient of variation of the sphere
volumes to meet the observed structures. This is comparably easy in the case where full 3D
information from X-ray DCT or 3D EBSD is available. However, the use of these imaging
techniques is still rather an exception while 2D micrographs are well-established and
accessible in quality assurance labs. For fitting models based on 2D images, parameters
have to be determined by systematically testing candidate values within a reasonable search
interval as described in Section 2.2.3. This is costly as many realizations of 3D models have
to be generated.
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Our spatial scattering function yields grainwise backscattered contributions. This is
the main difference to the analytical scattering theory from [13] predicting backscattering
as function of mean grain diameter. Instead, we reveal how a cell system with a certain
diameter distribution interacts with waves of varying frequencies. To this end, we simulate
a set of time-domain signals.

Our simulations rely on the Born approximation assuming an isotropic grain structure.
Inconel and titanium often feature a strongly anisotropic one. Thus, the Born approximation
can cause a potentially large error. However, the samples considered here are only mildly
anisotropic. Incorporating the anisotropy due to grain shape as well as anisotropy due to
crystallographic orientation properly is nevertheless subject of further research.

This work is motivated by the need for simulation techniques for ultrasonic wave
propagation including grain noise. Our method is theoretically well described, has however
not been validated by real experiments. To enable exactly this comparison, further work is
needed. To compare our simulation results to the experimental ones of [77,78] for titanium,
a modelling of microstructure with elongated grains is needed. For Inconel [32] , the virtual
experiment has to be extended by a reflection at a back wall of the sample. The major
obstacle is however the need for a microstructure model realization covering at least three
centimeters in each coordinate direction. This demands a tessellation with about one
million cells, 64 times larger than the current model realization with 16,000 cells. Thus,
the computations would take days if not even weeks. Finally, to allow for proper estimation
of detection probabilities, defect echos have to be simulated and compared to measured
ultrasonic signals.

Another point deserving further investigation is, how representative the simulated
ultrasonic signals are. The microstructures are modeled by random tessellations. Thus,
the realizations have to include enough cells to satisfy the law of large numbers for cell
statistics. This condition is well satisfied with altogether more than 100,000 cells in each of
the two model fits. However, we simulate just ten time-domain signals for each material.
This might not be sufficient to capture the variability of the ultrasonic signal.

We build on [13], where the grains are approximated as closely packed spherical
scatterers accounting for just single backscattered contributions. The scatterer’s shapes
and orientations are thus ignored for the moment. The effect of the shapes might how-
ever be non-negligible, in particular for coarse granular microstructures. We assume the
grains to be Laguerre tessellation cells, thus convex polytopes. The 3D DCT data of the
titanium nevertheless reveals non-convex grains. More elaborate models for polycrystalline
microstructures allowing for non-convex cells and curved grain boundaries have been
developed [14–21]. These could be used for ultrasonic simulation, too. The DCT data also
yields the crystallographic grain orientations. In order to exploit this structural information
in the ultrasonic simulations, the spatial scattering functions need to be reformulated.
In particular, the correlation function would have to account for eventually observed grain
orientation correlations.

This paper is one step forward towards simulation of realistic grain noise in ultrasonic
testing. Many more—most prominent considerable enlargement of the microstructure model
realizations, incorporation of grain orientations, simulation of multiple scattering—wait to be
conquered before simulated and experimental results can be compared quantitatively.

6. Conclusions

Ultrasonic testing is a popular, indispensable non-destructive testing technique. Its
proper use relies heavily on simulations in order to interpret the received signals correctly.
Simulation of ultrasonic wave propagation is therefore a vivid field of research.

This work focuses on polycrystalline materials and a method to account for the so-
called grain noise caused by scattering of the propagating wave by the grain boundaries.
Building on [13], we simulate backscattered wave contributions of the individual grains
forming the polycrystal. To this end, the grain structure is modeled by a Laguerre tes-
sellation model. Compared to the Voronoi tessellation used in previous attempts, using
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this more versatile type of model increases the effort for microstructure modelling con-
siderably, enables however to capture the real grain size distribution much better. This is
demonstrated here for two real metal alloy samples.

As discussed in Section 5 above, the method presented here needs generalizations
in many ways before yielding simulated ultrasound signals that can be quantitatively
compared to measured ones. We see it rather as a door opener towards realistic microstruc-
ture modeling in ultrasound simulation. We nevertheless achieved practically valuable
results, too. In particular, the explicit relation of testing frequency, cell sizes, and Rayleigh
boundary derived in Sections 4.1.2 and 4.2.2. The spatial scattering functions and their
shapes as shown in Figures 13 and 18 shed a new light on the structure signal interaction
and thus are of value on their own, too.

To summarize, we combined Hirsekorn’s [13] single scattering theory with explicit
microstructure modeling using Laguerre tessellations to make considerable progress on the
way to realistic grain noise simulation in ultrasonic testing.
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18. Šedivỳ, O.; Westhoff, D.; Kopeček, J.; Krill III, C.E.; Schmidt, V. Data-driven selection of tessellation models describing
polycrystalline microstructures. J. Stat. Phys. 2018, 172, 1223–1246. [CrossRef]

19. Teferra, K.; Rowenhorst, D.J. Direct parameter estimation for generalised balanced power diagrams. Philos. Mag. Lett. 2018,
98, 79–87. [CrossRef]
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Chapter 3

Modelling of Geometrical

Microstructures and Mechanical

Behaviour of Constituents

Heiko Andrä, Dascha Dobrovolskij, Katja Schladitz, Sarah Staub

and Ralf Müller

3.1 Analysis of Fibre Orientation for Glass Fibre

Reinforced Polymers Based on µCT Scans

3.1.1 Sample Preparation and Analysis of Fibre Direction

Throughout this chapter, a 2 mm thick polybutylene terephthalate (PBT) plate rein-

forced with 20 weight percent glass fibres is considered. First, the material is spatially

imaged by micro-computed X-ray tomography (µCT), in order to determine analyti-

cally essential micro-structure features. Measuring the fibre orientation requires µCT

with nominal resolutions in the range well below 10 µm. To achieve this with a stan-

dard laboratory CT setup, samples of a few millimetre diameter have to be extracted

from the plate. These samples are extracted from the plate according to the scheme

shown in Fig. 3.1. To choose five samples is a compromise between the effort for

imaging and analysing on the one hand and capturing the systematic microstructural
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Fig. 3.1 Moulded glass fibre

reinforced PBT plate with

marked specimen positions
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differences expected at different positions w.r.t. the inlet or the flow front, respec-

tively. The positions are thus chosen according to the expected behaviour of the

latter. The five taken cuboidal samples of base edge length 2 mm are imaged using

ITWM’s CT device at a tube voltage of 160 kV and using a flat bed PerkinElmer and

a Thales detector, respectively. A voxel edge length of 1.2–1.3 µm is chosen, such

that the fibre diameter is resolved by approximately ten voxels. The resulting 2D

projection images are reconstructed using weighted filtered back projection, and the

microstructures are analysed based on the obtained three dimensional image data.

The analysis focuses on the fibre orientation, in particular in order to determine

the thickness of the different layers, which are typical for injection moulded GFRP

plates, and the main fibre orientation in each layer. In the following, the theoretical

background of the applied fibre orientation analysis method is summarised. Subse-

quently, the pre- and post-processing is described. The analysis results for the five

samples are finally presented in Sect. 3.1.2.

The fibre directions in the µCT images are analysed by means of the “SubField-

FiberDirection” function of ITWM’s software tool MAVI [4]. This function com-

putes, based on the local grey values, for each voxel the local fibre orientation. From

these local orientations, restricted to the fibre component, local orientation tensors

are derived. The following two paragraphs summarise very shortly the mathemati-

cal basis of the local orientation measurement. The fibre component is interpreted

mathematically as a random closed set Φ in the three-dimensional Euclidean space,

see e.g. [15, 18, 20]. The fibre direction distribution in a typical point of this set

corresponds to a measure in the space of non-oriented directions
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R(A) =
1

2πV (W )
E

∫

W∩Φ

IA (ν (x)) dx, (3.1)

where A ⊆ S2
+ denotes a measurable set of non-oriented directions, ν(x) the direc-

tion of the fibre system at location x ∈ W , and W ⊆ R3 the considered region. The

expectation E is computed with respect to the distribution law of the random set Φ.

The function IA is an indicator for the set A, i.e. IA(ν) = 1 if ν ∈ A and otherwise

0.

The local fibre direction in each voxel is derived from the Hessian matrix—the

matrix of second order grey value partial derivatives. In order to compute it, the

original image f : W ∩ L �→ {0, . . . , 255} is first smoothed by a Gaussian filter gσ

of size σ . Here L = sZ3, s ∈ R denotes a 3D orthogonal isotropic lattice. Then the

Hessian matrix H(x) is approximated by finite difference quotients:

Hi j (x) =

(

∂2

∂xi∂x j

)

( f ∗ gσ ) (x), i, j = 1, 2, 3, x ∈ L. (3.2)

Let |λ1| ≤ |λ2| ≤ |λ3| be the eigenvalues of the Hessian H , ordered with respect to

magnitude. Then the local direction of the fibre system Φ in x is given as the direction

corresponding to the smallest (in magnitude) eigenvalue |λ1| as glass fibres appear

bright compared to the polymer matrix surrounding them, see [3, 22]. Roughly,

the idea behind this approach is a local approximation of the fibre by a cylinder

of thickness 2σ in each voxel. The local fibre direction is then associated with the

minimal curvature of the grey value formation, the spatial direction in which the least

change is observed.

Initially, the method yields a local orientation in each voxel. In a second step, the

result is masked with a segmentation of the fibre system. Note that this means just,

that the fibre system has to be separated from the polymer matrix. The segmentation

of individual fibres in the 3D image is however not needed.

Given the distribution R of the fibre orientation in the typical point of the fibre

system, the second order orientation tensor a is derived as the outer product of the

components ν1, ν2, ν3 of the orientation vector averaged with respect to R

ai j =

∫

νiν j R(dν), i, j = 1, 2, 3. (3.3)

Thus, based on the image data, the orientation tensor is computed by averaging the

voxel-wise product over defined sub-volumes W0 ⊆ W

âi j =
∑

x∈W0∩L∩Φ

νi (x)ν j (x), (3.4)

see [21]. The main fibre direction ν̄ in sub-volume W is obtained as the eigenvector

associated to the largest eigenvalue of the tensor a. Of course, this main fibre direction

is meaningful only if the distribution R has a cluster-like shape [2].
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Usually, the fibre system is segmented from the 3D image by a simple global

thresholding. This requires to remove global grey value fluctuations within the

image—a task easily achieved by so-called shading correction: The image is

smoothed extensively and subsequently subtracted from the original. Afterwards,

a global grey value threshold suffices to separate the bright fibres from the dark

matrix. MAVI’s “SubFieldFiberDirection” suggests to apply the threshold according

to Otsu [17] multiplied by 1.25 to avoid erroneous orientation information at the

fibre edges.

In this study, this usual procedure turned out to distort the strongly anisotropic fibre

orientation distributions within the layers towards isotropy. Therefore, to ensure that

exclusively voxels from the fibre cores contribute, the fibre system is segmented based

on Frangi’s vesselness index [3]. Again, the eigenvalues of the Hessian matrix are

exploited, this time to gain local structure shape information. The structure is locally

fibrous if and only if there are one small and two large eigenvalues (in magnitude).

Frangi’s index is designed for detecting bright fibres on dark background. Thus it is

non-zero only if λ2, λ3 < 0. In this case it is computed as

(

1 − exp
(

− 2λ2
2/λ

2
3

)

)

exp
(

− 2λ2
1/|λ2λ3|

)

(

1 − exp
(

− 2(λ2
1 + λ2

2 + λ2
3)/c2

)

)

with c2 = (maxx∈W∩L ||H(x)||F )2 = maxx∈W∩L(λ1(x)2 + λ2(x)2 + λ3(x)2). This

index is now computed and used to derive a more precise segmentation of the fibre

system. That is, the global grey value threshold is applied on the image holding in

each voxel the local Frangi’s index.

3.1.2 Results

As a preliminary step, the three-dimensional images are rotated such that the imaged

cuboidal sample is oriented parallel to the coordinate axes. More precisely, the x-

direction corresponds to the injection direction, y to the cross-flow direction and z

to the direction in thickness of the plate.

Second, the layers are approximated. To this end, the images are first denoised

by a 5 × 5 × 5 pixel median filter. Then, the grey values are averaged along rays in

y-direction. This results in distinct bright spots the x–z-plane in the central region,

where high grey values are summed along fibres, see Fig. 3.2, right. The layers are

finally deduced from the curves of the row-wise grey value maxima: The global

maximum of the B-spline smoothed graph indicates the centre. The lower and the

upper bounds are derived from the two local minima closest to the global maximum.

More precisely, we chose the argument of the higher of these two minima to define

the half-width of the symmetric interval, see Fig. 3.2, left.

This yields the thickness values as reported in Table 3.1. The orientation tensor

for each layer is derived by averaging over the complete layer. A volume rendering of
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Fig. 3.2 Grey value means for determining the misoriented central layer, illustrated for sample 5.

Left: row-wise maxima of averaged grey values. Right: grey value means along stripes in y-direction

the fibre system contributing to the orientation results is shown in Fig. 3.3 illustrating

the orientation tensor results for the total thickness of the plate.

Subsequently, the local fibre orientation is analysed as described in Sect. 3.1.1

above. This yields the second order orientation tensors in the three layers, see

Table 3.1. As expected, the fibres are mainly oriented along the x-axis (flow direction)

in the outer layers, whereas the fibres are oriented orthogonal to the flow direction

in the central layer.

The fibre orientation in the misoriented layers differs with respect to proportions of

fibres oriented in x- and y-directions (see Table 3.1 columns axx and ayy). Figures 3.4

and 3.5 contain slices through the upper and the misoriented central layers of all five

samples. Both these views as well as the quantitative results from Table 3.1 confirm

the expected curved flow front [14]. The main fibre orientation in the central layers

in the outer plate regions are tilted towards the plate edges in x-direction. This

observation is in perfect accordance with the expected faster fibre transport at the

outer regions compared to the inner plate part.

To summarise, in all three layers the fibres are almost oriented in-plane, i.e. the

thickness component z of the orientation tensor is small compared to the entries in x-

and y-direction. For all samples the flow direction is the governing direction in the

outer layers and the fibres are re-oriented in the central layer. Thus, virtually generated

volume elements should take into account the observed multi-layer composition in

order to represent the microstructure appropriately.
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(a) Fibre system (b) Orientation tensor component ayy

Fig. 3.3 Volume renderings of sample 5. Visualised are approximately 1.2 mm × 0.9 mm ×

2.0 mm out of the totally analysed approximately 1.8 mm × 1.1 mm × 2.0 mm. Fibre system as

obtained by thresholding the image holding the local Frangi’s index as voxel grey value. The local

fibre orientation analysis results are represented by the 2nd order orientation tensor component ayy .

That is, in plane, orthogonal to the injection direction x . The tensor component is colour coded using

a blue-to-red colour table with blue indicating values close to 0 and red close to 1. The misoriented

central layer is clearly visible due to the high (red) values for ayy there

3.2 Microstructure Generation

In the following the generation of virtual microstructures which have the same prop-

erties as the structures considered in Sect. 3.1.2 is described.

Stochastic volume elements with a fibre content of 20% are considered. The

morphology of the glass fibres is described by the fibre length of 250 µm and the

fibre diameter of 10 µm. The complete thickness of the 2 mm thick plate is resolved

in order to capture the layered structure of the moulded specimens. The samples are

described by 1024 voxels in each direction, i.e. the size of a voxel in each direction

is obtained as 1.9313 µm. Thus each single fibre is resolved by five voxels over

the thickness. The fibre orientation in each layer as well as the thickness of the

misoriented layer are prescribed according to Table 3.1.

The realisation of sample 1 is depicted in Fig. 3.6. The size of the sample is 2 mm

(1024 voxels) in each direction. Fibres belonging to the misoriented middle layer are
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Table 3.1 Analysis results for the 3D images of samples 1–5, extracted at the positions shown

in Fig. 3.1. The thickness of the central layers varies not only due to the varying strength of the

misorientation but also due to the misoriented layers not being oriented perfectly parallel to the

plate. Note that values of 1.00 or 0.00 for orientation vector components are due to rounding

Sample-

layer

Volume

(mm3)

Voxel size

(µm)

# voxels Orientation tensor diagonal elements Main fibre orientation

axx ayy azz ν̄x ν̄y ν̄z

1-1 1.82 ×

2.21 × 0.99

1.3 1 400 ×

1 700 × 760

0.68 0.27 0.04 −0.99 0.07 −0.00

1-2 1.88 ×

2.47 × 0.09

1.3 1 450 ×

1 900× 67

0.22 0.73 0.06 0.17 −0.99 −0.01

1-3 1.82 ×

2.34 × 0.84

1.3 1 400 ×

1 800 × 650

0.66 0.28 0.06 1.00 −0.08 −0.01

2-1 1.56 ×

0.86 × 0.90

1.2 1 300× 720 ×

750

0.69 0.26 0.05 1.00 0.10 −0.00

2-2 1.68 ×

1.92 × 0.08

1.2 1 400 ×

1 600× 65

0.35 0.60 0.05 −0.47 0.88 −0.01

2-3 1.68 ×

1.65 × 0.87

1.2 1 400 ×

1 375 × 725

0.69 0.26 0.05 1.00 0.05 −0.00

3-1 2.47 ×

2.08 × 0.78

1.3 1 900 ×

1 600 × 600

0.60 0.35 0.04 −0.91 −0.41 −0.05

3-2 2.60 ×

2.47 × 0.07

1.3 2 000 ×

1 900× 55

0.16 0.81 0.03 0.16 −0.99 −0.00

3-3 2.47 ×

2.21 × 0.78

1.3 1 900 ×

1 700 × 600

0.65 0.25 0.10 −0.99 −0.14 −0.03

4-1 1.56 ×

1.62 × 0.90

1.2 1 300 ×

1 350 × 750

0.66 0.28 0.05 −0.99 0.16 −0.00

4-2 1.56 ×

1.62 × 0.06

1.2 1 300 ×

1 350× 51

0.40 0.58 0.02 −0.60 −0.81 −0.02

4-3 1.56 ×

0.99 × 0.90

1.2 1 300× 825 ×

750

0.67 0.27 0.06 −0.98 0.18 0.00

5-1 1.80 ×

1.46 × 0.90

1.2 1 500 ×

1 215 × 750

0.68 0.26 0.06 −1.00 −0.02 0.00

5-2 1.80 ×

1.98 × 0.11

1.2 1 500 ×

1 650× 93

0.20 0.77 0.03 0.16 −0.99 −0.00

5-3 1.77 ×

1.14 × 0.90

1.2 1 475× 950 ×

750

0.69 0.24 0.06 1.00 −0.02 −0.01

highlighted in green. The fibres are distributed in such a way that the oriented and

the misoriented layer are not separated in a strict manner. Fibres may overlap into

the neighbouring layer.

In a next step the generated structures are compared to the corresponding samples

of the µCT images from Sect. 3.1.1. Figures 3.7 and 3.8 display 2D slices for each

sample from the upper and the middle layer. A comparison to the corresponding

CT slices shows good agreement between the structures. It is noted that the virtual

structures display a larger part of the microstructure (2 mm vs. 1.2 mm edge length)

and therefore the fibres appear smaller than in the CT images.
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(a) coordinate system (b) 5-3

(c) 4-3 (d) 1-3 (e) 2-3

(f) 3-3

Fig. 3.4 1 000 × 1 000 pixel slices from the upper layers of samples 1–3 and 800 × 1 000 pixel

slices from the upper layers of samples 4 and 5. Images are arranged as the sample extraction

positions shown in Fig. 3.1

3.3 Identification of Material Parameters for the Matrix

Material

Many methods for the characterisation of fibre reinforced composites are based on

measurements of composite specimens, which have certain special fibre orientations,

e.g. highly oriented or parallel fibres. In contrast, only measurements of the pure

constituents are necessary in the presented method. This is an advantage especially

in the case, if the constituents are isotropic or transversely anisotropic instead of fully

anisotropic. In this section the method for the determination of material parameters

and functions is described which are necessary to describe the rate-independent

nonlinear material behaviour of the polymer matrix.

Polybutylene terephthalate (PBT), which is considered as matrix material in this

book, is a thermoplastic semi-crystalline polymer and a type of polyester [1]. This
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(a) coordinate system (b) 5-2

(c) 4-2 (d) 1-2 (e) 2-2

(f) 3-2

Fig. 3.5 1 000 × 1 000 pixel slices from the misoriented central layers in samples 1–5. Images are

arranged as the sample extraction positions shown in Fig. 3.1

polymer material shows a complex temperature-dependent viscoplastic behaviour

with damage. However, this complex behaviour can be simplified to a time- and

temperature-independent model for many applications. For the sake of simplicity, a

standard time-independent elastoplasticity model with isotropic hardening and with

a single additional internal variable

d =
Ad

A0

∈ [0, 1]

for isotropic damage is considered during the further procedure [6, 16, 19]. The

damage variable d is defined as the share of the damaged surface area Ad on the total

representative cross-section A0. The damage variable d can be measured by several

methods. The simplest method is to measure the degradation of the elastic modulus
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Fig. 3.6 Visualisation with GeoDict [5] of sample 1, size of realisation 2 mm in each direction

d = 1 −
Ed

Ee

.

The degraded modulus can be determined in the unloading regime of cyclic tests (see

Fig. 3.10).

The corresponding rate-independent material law with memory is introduced in

Chap. 4

Remark 3.1 The viscoelastic damping, which is related to the area of the hysteresis

loops is not taken into account and the different material parameters are determined

for each testing speed. However, the model can be extended to capture viscoelastic

or viscoplastic effects.

Now the elastoplastic material model with damage from Chap. 4 is repeated

shortly. The free energy is decomposed into an elastic part (1 − d)Welastic, a plastic

part (1 − d)Wplastic, and a regularisation part Wdamage resulting in

W (ε, d, εp, r) = (1 − d)(Welastic(ε − εp) + Wplastic(εp, r)) + Wdamage(d)
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(a) coordinate system (b) sample 5

(c) sample 4 (d) sample 1 (e) sample 2

(f) sample3

Fig. 3.7 1 024 × 1 024 pixel (2 mm × 2 mm) slices from the upper layers of virtual realisations of

samples 1–5. Images are arranged as the sample extraction positions shown in Fig. 3.1

Both the elastic and plastic part are multiplied by the factor (1 − d) for including

the damage [6, 16]. The additional term Wdamage guarantees d < 1. In the case of

isotropic hardening the plastic part is written as a sum of both the linear hardening

term and the Voce hardening term

Wplastic(εp, r) = Wiso(r) =
1

2
H0r2 + (K∞ − K0)

(

r +
e−δr

δ

)

.

The plastic part Wiso depends on three positive material parameters

H0 ≥ 0, a1 := K∞ − K0 ≥ 0, δ ≥ 0 (3.5)

which have to be fitted for the plastic behaviour. The expansion of the yield surface

is then obtained as
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(a) coordinate system (b) sample 5

(c) sample 4 (d) sample 1 (e) sample 2

(f) sample 3

Fig. 3.8 1 024 × 1 024 pixel (2 mm × 2 mm) slices from the misoriented central layers of virtual

realisations of samples 1–5. Images are arranged as the sample extraction positions shown in Fig. 3.1

Fig. 3.9 Measured

stress-strain curves for PBT

at testing speeds of 0.1, 1.0

and 10.0 mm/s

0

10

20

30

40

50

60

0 1 2 3 4 5

S
tr

es
s
σ

/M
P

a

Total strain ε/%

0.1 mm/s
1.0 mm/s

10.0 mm/s



3 Modelling of Geometrical Microstructures and Mechanical … 43

Fig. 3.10 Schematic

stress-strain diagram of the

first load cycle

ψ(r) = ψ̃(r; σy, H0, a1, δ) = σy +
∂Wiso

∂r
= σy + H0r + a1

(

1 − e−δr
)

,

where σy denotes the initial yield stress. The damage conjugated force is defined by

Y = −
∂W

∂d
= Welastic + Wiso(r) +

∂Wdamage

∂d

=
1

2
εe : C : εe + Wiso(r) +

∂Wdamage

∂d
.

The last term can be neglected for small values of the damage variable d. Then the

conjugated force Y is equal to the strain energy of the undamaged material. The

damage accumulation is formulated as an explicit function

d = d̃(Y ; Y0, b1, b2) =
Y − Y0

Y
+ b1

(

Y0

Y
− e−b2(Y−Y0)

)

(3.6)

of the damage conjugated force Y which contains three non-negative material

parameters

Y0 ≥ 0, b1 > 0, b2 ≥ 0. (3.7)

The basis for the identification of the PBT material parameters are cyclic loading

tests on pure PBT specimens which are explained in Chap. 6, see Fig. 3.9. Solely

uniaxial tensile tests are considered in this section. Therefore, the isotropic hard-

ening parameter r is identical with measured plastic strain εp, and the von Mises

equivalent stress is given by σ eq ≡ σ in the spatial one-dimensional case, i.e. for the

uniaxial tensile test. Each tensile test consists of several power-controlled loading-

unloading cycles with increasing amplitudes. For cycle k ∈ {1, 2, . . . , K }, the stress

σ k = σ k(t), t ∈ (T k−1, T k] is prescribed and εk = εk(t), t ∈ (T k−1, T k] is mea-

sured (where T 0 = 0). Then (i) the maximum measured stress, (ii) the maximum

measured total strain, (iii) the plastic strain, and (iv) the damage variable (see Fig.

3.10) are computed for each cycle k ∈ {1, 2, . . . , K }:
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σ k
max = max

t∈(T k−1,T K ]
σ k(t), εk

max = max
t∈(T k−1,T K ]

εk(t),

εk
p = εk(t = T k), dk = 1 −

Ek
d

Ee

.

The maximum elastic strain is taken as εk
e := εk

max − εk
p. The corresponding data

(σ k
max, ε

k
e , ε

k
p, dk) are listed in Table 3.2 for three testing speeds. The six unknown

material parameters from (3.5), (3.7) and the unknown yield stress σy are computed

by using the following fitting algorithm.

Algorithm 1: Parameter identification algorithm

Input : Young’s modulus Ee, initial plastic strain ε0
p

for k ← 1 to K do

Compute effective stress σ̄ k = σ k

1−dk

end

NLLS: fitting σ̄ = ψ(r) = ψ̃(εp; σy, H0, a1, δ) using data points (εk
p, σ̄

k)

Result: Plastic material parameter σy , H0, a1, δ

for k ← 1 to K do

Compute the damage conjugated force Y k = Welastic(ε
k
e ) + Wiso(ε

k
p) =

1
2

Ee(ε
k
e )2 + W̃iso(ε

k
p; σy, H0, a1, δ)

end

NLLS: fitting d = d̃(Y ; Y0, b1, b2) using data points (Y k , dk)

Result: Damage material parameters Y0, b1, b2

Table 3.2 Measured material parameters

Testing speed

v/(mm/s)

Young’s modulus

E /MPa

Cycle

number k

Maximum stress

σmax/MPa

Elastic strain

εe/%

Plastic

strain εp/%

Damage

d ∈ [0.1]

0.1 2336 1 11.7 0.51 0.01 0.0

2 22.4 1.02 0.03 0.03

3 32.2 1.54 0.06 0.07

4 40.7 2.05 0.09 0.11

5 47.3 2.56 0.15 0.16

6 50.7 3.07 0.28 0.22

7 51.1 3.55 0.53 0.28

1.0 2385 1 11.2 0.49 0.02 0.0

2 21.6 0.98 0.04 0.03

3 31.4 1.48 0.05 0.08

4 40.4 1.98 0.07 0.11

5 47.8 2.48 0.11 0.16

6 53.0 2.98 0.18 0.21

7 54.5 3.38 0.34 0.25

10.0 2343 1 11.1 0.49 0.01 0.0

2 21.7 0.99 0.05 0.01

3 55.9 3.38 0.27 0.23

4 56.2 3.74 0.46 0.27
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3.3.1 Results

The determination of the Young’s modulus and the Poisson’s ratio for describing the

the isotropic linear elastic behaviour of PBT is described in Chap. 6. The unknown

parameters of the plastic yield ψ = ψ̃(r; σy, H0, a1, δ) function and the damage

function d = d̃(Y ; Y0, b1, b2) are fitted by using a nonlinear least-squares (NLLS)

Levenberg-Marquardt algorithm, see Algorithm 1. The initial plastic strain is zero at

the testing speeds of 0.1 and 10.0 mm/s, whereas an initial plastic strain of 0.016%

is estimated from the measurements at the testing speed of 1.0 mm/s. Furthermore,

the parameter H0 is set to zero for all testing speeds, because this parameter could

not improve the fit of the hardening curve. The results of the parameter identification

for three testing speeds are presented in Table 3.3. The good quality of the fits can be

seen on Figs. 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16. The Voce hardening parameter a1

Table 3.3 Material parameter for the pure PBT polymer

Testing speed v/(mm/s) 0.1 1.0 10.0

Elastic behaviour

Young’s modulus E /MPa 2336 2385 2343

Poisson’s ratio ν 0.4 0.4 0.4

von Mises J2-plasticity with isotropic hardening

Initial yield stress σY /MPa 3.32 3.24 1.00

Linear hardening H0/MPa 0.0 0.0 0.0

Voce hardening a1/MPa 66.31 69.34 79.34

δ 1123.6 1592.4 785.7

Isotropic damage

Threshold Y0/MPa 0.063 0.072 0.038

Parameter 1 b1 1.007 0.965 1.010

Parameter 2 b2/MPa−1 0.295 0.225 0.255

Fig. 3.11 Stress and

effective stress as function of

the plastic strain at a testing

speed of 0.1 mm/s (first fit)
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Fig. 3.12 Stress and

effective stress as function of

the plastic strain at a testing

speed of 1.0 mm/s (first fit)

0

10

20

30

40

50

60

70

80

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

S
tr

es
s

/M
P

a

Plastic strain εp/%

Measured stress
Effective stress /(1−d)

Fit of effective stress

Fig. 3.13 Stress and

effective stress as function of

the plastic strain at a testing

speed of 10.0 mm/s (first fit)
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Fig. 3.14 Damage d as

function of the energy

release rate Y at a testing

speed of 0.1 mm/s (first fit)
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Fig. 3.15 Damage d as

function of the energy

release rate Y at a testing

speed of 1.0 mm/s (first fit)
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Fig. 3.16 Damage d as

function of the energy

release rate Y at a testing

speed of 10.0 mm/s (first fit)
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is increasing with the testing speed. The damage parameters are almost identical. The

hardening curves are fitted very well also for very small plastic strains. However,

the computed yield stress σy is also very small. Therefore, in the second fitting

the initial yield stress σy is increased to 32.0 MPa, where the value is related to

a plastic strain of about 0.05%, and only the remaining material parameters are

fitted. At σ = 32.0 MPa the plastic strain is still below the value Rp02, which is

usually used as initial yield stress for metallic materials. The initial plastic strain

is set to zero for all testing speeds. The resulting elastoplastic material parameters

of the second fit are presented in Table 3.4 and in Fig. 3.17. The Voce hardening

parameter a1 is increasing with the testing speed as in the first fit. The second fit

of the plastic parameters can be used if small plastic strains are not of interest,

see Fig. 3.17. Finally, the cyclic tensile tests are simulated by taking the identified

material parameters from Table 3.3 (first fit) and Table 3.4 (second fit). The results

of the first and second fit are visualised in Figs. 3.18 and 3.19 for the testing speed of

0.1 mm/s as well as in Figs. 3.20 and 3.21 for the testing speed of 10.0 mm/s. For both
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Table 3.4 Material parameter for the pure PBT polymer

Testing speed v/(mm/s) 0.1 1.0 10.0

von Mises J2-plasticity with isotropic hardening

Initial yield stress σY /MPa 32.0 32.0 32.0

Linear Hardening H0/MPa 0.0 0.0 0.0

Voce hardening a1/MPa 39.96 43.56 45.45

δ 642.6 819.0 876.12

Fig. 3.17 Stress and

effective stress as function of

the plastic strain at a testing

speed of 0.1 mm/s (second

fit)
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Fig. 3.18 Simulation and

measurements of cyclic

tensile tests, testing speed

0.1 mm/s (first fit)
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testing speeds, there is no essential difference between the simulation results using

the plastic material parameters obtained from the first fit or second fit, respectively.

A detailed sensitivity analysis for every material parameter is outside the scope of

this section. The hysteresis loops (see Figs. 3.18, 3.19, 3.20 and 3.21) due to the

viscoelastic behaviour of the PBT polymer are not captured by the time-independent

elastoplastic material model with damage which is considered in this section.



3 Modelling of Geometrical Microstructures and Mechanical … 49

Fig. 3.19 Simulation and

measurements of cyclic

tensile tests, testing speed

0.1 mm/s (second fit)
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Fig. 3.20 Simulation and

measurements of cyclic

tensile tests, testing speed

10.0 mm/s (first fit)
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Fig. 3.21 Simulation and

measurements of cyclic

tensile tests, testing speed

10.0 mm/s (second fit)
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3.4 Numerical Solution of Periodic Boundary Problems

for Damage Coupled to Elastoplasticity

In the following the governing equations of a periodic boundary value problem and

their reformulation in terms of the Lippmann-Schwinger (LS) integral equations

are briefly reviewed. Subsequently, the numerical solution of the periodic boundary

value problem by application of fast Fourier transforms is outlined.

3.4.1 Formulation of the Periodic Boundary Value Problem

For the computation of the microscopic deformation a periodic boundary value

problem (BVP) on a representative volume element (RVE) ω is considered. At the

boundary ∂ω of the RVE an effective strain εM is applied. The kinematics for the

unknown strains depending on the displacements u and the fluctuations u∗ are given

as

ε(u)(x) = εM + ε(u∗) (x)

ε(u∗) (x) = 1
2

(

grad u∗(x) + gradT u∗(x)
)

}

x ∈ ω. (3.8)

At the boundary of the domain the following (anti-)periodic boundary conditions are

prescribed in terms of the Cauchy stress σ as

u∗(x) #

σ(x) · n −#

}

x ∈ ∂ω. (3.9)

Therein, # and −# denote periodicity or anti-periodicity, respectively. Therefore, the

fluctuations at opposite faces of the RVE are equal, whereas the tractions have the

same magnitude but point into opposite directions.

The equilibrium condition for the stresses read

div σ(x) = 0, x ∈ ω. (3.10)

The formulation of the BVP is completed by the constitutive functional F , which

connects the stresses to the strains and the history of the material via

σ(x) = F
[

ε(x), εp(x), r(x), d(x)
]

. (3.11)

According to Sect. 3.3, εp denotes the plastic strains and d the damage variable.

In a next step, the differential equation (3.10) for the stress equilibrium is reformu-

lated into the so-called Lippmann-Schwinger integral equation, see [10], according

to [23]. To this end the polarisation tensor τ is defined as
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τ(x) = σ(x) − C0 : ε(x), (3.12)

by introduction of a constant homogeneous reference stiffness tensorC0. The solution

of the local equilibrium equation (3.10) can then be obtained by application the non-

local Green’s operator Γ 0 applied to the stress polarisation

ε(x) = εM −
(

Γ 0 ∗ τ
)

(x) . (3.13)

The Green’s operator depends only on the homogeneous reference stiffness and the

applied boundary conditions, and thus is independent of the strain fluctuations, see

[9]. The convolution operator ∗ in equation (3.13) is defined as

(

Γ 0 ∗ τ
)

(x) =

∫

ω

Γ 0 (x − y) : τ (y) dy. (3.14)

Finally, the nonlinear Lippmann-Schwinger integral equation is obtained as

εM = ε(x) + Γ 0 ∗
(

F
[

ε, εp, d
]

− C0 : ε
)

(x). (3.15)

Please note, that the Green’s operator Γ 0 is independent of the fluctuations and

therefore only depends on the linear elastic reference stiffness as well as on the

boundary conditions, see [9]. In order to further simplify the notation in the following

the LS equation is rewritten by application of the operator Bε as

εM =
(

(I + Bε) ε
)

(x). (3.16)

Therein I denotes the identity operator δi j , where δi j = 1 if i = j and δi j = 0

otherwise. The numerical solution of equation (3.16) is outlined in the following.

3.4.2 Numerical Solution of Lippmann-Schwinger Equation

via Fast Fourier Transforms

The numerical solution of the LS integral equation as given in (3.16) can be

obtained iteratively by using the Neumann series expansion for inverting the operator

I + Bε(x). Thus, the iterates of the local strains are obtained as

ε0(x) = εM (3.17)

εk+1(x) = −Bε(x)εk(x) + εM , k = 0, 1, 2, .... (3.18)

These iterates can be computed efficiently by the so-called basis scheme as pro-

posed by Moulinec and Suquet [11] for linear elastic material behaviour. An extension

towards the account of nonlinear material behaviour is given by Moulinec and Suquet

in [12].
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The basis scheme consists of the following steps, which are repeated until con-

vergence is reached:

1. Solve the constitutive equation in the real space and compute the stress polarisa-

tion

τ k = σ − C0 : ε.

2. Transformation of the stress polarisation into the Fourier space

τ̂ k = FFT (τ ) .

3. Update the strain field in the Fourier space by application of the Green’s operator

ˆεk+1 = −Γ̂ 0 : τ̂ k .

4. Inverse Fourier transformation of the updated strain field

εk+1 = FFT−1
(

ˆεk+1

)

.

Explicit expressions for the Green’s operator can be found e.g. in Mura [13].

Alternative solution schemes to the basis scheme which are also applicable to large

deformations are summarised in Kabel et al. [7].

3.5 Computational Homogenisation

In the following the computational homogenisation scheme connecting the micro-

scopic and the macroscopic scale is outlined. Here, focus is put onto classical first

order homogenisation schemes, see e.g. [8] for details. Basically, the computational

homogenisation scheme consists of the following four steps:

1. Generation of a representative volume element (RVE), see Sect. 3.2, and deter-

mination of the constitutive behaviour and material parameters of all phases.

2. Selection of admissible microscopic boundary conditions based on macroscopic

input quantities.

3. Solution of microscopic boundary value problem (according to Sect. 3.4).

4. Determination of macroscopic output variables in terms of averaged microscopic

quantities.

Here, the macroscopic variables are denoted by the index M . The effective macro-

scopic quantities, stresses or strains respectively, are obtained by averaging the cor-

responding microscopic solution fields over the volume ‖ω‖ of the RVE ω
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σ M =
1

|ω|

∫

ω

σdv (3.19)

εM =
1

|ω|

∫

ω

εdv. (3.20)

In the numerical examples given in the next section, so called mixed boundary

conditions are prescribed to the RVE in order to reconstruct the performed exper-

iments. In case of these boundary conditions macroscopic periodic strains εM are

prescribed in loading direction (here 0◦ or 90◦ ) and the other boundaries are stress-

free. The effective stiffness in loading direction is then computed as the ratio of the

macroscopic strain and stress in the corresponding loading direction.

3.6 Numerical Examples

In the following the results for the purely elastic and the elasto-plastic simulations

are given and compared to the experimental data from Chap. 6.

In a first step the elastic behaviour is addressed. Therefore, the PBT matrix is

modelled as an isotropic linear elastic material (E = 2470 MPa, ν = 0.4). The PBT

matrix is reinforced by 20% (weight) linear elastic glass fibres with a Young’s mod-

ulus of 73,400 MPa and a Poisson’s ratio 0.22. The simulations are carried out on

the highly resolved (10243 voxels) virtual samples from Sect. 3.2. Mixed boundary

conditions as described in Sect. 3.5 are applied.

In Fig. 3.22 the simulations and the experimental data are compared for the

slowest measured loading. For the simulation of the 90◦ direction the simulation

reflects the measurements well for all 5 regarded samples. In 0◦ direction the simula-

tion underestimates the stiffness of the composite lightly for all regarded specimens.

Fig. 3.22 Comparison of

simulation and measurement

for elastic composite

behaviour, Samples 1–5
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Fig. 3.23 RVE for

elasto-plastic simulation,

size 512 × 512 × 256 voxel

Nevertheless, from Fig. 3.22 it is concluded that the simulations are in good coin-

cidence with the experimental data. For all realisations similar results are obtained

which is connected to the representativeness of the regarded volume elements.

A big advantage of the applied micromechanical approach is that not only the

effective quantities like stresses σ M and strains εM are available, but also the local

fields in the RVE. In a next step the simulation of the elasto-plastic PBT model

including damage is addressed. For this non-linear material behaviour a much higher

resolution of the fibres is required. Therefore, only the upper layer of the multi-

layered microstructure is considered, see Fig. 3.23. Herein, the fibres are resolved

by 16 voxels over their thickness, i.e. the voxel size is chosen as 0.625 µm.

The effective elastic stiffnesses of this one-layered RVE result in E M
0 = 5301 MPa

for the 0◦ direction and E M
90 = 3920 MPa for the 90◦ direction. Compared to the

average stiffness of the layered RVE (Ē M
0 = 5412 MPa and Ē M

90 = 3907 MPa) and

the experimental values (E0 = 6050 MPa and E90 = 3840 MPa) very good results are

obtained with the considered one-layered RVE.

For the elasto-plastic simulation the material parameters of the PBT matrix are

chosen according to Table 3.4 for the plastic contribution and Table 3.3 for the

damage. The simulation results for a loading and unloading scenario are depicted

in Fig. 3.24. For the 90◦ direction very good coincidence of the simulation and the

measurement are archived. For the 0◦ direction the simulation underestimates the

stresses, which follows from the fact that for the considered RVEs also the elastic

response yields lower stresses than the experiments.
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Fig. 3.24 Comparison of

simulation and experiment

for elasto-plastic model

including damage
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3.7 Conclusion

In summary, this section explains how the nonlinear behavior of the composite can

be simulated in an RVE using only the material characterization of the pure polymer

and the morphology of the microstructure.

Mechanical tests on the composite are not required.
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A B S T R A C T

The local fiber orientation is a micro-structural feature crucial for the mechanical properties of parts made from

fiber reinforced polymers. It can be determined from micro-computed tomography data and subsequent quan-

titative analysis of the resulting 3D images. However, although being by nature non-destructive, this method so

far has required to cut samples of a few millimeter edge length in order to achieve the high lateral resolution

needed for the analysis.

Here, we report on the successful combination of region-of-interest scanning with structure texture or-

ientation analysis rendering the above described approach truly non-destructive. Several regions of interest in a

large bearing part from the automotive industry made of fiber reinforced polymer are scanned and analyzed.

Differences of these regions with respect to local fiber orientation are quantified. Moreover, consistency of the

analysis based on scans at varying lateral resolutions is proved. Finally, measured and numerically simulated

orientation tensors are compared for one of the regions.

1. Introduction

Many structural components in the automotive and aircraft in-

dustries are made from fiber reinforced plastic (FRP) composite mate-

rial. The fibers can be made of glass, carbon, or other materials, they

can be short cut, long or even continuous, of various thicknesses and

volume concentrations. Typically, the fiber component comprises

10–35% of the volume for injection molded materials [1] and up to

50–60% for laminar FRP [2–5] and consists of 6–15 μm thick carbon

fiber bundles or 10–18 μm thick glass fibers (e. g. 10 μm in [1], 12 μm in

[6], 18 μm in [7]).

When the components are molded, usually thermoplastics like

polypropylene [8], polybutylene terephthalate [6], polyamide 66 [9],

polyamide 6, acrylonitrile butadiene styrene are used as host material

to which the fibers are added. Since FRP components generally undergo

mechanical and/or thermal stresses during their service life, their load

bearing capacity/strength is of critical importance for the components’

design.

The structural properties of injection molded FRP materials are

locally anisotropic due to the fiber component being anisotropically

oriented [9–11] (for short fibers), [12] (for long fibers). This anisotropy

in turn is caused by the fibers moving with the liquid flow in the mold

[13]. For complex shaped parts, the resulting fiber orientations are

difficult to predict and control. As a consequence, structurally weak

spots or areas can appear and may lead to early failure of the compo-

nent. In order to avoid this, components are often designed too thick.

This in turn thwarts the weight saving intention in using FRP.

Numerical simulations can predict the liquid flow [14] and thus

indicate critical areas where material weaknesses might occur. Yet,

these simulations are not perfect and need validation. Moreover, pre-

diction of the local materials properties relies on orientation informa-

tion as input, typically in the form of the 2nd order orientation tensor

[10].

Fiber orientations can be analyzed essentially by four types of

methods. Historically, before X-ray micro computed tomography (μCT)

became widely available, fiber orientations were evaluated through

image analysis of polished 2D sections. See [[15], Section 11.6.4] for a

summary of stereological methods based on counting intersections in
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slices at varying angles and [16,17] for orientations deduced from the

shape of the observed elliptical cross-sections. These methods are not

only destructive but the latter suffers also from the need for rather high

resolutions and ambiguities due to the fact that there are always two 3D

orientations generating the same cross-sectional ellipse. Therefore,

critical areas of damaged/failed thermoplastic parts (or field returns)

are nowadays predominantly analyzed by CT techniques, nevertheless

for detailed verification optical microscopy of polished micro-sections

is still commonly used.

X-ray micro computed tomography (μCT) can be employed to ana-

lyze non-destructively the fiber orientation in structural components.

Based on the resulting three-dimensional images, fiber orientations can

be analyzed for the whole field of view (FoV) by the mean intercept

length (MIL [13]) or by measuring the length of generalized projections

and obtaining the orientation distribution via the inverse cosine

transform [[18], Section 5.4]. Both methods are designed to be applied

to the whole FoV, they can however be localized by applying them to

small sub-volumes. Nevertheless, in order to get an orientation in each

voxel, one would have to center the sub-volume in each voxel. While

inverting the cosine transform faces numerical instabilities, the MIL

method has been applied successfully, see [13] also for a comparison to

analysis of 2D virtual slices from the CT data as well as of 2D images of

polished surfaces.

Local fiber orientation can of course be determined via single fiber

segmentation. These approaches are typically very demanding with

respect to image quality (contrast as well as lateral resolution), fiber

volume fraction and spatial arrangement of the fibers. On the other

hand, if successful they yield additional valuable information, in par-

ticular the fiber length distribution [19,20] or positions with respect to

failure regions [21]. Single fiber segmentation usually relies on tracking

fiber center lines or cross-sections from slice to slice [2,5] or local ap-

proximation of fibers by line segments [22,23], ellipsoids [24], or cy-

linders [25–27]. [24] reconnects fragments based on local orientation,

while [25,26] just use the fragment orientations. All these approaches

have in common that they demand rather slow orientation changes

within one fiber (see the detailed discussion in [21]) and the fiber

diameter to be resolved by at least 8 voxels. Viguié [28] and Kro-

nenberger [21] do not need the former but [28] thrives on high image

quality as provided by tomography using synchrotron radiation and

both rely on resolutions of 8 voxels per fiber diameter and more. Pinter

[27] claims 5 voxels per diameter to be sufficient, whereas the effi-

ciency of the circular voting filter drops significantly for the lower

resolution of 3 voxels per fiber diameter. In [9], orientations of short

fibers or clusters of them are used to derive the homogenized ortho-

tropic behaviour for cuboidal sub-volumes for use in FEM simulations.

Here, we concentrate on estimation of the local fiber orientation in

the sense of assigning an orientation vector to each voxel belonging to

the fiber system without fiber separation. For this purpose, several

methods based on local approximation of fibers by ellipsoids [29–31]

and on local gray value derivatives of first [32] and second order [33]

have been proposed. The first order gray value derivatives are sub-

sumed into the so called structure tensor and are applied e. g. in [34]

and in VG STUDIO MAX, see e. g. [35]. Note that the structure tensor is

not the orientation tensor as described in [10] and given in Equation (1)

below. The second order derivatives form the so called Hessian matrix

and are applied e. g. in MAVI [8]. The rationale behind both methods is

that locally the fiber orientation is the one in which gray values change

or are curved the least. In [33], all four methods are compared com-

prehensively based on simulated single fibers with a diameter of 10

voxels. In applications, the derivative based methods usually use 2–4

voxels per diameter [7,8,20,33] while [30] rather demands 10. An

exception is [34] applying the structure tensor at fiber bundle instead of

fiber level thus allowing for voxel sizes of 50 μm. In [36], the authors

present a different technique, the dark field scanning, for derivation of

fiber orientation results in FRP. This method allows for even coarser

resolutions of 86 μm.

All local and single fiber based orientation analysis methods de-

scribed above except [34,36] require the fiber diameter to be sampled

by at least 2–4 voxels [8,37,38]. Sampling the fibers coarser than this

causes them to crumble in the digital image. That is, a fiber sampled at

less than 2 voxels for its diameter is endangered to form more than one

connected component. Thus, similar to the microscopic imaging of

planar sections - μCT is limited in its FoV to some mm3. E. g., if glass

fibers of diameter 10 μm are analyzed, orientation analysis limits the

voxel size to at most 5 μm and consequently the FoV to 10 μm/3×2

048≈7mm size. This FoV usually covers the component's thickness.

However, the lateral dimensions of injection molded parts can be as

large as some meters. So far, we used CT to analyze fiber orientations in

small molded parts. These results have been used to verify simulation

results of injection molding simulation software. Large molded parts

could not be analyzed due to the limitations of CT devices used in the

polymer industry. The part analyzed in this paper, shown in Fig. 1, is

about 1m long.

As a consequence, very often the sample size is reduced to match the

Fig. 1. Bearing component made of polypropylene with 30 wt% reinforcing long glass fibers. Regions of interest (RoI) are marked white. As indicated, the analyzed

component is mostly oriented in the x-y-plane and positive z is the thickness direction. Throughout, this coordinate system is used.
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FoV determined by the needed resolution by cutting small pieces of a

few millimeters edge length from the part thereby rendering μCT an

utterly destructive inspection technique [9,39].

With this work we demonstrate two strategies which aim at em-

ploying μCT for fully non-destructive analysis of local fiber orientation

in injection molding FRP parts:

1. The imaging technique is applied as region of interest CT (RoI CT)

[40]. That is, the components are not cut and the FoV can be sig-

nificantly smaller than the components size, at least in one dimen-

sion.

2. Instead of the local fiber orientation distribution, a local “texture

orientation” is derived. More precisely, the local orientation is de-

termined in small cubic sub-volumes (boxes). Boxes not containing

enough voxels belonging to the fiber component are not taken into

account. Thus, the spatial sampling of the fiber diameter can be

reduced to less than one voxel, allowing for an FoV 10 times larger

than required for a local fiber orientation analysis.

By combining these two aspects into one novel method the analysis

of local fiber orientation in meter-sized glass FRP components becomes

readily feasible.

While in synchrotron μCT experiments RoI (axial or laminography)

scans are performed routinely on carbon FRP material [41] this ac-

quisition mode is still new in laboratory μCT. One reason for this is the

compactness of commercial μCT scanners which, given a high geo-

metric magnification, leave little to no space between X-ray source

window and sample. The present scanner uses a variable source-de-

tector distance which allows for RoI CT in samples of 100mm width

while maintaining a high magnification and microscopic voxel sam-

pling.

2. Materials and methods

The object used to demonstrate our technique is a long glass fiber

composite carrier, see Fig. 1. Built into the upper front end of the car,

this part fulfills several functions: It carries the hood damper and yields

mounting points for the lights as well as for the radiator package. The

latter is provided with air by the carrier, too. Moreover, jointly with the

crash absorber, the carrier contributes to fulfilling the legal regulations

w.r.t. pedestrian protection.

In a polypropylene matrix, 30 wt% glass fibers of 10–20 μm thick-

ness and 10–15mm length before processing are embedded. The carrier

has been scanned several times with different parameters. Thus, data

has been acquired at several resolutions revealing different local fea-

tures of the particular regions. The scanned regions were chosen to

evaluate the effect of flow on fiber orientations along the part. Table 1

summarizes physical and digital sizes of the scans. The largest analyzed

RoI scan A3.1 was scanned at the coarse resolution of 44 μm/voxel edge

by the Tomosynthesis scanner at a the Fraunhofer Institute in Fürth

(EZRT), Germany. This scanner has a maximum source-detector dis-

tance of 2m, while its detector has 100 μm pixel pitch thus the scanner

does not allow for very fine voxel samplings (< 5 μm) while maintaining

a large source-object distance (in the present case at least 100mm). We

therefore used the metRIC scanner at EZRT Würzburg for the remaining

scans. The metRIC allows for voxel samplings down to 2.33 μm with

100mm source-object distance thanks to its very large detector X-axis

(up to 3.3 m) and a pixel pitch of 74.8 μm. Thus, metRIC allows for

higher resolutions while coping with large size of the scanned compo-

nent. So that, we scanned the RoI A2, A4 and A5 at higher resolutions of

10–20 μm/voxel edge. In order to compare the local analysis at several

resolutions, the region A3.2, has been imaged at coarse (45 μm/voxel,

A3.2m), intermediate (21 μm/voxel, A3.2h), and high resolutions (10

μm/voxel, A3.2uh). The scans A3.2m, A3.2h and A3.2uh have been

acquired by changing exclusively the source-object-distance/source-

detector- distance leading to the corresponding dimensions of the

scanned RoI. Finally, RoI A3.3 has been scanned at the highest re-

solution of 3 μm/voxel edge. Next, we describe the CT-data acquisition

set-ups. Afterwards, we present the orientation analysis results for the

CT-data and compare them with Moldflow® simulations.

2.1. X-ray approach for entire components (RoI CT)

RoI CT of large glass FRP components requires certain degrees of

freedom in the CT scanner as well as sufficient space for displacement of

the sample. This is realized in the Tomosynthesis scanner. The scanner

allows for precise x, y, and z movements over more than 1m range,

thereby placing FoV at any position and of variable size and detail

between X-ray source and detector. The X-ray source is an open mi-

crofocal transmission anode which provides X-ray spot sizes down to

1 μm. The X-ray projections of the sample are recorded on a digital

detector array which covers an area of 40 cm×40 cm (Varian PaxScan).

The sample is mounted vertically on the object table and the RoI is

positioned on the marked positions covering 5 cm FoV which are

sampled at 22.4 μm/voxel (geometric magnification 4.45×). Binning of

two detector pixels results in the final effective voxel edge length of

45 μm. Reconstruction of the volume images from 3000 projections is

achieved through standard Feldkamp back-projection.

In addition to the low and medium resolution scans of RoI A2, A3.1,

A3.2, A4 and A5, we applied high resolution local tomography to the

same sample. The RoI A3.3 covers the region marked by the elongated

red box in Fig. 3. The RoI CT scanner MetRIC (see Fig. 2) has been

designed and constructed recently at the EZRT in Würzburg, Germany.

The X-ray source is an X-RAY WorX microfocus transmission anode

(XWT-190-THCE PLUS) which can be operated at up to 190 kV accel-

eration voltage and provides a spot size down to below 1 μm with the

high-resolution target (1 μmW on 250 μm Be). The setup comprising

source, sample manipulator, and detector offers 10° of freedom and a

precisely encoded positioning of the sample and probed RoI. The flat-

panel detector (PerkinElmer Dexela 1512 NDT, 14-bit CMOS,

Gd202S:Tb DRZS-scintillation screen) features a pixel size of 74.8 μm on

a sensitive area of 154.4 mm×114.9 mm. Especially the extended

movement of up to 2.5m of the detector stack along the horizontally

oriented X-ray direction as well as of the X-ray source (up to 1.3m)

enhances an optimized arrangement of encoded source, sample, and

detector positions for well-balanced magnification (source-object-dis-

tance/source-detector-distance), resolution and scanning time of each

sample and RoI. The encoding of all axes enables CT scans without

manual movement of the sample and the RoI can be reproduced at any

time. The encoded x-y-stage on top of the rotary table as well as the z-

movement of the sample stack allow for selection of several RoI without

repositioning the sample. Consequently, all data is generated auto-

matically in the same coordinate system.

Our scanner allows for an extensive focus-detector distance (here

3.3 m) which in turn enables voxel samplings as small as 3 μm/voxel,

Table 1

RoI scanned at varying resolutions.

RoI CT device dimensions in voxels voxel size

x-y-plane [cm2] [μm]

A2 MetRIC ×2.7 0.9 × ×604 200 205 45

A3.1 Tomosyn ×6.2 4.8 × ×1 422 1 102 450 44

A3.2m MetRIC ×4.9 2.5 × ×1 084 556 172 45

A3.2h MetRIC ×2.0 1.4 × ×949 686 307 21

A3.2uh MetRIC ×1.0 0.7 × ×972 726 543 10

A3.3 MetRIC ×0.6 2.3 × ×1 944 8 832 1 944 3

A4 MetRIC ×3.0 1.9 × ×1 860 1 150 360 17

A5 MetRIC ×5.2 5.6 × ×1 210 1 300 250 44
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even in parts which are several cm wide. Moreover, on top of the air

bearing rotation, a piezo positioning system lets the user choose an

arbitrary RoI with sub-μm precision.

The minimum resolution of all CT scanners depends on the sample

size. Tomosynthesis as well as MetRIC enable resolutions down to

2–3 μm. Tomosynthesis offers additionally the option to scan very large

samples with high resolution. On the other hand, MetRIC has a smaller

focal spot size reaching even higher resolutions for smaller samples.

The degree of freedom for movements and total distances is higher and

thus allows more variable sample geometries.

Although the 3D volume reconstruction of RoI CT data gives the

chance to achieve high resolution images, it suffers from a few specific

problems. If an area of the scanned object overlaps the reconstructable

FoV in direction of the beam at a certain angle, this area will become

part of the corresponding radiography. Therefore, in the image

reconstruction process, this outer area will become part of the re-

constructed volume. Moreover, problems occur when the projection of

the scanned object is bigger than the horizontal detector size. Filtered

back-projection of the radiographies involves high-pass filtering. As a

consequence, the detector edge leads to reconstruction artifacts near

the boundaries of the imaged volume.

Both problems are treated adequately at MetRIC. The scan is per-

formed “on-the-fly” using a non-stop rotational movement. That way,

parts of the sample that are located outside the FoV will move faster

during object rotation. Hence, the blurring of these areas is increased

proportional to their distance to the center of rotation. In the resulting

image slices, this leads to a constant gray value offset only. The hor-

izontal overlap is handled by padding as the high-pass filter used for

backprojection is less sensitive of the projected image. Thus, cupping

artifacts in the outer areas of the reconstructed slices are avoided.

2.2. Measuring local fiber orientation from 3D image data

In this paragraph, we shortly summarize the method for local 3D

fiber orientation analysis based on 2nd order gray value derivatives.

That is, the method based on an eigenvalue analysis of the Hessian

matrix in each voxel of a 3D image.

State of the art methods for analyzing the fiber orientation in μCT

images of FRP parts determine the fiber orientation in each voxel

without need to identify individual fibers [32,33,38,42]. More pre-

cisely, in each voxel belonging to the fiber system, a local fiber or-

ientation is derived. These voxel-wise measurements yield the volume

weighted orientation distribution of the fiber system observed in the 3D

image. As discussed in the Introduction, in general, segmenting in-

dividual fibers requires higher resolutions than the voxel-wise or-

ientation analysis. The latter being reported to work at spatial sampling

of the fiber diameter by 2–3 voxels [8,37,38], allows for an FoV con-

siderably larger than required for single fiber analysis.

Here however, in the coarser scans, the mean fiber diameter of

approximately 10 μm is sampled by less than one voxel. Due to the local

orientations not rapidly changing spatially, local orientation analysis is

nevertheless possible, see [43] analyzing bundles of glass fibers in sheet

molding compound samples at a nominal resolution of 17.3 μm in vir-

tual 2D slices using the method from [29,34] applying the structure

tensor [32] to prepreg platelet compression molded samples for 3D

orientation analysis at 50 μm nominal resolution. The gray value of an

image voxel represents in that case the averaged energy absorbed by

several neighboring fibers.

Fig. 2. RoI CT scanner MetRIC at EZRT in Würzburg.

Fig. 3. The red box marks the RoI which has been scanned at finest resolution,

divided into six sub-volumes. The stack of six scans covers approximately the

entire red box. Fig. 4(a) shows the volume rendering of the segmented fiber

component of the whole RoI A3.3. (For interpretation of the references to color

in this figure legend, the reader is referred to the Web version of this article.)
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2.3. Local fiber orientation analysis

The regions scanned are not simply cuboidal. Thus, first of all,

masks for the RoI of the part are derived from the CT image data. To

this end, solid matter is separated from the surrounding air by a

manually chosen global gray value threshold. The resulting rough edges

are smoothed by a morphological opening with a 3×3×3 voxel cube.

The local orientations are measured in each voxel exploiting the

second order partial derivatives of the local gray values. That is, the

Hessian matrix is computed in each voxel. Subsequent analysis of the

eigenvalues of the Hessian yields the local orientation of bright locally

fiber like structures as the eigenvector corresponding to the smallest (in

magnitude) eigenvalue. Following [33], we define a fiber like structure

to be a subset of a dilated random fiber system which in turn is a col-

lection of rectifiable curves. See [44,45] for mathematical background.

The idea behind the eigenvalue analysis is that standing on a (gray

value) mountain ridge, the orientation of the ridge is the one in which

the (gray value) relief is curved the least [46]. In [33], this method has

been proven to be equivalent to the structure tensor based one of [32]

and to outperform methods discretizing the orientation space, namely

orientation derived from maximal response of anisotropic Gaussian

filters [29] or from the moments of intertia [30].

Here, the Hessian matrix based method is slightly altered. In [33],

the fiber diameter is assumed to be known. Calculation of the 2nd order

partial gray value derivatives in each voxel is proceeded by smoothing

with a Gaussian filter whose parameter is chosen to meet exactly the

fiber radius. This choice is motivated by the interpretation of a bright

glass fiber within a darker matrix forming a ridge in the gray value

relief and the desire to observe the highest points of the ridge exactly at

the center line of the fiber. Recent experiments [42] shed some doubt

on this empirically deduced rule of thumb and this issue is currently

being investigated. Clearly, choosing the width of the Gaussian as the

fiber diameter is impossible if the diameter is resolved with less than 3

voxels. Thus, in these cases, a minimal smoothing filter with a 3×3×3

voxel mask approximating a Gaussian is used.

The presented local orientation analysis is based on the mathema-

tical concept of the typical point of a random closed set [15,18,47].

Very roughly speaking, one looks at the world from a point chosen

“uniformly” within the random set. As long as the fibers are of equal

thickness and do not intersect, the resulting distribution of the fiber

orientation in this typical point is the same as if just the one-dimen-

sional fiber cores are taken into account. Let R be the distribution of the

local fiber orientation in the typical point. That is, R is a probability

measure on the space of direction – the upper half-sphere +S
2. The 2nd

order orientation tensor [10] can be interpreted as the 2nd moment of

R. Let ∈u i x y z, { , , }i denote the component of some normalized di-

rection vector u in coordinate direction i. Then the second order or-

ientation tensor is defined as a( )ij with

∫= ∈
+

a u u R du i j x y z( ), , { , , },ij
S

i j2 (1)

see [33].

Finally, the local orientation information is exploited for those

voxels assigned to the fiber system by a global gray value threshold,

only. This threshold is found by multiplying Otsu's threshold [48] by

1.25, the rationale behind that being that the observed orientation

distribution is not distorted if voxels at the fiber edges are system-

atically not taken into account.

An eigenvalue analysis for the 2nd order orientation tensor yields

Fig. 4. Visualizations of the reconstructed CT images of RoI A3.3 and A3.2uh, with pixel sizes of 3 and 10 μm, respectively.
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the preferred local direction as the eigenvector to the largest eigenvalue

ℓmax as well as an index reflecting the strength of anisotropy [43]. More

precisely, consider = −α 1 ℓ /ℓmin max, where ℓmin is the smallest eigen-

value of the orientation tensor. This index assumes values in the range

[0,1] with 0 indicating perfect isotropy. A value of 1 is achieved in two

cases - perfect unidirectional fibers or a transversally isotropic fiber

system. Tensile tests for glass FRP reported in [43] suggest that samples

with <α 0.6 behave as isotropic samples. Thus calculating a mean fiber

direction is not sensible in this case.

3. Results

Here, we present first the results of the RoI CT scans by volume

renderings and slice views in Section 3.1. The following Section 3.2

contains the 3D orientation analysis results, both locally as well as

averaged for each region. Finally, for regions A3.2 and A3.3, local fiber

orientations deduced from the image data are compared for several

resolutions in Section 3.3 and for A3.3 to those obtained by numerical

simulation of the injection molding process, see Section 3.4.

All orientations are analyzed in 3D, in each voxel, see [37]. There,

the Hessian matrix based method is applied to data of FRP samples

showing pixel-wise orientation results. In [49], the authors discussed

the existing problems and challenges around the visualization of volu-

metric microstructures by means of FRP. Size and complexity of the

imaged regions necessitate a reduction of orientation information.

Here, we concentrate on the orientation tensor diagonal element ayy as

the y-direction is the dominating one. Therefore, results are averaged in

cubic sub-volumes and often 2D slices or projections are chosen for

better illustration. Sub-volume sizes are nevertheless chosen with par-

ticular attention to formed layers, so called shell and core layers

[50–52], in the components’ microstructure.

Fig. 5. Visualizations of the reconstructed CT images of RoI A4 and A3.1, with pixel sizes of 17 and 44 μm, respectively.

Table 2

Orientation analysis results for the entire RoI, as specified in Table 1. Note that

the mean fiber direction is indicative only if the anisotropy index exceeds 0.6.

The respective vectors are therefore not reported if the anisotropy is below this

bound.

RoI mean fiber anisotropy orientation tensor voxel size

direction index axx , ayy, azz [μm]

A2 not applicable 0.55 0.52, 0.23, 0.23 45

A3.1 not applicable 0.55 0.25, 0.51, 0.23 44

A3.2m − −( 0.07, 0.99, 0.00)T 0.61 0.23, 0.54, 0.21 45

A3.2h − −( 0.08, 0.99, 0.02)T 0.60 0.22, 0.54, 0.22 21

A3.2uh − −( 0.06, 0.99, 0.05)T 0.65 0.21, 0.58, 0.21 10

A3.3 − − −( 0.06, 0. 99, 0.03)T 0.78 0.18, 0.66, 0.17 3

A3.3.1 − −( 0.11, 0.99, 0.03)T 0.75 0.18, 0.63, 0.18 3

A3.3.2 − − −( 0.03, 0.99, 0.03)T 0.78 0.16, 0.67, 0.16 3

A3.3.3 − − −( 0.08, 0.99, 0.04)T 0.76 0.18, 0.64, 0.16 3

A3.3.4 − − −( 0.05, 0.99, 0.05)T 0.78 0.17, 0.65, 0.16 3

A3.3.5 − − −( 0.04, 0.99, 0.04)T 0.77 0.18, 0.63, 0.17 3

A3.3.6 (0.01, 0.99, 0.04)T 0.77 0.19, 0.63, 0.17 3

A4 not applicable 0.50 0.26, 0.48, 0.24 17

A5 not applicable 0.57 0.22, 0.51, 0.25 44
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Fig. 6. Orientation estimation results for three regions marked yellow in Figs. 4 and 5. 2D slices from the original 3D images and from the image holding the

corresponding computed local tensor component ayy are shown next to each other. The orientation tensors are computed in cubic sub-volumes of (218 μm)3 for all

data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. A3.3, cropped to the plate region, resulting in a × ×1 200 8 832 1 000

voxel sub-volume. The area closest to the reader is close to an edge where fibers

are forced to bend.

Fig. 8. Clipped visualization of the evaluated area. The orientation tensor

component ayy is shown in the analyzed sub-volumes of edge length 65 pixels

(about 200 μm) leading to a grid of 17×135×13 cubes. Averaged over the whole

analyzed volume, the orientation tensor diagonal components are

= = =a a a0.20, 0.63, 0.15xx yy zz . The anisotropy index is 0.75 and the mean

fiber direction − − −( 0.00, 0.99, 0.01)T .
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3.1. RoI CT scans

Altogether, four regions are scanned. Region A3 is scanned five

times with A3.1, A3.2m, A3.2h, A3.2uh, and A3.3 being ordered w.r.t.

ascending resolution. See Table 1 for dimensions and voxel sizes.

Figs. 4 and 5 give a visual impression of a representative selection of

the analyzed scans. Volume renderings and 2D slices of RoI A3.2uh, A4

and A3.1 reveal the differences in acquired data caused by varying

resolutions and the micro-structure in the imaged RoI respectively. The

data sets are cascaded in Figs. 4 and 5 starting at the finest resolution

and getting coarser towards the bottom. Simultaneously this cascade

emphasizes the differences in the sample volume covered by the RoI,

too. The 2D slices in Figs. 4 and 5 are taken from the central layer of the

plate. All scans are subsequently analyzed. However, local orientation

analysis results are visualized only for the selected regions marked

yellow in Figs. 4 and 5.

3.2. Local fiber orientation tensors from 3D image analysis

The computed orientation results are summarized in Table 2. We

derive the fiber component as described in Section 2.2. The orientation

tensors are computed based on a tiling by cubes of size 218 μm×218

μm×218 μm. Clearly the y-direction is preferred (long axis of the car-

rier) for regions A3.1, A3.2, A3.3 and A5. In RoI A4, the y-direction is

less dominant due to the reorientation around the hole in this region.

RoI A2 is a special case as the component's shape differs significantly

from the remaining plate-like shape in this spur region. A2 features axx
as the highest component. This finding is not surprising due to x being

the longitudinal direction of the spur, see Fig. 1.

In the following Fig. 6, we show the local orientation results for the

regions marked yellow in Figs. 4 and 5. The Figure shows slices from

the upper (left) and central (right) layers of the plate like sub-regions.

The color map visualizes the orientation tensor diagonal element ayy in

flow direction y. For all resolutions, as expected, fiber orientations

cluster around the flow direction in the upper layer and deviate

stronger from this preferred direction in the central layer. Note that the

orientation results in Table 2 are averaged over the entire regions. Thus,

fibers being reoriented along the edges due to shaping are taken into

account, too. This might decrease the anisotropy index as well as the

dominating diagonal orientation tensor element. The yellow marked

regions are tightly limited to the areas in plane and thus avoid the re-

orientation of fibers due to shaping procedures. Orientation results for

these regions are visualized in Fig. 6 for the coarse resolution scans and

the sequence of Figs. 7–9 for the finest resolution scan.

Figs. 7 and 8 show the ‘edge’ in region A3 which was scanned at the

highest resolution (3 μm/voxel). The orientation tensor is averaged in

boxes of edge length 200 μm. The expected central layer deviating from

the dominating y-orientation [6] is clearly visible in the rendering.

Fig. 9 shows the orientation tensor diagonal elements, averaged along

the x-axis of the shown volume. These graphs reveal that the central

layer has a pronounced x-orientation (axx rising from 0.2 to approxi-

mately 0.5 along the entire strap) at the expense of y-alignment

(dropping from 0.6 to 0.3) while the ≈a 0.2zz tensor component is

constant over the entire thickness (Fig. 9(c)). Moreover, Fig. 7 indicates

a slight reorientation of fibers at one ending of the elongated volume.

This visual impression is backed by Fig. 9. Clearly, fibers are oriented

mostly in plane in the first 120 sub-volumes along the y-axis in contrast

to the last 15 sub-volumes, where higher azz values are observed. This is

exactly where the fibers are reoriented due to shaping.

3.3. Comparison of local fiber orientation tensors derived from scans at

varying resolutions

In order to compare the local orientations derived from scans at

varying lateral resolutions quantitatively, we chose a sub-volume of A3

that is covered by several scans. More precisely, the chosen volume lies

in the intersection of the RoIs A3.3, A3.2uh, A3.2h, and A3.2m, scanned

with voxel sizes 3–45 μm. See Fig. 10 for a volume rendering. We

averaged the orientation results in sub-volumes of edge-length 200 μm

and subsequently along the y-axis in order to preserve the characteristic

differences between shell and core layers. Fig. 11 shows the remarkable

consistency of the orientation results even for the coarsest resolution at

45.3 μm. Nevertheless, the quality of orientation results drops for the

coarser resolutions. This becomes obvious by the lower color contrasts

between shell and core layers from left to right. Moreover, the com-

ponent azz orthogonal to the plate varies the most when resolved at

45.3 μm. These two observations clearly show a bias towards isotropy

in the analysis results.

Fig. 9. Orientation tensor diagonal components for the RoI scan A3.3. The mesh

is based on the analysis in 135×13 sub-volumes, where the results are averaged

over 17 sub-volumes along the x-axis.

Fig. 10. Volume rendering of the sub-volume used for the comparison in

Fig. 11.
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3.4. Comparison to local fiber orientation tensors from injection molding

simulation

For three sub-regions of A3, we compare the 2nd order orientation

tensors calculated in the previous section with the values obtained by

Moldflow® simulations. The region is highlighted in yellow in Fig. 12.

The compared positions p1 to p3 are marked by triangles and

rectangles in Fig. 13 for simulation and μCT data respectively. The

tetrahedral Moldflow mesh can be seen in Fig. 13 along with three

tetrahedra for which we calculated orientation tensors for comparison

with the results from μCT.

The used mesh size is app. 2mm (element edge length in-plane). 12

layers are used over the part thickness (out-of-plane) for the calcula-

tions. The entire carrier has around 17 0000 elements using Dual

Fig. 11. Comparison of local results for varying voxel sizes: Orientation tensor diagonal components for the RoI scan, color coded. A volume rendering of the

corresponding sub-volume is shown in Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this

article.)

Fig. 12. Visualization of a coarse CT scan around RoI A3.3 (marked yellow) that has been used for injection simulation. (For interpretation of the references to color

in this figure legend, the reader is referred to the Web version of this article.)
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Domain mesh. For the orientation calculation, the Moldflow Rotational

Diffusion model is used [53]. Its parameters – fiber interaction coeffi-

cient Ci and coefficients of asymmetry D D1, 2 and D3 – are set as

“automatic calculations”. That is, the default values

= = =D D D1 1.0, 2 0.8, 3 0.15 are used. The μCT data is processed in a

way to fit the grid of simulated data. The plate thickness is subdivided

in 12 cuboidal sub-volumes. The orientation results are obtained by

averaging along x- and y-axis (in plane).

Fig. 14 shows the three diagonal tensor elements axx , ayy, and azz
from both the simulation and the measurement. The components axx
and ayy agree qualitatively well with axx peaks in the central layer and

decreasing to the outside and ayy showing the opposite behaviour for

both methods. The azz component however is more pronounced in some

measurement points in the simulation while it is almost negligible

throughout in the measurement with a slight exception around the

center of p3. In particular the ayy and azz components feature kinks in

the central layer that are neither explained by standard flow dynamics

nor backed by the μCT measurements.

4. Conclusion

Based on an off-the-shelf part from the automotive industry, we

showed that RoI CT is readily applicable to large FRP components

provided that the CT scanner has the required motor axes and degrees

of freedom. We scanned an injection molded automotive glass FRP

component that is 0.9m long, 0.35m wide, and has a wall thickness of

2mm.

It is commonly assumed that a single fiber has to be sampled by at

least 2–4 voxels per diameter, see the corresponding discussion in the

Introduction. We clearly proved this assumption to be false. Sampling

the fiber diameter by less than a voxel still allows for 3D orientation

analysis in each voxel predominantly representing the fiber phase. The

analysis method of choice gains local orientation information in each

voxel from the gray value curvature captured by the Hesse matrix. The

results are stabilized by averaging the 2nd order orientation tensor over

small sub-volumes. By this method we achieved good and consistent

results for voxel sizes between 45 μm and 3 μm for the same material.

Measuring the local orientation of individual fibers would require a

much higher spatial sampling and therefore impose a much smaller

FoV.

The 3D image analysis reveals strong anisotropy in the local fiber

orientation. For all RoI except the spur shaped A2, the injection di-

rection y is as expected the preferred one, see Table 2. Local effects like

the typical thickness-dependent changes in the mean fiber orientation

caused by flow turbulences in the central layer are captured, regardless

the image quality, see Figs. 6 and 11. Caution is however advised when

it comes to a quantitative comparison as blurred structural information

induces a bias of the orientation analysis results towards isotropy, see

the right column of Fig. 11. Comparing the analysis results for A3.1 and

A3.2, see Table 2, shows that nominal resolution is however not the

Fig. 13. Mesh of the area around A3.3 that

has been used for injection simulation in the

software Autodesk Moldflow Insight 2017.

p1, p2 and p3 mark the positions where the

simulation results have been extracted. The

simulated orientation tensor is averaged in

the marked triangle, whereas the analysis

based on the CT data averages in cubes.

Fig. 14. Comparison of simulated and CT image data based orientation tensors for region A3.3.

T. Baranowski, et al. Composites Science and Technology 183 (2019) 107786

10



decisive parameter here.

For the best resolved RoI μCT scan A3.3, the local fiber orientations

observed in the RoI CT data can be compared to those derived by in-

jection molding simulation (Fig. 14). Although deviating quantitatively,

the results do agree qualitatively and particularly well for the dom-

inating tensor component. This proves clearly that the measured or-

ientation results can be used to validate simulation results. Thus RoI

μCT combined with 3D image analysis as applied here, enables truly

non-destructive 3D micro-structure characterization for large FRP

components.

To summarize, we proved RoI μCT to be a potential standard tool for

local fiber orientation analysis in glass fiber-reinforced automotive

parts. Also, we applied successfully the proposed RoI scanning tech-

nique in combination with the orientation analysis method to carbon

FRP [54]. Our results are very encouraging and suggest that the method

is applicable to both short and long fiber reinforced composites. Unlike

methods which try to find single individual fibers and which therefore

require a very high resolution and consequently cover a very small

measurement volume, our method allows the extension of the latter to

some 2000 times the fiber diameter, hence 3 cm for 15 μm thick glass

fibers.
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