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Abstract

The concept of autonomous robotic companions assisting with tedious tasks or daily
routines has long been a futuristic ambition, especially in scenarios deemed too com-
plex for seamless operation. The multitude of variables, intricate interconnections,
and numerous (side) effects on seemingly straightforward influences pose significant
challenges for them to function competently without human intervention. However,
if robots were equipped with knowledge about themselves, their surroundings, and
the objects within it, they could address various queries about their environment and
undertake tasks independently, drawing further insights from their own experiences
and sensory inputs. For example, they could effortlessly respond to contextual inquiries
such as “Where should I position myself in the kitchen to locate the milk carton?”,
“What route should I take from my current location?” and “Is the refrigerator open or
closed?”. Addressing uncertainty and its associated limitations is crucial for construct-
ing a comprehensive world model that provides an autonomous agent with the nec-
essary capabilities to operate independently – potentially leading to robots becoming
valuable household aids and companions.

This thesis presents BayRoB, a probabilistic framework integrating probabilistic hy-
brid action models to assist autonomous agents in making informed, context-driven
decisions under uncertainty. BayRoB utilizes probabilistic models to represent an au-
tonomous robot’s belief state and offers mechanisms to track changes in this state over
time. The framework incorporates a novel formalism that enables the learning, repre-
sentation of and reasoning over joint probability distributions representing action and
object designators.

Enabling robots to adeptly handle uncertain situations significantly enhances their de-
cision-making abilities and contributes to their capacity to anticipate action outcomes
and environmental changes, thereby promoting autonomy.

The approach of integrating probabilistic hybrid models into a framework, as demon-
strated by BayRoB, with learning occurring through experiential data, holds promise
for fundamentally enhancing the decision-making processes of autonomous agents.



A critical aspect of this advancement lies in the incorporation of joint probability dis-
tributions, encompassing both aspects of the world and the agent itself. This integra-
tion is essential for facilitating informed decision-making rooted in experiential knowl-
edge. By incorporating probabilistic models to efficiently learn, represent, and reason
across various aspects of the agent and its environment, it becomes feasible to equip
autonomous robots with cognitive abilities. This empowerment enables them to accu-
rately predict action outcomes based on context, furnishing the agent with essential
tools to make well-informed decisions when selecting optimal actions and parameters
for their tasks. The presented approach is the first ever to learn and use such compre-
hensive joint probabilities for a robotic system.

Experiments showcase that BayRoB is capable of refining underspecified plans and
allow reasoning over arbitrary matters of the agent, the available actions and their pa-
rameterizations as well as aspects of the agent’s environment. A browser-based web
interface allows the user to investigate the system’s capabilities and reproduce the con-
ducted experiments.



Zusammenfassung

Das Konzept autonomer Haushaltsroboter, die Menschen mühsame Tätigkeiten ab-
nehmen oder bei täglichen Aufgaben unterstützen, ist schon lange ein visionäres Ziel,
insbesondere in Szenarien, die als zu komplex für Roboter betrachtet werden. Die Viel-
zahl von Variablen, komplexen Zusammenhängen und zahlreichen (Neben-)Effekten
von vermeintlich kleinen Veränderungen stellen bisher zu große Herausforderungen
dar, um sie ohne menschliches Eingreifen zu bewältigen. Wenn Roboter jedoch mit
umfangreichem Wissen über sich selbst, ihre Umgebung und allem darin ausgestattet
wären, könnten sie beliebige Fragen über ihre Umgebung beantworten und Aufgaben
eigenständig erledigen, indem sie weitere Erkenntnisse aus ihren eigenen Erfahrungen
in Zusammenhang mit der aktuellen Situation herleiten. Zum Beispiel könnten sie mü-
helos auf kontextbezogene Anfragen wie „Wo sollte ich mich in der Küche positionie-
ren, um die Milch zu finden?“, „Welche Route sollte ich von meinem aktuellen Stand-
ort aus nehmen?“ und „Ist der Kühlschrank geöffnet oder geschlossen?“ antworten.
Die Bewältigung von Unsicherheit und ihren damit verbundenen Einschränkungen ist
entscheidend für den Aufbau eines umfassenden Weltmodells, das einem autonomen
Agenten die notwendigen Fähigkeiten bietet, unabhängig zu agieren – wodurch der
Roboter potentiell zu einem wertvollen Haushaltshelfer und Begleiter werden kann.

Diese Arbeit stellt BayRoB vor, ein probabilistisches System, das hybride Aktionsmo-
delle integriert, um autonome Agenten bei der zuverlässigen, kontextabhängigen Ent-
scheidungsfindung unter Unsicherheit zu unterstützen. BayRoB nutzt probabilisti-
sche Modelle, um den Überzeugungszustand eines autonomen Roboters darzustellen,
und bietet Mechanismen, um Veränderungen dieses Zustands durch Veränderungen
der Welt oder die Ausführung von Aufgaben zu verfolgen. Die Fähigkeit von Robotern,
unsichere Situationen sicher zu handhaben, verbessert nicht nur ihre Entscheidungs-
fähigkeit sondern trägt auch dazu bei, Effekte und Umweltveränderungen vorherzu-
sehen, was zur Eigenständigkeit beiträgt. Das System integriert einen neuartigen For-
malismus, der das Lernen, die Repräsentation und das Schlussfolgern über Verbund-
wahrscheinlichkeiten für Aktionen und Objektbezeichnungen ermöglicht.



Der Ansatz, probabilistische, hybride Modelle in ein System zu integrieren, dessen Ler-
nen durch erfahrungsbasierte Daten erfolgt, wie von BayRoB demonstriert, verspricht
eine grundlegende Verbesserung der Entscheidungsprozesse autonomer Agenten. Ein
entscheidender Aspekt dieses Fortschritts liegt in der Integration von Verbundwahr-
scheinlichkeiten, die sowohl Aspekte der Welt, möglicher Aktionen als auch des Agen-
ten selbst umfassen. Diese Integration ist entscheidend für die Förderung informier-
ter Entscheidungsfindung, die auf erfahrungsbasiertem Wissen beruht. Durch die In-
tegration probabilistischer Modelle, die das effiziente Lernen und Repräsentieren ver-
schiedener Aspekte des Agenten und seiner Umgebung erlauben sowie das Herleiten
weiterer Informationen erleichtern, wird es möglich, autonome Roboter mit kogniti-
ven Fähigkeiten auszustatten. Das ermöglicht es ihnen, Handlungsergebnisse kontext-
abhängig präzise vorherzusagen und dem Agenten wesentliche Werkzeuge zur Verfü-
gung zu stellen, um fundierte Entscheidungen bei der Auswahl optimaler Aktionen
(und deren Parameter) für ihre Aufgaben zu treffen. Der vorgestellte Ansatz ist der ers-
te, der derart umfassende Verbundwahrscheinlichkeiten für ein Robotersystem lernt
und verwendet.

Experimente zeigen, dass BayRoB in der Lage ist, ungenaue Pläne zu verfeinern und
über beliebige Aspekte des Agenten, der verfügbaren Aktionen und ihrer Parameteri-
sierungen sowie Bereiche der Roboterwelt zu schließen. Eine browserbasierte Schnitt-
stelle ermöglicht es, die Fähigkeiten des Systems zu nutzen und die durchgeführten
Experimente zu reproduzieren.



Acknowledgments

As I reach the summit of my doctoral journey, I find it essential to express my heart-
felt gratitude to those whose unwavering support has played an crucial role in the re-
alization of this academic endeavor. The completion of this thesis marks not only a
personal milestone but also a collective achievement made possible by the guidance,
encouragement, and sacrifices of a remarkable group of individuals. In extending my
acknowledgments, I would like to recognize the significant contributions of my super-
visor, family, and dear ones who have been constant pillars of support throughout this
challenging yet rewarding academic pursuit. This acknowledgment is a sincere tribute
to those whose impact has shaped not only my academic journey but also my personal
growth. Thank you for being a crucial part of this transformative experience.

I would like to express my deepest gratitude to my supervisor, Michael Beetz, whose
guidance, expertise, and unwavering support have been invaluable throughout the en-
tire journey of my PhD research. Your mentorship has played a pivotal role in shap-
ing the direction of this thesis. I would also like to express my gratitude to Nico
Hochgeschwender for graciously agreeing to serve on my thesis committee.

I am sincerely grateful for the invaluable assistance provided by my family as well as my
boyfriend’s in caregiving, which has allowed me the precious time to focus on advanc-
ing my thesis work. I extend heartfelt appreciation in particular to my mother Erika
and my sister Verena, for their unconditional love, encouragement, and sacrifices that
allowed me to pursue my academic aspirations. Their unwavering belief in my abilities
has been a constant source of motivation. I am truly grateful for your support.

Special thanks go to my boyfriend, Daniel, for being a pillar of strength and understand-
ing the demands of this academic endeavor and for being a source of both emotional
and intellectual support. Beyond offering encouragement, you generously shared your
insights, offered constructive feedback, and lent your expertise, making a significant
contribution to the depth and quality of this work. Your patience, encouragement, and
belief in me have made this journey more meaningful and enjoyable. Special thanks to
our precious son, who patiently endured our distracted moments while we focused on



thesis discussions: your resilience were our guiding lights through it all. We are end-
lessly grateful for your unwavering love.

I would also like to thank my dear friend Anna and my boyfriend Daniel for proof-
reading my thesis. Your insightful suggestions have greatly enhanced the quality of my
work.

I am grateful to my colleagues for the stimulating discussions, collaborative efforts, and
the sense of camaraderie that made the research environment enriching and enjoyable.
Your insights and feedback have been invaluable.

Lastly, I want to express my appreciation to all those who have contributed in various
ways, directly or indirectly, to the completion of this thesis. Your support has been vital,
and I am truly grateful for the collective efforts that have shaped this academic achieve-
ment. I am truly fortunate to have had such a supportive network of individuals, and I
am sincerely thankful for each one’s contribution to my academic journey.

April 2024
Mareike Picklum

This work has received funding from the Collaborative Research Center (CRC) SFB1232 by the German
Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) (project number 276397488), from the
European Union Seventh Framework Programme (FP7) projects RoboHow (grant number 288533) and
SHERPA (grant number 600958) and from Research Grants DFG Programme PIPE (project number
322037152).



Contents

1  Introduction · · · · · · · · · · · · · · · · · · ·  1

1.1  Probabilistic Cognitive Action Models · · · · · · · · · · ·  6

1.2  The Intelligence in Intelligent Agents · · · · · · · · · · ·  12

1.3  Contributions & Delimitations · · · · · · · · · · · · ·  15

1.4  Reader’s Guide · · · · · · · · · · · · · · · · · · ·  17

2  Probabilistic Knowledge Processing · · · · · · ·  19

2.1  Knowledge Representation Hypothesis · · · · · · · · · ·  19

2.2  Uncertainty in Knowledge Representation · · · · · · · · ·  21

2.3  Basics of Probability Theory · · · · · · · · · · · · · ·  22
2.3.1  Key Concepts · · · · · · · · · · · · · · · · · ·  22
2.3.2  Inference · · · · · · · · · · · · · · · · · · ·  24

2.4  Probability Distributions · · · · · · · · · · · · · · ·  25
2.4.1  Numeric Distributions · · · · · · · · · · · · · · ·  26
2.4.2  Symbolic Distributions · · · · · · · · · · · · · ·  31
2.4.3  Comparing Distributions · · · · · · · · · · · · · ·  32

2.5  Probabilistic Graphical Models · · · · · · · · · · · · ·  37
2.5.1  Bayesian Networks · · · · · · · · · · · · · · · ·  37
2.5.2  Markov Networks · · · · · · · · · · · · · · · ·  42
2.5.3  Sum-Product Networks · · · · · · · · · · · · · ·  44
2.5.4  Probabilistic Circuits · · · · · · · · · · · · · · ·  46

2.6  Knowledge Acquisition · · · · · · · · · · · · · · · ·  49
2.6.1  Generative and Discriminative Learning · · · · · · · · ·  49
2.6.2  Maximum Likelihood Principle · · · · · · · · · · · ·  49
2.6.3  Entropy-based Methods · · · · · · · · · · · · · ·  50

3  Scalable Probabilistic Hybrid Models · · · · · · ·  55

3.1  Introduction to JPTs · · · · · · · · · · · · · · · · ·  56



3.2  Conceptual Framework · · · · · · · · · · · · · · · ·  57
3.2.1  Reasoning in Joint Probability Trees · · · · · · · · · ·  58
3.2.2  Learning of Joint Probability Trees · · · · · · · · · · ·  59
3.2.3  Example · · · · · · · · · · · · · · · · · · ·  61

3.3  Learning & Reasoning in Continuous Domains · · · · · · ·  61
3.3.1  Quantile-parameterized Distributions · · · · · · · · · ·  61
3.3.2  Efficient Learning of Cumulative Distributions · · · · · · ·  63
3.3.3  Reasoning about Cumulative Distributions · · · · · · · ·  64
3.3.4  Learning and Reasoning in Symbolic Domains · · · · · · ·  65

3.4  Experiments · · · · · · · · · · · · · · · · · · · ·  65

3.5  Discussion · · · · · · · · · · · · · · · · · · · ·  68

4  BayRoB - Bayesian Robotic Brain · · · · · · · · · ·  71

4.1  A Rational Robotic Agent · · · · · · · · · · · · · · ·  72

4.2  Running Example · · · · · · · · · · · · · · · · · ·  74

4.3  Robotic Belief States as Joint Distributions · · · · · · · · ·  84

4.4  Action Models as Joint Distributions · · · · · · · · · · ·  85
4.4.1  Action Intelligence in BayRoB · · · · · · · · · · · ·  86

4.5  Updating Belief State Distributions · · · · · · · · · · ·  93
4.5.1  Single Action Updates · · · · · · · · · · · · · · ·  96
4.5.2  Multiple Subsequent Action Updates · · · · · · · · · ·  99
4.5.3  Addition vs Shift · · · · · · · · · · · · · · · ·  102

4.6  Plan Refinement with JPTs · · · · · · · · · · · · · ·  103
4.6.1  Single Backward Action Updates · · · · · · · · · · ·  103
4.6.2  Multiple Backward Action Updates · · · · · · · · · ·  106

5  Probabilistic Knowledge Bases for Material Discovery 
115

5.1  MatCALO · · · · · · · · · · · · · · · · · · · ·  115

5.2  State of the Art · · · · · · · · · · · · · · · · · ·  117

5.3  Conceptual Framework · · · · · · · · · · · · · · ·  122
5.3.1  Problem Formulation · · · · · · · · · · · · · · ·  124
5.3.2  Hypothesis Generation · · · · · · · · · · · · · ·  127
5.3.3  Semantic Representation · · · · · · · · · · · · ·  132
5.3.4  System Architecture & Interface · · · · · · · · · · ·  134

5.4  Experiments · · · · · · · · · · · · · · · · · · ·  136

5.5  Results and Discussion · · · · · · · · · · · · · · · ·  137

5.6  Conclusions · · · · · · · · · · · · · · · · · · ·  139



6  Evaluation · · · · · · · · · · · · · · · · · · · ·  141

6.1  Model Stats · · · · · · · · · · · · · · · · · · · ·  141

6.2  Part I: Reproducing Ground Data with JPTs · · · · · · · ·  142
6.2.1  Turn Data · · · · · · · · · · · · · · · · · ·  143
6.2.2  Move Data · · · · · · · · · · · · · · · · · ·  145
6.2.3  Perception Data · · · · · · · · · · · · · · · ·  148
6.2.4  PR2 (NEEM) Data · · · · · · · · · · · · · · · ·  151
6.2.5  Inference Patterns · · · · · · · · · · · · · · · ·  156

6.3  Part II: Model settings · · · · · · · · · · · · · · · ·  162
6.3.1  turn · · · · · · · · · · · · · · · · · · · ·  162
6.3.2  move_base · · · · · · · · · · · · · · · · · ·  164
6.3.3  perception · · · · · · · · · · · · · · · · · ·  166
6.3.4  pr2 · · · · · · · · · · · · · · · · · · · · ·  168

6.4  Part III: Plan Refinement · · · · · · · · · · · · · · ·  171

6.5  Part IV: BayRoB and BayRoB Web · · · · · · · · · · ·  174

7  Related Work · · · · · · · · · · · · · · · · · ·  179

8  Conclusions · · · · · · · · · · · · · · · · · · ·  185

I  Glossary · · · · · · · · · · · · · · · · · · · · ·  I

II  Acronyms · · · · · · · · · · · · · · · · · · · · ·  V

III  Links · · · · · · · · · · · · · · · · · · · · · ·  IX

IV  Symbols · · · · · · · · · · · · · · · · · · · · ·  XI





Figures

Figure 1 A robot opening a fridge · · · · · · · · · · · · · · ·  9

Figure 2 Example task · · · · · · · · · · · · · · · · · ·  14

Figure 3 Correspondence between the real world and its representation · ·  21

Figure 4 Similarity of discrete distributions · · · · · · · · · · ·  33

Figure 5 Similarity of continuous distributions · · · · · · · · · ·  35

Figure 6 Identically-shaped Gaussian distributions and their CDFs · · ·  36

Figure 7 The graph representation of a naïve Bayes model · · · · · ·  38

Figure 8 The Bayesian Network for the robot error detection framework · ·  40

Figure 9 d-separation · · · · · · · · · · · · · · · · · ·  41

Figure 10 Exemplary Markov Network · · · · · · · · · · · ·  42

Figure 11 The three maximal cliques · · · · · · · · · · · · ·  43

Figure 12 An exemplary sum product network · · · · · · · · · ·  45

Figure 13 Examples of Probabilistic Circuits · · · · · · · · · · ·  47

Figure 14 Example of a decision tree · · · · · · · · · · · · ·  53

Figure 15 Example of a joint probability distribution · · · · · · · ·  56

Figure 16 Three Gaussian CDFs · · · · · · · · · · · · · · ·  62

Figure 17 Expectations over the probability distributions of MNIST dataset ·  66

Figure 18 Regression function example plot · · · · · · · · · · ·  67

Figure 19 Observation-Action Selection-Execution interaction cycle · · ·  73

Figure 20 Overview of the kitchen world · · · · · · · · · · · ·  76

Figure 21 Direction update for generating `turn` data points · · · · · ·  78

Figure 22 The ground truth data for the kitchen scenario · · · · · ·  79

Figure 23 Position update for generating `move_base` data points · · · ·  80

Figure 24 The ground data for the perception model · · · · · · · ·  82

Figure 25 The initial distribution P(x,y) · · · · · · · · · · · ·  84



Figure 26 The forward-backward queries in JPTs · · · · · · · · ·  87

Figure 27 The entire perception tree and the same tree conditioned · · ·  89

Figure 28 The position distribution conditioned on different perceptions ·  92

Figure 29 Where am I most likely positioned when I see a bowl after having break-
fast? · · · · · · · · · · · · · · · · · · · · · · · · ·  92

Figure 30 Sum of Bernoulli Distributions · · · · · · · · · · · ·  93

Figure 31 A single update step for a `move_base` action · · · · · · ·  96

Figure 32 A single update step for a `turn` action · · · · · · · · ·  97

Figure 33 The trajectory of an agent as predicted by BayRoB · · · · ·  99

Figure 34 The distribution update over the first 5 steps of the path · · ·  99

Figure 35 The 3D-surface renders for the distributions · · · · · · ·  100

Figure 36 The prediction of a trajectory of an agent as a result of shifting ·  102

Figure 37 The distribution update over the first 5 steps of the path · · ·  102

Figure 38 Predecessor candidates for the goal 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(𝑚𝑖𝑙𝑘) = ⊤ · · ·  104

Figure 39 The magnified annotations of the predecessor candidate · · ·  105

Figure 40 High-level overview of the framework · · · · · · · · ·  117

Figure 41 Requirement profile · · · · · · · · · · · · · · ·  123

Figure 42 Schematic representation of a process chain · · · · · · ·  127

Figure 43 Decision tree example · · · · · · · · · · · · · ·  128

Figure 44 Development loop · · · · · · · · · · · · · · ·  131

Figure 45 Periodic table ontology · · · · · · · · · · · · · ·  132

Figure 46 Hypotheses radar chart · · · · · · · · · · · · · ·  134

Figure 47 Hypotheses tree visualization · · · · · · · · · · · ·  135

Figure 48 Comparison of ground truth and distribution (turn) · · · ·  143

Figure 49 Comparison of ground truth and distribution (turn) · · · ·  144

Figure 50 Comparison of ground truth and distribution (turn) · · · ·  145

Figure 51 The distribution 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

) of the move_base model · ·  145

Figure 52 Comparison of ground truth and distribution (move_base) · ·  146

Figure 53 Comparison of ground truth and distribution (move_base) · ·  146

Figure 54 Comparison of ground truth and distribution (perception) · ·  148

Figure 55 Comparison of the ground truth and distribution (perception) ·  149

Figure 56 The conditioned perception model · · · · · · · · · ·  150



Figure 57 The entire perception model · · · · · · · · · · · ·  151

Figure 58 Except of fetch-milk action tree · · · · · · · · · · ·  152

Figure 59 Comparison of ground truth and distribution (pr2) · · · · ·  152

Figure 60 Comparison of ground truth and distribution (pr2) · · · · ·  152

Figure 61 Comparison of ground truth and distribution (pr2) · · · · ·  154

Figure 62 Comparing positionings causing the three different failure types ·  154

Figure 63 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒 | 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥) · · · · · ·  155

Figure 64 Comparison of ground truth and distribution (perception) · ·  156

Figure 65 Perception example for causal inference pattern · · · · · ·  157

Figure 66 The Bayes net for the alarm example · · · · · · · · ·  157

Figure 67 Alarm example for an explaining away inference in BayRoB · ·  159

Figure 68 Alarm example for an explaining away inference in BayRoB · ·  160

Figure 69 I am located close to the fridge but I can’t see milk. What daytime is
it? · · · · · · · · · · · · · · · · · · · · · · · · ·  160

Figure 70 I am located close to the fridge but I can’t see milk. Is the fridge door
open or closed? · · · · · · · · · · · · · · · · · · · · ·  161

Figure 71 Perception example for explaining away inference pattern · ·  161

Figure 72 The cumulated likelihood for each setting of the turn model · ·  163

Figure 73 The cumulated likelihood for each setting of the move_base model · 164

Figure 74 The cumulated likelihood for each setting of the perception model  166

Figure 75 The cumulated likelihood for each setting of the pr2 model · ·  169

Figure 76 Forward search path example · · · · · · · · · · · ·  171

Figure 77 Comparison of the found path vs. its forward execution · · ·  172

Figure 78 Plan refinement of the task “Detect milk” · · · · · · · ·  173

Figure 79 The BayRoB web app · · · · · · · · · · · · · ·  175

Figure 80 The query and search options in the BayRoB web app · · · ·  175

Figure 81 The result of a query in BayRoB · · · · · · · · · · ·  176

Figure 82 The “uniform” distribution for the variable 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 ·  177

Figure 83 The result of a search in BayRoB · · · · · · · · · ·  177

Figure 84 The scatterplot of the underlying toy data set in Section 3.2.3 · ·  ii

Figure 85 The ground truth distribution of the toy data set · · · · · ·  iii

Figure 86 The plot of the marginal joint distribution 𝑃(𝑋, 𝑌 ) of the toy data set  iii

Figure 87 The JPT structure learnt using the toy data set · · · · · · ·  iv



Figure 88 The JPT structure learnt using the MNIST data set · · · · · ·  v

Figure 89 The JPT structure learnt using the alarm data set · · · · · ·  vi

Figure 90 The generated tree for the deep rolling process. · · · · · ·  ix

Figure 91 The generated tree for the heating process. · · · · · · · ·  x

Figure 92 The generated JPT for the heating process. · · · · · · · ·  xi

Figure 93 The generated tree for the deep rolling process. · · · · · ·  xii



Tables

Table 1 MAE/F-score of variables in Iris data set · · · · · · · · ·  66

Table 2 MAE for predictions in the regression experiment · · · · · ·  67

Table 3 Experimental results on the Airline dataset · · · · · · · · ·  68

Table 4 The variables of the running example · · · · · · · · · ·  75

Table 5 Results of a selection of 3 example queries · · · · · · · ·  138

Table 6 Model statistics · · · · · · · · · · · · · · · · ·  142

Table 7 Description of the turn model settings · · · · · · · · · ·  162

Table 8 The likelihoods per variable for each setting of the turn model · ·  164

Table 9 Description of the move_base model settings · · · · · · · ·  164

Table 10 The likelihoods per variable for each setting of the move_base model · 165

Table 11 Description of the perception model settings · · · · · · ·  166

Table 12 The likelihoods per variable for each setting of the perception model  168

Table 13 Description of the pr2 model settings · · · · · · · · · ·  169

Table 14 The likelihoods per variable for each setting of the pr2 model · ·  169

Table 15 Results of the evaluation of JPTs on eight benchmark data sets · ·  vii





Algorithms and Code

Algorithm 1 CART · · · · · · · · · · · · · · · · · ·  53

Algorithm 2 CDF-Learn · · · · · · · · · · · · · · · ·  63

Algorithm 3 Conditional-JPT · · · · · · · · · · · · · · ·  87

Algorithm 4 JPT-Posterior · · · · · · · · · · · · · · · ·  90

Algorithm 5 A* · · · · · · · · · · · · · · · · · · ·  108

Algorithm 6 BayRoB-Generate-Successors (forward search) · · ·  110

Algorithm 7 BayRoB-Generate-Predecessors (reverse search) · ·  111

Algorithm 8 BayRoB-Reverse (reverse search) · · · · · · · ·  112

Algorithm 9 MRT · · · · · · · · · · · · · · · · · ·  128

Code 1 Example CRAM plan · · · · · · · · · · · · · · · ·  10

Code 2 CRAM plan for exemplary action sequence · · · · · · · · ·  100

Code 3 Example of a CRAM plan generated from search result · · · · ·  173





Appendix

A  Joint Probability Trees · · · · · · · · · · · · · ·  i

A.1  Trees · · · · · · · · · · · · · · · · · · · · · · ·  i
A.1.1  JPT Example - Tree · · · · · · · · · · · · · · ·  ii
A.1.2  MNIST Tree · · · · · · · · · · · · · · · · · ·  v
A.1.3  Alarm Tree · · · · · · · · · · · · · · · · · ·  vi

A.2  Tables · · · · · · · · · · · · · · · · · · · · · ·  vii
A.2.1  Empirical Evaluation · · · · · · · · · · · · · ·  vii

B  MatCALO · · · · · · · · · · · · · · · · · · · · ·  ix

B.1  Deeprolling · · · · · · · · · · · · · · · · · · · ·  ix

B.2  Heating · · · · · · · · · · · · · · · · · · · · · ·  x

B.3  Heating (JPT) · · · · · · · · · · · · · · · · · · ·  xi

B.4  Deeprolling (JPT) · · · · · · · · · · · · · · · · · ·  xii

C  Provenance · · · · · · · · · · · · · · · · · · ·  xiii

C.1  Media Sources · · · · · · · · · · · · · · · · · · ·  xiii

C.2  Datasets · · · · · · · · · · · · · · · · · · · · ·  xiii





oneChapter

Introduction

In the not-so-distant future, Artificial Intelligence (AI) will be part of our everyday lives,
far beyond the form that we already see today, as tireless aides that help us navigate
unknown regions¹, as smart companions answering questions we type into our phones

¹Google Maps, navigation software

or formulate in spoken language²,³,⁴,⁵,⁶ or as one of the countless little helpers devel-

²ChatGPT
³Apple Siri
⁴Amazon Alexa
⁵Google Assistant
⁶Microsoft Bing

oped to make our lives easier and more enjoyable⁷,⁸,⁹. What these (to a greater or lesser

⁷ELSA speak and Duolingo, AI to help users learn/improve foreign language skills
⁸Wysa and Youper, AI mental health apps
⁹Socratic, powered by Google AI to help students with their homework

extent) intelligent agents have in common is that they do not take on physical but rather
organizational or virtual tasks. But what about tedious and time-consuming household
chores? Soon, robotic agents will play a crucial role in our future household landscape,
where intelligent autonomy permeates the very essence of our daily routines.

Autonomous robots, equipped with advanced sensors, AI, and precise mechanics, have
the potential to profoundly impact the way humans conduct their daily lives. The al-
lure of incorporating them into our homes lies not only in their ability to alleviate the
burdens of tiring and laborious tasks, but also in their capacity to enrich our lives by
enabling us to focus on more meaningful and fulfilling endeavors. The idea of robots
taking on hard or tedious tasks is not merely a futuristic fantasy, but an imminent re-
ality that could redefine the boundaries of domestic routines. Imagine a future where
household chores like vacuuming, cleaning, dishwashing, and even laundry are seam-
lessly handled by autonomous robots, allowing individuals to focus on much more im-
portant and enjoyable things in life. This liberation from everyday duties can empower
individuals to engage in creative pursuits, spend quality time with loved ones, or in-
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vest in self-improvement activities that might otherwise be sidelined by the demands
of daily upkeep.

The introduction of autonomous robots into the household environment can also carry
the potential to significantly improve the lives of people who require assistance in their
daily routines. Elderly and differently-abled people may substantially benefit from ro-
botic assistants as they get back a piece of independence from others. 

social benefit ▷
 These robots

can provide companionship, shoulder hard or tedious tasks, and even monitor health
parameters, thereby promoting a sense of independence and vastly enhancing the life
quality for those who need it most. The combination of technology and caregiving not
only lightens the load on caregivers but also provides independence and dignity for
people with limitations. From a broader perspective, the deployment of autonomous
robots in households can also contribute to sustainable and enjoyable living practices,
thereby rendering them valuable not only to people who require but also those who
desire assistance.

Envision a scenario where you have a robotic companion adept at assisting with daily
tasks, such as cooking, setting tables, and tidying up the kitchen afterward. This robot
would possess the ability to autonomously navigate the kitchen, identify obstacles, and
adjust its course accordingly. Moreover, it would be equipped with knowledge about
the kitchen layout and the locations of essential items like tableware, food, and uten-
sils. The robot could discern whether certain objects were within reach, and it would
be aware of the status of drawers and cabinet doors. With each completed task, the
robot would accumulate experience, using it to learn and enhance its comprehension,
or model, of the environment. This model would enable the robot to address various
questions about its surroundings and perform tasks. For instance, it could effortlessly
respond to contextual queries like “Where should I stand in the kitchen to see the milk
carton?”, which would pose a typical query when tasked with the very common task
of finding objects, in this case the milk carton. Following up, questions like “How do
I get there from my current position?” and “Is the fridge open or closed?” show the
necessity for possessing a comprehensive world model enabling an agent to answer all
those questions. In terms of performing a physical task, a question could also be “how
do I flip a pancake such that it lands on my spatula again, without breaking it?” which
requires even more sophisticated reasoning about joint poses, the use of force and so
on. So, what are the possibilities and advantages that would emerge? In particular, it
would be possible to implement behavior changes based on reasoning about anticipated
effects, or, in probabilistic terms, to query for the most probable parameter settings for
a certain (desired) outcome, e.g.:

arg max
𝑝𝑜𝑠𝑒arm, 𝑓𝑜𝑟𝑐𝑒,…

𝑃(𝑝𝑎𝑛𝑐𝑎𝑘𝑒_𝑜𝑛_𝑠𝑝𝑎𝑡𝑢𝑙𝑎 = ⊤, 𝑝𝑎𝑛𝑐𝑎𝑘𝑒_𝑖𝑛𝑡𝑎𝑐𝑡 = ⊤ | 𝑝𝑜𝑠𝑒arm, 𝑓𝑜𝑟𝑐𝑒, …)(1)

with all the information needed for such a probabilistic query being learnt from data.
Such information would contribute substantially to enable a robot to efficiently execute
tasks in real-world scenarios. It also provide a key capability for the agent to adapt to
new conditions, autonomously make decisions and solve problems, since (under un-
certainty) Bayesian inference provides the optimal solution.
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So, why hasn’t this become a reality yet? Why can’t we just put a robot in our house
and tell it to do things that are annoying yet seem to be very easy? One challenge lies
in generating a comprehensive world model. The primary obstacle is the high-dimen-
sionality of the real world due to its dynamic and continuously changing nature. In
acting in real-world scenarios, the robot faces what is called the open world challenge,

◁ open world
challenge

requiring it to adapt to an array of infinite scenarios and interact effectively with its en-
vironment and other agents. This implies a vast state space that the robot must handle.
Consider a simple example calculation: If we restrict the robot’s possible positions to a
100 × 100 grid on the kitchen floor and discretize its facing direction into 360 angles,
there are already 3.6 million potential states. Introducing factors such as open or closed
doors and drawers, visible or hidden objects, leads to a combinatorial explosion, since
the state space grows exponentially with the number of variables. For instance, with
just 5 doors or drawers and 10 visible objects, the total number of states balloons to
3,600,000 · 25 · 210 = 117,964,800,000 (in words: one hundred seventeen billion nine
hundred sixty-four million eight hundred thousand!). The challenges and difficulties
that arise when working with such high-dimensional data is often referred to as the
curse of dimensionality.

These vast numbers illustrate why robotic agents often operate in highly discretized
environments under controlled, thus very limited, conditions. This complexity is a key
reason why we are still a long way from realizing futuristic visions of androids seam-
lessly handling everyday tasks in a human-like manner. Despite handheld agents be-
coming commonplace, recent surveys, comprising a Delphi study and an accompany-
ing population survey (Engel 2020) regarding perspectives of AI suggest that only a
minority perceives robots and AI as reliable, safe, and trustworthy technologies, partic-
ularly for close-contact services in domestic or caregiving settings. The prevailing view
is that robots have yet to demonstrate competence in performing such tasks compared
to humans. Generally speaking, activities, that are easy for a human being can be very
hard for a robotic agent:

“ But as the number of demonstrations has mounted, it has become clear that it is
comparatively easy to make computers exhibit adult level performance on intel-
ligence tests or playing checkers, and difficult or impossible to give them the skills
of a one-year-old when it comes to perception and mobility ” –Moravec (1988)

A human knows from experience, and without explicitly making it present that a task
usually consists of a number of subtasks, which again consist of even simpler subtasks
that have to be executed appropriately. A robot, by default, does not know that it has
to do that, let alone how to do it, and expects its programmer to feed it all the informa-
tion it needs to execute the task at this time, in this environment, with its capabilities
and tools provided. What contributes to the robot being intelligent is the capability to
break away from the necessity of human intervention and autonomously act in a hu-
man environment by solving tasks all by itself. This requires understanding the task and
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identifying what needs to be done and how. Deep Learning 
deep learning ▷

 is frequently utilized for
all sorts of tasks, with the underlying premise being that the larger the volume of data
accessible, the greater the likelihood of having the requisite information for the task
execution. This methodology has demonstrated remarkable efficacy across various do-
mains, including image recognition and classification, parameter learning (Voigt, Jo-
hannsmeier, and Haddadin 2020), Natural Language Processing (NLP) or, just recently,
robotic manipulation (Mitash et al. 2023; Hidalgo-Carvajal et al. 2023). Whenever the
key to a solution lies in recognizing recurring patterns, deep learning persuades with
remarkable results. These black-box approaches are very well-suited for restricted ap-
plications within well-defined bounds, however, they do not pose real common-sense
reasoning.

Household robotics, as opposed to the technological developments of industrial and
scientific applications in the past, is still a field that introduces an entirely new field
of challenges, as agents need to interact with the open world, adapt to the smallest of
changes in their physical environment and detect and recover from failures by them-
selves. Robotic household companions have not found their way into our daily lives
yet because they lack the ability to act competently in this environment. In an open
environment with open task descriptions, the primary challenge lies in the need for
flexible and robust decision making during the execution of a task as it is too complex to
model every single imaginable scenario beforehand, at development time. This entails
expanding knowledge during runtime through experiential learning and adapting to
changing conditions. While robots are superior to humans when it comes to repetitive
tasks that require precision and strength at high speed, the competence with which
a human can seemingly effortlessly undertake tasks in complex unstructured environ-
ments remains unparalleled by robots.

Undoubtedly, the foundation of intelligent human behavior and decision-making rests
upon a bedrock of common-sense knowledge. This knowledge is acquired through a
triad of essential principles: learning from observations and experience, engaging in
meaningful discourse with domain experts, and absorbing information from scholarly
sources. While we have seen significant advances machine learning has made espe-
cially in commercial applications, it falls short in achieving the stability and resilience
necessary for robust and versatile AI systems. Leading researchers and technologists
argue that our current AI capabilities are insufficient to meet the ambitious expecta-
tions we hold for the future of AI technology (Marcus and Davis 2019). To bridge this
gap and usher in the era of more reliable and adaptable AI systems, it is imperative to
incorporate common-sense reasoning into artificial systems. This foundational ability,
shared by humans, allows us to perceive, understand, and evaluate everyday matters
effortlessly.

Furthermore, understanding the intricacies of cognition, which encompasses the in-
ference of new information from sensory input and prior knowledge, is pivotal (Chater,
Tenenbaum, and Yuille 2006). Cognition plays a crucial role in the Strategic Research
Agenda (SRA) and the Multi Annual Roadmap (MAR) presented by SPARC as it em-
powers agents to make sense of an uncertain world, both in the present and the fu-
ture, influencing their actions (SPARC 2014; 2016). The 20-Year Community Roadmap
for Artificial Intelligence Research in the US (Gil and Selman 2019) by the Computing
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Community Consortium (CCC) of the Computing Research Association (CRA) also lists
Integrated Intelligence as a research priority to realize societal benefits of AI which in-
cludes the development of models of human cognition.

“ Cognition is the process by which an autonomous system perceives its environ-
ment, learns from experience, anticipates the outcome of events, acts to pursue
goals, and adapts to changing circumstances. ” –Vernon (2014)

One could argue that the common-sense knowledge that humans acquire enables them
to make rational decisions based on statistical evidence, given sufficient data acquired
through experience. But while being amazingly appropriate for a given situation in the
majority of cases, decision making in the human mind sometimes produces puzzlingly
unreasonable or irrational results. Humans sometimes make decisions that are biased
by the availability heuristic, which supports a certain hypothesis over another when
there is more data available about it, as it distorts the perception of its relevance. Kah-
neman (2017) argues that our minds are susceptible to systematic errors because we are
not able to see beyond or even acknowledge our biased view. He describes the two-sys-
tems approach to judgment and choice by differentiating System 1 and System 2, which
he thinks of as to agents, producing fast (intuitive) and slow (deliberate) thinking. Sys-
tem 1 functions automatically, requiring minimal to no conscious effort while lacking
a sense of deliberate control. System 2 directs attention toward mentally demanding
tasks, such as complex calculations, where effort is required. The functioning of Sys-
tem 2 is frequently linked to the subjective sense of autonomy, decision-making, and
focused concentration. In the two-systems approach, it is assumed that humans merely
use resemblance as a convenient heuristic to reach a decision, which is precisely not
the reliance on statistical evidence. This, however, is what makes it difficult to mimic
human behavior in computational systems.

Researchers have increasingly appreciated the importance of probabilistic reasoning
and knowledge representation in the field of Bayesian cognition sciences, using a prob-
ability theoretical approach to model human cognition. There is a lot of information
hidden in large amounts of data and building joint probability distributions is one way
to extract knowledge from it. The term Bayesian Brain describes just that: the theory
that there are hidden structures in the human brain that perform Bayesian inferences 
(Friston 2012) about its perceptions and experiences which then dictate its owner’s
behavior. The aspiration of researchers in this field is to create robots that exhibit
common-sense intelligence and human-like reasoning to emulate their behavior. As
demonstrated by Griffiths, Kemp, and Tenenbaum (2023), probability theory can be
viewed at as an elaborate mathematical apparatus for elucidating and enacting theo-
ries of cognition

◁ Bayesian
cognition
theory

. They argue that Bayesian models offer a means to tackle profound
inquiries pertaining to uniquely human cognitive processes. Tenenbaum et al. (2011)
point out that the capacity of probabilistic generative models to demonstrate how in-
dividuals can truly acquire abstract structured knowledge is their most distinguishing
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aspect and argue that the Bayesian approach helps advance our understanding of cog-
nition, part of it being the functioning and growth of the human mind. However, gen-
eralizations in probabilistic knowledge bases is challenging due to the representational
and computational complexity.

“ A cognitive architecture determines the organisation of the system’s cognitive
functions. It provides the infrastructure for embedding knowledge, acquiring new
knowledge, and using that knowledge to understand the world, to act purpose-
fully, and to anticipate the need for action. It can also provide a framework to
allow new skills to be developed through experience. ” –SPARC (2014)

The desiderata for cognitive systems are multifaceted, requiring a harmonious blend
of logical, statistical, and causal reasoning that incorporates symbolic and subsymbolic
elements. In essence, as we strive for the development of AI systems that can match hu-
man intelligence and decision-making capabilities, the integration of common-sense
reasoning and a deeper understanding of cognition is not just a necessity but the key
to unlocking the full potential of AI. It is through these innovative approaches that we
can pave the way for AI systems that are not only intelligent but also resilient, versatile,
and capable of making informed decisions in an ever-evolving world. Vernon, Beetz,
and Sandini (2015) recommend the use of joint episodic memory to facilitate prospec-
tion and goal-directed action in cognitive robotics and argue that the combination of
episodic and procedural memory enables the internal simulation to be influenced by
the present context, semantic memory, and the agent’s set of values.

1.1  Probabilistic Cognitive Action Models
In this thesis, probabilistic hybrid models over actions and their parameterizations are
developed as a step towards a cognitive architecture to enable robotic agents to adeptly
perform everyday human activities. Probabilistic models are the apt choice for this en-
deavor, as they align with the idea that human cognitive reasoning operates in a prob-
abilistic manner. These models allow to estimate the likelihood of different actions and
their outcomes, providing a foundation for decision-making that mirrors the complex
probabilistic computations that underlie human cognition.

There has been tremendous progress in emulating human knowledge- and information
processing in robotic agents. The Collaborative Research Center (CRC) Everyday Activity
Science & Engineering (EASE) has

EASE ▷
 already substantially contributed to the field of ar-

tificial cognitive systems by developing cognitive robots that are capable of executing
everyday activities with extraordinary manipulation skills. The conceptual framework
of EASE can be seen as a cognitive architecture incorporating concepts of human cog-
nition. Narrative-enabled Episodic Memories (NEEMs) refer to specialized data struc-
tures that empower robotic agents to extract information from extensive collections of
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observations, experiences, or detailed accounts of activities. NEEMs serve the purpose
of identifying representations that can leverage the inherent structure within these ac-
tivities, making it possible to transition tasks into problem domains that are computa-
tionally more manageable than the original ones. Essentially, NEEMs help robots or-
ganize and make sense of their experiences for improved problem-solving. NEEMs aim
to model an artificial memory system designed for artificial agents drawing inspira-
tion from the human episodic memory system. Pragmatic Everyday Activity Manifolds
(PEAMs) are representations used to capture and describe various aspects of everyday
activities in a low-dimensional, localized manner, similar to mathematical manifolds.
These PEAMs are employed to help agents accomplish their intended tasks efficiently
while maintaining computational feasibility. In essence, they enable agents to navigate
and understand the intricacies of everyday activities in a more manageable and practi-
cal manner.

Nyga (2017) introduces a natural-language instruction interpreter capable of address-
ing the challenges posed by vagueness and ambiguity in human language which is
able to deduce any missing information necessary for a robot to carry out the given
instruction effectively by generating robot-interpretable plans. The approach poses an
implementation of a symbolic relational probabilistic knowledge base over actions
along with its parameterizations. To achieve the plan generation, the task of instruc-
tion comprehension is framed as a reasoning problem within first-order probabilistic
knowledge bases. Specifically, the system employs Markov Logic Networks (MLNs) as
a formalism to represent uncertain knowledge. Symbolic concepts incorporating onto-
logical knowledge from taxonomies are implemented which heavily make use of se-
mantically similar relational structures to infer unknown concepts. The presented ap-
proach is therefore limited to symbolic descriptions.

Dealing with uncertainty requires finding solutions for some of the hardest tasks in
computer science, such as dealing with the complexity of decision spaces, as uncer-
tainty tends to add magnitudes of intricacy to a given problem. Applications in the real
world also suffer from partial observability due to the sheer vastness - and therefore
impossibility to represent its entirety - of the open world. The absence of probabilistic
hybrid models capable of seamlessly handling both symbolic and subsymbolic features
represents a significant problem in the field of AI and Machine Learning (ML). Sym-
bolic reasoning is crucial for tasks requiring explicit logical inference, knowledge repre-
sentation, and high-level abstraction, while subsymbolic techniques like deep learning
excel in pattern recognition and complex data processing. Yet, most real-world prob-
lems demand a combination of these two paradigms to effectively merge structured
information and raw sensory data. Without such versatile models, AI systems struggle
to flexibly navigate the spectrum of cognitive tasks, hindering their ability to provide
meaningful, context-aware solutions. Addressing this gap in hybrid modeling is essen-
tial for advancing the frontiers of AI and enabling systems to tackle the multifaceted
challenges of the modern world more effectively.

The necessity for hybrid models and formalisms capable of efficiently representing
joint probability distributions serves as a fundamental driving force for the research
within this thesis. Using probabiliy theory to represent knowledge allows to extract the
optimum from the underlying data, as one can query for the highest expected utility for
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the given task. This work aims at learning what happens, when the underlying data are
experience data from robots, whether one can learn and reason probabilistically from
it and what is the best intended sequence of actions to solve a task given the experi-
ence data. The challenge lies in the very complex structure of actions and sequences.
In particular, actions and sequences suffer from high dimensionality, which typically
renders probabilistic inference infeasible. To represent a joint probability for a given
task one needs to 1) determine how to get sufficient data that is required to appropri-
ately represent it, 2) handle the fact that some important information might not be
observable and 3) figure out how to perform reasoning effectively and efficiently. This
work presents Bayesian Robot Brain (BayRoB), a framework using a probability theo-
retic approach to generate and improve action models from experience which is aligned
with the principle of NEEMs mentioned before. The approach implies that decisions
for certain actions can be made in an informed way. In particular, the generated action
models can be used for prospection to enhance the planning skills of an autonomous
agent. This work integrates in the research focus of EASE and will make use of knowl-
edge collected from an agent’s own experiences and those of others.

In the approach presented here, action cores are used, which are (potentially higher-
level) action descriptions. BayRoB adds a subsymbolic component to the parameter-
ization of action cores, thereby creating hybrid action models. Let’s assume we have
two (in this case rather low-level) action cores, move_base and turn. The move_base ac-
tion has a single numeric control parameter dist for the distance to travel, the turn
action gets a numeric parameter angle to determine how many degrees to turn. Each
call of one of these two actions is considered to be one robot movement at a certain
point in time, even though a robot might be able to execute them simultaneously. Now
what one is particularly interested in, is the outcome of the execution of such an action.
A human has sophisticated anticipation capabilities (Williams 2018; Szpunar, Spreng,
and Schacter 2014; Jeannerod 2001), such that the outcome of their actions is typically
equal or very close to their expectations. However, telling a robot to do something is
a far cry from getting the result one would expect. Every robot manipulation comes
with a degree of uncertainty, conditioned by inaccuracies in its sensors, its actuators or
extrinsic influences. To capture and track such uncertainties, it is necessary to create
a realistic model of the behavior of itself and the physical effects actions have on the
world around it.

Beetz and Grosskreutz (2005) present a framework for modeling and predicting con-
current behavior in autonomous mobile robots using a formalism that uses continu-
ous feedback control processes to model more realistic robot behavior and physical ef-
fects. The aim is to improve the adaptability and reliability of autonomous robots es-
pecially in complex and dynamic environments. The robot behavior is predicted with
high probability, aiding in plan revision and decision-making during execution. The
system can identify potential flaws or undesired outcomes and revise the plan in real-
time. Essential in the authors’ approach is the representation of continuous feedback
control processes, non-deterministic effects and exogenous events, which is key to ap-
propriately act in the open world.

One way to encapsulate specific conditions that a robot perceives as true about itself
and its surroundings, along with the anticipated physical outcomes stemming from its
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own actions or external events, is to maintain a belief state. The advantages of proba-
bilistic models make it tempting to represent this belief state as a joint probability distri-
bution covering both the world and the robot. This distribution encompasses variables
that describe the current state of the agent and its entire environment. However, espe-
cially in real-world scenarios, constructing such models often poses computational and
representational challenges, or it necessitates making substantial assumptions about
the underlying distributions, which may not accurately mirror the actual real-world
conditions.

A robot opening a fridge: While this scenario is nothing out of the ordinary in movies, in reality we are
still far from a world, in which robotic agents perform everyday human activities. | Figure 1

BayRoB incorporates a formalism that not only enables the concise representation of
complex probability distributions but also makes them computable in hybrid domains,
marking a substantial advancement in the area of probabilistic modeling. By address-
ing the inherent challenges of representing joint probabilities in domains that blend
discrete and continuous variables, this work opens up new avenues for efficiently mod-
eling and analyzing real-world phenomena with a high degree of precision. The devel-
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opment of this formalism promises to greatly enhance the capabilities of probabilistic
models in various fields, including decision-making, error detection and -recovery, and
more, ultimately contributing to the advancement of science and technology.

A belief system employing this formalism represents action cores and their conse-
quences as probability distributions over the variables associated with the action core.
To move closer to a more human-like anticipation model, the ability to predict the out-
come of specific actions becomes pivotal. For instance, in the previously mentioned
example, the model for the action core move_base encapsulates the agent’s expectation
of how its position changes when it moves a certain distance in the forward direction.
Chapter 4 will elucidate how, by leveraging probabilistic knowledge without resorting
to simulation, the transition from one belief state to the next can be achieved through
the addition of these distributions. But does that also work for multiple (time) steps?
If the answer is yes, one could generate action sequences. The implications on the de-
cision-making skills of such a formalism employed in a (robotic) agent are manifold.

Anticipation · The agent would be capable to project the effects of its actions into the
future and therefore enhance its anticipation skills. By enabling the agent to predict
the consequences of various actions before execution, it can make more informed deci-
sions. Given the current position of the agent and a (parameterized) action to execute,
the agent can anticipate (under the uncertainty of the underlying model), what its up-
dated position after a successful task completion will be. It can also anticipate effects
in the outside world, for instance, in a dynamic environment, a robot can predict the
position of a moving object and plan its actions accordingly, leading to better interac-
tion and coordination. This capability also aids in risk assessment, allowing the robot
to proactively avoid potential collisions or hazards. In the context of complex tasks,
such as navigating through obstacles or manipulating objects, the ability to foresee the
implications of each action fosters efficiency and adaptability, as the robot can adjust
its strategy based on projected outcomes.

Example CRAM plan: The task to move to a specific location will be divided into a sequence of parame-
terized subtasks | Code 1

1 defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

2
defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

3

defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

4

defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

5

defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

6

defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

7

defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...8

defplan path(goal_location, robot_location)
    perform (an action 
                (type move-forward)
                (distance ?dist))
    perform (an action
                (type turn)
                (angle ?deg))
    perform ...

Complex Tasks · Beginning at a very low level, one single motor action, e.g. one
move_base step alone does not get a robot very far, given a complex household task.
The ability to project a certain outcome of an action, however, allows the robot to look
into the future and forms the basis for another, subsequent action. Knowing its own
current position and its new position after executing the move_base action, allows the
robot to plan ahead and generate the step after the next one and project its new position.
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Chained together these sequences of actions allow the agent to anticipate trajectories of
its own position or those of moving objects around it. Code 1 shows an exemplary plan
in pseudoized CRAM Plan Language (CPL) for finding a path to a specific location. The
single steps can be generated by starting at the current location of the robot and con-
secutively selecting the action that, projecting its outcome, most likely results in a state
that brings the agent closer to the goal. The new state then serves as a starting point for
the next step, or probabilistically speaking, as the evidence for the next projection.

Applied to higher-level, more abstract tasks, the consecutive execution allows to antic-
ipate the overall result of an entire action sequence, ultimately enabling the agent to
perform much more sophisticated operations. With the underlying probabilistic model,
the action sequences can be generated guided by the user’s preferred criterion, be it the
confidence level of the success of the overall task, speed (tolerating a risky behavior
of the robot including possibly breaking dishes), or any other definition of high util-
ity. The increase in uncertainty and entropy that arises from prospecting future states
probabilistically from an already uncertain state poses a significant challenge, which
has to be addressed when generating action sequences using a distribution-based ap-
proach. Section 4.6 will demonstrate, showcased by various examples in Section 6.4 that
indeed, employing the same approach repeatedly enables the generation of an entire
sequence of actions.

Effect Control · The projection of consequences also allows the agent to select actions
with the highest probability of generating a desired effect, thus optimizing its decision-
making process. When tasked with cleaning a room, the robot can anticipate the conse-
quences of different cleaning methods, such as using a vacuum cleaner versus a broom.
It will consider factors like cleanliness level, energy consumption, and noise, ultimately
choosing the method that aligns best with the homeowner’s preferences. In a kitchen
setting a robot can evaluate various routes and actions to choose the the one not only
with the highest likelihood of success given the goal description (e.g. a set-up break-
fast table), but also with the lowest number of repetitive steps, the shortest paths, the
least broken cups etc. It can also anticipate the effects of various cooking techniques,
such as frying versus baking, taking into account taste, nutrition, and cooking time to
make informed choices. This ability to foresee outcomes lets the robot adapt to chang-
ing circumstances and make decisions that optimize its performance. By selecting ac-
tions and, in particular, action parameters, with the highest utility based on projected
outcomes, the robot can control the effects of its actions and therefore operate more
effectively, efficiently, and safely in a wide range of applications, ultimately enhancing
its overall performance.

Error Treatment · Anticipation skills are vital when it comes to identifying and avoid-
ing failures. Which path is more preferable or which cooking technique is favored over
another highly depends on the task, its circumstances and the utility defined by the
instructor and can change quickly in an open world. If the preferred action can not be
executed for some reason, for example, because certain kitchen utensils are missing or
other preconditions for a task completion are not met, the agent can foresee that the
task will fail and select another action that is more likely to succeed. The identification
of failures is one example and a challenge of its own as it requires the developer of
robotic agents to be somewhat omniscient of the open world. There is an intimidating
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spectrum of possible failures which can lead to a decreased number of actions that
the robot can confidently execute. Robots heavily rely on sensors to gather information
about the world. However, these sensors can be prone to inaccuracies, noise, and lim-
itations in certain situations. When the robot’s perception is compromised by noisy or
incomplete data, it may struggle to accurately assess its environment, leading to sub-
optimal decisions and a reduced set of viable actions. For example, if a robot’s sensory
data is unreliable, it might avoid risky actions that require precise perception, thereby
limiting its range of feasible behaviors. One failure can also lead to a chain reaction
of other failures. For example, a sensor malfunction could cause the robot to misinter-
pret its environment, leading to misguided actions that exacerbate the problem. When
facing unexpected circumstances, the robot might also become cautious and stick to
a smaller set of actions it deems safe, rather than exploring more diverse options. De-
pending on its error handling, severe failures might force the robot to rely more heavily
on human intervention or supervision. This loss of autonomy limits the robot’s ability
to operate independently and perform tasks efficiently. So how can we avoid the need
for being all-knowing and yet build an agent that is self-confident enough to solve our
tasks? Part of the solution lies in the insight that failures introduce uncertainty into the
decision-making process leaving us with the understanding that in order to be a confi-
dent actor in the open world an agent has to be allowed to be uncertain about things
and learn from previous mistakes and experience - its own and those of others. In an
open-world scenario, we often lack precise knowledge about the specific errors that
might manifest. Nevertheless, by leveraging a probabilistic model developed through
accumulated experience, we can estimate the likelihood of potential errors occurring.
This understanding of when and why failures occur, based on an analysis of the under-
lying circumstances, enables us to probabilistically identify clusters of failures. These
clusters can later be categorized into distinct error classes. The ultimate objective is
to establish a self-training system that automatically associates newly emerging errors
with the appropriate error class, thereby facilitating a custom-tailored approach to error
handling. This informed error detection and recovery process has the potential to wield
significant influence, particularly in the domain of robotic systems operating within
open environments.

1.2  The Intelligence in Intelligent Agents
In recent years the field of robotics has witnessed remarkable advances that have trans-
formed various industries such as production lines¹⁰ or state-of-the-art science labs¹¹.

¹⁰KUKA
¹¹Boston Dynamics

These advancements have led to substantial improvements in efficiency, precision,
and overall performance, driving unprecedented levels of innovation and productiv-
ity. Modern industrial robots are equipped with advanced sensors and AI-driven algo-
rithms that enable them to adapt to changing production conditions, thereby minimiz-
ing downtime and optimizing production schedules. This level of adaptability not only
ensures consistent product quality but also enhances the overall efficiency of manufac-
turing operations.
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In the domain of science laboratories, robotics has also played a pivotal role in advanc-
ing research and experimentation. High-precision robotic systems are now employed
in various scientific disciplines, including pharmaceuticals, biotechnology, and mate-
rials science. These systems are capable of handling delicate procedures with unparal-
leled precision, significantly reducing the margin of error and ensuring reproducibility
in experiments. As a result, researchers can obtain more accurate data and draw reli-
able conclusions, ultimately accelerating the pace of scientific discovery. Laboratory
automation, powered by robotics, has also enabled researchers to conduct experiments
on a larger scale and with higher throughput. This is particularly evident in fields such
as genomics (Keeney 2011; Tegally et al. 2020; Aldridge et al. 2013; Laghaee et al. 2005)
and drug development (Michael et al. 2008; Schneider 2018), where automated robotic
platforms can process large volumes of samples and compounds in a fraction of the
time it would take using traditional manual methods. This scalability not only expedites
the research process but also facilitates the exploration of a broader range of possibil-
ities.

Furthermore, the rise of collaborative robots, or cobots, has transformed the manu-
facturing landscape. In different cases of application in industrial production lines 
(Michalos et al. 2022), agents have to operate alongside humans, augmenting their ca-
pabilities and taking on repetitive or physically demanding tasks¹². The integration of

¹²cmp. the human-robot cooperation of KUKA & BMW and BMW Press

cobots has not only improved production precision and efficiency but also enhanced
worker safety by reducing the risk of injuries associated with strenuous tasks.

Still, we should not forget that these robots typically possess a relatively limited level
of independence and are highly sensitive to changes in their surroundings due to their
specialization in a specific task. Marcus and Davis (2019) contend that contemporary
AI is inherently limited in scope. It excels at the specific tasks it has been designed for
but falters when confronted with unfamiliar situations or challenges. One underlying
reason for this limitation is the insurmountable challenge of gathering sufficient data
to train machines for every conceivable situation. Consequently, no single narrow AI
system can amass enough data to comprehensively address the full spectrum of cir-
cumstances. The very essence of comprehending a narrative does not align with the
narrow, purely data-driven AI paradigm because the world itself is inherently diverse.
However, humans often ascribe intelligence to computers when they exhibit superfi-
cially human-like behavior, and they easily attribute similar underlying mechanisms
that apply to humans. An excellent example for this phenomenon poses OpenAI’s¹³

¹³OpenAI

infamous Generative Pre-trained Transformer (ChatGPT)¹⁴,¹⁵, a chatbot that was made

¹⁴ChatGPT
¹⁵The Guardian on ChatGPT: What is AI chatbot phenomenon ChatGPT and could it replace hu-

mans?

available to the broad public in late November 2022. It was quickly hyped as the best AI
chatbot ever released to the general public¹⁶ and went viral due to its seemingly unlim-

¹⁶New York Times on ChatGPT: The Brilliance and Weirdness of ChatGPT

ited potential uses. It impressed with remarkable capabilities that vary from generating
text and translating different languages to perform mathematical calculations and even
programming. The conversational competence exceeds that of previously seen chatbots
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by far. ChatGPT even published its own paper (King and ChatGPT 2023). However,
critical voices highlight the weaknesses of the system (Plebani 2023; Kasneci et al. 2023;
Koubaa et al. 2023) that has no access to the internet¹⁷ and is therefore limited to its

¹⁷While the free version GPT-3 still does not have an internet connection (as of Feb. 2024), Plus- and
Enterprise users can use plugins such as Bing in GPT-4 to gain access to the internet.

training data, containing only information up to 2022. It also spreads misinformation,
as its answers cannot be taken as facts, therefore, critical thinking is strongly advised.
OpenAI itself states that ChatGPT “may produce inaccurate information about people,
places, or facts”. While users on social media make it a sport to find funny glitches,
gibberish responses and errors, one has to admit that ChatGPT almost always delivers
them in plausible-sounding sentences.

It is important to keep in mind that the intelligence displayed by supposedly intelligent
agents is not genuine, and the mere appearance of intelligence does not necessarily
imply true cognitive capability. One tends to overestimate the capabilities of AI funda-
mentally, being tricked by seemingly complicated tasks the agent can handle. Marcus
and Davis (2019) argue that genuine intelligence necessitates capabilities such as rea-
soning, language comprehension, and analogical thinking, in addition to pure speech
and object recognition. These abilities are crucial for achieving a deeper understanding
of tasks and for reasoning about the complex interrelationships among objects and in-
dividuals that are causally linked. This becomes essential in open-world environments
where machines must deduce human intentions, even when those intentions are not
explicitly articulated or are ambiguously formulated. In the complicated interplay of
human-robot communication, tasks defined in human language often embody rather
abstract goal specifications that imply the decomposition into a couple of subtasks for
effective execution. This reflects the complexity of human cognition which necessitates
robots to interpret, understand and break down these tasks into manageable sublevel
actions. It is much more natural to ask someone to “Prepare a delicious dinner for our
guests!” than to ask for the menu planning, preparation and cooking, the table setting,
a possible ambience setup, the serving and timing as well as the cleanup, where each of
these subtasks again consist of lower level tasks such as analyzing dietary preferences
and restrictions of guests, selecting a variety of food, breaking down each dish into in-
dividual cooking steps and so forth.

An alledgedly simple task has to be broken down to numerous subtasks. This has to be carried on until a
level is reached that contains robot-interpretable and robot-executable instructions. | Figure  2

The robot has to be able to deal with that non-specificity in order to competently act
in a human environment. In particular, it has to find a sequence of actions that, when
executed, eventually produces an outcome that meets the goal description and satis-
fies potential additional requirements such as possible time constraints or other quality
criteria by itself. Figure  2 shows an example for a supposedly simple task that has to
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be broken down into smaller subtasks to be robot-executable. The complexity and pa-
rameterization level of the subordinate tasks highly depend on the robot’s capabilities
and the tools it is provided with. For example, a robot that is equipped with two grippers
will solve a task differently than one with only one gripper as it might, for example,
carry multiple items at once when serving the dishes. The execution order of the sub-
tasks plays a crucial role. Imagine a robot that is charged with the task to prepare the
dinner and already knows that there are the subtasks “Menu planning”, “preparation
and cooking” and “table setting” involved. Executing the “preparation and cooking”
action before planning the menu would result in a situation, in which the robot is not
able to execute the current or any of the follow-up tasks. If the robot is able to detect its
error, it might try to backtrack and fix the mistake, otherwise the overall plan will fail.
Keeping track of its own as well as the world’s state and how it changes when the robot
manipulates it, the agent would have been able to plan ahead and prevent the situation
described above.

For a robot to execute the exemplary task above, it would require a complex integra-
tion of various capabilities. It has to understand the initial abstract task given in hu-
man language, requiring NLP. The robot needs a Knowledge Base (KB) to access dietary
information, recipes and cooking instructions which needs to be represented in a ro-
bot-interpretable way, thereby necessitating an appropriate knowledge representation.
Sensory perception enables the agent to identify and locate ingredients and other ob-
jects so the robot can find its way around in different environments. The decompositon
into sublevel actions and logical sequencing requires planning while the handling of
tools, ingredients and other objects calls for a high level of manipulation skills. The
robot needs to be aware of its environment and keep track of the changes to observe
consequences of its own actions by maintaing a world state (apart from its own state).
In case something goes wrong, either due to some failure or other unforeseen events,
the robot has to be able to detect and handle errors to minimize the damage on the
overall task execution. Each of these competences involved forms an entire scientific
discipline keeping researchers all over the world busy.

1.3  Contributions & Delimitations
This thesis investigates scalable probabilistic hybrid models, focusing specifically on
the concise and computable representation of joint probability distributions and their
applications in learning and reasoning for cognitive robots. The main focus lays on the
BayRoB system which allows to identify the following main contributions:
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i Contributions
This work presents BayRoB, an operational system introducing the process of
combining joint distributions to generate action models from the experiences of
robots. This methodology facilitates the continuous tracking of an agent’s belief
state over time. The system uses a formalism that enables the concise represen-
tational and computational handling of joint probability distributions within
hybrid domains. This aids in making informed decisions, ultimately enabling
robots to effectively adapt their own skillsets and plans to new environments,
becoming more proficient and more efficient during their operational runtime.
This approach forms the foundation for enhancing robot control programs by
introducing probability theory over joint probabilities within the framework of
probabilistic, static, hybrid automata.

The system is validated experimentally in this thesis by employing separate rea-
soning systems in two different domains, i.e. 1) in autonomous robotics, where
the system aids robotic agents to make more informed decisions, rendering
them reliable actors in open-world scenarios and 2) in the materials science
field, where the main goal is to develop novel materials based on a requirement
profile, specifying the desired properties of a material. These examples serve as
a testament to the innovative nature of the research and its potential impact on
various domains.

While joint probability distributions are identified as powerful means to deduce
meaningful yet hidden information from data, their complexity renders infer-
ence on them infeasible for the majority of applications. The formalism em-
ployed in BayRoB not only allows to relax those restrictions, but also does that
in a white-box fashion, such that generated models are human-readable and
interpretable. The presented approach is transferable to various application do-
mains and therefore poses a valuable contribution to the scientific community,
in particular in the field of developing autonomous agents.

An open source implementation of Joint Probability Trees (JPTs) to learn, repre-
sent and reason over hybrid joint probability distributions, which is developed
in collaboration with Daniel Nyga and Tom Schierenbeck, is provided. The im-
plementation of JPTs is available as a python package¹⁸ on pypi or as source
code on GitHub¹⁹.

¹⁸pyjpt
¹⁹JPTs on GitHub

However, it is important to note the boundaries and limitations set forth in this work.
This thesis does not intend to provide an exhaustive analysis of robot planning, nor
does it examine the broader implications of designing a fully integrated (robot) software
system including natural-language understanding, sensory perception, robot manipu-
lation and many more, as this is well beyond the scope of a doctoral thesis.

Additionally, while this work is part of a larger research motivated by developing cog-
nitive agents emulating human behavior and decision making, this study will not ex-
tensively cover the broader discourse of cognitive science. The intricacies of how the
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human brain processes information, while essential, are beyond the immediate scope
of this work. Furthermore, the computability and scalability if probability distributions
are touched upon, but a comprehensive analysis of the computational complexity the-
ory of the presented approach is not within the purview of this thesis.

In essence, this study concentrates on the presented system BayRoB and its employed
probability theoretical formalism as an approach to direct an intelligent robot’s rea-
soning and decision-making towards a more autonomous, human-like behavior. The
outlined delimitations help maintain the focus and clarity required to address the spe-
cific objectives of this research while acknowledging the broader context in which the
presented formalism can be applied. Having outlined the delimitations of this doctoral
thesis,

1.4  Reader’s Guide
Each individual chapter of this work is as self-contained as possible, allowing for inde-
pendent reading. The structure of the remainder of this thesis is outlined as follows.

Probabilistic Knowledge Processing · Chapter 2 offers a brief overview of the math-
ematical framework that serves as the foundation for this thesis. It examines techniques
in probabilistic knowledge processing and outlines the core principles necessary for
understanding the topic.

Scalable Probabilistic Hybrid Models · Chapter 3 contains a concise examination
of the fundamental formalisms in knowledge representation, learning, and reasoning,
particularly in the context of probabilistic approaches. It then revisits essential con-
cepts in probability theory and Probabilistic Graphical Models (PGMs), with a specific
focus on Probabilistic Circuits (PCs), laying the foundations for the theoretical concepts
described in the remainder of the document. The main focus of this chapter lies on the
introduction of JPTs as a special case of PCs as they play a central role in the reasoning
system introduced in this work.

BayRoB - Bayesian Robotic Brain · Chapter 4 introduces the BayRoB system for
combining joint distributions to generate action models from the experiences of robots.
It commences with formulating the generation of action sequences as a search poblem.
This chapter outlines the principal architectural components of the BayRoB system,
illustrates its probability-theoretic approach and proposes a method for generating ac-
tion models and using them to anticipate the outcome of robot actions. It presents
experiments in which the approach has been validated successfully and discusses its
various prospected applications.

Probabilistic Knowledge Bases for Material Discovery · Chapter 5 examines an
illustrative application of the Materials CALO (MatCALO) principle, the BayRoB sys-
tem employed in the domain of materials science. It has a substantial focus on the in-
sights and outcomes outlined by Picklum and Beetz (2019), the deductions of which
form the cornerstone of this chapter, highlighting the method’s contributions across a
wider array of applications.
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Evaluation · Chapter 6 will evaluate the BayRoB system by investigating how well
the model translates experiential knowledge into probabilistic hybrid action models,
presenting how the system can be used to refine underspecified robot plans and intro-
ducing a comprehensive web app that facilitates the access to the system’s services.

Related Work · Chapter 7 presents relevant literature, focusing specifically on foun-
dational research, emphasizing works related to learning and knowledge representa-
tion, along with the adopted formalism of JPTs and the broader research context with
respect to the BayRob system in its entirety.

Conclusions · Chapter 8 will summarize the discoveries made in this research and
place them in the context of the BayRoB system’s future prospects.

Colored Boxes · Some contents are highlighted to direct the reader to a certain defin-
ition, quote or additional piece of information that is considered notably significant.
These contents have been strategically designed to seamlessly blend into the surround-
ing text, preserving the reading flow, while emphasizing particular aspects.

Listings · The document includes a number of supplementary material. The Glossary
on p. I ff and the Acronyms listing on p. V ff, provide explanations for context-specific
terms that require further clarification within the scope of this work and feature fre-
quently used abbreviations, respectively. Mathematical symbols used in the formal de-
finition of the conceptual framework descriptions are listed on p. XI ff. To maintain a
visually pleasing format, the sources of hyperlinks in the document are not presented
at the respective location but are instead compiled in an alphabetically-ordered list lo-
cated at p. IX et seqq. This arrangement ensures that even readers of a hardcopy edition
can readily access the linked resources.

Links in Footnotes · Footnotes in general provide supplementary information to a
piece of text that is deemed valuable but, if incorporated into the main text, could dis-
rupt the fluidity of reading. They often incorporate hyperlinks that are directly acces-
sible in the digital version. The link sources can also be found in the Links listing on p.
IX ff.

Appendix · The appendix on p. A ff contains additional images, images that are al-
ready embedded in the document but at a larger scale, installation instructions for the
web services presented in this work, and information about media sources. If not stated
otherwise in the part, all images, plots and other media are created and owned by the
author.
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Probabilistic Knowledge
Processing

This chapter provides a concise introduction to the mathematical framework which
this thesis relies upon. It reviews state-of-the-art methods in probabilistic knowledge
processing and summarizes the fundamentals essential for comprehending the subject.

2.1  Knowledge Representation Hypothesis
Seeking for a formalism to equip a robotic agent with human-like cognitive capabilities
and the ability to learn from experience implies the existence of a suitable knowledge
representation framework, or KB, to efficiently store and retrieve information. Shapiro
(2009) considers Knowledge Representation and Reasoning (KR&R) as a field focused
on understanding, designing, and implementing methods for depicting information
in computers. This enables programs (agents) to utilize this information for various
purposes, including deriving implicit information from it, engaging in conversations
with people using natural language, determining the next course of action, planning
future activities, and addressing problems in domains that typically demand human
expertise. According to Brachman and Levesque (1985), any process that can engage in
intelligent reasoning about the world must include, at least partially, a set of structures
resembling language, which effectively represent the knowledge and beliefs attributed
to the process. The formalization of the Knowledge Representation Hypothesis
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“ Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally take to represent a propo-
sitional account of the knowledge that the overall process exhibits and b) inde-
pendent of such external semantical attribution, play a formal but causal and
essential role in engendering the behavior that manifests that knowledge. ”–Brachman and Levesque (1985)

states that any intelligent processes will have to use symbolic structures, e.g. databases
that represent knowledge, or, as John McCarthy phrases it:

“ A program has common sense if it automatically deduces for itself a sufficiently
wide class of immediate consequences of anything it is told and what it already
knows ” –McCarthy (1959)

The field of KR&R explores the challenge of representing essential knowledge and en-
gages in reasoning with it. According to McCarthy (1959), an agent needs to possess
three essential capabilities in order to effectively utilize knowledge about the world,
that are

1. a collection of statements or propositions regarding the world, known (or believed)
by the agent to be true, which encompasses atomic propositions, rules, and equiv-
alences,

2. an interface designed for the inclusion or removal of new facts from the existing set
in this collection and

3. an interface to deduce new beliefs based on those already present in the collection.

The latter involves utilizing representations of statements to derive new propositions.
Essentially, the capability to reason enables the explicit articulation of propositions that
are implied by those already known. The fundamental concept underlying the appli-
cation of knowledge representation and (logical) reasoning in problem-solving is de-
picted in Figure 3, which is conceptually taken from Russell and Norvig (2010, Chapter
7). Representation refers to a system of symbolic encodings of propositions believed to
be true in the real world. Therefore, if 𝐴 represents 𝐵, 𝐴 serves as a placeholder for 𝐵
and is typically more accessible. The connection from a representational symbol to its
real-world counterpart is termed its semantics.

Propositional rules outline the relationships between symbols (where symbols stand
for general propositional statements) and serve as a basis for reasoning. The term rea-
soning refers to the process of manipulating symbols within a representation to infer
a new representation. These rules are also referred to as sentences. For instance, a rule
such as “If the agent is at position (𝑥𝑖𝑛, 𝑦𝑖𝑛), facing the kitchen cabinet, then it can de-
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tect a cup” can be employed for reasoning, leading to the conclusion that 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑(cup)
holds whenever (𝑋𝑖𝑛, 𝑌𝑖𝑛) = (𝑥𝑖𝑛, 𝑦𝑖𝑛) is considered true.

Correspondence between the real world and its representation: The syntactic representation (top) of the
real world (bottom) allows to deduce new knowledge which has to correspond to aspects of the real world

that follow from other aspects whose representation has been reasoned about. | Figure 3

Unfortunately, the propositions deduced from a representation do not necessarily align
with the aspects of the real world as purely logical representations of aspects of the
world are typically not applicable to non-deterministic environments. As a result, their
practical utility is constrained when dealing with applications characterized by signif-
icant ambiguity and uncertainty, where statements tend to be true in some, or even
most cases, but never in all of them.

2.2  Uncertainty in Knowledge Representation
In non-deterministic environments, such as the real world, uncertainty is inherent.
There are various forms of uncertainty, each presenting itself in distinct ways. Factual
uncertainty involves doubts about factual knowledge, where propositions may be either
true or false. For example, uncertainty regarding the robot’s position, expressed in (𝑥, 𝑦)
coordinates, falls into this category. On the other hand, regulatory uncertainty pertains
to rules governing the world that are either noisy or provide insufficient explanations.
An illustration of this is when moving forward results in slight deviations from the in-
tended driving direction.

Reasons contributing to uncertainty are manifold. Noisy actuators result in the impre-
cision of executed robot actions (such as moving forward) which is less accurate than
the robot believes them to be. Noisy sensors are highly susceptible to all sorts of influ-
encing factors. Cameras are highly susceptibile to errors in varying lighting conditions
and occlusions, lasers can be disturbed by reflective surfaces or interferences in the
sensor’s line of sight which distort or block the laser signals. Sensors can be sensitive
to changing weather conditions, temperature variations, power fluctuations and envi-
ronmental disturbances such as shocks and vibrations, leading to inaccurate readings.
These uncertainties in the sensor readings significantly impact the reliability and pre-
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cision of gathered information, making it challenging to obtain accurate and consis-
tent data. Another type of uncertainty is attributed to the limited understanding of the
world and how it works. The vast amount of knowledge, though substantial, is often
unstoreable or unrepresentable, and much of it remains imperceptible to the agent, re-
sulting in numerous unobserved variables. The non-deterministic nature of both agent
behavior and the environment renders it impossible to formulate strict logical rules to
reason about, as incorporated in many classic knowledge representation and reasoning
systems.

Handling uncertainty is essential for any intelligent operating in the real world. This
entails the capability to explicitly address uncertainty and employ mathematical tech-
niques that facilitate automated decision-making when confronted with uncertain con-
ditions. Intelligent agents can improve their capacity for reasoning, learning from data,
and making decisions in real-world scenarios where uncertainty is inherent by inte-
grating probabilistic methods. In the following, the foundations of probabilistic knowl-
edge processing that form the basis for the work described in this thesis will be briefly
revisited.

2.3  Basics of Probability Theory
Probability theory stands out offering a potent mathematical tool for managing uncer-
tainty. It plays a pivotal role in addressing uncertainty in a way that it establishes a
formal framework for quantifying uncertainty where probabilities serve as representa-
tions of the likelihood of various outcomes, enabling intelligent agents to articulate and
comprehend the uncertainty associated with diverse situations or events. Employed in
practical applications, machine learning techniques allow to derive probabilistic mod-
els from data and enable intelligent agents to express uncertainty in predictions and
enhance decision-making as more data becomes available.

2.3.1  Key Concepts
The central idea in probability theory revolves around the notions of random events
and 

random
variables

▷
 random variables. An elementary – or atomic – event 𝐴, denotes an occurrence

that comprises a singular outcome within the experiment or sample space Ω such that
the collection of all these outcomes constitute the entire sample space.

A probability distribution 𝑃  serves to quantify the concept of probability by assigning
a value in [0, 1] to events, representing the probability with which the event occurs. In
particular,

a) each single event is assigned a probability greater or equal to 0: 𝑃(𝐴) ≥ 0, ∀𝐴 ⊆ Ω,
b) the probability of the entire sample space is 1: 𝑃(Ω) = 1 and
c) the probability of a subset of 𝑁  mutually exclusive events in the

sample space is the sum of the individual probabilities: 𝑃(⋃𝑁
𝑛=1 𝐴𝑛) = ∑𝑁

𝑛=1 𝑃(𝐴𝑛).
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Formally, a random variable 𝑋 is a mathematical function that assigns some value
to every potential outcome of a random experiment, where the value is an element
in the domain of the random variable, 𝑑𝑜𝑚(𝑋), i.e. the set of possible values 𝑋 can
take. The domain may be the set of real numbers ℝ, the set of Boolean values 𝔹 =
{True, False} (or short: {⊤, ⊥}) or any other set of numerical or categorical values
such as {red, green, blue} or {John, Mary, Chris, Anna}.

Using random variables to denote a certain outcome, say, the Boolean random vari-
able 𝑋 denotes whether it is raining and assigning it a value from its domain allows to
represent propositions about events such as “It is raining” (𝑋 = ⊤) or “It is not rain-
ing” (𝑋 =⊥). When assigning these propositions a quantitive value by writing it as a
probability 𝑃(𝑋 = ⊤) = 𝑝 it is possible to represent the degree, to which the proposi-
tion is believed to hold in the real world. As 𝑝 ∈ [0, 1], the probability of 𝑃(𝑋 =⊥) must
be equal to 1 − 𝑝.

Logical operators in Propositional Logic (PL) allow combining Boolean random vari-
ables to create more elaborate propositions. The conjunction 𝑋 ∧ 𝑌  denotes that 𝑋
and 𝑌  both hold, 𝑃(𝑋 ∧ 𝑌 ) the probability of 𝑋 and 𝑌  being true at once. 

◁ prior & posterior
probabilities

 In terms
of probabilities, the conjunction is often equivalently represented as 𝑃(𝑋, 𝑌 ) and is
called the joint probability distribution of 𝑋 and 𝑌 . Probabilities like the above, that do
not impose any kind of constraints or conditions are called prior, marginal, or uncon-
ditional probabilities. In contrast to unconditional probabilities, a conditional or poste-
rior probability refers to a probability of one or more random variables, given the value
of another is already known. For example, if 𝑋 and 𝑌  are two jointly distributed ran-
dom variables, the conditional distribution of 𝑋 given 𝑌 , denoted as 𝑃(𝑋|𝑌 ), is the
probability distribution of 𝑋 when the value of 𝑌  is known (say, ⊤). Given the set of
all events, this describes the instances where 𝑌 = ⊤ and then refine the selection to
those instances where 𝑋 = ⊤ as well, comparing the sizes of these event sets relative
to each other:

𝑃(𝑋 | 𝑌 ) =
𝑃(𝑋 ∧ 𝑌 )

𝑃(𝑌 ) (2)

When information about the variable 𝑌  does not affect an agent’s belief in another vari-
able 𝑋, then the conditional probability 𝑃(𝑋 | 𝑌 ) is equal to the unconditional prob-
ability 𝑃(𝑋). 𝑋 and 𝑌  are termed independent in this case, and 𝑃(𝑋 ∧ 𝑌 ) = 𝑃(𝑋) ·
𝑃 (𝑌 ) holds. Conversely, if knowledge about 𝑌  does influence the agent’s belief in 𝑋,
then 𝑋 and 𝑌  are considered dependent.

The fundamental principle to calculate the joint probability of multiple events or the
joint distribution of multiple random variables is called chain rule and is defined as

𝑃(𝑋 ∧ 𝑌 ) = 𝑃(𝑋 | 𝑌 ) · 𝑃 (𝑌 ) (3)

which directly follows from the definition of conditional probabilities in Equation 2.
It enables the representation of a joint probability distribution by factoring it into con-
ditionals and marginals. A marginal distribution is the probability distribution of se-
lected random variables within a larger set of jointly distributed random variables. This
distribution is derived by examining the probabilities associated with specific variables
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while excluding others, essentially “marginalizing” over the unwanted variables. The
term “marginal” indicates that we are examining the distribution along the margins,
concentrating on particular variables of interest while omitting the others.

2.3.2  Inference
If one were to find the probability of some event 𝑋, but can only observe some events
𝑌𝑖 that form a partition of the sample space, the law of total probability is a useful tool
which sums, or marginalizes over one or more random variables from the joint distri-
bution:

𝑃(𝑋) = ∑
𝑦∈ 𝑑𝑜𝑚(𝑌 )

𝑃(𝑋 ∧ 𝑌 = 𝑦)

=
Eq. 3

∑
𝑦∈ 𝑑𝑜𝑚(𝑌 )

𝑃(𝑋 | 𝑌 = 𝑦) · 𝑃 (𝑌 = 𝑦)
(4)

Bayes’ theorem, one of the cornerstone 
Bayes’ theorem ▷

 theorems in probability theory, describes the
probability of an event based on prior knowledge of conditions that might be related
to the event. Mathematically, it is expressed as:

𝑃(𝑌 | 𝑋)⏟⏟⏟⏟⏟
posterior

=

likelihood
⏞⏞⏞⏞⏞𝑃(𝑋 | 𝑌 ) ·

prior

⏞𝑃(𝑌 )
𝑃(𝑋)⏟
evidence

(5)

It proves valuable in adjusting beliefs about the likelihood of different explanations or
causes as fresh evidence emerges by incorporating prior knowledge and observed data
and it facilitates the transition between abductive and deductive reasoning tasks. In an
abductive reasoning task, we typically infer the best explanation or cause for observed
evidence. In contrast, deductive reasoning involves deriving specific conclusions from
general principles.

When building a probabilistic KB one can make use of a set of logical rules that repre-
sent propositions believed to be true about certain aspects of the world and form a joint
probability distribution 𝑃(Σ) over a set of atomic propositions Σ. To achieve this, one
has to introduce a Boolean random variable for each of these atomic propositions and
store the co-occurrences for each combination of such atomic events in what is called a
contingency table. In theory, the introduced tools such as Bayes’ theorem (Equation 5),
the chain rule (Equation 3) and the law of total probability (Equation 4) would allow
calculating any posterior 𝑃(𝑄|𝐸) from such a full joint distribution, where 𝑄 ⊆ Σ is
an arbitrary query and 𝐸 ⊆ Σ an arbitrary evidence. In practice, this works only for the
smallest problems as the generation and handling of such a full joint probability poses
significant challenges, primarily related to scalability. The foremost obstacle arises from
the exponential growth in table size as the number of variables or events increases. This
exponential expansion renders it computationally infeasible for practical applications
involving a multitude of interconnected variables. Another difficulty is linked to the
data prerequisites for precisely estimating probabilities across all conceivable combi-
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nations. In various real-world situations, specific event combinations may be rare or
entirely missing in the accessible data, compromising the reliability of predictions. The
computational complexity associated with computing, storing, and manipulating large
joint probability tables is therefore a big challenge. As the table size increases, algo-
rithms for updating, querying, or learning from the table become progressively hard,
demanding considerable computational resources.

To tackle the limitations of representing full joint distributions, alternative probabilis-
tic models like Bayesian Networks (BNs),  Markov Networks (MNs), or other ML tech-
niques are commonly employed, providing more scalable and computationally efficient
methods for representing probabilistic relationships and achieving a balance between
precision and practical feasibility in real-world applications.

In probabilistic knowledge bases, a common form of inference
◁ inference

 involves computing the
posterior distribution for a set of query variables 𝑄 ⊆ 𝑋 of all variables 𝑋 in the distri-
bution given observed evidence variables 𝐸 ⊆ 𝑋. In many cases the primary concern is
to identify the most probable variable assignment given the provided evidence, whereas
obtaining the complete posterior distribution for the queries is not required. Here, the
concepts of Maximum A Posteriori (MAP) and Most Probable Explanation (MPE)

◁ MAP and MPE
 infer-

ences are are employed. MAP and MPE both aim at determining the most likely assign-
ment 𝑝 for non-evidence variables 𝑄 (also referred to as MAP variables), considering
the provided evidence, i.e.

𝑝 = arg max
𝑞∈𝑄

𝑃(𝑞 | 𝐸) (6)

In literature the use of the terms MAP and MPE slightly differs in that they are either
used synonymously or deviate in their definition of 𝑄. According to Park and Darwiche
(2004), MPE refers to the joint MAP problem, where 𝑄 = 𝑋 \ 𝐸 includes all non-evi-
dence variables, while MAP focuses on finding the most likely assignment of values to
only a subset 𝑄 ⊆ 𝑋 \ 𝐸 (so-called MAP variables) among the non-evidence variables,
given the evidence. Therefore, MPE poses a special case of MAP. However, other liter-
ature (Koller and Friedman 2009) use the terms synonymously and refer to the case
where 𝑄 ⊆ 𝑋 \ 𝐸 as marginal MAP. Following the former definition of Park and Dar-
wiche (2004), both MAP and MPE pose computational challenges. MAP is very hard
as it involves computing the marginal probability distribution over the MAP variables,
which is a type of sum product problem. The subsequent step is to maximize over the
marginal distribution, turning it into a maximization problem, essentially a max sum
product problem. On the other hand, MPE is treated as an instance of the max product
problem, where there is no need to compute the sum.

2.4  Probability Distributions
Unfortunately, the strategy of creating a complete joint distribution by generating
Boolean variables for each atomic event has an additional constraint – it is ineffective
in continuous settings. While one can generate a Boolean random variable for each
value assignment where the set of values is finite, this is not possible for (continuous)
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numerical values (e.g. values ∈ ℝ). It is therefore required to incorporate other types
of distributions, some of which will be introduced in the following. Recall, a random
variable is the quantified outcome of an experiment which can be either discrete or
continuous. A probability function is a mathematical function that assigns probabilities
to the potential outcomes of a random variable. It is typically denoted as 𝑓(𝑥). Depend-
ing on the type of the random variable, the probability function is either a Probability
Mass Function (PMF) (for discrete variables) or a Probability Density Function (PDF)
(for continuous variables). The Cumulative Distribution Function (CDF) 𝐹(𝑥) is em-
ployed to determine the probability that a random variable is less than or equal to a
specified value

𝐹(𝑋) = 𝑃(𝑋 ≤
20

𝑥) (7)

²⁰The probability of achieving a specific value for a continuous variable is zero (𝑃(𝑋 = 𝑥) = 0),
consequently, 𝐹(𝑋) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 < 𝑥) for a continuous variable 𝑋.

This section introduces some of the most frequently used distributions and their char-
acteristics. It is important to note that the list of distributions presented here is far from
being exhaustive. The aim is to give an overview over existing distributions, with a fo-
cus on those, that are of relevance in the context of this work.

2.4.1  Numeric Distributions
Numeric probability distributions are crucial in quantifying uncertainty and represent-
ing the likelihood of various outcomes. The distributions can be over distinct, separate
(discrete) values or for a continuum of values (continuous). The essential characteristics
linked to some numeric probability distributions will be explored in the following.

2.4.1.1  Discrete Distributions
A discrete random variable 𝑋 is described by its PMF

D 𝑓(𝑥) ≔ 𝑃(𝑋 = 𝑥), (8)

which will also be called its distribution. The PMF returns the probability that the ran-
dom variable 𝑋 is equal to a specific value 𝑥. As the name suggests, the set of values 𝑋
can take, its domain, denoted as 𝑑𝑜𝑚(𝑋), contains (finite or countably infinite) discrete
values. The PMF returns a positive numerical value for each value from the random
variable’s domain, i.e.

∀𝑥 ∈ 𝑑𝑜𝑚(𝑋) : 𝑓(𝑥) > 0 (9)

Furthermore, the sum of all these values sums to 1:
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∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑓(𝑥) = 1 (10)

When examining random variables, it can be interesting to measure the central ten-
dency, a representative value around which the random variable tends to cluster on
average. This can be interpreted as a predicted or average outcome, making it a valuable
tool for decision-making and risk assessment. The

◁ expected value
 expected value 𝔼(𝑋) of a discrete

random variable is a measure representing the average or mean value (𝜇) one would
anticipate from a large number of repetitions of an experiment. It can be considered
the weighted average of all possible outcomes, where each outcome is weighted by the
likelihood of its value, that being the probability of occurence:

D 𝔼(𝑋) ≔ ∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑥 · 𝑓(𝑥)

= ∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑥 · 𝑃 (𝑋 = 𝑥)
(11)

The expected value therefore provides a representative value that gives an idea of the
center of the distribution of the random variable. The expected value tempts to com-
pare different random variables to each other, however, two random variables sharing
the same expected value can still be very different from one another. A random vari-
able’s variability, the so-called variance, is therefore another important characteristic
to consider, as it describes how the values are distributed around the expected value.
While some random variables have the majority of possible values scattered closely
around the expected value, others never take their mean as an actual value, for exam-
ple a variable 𝑋 with 𝑃(𝑋 = −100) = 1

2 = 𝑃(𝑋 = 100). Obviously the expected value
lies at 𝔼(𝑋) = −100 · 1

2 + 100 · 1
2 = 0 but 0 ∉ 𝑑𝑜𝑚(𝑋). The variance

◁ variance
 of a random vari-

able, denoted as 𝑉𝑎𝑟(𝑋), intuitively describes the deviation from the mean 𝜇 (with 𝜇 =
𝔼(𝑋)), where the inconvenience of handling the absolute value is accounted for by re-
garding the mean square deviation:

D 𝑉𝑎𝑟(𝑋) ≔ 𝔼((𝑋 − 𝜇)2)

= ∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

(𝑥 − 𝜇)2 · 𝑃 (𝑋 = 𝑥) (12)

The standard deviation 𝜎 of a random variable 𝑋 is the square root of the variance:

D 𝜎 ≔ √𝑉𝑎𝑟(𝑋) (13)

It can be shown that calculating the variance using

𝑉𝑎𝑟(𝑋) = 𝔼(𝑋2) − 𝔼(𝑋)2 (14)
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is equivalent to applying the definition in Equation 12 (Schickinger and Steger 2002,
Chapter 1), which can be easier to compute.

The proof for the equality of 𝔼((𝑋 − 𝜇)2) = 𝔼(𝑋2) − 𝔼(𝑋)2 can be found in 
Schickinger and Steger (2002, Chapter 1).

Bernoulli Distribution · The arguably most basic discrete random variable is a binary
categorical variable which is characterized by having only two possible outcomes, such
as {⊤, ⊥} or {1, 0}. A binary variable can be derived from a non-binary random variable
by establishing criteria for “success” and “failure”. Take, for instance, a random variable
𝑋 representing the act of rolling a fair six-sided die with 𝑑𝑜𝑚(𝑋) = {1, 2, 3, 4, 5, 6} and
∀𝑥 ∈ 𝑑𝑜𝑚(𝑋) : 𝑃 (𝑋 = 𝑥) = 1

6 . If the focus lies on the event 𝐴, defined as “rolling a
two”, then the “success” corresponds to rolling a two, while the “failure” encompasses
any value other than two. The binary variable 𝑋′ then has the two possible outcomes
𝐴 : 𝑋 = 2 and 𝐵 : 𝑋 ∈ {1, 3, 4, 5, 6}.

Generally, the PMF of a Bernoulli variable with 𝑑𝑜𝑚(𝑋) = {0, 1} is represented as

𝑓(𝑥) = {
𝑝 for 𝑥 = 1
1 − 𝑝 for 𝑥 = 0 (15)

where 𝑝 is the probability of success. Defining 𝑞 ≔ 1 − 𝑝, the expectation and variance
are determined as

𝔼(𝑋) = 1 · 𝑝 + 0 · (1 − 𝑝) = 𝑝 (16)

and

𝑉𝑎𝑟(𝑋) = 𝔼(𝑋2) − 𝔼(𝑋)2

= 12 · 𝑝 + 02 · 𝑞 − 𝑝2

= 𝑝 − 𝑝2

= 𝑝(1 − 𝑝)
= 𝑝𝑞.

(17)

Binomial Distribution · While the Bernoulli distribution models a single random ex-
periment with two possible outcomes, the Binomial distribution extends the Bernoulli
distribution to multiple trials under the i.i.d assumption (where i.i.d stands for inde-
pendent, identically distributed) and therefore represents the number of successes in
a fixed number of independent Bernoulli trials. A random variable defined as a sum
of 𝑛 independent Bernoulli-distributed random variables 𝑋 ≔ ∑

𝑛

𝑖=1
𝑋𝑖 with an identical

success probability 𝑝 is said to have a binomial distribution with parameters 𝑛 and 𝑝,
denoted as 𝑋 ∼ Bin(𝑛, 𝑝). An example for such a distribution is the toss of a fair coin
100 times. In this case, 𝑛 = 100 and 𝑝 = 1

2 . The PMF of a binomial distribution is de-
fined as

𝑓(𝑥) = (𝑛
𝑥)𝑝𝑥 · 𝑞𝑛−𝑥

=
𝑛!

𝑥!(𝑛 − 𝑥)!
𝑝𝑥 · 𝑞𝑛−𝑥

(18)
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where again, 𝑞 ≔ 1 − 𝑝. A more detailed deduction of Equation 18 can be found in
Section 4.5. The expected value of a binomially distributed variable is calculated by

𝔼(𝑋) = 𝔼(𝑋1) + 𝔼(𝑋2) + … + 𝔼(𝑋𝑛)

=²¹ 𝑛 · 𝑝
(19)

²¹due to the linearity of the expected value 𝔼(𝑋)

while the variance is

𝑉𝑎𝑟(𝑋) = 𝑉𝑎𝑟(𝑋1) + 𝑉𝑎𝑟(𝑋2) + … + 𝑉𝑎𝑟(𝑋𝑛)

=²¹ 𝑛 · 𝑝 · 𝑞.
(20)

Discrete Uniform Distribution · The discrete uniform distribution is a probability
distribution that describes the probability of each outcome in a finite set of equally
likely outcomes, i.e. a random variable 𝑋 is said to have a discrete distribution if the
range of 𝑋 consists of distinct values, and each value has the same probability of oc-
currence, making it a symmetric and uniform distribution. It is therefore characterized
by a constant PMF for each possible value in the sample space, i.e. if

𝑑𝑜𝑚(𝑋) = {𝑥 | 𝑥 ∈ ℤ}, |𝑑𝑜𝑚(𝑋)| = 𝑛 (21)

then 𝑋 ∼ 𝒰(𝑛) implies

𝑓(𝑥) = {
1
𝑛 for 𝑥 ∈ 𝑑𝑜𝑚(𝑋)
0 otherwise.

(22)

Here, assume 𝑥 = 1, 2, …, 𝑛 and 𝑛 ∈ ℕ being the number of values of 𝑋, i.e. all 𝑥 ∈ ℕ
from 1 to 𝑛. Generally, the expectation of the discrete uniform distribution is computed
as

𝔼(𝑋) =
1
𝑛

∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑥

=²²
𝑛 + 1

2

(23)

²²according to Carl Friedrich Gauss’s formula for summing an arithmetic series: 𝑛(𝑛+1)
2

The general case of the variance looks quite complex

𝑉𝑎𝑟(𝑋) =
1
𝑛

⎝
⎜⎜⎛ ∑

𝑥∈ 𝑑𝑜𝑚(𝑋)
𝑥2 −

1
𝑛⎝

⎜⎛ ∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑥
⎠
⎟⎞

2

⎠
⎟⎟⎞ (24)

but with

𝔼(𝑋2) = ∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑥2 ·
1
𝑛

=
(𝑛 + 1) · (2𝑛 + 1)

6

(25)
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it is then reduced to a simplified form due to the assumptions about the domain of 𝑋
above:

𝑉𝑎𝑟(𝑋) = 𝔼(𝑋2) − 𝔼(𝑋)2

=
(𝑛 + 1) · (2𝑛 + 1)

6
− (

𝑛 + 1
2

)
2

=
(𝑛 + 1) · (𝑛 − 1)

12

=
𝑛2 − 1

12

(26)

The discrete uniform distribution is typically employed to model the outcomes of fair
games, such as rolling a fair six-sided die, flipping a fair coin, or drawing a card from a
well-shuffled deck. In these cases, each outcome has an equal probability of occurring.

2.4.1.2  Continuous Distributions
A continuous random variable – in contrast to a discrete random variable, which in-
volve countable and distinct outcomes – can take an infinite number of values within
a specified interval. Examples for continuous random variables are representations of
heights or weights of randomly selected persons, a measured temperature or the con-
tinuous position of an agent in its environment. Distributions of continuous variables
are modeled using the PDF. Unlike in discrete distributions, probabilities of continu-
ous distributions are associated with intervals rather than individual points. The PDF
provides a relative measure of how likely the variable is to be near a particular value,
i.e. 𝑓(𝑥) ≠ 𝑃(𝑋 = 𝑥), therefore, the probability of a continuous random variable tak-
ing any exact point value is technically zero. Since the probability that 𝑋 falls within a
certain interval [𝑎, 𝑏] is given by the integral of the PDF, requiring 𝑋 to be exactly equal
to a specific value 𝑐 results in the limits of this interval being identical i.e. 𝑎 = 𝑏 = 𝑐,
rendering the interval infinitesimally small and thus, the integral evaluates to zero.

However, analogous to discrete distributions, where the sum of all probabilities of all
the possible outcomes equals 1 (cmp. Equation 10), the area under the curve of the PDF
of a continuous variable is equal to 1:

∫
∞

∞
𝑓(𝑥) d𝑥 = 1 (27)

Uniform Distribution · The equivalent to the uniform discrete distribution from Sec-
tion 2.4.1.1 is the continuous uniform distribution, which spreads mass uniformly over
an interval [𝑎, 𝑏] and its PDF is given by:

𝑓(𝑥) = {
1

𝑏−𝑎 if 𝑥 ∈ [𝑎, 𝑏]
0 otherwise

(28)

The expectation function and variance are given by
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𝔼(𝑋) = ∫
𝑏

𝑎

𝑥
𝑏 − 𝑎

d𝑥

=
𝑏 + 𝑎

2

(29)

and

𝑉𝑎𝑟(𝑋) = ∫
𝑏

𝑎

1
𝑏 − 𝑎

(𝑥 −
𝑏 + 𝑎

2
)

2

d𝑥

=
(𝑏 − 𝑎)2

12

(30)

Normal Distribution · The Normal or Gaussian distribution is one of the most promi-
nent continuous distributions. Many natural phenomena tend to display an approxi-
mately normal distribution. The distribution of heights, weights, and other physical
characteristics in a population often follows a normal distribution with its characteris-
tic bell shape due to the influence of multiple independent factors. The normal distrib-
ution possesses straightforward and precisely defined mathematical characteristics. Its
PDF and CDF are expressed in closed-form, which simplifies mathematical computa-
tions and statistical analyses. The Central Limit Theorem states that, regardless of the
initial shape of the population distribution, the distribution of sample means will tend
to approximate a normal distribution as the sample size increases. This only applies if
certain conditions are met, such as that samples must be randomly selected from the
population, the sample size should be sufficiently large (where there is no clear defin-
ition of “large”) and that the samples must be drawn independently from each other.

A continuous variable is normally distributed (𝑋 ∼ 𝒩(𝜇, 𝜎2)) with parameters 𝜇 ∈ ℝ
(the center of the curve) and 𝜎 ∈ ℝ+ (the spread about the center), if it has the PDF

𝑓(𝑥) =
1

√
2𝜋𝜎

· exp(−
(𝑥 − 𝜇)2

2𝜎2 ) (31)

It can be shown that the expectation is given by

𝔼(𝑋) = 𝜇 (32)

and the variance is

𝑉𝑎𝑟(𝑋) = 𝜎2. (33)

The proof can be found in Schickinger and Steger (2002, Chapter 2).

2.4.2  Symbolic Distributions
Multinomial Distribution The multinomial distribution extends the concept of the
binomial distribution to include scenarios with 𝑘 instead of only two possible out-
comes, with probabilities 𝜋1, …, 𝜋𝑘. Note that it is necessary to have ∑

𝑘

𝑖=1
𝜋𝑖 = 1 hold.

Just like the binomial distribution, a fixed number of 𝑛 independent trials, is required.
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However, rather than focusing solely on counting the occurrences of a single “success”
outcome, we use 𝑋𝑗 to represent the count of occurrences for the 𝑗th outcome. This
leads to the formation of the multivariate random vector 𝑋1, …, 𝑋𝑘.

The PMF is given by

𝑓(𝑥1, …, 𝑥𝑘) =
𝑛!

𝑥1! · 𝑥2! · … · 𝑥𝑘!
· 𝜋𝑥1

1 · 𝜋𝑥2
2 · … · 𝜋𝑥𝑘

𝑘 (34)

where 𝑥 = (𝑥1, …, 𝑥𝑘) (Bishop 2006). The expected value and variance of 𝑋𝑗 as well as
the covariance between two outcome counts are only defined if the distribution’s val-
ues have true numeric semantics. The expected value is then determined calculating

𝔼(𝑋𝑗) = 𝑛 · 𝜋𝑗 (35)

and the variance by calculating

𝑉𝑎𝑟(𝑋𝑗) = 𝑛 · 𝜋𝑗 · (1 − 𝜋𝑗) (36)

Additionally, the covariance between the outcome counts 𝑋𝑖 and 𝑋𝑗 is given by

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = −𝑛 · 𝜋𝑖 · 𝜋𝑗 (37)

where the inverse correlation is logical from an intuitive standpoint, considering the
constant sum 𝑋1 + 𝑋2 + … + 𝑋𝑘 = 𝑛. Put simply, as one outcome becomes more fre-
quent, the occurrences of other outcomes must decrease for the preservation of this
total. It is worth highlighting that if all other outcomes are grouped as “failure,” each
individual count 𝑋𝑗 follows a binomial distribution with 𝑛 trials and success probabil-
ity 𝜋𝑗.

For multinomial distributions with symbolic values the expected value is not defined.
In this case, one typically resorts to returning the 

mode ▷
mode (Finucan 1964), which is the

most frequently occurring value in the distribution. This measure provides some in-
sight into the central tendency of the data. If there are multiple values with an equal
(maximum) probability, they are denoted as the joint node.

2.4.3  Comparing Distributions
There are many measures to quantify the similarity or dissimilarity (i.e. distance) of
distributions, a selection of which will be introduced in the following. In practical ap-
plications, the choice of a distance or similarity measure depends on the specific char-
acteristics of the data and the goals of the analysis. A distance function 𝜚 : 𝑃 ↦ 𝑃  on a
given set 𝑃  is called a metric, when the following axioms are satisfied (Čech and Katě-
tov 1969):

[1] 𝜚(𝑥, 𝑥) = 0, 𝑥 ≠ 𝑦 ⇒ 𝜚(𝑥, 𝑦) > 0;
[2] 𝜚(𝑥, 𝑦) = 𝜚(𝑦, 𝑥);
[3] 𝜚(𝑥, 𝑦) + 𝜚(𝑦, 𝑧) ≥ 𝜚(𝑥, 𝑧).

(38)
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The Kullback-Leibler divergence (Kullback 1959) for example, represents the expecta-
tion of the log difference between the probability of data in one distribution with a
second (assumed to be approximating) distribution. Unfortunately, the measure is not
symmetric (Equation 38 [2]) and therefore not a true metric.

Similarly to Kullback-Leibler, the Bhattacharyya distance (Bhattacharyya 1946) and
the related Hellinger distance (Hellinger 1909) can be effective in certain contexts, but
their limitations in terms of symmetry make them less suitable for some tasks. They
are therefore not employed in BayRoB.

Similarity of discrete distributions: The domain sizes of all three distributions 𝑑𝑖𝑠𝑡1 o 𝑑𝑖𝑠𝑡3 are equal but
only 𝑑𝑖𝑠𝑡1 (blue) and 𝑑𝑖𝑠𝑡3 (green) share identical domain values. 𝑑𝑖𝑠𝑡2 (violet) does not share domain
values with either 𝑑𝑖𝑠𝑡1 or 𝑑𝑖𝑠𝑡3 and would be considered maximally dissimilar to the other distributions.

| Figure 4

Similarity measures in other applications, such as in set theory, might give an intuition
on how a quantitative comparison of two distributions can be achieved. The Jaccard
coefficient measures the similarity of 𝑛 sets 𝑆𝑖 by applying the intersection over union
principle, i.e. by calculating the ratio of the number of common (intersecting) elements
and the size of the union of the 𝑛 sets:

𝑠𝑖𝑚𝑗𝑎𝑐(𝑆1, …, 𝑆𝑛) =
| ⋂

𝑛

𝑖
𝑆𝑖|

| ⋃
𝑛

𝑖
𝑆𝑖|

(39)

Since the returned value ranges from 0 to 1, it can be used to measure a distance as
well, by just calculating 𝑑𝑖𝑠𝑡𝑗𝑎𝑐(𝑆1, …, 𝑆𝑛) = 1 − 𝑠𝑖𝑚𝑗𝑎𝑐(𝑆1, …, 𝑆𝑛). But does that work
in distributions as well? Figure 4 exemplary shows the intuition behind it in discrete
distributions. Since 𝑑𝑖𝑠𝑡1 (blue) and 𝑑𝑖𝑠𝑡3 (green) have identical domains, but differ-
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ent probabilities for the respective values, one would consider them to be more similar
than the distributions 𝑑𝑖𝑠𝑡1 and 𝑑𝑖𝑠𝑡2 (violet). How can we quantify this in terms of the
above equation?

When thinking of a discrete distribution of a set of labels with assigned probabilities,
the intersection over union principle can work as well: interpreting the intersection
as the least common multiples (i.e. minimum) of the probabilities of the respective la-
bels and the union as the greatest common multiples (i.e. maximum), the division of
the respective sums of these values represents the divergence of values in the common
domain:

𝑠𝑖𝑚𝑑𝑖𝑠𝑐𝑟(𝐷1, …, 𝐷𝑛) =
∑

𝑥∈ 𝑑𝑜𝑚(𝐷)
min(𝑝𝑖(𝑥))

∑
𝑥∈ 𝑑𝑜𝑚(𝐷)

max(𝑝𝑖(𝑥)) (40)

The similarity measure is only defined on distributions with an identical domain for
a simple reason. Assuming, the measure would consider the probability values of the
labels in the shared domain, disregarding the others, the measure would not reflect
the dissimilarity posed by the difference in the domains itself, leading to unintuitive
results. Given another distribution 𝑑𝑖𝑠𝑡4 with 𝑑𝑜𝑚(𝑑𝑖𝑠𝑡4) = {𝐶, 𝐷, 𝐸} and 𝑃(𝐶) =
.25, 𝑃 (𝐷) = .1, 𝑃 (𝐸) = .65, therefore partly sharing a domain with 𝑑𝑖𝑠𝑡1 and 𝑑𝑖𝑠𝑡3,
the similarity measure would output 𝑠𝑖𝑚𝑑𝑖𝑠𝑐𝑟(𝑑𝑖𝑠𝑡1, 𝑑𝑖𝑠𝑡4) = 0.25

0.25 = 1, interpreting the
two obviously very different distributions as identical. Consequently, by default, if the
intersection of the domain of two or more distributions such as in the case of 𝑑𝑖𝑠𝑡1 and
𝑑𝑖𝑠𝑡3 is empty, the distributions are considered maximally dissimilar.

The Jaccard coefficient is defined on discrete sets, therefore the adaptation in Equa-
tion  40 works for discrete distributions only, but BayRoB employs hybrid domains,
such that we need to find an adaptation for continuous distributions. Figure 5 shows
the PDFs of two Gaussian-distributed random variables 𝑋1 and 𝑋2 as well as the PDFs
of their mixture and sum. It is desirable to find a similarity (or distance) measure that
quantifies the differences in shape and momentums adequately.

Following the argumentation of similarities of sets and discrete distributions above,
the similarity measure for continuous domains could be defined incorporating the dis-
tribution functions’ integrals as follows:

𝑠𝑖𝑚𝑐𝑜𝑛𝑡(𝑑1, 𝑑2) =
∫
ℝ
min(𝑑1, 𝑑2)

∫
ℝ
max(𝑑1, 𝑑2)

(41)

which again is very similar to the Ruzicka similarity (Deza and Deza 2006, Chapter 17),
a similarity on ℝ𝑛, defined by

𝑠𝑖𝑚𝑟𝑢𝑧(𝑥, 𝑦) =
∑
𝑖

min(𝑥𝑖, 𝑦𝑖)

∑
𝑖

max(𝑥𝑖, 𝑦𝑖)
(42)

sometimes referred to as the quantitative data Jaccard similarity.
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Just like in the discrete case above, if the shapes of two distributions are very similar
but the moments differ, they can, in the worst case, be considered maximally dissimilar
by the Jaccard similarity measure. Take as an example Gaussian distributions with an
identically shaped bell curve that only differ in their respective means, like the ones
shown in Figure  6 a).

Similarity of continuous distributions | Figure 5

While for multinomial distributions it is reasonable to assume maximal dissimilarity
for distributions that do not share an identical domain, this does not intuitively apply
to continuous distributions. Imagine, as an example, a Gaussian-distributed variable
𝑋, representing the 𝑥-coordinate of a robot’s position. The spread of the distribution,
i.e. in this case the width of the bell, then determines the uncertainty of the robot’s po-
sition in the horizontal direction, while the mean denotes the absolute position around
which the robot believes it is located. Comparing two such distributions with different
means might then represent for example, how far a potential goal location is away from
the current position. A value of 𝑠𝑖𝑚𝑗𝑎𝑐(𝑆1, …, 𝑆𝑛) = 0, denoting minimal similarity (or
1 − 𝑠𝑖𝑚𝑗𝑎𝑐(𝑆1, …, 𝑆𝑛) = 1 denoting maximal dissimilarity) would not correspond to
the intuitive impression that the current distribution may not be the exact goal location,
but might be closer to or further from it than the one before some action was executed.
In particular, it would not be possible to compare the (anticipated) resulting distrib-
utions of different actions and make an informed decision about what action is the
best, i.e. takes the robot closer to the goal. In fact, 𝑠𝑖𝑚𝑗𝑎𝑐(𝐷1, 𝐷2) = 𝑠𝑖𝑚𝑗𝑎𝑐(𝐷1, 𝐷3) =
𝑠𝑖𝑚𝑗𝑎𝑐(𝐷2, 𝐷3) = 0 for the distributions in Figure  6 a).

The Wasserstein distance (Villani 2009; Deza and Deza 2006), sometimes called Earth
Mover’s Distance or optimal transport distance, can be seen as a quantification of the
effort it takes to transform one distribution into another. Distributions are considered
piles of earth that need to be reshaped, where the mass that has to be moved to align one
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pile with another represents the cost, i.e. distance of the piles. In mathematical terms,
the Wasserstein distance is expressed as the product of the distance travelled (compar-
ing momentums) and the amount of mass being transported (comparing shapes). It is
defined on a metric space (𝑀, 𝑑), with 𝑀  being a set and 𝑑 a metric on 𝑀 , as:

D 𝑊𝑝(𝑑1, 𝑑2) ≔ ( inf
𝛾∈Τ(𝑑1,𝑑2)

∫
𝑀×𝑀

𝑑(𝑥, 𝑦)𝑝 d𝛾(𝑥, 𝑦))

1
𝑝

(43)

where inf denotes the infimum (greatest lower bound), and Τ(𝑑1, 𝑑2) the set of all cou-
plings of the input probability measures with marginals 𝑑1 and 𝑑2. More figuratively,
the distance describes the area between the CDFs of the compared distributions (see
the patterned areas in Figure  6 b). Compared to the distance of 1 for each of the pairs
returned by the Jaccard distance, the Wasserstein distance corresponds to the intuitive
understanding of the differences of the three distributions: The two leftmost distrib-
utions 𝑑1 and 𝑑2 have the smallest distance to each other (𝑊𝑝(𝑑1, 𝑑2) ≈ 5.003), the
outermost ones 𝑑1 and 𝑑3 have the largest with 𝑊𝑝(𝑑1, 𝑑3) ≈ 13.964. The distance be-
tween 𝑑2 and 𝑑3 is calculated as 𝑊𝑝(𝑑2, 𝑑3) ≈ 8.960.

Identically-shaped Gaussian distributions (a) and their CDFs (b): The patterned areas represent the areas
of the (absolute) differences between distributions. | Figure  6

Identically-shaped Gaussian dis-
tributions, shifted | a)

The CDFs of the respective distri-
butions on the left | b)

| 𝑑1 − 𝑑3 | (checkerboard) and
| 𝑑2 − 𝑑3 | (stripes) | c)

The Wasserstein metric works on the CDF of numeric distributions. The equivalent for
multinomial distributions would then be the summing up the pairwise (cumulated)
probabilities. That, however, would require the multinomial distribution to have some
order defined, as is the case in numeric distributions. Depending on that order, the re-
sults of the distance calculation may vary significantly, such that the approach is not
directly applicable to multinomial distributions. Alternatively, one can simply take the
sum of the pairwise absolute differences of each of the domain values’ relative frequen-
cies, i.e.

𝑑𝑖𝑠𝑡𝑒𝑎𝑟𝑡ℎ_𝑚𝑜𝑣𝑒(𝐷1, 𝐷2) = ∑
𝑥∈ 𝑑𝑜𝑚(𝐷)

| 𝑝𝐷1
(𝑥) − 𝑝𝐷2

(𝑥) | (44)
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This approach is similar to the Χ2 (Chi-squared) test (first introduced by Pearson
(1900)) for categorical data but without squaring the differences. Instead, it seems to
be more natural to take the absolute values as a true “distance”. In the special case of
a Boolean dstribution, this approach could be interpreted as the effort it takes to take
a certain amount of probability mass from the ⊤ pile plus the same effort it takes to
move it to the ⊥ pile (or vice versa).

In BayRoB, the Wasserstein distance from Equation  43 and its adapted variant for
multinomial distributions from Equation 44 as well as the Jaccard similarity for dis-
crete distributions Equation 40 and its numeric counterpart Equation 41 are employed.

2.5  Probabilistic Graphical Models
PGMs offer a concise means of representing probability distributions by capitalizing
on their structure, enabling encoding across a high-dimensional space with numerous
variables. The representation of a joint probability distribution over a set of even the
smallest number of random variables (even if they are only binary-valued) is typically
computationally unmanageable as it is too large to store and impossible to grasp for the
human mind (Koller and Friedman 2009). PGMs offer a sophisticated framework that
seamlessly integrates uncertainty and logical structure to concisely represent complex
real-world situations and leverage the independence properties inherent in them. Their
graph-based representation consists of nodes, representing domain variables, and (di-
rected) edges denoting their respective probabilistic connections. Depending on the
underlying representation mechanism, outlined below, these graphs can be either di-
rected or undirected, categorizing PGMs into two families: BNs and MNs. What uni-
fies them is their capacity to represent and facilitate inference over probability distrib-
utions, typically in a human-interpretable and understandable manner.

The graph structures facilitate effective inference strategies, allowing to ask all sorts
of questions about the distributions they represent. Notably, algorithms for computing
posterior probabilities of subsets of domain variables, given some evidence, can be em-
ployed, directly leveraging the graph structure. Since calculating posteriors often suf-
fices for many inference tasks, there is no need to compute the entire joint distribution.
This aspect makes inference in PGMs a compelling tool, especially in fields such as
medical diagnosis (McLachlan et al. 2020), risk assessment in finance (Chan, Chu, and
So 2023), or safe autonomous navigation (Iberraken and Adouane 2022).

To develop such models from data and expert knowledge, effective algorithms are nec-
essary – and fortunately, they exist. Therefore, PGMs not only provide representation
of and reasoning over probabilities but also learning thereof, proving essential for con-
structing intelligent systems.

2.5.1  Bayesian Networks
BNs, also called belief networks or causal networks, are used to efficiently represent a
joint distribution over a set of random variables 𝑿 = {𝑋1, …, 𝑋𝑛} in terms of a di-
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rected acyclic graph structure. In order to understand the graphical representation of
the distribution, one has to grasp the notion of 

(conditional)
independence

▷
 (conditional) independence of variables.

The variables 𝑋𝑖 with 𝑖 ∈ 1, …, 𝑛 are independent, if

𝑃(𝑋1, …, 𝑋𝑛) = 𝑃(𝑋1) · 𝑃 (𝑋2) · … · 𝑃 (𝑋𝑛) (45)

holds. As a notation for independence, (𝑿 ⊥ 𝒀 ) for any disjoint subsets 𝑿 and 𝒀  of
the variables can be found frequently.

Analogously, a variable 𝑋𝑖 is conditionally independent on a set of variables 𝑿𝒊 given
yet another variable 𝑍, i.e. (𝑋𝑖 ⊥ 𝑿𝒊 | 𝑍) with 𝑿𝒊 = {𝑋1, …, 𝑋𝑛}/{𝑋𝑖},²³ if

²³where / denotes “not in”, i.e. 𝑿𝒊 is the set of variables 𝑋1, …, 𝑋𝑛 without 𝑋𝑖.

𝑃(𝑋1, …, 𝑋𝑛, 𝑍) = 𝑃(𝑍) ∏
𝑛

𝑖=1
𝑃(𝑋𝑖 | 𝑍) (46)

for all variable assignments of the 𝑋𝑖s and 𝑍 in their respective domains. The factor-
ization in Equation 46 represents the the naïve Bayes assumption, i.e. the assumption
that, in a classification scenario, the features (here: 𝑋𝑖) are conditionally independent
given the instance’s class (𝑍). This is shown by the graph structure for the naïve Bayes
model in Figure 7. The same intuition is built upon by BNs. The graph structure is still
as compact and leverages the distribution’s conditional independencies but without
being restricted to the naïve Bayes’ strong independence assumptions.

The graph representation of a naïve Bayes model | Figure 7

𝑍

𝑋1 𝑋2 ⋯ 𝑋3

While in other model representations, the edges of the graph structures are not neces-
sarily directed, in BNs they are, rendering the structure a Directed Acyclic Graph (DAG).
Each node 𝑋𝑖 that has incoming edges depends directly on all of its parent nodes, i.e.
the ones the incoming edges origin from, denoted by the set 𝑃𝑎𝑟(𝑋𝑖). Each node is as-
sociated with a distribution table, the Conditional Probability Distribution (CPD), that
specifies the probability of the respective variable conditioned on all its immediate par-
ents. The graph structure therefore represents the joint distribution’s factorization as
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well as a set of its conditional independence assumptions simultaneously, and its joint
distribution is given by

𝑃(𝑋1, …, 𝑋𝑛) = ∏
𝑛

𝑖=1
𝑃(𝑋𝑖 | 𝑃𝑎𝑟(𝑋𝑖)). (47)

Figure 8 introduces an easy-to-understand example of a robot’s error detection using
a warning light that illustrates the intuition behind BNs. The robot is powered by a
𝐵𝑎𝑡𝑡𝑒𝑟𝑦, whose charging status (high or low) can not be observed directly. However,
there are other observable indicators that allow drawing conclusions about the battery
status such as the 𝑀𝑜𝑡𝑜𝑟 of the robot, which is powered by the battery as well and may
be running or stopped. When the battery is very low, the motor sometimes continues
buzzing for a little bit, without being fully functional. On the other hand, when the bat-
tery is fully charged, the motor might still stop in 5% of the cases. Additionally, an LED
𝐿𝑖𝑔ℎ𝑡 flashes red when the battery reaches a critical level or green when everything is
ok. Unfortunately, sometimes the light does not flash at all, for example when the LED’s
𝐷𝑖𝑜𝑑𝑒 is faulty (which happens in 20% of the cases) or when the battery status is even
too low to power the light. An intern observes the state of the light and sends a 𝑅𝑒𝑝𝑜𝑟𝑡
to the robot’s operator which is a simple “ok” when the light is green and “warning”
otherwise. Due to the lighting conditions (and his laziness), however, the intern may be
wrong about the state of the light, resulting in incorrect reports. The figure shows not
only the BN representing this scenario, but also the corresponding CPDs of the random
variables 𝐷𝑖𝑜𝑑𝑒, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 𝐿𝑖𝑔ℎ𝑡, 𝑀𝑜𝑡𝑜𝑟 and 𝑅𝑒𝑝𝑜𝑟𝑡, which represent how the variables
in the graph depend on their respective parents (if there are any). In the case of the
variables 𝐷𝑖𝑜𝑑𝑒 and 𝐵𝑎𝑡𝑡𝑒𝑟𝑦, no parents are given, so the distributions are marginal
distributions, while the others are conditional probability distributions of the variable
given the different combinations of joint value assignments of the variable’s parents.
The given BN for this example allows to compute the probability of any possible value
assignment of the five random variables, i.e. their joint probability. As introduced in
Section 2.3, the joint probability of multiple events or the joint distribution of multiple
random variables can be calculated employing the chain rule, which can be applied to
BNs, therefore the joint distribution for this example is given by

𝑃(𝐷𝑖𝑜𝑑𝑒, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 𝐿𝑖𝑔ℎ𝑡, 𝑀𝑜𝑡𝑜𝑟, 𝑅𝑒𝑝𝑜𝑟𝑡) = 𝑃(𝐷𝑖𝑜𝑑𝑒)
· 𝑃 (𝐵𝑎𝑡𝑡𝑒𝑟𝑦)
· 𝑃 (𝐿𝑖𝑔ℎ𝑡 | 𝐷𝑖𝑜𝑑𝑒, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦)
· 𝑃 (𝑀𝑜𝑡𝑜𝑟 | 𝐵𝑎𝑡𝑡𝑒𝑟𝑦)
· 𝑃 (𝑅𝑒𝑝𝑜𝑟𝑡 | 𝐿𝑖𝑔ℎ𝑡)

(48)

As BNs represent joint probability distributions over the represented random variables
(nodes), it is possible to pose any kind of query over (subsets of) variables. 

◁ causal and
diagnostic
reasoning

Due to the
semantics of the directed edges, one can identify different reasoning patterns, depend-
ing on the direction of the asked query, e.g. “downwards” or “upwards” from evidence
to query, respectively. The causal reasoning can be interpreted as a prediction of effects
given the observed cause as evidence, such as querying for the probability of a positive
report (“ok”), given the LED diode was observed to be faulty. Compared to the marginal
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probability of 𝑃(𝑅𝑒𝑝𝑜𝑟𝑡 = ok) ≈ 0.73, the observed diode lowers the probability for a
positive report significantly 𝑃(𝑅𝑒𝑝𝑜𝑟𝑡 = ok | 𝐷𝑖𝑜𝑑𝑒 = faulty) ≈ 0.38.

For the other direction, the “upwards” direction, one tries to find the probability of the
cause given some observed effect, e.g. trying to find the probability of a low battery given
the light was observed to be off or flashing red. The probability after the observations
increases from 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = low) ≈ 0.3 to ≈ 0.38 for 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = low | 𝐿𝑖𝑔ℎ𝑡 = off)
and even ≈ 0.76 for 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = low | 𝐿𝑖𝑔ℎ𝑡 = red). This pattern is called evidential
or diagnostic reasoning, where the term diagnostic is deduced from medical diagnosis,
where one tries to identify a disease that best explains the observed symptoms.

The BNs for the robot error detection framework with the variables’ CPDs | Figure 8

Diode

Light Motor

Report

Battery

𝑃(𝐷𝑖𝑜𝑑𝑒)

faulty flawless

0.2 0.8

𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦)

high low

0.7 0.3

𝑃(𝐿𝑖𝑔ℎ𝑡|𝐷𝑖𝑜𝑑𝑒, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦)

red green off

faulty/high 0.1 0.05 0.85

faulty/low 0.01 0.1 0.89

flawless/high 0.09 0.9 0.01

flawless/low 0.85 0.05 0.05

𝑃(𝑀𝑜𝑡𝑜𝑟 | 𝐵𝑎𝑡𝑡𝑒𝑟𝑦)

running stopped

high 0.95 0.05

low 0.1 0.9

𝑃(𝑅𝑒𝑝𝑜𝑟𝑡 | 𝐿𝑖𝑔ℎ𝑡)

ok warning

red 0.8 0.2

green 0.9 0.1

off 0.3 0.7

Another pattern, called intercausal reasoning describes the phenomenon that if one
effect can be induced by multiple causes, these causes can interact in the sense that
observing one of them allows drawing conclusions about the others. In the robot er-
ror network example, this can be observed when trying to determine the probability
of a fully charged battery. While the prior is fairly high 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = high) = 0.7,
the probability drops significantly when observing a red flashing light: 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 =
high | 𝐿𝑖𝑔ℎ𝑡 = red) ≈ 0.24. It is reasonable to believe that the error indicator light
should be green on a high battery status, while a red light might indicate a critical
battery level. However, adding the observation of a running motor (and therefore
obviously strong enough battery), the probability increases again and is even higher
than the prior 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = high | 𝐿𝑖𝑔ℎ𝑡 = red, 𝑀𝑜𝑡𝑜𝑟 = running) ≈ 0.75. Obviously,
either the observations must be wrong or there must be another explanation for the
red flashing light. Looking at the BN, another potential cause for a red light is the LED
diode and in fact, observing a faulty diode would increase the probability of a high bat-
tery status even more to 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = high | 𝐿𝑖𝑔ℎ𝑡 = red, 𝐷𝑖𝑜𝑑𝑒 = faulty) ≈ 0.96. In
other words, the faulty 

explaining away ▷
diode explains away the flashing light, such that a low battery
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is not the most probable cause anymore. Therefore, even though 𝐷𝑖𝑜𝑑𝑒 and 𝐵𝑎𝑡𝑡𝑒𝑟𝑦
are not directly dependent, as there is no edge between the nodes, observing 𝐿𝑖𝑔ℎ𝑡 as
evidence, makes them dependent.

The graph structure of the BN allows to directly determine whether two variables 𝑋
and 𝑌  are conditionally independent or not given some evidence. This is checked by
examining whether paths between variables paths are blocked or unblocked based on
the observed variables, which is equivalent to conditional independence. A path is con-
sidered blocked, when one of three preconditions is met (Koller and Friedman 2009):
There is a node 𝑧 on the path that

1. has an incoming and an outgoing edge (i.e. 𝑧 is an ancestor node of one of the two
variables 𝑋 and 𝑌 , and a descendant of the other) and 𝑧 represents a variable that
is observed, which means 𝑧 is part of the evidence, or

2. has two outgoing edges (i.e. 𝑧 is a common ancestor of both 𝑋 and 𝑌 ) and 𝑧 is ob-
served, or

3. has two incoming edges (i.e. 𝑧 is a common descendant of both 𝑋 and 𝑌 ) but 𝑧 is
not observed and neither are its descendants.

This concept is called d-separation and is shown in Figure 9. As an example, observ-
ing the report in addition to observing the light when trying to assess the battery
status does not provide any additional information (case 1). This is intuitive since
the BN structure represents direct dependencies. Because there is no edge from
the battery node to the report node, there is no direct relationship between the
two represented variables. In other words, the report is conditionally independent
from the battery (and the diode and the motor), given that the light was observed:
(𝑅𝑒𝑝𝑜𝑟𝑡 ⊥ 𝐷𝑖𝑜𝑑𝑒, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 𝑀𝑜𝑡𝑜𝑟 | 𝐿𝑖𝑔ℎ𝑡), therefore the probabilities 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 =
low | 𝐿𝑖𝑔ℎ𝑡 = off) = 𝑃(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = low|𝐿𝑖𝑔ℎ𝑡 = off,𝑅𝑒𝑝𝑜𝑟𝑡 = warning) ≈ 0.38.

d-separation criterion in BNs | Figure 9

𝑋 ⋯ 𝑍 ⋯ 𝑌

𝑋 ⋯ 𝑍 ⋯ 𝑌

𝑋 ⋯ 𝑍 ⋯ 𝑌

⋯ ⋯

observation

When constructing BN, one has to recognize that the direction of edges does not sig-
nify a unilateral dependency. Unlike traditional causal diagrams where arrows denote
a clear cause-and-effect relationship, BNs accommodate symmetric dependencies and
conditional probabilities which reflects the probabilistic nature of the modeled rela-
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tionships. Edges in a BN represent statistical dependencies, indicating that the knowl-
edge of one variable provides probabilistic information about another and therefore
capture the flow of information. This does not imply a strict causal hierarchy. In the
real world, events are often correlated within complex patterns, which is reflected by
these statistical relationships. Constructing a BN therefore requires a deep understand-
ing of the probabilistic dependencies between variables, that go beyond simple causes
and effects.

2.5.2  Markov Networks
In contrast to directed models such as BNs, undirected models allow to represent prob-
ability distributions where the probabilistic influence between variables do not have
have a clear directionality. MNs, also called Markov Random Fields (MRFs), as BNs,
are composed of nodes representing random variables and edges representing direct
probabilistic interaction between them as shown in Figure 10.

Exemplary Markov Network | Figure 10

𝑋1 𝑋2

𝑋3

𝑋4 𝑋5

However, the symmetric influence two connected variables have on each other requires
a different parameterization to represent the kind of relationship than CPDs do in BNs.
Therefore, the multilateral influences are described in terms of functions 𝜙 (called fac-
tors) mapping each possible value assignment 𝑋 of directly connected nodes to a non-
negative real value 𝑣:

D 𝜙 : 𝑿 ↦ ℝ+ (49)

A group of fully connected variables that pose a fully connected subgraph in the net-
work is called a clique. The factor assigned to a clique is sometimes called the clique po-
tential, describing the local relationships of that group. The global relationship model
over the entire graph is then posed by the product over all factors of the maximal
cliques (cmp. Figure 11), i.e. the ones that contain as many fully interconnected vari-
ables as possible. Note that factors are not to be confused with probabilities, as they
are not normalized. Their probabilistic semantics, however, become meaningful only
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when considering the contributions of all potentials in the network. The global rela-
tionship model is then normalized, thus forming a legal (Gibbs) distribution (Koller
and Friedman 2009; Bishop 2006) over the set of all variables 𝑿 in the network

𝑃(𝑿 = 𝒙) =
1
𝑍

∏
𝑐∈𝐺

𝜙𝑐(𝒙𝑐) (50)

where 𝑐 refers to a (maximal) clique in the network graph 𝐺, 𝜙𝑐 is thus the factor of
the clique 𝑐 and 𝒙𝑐 the assignment from the world 𝒙 for the variables that occur in 𝑐.
The normalization factor 𝑍, called the partition function is then

𝑍 = ∑
𝓍∈𝒳

∏
𝑐∈𝐺

𝜙𝑐(𝔁𝑐) (51)

with 𝒳 being the set of all possible assignments (worlds).

The three maximal cliques {𝑋1, 𝑋3}, {𝑋2, 𝑋3} and {𝑋3, 𝑋4, 𝑋5} with their respective factors (clique po-
tentials) 𝜙1, 𝜙2 and 𝜙3 | Figure 11

𝑋1 𝑋2

𝑋3

𝑋4 𝑋5

𝜙1(𝑋1, 𝑋3) 𝜙2(𝑋2, 𝑋3)

𝜙3(𝑋3, 𝑋4, 𝑋5)

Unfortunately, as the partition function involves summing the probability masses of all
potential scenarios, exact inference in MNs becomes computationally intractable, es-
pecially for larger problem instances. Consequently, approximate algorithms are com-
monly employed in both parameter learning and inference.

While in BNs one has to check the cases of d-separation to determine whether two (sets
of) variables are independent, MNs allow direct graph separation, i.e. two disjoint sets
of variables 𝑿 and 𝒀  are conditionally independent given a set of variables 𝒁 (with 𝒁
also being disjoint from 𝑿 and 𝒀 , respectively), if there is no path between any node
𝑋 ∈ 𝑿 and 𝑌 ∈ 𝒀  with only nodes on that path that are not in 𝒁. In other words, if the
set 𝒁 was entirely removed from the network, there would be no connection between
𝑿 and 𝒀  anymore. In the example from Figure 11, 𝑋1 and 𝑋2 are conditionally inde-
pendent given 𝑋3. Note that articulated by the values of the factors, directly connected
variables (e.g. 𝑋1 and 𝑋2) can still be a priori independent. In general terms, a node
𝑋 is independent from any other node in the network, given its immediate neighbors
(called the Markov Blanket (MB)), which is intuitive, as the nodes in the MB separate
𝑋 from all other nodes.
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A MN can be represented as a Factor Graph (FG), which adds factor nodes to the net-
work that are associated with factors and whose direct neighbors are the variables are
the members of the clique the factor is assigned to.

The way a FG encodes the relationships of variables can sometimes make certain pat-
terns less obvious. Factors are like tables that describe how variables are related. Similar
to how patterns can be found in data, these relationships can have specific structures
that depend on particular values of the variables involved. However, these structures
may not be immediately clear when looking at the standard representation of a FG.
To make these patterns more visible, an alternative way of describing these relation-
ships can be used, which involves converting the relationships into log-space helping to
reveal hidden patterns or structures in the data. More explicitly, a factor can be trans-
formed to

𝜙(𝑿) = exp(−𝜀(𝑿)) (52)

with 𝜀(𝑿) = − ln 𝜙(𝑿) being the energy function (Koller and Friedman 2009). Then

𝑃(𝑿 = 𝒙) ∝ exp(− ∑
𝑐∈𝐺

𝜀𝑐(𝒙𝑐)). (53)

By introducing an indicator feature 𝑓𝑐 for each maximal clique 𝑐, taking value 1 if a
certain value assignment of the clique meets a certain requirement and 0 otherwise,
its energy function can be represented as a product of a constant weight 𝑤𝑐 and the
feature.

𝑃(𝑿 = 𝒙) =
1
𝑍

exp(− ∑
𝑐∈𝐺

𝑤𝑐 · 𝑓𝑐(𝒙𝑐)) (54)

with 𝑤𝑐 being a weight which turns the product over the clique potentials in Equa-
tion 50 into a sum of weighted features and is a more compact representation due to
the reduction of large domains to a (binary) feature function and a weight.

The choice of inference methods on MNs is typically a trade-off between accuracy and
computational efficiency. Depending on whether the model structure is well-suited for
efficient algorithms (loops in their graphical representation lead to cycles in the de-
pendency structure and make interactions between variables highly interdependent)
and the overall size and complexity of the model, it might be advisable to resort to ap-
proximate methods such as belief propagation (Bishop 2006), or Markov Chain Monte
Carlo (MCMC) sampling techniques like Gibbs (Russell and Norvig 2010). In particu-
lar, calculating the partition function, which involves the computationally expensive
summing over all possible value assignments of the variables, is a key component of
many inference algorithms and can be intractable especially for large datasets typically
found in real-world applications.

2.5.3  Sum-Product Networks
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Poon and Domingos (2011) represent the partition function of PGMs by introducing
multiple layers of hidden variables by a deep architecture called Sum-Product Network
(SPN). SPNs, like BNs and MNs, represent probability distributions over random vari-
ables. However, they comprise three different types of nodes rather than just one. The
sum nodes represent weighted sums of their child values, the weights being positive,
normalized values. The product nodes, analogously, represent the product of their child
values, capturing relationships between variables. The leaf nodes then represent the
probability distributions over the individual variables, as known from other network
types. SPNs are therefore rooted directed acyclic graphs, whose root values represent
an unnormalized probability distribution and can be learnt recursively by either split-
ting it into a product of SPNs over independent sets of variables or into a sum of SPNs
learned from subsets of the instance, if they cannot be found. The idea behind SPNs
is that one can take advantage of the fact that graphical models with multiple hidden
layers enable effective inference across a broader range of distributions.

An exemplary sum product network (adapted from Poon and Domingos (2011)) | Figure 12

+

× × ×

+ + + +

𝑋1 𝑋1 𝑋2 𝑋2
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An SPN 𝑆(𝑥1, …, 𝑥𝑛, 𝑥1, …, 𝑥𝑛) (short: 𝑆(𝑥)) is defined as a function over a set of in-
dicator variables 𝑥𝑖 with their respective negations 𝑥𝑖 for each variable 𝑋𝑖. Figure 12
shows an exemplary SPN (adapted from Poon and Domingos (2011)) with only two
boolean variables 𝑋1 and 𝑋2, i.e. 𝑆(𝑥1, 𝑥2, 𝑥1, 𝑥2). The weights at the edges make the
network model a weighted mixture of random variables. The joint distribution repre-
sented by the network is computed as

𝑆(𝑥1, 𝑥2, 𝑥1, 𝑥2) = 0.5 · (0.6𝑥1 + 0.4𝑥1) · (0.3𝑥2 + 0.7𝑥2)
+0.2 · (0.6𝑥1 + 0.4𝑥1) · (0.2𝑥2 + 0.8𝑥2)
+0.3 · (0.9𝑥1 + 0.1𝑥1) · (0.2𝑥2 + 0.8𝑥2)

(55)

To compute probabilities in the network, the indicator variables are set to 1 if they
are compatible with the evidence and 0 otherwise. For example, calculating 𝑃(𝑋1 =
⊤, 𝑋2 =⊥), i.e.
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𝑆(𝑥1, 𝑥2, 𝑥1, 𝑥2) = 𝑆(1, 0, 0, 1)
= 0.5 · (0.6 + 0) · (0 + 0.7)

+0.2 · (0.6 + 0) · (0 + 0.8)
+0.3 · (0.9 + 0) · (0 + 0.8)

= 0.522

(56)

In general, the above calculation will return an unnormalized, yet proportional value,
which has to be divided by the value of the partition function, which is computed the
same way but with all indicator variables set to 1, i.e. 𝑆(1, 1, 1, 1) (short: 𝑆(∗)). How-
ever, in the example from Figure 12, the weights are already chosen in a way that the
partition function sums up to 1 such that 0.522 is the final result.

Marginals are computed by setting the indicator variables to 1 if they are compatible
with the evidence and 0 for the indicator variable of the respective negated variable.
All other remaining indicator variables, whose variables do not occur in the evidence,
are set to 1. For example, finding 𝑃(𝑋2 =⊥), i.e. marginalizing over 𝑋1 is done by cal-
culating

𝑆(𝑥1, 𝑥2, 𝑥1, 𝑥2) = 𝑆(1, 0, 1, 1)
= 0.5 · (0.6 + 0.4) · (0 + 0.7)

+0.2 · (0.6 + 0.4) · (0 + 0.8)
+0.3 · (0.9 + 0.1) · (0 + 0.8)

= 0.75

(57)

in the example above. Yet again, in the general case, the result has to be normalized us-
ing the partition function 𝑆(∗). Since conditional probabilities can be expressed as the
ratio of a joint and a marginal probability, their calculation can be done by combining
two of the calculations exemplified above.

According to Poon and Domingos (2011), all manageable PGMs can be formulated as
SPNs, which are inherently more versatile. They decompose complex probability dis-
tributions into a product of simpler distributions, which makes it computationally ef-
ficient. SPNs can be learned from data using generative and discriminative (Gens and
Domingos 2012) methods, and there are algorithms for structure learning (Gens and
Domingos 2013; Rooshenas and Lowd 2014) and parameter learning (Poon and Domin-
gos 2011) where parameter learning means estimating the weights of the edges of the
network and is typically achieved using Expectation Maximization (EM) or gradient
descent. SPNs perform approximate inference in the case of cyclic dependencies. Oth-
erwise cycles have to be replaced by multivariate distributions whose representation
is generally untractable (Gens and Domingos 2013). They have been applied in areas
such as natural language processing and image and speech recognition.

2.5.4  Probabilistic Circuits
Similarly to the probabilistic models introduced before, Probabilistic Circuits (PCs) cap-
ture complex probability distributions. However, in contrast to PGMs, they do not ex-
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plicitly represent (in-)dependencies between random variables in terms of direct con-
nections. The graph rather represents complex dependencies through circuits, which
are composed of nodes representing basic operations such as products and sums. The
combinations of these operations and the structure of the circuit then determine com-
plex probability distributions. Choi, Vergari, and Broeck (2020) present PCs as a univer-
sal and integrated computational framework suitable for handling tractable probabilis-
tic modeling. PCs provide a unified framework that encompasses other graphical mod-
els such as SPNs or probabilistic decision graphs, simultaneously facilitating tractable
reasoning over parts of their respective model classes. However, in contrast to classical
PGMs like BNs and MRFs, which possess a clear representational semantics, PCs are
distinctly operational, as units within computational graphs explicitly indicate how to
evaluate the probability distributions they represent, essentially providing a guide for
answering probabilistic queries.

The components of PCs are sums, products and distributions. The most basic graph
representation would therefore be posed by a single node, denoting an arbitrary distrib-
ution function over one or more random variables. Given some evidence 𝑒, the node will
return the corresponding PDF of its distribution. Through factorization, more complex
probability distributions can be represented, which is denoted by adding a product node
to the graph as a connecting node of the factors, i.e., the nodes representing the single
distributions that factorize the overall distribution. Assuming these to be independent,
the joint probability distribution 𝑃𝑚 over 𝑘 random variables is then defined as

𝑃𝑚(𝑿) = ∏
𝑘

𝑖=1
𝑃𝑚𝑖

(𝑿𝑖) (58)

with 𝑃𝑚𝑖
 being the distribution over a subset 𝑿𝒊 of 𝑿. The graph for a fully factorized

distribution (cmp. Figure  13 a)) then contains one node for each single distribution and
one product node connecting the distribution nodes.

Examples of PCs | Figure  13

A fully factorized PC over 𝑛 random variables 𝑋𝑖

and their respective distributions | a)

×

𝐷1 𝐷2 𝐷𝑛⋯

𝑋1 𝑋2 𝑋𝑛

A mixture model PC with a single sum node and the
mixture weights 𝜃𝑖 | b)

+

𝐷1 𝐷2 𝐷𝑛⋯

𝜃1 𝜃2 𝜃3

𝑋1 𝑋2 𝑋𝑛

Inference over the model is now much easier to compute since its broken down into
smaller inference tasks. However, the full factorization poses a special case and if one
wants to gain expressiveness using a more general factorization, the third type of nodes
is required: Adding sum nodes (cmp. Figure  13 b)) allows to represent (weighted) mix-
tures of models in PCs. The weights 𝜃𝑖 in combination with the graph 𝒢 comprising
distribution, sum and product nodes form the two components (parameters and struc-
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ture) defining a PC. By combining multiple layers of sum nodes and product nodes,
arbitrarily complex distributions over the represented random variables can be built. 𝒢
is a rooted DAG, though the edges are often not represented as directed paths, due to
the convention of plotting them in children-before-parents fashion either from left-to-
right or bottom-to-top reading direction.

When considering different types of probabilistic models for certain inference tasks,
one has to find a trade-off between tractability and expressiveness, since higher expres-
siveness typically comes with lower tractability and vice versa. Through the reading
direction, the graph encodes the process of evaluating the distribution, making it well-
suited for answering probabilistic queries with reduced computational cost compared
to some other traditional models. By combining mixtures and factorizations, PCs are
both expressive and tractable if several constraints are met:

Decomposability · A product node is considered decomposable if its children rely on
non-overlapping sets of variables. Consequently, a PC is decomposable, if all of its
product nodes are composable.

Smoothness · A sum node is called smooth 
structural
properties

of PCs

▷
when all its children have identical

scopes²⁴. Again, the overall PC is considered smooth, when all its sum nodes are
smooth.

²⁴The scope of a node 𝑛 is the set of variables it depends on, i.e. the union of all its child nodes’
scopes.

The process of breaking down large integration problems into simpler computations
is facilitated by these two properties, enabling the tractable computation of marginal
queries.

If the PC satisfies further structural properties, even the tractable computation of MAP
queries is possible:

Determinism · A sum node is deterministic if only one of its children produces a
nonzero output for any given input. Consequently, the PC is deterministic, if this prop-
erty holds for all its sum nodes.

and

Consistency · A product node is consistent, if any variable shared among its children
is present in only one leaf node. Are all product nodes in a PC consistent, the PC is
consistent.

Since the distribution nodes can represent arbitrary distributions, PCs provide a unified
computational framework allowing to represent different models in a common frame-
work. They provide unparalleled expressiveness by representing complex probabilistic
relationships through a hierarchical structure of nodes. Their efficiency in computing
probabilities and conducting inference tasks, even within high-dimensional spaces,
underscores their tractability. This combination of expressiveness and tractability po-
sitions PCs as the optimal choice for modeling and reasoning under uncertainty across
diverse domains. In Chapter 3, a type of PCs is introduced, which is particularly com-
putationally efficient, making it the preferred formalism for the implementation in
BayRoB.
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2.6  Knowledge Acquisition
So far, different kinds of distributions along with their characteristics have been intro-
duced. However, the key question is, how do we acquire these distributions? In the
following, different kinds of (parameter) learning techniques will be outlined briefly.

2.6.1  Generative and Discriminative Learning
When constructing a probabilistic model, the knowledge engineer must consider the
tasks the model is intended to perform. Typically, only a subset of variables is queried
given a set of observed variables, making it unnecessary to model the complete joint
distribution across all variables. In many situations, representing the posterior of the
query variables given the evidence is sufficient for the inference task and is favored
over modeling the entire joint probability. Models that express knowledge as a joint
probability, 𝑃(𝑋, 𝑌 ), involving input variables 𝑋 and the label 𝑌 , are known as gen-
erative models. These models can generate all variables independently of their seman-
tics (query or evidence variables). They apply Bayes’ theorem (Equation 5) to calculate
𝑃(𝑌 | 𝑋) and then select 𝑌  based on the highest likelihood (Ng and Jordan 2001). In
contrast, discriminative models directly represent the posterior probability 𝑃(𝑌 | 𝑋).
Both generative and discriminative models can be used for predictive tasks, but dis-
criminative models do not provide a distribution over evidence variables, limiting their
ability to draw conclusions about them. However, in many cases, it is possible to iden-
tify variables that are solely evidential, rendering the encoding of their distribution un-
necessary. Discriminative models are therefore often preferred for classification tasks,
where the focus is on discriminating data instances. Tasks such as text classification 
(Zhang, Jiang, and Li 2019) or object detection (Vidal-Naquet and Ullman 2003) are
typically examples for such tasks, as the focus lies on learning the boundaries between
classes and predicting the presence of objects, respectively, while the distributions over
the images or text body is neither of particular interest nor is it efficient to represent it
in a joint distribution. Generative models are better suited for tasks involving the gen-
eration of new samples or capturing the underlying data distribution, such as in image
generation. As the name suggests, models in this task are employed to create new sam-
ples resembling the represented distribution, such as human faces (Richardson et al.
2021).

2.6.2  Maximum Likelihood Principle
As mentioned in Section 2.3, a distribution quantitatively defines the probabilities of
some event, i.e. a random variable taking on a specific value. To generate such a dis-
tribution, these quantitative values can either be set manually or learned from data.
The former – of course – relies on the subjective judgment of the developer and does
not necessarily reflect aspects of the real world. In contrast, learning from data, or ex-
perience, represents regularities that are based on actual observations. Here, the qual-
ity of the underlying dataset plays a pivotal role for the quality of the learnt model. A
learning task typically involves determining some model parameters 𝜃 that best explain
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the observations. The objective is to fine-tune these parameters to improve the model’s
capacity to capture and understand the inherent patterns or relationships within the
dataset and therefore approximate the distribution inherent to the problem. Each data-
point 𝑑𝑖 in the dataset 𝒟 is considered a complete assignment of values to the variables
represented by the model and are assumed to be drawn indepently from each other.
The plausibility of the observed data 𝒟 under the assumed model parameters 𝜃 can
be quantified using the the likelihood function ℒ, which measures the probability of
observing the given data, given a specific set of parameter values:

ℒ(𝜃 | 𝒟) = ∏
𝑁

𝑖=1
𝑃(𝑑𝑖; 𝜃) (59)

The best set of parameters is then determined by maximizing this function (Eq. 59)
w.r.t. 𝜃

𝜃 = arg max
𝜃∈Θ

ℒ(𝜃)

= arg max
𝜃∈Θ

∏
𝑁

𝑖=1
𝑃(𝑑𝑖; 𝜃)

(60)

to get the Maximum Likelihood Estimate (MLE),
likelihood
and MLE

▷
 which provides a point estimate for the

parameters, and under certain conditions (such as large sample sizes), possesses desir-
able statistical properties, including consistency and asymptotic normality. Choosing
the values for the parameters such that they maximize the likelihood of observing the
given data under the assumed statistical model is commonly referred to as the maxi-
mum likelihood principle. The method is widely used in various fields for parameter
estimation. While the likelihood function is a product of individual probabilities for
each data point, the log likelihood transforms the product of probabilities into a sum
of logarithms, providing computational simplicity, numerical stability (when dealing
with small probabilities), and efficiency in optimization, as many algorithms are de-
signed for additive structures. At the same time, likelihood and log likelihood functions
have the same maxima due to the logarithm function being strictly monotonically in-
creasing. Therefore, the log likelihood is often preferred for practical and computational
reasons.

2.6.3  Entropy-based Methods
Another way of constructing informative models for classification or regression tasks
is to select features that contribute the most to the organization and separation of the
data. In doing so, the concept of entropy 

entropy ▷
 is leveraged, which measures the uncertainty

(or disorder) for an attribute, represented by random variable 𝑋, in a dataset 𝐷. The
entropy, first instroduced by Shannon (1948) and sometimes also called information, is
defined as
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D Η(𝑋) ≔ − ∑
𝑛

𝑖=1
𝑃(𝑥𝑖) · log 𝑃(𝑥𝑖) (61)

where 𝑛 is the number of values 𝑋 can take, i.e. 𝑛 = |𝑑𝑜𝑚(𝑋)|.

To understand the intuition behind entropy, it is best to explain the idea with a simple
coin example, where the correct prediction of the outcome of a coin toss results in a
win and the incorrect prediction leads to a loss of money, in this example, assume a
prize (or loss) of 1€ per toss. The theory behind entropy is then determining the value
of prior information about the outcome of the toss. Given a biased coin, which shows
Head in 99% of the tosses and Tail in only 1% (i.e. the random variable 𝑋 can take
two different values Head and Tail, with the respective probabilities 0.9 and 0.01), the
expected information per toss according to Equation 61 would be determined by cal-
culating

1.0€ · 0.99 − 1.0€ · 0.01 = 0.98€. (62)

In other words, since the coin toss almost always results in showing Head, the predic-
tion is very easy and will almost always be correct.

Given a fair coin that shows Head and Tail both in half of the cases, the calculation
amounts to

1.0€ · 0.5 − 1.0€ · 0.5 = 0.0€, (63)

which means no realiable prediction about the outcome can be made, making it not
a very useful source of information. Thus, the less information is provided regarding
the outcome, the greater the value of prior information about it becomes. This obser-
vation is then used to partition datasets in the learning process of prediction models.
By quantifying the impurity of a dataset allows to compare different partitionings of
the same dataset. The goal is to select a partition of the dataset in a way that minimizes
its expected entropy. Assuming that the selection of the attribute 𝑋 splits the original
dataset into 𝑛 subsets 𝐷𝑖, one for each of the values of 𝑋, then each of these subsets
has its own entropy Η(𝑋𝑖). The expected entropy of the data after the selection of the
attribute 𝑋 is then considered the weighted average (cmp. Quinlan (1986))

D 𝐸(Η(𝑋)) ≔ ∑
𝑛

𝑖=1
𝑃(𝑥𝑖) · Η(𝑋𝑖) (64)

and can be used to determine the information gain of a split at a particular attribute,
which is the reduction in entropy of a split compared to the variable’s entropy in the
dataset before the split (cmp. Quinlan (1986)):

D 𝐺(𝑋) ≔ Η(𝑋) − 𝐸(𝑋). (65)
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Another way of determining the best (discrete) split variable is calculating the Gini im-
purity (Jost 2006) for each attribute, which is 1 minus the sum of squares of success
probabilities of each of the attribute’s values

D 𝐺𝑖𝑛𝑖(𝑋) ≔ 1 − ∑
𝑛

𝑖=1
𝑃(𝑥𝑖)

2 (66)

and then choose the one with the lowest (i.e. closest to 0) score. Logically, the goal is
to reduce uncertainty in the data. Partitioning the datasets is typically applied in tree-
based methods, where the objective lies in constructing a tree structure representing a
hierarchical partitioning of the input space. They are composed of nodes (inner nodes
as well as leaves) and branches, which earned them the name. Tree-based models are
mainly separated into two groups:

Decision Trees (DTs) are used for classification tasks aiming at assigning instances to
predefined categories (or classes). Inner nodes in a DT represent decision criteria for
a certain feature, based on which the data is split. The leaf nodes represent the class
labels. The decision criterion is determined based on impurity measures, such as the
abovementioned information gain or the Gini impurity. These methods are used to find
the best attribute for splitting the data at the respective node, branching into 𝑛 subtrees,
where 𝑛 is the number of different values that particular attribute can take. The algo-
rithm therefore selects the attribute that maximizes information gain, leading to a more
organized and informative partitioning of the data. Given a feature assignment, one
can follow a path along the DT, starting at the root node, following the splits according
to the feature assignment and will then end up at a particular leaf node determining
the class for the input assignment. A well-known algorithm for constructing DTs is
Iterative Dichotomiser 3 (ID3) (Quinlan 1986), which iterates over all attributes of the
dataset and (greedily) selects the the one with the highest information gain. The data is
then split according to the values of the chosen attribute and the algorithm is executed
recursively on the created partitions. Its successor C4.5 (Quinlan 2014) adds the sup-
port for continuous feature variables (though the targets are still limited to categorical
rather than continuous variables), and allows missing attribute values.

Regression Trees (RTs) object to regression tasks, predicting a continuous numerical
value. Similar to DTs, the nodes represent conditions based on features, but the splitting
is typically binary, where one side matches the condition (e.g. 𝑋 ≤ 𝑥) and the other
does not. Learning algorithms search for the optimal threshold that maximizes infor-
mation gain. The leaf nodes represent predicted numerical values. The measures to de-
termine the best attribute and split point is chosen aiming at minimizing the prediction
error, such as the Mean Squared error (MSE).

Figure 14 shows an example of a tree for classifying robot instances based on only two
properties, the number of arms #𝑎𝑟𝑚𝑠 the robot possesses and the 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (in kilo-
grams) it can carry. While robot 𝑅1, in this example a small robotic dog, can be classified
directly based on its characteristic of not having arms (in the sense of robotic grippers),
the others require additional information for coming to a conclusion. 𝑅2 and 𝑅3 both
have a single arm, however, while one of them is very powerful such as an industrial
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robot, the other cannot carry heavy objects, hence it might be designed for precision
tasks rather than lifting payload. The same goes for the remaining 2-armed robots 𝑅4
and 𝑅5, where one might be a houshold robot designed to carry lightweight loads such
as food items or kitchen utensils, the other might be a humanoid designed for presen-
tation rather than executing physical tasks.

Example of a decision tree with two decision criteria #𝑎𝑟𝑚𝑠 and 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (in kilograms) to classify robot
instances | Figure 14

#arms

𝑅1 payload payload

𝑅2 𝑅3 𝑅4 𝑅5

0 1 2

≤ 5 ≥ 5 ≤ 5 ≥ 5

When constructing DT or RT models, certain stopping criteria are applied to govern the
properties of the resulting tree. Selecting unfavorable stopping criteria, the tree might
over-generalize or overfit, or simply be too large to be computed. Therefore one can
for example limit the depth of the constructed tree, the number of samples in a leaf
or achieve a certain level of purity in the splits. Still, the algorithms may create overly
complex trees that are prone to overfitting which can be addressed by pruning tech-
niques.

The Classification and Regression Trees (CART) algorithm (Breiman et al. 1984) recur-
sively splits the dataset in two subsets to purify the data (cmp. Algorithm 1). The func-
tion Same-Class(𝐷) returns true when all of the samples in the dataset 𝐷 are in the
same class. Is that the case, a leaf node is created (Create-Leaf(𝑐)) representing the
class label of the dataset. The function Determine-Class(𝐷) returns the class that
best describes the dataset, e.g. a majority vote (in case the class is not the same for all
instances in the dataset). Find-Best-Split(𝐷) returns a feature and a value of that fea-
ture that maximize the Gini impurity or the information gain, depending

◁ CART
 on whether

the feature variable is continuous or discrete. If no such best split feature exists, the
algorithm again halts and creates a leaf node with the respective representative class
label, otherwise a decision node is created for that feature using Create-Node(𝑠, 𝑣).
The recursion is then performed using the newly created data splits (Split(𝑠, 𝑣, 𝐷)).
The returned subtrees are then set as child nodes (Set-Children(𝑙, 𝑟, 𝑛𝑜𝑑𝑒)) for the
created decision node. The algorithm stops when some stopping criterion is met, such
as the minimum number of samples required per leaf or the maximum depth of the
generated tree.
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CART: The pseudoized algorithm for learning tree structures | Algorithm 1

CART(𝐷):

Input: 𝐷, a dataset

Output: a decision tree

1 if Same-Class(𝐷) then
2 return Create-Leaf(Determine-Class(𝐷))
3 end if
4
5 𝑏𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡, 𝑠𝑝𝑙𝑖𝑡_𝑣𝑎𝑙𝑢𝑒 ← Find-Best-Split(𝐷)
6 if not 𝑏𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 then
7 return Create-Leaf(Determine-Class(𝐷))
8 end if
9

10 𝑛𝑜𝑑𝑒 ← Create-Node(𝑏𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡, 𝑠𝑝𝑙𝑖𝑡_𝑣𝑎𝑙𝑢𝑒)
11 𝑙𝑒𝑓𝑡_𝑠𝑝𝑙𝑖𝑡, 𝑟𝑖𝑔ℎ𝑡_𝑠𝑝𝑙𝑖𝑡 ← Split(𝑏𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡, 𝑠𝑝𝑙𝑖𝑡_𝑣𝑎𝑙𝑢𝑒, 𝐷)
12 𝑙𝑒𝑓𝑡 ← CART(𝑙𝑒𝑓𝑡_𝑠𝑝𝑙𝑖𝑡)
13 𝑟𝑖𝑔ℎ𝑡 ← CART(𝑟𝑖𝑔ℎ𝑡_𝑠𝑝𝑙𝑖𝑡)
14 𝑛𝑜𝑑𝑒 ← Set-Children(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑛𝑜𝑑𝑒)
15
16 return 𝑛𝑜𝑑𝑒
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threeChapter

Scalable Probabilistic Hybrid
Models

This chapter introduces JPTs, an innovative approach designed to render the learning
and analysis of joint probability distributions feasible within real-world contexts. JPTs
offer comprehensive support for both symbolic and subsymbolic variables, seamlessly
integrated within a unified hybrid model. Unlike conventional methods, JPTs do not
necessitate a priori knowledge of variable interdependencies or specific distribution
families. Instead, JPT representations harness tree structures that effectively partition
the problem domain into pertinent subregions, a process derived from empirical train-
ing data rather than predetermined dependency assumptions.

The architecture of JPTs yields substantial benefits, as both the learning and reason-
ing processes exhibit linear scalability. The trees empower transparent insight into any
posterior probability 𝑃(𝑄|𝐸), enabling lucid explanations for all inference outcomes.
Demonstrative experiments underscore the pragmatic utility of JPTs in scenarios in-
volving high-dimensional, heterogeneous probability spaces, even when dealing with
millions of training instances. In light of this, JPTs emerge as a promising and viable
alternative to traditional probabilistic graphical models, bridging the gap between the-
ory and application.

In this chapter, the task of summarizing the fundamental insights presented by Pick-
lum et al. (2023) is approached. The aim here is to encapsulate the core of this work,
offering a concise yet illuminating overview of its main discoveries, research methods,
and ramifications. By revisiting the content of this significant work, the goal is to pro-
vide readers with a clear comprehension of the pivotal contributions that can have a
great impact on the landscape of this subject area.

The development of JPTs took place in collaboration with Daniel Nyga and Tom
Schierenbeck.
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3.1  Introduction to JPTs
Joint probability distributions offer a wide range of high-potential applications in en-
gineering, science, and technology (Chater, Tenenbaum, and Yuille 2006; Knill and
Pouget 2004). Besides families of continuous distributions, PGMs, such as BNs and
MRFs (Koller and Friedman 2009), are the de-facto standard in probabilistic knowl-
edge representation. They provide graph-based languages to model dependencies and
independencies of variables, and local joint or conditional distributions that quantify
the statistical dependencies. However, the practical applicability of PGMs suffers from
the representational and computational complexity of learning and reasoning. Expo-
nential runtime for learning and reasoning often can only be avoided by introducing
strong independence assumptions that must be known prior to learning and may turn
out to be too great simplifications of a model to be of practical use (Besag 1975; Jain
2012). As a simple example, consider a probability space ⟨𝑋, 𝑌 , 𝐶⟩ of two numeric
variables, 𝑋 and 𝑌 , and one symbolic variable 𝐶, 𝑑𝑜𝑚(𝐶) = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒} as illustrated
in Figures 15a) and b). Let the symbolic values Red and Blue demaracate two clusters
that are approximately normally distributed. Classic methods for density estimation
postulate a mathematical model and apply the maximum likelihood and expectation/
maximization principles in order to find the model parameters that fit the data best.
However, this learning process is expensive since the unconstrained parameter space
is huge and most learning methods do not exploit the structure of the training data and
their underlying distribution.

JPTs are model-free shallow deterministic probabilistic circuits and they exploit the
structure of the data to be learnt from in a greedy fashion in order to construct a tree
structure that partitions the problem space recursively into subspaces. In its leaves,
marginal distributions, 

JPTs and PCs ▷
represented by CDFs over all variables in the respective sub-

space are maintained, which can be superimposed in order to obtain a sound and glob-
ally consistent posterior belief. As opposed to most PGMs, dependencies among vari-
ables in JPTs do not need to be known at design time and only very mild assumptions
about models are required. Figure  15 d) shows such a tree structure that has been learnt
from the data in Figure  15 a), and the marginal distribution in Figure  15 c) shows in-
deed close resemblance to the ground truth distribution in Figure  15 a). JPTs allow the
computation of any posterior distribution in a transparent and explainable way, such
that the rationale for any inference result can be provided in a human-interpretable
form.

In the following, the concept of Joint Probability Trees as a novel framework for knowl-
edge representation and reasoning in probabilistic hybrid domains will be formally in-
troduced and algorithms for the learning of and reasoning about JPTs will be presented.
The concept of quantile-parameterized distributions is then adapted for the efficient
learning of univariate continuous distributions without prior assumptions about their
functional forms, and third, the performance of JPTs is investigated and showcased
empirically (by courtesy of Tom Schierenbeck) on publicly available datasets.
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Example of a joint probability distribution of two numeric variables (𝑋, 𝑌 ) and one symbolic variable
(color). Enlarged versions of the figures can be found in the supplementary material. | Figure  15

The ground truth distribution | a) Scatterplot of the sample data | b)

The marginal 𝑃(𝑋, 𝑌 )
represented by the JPT in d) | c)

The tree structure of the
corresponding JPT | d)

3.2  Conceptual Framework
In this section, the concept of JPTs is introduced more formally. Let us denote the 𝐷
-dimensional problem space under consideration as 𝑋 = ⟨𝑋1, …, 𝑋𝐷⟩, where 𝑋 is a
vector of random variables 𝑋𝑖, whose domains are denoted by 𝑑𝑜𝑚(𝑋𝑖). The set of
possible worlds, i.e. all possible complete variable assignments, is denoted by 𝒳, and
a specific assignment to all variables in 𝑋, by 𝑥 = ⟨𝑥1, …, 𝑥𝐷⟩, where 𝑥 ∈ 𝒳. As a rep-
resentational formalism, JPTs make use of tree-like structures like classification and
regression trees (Breiman, Friedman, Olshen, and Stone 1984). Trees have a couple of
desirable properties that put themselves forward to be used as a knowledge represen-
tation formalism. Most notably, they (1) are simple to understand and interpret, (2)
can be thought of as white box models that foster explainable decision making, (3) are
compact and sparse representations that allow efficient learning and reasoning. These
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features are leveraged through the model structures implementing a recursive partition
of the problem space under consideration. Let 𝑇 : 𝒳 ↦ Λ be a tree-like structure that
associates an input sample 𝑥 ∈ 𝒳 with one of its leaves Λ = {𝜆1, …, 𝜆𝑁}. The recursive
partitioning through a tree structure guarantees that 𝑇  is exhaustive and mutually ex-
clusive.

As a consequence, the result of the application of 𝑇 , 𝑇 (𝑥), can be treated as a random
variable that indicates which leaf 𝜆 an arbitrary sample 𝑥 will be associated with. An
auxiliary variable 𝐿, 𝑑𝑜𝑚(𝐿) = Λ is thus introduced, that extends the problem space 𝑋
by 𝐿 and hence forms a new probability space 𝑋′ = ⟨𝑋, 𝐿⟩. Applying the law of total
probability, one can marginalize the prior probabilities of 𝑋 over 𝑋′ by

𝑃(𝑋 = 𝑥) = ∑
𝜆∈Λ

𝑃(𝑋|𝐿 = 𝜆) · 𝑃 (𝐿 = 𝜆). (67)

The leaf priors 𝑃(𝐿 = 𝜆) can be easily obtained from the portions of training data that
are covered by the respective leaf during training and can be permanently stored in the
leaf data structure. The leaf-conditional distributions 𝑃(𝑋1, …, 𝑋𝐷|𝐿 = 𝜆), however,
are more difficult to represent as they still comprise the joint distributions over 𝑋. Here,
the naïve Bayes assumption that postulates conditional independence among all 𝑋𝑖 is
introduced, once 𝐿 is known. This assumption is reasonable as the leaves in 𝑇  represent
contiguous subregions in 𝒳 that are formed during learning by minimizing the mutual
information of variables (or maximizing information gain, respectively), which can be
proven equivalent to statistical dependence (Murphy 2022). Assuming independence
of variables in the leaf nodes in turn allows to represent the priors over 𝑋𝑖 conditioned
by the respective subspace in every leaf node of 𝑇  in an extremely compact way:

𝑃(𝑋 = 𝑥) = ∑
𝜆∈Λ

𝑃(𝐿 = 𝜆) ∏
𝑖

𝑃(𝑋𝑖 = 𝑥𝑖|𝐿 = 𝜆). (68)

Equation 68 is called the JPT distribution, which can be used in order to compute the
marginal probability of a possible world 𝑥 ∈ 𝒳. It can be regarded as a mixture model,
whose mixing coefficients are represented by the leaf priors, and the local distributions
are given by the priors in the respective leaves.

3.2.1  Reasoning in Joint Probability Trees
Computing the marginalization over the tree leaves in Equation 68 may seem like un-
necessary effort as, once 𝑥 is known, 𝜆 is fully determined by 𝑇 . However, mixing the
leaf distributions becomes inevitable if the values of only a fraction of variables 𝐸 ⊂
𝑋 are known in advance and the posterior probability of a subset 𝑄 ⊆ 𝑋, 𝑃(𝑄|𝐸),
needs to be computed. Extending Equation 68 to canonical posterior inference can be
achieved in a straightforward way by introducing background evidence to the JPT dis-
tribution:

𝑃(𝑞|𝑒) = ∑
𝜆∈Λ

𝑃(𝜆|𝑒) ∏
𝑖

𝑃(𝑞𝑖|𝜆, 𝑒𝑖), (69)
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where 𝑞 = ⟨𝑞1, …, 𝑞𝐷⟩ is a vector of values of the query variables and 𝑒 = ⟨𝑒1, …, 𝑒𝐷⟩
is a vector of constraints 𝑒𝑖 for the variables 𝑋𝑖. Note that, because of the naïve Bayes
assumption, 𝑞𝑖 only depends on the constraints on the respective same variable 𝑋𝑖, i.e.
𝑒𝑖, instead of the entire vector 𝑒. The most interesting part of the posterior in Equa-
tion 69 is the factor 𝑃(𝜆|𝑒), the probability that a sample satisfying the constraints 𝑒
will be associated with leaf 𝜆. While the pure leaf priors 𝑃(𝜆) can be obtained from
their associated data portions, the conditional 𝑃(𝜆|𝑒) is slightly more complex to com-
pute. However, the tree structure of 𝑇  can be exploited

◁ JPT tree
structure

 as an efficient approximation as
follows. According to Bayes’ theorem, 𝑃(𝜆|𝑒) ∝ 𝑃(𝑒|𝜆) · 𝑃 (𝜆) holds. The distribution
𝑃(𝐿|𝑒) can thus be computed by evaluating 𝑃(𝑒|𝜆) · 𝑃 (𝜆) for every 𝜆 and normalizing
the results to form a proper distribution. 𝑃(𝑒|𝜆) can in turn be factorized according
to ∏𝑖 𝑃(𝑒𝑖|𝜆) due to the conditional independence assumption, which corresponds to
the prior distributions stored in every leaf of 𝑇 . A significant performance gain can be
achieved by testing both 𝑞 and 𝑒 against the path conditions of every leaf 𝜆. If either
of the two violates a path condition, the entire subtree can be pruned for a specific rea-
soning problem.

3.2.2  Learning of Joint Probability Trees
In order to learn a JPT from data, a variant of the popular and well-known tree learn-
ing methods is proposed, which is introduced in this section. C4.5 (Quinlan 1993) and
CART (Breiman, Friedman, Olshen, and Stone 1984) are very successful variants of
induction algorithms for classification and regression trees. Essentially, a tree is being
built by splitting the input data into subsets constituting the input data for the succes-
sor children. The splitting consists of a variable or a variable/value pair that marks a
pivot position in the observable feature space optimizing some criterion of impurity
with respect to the split data sets. The split constitutes the root node of the tree and
the process is repeated on each of the child subsets recursively and terminates when
the impurity with respect to the target variables within a subset at a node is minimal
or when splitting no longer reduces the impurity. The result of the procedure is a tree
structure 𝑇 , whose inner nodes represent decision nodes at which a single input vector
𝑥 is evaluated according to the pivot variable attached to the respective node and the
subsequent child node to proceed with is determined by the value of that variable. If
the child node does not have any further children, a terminal node is reached in which
the predictive values of the target variables are stored, which constitutes the return
value 𝑇 (𝑥) of the tree. For a more detailed discussion of tree learning it is referred to 
Loh (2014).

Generative Learning · Ordinary classification and regression tree learning is defined
over dedicated feature (input) and target (output) variables of the problem space and
therefore it is also called a discriminative learning setting. In each node, the best pos-
sible split of the remaining data is looked for in the set of feature variables and their
domains, and every possible split is evaluated with respect to its potential to reduce the
impurity of the target variables. Although discriminative learning of JPTs is also pos-
sible, the focus here lies on the generative learning case. In contrast to discriminative
CART learning, in JPTs, the entire set of variables 𝑋 functions both as feature and as
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target variables. This means that in every decision node during the learning process,
the node impurity is evaluated with respect to all available variables 𝑋𝑖, and all vari-
ables 𝑋𝑖 are considered as potential split candidates.

As JPTs support both symbolic and numeric variables, a measure of impurity is needed
to account for this hybrid character of the model. Here, the difficulty arises that typical
error measures for numerical data, e.g. the MSE and impurity measures for symbolic
data, e.g. entropy, reside in different and incompatible value ranges. In order to har-
monize the two worlds of symbolic and subsymbolic impurity, a combined measure of
normalized, relative impurity improvement is proposed as follows. Following the defi-
nition in Equation 61, for a distribution over a symbolic random variable 𝑋, its entropy
is defined by 

𝐻(𝑃(𝑋)) = − ∑
𝑥∈ 𝑑𝑜𝑚(𝑋)

𝑃(𝑥) · log 𝑃(𝑥). (70)

In CART learning, a possible split is considered better the more it reduces the expected
entropy over the children induced by the split. As a multinomial variable has its highest
entropy in the uniform distribution, the entropy can be normalized with respect to the
maximal entropy a distribution of the same domain size can have, i.e., 𝐻(𝒰(𝑋)), where
𝒰(𝑋) denotes the uniform distribution over 𝑋. 

impurity
improvement

▷
The impurities of both numeric and

symbolic variables can be normalized through the percentage by which they would be
reduced by a split, which we denote as 𝐻rel(𝑃 (𝑋)) and 𝑀𝑆𝐸rel(𝑃 (𝑋)). The two mea-
sures of impurity improvement of symbolic and subsymbolic variables are combined
by a weighted average to form the total impurity improvement 𝐼  over a data set 𝒟 when
the split of the data is performed on the variable 𝑋𝑖,

𝐼(𝒟, 𝑋𝑖) =
|𝑋sym|
|𝑋|

∑
𝑋𝑗∈𝑋sym

𝐻rel(𝑃𝒟,𝑋𝑖
(𝑋𝑗))

+
|𝑋num|

|𝑋|
∑

𝑋𝑗∈𝑋num

𝑀𝑆𝐸rel(𝑃𝒟,𝑋𝑖
(𝑋𝑗)),

(71)

where 𝑋num and 𝑋sym denote the sets of numeric and symbolic variables in 𝑋, respec-
tively, and 𝑃𝒟,𝑋𝑖

(𝑋𝑗) denotes the distribution over 𝑋𝑗 induced by the data set 𝒟 when
split at variable 𝑋𝑖.

When the splitting criterion does not lead to an improvement of the impurity within a
node or some learning threshold is reached, a terminal node is generated by the learn-
ing algorithm. Terminal nodes in JPTs hold the marginal univariate distributions over
all variables in 𝑋 that can be induced by the data in the current node. In the next sec-
tion, it is discussed in greater detail how these distributions can be represented and
learnt efficiently.

Discriminative Learning · JPTs can also be learnt in a discriminative fashion. Dis-
criminative learning can be advantageous, when it is possible to commit to dedicated
sets of input and output variables. In such cases, the learning process can be more effi-
cient and the learnt model can be more compact and more accurate than its generative
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counterpart. The JPT learning algorithm reduces to ordinary CART learning, when the
set of variables is split into dedicated feature and target variables.

Structure Learning · In ordinary PGMs like Bayesian or Markov networks, learning
the structure of the graphs, i.e. the dependency model of the variables under consid-
eration, represents a difficult learning problem on its own. As most of the learning
methods in PGMs make strong assumptions about a fixed graphical model, learning
the network structure is typically a problem even harder than learning the model pa-
rameters alone (Koller and Friedman 2009). It is important to note that, in JPTs, the
model structure 𝑇  is elicited from the data distribution during the learning process and
thus 𝑇  encodes the dependencies among the variables. This entails two essential ben-
efits: First, no additional computational effort needs to be carried out in order to obtain
the graphical model, and second, no prior knowledge about the domain of discourse
must be incorporated prior to learning. In particular, in data mining and knowledge
discovery applications, this is a highly desirable property of a learning algorithm.

3.2.3  Example
Let us illustrate the concept of JPTs by means of the example already presented in the
Introduction, see Figure  15. The JPT that has been acquired from these data is shown
in Figure  15 d), an enlarged version of which can be found in the appendix (Figure 87).
Every leaf in the tree structure corresponds to one rectangular subregion in the parti-
tion of the problem space in Figure  15 b). Although the JPT learning does not make
any assumptions about the functional form of the distribution, the two clusters in the
distribution are represented reasonably well. Every leaf has also attached the prior dis-
tributions over all three variables in the respective subregion. Visualizations of the dis-
tributions are shown as CDF plots for the distributions over the two numeric variables
and as histograms for the distributions over the symbolic variable. For better readabil-
ity, an enlarged version of each of the images is put into the supplementary material
accompanying this document.

3.3  Learning & Reasoning in Continuous Domains
Committing oneself to a specific functional form of the PDF beforehand and hence to
its respective model-tailored learning procedures (e.g. a normal distribution with its
mean and covariance) as required by many state-of-the-art methods, may be subject
to misrepresent the underlying data. More complex models to represent more sophisti-
cated distributions, as provided by Gaussian Mixture Models or kernel-based methods
tackle this problem but typically require iterative methods like EM as they cannot be
optimized in a closed form.

3.3.1  Quantile-parameterized Distributions
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Keelin and Powley (2011) introduce the concept of quantile-Parameterized
Distributions (QPDs), which is adapted in this paper for the purpose of representing and
acquiring continuous univariate probability distributions. In QPDs, the CDF is repre-
sented and learned instead of the PDF. The CDF, in turn, is the integral over the PDF
and represents the 𝛾-quantile probabilities, 𝑃(𝑋 ≤ 𝑥𝛾), of the distribution. The prin-
cipal advantage of learning the CDF over learning the PDF is that any CDF can be
easily learnt from data as follows. Let 𝒟 = {𝑑1, …, 𝑑𝑁 | 𝑖 < 𝑗 ⇒ 𝑑𝑖 ≤ 𝑑𝑗} denote the
sorted, indexed set of 1-dimensional data samples from the continuous domain under
consideration. A dataset �̃� = {⟨𝑑𝑖, 𝛾𝑖⟩} can be constructed where 𝛾𝑖 = 1

|𝒟| |{𝑑 | 𝑑 ∈
𝒟, 𝑑 ≤ 𝑑𝑖}| = 𝑖

|𝒟|  is the 𝛾𝑖-quantile of the data set 𝒟. �̃� serves as training data for a
supervised regression task, the result of which corresponds to the CDF 𝐹(𝑥) of the
desired probability distribution. In principle, any regression model can be used to fit
and represent the CDF. In order to approximate the CDF of a distribution, the use of
Piecewise Linear Function (PLF) is proposed. 

piecewise
linear

functions

▷
A PLF 𝑓(𝑥) is a function defined on a fi-

nite number of intervals in ℝ, each of which has a linear function 𝑓𝑖 attached. The set
of intervals partition the domain of the function. The function value of 𝑓  at a particular
point 𝑥 is given by the value of the function 𝑓𝑖 whose attached interval encompasses 𝑥.

Samples (blue) drawn from a mixture of three Gaussian CDFs (green, log-likelihood of −640.18), the CDF
approximated by a PLF with 𝜀 = 0.05 (orange, log-likelihood of −685.91) and the CDFs approximated by
a PLF with 𝜀 = 0.01. (purple, log-likelihood of −624.49) The hinges of the PLF are marked by orange dots

and purple crosses. | Figure 16
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For several reasons the use of a PLF as a regressor of the CDF of a probability distrib-
ution is appealing.

1. the concatenation of linear functions is very general, so that a PLF is capable of ap-
proximating functions of arbitrary shape and precision, and thus the resulting CDF
can be considered free of model assumptions

2. computations, manipulations and interpretations are intuitive and simple
3. there are efficient algorithms to acquire PLFs, such as Multivariate Adaptive

Regression Spline (MARS) (Friedman 1991)
4. individual pieces can be learnt independently on partitions of the data and com-

posed afterwards to form the final distribution

Figure 16 shows an example of a mixture of three Gaussian distributions and the ap-
proximation of its CDF in the form of a PLF that has been acquired from samples
drawn. The figure shows that the PLF is not only similar to the CDF of the three Gauss-
ian distributions, but also competitive in terms of the likelihood.

CDF-Learn | Algorithm 2

CDF-Learn(�̃�):

Input: �̃� = {⟨𝑑𝑖, 𝛾𝑖⟩}:  a sorted set of 𝛾𝑖-quantiles

Output: a set of hinge points of a PLF

1 if  MSE(�̃�) < 𝜀  then
2 return ∅
3 end if
4 Determine �̃� = ⟨�̃�𝑖∗

1 , �̃�𝑖∗

2 ⟩, with �̃�𝑖∗

1 =
{𝑑1, …, 𝑑𝑖∗}, �̃�𝑖∗

2 = {𝑑𝑖∗ , …, 𝑑𝑁}  such that
𝑖∗ = arg min𝑖 𝔼(MSE(�̃�𝑖∗))

5 return {𝑖∗} ∪ CDF-Learn(�̃�𝑖∗

1 ) ∪ CDF-Learn(�̃�𝑖∗

2 )

3.3.2  Efficient Learning of Cumulative Distributions
In this section, an efficient algorithm for fitting CDFs in the form of PLFs is introduced.
It is based on recursive partitioning of the data set �̃� and inspired by regression tree
learning (Breiman, Friedman, Olshen, and Stone 1984). Starting with �̃�, a point <
𝑑𝑖∗ , 𝛾𝑖∗ >∈ �̃� is determined, which minimizes the MSE of a PLF of the form

𝑓(𝑑) = {
𝑓1(𝑑) if 𝑑1 ≤ 𝑑 ≤ 𝑑𝑖∗

𝑓2(𝑑) if 𝑑𝑖∗ ≤ 𝑑 ≤ 𝑑𝑁
, (72)

for all 𝑑 ∈ �̃�. This process is recursively repeated on the subsets �̃�1 = {𝑑1, …, 𝑑𝑖∗} and
�̃�2 = {𝑑𝑖∗ , …, 𝑑𝑁} until an error bound 𝜀 is being undercut. Note that, if 𝜀 = 0, the
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process will terminate when all points in �̃� have been selected as an optimal split point
once. In this case, the learnt PLF reaches the highest possible likelihood, where every
point is perfectly matched. The set of all points represents the interval boundaries of
the PLF. The CDF-Learn algorithm is listed in Algorithm 2. MSE(𝒟) determines a
function that returns the MSE of all points in 𝒟 applied to a linear function through
the minimal and maximal points in 𝒟. The CDF-Learn pass yields the hinge points
in 𝒟 that can be connected to form a linear spline of the CDF. The CDF is constantly
0 for all 𝑑 < min 𝒟 and constantly 1 for all 𝑑 ≥ max 𝒟.

3.3.3  Reasoning about Cumulative Distributions
A-priori Reasoning · In the previous section QPDs were introduced as a model-free
representation of probability distributions and the advantages of learning the respec-
tive CDF was outlined. Representing the CDF 𝐹  directly is advantageous over using the
PDF, as marginal probabilities 𝑃(𝑋 ≤ 𝑥0) and 𝑃(𝑋 > 𝑥0) can be obtained directly by
evaluating 𝐹  without the computationally expensive step of integrating the PDF. Prior
probabilities over intervals [𝑥𝑙, 𝑥𝑢] can be computed by 𝑃(𝑥𝑙 ≤ 𝑋 ≤ 𝑥𝑢) = 𝐹(𝑥𝑢) −
𝐹(𝑥𝑙).

A-posteriori Reasoning · The calculation of a posterior 𝑃(𝑋|𝑥𝑙 ≤ 𝑋 ≤ 𝑥𝑢) can be
implemented in a similarly straightforward fashion. By decomposing the piecewise lin-
ear CDFs according to the posteriors’ condition, the distribution now represents only
the required interval [𝑥𝑙, 𝑥𝑢]. Simply cropping and extracting a part of the function at
the interval boundaries would leave us with an invalid QPD, since in most cases it will
not represent probabilities ranging from 0.0 to 1.0. To normalize the distribution, the
cropped part of the function is shifted to the base axis and stretched such that the prop-
erties of a valid distribution function are restored, i.e. 𝐹(𝑥𝑙) and 𝐹(𝑥𝑢) will evaluate to
0.0 and 1.0, respectively.

Confidence-rated Output · In many practical applications, obtaining a mere predic-
tive value of a target variable is insufficient. Especially in safety-critical applications,
it is crucial that predictions can have a confidence value attached expressing their de-
pendability. For example, it is useful to report a confidence interval that encompasses
the expectation of a variable 𝑋, 𝔼(𝑋), with a certain probability – the confidence level.
In order to compute such a confidence interval [𝑥𝑙, 𝑥𝑢] given a confidence level 𝜗, the
inverse of the CDF, also called Percent Point Function (PPF) can be used,

𝐹−1(𝐹(𝔼(𝑋)) −
𝜗
2
) ≤ 𝔼(𝑋) ≤ 𝐹−1(𝐹(𝔼(𝑋)) +

𝜗
2
). (73)

In the case of PLFs, inverting the CDF is cheap and involves only the inversion of every
linear component of the CDF. In Section 3.4, an example of confidence-rated outputs
in JPTs is presented.
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3.3.4  Learning and Reasoning in Symbolic Domains
Probability distributions over symbolic variables are represented by histograms over
the domains of the respective variables. If a path from the root of the tree to a leaf node
contains a decision node constraining a symbolic variable, it is superfluous to store
prior distributions over the respective variables in the leaves of the respective subtree,
the impurity (entropy) of the variable is minimal already. In order to compute the leaf-
conditionals 𝑃(𝑞𝑖|Λ, 𝑒𝑖) in Equation 69 for all symbolic variables 𝑋𝑖, it is sufficient to
eliminate the inadmissible values of 𝑋𝑖 from the respective domain and re-normalize
the histogram distribution.

3.4  Experiments
In recent years, various approaches for representing and learning probability distribu-
tions have been proposed, each of which is based on a specific set of constraints and
assumptions (cf. Chapter 7). It is therefore difficult if not impossible to provide reason-
able and robust evaluation criteria for comparing the predictive performance of a joint
distribution learnt with different models.

Likelihood, on the one hand, is a well-known measure for a model’s ability to fit a data
set. However, computing the exact likelihood in most previous works strongly depends
on the model assumptions made and the preprocessing of the data sets. As – to the
best of our knowledge – JPTs are the first approach that allows for hybrid symbolic/
continuous model-free, joint probability distributions without prior assumptions, a di-
rect comparison with previous works (Gens and Domingos 2013; Dang, Vergari, and
Broeck 2020; Vergari et al. 2021) is difficult if not impossible.

Additionally, JPTs are evaluated by comparing their predictive performance with re-
spect to each variable in an experiment to a discriminative approach that has been
trained on the respective variable exclusively with the same representational complex-
ity (e.g. the number of samples in a leaf node). This is a relatively hard setup, because
the single JPT model is to compete with specialized discriminative models, which are
allowed to tailor their representational resources to one particular variable.

Iris Data Set · In a first experiment JPT are compared against CART using the Iris
dataset. In this machine learning benchmark problem, the goal is to learn to distin-
guish three different kinds of flowers. The data comes with four numerical features
and one symbolic variable. As a model parameter, the minimal number of samples in
a leaf node is set for both JPT and CART to 20% of the available data. The predictive
results obtained in a 10-fold cross validation are shown in Table 1. Although the single
JPT model needs to cover all five variables and one CART model was trained for each
of the variables, JPT significantly outperforms CART in every variable.

MNIST Data Set · Another popular dataset for ML model evaluation is known as  M-
NIST   (LeCun and Cortes 2010). This dataset contains images of the digits 0 to 9, as
written by various people. The images’ dimensions are 8 × 8 and have grayscale values
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in the range 0 − 255. Traditionally, the task in this dataset is to correctly assign one
of the labels 0 − 9 to every image in the collection, which is a discriminative problem
statement. In this experiment, it is demonstrated that JPTs can perform both discrimi-
native classification tasks and generative sample generation. The learnt JPT comprises
11 leaves, whose expectation over the 65 variables are shown in Figure 17. It can be
seen that the expected value over the pixel values reasonably matches the expectation
over the class labels. A visualization of the tree structure itself can be found in the ap-
pendix.

Iris data set: top: Mean Absolute Error (MAE) for the numeric variables in the Iris data set obtained from
JPT (left) and CART (right). Bottom: F-score of the symbolic variable in the Iris data set | Table 1

Num. Variable JPT (+/-) CART (+/-)

sepal length (cm) 0.281207 0.0571313 0.342762 0.0414057

sepal width (cm) 0.22864 0.0500534 0.277941 0.0726099

petal length (cm) 0.237465 0.0764522 0.311952 0.0919128

petal width (cm) 0.147048 0.0501356 0.155645 0.0468443

Sym. Variable JPT (+/-) CART (+/-)

species 0.967213 0.0530674 0.959016 0.0676142

Expectations 𝔼(𝑋1), …, 𝔼(𝑋64) over the probability distributions in the 11 leaf nodes of a learnt JPT (min-
imum 100 samples in each leaf). The clusters represented by the images in the leaf nodes reasonably match

the associated class labels, which are displayed above the respective images. | Figure 17

Regression · In this experiment, it is demonstrated that JPTs can be used to accurately
perform non-linear regression analyses, for which traditionally popular methods like
Ordinary Least Squares (OLS), RT, or neural network models are chosen. As ground
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truth regressor, the function 𝑓(𝑥) = 𝑥 sin 𝑥 is chosen, from which 1000 data points
were sampled uniformly distributed with additive Gaussian noise. Regression analysis
with joint distributions in JPTs can be achieved by evaluating the expected value of 𝑦
given the value of 𝑥, 𝔼(𝑦|𝑥, 𝜗), as an estimate of 𝑓(𝑥), where 𝜗 is a confidence level
that is used to calculate the confidence bounds of the answer as described in Section
Section 3.3.3. Figure 18 shows the ground thruth, the sampled training data, the JPT
prediciton as well as its upper and lower confidence bands. A quantitative comparison
to CART is shown in Table 2.

MAE for predictions in the regression experiment using JPT and CART with different learning parameters.
The column #samples contains the fraction of available data samples that need to be covered by every leaf

node. | Table 2

#samples JPT CART

20.00% 3.0041032 4.821578

10.00% 2.1888970 4.0494846

5.00% 1.6213786 2.3802814

2.00% 1.2783260 1.3080680

1.00% 0.7854674 0.9564107

Regression fitting the function 𝑓(𝑥) = 𝑥 sin 𝑥: The ground truth function 𝑓(𝑥) is shown in dotted gray,
the training samples with Gaussian noise as gray dots, the prediction 𝔼(𝑦 | 𝑥, 𝜗 = .95) given by the learnt
JPT in purple, and the yellow dashed lines represent the upper and lower percentiles of the prediction. |

Figure 18

67



Chapter three - Scalable Probabilistic Hybrid Models

Airline Departure Delay · JPTs can efficiently be learnt even with very large datasets.
As an example, the publicly available Airlines Departure Delay Prediction dataset pro-
vided by OpenML (Vanschoren et al. 2013) is used. This dataset is particularly of inter-
est, as it comprises 10 million instances each of which consists of 7 mixed-type feature
values (3 nominal, 4 numeric). There are no missing values in that dataset. The results
in Table 3 show that even though the JPT model represents all variables as opposed
to the specialized CART models each of which only represents one variable, the JPT
performs comparably well on all of the 7 variables and even outperforms the CART
models in three of them. This is remarkable, because it shows, that JPTs can compete
with specialized discriminative models.

Empirical Evaluation · An extensive evaluation of JPTs was conducted on eight pop-
ular datasets from the UCI machine learning repository (Dua and Graff 2017), in which
JPTs were learnt with different hyperparameters and determined the size of the result-
ing models as well as the likelihoods they achieve. As a hyperparameter for learning,
the minimum number of samples was varied in each leaf node to different portions of
the available training data to induce different levels of model complexity. The evalua-
tion has been conducted on test sets created by randomly sampling 10% of the data. The
experiments show that, with increasing complexity (i.e. decreasing minimum number
of samples per leaf), the achieved likelihood of the learnt models reliably increases sig-
nificantly both in the training set and in the test set. The detailed experimental results
are listed in Table 15 in the appendix. The rightmost column contains the number of
test samples with 0 likelihood. This typically happens in model-free distributions where
test samples may lie outside the convex hull of the training data and the CDF-Learn
algorithm assigns 0 probability mass to these regions.

Experimental results on the Airline dataset: MAE and deviations of the numeric variables of JPT and
CART (top) and F-score and deviation of the symbolic variables (bottom). | Table 3

Num. Variable JPT (+/-) CART (+/-)

DayOfWeek 1.89726 0.0118047 1.70767 0.00376937

CRSDepTime 144.518 0.615262 163.463 0.550986

Distance 293.35 2.82525 397.128 2.83425

CRSArrTime 139.678 0.825618 172.927 0.6609

Sym. Variable JPT (+/-) CART (+/-)

UniqueCarrier 0.178936 0.000313542 0.200474 0.000179531

Origin 0.0639007 3.28761e-05 0.0967244 1.47472e-05

Dest 0.0629808 1.9464e-05 0.0966721 1.41371e-05

3.5  Discussion
Joint probability distributions have great potential to serve as powerful problem-solv-
ing tools for machine learning applications. As opposed to most methods in the field
of ML, joint distributions do not rely on dedicated input and output variables but can
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be queried for any aspect contained in the model given any evidence. Most existing
methods, however, require strong assumptions that all variables are either symbolic
or numeric or that their distributions have the same functional form. This makes the
accompanying methods tailored to the specific densities. However, in many real-world
problems, the semantics of variables calls for support of heterogeneous modalities of
both numeric and categorical variables in a single model. JPTs meet this requirement
of hybrid symbolic and subsymbolic reasoning, which has also been identified as one of
the key demands of future AI applications (Marcus and Davis 2019). A further signifi-
cant advantage of JPTs over state-of-the-art PGMs is that JPTs 

◁ JPTs can represent
arbitrary
shapes of
distributions

do not rely on assump-
tions about dependencies or families of distributions at all. The variable dependencies
are represented by the model structure that is generated as a byproduct of the learn-
ing procedure and the use of piecewise linear functions to approximate the CDFs of
numeric variables allows highest flexibility with minimal model assumptions. The tree
structure itself consists of conjunctions of variable constraints, each of which describes
a specific subregion in the problem space. This makes the model structure interpretable
and understandable for humans, and, as a consequence, its allows transparent reason-
ing and more robust, more traceable, and more explainable decision making (Goebel et
al. 2018). The practical applicability of classic PGM is impeded by their representational
and computational complexity that the models typically imply. The inferential com-
plexity is #𝑃 -complete in the general case (Koller and Friedman 2009) and learning is
intractable since it involves inference. To circumvent these computational challenges,
strong assumptions about variable independence and approximate inference mecha-
nisms have to be adduced. In JPTs, inference is exact and can be performed in linear
time with respect to the model size, i.e. the number of leaves in the tree. In addition, it is
easy to limit the complexity of the model by, for instance, the computational resources
that are available. This makes JPTs extremely flexible, scalable and parallelizable. JPTs
are therefore shallow deterministic probablistic circuit, such that the circuit remains
tractable for MPE inference.

In summary, JPTs address a selection of properties of machine learning methods that
have been identified as pivotal challenges of AI and ML in the literature of recent years.
In this section, a selection thereof was reviewed and discussed in a qualitative manner,
in which way JPTs are capable of addressing these desiderata. For a more detailed dis-
cussion of activities and methods in a typical lifecycle of ML models refer to the survey
by Ashmore, Calinescu, and Paterson (2021).
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fourChapter

BayRoB - Bayesian Robotic
Brain

This chapter addresses the probability-theoretic approach behind the BayRoB system
and how belief states in autonomous agents can be represented as joint probability dis-
tributions. The general concept, incorporating JPTs as an efficient and powerful frame-
work and the opportunities this approach provides, are outlined in the following. The
presented concepts – along with their evaluation – constitute the key contributions of
this work.

Chapter 1 has already mentioned various capabilities a robotic agent that is supposed
to act in a realworld scenario has to have. In particular, a robot that is supposed to act
autonomously is required to make decisions on its own, as it is not possible to know all
possible scenarios the agent might face beforehand. It has to infer what objects are re-
quired to accomplish its task, where to find them and how to handle them which again
requires additional knowledge about how the world and all the things in it work. This
includes knowledge about physics (things fall to the ground when you let them go, liq-
uids flow downwards, stacked objects might tumble), about everyday regularities, often
referred to as common knowledge, (hot objects better be grasped by its handles if pre-
sent, perishables are typically stored in cool places such as fridges) and about specifics
of its immediate environment and the objects in it (the door of this fridge opens to the
left, the cupboard contains 3 plates and 2 cups). Now with – hypothetically – all this
knowledge present, an agent still has to make a reasonable decision in any situation
possible. But what is reasonable? Russell and Norvig (2010) describe good agent behav-
ior as rational behavior, that enables it to do the right thing. Rational behavior is of
course not something that is easily determined, as it depends on how a successful out-
come of a specific situation is defined and what knowledge, capabilities and percepts
the agent has at the time of the task execution.
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“ For each possible percept sequence, a rational agent should select an action that
is expected to maximize its performance measure, given the evidence provided by
the percept sequence and whatever built-in knowledge the agent has. ”–Russell and Norvig (2010)

This chapter is oriented towards this definition and the formal definition of rational
(robot) agent models provided by Russell and Norvig (2010) and Beetz and Nyga (2023),
to be equipped with the necessary terminology for the following conceptual framework.
The focus will lie on states and state transitions as they are the fundamental concepts
in terms of using joint probability distributions for making informed decisions.

4.1  A Rational Robotic Agent
In the context of rational robots, we perceive a robot agent designed to accomplish its
goals by engaging with its surroundings. This agent acquires information about its en-
vironment via sensors and uses physical actions to bring about changes in the environ-
ment’s state. The agent’s behavior is guided by a function that translates sensory input
and prior knowledge into actionable instructions for the robot. The decision-making
processes of robots and the consequences of their actions on the environment are con-
sidered an ongoing interaction between the robot and its operational setting. An inter-
action cycle of the agent with its environment looks like the one in Figure 19:

An interaction cycle can be formalized as described by (Beetz and Nyga 2023):

A set of symbols is used to represent various elements: 𝒪 (observations) for the robot’s
percepts, 𝒜 for the available robot actions, and 𝒳 for the states of the environment. The
interaction between the robot agent and the environment are structured around three
critical functions: the perceptual filter, the state transition and the agent function.

The perceptual filter, denoted as 𝑓𝑝 : 𝒳 ↦ 𝒪, embodies the robot agent’s perception ca-
pabilities. It takes the current state of the environment as input and maps it into the
space of potential observations. In practical scenarios, the environment can typically
only be observed partially, such that 𝑂 ≠ 𝑋. This occurs due to constraints on the ro-
bot’s sensor range and limitations through presence of occlusions, and the fact that
sensors only measure specific physical attributes of the world.

The state transition function, 𝑓𝑒 : 𝒳 × 𝒜 ↦ 𝒳, models how the robot agent’s actions
impact the environment. This function takes the environment state (𝑠) and an action
(𝑎) executed in that state, and produces the resulting environment state (𝑠′).

Now, how does the world evolve as the robot carries out sequences of actions? Let us
assume a clock generates a series of discrete timesteps, 𝑇 = {1, 2, …}, serving as time
indices. Running the robot’s perception-action loop generates a sequence of timesteps,
each corresponding to an environment state. This sequence represents the progression
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of the environment’s states. This sequence is denoted here as the function 𝑋𝑇 : 𝑇 ↦
𝒳, mapping each timestep to a specific environment state. Similarly, the robot agent’s
perceptual filter generates an observation trajectory, denoted as 𝑂𝑇 : 𝑇 ↦ 𝒪. Eventu-
ally, the agent function maps the information collected through observations up to a
given timestep 𝑡 into the action chosen for execution in the current cycle, 𝑓 : 𝒪𝑡 ↦ 𝒜.
Consequently, the agent function generates a sequence of actions that the robot agent
will execute over time, 𝐴𝑇 : 𝑇 ↦ 𝒜.

Observation-Action Selection-Execution interaction cycle: in each time step or iteration, an agent 1) ob-
serves the current environment state, 2) determines the subsequent action to undertake and 3) executes

the selected action with the intention of modifying the state of the environment. | Figure 19

Observation
Action
Selec-
tion

Execution

The robot’s interaction with its environment can therefore be denoted as a pair ⟨𝐴, 𝐸⟩,
where the environment 𝐸 is represented as a tuple ⟨𝑋, 𝑋0, 𝑓𝑒, 𝑓𝑝⟩, and the robot 𝐴 as
a tuple ⟨𝒪, 𝒜, 𝑓⟩, with the following conditions:

1. 𝑋𝑇 (0) = 𝑋0
2. 𝑋𝑇 (𝑡 + 1) = 𝑓𝑒(𝑋𝑇 (𝑡), 𝐴𝑇 (𝑡)), ∀𝑡 ∈ 𝑇 ,
3. 𝑂𝑇 (𝑡) = 𝑓𝑝(𝑋𝑇 (𝑡)), ∀𝑡 ∈ 𝑇 ,
4. 𝐴𝑇 (𝑡) = 𝑓(𝑂𝑡), ∀𝑡 ∈ 𝑇 .

In this representation, 𝒳 denotes the set of potential environment states with an initial
state 𝑋0, 𝒪 represents the set of observations and 𝒜 represents the set of feasible ac-
tions. Given a specific agent 𝐴 and an environment 𝐸, the state sequence generated by
the agent’s function 𝑓  in 𝐸 is referred to as the 𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑓, 𝐸).

The definitions above establish the formalization groundwork for the interaction be-
tween a robotic agent and its environment. However, something very important is
missing so far: the quality of the produced action sequence. An agent is typically tasked
with reaching certain goals, specifically certain changes in the environment, that are
desired by the instructor. It is hence required to introduce a performance measure, in-
dicating the quality or utility of a constructed action sequence: 𝑈 : 𝒳𝑇 ↦ ℝ+, where
𝒳𝑇 = {𝑋𝑇 | 𝑋𝑇 : 𝑇 ↦ 𝒳} stands for the set of all state sequences. It assigns a real-
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valued score to every possible state sequence. This allows to evaluate the performance
of the agent function in an environment 𝐸 by defining 𝑉𝑈(𝑓, 𝐸) = 𝑈(𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑓, 𝐸)).

In most cases, 𝑓𝑝 and 𝑓𝑒 are non-deterministic, as the real-world scenarios are typically
prone to uncertainty, which makes it impossible to fully observe the actual state of
the environment, rendering the prediction of certain action effects infeasible. A possi-
ble solution for this limitation is to use a distribution over the possible environments
instead. The performance would then be the expected utility of the environment pro-
duced by 𝑓 :

𝑉𝑈(𝑓, ℰ) = ∑
𝐸∈ℰ

𝑃(𝐸) · 𝑈(𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑓, 𝐸)) (74)

with 𝑃(𝐸) denoting the probability of the world being in state 𝐸.

Given the utility function 𝑈 , an objective metric for evaluating an agent’s decision
quality regarding desired task outcomes is provided. This allows the comparison of the
effectiveness of different agent functions and also helps to establish the concept of ra-
tionality. With 𝑉𝑈(𝑓, 𝐸) representing the expected outcome achieved by an agent func-
tion 𝑓  within a set of environments ℰ as per the utility function 𝑈 , an agent is said to be
ideal and rational if, for any given sequence of sensory inputs, it selects the action that
it expects to maximize its performance measure with, specifically, its agent function 𝑓∗

is defined as

𝑓∗ = arg max
𝑓

𝑉𝑈(𝑓, 𝐸). (75)

A robotic agent in the context of this work should not simply react to its sensory in-
put like a reflex agent (Russell and Norvig 2010) would, but take into account certain
knowledge it has about itself, the world in general and the objects in it. Only taking
current percepts into account when making decisions would not suffice, for various
reasons. Objects that are not visible through occlusion once the agent moves, would
not be included in its visual observations anymore and are therefore practically non-
existent to it despite being present and available. 

knowledge-
enabled robots

▷
The agent should remember where it

has seen objects and what changes it has caused in its environment so it can use that
knowledge later, if required. Beetz and Nyga (2023) call a robot agent knowledge-en-
abled if it is equipped with symbolic representations of the internal robot agent model
and can infer action sequences that are predicted to achieve a given goal. This necessi-
tates maintaining an internal world model, capturing all spatial relations between ob-
jects as well as their states, such as electronic devices being turned on or off, doors and
drawers being open or closed and so on. The representation of this model is key for an
agent making the right decisions.

4.2  Running Example
A simple household scenario will serve as a running example to illustrate the concepts
introduced so far. Consider a simple rectangular floorplan with the limits (“walls”) of
[0, 100] in both 𝑥 and 𝑦 direction, serving as the kitchen world a robot agent can move
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in, where the (𝑥, 𝑦)-coordinates on the kitchen floor represents the robots’ belief of its
own base position (𝑥𝑖𝑛, 𝑦𝑖𝑛). The agent can move to any position within the kitchen’s
boundaries that is not obstructed by an obstacle. The kitchen contains a number of
furniture items such as a kitchen_unit, a fridge, a stove, a kitchen_island and two
chairs. The kitchen unit contains two kitchen cabinets with doors to store different
kinds of items. Kitchenware such as cups and bowls are stored in the left cabinet, non-
perishable food items like cereal in the right one. A drawer below the left cabinet con-
tains cutlery. The fridge can be used to store perishable items as well as items that are
best served cold such as milk and beer. The stove on the right of the kitchen floor plan
can be used to cook and has another small cabinet for pots and pans. The three-piece
suite in the center of the kitchen is composed of the kitchen island, serving as a table,
and two chairs. Each of these furniture items are considered immovable and therefore
pose obstacles for the robot, that it needs to navigate around. The kitchen floor plan is
sketched in Figure 20.

The agent in our kitchen scenario has beliefs about itself and its environment. It can
track its own position, detect furniture items and objects, if it is close enough and its
view is not obstructed and it recognizes a collision with an obstacle or wall. It can
execute different actions, some of which have already been introduced before: The
agent can a) move a given distance into its current facing direction using the action
move_base, b) it can turn around a given angle using turn and it has c) perception ca-
pabilities that will be described in the following.

Overall, the state of the agent and its world is represented by the variables in Table 4.

The variables of the running example | Table 4

Variable Type Domain

𝑋𝑖𝑛 numeric [0, 100] ⊂ ℝ

𝑌𝑖𝑛 numeric [0, 100] ⊂ ℝ

Δ𝑝𝑜𝑠𝑥
numeric [−1, 1] ⊂ ℝ

Δ𝑝𝑜𝑠𝑦
numeric [−1, 1] ⊂ ℝ

𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑 boolean {⊤, ⊥}

𝑋𝐷𝑖𝑟𝑖𝑛 numeric [0, 100] ⊂ ℝ

𝑌𝐷𝑖𝑟𝑖𝑛 numeric [0, 100] ⊂ ℝ

𝐴𝑛𝑔𝑙𝑒 numeric [−45, 45] ⊂ ℝ

Δ𝑑𝑖𝑟𝑥
numeric [−1, 1] ⊂ ℝ

Δ𝑑𝑖𝑟𝑦
numeric [−1, 1] ⊂ ℝ

𝐷𝑎𝑦𝑡𝑖𝑚𝑒 multinomial
{morning, post-breakfast, pre-lunchtime,

lunchtime, post-lunchtime, pre-dinnertime,
dinnertime, post-dinnertime, night}

𝑂𝑝𝑒𝑛(⟨container⟩),
container ∈ {fridge_door,

cupboard_door_l, cupboard_door_r,
kitchen_unit_drawer, stove_door}

boolean {⊤, ⊥}
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𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩),
object ∈ {cup, cutlery, bowl,

sink, milk, beer,
cereal, stovetop, pot}

boolean {⊤, ⊥}

𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 multinomial
{kitchen_unit, fridge,
kitchen_island, chair1,

chair2, stove}

The continuous variables 𝑋𝑖𝑛 and 𝑌𝑖𝑛 as well as 𝑋𝐷𝑖𝑟𝑖𝑛 and 𝑌𝐷𝑖𝑟𝑖𝑛 represent the
agents’ position in the kitchen and its facing direction, respectively. The variables in-
dexed with out instead of in are the outcomes of the respective action executions
and will be discussed in more detail in the descriptions of the separate datasets be-
low. 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 is a multinomial variable and can take 9 different representing the dis-
crete times of day a kitchen is typically more or less heavily-frequented. Multiple vari-
ables are used to represent the boolean state of the storage places mentioned above,
i.e. whether the cutlery drawer, doors of the cabinets and fridge are open or closed
and whether a certain object is perceived. There exist separate boolean variables for
each possible value of container (for the variable 𝑂𝑝𝑒𝑛(⟨container⟩)) and object (for
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩)), which can be taken from Table 4.

Overview of the kitchen world | Figure 20

Note that the state of the detected variable for certain objects may be linked to the
state of the open variable for others, since items may not be visible by the agent
if they are in a closed cabinet or drawer. In the remainder of the document the no-
tation 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩) and 𝑂𝑝𝑒𝑛(⟨container⟩) will be treated as a placeholder for
listing all assignments of container and obj, for ease of readability. The discrete vari-
able 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 is an additional piece of semantic information that gives some
indication of the agent’s (symbolic) belief about its location. Its values contain the la-
bels of the 6 furniture items in the kitchen world. Lastly, the boolean variable 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑
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represents whether the agent has collided with either an obstacle or the kitchen walls
when executing the most recent move_forward action. In the case of a collision, its po-
sition remains the same, i.e. the action execution is considered unsuccessful.

Design Decisions
Spurious Correlations · Models trained with robot experience data sometimes repre-
sent aspects of the world that a human would interpret as false. This is not necessarily
a problem of the model but of the data it has been trained with. Datasets automatically
generated from robotic environments’ sensors typically include robot poses, perception
data, and other sensor outputs for only a limited number of experiments. Using the ex-
ample of a kitchen, the robot may not have explored most parts of the kitchen, resulting
in data being concentrated along certain paths connecting frequently visited furniture,
like the fridge and the kitchen island, or the kitchen unit and the kitchen island.

This type of data often includes numerous samples representing positive dependencies
between variables. For instance, it may indicate that the fridge door must be open for
the robot to view or retrieve items from it. However,

◁ causality vs.
correlation

 there is a risk of learning false
dependencies, such as “all other doors and drawers must be closed to see the milk” or
“the cup can only be detected if the cutlery is not detected,” simply because there are no
examples in the dataset proving otherwise. While there may be correlations between
the occurrences of events, there is not necessarily a causal relationship between them.
The observed effect is also related to the 

◁ frame problem
 frame problem, which arises from the fact that

merely specifying which conditions are altered by actions does not guarantee that all
other conditions remain unchanged.

To avoid learning these false dependencies, specific design decisions must be made to
ensure that the resulting model accurately reflects the intended representation of the
world. One could for example create separate models for each furniture item such that
the state of the other objects and items is not known to the model in the first place. One
could also try to generate samples for all possible variable combinations that could the-
oretically occur in real situations, which might be computationally infeasible, recalling
the computation of the count of potential worlds as discussed in the introduction. If
the learning algorithm allows it, one could manually define (in-)dependencies between
variables, introducing external knowledge not present in the data. Which strategy to
choose is highly dependent on the current problem to solve, the available data and is
typically subject to experimentation. It is hard to determine what are relevant depen-
dencies between variables and finding a solution to determine them automatically is
not solved within the context of this work. In our kitchen scenario, as a pragmatic so-
lution multiple strategies are deployed which are based on the background knowledge
about the nature of the experiment and therefore, the data.

General vs. Specialized Models · It is desirable to generate a model that allows an
agent to predict the outcome of its actions across various environments. Unfortunately,
more generalized models typically come with higher uncertainty which can be retained
to a certain extent by incorporating more datapoints covering diverse situations an
agent might encounter – of course at the expense of a heightened model complexity.
Generating the optimal model for a task therefore involves striking a balance among
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model parameters, quantity and quality of data points and desired generalization ca-
pabilities.

In this context, knowing the absolute positions of certain furniture items and objects
is crucial for the agent. Consequently, incorporating absolute positions into the model
becomes necessary, even though it complicates the model’s transferability to different
environments. One step towards a more generalized model, however, involves storing
starting positions as absolute coordinates and representing directions as normalized
vectors, while the outcomes of the move_base action (𝑥𝑜𝑢𝑡, 𝑦𝑜𝑢𝑡), as well as the results
of a turn (𝑥𝑑𝑖𝑟𝑜𝑢𝑡, 𝑦𝑑𝑖𝑟𝑜𝑢𝑡) are represented as delta values – the difference between the
agent’s updated position and its previous location, or the new facing direction after a
turn and the previous one, respectively. This allows to generalize over the outcomes of
unobstructed movements but still represent collision-prone locations.

Direction update for generating turn data points given an initial direction vector of (1, 0) and the turn
parameter angle = −45°. For simulating uncertainties in robot movements due to inaccuracies in the ac-
tuators, some noise is added to the angle factor, i.e. the direction will not be exactly, but ≈ (0.7, 0.7) |

Figure 21

turn Dataset
The data for the turn model contains data points representing the agent’s rotation
around different angles. The turn action of the agent will only update its facing direc-
tion, its position is left untouched. In particular, a rotation without a move forward will
never trigger a collision, even if the robot’s position is right at the edge of an obstacle
or wall. Since the facing direction is position-independent, the dataset contains only
vectors with values of the variables

𝑋𝐷𝑖𝑟𝑖𝑛 × 𝑌𝐷𝑖𝑟𝑖𝑛 × 𝐴𝑛𝑔𝑙𝑒 × Δ𝑑𝑖𝑟𝑥
× Δ𝑑𝑖𝑟𝑦 (76)

as data points, i.e. the (absolute) facing direction before executing the turn action, the
action parameter 𝑎𝑛𝑔𝑙𝑒 and the delta to the facing direction after the update.
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The agent should be able to know, from an arbitrary facing direction, what its new
facing direction would be after rotating around a given angle. This would require to
generate samples for any combination of facing direction and angle. To approximate
this, the data for the turn model is generated by uniformly sampling initial directions
(𝑋𝐷𝑖𝑟'𝑖𝑛, 𝑌𝐷𝑖𝑟'𝑖𝑛) along with (also uniformly sampled) angles between [−45, 45] de-
grees, each of which then represents one data point. The range of [−45, 45] is here set
to be the range the agent might be able to turn in a single action. A wider angle can
be reached by carrying out multiple turn actions consecutively. Some Gaussian noise
(𝜎 = 0.01) is added to the input angle to account for inaccuracies in the robots motor
activity. The new facing direction is then calculated by multiplying (𝑋𝐷𝑖𝑟'𝑖𝑛, 𝑌𝐷𝑖𝑟'𝑖𝑛)
with the rotation matrix:

⎣
⎢⎡

Δ𝑑𝑖𝑟'𝑥

Δ𝑑𝑖𝑟'𝑦⎦
⎥⎤ = [

cos(𝜃)
sin(𝜃)

− sin(𝜃)
cos(𝜃)

][
𝑋𝐷𝑖𝑟'𝑖𝑛
𝑌𝐷𝑖𝑟'𝑖𝑛

]

= [
𝑋𝐷𝑖𝑟'𝑖𝑛 · cos(𝜃) − 𝑌𝐷𝑖𝑟'𝑖𝑛 · sin(𝜃)
𝑋𝐷𝑖𝑟'𝑖𝑛 · sin(𝜃) + 𝑌𝐷𝑖𝑟'𝑖𝑛 · cos(𝜃)

]

(77)

with 𝜃 being the (radian) angle to rotate.

As mentioned before, a data point consists of the initial facing direction, the angle as
the action parameter and the Δdir as the difference between the new facing direction
and the initial facing direction, i.e.

Δdir =
⎣
⎢⎡

Δ𝑑𝑖𝑟𝑥

Δ𝑑𝑖𝑟𝑦⎦
⎥⎤ =

⎣
⎢⎡

Δ𝑑𝑖𝑟'𝑥

Δ𝑑𝑖𝑟'𝑦⎦
⎥⎤ − [

𝑋𝐷𝑖𝑟𝑖𝑛
𝑌𝐷𝑖𝑟𝑖𝑛

] (78)

The dataset contains 35,000 data points.

The ground truth data for the kitchen scenario | Figure 22
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move_base Dataset
The process of generating the data points employs a systematic approach to capture the
diversity of spatial scenarios. The data for the move_base model is shown in Figure 22
and is used to train a model that can predict, for any obstacle-free position on the floor
plan, and preferably for as many facing directions as possible, where the the agent will
be located after making one step forward. It is therefore required to sample fine-meshed
positions over the entire kitchen space. For each of those positions, the robot might face
in different directions and for each of those, the robot is supposed to have some idea
what lies ahead of it. First, 10.000 positions (𝑋𝑖𝑛, 𝑌𝑖𝑛) uniformly distributed across the
entirety of the kitchen area (i.e. the 100 × 100 floor plan) are sampled. Next, an addi-
tional layer of variation is introduced by randomly sampling 360 facing directions for
each of these positions. These vectors allow us to explore the full range of orientations
from each position. The new positions are computed by propelling forward from the
original sampled position into the respective direction. To emulate the inherent uncer-
tainties in real-world scenarios, a parameterized distance (or step size) is incorporated.
Furthermore, to account for potential motor inaccuracies or uncertainties, a touch of
randomness is introduced by adding Gaussian noise to the distance. This meticulous
process ensures that our generated data points not only cover the spatial area compre-
hensively but also encapsulate the unpredictabilities encountered in practical settings.

Each datapoint consists of a vector of 7 values

𝑋𝑖𝑛 × 𝑌𝑖𝑛 × 𝑋𝐷𝑖𝑟𝑖𝑛 × 𝑌𝐷𝑖𝑟𝑖𝑛 × Δ𝑝𝑜𝑠𝑥
× Δ𝑝𝑜𝑠𝑦

× 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑 (79)

i.e. the position of the agent before executing the move action, its current facing direc-
tion, its delta to the new position after the action execution, and its detection whether
a collision has occurred. From the position and direction, the rotations are calculated
using Equation 77. From each of the position-direction combinations a data point is
generated by determining the new position through the calculation

⎣
⎢⎡

Δ𝑝𝑜𝑠'𝑥

Δ𝑝𝑜𝑠'𝑦⎦
⎥⎤ = [

𝑋𝑖𝑛 + 𝑋𝐷𝑖𝑟𝑖𝑛 · distance
𝑌𝑖𝑛 + 𝑌𝐷𝑖𝑟𝑖𝑛 · distance

] (80)

with distance ≈ 1, see Figure  23.

Analogously to the Δdir in the turn dataset, the position Δpos is determined by sub-
tracting the starting position from the position after the move_base action:

Δpos = [
𝑥𝑜𝑢𝑡
𝑦𝑜𝑢𝑡

] = [
𝑥'𝑜𝑢𝑡

𝑦'𝑜𝑢𝑡
] − [

𝑥𝑖𝑛
𝑦𝑖𝑛

] (81)

Now all vector values for the move_base data point representation (79) have been de-
fined an the data point is generated. Following this strategy, the dataset contains 100 ∗
100 ∗ 360 = 3,600,000 data points. Note that for all initial positions that either lie close
to a wall with a facing direction towards the wall or within an obstacle, a collision oc-
curs. In that case, the deltas are represented by 0 mean Gaussian noise to account for
minimal position updates caused by vibrations as an effect of the collision. Figure 22
shows a plot of the ground truth data used for training the move_base model.
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Position update for generating move_base data points given an initial position (0, 0) and distance = 1. Sim-
ilarly to the angle parameter in turn, noise is added to the distance factor, i.e. the position after the update

will be ≈ (1, 0) | Figure  23

Position: (0, 0), Direction: (1, 0) | a)

Position: ≈ (1, 0), Direction: (1, 0) | b)

perception Dataset
The dataset is generated by sampling positions around the obstacles in the kitchen and
collecting information about the perceptions of the agent, in particular, the state of the
environment, e.g. what objects are visible from the current position, which containers
are open or closed and what time of day it is. The perception model joins all these
information in a joint distribution over the variables:

𝑋𝑖𝑛

× 𝑌𝑖𝑛

× 𝑋𝐷𝑖𝑟𝑖𝑛

× 𝑌𝐷𝑖𝑟𝑖𝑛

× 𝐷𝑎𝑦𝑡𝑖𝑚𝑒
× 𝑂𝑝𝑒𝑛(⟨container⟩)
× 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩)
× 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒

(82)

In the sampling procedure for this action model, two distinct sets of samples are gath-
ered, each contributing unique insights to the data collection. In both sets, the variable
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𝐷𝑎𝑦𝑡𝑖𝑚𝑒 is sampled uniformly and the variable 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 is set to the re-
spective furniture around which the position was sampled.

In the first set, positions near furniture items are strategically sampled, specifically sit-
uating the robot in scenarios where it is facing the furniture item and can overlook its
surface. To simulate real-world conditions, doors and drawers remain predominantly
closed, limiting the robot’s vision to the exterior. However, in a select few instances,
doors or drawers may be opened only when the agent is in close proximity. This set of
samples primarily captures the robot’s perspective of obstacles and potential objects in
direct line of sight.

Conversely, the second set employs a different strategy and focuses on the visibility of
objects stored in cabinets and drawers, with samples drawn from Gaussian distribu-
tions around specific locations. These locations are intentionally varied from those in
the first set and are constrained to those from where the interior of cabinets or drawers
can be visually accessed by the robot. Depending on the time of day and the robot’s po-
sition, items within the furniture can be detected in these samples. The key distinction
lies therefore in the proportion of the state of the 𝑂𝑝𝑒𝑛(⟨container⟩) variable, which
is more frequently set to ⊤ in the second set. The respective outliers in the two sets,
however, soften the bias in terms of false dependencies mentioned earlier of the learnt
model.

The ground data for the perception model contains data points with positions sampled around the obsta-
cles, plus additional data sampled from areas in front of the furniture containing containers. Number 1
marks the positions from which an agent can open the drawer of the kitchen unit and can see its contents.
Numbers 2 and 3 mark the positions for the left and right cabinets of the kitchen unit, respectively. Num-

ber 4 and 5 mark the positions for opening the doors of the fridge and the stove. | Figure 24

Depending on the value of the time of day, some objects may be located at different
positions, e.g. on the kitchen island (when the table is set for breakfast). They are there-
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fore only visible to the robot when certain criteria are met. Below are some of the rules
representing the value of the variable 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩):

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩) ⇔ object ∈ {cup, cutlery, bowl, milk, cereal}
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_island
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = morning

∨ object = milk
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = fridge
∧ 𝑂𝑝𝑒𝑛(fridge_door) = ⊤
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 ≠ morning

∨ object ∈ {cup, bowl}
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_unit
∧ 𝑂𝑝𝑒𝑛(cupboard_door_left) = ⊤
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 ≠ morning

⋮
∨ …

⋮
∨ object = sink

∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_unit
∨ object = beer

∧ (𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_island
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = night
∨ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = stove)

∨ object = stove_top
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = stove

∨ object = pot
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = stove
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 ∈ {pre-lunchtime, pre-dinnertime}

∨ object = pot
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_island
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 ∈ {lunchtime, dinnertime}

∨ object = pot
∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_unit
∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 ∈ {post-lunchtime, post-dinnertime}

(83)

The two sets of samples are aggregated eventually to form the full training data for the
perception model. The generated dataset then contains about 772 examples and can
be seen in Figure 24, where the positions from which furniture doors and drawers can
be reached are numbered.
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Having introduced the simplified world an exemplary agent can act in, one can now
consider probabilistic hybrid action models as means to make probabilistic statements
about how an action execution impacts the agent’s belief state.

4.3  Robotic Belief States as Joint Distributions
As terms like world model, state or belief may have different meanings (at least regard-
ing the practical implementation) dependent on the context they occur in, this section
will briefly explain how they should be interpreted in the context of this work. A world
model in the context of robotic agents typically refers to a representation that the agent
constructs to understand and make predictions about its environment. It compasses
various aspects of the robot’s perception and knowledge about the world, including the
state of the environment, objects, entities, and their interactions.

The initial distribution 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛) as heatmap and 3D surface views. The heatmap shows some light
patches around areas with furnitures, indicating low-probability positions. The 3D-view highlights the

difference between low and high probability positions | Figure  25

The heatmap | a) The 3D-view | b)

An integral element within a world model is what is often referred to as the belief state.
Belief states are often represented as sets of statements a robotic agent believes to be
true about the surrounding world and serve as a probabilistic or uncertain portrayal
of the robot’s existing comprehension of its environment. It integrates data obtained
from a range of sensors, prior knowledge, and observations to gauge the current condi-
tion of the world. This belief state generally encompasses details about object locations
and attributes, the robot’s own state, as well as any pertinent information essential for
decision-making purposes. The belief state remains in a constant state of transition,
capable of being modified as the robot accumulates new sensory information and car-
ries out actions. It plays a significant role in the decision-making process, as the robot
leverages its belief state to reason about the prospected outcomes of various actions and
ultimately make informed decisions grounded in its understanding of the world. Belief
states can be modeled as probability distributions to account for the agent’s uncertainty
about the current state of the environment.
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When examining certain aspects of the world, it is natural to find them in either sym-
bolic or subsymbolic forms. A useful world model should closely reflect the natural
representation of these aspects. For instance, when deciding whether to employ the
left or right gripper of a robot for a specific task, it is logical to depict the grippers as
categorical values of a symbolic variable, just as with object categories. The success or
failure of an action can, arguably, be represented as a boolean variable, unless it serves
as a more elaborate performance metric rather than a simple yes/no decision, in which
case a subsymbolic representation might suffice. Parameters like robot and object po-
sitions, container fill levels, and temperatures often span continuous domains and are
best represented using subsymbolic variables. In non-(or semi-)hybrid systems, contin-
uous variables are at times discretized for ease of handling. Additionally, simplifying
assumptions are frequently adopted, often assuming that features follow Gaussian dis-
tributions when more complex and differently shaped distributions cannot be managed
without appropriate tools. In rare cases categorical values are assigned to ranges of nu-
meric values to allow interpreting them in subsymbolic domains. Interpreting symbolic
values as numbers, however, is semantically meaningful only if there exists some de-
fined order among the values of the symbolic variable, while discretizing a continuous
variable may overly simplify the domain. Converting variables from one domain into
another or introducing simplifying assumptions is typically a pragmatic choice driven
by the absence of systems that are capable of handling truly hybrid domains. Neverthe-
less, such choices often lead to a decrease in accuracy, as these changes may not reflect
the real-world conditions. There is a genuine need for hybrid models that can represent
both symbolic and subsymbolic variables to mirror these conditions appropriately.

4.4  Action Models as Joint Distributions
Chapter 3 has already outlined the advantages and capabilities of using JPTs such that it
is now straightforward to employ them to effectively represent an agent’s belief state, as
we have established a method for compactly and computably representing joint prob-
ability distributions over the environment, actions and the agent itself. The belief state
in BayRoB is represented as a joint distribution over all possible non-delta and non-
parameter variables:

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛, 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑, 𝐷𝑎𝑦𝑡𝑖𝑚𝑒,
𝑂𝑝𝑒𝑛(⟨container⟩), 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩), 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒),

(84)

i.e. the agent’s state is defined by its position and orientation in the kitchen environ-
ment as well as the state of the furniture elements and objects in the kitchen. The
move_base, turn and perception actions can alter subsets of these variables and there-
fore influence the agent’s state. The move_base action model is represented as a joint
distribution

𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

, 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑 | 𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛), (85)

the turn action model as
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𝑃(Δ𝑑𝑖𝑟𝑥
, Δ𝑑𝑖𝑟𝑦

| 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛, 𝐴𝑛𝑔𝑙𝑒) (86)

and the perception model as

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛, 𝐷𝑎𝑦𝑡𝑖𝑚𝑒, 𝑂𝑝𝑒𝑛(⟨container⟩),
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩), 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒).

(87)

The learnt distribution over the (absolute) positions for the move_base action in Figure
 25 a) and b) gives an idea of the kitchen floorplan with some of the non-walkable areas
(e.g. at the top edge) being lighter colored due to missing information about (𝑥𝑖𝑛, 𝑦𝑖𝑛)
positions, since most part of that area is covered by obstacles (kitchen unit and fridge).

The perception model allows to ask complex things like “If I detected a milk container
and it is currently early in the morning, where will I most likely be located?”. Figures 28
a) to b) show that given the information that the agent has detected milk, its belief
about its current position is updated dependent on the time of day. While it is most
likely to come across a milk container on the kitchen island in the morning, where the
breakfast table is typically set, it is not likely to find it there during night time. At night,
it is much more likely to find it stored in the fridge to keep it cool. This model links
the inherent robot state such as its position and facing direction with the world, i.e. it
stores information about the agent’s spatial relation to (visible) objects and furniture
as well as environment conditions (time of day).

4.4.1  Action Intelligence in BayRoB
When learning models to represent some aspects of the world in the context of machine
learning, one typically thinks in terms of query and evidence, i.e. of variables that are
parameters to be set and variables that determine an outcome depending on these para-
meters. When performing inference tasks on a trained model, one is typically interested
in asking two different questions as pictured in Figure 26. The forward question to the
model is to anticipate an outcome of a certain parameter setting. In our case of action
models this would correlate to asking questions such as: “If I determined my current
position to be at (𝑥, 𝑦) facing right and I moved forward 3 steps, at which position will
I most likely end up?”

The parameter variables are applied to the model to determine the value of the query
variables. However, in many cases the backward question is much more interesting,
i.e. asking for a state of the world, that led to the current situation, or in our setting:
“If I am currently at (𝑥, 𝑦) facing right and I want to end up at a position, where I can
detect (and therefore possibly grab) milk, what do I have to do?” This inquiry revolves
around generating a specific outcome in the world, and the objective is to identify an
appropriate parameter configuration to achieve that desired result. Essentially, this task
can be viewed as the reverse application of a model. When constructing such models,
certain considerations come into play. Firstly, not all inference algorithms may facili-
tate reverse inference. Given a function 𝑓(𝑥), it is not always mathematically feasible
to have a corresponding function 𝐹 ≔ 𝑓−1. Secondly, it is essential to predefine which
variables are designated as evidence or parameters and which ones are considered
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query variables, while the primary interest lies in the capability to query the model with
any desired question. Whether it involves observing an entity like milk or engaging in
a specific activity, such as being at or reaching a particular location, every variable in
the model should function as both a query and a evidence variable simultaneously, de-
pending on the context.

The forward-backward queries in JPTs: Querying in the forward direction of a JPT (apply), returns the
predicted outcome of a certain parameter setting, while the backward (reverse) direction returns a set of

parameter-value mappings that most likely produce a certain outcome, when applied. | Figure 26
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Action models and belief states in BayRoB are joint distributions incorporating JPTs,
which do exactly that: allowing to formulate any kind of question formulated as a query
in terms of an arbitrary variable combination given another arbitrary variable-value
assignment as evidence. A conditional JPT is generated by the pseudoized algorithm
depicted in Algorithm 3.

The Conditional-JPT algorithm takes a variable assignment 𝑒 and a JPT 𝑡 as inputs.
Probabilistically, it computes the conditional probability 𝑃(𝑥|𝑒), where 𝑥 represents the
variables in 𝑡 that are not part of 𝑒. If 𝑒 cannot be satisfied by 𝑡, the algorithm returns an
error. The algorithm iterates over a list of nodes, which initially only contains the root
node of

◁ conditional JPT
 (the copy of) 𝑡. If the current node is a decision node, it is removed if it does

not have any children (e.g. due to pruning in an earlier iteration) or its two children are
inserted into the node list to be processed in later iterations. If the node contains only
one child node, the algorithm continues to avoid processing them multiple times. If the
current node is a leaf node, the probability of the node given the evidence is calculated.
If the probability is 0, the node is inconsistent with the evidence and therefore removed
from the tree, otherwise the priors are recalculated and the algorithm moves on to the
next iteration. After pruning all inconistent nodes and updating the prior distributions,
the probability mass of the entire tree is computed. If the calculation fails, the evidence
is considered unsatisfiable by the tree, resulting in an error. Otherwise, the overall dis-
tributions of the tree are determined and the tree is returned, projecting only the nodes
consistent with the evidence.

The algorithm incorporates the execution of a number of functions that are not out-
lined as pseudo-code, but will be briefly explained in the following.
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Conditional-JPT: The algorithm to apply evidence on a JPT and get a new JPT that represents
𝑃(𝑥|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒). | Algorithm 3

Conditional-JPT(𝑒, 𝑡):

Input: 𝑒, a variable assignment, mapping variables to their observed
values
𝑡, a JPT

Output: a JPT representing 𝑃(𝑥|𝑒) with 𝑥 = Variables(𝑡) \ 𝑒 or an
Error, if the evidence is unsatisfiable

1 𝑡_ ← Copy(𝑡)
2 𝑓𝑟𝑖𝑛𝑔𝑒 ← Insert(𝑡_.root, 𝑓𝑟𝑖𝑛𝑔𝑒)
3
4 while not Empty(𝑓𝑟𝑖𝑛𝑔𝑒) do
5 𝑛𝑜𝑑𝑒 ← Remove-First(𝑓𝑟𝑖𝑛𝑔𝑒)
6 if is-Decision-Node(𝑛𝑜𝑑𝑒) then
7 if not Has-Children(𝑛𝑜𝑑𝑒) then
8 𝑡_ ← Remove-From-Tree(𝑛𝑜𝑑𝑒, 𝑡_)
9 else if |Children(𝑛𝑜𝑑𝑒)| = 2

10 𝑓𝑟𝑖𝑛𝑔𝑒 ← Insert-All(Expand (𝑛𝑜𝑑𝑒), 𝑓𝑟𝑖𝑛𝑔𝑒)
11 continue
12 end if
13 else
14 𝑝𝑟𝑜𝑏 ← Calculate-Probability(𝑛𝑜𝑑𝑒, 𝑒)
15 if 𝑝𝑟𝑜𝑏 > 0
16 𝑝𝑟𝑖𝑜𝑟 ← Calculate-Prior(𝑛𝑜𝑑𝑒, 𝑝𝑟𝑜𝑏)
17 𝑡_ ← Set-Prior(𝑝𝑟𝑖𝑜𝑟, 𝑛𝑜𝑑𝑒, 𝑡_)
18 else
19 𝑡_ ← Remove-From-Tree(𝑛𝑜𝑑𝑒, 𝑡_)
20 end if
21 end if
22 end while
23
24 if not 𝑝𝑟𝑜𝑏-𝑚𝑎𝑠𝑠 ← Calculate-Probability-Mass(𝑡_) 𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝐹𝑈𝐿

then
25 return Error
26 end if
27 𝑡_ ← Redistribute-Probability-Mass(𝑡_)
28 𝑡_ ← Set-Priors(Calculate-Priors(𝑡_), 𝑡_)
29 return 𝑡_
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▷ Empty(𝑖𝑡𝑒𝑟𝑎𝑏𝑙𝑒) is a boolean function that returns ⊤ if the passed parameter (a list
or queue) contains no elements and ⊥ otherwise.

▷ Insert(𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑖𝑡𝑒𝑟𝑎𝑏𝑙𝑒) and Insert-All(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑖𝑡𝑒𝑟𝑎𝑏𝑙𝑒) append one or
multiple elements to a list of queue, while

▷ Insert(𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡) and Insert-All
(𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡) inserts/appends them to an assignment at a spe-
cific position

▷ Remove-First(𝑖𝑡𝑒𝑟𝑎𝑏𝑙𝑒) removes the first (left-most) element from a given list or
queue.

▷ Expand(𝑛𝑜𝑑𝑒) returns all child-elements of a node
▷ Is-Decision-Node(𝑛𝑜𝑑𝑒) checks whether the current node is a decision or leaf

node
▷ Has-Children(𝑛𝑜𝑑𝑒) checks whether the given node has child-nodes
▷ Remove-From-Tree(𝑛𝑜𝑑𝑒, 𝑡𝑟𝑒𝑒) removes a given node from the tree structure

The entire perception tree and the same tree conditioned on 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(bowl) = ⊤ ∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 =
post-breakfast. | Figure  27

Full JPT | a)

Conditional JPT | b)
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▷ Calculate-Probability-Mass(𝑡𝑟𝑒𝑒) uses the results of the probability calcula-
tions of each node to determine the probability mass of the entire tree

▷ Calculate-Probability(𝑛𝑜𝑑𝑒, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) determines the probability of a node
given the evidence, by multiplying the probability for each variable’s distribution
being consistent with the evidence, exploiting the independence assumption. The
result is multiplied with the node’s prior. The probability is 0 if any of the node’s
variable’s distributions is inconsistent with the evidence.

▷ the SUCCESSFUL check throws an error if the previously performed calculation
(Calculate-Probability-Mass) is unsuccessful, as the evidence is then consid-
ered unsatisfiable by the tree

▷ Redistribute-Probability-Mass(𝑡𝑟𝑒𝑒) is used to normalize the probabilities of
the nodes and adjust their distributions according to the evidence

▷ Calculate-Prior(𝑛𝑜𝑑𝑒, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) determines the prior for a single leaf
▷ Set-Prior(𝑝𝑟𝑖𝑜𝑟, 𝑛𝑜𝑑𝑒, 𝑡𝑟𝑒𝑒) sets the prior for a single leaf
▷ Calculate-Priors(𝑡𝑟𝑒𝑒) determines the prior for the overall tree
▷ Set-Priors(𝑝𝑟𝑖𝑜𝑟𝑠, 𝑡𝑟𝑒𝑒) sets the prior for the overall tree

Figure  27 shows the entire JPT representing the perception data distribution compared
to the resulting tree conditioned on 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(bowl) = ⊤ ∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = post-breakfast,
indicating a significant reduction of the tree size in the presence of additional infor-
mation.

If one is interested in only a subset of variables, the function JPT-Posterior(𝑣𝑎𝑟𝑠, 𝑒, 𝑡)
(Algorithm 4) can be used. As the name suggests, it returns the posteriors of the re-
quested 𝑣𝑎𝑟𝑠 of the tree 𝑡, given the evidence 𝑒 (or an error, if the computation fails).
The algorithm iterates over all leaves that are consistent with the evidence, computes
their respective probability for the evidence and the leaf’s priors. 

JPT posterior ▷
For each variable

specified in 𝑣𝑎𝑟𝑠 the distribution is cropped to the value range specified in the evidence.
After processing all consistent leaves, the calculated likelihoods are multiplied with
the respective leaf priors to determine the distributions’ weights. If the weights can
not be normalized, the algorithm returns an error, since the evidence is considered
unsatisfiable. As a final step, the leaves’ distributions for the requested variables are
consolidated into a single distribution by performing a weighted merge. The resulting
variable-distribution mapping is then returned.

Some of the functions explained above will be re-used here as well, while some more
will be introduced in the following.

▷ Apply(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑡𝑟𝑒𝑒) returns all the tree’s leaf nodes that have each variable either
not occur in the path from the root node to this node or match (e.g. lie in the interval
of) the value in the path

▷ Pairs(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) zips together two sequences of equal length to allow it-
erating over the value pairs

▷ Normalize(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) normalizes a sequence of values such that the values of the
resulting sequence sum up to 1.

▷ Crop-Distribution(𝑛𝑜𝑑𝑒, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒), similarly to Redistribute-Prob-
ability-Mass(𝑡𝑟𝑒𝑒), adjust a node’s distributions according to the evidence, but
returns the adjusted distributions instead of updating them in-place
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JPT-Posterior: Compute the JPT’s posterior distribution of every variable in 𝑣𝑎𝑟𝑠. The result contains
independent distributions. | Algorithm 4

JPT-Posterior(𝑣𝑎𝑟𝑠, 𝑒, 𝑡):

Input: 𝑣𝑎𝑟𝑠, a list of query variables of the posterior to be computed
𝑒, a variable assignment, the evidence given for the posterior to
be computed
𝑡, a JPT

Output: a variable assignment containing independent distributions
𝑃(𝑣𝑎𝑟𝑠|𝑒) or Error

Static: 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠, a mapping of variables to lists of distributions,
initially empty
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠, a sequence of likelihoods, initially empty
𝑝𝑟𝑖𝑜𝑟𝑠, a sequence of priors, initially empty
𝑤𝑒𝑖𝑔ℎ𝑡𝑠, a sequence of weights, initially empty
𝑟𝑒𝑠𝑢𝑙𝑡, a mapping of variables to posterior distributions, initially
empty

1 for each 𝑙𝑒𝑎𝑓 in Apply(𝑒, 𝑡) do
2 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠 ← Insert(Calculate-Probability

(𝑙𝑒𝑎𝑓, 𝑒), 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠)
3 𝑝𝑟𝑖𝑜𝑟𝑠 ← Insert( Calculate-Prior(𝑙𝑒𝑎𝑓), 𝑝𝑟𝑖𝑜𝑟𝑠)
4
5 for each 𝑣𝑎𝑟 in 𝑣𝑎𝑟𝑠 do
6 𝑑𝑖𝑠𝑡 ← Crop-Distribution(𝑙𝑒𝑎𝑓, 𝑣𝑎𝑟, 𝑒)
7 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 ← Insert(𝑑𝑖𝑠𝑡, 𝑣𝑎𝑟, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠)
8 end for
9 end for

10
11 for each (𝑙, 𝑝) in Pairs(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠, 𝑝𝑟𝑖𝑜𝑟𝑠) do
12 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← Insert(𝑙 · 𝑝, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
13 end for
14
15 if not 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← Normalize(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) 𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝐹𝑈𝐿 then
16 return Error
17 end if
18
19 for each (𝑣𝑎𝑟, 𝑑𝑖𝑠𝑡𝑠) in 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 do
20 𝑟𝑒𝑠𝑢𝑙𝑡 ← Insert(Weighted-Dists(𝑣𝑎𝑟, 𝑑𝑖𝑠𝑡𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠), 𝑣𝑎𝑟, 𝑟𝑒𝑠𝑢𝑙𝑡)
21 end for
22
23 return 𝑟𝑒𝑠𝑢𝑙𝑡
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▷ Weighted-Dists(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑑𝑖𝑠𝑡𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) consolidates the leaves’ distributions
for a specific variable into a single distribution by performing a weighted merge.

Figure  28 shows the posteriors over the position variables 𝑋𝑖𝑛, 𝑌𝑖𝑛 given different val-
ues of 𝑑𝑎𝑦𝑡𝑖𝑚𝑒 and having detected either milk or a bowl. With having detected milk
in the morning (Figure  28 a)) one can see that the the agent is believed to most likely
be positioned around the kitchen table, as the milk is probably part of the breakfast
setting during this time. Changing the daytime to night (Figure  28 b)) adjusts the belief
about the position to now be somewhere near the fridge, where milk is typically stored
to keep it cool at times when it is not used. Another example (Figure  29)) shows that
the agent is most likely positioned in the upper left area of the kitchen. This also makes
sense, as after breakfast, the bowl is probably being washed up after use and can there-
fore be detected near or in the sink.

The position distribution conditioned on different perceptions: The distribution 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛) conditioned
on the variables 𝐷𝑎𝑦𝑡𝑖𝑚𝑒  and 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩) as heatmap and 3D surface views. | Figure  28

Where am I most likely positioned when I see milk in the morning? 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 =
morning, 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤) | a)

Where am I most likely positioned when I see milk in the night? 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 =
night, 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤) | b)
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Where am I most likely positioned when I see a bowl after having breakfast? 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 =
post-breakfast, 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(bowl) = ⊤) | Figure  29

The conditional probability distributions and posterior calculations play a crucial role
in updating an agent’s belief state and therefore in making informed decisions based
on anticipated outcomes of actions in certain contexts. The belief state updates will be
dealt with in greater detail in Section 4.5.

4.5  Updating Belief State Distributions
The environment is of course subject to change induced by actions taken by the agent
or external events. Consider the example from Section 4.2, in particular the two actions
move_base and turn. Both of them are subsymbolic representations of a robotic move-
ment (move dist into direction d, turn around angle degrees).

Sum of Bernoulli Distributions: The distribution in b) is the result of the sum of two Bernoulli distribu-
tions depicted in a) | Figure  30

𝐵𝑒𝑟(0.5) | a) 𝐵𝑖𝑛(2, 0.5) | b)
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This term reflects that actions can be taken at any point within a continuous range
rather than being restricted to specific, discrete choices. Executing these actions directly
influences the position of the agent, as well as the direction it faces, therefore, they need
to be represented in the agent’s belief state about itself. For simplicity, it is assumed that
the agent’s belief state consists only of these two features: position and direction. When
executing a move_base action, parameterized with dist = 3 given the current position
of the agent as an (𝑥, 𝑦) vector, one can easily calculate the new position by moving it 3
units into its facing direction, thereby generating a new state by simply adding a delta
to the current state.

An action model in BayRoB, represented as a (numeric) probability distribution, can
act the same way. It performs an addition of distributions to update the features of the
belief state according to the parameters of the action. Note, that this makes sense for the
position and direction distributions, but may not necessarily reflect a natural update of
other random variables. Adding two distributions can be achieved by convolving them,
combining them into a new probability measure.

Convolution allows to assign a meaningful probability to the sum of values that are
subject to randomness and, in particular, corresponds to the sum of two independent
random variables. Therefore, if the considered probability measures have a probability
function or a probability density function, the convolution of the probability measures
can be related to the convolution (of functions) of the probability functions or prob-
ability density functions. In the general case, the sum 𝑍 of two independent discrete
random variables 𝑋 and 𝑌  can be denoted as

𝑃(𝑍 = 𝑧) = ∑
∞

𝑘=−∞
𝑃(𝑋 = 𝑘) · 𝑃 (𝑌 = 𝑧 − 𝑘). (88)

A special case is posed by Bernoulli distributed random variables and was already in-
troduced in the paragraph about Binomial distributions in Section 2.4.1.1. If 𝑛 variables
are all identically Bernoulli distributed, their 𝑛-fold convolution represents a binomial
variable, i.e. ∑

𝑛

𝑖=1
𝐵𝑒𝑟(𝑝) ∼ 𝐵𝑖𝑛(𝑛, 𝑝) and in particular ∑

2

𝑖=1
𝐵𝑒𝑟(𝑝) ∼ 𝐵𝑖𝑛(2, 𝑝).

This can easily be verified and is portrayed by a small example: Consider 2 fair coins
𝐶1 and 𝐶2 with 𝑑𝑜𝑚(𝐶𝑖) = {0, 1} (head, tail) and 𝑝 = 𝑃(𝐶𝑖 = 0) = 𝑃(𝐶𝑖 = 1) = 0.5,
𝑖 ∈ {1, 2}, i.e. 𝐶1 and 𝐶2 are Bernoulli distributed 𝐶𝑖 ∼ 𝐵𝑒𝑟(𝑝). Let 𝑋 be a binomial
random variable: 𝑋 ∼ 𝐵𝑖𝑛(2, 𝑝). The sum of the coin distributions 𝑍 = ∑

2

𝑖=1
𝑋 results

in:

94



Probabilistic Action Prospection based on Experiences

𝑃(𝑍 = 𝑧) = 𝑃[∑
2

𝑖=1
𝐶𝑖 = 𝑧]

=
25

∑
𝑐∈ 𝑑𝑜𝑚(𝐶𝑖)

𝑃(𝐶1 = 𝑐) · 𝑃 (𝐶2 = 𝑧 − 𝑐)

= ∑
𝑐∈ 𝑑𝑜𝑚(𝐶𝑖)

[(
1
𝑐
)𝑝𝑐(1 − 𝑝)1−𝑐] · [(

1
𝑧 − 𝑐

)𝑝𝑧−𝑐(1 − 𝑝)1−𝑧+𝑐]

= 𝑝𝑧(1 − 𝑝)2−𝑧 ∑
𝑐∈ 𝑑𝑜𝑚(𝐶𝑖)

(
1
𝑐
) · (

1
𝑧 − 𝑐

)

= 𝑝𝑧(1 − 𝑝)2−𝑧

⎣
⎢
⎢
⎡

(
1
0
)

⏟
=1

· (
1
𝑧
) + (

1
1
)

⏟
=1

· (
1

𝑧 − 1
)

⎦
⎥
⎥
⎤

=
26

(
2
𝑧
) · 𝑝𝑧 · (1 − 𝑝)2−𝑧

= 𝑃(𝑋 = 𝑧)

(89)

²⁵In the general case, as shown in Equation  88 one would have to sum over the entire integer
space ℤ, i.e. 𝑃(𝑍 = 𝑧) = ∑

∞

𝑐=−∞
𝑃(𝐶1 = 𝑐) · 𝑃 (𝐶2 = 𝑧 − 𝑐) but in this case, 𝑃(𝑋 = 𝑥) = 0 for any 𝑥 ∉

𝑑𝑜𝑚(𝐶𝑖), therefore the sum can be reduced to only span the variables from the domain of the Bernoulli
variable(s)

²⁶According to Pascal’s rule: (𝑛
𝑘 ) = (𝑛−1

𝑘−1) + (𝑛−1
𝑘 ), for 0 < 𝑘 < 𝑛.

In the specific example above with 𝑝 = (1 − 𝑝) = 0.5 the domain of the sum of the
variables 𝐶𝑖 would extend to 𝑑𝑜𝑚(𝑋) = {0, 1, 2} (cmp. Figure  30) with the respective
probabilities {0.25, 0.5, 0.25}:

𝐵𝑖𝑛(2, 0.5) = ∑
𝑛

𝑘=0
(

𝑛
𝑘

) · 𝑝𝑘 · (1 − 𝑝)𝑛−𝑘

= ∑
𝑛

𝑘=0
(

2
𝑘
) · 0.5𝑘 · 0.52−𝑘

= (
2
0
) · 0.50 · 0.52−0 + (

2
1
) · 0.51 · 0.52−1 + (

2
2
) · 0.52 · 0.52−2

= 0.25 + 0.5 + 0.25

(90)

It follows that if two independent random variables 𝑋 ∼ 𝐵𝑖𝑛(𝑛𝑥, 𝑝) and 𝑌 ∼
𝐵𝑖𝑛(𝑛𝑦, 𝑝) then for 𝑍 ≔ 𝑋 + 𝑌 : 𝑍 ∼ 𝐵𝑖𝑛(𝑛𝑥 + 𝑛𝑦, 𝑝).

In the case of the distributions being continuous rather than discrete, the convolution
of two distributions makes use of the distributions’ PDFs to calculate the integral over:

𝑓⚬𝑔(𝑧) = ∫
+∞

−∞

𝑓(𝑥) · 𝑔(𝑧 − 𝑥) d𝑥 (91)

In BayRoB, the sum of the variables representing the distributions for the 𝑥-coordinate
𝑋𝑖𝑛 of the agent’s position and its delta Δ𝑝𝑜𝑠𝑥

 are then
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𝑓𝑋𝑖𝑛
⚬𝑓Δpos𝑥

(𝑧) = ∫
+∞

−∞

𝑓𝑋𝑖𝑛
(𝑥) · 𝑓Δ𝑝𝑜𝑠𝑥

(𝑧 − 𝑥) d𝑥 (92)

where 𝑓𝑋𝑖𝑛
 denotes the PDF of 𝑋𝑖𝑛 and 𝑓Δ𝑝𝑜𝑠𝑥

 the PDF of Δ𝑝𝑜𝑠𝑥
.

4.5.1  Single Action Updates
Equation 91 allows to make statements about how a probabilistic hybrid action model
learnt from experience data affects the robots’ belief state. 

anticipation ▷
In particular, one can antic-

ipate how the execution of a certain action will alter the robots’ belief about the state
of itself and its environment.

Figure  31 shows the process of that formula being applied to the distributions of a sin-
gle variable, to project the outcome of the execution of one single action into the future.
In this case, the variables about which the belief state is being updated are the ones
representing the agent’s position, (𝑋𝑖𝑛, 𝑌𝑖𝑛). As mentioned before, adding the delta to
this variable represents moving one step forward, so the distributions 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛) and
𝑃(Δ𝑝𝑜𝑠) are convolved to achieve a new position distribution 𝑃(𝑋𝑖𝑛

′, 𝑌𝑖𝑛
′). The two

images in Figure  31 a) show the initial distribution plotted into the entire 100 × 100
grid and its magnified view to enable the inspection of the distribution’s shape. Figure
 31 b shows the Δ𝑝𝑜𝑠 distribution given the current position and facing direction. The
elongated shape shows the uncertainty of the move_base model in terms of the distance
travelled clearly. The convolution of the two distributions is shown in Figure  31 c) with
a magnified view on the right. The images are scaled identically to its counterpars in
the top row, so the development of the Gaussian-shaped initial distribution to the elon-
gated shape in the convolved distribution can be followed.

Similarly, in Figure  32 one can observe the distribution update of a single turn action.
Here, not only the shape of the distribution, but in particular its position in the plot is
of interest. The variables (𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) are initialized with 𝑋𝐷𝑖𝑟𝑖𝑛~𝒩(1, 𝜎2) and
𝑌𝐷𝑖𝑟𝑖𝑛~𝒩(0, 𝜎2); 𝜎2 = 0.01, denoting a facing direction to the right, as is indicated by
the position of the distribution in the plot on the border between the right upper and
lower quadrants.

After the update, a turn of −20°, one can observe the distribution not only to widen
vertically, but also to shift further towards the upper right quadrant, which corresponds
to a turn to the left. In BayRoB, updating continuous and discrete numeric variables,
that posess distributions representing an initial (in) and a delta (out) form, is performed
using this strategy. However, this kind of linear update does not semantically make
sense for all numeric distributions and, in particular, does not work for multinomial
(and boolean) distributions. Here, the strategy is to replace the distribution by another
distribution representing the outcome of the action execution.
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A single update step for a move_base action: The images represent the initial, Δ𝑝𝑜𝑠 and updated (convolved)
distributions for a single move_base step. The variables (𝑋𝑖𝑛, 𝑌𝑖𝑛) are initialized as 𝑋𝑖𝑛~𝒩(55, 𝜎2) and
𝑌𝑖𝑛~𝒩(45, 𝜎2), the facing direction with 𝑋𝐷𝑖𝑟𝑖𝑛~𝒩(1, 𝜎2) and 𝑌𝐷𝑖𝑟𝑖𝑛~𝒩(0, 𝜎2); 𝜎2 = 0.01. The left col-
umn shows the original size of the plots, while the right magnifies the distributions for improved visibility,
where a) and c) are scaled identically to easily interpret the development of the distribution. | Figure  31

The initial position distribution 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛) | a)

The delta distribution 𝑃(Δ𝑝𝑜𝑠 | 𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) | b)

The convolutions of the distributions in Figures 31 a) and b), i.e.
𝑃(𝑋𝑖𝑛

′, 𝑌𝑖𝑛
′) = 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛) + 𝑃(Δ𝑝𝑜𝑠) | c)
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A single update step for a turn action: The images represent the initial, Δ𝑑𝑖𝑟 and updated (convolved)
distributions for a single turn action parameterized with angle = −20. The variables (𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛)
are initialized with 𝑋𝐷𝑖𝑟𝑖𝑛~𝒩(1, 𝜎2) and 𝑌𝐷𝑖𝑟𝑖𝑛~𝒩(0, 𝜎2); 𝜎2 = 0.01. Again, the left column shows the
original size of the plots, while the right magnifies the distributions for improved visibility, where a) and

c) are scaled identically to easily interpret the development of the distribution. | Figure  32

The initial distribution 𝑃(𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) | a)

The delta distribution 𝑃(Δ𝑑𝑖𝑟) | b)

The convolutions of the distributions in Figures 32 a) and b), i.e.
𝑃(𝑋𝐷𝑖𝑟𝑖𝑛

′, 𝑌𝐷𝑖𝑟𝑖𝑛
′) = 𝑃(𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) + 𝑃(Δ𝑑𝑖𝑟) | c)
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4.5.2  Multiple Subsequent Action Updates
After showing that convolution can indeed be utilized to perform a semantically mean-
ingful belief state update, it seems natural to assume that chaining updates of single
actions allows to look even further into the future and prospect the outcomes of mul-
tiple actions performed sequentially. Imagine a robot being confronted with multiple
robot instructions as exemplified by the (pseudoized) Cognitive Robot Abstract Machine
(CRAM) plan in Code 2. The plan contains multiple 1-step move-base, as well as differ-
ently-parameterized turn actions. Figure  33 shows an exemplary (predicted) trajectory
of a robot movement as triggered by the plan.

The trajectory of an agent as predicted by BayRoB by projecting the effects of numerous move_base (circles)
and turn (arrows) actions. The positions are the expected values of the position variables for the respective
step in the path. The distribution updates for the 9 move_base steps are shown in Figure  34 (heatmaps) and

Figure  35 (3D-surface renders) | Figure  33

The trajectory of the movement | a) The magnified trajectory | b)

The transitions of the position distribution from the initial state over the 9 move_base
steps can be observed in Figure  34 and Figure  35, which show the results of the convo-
lution of the two discrete random variables 𝑋𝑖𝑛 and 𝑌𝑖𝑛 of the agent and their respective
Δ-distributions as determined from the dist parameter of a move_base action to update
the agent’s belief state. The distribution plots for the turn steps are intentionally left
out in the plot series, as they do not trigger a position update and therefore no change
in the distribution of 𝑋𝑖𝑛 and 𝑌𝑖𝑛. While the 3D-surface renders highlight the change
in shape of the distributions, the changes in the heatmaps correspond to the predicted
movements of the robot in Figure  33, and clearly indicate the increasing uncertainty.
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The distribution update over the 9 (move_base) steps of the path in Figure  33. Note that the steps 1, 4, 6,
8, 11, 13, 15 and 17 are intentionally left out as the turn-actions do not trigger a position update and the
images are therefore identical to the respective previous step. The update of the belief state implies an
increase of uncertainty in each step, which is indicated by the wider range of projected possible 𝑥𝑖𝑛 and

𝑦𝑖𝑛 values and the decrease in color intensity. | Figure  34

Step 0 (init) | a) Step 2 | b) Step 3 | c) Step 5 | d) Step 7 | e)

Step 9 | f) Step 10 | g) Step 12 | h) Step 14 | i) Step 16 | j)

The 3D-surface renders for the distributions in Figure  34 | Figure  35

Step 0 (init) | a) Step 2 | b) Step 3 | c) Step 5 | d) Step 7 | e)

Step 9 | f) Step 10 | g) Step 12 | h) Step 14 | i) Step 16 | j)
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Probabilistic Action Prospection based on Experiences

CRAM plan for exemplary action sequence: Figure  33, Figure  34 and Figure  35 show the resulting path
and distribution updates for this action sequence. | Code 2

1 defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

2
defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

3

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

4

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

5

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

6

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

7

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

8

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

9

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

10

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

11

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

12

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

13

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

14

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

15

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
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                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
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    perform (an action 
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    perform (an action 
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                (distance 1))
    perform (an action 
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                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))

16

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
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                (distance 1))
    perform (an action 
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                (angle 15))
    perform (an action 
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                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
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                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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    perform (an action
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                (angle -15))
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    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))52

defplan path(goal_location, robot_location)
    perform (an action
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -10))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -12))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle -5))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 3))
    perform (an action 
                (type move_base)
                (distance 1))
    perform (an action 
                (type turn)
                (angle 15))
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4.5.3  Addition vs Shift
Alternatively to convolving distributions, a possible belief state update could be real-
ized by shifting distributions by the delta represented by Δ𝑝𝑜𝑠 (or Δ𝑑𝑖𝑟, respectively).
Mathematically, updating the belief state is achieved by translating the distribution
function by a value Δ, i.e. 𝑓(𝑥 + Δ), where positive values of Δ will cause the function
to “move to the left”, negative value will “move” it to the right. As the function takes a
single value for Δ instead of an entire distribution, one could choose the expectation
of Δ𝑝𝑜𝑠 (or Δ𝑑𝑖𝑟, respectively).

The prediction of a trajectory of an agent as a result of shifting the distributions to achieve a belief state
update. | Figure  36

Entire kitchen scenario | a) Magnified path | b)

Obviously, this strategy has the advantage, that it can be calculated much easier than
the convolution and the time/cost spent on this operation is thus drastically reduced.

The distribution shift over the 9 (move_base) steps of the path in Figure  33. The update of the belief state
implies the change in position of the plot but does not involve any increase of uncertainty or any other

change in shape of the distribution. | Figure  37

Step 0 (init) | a) Step 2 | b) Step 3 | c) Step 5 | d) Step 7 | e)

Step 9 | f) Step 10 | g) Step 12 | h) Step 14 | i) Step 16 | j)

However, while the generated path (triggered by the same plan in Code 2), looks very
similar, the distribution itself never really changes in terms of shape, i.e. the uncer-
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tainty always stays the same (Figure  37). This behavior thus does not correspond to the
natural understanding of the development of an agent’s belief state after performing
actions.

An agent being somewhat uncertain about its position in the first place will be even
more uncertain about it after executing an action that, in itself, adds uncertainty to the
equation through e.g. inaccuracies in actuators or sensory output. In BayRoB, the em-
phasis is placed on the accuracy of predictions rather than computational efficiency.
This design choice led to a preference for convolving distributions over shifting them.
However, to maintain a computable size of the belief state distributions, an reduction
is performed after the convolution, in which the PLF of the distribution is replaced by
one with fewer function segments through iteratively replacing subsequent function
segments by an approximation thereof.

4.6  Plan Refinement with JPTs
In the previous section, it has been shown that the representation of a belief state in
terms of joint distributions allows to anticipate the outcome of an action execution and
it has also already been mentioned that applying the model into the other direction is
of particular interest. Given the current belief state, what does the agent have to do in
order to achieve a specific goal specification? Which actions have to be performed and
how do the parameters have to be set? The capability of allowing such backward infer-
ences is a major advantage a generative model has over a discriminative one. The back-
ward inference aims at finding all possible states from which the current state could be
reached by executing an arbitrary single action. When realizing this kind of inference,
one can make use of the structure of the underlying probabilistic model, in particular,
the tree-structure of the learnt JPT. Based on the assumption that the predecessors of
a tree node have been naturally created by the learning algorithm in forward direction
and that the algorithm was driven by real experience data, one can assume that a se-
mantic correlation exists between a node and the adjacent nodes in close proximity.
Leveraging the tree structure, which is applicable in both forward and reverse direc-
tions is thus evident and will be outlined in the following.

4.6.1  Single Backward Action Updates
In contrast to finding successor states that (most probably) represent a desired outcome,
finding predecessor steps can be seen as the attempt to describe a certain situation that
could have led to another situation, which breaks down to the simple question of “How
did I get here?”. If, for example, the current situation is that an agent has perceived milk,
a possible answer to how that could have happened would be something like “Well, if
it is morning and you are standing near the kitchen island somewhere around position
(40, 50) and … and you used some detection action, then you could have seen milk”.
Other possible answers are of course all the different combinations of positions, times
of day and states of drawers and doors before some action either changed the detection
state of the milk from ⊥ to ⊤ or left it unchanged if it was already ⊤. Figure  38 shows
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some of the immediate predecessor steps of this particular example. The predecessors
are determined by checking whether the probability that the result of the forward exe-
cution of each leaf of the action models satisfies the query is greater than 0. If this is the
case, the robot’s belief state is updated according to the input distributions of the leaf
i.e. the ones representing the state of the variables before the action was executed. If the
probability is 0, the leaf is skipped and not further considered as a potential predecessor
candidate. In conformance with the training data, the milk can only be detected in the
fridge, see Figures 38 a) and b) or on the kitchen island, see Figures 38 c) and d).

A subset of predecessor candidates for the goal 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(𝑚𝑖𝑙𝑘) = ⊤ | Figure  38

Most candidates are located where one would typi-
cally stand in front of the (open) fridge, facing top-

right | a)

These candidates also have a strong tendency for
𝑂𝑝𝑒𝑛(𝑓𝑟𝑖𝑑𝑔𝑒_𝑑𝑜𝑜𝑟) = ⊤ and
𝐷𝑎𝑦𝑡𝑖𝑚𝑒 ≠ morning | b)

In the morning, milk can typically be detected from
the upper edge of the kitchen island… | c)

… or from the right edge of it, facing towards the
table, respectively | d)

The most probable positions are therefore scattered around the table and the area,
where one would stand when the fridge door is opened, facing towards the target, re-
spectively. If the fridge is closed, however, the milk can not be detected albeit the posi-
tion and facing direction being ideal. And still, even if the fridge door is open, milk is
not always stored in the fridge at all times, as it might currently be in use. Therefore, the
time of day also plays a role for this specific request, as can be seen in the highlighted
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distributions in the infobox in Figure  38 b). For better readability, a magnified version
of the annotations is shown in Figure 39.

The magnified annotations of the predecessor candidate in Figure  38 b) | Figure 39
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The backward action update is particularly useful when reasoning over erroneous be-
havior, i.e. when trying to determine, which preconditions led to an action to fail. 

error treatment ▷
Pro-

ficiency in error detection, prediction and, consequently, avoidance is essential for an
autonomous agent to choose a configuration of actions and parameters with the high-
est probability of success. The backward action update is therefore vital for identifying
types of errors that frequently emerge from certain situations and minimizing their
probability of occurrence.

4.6.2  Multiple Backward Action Updates
Analogously to the multiple forward action updates in Section 4.5.2, it is reasonable
to believe that once a selection of potential predecessor states for a goal specification
was found, the pre-predecessors can be determined as well, guided towards a certain
intial (current) state of the robot, such that ultimately a sequence of belief states can
be determined. It is then just a small step towards thinking of these action updates as a
search for a path between two belief states or a belief state and a (fuzzy) goal specifica-
tion. Wrapping up the observations from the previous sections, one finds all the tools to
describe the forward- or backward inference as a well-defined search problem (Russell
and Norvig 2010, Chapter 3).

Problem Formulation · A search problem typically revolves around discovering a so-
lution within a designated search space. This space encompasses the entirety of possi-
ble states that the system or problem can assume. Each state in the kitchen example
denotes a specific configuration or arrangement and - as the name suggests - contains
all possible variable assignments (belief states). The initial state, the starting point from
where the search begins, is simply the robot’s current belief state, e.g. its current posi-
tion and facing direction in the kitchen. Thus, the goal state is a belief state that satisfies
the goal specification, e.g. a certain position the robot intends to reach or a situation
setting such as being in a position from where milk can be seen (in order to grab it).
A successor function or action model defines the possible actions that can be executed
from a given state. It generates the set of successor (or predecessor) states that can be
reached from the current state. This function is defined by the respective (multiple)
forward and backward action updates introduced in the course of this chapter. Each
action execution comes with a cost which quantifies the effort required to transition
from one state to another. The sum of the costs of the execution of an entire action
sequence is called the path costs of a possible solution. Naturally, one tries to minimize
the cost, such that sequences of actions (if more than one can be found) with lower
costs are preferred over more expensive ones.

If an algorithm always finds the solution with the lowest costs, it is characterized as op-
timal. Note that the “best” (or cheapest) solution highly depends on the problem and in
fact, there might not even exist optimality in certain settings. Other criteria to evaluate
the quality of a search algorithm include – among others – its completeness and its time
and space complexity. Completeness describes the capability of an algorithm to reliably
find a solution if it exists, which is essential in many applications. Time and space com-
plexity measure the efficiency of an algorithm in terms of an estimation of the amount
of time an algorithm takes to complete the search or the amount of memory required
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to hold (partial) candidate solutions available. Lower time and space complexity are
generally preferred.

The A* search algorithm stands as a fundamental tool in pathfinding and optimiza-
tion, valued for its efficiency and versatility. Its appeal emerges from its ability to in-
telligently guide its path exploration by combining two crucial factors: the step cost in-
curred to reach a particular state and a heuristic estimate of the remaining distance
to the goal. This dual-informed approach enables A* to intelligently prioritize paths,
ensuring to find the most cost-effective route and drastically reducing the number of
expanded nodes in comparison to uninformed algorithms along the way. A* is complete
and optimal (given an admissible, that is, not overestimating heuristic), making it a
preferred choice in various domains. The critical parts of the A* algorithm, outlined in
Algorithm 5, are the functions for the goal check (is-Goal(𝑛𝑜𝑑𝑒)), the successor gen-
eration (Generate-Successors(𝑛𝑜𝑑𝑒)) and the calculation of the heuristic and step
costs (aggregated in Calculate-Score(𝑛𝑜𝑑𝑒)). The goal check is an identity check of
the current node and the goal node (or a check whether the current node meets some
fuzzy goal criteria, however) and constitutes one of two termination criteria of the al-
gorithm, the other being that there are no more nodes to expand in the open list without
having reached the goal yet. The successor generation determines all possible follow-
up nodes that can be reached from the current node. The calculation of the costs is an
aggregation of the step costs (the costs that have been accumulated so far for getting to
the current node) and the expected remaining costs from the current node to the goal.

In BayRoB, the search for a solution is performed in an A*-like fashion, but without
guaranteeing optimality.

◁ complex tasks &
effect control

 The cost measure in this setting is not only depending on the
problem itself, but also on the type of question being asked in every single search exe-
cution. So what does cost mean exactly? Depending on the context, this may vary. When
trying to find a sequence of actions resulting in a fully set breakfast table, one might go
for the quickest solution, involving transporting multiple objects (cups, plates, cutlery)
at once instead of moving between the cupboard and the kitchen table for every single
item. Tasked with the assignment to fetch some drink from the fridge, it might be ad-
visable to choose the safest plan with a high probability of success and low probability
of dropping breakable containers and spilling liquids. Costs in BayRoB are therefore
determined using two different measures: the confidence, which is the probability that
the current state can be reached from a candidate state (or vice versa), and the distance
to the goal (i.e. a belief state satisfying the goal specification). The distance aggregates
the single distances of the different components of the belief states and requires finding
a measure that takes into account the hybrid domains of these variables.

While the distance between distributions of the continuous variables can be measured
using the Wasserstein distance (cmp. Equation 43 in Section 2.4.3), this does not work
for multinomial distributions. Taking 1 − 𝑠𝑖𝑚𝑐𝑜𝑛𝑡(𝑑1, 𝑑2) (cmp. Equation 40) might be
a solution here, but then a solution has to be found on how to combine normalized
distance of multinomial distributions with the unnormalized distance of the continu-
ous ones. In BayRoB, there are different approaches combined, depending on what the
distance measure is used for.
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The general algorithm of A* can be executed in a forward and reverse search direction,
given all its operations are invertible, which can be very difficult and is sometimes not
feasible at all. If the operations are not invertible, it is not possible to generate parent
(i.e. predecessor) nodes for a current state. Action models in BayRoB support inference
in both directions as shown in Section 4.5.1 and Section 4.6.1, and the A*-like search
applying these types of inference will be outlined in the following.

A*: The algorithm for the A* search | Algorithm 5

A*(𝑠, 𝑔):

Input: 𝑠, a start node representing the current state
𝑔, a goal node to find a path to

Output: a path from 𝑠 to 𝑔 or Error

Static: 𝑜𝑝𝑒𝑛, a priority queue, initially empty
𝑐𝑙𝑜𝑠𝑒𝑑, a set of visited nodes, initially empty

1 𝑜𝑝𝑒𝑛 ← 𝑠
2 𝑐𝑙𝑜𝑠𝑒𝑑 ← ∅
3
4 while not Empty(𝑜𝑝𝑒𝑛) do
5 𝑛𝑜𝑑𝑒 ← Remove-First(𝑜𝑝𝑒𝑛)
6 𝑐𝑙𝑜𝑠𝑒𝑑 ← Insert(𝑛𝑜𝑑𝑒, 𝑐𝑙𝑜𝑠𝑒𝑑)
7 if is-Goal(𝑛𝑜𝑑𝑒) then
8 return Path(𝑛𝑜𝑑𝑒)
9

10 for each 𝑛𝑜𝑑𝑒_ in Generate-Successors(𝑛𝑜𝑑𝑒) do
11 if Contains(𝑐𝑙𝑜𝑠𝑒𝑑, 𝑛𝑜𝑑𝑒_) then
12 continue
13 end if
14
15 if Contains(𝑜𝑝𝑒𝑛, 𝑛𝑜𝑑𝑒_) then
16 continue
17 end if
18
19 𝑛𝑜𝑑𝑒_ ← Calculate-Score(𝑛𝑜𝑑𝑒_)
20 𝑜𝑝𝑒𝑛 ← Insert(𝑛𝑜𝑑𝑒_, 𝑜𝑝𝑒𝑛)
21 end for
22 return Error
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Forward Direction · The forward direction of an A*-like search in BayRoB boils down
to finding every possible action that can be executed in the current state. This translates
to the application of the tree model to a given query, i.e. computing the conditional trees
which only contain the nodes that satisfy the conditions determined by the (uncertain)
variable values of the agent’s current belief state, as described by Algorithm 3 in Sec-
tion 4.4.1. The leaves of the resulting trees serve as potential candidates for computing
successor nodes. A successor state is generated using Algorithm 6: The function Gen-
erate-Candidates(𝑛𝑜𝑑𝑒) conditions each action model (tree) on the variable values
of the state represented by the given node and returns a list of the pooled leaves of
the resulting conditional trees. For each of the leaves, a new node (which in BayRoB
represents a belief state) is created, being an exact copy of the given node at first. The
distributions are then updated by either adding the leaf’s delta distributions of that
variable (which means the current variable is updated by the action represented by the
leaf) or replacing it by the leaf distribution if there is no delta distribution for that par-
ticular variable. The latter is typically the case for all multinomial distributions. The
list of the newly generated states is then returned as a list of potential successors for
the given start node.

The overall search algorithm is based on Algorithm 5, with a few particularities due
to the nature of the variables being distributions. The A* algorithm only works (and
is optimal and complete), if the goal test and the cost functions are defined appropri-
ately. When working with distributions, the goal test can of course not check for exact
identity with the goal specification as the goal specification is required to be a mapping
of variables to ranges (or sets) of values while the states are mappings of variables to
distributions. Even if the current state and the goal both contained only distributions,
one would hardly ever be able to generate a state through the execution of multiple
actions that matches exactly a given goal distribution.

A similar challenge applies when trying to determine, whether a node has already
been processed before (i.e. the 𝑐𝑙𝑜𝑠𝑒𝑑 list contains the respective node) or was already
added to the 𝑜𝑝𝑒𝑛 queue (lines 11 to 17 in Algorithm 5). This check is necessary to pre-
vent processing the same nodes over and over again, resulting in an infinite loop. It is
therefore advisable to substitute equality in terms of nodes/states in BayRoB for suffi-
ciently close similarity between them to prevent computational (and memory) overload.
As an example, one could aggregate the individual similarities of the distributions of
the (common) variables between two states, whereas the aggregation operation could
be the mean (or minimum or any other kind of function) of the individual values.
In BayRoB, the similarity of two states is determined by the mean of the individual
(Jaccard) similarities of the shared distributions. This measure is used whenever it is
required to determine, whether some state sufficiently resembles another state or the
goal. In the forward search, the decision whether or not a node should be added to the
𝑜𝑝𝑒𝑛 priority queue or the 𝑐𝑙𝑜𝑠𝑒𝑑 list of already visited nodes is reduced to a simpler
check, which compares which leaves of which trees have been consulted to create the
states. Note that this may lead to some potential interesting nodes being dropped, since
the state distributions do not exactly represent the leaf distributions in the trees, but
may vary depending on the input distributions (through the convolution of distribu-
tions). However, in practice, this has shown to be a useful decision, since many very
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similar states were created, that did not qualitatively differ significantly, which caused
computational and memory overload without considerably improving the results.

BayRoB-Generate-Successors: The algorithm to generate successor nodes for an A*-like (forward)
search | Algorithm 6

BayRoB-Generate-Successors(𝑠):

Input: 𝑠, a start node representing the current state

Output: a set of potential successor nodes

Static: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠, a set of potential successor nodes

1 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ← ∅
2
3 for each 𝑙𝑒𝑎𝑓 in Generate-Candidates(𝑛𝑜𝑑𝑒) do
4 𝑠_ ← Copy-State(𝑠)
5 for each (𝑑𝑛𝑎𝑚𝑒, 𝑑) in Distributions(𝑙𝑒𝑎𝑓) do
6 if Is-Delta(𝑑𝑛𝑎𝑚𝑒, 𝑙𝑒𝑎𝑓) then
7 𝑑_ ← Distribution(𝑠_, 𝑑𝑛𝑎𝑚𝑒) + 𝑑
8 else
9 𝑑_ ← Distribution(𝑠_, 𝑑𝑛𝑎𝑚𝑒) = 𝑑

10 end if
11
12 𝑠_ ← Update-Or-Insert(𝑠_, 𝑑𝑛𝑎𝑚𝑒, 𝑑)
13 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ← Insert(𝑠_, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠)
14 end for
15 return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠

The goal test of the forward direction first checks, whether the current node contains
distributions for all variables that are specified in the goal. Is that not the case, the
goal test fails because there is no way the goal specification can be satisfied by the
current node. Otherwise the goal test assesses whether the existing belief state aligns
with a fuzzy goal specification. Given that the belief state is represented as a distribu-
tion, a natural approach seems to be evaluating the probability of the specified value
range within the distribution and then comparing it against a predetermined threshold.
However, this method encounters challenges as determining an appropriate threshold
proves to be difficult. The complexity arises from the fact that, over successive update
steps, uncertainty within the belief state tends to increase drastically. Consequently,
even a well-regarded belief state may necessitate an extremely low threshold, making
it impractical for effective goal evaluation. The evolving uncertainty within the belief
state underscores the need for more nuanced and adaptive approaches in the goal
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test to account for the dynamic nature of the underlying distributions. To address this
challenge, a refined approach in goal testing involves computing the MPE of the belief
state’s distribution. This MPE is then intersected with the specified value range of the
goal specification, revealing the overlap between the belief state and the goal. In a final
step, the result of this intersection, which signifies how much of the belief state aligns
with the goal, is compared with the MPE of the distribution computed in the first place.
This comparison not only gauges the overlap with the goal but also accounts for the
broader distribution, indicating how much of it falls outside the goal.

Given a sufficient amount of examples available, one would usually derive the heuristic
for a search algorithm guided by data. However, for the sake of simplicity in the current
example, a manual calculation of a distance measure is opted for to be employed as
a heuristic function. The calculation of a heuristic in general can be understood as a
means to quantify the effort required to get from one point to another, or, to turn the
current state into a state that matches the goal criteria. In other words, it needs to de-
termine, how much of each of the distributions has to be changed to transform them
into “acceptable” distributions. That sounds a lot like the idea behind the earth moving
explanation of the Wasserstein distance introduced in Section 2.4.3 which is why it is
taken to determine the heuristic for the numeric distribution variables. For the other
distributions in BayRoB, however, the adaptation for multinomial distributions is used
(cmp. Equation 44). The heuristic is then the mean of the distances between the state
and the goal. Analogously, the step costs are defined as the distance between two sub-
sequent states.

BayRoB-Generate-Predecessors: The algorithm to generate predecessor nodes for an A*-like (reverse)
search | Algorithm 7

BayRoB-Generate-Predecessors(𝑠):

Input: 𝑠, a start node representing the current state

Output: a set of potential predecessor nodes

Static: 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠, a set of potential predecessor nodes

1 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ← ∅
2
3 for each 𝑠_ in BayRoB-Reverse(𝑛𝑜𝑑𝑒) do
4 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 ← Insert(𝑠_, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)
5 end for
6 return 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟

Reverse Direction · In contrast to the forward direction, the action models are not
constrained by conditioning the entire tree on a given query. As the name suggests, the
goal is to find all possible predecessor steps for the current (initially the goal) state and
to build an action sequence by stepwise prepending those predecessor steps until the

111



Chapter four - BayRoB - Bayesian Robotic Brain

initial state is reached. In the context of BayRoB, the approach in the reverse direction
is to find all actions, that, when applied, result in a state that is sufficiently similar to
the current state. Since the outcome of an action is only implicitly available by the for-
ward application of the leaf, the search for predecessors may involve multiple compu-
tationally heavy operations which have to be applied to each leaf of each action model
in every search iteration. This depends on the type of the respective distributions and
variables. In the case of numeric variables that are represented by designated initial
and delta distributions as is the case for the positional and directional distributions,
the computation of the leaf’s outcome involves the addition, cropping and subtraction
of distributions (cmp. Algorithm 7). This procedure aims at generating potential pre-
decessor states that have a high probability of resulting in the current state given the
action and parameters represented by the respective leaf. The outcome of these opera-
tions are then compared to the current state to determine their degree of accordance. If
the result matches the current state, the newly generated state is accepted as a potential
predecessor state and serves as a new goal in a subsequent search step. The stepwise
prepending of predecessor steps until the init state is reached then results in a sequence
of actions as path from the init state to the goal. A final forward execution of the found
path then serves as a feasibility check and allows to compare the actual predicted result
with the desired goal state.

The heuristic and step costs are calculated the same way as in the forward direction,
with the difference that the heuristic determines the distance from the current state to
the init state instead of the goal state.

Bi-Directional Search · The forward and reverse search can be combined into a com-
mon search to profit from the respective advantages of both directions. After initializing
the open lists of both the forward and reverse direction algorithms, the bi-directional
search checks in every iteration, whether the respective current nodes are identical,
which would indicate that the two algorithms found a common node and therefore a
path from the initstate to the goal state. If the nodes are different, the current node of
the forward direction is set as the (temporary) goal for the reverse algorithm and vice
versa, such that it is ensured that both algorithm work towards a common node. The
respective current nodes are then expanded and the successor (or predecessor) nodes
are computed and added to the open queues. A solution in this strategy is found if

▷ the current belief states of the forward and reverse search are identical²⁷ (the algo-
rithms “meet in the middle”), or

▷ the current belief state of the forward algorithm matches the goal specification or
▷ the current belief state of the reverse algorithm matches goal specification.

²⁷As mentioned before, it is almost impossible to find identical distributions (and thus states) in the
present approach, therefore “identical” is interpreted as “sufficiently close” here, i.e. the similarity of
two belief states is lower than a predefined threshold.

The results found by the algorithms are then aggregated to form a single path from the
initial state to the (originally specified) goal state.
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BayRoB-Reverse: The algorithm to generate candidates by reversing tree inference in A*-like (reverse)
search | Algorithm 8

BayRoB-Reverse(𝑠):

Input: 𝑠, a start node representing the current state

Output: a set of candidates

Static: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, a set of potential predecessor nodes

1 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅
2
3 for each 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 do
4 for each 𝑙𝑒𝑎𝑓 in Leaves(𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙)
5 𝑠_ ← State()
6 for each (𝑑𝑛𝑎𝑚𝑒, 𝑑) in Distributions(𝑙𝑒𝑎𝑓) do
7 if Is-Delta(𝑑𝑛𝑎𝑚𝑒, 𝑙𝑒𝑎𝑓) then
8 continue
9 else if Has-Delta(𝑑𝑛𝑎𝑚𝑒, 𝑙𝑒𝑎𝑓) then

10 𝑑_ ← 𝑑 + Delta(𝑑𝑛𝑎𝑚𝑒, 𝑙𝑒𝑎𝑓)
11 𝑝 ← Probability(𝑑_, 𝑞𝑢𝑒𝑟𝑦)
12 if not 𝑝 > 0 then
13 continue to next 𝑙𝑒𝑎𝑓
14 end if
15 𝑑_ ← Crop(𝑑_, 𝑞𝑢𝑒𝑟𝑦)
16 𝑑_ ← 𝑑_ − Delta(𝑑𝑛𝑎𝑚𝑒, 𝑙𝑒𝑎𝑓)
17 else
18 𝑝 ← Probability(𝑑, 𝑞𝑢𝑒𝑟𝑦)
19 if not 𝑝 > 0 then
20 continue to next 𝑙𝑒𝑎𝑓
21 end if
22 𝑑_ ← 𝑑
23 end if
24
25 𝑠_ ← Update-Or-Insert(𝑠_, 𝑑𝑛𝑎𝑚𝑒, 𝑑_)
26 end for
27 end for
28 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← Insert(𝑠_, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)
29 end for
30 return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
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fiveChapter

Probabilistic Knowledge Bases
for Material Discovery

This chapter provides comprehensive exploration of another example for the usage of
the BayRoB principle, drawing primarily upon the insights and findings presented in 
Picklum and Beetz (2019). The following pages are dedicated to analyzing the key con-
cepts, research methodologies, and significant discoveries that have emerged from the
work documented in Picklum and Beetz (2019). The conclusions drawn form the foun-
dation of this chapter and emphasize the contributions of the methodolgy on a broader
range of applications.

5.1  MatCALO
Innovations in industry and technology constantly call for the development of novel,
increasingly powerful materials. The field of materials science is concerned with
finding materials that meet predefined property specifications which vary with the in-
tended use of the material. In general, a material has a certain set of properties that
are subject to a number of influencing factors. As an example, the chemical composi-
tion, i.e. the individual elements the material consists of, plays an important role for
the distinct characteristics the resulting material has. But also the sequence of different
treatments a material undergoes has substantial impact on the final material’s proper-
ties. Each processing step may change the structure of a material such that it develops
different properties depending on the material itself and the parameterization of the
treatment. Multiple processes conducted subsequently in a process chain then produce
the final set of properties the material will have. However, some of the processing steps
may cancel out the results of previous steps, therefore finding the right process chain
is crucial in producing the desired material.

The emerging field of materials informatics combines domain knowledge from the ma-
terial sciences with computational and representational means of computer science.
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However, despite remarkable progress in both analytical and data-driven approaches
towards material design, the discovery and engineering of new materials is still a time,
cost, and labor-intensive process.

One obvious reason for this is the intractably huge exploration space, which originates
from the number of qualitative and quantitative process parameters of different mate-
rial treatments. For example, considering the number of different possible processes
(e.g. thermal, mechanical or chemical treatments) with their respective parameteriza-
tions (e.g. temperatures, processing times) as well as the proportions of the composition
yield an unimaginably large number of possible combinations. From a computational
point of view, this process of exploring new materials suffers from what is commonly
referred to as the curse of dimensionality’’, the exponential growth of a search space in
the number of its dimensions. In addition, the empirical evaluation of a new material
compound is time and labor intensive as it involves the manufacturing and processing
of sufficiently large samples of a material, as well as the investigation and measurement
of its properties.

Ellendt and Mädler (Ellendt and Mädler 2018) have proposed a novel approach towards
material design, called Farbige Zustände (colored states), which aims at the investiga-
tion of materials and processes on microscopic-size samples that can be produced with
innovative high-throughput methods at low cost. However, these micro samples are
often too small in size to directly measure properties like the fatigue strength against.
Instead, a set of descriptive features of micro samples is used to predict the material
properties from microscopic to macroscopic samples. Finding mappings between these
features in the microscopic level and corresponding properties in the macroscopic level
plays a central role in this development process because it allows to experimentally ex-
plore material groups while overcoming resource limitations at the same time.

The experimental setup within the approach is designed for the systematic analysis of a
selection of well-known metal alloys such that the results can be compared to findings
from literature. The relations can later be transferred to less thoroughly investigated
materials.

In this chapter, the conception and prototypical implementation of MatCALO is pre-
sented, an intelligent, assistive system that is capable of supporting materials scientists
in their work by generating hypotheses on how to process certain materials to obtain
desired properties. The overarching vision behind this system is the idea that a material
scientist approaches the system with a set of desired properties a material should meet.
The researcher queries the system with these requirements and gets back a confidence-
rated set of hypotheses about which material compositions and processing steps are
likely to yield the respective results. A high-level overview of this framework is shown
in Figure 40. To this end, the system maintains a large database of experimental data
which will be used to generate a set of candidate answers. In a later state the system will
additionally use semantic knowledge to complement the trained model in refining its
results, presenting alternative answers and generating final hypotheses. This implies
the requirement of finding a suitable and machine-understandable representation of
semantic knowledge.
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The scientific contributions of this work are therefore

▷ the investigation of materials science control structures and their processing in
terms of an intelligent system that allows to query different aspects in order to find
undiscovered relations

▷ the introduction of an approach to generate process plans for the targeted construc-
tion of novel materials

▷ an open-source prototypical implementation of the software MatCALO which
combines this knowledge and provides access to it

An overview of research in the field of materials informatics is presented in Section 5.2.
Section 5.3 covers the conceptual description of the research question that are tackled.
The terms introduced in the scope of this work will be delineated the domains this
work is restricted to are defined. Section 5.3.1 details the research question by formal-
izing the conceptual description before Section 5.3.2 presents the hypothesis genera-
tion by means of a representative example. The semantic representation of knowledge
is addressed in Section 5.3.3. The current state of the prototypical implementation of
MatCALO as well as information the interpretation of various visualizations is demon-
strated in Section 5.3.4. A proof-of-concept evaluation along with the discussion of the
results and an outlook to future developments can be found in Sections 5.4 and 5.5

High-level overview of the framework: the query entered by the user first triggers a search for candidate
hypotheses. The hypotheses generation then uses additional semantic knowledge to refine the results. |

Figure 40

5.2  State of the Art
While material discovery has been conducted purely empirically for thousands of years,
only in the past few centuries the analytical investigation of materials emerged as noted
by Agrawal and Choudhary (2016), aiming at formulating general laws of materials
behavior.
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Computer science contributed to this development by providing computational mod-
els and simulations in recent decades. Still, the field of materials informatics is rather
new and gained relatively little attention in comparison to other scientific fields, in
which computer science already features prominently since years and has become in-
dispensable as stated by Rodgers and Cebon (2006). Popular examples are cheminfor-
matics and bioinformatics which even form new scientific disciplines allowing to solve
tasks that have been previously deemed infeasible. A famous example is the sequenc-
ing of the human genome, rendered possible by combining classical research in biol-
ogy with computer science, machine learning, statistics, mathematics, and engineering
technologies. This milestone in modern biology laid the foundation for the study of
genetic diseases and the functional principles of biological processes. It is now possible
to identify candidate genes responsible for certain tasks and understand their interac-
tions in a biosystem. Ontologies representing certain aspects of biology, genetics and
chemistry are heavily used for well-structuring and querying complex data.

Nørskov and Bligaard (2013) create the link to the materials science by describing the
search for the properties of a material that define its functional properties as the quest
for the ‘materials genome’. Knowing the genome would rapidly speed up finding new
catalysts for different purposes that reduce energy consumption and waste products
and, eventually, build a sustainable chemical sector. There is not enough data to find all
links between catalyst structures to rates of reaction conditions and that it is infeasible
to build such a knowledge base. The authors rather propose the use of machine learn-
ing, which allows to find patterns in data and use them to make predictions. They also
define the genome to be not only specified by underlying data but also a collection of
machine learning methodologies such as analysis tools, search methods and learning
algorithms to create synthetic data based on such predictions. Takahashi et al. (2019)
introduce the concept of catalyst informatics and present it as the new generation of
catalyst design methods. They propose three key concepts to establish catalyst infor-
matics, 1) the catalyst data, which must be consistent and diverse while collected and
organized following global rules, 2) the catalyst data to catalyst design, which deals
with machine learning to predict (i.e. design) catalysts using patterns found in the data
and 3) the platform for catalyst informatics which is expected to be publicly available
and convenient to use in order to bring catalyst informatics forward.

Walsh (2015) raises the question on how to identify arrangements of the elements of
the periodic table, whose number of possible combinations easily grow into millions,
to efficiently produce interesting properties and names various examples for the suc-
cessful use of materials prediction techniques.

Rajan (2015) argues that Big Data concepts are important to identify essential struc-
ture-property relationships but also points out that current efforts in materials infor-
matics often focus only on increasing the volume of data, while being negligent of
the remaining metrics velocity, variety and veracity. However, these metrics, combined
with different tools of machine learning have shown to still help designing new mate-
rials dealing with uncertainty and sparse data. Rajan (2012) also names ensemble soft
computing methods, being defined as fuzzy logic, neural network theory and proba-
bilistic reasoning, as potentially superior to traditional ‘hard’ models. He argues that
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they reveal novel information not explicitly present in the data instead of just finding
the embodied relationships.

Takahashi and Tanaka (2016) discuss different aspects that need to be taken into con-
sideration in materials informatics. This includes the collection of data, where they
emphasize the necessity of collecting not only positive results but also negative and un-
wanted ones to allow machine-learning processes to reveal trends and behaviors which
would be left undiscovered using only positive examples. They identify the inaccessibil-
ity of some databases as the largest issue when it comes to the development of a global
knowledge base and express the requirement for global-standard data collection and
database creation. The authors also identify the discovery of key descriptors represent-
ing materials properties as a crucial step in materials informatics and promote the de-
velopment of web interfaces to make tools for material modeling, calculation and ma-
chine learning available to other researchers to create useful and accessible platforms
to share knowledge and data and eventually develop materials informatics further.

Scientists propose using the Semantic Web to agree on a common structure of how data
is represented allowing the broad community to easily access the findings of other sci-
entists and reuse open software tools as described by Wang et al. (2016) and Taylor et
al. (2006) and Casher and Rzepa (2006). A first step towards formalizing the chemistry
domain is the Gainesville Core Ontology²⁸

²⁸Gainesville Core Ontology

which was built to describe a typical Computational Chemistry experiment. The idea
behind such approaches is to ease the advances in sharing information and therefore
increase reproducibility and reusability of experimental findings.

Agrawal and Choudhary (2016) introduce the fourth paradigm of science, i.e. the data-
driven discovery of novel materials that follows from the urge to handle complex and
diverse data of materials science. The authors present popular predictive modeling al-
gorithms and discuss the workflow of materials informatics by means of three exam-
ples where invertible PSPP relationships were learned.

There are already multiple approaches on using computational methods on material
science approaches. Data-driven approaches such as the one presented by Gauthaml
et al. (2011) attempting to predict materials properties based on combining materials
informatics and physics-based modeling gain more and more attention while Seshadri
and Sparks (2016) promote the design of databases relating to functional materials to
accelerate the discovery and deployment of novel materials and propose the employ-
ment of a standardized, machine-readable (JSON-based) materials information file for-
mat containing information about material properties. The authors discuss the manual
aggregation of data from literature in order to learn from the contained experiments
and argue that the designed databases need to be searchable and interactive to be used
effectively. They highlight the importance of appropriate visualization which gives a
better insight in the collected data and present their own web services for their ther-
moelectrics database²⁹ (already introduced and explained in greater detail earlier by 

²⁹UCSB Thermoelectrics Database

Gaultois et al. (2013)) and their battery database³⁰ allowing users to plot data with vari-

³⁰Utah Battery Database
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able parameterizations. The authors propose to archive raw data from plots when fu-
ture papers are published, to avoid the problem of having to re-digitize originally digital
content from the publications. The possibility of aggregating data from crowd-sourcing
is discussed which rises the question of data curation. Still, when employing the men-
tioned strategies for easing data aggregation, the authors leave open how to integrate
already existing data contained in previously published literature.

Gaultois et al. (2016) present a web interface³¹ that recommends novel thermoelectric
compounds using machine learning techniques on a database of about 25000 pre-

³¹Citrination

screened materials. The tool is hosted on the website of Citrine Informatics³², who claim

³²Citrine Informatics

to host the world’s largest materials database that they also provide an online search
engine for.

The Materials Genome Initiative (MGI)³³ was launched in 2011 to accelerate the dis-
covery, development and deployment of novel materials to support industry and re-

³³MGI

search in their work. Numerous agencies and institutes are involved in this initiative
and support it with resources and infrastructure. Jain et al. (2013) introduce a project
emerging from this initiative which deals with the development of various applications
that support scientists in designing better materials. The applications use data min-
ing technologies to compute materials properties such that scientists can target their
research at promising compounds proposed by the system. The authors aim at a sys-
tem that allows rapid-prototyping of materials simulated by computers to overcome the
costly and time-consuming experimental development in the lab. Users can register for
an account and use the provided tools in the web interface³⁴ or create an Application

³⁴Materials Project

Programming Interface (API) key to access the data and integrate with their own infra-
structure.

Janowicz et al. (2014) argue that the sheer amount and complexity of today’s data
sources call for an elaborate analyzation of the data in order to be able get meaningful
insights. The authors hold the opinion that the Semantic Web tackles at least a subset of
the challenges with such data and endorse its suitability and robustness for data-inten-
sive science. In particular, put focus on the benefit of using Semantic Technologies by
introducing a number of dimensions in which the need for semantics increases. They
call these dimensions diversity, synthesis and definiteness. The diversity dimension in-
cludes the increasing heterogeneity of data and domains, uncertainty and variety of
data formats while the synthesis dimension needs semantics in terms of preparing data
for analyzing it in a meaningful way. The definiteness dimension uses semantics to in-
troduce logical consequences in terms of ontologies which represent a data provider’s
perspective explicitly.

There are also discussions on how to effectively share data, addressing challenging top-
ics such as how to deal with unstructured data and overcome differences in data struc-
tures from multiple sources as by Jain, Persson, and Ceder (2016).
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An example for sharing data and research findings among research groups is
QUANTUM ESPRESSO³⁵)], a publicly available toolbox provided by Giannozzi et al.

³⁵QUANTUM ESPRESSO

(2009) who use computations of density-functional theory and plane waves to simulate
materials in terms of electronic structure. The toolbox allows the user-friendly analyt-
ical modeling of quantum simulations.

Pizzi (2018) also discusses an Open-Science platform for materials science as being re-
liant on not only tools for data generation, but also a common platform to combine the
strengths of the tools and integrate them into an easily accessible collective system as
well as a data management strategy to allow sharing code and data.

Curtarolo et al. (2012) argue that empirical information on scrystal structures and prop-
erties is key in the development of novel materials but that databases containing such
knowledge are incomplete, which calls for the development of computationally derived
repositories to fill the gaps. They introduce the aflowlib.org library which provides col-
lected information about phase diagrams, structures of binary alloys, electronic struc-
tures of inorganic compounds as well as properties of alloys. The library has since
been extended to be accessible through a programming interface Taylor et al. (2014)
allowing the community to accelerate the computational development of materials by
constructing high-level workflows using the data in the repository. To allow the repro-
ducibility of results reported by the AFLOWLIB consortium and to ease the extension
of the database with results of materials science community researchers, Calderon et
al. (2015) introduced the AFLOW standard for the high-throughput construction of the
database.

Another platform that promotes putting useful tools for computational materials sci-
ence at the materials science community’s disposal is the pymatgen library introduced
by Ong et al. (2013) which deals with materials data representation and analyses as well
as the establishment of collaborative platforms and which is used as a library in the
open-source Python framework atomate Mathew et al. (2017) which provides tools for
simulations and analyses and facilitates calculations of materials properties (semi-)au-
tomatically.

Yip (2007) introduces the concept of Computational Materials in their handbook as a
new discipline of computational research. Following their deliberations, it can be ar-
gued that computational methods and in particular, machine learning algorithms are
key to further advance research in materials science. The use of traditional machine
learning methods is well suited to learn adequately generalizable functions, given the
provided data is sufficient for this task. Unfortunately, in materials science this is
usually not the case, as data is collected predominantly from conducted experiments,
which generally does not suffice as it will never cover an adequately large area of the
search space. Additional background knowledge, the previously mentioned semantic
knowledge, is eventually required which includes fundamental knowledge about the
control structures of materials science and which can be combined with machine
learning methods. The functions mentioned above should not only explain the avail-
able data it was trained with, but should also allow making reliable statements about
new data points, i.e. about the unexplored areas one is interested in. In particular, one
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cares about a function that gives information about which areas are promising with
respect to the specified requirements and which will most probably not yield materials
with the desired properties. In the following, the approach will be further detailed along
with an explanation how the abovementioned challenges are intended to be tackled by
incorporating semantic knowledge.

5.3  Conceptual Framework
In this work the focus lies on structural materials and examine a small set of metal
alloys that are investigated thoroughly in literature. In particular, different alloys in the
system Fe-C-Cr at this point are used, with Fe-C-Cr-Mn and some Al-Basis alloys being
added in later stages.

The material properties one is interested in are common properties characterizing metal
alloy features such as the hardness, yield strength, elongation and corrosion behavior
of the respective alloy.

A sample in the context of this work may either be microscopic or macroscopic. A macro-
scopic (macro) sample can be used to obtain material properties directly because of its
size. Macro samples can for example be created by using spray-forming techniques El-
lendt, Uhlenwinkel, and Mädler (2014) or casting. A microscopic or micro sample is a
spherical droplet of a few hundred 𝜇m in diameter. These samples are either generated
in large quantities in one go using the pneumatic high-temperature droplet generator
as described by Ellendt et al. (2016) or they are formed in a larger-scale sample using
Laser Deep Alloying. They can be characterized with established techniques such as
nanoindentation measurements where the results allow the prediction of the proper-
ties like Young’s modulus or hardness of larger (macroscopic) samples as described by 
Ciftci et al. (2014). The development of reproducible 

high-throughput
characterization

▷
high-throughput techniques for

the short time sample characterization is vital for using the results in the microscopic
level results to predict actual material properties of larger-scale samples. The idea is to
use predictions of material properties based on short-time characterizations on micro
samples and generate few sample points from the macro samples to validate the results.
This of course requires the macro samples to be comparable with the micro samples in
terms of their respective microstructure, i.e. an appropriate synthetizing and treatment
needs to be found as stated by Ellendt and Mädler (2018).

The term descriptor is used to denote any kind of measurement or feature obtained
from such characterization. They correlate with material properties so that a short-time
characterization of a micro sample facilitates the prediction of material properties in
macro-scale materials.

The materials are subject to different kinds of treatments which are called processing
steps. A processing step can either be exclusively descriptor-determining, i.e. the treat-
ment is only made to obtain descriptors of the sample or coloring, i.e. supposed to
manipulate the sample’s microstructure in a certain way. Examples for coloring steps
are mechanical treatments such as milling, which changes the form of the material or
thermal treatments such as heat treatments which change its internal structure. A de-
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scriptor-determining process may also have a coloring effect on the material, yet only
locally. Still, this process is still called descriptor-determining as this is its predominant
purpose. In the most extreme case a sample is destroyed in the process as can happen
for example with chemical treatments. Such a process will be called destroying.

In general, a sample undergoes multiple processing steps throughout its lifetime such
that a process chain of both descriptor-determining and coloring steps is generated,
possibly with a final destroying step. These process chains are examined with respect
to the effects the single steps and their parameterizations have on the material’s prop-
erties. These observations are then used to train models representing process-property
relations and of course mappings of descriptors to actual material properties.

To use such models for inference, the user of the system defines characteristics, i.e. a
set of property-value mappings the desired material should meet, called a requirement
profile. This can be achieved using a graphical user interface that allows the selection
of certain properties and assigning values or value ranges to them (see Figure 41). Us-
ing this profile, the system then searches the database to find a material that somehow
matches this description either in all properties or using a predefined similarity mea-
sure that represents the contentment with the result. The process steps that led to this
result are retrieved and used as initial hypotheses.

Requirement profile for the three properties color, ductility and strength. | Figure 41

This work builds upon two main pillars which is (1) the data driven inference and
learning of probabilistic models based on experimental data and (2) the engineering
of models representing semantic knowledge that can be learned from experience and
literature. 

◁ learn from
external
knowledge and
experience

This work therefore consults additional sources of input data to find the be-
forementioned correlations and learn about the fundamental control structures behind
the materials science. In particular, the focus lies on semantic knowledge that can be
represented in a machine-readable fashion such as ontologies. An ontology generally
consists of two parts, the TBox (also called taxonomy), comprising the terminological
axioms defining categories of objects in a domain with their respective relations among
each other and the ABox, containing the assertional axioms describing the world us-
ing definite instances (or individuals) of concepts in the TBox (Baader and Nutt 2003).
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WordNet³⁶ is a lexical database, structuring more than 117.000 concepts of the English

³⁶WordNet

language in terms of is-a relations, such that it can serve as an example for an upper
ontology, limiting the possible relationships to be predominantly (but not exclusively)
hierarchical.

The fundamental advantage of using ontologies is that one can generate hypotheses
based on the similarities represented therein. In particular, one is able to find substi-
tutions for materials or processes that are not available at the time or for some other
reason not applicable. Section 5.3.3 will describe in more detail how semantic knowl-
edge will be used in terms of ontologies.

The experimental data the models are trained with are assumed to contain the follow-
ing information:

▷ the initial state of a material (i.e. its properties before conducting any experiments)
▷ the process steps that were conducted on the materials including their respective

parameterization
▷ the final state of a materials (i.e. its properties after conducting the process steps)

The experiments are either descriptor-determining processes which exclusively ana-
lyze samples to identify their descriptors or ‘coloring’ processes which change a materi-
als’ microstructure through thermal, mechanical or thermo-mechanical action. Multi-
ple processes can be conducted consecutively, forming a process chain associated with
one or more property transformations of the treated material.

5.3.1  Problem Formulation
The purpose of MatCALO is to support materials scientists in their work of finding
novel materials in an informed fashion to bypass time- and labor-intensive experi-
ments.

To achieve this, a data set is required that contains process chains of which the exact
outcome is known and which can be used to train probabilistic models that generalize
well enough to make reliable statements about how single process steps and influenc-
ing factors drive the development of certain properties. For the formulation of the query
a web interface allowing to define the desired characteristics of the new material will
be provided. The input can be seen as a set of material properties each of which has a
defined interval its value ranges in. As defined above, such properties can be something
like the hardness or corrosion behavior. This input will be used to query the system
and generate rated hypotheses, where a hypothesis in the context of MatCALO is a
proposition about the processing chain a material has to undergo in order to develop a
set of desired properties.

As a simple example, assume ther are only two processes available that can be con-
ducted on a material. The first one is a thermal process, in which the material is heated
at a given temperature. The second one is a mechanical process, indicating that the
material is mechanically treated with some force. These processing steps have a certain
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influence on the properties of the material. The first property is the 𝑐𝑜𝑙𝑜𝑟 with values
ranging from 40 to 250, where low values indicate a blue 𝑐𝑜𝑙𝑜𝑟 and high values indicate
a red one and which can be interpreted as a color gradient from blue to red. The sec-
ond property is the 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ that can take values from 10 to 20. Keep in mind that the
output of a process may not only depend on the applied force or temperature which is
given as a process parameter but also on the previous state of the material, i.e. which
𝑐𝑜𝑙𝑜𝑟 or 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ it had before conducting the treatment. Such dependencies can be
modeled as additional ‘indirect’ process parameters. The models are trained for the two
processes such that the system learned how the treatments influence the state of the
material.

Looking for a way to produce a red and strong material, a query in MatCALO can be
formulated to find out which chain of subsequent mechanical and thermal treatments
will leave us with, say, a 𝑐𝑜𝑙𝑜𝑟 value of > 200 and a 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ value > 15.

Technically, MatCALO will trigger the compilation of a new process chain that is likely
to produce the desired output. This includes the types of processing steps along with
their respective parameterizations and the order in which they have to be conducted,
as well as a measurement indicating the quality of the proposition.

More formally, 𝒟, 𝒫 and 𝒜 are defined as sets of symbols for descriptors, properties
and the arguments of process steps, respectively and introduce the set of feature sym-
bols ℱ as the union of descriptors and properties. As it is dealt with two different types
of descriptors, 𝒟 is divided into separate sets 𝒟𝑚 and 𝒟𝜇. Accordingly, the features are
denoted as

ℱ𝑚 = 𝒟𝑚 ∪ 𝒫 (93)

and

ℱ𝜇 = 𝒟𝜇 ∪ 𝒫. (94)

A feature profile 𝜑 is defined here as an exhaustive assignment of features to ranges of
admissible values, i.e.

D 𝜑 : ℱ ↦ ℝ2, (95)

where ℝ denotes the extended real number system ℝ = ℝ ∪ {−∞, +∞}. Let ℐ be the
interval function, 𝐼 : ℝ2 ↦ 𝕀, with 𝕀 ⊆ ℝ being the set of all continuous real-valued in-
tervals, and 𝐼(𝑎, 𝑏) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥 ≤ 𝑏; 𝑎, 𝑏 ∈ ℝ}. A colored state 𝜎 of a material is an
exhaustive assignment of features to concrete real values,

D 𝜎 : ℱ ↦ ℝ. (96)
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A colored state 𝜎 is said to satisfy a feature profile 𝜑, in symbols 𝜑 ⊧ 𝜎, if and only if all
values of 𝑆 lie in the respective admissible values of 𝜑:

D 𝜑 ⊧ 𝜎 ≔ {⊤  if ∀𝑓 ∈ ℱ : 𝜎(𝑓) ∈ 𝜑(𝑓)
⊥   otherwise.

(97)

A requirement profile 𝜚 is a feature profile for which the following holds:

∀𝑑., (𝑑 ∈ 𝒟 ⇒ 𝜚(𝑑) = ⟨−∞, +∞⟩). (98)

i.e. a requirement profile postulates effective bounds only for material properties, but
allows descriptor variables unconstrained. Let Φ denote the set of all feature profiles, Σ
the set of all colored states and Ρ the set of all requirement profiles. A single process step
𝜋 can be viewed at as a function transforming a material’s state into a new colored state

D 𝜋𝑎 : Σ ↦ Σ, (99)

which is controlled by the process’ arguments 𝑎 ∈ 𝒜. Consequently, a process chain 𝜁
of length 𝑁  is defined as a composition of process steps

D 𝜁 : Σ ↦ Σ,  𝜁(𝑥) = (𝜋(𝑁)
𝑎𝑁

∘ ⋯ ∘ 𝜋(1)
𝑎1

)(𝑥). (100)

Let Ω ⊆ Σ be the set of original states of materials (“Urform”). Given a requirement
profile 𝜚, the ultimate goal is to find a processing chain 𝜁 and an original material 𝜔 ∈
Ω, such that the final material state satisfies the requirement profile: 

𝜚 ⊧ 𝜁(𝜔). (101)

The manufacturing and processing of materials is subject to high uncertainty. This un-
certainty originates mainly from noisy measuring techniques and limitations in the
accuracy of controlling the manufacturing process. In addition, 

handling
uncertainty

▷
there is a lack of accu-

rate and reliable analytical models that allow the exact prediction of the outcomes of
precessing steps. It is therefore a necessity to take into account the uncertain nature of
the problem and make it explicit in the models. As the acquisition of predictive mod-
els from data generated by novel high-throughput methods is intended, probabilistic
regression models on the level of individual processing steps 𝜋 are learnt,

𝑃(𝑆𝑖+1|𝐴𝑖, 𝑆𝑖), (102)

which represents the probability distribution over colored states 𝑆𝑖+1 that are obtained
from processing a material in state 𝑆𝑖 with process parameters 𝐴𝑖 (see Figure 42). Note
that 𝑆𝑖+1 and 𝑆𝑖 here denote random variables whose domains are the space of all col-
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ored states Σ. It is assumed that the resulting colored states are conditionally normally
distributed, i.e.

𝑆𝑖+1 | 𝐴𝑖, 𝑆𝑖 ~ 𝒩(𝜇(𝐴𝑖, 𝑆𝑖), Ξ(𝐴𝑖, 𝑆𝑖)), (103)

i.e. for every pair ⟨𝐴𝑖, 𝑆𝑖⟩, there is a mean vector 𝜇 and a covariance matrix Ξ that de-
termines the normal distribution of 𝑆𝑖+1. 

Schematic representation of a process chain including state variables 𝑆𝑖 and actions 𝐴𝑖. | Figure 42

user-controlled
𝐴𝑖−1 𝐴𝑖 𝐴𝑖+1

𝑆0 𝑆𝑖−1 𝑆𝑖 𝑆𝑖+1 𝑆𝑖+2 ⋯

Material properties may not be measured directly but in terms of descriptors, therefore
another function 𝜓 is required, mapping a descriptor to an actual property:

D 𝜓 : 𝒟 ↦ 𝒫 (104)

Using the definitions above, one can now search for the most probable sequence of
process steps along with their parameters that leads to a given requirement profile:

arg max
𝜋(𝑁)

𝑎𝑁
,…,𝜋(1)

𝑎1

 𝑃(𝜑 ⊧ 𝜎 | (𝜋(𝑁)
𝑎𝑁

∘ ⋯ ∘ 𝜋(1)
𝑎1

)(𝜔) = 𝜎) (105)

with 𝜑 being the requirement profile and 𝜔 the initial state of the material.

5.3.2  Hypothesis Generation
For the hypothesis generation multiple regression trees are trained each of which rep-
resents one coloring step. A regression tree is a decision tree in which the value to be
predicted can be continuous. In general, decision trees are predictive models that are
structured in a tree-like fashion. Every inner node, i.e. a node that is not a leaf node,
represents an input variable that is connected to its child nodes through edges, each
of which denotes a possible value (or value range) of that particular variable. Each
leaf node represents the predicted value of the target variable given the values of the
input variables along the path from the root node to this leaf node. In the modeling
presented here, the feature nodes represent the parameterization of the coloring step
and the material’s property values before conducting the process. Accordingly, a path
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from the root node to a leaf node represents the transformation from one property set to
another using the respective parameterized coloring. The goal is to find out what steps
are to be performed to get to a certain set of properties or a particular state of a material.
Therefore is it necessary to find a result in the leaf nodes of the trees that matches the
query best and search backwards to the root to obtain the parameterization that lead
to these properties, i.e. to look for the result of a certain action. In particular, a reverse
decision tree inference is performed that results in a state of the material that has pos-
sibly been reached through one or more further coloring steps and therefore can itself
be used as a query for further inference. An inference using this approach can therefore
be understood as multiple reverse decision tree inferences being performed until a root
node representing an initial coloring (manufacturing) step is reached. A pseudo-code
representation of this approach is consolidated in Algorithm 9.

The example can be used with the two processing steps previously introduced in Sec-
tion 5.3.1 to illustrate the process. Assume the models (i.e. regression trees) the system
learned look like the ones shown in Figure 43.

Following the paths in the trees below from the respective root node to their leaf nodes
the following rules can be derived:

▷ Applying high temperatures change the 𝑐𝑜𝑙𝑜𝑟 of a material from blue to red, while
▷ high force either generates a red 𝑐𝑜𝑙𝑜𝑟 if the material was already strong before or

increases the 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ and
▷ low temperatures as well as low force treatments decrease the 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ.

Decision tree example: Simple example for decision trees representing two different processing steps: (1)
a thermal process which has only one parameter indicating the temperature of the heat treatment and (2)
a mechanical process with one parameter force. In this small example, a material has only two properties;
the 𝑐𝑜𝑙𝑜𝑟 of the material can take values representing colors from red to blue, while the 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ value
can be interpreted as low or high. The leaf nodes represent the multivariate distribution, which is denoted

as two separate distributions for the 𝑐𝑜𝑙𝑜𝑟 (upper) and 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (lower), for simplicity. | Figure 43

mechanical
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𝒩(145, 105)
𝒩(17.5, 2.5)

𝒩(145, 105)
𝒩(15, 5)

⊤ ⊥

⊤ ⊥ ⊤ ⊥
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⊤ ⊥ ⊤ ⊥
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Multiple Reverse Tree (MRT) Inference | Algorithm 9

MRT(𝜚, 𝑡𝑟𝑒𝑒𝑠, 𝑡):

Input: 𝜚, a query
trees, a sequence of tree models
𝑡, a sequence of hypotheses with confidence

Output: hypotheses, a sequence of tree models

1 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠 ← ∅
2 Generate-Paths(∅, 𝜚, 𝑡𝑟𝑒𝑒𝑠, ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠)
3 return hypotheses
4
5 function Generate-Paths(𝑐ℎ𝑎𝑖𝑛, 𝜚, 𝑡𝑟𝑒𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
6 𝜚′ ← Update-Query(𝜚, 𝑐ℎ𝑎𝑖𝑛, 𝑡𝑟𝑒𝑒𝑠)
7 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← Generate-Candidates(𝜚′, 𝑡𝑟𝑒𝑒𝑠)
8
9 for each 𝑐 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

10 𝑐ℎ𝑎𝑖𝑛′ ← Make-Queue(𝑐, 𝑐ℎ𝑎𝑖𝑛)
11 conf’ ← Calculate-Confidence(𝑐ℎ𝑎𝑖𝑛)
12 if 𝑐𝑜𝑛𝑓 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
13 continue
14 end if
15 if 𝜚′ ⊧ 𝑐ℎ𝑎𝑖𝑛′ then
16 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← Insert((𝑐𝑜𝑛𝑓, 𝑐ℎ𝑎𝑖𝑛′), 𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
17 else
18 Generate-Paths(𝑐ℎ𝑎𝑖𝑛, 𝜚′, 𝑡𝑟𝑒𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
19 end if
20 end for
21 end function

The leaf nodes in the figure are annotated with numbers, such that they can be refer-
enced in the explanation of this example. Now a query is formulated that can be used
to infer the necessary processing steps and parameters to generate a material with the
desired properties. Assume that for some reason it is desirable to have a material that
is red and strong, i.e. {color = 200, strength = 18}. To keep the example simple, an-
other limitation is introduced by defining that the material in its original (unprocessed)
state is blue and not very strong, i.e. {color = 210, strength = 53}. This will reduce
the possible candidates to a manageable number. In a first step, all those leaf nodes,
that comply with the defined query are identified, i.e. requirement profile. Each leaf
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node represents a multivariate distribution over the value ranges of the properties. In
this example, this is a Gaussian distribution but any other distribution representing the
values of certain properties appropriately could be used. For reasons of simplicity two
independent distributions in the leaf nodes are shown, each of which represents one
of the two properties to facilitate the understanding of the reasoning in this example.

Using these distributions, the similarity of a certain node to a given requirement profile
can be quantified by calculating the probability that any of the values in the intervals
given this distribution are reached. In other words, the CDF as the integral over the
PDF of the given distribution is determined.

In this example, that are all those particular nodes that not only have the mean of the
𝑐𝑜𝑙𝑜𝑟 distribution at 165 and/or the mean of the strength distribution at 17.5, but also
those ones that represent the a priori distribution with the means at 145 and 15 respec-
tively. The a priori distributions can be interpreted as that the process does not affect
the respective property, i.e. the initial values are left untouched. This would leave us
with a list of candidates containing the nodes 1, 3, 4, 5, 7, 8 and 10. Only nodes 2, 6 and
9 can be ignored as they will most likely produce a material that fails to meet the criteria
in at least one of the two properties.

However, for this example the focus lies on those nodes that are closest to match the
requirement profile in terms of at least one of the properties, which in this case are
the nodes 1, 3 and 8. Following the path up to the respective root nodes now gives in-
formation about how this property value was achieved. In case of Node 3 high force
would have to be applied for an initially weak material to achieve high strength, while
for Node 1 and 8 a red 𝑐𝑜𝑙𝑜𝑟 is achieved if either high temperatures to a previously blue
material or high force to an already strong material is applied, which complies with the
abovementioned observations.

In all three cases, however, only one of the defined property requirements are met so
far. Furthermore, the additionally defined restriction that the original material was ini-
tially weak and blue, is also not fully satisfied for any of these nodes alone, therefore
applying only one of the respective processes will not produce the desired result. Ob-
viously, another process has to be conducted in order to manipulate the respective sec-
ond property as well. In other words, whichever node is chosen as the ‘starting point’,
another state is produced, that is subject to another query in order to find out how to
achieve it.

To illustrate this, follow the path from Node 3 to the root of the tree. This node can only
be reached by applying a high force (≥ 300) on a previously weak material (𝑠init < 15).
There is no information about the initial 𝑐𝑜𝑙𝑜𝑟 of the material (𝑐init) and the distribution
in the node (𝒩(145, 105)) indicates that this property can take any value of its value
range, which can here be interpreted as it being left unchanged, i.e. whichever value
this property had before conducting the force it will have the same value afterwards. In
this case, starting with a blue material, following this path would end in a state where
the material is strong but most likely still blue.

But how can the red 𝑐𝑜𝑙𝑜𝑟 be achieved? One approach would be to try to find another
process that leaves us with a red material that ideally does not affect the strength and
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conduct this prior to the mechanical treatment. In other words, finding an output Node
𝑥 among all the candidate leaves that tells us how to get there is necessary; therefore a
a new query is defined in which all the preconditions of the currently considered path
are required properties for the new search as the output of 𝑥 represents the input of the
process leading to Node 3.

This leaves us with nodes 1 and 8. Node 1, as a precondition, requires the material to be
strong already, which the material initially does not satisfy, so this node is skipped for
now and Node 8 is investigated. This node can be reached when the material was ini-
tially blue (𝑐init < 80) regardless of the strength (𝑠init unmentioned along the path and
𝒩(15, 5)) and represents the desired red 𝑐𝑜𝑙𝑜𝑟 output (𝒩(165, 85)). This node is there-
fore chosen as the precondition of the mechanical process can be fed to the heat treat-
ment. To summarize, there is now a precondition of a blue and weak material (which
is satisfied) and conducting the two processes in a chain will most likely produce a red
high-strength material as required, i.e. now a state in which all the specified criteria
are satisfied is reached.

There is yet to mention that even if this was identified as a possible hypothesis on how to
generate the desired output, other solutions are still possible. Without going too much
into detail, another possible solution would be to apply a high-force mechanical treat-
ment on the material two times, which will increase the strength in the first treatment
(Node 3) and then generate the red 𝑐𝑜𝑙𝑜𝑟 in the second (Node 1).

Development loop: The initial models are trained with data from only few sampling points generates hy-
potheses that are evaluated in terms of the quality of the results and used to find weaknesses. These weak-
nesses are then tackled by using results of targeted high-throughput experiments in micro-scale to retrain

and improve the models. | Figure 44
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Solutions may contain loops of processes which keep on producing the same result
which is why a penalty is used for long processing chains incorporating unnecessary
(duplicate) steps and therefore define a strong preference for the shortest and simplest
solutions.

By virtue of the large search space, there may be areas that are very well understood be-
cause they have been studied extensively and are well-described in literature. Queries
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that lie within these areas will naturally produce reliable, higher-confident hypotheses.
On the other hand there may be large fields that are left unexplored so far such that
there are not enough data points to make precise statements. It is therefore crucial to
augment the generated hypotheses with a measurement indicating the system’s con-
fidence in that proposition. A low confidence then allows to not only identify weak
hypotheses, but also find areas that might be promising to explore further in terms of
additional experiments to improve the trained models. Unexplored areas can be iden-
tified by investigating the standard deviations of the distributions in the leaf nodes.

The standard deviation allows to draw conclusions about the size of the value interval a
property can range in following that particular process path. A large interval of values
itself can be taken as evidence that the system was not able to make precise propositions
and that more data in this specific value range is required. High-throughput methods
for creating and testing micro samples allow to generate data with large variation in
comparatively short time, which allows us to fill these gaps quicker than with conven-
tional methods. By re-evaluating the trained models, identifying unexplored areas and
generating targeted data on a regular basis allows to accomplish a closed loop in which
the system is improved continuously (see Figure 44).

5.3.3  Semantic Representation
An ontology can be an excellent tool to represent the knowledge that is hidden in lit-
erature and regarded as ‘commonly known’ in the respective field of research but is
hard to grasp and difficult to apply to complex data structures. Designing ontologies
can be tricky, as there are many different ways to model relations between objects on
a conceptual level. Depending on the chosen design and the type of question asked,
performing inference on an ontology may be hard if not computationally infeasible.

Periodic table ontology: Small excerpt of the current state of the ontology comprising the taxonomic re-
lations of the elements of the periodic table as well as a collection of steel-based alloys along with their

respective properties. | Figure 45
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Ontologies have been used widely in other research areas and are gaining interest in
the field of materials science and in materials and catalyst informatics in particular. 
Takahashi, Miyazato, and Takahashi (2018) introduce them as a tool to potentially over-
come difficulties that arise when using multiple databases from different researchers
incorporating different terminologies and data types. The authors argue that ontologies
can be used to add more semantics to scientific data by defining relationships between
concepts that are typically overlooked and develop an ontology containing information
from the periodic table that can be used to search for descriptors.

MatCALO uses ontologies to add another layer of knowledge. The used ontologies
are represented using the W3C Web Ontology Language (OWL)³⁷ which is the most

³⁷OWL

commonly used knowledge 
◁ external

knowledge sources

representation formalism. It is standardized, used within a
large community and there exist multiple software programs and libraries to visualize,
modify and query OWL ontologies.

An individual in MatCALO is grounded in an ontology, i.e. it is identified by concepts
in the ontology which gives it a globally unique and well-defined semantics that can be
intercorrelated to other objects in the ontology - and therefore in all system components
of MatCALO. Through this grounding in the ontology, it is now possible to determine
a concepts’ ‘similarity’ to other concepts and therefore allow for substitutions of sim-
ilar materials or processes. To this end, the ontology is designed manually using the
ontology editor Protégé³⁸ (Musen 2015), which provides visualizations for the class hi-

³⁸Protégé

erarchy, tools for importing data and a graphical user interface for the management of
ontologies of different syntax types. It is structured purely hierarchical but will be ex-
tended to represent more sophisticated and informative relations between the entities
as current research includes the learning of relations that can be represented in OWL
such that eventually, the ontologies will be developed in a semi-automatic approach.

At its current state the ontology comprises mostly taxonomic relations of

▷ Materials (mostly based on the classifications in the periodic table)
▷ Properties (e.g. corrosion resistance, hardness)
▷ Treatments (i.e. processes such as electrochemical, mechanical, thermal treat-

ments)

(see Figure 45). Future plans for the ontology include adding relations describing more
sophisticated semantics. This is important as the similarity between elements is not
suitably well represented by their respective proximity in the periodic table. There are
rather much more complex relations between certain elements, element groups or al-
loys that play an important role when comparing them. It is also imaginable to repre-
sent physical conditions and material structure properties that possibly allow the de-
duction of the material’s behavior based on the knowledge of a similar material. The
knowledge about such relations is not easy to grasp as it is formed by the experience of
proficient scientists and often fades into the background when it comes to data science
and modeling. Still, a lot of those findings have been published and can therefore be
found in various types of literature, be it papers, textbooks or online sources.
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5.3.4  System Architecture & Interface
The MatCALO system is written in the Python programming language and is compat-
ible with Python version 3. Standard scientific programming libraries such as numpy,
scipy and sklearn are used in multiple components of the system and are partly ex-
tended to provide the functionalities that are required for the MatCALO system such
as the inference algorithm for the generation of the regression trees. The MatCALO
code will be made available under the MIT License³⁹ on github. The licensed package

³⁹MIT License

will comprise the MatCALO source code, the synthetic data presented in this paper
as well as a clear and concise documentation. The documentation as well as the mod-
ularly designed code which facilitates code reuse will allow users to integrate their own
data and/or code. In future releases an API is planned to be added to provide access to
the functionalities of MatCALO for the community. By making the source code pub-
licly available and providing a web interface to benefit from this research the paradigm
of open science is followed, which focuses on the transparency and accessibility of
knowledge. Scientific communities are encouraged to share not only their findings in
scientific publications but also provide tools and data to reproduce results and integrate
with their own data.

Hypotheses radar chart: The generated hypotheses’ results are loaded as datasets in a radar chart that cor-
responds to the requirement profile. The user can now visually investigate the quality of the hypotheses

by comparing how close the datapoints match the required value intervals. | Figure 46

MatCALO can be accessed as a web service⁴⁰, of which a prototype is already publicly
available. The web service is implemented using the pyRAP⁴¹ framework which was

⁴⁰MatCALO
⁴¹pyRAP
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co-developed by Daniel Nyga and which allows building AJAX applications in Python,
therefore easing the integration with the MatCALO system. In its current state the
web service allows the user to select a dataset from a set of examples and define a re-
quirement profile. This requirement profile is represented as a radar chart, of which
each axis represents one property of interest (see Figure 41). Axes can be added or re-
moved using the context menu. Each axis of the radar chart shows a red bar that can
be stretched or shrinked by dragging the end points along the axis accordingly. The bar
represents an interval of values for that particular property that the user defines as a
requirement for the material. A complete requirement profile is therefore defined after
adjusting the intervals for each property, creating a mapping from all properties of in-
terest to intervals of accepted values.

After querying the system with the defined requirement profile, the generated hypothe-
ses will be listed in a table and loaded into a radar chart corresponding to the require-
ment profile. Each colored polygon in the radar chart represents one hypothesis (see
Figure 46). A hypothesis might match some of the criteria very well, but will fail on
others (see 𝐻_2.0 for property 𝑐𝑜𝑙𝑜𝑟 or 𝐻_2.3.0 for property 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ). This visualiza-
tion can be used to examine the quality of the hypotheses’ results by visually inspecting
if the single data points lie in between the respective interval defined for that particular
property.

Hypotheses tree visualization: The tree visualization allows to investigate the generated hypotheses fur-
ther. Each path from the root node to a leaf node represents a process chain producing the desired re-
sults. Hovering over the edges and nodes in the web service will show additional information about the
respective process chain. Filled circles in the tree visualization denote that the branch has not been fully

expanded yet. | Figure 47

After deciding which hypothesis might be the most promising, the user can visualize
the process chain that leads to the predicted result of the hypothesis by generating a
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tree as in Figure 47. Each hypothesis (i.e. process chain) corresponds to one path along
the tree, each edge being one processing step as indicated by the appended text. The
tree itself can be seen as a condensed version of the search tree that was built during the
inference process, containing only the hypotheses in the inference results. The tree can
also help to find the best solutions when some of the hypotheses seem to be of equal
quality on the first sight. When two hypotheses have the same confidence and an equal
or similarly good output, they might still differ in the length of the process chain that
is to be conducted to achieve the result. The user is then advised to have a closer look
at the chains and rate them using further metrics such as costs per processing steps,
process time or applicability. The path to the selected hypothesis is highlighted in green
(𝐻_2.0 in Figure 47). Additional information about (1) the exact hypothesis result, (2)
the similarity of the hypothesis result to the requirement profile and (3) the parameters
of the respective processing steps will be shown when hovering over the elements of
the tree in the web service.

5.4  Experiments
An experiment was conducted designed to showcase the reverse tree inference generat-
ing more complex hypotheses to demonstrate the capabilities of the MatCALO system
as a proof of concept. The experiment targets the capability of the algorithm of finding
paths along multiple trees, therefore creating more complex process chains to produce
a desired output.

The working hypothesis is governed by the assumption that there exist relationships
between processing steps (and their parametrizations) and the resulting materials’
properties. They are crucial for developing novel materials and this experiment show-
cases that the MatCALO system can find such relationships contained in (here: man-
ually generated) data. This is to show the actual reverse-tree inference capabilities of
the system which proves that the computational processes of the developed system are
functioning.

The data for this experiment represents a setting using real processes for spherical steel
alloy samples in comparison to the fictional running example in Section 5.3.2.

Two different trees are trained representing a deep rolling (cmp. Figure 90) and a ther-
mal (cmp. Figure 91) treatment. While the deep rolling process is only guided by the
pressure as a parameter to predict the three targets deformation, density and disloca-
tion density, the thermal process predicts the targets deformation, dislocation density
and hardness using temperature and deformation as inputs. The deformation is the ra-
tio between the length and width of the sample, i.e. a alue approximating 1 represents
no deformation, as the samples are sperical. The synthetic data contains relationships
such as the finding that after exceeding a minimum degree of deformation, re-heating
the sample over roughly 750℃ causes recrystallization which reverts the foregone de-
formation. The order in which the processing steps are conducted may therefore play
an important role if their respective results (partially) cancel out each other. In this
case, the previous deformation of the material influences the results of the thermal
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treatment. The discussion in Section 5.5 will show, which role these information play
in the interpretation of the generated hypotheses.

5.5  Results and Discussion
Three different requirement profiles were chosen to highlight the capabilities of
MatCALO as shown in Table 5. Each query contains the variables density, deformation
and hardness with varying value intervals.

The first query produces three hypotheses, each of which requires a deep rolling process
to be conducted first in order to achieve the desired density followed by a heating step
that produces the desired hardness and may or may not override the foregoing defor-
mation. Note that the two hypotheses H_d2.h9 and H_d2.h11 have a probability of 0,
which means that their results would match the requirement profile according to their
predicted outputs, but the succession of the steps are not executable in reality.

In particular, step d2 which corresponds to the leaf node 2 in the deep rolling tree in
Figure 90 and which is the first step for each of the three generated hypotheses will
presumably cause a comparably obvious deformation (2.43). Depending on the defor-
mation, however, the following heating process will produce different outputs as can be
seen following the paths from the root node to the leaf nodes 9, 11 and 12 in Figure 91
which correspond to the steps h9, h11 and h12 of the hypotheses, respectively.

With a deformation value of 2.43 only leaf 12 can be reached, rendering the hypothesis
H_d2.h12 the only possible hypothesis for this query. The second query shows that the
system only generates valid hypotheses, i.e. ones that

▷ produce a result containing each query variable from the requirement profile with
a value that lays in the defined interval

▷ is executable in reality, i.e. each step is a valid successor of its predecessor such that
the preconditions for the successor step do not collide with the results of the prede-
cessor.

No combination of the deep rolling and heating steps with their possible parameteri-
zations according to the trained trees render this query possible, therefore the system
generates no hypotheses.

The third query is similar to the second one, but allows for a higher deformation of the
material which can be facilitated in three different ways. Again, the system shows a
strong preference for specific order of the processing steps (a heating step followed by a
deep rolling step) because none of the parameterizations of the heating steps produces
a deformation in the demanded interval which requires a deep rolling step to ‘correct’
the value. This example shows that the correct order of processing steps can be found
not only found if the output of one step is preconditioned on a specific value of a vari-
able that is an output of another step. In fact, the system also allows steps that violate
one or more variables of the requirement profile at first if it finds compensating steps to
restore the desired output and therefore can generate a valid hypothesis whose overall
output matches the query.
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5.6  Conclusions
The experiments show that the MatCALO system is capable of finding valid processing
plans incorporating knowledge about possible interacting effects of the process steps
in the models generated from synthetic training data. Assuming such models exist us-
ing real data the wide impact the system can have once suitable model databases are
built up is demonstrated. Experiments were conducted to generate larger databases.
Evaluating the system using this real data will be subject to future work. In addition to
that, the design, development and integration of ontologies representing rich seman-
tics about physical coherences of materials, properties and processes to serve as addi-
tional source of knowledge in the MatCALO system are to be further investigated. A
version of the MatCALO web interface allows scientists to upload files to test the sys-
tem with their own data. The uploaded data is only be made available to others if it
has been explicitly approved by the researchers who generated them. Currently, the
original MatCALO system is not undergoing further development, as the CRC within
which the framework was developed is not being continued. It can, however, be seen as
the precursor to 

◁ MatCALO as
predecessor of
BayRoB

BayRoB due to its integration of the concept of utilizing tree structures
for storing distributions of variables, which can be leveraged for reverse inference. The
capability to anticipate the outcomes of specific actions and identify a sequence of ac-
tions that is most likely to result in a state aligning with a predefined goal specification
is crucial, not only in the field of robotics but also across various scientific domains.
While MatCALO was specifically designed for the materials science use case, it laid the
groundwork for BayRoB. In BayRoB, more complex relationships can be represented,
as the distributions are not bound to take a particular form. The incorporation of JPTs
and their inherent powerful representation and inference tools has elevated the system
to a higher level, introducing new possibilities in terms of applications and domains
of use.
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sixChapter

Evaluation

In this evaluation, it is showcased how the probabilistic hybrid models developed in
BayRoB allow to ask any kind of question about the experience data the models have
been trained with. The complex interplay between a robot’s perception of the environ-
ment and its ability to make informed decisions is deemed crucial for autonomous sys-
tems. Leveraging the plenitude of experience data, the models aim to capture a coher-
ent and adaptable framework for the representation of uncertainties inherent in real-
world scenarios.

This evaluation is separated into four parts. The first part comprises a comprehensive
exploration of how well the model translates experiential knowledge into meaningful
representations of the robot’s beliefs. Some of the inference schemata introduced in
Section 2.5.1 will be revisited in this chapter by applying them on specific examples.
The second part quantitatively evaluates different models (or model settings) based on
the likelihood of test data. The third part makes use of the forward and back propaga-
tion of belief states over time, thereby paving the way for enhanced decision-making
and navigation within dynamic and unpredictable environments. The fourth part in-
troduces the web app that can be used to query single models or perform a plan refine-
ment (search) on all models.

6.1  Model Stats
The three models - turn, move_base, and perception - employed in BayRoB were pre-
viously introduced in Section 4.2. Furthermore, the evaluation encompasses a fourth
model, pr2, which was trained using real robot log data. Table 6 provides an overview
of the models along with some of their characteristics, aiding in contextualizing the
results.

The state space of the respective model is a lower-bound estimation based on the value
ranges of the variables incorporated in the model. Since some variables are continu-
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ous, their value ranges (and thus the state space) would be infinite, yet, for estimating
a lower bound of the state space, the values are discretized, e.g. to |𝑏 − 𝑎| values for
large value ranges from [𝑎, 𝑏] (e.g. for 𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝐴𝑛𝑔𝑙𝑒) and |𝑏−𝑎|

0.1  for smaller value ranges
from [𝑎, 𝑏] (e.g. Δ𝑑𝑖𝑟, Δ𝑝𝑜𝑠). As an example, the sate space of the move_base model is
determined as follows:

The move_base model incorporates 7 variables, 𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛, Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

,
and 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑. 𝑋𝑖𝑛 and 𝑌𝑖𝑛 both can take values from [0, 100], thus it is assumed that
they can each take 100 different values. Similarly, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛, Δ𝑝𝑜𝑠𝑥

, and Δ𝑝𝑜𝑠𝑦
 can

each take values from [−1, 1], resulting in 20 different values each, assuming a step size
of 0.1. The last variable, 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑 is Boolean, so it can take 2 different values. The state
space is then calculated as:

100 · 100 · 20 · 20 · 20 · 20 · 2 = 1600000000. (106)

Model statistics | Table 6

model #variables state space #datapoints #leaves #total nodes

turn 5 57,600,000 35,000 106 211

move_base 7 1,600,000,000 2,533,680 74 147

perception 20 2,949,120,000,000 772 88 175

pr2 12 1,944,512,593,920 60,662 957 1913

It is worth noting that the state space sharply contrasts with the number of data points
used to train the respective models. However, in many scenarios, most of the theoreti-
cally possible combinations of values are either nearly equivalent, e.g. as they are very
close in terms of the position or facing direction. This is one reason why the data has
been generated to reflect the scenarios that are considered relevant, the other being the
fact that typically not enough data is available in real-world applications that represent
every single world state imaginable. The calculation of the state space, however, helps
understanding the overwhelmingly large range of possible worlds an autonomous
agent has reason over when inferring the next (best) action.

6.2  Part I: Reproducing Ground Data with JPTs
Joint probability distributions allow asking questions about all variables incorporated.
In BayRoB, the action models move_base, perception and turn represent artificially
generated robot experience data about forward movements and rotations, as well as
results of the robot’s perception. The kinds of questions that can be asked therefore
range from “What kinds of Actions have been executed?” over “Where was the agent
standing when he detected milk?” to “Which actions failed most often?” and “What
kinds of failures occurred?”. All these questions can be further constrained to situations
in which for example a specific object was detected, an action failed or some other ob-
ject was involved. In the following, each model is examined by comparing the ground
truth data filtered by given constraints with the probability distribution represented by
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that same query. Additionally, another model called pr2 is investigated the same way.
This model represents real robot experience data (NEEMs) representing experiments
in which the robot fetched milk.

6.2.1  Turn Data
The turn model learned how the robot’s facing direction changes when turning around
a certain angle and is described by an initial facing direction, the parameter angle and
the delta to the facing direction after the update. Figure  48 shows the unconstrained
(apriori) marginal distributions of the initial and delta variables. The ground truth data
on the left shows how the initial facing directions form a unit circle, since they reflect
the inherent constraints imposed by the normalization process of the direction vector.
Consequently, points within the unit circle uniformly represent all possible normal-
ized directions. The marginal distribution of the variables 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛 of the learnt
model in Figure  48 a) (middle and right) captures the ground data very well.

Comparison of data points (normalized ground truth) and distribution represented by the turn JPT: The
left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the (con-

ditioned) distributions, respectively. | Figure  48

Unconstrained distribution 𝑃(𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) of the turn model | a)

Unconstrained distribution 𝑃(Δ𝑑𝑖𝑟𝑥
, Δ𝑑𝑖𝑟𝑦

) of the turn model | b)

In contrast, the distribution of the deltas in Figure  48 b) (middle and right) forms a
filled circle since both variables Δ𝑑𝑖𝑟𝑥

 and Δ𝑑𝑖𝑟𝑦
 can take values from 0 to ∼0.7, due to

the agent’s limited turn radius of 45 degrees, respectively. While the shape of the filled
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circle is vaguely perceptible, yet present in the heatmap distribution, the 3D plot on
the right reveals that the peak in the center around the 0-values of the variables causes
the light colors in the circle’s periphery. This observation corresponds to the increased
density of datapoints in the center of the ground truth and the fact that high delta val-
ues for both variables at the same time typically happen rather rarely.

The ground truth represented on the left in Figure  49 is a subset of the original data,
which can be guessed by the shape of its plot. When constraining the learnt models to
satisfy given evidence, the resulting distributions may have very unique shapes, which
need to be represented appropriately by the model to allow for reliable reasoning. Fig-
ure  49 a) shows the distribution of the initial facing direction, when constraining the
𝑌𝐷𝑖𝑟𝑖𝑛 variable to a certain value range. In combination with an unconstrained 𝑋𝐷𝑖𝑟𝑖𝑛
variable, this corresponds to facing the bottom in an arch shape. The corresponding
delta distribution resembles a bowtie-like structure, as shown in Figure   49 b). This
makes sense, since in combination with the limited range of motion of ∼ −45 deg to ∼
45 deg, the motion deltas for the movement to the left and right form the two wings of
the observed structure. The uncertainty in the model contributes further to the spread
of the data points.

Comparison of data points (normalized ground truth) and distribution represented by the turn JPT: The
left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the (con-

ditioned) distributions, respectively. | Figure  49

Constrained 𝑦𝑑𝑖𝑟𝑖𝑛 variable of facing direction: 𝑃(Δ𝑑𝑖𝑟𝑥
, Δ𝑑𝑖𝑟𝑦

| − 1.3 ≤ 𝑦𝑑𝑖𝑟𝑖𝑛 ≤ −0.7) | a)

Constrained 𝑦𝑑𝑖𝑟𝑖𝑛 variable of facing direction: 𝑃(Δ𝑑𝑖𝑟𝑥
, Δ𝑑𝑖𝑟𝑦

| − 1.3 ≤ 𝑦𝑑𝑖𝑟𝑖𝑛 ≤ −0.7) | b)

Figure  50 shows the resulting distributions with a constrained 𝑋𝐷𝑖𝑟𝑖𝑛 variable. Here,
the value range is further restricted, such that there are two separate structures visible
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instead of a single arch. Analogously to the delta distribution in Figure  49 b), Figure  50
b) shows the overlapping of two clusters, each representing possible orientations.

The plots of the delta distributions of these two examples show that arbitrary shapes of
distributions can be learnt and accurately represented by the underlying framework.

Comparison of data points (normalized ground truth) and distribution represented by the turn JPT: The
left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the (con-

ditioned) distributions, respectively. | Figure  50

Constrained 𝑥𝑑𝑖𝑟𝑖𝑛 variable of facing direction: 𝑃(Δ𝑑𝑖𝑟𝑥
, Δ𝑑𝑖𝑟𝑦

| 0.2 ≤ 𝑥𝑑𝑖𝑟𝑖𝑛 ≤ 0.8) | a)

Constrained 𝑥𝑑𝑖𝑟𝑖𝑛 variable of facing direction: 𝑃(Δ𝑑𝑖𝑟𝑥
, Δ𝑑𝑖𝑟𝑦

| 0.2 ≤ 𝑥𝑑𝑖𝑟𝑖𝑛 ≤ 0.8) | b)

6.2.2  Move Data
Similar to the delta distributions in the turn model discussed earlier, Figure 51 illus-
trates the apriori distribution of position deltas for the move_base model. Given that
the move_base action is defined with a step size of 1, one would anticipate observing
a wide ring with a central dot representing collision points rather than a completely
filled circle.
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Unconstrained initial position or direction: The distribution 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

) of the move_base model |
Figure 51

However, due to the introduction of Gaussian noise to the deltas when a collision oc-
curs, their values are never precisely 0. Hence, a fuzzy dot is visible in the center.

In Figures 52 a) and b), the ring and dot are separated into individual distributions
by constraining the model to either no-collision or collision data. Once again, the dis-
tribution plots closely mirror the shapes of the ground truth plot, indicating that the
learned model accurately represents the ground truth.

Comparison of data points (normalized ground truth) and distribution represented by the move_base JPT:
The left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the

(conditioned) distributions, respectively. | Figure  52

No-collision data: The distribution 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

| collided =⊥) of the move_base model | a)

Collision data: The distribution 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

| collided = ⊤) of the move_base model | b)
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Comparison of data points (normalized ground truth) and distribution represented by the move_base JPT:
The left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the

(conditioned) distributions, respectively. | Figure  53

Position on the right wall of the kitchen: 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

| collided =⊥, 99.5 ≤ 𝑥𝑖𝑛 ≤ 100.5) and… | a)

on the upper left corner: 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

| collided =⊥, 0 ≤ 𝑥𝑑𝑖𝑟𝑖𝑛 ≤ 2, 98 ≤ 𝑦𝑑𝑖𝑟𝑖𝑛 ≤ 100) | b)

Constrained 𝑥𝑑𝑖𝑟𝑖𝑛 variable of facing direction: 𝑃(Δ𝑝𝑜𝑠𝑥
, Δ𝑝𝑜𝑠𝑦

| − 1.3 ≤ 𝑥𝑑𝑖𝑟𝑖𝑛 ≤ −0.7) | c)

This is particularly remarkable, since the distributions are comprised in a single model
containing only 74 leaf nodes that are aggregated to an overall distribution when query-
ing the model.

The images depicted in Figure  53 are restricted to either the position or facing direction,
revealing specific patterns. In the upper row (Figure  53 a)), half circles are evident, as
the 𝑋𝑖𝑛 variable of the position is constrained to the far-right edge of the kitchen with
a collision set to true (⊤). Consequently, the delta positions are limited to depict move-
ment to the left, as moving to the right would result in a collision with the kitchen wall.

147



Chapter six - Evaluation

The middle row (Figure  53 b)) exhibits a pronounced preference for the lower-right
quarter of the circle, indicating movement in the lower-right direction. This is because
the position was constrained to the upper-right corner of the kitchen, thereby restrict-
ing the possible movement directions accordingly.

In contrast to the images discussed thus far, the lower row represents the relationship
between the direction variables (as opposed to the position variables) and the position
deltas. Without any constraints on the position or collision, a facing direction to the
left strongly correlates with a movement to the left, as illustrated by the plots in Figure
 53 c).

6.2.3  Perception Data
The perception model links the robot’s state (position/facing direction) to the world
state (position/visibility of objects, environment variables, and so on). This model
therefore contains a lot of Boolean and multinomial variables that are directly linked to
the (continuously numeric) state variables of the robot. Figure  54 a) shows the apriori
marginal distribution of the position.

Comparison of data points (normalized ground truth) and distribution represented by the perception JPT:
The left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the

(conditioned) distributions, respectively. | Figure  54

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛): Where can I be located? | a)

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤): I see milk. Where am I most likely standing? | b)
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There are much less datapoints available compared to the move_base model since it is
assumed that only for a few positions there are certain items visible and states observ-
able. For all other positions no propositions can be made about the state of the furniture
doors and drawers or about the presence of certain items. This drastically reduces the
model size and forces the system to combine the three action models when aggregating
the robot state.

Comparison of the (normalized) ground truth and distribution of the perception dataset with given evi-
dence 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤ | Figure  55

𝑃(𝑂𝑝𝑒𝑛(fridge_door) | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤): I see milk. Is the fridge door open or closed? | a)

𝑃(𝑂𝑝𝑒𝑛(fridge_door) | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤): I see milk. Is the fridge door open or closed? | b)
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In Figure  54 b), positions near the fridge and along two edges of the kitchen island are
displayed when querying for the most probable positions given the perception of milk.
This aligns with the logical scenarios, as milk is either stored in the fridge when not in
use or on the kitchen table as part of a breakfast table setting.

The distribution of the state of the fridge door in Figure  55 a) illustrates the correlation
between an open door and positions around the fridge, while a closed door corresponds
to positions around the kitchen table. This distribution mirrors the distribution of times
of day in Figure  55 b), indicating that for approximately half of the instances where
milk has been observed, it was morning (where it is typically found on the kitchen is-
land), while the other half is distributed across other times of the day, where it is stored
in the fridge.

The conditioned perception model 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤ ∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = morning | Figure 56
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The probability distributions are generated using the Conditional-JPT algorithm
(Algorithm  3). When investigating a learnt tree model, one can actually trace cer-
tain regions in the tree that are responsible for handling the “special” cases such as
walls and obstacles (move_base) or, in this case, the ones where milk is detected in
the morning. This is particularly evident when the tree is conditioned on certain vari-
ables and the resulting conditional tree (Figure 56) is then compared to the original
JPT (Figure 57) The conditional tree contains only the leaves consistent with the ev-
idence, 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤ ∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = morning. While the tree structure is typi-
cally a (modified) excerpt of the original tree, the distributions differ in that they were
re-normalized, since the entire tree does not pose a proper probability distribution any-
more after pruning nodes or even entire subtrees. The original positions of the leaves
from the conditional tree are highlighted (red) in the original tree. Note that the value
𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = kitchen_island in each of the nodes (as indicated by the respec-
tive lower right distribution plot in each leaf) which again shows the dependencies that
have been learnt from the data.

The entire perception model. The highlighted nodes (red) are the ones that remain in the resulting tree
when conditioned on 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) = ⊤ ∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = morning | Figure 57

6.2.4  PR2 (NEEM) Data
The pr2 dataset (by courtesy of Sebastian Koralewski) consists of 296 “fetch milk” ex-
periments, each involving varying numbers of subactions, conducted by a PR2 robot
in the laboratory kitchen of the Institute for Artificial Intelligence (IAI) in Bremen. The
original dataset is provided in two files per experiment. One file contains tabular in-
formation about the actions performed (averaging over 200 actions), while the other
includes additional pose data for some of the actions in the first file. In a preprocessing
step, these pieces of information were merged to create a consolidated dataset compris-
ing over 60,000 rows.

Each row in an experiment file represents the execution of a single subaction, which
can be a higher-level action like fetching or placing, or lower-level actions such as posi-
tioning an arm. The actions are interconnected through a parent-relationship, meaning
the entire experiment begins with one action that is further broken down into subtasks,
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which, in turn, are composed of additional subtasks. Consequently, an experiment
forms an action tree, and an excerpt of this structure is depicted in Figure 58.

The dataset includes the ID, type (cmp. Figure  60), and duration of each subaction,
along with additional details such as the success or failure of its execution, the objects
and body parts involved, timestamps (indicating the start and end of an action), and
poses (3-dimensional position vectors along with a rotation quantile). However, the
poses are only available for certain grasping and placing actions within each experi-
ment, limiting the ability to track the robot’s trajectories throughout the entire exper-
iment.

An excerpt of the action tree for one fetch-milk experiment | Figure 58

Nevertheless, the dataset remains valuable for evaluating action models in BayRoB.
It encompasses numeric robot log data, multinomial annotations, and boolean state
variables that can be consolidated to construct a comprehensive model based on real
robot experiment data.

Comparison of data points (normalized ground truth) and distribution represented by the pr2 JPT: The left
images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the marginal

apriori distribution 𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛) | Figure 59

Figure 59 illustrates instances where position data is accessible, enabling their contex-
tualization with succeeded or failed experiment subactions. The two discernible clus-
ters of positions can be categorized into two action clusters: The upper-left cluster
depicts positions associated with placing actions, whereas the lower-right cluster indi-
cates positions where the agent was located during object grasping.
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Comparison of the (normalized) ground truth and distribution represented by the pr2 JPT | Figure  60

𝑃(𝑇𝑦𝑝𝑒): Which actions are present in the dataset? | a)

𝑃(𝑇𝑦𝑝𝑒 | 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥): Which actions have failed? | b)

The variable 𝑇𝑦𝑝𝑒 represents the kind of action that has been executed. Figure  60 shows
the distributions of this variable, either prior (Figure  60 a)) or conditioned on the ac-
tion being successful (Figure  60 b)). The most frequently executed actions are lower-
level actions such as arm positioning or retrieving location poses because these actions
are typically sub-actions of higher-level, more abstract actions and are therefore called
multiple times. The higher-level actions, on the other hand, are much more likely to
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fail, typically, because they are more complex through their composition of multiple
sub-tasks, each of which may be a source of failure.

Comparison of data points (normalized ground truth) and distribution represented by the pr2 JPT: The left
images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the (condi-

tioned) distributions, respectively. | Figure  61

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = ⊤):
Where was I standing when my grasping action succeeded? | a)

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥):
Where was I standing when my grasping action failed? | b)

All placing actions represented by the upper-left cluster in Figure 59, where position
data is available, were successful. On the contrary, the actions depicted in the lower-
right cluster reveal patterns that highlight positions conducive to successful “grasping”
actions and those that are not (cmp. Figure  61). However, for certain positions, both
successful and unsuccessful actions are observed, necessitating further investigation to
determine the parameterization for a successful experiment.

A starting point would be to look at the types of errors that occurred (Figure 63) and
then link them to certain positions (Figure  62). The failure in the experiments shown in
Figure  62 a) appears to be associated directly with the position. This inference is sup-
ported by the error type, which suggests that the object was out of reach, rendering it
ungraspable. In Figures 62 b) and c), the second and third errors seem more related to
hardware issues than position-related concerns. These errors point to low-level failures
and a gripper problem with the robot. However, it is worth considering that the gripper
error might still result from unfavorable positioning, preventing the agent from placing
the object precisely in the center of the gripper.
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Comparing positionings causing the three different failure types CRAMManipulationGoalNotReached,
CRAMGripperClosedCompletely and CRAMManipulationLowLevelFailure | Figure  62

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = CRAMManipulationGoalNotReached ∧ 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥) | a)

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = CRAMGripperClosedCompletely ∧ 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥) | b)

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = CRAMManipulationLowLevelFailure ∧ 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥) | c)
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𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒 | 𝑇𝑦𝑝𝑒 = grasping ∧ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =⊥):
Which types of errors occurred when my grasping actions failed? | Figure 63

6.2.5  Inference Patterns
Probabilistic hybrid action models in BayRoB allow different inference patterns in
queries, such as diganostic and causal reasoning or explaining away.

Diagnostic Inference · Figure  64 shows an example for a diagnostic inference pat-
tern: Given the information (effect), that the agent currently perceives a bowl, what
may most likely be the cause of it? The answer (or at least a part of it) is the marginal
distribution of positions from which a bowl may be visible.

Comparison of data points (normalized ground truth) and distribution represented by the perception JPT:
The left images represent the (filtered) dataset, the middle and right images the 2D and 3D renders of the

(conditioned) distributions, respectively. | Figure  64

𝑃(𝑋𝑖𝑛, 𝑌𝑖𝑛 | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(bowl) = ⊤):
I see a bowl. Where am I most likely standing? | a)

156



Probabilistic Action Prospection based on Experiences

Other examples for diagnostic inferences that are possible in BayRoB are querying for
certain positions given the current position and facing direction (“Where was I, before
I made one step forward?”) or querying for the state of some furniture’s door or drawer
given certain objects are visible (“I am near the kitchen unit and see cutlery, how is this
possible?”). Note that the former requires backward inference since the effects for that
query (i.e. the resulting positions after executing a move_base action) are modeled in
terms of deltas, such that certain states have to be computed first.

𝑃(𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(⟨object⟩) | 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = stove, 𝑂𝑝𝑒𝑛(stove_door) = ⊤):
I am standing near the stove and the stove door is open. What do I see? | Figure  65

object = beer | a) object = bowl | b) object = cereal | c) object = cup | d)

object = cutlery | e) object = milk | f) object = pot | g) object = sink | h)

Causal Inference · BayRoB allows to predict effects of certain causes, e.g. when
querying for a position the agent will most likely be located at after executing a
move_base step. Another example is the inverse direction of the query from the diag-
nostic example: Querying for detected objects given the current position (or nearest
furniture) and the state of a furniture door or drawer as evidence. This query translates
to a question like “I am standing near the stove and the stove door is open. What can I
expect to see?”

The results are shown in Figure  65. As expected, most items are still not visible to the
agent, since only pots (Figure  65 g)) are stored in the stove cabinet. Depending on the
time of day, however, the pot might be in use on the kitchen table, which is why there
is still a chance it might not be visible standing near the stove. The beer (Figure  65 a))
poses an exception here, since it is located on the stove top, such that its visibility is not
influenced by the state of the stove cabinet door.

Explaining away · When some event is observed, there may potentially two or more
causes for this event to happen. As an example, take the well-known alarm scenario
with 5 variables representing the events

▷ an earthquake occurred (𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)
▷ a burglary took place (𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦)
▷ an alarm went off (𝐴𝑙𝑎𝑟𝑚)
▷ Mary called (𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠) and
▷ John called (𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠).
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The Bayes net for the alarm example | Figure 66

Earthquake

Alarm

JohnCallsMaryCalls

Burglary

𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦)

⊤ ⊥

0.1 0.9

𝑃(𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)

⊤ ⊥

0.2 0.8

𝑃(𝐴𝑙𝑎𝑟𝑚|𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝐸𝑎𝑟𝑡𝑞𝑢𝑎𝑘𝑒)

⊤ ⊥

⊤ ⊤ 0.95 0.05

⊤ ⊥ 0.94 0.06

⊥ ⊤ 0.29 0.71

⊥ ⊥ 0.001 0.999

𝑃(𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 | 𝐴𝑙𝑎𝑟𝑚)

⊤ ⊥

⊤ 0.9 0.1

⊥ 0.05 0.95

𝑃(𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 | 𝐴𝑙𝑎𝑟𝑚)

⊤ ⊥

⊤ 0.7 0.3

⊥ 0.01 0.99

The BN with the CPDs is shown in Figure 66. A JPT learnt with the same data is avail-
able in Figure 89 in the appendix.

In a scenario where an alarm is triggered, there are two plausible explanations: either
an earthquake occurred or a burglary took place. Both events are apriori considered
unlikely, as indicated by their probabilities but in combination with an observed alarm,
an earthquake seems to be the most probable cause. The distributions for these two
scenarios are illustrated in Figure  67 a) and b).

The alarm system is more responsive to the occurrence of an earthquake than to a bur-
glary, as evident in the CPD of the 𝐴𝑙𝑎𝑟𝑚 node in the network. However, when one
of the potential causes is observed, the distribution of the other cause changes accord-
ingly. For example, upon observing that there was no earthquake, the probability of
a burglary occurring suddenly rises from around 20% to over 96%. This shift occurs
because the observation (or absence) of an earthquake influences the probability of a
burglary, even though the two variables are initially independent. However, they be-
come dependent through the observation of an alarm. The act of observing one cause
explains away the other.

The phenomenon of explaining away is also evident in JPTs, as observed in BayRoB
models. However, unlike artificially modeled conditional dependencies, strict indepen-
dencies are typically not present in real-world data. This holds true for the generated
data used in the move_base, turn, and perception models. The data was generated to
resemble real-world scenarios rather than adhering to predefined distributions. Nev-
ertheless, the effect of explaining away causes can still be observed and leveraged, for
example, in identifying causes (or classes of causes) of errors.
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When faced with an undesirable variable state, such as an error due to items being
invisible, it is crucial for an autonomous agent to reason about other environmental
variables. This involves determining a) what led to the error and b) what actions can
be taken to establish the desired variable state. Consider, for instance, an agent tasked
with fetching milk, a precondition of which would be to detect it at first.

Alarm example for an explaining away inference in BayRoB | Figure  67

𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 | 𝐴𝑙𝑎𝑟𝑚 = ⊤):
An alarm went off. Was there a burglar in my house? | a)

𝑃(𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 | 𝐴𝑙𝑎𝑟𝑚 = ⊤):
An alarm went off. Was the earth shaking? | b)

If the agent, in its current state, does not perceive milk, various reasons could account
for this. Given the knowledge that milk is usually stored in the fridge, except during
breakfast when it is placed on the kitchen island, the agent’s inability to perceive milk
could be attributed to different factors. For instance, if the milk is inside the fridge, it
can, obviously, only be detected when the fridge is open to ensure an unobstructed view
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of the milk carton. Therefore, the visibility of milk to the agent depends on its position,
the time of day, and the state of the fridge door.

Alarm example for an explaining away inference in BayRoB | Figure 68

𝑃(𝐷𝑎𝑦𝑡𝑖𝑚𝑒 | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) =⊥ ∧ 58 ≤ 𝑥𝑖𝑛 ≤ 68 ∧ 70 ≤ 𝑦𝑖𝑛 ≤ 80 ∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 = fridge):
I am located close to the fridge but I can’t see milk. What daytime is it? | Figure 69

Figure 69 illustrates the distributions for the observation that the agent cannot see the
milk but is certain to be in the right place (near the fridge). Examining the distribution
of 𝐷𝑎𝑦𝑡𝑖𝑚𝑒, the most probable values are morning and night, both with a probability
of approximately 30%. The reasoning behind the milk being invisible in the morning
is straightforward, as the milk is likely not in the fridge. However, regarding the night,
this value makes sense only in conjunction with the second cause – the fridge door
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(Figure 70), which is indecisive in itself, as it is almost equally probable that the door
is open or closed.

𝑃(𝑂𝑝𝑒𝑛(fridge_door) | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) =⊥ ∧ 58 ≤ 𝑥𝑖𝑛 ≤ 68 ∧ 70 ≤ 𝑦𝑖𝑛 ≤ 80 ∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 =
fridge):

I am located close to the fridge but I can’t see milk. Is the fridge door open or closed? | Figure 70

𝑃(𝑂𝑝𝑒𝑛(fridge_door) | 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(milk) =⊥ ∧ 58 ≤ 𝑥𝑖𝑛 ≤ 68 ∧ 70 ≤ 𝑦𝑖𝑛 ≤ 80∧ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 =
fridge ∧ 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = post-breakfast) | Figure 71

However, when one of the causes is observed, additional information about the other
cause becomes available. Suppose the robot obtains information indicating that it is just
after breakfast time. In this scenario, the probability of the variable 𝑂𝑝𝑒𝑛(fridge_door)
being ⊥ increases to about 70% (cmp. Figure 71). By observing the time of day, the
agent acquires additional knowledge that the milk should indeed be inside the fridge
at that moment. Since the agent cannot perceive the milk despite favorable conditions,
the most likely explanation is that the fridge door is not open, thereby obstructing its
view of the milk carton. Scenarios like this enable the agent to take action to establish
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a situation that makes the success of the original task (fetch milk) more likely and in
general, make more informed decisions.

6.3  Part II: Model settings
Employing JPTs for representing hybrid action models offers the advantage of avoiding
assumptions about the shape of the distributions in advance. However, to optimize the
results based on the tasks to be addressed with the models, certain design decisions
are necessary. The following section assesses several design decisions by comparing
their respective likelihoods, both per-variable and cumulatively, on a test dataset. In
this evaluation, the original dataset created for the respective models is split (randomly)
into a training set (90%) and a test set (10%). The action model is trained with each set-
ting using the training set, and the test set is then employed to calculate the likelihoods.

6.3.1  turn
The turn dataset contains variables that can be semantically interpreted as features
(𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) and targets (Δ𝑑𝑖𝑟𝑥

, Δ𝑑𝑖𝑟𝑦
). Therefore, it is reasonable to explore

whether addressing this distinction is beneficial when learning the model. Conse-
quently, the first parameter to compare within the settings is the target. If target vari-
ables are omitted, the JPT is learned generatively, treating all variables equally. How-
ever, if targets are provided, the model is learned discriminatively, meaning the target
variables are ignored when selecting splitting criteria for the tree nodes.

Description of the turn model settings | Table 7

setting description

prune-generative
min_samples_leaf: 1
targets: None
prune_or_split: ⊤

prune-discriminative
min_samples_leaf: 1
targets: {Δ𝑑𝑖𝑟𝑥

, Δ𝑑𝑖𝑟𝑦
}

prune_or_split: ⊤

noprune-generative
min_samples_leaf: 1
targets: None
prune_or_split: ⊥

noprune-discriminative
min_samples_leaf: 1
targets: {Δ𝑑𝑖𝑟𝑥

, Δ𝑑𝑖𝑟𝑦
}

prune_or_split: ⊥

The second criterion under consideration is the prune_or_split parameter. When this
parameter is included in the learning algorithm, a user-defined function influences the
splitting behavior. If the function returns ⊤, a leaf node is created, preventing further
splitting. Conversely, if the function returns ⊥, the algorithm is not compelled to per-
form a split but will still consider other factors. In BayRoB, this function returns ⊤
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when the distributions of the child nodes that would be created in the case of a split
are too similar to their parent, specifically when the Jaccard similarity of the children
and their parent exceeds a certain threshold.

The cumulated likelihood for each setting of the turn model | Figure 72

Combining these two criteria results in four different settings to compare, as depicted
in Table 7. The parameter min_samples_leaf remains identical for all settings, indicat-
ing that at least one sample is required to create a leaf node (which is the default and
least restrictive value for this parameter).

The per-variable results of the evaluation are presented in Table 8, while the cumu-
lated likelihoods are illustrated through bar plots in Figure 72. A noticeable qualitative
distinction emerges between the settings where pruning was applied and those where
it was not employed. This is because, in cases where no pruning was enforced and
no other constraining criterion, such as min_samples_leaf, was applied, the algorithm
tended to overfit the model.

It generated one leaf per sample in the training set, rendering the model unsuitable for
making predictions about unseen samples. The circumstance that continuous variables
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with infinite domains are employed in the model, which makes it unlikely, that an ex-
act copy of a training sample occurs in the test dataset, promotes the poor performance
on the likelihoods.

The likelihoods per variable for each setting of the turn model | Table 8

setting

prune-genera-
tive

prune-dis-
criminative

noprune-gen-
erative

noprune-dis-
criminative

va
ri

ab
le

s

xdir_in 17.95 16.492 0.0 0.0

ydir_in 18.182 8.506 0.0 0.0

angle 0.104 0.105 0.0 0.0

xdir_out 6.448 6.605 0.0 0.0

ydir_out 7.407 4.49 0.0 0.0

The superiority in performance of the generative model over the discriminative one is
remarkable as well, which justifies the choice of this setting (shaded in blue in Table 8)
for the model employed in BayRoB.

6.3.2  move_base
The move_base dataset shares similarities with the turn dataset, featuring variables that
can be viewed as distinct feature (𝑋𝑖𝑛, 𝑌𝑖𝑛, 𝑋𝐷𝑖𝑟𝑖𝑛, 𝑌𝐷𝑖𝑟𝑖𝑛) and target (Δ𝑝𝑜𝑠𝑥

, Δ𝑝𝑜𝑠𝑦
)

variables. The settings under comparison therefore remain the same as before, with the
addition of min_samples_leaf = 0.01 (equivalent to 1% of the data used for training) to
mitigate overfitting (cmp. Table 9).

However, in practical scenarios, the prune-generative setting (highlighted in blue in
Table 10) has demonstrated superior performance in distinguishing between free posi-
tions and obstacles, as well as determining unobstructed move directions.

Description of the move_base model settings | Table 9

setting description

prune-generative
min_samples_leaf: 0.01
targets: None
prune_or_split: ⊤

prune-discriminative
min_samples_leaf: 0.01
targets: {Δ𝑝𝑜𝑠𝑥

, Δ𝑝𝑜𝑠𝑦
, 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑}

prune_or_split: ⊤

noprune-generative
min_samples_leaf: 0.01
targets: None
prune_or_split: ⊥

noprune-discriminative
min_samples_leaf: 0.01
targets: {Δ𝑝𝑜𝑠𝑥

, Δ𝑝𝑜𝑠𝑦
, 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑑}

prune_or_split: ⊥
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The cumulated likelihood for each setting of the move_base model | Figure 73

The likelihoods per variable for each setting of the move_base model | Table 10

setting

prune-genera-
tive

prune-dis-
criminative

noprune-gen-
erative

noprune-dis-
criminative

va
ri

ab
le

s

x_in 0.012 0.01 0.012 0.01

y_in 0.011 0.01 0.011 0.01

xdir_in 25.792 36.737 25.792 40.245

ydir_in 27.929 41.843 27.929 44.117

x_out 5.416 3.072 5.416 3.081

y_out 4.228 2.478 4.228 2.51

collided 0.998 0.939 0.998 0.939

As anticipated, the min_samples_leaf setting effectively prevented overfitting. It be-
comes apparent that the impact of the user-defined pruning function seems to be neg-
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ligible, at least for this model, and the overall performance of all four settings does not
exhibit significant differences.

This is evidenced by the query results in Figure  53, a), and b). The decision for the use
in BayRoB is therefore made in favor of the more expressive generative model.

6.3.3  perception
The perception model, in contrast to turn and move_base is the most diverse model in
terms of variable types (mixed multinomial/Boolean and continuous) and semantics.
None of the variables can clearly be identified as a distinctive feature or target variable,
which is why this parameter is omitted in the settings compared in the evaluation of
this model.

Due to the limited number of datapoints (772) for this model, the parameter
min_samples_leaf is of higher interest here. Table 12 shows again the overfitting effect
for setting noprune-msl-1 when not constraining the model size. In particular, it be-
comes evident, that the continuous variables are the driving factor for the poor result,
since they have 0 likelihood on the test data. The influence of the continuous variables
on the overall result also shows in the other settings, even if less pronounced.

Description of the perception model settings | Table 11

setting description

prune-msl-1
min_samples_leaf: 1
targets: None
prune_or_split: ⊤

noprune-msl-1
min_samples_leaf: 1
targets: None
prune_or_split: ⊥

noprune-msl-01
min_samples_leaf: 0.1
targets: None
prune_or_split: ⊥

noprune-msl-001
min_samples_leaf: 0.01
targets: None
prune_or_split: ⊥
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The cumulated likelihood for each setting of the perception model | Figure 74
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The likelihoods per variable for each setting of the perception model | Table 12

setting

prune-
msl-1

noprune-
msl-1

noprune-
msl-01

noprune-
msl-001

va
ri

ab
le

s
x_in 0.086 0.0 0.074 0.119

y_in 0.231 0.0 0.189 0.213

xdir_in 58.922 0.0 48.423 50.893

ydir_in 85.243 0.0 82.816 299.366

daytime 0.703 0.987 0.148 0.693

open(fridge_door) 0.914 0.949 0.851 0.919

open(cupboard_door_left) 0.98 1.0 0.819 0.948

open(cupboard_door_right) 1.0 1.0 0.976 0.997

open(kitchen_unit_drawer) 0.958 1.0 0.79 0.948

open(stove_door) 0.954 0.987 0.878 0.963

detected(cup) 0.994 1.0 0.746 0.977

detected(cutlery) 0.984 1.0 0.854 0.984

detected(bowl) 0.994 1.0 0.746 0.977

detected(sink) 1.0 1.0 1.0 1.0

detected(milk) 1.0 1.0 0.835 0.99

detected(beer) 1.0 1.0 0.88 0.999

detected(cereal) 0.99 1.0 0.797 0.98

detected(stovetop) 1.0 1.0 1.0 1.0

detected(pot) 0.942 1.0 0.792 0.929

nearest_furniture 1.0 1.0 0.98 1.0

The two settings prune-msl-1 and noprune-msl-001 both seem to perform comparably
well. The learnt models are of comparable size, whilst one was limited in size through
pruning based on the node similarity, while the other hard-cuts when a certain thresh-
old of samples per leaf is reached. Since the model size is solely based on the more
semantics-based pruning in prune-msl-1, this setting is chosen for use in BayRoB.

6.3.4  pr2
One could argue that the pr2 model contains distinctive target variables (success,
failure), since these are apparent effects of the execution of an action parameterized by
others (type, bodyPartsUsed, 𝑡𝑥/𝑦/𝑧, …). However, with the goal of being able to pose
any kind of query to the model, it is desirable to go for the more expressive learning
strategy, which is generative. The evaluation of settings for this model is therefore not
targeted towards comparing a generative vs. discriminative approach but rather differ-
ent model sizes within a generative model. Compared to the perception model, the pr2
dataset is rather large, which raises the question, how many of them are required per
leaf to form preferably general yet expressive distributions. As mentioned before, the
datasets is sparse w.r.t. pose data, i.e. the variables 𝑡𝑥 and 𝑡𝑦 are hardly ever filled with
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meaningful values (𝑡𝑧 is 0 for all data points since the base of the robot is assumed to
only move horizontally in its environment). Since JPTs cannot handle missing values, a
default value of 0 is assumed for missing continuous values, “None” for missing multi-
nomial values.

Description of the pr2 model settings | Table 13

setting description

prune-msl-001
min_samples_leaf: 0.01
targets: None
prune_or_split: ⊤

noprune-msl-001
min_samples_leaf: .0.01
targets: None
prune_or_split: ⊥

prune-msl-0001
min_samples_leaf: 0.001
targets: None
prune_or_split: ⊤

noprune-msl-0001
min_samples_leaf: 0.001
targets: None
prune_or_split: ⊥

Analogous to the perception evaluation, the settings differ in their value of
min_samples_leaf and whether or not they use the user-defined pruning function. The
results look somewhat surprising at first, since there are some outliers with unusually
high values (cmp. variables 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡𝑦, 𝑡𝑧, and 𝑎𝑛𝑔𝑙𝑒𝑧 in Table 14).

The likelihoods per variable for each setting of the pr2 model | Table 14

setting

prune-
msl-001

noprune-
msl-001

prune-
msl-0001

noprune-
msl-0001

va
ri

ab
le

s

type 0.93 0.93 0.35 1.0

duration 19.568 19.568 1.827 204.598

success 0.984 0.984 0.996 1.0

failure 0.974 0.974 0.996 1.0

object_acted_on 0.972 0.972 0.996 0.999

bodyPartsUsed 0.985 0.985 1.0 1.0

arm 0.985 0.985 1.0 1.0

t_x 0.948 0.948 1.036 1.354

t_y 0.947 0.947 0.987 470.88

t_z 4586305.46 4586305.46 2026190.604 425435.32

information 0.987 0.987 0.996 1.0

angle_z 0.938 0.938 3.628 4.179
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The cumulated likelihood for each setting of the pr2 model | Figure 75

The reason for this phenomenon lies in the abovementioned circumstance that for
some columns in the dataset, many identical values occur, causing jumps in the PLFs.
The slope in such jumps is ∞, which would cause further calculations to be indetermi-
nate. Through the introduction of a scaling factor, the infinity values are limited to an
upper bound, however, numeric side effects or errors are imminent. Since the appear-
ance of large clusters of data points with equal values in certain variables in this case
highly depends on how the training and test set are sampled from the overall dataset,
multiple runs of the settings evaluation can yield very different results. However, in
most cases, the abovementioned effect occurs to a greater or lesser extent.

In practice, the noprune-msl-0001 setting has proven the most promising configuration,
however, the model still has its flaws due to the incomplete and inconsistent data sit-
uation. For further testing, it is required to collect further robot data from real exper-
iments.
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6.4  Part III: Plan Refinement
In Section 4.6, the idea of of using forward- and backward action updates in combi-
nation with an A*-like search to refine robot plans was introduced. This part of the
evaluation will serve as a proof of concept for this appoach, in which the forward- and
backward search are tested in example scenarios. Plan refinement in the context of this
work is to be understood as the process of breaking down a superordinate, rather ab-
stract higher-level task into multiple lower-level, robot-executable subtasks. Given a
current position and a goal position, refining the plan “Go from position A to position
B” would then be a sequence of multiple “Move 1 step forward” and “Turn x degrees”
describing a path from position A to B. As a first example, an initial state with 𝑋𝑖𝑛 ∼
𝒩(3.5, 0.05), 𝑌𝑖𝑛 ∼ 𝒩(58.5, 0.05), 𝑋𝐷𝑖𝑟𝑖𝑛 ∼ 𝒩(0.7, 0.01) and 𝑌𝐷𝑖𝑟𝑖𝑛 ∼ 𝒩(0.7, 0.01)
is assumed. All the variables that are not set explicitly are considered unknown, i.e.
it is unknown, whether certain objects or funiture items are visible to the robot from
its current position and whether doors and drawers are open or closed. The agent is
tasked with finding a path to an arbitrary position within a rectangular area defined by
the intervals 𝑋𝑖𝑛 ∈ [4.5, 5.5] and 𝑌𝑖𝑛 ∈ [59.5, 60.5]. As expected, since only a very small
distance is to be overcome and the facing direction is already set towards the goal area,
very few actions are required to reach the goal. In fact, only two move_base steps are
necessary, as shown in Figure  76.

The forward search path example from an initial position to a position within the goal area
(green rectangle) | Figure  76

Step 0 (initialization) | a) Step 1 | b) Step 2 | c)

The backward search returns a slighly different result containing only one action step.
This is not surprising, since in the forward search direction, the resulting path is gener-
ated by applying actions consecutively and updating the initial distribution with each
step. The nature of the reverse direction search, however, does not allow that, such that
each step along the path is generated from the in-distributions of its successor, which
may lead to slightly different results. Moving the initial state a little bit further from
the goal (𝑌𝑖𝑛 ∼ 𝒩(57, 0.05)) then results in a path with more than one step. It is yet to
be shown, that the forward execution of the path found by the backward search truly
results in the desired goal state which places the agent in a position within the specified
rectangular area. Since each action step corresponds to a particular leaf in an action

171



Chapter six - Evaluation

tree model, the consecutive update of the state through the forward application of the
leaf will result in the most probable (still prospected) agent state.

Comparison of the found path vs. its forward execution of the previous example using
backward search | Figure  77

The refined plan generated by the backward
search algorithm | a)

The prospected result of the forward execution of
the refined plan | b)

The path found by the backward search as well as the result of the forward execution
of the found path are depicted in Figure  77. While there are minor differences in the
first action step, the results (i.e. the second state) are fairly similar. Note that the node
representing the final state is not placed within the rectangular goal area (Figure  77
a). This is due to the positions of the nodes being set at the expectation values of the
respective position variables. The entire distribution may therefore still share a large
enough area with the goal to be considered a goal state by the algorithm.

Much more interesting is the plan refinement when it comes to tasks that require
semantic refinements. Probabilistic action models in BayRoB in combination with a
search algorithm are capable of refining underspecified tasks such as “Detect milk”.
From the perception model, the agent can infer that milk can be detected when certain
criteria are met. Figure  38 in Section 4.6.1 show a subset of these criteria, i.e. predeces-
sor candidates for the goal specification 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(𝑚𝑖𝑙𝑘) = ⊤. These criteria limit the
agent’s position and facing directions from which it can detect milk, as well as the time
of day and the state of the fridge door. Given an initial state with 𝑋𝑖𝑛 ∼ 𝒩(62, 0.1),
𝑌𝑖𝑛 ∼ 𝒩(74, 0.1), 𝑋𝐷𝑖𝑟𝑖𝑛 ∼ 𝒩(0.3, 0.01) and 𝑌𝐷𝑖𝑟𝑖𝑛 ∼ 𝒩(0.9, 0.01) then has to again
refine the task to get from the current location to one of the locations of the predecessor
candidates, as shown in the first example. The resulting refined plan for the “Detect
milk” task is shown in Figures 78 a) - d).

Please note that plan refinement incurs a substantial computational cost, primarily due
to the computationally intensive nature of distribution convolutions involved in the
belief state update. The backward search, in particular, necessitates multiple convolu-
tions for each leaf in each search iteration, in the worst-case scenario. To manage this
complexity, various measures have been implemented to keep these operations at a rea-
sonable level. For instance, after a distribution convolution, the resulting distribution
is approximated to maintain a manageable number of PLFs. While the approximation
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process requires additional computational power, the effort proves worthwhile when
the resulting, less complex distribution is reused for convolution in subsequent steps.

Plan refinement of the task “Detect milk”: 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(𝑚𝑖𝑙𝑘) = ⊤ | Figure  78

Step 0 (initialization): “I am somewhere here” | a) Step 1: “How do I detect milk?” | b)

Step 2: “How do I get to the position from the can-
didate found in b?” | c)

Step 3: “How do I get to the position from the can-
didate found in c?” | d)

Given the computational complexity and the expansive nature of the search space (re-
fer to the aforementioned approximations) in the running example, it may be neces-
sary to expand thousands of nodes in the search tree, depending on the complexity
of the query. The completion of this task could take several hours, contingent on the
underlying hardware. As a reference point, the task completion depicted in Figure  76
took ∼ 5 minutes and expanded 24 nodes, while the one in Figure  78 took 4 minutes
and expanded 29 nodes on an Intel Core i7, 1.9 GHz Quad-Core Processor with 16GB
RAM, even though the resulting action sequences only contained a very small number
of steps.
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Example of a CRAM plan generated from search result in Figure  78 | Code 3

1 defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))

2
defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))

3

defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))

4

defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))

5

defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))

6

defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
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                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))
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defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))
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defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))31

defplan path(goal_location, robot_location)
    perform (an action
                (type move_base)
                (min_x_in 60.43)
                (max_x_in 63.75)
                (min_y_in 73.96)
                (max_y_in 73.97)
                (min_xdir_in 0.74)
                (max_xdir_in 0.87)
                (min_ydir_in 0.52)
                (max_ydir_in 0.7))
    perform (an action 
                (type move_base)
                (min_x_in 60.89)
                (max_x_in 64.45)
                (min_y_in 74.28)
                (max_y_in 74.51)
                (min_xdir_in 0.65)
                (max_xdir_in 0.70)
                (min_ydir_in 0.71)
                (max_ydir_in 0.76))
    perform (an action 
                (type perception)
                (min_x_in 61.59)
                (max_x_in 65.73)
                (min_y_in 75.28)
                (max_y_in 75.35)
                (min_xdir_in 0.68)
                (max_xdir_in 0.77)
                (min_ydir_in 0.82)
                (max_ydir_in 0.82))

The found action sequence in Figure  78 forms the base for instructing an autonomous
agent how to perform a task. The action designators as well as their respective parame-
terization can be extracted from the distributions and fed to the agent in the form of a
CRAM plan. For this example, the resulting plan is shown in Code 3. The generation
of a CRAM plan can be executed automatically from a BayRoB search result.

6.5  Part IV: BayRoB and BayRoB Web
The BayRoB system will be released as an open-source Python implementation on
GitHub⁴². This release aims to make the insights from this work accessible to the scien-

⁴²GitHub, a developer platform

tific community. The system not only allows for the exploration of the models outlined
in this thesis but also facilitates learning and integration of new models into the system.

Furthermore, the web tool BayRoB web (Figure 79), developed as part of the BayRoB
framework, provides a comprehensive exploration of each action model within the sys-
tem. Users can not only replicate the evaluation results presented in this chapter, en-
suring the reproducibility of outcomes but also expore action descriptions and engage
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in plan refinement, employing both forward- and backward inference methodologies
introduced earlier.

The BayRoB web app | Figure 79

The evident benefits encompass the app’s capacity to expose significant aspects of the
BayRoB system’s functionalities to the scientific community. This includes features
like action prospection, informed decision-making, and plan refinement. The web app
facilitates two types of requests: the model query and the search.

The query and search options in the BayRoB web app | Figure  80

Query | a) Search | b)

The query function, depicted in Figure  80 a), enables users to define a set of observa-
tions (evidence) and select one or more variables for querying in a specific action model.
Upon clicking the Query button, the system processes the request, triggering internal
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inference and visual processing, showcasing ground truth and distribution plots for the
designated query variables. Users can also request the visualization of the conditional
tree resulting from the query. While the query modeling assumes a certain understand-
ing of model characteristics, users receive assistance through predefined queries and
suggestions for valid values when selecting an evidence variable. A text field in the
lower section of the BayRoB Query window offers a preview of the sent request to the
model.

The result of a query in BayRoB shows separate windows for the distribution of each requested variable.
The conditinal tree can be visualized in the background (optional) | Figure 81

The execution of the search, illustrated in Figure  80 b), activates the plan refinement
pipeline, internally incorporating an A*-like search of predecessor/successor steps for
a specified query. Users can define a goal and an initial state by choosing variables
within the models of the BayRoB system’s running example (turn, move_base, and
perception) and specifying allowed value ranges. For numeric variables, these speci-
fications may include a range (interval) of values or a value complemented with a tol-
erance.

A value 𝑣 accompanied by a tolerance 𝑡 will be converted into a Gaussian distribution
𝒩(𝜇 = 𝑣, 𝜎 = 𝑡). When dealing with a range of values, the transformation will result
in a uniform distribution that encompasses the specified values. For multinomial and
Boolean variables, the provided value(s) can be a singular value or a set of values sep-
arated by commas. This set will be transformed into a distribution that uniformly al-
locates the probability mass across the specified values, assigning a probability of 0 to
all other potential values within the variable’s domain. To illustrate, consider the dis-
tribution of the specification of the variable 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 with values {“fridge”,
“stove”}, depicted in Figure 82.

Again, to learn how the system works, users can choose a predefined specification from
the dropdown menu. Upon clicking the Search button, the plan refinement process will
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be triggered. In other words, the BayRoB system will attempt to discover a sequence
of actions that transforms the specified initial state into the desired goal state. It is im-
portant to note that plan refinement may take a considerable amount of time, poten-
tially exceeding the session lifetime of the web app due to the involvement of complex
computations. Thus, users are advised to exercise caution and consider restricting the
search to smaller examples, as suggested by the presets.

The “uniform” distribution over the allowed values for the variable 𝑁𝑒𝑎𝑟𝑒𝑠𝑡_𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 | Figure 82

The result of a successful search includes a) a plot of the found path b) an animation of
the distribution updates of the position variables and c) an animation of the distribu-
tion update of the direction variables. The plots will be displayed in the main window of
the application, along with additional information about the results in the lower third
of the main window.

Essentially, the BayRoB web app encourages researchers to explore probabilistic mod-
eling and decision-making within the domain of BayRoB. It functions as a tool for in-
vestigation, providing a means to deepen understanding of the system’s internal mech-
anisms in the context of this research. The app will be complemented by documenta-
tion that includes a user manual and an API specification for the BayRoB framework.
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The result of a search in BayRoB shows separate windows for the distribution of each requested variable.
The conditinal tree can be visualized in the background (optional) | Figure 83
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Related Work

In this chapter, a comprehensive examination of related works is presented, specifically
addressing two interconnected areas. Firstly, the foundational research is explored with
a primary focus on the related work concerning learning and knowledge representation
as well as the utilized formalism of JPTs. The aim of this section is to establish the the-
oretical foundations of the approach, investigating the research that has contributed to
the development and understanding of JPTs. Concurrently, the investigation extends to
the broader context of research relating to the BayRoB system as a whole. The diverse
body of research surrounding and complementing the BayRoB framework is reviewed.

The awareness that robots need real understanding to solve tasks to a level that allows
them to draw conclusions about what subtasks can be identified and how to solve the
tasks without consulting further human assistance is crucial to equip the agent with
essential knowledge. There are numerous approaches to build large-scale knowledge
databases by learning structured data from text like Never Ending Language Learning
(NELL)⁴³ (Mitchell et al. 2018), YAGO (Suchanek, Kasneci, and Weikum 2007), Free-

⁴³NELL

base (Bollacker et al. 2008) and Google’s Knowledge Graph (Pujara et al. 2013), or from
other web content like Google’s Knowledge Vault (Dong et al. 2014), to only name a
few. 

◁ knowledge bases
The information extraction algorithms of these systems employ different (often

cascaded) machine learning techniques, to transform unstructured data into machine-
readable and -interpretable formats that can then be analyzed and used to derive new
knowledge. They vary from rule-based or statistical information extraction techniques
to named-entity recognition, from (semi-)supervised learning like bootstrapping, to
clustering, classification, reinforcement learning and deep learning.

There also exist knowledge bases for robots, for example the one introduced by Sijs and
Fletcher (2021), who adopt a hypergraph model to maintain a hierarchical knowledge
base that allows real-time updates from the robot’s sensors. The knowledge processing
system KnowRob (Tenorth and Beetz 2013) and its successor, the knowledge represen-
tation and reasoning framework KnowRob2 (Beetz et al. 2018), allow a robotic agent to
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acquire open-ended manipulation skills and competence, while enabling it to reason
about how to perform manipulation tasks and simultaneously obtain commonsense
knowledge. For a more detailed comparison of multiple robotic knowledge bases the
reader is referred to Thosar et al. (2018) who evaluate the systems by means of the cri-
teria knowledge acquisition, knowledge representation, and knowledge processing.

In Kaelbling and Lozano-Pérez (2013), a belief state representation involves a full
joint Gaussian distribution over object poses. This is possible, as the domain described
comprises comparatively few objects, whose locations are discretized. 

knowledge
representation,

learning &
reasoning

▷
The authors pur-

sue to find approximate solutions to exceedingly complex Partially Observable MDP
(POMDP) problems through a process of planning within belief space, employing
streamlined models, and iteratively adjusting the plan as needed. A characteristic of
POMDPs is that they can effectively represent the value functions in a finite world with
finite state, action and measurement spaces by incorporating piecewise linear func-
tions. For real-world scenarios, however, they are typically not considered to suffice,
because of the huge complexity of the belief spaces.

The domain of probabilistic learning and reasoning is a vital and actively explored area
within AI, with numerous studies in recent years focusing on improving the tractability
of probabilistic models. Prior research, exemplified by Poon and Domingos (2011), in-
troduced SPNs as deep architectures for representing probability distributions. Unlike
SPNs, JPTs operate independently of a predefined dependency model prior to learning
and facilitate explainable reasoning across symbolic and continuous variable domains.

In contrast to PCs (Shah et al. 2021), JPTs autonomously learn their dependency model
from data and can articulate distributions without imposing any model assumptions.
Traditional Probabilistic PGMs typically require a fixed dependency model to be known
before parameter learning, thereby introducing an additional NP-hard problem when
structuring the model. However, in the case of JPTs, the dependency model is acquired
automatically from the data, eliminating the need to specify a model in advance.

Peharz et al. (2020) identify a significant hurdle faced by probabilistic circuits, partic-
ularly their scalability compared to other deep generative models. Since research typ-
ically focuses on the flexibility and expressiveness of the developed models, compara-
tively little attention is paid when it comes to tractable modeling. There is often no in-
vestigation and formal proof of the set of inference tasks that can reliably be addressed
within the models. By proposing Einsum Networks (EiNets), a novel implementation
design for PCs is introduced, which significantly enhances speed and memory usage
by integrating numerous arithmetic operations into a unified einsum operation.

Since the typical approach to learning PCs often involves employing greedy and time-
intensive algorithms, Di Mauro et al. (2021) present a novel unified method for effec-
tively learning PCs with various structural characteristics. Specifically, the concept of
extremely randomized extremely randomized Probabilistic Circuits (XPCs) is proposed,
which are PCs featuring a random structure based on random logical constraints-based
conditioning. XPCs satisfy the conditions for smoothness and decomposability and can
be designed to be decomposable as well. Their superiority over other density estimators
is validated on standard benchmarks for density estimation tasks.
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Similar to JPTs, cutset networks (Rahman, Kothalkar, and Gogate 2014) employ recur-
sive partitioning, but accommodate arbitrary BNs within the partitions. Nevertheless,
cutset networks are constrained by the complexity of the Bayesian networks in the
leaves and lack the capacity to generally represent continuous variables. JPTs can thus
be viewed as expansions of both SPNs and PCs that efficiently learn probability distri-
butions over hybrid domains without requiring pre-defined model structures.

Bishop (1994) introduces Mixture-Density Networks (MDNs), which integrate conven-
tional neural networks with mixture density models. MDNs offer a comprehensive
framework for modeling conditional probability densities of the output variables, thus
facilitating multi-valued mappings. Analogously to JPTs, MDNs are mixture models
representing distributions over symbolic and subsymbolic variables. However, unlike
MDNs, JPTs are generative models that represent joint distributions over all variables
instead of conditional probability densities of the output variables, thereby limiting
MDNs to be discriminative.

Moreover, JPTs leverage the advantages of transparent tree structures that are easily
interpretable, provide comprehensible decisions, and enable efficient learning and
reasoning processes. Bishop and Svensén (2012) employ variational inference with
Hierarchical Mixture of Experts (HME) to offer a Bayesian approach to modeling. This
approach is applicable to solving multi-dimensional regression tasks and is anticipated
to be effective for binary classification as well. However, the HME often converge to
local optima that may not necessarily be optimal, a challenge addressed by the authors
through multiple runs to select the best solutions. Nonetheless, this approach might
be impractical for large datasets. For a more comprehensive exploration of mixture-of-
expert models, Yuksel, Wilson, and Gader (2012) can provide additional insights.

Beetz and Grosskreutz (2005) discuss a framework for modeling and predicting concur-
rent behavior in autonomous mobile robots using Probabilistic Hybrid Action Models
(PHAMs). PHAMs enable the representation of continuous feedback control processes,
non-deterministic effects, interference modes, and exogenous events. The authors fo-
cus on integrating AI planning with robotic control systems, emphasizing the need
for more realistic models of robot behavior and physical effects - aiming to improve
the adaptability, efficiency, and reliability of autonomous robots especially in complex
and dynamic environments. PHAMs are designed to predict robot behavior with high
probability, aiding in plan revision and decision-making during execution. The authors
propose the use of PHAMs for Concurrent Reactive Plans (CRPs), which involve the si-
multaneous execution of multiple control processes that interact with each other and
the environment, and online plan revision, 

◁ autonomous
agents

highlighting their potential to enhance the
performance of autonomous service robots. The authors also discuss the challenges of
rule learning and the extraction of projection rules from experience. These rules guide
the prediction process by encoding patterns of behavior observed in actual executions.
The challenge lies in developing mechanisms to automatically extract these rules from
learned plans and execution traces. PHAMs enable the prediction of robot behavior
during plan execution. By analyzing the projected behavior, the system can identify
potential flaws or undesired outcomes and revise the plan in real-time. This prediction-
based plan revision enhances the robot’s ability to adapt to changing conditions and
optimize its actions improving the efficiency and reliability of autonomous robot con-
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trol. The strength of PHAMs lies in capturing the physical effects and temporal struc-
ture of robot behavior, particularly in complex and uncertain environments.

When dealing with autonomous robotic systems, one has to concern oneself with large
domains in open world scenarios, handling hybrid domains and the informed decision
making under uncertainty. These topics are key to successfully developing autonomous
agents that can confidently act in real-world scenarios and are therefore heavily inves-
tigated in the scientific community. Numerous works investigate planning under un-
certainty (Ha, Driess, and Toussaint 2020; Enachescu et al. 2021; Blythe 2001; Karlsson
2001; Indelman, Carlone, and Dellaert 2014; Jain and Niekum 2018). Very prominent
are the works by Kaelbling, Littman, and Cassandra (1998), who present an approach
to handle larger problems by using function-approximation techniques and employing
simulation to focus the approximations on the frequently visited regions of the belief
space. The authors present the prospect of incorporating hidden Markov models to
learn POMDPs to allow the application of the approach presented in their work.

The approach presented in this thesis does not align with classical planning strategies,
where the objective is typically to determine a sequence of actions to achieve a prede-
termined goal. An example is the Stanford Research Institute Problem Solver (STRIPS),
first introduced by Fikes and Nilsson (1971).

McDermott (1992) argues that, rather than classical planning, which typically employs
logical formalisms, a different framework is required. This framework should not only
incorporate programming language semantics and the ability to anticipate abstract in-
tentions prior to determining their realization or feasibility, but also integrate probabil-
ity and control theory.

BayRoB operates within the framework of concurrent reactive plans, which involve
defining object and designators and adjusting them dynamically based on contextual
factors and experience during runtime. This allows for the attainment of desired out-
comes within specific environments by adapting actions in response to changing con-
ditions.

classical
planning

vs.
concurrent

reactive plans

▷
 This approach incorporates the fundamental concept of using experiential

knowledge to understand a task, which is essential to improve decision-making. In a
similar context, Laird et al. (2017) propose interactive task learning where an agent col-
lects experience by naturally interacting with a human instructor, allowing it to learn
what a task is.

This approach followed in this work is inspired by works of Beetz and Grosskreutz
(2005) mentioned earlier, and aligns with Beetz (2002). While Nyga et al. (2018) intro-
duced a probabilistic framework that generates robot-executable action sequences from
vague natural-language instructions, BayRoB uses experiential knowledge to provide
the necessary information for augmenting underspecified instructions. However, both
approaches aim at solving the problem probabilistically to account for the uncertainty
grounded in real-world environments.

Developing control programs that can adapt to complex and dynamic environments
to enable the handling of complex decision making processes is a recurring subject in
many research propositions. Fedrizzi (2011) captures this idea to find what he calls
Action-Related Places (ARP LACEs), i.e. robot base positions that are most likely ideal
for the successful execution of grasping tasks. The author argues, that certain abilities

182



Probabilistic Action Prospection based on Experiences

are necessary for a robot to robustly act in unconstrained environments, 
◁ cognition

including han-
dling uncertainty, dynamically adapt to changing environments and make adequate
decision in unclear situations and that pre-programmed solutions do not solve these
issues. BayRoB extends this approach to the entire belief state, which is represented
by hybrid probability distributions over action and object designators.

Tenorth and Beetz (2012) present an approach to augment underspecified (natural-
language) task descriptions with infomation about what is missing in the instruction
and where to find relevant pieces knowledge. The framework can also anticipate the
effects of action executions of everyday activities, such as those in cooking recipes.
Their system integrates different knowledge sources and allows to reason over them
to fill missing information in incomplete instructions. Beßler, Koralewski, and Beetz
(2018) extend the KnowRob system (Tenorth and Beetz 2013) by representing actions
using force dynamic events. The models are used to acquire episodic memories, which
link performed actions with sub-symbolic data. The episodic memories can be used
as experiential data in future experiments or by other robots. While the inference in
both works is performed using static (prolog) rules (leveraging additional ontological
knowledge) and is therefore grounded in logical reasoning, BayRoB allows probabilis-
tic reasoning through the incorporation of probability distributions over actions and
objects.
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Conclusions

This work has proposed BayRoB, a probabilistic framework incorporating hybrid ac-
tion models to support autonomous agents in making informed, context-based deci-
sions under uncertainty. While robot control programs are typically hybrid, yet rather
static state machines, BayRoB superimposes them with probability theory over joint
probability distributions, which has a huge impact on the decision making capabilities
of the robots, since all sorts of queries are imaginable. In particular, this applies to the
agent’s competence in its anticipation skills, which are key to choosing the best actions
in the given situation.

Developed as part of the EASE research focus, the BayRoB framework employs a prob-
ability-based approach to refine action models, aligning seamlessly with the NEEMs
principles for informed decision-making. At the heart of BayRoB lies the concept of
action cores, representing potentially higher-level action descriptions. The system in-
troduces a subsymbolic component into these cores, crafting hybrid action models that
elevate decision-making processes. Through a formalism capable of representing and
computing complex probability distributions in hybrid domains, BayRoB stands as a
notable advancement in probabilistic modeling.

JPTs were introduced as tree-based representations that allow the compact representa-
tion and efficient learning of and reasoning about joint probability distributions. As op-
posed to PGMs, JPTs support learning and reasoning in hybrid domains, i.e. they allow
to coalesce numeric and symbolic variables in one single model in a sound and consis-
tent way. A key feature of JPTs is that the dependencies among variables are represented
in a tree structure, whose leaves maintain univariate distributions over all variables.
For numeric variables, quantile-parameterized distributions are proposed, which can
be regarded as model-free representations of arbitrary numeric distributions. The ex-
periments show that JPTs are able to accurately learn and represent complex interac-
tions between many variables, while keeping interpretability and scalability. It can be
argued that the challenges that are addressed with JPTs will be key in making the tran-
sition from narrow, specialized expert systems to hybrid, high performance AI systems
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and in pushing todays computer systems towards more generally intelligent and more
robust and reliable decision making.

Within an exemplary kitchen environment and using a selection of action designators,
the BayRoB methodology, including algorithms and plan refinement strategies were
showcased. The core of this approach lies in the representation of belief states as joint
probability distributions and the concomitant update strategies. The update of the con-
tinuous distributions in the belief state follows the natural understanding of adding
and subtracting values and thus performs a convolution of the distributions to emulate
this behavior. The execution of multiple actions then entails the consecutive computa-
tion of belief state updates, each performed on the result of the respective preceding
one. The observation that, with an increasing number of action executions and their
consequent belief state updates, the belief state distributions tend to increase in terms
of complexity as well as uncertainty is addressed and means to tackle these issues are
presented.

The forward update of the belief state corresponds to the anticipation of the outcome
of an action, that is, how the execution of that particular action affects the robot and
which environmental changes are to be expected. On the one hand, this knowledge can
be used to prepare the agent for the situation after the action execution and provide
essential information about what to do next. On the other hand, the anticipation skills
can be used to prevent certain situations, e.g. the one in which the action execution fails
or produces an undesirable outcome. A pancake might still end up on the floor, even
though the flipping action itself was carried out successfully, due to an unfavorable
positioning of the pan causing the pancake to slip. By computing the action with the
highest probability of producing a desired outcome, the prediction capabilities can be
used to select a favorable action and parameterization in the first place. The backward
action update therefore corresponds to the search of a state and an action parameteri-
zation that leads to a desired outcome.

Both update types are employed when searching for a sequence of actions that help
the autonomous agent in successfully performing a given task. In general, the search is
used to reach a certain goal, which can be interpreted as an underspecified action plan
that is to be refined. The approach is developed to increase the autonomy in robotic
agents but is not limited to this application. On the contrary, the methodology can be
used in many applications where experiential knowledge is available (and machine in-
terpretable) and can be used to reason over actions and resulting environment changes.
Apart from the robotic domain, this work presented the predecessor of the BayRoB
system in the context of material design applications which is similar in its challenges
since the goal is to develop novel materials with a given set of properties in the vast
range of possible material combinations, properties, and processing steps.

The evaluation has shown promising results for a wide range of queries and query pat-
terns, showcasing that the BayRoB system is indeed capable of not only accurately
learning and representing coherences in actions, action parameters and environment
characteristics but also reliably reasoning over arbitrary matters of the domain.
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The BayRoB framework will be publicly available as an open source implementation
accompanied by a browser-based web application allowing the user to investigate
BayRoB’s reasoning process.

The approach of integrating probabilistic hybrid models into a framework, as exempli-
fied by BayRoB, where learning occurs through experiential data, holds the potential to
fundamentally improve the decision-making processes of autonomous agents. A piv-
otal aspect of this transformation lies in the integration of full joint probability distri-
butions, encompassing both aspects of the world and the agent itself. This integration
is key in facilitating informed decision-making grounded in experience. By incorporat-
ing JPTs as efficient models that proficiently learn, represent, and reason over various
facets of the agent and its environment, it becomes feasible to equip autonomous robots
with cognitive abilities. This empowerment enables them to accurately anticipate the
outcomes of actions based on the context, providing the agent with the essential tools
to make well-informed decisions when selecting the optimal actions and parameters
for its task.

I believe that the presented approach holds significant promise in equipping robots
with the necessary cognitive capabilities to autonomously competently solve tasks in
real-world environments. To the best of my awareness, this approach is the first that
incorporates joint hybrid probability distributions of arbitrary shape learnt from com-
prehensive experiential robot data. This integration leverages the complete spectrum
of inferential power for more effective decision-making.

In its current state, the system is limited to the action models presented in this work,
primarily learnt from artificially generated data. While the system has already shown
that it can handle real robot data and reason about error types that allow to detect
classes of errors in certain situations, future prospects include the further automatiza-
tion of the learning process. This implies the automated identification of 

◁ outlook
object and

action designators from experiential data and the creation of the respective probabilis-
tic hybrid action models. Furthermore, BayRoB currently does not emply a general
procedure to solve the problem of spurious correlations, and, to the best of my knowl-
edge, no reliable method exists so far. Future developments will therefore rely on action
models, that necessitate manual engineering to a certain extent.

I am excited to see how the system will perform on more mature datasets that provide
the necessary information allowing the refinement of more sophisticated action plans
- and the successful validation through execution on a real robot.
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action core action cores are symbols representing (higher-level) actions
that can be decomposed into smaller subactions. In the context
of this work, examples for action cores could be move forward
or turn · · · · · · · · · · · · · · · ·  8, 10

BayRoB Bayesian Robot Brain (BayRoB) is a fully operational system
combining joint probability distributions to generate action
models from a robot’s experience data. The code is open-source
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context of BayRoB such a belief state is represented by means of
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agent’s and its environment’s current condition. · ·  9, 10

CCC The CCC, affiliated with the CRA, is dedicated to advancing
innovative and impactful computing research that addresses
both national and global challenges. It operates as a responsive,
visionary organization representing the computing research
community, with a strong commitment to diversity, equity, and
inclusivity. CCC serves as a catalyst, bringing together leaders
from academia, industry, and government to articulate and pro-
mote compelling research visions. https://cra.org/ccc/ (Accessed:
Sept 11th, 2023) · · · · · · · · · · · · · · ·  5
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CRA The CRA is a prominent organization with member organiza-
tions across North America, including academic departments,
industry labs, government agencies, and professional societies
like AAAI, ACM, and IEEE Computer Society. Its mission is
to promote and advance computing research by collaborating
with industry, government, and academia, representing the
computing research community, informing policymakers, and
advocating for diversity and social responsibility in computing
research. CRA plays a vital role in supporting and uniting the
computing community, advocating for research funding, men-
toring aspiring researchers, and fostering innovation in the
field. https://cra.org/ (Accessed: Sept 11th, 2023) · · · · ·  5
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tablished for up to 12 years, in which researchers work together
within a multidisciplinary research programme. https://www.
dfg.de/en/research_funding/programmes/coordinated_
programmes/collaborative_research_centres/index.html (Ac-
cessed: Jan 20th, 2023) · · · · · · · · · · · ·  6, 139

descriptor We use the term descriptors to denote any kind of measurement
or feature obtained from short-time characterizations on micro
samples. They correlate with material properties so that a short-
time characterization of a micro sample facilitates the predic-
tion of material properties in macro- scale materials. ·  122

EASE an interdisciplinary research center to develop cognitive robots
with the skills to execute everyday activities. The focus lies
on conducting open research and sharing knowledge and data.
https://ease-crc.org/ (Accessed: Jan 13th, 2023) · · ·  6, 8, 185

KnowRob Knowledge processing for robots. functions as a knowledge pro-
cessing system merging methods for knowledge representation
and reasoning with approaches for acquiring and anchoring
knowledge within a physical system. It serves as a unified se-
mantic framework capable of integrating information from var-
ious sources. https://knowrob.org/knowrob (Accessed: Mar 19th,
2024) · · · · · · · · · · · · · · · · ·  183

MAR The MAR (for Robotics in Europe) complements the Strategic
Research Agenda (SRA) by offering more in-depth technical
and market insights. It serves as a detailed technical guide,
highlighting anticipated progress and medium-term research
and innovation objectives within the robotics community. The
MAR is updated annually to align with evolving priorities, tech-
nologies, and strategic developments in European research,
development, and innovation. https://old.eu-robotics.net/cms/
upload/topic_groups/H2020_Robotics_
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Multi-Annual_Roadmap_ICT-2017B.pdf (Accessed: Sept 5th, 2023) 
4

MatCALO The MatCALO system is an implementation of an intelligent,
assistive system that is capable of supporting materials scien-
tists in their work by generating hypotheses on how to process
certain materials to obtain desired properties.  17, 116, 117, 124,
125, 133, 134, 135, 136, 137, 139

MGI The Materials Genome Initiative is a collaborative effort involv-
ing multiple federal agencies aimed at expediting the discovery,
production, and utilization of advanced materials, achieving
results in half the time and at a significantly reduced expense
compared to conventional approaches. This initiative estab-
lishes guidelines, allocates resources, and builds the necessary
infrastructure to assist American institutions in embracing ap-
proaches that accelerate the development of materials. https://
www.mgi.gov (Accessed: Sep 12th, 2023) · · · · · · ·  120

OWL OWL forms the standard for a Semantic Web language which
can be used to represent complex knowledge about things and
relations between things https://www.w3.org/OWL/ (Accessed:
Aug 1st, 2022) · · · · · · · · · · · · · · ·  133

sample A sample in the context of this work may either be microscopic
or macroscopic. A macroscopic (macro) sample can be used to
obtain material properties directly because of its size. Macro
samples can for example be created by using spray-forming or
casting. A microscopic or micro sample is a spherical droplet of
a few hundred 𝜇𝑚 in diameter. These samples are either gen-
erated in large quantities in one go using the pneumatic high-
temperature droplet generator as described by (Ellendt, Ciftci,
Goodreau, Uhlenwinkel, and Madler 2016) or they are formed
in a larger-scale sample using Laser Deep Alloying. · ·  122

SPARC The SPARC Partnership for Robotics in Europe is a civilian-
funded robotics innovation programme and a partnership be-
tween the European Commission and the European industry
and academia. https://old.eu-robotics.net/sparc/ (Accessed: Sept
5th, 2023) · · · · · · · · · · · · · · · · ·  4

SRA The SRA (for Robotics in Europe) offers a comprehensive
strategic perspective for the field of robotics. Additionally, it
serves as a means to acquaint non-experts, policymakers, entre-
preneurs, and industries interested in the robotics sector with
the European robotics community. This document aims to pro-
vide insight into the current state and future prospects of ro-
botics. https://old.eu-robotics.net/sparc/upload/topic_groups/
SRA2020_
SPARC.pdf (Accessed: Sept 5th, 2023) · · · · · · · · ·  4

III

https://old.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_
Multi-Annual_Roadmap_ICT-2017B.pdf
https://www.mgi.gov
https://www.mgi.gov
https://www.w3.org/OWL/
https://old.eu-robotics.net/sparc/
https://old.eu-robotics.net/sparc/upload/topic_groups/SRA2020_
SPARC.pdf
https://old.eu-robotics.net/sparc/upload/topic_groups/SRA2020_
SPARC.pdf
https://old.eu-robotics.net/sparc/upload/topic_groups/SRA2020_
SPARC.pdf


IV



IIListing

Acronyms

AI Artificial Intelligence  1, 3, 4, 5, 6, 7, 12, 13, 14, 69, 180, 181, 185

API Application Programming Interface · · · ·  120, 134, 177
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ChatGPT Generative Pre-trained Transformer · · · · · ·  13, 14

HME Hierarchical Mixture of Experts · · · · · · · ·  181
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KR&R Knowledge Representation and Reasoning · · · ·  19, 20

MAE Mean Absolute Error · · · · · · · · · ·  66, 67, 68

MAP Maximum A Posteriori · · · · · · · · · ·  25, 48

MARS Multivariate Adaptive Regression Spline · · · · · ·  63
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MCMC Markov Chain Monte Carlo · · · · · · · · · ·  44
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AAppendix

Joint Probability Trees

A.1  Trees
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A.1.1  JPT Example - Tree
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The ground truth distribution of the toy data set in Section 3.2.3. | Figure 85

The plot of the marginal joint distribution 𝑃(𝑋, 𝑌 ) of the toy data set in Section 3.2.3 | Figure 86
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A.1.2  MNIST Tree
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A.1.3  Alarm Tree
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A.2  Tables

A.2.1  Empirical Evaluation

Results of the evaluation of JPTs on eight benchmark data sets of the UCI machine learning repository (-
Dua and Graff 2017) for different hyperparameters. Min samples per leaf means that at least the respective
percentage of data points available for training must be represented by any leaf of the tree. Min samples
per leaf=90% thus results in a JPT with only one leaf, ie a set of independent prior distributions over all
variables considered. 0-likelihood test samples determines the percentage of test samples with 0 likelihood.
This may happen to samples lying outside the convex hull of the training data, where 0 probability mass

is assigned by the CDF-Learn algorithm. | Table 15

Dataset Min samples
per leaf Model Size

Average Train
Log-Likeli-

hood

Average Test
Log-Likeli-

hood

0-likelihood
Test Samples

IRIS Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

23
46
94

184
353
679

−5.45
−3.54
−2.16
−1.37
−0.18
6.11

−5.63
−3.33
−2.66
−1.91
−1.20

-

-
-

20%
27%
67%

100%

Adult Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

1472557
2945118
5890233

11780477
22088384
94243769

−55.46
−53.79
−52.96
−51.17
−50.13
−41.57

−54.98
−53.07
−52.45
−50.18
−50.25
−42.96

49%
58%
64%
70%
81%
93%

Dry Bean
Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

476858
953709

1430565
3814841
7629662

36717612

−17.49
−12.13

−9.8
−4.91
−2.31
2.41

−16.98
−13.23
−10.68
−6.75
−4.11
0.85

95%
95%
95%
95%
95%
96%

Wine Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

1550
3101
6197

12417
24824

207028

−18.97
−17.06
−13.42
−10.98
−6.74
41.22

−19.83
−18.69
−14.9

−12.46
-
-

56%
83%
94%
94%

100%
100%

Wine Quality
Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

67
138
204
479

1072
5307

−9.50
−8.10
−7.60
−6.48
−5.67
−3.08

−9.80
−8.34
−7.68
−6.57
−5.85
−3.82

-
1%
1%
2%
4%

12%

vii



Bank and
Marketing
Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

116433
232866
465732
815031

1630062
7335279

−34.60
−34.50
−34.31
−33.00
−32.43
−30.46

−34.64
−34.54
−34.32
−32.77
−32.08
−29.45

7%
8%

12%
20%
32%
73%

Car Evalua-
tion Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

21
21
63

147
231

1249

−6.89
−6.89
−6.52
−6.48
−6.45
−6.38

−7.03
−7.03
−6.62
−6.61
−6.59
−6.66

-
-
-
-
-
-

Abalone
Dataset
Examples: 150
Variables: 5

90%
40%
20%
10%
5%
1%

64
134
208
482

1034
5502

0.09
3.65
5.34
8.14
9.32

11.34

−0.04
3.66
5.11
8.05
9.28

10.74

-
-
-

2%
3%

18%
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BAppendix

MatCALO

B.1  Deeprolling

The generated tree for the deep rolling process. | Figure 90
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B.2  Heating
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B.3  Heating (JPT)
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B.4  Deeprolling (JPT)
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CAppendix

Provenance

C.1  Media Sources
▷ Figure 1 was created with the assistance of DALL·E 2⁴⁴
▷ Figure 9 was adapted from an image used in the Lecture “Foundations of Artificial

Intelligence” held annually in the summer term of the University of Bremen. The
original creator is unknown.

▷ Figures 15, 16, 17, 18 as well as Tables 1, 2, 3 and 15 in Chapter 3 and Section A.2.1
of the Appendix are (adapted) versions of tables and images in Picklum, Nyga,
Schierenbeck, and Beetz (2023)

▷ Figures 40, 41, 42, 43, 44, 45, 46, 47 as well as Table 5 in Chapter 5 were taken (and
partly recreated to match the document style) from Picklum and Beetz (2019)

▷ Figure 79 contains elements taken from Wikimedia Commons⁴⁵

⁴⁴DALL·E 2
⁴⁵Wikimedia Commons

C.2  Datasets
▷ The datasets for the move_base, turn, and perception models are generated and

owned by the author.
▷ The dataset for the pr2 model (by courtesy of Sebastian Koralewski) was generated

from the raw experience data (NEEMs) logs collected when conducting pick-and-
place experiments using a PR2 robot in the laboratory kitchen of the Institute for
Artificial Intelligence (IAI) in Bremen.

xiii


	Introduction
	Probabilistic Cognitive Action Models
	The Intelligence in Intelligent Agents
	Contributions & Delimitations
	Readers Guide

	Probabilistic Knowledge Processing
	Knowledge Representation Hypothesis
	Uncertainty in Knowledge Representation
	Basics of Probability Theory
	Key Concepts
	Inference

	Probability Distributions
	Numeric Distributions
	Discrete Distributions
	Continuous Distributions

	Symbolic Distributions
	Comparing Distributions

	Probabilistic Graphical Models
	Bayesian Networks
	Markov Networks
	Sum-Product Networks
	Probabilistic Circuits

	Knowledge Acquisition
	Generative and Discriminative Learning
	Maximum Likelihood Principle
	Entropy-based Methods


	Scalable Probabilistic Hybrid Models
	Introduction to JPTs
	Conceptual Framework
	Reasoning in Joint Probability Trees
	Learning of Joint Probability Trees
	Example

	Learning & Reasoning in Continuous Domains
	Quantile-parameterized Distributions
	Efficient Learning of Cumulative Distributions
	Reasoning about Cumulative Distributions
	Learning and Reasoning in Symbolic Domains

	Experiments
	Discussion

	BayRoB - Bayesian Robotic Brain
	A Rational Robotic Agent
	Running Example
	Robotic Belief States as Joint Distributions
	Action Models as Joint Distributions
	Action Intelligence in BayRoB

	Updating Belief State Distributions
	Single Action Updates
	Multiple Subsequent Action Updates
	Addition vs Shift

	Plan Refinement with JPTs
	Single Backward Action Updates
	Multiple Backward Action Updates


	Probabilistic Knowledge Bases for Material Discovery
	MatCALO
	State of the Art
	Conceptual Framework
	Problem Formulation
	Hypothesis Generation
	Semantic Representation
	System Architecture & Interface

	Experiments
	Results and Discussion
	Conclusions

	Evaluation
	Model Stats
	Part I: Reproducing Ground Data with JPTs
	Turn Data
	Move Data
	Perception Data
	PR2 (NEEM) Data
	Inference Patterns

	Part II: Model settings
	turn
	move_base
	perception
	pr2

	Part III: Plan Refinement
	Part IV: BayRoB and BayRoB Web

	Related Work
	Conclusions
	Bibliography
	Glossary
	Acronyms
	Links
	Symbols
	Joint Probability Trees
	Trees
	JPT Example - Tree
	MNIST Tree
	Alarm Tree

	Tables
	Empirical Evaluation


	MatCALO
	Deeprolling
	Heating
	Heating (JPT)
	Deeprolling (JPT)

	Provenance
	Media Sources
	Datasets


