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Abstract

Efficient and timely calculations of Machine Learning (ML) algorithms are crucial
for emerging technologies like autonomous driving, the Internet of Things (IoT),
and edge computing. One of the primary ML techniques used in such systems
is Convolutional Neural Networks (CNNs), which demand high computational re-
sources. This requirement has led to using ML accelerators like General Purpose
Graphig Processing Units (GPGPUs) to meet design constraints. However, GPG-
PUs have high power consumption needs, and thus, selecting the most suitable
accelerator involves Design Space Exploration (DSE). This process is usually
time-consuming and requires significant manual effort. This thesis presents ap-
proaches to improve the DSE process by supporting the identification of the most
appropriate GPGPU for CNN inferencing systems. Different techniques are devel-
oped to quickly and precisely forecast the power consumption and performance
of CNNs during inference. These approaches empower the system designer to
estimate power consumption and performance for GPGPUs in the early stages of
development without executing the application on real devices. Without the need
to execute and profile applications on real devices, the number of prototypes can
significantly be reduced.

Besides the system’s power and performance requirements and the ML ac-
celerator selection, the designer has to face the placement problem and decide
whether an application is implemented on an IoT device or in the Cloud. The avail-
able network, bandwidth, and latency are crucial if the application is implemented
in the Cloud. Therefore, this thesis presents a decision-supporting system that
is pivotal in helping system designers Make these complex decisions. This sys-
tem is designed to consider the available network, bandwidth, and latency, and
it distinguishes between power or performance optimization needs, thereby em-
powering the system designer to make informed choices.
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Zusammenfassung

Effiziente und zeitnahe Berechnungen von Algorithmen des maschinellen Ler-
nens (ML) sind für neue Technologien wie autonomes Fahren, das Internet der
Dinge (engl. Internet of Things (IoT)) und Edge Computing entscheidend. Eine
der wichtigsten ML-Techniken, die in solchen Systemen verwendet werden, sind
Convolutional Neural Networks (CNN), die hohe Rechenressourcen erfordern.
Diese Anforderung hat dazu geführt, dass ML-Beschleuniger wie General Pur-
pose Graphig Processing Units (GPGPUs) eingesetzt werden, um die Design-
vorgaben zu erfüllen. GPGPUs haben jedoch einen hohen Stromverbrauch, so
dass die Auswahl des am besten geeigneten Beschleunigers eine aufwendige,
manuelle Durchsuchung des Designraumes erfordert (engl. Design Space Ex-
ploration (DSE)).

Diese Arbeit stellt Ansätze zur Verbesserung des DSE-Prozesses vor. Es wer-
den verschiedene Techniken entwickelt, um den Stromverbrauch und die Leis-
tung von CNNs während der Ausführung vorherzusagen. Das ermöglichen es
dem Systementwickler, den Stromverbrauch und die Leistung von GPGPUs in
den frühen Phasen der Entwicklung abzuschätzen, ohne die Anwendung auf
realen Geräten ausführen zu müssen. Dadurch kann die Anzahl der Prototypen
erheblich reduziert werden. Zusätzlich muss sich der Entwickler mit dem Prob-
lem der Platzierung auseinandersetzen und entscheiden, ob eine Anwendung
auf einem IoT-Gerät oder in der Cloud implementiert wird. Das verfügbare Netz-
werk, die Bandbreite und die Latenzzeit sind entscheidend, wenn die Anwendung
in der Cloud implementiert wird. Daher wird in dieser Doktorarbeit ein System
vorgestellt, das Entwicklern bei dieser komplexen Entscheidungen hilft. Das Sys-
tem ist so konzipiert, dass es das verfügbare Netzwerk, die Bandbreite und die
Latenzzeit berücksichtigt, wodurch der Systementwickler, unterberücksichtigung
von Energie- und Leistungsanforderungen, eine Entscheidungen zu treffen kann.
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1 Introduction

The manufacturing industry produces a giant amount of data from various sour-
ces, including sensors on production lines, environmental data, machine tool pa-
rameters, and Enterprise Resource Planning (ERP) systems [2]. The growing
volume of data can be attributed to the advancements in Internet of Things (IoT),
which aim to connect the physical world with the virtual world. This requires
many sensors and devices of all types. Some refer to these connected systems
as Cyber-Physical-Systems (CPS) [1].

The manufacturing industry can maximize its potential by connecting physical
devices and collecting sensor data. For instance, utilizing the extensive amount
of information, often referred to as Big Data [2], can greatly aid in optimizing
manufacturing operations by implementing predictive maintenance [3] and lean
management [4] techniques. However, with big data come new challenges, such
as data heterogeneity, formats, semantics, and quality. These challenges can
cause distractions from the main issues and lead to incorrect conclusions. There-
fore, new automated methods for data analysis are necessary. With the latest
advancements in mathematics and computer science and the availability of user-
friendly and free frameworks, big data can be optimally utilized. As a result, the
most recent developments in Machine Learning (ML) are being incorporated into
the latest IoT and Edge advancements to effectively manage the manufacturing
industry’s big data, leading to a significant rise in the use of ML applications [2].

Fig. 1.1 illustrates IoT systems’ intricate and diverse nature. The top level is
consistently linked to the cloud through different network types, leading to the
Fog, Edge, or IoT device. Nevertheless, certain IoT devices require gateways,
such as brokers or radio communication basis stations, to establish a connection.
A significant research area in these IoT systems is the placement of functions, as
these IoT and Edge devices often face limitations in terms of power, performance,
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Figure 1.1: Overview of IoT systems; adapted from [1].

bandwidth, and so on [1]. To determine the best location for computational work-
loads, system designers must evaluate the power consumption, performance,
and bandwidth requirements for different devices to decide if the computation is
getting to the data or the data to the computation resources [1]. Unfortunately,
this process is often done manually and involves a lot of time and cost, especially
if multiple prototypes need to be tested due to the vast design space. Thus, new
challenges in Design Space Exploration (DSE) arise for designing ML-based IoT
and Edge devices as well as cloud services [5, 6, 7, 8, 9].

For instance, assume an IoT application constantly streaming a video and aim-
ing to detect humans on the stream. In such a case, only those images or video
snippets detecting a human are of interest. Thus, offloading the Artificial Intelli-
gence (AI)-based object detection to the cloud and forwarding the complete video

2
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stream would stress the network and cause a lot of unneeded data in the cloud
systems. Consequently, to only forward essential data to the cloud for Big Data
analysis, AI-based object detection should be moved to the Edge [1].

One of the most popular techniques for object detection is Convolutional Neu-
ral Network (CNN). They can be used for various image processing tasks such
as image classification, object detection, or motion recognition [10]. However,
CNNs require high computational resources. The convolutional layers within a
CNN are responsible for over 90 % of the computation [11]. While larger IoT
and Edge devices can handle these heavy calculations, smaller devices (e.g.,
sensors) may require additional computing units for local data processing or of-
floading the computation to the cloud. Modern processing units and techniques
like General Purpose Computing on Graphic Processing Unit (GPGPU)s are one
solution to handle such computational-intensive workloads.

GPGPUs (e.g., NVIDIA V100) can offer 32-times better performance on Deep
Neural Networks (DNNs) than Central Processing Units (CPUs) [12]. For in-
stance, by utilizing the parallelism of 256 GPGPUs, the Resnet50 [13], a CNN
with 50 hidden layers, can be trained on the complete ImageNet [14] dataset in
just one hour [15]. In contrast, when the Resnet50 was first introduced by [13], it
took 29 hours to train [16].

The current state of industry and academia has shown that GPGPUs have
become a dominant force in accelerating the inference and training of DNNs.
This trend is notable in the widespread adoption of GPGPUs in various systems
and applications. For instance, in June 2015, nearly 19 % of the systems on the
TOP500 list used additional GPGPU accelerators, but this proportion increased to
almost 30 % in June 2022 [17]. The use of GPGPUs for training and inferencing of
DNN is a significant reason for this increase [18, 19]. This development indicates
the need for a new design paradigm for systems to handle ML workloads.

Besides all their apparent merits, GPGPUs’ drawback is their high power con-
sumption to achieve their high-performance levels. The latest developments in-
clude GPGPUs explicitly designed for ML training and inference, which can con-
sume up to 700 watts per GPGPU. Fig. 1.2 illustrates the high variety of GPGPUs’
power consumption ranging from 70 watts to 700 watts for the latest NVIDIA
data center GPGPUs. As most AI systems have multiple GPGPUs per machine
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[20], the power consumption of ML and AI systems presents new challenges
[5, 6, 7, 8, 9, 21].

An example of extreme power consumption in data centers can be seen in the
Summit, a supercomputer located at the Oak Ridge National Laboratory, Ten-
nessee, USA, with 27,648 NVIDIA Volta GPGPUs that consume 13 million watts
[19]. However, by implementing power savings of 5 %, significant yearly cost
savings of up to 1 million dollars can be achieved [22]. Unfortunately, High-
Performance Computing (HPC) data centers do not support relocating applica-
tions to greener locations as cloud providers do. Thus, energy reduction can
only be implemented by changing the AI model and accelerator (i.e., GPGPU)
or making the costly and intensive switch to the cloud [23]. On the other hand,
smaller IoT devices can also experience increased power consumption due to ML
inferencing. For instance, executing object recognition on an NVIDIA Jetson TX1
can consume 7 watts, but offloading the same task to the cloud reduces power
consumption to 2 watts [24]. Offloading ML tasks of IoT applications with limited
battery resources can be a promising strategy. Using cloud infrastructure for AI
applications can lead to an energy cost reduction by a factor of 1.4 - 2 [23]. Con-
sequently, computing on cloud infrastructure increases sustainability and reduces
the carbon footprint of AI applications.

Additionally, the feasibility of offloading ML workloads depends on available
bandwidth, system architecture, and data flow of the IoT environment [1]. There-
fore, local execution may be necessary when offloading is not viable. However,
offloading ML tasks to the cloud does not reduce energy consumption. While the
IoT device needs less power, additional power consumption in the cloud is gen-
erated. Thus, the overall energy consumption might increase as more powerful
cloud machines run the calculations and the energy consumption of the IoT de-
vice waits for the calculations’ results. Consequently, offloading moves the energy
consumption to the cloud.

The range of IoT devices and the number of available GPGPUs are exten-
sive (see Fig. 1.1). In addition, Edge devices can vary in size and complexity,
ranging from small embedded systems with microprocessors over System on a
Chip (SoC) to larger multicore systems with gigabytes of memory [1]. As the com-
puter architecture design space is vast, automatic system design and exploration
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Figure 1.2: Comparision of maximum power consumption of all current 14 data
center GPGPUs from NVIDIA.

approaches are necessary to meet sustainable requirements and time-to-market.
Based on the 4Ms: model, machine, mechanization, and map, different practices
can be pursued to gain sustainability in reducing energy consumption and carbon
emissions [23]. The 4Ms are defined as follows:

1. Model: The selected ML model has impact on the energy consumption. By
selecting an efficient ML model architecture, the required computations can
be reduced by a factor of 5-10 [23].

2. Machine: Choosing an appropriate accelerator (e.g., GPGPU) for ML train-
ing can improve the performance/watt by a factor of 2-5 [23].

3. Mechanization: Computing in the cloud reduces the energy cost by a fac-
tor of 1.4-2 compared to on-premise data centers. As cloud data centers
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are designed for energy efficiency, they usually outperform on-premise data
centers in smaller, older spaces not designed to be energy-efficient [23].

4. Map: Cloud provider offer their customers to pick the location (e.g., data
center) for their application. By this, the cloud customer can pick an energy-
efficient data center with high portions of renewable energy. Consequently,
it further reduces the carbon footprint of the applications running in the cloud
[23].

When designing an AI-based system for a given AI model, designers face the
placement problem (i.e., machine, mechanization, and map). They must decide
where computationally intensive applications should be executed. Hence, it is of
utmost importance to answer the following challenge in the early design phases
of new AI-based systems to ensure a sustainable system:

Challenge 1. Placement problem: System designers must decide whether to run AI
applications in the cloud, Edge, or offline on special devices. To make this decision, various
factors like bandwidth, network latency, or the size and type of AI application must be
considered. Without a decision-supporting system, it is difficult to decide the application
placement and requires lots of tests.

1.1 Impact on Structural Characteristics of Data

Centers

Due to offloading strategies, more and more AI and ML applications are executed
in data centers where powerful machines are available to handle computationally
intensive tasks for training and inferencing. Consequently, the power and energy
consumption of the selected data center is increasing. The increasing energy
consumption has consequences on the structural characteristics of data centers
due to laws (e.g., German energy-efficient law), sustainable aspects, or rising
energy costs. As AI optimized machines are equipped with multiple GPGPUs,
the power consumption and Thermal Design Power (TDP) place special require-
ments on data centers. For instance, to provide ChatGPT, a total of 3,617 NVIDIA
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HGX A100 servers, equipped with 28,936 GPGPUs, are required. This amount
of servers, and especially GPGPUs, lead to a daily energy consumption of 564
megawatt hour (MWh) [25]. For instance, if such a system were physically lo-
cated in Germany, the cost of running it would be enormous. The energy price
in Germany was $0.53 per kilowatt hour (kWh) in 2022 [26], resulting in a daily
energy cost of $298,920 in Germany.

564 , 000kWh · 0 .53 $

kWh
= $298 , 920 (1.1)

Compared to the US with lower energy costs of $0.18 per kWh [26], the operating
costs of a data center required for ChatGPT would have been 2.9× higher in
Europe than in the US.

564 , 000kWh · 0 .18 $

kWh
= $101 , 520 (1.2)

Due to the high energy costs in Europe, running this large AI data center would
have entailed more significant costs than, e.g., the US. Thus, Europe has to over-
come the energy costs challenge to keep up with the rest of the world’s AI data
centers [27]. Consequently, reducing the necessary energy consumption for AI
tasks and improving sustainability should be one of the highest aims of European
data centers. Worldwide, the data centers cause about 1 % of the energy use [25].
In 2021, the worldwide energy consumption was 25,343 terawatt hour (TWh) [28].
Consequently, 1 % of the worldwide energy consumption is 253.43 TWh, which is
about 54.27 % of the total energy consumption of Germany with 467 TWh in 2023
[29]. As prognoses estimate a further increase in the portion of data centers’ en-
ergy consumption worldwide, necessary actions like best practices or reuse of
waste matter (e.g., heat) are required to improve sustainability. On the one hand,
energy consumption can stay constant by applying best practices like the 4Ms
[23]. On the other hand, by reusing thermal dispatch, sustainable processes can
be implemented in data centers.

The TDP of GPGPUs is primarily determined by their maximum power con-
sumption. Therefore, ChatGPT requires a cooling system that can dissipate up to
564 MWh of heat per day. The heat generated by the data center can be utilized

7



1.1 Impact on Structural Characteristics of Data Centers

for sustainable heating systems or wasted. New structural designs are necessary
to achieve the former, such as connecting data centers to district heating grids to
provide energy to nearby households. However, existing data centers must have
the infrastructure to enable sustainable reuse.

An excellent example of the reuse of thermal discharge is the Eurotheum in
Frankfurt, Germany. The 111-meter-high building is partly heated by the thermal
discharge of the in-house data center operated by Cloud&Heat. The data center
uses a water cooling system to bring around 600 MWh of thermal discharge into
the heating system of the Eurotheum building. Therefore, the water is heated
to 60 degrees Celsius (i.e., 140 degrees Fahrenheit). The 600 MWh thermal
discharge would heat about 30 households for one year [30, 31]. Utilizing thermal
discharge to partially heat the Eurotheum Building allows heating cost savings of
up to 10 % annually [30, 31].

Many data centers currently use air cooling systems that follow a front-to-back
principle. Cold air is drawn in from the front, and heated air is expelled from the
back of the equipment. The air conditioning systems then capture the heated air
and transfer it to a heat exchanger, which transfers the heat to water. However,
this method only heats the water to temperatures ranging from 30 to 40 degrees
Celsius, which is insufficient for heating systems. In such cases, additional ther-
mal heat pumps are required to reuse the thermal discharge [30, 31]. Moreover,
the water cooling system is more energy efficient than the air cooling system,
especially during summer when outdoor temperatures rise. Air cooling systems
require more energy to cool the infeed air temperature below 27 degrees Celsius,
while water cooling needs to cool the water to 50 degrees Celsius to avoid heating
hotspots in the machines. This makes water cooling more energy-efficient than
air cooling, assuming a base level of 60 degrees Celsius for heat re-usage [31].

The potential of heat re-usage has yet to be exhausted. Structural changes and
district heating systems are required to exhaust the potential. Therefore, commu-
nities and governments must create the necessary infrastructure to provide the
heat of data centers for long distances; otherwise, only short-distance re-usage,
like the Eurotheum, where the data center is in the same building, is possible.
Overall, the following challenge in structural data center designs can be derived:

8



1.2 Challenges on Edge and IoT System Design for AI

Challenge 2. Reduction of Energy consumption: As energy consumption rises and
becomes enormous, necessary improvements are necessary to remain sustainable. Conse-
quently, the applications’ energy consumption or the AI accelerator needs to be reduced.

1.2 Challenges on Edge and IoT System Design for

AI

In Edge and IoT systems, the most crucial challenge is to provide sufficient com-
putational capacity while matching the specific limitations on thermal, energy con-
sumption, or form factor size [32]. Because of the tight constraints and limitations
of Edge and IoT systems, AI applications focus on the inference part. At the
same time, the training steps are usually performed in the cloud or self-hosted
data centers. Sustainable computing and energy consumption reduction are per-
fectly compatible with IoT and Edge device design as the limitations of Edge and
IoT systems often include limited power supply (e.g., devices with battery). Con-
sequently, sustainable computing can be incorporated into the design process
and the overall requirements of IoT and Edge devices.

Although CPU and GPGPU are used for AI processing, GPGPUs cause higher
power consumption. Thus, for applications requiring short computations, CPUs
often provide enough computational capacity [7, 8, 32].

The computational requirements of Edge and IoT AI applications can be rep-
resented in two different types. First, the applications need to run constantly to
meet the real-time constraint. For instance, in the case of video stream process-
ing, this means processing the stream without frame drops. Second, applications
that are latency sensitive [32]. Taking autonomous driving as an example, the
latency of video processing should be less than 100ms for safe driving [32, 33].

Google spotted that about 60 % of the energy consumption related to AI ap-
plications from 2019 to 2021 was generated by inference tasks [23, 25]. The
inference tasks are located from the cloud to IoT devices. However, Vries [25]
spotted that the current research on power reduction is performed in the training
process, and only a tiny part of the latest studies focus on the inference part of AI.
Regarding Google’s findings, most research considers the training process and
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Figure 1.3: Comparing different neural network engine implementations on
NVIDIA Jeston Nano 4GB.

focuses on the minor part of the cause of energy consumption. Consequently,
more analysis on energy consumption reduction at inference must be performed.

Different implementations and frameworks can vary significantly regarding en-
ergy consumption and performance. Fig. 1.3 illustrates the average energy con-
sumption and execution time of 32 different CNNs when performing inference with
Tensorflow and Open Neural Network Exchange (ONNX). These CNNs have al-
ready been pre-trained, downloaded from TensorflowHub, and saved for Tensor-
Flow execution. Furthermore, these same models have been exported to ONNX,
and inferences have been made using the ONNX Python implementation.

Fig. 1.3 demonstrates that the average energy consumption of ONNX execu-
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tion is significantly lower than that of Tensorflow. Moreover, it shows that ONNX
execution is generally faster than Tensorflow execution. Therefore, it is essential
to carefully consider the choice of framework when designing an AI system, as it
can directly impact energy consumption and overall sustainability.

Overall, the following challenges are identified in sustainable computing for AI
applications in Edge and IoT systems:

Challenge 3. Selection of AI accelerator for inference: Most research focuses on
the energy consumption of AI training. However, as the major energy consumption is
generated by AI inference, more research on the inference is necessary. Latest studies [6, 7,
9] illustrate that the power consumption and performance of AI inferencing is predictable;
thus, energy consumption can be determined. Consequently, based on the 4Ms practice,
the selection process of AI-accelerators must be optimized for power consumption and
performance of the AI application.

Challenge 4. Energy efficient implementations: As demonstrated, the energy con-
sumption is significantly influenced by implementing the AI application. Thus, a crucial
challenge is to optimize the implementation of AI inferencing task on energy efficient as-
pects. Different frameworks (e.g., ONNX or Tensorflow) and offloading strategies can
substantially impact energy consumption. Hence, finding the best implementation re-
garding energy is of utmost importance to establish sustainable AI systems.

1.3 State-of-the-Art Solutions

In the following, State-of-the-Art solutions are presented. This section is split
into two parts: first, approaches for power and performance estimation are pre-
sented, and second, techniques for offloading computational-intensive applica-
tions or parts of applications to the cloud are presented.

1.3.1 Power and Performance Prediction

As the aforementioned challenges illustrate, the energy consumption of AI appli-
cations is a crucial aim to reduce. In the past, first solutions were presented to
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estimate the power consumption and performance of GPGPU application in gen-
eral and AI applications. The existing solutions to predict the power consump-
tion of Compute Unified Device Architecture (CUDA)-based applications (i.e., an
application developed for NVIDIA GPGPUs) can be divided into two main cat-
egories, which are: 1) the statistical analysis of the application and devices,
e.g., [34, 35, 36], and 2) ML-based methods which use different ML algorithms
to learn from a dataset and create a predictive model, e.g., [22, 37, 38, 39, 40].
Based on the literature [41, 42], ML-based methods provide better results in com-
parison to the statistical analysis and become the predominant technique to pre-
dict the power consumption of CUDA-based applications. Hence, this section
gives an overview of ML-based methods and discusses their features and issues.

Existing ML-based methods use so-called performance counters as features to
perform power consumption and performance estimation [22, 34, 37, 38, 39, 40].
Performance counters can only be collected and measured during run-time. This
means an application must be executed once on a device to collect the per-
formance counters. Afterward, the predictive model can run the prediction for
other devices. This methodology can limit the usage in early design phases as a
GPGPU must already be selected. Moreover, measuring performance counters
requires a special GPGPU and CUDA profiler. Furthermore, performance coun-
ters are not unified across different devices and GPGPU models. Hence, a certain
performance counter might not exist on a GPGPU or is measured differently [8].

The method in [37] uses tree-based regression to predict power consumption.
It analyzes the GPGPU architecture and measures the power consumption of
Parallel Thread Execution (PTX) instructions. However, as the method takes ad-
vantage of GPGPU-Sim, it is limited to a small subset of available PTX instruc-
tions. Moreover, the measured power consumption also relies on the predic-
tive model of GPGPU-Sim as it is a simulation of GPGPUs executed on CPUs.
Thus, the measured power consumption can differ from values measured on ac-
tual GPGPUs

The method in [43] considers scaling frequencies of GPGPU cores and mem-
ory for performance estimation. For power consumption estimation, it takes ad-
vantage of the method proposed in [40], which relies on Support Vector Ma-
chines (SVM) and performance counters. However, performance counters are
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only available at run-time, limiting the use of this approach in early design steps.
Moreover, the performance counters of NVIDIA GPGPUs are not unified across
all models; consequently, the required performance counter might not be avail-
able on a certain model [8].

The method in [44] introduces an approach to estimate the performance (run-
time) of CPU code before porting it to GPGPU code based on machine learning
methods. This makes it possible to decide whether executing on GPGPU boosts
performance. A similar goal is pursued in [45], but the prediction can already
be performed on a GPGPU. The method uses CPU profile data and machine
learning methods to estimate the run-time on GPGPUs. However, neither method
supports power consumption prediction. They only consider run-time speed up
between CPU and GPGPU.

PPT-GPU is a scalable GPGPU performance modeling system [46]. However, it
does not yet support power consumption estimation. In [47], a layer-wise estima-
tion approach is illustrated. It focuses on embedded GPGPUs and only considers
platforms of the NVIDIA Jetson family. ALOHA [42] presents a statistical platform-
aware evaluation method for CNN’s execution on heterogeneous systems. For a
given heterogeneous system and CNN, it can provide designers with operations
and data transfers and their deployment on computing and communication re-
sources. Moreover, it reports an estimation of latency and energy consumption of
the CNN on the platform. However, the method requires an execution model that
adequately describes the details of the platform and the scheduling of different
CNN operators on different platform processing elements, which may not always
be available. It is closely linked to hardware profiles, which are only available for
Field Programmable Gate Array (FPGA)s and embedded GPGPUs.

1.3.2 Offloading

The following section will showcase the most advanced offloading approaches.
When certain parts of an application, such as those related to AI, require signifi-
cant computational power, they can be executed on remote machines. Even small
devices like IoT can benefit from AI despite their limited computational resources.

DAvinCi [48] is a framework for robots to support the scalability and paral-
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lelism advantages of cloud computing and implement the FastSLAM algorithm to
provide Map-Reduce operations. Due to high latency and low energy efficiency
between the devices and remote cloud, the advantages in real-world applications
turn out low [49].

The Energy Efficient Computational Offloading Framework (EECOF) [50] fo-
cuses on computational offloading in Mobile Cloud Computing (MCC). The frame-
work leverages application processing services of cloud systems with minimal
instances of application migration at runtime. Energy consumption is reduced
for mobile applications. EECOF is using Inter Process Communication (IPC)
techniques such as Remote Procedure Call (RPC) or Remote Method Invoca-
tion (RMI). EECOF provides the computational parts as Software as a Ser-
vice (SaaS) in a Service Oriented Architecture (SOA) to avoid time delays due
to runtime deployment. Thus, there is no delay in deploying at runtime. Im-
plementing the SaaS components before production requires additional develop-
ment time.

In [51], an energy-efficient DNN placing approach is proposed for Unmanned
Arial Vehicle (UAV). As UAVs are usually limited by resources such as storage,
a placement problem occurs when distributing trained DNNs from the cloud to
UAVs for inferencing. The proposed approach calculates the optimal placement
to meet the resource requirements and provide the most energy-efficient solution.

1.3.3 Limitation of State-of-the-Art approaches

There are different ways to explore design space for ML inferencing computer
architecture, but two main approaches stand out: 1) simulation and 2) ML-based
predictors. However, both have their drawbacks. For example, simulators like
GPGPU-Sim or GPU-ocelot run GPGPU applications on CPUs for simulation,
which leads to significantly slower simulations than on real devices due to CPUs
not having the same high parallelization ability as GPGPUs. ML-based predictors
aim to provide fast and accurate estimations. Still, most require specific con-
figuration and profiling of the application on a real GPGPU to collect necessary
performance counters. Since performance counters are not standardized across
all NVIDIA GPGPUs, it’s possible that the required counter is unavailable or is
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collected differently than in the original approach, making it impossible to apply
the approach or lead to inaccurate results [8]. System designers require power
and performance estimation approaches with straightforward collectible features
to meet design constraints and improve sustainability.

As Challenge 3 Selection of AI accelerator for inference illustrates, it is neces-
sary to investigate the power and performance behavior of AI inferencing tasks.
Thus, the following research questions focus on designing AI systems for infer-
encing tasks. First of all, the system designer must decide whether applications
should be offloaded (see Challenge 1 the placement problem). The State-of-
the-Art approach does not offer a decision support system for various mobile
network types that vary in bandwidth and latency. After system designers solve
the placement problem and decide where to run the application, it is necessary
to configure the device or platform for the AI application. The selection process
for AI accelerators is especially sensitive as requirements for performance and
power consumption can limit the valid options. This can be seen in Challenge
4 Energy efficient implementations and Challenge 3 Selection of AI accelerator
for inference. Moreover, the selection of the AI accelerator also affects the total
energy costs of a system. As Challenge 2 Energy consumption illustrates, it is
of utmost interest to keep the power consumption low to reduce the energy con-
sumption and carbon footprint, to improve sustainability as energy prices have
risen in recent years. Hence, the following research question can be derived:

Research Question 1.1. How is it possible to create rules to support decision-making
on whether to execute AI applications on IoT and Edge systems or offload them?

Research Question 1.2. How can the power and performance for AI-based applications
that are planned to be executed on GPGPUs be predicted with off-the-shelf techniques
without the need for runtime-dependent features?

Research Question 1.3. What are the most significant impact factors on the power and
performance of AI-based applications executed on GPGPU?

Research Question 1.4. Can machine learning-based power and performance estima-
tion speed up the DSE for systems designed for AI-based applications on GPGPUs?
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1.4 Contributions

A series of techniques are created for designing IoT and Edge devices using
computer-aided methods, surpassing the current limitations of State-of-the-Art
approaches. The focus of this thesis is helping designers to select the most
suitable GPGPU to improve the time-to-market span through analysis and ML-
based predictive models. This thesis centers on designing inferencing systems for
machine learning applications, emphasizing power and performance predictions
and power-saving strategies. Therefore, the key contribution of this thesis can be
categorized into five categories.

1. Statistical Analysis and Decision Support System for AI offloading:
Challenge 1 illustrates, that it is important for IoT and Edge system de-
signers to solve the placement problem. However, as the application, the
network bandwidth, and the latency have a significant influence on the suc-
cess of offloading, it is important only to offload if the determining factors
match. This thesis presents a statistical analysis model and a decision sup-
port system for the technical setup. This model and decision support sys-
tem enables the system designer to choose if offloading is a valid option and
thus answer Research Question 1.1. Moreover, it can be implemented into
IoT devices to make smart devices that can decide if offloading is an option
during run-time. By delving into the details, the contribution is covered in
Chapter 3.

2. Power estimation model: With the rising energy consumption (see Chal-
lenge 2) and considering IoT devices running on battery, it is mandatory
to select an appropriate AI accelerator that matches the energy and power
constraints. To avoid long prototyping cycles, this thesis presents a predic-
tive model for power consumption prediction of CNNs based on ML. The
predictive models achieve an Mean Absolute Percentage Error (MAPE) of
8.5 % and give necessary insights to answer the Research Questions 1.2,
1.3 and 1.4. Moreover, applying the predictive models avoids the need to
run the AI application on real devices. The contribution is presented in
Chapter 4.
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3. Power and performance analysis considering Dynamic Frequency Scal-
ing (DFS): Chapter 4 only considers power consumption of GPGPUs at
their default configuration, it is necessary to analyze different GPGPU con-
figuration settings in terms of power consumption and performance to an-
swer the Research Question 1.3 precisely. Hence, Chapter 5 presents an
in-depth analysis of the performance behavior of CNNs on GPGPU at dif-
ferent frequencies. The study illustrates that the frequency has barely to
no influence on the performance (i.e., computation time) of different CNNs
while having a significant impact on the power consumption. Considering
Challenge 2 that the energy prices are rising, it is suggested to run CNNs
with lower frequencies to reduce power consumption as the effect on the
computation time can be neglected. This provides further insights to an-
swer the Research Questions 1.2 and 1.3.

4. Code analysis for data gathering: To obtain data on the application’s
code, carefully examining the source code or running the application on
actual hardware is necessary. As the predictive models in Chapter 4 and
Chapter 5 rely on static code analysis, the data gathering has significant
drawbacks, which can be overcome by profiling the AI application on real
GPGPU or by the simulation of GPGPU. However, these solutions are time-
intensive.

To provide a fast and accurate alternative, static code analysis is integrated
with simulation techniques to compensate the slow speed when simulating
highly parallel code on hardware that does not support the same parallelism
capabilities as GPGPUs. By doing so, the need for performance counters
that may vary between different models of GPGPU is eliminated. As a re-
sult, it is possible to generate a set of easily collectible metrics giving impor-
tant information to answer Research Question 1.4. The contribution can be
found in Chapter 6.

5. Performance estimation models: The presented approaches provide var-
ious models to estimate performance of CNNs on GPGPUs. These models
can also be applied to other types of Neural Network (NN). Using the pro-
vided models, the system designer can predict the performance of CNNs on
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Figure 1.4: Improving the DSE analysis time by combining HyPA for data gath-
ering and predictive models for performance estimation.

different GPGPUs. This allows a more efficient selection process that can
save time and resources by reducing the need for multiple prototypes and
improving the time-to-market span. As the contribution from Chapter 6 is
incorporated into the predictive models, the performance can be estimated
without any execution on real devices. Fig. 1.4 illustrates how much the
DSE process can be improved regarding analysis time compared to State-
of-the-Art approaches based on profiling on real devices. The naive proto-
typing approach requires multiple prototypes that need to be analyzed, and
the application is profiled on the real device. Please note, that the time to
build the prototypes is not included in the results illustrated in Fig. 1.4. The
novel proposed approach uses predictive models based on ML to estimate
the performance (i.e., number of cycles) and Hybrid PTX Analysis (HyPA)
(detailed introduced in Chapter 6) for data gathering. This leads to an im-
pressive increase in the number of GPGPUs that can be analyzed. The
speedup is increasing with more considered devices, leading to a scaleable
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approach and improving the time-to-market span. The prediction achieves
a MAPE of 5.73 %, leading to an accurate performance estimation without
any execution on a real device. The contribution is described in the following
Chapter 7. Further insides to answer Research Question 1.2, 1.3 and 1.4
are provided in Chapter 7.
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mation of CUDA-Based CNNs on GPGPUs: Work-in-Progress. In Proceed-
ings of the 2021 International Conference on Hardware/Software Codesign
and System Synthesis, CODES/ISSS ’21, page 29–30, New York, NY, USA,
2021. Association for Computing Machinery

3. [6] Christopher A. Metz, Mehran Goli, and Rolf Drechsler. ML-based Power
Estimation of Convolutional Neural Networks on GPGPUs. In 2022 25th
International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), pages 166–171, 2022

4. [7] Christopher A. Metz, Mehran Goli, and Rolf Drechsler. Towards Neural
Hardware Search: Power Estimation of CNNs for GPGPUs with Dynamic
Frequency Scaling. In Proceedings of the 2022 ACM/IEEE Workshop on
Machine Learning for CAD, MLCAD ’22, page 103–109, New York, NY, USA,
2022. Association for Computing Machinery

5. [9] Christopher A. Metz, Mehran Goli, and Rolf Drechsler. Fast and Accu-
rate: Machine Learning Techniques for Performance Estimation of CNNs for
GPGPUs. In 2023 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 754–760, 2023

6. [8] Christopher A. Metz, Christina Plump, Bernhard J. Berger, and Rolf
Drechsler. HyBrid PTX Analysis for GPU accelerated CNNs inferencing

19



1.4 Contributions

aiding Computer Architecture Design. In 2023 Forum on Specification &
Design Languages (FDL), 2023; Honored with the Best Paper Award

7. [52] Rolf Drechsler and Christopher A. Metz and Christina Plump. Energy-
Efficient CNN inferencing on GPUs with Dynamic Frequency Scaling. In
Innovations in Data Analytics, 2023

The present thesis is based on works that are currently undergoing review. These
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2 Background

As the thesis focuses on inferencing of CNN on GPGPUs and offloading strate-
gies for CNNs in IoT and Edge environments, the necessary preliminaries are
presented in the following chapter. Energy consumption metrics are presented in
Section 2.1. Afterward, the concept of NN, ML exchange formats and GPGPUs
are explained in Section 2.2, Section 2.3 and Section 2.4, respectively.

2.1 Energy Consumption Metrics

Energy is the total power consumed during an interval of time and measured in
joules (J) or watts per hour (Wh). The ratio is 1Wh = 3 , 600J . Consequently, the
energy consumption can be calculated as follows for general cases:

E = U · I · t (2.1)

where U , I , andt denotes the voltage in Volts (V), the current in Ampere (A), and
the time. Thus, the power consumption in Watt is calculated as:

P = U · I (2.2)

Power consumption rate can be split into static and dynamic power consump-
tion. Static power is the power consumed during the idle process of the circuit
and is also known as leakage power. Dynamic power, on the other hand, is the
power consumption caused by the activity of the circuit [58]. The dynamic power
consumption for a circuit can be calculated as follows:

Pdynamic = ff · C · V 2 · f (2.3)
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where ff is the activity factor in percentage. V is the voltage, C the capaci-
tance, and f the clock frequency [58]. The total power consumption is the sum
of the static and dynamic power consumption. Each hardware component has
its own static power consumption. However, a system’s exact energy and power
consumption is based on the application, the involved hardware components, and
how these components are used. Thus, defining the equation to calculate the en-
ergy consumption is difficult [7, 58].

Besides this metric, recent studies used so-called performance counters, a set
of special-purpose registers in modern processors, to specify energy efficiency.
Performance counters are counting specific event types that are hardware related
(e.g., L2 cache misses) [58]. However, performance counters are manufacturer-
specific and cannot be used for manufacturer overlapping analysis. Moreover,
in the case of NVIDIA GPUs, the performance counters also differ between the
different NVIDIA GPUs, making it even more difficult to compare different compo-
nents in terms of energy efficiency based on performance counters [8].

2.2 Neural Networks

Nowadays, AI is a thrilling topic leading to many practical applications and cre-
ating active research topics [10]. A significant field of AI is Deep Learning (DL)
which solves central problems in representation learning [10]. The quintessen-
tial for DL are multilayer perceptron. A multilayer perceptron is a mathematical
function mapping a set of inputs to one output value [10]. A single perceptron
is also referred to as a neuron. With the concept of multilayer perceptrons, more
complex types of networks can be built; these are often referred to as NN or DNN.
Moreover, different network types and topologies have been developed in the last
decades.

The origin idea of a perceptron was developed in the 1940s-1960s by McCul-
loch and Pitts [10, 59]. A NN is built by several neurons (perceptrons) composed
in a layer. A NN can consist of multiple layers but has at least two: an input layer
and an output layer [10].

The success of NNs can be traced back to the large data set generated by Big
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Data and IoT technologies and increasing computing capabilities due to modern
accelerator and processing units like GPGPUs. With the new accelerators, it is
possible to run calculations for larger NNs (e.i., more layers of neurons) [10]. Over
the years, different types of NNs have been developed to perform specific tasks.
Some of them, like Rekurrent Neural Network (RNN), are ideal for processing
time series data and Natural Language Processing (NLP) tasks. Others, like
CNNs, are highly effective in image and video processing. However, both types
of NNs require a significant amount of computing resources. Therefore, they are
excellent candidates for benchmarking and demonstrating power-saving options
compared to performance optimization techniques. For this thesis, CNNs will be
used as a reference type in the following chapter to showcase the developed
methodologies.

2.2.1 Convolutional Neural Networks

CNNs are mainly designed for image classification or recognition but are used
in many more areas. They differ in size, accuracy, and complexity depending
on the use case, the number of layers, and neurons per layer [60, 61]. The so-
called trainable parameters (also called weights) are one option to describe the
complexity of a CNN. They are the number of connections of a NN [62]. Fig. 2.1
illustrates the general architecture of a CNN model with n input and m output
neurons.

In the case of a convolutional layer, the trainable parameters depend on the
number and size of the kernel used in the convolutional layer. A convolutional
layer can have three stages, which are 1) convolution, 2) activation, and 3) pool-
ing. In the first stage, several convolutions are executed in parallel. The second
stage applies the linear activation function, such as Rectified Linear Unit (ReLU)
activation function. The third stage performs a pooling function such as the max-
pooling [10]. This stage is optional and not included in all convolutional layers. For
example, the Alexnet has three max-pooling layers and six convolution layers [63].
The max-pooling function selects the highest value from a kernel or window with
n×m size. Technically, the second and third stages do not have trainable param-
eters. However, to calculate the trainable parameters for a fully connected layer

25



2.2 Neural Networks
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Input Convolutional
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Figure 2.1: The general architecture of a CNN model.

following a convolutional or pooling layer, it is necessary to calculate the output
dimension of the convolutional or pooling layer first. As a consequence, the ar-
chitectural parameters of the pooling layer are important, too. In fully connected
layers, each layer node has n connections, one to each node of the following
layer. As a consequence, the fully connected layers at the end of the CNN in
Fig. 2.1 have n ×m weighted connections. To obtain the total number of train-
able parameters of the CNN, the connections between each model layer must be
considered.

The following describes how the trainable parameters for a CNN can be calcu-
lated [10]. Please note that most DL frameworks already include functionality to
calculate the trainable parameter. Hence, in most cases, it is not necessary to
perform the calculation from scratch.

2.2.2 Benchmark CNNs

As the CNNs are used as an example class of NNs throughout this thesis, this
section introduces the CNNs, which are used for the Benchmarks and experi-
mental evaluation in the following chapters. Table 2.1 gives an overview of the
32 different CNNs and their structure. As Tab. 2.1 illustrates, most CNNs have
an input layer size of 224× 224; this is because most of the CNNs are trained on
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the same training dataset; namely ImageNet [64]. However, to create a versatile
benchmark, CNNs with different input layer sizes are considered.

Eleven CNNs are out of the ResNet family and based on the Deep Residual
Learning for Image Recognition architecture [65]. As these CNNs distinguish
their large number. Two networks were created using Neural Architecture Search
(NAS) technology. The NASNetmobile [66] is designed to run on mobile devices.
The Efficientnetb0 to 6 [67] are characterized by varying input data sizes and the
number of hidden layers and neurons.

Overall, the selected meshes are diverse in their characteristics and, therefore,
provide a good basis for benchmarking GPGPUs to create a training data set.
To ensure that all results are reproducible, pre-trained implementations of the
networks were downloaded from TensorFlow Hub.

2.3 Machine Learning Exchange Formats

Model Request API (MoReA) is working on making it easier for developers to
access different machine-learning models. In the following, two formats that aim
to increase machine learning models’ portability are introduced, enabling MoReA
to support different machine learning models.

2.3.1 Open Neural Network Exchange

ML frameworks, such as Torch, Caffe, Theano, or TensorFlow, support develop-
ers in model training and inference. However, it is usual to do these tasks on
different systems. For example, a developer trains a model on an extensive HPC
system but performs the inference task on a small IoT device due to the system’s
requirements. The different execution environments of these tasks may result in
the problem that the programming language or framework used during training
might not be available on the inference device. The ONNX solves this problem
by defining a format to transfer ML models between different systems more sim-
ply [68]. Therefore, the target platform must provide an ONNX runtime for loading
and executing the stored model.
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Table 2.1: An overview of CNN models used in the experiments
Model name Input Size Layers Neurons Weights

m-r50x1 224 × 224 50 15,903,016 25,549,352
m-r50x3 224 × 224 50 143,111,080 217,319,080
m-r101x3 224 × 224 101 25,3408,168 387,934,888
m-r101x1 224 × 224 101 28,158,248 44,541,480
m-r154x4 224 × 224 154 611,981,544 936,533,224
resnet101 224 × 224 101 55,886,036 44,601,832
resnet152 224 × 224 152 79,067,348 60,268,520
resnet50v2 224 × 224 50 31,381,204 25,568,360
resnet101v2 224 × 224 101 51,261,140 44,577,896
resnet152v2 224 × 224 152 75,755,220 60,236,904
nasnetmobile 224 × 224 771 27,690,705 5,289,978
nasnetlarge 331 × 331 1041 290,560,171 88,753,150
densenet121 224 × 224 121 49,926,612 7,978,856
densenet169 224 × 224 169 60,094,164 14,149,480
densenet201 224 × 224 201 77,292,244 20,013,928
mobilenet 224 × 224 28 16,848,248 4,231,976
inceptionv3 299 × 299 48 32,554,387 23,817,352
vgg16 224 × 224 16 15,262,696 138,357,544
vgg19 224 × 224 19 16,567,272 143,667,240
efficientnetb0 224 × 224 240 25,117,095 5,288,548
efficientnetb1 240 × 240 342 40,150,331 7,794,184
efficientnetb2 260 × 260 342 50,908,981 9,109,994
efficientnetb3 300 × 300 387 87,507,971 12,233,232
efficientnetb4 380 × 380 477 180,088,531 19,341,616
efficientnetb5 456 × 456 579 358,290,427 30,389,784
efficientnetb6 528 × 528 669 605,671,091 43,040,704
efficientnetb7 600 × 600 816 1,046,113,195 66,347,960
Xception 299 × 299 71 62,981,867 22,855,952
MobileNetV2 224 × 224 53 21,815,960 3,504,872
InceptionResNetV2 299 × 299 164 81,201,907 55,813,192
alexnet 227 × 227 8 650,000 58,325,066
resnet50 224 × 224 50 25,612,201 210,767,874
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2.3.2 Save and Load TensorFlow Models

TensorFlow offers different approaches to save and load models, ranging from
checkpoint to restart the training process from those save stages to exchange
able model formats1. TensorFlow offers a high-level format and an advanced for-
mat included in the Keras Application Programming Interface (API). However, as
the TensorFlow model is code, it is important to be careful with untrusted sources.
A reliable source of TensorFlow models is TensorFlow Hub2. The models used in
this study rely on the high-level Keras format for TensorFlow models.

2.4 Graphic Processing Units

GPGPUs have different and more complex architecture compared to traditional
CPUs. The GPGPU architecture consists of a scalable number of Streaming Mul-
tiprocessors (SMs). Fig. 2.2 illustrates the SM of the NVIDIA V100. To improve
the utilization, the SM is partitioned into multiple Processing Unit (PU)s. While
the SM is divided into two PUs in the predecessor (NVIDIA P100), this number
increased to four for the NVIDIA V100. Each PU containing 16 Floating Point (FP)
32 Cores, 8 FP64 Cores, 16 INT32 Cores, one Tensor Core (with mixed-precision
Tensor Cores for Deep Learning), a L0 instruction Cache, one warp scheduler,
one dispatch unit, and a 64KB Register File [35, 69].

Kernels compiled for a GPGPU are subdivided into Cooporate Thread Arrays
(CTAs), also called thread blocks [70]. A CTA is further divided into groups of
32 threads called a warp [71]. All threads inside a warp are executing the same
instruction [72]. The principle is similar to Single Instruction Multiple Data (SIMD).
However, NVIDIA calls it Single Instruction Multiple Thread (SIMT). Unlike SIMD
instructions, the concept of warps is not exposed to the programmers. Instead,
programmers write a program for one thread and then specify the number of
parallel threads in a block and the number of blocks in a kernel grid [35]. Handling
the concept of warps as a black-box make code optimizing difficult.

The NVIDIA Tesla, Volta, and Ampere architecture form a warp using a batch of

1https://www.tensorflow.org/tutorials/keras/save_and_load
2https://www.tensorflow.org/hub
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Figure 2.2: Overview of Streaming Multiprocessor architecture

32 threads [35, 73, 74]. All threads in one wrap are executed on one SM together.
An SM can also handle multiple wraps [70, 71]. The number of concurrently
running wraps is determined by the resource requirements of each wrap, such as
the number of registers or shared memory usage. Since the Volta architecture,
the warp-synchronous programming, that threads executing as part of the same
warp are implicitly synchronized at every instruction, has been obsoleted [70].

NVIDIA provides a detailed natural language description of the PTX model. The
analysis in this thesis aims to place NVIDIA GPGPU architectures starting from
Volta on a solid and more reliable theoretical foundation since there are massive
changes between the Volta architecture and their predecessor [70]. To test the
portability to older GPGPU generations, we consider a GTX 1080Ti based on the
pascal architecture.

Parallel Thread Execution

NVIDIA offers the CUDA Library to run applications on their GPGPUs. How-
ever, frameworks like Tensorflow already include the CUDA Library, so users can
quickly run their applications on GPGPUs [75]. The code is compiled to the PTX
to execute the CUDA applications on GPGPU. PTX is an Instruction Set Archi-
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1 . v i s i b l e . entry example ( . param . u32 param_0 )
2 . reqnt id 256 , 1 , 1
3 {
4 . reg . pred %p<3 >;
5 . reg . u32 %ru <4 >;
6
7 mov . u32 %ru1 , %t i d . x ;
8 ld . param . u32 %ru4 , param_0 ;
9 setp . l t . u32 %p1 , %ru4 , 1024 ;

10 setp . l t . u32 %p2 , %ru1 1 2 8 ;
11 @%p1 bra then ;
12 mov . u32 %ru3 , 3 2 ;
13 bra . uni e x i t 1 ;
14
15 then :
16 mov . u32 %ru3 , 6 4 ;
17
18 f i n a l :
19 setp . gt . u32 %p3 , %ru3 1 0 0 ;
20 @%p2 bra e x i t 1 ;
21 add . u32 %ru4 , %ru4 , 1024 ;
22
23 e x i t 1 :
24 r e t ;
25 }

Figure 2.3: Example PTX file.

tecture (ISA) including every memory access (read and write) and computational
instructions (e.g., ADD, MUL, FMA) and is translated nearly one-to-one with na-
tive binary micro-instructions [76]. Some PTX instructions cannot be translated
to one binary micro-instruction and are built of multiple [35]. In Fig. 2.3, a short
extraction of a PTX assembly code is illustrated. The PTX ISA is translated to
SASS, the target machine language of the GPGPU [77]. PTX is designed as
virtual ISA to be portable between different GPGPU generations with different in-
struction sets (e.i., SASS implementations). The lack of portability makes SASS
unattractive for analysis [78] as it limits the analyses to one GPGPU.

Divergent Branches

The PTX ISA and NVIDIA’s GPGPU architectures allow so-called Divergent Bran-
ches. A Divergent Branch is a branch where some threads are within the same
warp branch while others are not. Against the concept of SIMT, not all threads
execute the same number of instructions [72, 79, 80]. This leads to an unknown
amount of dependency instructions that cannot be considered by static code anal-

31



2.4 Graphic Processing Units

ysis.
Two cases of Divergent Branches can occur: 1) IF without ELSE; during this

case, some threads enter the IF and execute the additional instructions, while oth-
ers are idle due to the SIMT concept, where all threads have to execute the exact
instructions. 2) IF, with ELSE, this case is more complex; while some threads
enter the IF and execute the instructions, others are idle. Afterward, when the
previous idle threads enter the ELSE statement, the IF-threads will become idle
[72]. Both cases can lead to a different number of executed instructions during
the single threads; hence, counting the instructions of a PTX code and multiplying
them by the number of threads cannot lead to the exact number of instructions.
In this work, we focus on identifying divergent branches and calculating the num-
ber of executed instructions, considering all dependency instructions within the
Divergent Branches.
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3 Performance and Energy
Trade-off Analysis of CNN
Offloading

Nowadays, ML achieves incredible results in almost all areas of everyday life,
like object recognition or natural language processing. As a result, more and
more ML applications enter products, especially in the industrial area of the IoT.
However, ML techniques like NN are computationally expensive and often require
dedicated ML accelerators. Consequently, the power consumption of IoT devices
is increasing due to such accelerators. When power supply is a limiting factor,
applications offload ML tasks to the cloud or edge to meet the trade-off between
speed and power consumption.

This chapter presents the results of [54], an analysis of the trade-off between
performance and energy consumption when offloading CNNs. It compares local
implementations against offloading on five different mobile network types. The
evaluation shows a significant influence of the network type and CNN complexity
on the offloading-induced energy consumption improvement. After careful analy-
sis, a decision support scheme is provided to choose between local and remote
execution.

The remainder of the chapter is structured as follows: Section 3.1 starts with
a brief introduction followed by Section 2.3 presents different Machine Learning
Exchange Formats to discuss the necessary capabilities of the proposed API.
Section 3.2 describes the introduced API and its features. In Section 3.2.2, the
modeling of the offloading process is presented, and the influencing parameters,
as well as investigated metrics, are discussed. Section 3.3 explains the experi-
mental setup and describes the results obtained by these experiments. The pre-
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sented interpretation of the described results and a detailed discussion of threats
to the validity of the introduced modeling approach and the experimental setup
and results. Finally, the chapter concludes with an outlook in Section 3.5.

3.1 Introduction

In recent years, ML methods have been used increasingly [81, 82]. For exam-
ple, object recognition or image classification are upcoming applications in in-
dustrial IoT [24, 83]. As a result, IoT devices have adapted to the demand and
are increasingly using accelerators optimized for ML [82]. Examples include the
NVIDIA Jetson product line, a System-on-a-Module (SoM) that can run ML appli-
cations energy-efficiently using an NVIDIA Tegra GPGPU [82, 84]. However, IoT
devices often have limited battery life but generate massive amounts of data to
process [85]. Thus, energy-efficient applications with a more powerful accelerator
are crucial.

Motivation New challenges arise with using ML models in IoT devices [86]. The
needed computational resources for different ML approaches are broad [81].
While simple decision trees require few computational operations, CNNs require
many [8]. This excessive computational effort results in performance losses
when using small IoT devices with classical processing units. Considering that
much more powerful ML-accelerators (e.g., GPGPUs) will increase the power
consumption of the IoT device, as ML accelerators require high power consump-
tion, their usage in IoT area is only practicable in cases with sufficient power
supply [5, 6, 49]. Hence, offloading into Edge or Cloud computing systems is a
promising strategy for these challenges [50, 87]. Studies illustrate that offloading
computational-intensive applications to cloud or edge computing can significantly
reduce the power consumption of IoT devices. Therefore, the computational-
intensive parts are executed on cloud or edge servers to move the battery life-
draining computation to remote systems [86, 88, 89]. However, this is only pos-
sible if the time delay is acceptable [88]. Thus, the power-time trade-off is funda-
mental when offloading applications or computations to the cloud or edge.

Limitation of state-of-the-art Most proposed approaches focus on finding the
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power-delay trade-off while offloading ML models to edge computing [90]. Ex-
panding on their findings, this chapter presents an analysis of offloading using a
framework that provides models in a zero-programming way. In previous stud-
ies [6, 48, 50, 90], the availability of different types of mobile networks was not
considered. The bandwidth and latency of the network available influence the po-
tential of offloading. Therefore, it is essential to evaluate the behavior of different
CNNs on various network types since a detailed evaluation can provide valuable
insights for implementing offloading techniques into IoT devices.
Key insights and contributions Our key contributions presented in this chap-
ter are (1) a thorough modeling and statistical analysis of the offloading scenario
for CNN-based inferencing tasks, (2) the derivation of a guideline (based on the
introduced setup) for deciding whether to offload or not (3) a flexible RESTful
API allowing to offload ML tasks to the cloud using an innovative model descrip-
tion language. It was found that fast networks almost always yield a decrease in
energy consumption when offloading; however, for simple CNNs, slow networks
render this advantage mute. Computation time, on the other hand, mainly in-
creases; however, for fast networks, the additional computation time is countered
by the faster computation in the cloud, making offloading the efficient choice for
both metrics.
Experimental methodology and artifact availability For the trade-off analysis,
the different connectivities, inferencing tasks, and CNN parameters are modeled.
Therefore, the energy consumption and computation time for the local and re-
mote settings are measured, and statistically, the influence of several parameters
on the measured metrics is analyzed. To enable a smooth offloading process,
MoReA is used, which is developed for this purpose. MoReA will be open source,
enabling individual customization and further development. Additionally, the eval-
uation data and scripts will be available to allow reproducibility1.
Limitation of the proposed approach The main limitation of our evaluation and
final decision guideline is the missing variation of local and remote machine per-
formance. Additionally, in this study, it was found that at least one key parameter
must be missing as it can not explain the behavior of the energy consumption of
one given setup. The proposed guideline has been revised accordingly to ensure

1Upon acceptance
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its validity is not affected; however, the generalisability of the findings is affected
as a reliable prognosis cannot be made for this specific exchange format.

3.2 Methodology

The MoReA is a RESTful API and thus offers several Hyper Text Transport Pro-
tocol (HTTP) endpoints to enable clients to query provided ML models. MoReA
offers a unique Model Description Schema (MDS), allowing the users to describe
available ML models for MoReA. Thus allowing MoReA to support various ML
frameworks and techniques, e.g., Decision Trees, NNs, and K-Nearest Neigh-
bor (K-NN). The methodology is structured into two phases, as seen in Fig-
ure 3.1. First, model preparation and uploading. During this phase, the user
writes a Model Description File (MDF) based on the MDS. The user then uploads
the model and its corresponding description file to MoReA. Second, loading and
serving. In this phase, MoReA automatically loads all available models and reads
the belonging MDFs. An HTTP endpoint for each model is generated based on
the details included in the MDFs. Consequently, any HTTP-enabled device can
use the ML models, which allows MoReA to be used on IoT, Mobile, and many
more applications.

3.2.1 Model Description Schema

Each ML model has a unique set of required input values with different data types,
which are—in machine learning—often referred to as input features. Since only
some ML frameworks offer the functionality to read the required input features and
produced output values of an ML model, a description is inevitable to understand
how to use a model for the inferencing process. Moreover, having a detailed
description of the ML model MoReA can provide clients with a machine-readable
model description. This description enables clients to read necessary details and
generate input data for any model without explicit programming. Thus, the usage
of MoReA is flexible and customizable for the users’ needs.

This chapter presents the MDS capable of describing any ML model. It in-
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Figure 3.1: Overview of the functionality of MoReA core and HTTP service.

cludes basic information about the model’s purpose, type, and required input
features. Figure 3.2 shows the general structure of the MDF. As Figure 3.2 il-
lustrates, for each model, the modelName has to be specified as it is reused
for the Representational State Transfer (REST)/HTTP endpoint generation. Con-
sequently, the modelName must be unique. Moreover, the modelType must be
specified (e.g., ONNX, Tensorflow) to consider the correct execution engine while
loading the models.

When MoReA loads all models in the second phase, it verifies the MDF’s con-
formance to the MDS. The validation process includes determining if all required
attributes are present. Afterward, each input feature is verified individually. Each
input feature must have a name and kind attribute. There are two ways of de-
scribing the data for model input or output: first, by describing each data value
in a single object. Second, the description can proceed nested in cases of multi-
dimensional data, like images. The shape requires a description, size, and con-
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1 {
2 "modelName " : "Name of the Model " ,
3 " d e t a i l " : " Deta i led d e s c r i p t i o n of the model " ,
4 " outputs " : {
5 " outputs " : [ . . . ]
6 } ,
7 " modelType " : . . . ,
8 " inputFeatures " : {
9 " f e a t u r e s " : [ . . . ]

10 }
11 }

Figure 3.2: General model description structure for ML-model description

tent. The content can either be a shape description or the final data type of the
multi-dimensional data. If the model does not fulfill one of the conditions, MoReA
will not load it. Furthermore, MoReA skips the load process of a model if the
model’s name is not unique and another model with the same name already ex-
ists.

3.2.2 Statistical Modeling

This section presents the understanding of the offloading process and discusses
the parameters that affect the energy consumption of the local machine and
overall computation time in the inferencing task. In general, the following pa-
rameters are considered: machine (local, remote), task, cnn, format, and
connectivity. Machine refers to the general performance capabilities of the
local machine and the remote machine. Task refers to the complexity of the infer-
encing task, e.g., the size of the image sent to the CNN in an image recognition
task. It is assumed that the CNN also influences the energy consumption and
computation time. Therefore, this is an influencing variable. Strongly connected
is the form of representation of the inferencing model, i.e., which exchange format
is used, denoted with format. As the study deals with the question of whether or
not to offload an inferencing task, it also considers connectivity (i.e., latency and
bandwidth) as an influencing variable to the decision.

To enable fair comparisons and enhance the understanding of results, the
steps necessary for performing the inferencing task are grouped into four dis-
tinct phases: SETUP, PROCESSING, POSTPROCESSING, END. The SETUP phase
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contains all the necessary steps on the local machine to prepare for the inferenc-
ing task. The PROCESSING phase contains the actual inferencing, as it affects the
local machine, i.e., it also contains the transfer time from the local to the remote
machine. The POSTPROCESSING phase collects all (possibly) necessary steps to
make the inferencing task result ready for the user, while the END phase closes
connections and cleans up for the following tasks.

Local Inferencing

The inferencing task on the local device requires the following substeps:

1. Load required model (SETUP)

2. Prepare inferencing task for inferencing (SETUP)

3. Perform inferencing (PROCESSING)

4. Post-process result for end-user (POSTPROCESSING)

5. End inferencing (END)

The following influence of the considered parameters on the computation time
t and energy consumption p are expected, which are tried to validate in the eval-
uation:

pSETUP, tSETUP ← mlocal,task,cnn,f

pPROCESSING, tPROCESSING ← mlocal,task,cnn,f

pPOSTPROCESSING, tPOSTPROCESSING ← mlocal,task,f

pEND, tEND ← mlocal,cnn,f

Shortly, the reasoning for the above dependencies will be explained. It is easy
to see that neither the remote machine nor the connectivity influences the local
performance. For setup, however, the model needs to be loaded, so it is assumed
an influence of the CNN model. At the same time, the inferencing task needs to
be prepared, which leads to the influence of the inferencing task for the SETUP

phase. Both the task and the CNN model influence the PROCESSING, together
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with the properties of the local machine. In POSTPROCESSING, however, the
model is not relevant anymore as this only takes care of the result. The final
phase END, on the other hand, frees the model, so there might be some influence
of the CNN here. As all tasks are performed on the same machine (local), the
dependencies are identical for energy consumption and computation time.

Remote Inferencing

The inferencing task using a remote server requires the following substeps:

1. Prepare inferencing task for Inferencing (SETUP)

2. Send inferencing task to remote server (PROCESSING)

3. Load required model on remote server (PROCESSING)

4. Perform inferencing on remote server (PROCESSING)

5. Send result to local device (PROCESSING)

6. Post-process result for end-user (POSTPROCESSING)

7. End inferencing (END)

For this case, the following influence of parameters on the computation time
t and energy consumption p are expected, where m is short for machine, f for
format and c is short for connectivity:

pSETUP, tSETUP ← mlocal,task,f

tPROCESSING ← mremote,task,cnn,c,f

pPROCESSING ← mremote,mlocal,task,cnn,c,f

pPOSTPROCESSING, tPOSTPROCESSING ← mlocal,task,f

pEND, tEND ← mlocal

The reasoning behind this analysis is as follows: In the offloading setup, the
model does not have to be loaded on the local machine, and this step is, there-
fore, not part of the SETUP phase. Hence, energy consumption as well as com-
putation time are not dependent on the cnn anymore. The PROCESSING phase

40



3.2 Methodology

is somewhat more complicated: The computation time depends on the task and
the cnn, obviously, as well as the remote machine and the connectivity.
It does not depend on the local machine. The energy consumption, however,
directly depends on the local machine and the computation time and therefore
inherits all dependencies from computation time. The POSTPROCESSING phase
is equivalent to the local setup, while the END phase only depends on the local
machine as the model has been taken care of on the remote site.

The overall goal of the presented research is to provide the local system with
decision support for the question: Should this task be offloaded or performed
locally? This leads to the following Research Goal of this chapter:

Research Goal 1. Derive a statistically sound decision support for inferencing locally
or remotely, given knowledge about influencing factors.

To achieve this research goal, the influence of the above-mentioned factors on
computation time and energy consumption must be analyzed. Additionally, the
results must be generalized to derive statistically sound decision support.

Therefore, the following research questions are considered for this chapter:

Research Question 3.1. How does the connectivity influence the energy consump-
tion and computation time in the remote setup?

Research Question 3.2. How does the cnn influence the energy consumption and com-
putation time in the local or the remote setup?

Research Question 3.3. How does the task influence the energy consumption and
computation time in the local or the remote setup?

Research Question 3.4. Does the format influence the computing time and power
consumption?

Research Question 3.5. Do the different phases show different behavior regarding the
above-mentioned questions?

Finally, it is planned to derive statistically sound decisions for the varying cnns
and connectivities whether to infer a given task locally or remotely, which
leads to
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Research Question 3.6. Can it be determined with statistical confidence that remote or
local inference will consume less energy or computation time on average?

Research Question 3.7. Is it possible to ensure the above question with respect to cnns
and connectivity?

3.3 Experimental Results

This section will discuss the evaluation that was conducted to address the re-
search questions and achieve the research goal. The section is structured in two
main parts: First, the evaluation setup will be outlined, and second, the results
will be presented. The interpretation of the results with respect to the setup and
the model follows in Section 3.4. Issues relevant to the validity of our study are
also presented in Section 3.4.2.

3.3.1 Evaluation Setup

To provide a clear understanding of the evaluation, the technical setup will be de-
scribed, along with the measurement and computation of metrics, such as compu-
tation time and energy consumption. Additionally, the statistical evaluation setup
will be outlined, including which variations of parameters are considered and how
many times a setup is repeated for statistical purposes.

Technical Setup

The experimental design consists of a Virtual Machine (VM) providing MoReA as
an RESTFul API within a local network and an NVIDIA Jetson Nano 4GB using
the API as the client. The VM has a 10,000 MBit/s ethernet connection, while the
network between the client and the first router is limited to 1,000 MBit/s. The VM
is equipped with 4 vCPUs, 16 GB memory, running Ubuntu 18.04, and is provided
by a VMware vSphere 7 Essentials Server. The NVIDIA Jetson Nano 4GB Devel-
oper Board, which is a tiny GPU-accelerated IoT SoM, runs on the Jetson Nano
Developer image based on Ubuntu. To provide a solid and stable connection to
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Router NRouter 1 VM with Morea
Jetson Nano
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Figure 3.3: Experimental setup for MoReA

the local network, the NVIDIA Jetson Nano is connected with a Cat6a ethernet
cable. Both devices are separated and located in different buildings. The VM is
available for the client within three hops, and the latency is < 1ms. No additional
devices are connected to the Jetson Nano during the entire experiment. The in-
ternal power meter that is integrated into the Jetson Nano is used for the power
measurement. The measurement started just before the model’s execution and
stopped immediately after the model’s execution.

Measurement and Computation of Metrics

Two decisive metrics are used in the aforementioned research questions: 1) Com-
putation time and 2) energy consumption. At a given rate of 0.1 s, the current time
as a date stamp, the current I [mA], and voltage U [mV] of the JetsonNano are
measured. Given that energy consumption is defined as follows:

E = U · I · t (3.1)

and power consumption is not constant throughout the measurement; conse-
quently, the upper and lower sums for the respective time frames are calculated,
i.e.,

Elower =
n∑︂

i=1

Ui−1 · Ii−1 · (ti − ti−1)

Eupper =
n∑︂

i=1

Ui · Ii · (ti − ti−1)
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In this case, i = 1 describes the first observation entry for either every phase
(SETUP, PROCESSING, POSTPROCESSING, END) or the entire measurement, while
n refers to the last observation entry of either every phase or the entire measure-
ment.

Finally, for every phase, the average of Elower and Eupper is reported, as well
as the duration of this phase. When considering all four phases, the results are
combined to obtain the final metrics.

Table 3.1: CNN models and parameters for study (a subset of the CNNs in tab.
2.1 in chapter 2).
CNN Input Size Layers Neurons Weights

densenet121 224× 224 121 49, 926, 612 7, 978, 856
densenet169 224× 224 169 60, 094, 164 14, 149, 480
densenet201 224× 224 201 77, 292, 244 20, 013, 928
efficientnetb0 224× 224 240 25, 117, 095 5, 288, 548
efficientnetb1 240× 240 342 40, 150, 331 7, 794, 184
efficientnetb2 260× 260 342 50, 908, 981 9, 109, 994
efficientnetb3 300× 300 387 87, 507, 971 12, 233, 232
efficientnetb4 380× 380 477 180, 088, 531 19, 341, 616
efficientnetb5 456× 456 579 358, 290, 427 30, 389, 784
efficientnetb6 528× 528 669 605, 671, 091 43, 040, 704
efficientnetb7 600× 600 816 1, 046, 113, 195 66, 347, 960
inceptionresnetv2 299× 299 164 81, 201, 907 55, 813, 192
inceptionv3 299× 299 48 32, 554, 387 23, 817, 352
mobilenet 224× 224 28 16, 848, 248 4, 231, 976
mobilenetv2 224× 224 53 21, 815, 960 3, 504, 872
nasnetlarge 331× 331 1041 290, 560, 171 88, 753, 150
nasnetmobile 224× 224 771 27, 690, 705 5, 289, 978
resnet101 224× 224 101 55, 886, 036 44, 601, 832
resnet101v2 224× 224 101 51, 261, 140 44, 577, 896
resnet152 224× 224 152 79, 067, 348 60, 268, 520
resnet152v2 224× 224 152 75, 755, 220 60, 236, 904
resnet50 224× 224 50 25, 612, 201 210, 767, 874
resnet50v2 224× 224 50 31, 381, 204 25, 568, 360
vgg16 224× 224 16 15, 262, 696 138, 357, 544
vgg19 224× 224 19 16, 567, 272 143, 667, 240
xception 299× 299 71 62, 981, 867 22, 855, 952
alexnet 227× 227 8 650, 000 58, 325, 066
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Table 3.2: Bandwidth and latency settings.
Equivalent Mobile Network 2G 3G 3G HSPA 4G 5G

Latecny 450ms 300ms 110ms 40ms 1ms
Bandwidth 0.25MBit/s 42.2Mbit/s 500Mbit/s 1,000MBit/s

Experimental Setup

The experimental setups stay as close as possible to the model from Section 3.2.2:
There are two variations for the inferencing task: First, to compute the inferenc-
ing locally on the JetsonNano, and second, to offload the inferencing via MoReA.
Two local computation options are tested, namely with an ONNX saved model
(Local-ONNX ) and a TensorFlow model (Local-TF ) from the Tensowflow-Hub
(note, however, that the download time is not counting towards the inferencing
time). MoReA is employed on the described server VM for the offloading option.
On this VM, the ONNX saved models are used to compare computation time.
Additionally, the connection capabilities are varied to enable a trade-off decision
based on task, connection, time, and power constraints. The different latencies
are simulated with the Linux package TC2 while the bandwidth is limited at the
VMwares’ virtual network of the VM hosting MoReA. The settings illustrated in
Table 3.2 are used to emulate different mobile network standards. To see the
influence of different tasks, a benchmark of 27 common CNNs is created, whose
details are listed in Table 3.1. These samples contain CNNs optimized for mobile
devices as well as achieving the best performance in accuracy. Table 3.1 shows
that all CNNs have a different number of layers and differ in the number of neu-
rons and weights. However, the input size (i.e., image dimension) is identical for
some CNNs. The rationale for this is that many CNNs are trained on the Iman-
genet Dataset [64]. Overall, this yields a heterogeneous benchmark set that is
well suited to evaluate the general question of local or remote execution.

This leads to 27 · 2 + 27 · 6 = 216 different setups to analyze. Each setup is
repeated 10 times to validate its technical accuracy and achieve statistical signifi-
cance for later hypothesis tests.

2https://manpages.ubuntu.com/manpages/xenial/man8/tc.8.html
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3.3 Experimental Results

3.3.2 Result Description

This subsection describes the results of the evaluation as described above. The
first part deals with descriptive results, i.e., describing what the obtained data
shows and the second part deals with inductive results, i.e., what can be deducted
from the obtained data for comparable situations.

Descriptive Results

First and foremost, it is necessary to validate the technical setup because it
yields comparable and dependable results. To that end, the variation coefficients
(ν = σ/µ, with µ the average and σ the standard deviation) are computed for ev-
ery setup and displayed in Figure 3.4 for the energy consumption results and in
Figure 3.5.
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Figure 3.4: Depiction variation coefficients of energy consumption for all setups.
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Figure 3.5: Depiction variation coefficients of energy consumption for all setups.

Both figures show the variation coefficient data separated by phase (see setup
legend) and connectivity and format. The different cnn are shown through
the boxplot depiction3. For example, the highest dot in Figure 3.4 represents
the variation coefficient for an END-phase and the local setup with a TensorFlow
format. For computation time as well as energy consumption, variation coeffi-
cients can be seen mainly between 0 and 0.5. For computation time, the SETUP-
phase shows the highest instabilities, although with increasing connectivity,
the PROCESSING phase shows increasing instability as well. For energy con-
sumption, the SETUP-phase has higher variation coefficients as well, although, in
general, there is more instability to be seen. Generally speaking, however, the
results show small variation coefficients, which indicate a stable technical setup.

3Boxplots have their usual interpretation: Box shows the area between first and third quartile,
line depicts the median. Whiskers show ±1.5 · IRQ where IRQ is the interquartile range or
extremal values if smaller, dots show values outside of this range.
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Figure 3.6: Depiction of average energy consumption for local execution with
TensorFlow and ONNX formats differentiated by phases. Boxplots
represent the CNN results.

The focus is on investigating computation time and energy consumption for
the local setup and the influence of the format. Figure 3.6 shows the average
energy consumption of all setups. Different colors show the four phases, and the
x-axis differentiates the format. The resulting 27 cnn are shown through the
respective boxplots.

The comparison between the ONNX-formal and the TF-format shows a large
difference in the results for the SETUP- and PROCESSING-Phase. In both cases,
the energy consumption is higher for the TF-format than for the ONNX-format.
The missing boxplot POSTPROCESSING indicates that this must have been shorter
than the measurement distance of 0.1s. The same holds for computation time, al-
though not depicted here. To have a more balanced comparison, the analysis
only focuses on the ONNX format for comparing remote and local execution.

Comparing the local setup (with format=ONNX) with the remote setup (with
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varied connectivities) results in the similarly structured Figures 3.8 and 3.7.
In this case, both measured metrics, computation time and energy consumption,
will be presented and explained. Figure 3.8 illustrates that the POSTPROCESS-
ING and END-phase barely have an impact on the overall energy consumption.
For the remote setups, the SETUP-phase also has a negligible influence. The
PROCESSING-phase makes up most of the energy consumption. This is different
for the local setup: Here, the SETUP and PROCESSING-phase have roughly the
same influence on the overall energy consumption. Comparing only the PRO-
CESSING-phases for the local and the remote setups, it can be seen that the
slower connectivities, i.e., 2G and 3G, seem to induce a (in general) higher
energy consumption than the local PROCESSING-phase. From 3G-HSPA onward,
however, the energy consumption is smaller for most CNNs. Additionally, it is
noticeable that the cnns induce small to no variance to the energy consumption
values for the remote setups; however, there is a much higher degree of variance
for the local setup.

The computation shows a similar behavior regarding the influence of the differ-
ent phases. However, the results for the PROCESSING differ for the remote setups.
Setups with slower connectivities show higher computation times for almost
all CNNs (the boxplots lie higher than for the local setup). Only connectivities
from 4G onwards are faster during the PROCESSING-phase. The slower the CON-
NECTIVITY, the higher the variance of CNN results in the setup. Comparing this
to the variation coefficient analysis from above, however, it seems that this is only
an absolute increase in variance but not a relative one. To get an overview
of the total computation time and total energy consumption, a comparison of
local and remote setups is presented in Figure 3.9. Here, each point depicts
the averaged results for one setup (total average computation time on the x-axis
and total average energy consumption on the y-axis). Equal colors show equal
connectivities, while the ellipses are a visual aid for the reader.

Three main patterns can be seen in Figure 3.9: (a) The different connectivi-
ties show a linear increase in energy consumption as well as computation time,
with slower connectivity producing higher values for both metrics. Neverthe-
less, the increase is comparatively higher for computation time than for energy
consumption. (b) The local setup seems to follow a linear trajectory with a signifi-
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Figure 3.7: Depiction of average computation time for local execution with
ONNX and remote execution with different connectivities. Boxplots
represent the CNN results.

cantly higher slope. (c) The total values show that the total energy consumption is
(generally) lower for the four fastest connectivities, and the total computation
time is mostly higher in the remote setups than in the local setup.

The local setup shows high variances for the CNNs especially; therefore, a
closer look into the influence of CNN parameters is important. As complexity
measures for the CNNs, the following parameters are considered: weights, layers,
and neurons. Additionally, the actual task is considered, i.e., the image size to
be inferenced. In the understanding of this analysis of the offloading process
presented in Section 3.2.2, an influence of the task is assumed.

Figure 3.10 shows the average energy consumption for the SETUP and PRO-
CESSING-phase in different setups in dependence of the number of weights in a
CNN. Colors show different setups, i.e., remote or local execution and different
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Figure 3.8: Depiction of average energy consumption for local execution with
ONNX and remote execution with different connectivities. Boxplots
represent the CNN results.

connectivities, while the shape shows the phase the results stem from. The
focus is on SETUP and PROCESSING because the third and fourth phases have a
negligible effect on the overall result and barely differ in their behavior comparing
local and remote execution. It can be seen that the remote setups seem not to
be influenced by the weights of the CNNs. This is also the case for layers and
neurons, as well as the size of the inferencing task (not shown as a figure here).
Equivalently, when zooming in on the smaller values, the results seem not to be
affected by the considered parameters.

The local setup, nevertheless, shows a somewhat increasing behavior for both
phases. Analyzing this in close-up yields the results presented in Figures 3.11
and 3.12. Figure 3.11 shows the average energy consumption in the local setup
for the SETUP-phase. The energy consumption results seem to show an almost

51



3.3 Experimental Results

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5

total average computation time [s]

to
ta

l a
ve

ra
ge

 e
ne

rg
y 

co
ns

um
pt

io
n 

[W
s]

Processing Setup

Local−ONNX

Offloading−2G

Offloading−3G

Offloading−3G HSPA

Offloading−4G

Offloading−5G

Offloading−Ethernet

Figure 3.9: Depiction of total average energy consumption and total computation
time per CNN, differentiated by evaluation setup.

linear behavior in the weights except for one outlier, the CNN, with the high-
est number of weights. However, when trying to verify an identical influence
for the PROCESSING-phase, the results were disparate. Factoring in a possible
quadratic influence of the image size as the measure for the task size, however,
Figure 3.12, which shows the ratio of the average energy consumption and the
squared image size in dependence of the number of weights in the CNN for the
PROCESSING-phase of the local setup. In this case, it can be seen as a compa-
rable linear relation except for the same outlier as before.

Inductive Results

This section is aimed toward reliable generalized statements in which setting of-
floading is to be preferred. To that end, the first hypothesis tests are performed
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Figure 3.10: Depiction of the number of trainable weights of the CNN with en-
ergy consumption for SETUP- and PROCESSING-phases for different
evaluation setups.

for energy consumption and computation time for each cnn and connectivity

with the local setup as the null hypothesis. The hypothesis test setup is as fol-
lows: a Welsh’s t-test is performed with a maximum error probability of 0.0001 for
each CNN, comparing the different remote setups to the local ONNX one [91].
The Welch-Satterthwaite-Equation approximates the respective degrees of free-
dom [92].

A hypothesis test is counted as won for the remote setup if the t-value exceeds
the 0.9999-quantile of the t-distribution with the respective degrees of freedom.
Usually, it would be required to perform a Holm-Bonferroni family error correction
to obtain statements about all CNNs however as a very small error probability
is selected for the singular hypothesis, the familywise error still holds at αall =

1− (1− α)#CNNs = 1− (0.9999)27 ≈ 0.0027 < 0.01. Hence, all statements can be
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Figure 3.11: Depiction of the number of trainable weights of the CNN with the
energy consumption ratio to image size for SETUP-phase for the local
setup with ONNX format.

made with an error probability of less than 1% [93].

The number of won hypothesis tests are reported in Figure 3.13. The left side
shows the results for energy consumption, while the right side shows the results
for the computation time. The black line depicts the maximum number of tests that
could have been won, i.e., the number of CNNs. So, e.g., the left-most column
can be read as for 11 CNNs, the average energy consumption of the remote
setup with a 2G connectivity is smaller than the average energy consumption
of the local setup (with ONNX) with an error probability of less than 1%. It can
be seen that the number of won tests increases with improving connectivity

for energy consumption as well as computation time. In both cases, the best
result is at 21 of 27 CNNs. Computation time has less won tests for 2G and 3G
connectivities but gains significantly with 3G-HSPA.
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Figure 3.12: Depiction of the number of trainable weights of the CNN with the
energy consumption ratio to image size for PROCESSING-phases for
the local setup with ONNX format.

Figure 3.14 now relates the information of won hypothesis tests to the CNN
metric that was found to be partially explanatory for energy consumption and
computation time: The number of weights, i.e., trainable parameters. However,
the t-value depicts results from the hypothesis test on the y-axis. The line in the
figure depicts the 0.9999 quantile with df = 44 So, for each point representing
a hypothesis test for a CNN that is above the solid black line, the hypothesis is
won. The colored lines show the overall linear trend. Generally, it is visible that
with increasing weight, the hypothesis tests are more likely to be won, i.e., the
remote setup has a smaller computation time or energy consumption. For energy
consumption, the setups with better connectivities (4G, 5G) almost entirely lie

4Officially, the 0.9999 quantile needs to be computed with different degrees of freedom; however,
in all our data, the degrees of freedom never were smaller than df = 4
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Figure 3.13: Number of won hypothesis tests by remote setup connectivity.

above the quantile line, and the setups with worse connectivities catch up from
about 2.5 · 107 weights. For computation time, the picture is different. 2G and 3G
setups only perform faster than the local setup for CNNs with a number weights
of 4 · 107 weights. The slope of the slower connectivities seems to be higher, i.e.,
increasing the number of weights leads to a more rapidly increasing probability of
winning the hypothesis test.

3.4 Discussion

This section discusses the evaluation results from Section 3.3.2, answers the
proposed research questions, and describes threats to the validity of our study.
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Figure 3.14: Depiction of t-statistic value for individual CNNs against their
weights, colors depicting different connectivities.

3.4.1 Evaluation interpretation

The results are discussed for the research question (research question 3.5 is
answered within research question 3.1 to 3.4, and research question 3.6 and 3.7
are answered together)

Research Question 3.1: Connectivity Evaluation results have shown that the
connectivity is the main factor for the energy consumption and computation
time results when offloading. While energy consumption already decreases for
slow connectivity, computation time only shows advantages for fast connectivity.

Research Question 3.2: CNN CNN-parameter (weights) do have a linear effect
on the SETUP phase and partial effect on the PROCESSING phase, however, only
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in the local setting. The remote setting does not seem to be influenced by its pa-
rameters. The interesting factor here is computation time, as it linearly influences
the energy consumption for the remote setting because the power consumption of
the local machine is constant during the offloading phase (it is idle). For the com-
putation time, it holds that the slower the connectivity, the smaller the influence
of the actual inferencing and, thus, the CNN parameters. The remote machine
seems to be so performant that the CNN parameters result in no measurable
effect.

Research Question 3.3: Task For the remote setup, there is no measurable in-
fluence, same as for the research question 3.2. For the local execution, however,
it is plain to see that only the PROCESSING Phase is influenced by the inferencing
task, not the SETUP phase. So, at least in our setting, the task preparation has
no measurable effect.

Research Question 3.4: Format When comparing the TensorFlow format to the
ONNX format on the local machine, the evaluation shows huge differences. The
TensorFlow form takes up significantly more time and energy than the regarded
cases.

Research Question 3.6 and 3.7: Remote vs. Local First and foremost, our re-
sults show that if energy saving is more important than timing issues, offloading
is advisable for about 40% of the considered CNNs, even with the worst connec-
tivity. When improving the connectivity, this percentage improves 78%, and the
trade-off eases (and eventually vanishes), i.e.for, 5G offloading does not have
worse effects on computation time than on energy consumption (compare the
number of won hypothesis tests in Figure 3.13). Generally, the more complex
the CNNs (in terms of weights) and the better the connectivity, the higher the im-
provement in both energy consumption and computation time. When having a
3G-HSPA connectivity, offloading almost always makes sense in terms of energy
consumption savings. It improves computation times as well for CNNs with at
least 25 million trainable parameters (weights).

Following this discussion, Table 3.3 summarises our findings, fulfilling the re-
search goal. It shows decision support for offloading based on connectivity and
CNN weights. The first advisement is for a focus on energy saving, the second
for time (l refers to local, o to offload).
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Table 3.3: Summarised decision support
Connectivity/ CNN slow (2G, 3G) medium (3G-HSPA) fast (4G/5G)
low (< 25 Mill) l/l o/l o/o
medium (< 50 Mill) o/l o/o o/o
high (> 50 Mill) o/l o/o o/o

3.4.2 Threats to validity

As with every modeling approach and experimental study, there are some design
decisions or outcomes that threaten the validity of the approach. The threats of
this chapter are stated here:
Lacking Variations Our experimental study misses variations on some of the
identified influencing parameters, namely the performance of the local and re-
mote machines, the type of task, and the number of tasks to be performed simul-
taneously. It is decided not to vary the performance of the machines as in the
actual real-world scenario, where the decision maker most likely has no option to
change either the local setup or the remote setup. Nevertheless, varying these
might yield a broader picture of the interdependencies at play. The task type was
not varied because the scenario involves image inferencing on CNNs. Therefore,
the scope was restricted to this scenario. Varying the number of tasks could shed
some light on the influence of the setup phase and the duration of the processing
phase. It is planned to investigate this in further research, together with the ma-
chine’s performance. Additionally, after seeing the results for the local setup of
the TensorFlow format, it is decided to stick with the ONNX format for the remote
case. Employing the TensorFlow format remotely as well and investigating other
formats again remains a task for the future.
Missing parameter information Good results are achieved using the ONNX for-
mat when analyzing the CNN parameter influence on the different phases. How-
ever, the behavior of the TensorFlow format cannot be fully explained. The data
analysis shows that there seems to be another influencing factor that we did not
observe. Identifying this factor will be another task for further research but might
require a different experimental setup.
Used tooling The bandwidth and latency are simulated using VMware virtual
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network settings and the Linux tool TC, respectively. However, the behavior on a
real-world wireless connection may differ from that in our experimental setups. To
minimize this bias, a controllable experimental setup is designed to reproduce the
results as closely as possible to real-world scenarios. Still, there may be some
discrepancy between the simulation and the real world.

3.5 Conclusion

This chapter introduces a detailed energy and performance analysis for CNN in-
ferencing tasks on local execution on IoT devices and offloading to edge or cloud
systems with different mobile networks. The analysis shows that the CNN weight,
bandwidth, and latency are significant influencing factors. Based on the exper-
imental results, a detailed guide is created to advise when to offload and when
not. The experimental results illustrate that, in most cases, offloading is reason-
able for power-saving purposes. Higher bandwidths are required for performance
purposes, and slow networks like 2G and 3G can become the bottleneck in appli-
cations’ performance.

In future work, to extend the analysis setup, it is planned to analyze the energy-
time trade-off in real-world scenarios with local small- to medium-sized busi-
nesses and different machines.
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4 Power Estimation of
Convolutional Neural Networks
on GPGPUs

This chapter presents a novel approach to estimate the power consumption of
CUDA-based CNNs on GPGPUs in the early design phases. The proposed ap-
proach uses a hybrid technique where static analysis is used for feature extraction
and different ML regression models are utilized for power estimation model gener-
ation. However, the difference between the techniques is negligible with a MAPE
of 8.8 % and 8.4 %, for NN and K-NN, respectively. As the K-NN is more ac-
cessible to build, train, and use, it illustrates the advantage of shallow learning
methods compared to DNN. Experimental results demonstrate that the proposed
approach based on K-NN can predict CNNs power consumption up to a Absolute
Percentage Error of 0.0003% compared to the real hardware. The introduced
research is based on published material from [5, 6, 21].

The chapter starts with a brief introduction to power estimation of CNN on
GPGPUs in Section 4.1, followed by the methodology in Section 4.2. Afterward,
Section 4.3 presents the experimental results, followed by a discussion in Sec-
tion 4.4. Finally, the chapter closes with a short conclusion in Section 4.5.

4.1 Introduction

The number of IoT devices that leverage ML algorithms has considerably in-
creased in the last decade, ranging from manufacturing to scientific- health- and
security-related applications [94]. Among the existing ML algorithms, CNN is
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widely used in pattern recognition tasks and image analysis because it can han-
dle large and unstructured data [10, 95].

One of the significant challenges (see chapter 1 challenge 3) that designers
commonly face during the design phase of such IoT devices is to choose the
right ML accelerator that adheres to the design constraints such as low power
consumption, latency, and cost of the final products [5, 21]. For example, as-
sume that designers need to design an IoT device where its CNN application is
performed on a GPGPU (as hardware accelerator). In the case that the power
consumption and battery lifetime of the IoT device are considered as the design
constraints, choosing the most proper GPGPU early in the design phase can sig-
nificantly avoid costly design loops occurring as fewer prototypes need to be built.
Moreover, in the case of Cloud-based IoT devices where data processing of the
CNN application performs remotely on Cloud-based accelerators (i.e., GPGPUs),
choosing an appropriate GPGPU can significantly reduce the renting cost, result-
ing in a direct impact on the price of the final product.

Power estimation techniques are a promising solution to this issue. A robust
power estimation approach enables designers to choose the most appropriate
GPGPU that meets the constraints, early in the design phase. To estimate power
consumption, existing methods mainly rely on so-called performance counters
[22, 37, 38]. Consequently, their estimation depends on the run-time data, mean-
ing the ML model must be run once on the target GPGPU so that the performance
counter results can be measured. However, this can limit the usage of such meth-
ods in the early design phase as the GPGPU must already be selected. Moreover,
this can increase the required analysis time.

This chapter focuses on the power estimation of CNNs on GPGPUs, which is
one of the most popular ML algorithms in automated manufacturing [1]. A novel
approach is presented, enabling designers to predict the power consumption of a
given CNN even with small training datasets in the early design phases. The pro-
posed approach uses a hybrid technique where static analysis is used for feature
extraction, and the ML regression analysis is utilized for power estimation model
generation. The static analysis for features extraction is performed on PTX code
(which is generated at compile time) of CNNs, GPGPUs’ architectural information,
and CNNs topology. To create the power estimation model, K-NN as lightway ML
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approach as well as NN are used to learn the power consumption behavior of
CNN’s inferencing on GPGPUs. Afterward, the results of both techniques are
compared to each other.

Unlike the existing methods that use performance counters for their predic-
tion, the proposed approach takes advantage of PTX code (which is generated
at compile time) and GPGPUs’ architectural information. Both PTX code and
GPGPUs’ architectural information are easy to collect and make our approach
easy to apply and transfer to other CUDA-based applications. This enables the
designer to choose the most efficient GPGPU in terms of power consumption
among the existing models at compile time. Experimental results illustrate the
effectiveness of the proposed approach in estimating the power consumption of
CNNs on GPGPUs where up to a MAPE of 8.8% and 8.4% for NN and K-NN,
respectively, in comparison to the real hardware execution is achieved.

4.2 Methodology

Focusing on the available information is essential to estimate the power consump-
tion of CNNs in the early design stage. The early available information that does
not rely on CNNs execution on real devices is 1) the GPGPUs’ architectural de-
tails that are available for the different GPGPUs, 2) the low-level PTX code that
is generated at compile time, and 3) CNN architecture and topology like its train-
able parameters. In contrast to [22, 38], only features from the sources above are
considered for the power estimation and do not rely on the performance counters,
which are only available at run-time. Performance counters would require at least
one execution on an actual device to collect them. This can limit the usage of
such practices in the early design stage as the target GPGPU must already be
selected.

The proposed methodology is illustrated in Fig. 4.1, which has three main
phases: 1) information extraction, 2) training dataset creation, and 3) predictive
model generation.

In the first phase, different CNNs are selected, and how they load various
components of GPGPUs is analyzed. The architectural information (e.g., CUDA
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Cores, Memory, or L2 Cache) which are available for different series of GPGPUs
are compared between different GPGPU models. By this, those GPGPUs’ at-
tributes and components that impact performing CNN models are extracted. Next,
the CNNs are compiled to PTX, and the PTX code for each CNN is analyzed. The
instructions loaded into the GPGPU are extracted, and classes of instructions are
built. Each class contains the number of instructions in the PTX code for a CNN.
Also, a high-level CNN analysis is performed and extracts the number of trainable
parameters for each CNN.

In the second phase, a training dataset is built where the classified extracted
CNN instructions and the GPGPU components (that have an impact on perform-
ing CNN models) are considered as inputs. The amount of power consumption
for each CNN running on the GPGPU as output. The amount of power consump-
tion for each CNN is measured on three different NVIDIA GPGPUs (K80, 1080Ti,
and V100S) with the nvidia-smi tool. Since the ML regression algorithms are
sensitive to the selected features [96], the right combination of features needs to
be detected. Thus, instead of using all extracted data as features, several com-
binations are generated to search for the most relevant features. Having fewer
features leads to simpler models that require shorter training time, reduce the
chance of overfitting, and are easier to interpret.

Next, in the third phase, the ML regression algorithms are applied to the gener-
ated training dataset for power estimation model generation. Once the predictive
models are trained, they can be used to estimate the power consumption for a
given CNN on different GPGPU architectures. Finally, during the model evalua-
tion, the best-performing predictive model is selected.

4.2.1 GPGPUs Architecture Analysis

The power consumption of GPGPUs is affected by many factors. NVIDIA lists
all the GPGPU’s architectural details in [69, 97]. All architectural details for each
GPGPU have been extracted for the experimental setup. The values for the com-
ponents are transformed into comparable measurement units to ensure the ML
method gets the feature for different GPGPUs in the same unit. Moreover, several
CNNs are executed on three different GPGPUs and monitor the component uti-
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Figure 4.1: Overview of the proposed methodology.

lization. This gives more precise details of which component is affected by CNNs
execution and is involved in the power consumption. Furthermore, GPGPUs
architectural attributes are considered, namely: maximum temperature, transis-
tor size, or power supply. This gives more differentiation between the various
GPGPUs.

4.2.2 PTX Instructions Analysis

NVIDIA provides designers with the CUDA Library to develop GPGPU applica-
tions and to write proper code for GPGPUs programming. NVIDIAGPGPUs run
so-called kernels. Each kernel is a set of PTX instructions generated by compiling
the CUDA code with NVIDIA CUDA Compiler (nvcc) compiler. The PTX code is
a stable low-level programming model and ISA for general-purpose parallel pro-
gramming. Fig. 2.3 (see chapter 2.4) shows a part of a given CNN’s PTX code.
The PTX code is given to the GPGPU driver and interpreted at run-time [98]. The
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PTX code contains detailed information of all memory accesses (read or write)
and computational instructions that will be executed on the GPGPU.

For a given CNN, a static analysis is performed on its corresponding PTX file
to count the number of appearances of the instruction that impacts the power
consumption of the CNN when it runs on a GPGPU. Moreover, the number of
threads started for executing the PTX code are read out. The number for each
instruction is multiplied by the number of threads to consider the effect of threads
on CNN’s power consumption when it runs on the GPGPU. The result of this
analysis is stored in the CNNs Classified Instructions, including a set of classes
(each instruction is associated with a single class) and the number of calls in the
PTX code. Hence, not all existing PTX instructions are used for power estimation
model generation. Instead, only those instructions are considered that appear in
the PTX code of CNN benchmarks and directly impact power consumption. As
illustrated in Fig. 4.1 phase 1, the static analysis is performed by PTX Analyzer
module for several PTX files from different CNN algorithms. The results of this
analysis are used to create the training dataset in the next step.

4.2.3 CNN Topology Analysis

Every CNN can be characterized based on its architecture and topology. The
main feature of this characterization is the CNN’s trainable parameters. Train-
able parameters change during the training and are an essential aspect of CNNs.
These parameters are the weighted connections between neurons, and their
number varies across different CNNs. A CNN’s number of trainable parame-
ters reflects its complexity and computational operations. Therefore, by looking at
the number of trainable parameters, one can distinguish one CNN from another
and add more differences to each CNN’s training dataset to make it unique. It
is important to note that the number of trainable parameters is the same across
different GPGPUs and depends solely on the CNN. This feature makes the train-
able parameters an excellent tool for introducing more differences into the training
dataset of each CNN.
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The proposed analysis takes advantage of Tensorflow1 and TensorflowHub2 to
use pre-trained CNNs from the Hubs and also to implement user-defined CNNs.
The Tensorflow API allows access to the trainable parameters for each CNN. As
illustrated in Fig. 4.1 phase 1, the analysis is performed by CNN Analyzer module
for all CNN benchmarks. The results of this analysis are stored in the CNNs
Trainable Parameters and used to create the training dataset in the next step.

4.2.4 Creating Training Dataset and Predictive Model

To build the prediction model, it is vital to have a robust training dataset. There-
fore, the extracted information from the first phase is used to create the training
dataset D based on the following definition:

D = {di |di = {yi , (pi , ci , ti)}; 1 ≤ i ≤ n} (4.1)

Where the parameters p, c, t are considered as inputs (the predictors) of the
training dataset and denote the classified extracted CNN instructions, the GPGPU
components (that have an impact on performing CNN models), and the CNN
trainable parameters, respectively, the parameter y indicates the measured power
consumption for each CNN running on the GPGPU and is considered the training
dataset’s output (the response). Each pair of predictors and the corresponding
response is regarded as one observation that depicts with parameter d .

The generated CNNs instruction Profile and GPGPUs’ architectural details are
used to build the training data set. Moreover, the CNNs are executed on three
different GPGPUs while the power consumption is measured with the nvidia-smi
tool. The measured power consumption also goes into the training data set.

To give an overview of the training dataset D , Table 4.1 demonstrates a part
of its structure. The CNNs Classified Instructions column lists a part of instruc-
tion classes and, for each class, the number of extracted instructions. Column
GPGPU Components shows some relevant architectural components. Finally,

1https://www.tensorflow.org/
2https://www.tensorflow.org/hub
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Table 4.1: Example of training dataset structure used to create the predictive
model

Observation CNNs Classified Instructions GPGPU Components Trainable Param. Power Consumption
Data mov & conv FP .. Class N CUDA Cores ... SM (Output)

CNN1 on GPGPU1 8 3 ... .. 5120 ... 80 25549352 Power1

CNN1 on GPGPU2 8 3 ... .. 4352 ... 68 25549352 Power2

CNN1 on GPGPU3 8 3 ... .. 3584 ... 28 25549352 Power3

CNNn on GPGPUm ... ... ... .. ... ... ... ... Powern*m

the CNNs Trainable Parameters column depicts the training dataset’s last input
(predictor). All three, instruction Profile, GPGPU components, and Trainable Pa-
rameter become our machine learning method’s input features (predictors). The
last column shows the power consumption measured by executing the PTX code
of each CNN on a real GPGPU. Thus, each row of the table indicates an obser-
vation d in the training dataset D where the first three columns are the predictors
(or features) while the total power consumption (column Output) is the response.
The training dataset is split into 70% for the training phase and 30% for the valida-
tion phase.

Feature Selection

Features that exert little impact on the estimation model should be eliminated to
reduce the dimensionality of the training dataset. Reducing the number of fea-
tures leads to simpler models that require shorter training time, decrease the
chance of overfitting, and are easier to interpret. For instance, the K-NN algo-
rithm (used in this work for predictive model creation) is sensitive to redundant
or irrelevant features [96]. To find the best feature combination and eliminate
outside features, different subsets are built out of the primary training dataset D
where Ts ⊂ D . The combinations start with nine different predictors and define
the following three types of subsets based on them by considering:

• nine predictors out of all possible ones

Ts1 = {di |di = {yi , (ci , pi , ti)}; 1 ≤ i ≤ n} (4.2)
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• two subsets where at least one predictor from c must be included:

Ts2 = {di |di = {yi , (ci , pi)}; 1 ≤ i ≤ n} or

Ts2 = {di |di = {yi , (ci , ti)}; 1 ≤ i ≤ n} (4.3)

• a combination of predictors from p and t where

Ts3 = {di |di = {yi , (ti , pi)}; 1 ≤ i ≤ n} (4.4)

Since the GPGPUs’ components predictor has a lot of redundancy with little
changes in the training dataset, the statistical automatic feature selection tech-
niques based on variance cannot be used for feature selection due to confu-
sion. The main reason is that the GPGPUs’ components predictor marks as a
low-impact predictor by the statistical feature selection. Hence, the features are
selected manually to solve this issue. The experimental results in Section 4.3
confirm the importance of the GPGPUs’ components predictor in creating the
best predictive model.

Those combinations are skipped that are only including GPGPUs’ architectural
information and not any PTX instructions nor CNN’s architectural attributes. The
model would predict the same power consumption for every CNN if only GPGPU
architectural features were considered. There is no change in the input values
when only architectural components are considered. Consequently, there must
be at least one PTX instruction Class as a feature included in the combinations.
Moreover, a script is developed to generate the possible combinations and run
them in parallel on our machines. The best results with a MAPE lower than 15%
are saved to a log file.

K-Nearest Neighbors

To predict the power consumption of a given CNN, K-NN regression is applied
to different subsets Ts of the training dataset D in the definition (4.1). K-NN
is a nonparametric clustering algorithm. It can be used to perform regression
prediction by calculating the average value of the k nearest neighbors’ values
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where Y denotes the new predicted output and yi is the output of the i th nearest
neighbor.

Y =
1

k

k∑︂
i=1

yi (4.5)

To find the k nearest neighbors, a distance metric is applied to all elements in
the training dataset and the new element whose value is to predict. Consequently,
the run-time and complexity are linear scaling with the number of elements in
the training dataset. K-NN can be used with metrics like Euclidean, squared
Euclidean City-block, and Chebychev [96]. The Euclidean Distance is used, it is
defined as follows: d between two vectors q and p is defined as follows:

d(p, q) =

⌜⃓⃓⎷ n∑︂
i=1

(qi − pi)2 (4.6)

Finding the right K

One of the main challenges of applying the K-NN algorithm to a prediction training
dataset is finding the right k . While a large value for k can smoothen the prediction
and be assisted with noisy data, a small value of k can corrupt the estimation
model. To overcome this issue, several experiments are performed by running
K-NN for each feature combination, with k ranging from one to 20. Since there is
no considerable improvement achieved by k values larger than ten, the maximum
value is set to 10; k to 20 (see whole experiments in Section 4.3). The K-NN
estimates the power consumption by calculating the average power consumption
of the k nearest data point in the training dataset.

After running the different combinations, the best results are found in the log
file, and the final model is based on the best feature combination. Therefore,
the obtained predictive model can be used to estimate the power consumption of
CUDA-based CNNs on GPGPUs.
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Figure 4.2: MAPE value for different k ranging from one to 20.

4.3 Experimental Results

This chapter aims to answer the following research questions to evaluate our
predictive models.

Research Question 4.1. Which ML algorithm performs best for power estimation?

Research Question 4.2. Which features most impact power estimation on GPGPU?

Research Question 4.3. In the case of K-Nearest Neighbors, What is the most appro-
priate k to select?

Since the quality of the predictive model is significantly related to the robust
training dataset, five different subsets of the training dataset were created based
on the selection of various features (predictors) combinations explained in Sec-
tion 4.2.4. To evaluate the quality of the generated predictive model for each sub-
set of the training dataset, three different standard metrics were applied, which
are 1) Root Mean Squared Error (RMSE), 2) MAPE, and 3) R2. The lower value
for RMSE indicates a better estimation model. The values of MAPE are between
zero and one, where the value one stands for an error of 100%. R2 is a value
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between zero and one, where one stands for a high correlation between model
and data, while a negative value indicates no correlation.

Different k values on the predictive model generation are considered when
applying the K-NN regression algorithm to each subset of the training dataset.
Fig. 4.2 illustrates the MAPE for different k values for 1 ≤ k ≤ 20 . As there is
no considerable improvement by k values larger than 10, the experiments are
only performed by values up to 20. Please note that in our experiments, k = 1

is not considered as it would mean that the predicted power consumption equals
the nearest neighbor. To apply the equation from Section 4.2.4, at least k ≥ 2 is
required.

Table 4.2 demonstrates the experimental results of our analysis for each subset
of the training dataset for the best value of k . Column Training dataset subsets
lists the combination of the features that were used to create the best predic-
tive model, which are 1) Automatic feature selection, 2) All predictors, 3) Only
GPGPUs’ architectural predictors, 4) Only PTX predictors, and 5) Best predictor
combination. Please note that, for the case of Automatic feature selection subset,
different automatic feature selection methods were used where the best result
is shown in the table that belongs to the F-statistic automatic feature selection
method.

As illustrated in Table 4.2, the generated predictive model based on the Au-
tomatic feature selection subset (using the F-statistic method) has a MAPE of
23.22% which is even worse than the case of All predictors where no feature re-
duction is applied. For the case of All predictors, a MAPE of 22.7% was achieved.
This also shows that leveraging the automatic feature selection methods (e.g., F-
statistic) does not improve the quality of results in this case. By generating a pre-
dictive model based on only GPGPUs’ architectural predictors, it could improve
the estimation quality to a MAPE of 21.60%. However, for both experiments, the
R2 has a negative score, which indicates that the regression model does not fit
the data. In the case of generating the predictive model based on Only PTX pre-
dictors, it could obtain a better result in terms of RMSE and R2. However, the
MAPE of 24.12% indicates the highest error percentage overall in Experiments.

Based on our experiments, the best power consumption predictive model is ob-
tained by combining the features described in Table 4.3. The power consumption
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Table 4.2: Experimental results for different input feature combinations
Training dataset subsets k RMSE MAPE R2
Automatic feature selection 3 25.784 0.2322 0.3417
All predictors 18 33.877 0.2270 -0.1934
Only architectural predictors 1 33.2414 0.2169 -0.1613
Only PTX predictors 7 29.8188 0.2412 0.0654
Best predictors combination 5 13.657 0.08849 0.8156

Table 4.3: Descriptions of the best predictors (features) combination
Features Brief description
CUDA Cores Number of CUDA cores the GPGPU has
RAM Amount of GPU memory
Base Frequency The base frequency of the GPGPU cores
Storage Speed Bandwidth speed for Storage access
GFLOPS Number of Floating Point Operations per Second
Memory Clock Frequency of GPGPU memory
L2 Cache size Size of L2 Cache of GPGPU in KB
ret Number of PTX instructions
trainable params Number of learnable and changeable parameters

predictive model has an R2 of 81.56%, indicating a high correlation between the
chosen input features and power consumption. In this case, a MAPE of 8.8% is
obtained.

To validate the quality of the generated predictive model, it is applied the pro-
posed approach to various new CNNs that have yet to be used in the training
phase. Fig. 4.3 illustrates the predicted (in blue) and the original value of power
consumption (in orange) for 12 different CNNs on the NVIDIA GTX 1080Ti. As
shown in this figure, the prediction is nearly identical to the original value for some
CNNs, such as Vgg19 and Vgg16.

Besides the K-NN predictive model, also a NN-based predictive model is imple-
mented. The experimental results demonstrate that the power estimation based
on the PTX and GPGPU architecture is also promising with NN. Fig. 4.4 illus-
trates the results of the NN-based predictive model. On average, our predictive
model achieves an Absolute Error (AE) of 8.3%. The best-case result belongs
to the power prediction for the ResNet152 with an AE of 0.73%. The worst-case
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Figure 4.3: Scatter plot of the predicted power consumption for different CNNs
on the NVIDIA GTX 1080 Ti with 8GB Memory.

forecast relates to DenseNet201 with an AE of 15.75%. This is because more
ResNet variations are included in the training data than, e.g., Densenet.

4.4 Discussion

The results are discussed, and the research questions for this chapter will be
answered in the following section.

Research Question 4.1 Which ML Model:, our experimental results illustrate
that the best results are achieved with the K-NN, which performs slightly better
than the NN-based predictive model. In comparison with an average MAPE of
8.4% for the power consumption for the NN-based predictive model, the K-NN-
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Figure 4.4: AE of power estimation of different CNNs for NVIDIA RTX 1080Ti.

based predictive model achieves 0.4 percentage point better accuracy on aver-
age. However, in the best case, the K-NN-based predictive model has better
accuracy and a lower Absolute Percentage Error (APE). The best power con-
sumption estimation result belongs to the Vgg19 CNN with 0.0003% APE while
the estimation result using the NN-based predictive model reports an APE of
0.73%. Another essential point that must be taken into account is that the K-NN-
based predictive model only needs nine instead of 29 features used by NN-based
predictive model to achieve these results [5, 6]. Consequently, interpreting the
generated power consumption predictive model using the K-NN-based predictive
model [6] is much easier than the NN-based predictive model [5]. Due to the
fewer features, understanding the importance of features is more straightforward
for designers, which can further help them design space exploration. Moreover,
the experimental results demonstrate that the proposed approach based on the
K-NN regression provides designers with an easy-to-interpret and fast power con-
sumption estimation solution, obtaining promising results even with small training
data.

However, the data set is relatively small for a NN-based predictive model [5].
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This can change on a more extensive training set covering more GPGPUs and
different types of NN and not only CNNs.

Research Question 4.2 Most impact features: the following features are hav-
ing the most impact on the prediction regarding the best predictive model: CUDA
cores, Random Access Memory (RAM), base frequency, storage speed, Giga
Floating Point Operations per Second (GFLOPs), memory clock, L2 cache size,
number of PTX instructions and trainable parameters.

Research Question 4.3 What k for K-NN as the experimental results show
that in most cases, there is no significant improvement of K-NN results for a k

larger than 5. The best results are achieved by K-NN with a k of 5.

Increasing the variation of CNNs can further improve the prediction. Moreover,
larger training data sets can improve performance for NN. As K-NN is sensitive
to the amount of data points in the training data set, the runtime will deteriorate.
Consequently, K-NN should only be applied to small data sets. Hence, NN is a
good option on large training data sets while K-NN is to be prioritized on smaller
ones.

4.5 Conclusion

This chapter presents a novel power consumption estimation approach for CUDA-
based CNNs on GPGPUs based on the nonparametric K-NN regression method
compared to NN-based prediction. This chapter has illustrated how the power
consumption of a given CNN on a GPGPU can be estimated by analyzing its
PTX code, CNNs’ topology, and GPGPUs’ architectural Information. Moreover,
it is been shown that promising results on even small training datasets can be
achieved using the K-NN regression with beneficial advantages compared to NN-
based approaches like a smaller number of input features and more minor AE in
best-case prediction.

One of the primary usefulness of the proposed approach is for the DSE of IoT
and Edge devices where CNN algorithms need to be implemented, urging the
increasing use of hardware accelerators (e.g., GPGPUs). In this case, the pro-
posed method can provide designers with early power consumption (one of the
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crucial design constraints) estimation of a given CNN model on different GPGPUs
at the time of compilation. Experimental results on various CNNs demonstrated
the advantage of our approach in power consumption estimation.
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5 Power and Performance Analysis
with Dynamic Frequency Scaling

In this chapter, an analysis of the performance of CNN executed on GPGPU with
DFS is presented. It was found that changing the frequency significantly impacted
power consumption but only had a marginal effect on computation time. Further-
more, increasing the frequency beyond 1200 MHz no longer improves computa-
tion time. Therefore, a lower frequency can help create an energy-efficient CNN
inference system without sacrificing performance. Additionally, a new approach
that allows designers to estimate the power consumption of CNN’s inferencing
on GPGPU with DFS quickly and accurately during the early stages of CNN’s
development is presented. Multiple ML techniques are evaluated for the predic-
tive model generation, and the best performing one is selected to implement in
our novel approach. The proposed approach uses static analysis for feature ex-
traction and Random Forest Tree (RFT) regression analysis for predictive model
generation. Experimental results demonstrate that our approach can predict the
CNNs power consumption with a MAPE of 5.03% compared to the actual hard-
ware. The presented research is based on [7, 52]. Moreover, the methodology of
[5, 6] is evolved for DFS.

The chapter is structured as follows: in Section 5.1, a brief introduction is given,
followed by an introduction of the methodology in Section 5.2. The experimental
results are presented in Section 5.3 and discussed in Section 5.4. The chapter
closes in Section 5.5 with a conclusion.

79



5.1 Introduction

5.1 Introduction

GPGPUs require high energy consumption. For example, to achieve high perfor-
mance, the Summit supercomputer uses 27,648 NVIDIA Volta GPGPUs, lead-
ing to high energy consumption where a power supply of 13 million watts is
required [19]. Data centers and cloud systems can offer a higher number of
GPGPUs for HPC. However, due to power consumption limitations, only a limited
number of GPGPUs with specific configurations, in terms of power consumption,
are currently available for most emerging technologies applications. On the other
hand, due to the emerging usage of ML algorithms in IoT devices embedded and
edge computing systems, the need for HPC has been significantly increasing.
This leads to increased power consumption of almost all machines using ML al-
gorithms (e.g., CNNs). Hence, finding a trade-off between power consumption
and HPC is paramount for such applications.

Performing DSE is essential to find such a trade-off, especially for applications
with a limited power supply like IoT and edge devices with unlimited power sup-
ply. A promising power management technique that is widely used during DSE
is Dynamic Voltage and Frequency Scaling (DVFS) or DFS. The DVFS tech-
nique changes the voltage/frequency during the processing of applications, while
DFS only changes the frequency. Both energy consumption as well as perfor-
mance can be optimized with these techniques. While the DVFS/DFS techniques
for CPU-based applications are well-developed, in the case of the GPGPU, the
study started only a few years ago [99]. Moreover, [100] pointed out that DVFS
techniques for CPU do not suit GPGPUs. Consequently, new strategies must be
developed for GPGPUs.

GPGPU simulators can be used for DSE to support system designers in finding
suitable devices. Those simulators deliver details of GPGPU kernels to under-
stand the execution behavior on GPGPUs [43]. Therefore, they use performance
counters and specific hardware details to estimate the execution time and power
consumption. They reach an accuracy between 10% to 20% compared to real
hardware [39]. However, these simulators require a long execution time and are
significantly slower than native execution on real hardware [39, 43].

To tackle this issue, several predictive models have been developed [5, 21,
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99, 101]. They can be classified either as empirical or statistical studies. The
first relies on code analysis, while the second relies on the program performance
counter. Empirical approaches can be called bottom-up approaches and usually
require detailed information about the GPGPU micro-architecture. The statistical
approaches ignore the GPGPU architecture and treat it as a black box. These
approaches take details of the application behavior and analyze the relationship
between performance counters, GPGPU power consumption, and runtime [99].

Although the aforementioned methods can help designers build fewer proto-
types during DSE and avoid costly design loops, they need detailed application
behavior analysis and specific profiler and profiling settings to collect the neces-
sary performance counter. Moreover, most do not support power prediction in the
case of DFS.

This chapter presents a fast and accurate predictive model considering the
DFS ability of GPGPUs and straightforward collectible predictors that do not need
specific profiling settings. Compared to other empirical studies, there is no need
for a detailed break-up of the GPGPU micro-architecture and treat most parts of
the GPGPU architecture as a black box. Therefore, the method introduced in
chapter 4 is evolved considering different frequency settings of GPGPUs. Thus,
combining the advantages of both empirical and statistical approaches leads to a
predictive model that achieves a MAPE of 5.03%.

In summary, the main contributions of the chapter regarding power consump-
tion estimation are as follows:

1. A fast and accurate power estimation model considering DFS to perform
Neural Hardware Search (NHS) for various configurations of GPGPUs,

2. evaluation of different ML techniques to obtain the best predictive model
(i.e., Random Forest Tree regression analysis),

3. evaluating the applicability and accuracy of the proposed approach in es-
timating power consumption of 30 standard CNNs for the NVIDIA V100S
GPGPU (which is one of the most used GPGPUs in data centers).

Furthermore, the performance analysis yielded the following results:
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1. There is almost no correlation between performance and frequency on most
CNN inferencing tasks,

2. there is a strong correlation between power consumption and frequency,

3. the power consumption is strongly increasing for frequencies larger than
1200 MHz,

4. lower frequencies do not lead to significant performance loss but reduce
power consumption.

5.2 Methodology

The proposed methodology is structured into two main phases, which are 1) train-
ing dataset creation and 2) predictive model generation and evaluation. The over-
all flow of the proposed methodology is illustrated in Fig. 5.1. In the following,
each phase of the proposed approach is explained in more detail.

5.2.1 Training Data Generation

An HPC Cluster with Simple Linux Ressource Manager (SLURM) is used for train-
ing data creation. The used machine is equipped with three NVIDIA V100S 32GB,
256GB memory, and 2 AMD EPYC ROME 7272. Since the system is a comput-
ing cluster, the Home directory is a Network Attached Storage (NAS)1; a 10GBit/s
ethernet connection connects it.

To consider DFS, it is necessary to use the functionality supplied by the nvidia-
smi tool to set a fixed execution frequency [102]. This makes it possible to exe-
cute the CNN benchmarks on frequencies between 1597 MHz and 135 MHz on
the NVIDIA V100S GPGPU. Therefore, a SLURM-based HPC system application
(e.i., a batch script) is developed to start a Job array for all available frequencies
and CNNs combinations, hence, the benchmark can be run automatically. This

1Please note that the abbreviation NAS can stand for Neural Architecture Search as well as Net-
work Attached Storage. In this thesis, the abbreviation NAS is used for Neural Architecture
Search.
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Figure 5.1: DFS-based power estimation methodology.

program is illustrated in Fig. 5.2. To avoid any side effects, it is been ensured
that the benchmark is the only running job on the machine. This is done with the
SLURM parameter –exlusive (Fig. 5.2, Line 5). The benchmark has three steps:
1) setting the frequency, 2) executing the CNN and measuring the power con-
sumption and execution time, and 3) resetting the frequency for the subsequent
execution (Lines 30 to 34). After the execution of CNN benchmarks on a given
frequency, the measurements are added to a Comma-Separated Values (CSV)
file containing the GPGPU name, CNN name, frequency, power consumption,
and execution time. The observation is extended during further data collection
steps for the predictors.

To get the exact number of executed instructions for CNN benchmarks, the
NVIDIA Profiler nvprof is used, which analyzes the CNN during execution [103].
Thus, all 30 CNN benchmarks are executed and create a profile for each. The
extracted number of executed instructions extends the training dataset. The main
reason is that the total number of PTX instructions cannot be extracted from
abstract PTX files at compilation time as it does not contain dynamic informa-
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1 #!/ bin/bash
2 #
3 #SBATCH −−job −name="Power_Benchmark "
4 . . .
5 #SBATCH −− e x c l u s i v e
6 . . .
7 dec lare −a CLOCK_RATES
8 CLOCK_RATES=(1597 . . . 135)
9

10 dec lare −a CNNs
11 CNNs=( ’m−r50x1 ’ . . . ’ a lexnet ’ )
12
13 dec lare −a combinations
14 index=1
15
16 f o r c l o c k _ r a t e in $ {CLOCK_RATES [ * ] }
17 do
18 f o r CNN in $ {CNNs[ * ] }
19 do
20 combinations [ $index ]=" $ c l o c k _ r a t e $CNN"
21 index=$ ( ( index +1) )
22 done
23 done
24
25 parameters =( $ { combinations [ $ {SLURM_ARRAY_TASK_ID } ] } )
26
27 c l o c k _ r a t e =$ { parameters [ 0 ] }
28 cnn=$ { parameters [ 1 ] }
29
30 nvidia −smi −pm 1 − i 0
31 nvidia −smi − i 0 −ac 1107 , $ { c l o c k _ r a t e }
32 srun python3 benchmark . py −n $ { cnn } − f $ { c l o c k _ r a t e }
33 nvidia −smi −rac
34 nvidia −smi −pm 0 − i 0

Figure 5.2: Part of SLURM SBATCH Job script to execute the CNN benchmarks
with different frequencies on the experimental setup.

tion such as the length of loops or jump instructions based on the comparison
(Fig. 2.3, Lines 14 and 15). Thus, at least one execution of the CNN benchmarks
on real hardware or cycle-level simulators (which take much longer than real de-
vices) is required. In the Training Dataset Creation phase, the NVIDIA V100S
GPGPU is used to measure the number of executed instructions for each CNN.

To handle this issue for a new CNN in the second phase (Fig. 5.1, Predictive
Model Generation and Evaluation), we take advantage of a reference GPGPU
(which can be any available GPGPU) and the NVIDIA profiler nvprof to obtain the
total number of instructions.

The trainable parameters are calculated by the (Static Analyzer module utiliz-
ing the TensorFlow functionality, see Fig. 5.1, Phase 1) for all 30 benchmarks
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CNNs and add the total number of trainable parameters for each CNN to the cor-
responding observation of the DFS benchmark. The final training dataset D is
defined as follows:

D = {di |di = {yi(ci , tpi , insi)}; 0 < i < n} (5.1)

For each observation di the parameter ci , tpi , insi identify the GPGPUs’ frequency,
the CNN trainable parameter and the total number of executed PTX instructions,
respectively. The output parameter yi denotes the measured power consumption
(in watts) for each CNN running on GPGPUs. The training dataset is split into 70%
training and 30% evaluation, which are independent and have no overlapping
data. Afterward, the different predictive models (five different ML techniques are
used) are trained on the dataset and evaluated in terms of accuracy and speed.

5.2.2 Differentiation of Methodologies

The methodology in this chapter differs from the methodology in Chapter 4 at two
key points.

1) All available frequencies were included in creating the data set, whereas
in Chapter 4, the GPGPU configuration was not manipulated, and the GPGPU,
therefore, runs in the standard configuration. This results in significantly more
data and measurement points per GPGPU than in the method from Chapter 4.

2) Instead of analyzing PTX code, the instructions are measured here by nvprof
Profiler. This leads to significantly more accurate results than static code analysis.
Using nvprof also has a disadvantage, as a one-time execution on a GPGPU is
required. Moreover, using nvprof also results in a further difference, as the nvprof
measures the SASS instructions, not the PTX.

5.2.3 Performance Evaluation Process

As already mentioned, the following setup is considered: the independent vari-
ables contain the CNNs used for inferencing Ni ∈ N = {N1 = alexnet,N2

= densenet121, ..., N31 = xception} and the varied frequencies f ∈ F ⊂ R≥0. The
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dependent variables contain the maximum power consumption P and the compu-
tation time T . While N is a discrete set, F can be easily discretized by sampling
the frequencies at interest and ensuring a sensible distribution.

For each CNN inferencing task, 196 samples of different frequencies (ranging
from 135 MHz to 1597 MHz) in approximately uniform distribution are collected
and performed n = 3 repetitions of these tasks to factor out measurement noise.
Hence, for each CNN, 196 ·31 = 6076 data points exists (each in n = 3 repetitions)
both in maximum power consumption and computation time.

For the analysis standard statistical measures are used for evaluating the re-
sults: First, the reliability of the computed data is analyzed by computing mean
µ(d) and standard deviation σ(d) for each data point d in maximum power con-
sumption P and computation time t, as well as the variation coefficient σ(d)

µ(d)
for

both dependent variables. Second, the relative values are computed (on means)
trel(d) =

µt(d)
minf∈F t(d)

for computation time based on the minimum value of compu-
tation time. This computation shows for each frequency in each CNN by what
factor the computation time increases compared to the shortest computation
time given this CNN. Third, the correlation coefficients are computed as fol-
lows: σxy = µ(xy−µ(x)µ(y)

σ(x)·σ(y) ; for each CNN between both dependent variables, but
also power consumption to frequency as well as computation time to frequency,
i.e., σPt, σPf , and σtf to analyze their influence on one another. This value is
normalized to lie between −1.0 and 1.0, where higher absolute values denote a
higher linear dependence and lower absolute values (usually below 0.5) indicate
no linear correlation.

5.2.4 Predictive Model Generation and Evaluation

The analysis considered five common ML techniques for regression analysis,
namely 1) K-NN, 2) Decision Tree, 3) Random Forest Trees, 4) eXtreme Gradient
Boosting (XGBoost), and 5) Linear Regression.

As the K-NN worked well in chapter 4 it is used again and compared to other
techniques besides NN. Although it is designed for classification tasks, it can be
used for regression analysis, too [96] (for more details, see Section 4.2.4). Deci-
sion Tree, Random Forest Tree, and XGBoost are tree-based decision algorithms
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that are usually used for classification but can also be used for regression analy-
sis. The Decision Tree technique builds a binary tree structure, where a predictor
defines each node and threshold [104]. The Random Forest Tree is an extension
of this simple Decision Tree technique and consists of a collection of Decision
Trees that creates a "Forest." Hence, the Random Forest Tree usually has better
results than a single Decision Tree [105]. The XGBoost is a technique to speed
up the runtime of tree-based ML techniques. Consequently, the execution time
of XGBoost models is faster than for other tree-based ML algorithms [106]. How-
ever, to find the technique that provides the best predictive model, five different
models are trained and compared in terms of accuracy and speed.

To compare different ML techniques and evaluate the generated predictive
models, the following error metrics are used: 1) the MAPE and 2) the R2 coeffi-
cient. This ensures that the accuracy of all predictive models is calculated using
the identical metric, providing a basis for comparison. The MAPE is calculated
based on Eq. (5.2) and the R2 based on Eq. (5.3).

MAPE =
1

n

n∑︂
i=1

|yi − ŷ i

yi
| (5.2)

R2 =

∑︁n
i=1 (ŷ i − y)2∑︁n
i=1 (yi − y)2

(5.3)

Here, yi, ŷi, and yi identify the observation, prediction, and average output values,
respectively. In addition, this also allows for comparing the results with the latest
works in the field.

5.3 Experimental Results

The experimental results and evaluations are two-fold. In Section 5.3.2, the ex-
perimental results on modeling power consumption with ML-based techniques for
different frequencies of the GPGPU are presented. Afterward, the impact of dif-
ferent frequencies on the performance (e.g., the execution time of the CNNs) is
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analyzed in Section 5.3.1.

5.3.1 Performance Behavior Analysis

In this section, the results of the above-described evaluation process will be pre-
sented. Furthermore, the results are analyzed and discussed to answer the fol-
lowing evaluation questions:

Research Question 5.1. How reliable is the technical setup?

Research Question 5.2. What influence does the frequency have on the computation
time of the CNN inferencing task?

Research Question 5.3. What influence does the frequency have on the power consump-
tion of the CNN inferencing task?

Research Question 5.4. Which influence is higher on computation time or power con-
sumption, the CNN’s or frequency’s influence?

Combining the results of these evaluation questions may allow a sound answer
to the original question about the influence of frequency scaling on performance
measures.

Statistical Evaluation

Figures 5.3 and 5.4 show average computation time and maximum power con-
sumption results. In both figures, facets show the results per CNN, the x-axis
shows different frequencies, and the y-axis shows the average value with an er-
ror band of one standard deviation for time and power, respectively.

In Figure 5.3, one can see that in most CNNs, the error band is comparatively
narrow, with the apparent exception of the densenet-variants. The inceptionnet-
variants and efficientnet-variants also show higher standard deviations of con-
sumption time than the remaining CNNs. It is noticeable that the frequency seems
to have, at most, a mild negative effect; for most CNNs, the trend appears con-
stant at first sight.
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Figure 5.3: Average computation time (in seconds) for all CNNs and frequencies
with error bands of one σ
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Figure 5.4: Average maximum power (in W) for all CNNs and frequencies with
error bands of one σ
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In Figure 5.4, illustrates again higher standard deviations for most of the ef-
ficientnet-variants and the inceptionnet-variants; however, not for the densenet-
variants. Here, only densenet201 shows high standard deviations—additionally,
the setup results in higher standard deviations for the m-r101x3. As for the aver-
age maximum power values, the figure shows a progressing curve for all CNNs.
However, with varying steepness, e.g., the m-r154x4 has the highest increase for
high frequencies. In contrast, Nasnetmobile has a comparably low rise, although
it is still an increase. It is, however, remarkable that the growth significantly pro-
gresses after passing the 1200 MHz frequencies. This is where the most signifi-
cant increase starts for most CNNs.

To further investigate the only barely visible negative trend for the average com-
putation time, the relative average computation is described in Section 5.2. Fig-
ure 5.5 shows the result. Again, each facet represents a CNN inferencing task
(in the same order as both figures before), the x-axis shows the frequencies, and
the y-axis now shows the relative average computing time based on the minimum
value (for this CNN). The blue lines indicate a model fitted via the loess method to
aid the eye in visualizing the underlying trend. It cannot be seen as direct model
computation. There are several things to observe here: First, the higher variability
in the data is not an indicator of a high deviation in terms of the frequency varia-
tion as all of the data is now scaled to its perceptive minimum and does still not
exceed 1.5, i.e., a 50% increase on the minimum. Second, in this visualization,
the negative trend is more straightforward to spot. However, it is still minimal.
Some CNNs, e.g., alexnet, vgg16, vgg19, show a relatively straightforward nega-
tive trend, while others still show none at all, e.g., efficientnetb3, densenet201, or
InceptionResNetV2. Third, the minimum value, i.e., 1.0, generally lies between
900 and 1200 MHz, sometimes even once at the beginning and end of this range,
e.g., InceptionResNetV2. Last but not least, some CNNs seem to show a change
of trend in the middle of their data: It is especially prominent in densenet169 and
nasnetmobile, where at around 900 MHz, there seems to be a drop in relative
computing time, and then an increase can be seen.

The correlation coefficient for each CNN between frequency, average compu-
tation time, and average maximum power is computed to undermine our visual
findings with a quantitative metric. Figure 5.6 shows the results; the light gray
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Figure 5.5: Relative average computation time for all CNNs and frequencies with
a loess-model fitted
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columns show the correlation coefficient results for frequency and average maxi-
mum power, and the dark gray columns show the correlation coefficient results for
frequency and average computing time. As was already visible in Figure 5.4, the
values for the correlation coefficient with average maximum power are very high,
sometimes even close to 1.0, i.e., there is a strong positive relationship between
both variables. To phrase it differently, a higher average maximum of power can
be seen for higher frequencies. The picture is inverse when looking at average
computing time. Here, all correlation coefficients are negative, albeit very small.
The highest values to be observed are the ones for alexnet and both vgg16 and
vgg19, which matches the conclusions from the last paragraph.

5.3.2 Power consumption Modeling

The results of the predictive model generation are presented below. The eval-
uation of the created predictive models aims to answer the following research
questions discussed in sec 5.4.

Research Question 5.5. Which ML technique performs best for power estimation of
CNNs inference on GPGPU?

Research Question 5.6. Can the use of predictive models reduce the time required for
DSE?

The initial experimental results sound promising. Five commonly used ML al-
gorithms are evaluated as predictive models for power consumption considering
DFS. The experimental results are consolidated in Table 5.1, which shows the
accuracy of the predictive models for average, top 10%, and bottom 10% pre-
diction. The Linear Regression shows the worst result with a MAPE of 15.31%,
followed by the K-NN with a MAPE of 7.74%. The tree-based ML algorithms,
Decision Tree, XGBoost, and Random Forest Tree, attained better results with
MAPE of 6.03%, 5.43%, and 5.03%, respectively. The best predictive model is
based on the Random Forest Tree algorithm, where the number of instructions
and the fixed frequency are used as predictors. In this case, the Random Forest
Tree predictive model achieves a MAPE of 0.3% for the top 10% and 5.56% for
the bottom 10% prediction. Since the features are simple to collect and consist
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Figure 5.6: Correlation coefficients for frequency and computation time as well as
frequency and power

of only two elements, the proposed approach can be easily applied. This can
significantly enhance the DSE process, avoid the heavy tasks of specific setup
and configuration, and extract many features usually required by most other ap-
proaches.

Compared to the state-of-the-art approach [6] with a MAPE of 8.3%, our pro-
posed approach achieves 1 .65× better accuracy. The main reason is that the
proposed approach is specified to a single GPGPU model and can predict the
power consumption for various CNNs for this specific GPGPU. Please note that
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Table 5.1: Comparison of four different ML-regression algorithms in terms of ac-
curacy and execution time

GPGPU Regression Model
Accuracy Execution Time

Average Max Absolute Error Top 10% Bottom 10% fast slow
MAPE R2 MAPE MAPE

V100S

Linear Regression 15.31% 0.6447 117.05 Watts 1.06% 16.88% 3.5099e−5 0.0002
K-Nearest Neighbors 07.74% 0.8027 93.09 Watts 0.52% 8.53% 0.0003 0.0017
Random Forest Tree 05.03% 0.9561 38.24 Watts 0.30% 5.56% 0.0050 0.0109
Decision Tree 06.03% 0.9359 38.38 Watts 0.32% 6.65% 4.219e−5 0.0002
XG Boost 05.43% 0.9512 48.13 Watts 0.34% 5.99% 9.0800e−5 0.0003

the GPGPU can be changed, and any other GPGPUs can be added to the train-
ing dataset. In this case, the predictive model can be adopted based on which
GPGPU is considered the target device. So, any extension on the training dataset
can be quickly set up.

The execution time of our approach is 0.0109 seconds in the worst case. Based
on this, DSE for 30 different CNNs, and 196 possible frequencies of the NVIDIA
V100S take about 30 · 196 · 0 .0109s ≈ 64 .1s which leads to a tremendous speed-
up of 11009× in comparison to the naive approach where each CNN is executed
for each frequency on an actual device (e.g., 195 hours on the NVIDIA V100S for
30 CNNs and 196 frequencies). Moreover, it opens another possible use case:
online dynamic frequency scaling of GPGPUs. The predictive model can esti-
mate the power consumption of a CNN online on the device and, thus, scale the
frequency depending on the executed CNN in production. This opens additional
power-saving options for systems executing different CNNs on the same device
(e.g., GPGPU) like HPC-Systems or cloud providers. For example, the NVIDIA
V100S has 196 frequencies between 1597 MHz and 135 MHz that can be con-
figured. Consequently, finding the frequency with the lowest power consumption
requires 196 execution of the predictive model takes 196 · 0 .0109s = 2 .13s. In
the case of the model’s periodic executions, the best frequency can be calculated
and cached after the first inferencing and used in an additional execution.

Based on our predictive model, a comparison between the predicted power
consumption and the actual power consumption on a real device (e.g., NVIDIA
V100S) is illustrated in Fig. 5.7. This figure shows that the predictive model is
close to power consumption.
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(a) AlexNet
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(b) DenseNet121
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(c) DenseNet169
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(d) EfficientNetB0
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(e) EfficientNetB1
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(f) EfficientNetB2

Figure 5.7: Comparison of predicted and real power consumption for six differ-
ent CNNs for frequencies between 397 MHz and 1590 MHz on the
NVIDIA V100S GPGPU.
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5.4 Discussion

The following section discusses the results of the aforementioned analysis and
the predictive model. Moreover, the results are used to answer the research
questions of this chapter.

5.4.1 Performance Evaluation Discussion

Research Question 5.1 technical setup:, the repetitions must yield comparable
results. A closer look at Figures 5.3 and 5.4 shows that although some CNNs
have a higher standard deviation, these are also the ones with higher average
values. Computation of the variance coefficient for the maximum power and com-
putation time yields most variance coefficients smaller than 0.2 and none exceed-
ing 0.3. These small values indicate that it is valid to trust the technical setup to
give reproducible values.
Research Question 5.2 influence on computation time, only a marginal nega-
tive impact can be detected on the computation time of the CNN inferencing task,
i.e., higher frequencies lead only to tiny improvements in computation time, if at
all. This finding aligns with the general direction of the conclusions of [107].
Research Question 5.3 influence on power consumption:, a significant link
between frequency and power usage can be observed. The power consumption
drastically increases when the frequency exceeds 1200 MHz, the range where
overclocking begins, as the base frequency of NVIDIA V100 is 1245 MHz. As a
result, overclocking significantly impacts power consumption, while underclock-
ing has a more negligible effect on most CNNs. However, some exceptions exist,
such as the NASNetlarge or the NASNetMobile, which suggests that network de-
sign also plays a role in power consumption. Overclocking the GPGPU core fre-
quency generally does not result in significantly better performance but increases
power consumption dramatically.
Research Question 5.4 what does the frequency influence more: has two
parts: Firstly, the frequency significantly impacts power consumption, as shown
by the strong correlations. There are a few exceptions, like the NASNetLarge and
NASNetMobile, where the increase in power consumption already starts before
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the 1200 MHz frequency. Please notice that both CNNs are automatically de-
signed by NAS techniques and not by humans. Thus, the NAS technique and the
implementation of both networks could lead to different behavior. Secondly, while
the correlation between frequency and power consumption is generally high, the
correlation between computation time and frequency is the opposite, indicating
that the application influences computation time more than the frequency. This
effect can also be observed in the findings of [107] for other High-Performance
Applications. In addition, the implementation of the application can also have a
significant impact on the computation time.

Overall, lower frequencies lead to lower power consumption for CNNs, while the
computation time is always at most 50% slower as the fastest execution. Conse-
quently, it can be recommended to lower the frequency of CNNs inferencing tasks
to establish sustainable and energy-efficient systems.

5.4.2 Predictive Model Discussion

A modification of the original power prediction approach from chapter 4 is pre-
sented. It illustrates how slight changes can enhance the method for DFS on
GPGPU.

Research Question 5.5 best ML Model:, the Random Forest Tree performs
the best for power consumption estimation of CNN inference on the NVIDIA
V100S. However, the approach still has some drawbacks as it is limited to a single
GPGPU and to cover multiple GPGPU models, a training data set for each model
has to be created as well as the particular predictive model must be trained on
the different training data sets.

Research Question 5.6 time reduction:, using predictive models based on ma-
chine learning techniques can greatly improve the time for DSE compared to
naive approaches such as executing the CNN for all available frequencies and
profiling the power consumption. Experimental results have shown that the pre-
dictive model outperformed the naive approach by a factor of 11009 (195 hours
for the naive approach versus 64 seconds for the predictive model).
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5.5 Conclusion

In this chapter, a novel ML-based approach to estimate the power consumption
of CNNs for GPGPUs with DFS is presented, as well as an in-depth analysis of
DFS impact on the performance.

It is illustrated how the power consumption of CNNs for a given GPGPU with
various frequencies can be estimated by only considering two main features as
predictors: the total number of executed instructions and trainable parameters
(related to the CNNs topology). The proposed approach empowers designers
to apply NHS and hardware-aware NAS, considering the power consumption of
CNNs for GPGPUs. The model can predict the power consumption of various
GPGPU frequency configurations without retraining the model. Experimental re-
sults sound promising, and this new line of research helps make power estimation
CNNs for GPGPUs with DFS indeed a cross-cutting activity in the early stages of
the design process.
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6 Hybrid PTX Analysis

This chapter introduces HyPA, a hybrid PTX Analyzer that inspects PTX code
statically and dynamically. HyPA implements a partly functional emulator that
executes instructions that rely on runtime dependencies to count the number
of executed PTX instructions and divergent branches. HyPA executes compiled
kernels—the programs that run on GPUs—generated by the CUDA compiler and
supports the full PTX 7.7 specification. Compared to standard profilers, the func-
tional emulator allows significantly faster analysis of PTX code. The evaluation
quantifies the increase in performance through benchmark runs. HyPA achieved
speedups of up to 536% compared to the nvprof profiler. Moreover, HyPA can
gather performance metrics beyond static analysis (e.g., branch efficiency) by a
faster execution time than by profiling the application on an actual device. Finally,
HyPA is provided as an open-source project1 to help developers and system de-
signers in further research and development. The presented research is based
on a previously published conference paper [8].

The chapter is structured as follows: after a short introduction and motivation
in Section 6.1, the methodology is presented in Section 6.2. Next, the results
and discussion are illustrated in Section 6.3 and Section 6.4, respectively. The
chapter closes with the conclusion in Section 6.5.

6.1 Introduction

Three strategies can achieve energy-efficient applications: 1) designing more
energy-efficient devices, 2) optimizing the applications’ implementation, or 3) op-
timizing the chosen device for the chosen application. Options 1 and 2 are usu-

1https://github.com/chmetz/hypa
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ally long-term approaches, as pursuing the second strategy requires deep inside
knowledge of the code and behavior of an actual device to maximize its utiliza-
tion and regarding option 1, utilizing a GPGPU energy-efficiently is a complex
and challenging task [108, 109]. However, the third option may allow users to
supply only the performance necessary for their task and, thus, optimize energy
efficiency. To do so, one needs information about the potentially employed de-
vices, e.g., the different GPGPUs, for his specific task, e.g., a CNN-inferencing
task. Standard metrics that are used for the prediction of power consumption
and performance are the branch-efficiency, the #instructions, and the #floating-
point-operations [5, 6, 7, 21]. Code profiling and execution analysis must be
performed for all possible setups to gather these metrics. Academia and industry
proposed different approaches for code profiling and analysis. The three main
approaches—which we will describe in the following—are 1) classical profiler
tools that measure performance counters during the execution of the applica-
tion on an actual device, 2) simulators that simulate or emulate the actual device,
and 3) static code analysis where performance and power prediction is calcu-
lated based on the application’s source code. However, all approaches have their
limitations, discussed in the following:

(1) Profiling tools like nvprof [103], CUPTI [110], or nsight2 log different perfor-
mance counters (e.g., the total number of executed instructions) during execution
on an actual GPGPU [70, 78, 103, 111]. To find the optimal GPGPU, it’s neces-
sary to run the profiling process on multiple GPGPUs since the profiling results
are restricted to the GPGPU in use. This leads to three main disadvantages of
profilers.

• Performance counters are inconsistent across different GPGPUs. It means
that the same performance counter can be calculated differently on different
GPGPUs, or the corresponding counter may not exist. Hence, comparing
these metrics can be challenging or even impossible.

• The profiling step is very time-consuming as its duration is significantly
longer than the application run-time due to its dependence on the GPGPU

2https://developer.nvidia.com/nsight-systems
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instead of the application [72, 78, 111]. Hence, profiling GPGPUs is not a
time-efficient way of determining the most appropriate GPU.

• For profiling, access to the actual GPGPU is necessary. As results are not
transferrable between different GPGPUs due to the dependence on their
machine language [78], the user would need access to every GPGPU that
is evaluated, which is very costly.

(2) Simulation techniques solve the availability problem of GPGPUs. They al-
low metrics computation without access to the GPGPU. In the past, tools like
GPGPUSim [112] and Ocelot [113] were proposed. However, since they emulate
GPGPU behavior and execute the application on CPUs, which do not offer the
same high parallelism capabilities, the execution time takes much longer than the
profiling on actual GPGPUs. Additionally, they do not achieve identical results
compared to profiling. Hence, while helping to reduce costs, simulation tech-
niques are less favorable in terms of time than profiling techniques.
(3) Another possibility is static code analysis. Its main drawback is the fact that it
can not analyze dynamic behavior. Conditional jumps may have different control-
flow paths in different threads, which can only be determined with a dynamic
analysis. Therefore, the result of static analysis either underestimates (in the case
of loops) or overestimates (in the case of non-entered ELSE branches) several
metrics (e.g., numbers of instructions). Other metrics, like branch efficiency, are
inherently based on dynamic analysis and can not be computed. Its advantage,
however, is the small time consumption [35, 72, 79, 80].

The three existing methods have crucial drawbacks for gathering standard met-
rics to predict power and performance based on ML. Therefore, we propose an
approach for computing the respective metrics, which combines the time-related
advantage of static analysis with the advantage of simulations without having its
time-related drawback. Our approach is based on the idea that it is not neces-
sary to simulate the entire application on the GPGPU, but only those parts that
influence conditional jumps and may, therefore, obfuscate the results of static
analysis. The resulting hypothesis is twofold: First, a hybrid analysis approach is
more time-efficient than the standard simulation approach, and second, it is not
only more precise than a static analysis but is also capable of determining metrics
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that are inherently based on dynamic analysis.
Thus, HyPA is created to consider dynamic dependencies within the code and

can be used without executing the entire application (e.g., CNNs). The basic
idea of our tool is to read all instructions, consider the number of threads, and
search for dynamic dependencies. Afterward, a functional simulator executes
only those PTX instructions on a CPU that rely on dynamic run-time dependen-
cies for conditional jumps. By this, HyPA is overcoming the lack of speed of
existing GPGPU simulators. The generated profiles can be used for power and
performance prediction of GPGPU applications (e.g., [101]) or for better code un-
derstanding (e.g., [72, 78, 112]). HyPA gives detailed information on the number
and type of instructions, floating point operations, and divergent branches.

Our main contributions can be summarized as follows:

1. A hybrid approach of PTX emulation to profile CUDA applications on a low-
level code basis

2. An automatic extraction of the following PTX code metrics: number of in-
structions, floating point operations, number of divergent branches, and
branch efficiencys

3. An implementation of HyPA as an opensource project to help developers,
computer architects, and researchers in their work

6.2 Methodology

The PTX Code analysis is split into three parts 1) static code analysis and depen-
dency detection, 2) dynamic code analysis and emulation, and 3) profile genera-
tion. The general workflow of HyPA is illustrated in Figure 6.1.

6.2.1 Running Example

A running example is used to explain the different steps of HyPA, which is shown
in Fig. 6.2. Even if the function does not implement a useful algorithm, it can
be used to illustrate HyPA. The code defines a function named example that
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PTX

 HyPA

 Static Analysis

Instruction Identification

Instruction Graph Generation

Filtered Instruction Graph...

 Dynamic Analysis

Register Emulation

Divergent Branch Detection

Instruction Set Simulation

CNN Profile

1

2 3

Figure 6.1: General workflow of the PTX analyzer HyPA

expects one parameter. The directive .reqid (see line 4) specifies how many
threads should be used in the thread block. Lines 6 and 7 declare the number
and type of used registers. In this case, there are two registers for predicates
(boolean values) and four 32-bit wide unsigned integers. The remainder of the
function consists mainly of PTX assembler instructions.

Following the structure is explained on the instruction mov.u32 %ru1,%tid.x

from line 9. An instruction first states the instruction type. In this case, it is a move
instruction that moves a 32-bit wide unsigned integer. After the instruction, the
target register is specified, which is %ru1 in this case. Please note that the maxi-
mum number of specified source registers is—according to the PTX documenta-
tion [76]—limited to four. Here, the instruction reads the register %tid.x. This is
a special register that holds the identifier of the current thread and is set by the
GPU. The setp instruction, for instance, used in line 11, compares two registers
based on the operator, < in this case, and stores the result in the target register.
Line 14 shows an example of a branch instruction @%p1 bra then; that jumps
to the specified block then when the condition %p1 holds. If the condition does
not hold, the control flow continues with the next instruction.

6.2.2 Static PTX Analysis

HyPA starts with a static code analysis to detect all instructions that need to be ex-
ecuted, the number of threads that will be raised, and the run-time dependencies
that need simulating to resolve conditional jumps based on dynamic dependen-
cies. Therefore, HyPA parses the PTX Assembler and stores the information in
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1 . v i s i b l e . entry example (
2 . param . u32 param_0
3 )
4 . reqnt id 256 , 1 , 1
5 {
6 . reg . pred %p<3 >;
7 . reg . u32 %ru <4 >;
8
9 mov . u32 %ru1 , %t i d . x ;

10 ld . param . u32 %ru4 , param_0 ;
11 setp . l t . u32 %p1 , %ru4 , 1024 ;
12
13 setp . l t . u32 %p2 , %ru1 1 2 8 ;
14 @%p1 bra then ;
15
16 mov . u32 %ru3 , 3 2 ;
17 bra . uni e x i t 1 ;
18
19 then :
20 mov . u32 %ru3 , 6 4 ;
21
22 f i n a l :
23 setp . gt . u32 %p3 , %ru3 1 0 0 ;
24 @%p2 bra e x i t 1 ;
25
26 add . u32 %ru4 , %ru4 , 1024 ;
27
28 e x i t 1 :
29 r e t ;
30 }

Figure 6.2: Running example of PTX to illustrate the workflow of HyPA

an intermediate representation. In this intermediate representation, an instruction
is formally denoted by a vector

ins = (id, dr, sr1, ..., srm, CTAid, CBid) (6.1)

where id stands for the unique instruction identifier, dr and srj, 1 ≤ j ≤ m

denote the destination and source registers, resp., and CTAid, CBid are the
CTA-Id and the Code-Block-Id. INS is the set of all possible instructions that
enable the denotation of I(P ) ∈ INSn for the list of all instruction lines of a
given program p. Ii, 1 ≤ i ≤ n denotes the i-th instruction line in this de-
notation scheme. Thus, the formal notation of the exemplary PTX code line
add.s64 %rd48 %rd7, %rd47; is ins = (0 , rd48 , rd7 , rd47 , 0 , 0 ). Since it is
the first identified PTX line, the ID id is set to zero (0). Moreover, since no CTA
and labels are specified in the example, both CTA-Id and Code-Block-Id also are

106



6.2 Methodology

set to zero (0) in this case. Please note, that the maximum number of specified
source registers is limited to 4 based on the PTX documentation [76].

In the following, the definition of dependency graphs [114] and their restriction
to conditional instructions are explained.

Definition 1 (Dependency Graph). A Dependency Graph G is defined as a tuple G =

(V,E), where V is a finite set of nodes, denoting instructions, and E = {(v1, v2)|v1, v2 ∈ V }
is a set of directed edges. An edge from node v1 to node v2 indicates that the latter instruc-
tion is dependent on the former.

Each PTX code line containing an instruction (Ii) is represented by a node (vi ∈
V ) where all instructions included in a CTA lead to a Dependency Graph GCTAid

containing these instructions as well as their data dependencies. A dependency
of two or more instructions exists if a source register (srj) of instruction mathcalIi

is the destination register (dr ) of earlier occurring instructions. Consequently, the
node vi for instruction Ii depends on the nodes vl whose instructions Il have
previously been written to the source registers specified for Ii and thus an edge
e = (vl, vi) is included in the graph for each instruction that does so [115].

During Dependency Graph (G) construction all jump instructions are stored in a
Control Flow Instruction List (CFIL). At the same time, these nodes constitute the
set Vbranch ⊆ V , namely all nodes in the instruction graph that may affect a specific
jumping operation. The jump instructions can be identified unambiguously based
on the identifiers (id) assigned to the lines during initial parsing,

Filtered Dependency Graph

Based on our initial hypothesis, not all instructions must be executed to decide
whether a thread will branch. Therefore, a dynamic slicing [115] is performed.
Starting from the jump condition of a specific code block, all influencing nodes
are traced back through the instruction graph. The resulting subgraph is called
Filtered Dependency Graph (FDG) in the following. The FDG is formally defined
as follows:

Definition 2 (Filtered Dependency Graph FDG). The Filtered Dependency Graph is
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defined as subgraph Gv∗ = (V ′, E ′) of G = (V,E), where v∗ ∈ Vbranch ⊆ V , with

V ′ = {v0 ∈ V |∃π = v0v1...vn with vn = v∗,

(vi−1, vi) ∈ E, ∀i ∈ {1, ..n}} ⊆ V

E ′ = {e = (v1, v2) ∈ E|v1, v2 ∈ V ′}

The FDG only consists of the instructions that need to be executed to identify if
a conditional jump operation will be triggered or not. Hence, all jump operations
have to be located to generate the FDG. Based on the CFIL from the dependency
graph generation, the paths to the root nodes are identified. The working principle
is as follows: A jump instruction from the CFIL marks the starting point at node
(A) in the dependency graph (G). This starting node (A) is added to the FDG. For
every added node, its (transitive) parents are added as well. The resulting graph
trivially is a subset of G. The identified FDG will then be simulated during the
Dynamic PTX Analyzation.

6.2.3 Dynamic PTX Analyzation

Based on the FDGs which are generated for all CTAs, the dynamic PTX analysis
proceeds by emulating the GPGPU. The emulation does not perform the full ap-
plication (i.e., PTX code) since the FDG only consists of a subset of instructions.
Every generated FDG is given to the Instruction Set Simulator (ISS) which builds
the core of the dynamic PTX analysis.

Instruction Set Simulator

Based on a C++ CPU implementation, the ISS executes PTX instructions in-
cluded in the FDG. The necessary registers are emulated based on a symbol
table, where each register is identified by its name and receives the belonging
value after the instruction emulation. Moreover, the ISS receives the instruc-
tions, and based on a fixed assignment, the equivalent C++ implementation is
performed. Nearly all existing PTX instructions are reimplemented in C++, allow-
ing the analyzer to apply to all CUDA applications.
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Register Emulator

To correctly determine the jump conditions, it is necessary to save the values of
the registers. Hence, a data structure is designed that consists of a key-value pair
that can be defined as a function based on the definition in Eq. 6.2.

f : K → V (6.2)

The required keys are determined based on the filtered instruction graph, and
each key occurs precisely once. If the ISS now calculates a value, it is assigned
as a value to the corresponding register key. This process is defined as follows:

f (ki)← vnew (6.3)

The currently assigned value vi is overwritten with the new value vnew if a reg-
ister ki is written to several times during the emulation.

In addition, the ISS reads the values of a register specified as source register
for instructions from this data structure f (ki) = vi . This guarantees that during the
emulation of the PTX code, the correct values are always present in the register
emulator.

Divergent Branch detection

Each time a jump is performed, the current code-block ID is stored in a list. Each
thread has its list of code-block IDs. The order of the IDs in the code-block ID list
indicates the exact program path of the respective thread.

If the lists of all threads of a CTA are compared to each other, divergent program
paths (e.g., divergent branches) can be recognized, and threads, which deviate,
can be identified. When the code-block ID list is created, the first code block is al-
ways given the ID zero (0). Consequently, all code block ID lists start with ID zero
(0), followed by the respective thread’s code-block- ID sequence. Different orders
of code-block IDs identify different code paths and thus divergent branches. If no
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divergent branch occurs, all code path lists have the same order of code-block
IDs.

Applications’ Metrics

HyPA calculates metrics to generate an analysis profile for an analyzed PTX file.
In the following, we describe the metrics calculated by HyPA and in which step
they can be calculated. Therefore, we use the numbers 1 to 3 shown in Figure 6.1.
The number 1 means that the calculation is possible by simply scanning the
source files. Number 2 means that a metric can be calculated after the static
analysis step of HyPA. Finally, the number 3 means that it is necessary to
simulate the PTX program to gather the metric.

Number of CTAs 1 The number of CTAs is an indicator for the number of ex-
isting different thread arrays. The higher the number is, the more different
tasks are parallelized.
Calulation: Using the PTX code, HyPA extracts the number of CTAs.
Example: For the running example the Number of CTAs is 1.

Number of Threads 1 The number of threads describes how many threads are
executed, which can be used to calculate other metrics, such as static in-
struction count.
Calculation: The .reqntid directive is specifying the number of threads.
Example: In the running example, the Number of Threads is set to 256.

Number of Instructions 1 As an indicator for the size of the analyzed PTX
code, HyPA counts the number of instructions in the PTX code statically.
Calculation: During parsing, HyPA determines for each line if it is an ex-
ecutable instruction and sums up the number of executable instructions.
However, as [35, 72, 79, 80] spotted, this leads to over or under-estimation
as loops, and the application control flow is ignored.
Example: The number of static instructions for the running example is 12.
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McCabe Complextiy 2 McCabe Complexity is a measure for estimating the
complexity of a function and is defined, according to literature, as:

McCabe = Number of binary branches + 1 (6.4)

Calculation: HyPA uses its intermediate representation to count the number
of binary branches.
Example: The McCabe Complexity for the running example is 3.

Statically Estimated Number of Executed Instructions 1 The statically esti-
mated number of executed instructions is the static approximation of the
instructions to be executed at runtime based on Number of Threads and
Number of Instructions.
Calculation: This metric is calculated as:

Number of Threads · Number of Instructions (6.5)

Example: The Statically Estimated Number of Executed Instructions for the
running example is 3072.

Fraction of Executed Instructions 3 The ratio of executed trace instruction
count to trace instruction count measures the performance improvement
in the simulation due to the use of the filtered dependency graph. A value of
0 means that no instructions had to be simulated, while a value of 1 means
that all instructions had to be simulated. Calculation: HyPA calculates the
formula:

Executed Trace Instruction Count

Trace Instruction Count
(6.6)

Example: Fraction of Executed Instructions is 1024/2432 ≈ 0.42 for the run-
ning example.

Number of Divergent Branches 3 Divergent branches (d ) are essential to de-
termine Branch Efficiency. This measure counts the distinct execution paths
of threads during runtime.
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Calculation: To calculate this Number of Divergent Branches, HyPA stores
all traces during the simulation and determines a distinct set of these traces.
Example: The Number of Divergent Branches is 2 in the case of the running
example.

Branch Efficiency (η) 3 is an indicator for the utilisation of GPU. A GPU is uti-
lized efficiently if all branches are executing the same instructions. Calcula-
tion: The Branch Efficiency is defined as the ratio between the Number of
Branches (b) and the Number of Divergent Branches (d) and can be calcu-
lated as follows [116]:

η =
b− (d− 1)

b
(6.7)

If there are no divergent branches, the efficiency is 1; if every branch is a
divergent branch, the efficiency is 0. Example: Branch Efficiency ≈ 99.22

in the running example.

6.2.4 Profile Generation

After the analysis, a PTX profile in the form of a CSV file is generated. This file
can be used for power and performance prediction and other optimization tools.
All analyzed PTX files are combined into a single output file, which includes de-
tails such as filename, PTX version, PTX target, PTX address size, file instruc-
tions, CTAs, thread count, static instructions count, dynamic instruction count,
FP instructions count, executed instructions count, divergent branches, divergent
branches for each CTA, branch efficiency, and duration (in milliseconds).

6.3 Experimental Results

To evaluate the hypothesis that the hybrid approach combines the advantages of
static analysis and simulation approaches while avoiding their disadvantages, the
following three research questions aim to answer our evaluation.
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Research Question 6.1. How does the run-time of the profiling approach compare to
the hybrid approach?

Research Question 6.2. How much do the acquired metrics of the hybrid approach differ
from the profiling approach?

Research Question 6.3. Can the hybrid approach measure metrics that the static anal-
ysis can not, and how do they compare to the profiling approach?

The research questions are based on the profiling approach instead of the sim-
ulation approach due to three reasons: (1) The profiling approach is the most
accurate, i.e., it surpasses the simulation approach, (2) it is faster than the simu-
lation approach and thus more suited for the evaluation, and (3) it does not affect
statements about the simulation approach if evaluated in favor of the hybrid ap-
proach. The third reason holds because the profiling is faster than the simulation,
i.e., if the hybrid approach is faster than the profiling approach, it is faster and
more accurate.

To evaluate these questions, the hybrid dynamic code analysis is performed on
several different CNNs (n = 32), and the results are compared against classic
profilers. Following the technical setup is presented. It uses benchmarks and
computed metrics; the evaluation results will be presented afterward.

Technical Setup

The technical setup is identical to those in chapter 5: A SLURM-based HPC clus-
ter, and it is ensured that the same cluster machine is used in all experiments.
The used machine is equipped with three NVIDIA V100S 32GB, 256GB memory,
and 2 AMD EPYC ROME 7272. The home directory is a network-attached stor-
age connected by a 10GBit/s ethernet connection. Besides this, a second system
executes HyPA; it runs on a Lenovo ThinkPad T490s with Intel i7-8565U, 16GB
memory, and Ubuntu 22.04.

Benchmark CNNs

The following overviews the CNNs used for all experiments. They differ in various
aspects, like the number of layers, neurons, or input layer size. In Table 2.1, the
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CNNs and their attributes are listed.

Moreover, different CNN designed for different use cases are considered for
the benchmarks. While some CNNs are designed to reach the best prediction
accuracy, like Resnet [13], Alexnet [63], or Densenet [117], some are designed
to perform well on mobile devices like MobileNet [118]. In contrast, the NASnet-
mobile and NASnetlarge are designed by NAS [66] techniques. All CNNs are
pre-trained and downloaded from Tensorflow Hub as the analysis focuses on the
inferencing aspect of these networks.
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Figure 6.3: Run-time comparison for HyPA and nvprof
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Data Generation

For each CNN, two profiles are computed: One, as a result of applying HyPA, and
one, applying nvprof as the reference value. To determine the average execution
time of both HyPA and nvprof for the profile generation, each profile generation
is repeated 10 times. The resulting metrics (besides run-time) are identical for all
runs, as both approaches are deterministic.

Experimental Results

Figure 6.3 illustrates the runtime results for both HyPA and nvprof as boxplot
comparisons. For every net, the right boxplot shows the nvprof results, and the left
boxplot shows the HyPA results. The results of HyPA are smaller and show less
variance than the results of nvprof. This decreases the visibility of the boxplots’
colors. Therefore, Figure 6.4 visualizes this relation again, but with focus on the
pairwise comparison of results. The different colors indicate different CNNs, while
the line depicts the bisector. Values above the bisector indicate greater runtimes
for HyPA, values below the bisector show greater runtimes for nvprof. Most nets
have shorter runtimes for HyPA than for nvprof. The results for the execution time
yield mean values between 185.3s and 2410.1s for nvprof, mean values between
19.63s and 1220.1s for HyPA. For 27 out of 32 CNNs, the reduction in runtime is
statistically significant (α < 0.05, Welsh’s t-test for comparing means).

Regarding the acquired metrics, our experiments are illustrated in Table 6.1. It
shows values for the instruction count results, counts of floating-point operations,
and results for branch efficiency. Additionally, the percentage of instructions that
need execution (simulation) for HyPA are reported. Results for both types of in-
structions show varying results. In most cases, HyPA reports a smaller instruction
count than the static analysis, possibly due to the conservative overestimation of
static analyses. For seven CNNs, the HyPA reports a higher instruction count than
static analysis. The instruction count results for nvprof are significantly higher
than both HyPA and static analysis, which will be discussed in the next section.

As HyPA considers runtime information, it can report metrics such as branch
efficiency, which is impossible for static analysis by design. The reported values
of HyPA for branch efficiency deviate by 0.5 - 7 percentage points from the ones
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Figure 6.4: Run-time comparison for HyPa and nvprof in correlation

reported by nvprof, with one outlier that deviates by 12 percentage points.

Overall, HyPA had to perform at most 10 % of the instructions to obtain the
necessary information to compute its required metrics. This is in line with the
runtime results described above.

6.4 Discussion

Following, the interpretations of the evaluation and the current limitations of HyPA
are presented and discussed.
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6.4.1 Evaluation interpretation

Research Question 6.1 run-time comparison: it is been found that HyPA is
faster than nvprof in 27 out of 32 experiments. Therefore, it can be assumed
that HyPA is also faster than classical simulation, such as GPGPU-Sim, since a
simulation is slower than profilers like nvprof.
Research Question 6.2 how does the metrics differ: it is been found a signifi-
cant difference between the calculated instructions by HyPA and the actual values
measured by nvprof. Three reasons can explain this difference:

1. PTX instructions are not directly translated one-to-one into SASS instruc-
tions, and since NVIDIA does not provide documentation on SASS, it is
difficult to understand the translation process [78].

2. During the translation process, further optimization steps can be performed,
resulting in one PTX instruction being translated into multiple SASS instruc-
tions [78].

3. CUDA kernels can be called and executed multiple times, which is not evi-
dent in the PTX code but can be observed in the nvprof profiles.

Comparing nvprof metrics like instruction_executed and flops_count_sp can
be complicated because some work on wrap-level, while others work on thread-
level [78].

Verifying points 1 and 2 through reverse engineering is complicated. However,
verifying point 3 is possible by simulating parts of the CUDA code to obtain the
exact number of kernel calls. Therefore, integrating HyPA into a compiler such as
Low Level Virtual Machine (LLVM) or Clang can help with this step. It is essential
to apply the concept of HyPA to both CUDA and PTX, not just PTX.
Research Question 6.3 measure more metrics: can be answered and demon-
strate that HyPA can gather metrics beyond what static code analysis can provide,
such as branch efficiency. Additionally, HyPA can accurately predict branch effi-
ciency with a high degree of accuracy, ranging from 0.5 to 7 percentage points
off from what is reported by nvprof. When combined with the speedup, HyPA rep-
resents a critical improvement for power and performance estimation, as well as
the extraction of necessary metrics.
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6.4.2 Limitations

Besides all its merits, HyPA still has some drawbacks and limitations. Currently,
two aspects limit our approach 1) not all PTX instructions are implemented, and
2) data dependencies in conditional jumps might not resolve correctly. In the fol-
lowing, each limitation is described in-depth and a possible solution to overcome
these.

Since not all PTX instructions are implemented (e.g., indirect addressing), our
HyPA implementation has to fall back on state-of-the-art approaches. Thus, the
results might still be approximated. In future work, it is been planned to implement
an equivalent for all PTX instruction and, thus, overcome this issue.

Regarding the second limitation: In some cases, a register is written in two
parallel conditional jumps. Currently, HyPA adds an edge to the first node in the
dependency graph where a source register is written. This might lead to a wrong
control flow when the register is written in both branches. This issue can be
solved by implementing an Static Single Assignment (SSA) Form [119, 120] or
by earlier dynamic analysis and determining which branch is to be considered.
Thus, the edge for the dependency can be added between the correct nodes
instead of the earliest occurring node that writes to a register and thus generates
a data dependency. We plan to modify the dependency graph generation and
extend it by control flow generation with SSA Form to overcome this issue and
improve HyPA to get closer to the most accurate calculation of the total number
of instructions.

6.5 Conclusion

A novel tool is presented that can analyze PTX code without running it on a real
GPGPU. To account for divergent branches, HyPA uses partial execution and
code emulation. By reimplementing the PTX ISA in C++, HyPA can emulate the
execution on a CPU system. Unlike traditional GPGPU simulators that run the
entire application, HyPA only executes the necessary parts to identify divergent
branches. This speeds up the analysis, and the execution time is comparable to
or faster than profiling with nvprof on the NVIDIA V100S.
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The chapter shows that HyPA can provide metrics beyond what static code
analysis can offer, such as branch efficiency. One significant advantage of HyPA
is its ability to speed up the design space exploration process by providing early
metrics for different approaches to power and performance prediction of CNNs
on GPGPUs. HyPA’s quick execution time makes it an excellent tool for this type
of work.

Although HyPA is capable of parsing the entire PTX ISA, it currently has a
limitation in its ability to emulate indirect addressing. As part of future work, it is
aimed to implement indirect addressing in order to fully cover the ISA emulation.
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7 Performance Estimation of CNNs
for GPGPUs

The chapter presents a novel automated approach, enabling designers to fast
and accurately estimate the performance of CNNs for GPGPUs in the early stage
of the design process. The proposed approach uses static analysis for feature
extraction and Decision Tree regression analysis for the performance estimation
model. Experimental results demonstrate that our approach can predict CNNs
performance with an absolute percentage error of 5.73% compared to the actual
hardware. The presented research is based on the previously published work [9].

The chapter is structured as follows: A brief introduction is given in Section 7.1.
Afterward, the methodology is presented in Section 7.2, followed by the experi-
mental results in Section 7.3. The results are discussed in Section 7.4. Finally,
the chapter closes with a conclusion in Section 7.5.

7.1 Introduction

In general, the DL life-cycle has two main phases, which are 1) training, where the
DL models are trained based on the training data set, and 2) inferencing, where
the finally trained DL models (e.g. a CNN) are executed on real hardware. Since
the training phase is offline, high-performance computing devices (e.g., powerful
data centers GPGPUs like the NVIDIA V100 and NVIDIA A100) are usually used
without restrictions on non-functional design aspects. In contrast, the inferencing
phase is an online process where the non-functional design aspects are vital in
defining the overall design constraints. For example, in the case of (small) IoT
devices, the selected accelerator directly impacts the design constraints such as
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low latency and cost of the final product [121].

Hence, selecting the right DL accelerator (e.g., GPGPUs) in this phase is of
utmost importance to perform on-time computations (e.g., in the case of au-
tonomous driving) and meet design constraints. Without a fast and automated
approach, designers must build several prototypes and test numerous hardware
platforms to find the right accelerator for the inferencing phase, which is very time-
and cost-intensive.

To overcome this issue, several automated methods have been developed that
can be divided into two main categories: GPGPU simulators [112, 113] and ML-
based estimation methods [39, 43, 101]. GPGPU simulators such as GPGPU-
Sim [112], or GPU-ocelot [113] are usually used to perform DSE and obtain the
performance of a given application without the need for actual hardware execu-
tion. They use a combination of performance counters and specific hardware
details to measure the performance of applications. The obtained results have an
accuracy between 10% to 20% compared to the actual hardware execution [39].
However, these simulators require a significant execution time to obtain the results
and thus are significantly slower than actual hardware execution. On the other
hand, ML-based estimation methods provide designers with a fast solution to ob-
tain the design parameters of a given application, such as performance. However,
they either require specific performance counters, kernel settings [39, 43], or de-
tailed platform descriptions and the scheduling of different CNNs operators on
different platform processing [101], which may only sometimes be available.

This Chapter focuses on the performance estimation of CNNs for GPGPUs,
one of the most popular DL models in various domains. A novel approach is pre-
sented, allowing designers to predict a given CNN’s performance for GPGPUs
quickly. In contrast to the existing methods that rely on specific setups (perfor-
mance counters or kernel settings), the proposed approach is developed based
on a simple ML model and easy-to-extract features, namely CNNs number of
trainable parameters, number of PTX instructions, and GPGPUs architectural in-
formation.

The experimental results demonstrate the effectiveness of our approach in esti-
mating the performance of CNNs for GPGPUs where a MAPE of 5.73% with an R2

of 0.45 and an adjusted R2 of 0.19 in comparison to the actual hardware execution

122



7.2 Methodology

is obtained. Moreover, our proposed approach is significantly faster.
In summary, the main contributions of this paper are as follows:

• proposing a quick and highly accurate performance prediction model of
CNNs for GPGPUs with a minimal dependency on the runtime performance
counter compared to the state-of-the-art methods. The proposed approach
has no runtime dependency for the final prediction,

• supporting the cross-platform prediction due to the consideration of hard-
ware features,

• comparing different ML algorithms to obtain the best performance predictive
model (i.e., Decision Tree regression analysis),

• evaluating the proposed approach on estimating the performance of dif-
ferent standard CNNs for various GPGPUs such as NVIDIA 1080Ti, and
V100S.

7.2 Methodology

The proposed methodology comprises two main phases illustrated in Fig. 7.1.
Each phase of the proposed approach is explained in more detail.

7.2.1 Training Dataset Creation

The performance (accurate number of Instruction per Cycle (IPC)) of a given CNN
running on a GPGPU is significantly related to two main factors: the architectural
features of the GPGPU and the complexity of the CNN model. The architec-
tural features (CUDA cores, memory, registers, or L2 cache) of a GPGPU are
defined based on the type, size, and number of components the GPGPU con-
sists of. Hence, the performance of a CNN running on different GPGPUs is not
identical and varies. These architectural features of GPGPUs that impact the re-
quired number of IPC when a CNN runs on them were extracted for the training
dataset. When the training dataset is built, this information is used as a predictor
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Figure 7.1: Performance estimation methodology.

(inputs). This work considers two different GPGPUs, the NVIDIA V100S and the
NVIDIA GTX 1080Ti, for the training phase. They have different specifications
and architectures to cover a variety of features.

The number of trainable parameters and the total number of PTX instructions
can specify the complexity of NNs. A trainable parameter is a weighted connec-
tion between the neurons, meaning more trainable parameters need more calcu-
lations to produce the final output. To obtain the trainable parameters for a given
CNN, a static analysis is performed using the Static Analyzer module (Fig. 7.1),
where first, the trainable parameters for each convolutional layer are calculated.
Next, based on the number of layers, the total number of trainable parameters for
the CNN is achieved.

The Static Analyzer module performs all calculations for all 32 CNNs used dur-
ing the first phase illustrated in Fig. 7.1. The results of the Static Analyzer module
are unified with all other predictors in the training dataset. Modern frameworks
like Pytorch and Tensorflow supply functions that can be used to calculate the
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trainable parameter quickly and accurately.

Table 2.1 in chapter 2 provides an overview of the CNNs used for all experi-
ments. They differ in various aspects, like the number of layers, neurons, or input
layer size. As the table shows, most CNNs have the same input size. That is
because most are trained on the ImageNet data set. However, it is been ensured
that also CNNs with different input sizes are considered.

HyPA is used to generate the total number of executed PTX instructions. By
this, the approach is overcoming the lack of speed of a traditional simulator since
HyPA only executes a small part of the code (see chapter 6). Moreover, this en-
ables our approach to calculate the total number of PTX instructions for any CNN
without executing it on an actual GPGPU. The total number of PTX instructions
– calculated by the dynamic code analysis – is used as predictors (inputs) for the
training data set.

By running CNNs on GPGPUs, the accurate number of IPC can be obtained
and is considered as the training dataset’s response (output). Moreover, all of the
32 test CNNs are executed on different GPGPUs while measuring the number of
IPC with the nvprof profiler provided by NVIDIA. It is been ensured that the 32

CNNs used for the dataset generation have different complexities and sizes.

An item of the final training dataset D is formally denoted by a vector:

d = (y , p, c1 , .., cm , t) (7.1)

Where for each observation d , the input parameters p, ci , 1 ≤ i ≤ m, t identify the
total number of instructions, the GPGPU architectural features, and the total num-
ber of CNN trainable parameters, respectively. The output parameter y denotes
the measured performance (number of IPC) of each CNN running on GPGPUs.
D is the set of all measured data points building the training data. The training
data set D is split into Dt containing 70% of the data points for training and Dv

containing 30% of all data points for evaluation. Consequently, all evaluation data
points are completely new to the trained model.
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7.2.2 Predictive Model Generation and Evaluation

Five different standard ML algorithms are evaluated, namely Decision Tree, K-NN,
Random Forest Trees, Linear Regression and XGBoost. ML aims to locate pat-
terns in the given set that provide the most straightforward explanation possible of
the phenomenon. That follows Occam’s razor, which states that if several theories
explain a given phenomenon, the one making the least assumptions probably is
the right one [122].

The Linear Regression is selected to justify if there are linear dependencies
between the output (e.g., number of IPC) and the predictors. Moreover, K-NN
and Decision Tree regressions are selected to consider algorithms that can show
non-linear dependencies. Since the Random Forest Tree is an ensemble of De-
cision Trees, it is considered as an advanced method of the Decision Tree. Since
the execution time of the predictive model is important to speed up the DSE, the
XGBoost is taken into account, a frequently used boosting system, to improve
execution time and accuracy of tree classifications and regressions [106]. Fur-
thermore, the runtime of K-NN is significant depending on the dataset since the
execution time increases linearly proportional to the number of data entries in the
training data set, which can cause the necessity of faster techniques. As shown in
chapter 4, the predictive model based on NN is only negligibly better performing
than the K-NN on power prediction. Since the training dataset is small, NNs are
not considered for prediction as larger training datasets are usually required.

As shown in Fig. 7.1, for a given new CNN (in the evaluation step of the second
phase), the GPGPU architectural features and the CNN trainable parameters (in-
puts of the predictive model) are extracted using the Static Analyzer module. The
total number of PTX instructions is extracted from abstract PTX files by the dy-
namic code analysis module (as the PTX contains dynamic information such as
the length of loops or jump instructions based on the comparison). Consequently,
no execution of the CNN on real hardware or cycle-level simulators (which take
much longer than real devices) is required.

The experimental results are evaluated using the MAPE and the R2 coefficient.
That also enables us to compare our results to state-of-the-art research. It returns
a value between 0 and 1. An R2 near 1 means a high fit between the model and

126



7.3 Experimental Results

underlying data. A negative value indicates a bad fit between the model and data.

7.2.3 Differentiation of Methodologies

The methodology in this chapter is based on the methodologies presented in
chapters 4 and 5 but differs from these in two key respects.

1) Instead of power consumption, the number of cycles required for the calcula-
tion is measured for this methodology and used as a label for the prediction. The
resulting data set has a similar structure to Chapter 5, so the two data sets can,
in principle, be combined into one.

2) To overcome the disadvantages of collecting the number of instructions from
chapters 4 and 5, namely that static code analysis needs to be more precise
and nvprof requires a single execution on a referential GPGPU, the HyPA pre-
sented in chapter 6 was used. This allows the number of instructions to be deter-
mined based on the PTX code. Compared to static code analysis, HyPA consid-
ers the dynamic runtime dependencies and resolves these by partially simulating
the code. This means that complete execution on a reference GPGPU is not
required, and greater accuracy is achieved than static code analysis.

Table 7.1: Comparison of four different ML-regression algorithms in terms of ac-
curacy and execution time

Regression Model MAPE R2 adj. R2

Linear Regression 8.07% -0.0034 -0.4439
K-NN 5.94% 0.34 0.08
Random Forest Tree 7.12% 0.22 -0.12
Decision Tree 5.73% 0.45 0.19
XGBoost 7.59% 0.14 -0.24

7.3 Experimental Results

Following the experimental results are illustrated. The experiments aim to answer
the following research questions:
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Research Question 7.1. Which ML approach has the best prediction results?

Research Question 7.2. Which are the most important features used by the best predic-
tive model?

Research Question 7.3. Compared to a naive approach, which speed-up can be achieved
for DSE?

Our experimental results demonstrate that the performance prediction based
on GPGPU architectural features, the number of CNN instructions, and trainable
parameters is promising. Five ML-algorithms are evaluated: Linear Regression,
K-NN, Random Forest Tress, Decision Tree, and XGBoost. Table 7.1 illustrates an
overview of the experimental results. The Linear Regression achieves the worst
results with a MAPE of 8.07% followed by XGBoost with a MAPE of 7.59%. The
Random Forest Tree, the K-NN, and the Decision Tree are close with a MAPE of
7.12%, 5.94%, and 5.73%, respectively.

Table 7.2: Predictors descriptions used by the decision tree
Features Brief description Importance
Executed Instructions Number of instruction to be executed 0.0141
trainable params Number connections between neurons 0.2599
Memory Bandwidth Available memory bandwidth 0.72583

The R2 and adjusted R2 of the linear regression indicate no linear dependen-
cies between output and predictors. Another interesting point in this experiment
is that the results of the Decision Tree are better than those of the Random Forest
Trees. The main reason could be that the decision is based on the average value
of all included decision trees for random forest trees. Therefore, the results could
be distorted if decision trees exist with poor accuracy.

All regression models considering nonlinear dependencies show promising re-
sults based on the experimental results. Due to the results obtained, the best
option for building the predictive model is based on the decision tree algorithm.
However, these results can be improved by considering a more extensive range
of GPGPUs for generating training data sets.
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The Figures 7.2, 7.3, 7.4 and 7.5 show the predicted and original performance
of six randomly selected standard CNNs [63, 67, 123] (which are entirely inde-
pendent of the training phase) on our final Decision Tree (predictive model). The
results for the Decision Tree are illustrated in 7.2, for the K-NN in 7.3, for the
XGBoost in 7.4 and the Random Forest Tree in 7.5. As the figures illustrate, all
predictive models’ predictions are close to each other and do not differ signifi-
cantly. Compared to the real hardware, namely NVIDIA GTX 1080Ti, the pro-
posed approach achieves a MAPE of 5.73%, and in the best case, the exact IPC
value is predicted by the Decision Tree for the EfficientNetB7. Table 7.2 reports
the three predictors with the most impact on the model. The decision tree pre-
dictors are chosen based on performing the Gini coefficient during the predictive
model training phase. As shown in this table 7.2, only one GPGPU architec-
tural predictor is used, i.e. Memory Bandwidth, and two CNN-related predictors,
i.e. number of executed instructions and trainable parameters. Based on our anal-
ysis, the Memory Bandwidth has the highest impact on estimating the number of
cycles.

Compared to the recent method presented in [124] with a MAPE of 14.73%,
our proposed approach provides designers with 2.5 times better accuracy. This
comparison also shows that performance prediction based on CNNs topology, the
number of instructions, and GPGPU architectural information with the Decision
Tree algorithm achieves better results than [124]. Moreover, as [124, 125] do not
consider hardware details as features for prediction, they cannot perform cross-
platform estimation. Therefore, their models are limited to a single GPGPU.

Assume a DSE scenario (as an application of the proposed approach) where
the goal is to obtain the performance of a given CNN for n GPGPUs, the exe-
cution time of the proposed approach is defined as Test = tdca + (n · tpm) where
tdca and tpm denote the time for our dynamic code analysis and execution time
of predictive model, respectively. In contrast, the total time with real GPGPUs
to obtain similar results (naive approach) is defined as Tmeasur = tp · n where tp

denote the profiling time (e.g., with nvprof). Since both tpm and tdca are smaller
than tp (seconds vs minutes), Test is in most cases almost equal to tp or smaller.
In this case, compared to the execution time of the naive approach Tmeasur , the
proposed approach is significantly faster. That enables designers to estimate the
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Figure 7.2: Decision Tree predicted
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Figure 7.3: KNN predicted
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Figure 7.4: Gradient Boosting predicted
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Figure 7.5: Random Forest Tree predicted

131



7.3 Experimental Results

performance of a given CNN at the early stages and perform a fast DSE. To prove
the concept, Table 7.3 illustrates the measured execution time of seven standard
CNNs and their profiling with nvprof on seven different GPGPUs (e.g., NVIDIA
GTX 1080Ti, NVIDIA V100S, and NVIDIA Quadro P1000) for the naive approach
and our proposed approach. Our approach achieves an average speedup of 33
times for one single GPGPU. The speedup is even higher for larger numbers n of
GPGPUs.

Table 7.3: Execution time comparison of the proposed approach versus the naive
approach for eight different CNNs in the case of various GPGPUs

CNN Naive Approach (s) Novel Approach (s)
tp n=1 n=2 n=3 n=4 n=5 n=6 n=7 tpm tdca n=1 n=2 n=3 n=4 n=5 n=6 n=7

efficientnet b3 663 663 1,326 1,989 2,652 3,315 3,978 4,641 11 24.8 35.8 46.8 57.0 68.8 79.8 90.8 101.8
efficientnet b4 778 778 1,556 2,334 3,112 3,890 4,668 5,446 9 24.0 33.0 42.0 51.0 60.0 69.0 78.0 87.0
efficientnet b5 950 950 1,900 2,850 3,800 4,750 5,700 6,610 8 40.3 48.3 56.3 64.3 72.3 80.3 88.3 96.3
efficientnet b6 936 936 1,872 2,808 3,768 4,680 5,616 6,552 8 60.2 68.2 76.2 84.2 92.2 100.2 108.2 116.2
efficientnet b7 1,037 1,037 2,074 3,111 4,148 5,185 6,222 7,259 1 6.8 7.8 8.8 9.8 10.8 11.8 12.8 13.8
Xception 314 314 628 942 1,256 1,570 1,884 2,198 8 23.6 31.6 39.6 47.6 55.6 63.6 71.6 79.6
MobileNet V2 343 343 686 1,029 1,372 1,715 2,058 2,401 8 12.2 20.2 28.2 36.2 44.2 52.2 60.2 68.2

As the experimental results show, the execution time of the proposed approach
Test demonstrates the correctness of the definition above, where the total execu-
tion time stays almost the same when the number of GPGPUs increases. This
means that, in general, our proposed approach can archive a speed up of n times
for n GPGPUs. As a result, the higher the number of GPGPUs for the DSE, the
higher the speedup of the proposed approach.

From the Decision Tree, 60 different rules have been derived. Based on the
path of the Decision Tree, the rules can be displayed in a disjunctive form. Fig. 7.6
illustrates a small part of the final Decision Tree. Each node represents a test on
a feature, while each leaf indicates a class label (decision taken after computing
all features) that is the number of IPC. Moreover, branches specify conjunctions
of elements that lead to the class label. Hence, the paths from the root to the leaf
show classification rules. As an example, the gray nodes can be described using
the following rule:
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Figure 7.6: Short snippet from the generated decision tree

(Inst ≥ 5 .05E10 ) ∧ (Inst > 2 .34E10 ) ∧ (Inst ≤ 1 .05E10 ) ∧ (7.2)

(Inst ≤ 1 .81E10 ) ∧ (MaxPower ≤ 240 W ) ∧ (Train Param ≤ 5 .4E7 )

≈ 1 .83E10 #Cycles

Where Inst ,MaxPower ,Train Param stands for the total number of executed in-
structions, maximum power consumption of the GPGPU, and the total number of
trainable parameters of the CNN. This rule (7.2) gives the number of required
IPC for a CNN on a GPGPU that fulfills the constraints.
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7.4 Discussion

Research Question 7.1 best ML Model:, the experimental results clearly show
that the Decision Tree outperforms all other predictive model. However, the dif-
ference to the K-NN is negligible. Comparing these results to the aforementioned
in chapter 4, it is illustrated that the K-NN performed well for both power and
performance estimation of CNNs on GPGPUs.
Research Question 7.2 most important features:, as tab 7.2 illustrates, the
most important feature to predict the performance (e.i., number of IPC) is the
GPGPU’s memory bandwidth, followed by the CNN’s number of the trainable pa-
rameter and the number of executed instruction counted by HyPA, respectively.
Research Question 7.3 speed-up:, as illustrated in tab. 7.3 significant speedups
can be achieved by the presented approach compared to naive DSE. The speedup
is increasing with the number of GPGPUs considered for the DSE. Hence, DSE
performed with the predictive model for performance estimation is scaling with the
number of GPGPUs, making it perfect for large-scale productions.

7.5 Conclusion

This chapter proposes a novel ML-based approach to estimate the performance
of CNNs for GPGPUs. It illustrates how the version of a given CNN for GPGPUs
can be estimated by analyzing the CNNs topology, instructions, and GPGPUs’
architectural information. Experimental results sound promising. Our predictive
model achieves a MAPE of 5.73% in performance prediction (accurate number
of IPC) compared to actual GPGPUs. Compared to the state-of-the-art meth-
ods, the accuracy of our predictive model is up to 2.5 times better. Moreover, it
empowers designers to predict the performance of a CNN on different GPGPU
architectures without retraining. The proposed approach can also help designers
perform NAS with hardware/software co-design to predict the performance of dif-
ferent generated CNN architectures for a wide range of GPGPUs’ architectures
without the need to execute the CNN on all of them. Hence, using our proposed
approach, the DSE process can be sped up significantly.
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8 Discussion

The following chapter will discuss the results of Chapters 4, 5, 6, and 7 and bring
them into the overall challenges introduced in Chapter 1. Moreover, the initial
research questions from Chapter 1 will be answered, these are as follows:

Research Question 1.1 How is it possible to create rules to support decision-
making on whether to execute AI applications on IoT and Edge systems or
offload them?

Research Question 1.2 How can the power and performance for AI-based appli-
cations planned to be executed on GPGPUs be predicted with off-the-shelf
techniques without the need for runtime-dependent features?

Research Question 1.3 What are the most significant impact factors on the power
and performance of AI-based applications executed on GPGPU?

Research Question 1.4 Can machine learning-based power and performance
estimation speed up the DSE for systems designed for AI-based applica-
tions on GPGPUs?

Research Question 1.1 This thesis presents a statistical analysis of the trade-
off between power and performance for AI offloading. Based on the analysis,
a decision-making system can be introduced for the experimental setup. By in-
creasing the variation in AI applications and platforms, the decision-making sys-
tem can be generalized and used for several AI applications and devices. This
generalized system will help system designers choose the optimal location for
running AI applications. Additionally, this set of rules can be incorporated into
AI applications and IoT devices, enabling them to make autonomous decisions
about when to offload and when not to.
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Research Question 1.2, the power and performance prediction of CNN’s infer-
ence on GPGPUs is possible. As illustrated in Chapters 4, 5, and 7, the power
consumption and performance can be estimated with light way shallow machine
learning approaches. As presented, the prediction reached an error of under 6%,
and the K-NN algorithm performed well overall. As the prediction relies on only
static none-runtime features in Chapters 4 and 7, the presented approaches can
be used without actual devices and specific profiler settings that are hard to recre-
ate. As the results of HyPA illustrate, the application does not necessarily have
to be executed on an actual device. With the hybrid analysis presented in Chap-
ter 6, it is also possible to consider the runtime dependencies of code execution
and thus measure more accurately the number of instructions executed for the
CNN. By this, good results for performance predictions are possible. Moreover,
the methodology of Chapter 5 – which relies on runtime-dependent features –
can simply modified as shown for the performance prediction in Chapter 7 and,
thus, also be used without runtime features. Consequently, system designers are
enabled to plan prototypes and pre-select AI accelerator (e.i., GPGPUs) during
the software development towards a hardware-/software co-design process for AI
applications.

Research Question 1.3, certain key features are required for simple power es-
timation. These include CUDA cores, GPGPU memory, base core frequency,
storage speed, GFLOPs, memory clock, L2 Cache, number of return instructions
in PTX code, and number of trainable parameters of the CNN. Moreover, the es-
sential features for performance estimation are the number of executed instruc-
tions (which can be calculated by HyPA), the number of trainable parameters, and
memory bandwidth.

The most critical features illustrate that the number of trainable parameters
is crucial in both cases – power consumption and performance – as essential
as the executed instruction. As for power consumption, only single classes of
instructions are crucial; the total number of executed instructions is vital for per-
formance estimation. Moreover, as the analysis of DFS on GPGPUs illustrates,
the core frequency does not significantly impact the performance and execution
time. However, the power consumption is increasing with higher core frequen-
cies. Remarkably, when the core frequency reaches higher frequencies, such
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as 1200MHz, the power consumption on the NVIDIA V100S increases. Con-
sequently, to run CNNs sustainably on GPGPUs, lower frequencies should be
preferred to lower the power consumption as it does not affect the runtime.

Research Question 1.4, it has been shown that the predictive model execu-
tion can be significantly faster than the application’s profiling on actual devices.
Moreover, with HyPA, significant drawbacks of simulations (e.i., speed) can be
overcome, and the design of space exploration can speed up without the need for
actual devices. Consequently, system designers need to build fewer prototypes,
reducing resource waste. That speeds up the prototyping phase and makes it
more sustainable.

The thesis’s findings indicate that using ML-based predictive models can assist
with sustainable system design. This is especially beneficial for designing IoT and
Edge devices, which often face limited resources such as battery lifetime, requir-
ing low-power applications and systems. By reducing power consumption while
maintaining the performance of AI inference systems, the presented challenges,
such as high energy costs in Europe, can be addressed. Low power implemen-
tation can help keep European systems competitive with the rest of the world
and assist data center providers in complying with Germany’s newest energy ef-
ficiency laws (e.i., EnEfG). Although the proposed methods are demonstrated
on CNNs, they apply to almost all kinds of NN. These methods provide system
designers with tools to enhance DSE with ML-based prediction models, allow-
ing them to estimate power consumption or performance at early design stages
without running the application on a prototype.

Throughout this thesis, novel approaches for important challenges in sustain-
able AI computing are developed and presented. Moreover, related work showed
that similar approaches also work for general applications and other accelerators
like RISC-V [126, 127, 128, 129, 130]. Consequently, a more general model that
also could perform cross-platform predictions is an interesting research area for
future work. Thus, combining the proposed approaches with those of [130] can
lead to cross-platform predictions.
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Limitations

As every study faces its limitations, this thesis also has two limitations: 1) inaccu-
racy of nvidia-smi and 2) lack of variation in the applications.

Inaccuracy of nvidia-smi: A recent study [131] stated that the power mea-
surement with nvidia-smi and the built-in power meter lead to larger errors than
documented by NVIDIA. NVIDIA claims an error of ±5W while [131] could de-
tect an error of ±5%. As the latest GPGPU models draw up to 700W; a 5%
Error would lead to ±30W instead of ±5W . Although the error of ±30W might
appear negligible, it can be accumulated on HPC Data Center with thousands
of GPGPUs. Consequently, as the predictive models in this work rely on the
power meter and measurement using nvidia-smi, the prediction error could be
more extensive when compared to measurements with external power meters.
The techniques proposed in this thesis can be used independently of the type of
power meter used. To obtain more accurate results, system designers can cre-
ate their own training data sets using external power meters that provide more
precise measurements. This requires updating the process of generating training
data sets and using different power meter options instead of relying on the built-in
power meter and nvidia-smi tool. Additionally, not all NVIDIA GPGPUs support
the power meter functionality of nvidia-smi, so using external power meters can
also enable the inclusion of more GPGPU models in the training data set gener-
ation process. Therefore, selecting external power meters is a valuable improve-
ment to the methodologies presented in this thesis, and it can further enhance the
benefits of predictive models for power consumption prediction. However, for the
power measurements of the NVIDIA Jetson Nano in Chapter 3, external power
meters were used to verify the internal power meter of the Jetson Nano, and no
difference between the external and internal measurements could be detected.
Thus, this limitation only affects the larger Data Center GPGPUs.

Lack of variation on application: Only CNNs are used as examples to prove
the proposed approaches. Although all approaches are designed to use high-
level NN attributes that exist in all kinds of NNs, it can be possible that small
modifications are required to include other NN types. This limitation can be over-
come by increasing the training data and adding other types of NNs.
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9 Conclusion

This thesis presents a statistical model that can be used to derive a decision-
supporting system to choose if offloading AI applications to the cloud or edge is a
valid option. As the statistical analysis shows, slow networks with low bandwidth
and high latency, such as 2G, are a good option in some instances. Power savings
were found across the board for all mobile network types. However, the influence
CNNs’ size, bandwidth, and latency must be considered for performance pur-
poses. Consequently, performance improvement needs careful selection of the
mobile network type; otherwise, performance losses must be expected. Imple-
menting the statistical decision-supporting system into the system design work-
flow will help the system designer to solve the placement problem of AI appli-
cations (see challenge 1 in chapter 1). Afterward, the system designer can use
predictive models to customize the systems. Therefore, this thesis presents inno-
vative techniques for analyzing and estimating the power consumption and perfor-
mance of CNN-based applications on GPGPU. The methods are demonstrated
on CNNs, but they can be applied to almost all types of DNNs. This is because
the approaches consider general architecture features of all kinds of DNNs. The
excellent experimental results illustrate the robustness of the formerly presented
approaches. In best cases, it is possible to estimate power consumption and
performance with a MAPE of 0.088% and 5.73%, respectively. Furthermore, con-
sidering the power consumption estimation for DFS improves the DSE time sig-
nificantly. Hence, the investigation of the design space for the NVIDIA V100S
with 196 available frequencies requires only about 64s for 30 different CNNs with
the proposed approach from chapter 5. Conversely, when profiling the CNNs and
all frequencies with nvprof, it takes about 195 hours. Hence, using the predic-
tive model leads to a rigorous speedup in DSE. The speedup improvement and
opportunities for DSE for AI system design are tremendous. Considering predic-
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tive models for assembling AI systems will lead to fewer prototypes and a faster
design process. Moreover, the presented approaches can already be applied
at early software development stages, moving toward a standardized hardware/-
software codesign process for AI applications. Additionally, the thesis proposes
a new hybrid profiling approach for PTX code called HyPA. This approach ex-
tends the static analysis metrics and improves the execution time compared to
simulation or profiling on real devices. As illustrated in chapter 7, using HyPA for
data gathering for predictive models can further improve the DSE time. System
designers can use the combination of HyPA and predictive models to improve
their workflow, reduce the number of prototypes they need to build, and decrease
time-to-market. Moreover, the profiler can generate the results for both static
codes analyzing metrics and simulation-based metrics, enhancing the profiling
process even more and giving software and AI developers crucial insights into
the application behavior.

Overall, the formerly presented approaches improve and speed up the com-
puter architecture and hardware selection process for ML inference systems and
can enhance the DSE process. With the proposed decision-making support sys-
tem for offloading or local execution, designers can easily decide on functionality
placement. Afterward, the system designer can use the different predictive model
approaches and estimate the power and performance of different GPGPUs for
the system. Consequently, the selection of AI accelerator (i.e., GPGPU) can
be reduced by those where the predictive models do not estimate values in the
constraints. Reducing the choice of AI accelerator for prototyping makes the de-
sign phase more sustainable, as fewer prototypes are needed, and consequently,
fewer resources (e.g., metal, lithium) are used for them. Moreover, when of-
floading, the system designer can select the appropriated GPGPU considering
the constraints and sustainable aspects like low power consumption. Based on
the DFS analysis, designers are also enabled to configure the GPGPU in such
ways as to consume less power, making the overall system more sustainable by
avoiding performance losses.
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Futhure Works

In further works, the proposed approaches will be generalized by considering
different types of CNNs and increasing the technical setup platforms. Therefore,
the following future works are planned:

• Testing the capability for offloading strategies with Long Range Wide
Area Network (LoRaWAN): The mobile network types simulated in this
thesis are characterized by high bandwidth, and the latest standard is also
characterized by very low latency. Conversely, LoRaWAN is characterized
by long-range with low bandwidth and high latency [132], consequently
needs additional investigation on their ability for offloading of AI applica-
tion. While performance improvement could only be detected by mobile
networks with high bandwidth and low latency, power saving can already be
seen in network types with low bandwidth. This indicates that LoRaWAN
can also lead to power saving in offloading strategies. To increase the ver-
satility of the decision support system from chapter 3, additional analysis on
LoRaWAN has to be performed.

• Development of a power meter system for external power measure-
ments of the GPGPU: As not all NVIDIA GPGPUs provide internal power
meters and a recent study [131] pointed out that the internal power meter of
NVIDIA GPGPUs has larger error than NVIDIA claims. A dedicated power
meter system for the Peripheral Component Interconnect Express (PCIe)
GPGPUs can lead to more accurate power measurements and thus im-
prove the prediction further. This also enables benchmarking GPGPUs that
do not offer an internal power metering with the nvidia-smi tool. Leading to
an increase in samples for the training data set.

• Extending analysis functionality of HyPA: HyPA combines static and dy-
namic code analysis; hence, it is possible to combine metrics of both ar-
eas in the opensource implementation of HyPA. A current work-in-progress
version has started to examine the possibilities and extend the number of
static code analysis metrics like the McCabe metric (also called cyclomatic
complexity). In future work, this version must be evaluated and published,
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providing AI developer with more insights into the code implementation at
compile time. Moreover, it is planned to integrate HyPA into a compiler like
LLVM to increase user-friendly usage and integrate HyPA into the workflow
of AI and software developer.

• Increasing the variation of AI application to generalize the area of use
of the predictive models: With the increasing relevance of Large Lan-
guage Models (LLMs) like Generative pre-trained transformers (GPT) (used
in ChatGPT), the training data set must be extended by those NN used for
LLMs. As the methods use general NN attributes that are available in all
types of NNs, there is no need for modifications on the method. However,
the models need retraining, and results can change with larger data sets,
meaning other ML techniques can perform better.

• Testing the applicability to another accelerator like CPU or FPGA: All
presented predictive models are limited to GPGPU as AI accelerator. While
Zhang et al. [126, 129, 130] illustrates that similar approaches work on gen-
eral applications for RISC-V, which suggests that combining the approaches
to build a cross-platform predictive model, that can predict power consump-
tion and performance for different types of accelerators like CPU, GPGPU
or FPGA is possible. Such a cross-platform predictive model would enable
the system designer to not only select the most appropriate GPGPU but the
most appropriate AI accelerator out of a class of different accelerators.
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