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Abstract

The presence of leads with open water or thin ice is an important feature of the Arctic

sea ice cover. Leads regulate the heat, gas, and moisture fluxes between the ocean and

atmosphere and are areas of high ice growth rates during periods of freezing conditions.

In the present study an algorithm providing an automatic lead detection based on Syn-

thetic Aperture Radar (SAR) images is developed using traditional machine learning

techniques and deep learning methods. The algorithm is applied to a wide range of

Sentinel-1 scenes taken over the Arctic Ocean. Distribution of the detected leads in the

Arctic during winter seasons 2016–2021 is then analyzed.

An important part of the algorithm development is the data preprocessing as the

classification quality depends on the quality of the input images. An advanced data

preparation technique improves consistency of the cross-polarization channel and enables

the use of dual-polarization SAR images. By using both the HH and the HV channels

instead of single co-polarized observations the algorithm is able to detect more leads

compared to the use of the HH polarization only.

First, a traditional machine learning approach is described. It is based on polarimet-

ric features and texture features derived from the grey level co-occurrence matrix. The

Random Forest classifier is used to investigate the individual feature importance on the

lead detection. The precision–recall curve representing the quality of the classification

is assessed to define a threshold for the binary lead/sea ice classification. The algorithm

produces a lead classification with more than 90% precision with 60% of all leads clas-

sified, as evaluated on the test data. The precision can be increased by the cost of the

amount of leads detected. Classification quality is improved by introducing an advanced

binarization method based on watershed segmentation. Further improvements include

object shape analysis resulting in a shape-based filter, which efficiently removes objects

appearing due to noise patterns over young ice.

Second, an algorithm based on a convolutional neural network is developed. It shows

more robust results compared to the algorithm based on the gray level co-occurrence

matrix with Random Forest classification and is applicable to the entire Arctic Ocean.

Classification results are evaluated against the dataset which does not include training

or testing data, and are also compared to Sentinel-2 optical satellite images.

Finally, the lead detection algorithm is applied to all Sentinel-1 EW GRDM scenes
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taken in five winter seasons, 1 November – 30 April of 2016–2021 years. 3-day composite

pan-Arctic lead maps with the native Sentinel-1 40 meters pixel spacing are produces.

The frequency of lead occurrence derived from these maps is compared with MODIS

thermal infrared lead detection results. The lead area fraction is compared with the

AMSR2 passive microwave observations. The lead area distribution, lead length, and

lead width distributions, as well as the lead orientation distributions, are analyzed in the

following regions of the Arctic Ocean: Fram Strait, Barents Sea, Kara Sea, Laptev Sea,

East Siberian Sea, Chukchi Sea, Beaufort Sea, Central Arctic. Each region shows the

presence of regularity in lead orientation, the preferred orientation has little variation

from year to year and during season. The lead width distribution is found to follow the

power low with the exponent of 1.86 with 0.16 standard deviation. The yearly mean

lead area fraction derived from Sentinel-1 images varies from 2.5% to 3.7% during winter

seasons 2016–2021.
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1 Introduction

Average surface temperature of the planet has been increasing during the last decades.

Temperature in the Arctic region has been increasing twice faster that the average for

the planet as shown in Figure 1.1 (Serreze and Francis, 2006; Dai et al., 2019; Wendisch

et al., 2023). One of the most notable effect of the increasing temperatures is the

decrease in sea ice extend and sea ice thickness (Kwok, 2018) in the Arctic Ocean,

shown in Figure 1.2. Since the beginning of microwave satellite observations of sea ice

in 1970s, the maximal sea ice extent at the end of winter and the minimal sea ice extent

at the end of summer have been decreasing. More importantly, thick sea ice covering

the major part of the Arctic in 1980s has been replaced with a thin young ice, leaving a

significant part of the Arctic Ocean open during summer (Kwok, 2018). Decrease in thick

multiyear ice, i.e. the sea ice that have survive at least one summer, due to melting is

clearly seen in Figure 1.3. During last years, most of thick multiyear ice is located north

of Greenland and in the Canadian Arctic. The changes in sea ice conditions influence

the heat exchange between the ocean and the atmosphere, which, in turn, influences the

climate system of the entire planet (Serreze et al., 2009).

A significant part of the Arctic Ocean is covered with sea ice. Sea ice works as an

insulation layer between the ocean and the atmosphere. The presence of leads is an

important feature of the Arctic sea ice cover. Leads are areas of open water or thin ice,

which are usually of elongated shape, as illustrated in Figure 1.4. They appear as a

result of ice fracturing due to shear and divergence stresses in the sea ice cover. These

stresses are forced by winds in the atmosphere, as well as by the ocean currents and tides

(Weiss, 2003). Leads regulate the heat, gas, and moisture fluxes between the ocean and

the atmosphere and are places of increased sea ice production during periods of freezing

conditions. Hence, the spatial and temporal distributions of leads are of interest for

climate studies (Maykut, 1978; Wang et al., 2016a). In addition to that, leads are

areas where sunlight can penetrate the sea ice cover, therefore biological activity in the

ocean like phytoplankton blooms takes place there (Assmy et al., 2017). The life of

Arctic animals (e.g., walruses, polar bears, birds) is often tied to leads (Stirling, 1997).

Furthermore, the mapping of sea ice leads plays an important role for navigation by

providing a more fuel-efficient and safe way for vessels through the pack ice.

There is a range of lead properties that are of a particular interest for environmental
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1 Introduction

Figure 1.1: a - global average surface temperature (in green), average surface tempera-
tures in tropics (in red), mid-latitudes (in yellow), and Arctic (in blue). b -
difference between average Arctic and global temperatures. Images are from
Wendisch et al. (2023)

processes and climate numerical modelling. Lead area fraction is related to the open

water area within sea ice cover and, thus, is of importance for ocean–atmosphere heat

exchange (Chechin et al., 2019). It is also accounted in the albedo feedback mechanism

(Curry and Schramm, 1995; Lüpkes et al., 2008) which has a significant influence on the

heat balance in the Arctic (Ebert and Curry, 1993). The frequency of lead occurrence

provides information on areas featuring high sea ice production rates in winter. The

lead orientation indicates typical direction of stresses in the sea ice cover. The lead

intersection angle is important for understanding and modelling of sea ice mechanics

(Hutchings et al., 2005). Lead intersection angle has been studied on large-scale linear

kinematic features by Hutter et al. (2019) and simulated with an ice fracturing model

by Ringeisen et al. (2019). Sea ice fracturing is found to follow a power law by Weiss

(2003), therefore the lead size distribution is expected to follow a power law. Wang

et al. (2016b) have found the distribution of distance between leads, considered as a

proxy for ice floe size, which is also found to be scaling with a power law by Rothrock

and Thorndike (1984), to not to follow the power law at small scales due to the different

mechanism of lead occurrence. At a large scale leads appear due to wind and internal

stress, at a small scale wave actions play a major role in the process of lead occurrence.

The lead width distribution influences the turbulent heat transfer between the ocean

and the atmosphere (Marcq and Weiss, 2012).

Arctic Ocean is often split into the following regions: Fram Strait, Barents Sea, Kara

Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea, Central Arctic, as shown
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Figure 1.2: top - Maximal sea ice extent (image by NSIDC), bottom - sea ice thickness
(image from Arctic Report Card on Sea Ice by Meier and others).
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1 Introduction

Figure 1.3: Multiyear sea ice extent (National Snow and Ice Data Center et al., 2022)

Figure 1.4: Leads in sea ice cover observed north of Svalbard in 2015
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Figure 1.5: Arctic Ocean is split according to Meier et al. (2007) into the following
regions: Fram Strait, Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea,
Chukchi Sea, Beaufort Sea, Central Arctic.

in Figure 1.5, defined by Meier et al. (2007). Each of the regions have a different ocean

and atmosphere conditions, and, therefore, different sea ice conditions.

Due to harsh weather conditions in the Arctic, capabilities for field studies of sea ice

are limited. Remote sensing methods provide measurements in the Arctic covering large

areas. A range of satellite and airborne instruments have been developed for sea ice

surveys over the Arctic with various spatial and temporal resolutions. Several methods

have been developed for discrimination of sea ice and water based on remote sensing

observations taken in the visible, infrared and microwave parts of the electromagnetic

spectrum. They are described in the following four paragraphs.

A large number of Advanced Very High Resolution Radiometer (AVHRR) infrared

images were analyzed by Lindsay and Rothrock (1995) to determine lead characteris-

tics. The lead detection algorithm is based on the surface temperature analysis derived

from thermal infrared measurements. A threshold was set to discriminate open water

from sea ice. The resolution of the data is about 2–3 km. In the studies conducted by

Willmes and Heinemann (2015, 2016); Reiser et al. (2020) Moderate Resolution Imaging

13
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Spectroradiometer (MODIS) thermal infrared imagery was used for lead detection. The

method is based on a threshold applied to MODIS images with the background temper-

ature subtracted. The resulting maps with resolution of 1 km contain three classes: sea

ice, leads, and lead-like structures. Both the AVHRR and MODIS data and results are

affected by cloud contamination.

The cloud influence is significantly reduced for observations in the microwave spec-

trum, where weather conditions have little influence on measurements. Lead detection

based on microwave altimetry was studied by Wernecke and Kaleschke (2015) using data

from CryoSat-2. The algorithm to discriminate leads from ice is based on the maximum

power, the pulse peakiness and other parameters (e.g. the leading edge width, the trail-

ing edge width, the stack standard deviation, the stack excess kurtosis) of the reflected

altimeter signal.

Based on observations with the Advanced Microwave Scanning Radiometer AMSR-E,

Röhrs and Kaleschke (2012) and Bröhan and Kaleschke (2014) estimated lead concen-

tration and lead orientation statistics. For AMSR-E data on a 6.25 km grid, they detect

leads wider than 3 km, which results in a detection of about 50% of the lead area that

is seen on MODIS optical images.

Synthetic Aperture Radar (SAR) is able provide high resolution data with large spatial

and temporal coverage, which is important for lead mapping since about a quarter of

head flux was found to be coming from leads narrower than 1 km by Qu et al. (2019).

SAR images are widely used for sea ice type classification and ice-water discrimination

(Dierking, 2010, 2013). Ivanova et al. (2016) used a threshold approach on the HH-

band (HH: transmitting and receiving in horizontal polarization) of the Envisat ASAR

instrument for water-ice discrimination. To improve the quality of object classification

the directly measured data (e.g. backscatter intensities) are often extended with texture

feature analysis. Ice-water classification based on dual-polarized SAR images (Radarsat-

2) with the additional texture information is described by Leigh et al. (2014). The

use of a support vector machine on the features based on the grey-level co-occurrence

matrix (Haralick et al., 1973) is suggested. This combination was previously used for

sea ice type classification by Liu et al. (2015), Korosov and Park (2016). A similar

approach is used by Zakhvatkina et al. (2017) for ice-water discrimination. A neural

network with texture features based on the grey-level co-occurrence matrix was used for

classification of Envisat SAR images by Zakhvatkina et al. (2013). Another method that

provides complementary information to the backscatter intensity is based on polarimetric

features (e.g., Moen et al., 2015). Polarimetric features are used for sea ice classification

(e.g., Ressel et al., 2016), iceberg detection (Dierking and Wesche, 2014), and oil spill

recognition (e.g. Brekke et al., 2014).

Another approach in SAR image analysis for the presence of leads is based on linear
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kinematic feature extraction (von Albedyll et al., 2023). In this approach a pair of SAR

images is used to derive deformations in the overlapping areas, which may indicate exis-

tence of convergence or divergence areas. As leads are formed as result of the divergence

in the sea ice cover, calculated divergence fields are used to detect leads.

Recently, convolutional neural networks (CNN) are applied more and more often for

satellite image analysis. Bentes et al. (2018) applied CNN approach for ship classification

on SAR images. An example of sea ice classification based on SAR images with CNN is

described by Boulze et al. (2020). Malmgren-Hansen et al. (2021) introduces a method

for combined SAR and passive microwave observations analysis for automatic ice chart

production.

This work focuses on the tree main questions:

• Can leads be automatically detected on C-band SAR images?

• Do deep learning methods provide a more reliable lead maps?

• What insights do high resolution pan-Arctic lead maps provide about lead char-

acteristics distributions?

This work develops an algorithm for automatic lead/sea ice semantic segmentation,

hereafter is referred to as lead detection, with Sentinel-1 C-band synthetic aperture

radar (SAR) images. The results are analyzed for the five winter seasons (1 November

– 30 April) 2016–2021.

Chapter 2 provides a background on sea ice remote sensing (section 2.1 and section 2.2)

and image processing techniques used in the study (section 2.3). The data used for the

algorithm development is presented in Chapter 3. Chapter 4 describes a ”traditional”

machine learning approach to image analysis: gray level co-occurrence matrix analysis

accompanied with random forest classification. In Chapter 5 a more robust algorithm

based on a convolutional neural network is developed. This method is applicable Arctic-

wide. Results are evaluated against 10m resolution RGB images acquired with Sentinel-

2. The developed automatic lead detection algorithm is based on analysis of backscatter

amplitude and texture, and, therefore, thin ice and open water between ice flows may

also be classified as leads. Finally, Chapter 6 presents lead area fraction, frequency of

lead occurrence, and lead properties distribution in the Arctic Ocean, such as lead area

fraction, size, length, width, and orientation.
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2 Theoretical background

This chapter provides theoretical background on sea ice, synthetic aperture radar obser-

vations, and image analysis methods, which are used further in the thesis. Section 2.1

describes sea ice and leads properties relevant to the lead detection and the lead dis-

tribution analysis. Synthetic aperture radar (SAR) imaging basics relevant to sea ice

observations are described in Section 2.2. Section 2.3 describes image processing meth-

ods, including machine learning techniques, used in the thesis.

2.1 Sea ice and leads

2.1.1 Definition of leads

Sea ice leads are often defined as cracks in sea ice cover. Sea ice and leads observations

with optical, infrared, and microwave instruments rely on different physical properties.

Therefore, leads can be defined in different ways for these instruments. While passive

microwave measurements are very sensitive to thin ice, lead detection based on infrared

measurements may also consider thin ice as leads. Measurements in the visible spec-

trum often can separate ice of 10 cm and thicker from water, thinner ice is recognizable

depending on presence of snow cover, image resolution, and image processing methods.

Active microwave measurements may identify thin ice as leads, depending on wind con-

ditions and acquisition geometry, more details are provided in Section 2.2. In addition

to that, several definition of a lead can be found in literature (Weeks, 2010). According

to the World Meteorological Organization (WMO) a lead is a ”fracture or passage-way

through sea ice which is navigable by surface vessels”, fractures are defined as ”break[s]

or rupture[s] through very close ice, compact ice, consolidated ice [...] resulting from

deformation processes. Fractures may contain brash ice and/or be covered with nilas

and/or young ice” (World Meteorological Organization, 2014). Although leads are of-

ten described as elongated areas with open water, throughout this study the shape of

detected objects is not considered, unless it is explicitly specified. In this study, leads

are considered in the WMO definition, as described above.
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2 Theoretical background

2.1.2 Sea ice

Sea ice separates warm ocean from cold atmosphere and regulates heat, gas, and water

vapor exchange. Sea ice surface has a higher albedo compared to open ocean and,

therefore, decrease the amount of solar radiation absorbed by the surface. In winter sea

ice with snow cover is nearly perfect black body and, thus, radiates heat into space. As

a result, sea ice is an important component of the world climate system.

Sea ice is essentially frozen sea water. It has crystal the structure of fresh water ice

with saline water and air inclusions, which are often referred to as brine pockets and

air pockets. The salinity of water inside brine pockets is usually higher than that of sea

water and depends on temperature of the ice. Brine salinity at the equilibrium state

with the surrounding ice can be described with an empirical equation derived by Notz

and Worster (2009) from the measurements done by Assur (1960), the equation is valid

in the range between 0°C and –22°C:

Sbr = −21.4T − 0.886T 2 − 0.0170T 3

where Sbr is brine salinity and T is brine temperature. Since temperature of sea ice

varies with its depth, the salinity of brine inclusions and the brine content varies with

the surrounding ice temperature. Bulk salinity of sea ice is typically 3–4 times lower

than the salinity of water it is formed from (Weeks, 2010). As ice freezes, brine is partly

trapped in the ice, but the major part of it is expelled into the underlying water. Brine

content, in turn, influences the sea ice backscatter during active microwave measurements

and the sea ice emission observed with microwave radiometers.

2.2 Active microwave observations of sea ice

A range of satellites is used for observations in the Arctic, as described in the Intro-

duction. Main instruments on board of these satellites are split into two categories:

passive and active. Active instruments emit radiation and measure the backscattered

fraction of that, passive instruments rely either on the emission by an observed object,

or on other emission source, radiation from which is reflected or scattered towards the

instrument receiver. Satellites carrying cameras for visible and infrared spectrum, as

well as microwave radiometers fall into the passive instrument category. Examples of

active measurements are scatterometers, altimeters, and synthetic aperture radars.

An advantage of instruments that work in the microwave spectrum is their indepen-

dence on cloud coverage, little influence of weather conditions, especially at frequencies

below 15 GHz (Ulaby and Long, 2014), and independence from sunlight. As Arctic is

often covered with clouds and is not enlighten by sun in winter, microwave satellites

18



2.2 Active microwave observations of sea ice

are the major source of year-round observations of sea ice. Although passive microwave

satellites cover the entire Arctic daily, they provide measurements at a relatively low res-

olution, which is usually 3 km and coarser (depending on frequency). Active microwave

sensors, on the other hand, can provide observations with significantly higher spatial

resolution. Typical resolution of Synthetic Aperture Radar (SAR) images ranges from

a few meters to 50 meters. However, the temporal resolution has been one of the short-

comings for SAR instruments. With the launch of Sentinel-1 SAR mission it became

possible to cover a major part of the Arctic Ocean in 1–3 days. Radarsat Constellation

Mission is further improving the temporal and spatial coverage with SAR.

2.2.1 Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR) is an active microwave imaging system which pro-

vides high resolution microwave observations with a typical pixel size of 5 to 50 meters,

depending on swath width. Satellite-borne SAR is an active side looking system that

makes overlapping backscatter measurements of a stationary target and combines them

into a single higher-resolution image, effectively synthesizing a large aperture with a

small antenna. When the overlapping measurements are done with coherent pulses, a

sequence of echoes can be processes coherently just as if they originated from a set of

many stationary antennas working together to form a single large antenna. SAR acqui-

sition geometry is shown in Figure 2.1. A SAR instrument with an antenna follows the

satellite track, this direction is referred to as azimuth direction. Various points within

the instrument footprint along the azimuth direction are resolved through the doppler

shift analysis. To estimate the doppler shift the target is assumed to be stationary or

moving at a speed negligible relatively to the speed of the satellite. Along the azimuth

direction, the echo return from objects in the front part of the beam are Doppler shifted

to higher frequencies, while echoes from the aft part of the beam are shifted to lower

frequencies. For a given target the return signal will change in frequency as the antenna

footprint moves through the target. The direction perpendicular to the satellite track

is called range direction. Points within the radar footprint along the range direction

could be resolved by measuring the echo delay. However, in satellite-based SAR a range

compression technique is used. Instead of a short pulse of a fixed frequency, a linear

frequency-modulated pulse is transmitted. The transmitted pulse is, therefore, basically

encoded, so that single echoes are distinguished in the combination of overlapping return

signals.

Various frequencies are used to build up satellite-based SAR sensors. C-band (5.4 GHz)

is one of the most common frequencies (RADARSAT, RADARSAT-2, Sentinel-1), L-

band (1.4 GHz) is used by ALOS and ALOS-2, X-band (9.6 GHz) is used by TerraSAR-X.
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2 Theoretical background

Figure 2.1: SAR acquisition geometry

Instrument frequency is one of the parameters that influences image resolution, lower

frequency would have lower resolution under the same conditions. In addition to this,

lower frequency bands have higher penetration depth in sea ice (Ulaby and Long, 2014).

Several polarization options are used in SAR measurements. The signal can be emitted

with horizontal or vertical polarization. Both the horizontal and vertical components of

the backscatter can be measured. This gives in total four values for backscatter intensity:

HH, HV, VV, VH. The four values provide complimentary information about scatter-

ers. To increase spatial coverage, some satellite observations are done with only one

(HH or VV) or two (HH+HV or VV+VH) polarization combinations. Some satellites

like Radarsat-2, Radarsat Constellation Mission, TerraSAR-X are capable of measur-

ing all four components. This observation mode is called fully polarimetric as the four

components fully describe backscattering properties of a media. Recent satellites also

introduced a compact polarimetric mode, when the emitted signal has circular polariza-

tion, both the horizontal and the vertical components of backscatter are measured.

2.2.2 Sea ice and open water backscatter on SAR images

There are two major scattering mechanisms that define SAR backscatter: surface scatter-

ing and volume scattering illustrated in Figure 2.2. Volume scattering is the scattering

occurring on particles within a media, it regulates penetration depth of microwaves.

Therefore, physical properties of upper layers of sea ice influence the volume scattering.
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2.2 Active microwave observations of sea ice

Figure 2.2: Surface and volume scattering

A typical microwave penetration depth in first year is between 7 cm and 30 cm in C-band

(Ulaby and Long, 2014), while for multiyear ice it is between 25 cm and 50 cm. Surface

scattering takes place at an interface between two media, e.g. the ice–air, snow–ice, or

ice–water interfaces. In case of C-band sea ice observations, upper ice interface with

air or snow is of most importance as 5.5 cm microwaves penetrate snow surface. When

sea ice thickness is below the penetration depth, ice–water interface also contributes to

backscatter. Surface scattering depends on surface roughness.

On the upper sea ice interface, the major fraction of the surface scattered microwave

radiation returning back to the SAR instrument experience single reflection, which does

not change polarization. Therefore, the polarization of the echo is same as the polar-

ization of the transmitted microwave radiation. Volume scattering, on the other hand,

changes polarization as the result of multiple scatterings within sea ice. As the result,

backscatter in SAR cross-polarization bands mostly contain information about volume

scattering of the observed medium, while SAR backscatter in co-polarization bands con-

tain more information about surface scattering.

Dark and bright leads

Microwaves do not penetrate water, therefore an open water surface is a specular scat-

terer. Under calm water conditions SAR signal is specular reflected from the water

surface resulting in low backscatter. A similar process takes place when sea water is

covered with a thin smooth sea ice, that is much thinner than the penetration depth.

SAR transmitted signal is specular reflected at the ice–water interface, volume scattering

does a small contribution to the backscatter which is often within the SAR uncertainties.

In these cases, open water leads and leads refrozen with thin sea ice, appear dark on

SAR images. This case is further referred to as dark leads.
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2 Theoretical background

On the other hand, in case of wind-roughened surface or thin rough sea ice backscat-

ter in the SAR co-polarization channel may have a high backscatter, depending on the

acquisition geometry and orientation of waves, as rough water surface may scatter a

significant amount of microwave radiation back in the direction of the instrument. Al-

though the co-polarization channel will show high backscatter, the cross-polarization

channel will still show low backscatter. This case will further be called bright leads.

2.3 Selected image processing techniques

This section provides descriptions of the image processing techniques and machine learn-

ing methods used further in the study. Gray level co-occurrence matrix described in

Section 2.3.1 and Random forest classification described in Section 2.3.2 are the main

concepts for the lead detection algorithm described in Chapter 4. Morphological skele-

tonization (Section 2.3.3) and watershed segmentation (Section 2.3.4) are used for lead

filtering in Section 4.1.5. Convolutional neural networks (Section 2.3.5) contains basic

information on deep learning methods, used for lead detection algorithm described in

Chapter 5.

2.3.1 Gray level co-occurrence matrix (GLCM)

Gray level co-occurrence matrix (GLCM) calculation is one of the ways to represent

image texture. Characteristics of GLCM suggested by Haralick et al. (1973) are often

used to image classification purposes. GLCM is essentially a two dimensional histogram

of an image, that shows how often pixels with certain brightness appear next to each

other. Calculation of a GLCM matrix is illustrated in Figure 2.3. Each value of the

GLCM matrix shows how many times pixel with brightness values given with the ith

row and jth column appear next to each other on the input image.

An example of the resulting GLCM is shown in Figure 2.4. The input image in

Figure 2.4a has the same average brightness values in the four regions with different

texture. Each of the two boxes, the red and the blue, have same average brightness, but

GLCM calculated for the two regions differ, as illustrated in Figure 2.4b and Figure 2.4c.

As the results, characteristics of GCLM can be used to discriminate areas with different

texture. To describe the matrix P with elements p(i, j) the following parameters are

suggested by Haralick et al. (1973):

• angular second moment

f1 =
∑

i

∑

j

(p(i, j))2
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2.3 Selected image processing techniques

a – input matrix b – GLCM of the input matrix

Figure 2.3: Gray level co-occurrence matrix (GLCM) calculation: a is the input ma-
trix (image), b is the result matrix. Each value in the result matrix shows
how many times two pixels with brightness values given by the row and the
column appear next to each other on the input image (matrix).

a – input image b – blue box GLCM c – red box GLCM

Figure 2.4: Example of GLCM matrix, a initial image has four gray levels, b GLCM
for the blue rectangle, c GLCM for the red rectangle. Although average
brightness of the image a is same for the blue and the red rectangle, GLCM
are different. Therefore, GLCM characteristics can be used to discriminate
between the regions.
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2 Theoretical background

• contrast

f2 =

Ng−1
∑

n=0

n2

Ng
∑

i=1

Ng
∑

j=1

|i−j|=n

p(i, j)

• correlation

f3 =

∑

i

∑

j(ij)p(i, j)− µxµy

σxσy

,

µx, µy, σx, and σy are the means and standard deviations of px and py, where

px(i) =

Ng
∑

j=1

P (i, j)

Ng is number of distinct gray levels,

py(j) =

Ng
∑

i=1

p(i, j)

• sum of squares (variance)

f4 =
∑

i

∑

j

(i− µ)2p(i, j)

• inverse difference moment (homogeneity)

f5 =
∑

j

∑

j

1

1 + (i− j)2
p(i, j)

• sum average

f6 =

2Ng
∑

i=2

ipx+y(i)

where

px+y(k) =

Ng
∑

i=1

Ng
∑

j=1

i+j=k

p(i, j), k = 2, 3, ..., 2Ng

• sum variance

f7 =

2Ng
∑

i=2

(i− f8)
2px+y(i)

• sum entropy

f8 = −

2Ng
∑

i=2

px+y(i) log(px+y(i, j))
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• entropy

f9 = −
∑

i

∑

j

p(i, j) log(p(i, j))

• difference variance

f10 = variance ofpx−y

where

px−y(k) =

Ng
∑

i=1

Ng
∑

j=1

|i−j|=k

p(i, j), k = 0, 1, ..., Ng − 1

• difference entropy

f11 = −

Ng−1
∑

i=0

px−y(i) log(px−y(i))

• information measure of correlation

f12 =
HXY −HXY 1

max(HX,HY )

HXY = −
∑

i

∑

j

p(i, j) log(p(i, j))

HXY 1 = −sumi

∑

j

p(i, j) log(px(i)py(j))

HX and HY are entropies of px and py.

These parameters, describing GLCM matrix, are then used as input features for image

classification.

2.3.2 Random Forest classifier

Random Forest classifier is an ensemble method, often used in machine learning. It is

based on a set of decision trees with random feature subspace and bootstrap aggregating

applied. These concepts are described below.

Decision trees

Decision tree is a simple method often used in machine learning to learn and predict an

outcome from a set of input observation. Decision tree is a hierarchal model that has a

tree-like structure of decisions and their possible results. Each internal node splits data

into subsets based on an input feature in such a way, that each subsets in a leave of the

decision tree can be attributed to one of the classes of the data.
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2 Theoretical background

Random feature subspace

A single classification algorithm can be replaced with an ensemble. If every member of

the ensemble provides same result, no improvement in the classification quality takes

place. However, if every single classification in an ensemble is different, the result of the

ensemble classification can be better compared to any single classification. To decrease

correlation between classifiers in an ensemble, the idea of random feature subspace is

employed. In case decision trees are used as a basic algorithm for an ensemble, every

decision tree in an ensemble uses a random subset of input features during training and

prediction, that is every tree has is own feature subspace.

Bootstrap aggregating (bagging)

Bootstrap aggregating, often referred to as bagging (bootstrap aggregation) is a machine

learning method, which suggests to sample a dataset (with replacement) into random

sub datasets. It creates data subsets that are independent on each other. The method

is often used in ensemble methods, where each learning algorithm of the ensemble is

trained on a random independent data subset. After that, results of single learning

algorithms are merged through a voting procedure.

The bagging method improves stability and accuracy of ensemble methods. It is

applied to ensemble methods based on decision trees, resulting in the Random Forest

classifier. Random Forest classifier is an ensemble of decision trees with random feature

subspace and bagging applied. This means that every tree learns on a random subset

of features and a random subset of data. In this way single trees of a forest have

low correlation, and, therefore, provide a better classification result as the ensemble

approach.

2.3.3 Morphological skeleton

Morphological skeleton is an extension to morphological operations, which is based on

morphological erosion and opening. Morphological skeleton of a shape is a thin version

of the shape, calculated with morphological operators as described by Zhang and Suen

(1984). Pixels of a morphological skeleton are equidistant from the boundaries of the

shape.

2.3.4 Watershed segmentation

Watershed segmentation is an image processing algorithm used for separating different

objects suggested by Najman et al. (1994). It is defined for a gray scale image, where

pixel brightness is considered as ”elevation” over the zero level. The algorithm treats
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2.3 Selected image processing techniques

images as topographic maps. Seeds used in the algorithm are essentially water sources

that grow by flooding the elevation map. Each source has its own label, segments

growing from each source have, therefore, their own labels.

2.3.5 Convolutional neural network

Convolutional neural network (CNN) is one of the common algorithms in the field of deep

learning, used for image analysis. CNN is an algorithm that extends the idea of neural

networks, used in machine learning for classification and regression tasks, to images.

The major difference from traditional machine learning methods (like support vector

machine, random forest, k-nearest, xgboost) is that features used for image classification

are not precalculated, but are part of the neural network. This way, neural network is

not only trained to find the optimal combination of precalculated features, but also to

adjust the classification features in a way, that they describe the input data the best. It

is achieved by a combination of different layer types in a CNN model. Below are short

descriptions of the layer types used in this study.

Convolutional layers

Convolutional layers are the core technique of convolutional neural networks. Each layer

creates a set of convolution kernels of a given size and convolve these kernels with the

layer input to produce a tensor of outputs with layer responses to the kernel. A typical

size of convolutional layer in deep leaning is 3x3 pixel. Larger kernels can be represented

as a set of smaller kernels applied one by one, for instance, a 5x5 convolutional kernel is

often replaced with a sequence of two 3x3 convolutions, which requires less computations.

Multi scale convolutions and pooling layer

A convolutional layer typically has a small kernel size. To look on a larger scale, CNN

model has to look at a wider surrounding. This can be achieved by increasing size of

convolutional kernel, but computational complexity of large convolutional layers grows

exponentially. Instead a pooling layer is used. This layer decreases resolution of input

image by a factor (often by a faction of two). If a mean value of a region is used for

output, the layer is referred to as average pooling, and max pooling – if a maximum

value of a region goes to output. When a convolutional layer is applied to the output of

a pooling layer, it essentially covers a larger surrounding by a little computational effort

compared to a larger convolutional kernel that covers same area.

27
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Nonlinearity and Rectifier Linear Unit (ReLU)

An output of a single fully connected layer in a convolutional network is essentially a

linear combination of its inputs. To represent nonlinear dependencies multiple layers are

usually used. However, a combination of linear combination is also a linear combination

unless a nonlinear function is applied in-between. Rectilinear unit (ReLU) is one of the

commonly functions introducing nonlinearity in neural networks. The output of ReLU

is equal to the input in the case input is positive and zero otherwise.

ReLU(x) =







x, x > 0

0, x <= 0

Feature independence and dropout layer

Often, in a neural network every output of one layer is connected to every input of the

next layer. Such layers are called fully connected. However, in convolutional neural

networks it is sometimes desirable to skip some of those connections to avoid model

overfitting. This is done through a dropout layer. A dropout layer drops a specified

fraction of input to output connections.

Output probabilities with softmax function

Softmax function, also often referred to as normalized exponential function, converts a

set of real numbers into a probability distribution of the set. It is often used at the

last layer of a neural network to normalize the output to a probability distribution.

Probability σ(x)i for each number xi in an input set consisting of K values is calculated

with

σ(x)i =
exi

∑K

j=1
exj

Loss function

Training of a supervised neural network is essentially the process of function minimiza-

tion. The function that is being minimized is called loss function. One of the most

often used loss function, cross-entropy loss function, calculates cross-entropy between

the labels pi and predictions qi for a set of values size of K. It is defined with

H(p, q) = −

K
∑

i=1

pi log qi
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2.3 Selected image processing techniques

Kernel regularization

Kernel regularization is a method in convolutional neural networks that decreases chance

of model overfitting. Additional value is added to the loss function that is minimized

during model training, which describes the variability of values in a convolutional kernel.

For instance, it can be calculated with L1 (sum of absolute values) or L2 (square root of

sum of squares) metrics. This reduces unnecessary large span of values in convolutional

kernels.
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3 Data

This chapter describes the data used in the present thesis. The major data sources for

the study are Sentinel-1 SAR scenes described in the Section 3.1. Section 3.2 describes

optical images taken with Sentinel-2 satellites which are used for evaluation purposes.

Finally, Section 3.3 describes sea ice concentration maps derived from AMSR2 passive

microwave instrument by Spreen et al. (2008) which are used as an Arctic wide sea ice

mask.

3.1 Sentinel-1 SAR images

Sentinel-1 is a satellite constellation that currently consists of two satellites launched in

2014 (Sentinel-1A, operational) and 2016 (Sentinel-1B, non-operational since December

2021) with a C-band SAR as primary instrument. The satellites are launched at a sun

synchronous orbit, both share the same orbital plane with a 180° phase difference. The

constellation with two satellites has a six day repeat cycle, tree day repeat frequency at

equator and one day repeat frequency at the Arctic. The instrument on board of the

satellites has four modes: strip map, interferometric (IW), extra wide swath (EW), and

wave mode. The EW mode is the primary mode used over the Arctic ocean, therefore

Sentinel-1 scenes collected in the EW mode are used in the present study. The EW mode

has 40 m pixel size and 410 km swath width which consists of five subswaths. A typical

size of a Sentinel-1 EW image is about 10000 by 10000 pixels. Currently the major

amount of EW scenes is taken in dual-polarization (HH + HV) mode. Some areas are

only covered with single polarization mode (HH) during the time when only one satellite

of the constellation is operational.

Every scene contains thermal noise information in the auxiliary data, before July 2015

the thermal noise data does not contain a proper scaling factor. Therefore, the use of

early Sentinel-1 data for automatic algorithms is challenging and, therefore, is avoided

in the study. Since 18 March 2018 scalloping noise data is included in the supplementary

information in addition to thermal noise. In this study the data from November 2016

to April 2021 winter seasons, 1 November – 30 April, is used as two Sentinel-1 satellites

(a and b) were operating during this period providing a good spatial coverage of the

Arctic. It should be noted that temporal coverage of various Arctic regions is not
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a

b

c

Figure 3.1: a – thermal and scalloping noise on the cross-polarization channel, b – loca-
tion of the scene, c – speckle noise.

the same. The European Arctic (Fram Strait and Barents Sea) is normally covered

daily with dual-band Sentinel-1 images. Coverage of Siberian Arctic and Beaufort Sea

ranges from three to seven days. Therefore lead maps covering the entire Arctic are

produced as a combination of three consecutive daily maps, more details are given in

Section 4.1.7. Smaller regions (Fram Strait, Svalbard area, etc.) can be investigated at a

higher temporal resolution (up to on a day basis). Sentinel-1 scenes are available at the

Copernicus Open Access Hub (https://scihub.copernicus.eu) and Alaska Satellite

Facility (https://search.asf.alaska.edu)

3.2 Sentinel-2 optical images

The second source of satellite data used in this study are observations from the Sentinel-2

satellite constellation carrying a multispectral instrument with 13 bands in the visual and

near infrared spectral range. The constellation comprises two satellites on the polar sun-

synchronous orbit, phased at 180° to each other. The multispectral instrument acquires

images at 10m resolution in the visible and 20m resolution in the near infrared bands.

Sentinel-2 images overlapping in space and time with Sentinel-1 scenes are used in the

study to evaluate the results of the lead detection algorithm. For this RGB (red: 2nd

band, 492 nm; green: 3d band, 560 nm; blue: 4th band, 665 nm) Sentinel-2 images with
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3.3 AMSR2 sea ice concentration

a – Sentinel-2 RGB b – Sentinel-1 HH

Figure 3.2: Example of a Sentinel-2 and a corresponding Sentinel-1 HH image over
marginal ice zone. Sentinel-1 SAR image is not affected with clouds cover in
the bottom left part of images compared to optical Sentinel-2 image.

10m spatial resolution are generated. Sentinel-2 scenes are available at the Copernicus

Open Access Hub (scihub.copernicus.eu).

An example of Sentinel-2 RGB image and a corresponding Sentinel-1 SAR image are

shown in Figure 3.2. Images are taken over marginal ice zone, both capture sea ice (top

part of images) and open ocean (bottom part of images). Left side of the Sentinel-2

image is cloud-covered, while radar sees through clouds.

3.3 AMSR2 sea ice concentration

AMSR2 is a microwave radiometer instrument on board of the GCOM-W1 satellite

launched by Japan Aerospace Exploration Agency (JAXA) in 2012. It has six spectral

bands: 6.9GHz, 10.65GHz, 18.7GHz, 23.8GHz, 36.5GHz, 89.0GHz. The polarization

difference at 89GHz is used to estimate sea ice concentration by Spreen et al. (2008).

An example of sea ice concentration derived from AMSR2 data acquired over Arctic is

shown in Figure 3.3a. A 15% threshold sea ice concentration is applied to these maps

to derive a sea ice mask (Figure 3.3b) which is used to mask out open ocean further in

this study.

The data is available at the data browser of the remote sensing of polar areas group

of the University of Bremen (seaice.uni-bremen.de).
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3 Data

a – sea ice concentration b – sea ice mask

Figure 3.3: a – Arctic sea ice concentration derived from AMSR2 data on 3 January
2019, b – Sea ice mask derived with 15% threshold on sea ice concentration
a.
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4 Automatic lead detection with

Sentinel-1 images

In this chapter an algorithm for automatic lead detection with machine learning methods

is described. Methods and results of this chapter are partly published in Murashkin et al.

(2018); Murashkin and Spreen (2019).

The algorithm is developed for Sentinel-1 dual-channel C-band SAR scenes (co- and

cross-polarized modes, HH and HV) acquired in the extra wide swath mode (EW). Data

preprocessing including calibration is described in Section 4.1.1. The algorithm is based

on traditional machine learning techniques for image analysis: gray level co-occurrence

matrix (GLCM) texture features combined with polarimetric features (Section 4.1.3)

are combined with the random forest classification as described in Section 4.1.4. As

backscatter amplitude and texture analysis is the core of the algorithm, sea ice leads

covered with thin ice may be classified together with open water between ice flows. There

is no assumption on the shape of lead at this point, which means detected objects may

have an arbitrary shape. The optimal number of texture features for lead classification is

investigated and the precision–recall curve as a classification quality metric is evaluated

in Section 4.2.1. Lead classification results are evaluated against 10m resolution Sentinel-

2 optical images in Section 4.2.3. Arctic-wide lead maps are produced from all Sentinel-

1 scenes taken within a day over the Arctic ocean as described in Section 4.1.7. Two

improvements to the core method are introduced as postprocessing steps: watershed-

based binarization (Section 4.1.5) and shape-based filter (Section 4.1.6). The first one

decreased the influence of small-scale noise. The second one considers the object shape

to filter out patterns appearing due to residual noise on Sentinel-1 images. Results are

evaluated (Section 4.2.4) on Arctic lead area fraction maps (12 km grid size) calculated

from binary lead maps as described in Section 4.1.7. The data used for the automatic

open water detection algorithm development are listed in Table 4.1. The flowchart of

the lead detection algorithm is shown in Figure 4.1.
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4.1 Methods

4.1.1 Data preprocessing

The data preprocessing procedure includes calibration and thermal noise removal, no

data pixel detection at the edges of a scene, incidence angle correction, and speckle noise

filtering. Normalized radar cross section (NRCS) σ values are calculated by applying

thermal noise and calibration coefficients provided in the auxiliary data to the digital

numbers (DN) provided in SAR scene channels, according to the equation given in the

Sentinel-1 processing chain documentation (ESA, 2016):

σ =
(DN2 − noise)

γ2
(4.1)

where DN is the backscatter amplitude provided in HH or HV channel, noise is the

intensity of the thermal noise, and γ is a calibration coefficient, both noise and γ are

provided in the meta data as look-up tables. As the next step the corrected backscatter

is converted to dB by application of log10. To prevent infinitely low values a value of

1 /max (γ) is applied as the lowest value threshold. Backscatter values lower than the

value are below the noise level. In this way, the thermal noise is removed from the SAR

data, but so-called scalloping noise remains. The effect of the scalloping noise is mainly

visible over the open ocean and therefore can be masked out with a sea ice mask. The

sea ice mask is retrieved by applying a 15% sea ice concentration threshold for the ASI

AMSR2 algorithm (Spreen et al., 2008), as described in section 3.3.

The border noise appears in two cases: (i) along the azimuth direction at very low

and very high incidence angles, and (ii) at the beginning or the end of an acquisition.

In both cases it is detected by median backscatter value analysis within the expected

areas. If median value is below the noise level, the entire region is considered to contain

no data. The borders are detected on both the HH and the HV channels, the largest of

the two is set to be no data values for the scene.

Sea ice backscatter in the SAR data taken in HH polarization depends on the elevation

angle and, consequently, incidence angle, which therefore must be taken into account.

A linear regression on HH NRCS values versus incidence angle is employed. The regres-

sion coefficients are derived from a set of 16 Extra Wide swath mode Sentinel-1 scenes

acquired over homogeneous sea ice covered areas. These products cover incidence angles

between 18.9◦and 48◦, the entire range of incidence angles used in the Extra Wide swath

mode. The resulting equation for the incidence angle correction is

σcorr = σ + 0.213 · (θ −min (θ)) (4.2)
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Satellite Sensor Acquisition Product type Use in the study

Sentinel-1 SAR 1 Oct 2015; 07:36 S1A EW GRDM 1SDH 25% training, 75% test

Sentinel-1 SAR 28 Oct 2015; 14:32 S1A EW GRDM 1SDH 25% training, 75% test

Sentinel-1 SAR 31 Oct 2015; 16:35 S1A EW GRDM 1SDH 25% training, 75% test

Sentinel-1 SAR 4 Jan 2016; 02:01 S1A EW GRDM 1SDH 25% training, 75% test

Sentinel-1 SAR 1 Feb 2016; 11:15 S1A EW GRDM 1SDH 25% training, 75% test

Sentinel-1 SAR 3 Feb 2016; 22:30 S1A EW GRDM 1SDH evaluation

Sentinel-1 SAR 30 Mar 2016; 13:09 S1A EW GRDM 1SDH 25% training, 75% test

Sentinel-1 SAR 2 Aug 2016; 13:18 S1A EW GRDM 1SDH evaluation

Sentinel-2 optical 2 Aug 2016; 14:17 S2A OPER PRD MSIL1C evaluation

Sentinel-1 SAR 10 Apr 2017; 04:28 S1A EW GRDM 1SDH evaluation

Sentinel-2 optical 10 Apr 2017; 12:06 S2A MSIL1C evaluation

Table 4.1: List of Sentinel-1 and Sentinel-2 products used in the algorithm development. The last column gives the fraction of the
satellite scene, in percent, used for classification training and testing.
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HH channel

SAR scene

Thermal noise removal,  
calibration, 

border detection

HV channel

Thermal noise removal,  
calibration, 

border detection

Incidence angle corretion

polarization product 
HH*HV

polarization ratio 
HH/HV

preprocessing

HH * HV 
or HH

LV(HH * HV) 
or LV(HH) HH / HV LV(HH / HV)

Texture features Texture features

classification classification classifier 
training

classifier 
training

result

Figure 4.1: Processing flowchart; LV stands for Local Variability (image with background
subtracted)
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where σcorr is the backscatter after the correction, given in dB, and θ is the elevation angle

in degrees. Images taken in the HV polarization do not reveal a significant sensitivity

to the incidence angle, therefore the correction is done for the HH channel only.

The last Sentinel-1 scene preprocessing step is speckle noise reduction. A bilateral

filter is applied, which is an edge preserving filter known to have high performance

in reducing speckle noise (Tomasi and Manduchi, 1998; Alonso-Gonzalez et al., 2013).

The size of the square window for the filter is set to 5 pixels, the filter sigma for both

the color and the coordinate space is set to 15. Larger window size typically improves

filtering quality, but the computation time is increasing exponentially. At this stage the

preprocessing of the Sentinel-1 data is finished.

4.1.2 Training data

In order to train the classifier a ground truth dataset is needed with correctly identified

objects, i.e., in this case leads with thin ice or open water. A set of Sentinel-1 scenes

covering two different typical lead appearance types: dark and bright leads (three scenes

for each of the two cases) has been labeled manually, scenes are listed in Table 4.1. These

scenes are taken from various times of the year, no scene from summer is used for training

datasets because during the melt season melt ponds can have similar signature in SAR

backscatter as leads with open water. To evaluate the results of the classification on

independent data, two cases of overlapping Sentinel-1 SAR and Sentinel-2 optical data

are used (Table 4.1). Although images in one of the cases were taken in August, there

is no evidence of melt ponds presence on them. Hence, the melt season is excluded from

the study.

Leads with open water or thin ice in most cases have low surface roughness and there-

fore have low backscatter values on both SAR polarizations, HH and HV (as described

in more details in Section 2.2.2). They appear dark on the optical images used for

evaluation as well. This case is represented in the first of the two evaluation datasets.

Figures 4.2a,b, and c show the HH, the HV, and the product of SAR polarizations

HH·HV, respectively, and Figure 4.2d the Sentinel-2 RGB image of the corresponding

area taken in the visible spectrum. The time difference between the acquisitions is about

7 hours 40 minutes. Most areas covered with leads appear dark on all images. Only

around edges of leads thin crushed ice with a high surface roughness can appear bright

while on the image taken in visible spectrum the same thin crushed ice is transparent.

The assumption for using the polarization product HH·HV is that when either the HH

or the HV channel show low backscatter intensities, the polarization product has low

NRCS values.

Leads with open water, however, can appear bright on the HH channel under high

39
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a – HH channel b – HV channel

c – polarization product d – optical image

Figure 4.2: a and b are the HH and the HV channels, c is the polarization product –
product of the HH and the HV channels (HH·HV) of the SAR scene taken
on 10 April 2017, west of the Franz Josef Land; d shows Sentinel-2 RGB
image taken on 10 April 2017 over the same area.
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incidence angles if wind roughens the water surface (Scharien and Yackel, 2005). In the

HV channel, leads appear dark under the same conditions. Refrozen leads with thin sea

ice covered with frost flowers may have high backscatter in both the HH and the HV

channels (Nghiem et al., 1997; Dierking, 2010; Isleifson et al., 2014) and therefore may

look similar to pressure ridges in C-band SAR scenes. Leads with frost flowers are not

taken into account in the classification to avoid confusion with ridges. Lead detection

on the HV channel is more prone to errors since the backscatter intensity at the HV

channel is low and often close to the noise floor. An example of the situation when leads

have high HH polarization backscatter intensities is shown in Figures 4.3a, b, and d for

Sentinel-1 HH, HV, and Sentinel-2, respectively. Leads that are clearly observed in the

optical images have higher backscatter than the surrounding sea ice at the HH channel

from SAR and lower backscatter in the HV channel. In the polarization ratio HH/HV

leads appear bright if HH is high and HV is low.

To account for these two different conditions, the lead classification algorithm is split

into two parts: the first one detects leads with low backscatter on both SAR channels

and appear dark on images, are referred to as dark leads further. The second one is used

for cases with high backscatter values at HH channel (compare also the two branches in

the flowchart in Figure 4.1), referred to as bright leads further. As the last step both

outputs are merged together to produce the final lead map.

Two cases of overlapping Sentinel-1 and Sentinel-2 data, presented in Figures 4.2

and 4.3, are used for the evaluation of the algorithm. Here leads are labeled on the SAR

dataset by visual inspection, taking into account the corresponding optical Sentinel-3

images to confirm the validity of the selected leads.

For the training of the algorithm an independent set of Sentinel-1 scenes is used, scenes

are listed in Table 4.1. They also represent the two cases for lead appearance, the leads

appearing dark and the leads appearing bright in the HH channel respectively. Half of

Sentinel-1 scenes are used to train the “dark lead” classifier and half scenes are used to

train the “bright lead” classifier. Leads are identified and labeled manually without the

additional support from optical data. The evaluation is performed on Sentinel-1 SAR

images which overlaps with Sentinel-2 optical data shown in Figures 4.2 and 4.3.

4.1.3 Texture and polarimetric features

There are two methods to extend the feature space of the measured HH and HV backscat-

ter intensities and improve object classification performance: polarimetric and texture

features. Polarimetric features can be calculated for SAR products containing at least

two out of the four Stokes vector components whereas texture features can be calculated

for a single polarization scene. Here both approaches are combined for Sentinel-1 dual
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a – HH channel b – HV channel

c – polarization ratio d – optical image

Figure 4.3: a, b and c are HH, HV channels, and polarization ratio, respectively, of a
Sentinel-1 SAR scene taken on 2 August 2016, between Svalbard and Franz
Josef Land; d is Sentinel-2 RGB image taken on 2 August 2016 over the
same area.
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polarization data. Scenes taken with the Sentinel-1 EW mode over the Arctic waters

contain co- and cross-polarized channels (HH and HV). As only the amplitude but not

phase is available for this data source, the number of available polarimetric features is

limited. In this study, the product HH·HV and the ratio HH/HV are used as polari-

metric features. The co-polarization ratio HH/VV and real part of the co-polarization

cross product is widely used for the SAR image classification e.g. Brekke et al. (2016).

It have shown high performance in discriminating open water from sea ice performed by

Ressel et al. (2016). In the absence of the VV polarization channel the HV polarization

channel is used instead. The cross-polarization ratio was used for classification of SAR

images by (Karvonen, 2014). Bright, wind roughened leads in HH channel appear dark

in the HV (Figure 4.3), which will cause high values in HH/HV and this is the case to

be detected with the polarization ratio. The classification for dark leads is based on the

HH·HV product, which will be low if one of the channels is low, i.e., dark. However,

because of the low signal to noise ratio in HV channel the classification based on polar-

ization product is also compared with the classification based on the HH channel alone

to quantify if there is a benefit from the use of both polarizations.

Therefore, the HH channel, the polarization product HH·HV and the polarization

ratio HH/HV are used as input for the following texture analysis. Figures 4.2c and 4.3c

show example images for the polarization product and polarization ratio, respectively.

Texture features based on the grey-level co-occurrence matrix (GLCM) are widely

used for classification of SAR data (Haralick et al., 1973; Leigh et al., 2014; Liu et al.,

2015; Zakhvatkina et al., 2017). The complexity of texture feature calculation depends

on the size of the chosen sliding window and the number of grey levels of the input image.

Here a discretization into 16 grey levels is chosen as a trade-off between conservation of

details and computational cost. NRCS values split equidistantly into 16 groups between

–29Db and +4Db for the HH channel and between –32Db and –15Db for the HV

channel. GLCMs are then calculated for a sliding window of 9×-pixel size with 1-pixel

step size. A bilinear weighting within the sliding window is applied, so that pixels which

are closer to the middle of the window have higher weight for the GLCM computation.

The twelve GLCM features used in this study are listed in Table 4.2. Definitions of

the features are given by Haralick et al. (1973). Some GLCM features depend on the

image brightness (the value of the HH and the HV polarization product or ratio). This

means the absolute value of the pixel brightness influences these texture features. Since

leads are often darker than the surrounding sea ice, the difference between the original

image and a low-pass filtered version of the image is calculated to show the small-scale

backscatter variations. A bilateral filter with a 25×-pixel sliding window is applied to

the preprocessed original image and subtracted from the non-filtered image. In this

way, the local backscatter variability is emphasized and is used further as an additional
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N Texture feature

1 angular second moment (ASM),

2 entropy,

3 contrast,

4 sum of squares: variance,

5 inverse difference moment (homogeneity),

6 correlation,

7 sum average,

8 sum variance,

9 sum entropy,

10 difference variance,

11 difference entropy,

12 information measure of correlation.

Table 4.2: Twelve GLCM features are used in the study. Definitions of the texture
features are given by Haralick et al. (1973).

information for the classification. Afterwards GLCM texture features are calculated

both for (i) the original image and (ii) for the small-scale variations of the image. In

this way, two sets of texture features are produced for each of two input polarimetric

features (i) polarization product and (ii) polarization ratio, and for the HH channel, and

further analyzed (see also flowchart in Figure 4.1).

4.1.4 Random Forest classification

The Random Forest classifier (Ho, 1998; Breiman, 2001) is used for the lead detection.

It is an ensemble method, which constructs a set of decision trees. Each of these trees is

trained on a different subset of data points and features. The decision made by each tree

is weighted to provide the final result. The method has been proven to have good quality

of classification and at the same time high computational speed. One of the advantages

of the classifier is its internal metric for feature importance, which gives information on

the frequency of use of each of the input features. Another advantage of the classifier is

its capability to perform not only binary, but also probabilistic classification. The prob-

ability of pixels to belong to a class can afterwards be translated to binary classification

based on a threshold. The default behavior is the use of a threshold of 50% probability.

Different thresholds can be applied to adjust the result of classification. While there

are several metrics to evaluate the quality of an algorithm, the most widely used metric

is accuracy (equation 4.3 below). Although alone it might be unrepresentative for the

case when the size of one class is considerably larger than the size of the other class.

Leads usually occupy a few percent of sea ice area in the Arctic (Steffen, 1991), so that

additional metrics should be used for quantifying the classification performance.
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Precision and recall scores are defined by Fawcett (2006) and are used in the present

study altogether with accuracy.

accuracy =
TP + TN

TP + FP + TN + FN
(4.3)

precision =
TP

TP + FP
(4.4)

recall =
TP

TP + FN
(4.5)

where TP stands for true positive (pixels correctly classified as a lead), TN – true

negative (pixels correctly classified as not being a lead), FP – false positive (pixels that

are not leads but are classified as a lead), FN – false negative (pixels that are leads but

are classified as ”not lead”) predictions. The sum TP + FP + TN + FN equals to the

total number of pixels in an image. Accuracy is the amount of correctly classified pixels

over the total number of pixels. Precision is the amount of correctly classified pixels

of the given class over the total number of pixels classified as the given class. Hence,

(1− precision) = FP
TP+FP

is the number of sea ice pixels misclassified as a lead over the

total amount of pixels classified as leads. The recall rate characterizes how complete the

classification is, that is the number of samples classified correctly over the total number

of samples of this class. These three scores provide the needed information on the quality

of a given class classification. They can aid to make decisions on how many features are

needed for the classifiers.

To describe what probability threshold gives the best results for a probabilistic classi-

fier, the receiver operating characteristic curve and the precision–recall curve are widely

used (Fawcett, 2006; Davis and Goadrich, 2006). The receiver operating characteris-

tic, for example, was applied for the lead detection algorithm described by Wernecke

and Kaleschke (2015). Here the precision–recall curve is used to decide for an opti-

mized binary threshold value for the Random Forest classifier. This will be presented in

Section 4.2.2.

Two main classifier parameters influencing the classification quality and the comput-

ing time are the number of trees and the maximal depth of each tree. To choose the

most suitable values for these parameters the six training SAR scenes, where leads were

marked without support from optical data, have been used. The evaluation with the

additional optical scenes will be presented in Section 4.2.3.

The two SAR datasets for the ”dark” and the ”bright” lead classifiers (three SAR

scenes each) with manually identified leads have been randomly split into a training

(25% of the data) and a test dataset (75% of the data). Two classifiers are trained

on the scenes where leads appear dark in the HH channel: one is based on the HH
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channel, another one is based on the HH·HV polarization product. Comparison for the

two classifiers is presented in Sections 4.2.1 and 4.2.2. The third classifier is trained

using the HH/HV polarization ratio based on the scene where leads appear bright in the

corresponding HH channel. Each of the three classifiers are trained on the corresponding

training dataset and then they are evaluated on the training and test datasets. A number

of trees equal to 64 has been chosen for balance between efficiency and computing time.

The maximal depth of trees was set to 15 to prevent overfitting and decrease computing

time.

To decide on how many texture features give positive benefit for the classification

quality and to remove features that are not needed a so-called Recursive Feature Elimi-

nation (RFE) is carried out. 12 texture features for the NRCS image, 12 texture features

for the small-scale variations of the image, and the original (preprocessed) NRCS image

itself altogether constitute 25 features which are used in the recursive feature elimina-

tion. The Random Forest classifier provides the feature importance rank for all features

used in the lead classification. Recursively, now after each training and classification

the number of features is reduced by one and the training and the classification started

again. After every step the texture feature with the lowest importance according to

the classifier’s metric (i.e., the feature least used) is eliminated. Accuracy, precision

and recall are calculated to estimate the classification quality of the algorithm on the

given subset of features. The operation is repeated until one feature is left. To calculate

the three quality metrics a binary classification based on 50% probability threshold is

used. Based on this experiment the optimal number of features can be chosen, which is

presented in Section 4.2.1.

4.1.5 Watershed-based binarization

The 50% threshold on probabilistic classification is the basic method to produce a binary

lead map. In some cases, this approach is heavily influenced by the presence of noise on

the original SAR images, especially in the areas covered with smooth new ice and thin

first year ice with little amount of deformation features. Therefore, here a more advanced

way to produce a binary lead mask from the probabilistic classification is developed. A

flowchart of the procedure is shown in Figure 4.4.

To reduce the amount of classified object, i.e. leads, originating from noise patterns,

objects that do not contain confident lead pixels are discarded. Only objects, which

contain at least 2 pixels with high lead probability, are kept. To achieve this, the

watershed segmentation algorithm suggested by Najman et al. (1994) is employed.

As the first step, two binarization thresholds are applied to each image: one corre-

sponds to the normal binarization, the other one corresponds to high-confidence bina-

46



4.1 Methods

HH probabilistic
classification

50% threshold morphological
dilation

HH/HV probabilistic
classification

50% thresholdmorphological
dilation

70% threshold

remove objects
< 3 pixel size

watershed
segmentation

90% threshold

remove objects
< 3 pixel size

watershed
segmentation

morphological
skeletonization

morphological
skeletonization

binary lead
classification

binary
classification

binary
classification

seeds seeds

mask maskmap map

join neighboring
segments (border
length > 2 pixels)

join neighboring
segments (border
length > 2 pixels)

shape-based
filter

Figure 4.4: Binarization with watershed segmentation algorithm. Input are two prob-
abilistic classifications: one based on the HH channel, the other one based
on the polarization ratio. The two inputs are treated separately, results are
merged at the final step. Seeds for the watershed segmentation are produced
by applying morphological dilation followed by a strict threshold. The result
is skeletonized and objects smaller than 3 pixels in size are removed. Bina-
rization with 50% threshold is segmented with the watershed segmentation
algorithm using found seeds.
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rization. Empirically 50 % and 70 % thresholds have been chosen for the HH channel;

50 % and 90 % for the polarization ratio. The higher confident binarization thresh-

old for the polarization ratio is chosen because of larger variations due to higher noise

contamination in the cross-polarization channel compared to co-polarization HH chan-

nel. Before the higher threshold is applied, the probabilistic classification is extended

with morphological dilation to connect adjacent segments at 1-2 pixel distance. The

high-confidence lead pixels are used as segment seeds for the watershed segmentation al-

gorithm. In order to produce the seeds a morphological skeletonization is applied to the

high-confidence binary lead classification. Seed objects (sets of adjacent pixels) smaller

than 3 pixels are filtered out. After that, the seeds are passed to the next step in the

watershed segmentation algorithm. The lead probability map is masked with the binary

lead map based on the lower, 50% threshold. This mask defines the maximum span for

potential leads (as used in the previous section). To remove wrongly classified, noisy

leads, the objects within this mask are now segmented by the watershed segmentation

with seeds produced as described above.

As the result, clusters of pixels produced with the lower binarization threshold are

preserved only if they contain pixels produced with the higher threshold value. When

the watershed segmentation is applied, neighboring segments are joined together if the

border between segments is at most two pixel long. The resulting segmentation is con-

verted to a binary lead map, or it can be passed to the object shape analysis, described

in the next section. Both cases are compared in result, Section 4.2.4.

4.1.6 Shape-based object filter

The watershed binarization filters out objects that do not contain any confident lead

pixels. Nonetheless, some of the non-elongated object can be preserved as object shape

is not taken into account. In order to filter out patterns appearing due to noise, shape-

based filter is introduced. Each group of connected pixels of the binary lead classification

described above is now considered as a single object. The shape of each object is de-

scribed with a range of features listed below. First, there is a group of shape features

related to the area of an object:

• area - total object area in pixels (number of pixels within the border of the object)

• filled area - object area in pixels, does not include holes that might be present

within the object

• hole area - area (in pixels) of holes in the object (number of pixels of holes if

presented in the object)

• convex area - convex hull area of the object in pixels

• solidity - area to convex area ratio
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a b c

Figure 4.5: Object shape properties: original objects are shown in medium purple, light-
purple corresponds to the convex hull area, dark-purple shows the morpho-
logical skeleton of the convex hull; object geometric center is shown with
yellow dot. An ellipse approximating an object is shown in red. a represents
an object appearing due to noise: large perimeter, presence of holes, some
pixels of the morphological skeleton are outside of the segment. b and c are
lead-like objects: have elongated shape and less border variations compared
to a. Objects b and c would be kept while a would be removed by the shape
filter.

• perimeter - border length of object in pixels

• compactness - area divided by perimeter squared

• equivalent diameter - diameter of a circle with same area as the object area

Second, every object is approximated with an ellipse (Figure 4.5) and the following

ellipse characteristics are added to the shape analysis:

• major axis length, a

• minor axis length, b

• eccentricity, e =
√

1− a2

b2

• effective width - ratio of object area to major axis length

• ratio of area to product of major and minor axis lengths

The shape descriptors above are calculated in accordance to Burger and Burge (2009).

A morphological skeleton (see Section 2.3.3)of the convex hull is calculated for each

object (Figure 4.5) and the following features are considered as additional shape prop-

erties:

• morphological skeleton length in pixels

• morphological skeleton interior pixels - number of skeleton pixels contained by the

object

• morphological skeleton exterior pixels - number of skeleton pixels that do not belong

to the object

These object shape properties provide a tool to identify objects that are not leads and
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mainly appear due to noise and filter them out. To create a classifier able to separate

leads from noisy patterns, a training and test dataset consisting of around 2000 objects

extracted from binary images has been created. The binary lead images are produced

with the lead detection algorithm from Sentinel-1 SAR scenes (procedure described

above in Sections 4.1.4 and 4.1.5). Only the objects which can be clearly recognized

by their shape as leads are labeled lead. Thus, small objects that could not clearly be

identified as leads or noise are not present in the dataset. For every object, a set of

shape characteristics described above is calculated. Every object is manually labeled as

a lead or no-lead. In Figure 4.6 distributions of shape features are shown for the dataset

for objects labeled as leads and no-leads separately. It should be noted that some of the

features are be correlated.

For every plot the feature distributions overlap, which means it is not possible to

distinguish between correctly classified leads and misclassified leads with a single feature.

To find the best combination of features that can perform the shape-based filtering,

a Random Forest Classifier Ho (1998); Breiman (2001) is used. The Random Forest

classifier is chosen for its performance and ability to work with input features that are

not rescaled to have a zero mean value and a standard deviation of 1. The trained

Random Forest classifier produces a binary label for each object in the case of two-class

classification. In this case, lead and no-lead classes. Pixels of non-lead class are then

masked out on the binary lead classification, lead pixels are kept. This way, the classifier

works as a filter for no-lead objects.

4.1.7 pan-Arctic map generation

Lead detection is performed on single Sentinel-1 scenes in SAR geometry. Classification

results for single scenes acquired during a single day are then projected to North Pole

Stereographic projection (EPSG: 3413) and merged together into an Arctic-wide map.

In case of scene overlap, older scenes are overlaid with the newer ones. The resolution of

the Arctic-wide maps is identical to the resolution of classified scenes. After the scenes

are merged, a land mask based on GSHHS data (Wessel and Smith, 1996) is applied.

Then an open ocean mask based on AMSR2 sea ice concentration data (described in

Section 3.3) is applied.
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dark leads (HH channel, HH·HV) bright leads (polarization ratio HH/HV)
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dark leads (HH channel) bright leads (polarization ratio)

Figure 4.6: Distribution of object shape features for lead and no-lead classes in the
manually labeled training/test dataset. Left column shows features for ”dark
leads” detected from the HH channel or polarization product HH·HV; right
column shows features of ”bright leads” detected from the polarization ratio
HH/HV.
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4.2 Results

4.2.1 Optimal number of texture features

The procedure for texture feature ranking described in the last section was carried out

three times: one time the polarization product (HH·HV), the second one for the HH

channel, the third one for the polarization ratio (HH/HV). The polarization product

and the HH channel are used for the training dataset where leads appear dark and the

polarization ratio on the training image with primarily bright leads. Table 4.3 lists the

25 texture features in the order they were eliminated for each of the three cases (i) the

HH channel, (ii) the polarization product, and (iii) the polarization ratio.

Accuracy, precision, and recall scores in dependence on the number of features elimi-

nated are shown in Figures 4.7a, 4.7b, and 4.7c, respectively. Dashed lines show accuracy,

precision, and recall rates for the training set, solid lines are given for the corresponding

metrics calculated on the test dataset. Blue lines stand for classification of the polar-

ization product, green lines stand for classification of the HH channel (i.e., dark lead

cases), and red for the polarization ratio (i.e., bright lead case).

Accuracies of the three classifications stay almost constant until the first 9 texture

features are eliminated. A noticeable decrease in the classification accuracy appears

after 16 texture features are eliminated for both the HH and the polarization product

classifiers and after 17 for the polarization ratio classifier. This indicates that the first 9

texture feature for each of the tree classifiers (Table 4.3) can be eliminated without any

harm for classification and as little as 3 to 8 texture features already can provide good

classification results.

The precision and the recall rates of the HH channel and the polarization product

classifiers follow corresponding accuracy trends, but show more variation in amplitude.

The recall rate of the polarization ratio classifier shows an increase after 17 texture

features are eliminated, but at the same time the precision of the classification drops.

Although all the 25 features could be used for the lead classification, the ones that

do not show significant benefit for the classification result are removed. Based on Fig-

ures 4.7a,b,c the number of texture features equal to 9 has been chosen for classification

of the HH channel and the polarization product, i.e., the first 16 texture features of the

first and the second columns in Table 4.3 are removed from the classification. Although

only 9 of the texture features are kept, it should, however, be noticed that one could use

up to 16 features if even a little improvement of the classification quality is desired. For

the polarization ratio the last 8 texture feature from Table 4.3 (the third column) are

used for classification in further studies, the first 17 are removed from the polarization

ratio classification.
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N HH polarization product HH·HV polarization ratio HH/HV

1 entropyo inverse difference momento entropyssv
2 ASMo correlationssv inverse difference momentssv
3 sum entropyssv sum entropyo ASMssv
4 sum entropyo sum entropyssv inverse difference momento
5 inverse difference momento entropyo inf. measure of correlationssv
6 entropyssv entropyssv sum entropyssv
7 sum of squares: variancessv difference entropyssv ASMo
8 ASMssv ASMo difference entropyssv
9 difference entropyo inverse difference momentssv entropyo
10 difference entropyssv sum of squares: variancessv difference entropyo
11 correlationssv difference entropyo inf. measure of correlationo
12 inf. measure of correlationo inf. measure of correlationo correlationssv
13 inf. measure of correlationssv contrasto correlationo
14 contrastssv correlationo sum variancessv
15 contrasto difference variancessv sum average / cluster tendencyssv
16 difference variancessv inf. measure of correlationssv sum of squares: varianceo
17 sum average / cluster tendencyssv ASMssv sum of squares: variancessv
18 correlationo sum variancessv difference variancessv
19 inverse difference momentssv contrastssv sum entropyo
20 sum variancessv sum average / cluster tendencyssv contrasto
21 sum of squares: varianceo sum of squares: varianceo difference varianceo
22 difference varianceo difference varianceo contrastssv
23 sum average / cluster tendencyo sum average / cluster tendencyo original image

24 sum varianceo sum varianceo sum average / cluster tendencyo
25 original image original image sum varianceo

Table 4.3: Elimination order of texture features, i.e., the lower the number N the least important is the respective feature for the
classifier. Indices o and ssv stand for the texture features calculated on the original image and the small-scale variations
of the image, respectively (see section Texture and polarimetric features). Definitions of the texture features are given by
Haralick et al. (1973). The three columns present the elimination order for the three classifiers based on (i) the HH channel,
(ii) the polarization product, and (iii) the polarization ratio.
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a – accuracy with number of eliminated features

b – precision with number of eliminated features

c – recall with number of eliminated features

Figure 4.7: Accuracy a, precision b, and recall c scores of the three classifiers depending
on number of features eliminated during the recursive feature elimination
analysis. The scores are calculated for the training and test datasets for each
of the three classifiers based on the polarization ratio (red), the polarization
product (blue), and the HH channel (green).
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Since the same dataset is used for both the HH and the polarization product classifiers,

their performance can be compared. The accuracy of the HH channel classification is

only 0.2% higher than the accuracy of the polarization product classification. On the

other hand, the polarization product classification shows a higher precision, but a lower

recall comparing to the HH channel classifier. Since it is not defined at this stage whether

precision or recall is more important for lead classification, it is not possible to make

a conclusion on which of the two classifiers shows a better classification quality at this

point. In order to find which of the two classifiers, based on the polarization product

and the HH channel, shows better classification quality, the influence of a probability

threshold on precision and recall, and, therefore, on the lead classification is analyzed in

the next section.

4.2.2 Optimal probability threshold

The Random Forest Classifier provides probabilistic classification, which can be ana-

lyzed as is or can be used to obtain the corresponding binary classification by setting

a threshold. Here we study the influence of a threshold used to produce the binary

classification on the classification quality.

Three probabilistic classifications of the test data were produced with the three clas-

sifiers based on the HH channel, the polarization product HH·HV, and the polarization

ratio HH/HV. Than a range of threshold is applied to each of them to receive the cor-

responding binary classification.

To describe the influence of the threshold, the precision–recall curves are calculated

for each of the three classifiers, results are shown in Figure 4.8. Dashed lines correspond

to precision–recall curves calculated for the training dataset, solid lines are calculated

for the corresponding test dataset. Red lines represent the quality of the classifier based

on the polarization ratio which is used for the bright lead detection. Blue and green lines

represent qualities of classifiers based on the polarization product and the HH channel,

respectively. The numbers in black give the respective threshold values used. A higher

threshold improves the precision score (i.e., reduce amount of misclassification) but at

the same time lowers the recall score (reduce the number of lead pixels detected).

From Figure 4.8 it can be seen that leads are classified with only 84% and 83%

precision on the polarization product and the HH channel if the default threshold of

50% probability is used (the solid blue and the solid green curves). But in this case

68% and 72% of all pixels belonging to the lead class are identified (the recall score). If

the threshold is set to 70%, then only 57% and 60% of the lead pixels will be detected,

but precision of the classification is 92% and 90% (for the polarization product and the

HH channel, respectively). To identify more lead pixels the threshold can be lowered.
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Figure 4.8: Precision–recall curves calculated for the training (dashed) and the test
(solid) datasets corresponding to three classifiers: based on the polarization
product (blue), the HH channel (green), and the polarization ratio (red).
The curves are obtained by applying different thresholds to a probabilistic
classification. The points on the curves which correspond to the threshold
values of 30%, 50%, 70% and 90% are denoted in the figure (0.3, 0.5, 0.7,
and 0.9, respectively).
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For example, the threshold set to 30% will allow to detect 80% and 82% of all pixels

belonging to leads, but the precision of the classification will drop to 72% and 73%,

respectively, for the two classifiers HH and HH·HV.

Similarly, threshold can be adjusted for the polarization ratio classification. The

default value 50% will give 93% precision and 94% recall, the higher value, 70% for

instance, will increase precision to 97% and decrease recall to 88%. The lower threshold

value of 30% will produce the binary classification with 88% precision, up to 97% of lead

pixels will be identified.

The solid blue and the solid green curves intersect at the point where precision is 90%

and the recall rate is 60%. This means the two classifiers show the same classification

quality for the corresponding two threshold values of the two classifiers. For a higher

threshold value, a higher precision can be achieved with the same recall rate value if

the polarization product classification is used with the appropriate threshold value. Let

us consider the right part of precision–recall curves where the green curve is above the

blue. It corresponds to an application where the amount of leads detected (the recall

rate) is more important than a very high precision (which is lower than 90% in this

part of the curve). In this case for any value of the recall rate the binary classification

based on the HH channel shows better precision (when a certain threshold is applied to

the probabilistic classification) than the binary classification based on the polarization

product.

The opposite is true for the left part of precision–recall curves where the blue solid

line is above the green one (i.e. applications where a high precision is important). Based

on these curves one can chose the appropriate threshold value for a certain task. For

example, in climate studies about heat balance and energy one would want to have as

many leads detected as possible although some of the detections are wrong. On the

other hand, for navigation it is more important to know the location of leads with the

highest precision possible even though the number of leads detected is lower.

4.2.3 Evaluation with optical images

So far only results based on the Sentinel-1 SAR data without overlap with optical

Sentinel-2 data have been presented. In this section an evaluation of the leads clas-

sification quality is conducted for the two Sentinel-1 SAR scenes which overlap with

optical Sentinel-2 data (Figures 4.2, 4.3). Two probabilistic classifications of the first

evaluation image (Figure 4.2) were produced. The first one is based on the HH channel

(Figure 4.2a), the second is based on the polarization product (Figure 4.2c); 9 of the

most important texture features (last 9 features in the first and the second columns in

Table 4.3) were used in both cases. Results are shown in Figure 4.9. High probabilities
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a – HH channel b – polarization product

Figure 4.9: Probabilistic classifications of the SAR scene shown in Figure 4.2c performed
with the Random Forest Classifier. a and b are classifications based on the
HH channel and the polarization product, respectively. High values mean
high probability of a pixel to be classified as a lead.

of leads are assigned to areas which can be considered as leads from the optical image.

Edges of leads have lower probability comparing to their inner parts. This effect is ex-

pected because the classification is based on texture features which are calculated within

a window around each pixel. Some ice floes appearing dark on SAR images have non-

zero probability values, but can easily be distinguished from leads. The upper part of a

lead (the white frame at Figures 4.9a and b) has a significantly lower probability because

it is covered with new ice as it can be confirmed from the optical data (Figure 4.2d).

Large leads are detected correctly, but thin leads (up to 10 pixels which corresponds

to 400 meters) are often split into several small pieces. Leads with width less than 5

pixels (200 meters) are smoothed on the step of texture features calculation. As the

result such leads have low probabilities and can be considered as not-detected. This is

a disadvantage of the method which cannot be eliminated because to calculate texture

features relevant for a lead, the lead should have a size comparable or larger than the

window size used for texture feature computation.
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4 Automatic lead detection with Sentinel-1 images

Figure 4.10: A probabilistic classification of the scene shown in Figure 4.3c performed
with the Random Forest Classifier and based on 8 texture features.

The probabilistic classification of the second evaluation image (Figure 4.3c) for the

polarization ratio is performed with 8 input features. Figure 4.10 shows the result of

the probabilistic classification. Many open water areas at the left side of the scene are

classified as leads while in the middle leads are not detected. This can be explained by

the fact that leads are more pronounced at the left side of the polarization ratio (see

Figure 4.10c) which is used as input for the algorithm. The fact that areas which are

classified as leads are covered with open water are confirmed with the optical observation

(Figure 4.10d).

The following example illustrates the algorithm for lead detection (the flowchart for

the algorithm is shown in Figure 4.1). The preprocessed Sentinel-1 SAR images are

shown in Figure 4.11a, b. Two large elongated objects are present on the illustration,

one is dark on both the HH and the HV channels, the other one is bright on the HH

and dark on the HV channel. The two objects represent the two classes of leads we have

introduced here, ”bright” and ”dark” leads. No optical data is available for the scene

to confirm that the objects are leads, the objects is only compared with leads appear in

SAR images.

To classify both types of leads, two classifiers are applied – one for the dark lead

detection and one for the bright lead detection. At first, based on the HH (Figure 4.11a)

and the HV (Figure 4.11b) channels, the polarization product (Figure 4.11c) and the

polarization ratio (Figure 4.11d) are calculated. Dark leads are detected from the HH

channel using the algorithm based on either the HH channel or the polarization product
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4.2 Results

Figure 4.11: a and b are preprocessed HH and HV channels of a Sentinel-1 scene. c

and d are the polarization product and the polarization ratio derived from
the HH and HV channels. e and f are probabilistic classifications of the
SAR scene based on the polarization product and the polarization ratio
performed with the Random Forest Classifier. High values means high
probability of the pixel to be classified as a lead. g is the sum of the two
probabilistic classification. h is binary classification based on g with 50%
probability threshold applied.
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(the result based on the polarization product is shown in Figure 4.11e). Bright leads are

detected with the algorithm based on the polarization ratio (Figure 4.11f). Afterwards,

the probabilities for the dark lead and the bright lead branches are added together. As

the last step, a threshold of 50% is applied to the resulting probabilistic classification,

so that the final binary classification is obtained (Figure 4.11h).

4.2.4 Binarization and shape-based filtering

The Random Forest classifier was trained on 90% of the training dataset and tested on

the remaining 10%. All objects from both the training and testing dataset are clas-

sified correctly. To avoid overfitting the maximal depth for decision trees was limited

to 12 levels. Additionally, scenes not used for the algorithm training and testing have

been visually evaluated for possible misclassifications to ensure no overfitting occur. It

should be kept in mind how the manual test/training dataset was created (last section):

only ”easy” cases that are clearly a lead or not a lead are part of the dataset. For this

”idealized” test dataset it is concluded that the very high accuracy value is reasonable.

Actually, the classifier identifies many more objects in the test scenes than the objects

being part of the test/training dataset. For these objects, however, it is not clear if they

are leads or not as no in situ measurements is available. Thus, no accuracy can be as-

signed to these objects, but certainly some object might be misclassified. Therefore, the

high classification accuracy for the test/training dataset should not be mistaken as ac-

curacy for the whole procedure. Future studies with airborne high-resolution evaluation

datasets may shed more light on this.

In addition to a classification, the Random Forest classifier provides information on

feature importance. Shape properties ranking by importance and percent of cases a

certain shape property was used during the training process are shown in Figure 4.12.

The raw numbers are present in Table 4.4.

The ranking is shown for the ”dark lead” cases based on the HH channel and for

the ”bright lead” cases based on the polarization ratio channel separately. This is due

to the fact that object shape properties distribution can vary for the two cases due to

higher noise level of the HV channel that is used to calculate the polarization ratio.

In both cases, the HH channel and the polarization ratio, the features eccentricity,

minor axis length, and effective width dominate the shape feature importance. For the

polarization ratio also width to length ratio has an above 10% importance. Most of the

other of the in total 16 considered features contribute with 2% to 4% to the classification.

Considering that also some features are correlated (e.g. eccentricity and width to length

ratio) one could reduce the number of features if needed for computational reasons. Here

all features are kept as all are contributing to the classification to some degree.
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a – HH channel shape features

b – Polarization ratio shape features

Figure 4.12: Importance of shape parameters for the Random Forest classifier. a shows
the feature importance for the classification based on the HH channel and b

on the polarization ratio. In both cases only 3 and 4 out of the 16 features
contribute with more than 10% to the classification, respectively.
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parameter HH band ratio

area 0.0264 0.008

convex area 0.0253 0.010

eccentricity 0.3038 0.333

equivalent diameter 0.0235 0.007

filled area 0.0248 0.015

major axis length 0.0122 0.030

minor axis length 0.2356 0.104

perimeter 0.0224 0.044

solidity 0.0205 0.031

effective width 0.1576 0.124

compactness 0.0238 0.081

width to length ratio 0.0247 0.104

hole area 0.0533 0.039

skeleton length 0.0254 0.019

skeleton interior 0.0138 0.029

skeleton exterior 0.0067 0.024

Table 4.4: Feature importance as a fraction of number of cases the feature has been
used to the total number of cases provided with the trained Random Forest
classifier

As an example a fine scale illustration of the lead detection results for each stage of

the algorithm is shown in Figure 4.13. A cutout of the original Sentinel-1 scene taken

on 2 January 2019 over the Chukchi Sea is shown in Figures 4.13a (HH channel) and

4.13b (polarization ratio). As first step, the lead detection algorithm is applied to each

of the two input channels, the HH channel (a) and the polarization ratio (b). The

probabilistic classification results are shown in Figures 4.13c and 4.13d, respectively.

Figures 4.13e, 4.13f, 4.13g, 4.13h show binary lead classification results derived from

4.13c and 4.13d by applying a method to both inputs separately and merging results

together. Figure 4.13e shows the binary result of the lead detection if a 50% threshold

applied to the probabilistic lead detection algorithm as described in Section 4.1.4. If the

binary threshold is replaced with the binarization based on the watershed segmentation

algorithm described in section 4.1.5 the result has less small scale noise as shown in

Figure 4.13f. Figure 4.13g shows detected leads from the previous step (4.13f) that are

kept by the object shape-based filter based on the Random Forest classifier described in

Section 4.1.5. As a last step, small, non-elongated objects in the surrounding of noisy

pattern detected in the previous step are removed and the final lead detection result is

shown in figure 4.13h.

Classification results are compared with Sentinel-2 optical images, Figure 4.14. Sentinel-

1 SAR and Sentinel-2 optical images were acquired on 21 March 2019 with 7 hour time

difference. Despite changes in the ice field between the SAR and the optical image
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a – HH channel

0 20 40 60 80 100

c – probabilistic classification of a

e – 50% threshold binary from c and d

g – shape-based filter applied to f

b – HV channel

0 20 40 60 80 100

d – probabilistic classification of the polarization ratio HH / HV

f – watershed binary from c and d

h – small objects near noise removed from g

Figure 4.13: Example of lead classification: a and b – raw data, HH and HV SAR
channels; c and d – dark (HH) and bright (polarization ratio) probabilistic
lead classifications; e – binary classification calculated by applying a 50%
threshold (as example; in the final classifier the watershed result in f is
used); f – binary classification calculated with watershed binarization; g
– shape-based filter is applied to the binary classification in f calculated
with watershed; h – final result; small objects near noise classified with the
shape-based classification are removed. The scene was taken on 2 January
2019 over the Chukchi Sea.
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a – Sentinel-2 RGB b – Sentinel-1 pseudo-RGB (HH, HV, HV/HH)

c – binary lead map d – shape-filtered lead map

Figure 4.14: a – Sentinel-2 optical RGB image has been acquired on 21 March 2019 at
9:17UTC, b – Sentinel-1 SAR pseudo-RBG (HH, HV, HV/HH) has been
acquired on 21 March 21 2019 at 2:32UTC, c – result of the basic lead
detection algorithm applied to scene b, d – result of the final lead detection
algorithm with the shape filter applied to the result c.

(Figure 4.14(a, b)), the major cracks are recognizable on both images and are detected

with the lead detection algorithm Figure 4.14c. However, several noisy patterns are

detected as leads with the lead detection algorithm, which are then filtered out with the

shape-based filter as shown in Figure 4.14d.

To see the large-scale picture, the improved lead detection algorithm has been applied

to all Sentinel-1 scenes acquired over the Arctic on 2 January 2019. The binary lead

classification on individual SAR scenes are merged together to produce an Arctic-wide

lead map as described in Section 4.1.7. After that, the binary lead information is avail-

able at 80 meter resolution Arctic-wide for all regions covered by Sentinel-1 SAR (full

coverage takes about three days). Due to the high resolution and large extent of the

map, it is not possible to present it here in full detail as figure. Therefore, the lead area

fraction is calculated on a 12 km grid.

An Arctic-wide comparison of lead detection results is shown in Figure 4.15. The four

images in Figure 4.15a, 4.15b, 4.15c, and 4.15d correspond to images 4.13e, 4.13f, 4.13g,

and 4.13h of the fine scale comparison. That is, Figure 4.15a represents result of the
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lead detection algorithm described in this chapter, Figures 4.15b and 4.15c are results

at the two intermediate steps: binarization based on the watershed segmentation and

supervised shape-based filter. Figure 4.15d represents the final result of the improved

lead detection algorithm. We can see that every additional filter removes more and more

no-lead objects. The final lead map in Figure 4.15d shows a more uniform distribution

of leads without apparently artificial higher lead fractions along the swath edges. Areas

with higher lead fraction like in the Beaufort Sea still can be clearly identified. It cannot

be excluded that some ”true” leads are removed by the filter but the classified leads in

the final map in Figure 4.15d are detected with high confidence, which is most important

for all statistical analysis to be applied on it in future.

To ensure the algorithm produces stable result we have applied it to all Sentinel-1

scenes taken over the Arctic in January 2019. Daily lead maps are combined to 3-day

composite maps to decrease the amount of gaps where no Sentinel-1 data was acquired.

In case scenes overlap, the later acquired scene overlays the earlier acquired one. To

avoid the influence of daily change in sea ice conditions on the estimate for the lead area

fraction, the sea ice mask has been shrunk by 10 km in the marginal ice areas and along

coastlines with morphological binary erosion. Therefore, areas where sea ice extent is

smaller on Sentinel-1 scenes compared to AMSR2 data are not accounted as leads in

further analysis. The total lead area and the sea ice area are calculated for each 3-day

composite map and are shown in Figure 4.16a. The ratio of the two is presented in

Figure 4.16b in green for the lead detection with 50% threshold on probabilistic result

and in red for the result after the watershed binarization and the shape filter applied.

Figure 4.16b also shows open water concentration calculated from the passive microwave

sea ice concentration maps cut to the coverage of Sentinel-1 scenes for the corresponding

days. The AMSR2 point on 2019-01-27 is an outlier due to reduced coverage in passive

microwave data on the date. This is one of a few days, when AMSR2 data does not cover

the entire Arctic, so that the lead area fraction is lower than what it would be with the

full coverage. According to the shape-filtered lead detection, the mean lead area fraction

in January 2019 is 0.71% with a standard deviation of 0.05 for the 10 data points of the

time series, whereas the algorithm without the improvements shows a mean lead area

fraction of 2.3% with standard deviation 0.2. The open water concentration on AMSR2

data is 1.8% with 0.3 standard deviation. Small variations in lead area and sea ice area

may appear due to natural reasons, which include lead opening, closing, and refreezing,

as well as due to small differences in satellite coverage since sometimes the Arctic is not

entirely covered even on 3-day composite maps.
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a – 50% threshold

c – shape filter

b – watershed binarization

d – final result

Figure 4.15: Arctic-wide Lead Area Fraction maps (12 km resolution) derived from the
daily Arctic lead map. The Arctic lead map consists of all Sentinel-1 scenes
acquired over the Arctic on 2 Jan 2019. a Lead Area Fraction derived with
the original algorithm based on GLCM features and Random Forest clas-
sifier. b Lead Area Fraction calculated by replacing the original threshold
binarization with the watershed binarization algorithm and with the shape-
based filter applied. c Lead Area Fraction after additionally applying the
shape-based filter on b without removing objects in surrounding of the noisy
patterns. d Final Lead Area Fraction map after applying all filters.
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Figure 4.16: a – Lead area (left y-axis) and sea ice area (right y-axis), and b – lead area
fraction derived from 3-day composite lead maps of the Arctic in January
2019. The sea ice area in a mainly changes due to changing satellite coverage
(i.e., not due to ice growth/melting).
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4.3 Discussion

4.3.1 Texture features required for classification

The procedure of texture features elimination shows that the use of a range of texture

features (the first 9 from each column of Table 4.3) do not improve the classification

and therefore is excluded. At the same time these texture features do not decrease

classification quality. This is because although these features are fed to the classifier,

only the texture features that help to perform classification are used within the Random

Forest Classifier. In the process of elimination of the next 7–8 texture features, the

classification quality slightly decreases. Therefore these 7–8 texture features may also be

excluded from the classification process, especially if fast computation is of importance.

As the result 16–17 texture features can be eliminated without significant decrease in

classification quality, so that only 8–9 of the texture features are used in classification.

In cases when even a little improvement of the classification quality is desired, up to

16 input features can be used. For the case when computational time is limited, the

number of texture features used for classification can be decreased.

Of the 9 most important texture features (last 9 rows in Table 4.3) the majority is

derived from the original input channel and not from the small scale variations data,

where the background amplitude is removed. The original channel is one of the most

important inputs for all three classifiers. This means texture features do not substitute

the original channel and provide only a complementary information. Texture features

and the original channel should be used in conjunction.

To produce the final lead map a classifier based on either the polarization product or

the HH channel for dark leads should be used in combination with the classifier based

on the polarization ratio for bright leads. In Figure 4.7b the classifier based on the

polarization product shows higher precision, however, in Figure 4.7c the recall rate of

the classifier is lower compared to the classifier based on the HH channel. This leads us

to the conclusion that both the precision and the recall by itself do not provide enough

information about the quality of a classification, neither of the two should be used as

the only quality metrics, and both of them should be considered together.

In case of probabilistic classification, it is possible to increase the precision by the cost

of the recall rate and vice versa by adjusting a threshold used to obtain the corresponding

binary classification. Thus, a comparison of the two classifiers is performed by the use

of the concept of the precision–recall curve.
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4.3.2 Classification quality

First, considering the quality of dark leads classification. The precision–recall curves

(Figure 4.8) of the HH channel and polarization product classifiers have an intersection

point. This means each of the two classifiers is used in the final product, as both provide

the best result in its own range of thresholds (location on the precision–recall curve,

Figure 4.2.2). The quality of the classifier based on the polarization product is higher

when a high precision (over 90%) of lead detection is desired. In this case only about

60% or less leads will be detected. If the recall rate also matters for the application, the

HH channel should be used for dark leads classification.

The precision–recall curves clearly show that the quality of bright leads classification

is higher than of the dark leads classification based on both the polarization product and

the HH channel (red curves are above blue and green curves). This might be due to the

fact that sea ice can appear dark at both the HH and the HV channels and, therefore,

may be misclassified as a lead. At the same time, the polarization ratio is known for

its good water-sea ice discrimination potential. Objects appearing bright at the HH

channel and dark at the HV channel are usually not misclassified as sea ice (which can

be dark or bright at both channels) or pressure ridges (bright at both channels). This

provides more confidence that an object detected from the polarization ratio is a lead.

In case of single channel measurements only the HH channel is available for Sentinel-1

EW images. This single channel mode is often used for scenes at high latitudes. In this

case only the HH classifier for dark leads can be applied. If dual polarization SAR data

is available, the polarization product and the polarization ratio can be calculated and,

therefore, the classifiers based on the polarization product HH·HV and the polarization

ratio HH/HV are used. The first classifier shows better classification quality for dark

leads than the classifier based on the HH channel (Figures 4.7 and 4.8) when used for

a high-precision classification (with precision above 90%). Since bright leads show a

similar backscatter to ridges in HH channel, they cannot be detected from HH channel

alone. Thus, with the use of the polarization ratio more leads are detected from the dual

polarization SAR data than from single HH channel scenes.

Further in the study the HH classifier will be used to for ”dark lead” detection and

the classifier based on the polarization ratio for ”bright lead” detection. Although the

classifier based on the polarization product HH·HV has advantages when higher precision

and lower recall rates are required, at 50% threshold the classifier based on HH channel

only provides a better classification quality as described in Section 4.2.2 and shown in

Figure 4.8. Also it can be applied for single polarization acquisitions (HH), which become

more common when only one Sentinel-1 satellite is available (until October 2016, since

December 2021 till present) to detect at least some of the leads (”dark lead” branch).
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GLCM + RFC classification

Figure 4.17: lead detection algorithm based on GLCM + RFC. a and b are the original
Sentinel-1 SAR data (3 Feb 2016, 22:29, Canadian Arctic; size of the area
shown is about 150 km by 80 km), HH and HV respectively. c is the po-
larization ratio HH/HV. d and e are probabilistic classification results of a
and c. GLCM calculation and Random Forest classification is used on this
step. f is the sum of probabilities d and e. g is the binary classification
derived from f by applying a threshold of 50%.

The algorithm as it is used in later chapters is illustrated in Figure 4.17.

As the lead detection algorithm is based on backscatter analysis, open water between

ice floes is classified as leads. During summer the separation of leads from melt ponds

will not be possible with the features used here (the shape of the features would have to

be considered). For the data used in this study there is no evidence for the presence of

melt ponds. Therefore, the algorithm has not been evaluated for the summer season.

4.3.3 Binarization and shape-based filtering

The core of the lead detection algorithm is based only on NRCS values and texture

features, so that also non-elongated objects like general open water area and polynyas

are detected. These non-elongated objects are the detected open water areas or are

caused by ambiguities in the backscatter signature. With the 80 m resolution of the lead

detection, which is based on the 40 m pixel size Sentinel-1 SAR scenes, it is possible to

account for the shape of the detected objects.

Objects lead or not lead have been manually labeled based on their shape. The shape

characteristics distributions of this training/test dataset are shown in Figure 4.6. These

distributions indicate that leads are, in most cases, smaller, more compact, and elongated

compared to noise patterns appearing on Sentinel-1 scenes over smooth new ice areas. No

single parameter can be used for their identification. The shape properties importance

provided by the shape classification algorithm shows that the most often used feature is

eccentricity followed byminor axis length and effective width (Figure 4.12 and Table 4.4).

These properties are directly related to the elongation of objects. This perfectly fits the
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definition of a lead as a crack in the sea ice cover, which often have elongated shape

originating from nature of their occurrence, i.e. sea ice deformation.

The classification results shown in Figure 4.13 illustrate improvement of the algorithm

performance with regard to lead detection. Objects of non-lead-like shape that might

come from smooth young ice or can be related to scalloping and speckle noise in the SAR

data are effectively removed. Such cases are shown in Figure 4.14, where binary lead

map contains several non-lead-like structures (Figure 4.14c), which are removed with

the shape filter (Figure 4.14d). This is especially important in the Siberian Arctic as it

can be seen in Figure 4.15 on 2 January 2019. The confidence is high that the remaining

features are leads with open water or thin ice. The new Arctic-wide lead distribution

in Figure 4.15d is more uniform and has less artifacts compared to the original version

without improved binarization and shape filters in Figure 4.15a. A typical pattern of

intersecting leads can be seen in the Beaufort Sea and high lead fraction in the marginal

seas like Laptev or Greenland Sea. In the high Arctic close to the North Pole as expected

less leads can be observed. This qualitatively is in line with previous lead fraction

datasets at lower spatial resolution from AVHHR Lindsay and Rothrock (1995), MODIS

Willmes and Heinemann (2015); Reiser et al. (2020), AMSR-E Röhrs and Kaleschke

(2012), and CryoSat-2 Wernecke and Kaleschke (2015) derived for other years.

The lead area and the sea ice area calculated on 3-day composite map are correlated

as shown in Figure 4.16a. The correlation coefficients are 0.45 and 0.68 for the lead

area calculated with 50% threshold, and with watershed binarization and shape filter

applied, respectively. This indicates that the variations in the total lead area come from

the variability of Sentinel-1 coverage. The difference in coverage should therefore have

small influence on the lead area fraction calculated as a ratio of the lead area to the sea

ice area.

In Figure 4.16b it is demonstrated that the watershed binarization and shape-based

filter delivers stable results: the lead area fraction (plotted with red) for January 2019

shows only small variation around its average value of about 0.7%. The open water

concentration in the central Arctic away from marginal ice area is known to be typically

around 1-2% Lindsay and Rothrock (1995); Röhrs and Kaleschke (2012); Maykut (1978).

In-situ observations of sea ice thickness indicate sea ice cover consists of 1% 0-20 cm thick

sea ice (by area) Thorndike et al. (1975). Thus, the 0.7% lead area fraction derived with

the lead detection algorithm with the shape filter applied is slightly lower comparable to

the previous studies, while the lead area fraction derived with 50% threshold is slightly

higher than the expected values. This indicate the shape-based filter filters out some of

the real leads that might have a complex shape.

The major part of open water concentration variation on AMSR2 data comes from

marginal ice areas where open water may have an arbitrary shape and often does not have

73



4 Automatic lead detection with Sentinel-1 images

elongated shape. Therefore, these areas are not considered as leads by the improved lead

detection algorithm. The lead concentration derived with the improved lead detection

algorithm is below the open water concentration. This is expected as lead class contain

only elongated open water areas. At the same time passive microwave measurements

are known to be sensitive to a very thin ice. Leads covered with thin ice are likely to

be excluded from the AMSR2 open water concentration. Whereas the lead detection

algorithm is expected detect refrozen leads with ice thickness up to 10-20 cm as leads.

Lead area fraction in Figure 4.16b in red calculated on 3-day composite maps does

not show high variability confirming the stability of the lead detection algorithm. Some

variability is expected as leads may open or close based on dominance of divergent or

convergent ice dynamic regimes. However, averaged of the whole Arctic this variability

is small.
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neural network

Despite watershed binarization and shape-based filter being applied as postprocessing

steps to the lead detection algorithm described in the previous chapter, there is still

some evidence of noise presented in results, as noticed in Figure 4.2.4. This chapter

describes an improved lead detection algorithm based on the U-Net Convolutional Neural

network (Ronneberger et al., 2015). Initially the U-Net architecture was introduced for

biomedical image segmentation, but later has been applied for a variety tasks, including

SAR image analysis (Park et al., 2020; Mao et al., 2020; Malmgren-Hansen et al., 2021;

Stokholm et al., 2022). A part of the methods section in this chapter is published in

Murashkin and Frost (2021).

First, an improved calibration algorithm is introduced in Section 5.1.1. The auxiliary

data provides information not only on thermal noise, but also on scalloping noise singe

13 March 2018, as described in Section 3.1. This provides the necessary information

for a more consistent Sentinel-1 data preprocessing, which is especially important for

cross-polarization images. Next, U-Net architecture is adjusted for lead detection as

described in Section 5.1.2. In order to apply the algorithm a Sentinel-1 scene should

be split into smaller tiles, which are then fed to U-Net model. Tile edge effects, arising

due to the split of an original large image into smaller tiles, often occurring in deep

learning methods is addressed in Section 5.1.3. Classification results are presented in

Section 5.2.1, evaluated with optical images in Section 5.2.2, and then compared with

the algorithm described in the previous chapter in Section 5.2.3.

5.1 Methods

5.1.1 Data preprocessing

The previously described preprocessing algorithm (Section 4.1.1) has been improved

with applying scalloping noise correction, which is available for Sentinel-1 data acquired

after 13 March 2018. However, the thermal noise on the cross-polarization band remains

pronounced on some images, as shown on example in Figure 5.1a,b. It remains because
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5 Lead detection with convolutional neural network

the thermal noise data provided in the auxiliary data has a discrepancy, which is visible

at the subswath borders. To correct for this, a swath brightness balancing technique

bringing Normalized Radar Cross Section (NRCS) values within different subswath to

a uniform scale, is introduced. The thermal noise distribution within a subswath is

assumed to have little discrepancy, whereas the thermal noise absolute value has some

error and can be corrected with a scale factor α:

noisenewSWi
= αi · noiseSWi

(5.1)

where αi is the scale coefficient for the subswath SWi. Sentinel-1 scenes are assumed

to be homogeneous at the subswath border, therefore the average brightness should

not drastically change between subswaths. Thus, the SAR NRCS values averaged in

along-track direction should be continuous in the range (cross-track) direction.

DN2

SWi
− noiseSWi

= DN2

SWi+1
− α · noiseSWi+1

(5.2)

where DN is Digital Number (the value provided in Sentinel-1 level 1 product, before

calibration and noise correction) averaged in along-track direction at the subswath SWi

to subswath SWi+1 transition. The 5th subswath is taken as reference and its scale

factor is 1, 1st to 4th swaths are normalized to the NRCS values of the 5th subswath,

see Figure 5.1. Then, the noise scale factor αi is calculated with

αi = (DN2

SWi
−DN2

SWi+1
+ noiseSWi

)/noiseSWi+1
(5.3)

Scaling thermal noise for the adjacent swath by αi brings an opportunity to produce a

more uniform Sentinel-1 image, which improves robustness of an automatic classification

algorithm. An illustration for a preprocessed Sentinel-1 scene is shown in Figure 5.1.

Figure 5.1a,b show two Sentinel-1 EW HV bands with the preprocessing procedure

suggested by ESA with the noise tables provided. The different swaths are still visible,

especially swath 1 (the leftmost subswath on images). The same images with the swath

balancing applied are shown in Figure 5.1c,d. Figure 5.1e,f show backscatter values

averaged along the azimuth direction. The abrupt changes in average brightness between

subswaths with the basic noise correction applied (blue line) are eliminated with the

swath brightness balancing applied (orange line).

5.1.2 U-Net convolutional neural network

The U-Net CNN is represented by a multi-level encoder–decoder architecture, where

encoder and decoder are connected on every level (Ronneberger et al., 2015). For the lead
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5.1 Methods

a b

c d

e f

Figure 5.1: a and b – basic preprocessing result with the noise data provided in each
scene; c and d – preprocessing result with noise scaling; e and f – mean
brightness along azimuth direction, for the basic preprocessing a, b in blue,
for the improved preprocessing algorithm c, d in orange.
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5 Lead detection with convolutional neural network

detection the depth of the encoder and the decoder is increased to six layers compared

to four layers suggested in the original study, the algorithm is schematically shown in

Figure 5.2. A preprocessed Sentinel-1 image is split into 512-pixel square patches (are

referred to as tiles further). The input for the model consists of a stack of the tiles, each

of them has two layers: the HH band and the band ratio HV/HH, both normalized to

[-1; 1]. Every standard unit (a single block on the diagram) consists of a dropout layer,

where only 50% of inputs are connected to the output layer (Hinton et al., 2012), and two

convolution layers with 3x3 pixel size kernel and ReLu activation function (Fukushima,

1969). Number of output layers are shown in Figure 5.2. Red arrows represent max pool

layer, which decreases the image size two times by keeping only a single maximal value

in every block of 2x2 pixels. Green arrows show upscale convolution layers, where image

size in increased two times. In the decoder part of the algorithm (right side in Figure 5.2)

results from the lower layer and the corresponding layer of the encoder (left part of the

Figure 5.2) are concatenated and then passed to the standard unit as described above.

The output layer includes L2 kernel regularization Cortes et al. (2009) and a softmax

activation function and creates output class probabilities.

For algorithm training a new set of data has been labeled. All scenes for the new

training dataset have been acquired after 18 March 2018, so that they contain scalloping

noise information in the auxiliary data. Twenty one Sentinel-1 scene have been pre-

processed as described in this chapter (Section 5.1.1), converted to pseudo-RGB images

as described in Section 3.1 and then manually labeled. The list of scenes is shown in

Table 5.1. The major part of the data (90%) is used for training, the remaining 10% as

test sub dataset.

5.1.3 Tile edge effects

An input to the model is a 512x512 pixel tile with two layers, the HH band and the

HV band. A typical size of a Sentinel-1 EW GRDM scene is about 10000x10000 pixels.

Therefore, the original images is split into tiles. Every tile is classified by the CNN

independently. As the result, classification results might not match at the edges of the

tiles, leading to appearance of edge effects at tile edges on the corresponding full size

classified image.To reduce this effect, the classification is applied four times to every

Sentinel-1 scene. Each of the four times the Sentinel-1 preprocessed image is split into

tiles with an offset as shown in Figure 5.3. Frames in black, red, green, and blue colors

correspond to 0% (no offset), 25%, 50%, and 75% relative offset. Every pixel of a

classified tile is weighted linearly by its distance from an edge of the tile. This way, the

classification result for a pixel in the middle of a tile has a higher weight compared to a

pixel at an edge of the tile. Four weighted probabilities (one per offset) are summed up
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List of Sentinel-1 scenes

S1A EW GRDM 1SDH 20190102T014317 20190102T014421 025292 02CC3B F243

S1A EW GRDM 1SDH 20190102T032201 20190102T032306 025293 02CC41 C821

S1A EW GRDM 1SDH 20190102T032306 20190102T032406 025293 02CC41 66FC

S1A EW GRDM 1SDH 20190102T032406 20190102T032506 025293 02CC41 318E

S1A EW GRDM 1SDH 20190102T163157 20190102T163301 025301 02CC94 427C

S1A EW GRDM 1SDH 20190102T163301 20190102T163401 025301 02CC94 4D80

S1A EW GRDM 1SDH 20190102T163401 20190102T163501 025301 02CC94 C5B9

S1A EW GRDM 1SDH 20190102T180327 20190102T180427 025302 02CC9A EBD9

S1B EW GRDM 1SDH 20190102T072713 20190102T072813 014312 01AA0F B30E

S1A EW GRDM 1SDH 20200427T040317 20200427T040421 032308 03BD11 B2EE

S1A EW GRDM 1SDH 20200427T040421 20200427T040521 032308 03BD11 59F6

S1A EW GRDM 1SDH 20200427T072044 20200427T072148 032310 03BD24 499D

S1A EW GRDM 1SDH 20200427T072148 20200427T072248 032310 03BD24 5D32

S1B EW GRDM 1SDH 20200427T031414 20200427T031514 021324 028799 E14D

S1B EW GRDM 1SDH 20200427T062819 20200427T062919 021326 0287AA C373

S1B EW GRDM 1SDH 20200427T062919 20200427T063019 021326 0287AA FAC2

S1B EW GRDM 1SDH 20200427T080907 20200427T081007 021327 0287B6 BE66

S1B EW GRDM 1SDH 20200427T081007 20200427T081107 021327 0287B6 F2EF

S1B EW GRDM 1SDH 20200427T081107 20200427T081207 021327 0287B6 0532

S1B EW GRDM 1SDH 20200427T081207 20200427T081307 021327 0287B6 68A9

S1B EW GRDM 1SDH 20200427T094631 20200427T094731 021328 0287C3 178E

Table 5.1: List of the scenes which have been manually labeled and used as a training
dataset for the lead detection algorithm.
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5 Lead detection with convolutional neural network

Figure 5.2: The original U-Net architecture has been extended to 6 layers and input tile
size has been increased to 512 pixels.

to the final classification result. For instance, a pixel shown in purple of an input scene

will appear at the middle of the red tile (split into tiles with 25% offset), closer to an

edge of the green and black tiles (split into tiles with 50% and 75% offset), and at the

edge of the blue tile (75% offset). Therefore, the lead probability, produced by the model

applied to the red tile, has the highest contribution to the final result, while the lead

probability, produced by the model applied to the blue tile, has the lowest contribution.

The influence of near-border pixels on the per-pixel classification is decreased, thus, the

transition between tiles becomes smooth improving the final classification result.

5.2 Results

The U-Net -based classification workflow with results is shown in Figure 5.4. Prepro-

cessed as described in Section 5.1.1 HH (Figure 5.4a) and HV (Figure 5.4b) channels

are used to calculate the polarization ratio, shown in Figure 5.4c. The HH channel and
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a b

Figure 5.3: Smooth prediction for edge effects reduction. A trained model is applied to
a given scene four times, each time with an offset. Zero offset is shown in
black, 25% offset is red, 50% offset is green, 75% offset is blue. A pixel of
a tile (shown in purple) appears close to the center of the tile in case of red
tiling and close to the edge on the blue tiling.

true\predicted dark leads bright leads sea ice
dark leads 0.989 0.0 0.011
bright leads 0.0 0.989 0.011
sea ice 0.001 0.0 0.999

Table 5.2: Normalized confusion matrix for the lead detection algorithm. i-th row and
j-th column entry indicates the number of samples with true label being i-th
class and predicted label being j-th class.

the polarization ratio are passed to the U-Net -based classifier described in Section5.1.2,

which produces probabilities for dark leads (Figure 5.4d) and bright leads (Figure 5.4e).

Both are merged together into the result shown in Figure 5.4f, which is then converted

to a binary lead map shown in Figure 5.4g.

The classification quality is evaluated by applying the classification to 18 manually

labeled Sentinel-1 scenes, which have not been used for training or testing. The classifi-

cation accuracy on the evaluation data is 99.2% with balanced classes. The normalized

confusion matrix calculated with balanced classes is shown in Table 5.2. Both the accu-

racy score and the confusion matrix are weighted by number of class samples.

5.2.1 Classification results on a small scale

Classification results on each step of the algorithm and comparison to the similar results

from the algorithm described in the previous chapter (see Section 4.1) are shown in
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5 Lead detection with convolutional neural network

U-Net classification

Figure 5.4: Improved lead detection algorithm based on a U-Net convolutional neural
network. a and b are the original Sentinel-1 SAR data (3 Feb 2016, 22:29,
Canadian Arctic; size of the area shown is about 150 km by 80 km), HH and
HV respectively. c is the band ratio HH/HV. d and e are lead probabilities
produced by the lead classification algorithm for dark and bright leads, based
on a and c. U-Net convolutional neural network is used at this step. f is the
sum of probabilities d and e. g is the binary classification derived from f by
applying a threshold of 50%.

Figure 5.5. A cutout of the original Sentinel-1 scene taken on 2 January 2019 over

the Chukchi Sea is shown in Figures 5.5a,b (the HH channel and the HV channel,

respectively). These two images are used as input channels for the both lead detection

algorithms, described in Chapter 4 and earlier in this chapter. The probabilistic results

for the ”dark leads” and ”bright leads” of the algorithm based on gray level co-occurrence

matrix and random forest classifier are shown in Figure 5.5c,d. The corresponding

results from the algorithm based on the U-Net convolutional neural network are shown in

Figure 5.5e,f. The color scheme is same for all the four result images (Figures 5.5c,d,e,f).

Binary classifications derived with 50% threshold on probabilities produced with both

algorithms are shown in Figure 5.5g,i. Figure 5.5h,j present result of the watershed

binarization algorithm (described in Section 4.1.5) applied to probabilities produced by

both the GLCM + RFC and U-Net -based algorithms.

5.2.2 Evaluation with optical images

Classification results are compared with Sentinel-2 optical images, Figure 5.6. Sentinel-1

SAR and Sentinel-2 optical images were acquired on 21 March 2019 with 7 hours time

difference. Despite changes in the ice field between the SAR and the optical image

(Figure 5.6a, b), the major cracks are recognizable on both images and are detected

with the lead detection algorithm Figure 5.6c.
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a – HH band

0 20 40 60 80 100

c – GLCM + RFC of a

e – U-Net of dark leads

g – 50% threshold binary from c and d

i – 50% threshold of e and f

b – HV band

0 20 40 60 80 100

d – GLCM + RFC of the band ratio HH / HV

f – U-Net of bright leads

h – watershed + shape filter from c and d

j – watershed of e and f

Figure 5.5: Example of lead classification: a and b – raw data, HH and HV SAR
channels; c and d – dark (HH) and bright (band ratio) probabilistic lead
classifications calculated with the GLCM + RFC algorithm described in
Chapter 4; e and f – dark (HH) and bright probabilistic lead classi-
fications calculated with U-Net; g – binary classification calculated by
applying a 50% threshold to classifications in c and d ; h – watershed
binarization and shape-based filter are applied to the probabilistic clas-
sifications in c and d ; i – binary classification calculated by applying
a 50% threshold to classifications in e and f ; j – watershed binariza-
tion is applied to the probabilistic classifications in e and f ; The scene
was taken on 2 January 2019 over the Chukchi Sea, the scene name is
S1B EW GRDM 1SDH 20190102T190125 20190102T190220 014319 01AA45 7719
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5 Lead detection with convolutional neural network

a – Sentinel-2 RGB

b – Sentinel-1 pseudo-RGB (HH, HV, HV/HH)

c – binary lead map

Figure 5.6: a – Sentinel-2 optical RGB image has been acquired on 21 March 2019 at
9:17UTC, b – Sentinel-1 SAR pseudo-RBG (HH, HV, HV/HH) has been
acquired on 21 March 21 2019 at 2:32UTC, c – result of the lead detection
algorithm applied to scene b. The shift between SAR and optical image is
due to sea ice drift during the 7 hours between the data acquisition times.
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5.2.3 Pan-Arctic lead maps

To see the large-scale picture, the improved lead detection algorithm has been applied

to all Sentinel-1 scenes acquired over the Arctic on 2 January 2019. The binary lead

classification on individual SAR scenes are merged together to produce a pan-Arctic

lead map. In case scenes overlap, the information from the latest acquired scene is

used. The lead information is then available at the Sentinel-1 EW native 40 meter

pixel size Arctic-wide for all regions covered by Sentinel-1 SAR (full coverage with two

satellites takes about three days). The high resolution and extent of the map makes it

impossible to present it here in full detail as figure. Therefore, the lead area fraction is

calculated on a 12 km grid. An pan-Arctic comparison of lead detection results is shown

in Figure 5.7. The four images 5.7a,b,c,d correspond to images 5.5g,h,i,j of the fine

scale comparison above. That is, Figure 5.7a represents the result of the lead detection

algorithm described in Section 4.1.4, Figure 5.7b represents the result of the GLCM

+ RFC algorithm with watershed binarization applied as described in Section 4.1.5.

Figure 5.7c and 5.7d are results of the U-Net based lead detection with 50% threshold

and watershed binarization applied, respectively. Figure 5.7d represents the final result

of the improved lead detection algorithm. The final lead map in Figure 5.7d shows a

more uniform distribution of leads without apparently artificial higher lead fractions

along the swath edges. Areas with higher lead fraction like in the Beaufort Sea can

clearly be identified despite 12 km grid lead area averaging.

To ensure the algorithm produces stable results, we have applied it to all Sentinel-1

scenes taken over the Arctic in January 2019. Daily lead maps are combined into 3-day

composite maps to decrease the amount of gaps where no Sentinel-1 data was acquired.

A sea ice mask based on passive microwave sea ice concentration from AMSR2 with

15% threshold is applied to the 3-day composite maps, as described in Section 3.3. To

avoid the influence of daily change in sea ice conditions on the estimate for the lead

area fraction, the sea ice mask has been shrunk by 10 km in the marginal ice areas

and along coastlines with morphological binary erosion. Therefore, areas where sea ice

extent is smaller on Sentinel-1 scenes compared to AMSR2 data are not accounted as

leads in further analysis. The total lead area and the sea ice area are calculated for each

3-day composite map and are shown in Figure 5.8a. The ratio of the two is presented

in Figure5.8b in red. Figure 5.8b also shows lead area fraction derived with the original

lead detection algorithm (in green) and open water concentration calculated from the

passive microwave sea ice concentration maps cut to the coverage of Sentinel-1 scenes

for the corresponding days. All three are calculated on the same extent: areas covered

with Sentinel-1 acquisitions and considered as ice-covered areas with AMSR2 data. The

AMSR2 point on 2019-01-27 is an outlier due to reduced coverage in passive microwave
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a

c

b

d

Figure 5.7: Arctic-wide Lead Area Fraction maps (12 km resolution) derived from the
daily Arctic lead map. The Arctic lead map consists of all Sentinel-1 scenes
acquired over the Arctic on 2 Jan 2019. a – Lead Area Fraction derived with
the original algorithm based on GLCM features and Random Forest classifier
as described in Murashkin et al. (2018). b – Lead Area Fraction calculated by
replacing the original threshold binarization with the watershed binarization
algorithm and with the shape-based filter applied (both described in this
paper). c – Lead Area Fraction derived with the improved lead detection
algorithm based on U-Net CNN. d – Lead Area Fraction calculated with
the improved lead detection algorithm based on U-Net CNN and watershed
binarization applied.
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data on the date. According to the CNN-based lead detection, the mean lead area

fraction in January 2019 is 2.44% with a standard deviation of 0.25% for the 10 data

points of the time series, whereas the GLCM + RFC algorithm proposed earlier shows

a mean lead area fraction of 2.3% and 0.7% with standard deviation 0.17% and 0.05%

for the basic and shape-filtered cases, respectively. The open water concentration on

AMSR2 data is 1.8% with 0.3% standard deviation. Small variations in lead area and

sea ice area may appear due to natural reasons, which include lead opening, closing, and

refreezing, as well as due to small differences in satellite coverage since sometimes the

Arctic is not entirely covered even on 3-day composite maps.

5.3 Discussion

The subswath balancing technique described in Section 5.1.1 adjusts thermal noise by

subswath and removes the sudden changes in backscatter between subswaths over a

uniform area, which are very noticeable at swath borders, as shown in Figure 5.1. This

leads to a smaller backscatter variation in the HV channel, making it more reliable for

use as input for automatic classification algorithms.

The classification results shown in Figure 5.5 illustrate the improvement of the U-

Net -based lead detection algorithm described in this chapter over the method based

on GLCM+RFC described in Chapter 4. On one hand, leads are detected with more

confidence (see Figure 5.5c, d, e, and f, scale shows probability of a pixel to be detected

as lead), on the other hand, less objects appearing due to scalloping and speckle noise

are present in the classified images. This is especially noticeable for bright leads, that

have previously been detected from the polarization ratio, which, in turn, had a greater

influence of thermal noise. The swath balancing technique described in Section 5.1.1

decrease variation in HV backscatter values appearing due to thermal noise, as shown

in Fig. 5.1. The watershed-based binarization method described in Section 4.1.5 makes

a significant improvement for the GLCM+RFC lead detection, while has a smaller ef-

fect on the U-Net results, as U-Net classification shows higher classification confidence,

Figure 5.5.

The Arctic-wide lead maps (Figure 5.7) show a clear improvement in lead detec-

tion in the Siberian region of Arctic. This is the region of thin and flat ice, which

has low backscatter values. A scene preprocessing that provides a robust backscat-

ter across Sentinel-1 scenes in the area is essential. The use of the watershed-based

binarization shows a significant improvement in lead detection quality, which means a

lower probabilistic classification confidence in the area. The U-Net -based lead detection

algorithm described in Section 5.1.2 shows a significant improvement in performance.

While GLCM+RFC algorithm could only be applied to the European Arctic, the U-
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Figure 5.8: a Lead area (left y-axis) and sea ice area (right y-axis), and b lead area
fraction derived from 3-day composite lead maps of the Arctic in January
2019. The sea ice area in a mainly changes due to changing satellite coverage
(i.e., not due to ice growth/melting).
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Net -based method works over the entire Arctic. The higher classification confidence

of the U-Net -based probabilistic classification explains the smaller improvement when

watershed-based binarization is applied instead of the 50% thresholding.

The lead area and the sea ice area calculated on 3-day composite map are correlated as

shown in Figure 5.8a. This indicates the variations in the total lead area partly to come

from the variability of Sentinel-1 coverage. The difference in coverage should therefore

have little influence on the lead area fraction calculated as a ratio of the lead area to

the sea ice area.

Figure 5.8b shows the new algorithm delivering stable results: the lead area fraction

(plotted with red) for January 2019 shows small variation with 0.25% standard deviation

around its average value of about 2.44%. It is in the same range with the passive

microwave open water concentration.

The open water concentration in the central Arctic away from marginal ice area is

known to be typically around 1–3% Lindsay and Rothrock (1995); Röhrs and Kaleschke

(2012); Maykut (1978). In-situ observations of sea ice thickness in the Central Arctic

indicate sea ice cover consists of 1% 0–20 cm thick sea ice (by area) Thorndike et al.

(1975). Thus, the 2.44% lead area fraction derived with the improved lead detection

algorithm is comparable to the previous studies. A slightly higher lead area fraction

compared to passive microwave data is related to a different sensitivity of C-band SAR

to thin ice. Refrozen leads with thin flat ice are detected as leads, whereas passive

microwave as well as thermal infrared data might be able to distinguish thin ice from

open water in the same situation.

Which algorithm to use

Below three lead detection options are considered:

• GLCM and RFC lead detection with 50% threshold on predicted lead probabilities

(basic lead detection) described in Section 4.1.4;

• GLCM and RFC lead detection with watershed binarization and shape filter ap-

plied (filtered lead detection) introduces in Section 4.1.5 and Section 4.1.6.

• U-Net -based lead detection described above in this chapter in Section 5.1.2.

Lead area fraction variations within January 2019, produces with SAR lead detection

are smaller than the variation of open water concentration derived with AMSR2 data.

The lead area fraction calculated with the first option is slightly higher than the open

water concentration derived with AMSR2 data. However, the two have small correlation

of 0.05. The second option has a higher correlation with the passive microwave data,

0.37, but the absolute values are significantly lower compared to AMSR2-derived data.

The third option shows the highest correlation to AMSR2 open water concentration of
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5 Lead detection with convolutional neural network

0.5 and provides a comparable lead area fraction value. Therefore, the U-Net -based

lead detection is concluded to provide the best lead detection results of the three option.

It will be used further for lead distribution analysis described in the next chapter.
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6 Lead distributions in the Arctic

Ocean

The distribution of leads and their properties in the Arctic Ocean are analyzed in this

chapter. Pan-Arctic map for frequency of lead occurrence for the five winter seasons

2016–2021 is introduced in Section 6.3.2. Lead area fraction is calculated for the entire

Arctic and compared to AMSR2 radiometer open water fraction in Section 6.3.1 for

the same period of time. Lead area, lead length, lead width, and lead orientation are

described in Sections 6.3.4 – 6.3.7. A part of the results presented in this chapter are

published in Murashkin and Spreen (2019).

6.1 Sea ice feature scaling

Scaling is the way an observed value changes with the scale of observation. Applying

this definition to sea ice cover, one can study dependence of sea ice fracturing processes

on the observed scale. As ice floe size and lead size are due to sea ice cover fracturing,

these properties are used as proxies for sea ice mechanical properties studies. Sea ice floe

size distribution is found to scale with a power law by Rothrock and Thorndike (1984).

Weiss (2003) have found the lead size, as a feature related to sea ice cover, to scale with

a power law. These observations bring together observation at various scales, which

include mesoscale, regional, local observations, and laboratory experiments. According

to Weiss (2003), fracturing properties of sea ice scale with a power law from a centimeter

to 50 meter scale, based on laboratory studies. On the other size, satellite image analysis

done by Lindsay and Rothrock (1995) show sea ice fracturing properties to scale from

1 km scale to 200 km by analyzing distance between leads, which is considered as an

indicator for ice flow size. Later, these observations were confirmed with visible imagery

(Marcq and Weiss, 2012) on 20m–2 km scale, CryoSat-2 radar altimetry (Wernecke

and Kaleschke, 2015) at 600m–20 km scale. Similar results based on Helicopter-borne

thermal infrared imagery (4–400m scale) are reported by Thielke et al. (2023). Power

law exponents from these studies are summarized in Table 6.1.
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6 Lead distributions in the Arctic Ocean

Source Sensor
Scale

range

exponent

factor

Lindsay and Rothrock (1995) AVHRR 1-50 km 1.6±0.18

Marcq and Weiss (2012) SPOT 20 -2 km
2.1-2.3

2.5-2.6

Wernecke and Kaleschke (2015) CryoSat-2 600 m-20 km 2.47±0.04

Qu et al. (2019)
MODIS,

Landsat-8
300 -20 km 2.241-2.346

Thielke et al. (2023) Helicopter IR 4-300m 2.26-2.61

Table 6.1: Power law exponents derived in previous studies

6.2 Methods

The lead detection algorithm described in the previous chapter is applied to each Sentinel-

1 EW GRDM scene acquired over the Arctic Ocean during winter seasons, 1st November

– 30 April, 2016–2021, when two Sentinel-1 satellites, A and B, were operational. Then,

3-day composite pan-Arctic lead maps are produced by merging three consecutive daily

pan-Arctic maps, as described in Section 4.1.7. This is done to increase the spatial

coverage in the areas which are not covered daily with Sentinel-1 scenes.

The data for the five seasons is combined into a frequency of lead occurrence map.

Arctic Ocean is split into the following regions: Fram Strait, Barents Sea, Kara Sea,

Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea, Central Arctic, as shown

earlier in Figure 1.5, defined by Meier et al. (2007). Each region is cut from a pan-Arctic

lead map in a projection, where north is at the top of the region, except for the Central

Arctic. Lead area fraction shown in Figures 6.1,6.2 and frequency of lead occurrence

shown in Figures 6.5,6.6,6.7 illustrate these regions in the corresponding projections.

The regional lead area fraction time series is calculated based on the regional binary

lead maps.

Properties distribution for single leads identified on binary regional maps are analyzed.

A group of adjacent lead pixels of the 3-day composite binary lead map is considered

as a single lead object. Lead objects at a distance of two pixels are also considered as

a single lead. For each lead the following lead shape properties are discussed in this

chapter:

• lead area

• lead length

• lead width

• lead orientation

These properties are based on shape descriptors introduced in Section 4.1.6. Lead area

distribution is directly calculated from areas of identified leads. Lead length is ap-
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6.2 Methods

a – Central Arctic

c – Barents Sea

b – Fram Strait

d – Kara Sea

Figure 6.1: Lead area fraction in Arctic regions in corresponding regional projections
for a Central Arctic, b Fram Strait, c Barents Sea, d Kara Sea. Regional
lead area fraction maps on 12 km grid are derived from 3-day composite pan-
Arctic binary lead maps with 40m resolution. Four more regions are shown
in Figure 6.2.
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6 Lead distributions in the Arctic Ocean

a – Laptev Sea

c – Chukchi Sea

b – East Siberian Sea

d – Beaufort Sea

Figure 6.2: Lead area fraction in Arctic regions in corresponding regional projections for
a Laptev Sea, b East Siberian Sea, c Chukchi Sea, d Beaufort Sea. Regional
lead area fraction maps on 12 km grid are derived from 3-day composite pan-
Arctic binary lead maps with 40m resolution. Four more regions are shown
in Figure 6.2.

94



6.3 Results

a – SAR lead area fraction b – MODIS lead area fraction

Figure 6.3: Lead area fraction during winters 2016–2021. a – Lead area fraction derived
from Sentinel-1 SAR scenes with the algorithm described in Chapter 6. b –
Lead area fraction calculated from MODIS data by Willmes and Heinemann
(2015); Reiser et al. (2020).

proximated with major axis length and skeleton length parameters, lead width is ap-

proximated with effective width descriptor. Lead orientation is the orientation of the

approximating ellipse and is calculated relatively to the region projection, shown in Fig-

ures 6.1 and 6.2. The orientation angle of 0◦ corresponds to a horizontal line on images,

angle values increase from –90◦ to 90◦ counter-clockwise.

6.3 Results

6.3.1 Lead area fraction

Ratio of area covered with leads to the total area covered with sea ice, the lead area

fraction, is calculated for each 3-day composite binary lead map, shown in Figure 6.3a.

For comparison, Figure 6.3b shows lead area fraction derived from MODIS lead maps by

Willmes and Heinemann (2015); Reiser et al. (2020). Average SAR lead area fraction is

lower than the one derived from MODIS. It shows less variability within a single year, but

more variability between years. Lead area fractions are summarized in Table 6.2. The

average lead area fraction is between 3.7% and 2.5% for years 2017–2021 with average

value of 3.0%.

6.3.2 Frequency of lead occurrence

Frequency of lead occurrence is calculated based on 3-day composite binary lead maps

for winter seasons 2016–2021, shown in Figure 6.4a. For comparison, frequency of lead

occurrence is also calculated from lead maps derived from MODIS infrared images by

Willmes and Heinemann (2015); Reiser et al. (2020). The two maps cut to a regional
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6 Lead distributions in the Arctic Ocean

SAR MODIS

year LAF STD LAF STD

2017 0.037 0.008 0.123 0.020

2018 0.035 0.009 0.110 0.016

2019 0.029 0.007 0.120 0.023

2020 0.026 0.005 0.116 0.020

2021 0.025 0.006 0.116 0.021

total 0.030 0.009 0.117 0.021

Table 6.2: Average lead area fraction (LAF) and standard deviation per year calculated
from Sentinel-1 and MODIS data.

scale are shown in Figures 6.5,6.6,6.7. Patterns occurring on the MODIS frequency

of lead occurrence maps are discussed by Willmes et al. (2023). Similar patterns for

the frequency of lead occurrence are present on both datasets between Svalbard and

Franz Josef Land, around Severnaya Zemlya archipelago, Beaufort Sea, Baffin Bay, Fram

Strait. Most differences occur in Canadian Arctic, where sea ice forms under more calm

conditions. There is less wave and current influence on the sea ice, which, therefore is

less ridged compared to the Arctic Ocean, which leads to smoother sea ice surface, which

appears radiometrically similar to the surface of refrozen leads.

Figure 6.4a also shows straight line patterns that correspond to Sentinel-1 swath bor-

ders, most pronounced in Beaufort Sea (Figure 6.7a), and north of Svalbard (Central

Arctic region, Figure 6.5a). Despite the incidence angle correction applied to Sentinel-

1 scenes as a part of the preprocessing procedure described in Section 4.1.1, the dif-

ferences in SAR backscatter from various incidence angles cannot be fully neglected.

Backscatter depends on physical properties of the scattering surface and underlying

scattering volume, both of which, in general case, physically depend on the incidence

angle. When scenes are acquired with various geometries throughout season, these dif-

ferences are smoothed out. This is the case for the season 2016–2017, when scenes

have been taken in both the ascending and descending geometry. However, in years

2017–2022 Arctic Ocean have been covered mostly with the descending geometry, ac-

cording to https://sentinel.esa.int/en/web/sentinel/copernicus/sentinel-1/

observation-scenario, acquisition plan for 2016–2017 and 2017–2018 are shown in

Figure 6.8. As the result, uncertainties are amplified when all scenes taken during the

season are stacked together. As expected, leads occur more often around islands, which

induce stresses in sea ice moving under wind and current forcing, in the Fram Strait as

the main gate for sea ice from Arctic Ocean, Beaufort Sea covered with thicker sea ice.
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6.3 Results

a – SAR lead frequency

b – MODIS lead frequency

Figure 6.4: Lead frequency of occurrence during winters 2016–2021. a – Lead frequency
derived from Sentinel-1 SAR scenes with the algorithm described in Chap-
ter 6. b – Lead frequency produced from MODIS thermal infrared lead area
maps derived by Willmes and Heinemann (2015); Reiser et al. (2020). 97



6 Lead distributions in the Arctic Ocean

a – Central Arctic (SAR)

c – Fram Strait (SAR)

e – Barents Sea (SAR)

b – Central Arctic (MODIS)

d – Fram Strait (MODIS)

f – Barents Sea (MODIS)

Figure 6.5: Regional lead frequency of occurrence from SAR (left column) and MODIS
(right column), both are calculated for 5 winter seasons 2016–2021.
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6.3 Results

a – Kara Sea (SAR)

c – Laptev Sea (SAR)

e – East Siberian Sea (SAR)

b – Kara Sea (MODIS)

d – Laptev Sea (MODIS)

f – East Siberian Sea (MODIS)

Figure 6.6: Regional lead frequency of occurrence from SAR (left column) and MODIS
(right column), both are calculated for 5 winter seasons 2016–2021.
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6 Lead distributions in the Arctic Ocean

a – Chukchi Sea (SAR)

c – Beaufort Sea (SAR)

b – Chukchi Sea (MODIS)

d – Beaufort Sea (MODIS)

Figure 6.7: Regional lead frequency of occurrence from SAR (left column) and MODIS
(right column), both are calculated for 5 winter seasons 2016–2021.
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6.3 Results

a – Sentinel-1 acquisition plan covering 2016–2017 winter season

b – Sentinel-1 acquisition plan covering 2017–2018 winter season

Figure 6.8: Sentinel-1 acquisition geometry according to ESA, images from https:

//sentinel.esa.int/en/web/sentinel/copernicus/sentinel-1/

acquisition-plans/observation-scenario-archive.
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6 Lead distributions in the Arctic Ocean

6.3.3 Number of leads

Table 6.3.3 summarized number of leads detected in Beaufort Sea, Barents Sea, Chukchi

Sea, East Siberian Sea, Fram Strait, Kara Sea, Laptev Sea, and Central Arctic during

winters 2016–2021, the data is visualized in Figure 6.9. Each season is split into three

stages: early season – November and December, mid-season – January and February,

and late season – March and April. Only leads that are wider than 320 meters, which

corresponds to 8 pixels in the native Sentinel-1 pixel spacing, are accounted here because

more narrow leads are not reliably detected as it will be shown later in Section 6.3.6.

Number of leads is increasing throughout a season in the areas, where sea ice extent in-

creases. This is especially noticeable in the Barents Sea and the Fram Strait. Beaufort

Sea shows increase in number of leads late in the season, while the increase from Novem-

ber till end of February is smaller than inter-annual variations in lead number. Kara

Sea, Laptev Sea, and East Siberian Sea do not show increase in lead number throughout

winter seasons.

6.3.4 Lead area distribution

Distribution of lead area for each of the eight defined regions is present in Figure 6.10.

Despite variations in lead number, the normalized lead area distribution does not show

any changes during winter seasons in most cases. The largest leads up to 3200 km2 are

found in the Barents Sea, Kara Sea, and Laptev Sea, while in the Beaufort Sea, Central

Arctic, and East Siberian Sea leads only reach about 1600 km2. Areal distribution of

leads in Chukchi Sea shows decrease in lead size from early to mid- and late season.

All distributions show a maxima at around 50–60 square pixels, 0.08–0.10 km2. This

indicates leads, smaller than the size, are not reliably detection with the lead detection

algorithm described in Chapter 5. The change in distribution slope at around 2000

pixels, 3.2 km, is not expected (details are provided in Section 6.1) and is likely to

come from SAR image processing. This effect will further be discussed in Section 6.3.5

describing lead length distribution.

6.3.5 Lead length

Lead length is estimated as the major axis length of an ellipse approximating the detected

object (shown in Figure 6.11), and as a length of the detected object skeleton (show in

Figure 6.12). By definitions described in Section 4.1.6, major axis length overestimates

the length of the detected object, while skeleton length underestimates it. The peak in

distributions shows the minimal length of leads that are reliably detected, 10–20 pixels

or 400–800m in both the major axis length and the skeleton length approximations.
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Beaufort

Sea

Barents

Sea

Central

Arctic

Chukchi

Sea

East Siberian

Sea

Fram

Strait

Kara

Sea

Laptev

Sea

2016-2017 early 104610 18312 294215 101261 159792 84643 129286 166014

mid 72779 69972 417532 79505 138641 102215 178724 125164

late 86386 125213 551003 56399 163534 197393 201228 169678

2017-2018 early 131630 18649 562759 67424 181552 85349 177980 157008

mid 155764 66232 657160 88849 126814 63266 168672 203622

late 175381 126762 591078 71603 112381 89341 127644 122725

2018-2019 early 139586 14979 209249 118302 212040 50820 142415 112553

mid 124239 66599 233768 85156 107682 64468 94804 63479

late 202723 105839 237350 67587 100870 116490 124446 63914

2019-2020 early 142612 40033 180681 110649 197011 97106 162233 33027

mid 172218 90178 210489 96787 127983 51447 112402 36163

late 245018 121559 217584 34249 154500 114021 130703 43424

2020-2021 early 117280 20901 235215 83910 151161 87985 108657 72148

mid 123495 103623 202377 50951 78817 104751 160365 25348

late 209264 102040 239916 62644 152317 113298 122420 51313

2017-2021 early 635718 112874 1482119 481546 901556 405903 720571 540750

mid 648495 396604 1721326 401248 579937 386147 714967 453776

late 918772 581413 1836931 292482 683602 630543 706441 451054

Table 6.3: Number of leads in regions of the Arctic Ocean during early (November – December), mid- (January – February), and late
(March – April) season during years 2016–2021.
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6 Lead distributions in the Arctic Ocean

a – Central Arctic

c – Barents Sea

e – Laptev Sea

g – Chukchi Sea

b – Fram Strait

d – Kara Sea

f – East Siberian Sea

h – Beaufort Sea

Figure 6.9: Number of leads in early (November–December, in blue), mid (January–
February, in orange), and end season (March–April, in green) in 2016–2021
per Arctic region.

104



6.3 Results

a – Central Arctic

c – Barents Sea

e – Laptev Sea

g – Chukchi Sea

b – Fram Strait

d – Kara Sea

f – East Siberian Sea

h – Beaufort Sea

Figure 6.10: Regional lead area distribution at log-log scale, size is given in pixels, 40m
× 40m = 160m2 size. The distributions are calculated for the five winter
seasons, separately for early season (November, December) in blue, mid-
season (January, February) in orange, and late season (March, April) in
green.
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6 Lead distributions in the Arctic Ocean

The inclination of the lead length distributions show a change at a characteristic length

of 30–60 pixels, which corresponds to 1.2–2.4 km. The change is likely to come from the

lead detection algorithm since 32 pixels and 64 pixels are two characteristic sizes within

the U-Net -based architecture shown in Figure 5.1.2. However, the mechanism of these

specific sizes influence on distribution of lengths is uncertain. It should also be noticed

that the change in the distribution slope effect is NOT coming from:

• SAR subswath size is around 80 km, which is much larger that the characteristic

length;

• SAR scalloping noise pattern size is about 500 pixels and is not comparable with

the characteristic length;

• shape filter described in Section 4.1.6 is not used after the U-Net -based lead

detection;

• image warping does not introduce any defects at the characteristic length.

Oscillations in skeleton length distributions for short leads come from pixel discretiza-

tion, as skeleton length directly counts number of pixels in the morphological skeleton

and can only be an integer. On major axis length distributions the oscillations are not

present as the major axis length is calculated from the ellipse parameters and, therefore,

may be a floating number. Lead lengths up to 4000 pixels, 160 km, are often detected

in all regions except of the Barents Sea and Chukchi Sea, where leads are shorter. The

difference in the maximal lead length between the major axis length approximation and

the skeleton length approximation is small.

6.3.6 Lead width

Lead width is estimated through the effective width parameter which is calculated as

lead area divided on major axis length of the approximation ellipse corresponding to

the detected object, shown in Figure 6.13. Lead width distribution is expected to follow

the power law according to Weiss (2003). The significant deviation from a power law is

observed as lead widths below 5 pixels, or 200m, therefore this size is set as a threshold

for reliably detected leads, used earlier in Section 6.3.3. More narrow leads are also de-

tected, however a notable amount of them are missed with the lead detection algorithm.

The exponent of the power law for the lead width distributions shown in Figure 6.13 is

1.86 with 0.16 standard deviation, which is comparable to the value 1.6±0.18 reported

by Lindsay and Rothrock (1995), but lower compared to other studies summarized in

Table 6.1. It should be noticed that according to the definition given in Section 4.1.6,

effective width is an average width of the detected objects, while width may change from

smaller to larger values for a single object. Although the total number of leads change

throughout winters, the lead width distribution does not show any change with time,
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6.3 Results

a – Central Arctic

c – Barents Sea

e – Laptev Sea

g – Chukchi Sea

b – Fram Strait

d – Kara Sea

f – East Siberian Sea

h – Beaufort Sea

Figure 6.11: Regional lead major axis length distribution as an overestimating lead
length approximation, at log-log scale, size is given in 40m pixels.
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6 Lead distributions in the Arctic Ocean

a – Central Arctic

c – Barents Sea

e – Laptev Sea

g – Chukchi Sea

b – Fram Strait

d – Kara Sea

f – East Siberian Sea

h – Beaufort Sea

Figure 6.12: Regional lead skeleton length distribution as an underestimating lead length
approximation, at log-log scale, size is given in 40m pixels.
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6.4 Discussion

except of the wider leads present in the Chukchi Sea earlier in winter seasons.

6.3.7 Lead orientation

Lead orientation distribution shows if there is a preferred direction for leads to occur.

It is calculated regionally, relatively to the region projection as shown in Figures 6.1

and 6.2, and is presented in Figure 6.14. The orientation angle of 0◦ corresponds to a

horizontal line in the projection, angle values increase from –90◦ to 90◦ counter-clockwise.

Each of the Arctic Ocean regions show non-uniform lead orientation distribution. In

the Central Arctic more leads are oriented at 30◦ angle, perpendicular to the direction

towards Fram Strait. Throughout a winter the dependence becomes more pronounced.

Fram Strait, in turn shows more leads oriented perpendicular to the south-directed sea

ice movement. In the Kara Sea leads tend to be oriented along the Franz Josef Land.

In addition to that, lead orientation distribution in the Kara Sea shows two maxima at

–50◦ and 55◦, while 0◦ orientation is a local minimum. Leads in the East Siberian Sea

more often form along the coastline, preferred orientation at –20◦. Beaufort Sea lead

orientation show a single minimum at –30◦ and a maximum at 30◦, which approximately

correspond to the north-east to south-west direction. Similar to the Central Arctic, the

minimum and the maximum in the orientation distribution are more pronounced in

late winter. For comparison, Figure 6.15 shows lead orientation distribution calculated

by Bröhan and Kaleschke (2014) from AMSR-E passive microwave data. The most

likely directions derived from Sentinel-1 scenes with the lead detection algorithm, shown

regionally in Figure 6.14, are in line with the lead directions derived by Bröhan and

Kaleschke (2014).

6.4 Discussion

Leads detected on Sentinel-1 scenes with the lead detection algorithm described above

are compared with the ones derived from MODIS thermal infrared images and AMSR-E

passive microwave data. The frequency of lead occurrence show similar patterns to the

lead maps derived from MODIS by Reiser et al. (2020). The absolute values are different

because various satellite instruments rely on different physical principles. As the result,

definition of leads may vary between studies, as mentioned in Section 2.1. A more

detailed study on differences in lead detection with SAR image analysis methods, MODIS

thermal infrared lead detection, CryoSat-2 lead maps, sea ice concentration maps derived

from AMSR2 data, and thermal infrared helicopter-borne imagery is conducted by von

Albedyll et al. (2023). Lead orientation distribution correspond to the one derived from

AMSR-E data by Bröhan and Kaleschke (2014). These comparisons work as an extra

109



6 Lead distributions in the Arctic Ocean

a – Central Arctic

c – Barents Sea

e – Laptev Sea

g – Chukchi Sea

b – Fram Strait

d – Kara Sea

f – East Siberian Sea

h – Beaufort Sea

Figure 6.13: Regional lead effective width distribution approximating lead width, at log-
log scale, size is given in 40m pixels.
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6.4 Discussion

a – Central Arctic

c – Barents Sea

e – Laptev Sea

g – Chukchi Sea

b – Fram Strait

d – Kara Sea

f – East Siberian Sea

h – Beaufort Sea

Figure 6.14: Regional lead orientation distribution. Angles are given relatively to a hor-
izontal line in the corresponding region projection, as shown in Figures 6.1
and 6.2.
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6 Lead distributions in the Arctic Ocean

Figure 6.15: Lead orientation derived by Bröhan and Kaleschke (2014) from AMSR-
E passive microwave measurements, image from the corresponding paper.
The data was taken between 2002 and 2011 years. AMSR-E measurements
are gridded at 6.25 km spatial resolution.
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6.4 Discussion

evaluation for the lead detection algorithm and prove that the lead detection described

in Chapter 5 provides reliable results Arctic-wide with unprecedented resolution of 40

meters. In case, scenes are always acquired in the same geometry, uncertainties from

single scenes accumulate into notable stripes in frequency of lead occurrence, as shown

in Section 6.3.2. However, if an area is covered at various geometries, these uncertainties

are not notable. Such high-resolution maps provide an opportunity to analyze shape of

leads and look at lead distributions to a finer scale over the entire Arctic Ocean. Further,

various Arctic Ocean regions are described in more details.

6.4.1 Central Arctic

The entire Central Arctic region is covered with sea ice in the beginning of November.

The small increase in total number of leads in the region cannot be explained with

increase in sea ice area as the sea ice extent might show only small changes in the

region throughout winter. Leads are smaller in area and length in the Central Arctic

compared to other areas, but the lead width distribution is comparable. Sea ice in the

area moves towards the Fram Strait, which is the main gate for sea ice from the Arctic.

This movement is called transpolar drift and is driven with the ocean current that moves

from the Laptev and the East Siberian Sea through the North Pole towards Fram Strait.

As the result sea ice cracks in the direction perpendicular to the drift, resulting in the

preferred lead orientation of 30◦ in the projection shown in Figures 6.1 and 6.2, which

also corresponds to the lead direction shown in Figure 6.15.

6.4.2 Fram Strait

Fram Strait is the main gate for sea ice to leave the Arctic Ocean (Spreen et al., 2020).

Sea ice drifts southwards, and leads appear mostly in the direction perpendicular to the

drift. The preferred orientation is very notable in the area. Long leads are not rare in

the area, crossing Fram Strait from east to west. Leads also often occur along the coast

of Greenland, as it is shown in Figure 6.4.

6.4.3 Barents Sea

A significant part of the Barents Sea is not frozen even during winter. Most of the ice

is located in the northern part of the sea. As the ice freezing throughout winter the sea

ice extend in the region increases and, therefore, number of leads also increases. In the

northern part there are areas, where leads open more often than in other areas, which is

notable in the lead frequency distribution shown in Figure 6.4. Leads are often shorter

in the area, although they have a similar width distribution compared to other Arctic
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Ocean regions. The orientation of cracks is more uniformly distributed with a small

peak perpendicular to the direction to the Fram Strait.

6.4.4 Kara Sea

Small islands in the eastern part of the Kara Sea are located on the way of young sea ice

being transported north, therefore many leads are oriented along the sea ice movement,

not across as shown in Figure 6.4 and coincide with the direction of lead frequency

of occurrence patterns, shown in Figure 6.6a,b. The preferred orientation is not as

pronounced as in other Arctic areas and is governed with the western part of the sea,

where leads are forming along Franz Josef Land (see Figure 6.14).

6.4.5 Laptev and East Siberian Sea

Both the Laptev Sea and the East Siberian Sea are normally covered with newly formed

sea ice in the beginning of November. Thin ice is then being transported north through

the transpolar drift, resulting in large number of leads opening. This explains the high

variation in number of leads in the area. New Siberian islands between the Laptev Sea

and the East Siberian Sea creates a barrier for sea ice movement, which leads to leads

openings, as shown in lead frequency of occurrence map in Figure 6.6c-f.

6.4.6 Chukchi Sea

Located between the Beaufort Sea and the East Siberian Sea, north of Bering Strait

the Chukchi Sea is located on the way of pacific water to the Arctic. Movement of sea

ice northwards often opens leads north of Wrangel Island in the north-west part of the

Chukchi Sea, as shown in Figure 6.7a,b. The lead preferred orientation is east to west,

perpendicular to the water flow, as shown in Figure 6.14. However, this is different

from the orientation derived from passive microwave data in 2002–2011 by Bröhan and

Kaleschke (2014), which is shown in Figure 6.15. Figure 6.11, 6.12 6.13 show that leads

occurring in the Chukchi Sea are shorter and narrower than in the other areas of the

Arctic Ocean.

6.4.7 Beaufort Sea

Sea ice movement in the Beaufort Sea is governed by the Beaufort Gyre, which is an

ocean current that moves water along the coast of Canada and Alaska in the clockwise

direction. The Beaufort Sea freezes usually freezes during November and from the

beginning of December until summer is fully covered with sea ice. Lead orientation
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distribution in Figure 6.14 shows a noticeable preferred lead direction perpendicular to

the sea ice movement along the Beaufort Gyre. This sea is also a region of wide leads

occurrence.
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7 Conclusions

To summarize the thesis, the three main questions which has been set for the thesis are

concisely answered below.

(1) Can leads be automatically detected on C-band SAR images?

Chapter 4 describes an automatic lead detection algorithm for Sentinel-1 SAR scenes

based on traditional machine learning approach when pre-defined image characteristics

are calculated prior the classification. Image texture is analyzed with gray-level co-

occurrence matrix characteristic, then Random Forest classifier is used to discriminate

leads from sea ice. Texture characteristic calculated based on gray-level co-occurrence

matrix combined with random forest classification provide a good starting point for lead

detection. Various polarimetric combinations of the available SAR channels can provide

an additional information for the classifier. Texture features can be extended with

more various combinations, however, the more features are added, the less profit they

add for the classifier. Recursive feature elimination is an extremely useful approach to

evaluate necessity in extra texture feature extension. There is always a tradeoff between

computation time and number of various texture characteristic calculated and used for

image analysis. Another tradeoff is amount of object detected and the reliability of

detection, which is represented with the precision–recall curve. By choosing a threshold

on probabilistic classification the classification precision can be increased by a decrease

in amount of detected leads and vice versa. The algorithm has been shown to provide

reliable lead maps in the European Arctic. In the Siberian Arctic, where young ice

rapidly freezes over large areas in the beginning of winter, SAR images indicate smooth

surface covering large areas in the absence of rough ice around. In this case ice moves

more uniformly, as drag forces from both the ocean currents and the atmosphere do not

vary due to various sea ice thickness, which leads to less stresses in the ice and, therefore,

less ridging occurs. As surface scattering has a significant impact on backscatter of young

ice, areas of young undeformed ice with no ridges are misclassified as leads. Therefore,

more advanced image analysis techniques are required to differentiate young ice and

leads in the area.
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7 Conclusions

(2) Do deep learning methods provide a more reliable lead maps?

Deep learning methods and convolutional neural networks in particular is a tool that

can provide a more robust lead detection algorithm, as described in Chapter 5. This

is achieved through the fact, that texture characteristics are not precalculated, but

are derived during the training process. This allows texture feature adjustments for

particular objects on images, in this case leads on Sentinel-1 images. But this comes

at a cost of larger amount of significantly larger amount of computations, However,

modern libraries for deep leaning provide an easy way to employ Graphics Processing

Units (GPU) for these calculations making them comparable with classifications based

on pre-computed texture characteristics.

The lead detection algorithm based on modified U-Net architecture shows better per-

formance compared to the algorithm based on ”traditional” machine learning methods

when applied to Sentinel-1 scenes taken all over the Arctic Ocean, as shown in Fig-

ure 5.2.3. It is able to detect more narrow leads which are 5 pixels (200m) wide compared

to 7 pixel minimal lead width for the lead detection based on GLCM + RFC. Variation

in Arctic-wide lead area fraction during January 2019 shows higher correlation with the

open water fraction derived from AMSR2 passive microwave measurement, as discussed

in Section 5.3.

(3) What insights do high resolution pan-Arctic lead maps provide about lead

characteristics in the Arctic Ocean?

In Chapter 6 pan-Arctic binary lead maps are analyzed. First, frequency of lead oc-

currence shows how often a lead opens in a certain place of the Arctic Ocean. Higher

frequency of lead occurrence is found in the areas of faster ice movement, the Beaufort

Sea and Fram Strait, as well as in the areas where islands represent obstacles on the

way of sea ice movement, northern Barents Sea, north-east part of the Kara Sea, east

of the Laptev Sea and east of the East Siberian Sea, north-west of the Chukchi Sea.

Second, lead area fraction shows how much open water is present within the sea ice

cover. The average lead area fraction is found to be between 3.7% and 2.5% during win-

ters 2016–2022. Third, the lead size distribution follow the power low. Exponent of the

effective lead width distribution is 1.86 with standard deviation of 0.16. Some of the pre-

vious studies have showed values in the same range (1.6±0.18 by Lindsay and Rothrock

(1995)), other studies reported a higher value 2.1. . . 2.61 (detailed in Table 6.1). This

extends the applicability of the power law for lead width distribution down to leads

200 meters wide at most. Last, every region of the Arctic Ocean shows the presence of

regularity in lead orientation. The preferred orientation shows little variation from year

to year and during a single season. In cases of islands being present on the way of sea

118



ice movement, leads tend to form after the obstacle in along drift direction. In other

cases, leads tend to form in the direction perpendicular to the drift direction.

Importance of image preprocessing

The cross-polarization channel HV of Sentinel-1 scenes adds extra information required

to detect leads with wind-roughed surface. Without the use of the HV channel the bright

leads branch of the lead detection algorithm would not exist. However, the backscatter

in the HV channel is weaker and closer to the noise level compared to the co-polarization

HH channel. This means the preprocessing is an essential step before the HV channel

can be reliability used for automatic image processing algorithms. At the same time, the

calibration parameters provided with Sentinel-1 scenes are not precise enough to elimi-

nate thermal and scalloping noise entirely. One could, but should not rely on machine

leaning techniques to take the presence of the noise into account automatically. Every

step that complicates an image classification task would introduce extra uncertainties

and require an exponentially growing training data set. If it is possible to do an ad-

vanced preprocessing prior the image classification, it should be done separately from

the image classification. For the same reason, in order to account for the variability of

SAR lead signatures in C-band backscatter, leads that appear dark and bright on the

HH channel should be considered separately.

Reliability of classification

In addition to the lead detection result evaluation on an evaluating data set, the lead

maps derived with the lead detection algorithm developed within the study have been

compared to data received with several other instruments. First, SAR lead detection

results have been compared with 10m resolution Sentinel-2 optical images taken on the

same day. Correspondence between the visible image and the calculated lead map is

shown in Figure 5.6. Second, lead area fraction derived from SAR have been compared

with open water fraction derived within the same time frame from AMSR2 passive

microwave instrument by Spreen et al. (2008). Sentinel-1 -based mean lead area fraction

in January 2019 is 2.44% with 0.25% standard deviation, open water concentration

derived from AMSR2 is 1.8% with 0.3% standard deviation, as detailed in Section 5.2.3.

Third, frequency of lead occurrence derived from SAR have been compared with lead

maps based on MODIS thermal infrared images, provided by Willmes et al. (2023)

(Section 6.3.2). Fourth, lead orientation derived from SAR images have been compared

to the lead orientation calculated from AMSR-E data previously published by Bröhan

and Kaleschke (2014) in Section 6.3.7.
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7 Conclusions

Pan-Arctic 40m resolution lead maps

The lead detection algorithm applied to all Sentinel-1 scenes acquired in the Arctic

produces pan-Arctic lead maps at 40 meters resolution. This resolution is significantly

higher compared to all other satellite sources providing Arctic-wide sea ice measure-

ments. Passive microwave radiometers provide measurement, which are normally grid-

ded to 6.25 km, MODIS thermal infrared images provide lead maps at 1 km resolution,

two-dimensional lead information is derived from CryoSat-2 radar altimeter data at

25 km grid.

Object shape analysis

The 40m resolution lead maps allow not only detect the presence of leads, but also

characterize their shape, as it has been shown in Section 4.1.6. The shape-based filter

can be used to additionally discriminate between leads and look-alikes. Although it has

been shown in Chapter 5 that the shape-based filter is not required for lead detection

in the Arctic Ocean during winter. However, during summer, when surface melt makes

microwave and thermal infrared measurement unreliable, the object shape analysis may

provide a way to filter out objects that radiometrically look like leads but come from

sea ice covered with water. Similar approach can be used for lead detection in Antarctic

to filter out flooded thick ice floes.
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8 Outlook

The developed lead detection algorithm has only been applied during winter season.

Snow and ice melt during summer increases lead detection uncertainties to a degree,

when many satellite methods do not provide any automatic results. This is the case

for microwave radiometers, microwave scatterometers, thermal infrared imagers, radar

altimeters. Apart from these instruments, SAR provides a significantly higher resolu-

tion and, with the Sentinel-1 satellite constellation launch, a moderate spatial coverage.

While measurements at lower spatial resolution can only indicate the presence of an

object, the high spatial resolution also gives an opportunity to analyze shape of the

detected object. Since leads often have an elongated shape, the shape of the detected

object can help to filter out misclassifications, as it has been shown in Section 4.2.4 and

decrease uncertainties in summer lead retrieval. This can potentially lead to a lead de-

tection algorithm that would work all year round, automatically providing information

on sea ice conditions, which is otherwise not available.

The SAR operation frequency determines surface penetration depth. It has been men-

tioned that under certain conditions, sea ice can be undistinguishable from open water.

However, this issue can be solved if a dual-frequency SAR system is used. Measurements

conducted with C-band SAR instruments (Sentinel-1, Radarsat Constellation Mission)

can be extended with an existing L-band SAR instrument, ALOS-2. However, overlap

between the acquisition made with two satellites at different orbits is small. A planned

Rose-L L-band mission will share the orbit with Sentinel-1 C-band can potentially sup-

plement every C-band measurement over sea ice with a L-band image. Furthermore,

an experimental NISAR mission will provide an opportunity to use two frequencies (L-

band and S-band) from the same SAR satellite. Therefore, C-band lead detection can

be extended with C-band + L-band lead detection which will decrease amount of cases

when open water is undistinguishable from sea ice.
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J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., von Lerber,
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