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To those who doubt, make mistakes, rectify, learn, and continue.

Para todo aquel que duda, se equivoca, rectifica, aprende, y continúa.
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Efficient Motion Planning for Mobile Manipulation in Planetary Exploration

by Gonzalo Jesús Paz Delgado

Space is the main frontier to further expand our human civilization and our

knowledge of the universe. Exploring space is challenging and expensive since

humans are not biologically prepared to survive in the harsh conditions of space.

Robots are a suitable alternative though, since they can reach and explore space in

a much cheaper way and without risking human lives. In the last decades the so-

called planetary exploration vehicles, or rovers, have been able to gather very inter-

esting information about the Moon and Mars. They do so through scientific instru-

ments, which are generally held by a robotic arm that places them in scientifically

interesting targets on the surface. Rovers find a main drawback in remote teleop-

eration from Earth, given the huge challenges of transmitting information in space

(delays, limited communication windows). Therefore, the scientific return of plan-

etary missions is greatly increased if the rover can perform the task autonomously,

i.e. without the need for human intervention.

Considering the mobility provided by the robot’s locomotion system and the ma-

nipulation capabilities of the robotic arm, planetary rovers can be viewed as mobile

manipulators. Since a great amount of the scientific tasks that a rover performs in-

clude mobile manipulation movements, autonomously executing them would raise

the scientific return of the planetary exploration mission. Though autonomous nav-

igation on Mars is already quite advanced, demonstrated for instance with the Per-

severance rover, autonomously performing mobile manipulation tasks is still trou-

blesome. Such a challenge is mainly caused by the complexity of planning and con-

trolling the movements of the mobile platform and the robotic arm together, which

cannot be easily achieved in space due to the limited computational resources avail-

able out of the Earth.

Hereby, this doctoral thesis presents the research conducted by the author to

achieve autonomous mobile manipulation in planetary exploration vehicles. The

goal is to plan and control the motion of the robot efficiently, i.e. with low com-

putational cost, to perform the mobile manipulation scientific tasks. To do so, on-

Earth technology has been analyzed, modified, and applied to the space exploration
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field, with four main contributions. First, the global path planner methodology

to reach the area of scientific interest is enhanced, feeding back local information

from the rover to increase its awareness of the scenario. Second, a computationally

lightweight and collision-free motion planner for mobile manipulation is presented,

which ensures the safety of the robot while performing the mobile manipulation

scientific tasks. Third, an optimal-control-based motion planner for mobile manipu-

lators is proposed, which can maximize the motion efficiency and comply with the

system constraints, at the same time it keeps a low computational cost thanks to

a series of warm start stages, which makes it suitable for space. Fourth, a model

predictive controller for mobile manipulation is used to increase the safety of multi-

robot missions, in the particular use case of rappelling into lava tubes. All of these

contributions have been thoroughly analyzed and validated by means of experi-

mental campaigns, which include simulation, laboratory, and field tests with rover

prototypes in analogue scenarios to Mars or the Moon.
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Planificación Eficiente de Movimientos para Manipulación Móvil en Exploración

Planetaria

by Gonzalo Jesús Paz Delgado

El espacio es la principal frontera para seguir expandiendo la civilización hu-

mana y nuestro conocimiento del universo. Explorar el espacio es difícil y costoso,

ya que los humanos no estamos preparados biológicamente para sobrevivir en las

duras condiciones que hay fuera de nuestro planeta. Sin embargo, los robots son

una alternativa, dado que pueden moverse y explorar el espacio de una forma mu-

cho más barata y sin arriesgar vidas humanas. En las últimas décadas los llamados

vehículos de exploración planetaria, o rovers, han sido capaces de recoger informa-

ción muy interesante sobre la Luna y Marte. Utilizan para ello múltiples instru-

mentos científicos, que generalmente están instalados en un brazo robótico. Este

brazo coloca los instrumentos en objetivos de interés científico en la superficie ex-

traterrestre. No obstante, los rovers tienen un gran inconveniente a la hora de ser

teleoperados desde la Tierra, teniendo en cuenta lo difícil que es transmitir infor-

mación en el espacio (retardos, ventanas de comunicación limitadas). Por ello, el

retorno científico de las misiones planetarias se incrementa notablemente cuando el

rover es capaz de realizar las tareas de manera autónoma, es decir, sin la necesidad

de intervención humana.

Teniendo en cuenta la movilidad que proporciona el sistema de locomoción del

rover y las capacidades de manipulación del brazo robótico, los rovers planetarios

se pueden categorizar como manipuladores móviles. Ya que una gran cantidad de

las tareas científicas que realizan los rovers incluyen manipulación móvil, ejecutarlas

de una forma autónoma mejoraría notablemente el retorno científico de las misiones

de exploración planetaria. Aunque la navegación autónoma en Marte está bastante

avanzada como ha demostrado el rover Perseverance, realizar tareas de manipu-

lación móvil de forma autónoma es aún un desafío. Esto se debe principalmente a

la complejidad de planificar y controlar de manera conjunta los movimientos de la

plataforma móvil y del brazo robótico, lo cual no se puede lograr de forma sencilla

en el espacio debido a los limitados recursos computacionales disponibles fuera de

la Tierra.
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Con todo esto, esta tesis doctoral presenta la investigación realizada por el autor

para alcanzar un mayor nivel de autonomía para manipulación móvil en vehícu-

los de exploración planetaria. El objetivo es planificar y controlar los movimien-

tos del robot de forma eficiente, es decir, con un coste computacional bajo, para

llevar a cabo las tareas científicas de manipulación móvil. Para ello, la tecnología

terrestre disponible ha sido analizada, modificada, y aplicada al campo de la explo-

ración espacial, con cuatro contribuciones principales. Primero, se ha mejorado la

metodología de planificación global de trayectorias para alcanzar el área de interés

científico, realimentando información local del rover para incrementar su nivel de

conocimiento sobre el escenario. Segundo, se presenta un planificador de movimien-

tos seguro y eficiente para manipulación móvil, el cual garantiza que el robot no

va a colisionar mientras realiza la tarea científica de manipulación móvil. Tercero,

se propone un planificador de movimientos para manipuladores móviles basado en

control óptimo, el cual es capaz de maximizar la eficiencia en los movimientos mien-

tras cumple con las limitaciones del sistema, al mismo tiempo que mantiene un coste

computacional bajo gracias a varias etapas de inicialización de la optimización. Este

bajo coste computacional permite que el algoritmo sea usado en el espacio. Cuarto,

un controlador predictivo por modelo es utilizado para incrementar la seguridad

durante una operación de rappelling con manipulación móvil, en la cual un equipo

de robots colabora para explorar un túnel Lunar de lava. Todas estas contribuciones

se han analizado y validado en profundidad mediante campañas experimentales,

incluyendo simulaciones, experimentos de laboratorio y experimentos de campo,

utilizando varios prototipos de rovers en escenarios análogos a la Luna o Marte.
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"Per aspera ad astra" -

"Through hardship to the stars"

Lucius Annaeus Seneca
Hercules furens, 1st century A.D.
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x̄0(n), ū0(n) References for current iteration



xxxviii

D̂(n), r̂(n) Aux. constraints predefinition SLQ
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Chapter 1

Introduction

"Sic itur ad astra" -
"Thus one journeys to the stars"

Virgil
Aeneis, 1st century B.C.

1.1 Robotics duty in space science

Space is the main unknown that bounds human understanding of the universe and

technological progression. Exploring space is difficult, costly, and dangerous for hu-

mans. Hence, robots have arisen in the last decades as the most suitable alternative,

reaching further, with fewer resources and without risking human lives. In partic-

ular, planetary exploration vehicles, also called rovers, have become the best option

to carry the scientific instruments that gather information on extraterrestrial surfaces

like Mars (Gao and Chien, 2017) or the Moon. Generally held by a robotic arm, these

instruments allow the rover to perform Mobile Manipulation (MM) tasks such as

performing scientific measurements on the surface (Lehner et al., 2018), extracting

Mars soil samples (Williford et al., 2018), collecting those sample tubes (Merlo, Lar-

ranaga, and Falkner, 2013) or even collaborating between rovers (Brinkmann et al.,

2018). This kind of robot is called, therefore, a mobile manipulator, i.e. a manipula-

tor with no limitation in its workspace thanks to the flexibility given by the mobile

platform.

Nevertheless, Martian rovers have a main drawback on remote teleoperation

from Earth, due to the small duration of the communication window (16 h per day,

delaying 40 min each day) and the vast latency (20 min on average) between Earth

and Mars (Lester and Thronson, 2011). Teleoperating a rover on Mars is, thus, an

incredibly challenging endeavor, with high risk and low efficiency. Consequently,

the alternative to teleoperation is to include some autonomous decision-making

onboard the rover, permitting the system to react to unexpected events, or even

take mid- to high-level decisions on its own. This capability is generally called au-

tonomous navigation. Although with low relevancy in the first planetary missions,

autonomous navigation has gradually taken significance during the last decades. In
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FIGURE 1.1: Lunokhod 1 of the Soviet Union, the first unmanned rover to ever tra-
verse on an extraterrestrial surface (NASA/Goddard Space Flight Center/Arizona

State University).

fact, on the last National Aeronautics and Space Administration (NASA) Martian

rover, Perseverance, the so-called Autonomous Navigation (AutoNav) is achiev-

ing an astonishing 78 % self-driving distance on Mars during its first Martian year

(Verma et al., 2023). Being such an autonomous rover, the driving distance has

increased by 144 m on average per Martian sol (a Martian sol is a solar day on

Mars, lasting 24 h and 39 min approximately) in comparison to previous missions,

which usually couldn’t achieve more than 30 m/sol. Although now impressive,

these achievements are built on gradual research and testing of autonomous nav-

igation capabilities thanks to the previous rovers. Hence, let us revisit the evolution

of rovers and their autonomy throughout the history of planetary exploration.

Autonomous navigation on extraterrestrial surfaces

The concept of exploring extraterrestrial surfaces with robots was initially proposed

with the Lunokhod (Moonwalker) program of the Soviet Union, being Lunokhod 1,

shown in Figure 1.1, the first unmanned vehicle traversing any surface outside of the

Earth (Kassel, 1970). This rover landed on the Moon in 1970 and traversed 10.54 km

for eleven Lunar days, i.e. 321 Earth days. Its successor was the Lunokhod 2 rover

(Severny, Terez, and Zvereva, 1975), which landed on the Moon in 1973 and covered

approximately 39 km. Both rovers were completely teleoperated thanks to the small

latency to the Moon (approx. 3 s). They managed to return thousands of images

of the Lunar surface and also performed multiple soil analyses with spectrometers,

penetrometers, and laser telemeters.

It was not until 25 years later that another robot was successfully deployed in

an extraterrestrial body, with the NASA/Jet Propulsion Laboratory (JPL) mission
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FIGURE 1.2: Selfie of Curiosity on Gale Crater (NASA/JPL-Caltech/Malin Space
Science Systems).

Mars Pathfinder. This was a proof of concept about Martian exploration with robots,

which was confirmed when the Carl Sagan Memorial Station landed on Mars in 1997

with the Sojourner rover (Matijevic et al., 1997). Although it could not cover more

than a hundred meters, Sojourner included basic autonomous navigation function-

alities, which established the first in-flight demonstration of this kind of technology.

In particular, it had a "Go to Waypoint" method, which enabled the drivers to com-

mand a set of waypoints to be reached by the rover with straight lines. During the

execution, the rover used wheel odometry to localize itself, and a series of sensors to

detect proximity hazards and avoid them (Matijevic, 1998).

Later on, the overwhelming achievements of the NASA Mars Exploration Rover

(MER)s (Maimone, Cheng, and Matthies, 2007), Spirit and Opportunity, demon-

strated that planetary exploration vehicles guarantee a broad scientific return. Spirit

and Opportunity initially had a planned 90-day mission lifetime when they landed

on Mars in 2004, which was greatly overcome with the final duration of their jour-

neys, six years for Spirit and 15 for Opportunity. These twin rovers had significantly

improved capabilities w.r.t. Sojourner, with a ten times faster processor and locomo-

tion (Rankin et al., 2023). They also had better autonomous navigation methods with
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the so-called AutoNav, including three main features. First, visual odometry for lo-

calization, which provided 95 % successful convergence of the pose updates (Mai-

mone, Cheng, and Matthies, 2007). Second, terrain assessment, which used stereo

cameras to detect and estimate the position of nearby hazards. Third, a path selec-

tor, which could choose the best path to reach a goal among a series of Gaussian

distributed paths (Biesiadecki and Maimone, 2006). Spirit and Opportunity used

this AutoNav to autonomously cover 1825 m and 2433 m respectively, i.e. 23.60 %

and 5.40 % of their total distance driven on Mars.

Performing more ambitious scientific tasks on the Martian surface became, after

the great success of the MERs, the new goal. Particularly, the NASA Mars Science

Laboratory (MSL) mission was launched in 2012 with the rover Curiosity (Anderson

et al., 2012). This rover, shown in Figure 1.2, reached the Martian surface on the Gale

Crater, where it keeps exploring nowadays. Curiosity includes a similar AutoNav

to the MERs but with a six times faster processor. Nevertheless, the autonomous

capabilities of Curiosity are not outstanding, covering autonomously only the 3.77 %

of its total distance driven on Mars. This is a lower distance than the MERs but

with much better capabilities, which can only be understood considering the strict

scientific requirements for Curiosity.

Let us summarize how the drivers plan and command Curiosity each sol (Man-

ning and Simon, 2014). First of all, there is a team that takes the high-level decisions

called the Science Operations Working Group (SOWG). This team is composed of

scientists, who propose different tasks to be carried out by the rover, and the rover

engineers, who estimate which tasks are feasible considering the required time and

energy. The SOWG members iterate several times, analyzing all the options un-

til they decide on the exploration plan for the next Martian sol. Nevertheless, the

SOWG has to finish with sufficient time before the Martian midnight. Otherwise,

the Rover Planner (RP)s will not be able to take the SOWG-designed plan and trans-

late it into a detailed series of low-level actions for the rover. These actions include,

first, driving commands to get to some specific waypoints in the scenario, which are

set by the RPs after looking at orbital and local imagery from the rover. Second, the

driving commands give the lead to the scientific task, with specific commands for

the robotic arm and the scientific instruments. The complete command sequence

is, eventually, checked several times in a dedicated simulator. As a result, for each

Martian sol, the RPs require approximately six hours to translate the plan from the

SOWG to the detailed command list. Last of all, once Curiosity is woken up and

working nominally, the set of instructions is sent in the early Martian morning, and

Curiosity starts to follow the commands without any more communication until the

end of the Martian sol. Remark that the rover does not know how to behave if any-

thing goes wrong. In such a case, it would stop following the instructions until a

new set of commands is received, which implies that the rover operation time for

that sol would be lost.

Conclusively, even though Curiosity includes quite an advanced AutoNav for
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hazard avoidance and reaching waypoints, the autonomous distance that it is able

to traverse is highly constrained. On the one hand, due to the required direct teleop-

eration for task planning, scientific goals selection, and scientific task performance.

But also, on the other hand, due to the available computational capacity onboard,

which employs most of the processing time to keep all the engineering and scientific

systems alive.

The autonomy drawbacks of Curiosity were later solved with the amazing au-

tonomous navigation capabilities of the Perseverance rover, which landed on Mars

in 2021. Perseverance is the first step of Mars Sample Return (MSR), probably the

most ambitious planetary exploration program to date. MSR is formed by several

missions with the final goal of bringing back to the Earth some samples of the Mar-

tian soil, which is very interesting from a scientific point of view, considering the

highly advanced laboratories on our planet that could deeply analyze those sam-

ples. Perseverance is quite similar to Curiosity, inheriting most part of its developed

technology, but with two computers and a Field Programmable Gate Array (FPGA)

used for computer vision tasks. Hence, in Perseverance the autonomous navigation

algorithms are not limited anymore by the computing time, being AutoNav able to

sense the scenario and make decisions fast enough to move the rover autonomously

at its maximum speed of 4.2 cm/s (Rankin et al., 2023). Additionally, Perseverance

includes an Autonomous Exploration for Gathering Increased Science (AEGIS) al-

gorithm, able to autonomously select and acquire images of scientifically interesting

spots. Using this algorithm partially bypasses the need for Earth-driven science,

enhancing noticeably the autonomy of the rover. In fact, Perseverance has driven

13 717 m in a completely autonomous manner, which is the 77.58 % of the total dis-

tance that the rover has traversed on Mars. This is 12 times the autonomous driven

distance of Curiosity, and Perseverance has covered it in only two years in contrast

to Curiosity, which has been exploring Mars for 11 years already.

Remark also the autonomy of some Martian rovers from other space agencies.

First, the Chinese rover Zhurong has driven autonomously approximately the 40 %

of the 450 m that this rover has traversed on Mars (Ding et al., 2022). Second, the

Rosalind Franklin ExoMars rover (Vago et al., 2017). The European Space Agency

(ESA) will launch this rover to Mars in 2028 in spite of the recent unfortunate events

of the war in Ukraine, which led to interrupting the initial collaboration between

ESA and the Russian Federal Space Agency (Roskosmos). ExoMars will include a

full autonomy capability to get to commanded goals, by analyzing the terrain and

planning a feasible path to reach the target (Winter et al., 2017).

It is clear, conclusively, that the autonomous navigation capabilities of rovers

have evolved until reaching astonishing results with Perseverance. Nevertheless,

apart from navigation, planetary rovers usually perform science through manipu-

lation tasks, using their robotic arms to place a scientific instrument in an interest-

ing spot of the scenario. Performing such MM tasks is still not autonomous, even

for Perseverance. Besides, autonomous MM could enable new interesting tasks for



6 Chapter 1. Introduction

FIGURE 1.3: Representation of the twin rovers Spirit and Opportunity of the NASA
mission MERs, including their robotic arm (NASA/JPL-Caltech).

planetary rovers, such as assembly or multi-robot collaboration. Let us hereby recap

the past, present, and future of MM in planetary exploration and how autonomous

MM could benefit the outcomes of planetary missions.

Planetary science and engineering through Mobile Manipulation

The first Martian rover, Sojourner, already had onboard a scientific tool. It was an

Alpha Proton X-Ray Spectrometer (APXS) that was used to analyze the composition

of some rocks and the Martian soil (Matijevic et al., 1997). Nevertheless, the first

rovers including MM capabilities were the MERs, Spirit and Opportunity. As can

be observed in Figure 1.3, the MERs had multiple scientific instruments on the end

effector of their robotic arms, such as the Microscopic Imager (MI), an APXS like the

one on Sojourner, or the Rock Abrasion Tool (RAT), able to clean rocks or the Mar-

tian surface to expose the materials of the underlying layers. Thanks to these tools,

the MERs obtained evidence that the Martian climate was hotter in the past, with a

dense atmosphere and an active water cycle, characteristics that made it possible for

microbial life to exist.

The scientific achievements of the MERs increased the interest of the commu-

nity in bringing more science to the next Mars program, MSL. As a result, Curiosity

was designed with cutting-edge MM capabilities (Anderson et al., 2012). This rover

is equipped with a five Degrees of Freedom (DoF) manipulator, called Sample Ac-

quisition, Processing, and Handling (SA/SPaH). This subsystem can obtain samples

from the interior of rocks or the soil with an instrument called Collection and Han-

dling for In situ Martian Rock Analysis (CHIMRA), and process them with several
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FIGURE 1.4: Perseverance Mars 2020 rover with its robotic arm (NASA/JPL-
Caltech).

onboard science instruments. Additionally, the Dust Removal Tool (DRT) cleans the

surfaces to ease the posterior scientific analysis with several contact instruments: an

APXS and the Mars Hand Lens Imager (MAHLI), which obtains microscopic images

to analyze the minerals and textures on the surface of Martian rocks and soil. The

scientific discoveries of Curiosity are overwhelming thanks to these instruments.

Curiosity found carbon organic molecules in some soil samples, detected methane

in the Martian atmosphere, and confirmed the presence of permanent water in the

past as rivers and lakes.

Finally, MSL made a way to MSR, with Perseverance. This rover is similar to

Curiosity, including the so-called Sampling and Caching Subsystem (SCS) (Moeller

et al., 2021), which is shown in Figure 1.4. The SCS is a five DoF robotic arm, able

to collect, seal, and cache Mars soil, rock, and regolith samples. This whole pro-

cedure has hard control requirements, to avoid contamination of the samples since

they will be later returned to Earth. Like the Curiosity rover, Perseverance’s SCS

also includes a rock abrasion and dust removal tool, which prepares the surfaces for

further analysis with other scientific instruments. To date, Perseverance has discov-

ered the presence of volcanic rocks in the Jezero Crater, where it landed. This was

an unexpected discovery since it was believed that the origin of Jezero Crater rocks

was purely sedimentary, from an ancient lake. Besides, Perseverance has already

gathered 23 soil and rock samples, depositing ten of them on the Martian surface for

a future mission to gather the sample tubes and bring them back to Earth.

Although now discontinued, the initial plan to solve the sample retrieval prob-

lem of MSR was the Sample Retrieval Lander (SRL). It was the second part of MSR,

where ESA would provide the Sample Fetch Rover (SFR), a lightweight and fast

MM rover designed to collect the sample tubes and bring them back to the land-

ing site, to eventually launch them to Earth (Merlo, Larranaga, and Falkner, 2013).

Now, NASA is planning to carry out the sample fetching task with MM helicopters

or with the Perseverance rover itself. Anyhow, ESA has also pushed technology
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regarding planetary exploration MM with the Rosalind Franklin ExoMars rover. Ex-

oMars will obtain samples from the Martian subsurface since it is equipped with a 2

DoF drill which can reach a depth of 2 m, in order to obtain well-preserved samples

of the bedrock. These samples are free from the damages of radiation and oxidation

present on the Martian surface, which, in case of existence, favors the survival of

chemical biosignatures.

Mars has been, undoubtedly, the lead actor in planetary exploration. However,

space agencies from all over the world are lately rushing again to explore the Moon,

since it will probably be used as a long-term station to sustain and ease human ex-

ploration of space. For instance, the Chinese National Space Agency (CNSA) has

launched two Lunar rovers, Yutu (Xiao, 2014) and Yutu 2 (Lai et al., 2020), that

landed successfully on the Lunar surface in 2013 and 2018 respectively. Equipped

with robotic arms, spectrometers, ground-penetrating radars, or even an Advanced

Small Analyzer for Neutrals (ASAN), the Chinese rovers were able to find evidence

of at least nine different rock layers on the Moon, which implies a more complex ge-

ological composition of the Lunar surface than expected. Besides, these rovers pro-

vided high-resolution images of a Lunar ejecta. Also, NASA is planning to launch

the Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon in 2024

(Colaprete et al., 2019), in order to estimate the amount of water ice present on the

Lunar poles, which could be used by future humans working on an eventual Lunar

interplanetary station. But many other space agencies, private companies, or even

universities, are planning and carrying out their own missions to the Moon involv-

ing planetary rovers. To name a few, let us list the Pragyan Lunar rover from the

Indian Space Research Organisation that landed in August 2023 (Goswami, 2020),

the Yaoki rover, which is supposed to realize the world’s first commercial Lunar ex-

ploration in 2023 (YAOKI - Japanese Lunar Rover 2023), or the sad landing failure of

the Rashid Lunar rover of the United Arab Emirates in April 2023 (Almaeeni et al.,

2021).

As Perseverance has demonstrated, autonomy enlarges the scope of the missions

and boosts the scientific return. It is foreseeable, therefore, that autonomous MM will

ease the scientific exploration of extraterrestrial surfaces, while also opening a new

great variety of tasks for planetary rovers. For instance, it will enable autonomous

operation and maintenance of landers in the long term, using the MM capabilities to

open/close valves or connect/disconnect plugs (Klamt et al., 2020). It will also per-

mit the autonomous pick-up of materials or parts to transport and assemble them in

situ (Schuster et al., 2016). Getting even further, a team of autonomous MM rovers

could collaborate for in situ resource utilization to construct infrastructures on ex-

traterrestrial surfaces (Govindaraj et al., 2019). This concept of multi-robot teams

exploring collaboratively is, in fact, one of the main topics on planetary research

projects nowadays, usually including a bigger rover with autonomous MM capa-

bilities able to collect geological samples, deploy scientific instruments like a radio

antenna (Schuster et al., 2020), provide power through portable batteries, or even
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carrying the smaller rovers (Brinkmann et al., 2018). Highlight the use of a het-

erogeneous team of legged robots for space exploration, including legged mobile

manipulators, as proposed during ESA’s Space Resources Challenge by the team of

the Swiss Federal Institute of Technology (ETH) Zurich (Arm et al., 2023).

It is clear, thus, that huge technological and scientific advances have been achieved

thanks to robotics and MM in space, and this tendency is going to keep growing as

space agencies and private companies from all over the world start contributing with

their own rovers to explore the great variety of extraterrestrial surfaces in our Solar

System. Nevertheless, autonomy in space is certainly a challenge that still requires a

big research effort, even more, if we consider MM as the main approach for rovers to

perform scientific and engineering tasks. Developing an advanced technology such

as autonomous MM is still a challenge on Earth, and, therefore, even harder on Mars

or the Moon.

Let us quickly depict how an autonomous robot works using a general robotics

concept: the Sense, Think, Act paradigm (Siegel, 2003). Sense encompasses the sub-

systems that perceive the surroundings of the robot or measure its internal state.

Think is where the trendy artificial intelligence would be placed, using the sensed

information to decide what to do next and generate a plan. Lastly, Act takes care

of the actuators that interact with the real world, commanding them in accordance

with the plan. These three components are intrinsically required for a robot to be au-

tonomous. Now, focusing on autonomous space robots, a Guidance, Navigation and

Control (GNC) architecture is the most usual approach (Gerdes et al., 2020). In this

case, Guidance (Think) is the subsystem that plans the motion of the rover to reach

the goal and perform the task, Navigation (Sense) localizes the rover and maps the

scenario with the onboard exteroceptive sensors, and Control (Act) dictates the low-

level actuators to properly follow the commands, considering its current state and

filtering perturbations.

The complexity of a GNC system is already high for an autonomous mobile

robot, even worse for an autonomous MM rover. First, the rover has to reach the

area of scientific interest, with a GNC autonomous architecture for the mobile base.

Then, the rover has to get to the particular scientific target and carry out the task

by performing an autonomous MM motion. Finally, the rover has to move to the

next scientific target, commonly undoing its own steps, i.e. navigating through the

same scenarios again. Such an autonomous MM process hinders particularly the

Guidance since the motion planner has to consider a great number of DoF, which

means there exist almost infinite ways of solving the problem. Besides, for extrater-

restrial use cases, the planner has to be computationally lightweight to run on space-

qualified processors, robust and predictable to ensure no fatal events could happen,

and efficient enough to improve what teleoperation can do. It is hereby clear why

planetary rovers do not perform MM tasks autonomously yet.
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1.2 Contributions

A completely autonomous MM rover requires as a first step an efficient autonomous

navigation system for the mobile base, to get to the area where to perform the MM

task. Afterward, it requires a MM motion planner for both the mobile base and

the manipulator, which is to date not viable in space systems, mainly due to its

considerable computational cost. As a result, this thesis tries to push the boundaries

of autonomous space exploration by answering how to efficiently plan the motion

of a planetary rover to perform MM tasks, from the global approach of the rover

to the area of scientific interest until the local execution of the MM task. This is an

ambitious question, whose answer requires solving first a series of minor challenges:

• When approaching the area of scientific interest, and since the rover will proba-

bly cover the same areas again in the future, how to increase the rover’s aware-

ness of the characteristics of the surrounding scenario to improve future plans?

• When performing the scientific task, how to consider collision avoidance ro-

bustly and efficiently in the motion planning stage of MM, to ensure the sys-

tem’s safety during the operation?

• Given the efficiency requirements of planetary exploration vehicles, can optimal-

control algorithms be applied to planetary MM motion planning, to minimize

the energy spent with admissible computational costs?

• Considering the latest tendency of multi-robot space exploration, can optimal

MM motion planning and control methods increase the safety of multi-robot

missions in space?

These four questions are explored throughout this doctoral dissertation with a

series of contributions to the space robotics field, which are the following:

1) A dynamic cost map update procedure to improve autonomous navigation

in round-trip missions.

Autonomous navigation for planetary rovers is commonly divided into two

layers: the global layer and the local layer. Usually independent, the global

layer is used to plan long- and mid-term motions by means of orbital imagery,

and the local layer is used to replan in case of newly found obstacles with the

rover’s onboard sensors. However, if the rover is required to undo its own

steps covering once again the same areas, it will find the same local obstacles

as in the first traverse, unless the global layer is updated with the local infor-

mation.

Hence, the first contribution of this doctoral thesis is a dynamic update pro-

cedure for the global cost map, which increases the efficiency of the rover tra-

verses after moving on similar scenarios, by feeding back the local information
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gathered by the system during the mission. Two main sources of information

are used: first, the position of newly found obstacles, that were not initially

considered in the global map of the scenario; second, the characteristics of the

different types of terrains in the scenario, that are continuously recomputed to

improve the initial estimation. More details in Chapter 3.

2) A robust coupled motion planner for workspace restricted MM in planetary

exploration.

Planning a safe motion of a mobile manipulator is hindered by the presence

of obstacles in the scenario, but also by the onboard equipment of the rover.

This equipment is constituted by scientific and engineering tools that limit

the available workspace of the manipulator. Although critical, avoiding self-

collisions online requires a significant computational effort, which has been

classically handled by simplifying the solution with decoupled MM motions

(first, moving the mobile base, second, moving the manipulator). Performing a

coupled motion is more efficient in energy and time terms, but more expensive

computationally too. Coupled motions would require, hence, a less demand-

ing method for collision avoidance, such as computing offline the manipulator

workspace to later consider self-collisions.

Therefore, the second contribution of this doctoral research is a coupled motion

planner for workspace-restricted mobile manipulators, which ensures mission

safety by considering the safe workspace of the manipulator before planning

the motion. Besides, the efficiency is enhanced since the planner generates

coordinated movements for the rover base and the arm, avoiding stale times

by moving both systems at the same time. More details in Chapter 4.

3) A computationally lightweight optimal motion planner for over-actuated

mobile platforms applied to MM in planetary exploration.

Over-actuated systems like mobile manipulators, i.e. platforms that have more

DoF than required to move in their Cartesian space, have a considerable move-

ment complexity. Although they are more versatile, the great variety of pos-

sibilities implies big computational efforts when planning their motion. Opti-

mization is one of the most common methods to solve the over-actuated mo-

tion planning problem, nevertheless, their computational efficiency is severely

reduced after considering dynamics and constraints. This issue can be par-

tially mitigated with a warm start: initializing the optimization with a draft,

quickly computed solution, which indicates the solver where to start looking

for the optimal one.

A multi-staged warm start motion planner is presented, then, as the third con-

tribution of this doctoral thesis. This optimal motion planner finds efficient
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motions in energy and time terms, meanwhile also considering the kinemat-

ics and dynamics of the over-actuated robot, the system constraints, and non-

linearities. Besides, the warm start sequence reduces the convergence time,

making the planner suitable for planetary exploration. More details in Chap-

ter 5.

4) Model Predictive Control (MPC) for a mobile manipulator to support a rap-

pelling rover into Lunar lava tubes.

Lunar lava tubes are of great scientific interest to study the origins of our solar

system, and also to be used as a shelter for future space missions to increase

the human reach into space. Since it is nowadays costly and dangerous to

explore them with astronauts, a team of robots would be a safer and cheaper

alternative. In this regard, a bigger robot could act as a mobile anchor, using

a robotic arm to support the rappelling of a second smaller one, which would

descend through a skylight into the cave to explore it. Clearly, this mission

is significantly challenging for the systems, which may endure notable efforts

during the rappelling operation. To increase the robustness of the mission, it

would be key to control those efforts, particularly the ones affecting the robotic

arm. Such a reactive, high-frequency control can be achieved using modern

optimal control techniques, such as MPC.

Making the most of the third contribution of this doctoral thesis (the optimal

motion planner), an optimal controller was developed and integrated into a

tension compensation algorithm. This algorithm is able to cope with the ef-

forts of the robotic arm during the rappelling support by performing MM mo-

tions. This tension controller is, thus, the fourth contribution of this doctoral

dissertation. More details in Chapter 6.

1.3 Context and motivation

Ongoing and future planetary exploration missions are demanding improved self-

reliant navigation capabilities to keep increasing their scientific return, as aforesaid.

As a result, ESA and the European Commission (EC) have lately funded projects re-

lated to the boost of the autonomy level for planetary rovers. This includes research

on path and motion planning, MM scenarios, or collaboration between rovers. The

Space Robotics Laboratory from the University of Málaga (UMA-SRL), Department

of Systems Engineering and Automation (ISA), has been actively participating in

several of these projects, thanks to its wide experience in the field of autonomous

navigation for mobile robots. This is the context where the research for this doctoral

thesis was conducted. In particular, the author of this thesis worked intensively on

three of these projects, which impacted significantly the results of his research: first, a

collaboration between ESA and UMA-SRL with three consecutive research activities;

second, the EC-funded H2020 project called Autonomous Decision making for very
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FIGURE 1.5: ExoTeR detecting a sample tube at the final tests of the ESA-UMA
activity called PM-SFR.

long traverses (ADE); third, the last EC H2020 project on space robotics called Coop-

erative Robots for Extreme Environments (CoRob-X). Let us present these projects

in the following.

UMA-SRL has been collaborating since 2016 with the Planetary Robotics Labo-

ratory, Robotics and Automation Section, European Space Agency (ESA-PRL), lo-

cated at the European Space Research and Technology Center (ESTEC), through

three consecutive research and development activities. The first one, contract no.

4000118072/16/NL/LvH/gp, was called Autonomous Routing on Extreme Surfaces

(ARES) and the objective was to develop an efficient path planner for reconfigurable

planetary rovers, considering different locomotion modes, which are favorable to

traverse different types of soil (Pérez-Del-Pulgar et al., 2017). The final tests carried

out at the ESA-PRL with the Exomars Testing Rover (ExoTeR) were very promising,

and further research led to the publication of several high-impact international jour-

nal papers. First, the Fast Marching Method (FMM), a method for path planning that

generates optimal, smooth trajectories, was extended for multi-layered grids and

dynamic replanning (Sánchez-Ibáñez et al., 2019b). Second, an efficient autonomous

navigation architecture for GNC was proposed in (Gerdes et al., 2020). Finally, the

use of Simultaneous Localization and Mapping (SLAM) and map matching for rela-

tive and absolute localization was presented in (Geromichalos et al., 2020). Exploit-

ing the developed path planner in the framework of ARES, the second activity aimed

at developing a complete motion planner for a rover equipped with a manipulator,

which has to perform retrieving tasks (Sánchez-Ibáñez et al., 2019a). Called Path and

Motion planning in Planetary Exploration (PM-PE), the resulting tests of this activ-

ity allowed ExoTeR to retrieve samples with an efficient and robust motion plan.

Nevertheless, a sweeping movement with the end effector was needed to consider
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FIGURE 1.6: SherpaTT rover of DFKI during the H2020 ADE project.

localization errors in the rover and sample poses. To perform a complete SFR-like

mission, the rover should be able to detect and identify the sample before retrieving

it, which was the main drawback of the PM-PE project. Thus, the third ESA-UMA

activity, called Path and Motion planning for a Sample Fetching Rover (PM-SFR),

aimed at integrating an intelligent vision system into the autonomous navigation

architecture of the rover (Castilla-Arquillo et al., 2022), in order to detect the sam-

ples tubes online and perform a fully autonomous sample fetching mission (Man-

toani et al., 2022). The results of this third activity were outstanding, with ExoTeR

being capable of reaching, detecting, and retrieving a sample tube in a completely

autonomous manner. This can be observed in Figure 1.5, which shows the moment

of the sample identification in one of the laboratory tests at the ESA-PRL.

It was in the context of these collaboration activities between ESA and UMA-SRL

that this thesis author had the privilege to stay twice at ESTEC, in Noordwijk, The

Netherlands, under the supervision of Dr. Martin Azkarate, with a total duration of

six months. During these stays, the author performed research and development, as

well as laboratory and field test campaigns, that supported the thesis contributions.

In particular, the algorithms and field trials of Contribution 1 were thoroughly ac-

complished at ESTEC during the first research stay in late 2019; the algorithm pro-

posed in Contribution 2 is based on the motion planner developed for the second

activity, PM-PE, and the laboratory tests for Contribution 3 were completely con-

ducted at the ESA-PRL in ESTEC during the second research stay.

The acquired experience and developed algorithms within the ESA-UMA col-

laborations benefited the UMA-SRL to participate in the project Autonomous DEcision

making in very long traverses (ADE) 2021. This was an EC-funded project of the H2020
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call, belonging to the Strategic Research Cluster (SRC) on Space Robotics Technolo-

gies. The objective of ADE was to integrate most of the developed technologies in

previous H2020 projects to create a fully autonomous navigation architecture, allow-

ing a rover to navigate long distances on its own, between 1 to 3 km. Coordinated

by GMV Aerospace and Defence S.A., the consortium was made up of 14 partners,

including the Robotics Innovation Center (RIC) of the German Research Center for

Artificial Intelligence (DFKI). DFKI was in charge of the rover SherpaTT, which can

be observed in Figure 1.6, and the simulator.

In ADE, UMA-SRL was responsible for the MM component, which generates a

motion plan for the rover-manipulator system in order to reach a certain goal and

perform a scientific task with the robotic arm (Sánchez-Ibáñez et al., 2020). In this

case, it was particularly challenging to generate safe motion plans due to the highly

restricted workspace of the robotic arm, in view of the presence of several instru-

ments for localization, hazard detection, or Digital Elevation Map (DEM) genera-

tion. Therefore, in the context of ADE, this thesis author developed a robust motion

planner algorithm, prioritizing the security of the manipulator with self-collision

avoidance methods, which is the second contribution. The simulations of the MM

component for ADE, and the field trials that took place in 2021 at Bremen, Germany,

originated the results that support Contribution 2.

In third place, the UMA-SRL participated in CoRob-X - Cooperative Robots for

Extreme Environments 2023, which started in March 2021, being the most challeng-

ing H2020-funded project. It was the last one of the H2020 SRC projects on Space

Robotics Technologies, and hence the developed technologies of all the previous

H2020 projects were integrated into several Robotic Explorer Units (REU)s, which

had to collaborate on exploring planetary surfaces, specifically focusing on Lunar

caves and lava tubes. CoRob-X was led by DFKI, and UMA-SRL was in charge of

the autonomous navigation of three of the REUs: the DFKI rovers SherpaTT and

CoyoteIII, and the Space Application Services (SAS) rover LUVMI-X. Besides, a very

risky MM task was performed: the SherpaTT robotic arm supporting the CoyoteIII

rover with a tether meanwhile the latter is rappelling down a lava tube skylight.

The rappelling required a highly efficient and fast motion planner and controller,

in order to place the robotic arm in the optimal poses to let CoyoteIII descend safely

into the cave. This meant maintaining the torques applied to the SherpaTT robotic

arm to the minimum, distributing them to the strongest joints, and ensuring that the

arm was able to move smoothly in any direction while CoyoteIII was descending.

The development of such challenging algorithms motivated the fourth contribution,

as well as the stay of this thesis author at DFKI RIC in Bremen, Germany, for the

whole year of 2022. This research stay also led to a cotutelle agreement for the doc-

toral studies, finalizing as a joint supervision with Dr. Carlos Jesús Pérez del Pulgar

from UMA-SRL and Dr. Frank Kirchner from Universität Bremen. Finally, the 2023

CoRob-X field trials of Lanzarote, Canary Islands, Spain, resulted in multiple suc-

cessful (and impressive) rappelling operations, as depicted in Figure 1.7, where both
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FIGURE 1.7: SherpaTT and CoyoteIII before an attempt to rappel down the lava
tube skylight within the field trials of the H2020 CoRob-X project in Lanzarote,

Canary Islands, Spain.

rovers SherpaTT and CoyoteIII are shown instants before attempting to rappel down

a lava tube skylight.

1.4 Publications

The contributions stated in this doctoral dissertation were published in relevant con-

ferences and journals related to the space robotics field. In particular, there are four

main publications, which are the following:

• Improving Autonomous Rover Guidance in Round-Trip Missions Using a

Dynamic Cost Map. Gonzalo J. Paz-Delgado, Martin Azkarate, J. Ricardo
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Sánchez-Ibáñez, Carlos J. Pérez-del-Pulgar, Levin Gerdes, and Alfonso García-

Cerezo. International Conference on Intelligent Robots and Systems (IROS) Las Ve-

gas, United States of America (USA), 25-29 10 2020 (Paz-Delgado et al., 2020).

Contribution 1 of this doctoral research is summarized in this conference pa-

per, related to a procedure to improve the planned motions dynamically in

planetary exploration. This is done by updating the path planner cost map to

make the rover conscious of the gathered information of the scenario during

the traverse and using it to generate better paths successively during the mis-

sion. The paper also shows a simulation and field test campaign carried out

with the ESA-PRL’s Heavy Duty Planetary Rover (HDPR) at Decos, close to

ESTEC in Noordwijk, The Netherlands.

• Combined path and motion planning for workspace restricted mobile ma-

nipulators in planetary exploration. Paz-Delgado, J. Ricardo Sánchez-Ibáñez,

Raúl Domínguez, Carlos J. Pérez-del-Pulgar, Frank Kirchner, and Alfonso García-

Cerezo. IEEE Access (Paz-Delgado et al., 2023b).

This journal paper is directly related to the ADE project and Contribution 2.

It presents a coupled path and motion planner considering a highly restricted

workspace of the robotic arm in planetary exploration MM. To ensure mission

safety, the workspace of the manipulator is computed offline and used during

the motion planning stage to avoid self-collisions. Besides, the efficiency of the

motion plan is enhanced by coordinating the rover and manipulator move-

ments. The paper concludes with a simulation and field test campaign with

the DFKI RIC rover SherpaTT, performed in the context of the ADE project.

• Multi-stage warm started optimal motion planning for over-actuated mo-

bile platforms. Gonzalo J. Paz-Delgado, Carlos J. Pérez-del-Pulgar, Martin

Azkarate, Frank Kirchner, and Alfonso García-Cerezo. Springer Journal on In-

telligent Service Robotics (JIST) (Paz-Delgado et al., 2023a).

The research and results of Contribution 3, i.e. an optimal motion planning

algorithm for over-actuated mobile platforms, are presented in this journal pa-

per. In particular, it proposes a general approach to model over-actuated mo-

bile systems, like mobile manipulators, and a novel warm-starting pipeline for

optimal control-based motion planners. Finally, it includes a laboratory test

campaign with ExoTeR at the ESA-PRL in ESA-ESTEC, that validates the pre-

sented algorithms. This paper was the journal cover of Springer JIST, Volume

16, Number 3, July 20231, as can be observed in Figure 1.8.

• Cooperative robotic exploration of a planetary skylight surface and lava tube.

Raúl Domínguez, Carlos J. Pérez-del-Pulgar, Iulia Dragomir, Valérie Ciarletti,

Gonzalo J. Paz-Delgado, Anne-Claire Berthet, Fabio Polisano, Leon Cedric Dan-

ter, Jonathan Babel, and Frank Kirchner. In preparation.

1https://link.springer.com/journal/11370/volumes-and-issues/16-3
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Intelligent Service Robotics

The official journal of Korea Robotics Society

Volume 16 · Number 3 · July 2023
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(IMU) to estimate its orientation and several Vicon Markers to precisely locate it inside the 

Martian Analogue Testbed of the Planetary Robotics Laboratory, ESA-ESTEC
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FIGURE 1.8: The paper "Multi-staged warm started optimal motion planning for
over actuated mobile platforms", which presents Contribution 3, as the journal

cover of Springer JIST, Volume 16, Number 3, July 2023.

The experiments conducted during the CoRob-X Lanzarote field trials of 2023

are reported in this journal paper, including the multi-robot rappelling into Lu-

nar skylights, which are directly related to Contribution 4. It details the devel-

oped autonomous rappelling architecture, including the MPC for rappelling

support through MM, the multi-robot team, and the rappelling experiments.

Additionally, during his doctoral studies, the author collaborated in multiple

research activities and projects related to the space exploration topic, which led to

several more publications. The main ones are listed in the following:

• Hardware-Accelerated Mars Sample Localization Via Deep Transfer Learn-

ing from Photorealistic Simulations. Raúl Castilla-Arquillo, Carlos J. Pérez-

del-Pulgar, Gonzalo J. Paz-Delgado, and Levin Gerdes. IEEE Robotics and Au-

tomation Letters, pp 99:1-8, 2022 (Castilla-Arquillo et al., 2022).

This journal paper proposes an Artificial Intelligence (AI) approach for au-

tonomous detection and pose estimation of MSR sample tubes, using a Deep

Neural Network and transfer learning. The used dataset is obtained from a

photorealistic 3D simulator of Mars using Unreal Engine 4. This sample detec-

tor and pose estimator was integrated within the GNC architecture of ExoTeR,

and used during the laboratory tests of Contribution 3.

• Choosing the Best Locomotion Mode in Reconfigurable Rovers. Carlos J.

Pérez-del-Pulgar, Pablo Romeo-Manrique, Gonzalo J. Paz-Delgado, J. Ricardo
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Sánchez-Ibáñez, and Martin Azkarate. Electronics, 8(7):818, 7 2019 (Pérez-Del-

Pulgar et al., 2019).

Rovers like ExoTeR present different locomotion modes thanks to the recon-

figurability of their legs and wheels. In this paper, a deep analysis of two

locomotion modes is carried out in simulations with Vortex Studio. These lo-

comotion modes are Normal Driving, the standard rolling locomotion mode,

and Wheel-walking, where the legs are used to perform small sequential steps.

In function of the characteristics of the soil, the best locomotion mode can be

chosen based on the results of this paper. Additionally, a novel slip estimation

method when using Wheel-walking is presented.

• Experimental analysis of slip ratio using the wheel walking locomotion mode

in reconfigurable rovers. Salvador Domínguez-Durante, Carlos J. Pérez-del-

Pulgar, Gonzalo J. Paz Delgado, and Martin Azkarate. 30th Mediterranean Con-

ference on Control and Automation (MED), 2022 (Dominguez-Durante et al., 2022).

Continuing with previous research about locomotion modes in reconfigurable

rovers, this conference paper presents the experimental validation of the afore-

mentioned slip ratio estimation method when using the Wheel-walking loco-

motion mode. To this end, an experimental setup to induce a given slip to the

rover is proposed, which consists of a flat terrain and a tether mechanism.

• Coupled Path and Motion Planning for a Rover-Manipulator System. J. Ri-

cardo Sánchez-Ibáñez, Gonzalo J. Paz-Delgado, Pablo Romeo-Manrique, Car-

los J. Pérez-del-Pulgar, and Martin Azkarate. 15th Symposium on Advanced

Space Technologies in Robotics and Automation (ASTRA), 2019 (Sánchez-Ibáñez

et al., 2019a).

In this conference paper, the authors present the starting point of the later mo-

tion planner of Contribution 2 in ADE. This original motion planner generates

a tunnel surrounding the mobile base path, where FMM in a 3D version is used

to draw the end effector path. Afterward, the Inverse Kinematics (IK) model of

the manipulator is used to obtain the manipulator configurations. The motion

planner is finally tested in simulations with ExoTeR in Vortex Studio.

• Samples detection and retrieval for a Sample Fetching Rover. Laura M.

Mantoani, Raúl Castilla-Arquillo, Gonzalo J. Paz-Delgado, Carlos J. Pérez-del-

Pulgar, and Martin Azkarate. 16th Symposium on Advanced Space Technologies in

Robotics and Automation (ASTRA), 2022 (Mantoani et al., 2022).

The complete autonomous sample retrieval architecture integrated into Ex-

oTeR is presented in this conference paper, including the Guidance algorithms

(path planning and trajectory following) and the sample detection and pose

estimator. Two experiments are presented, a field test in the Search and Rescue

experimental terrain at UMA, and a lab test in the ESA-PRL at ESA-ESTEC.
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This autonomous navigation architecture is later benchmarked with the pro-

posed algorithms of Contribution 3.

• CoRob-X: A cooperative robot team for the exploration of Lunar skylights.

Alexander Dettmann, Thomas Vögele, Jorge Ocón, Iulia Dragomir, Shashank

Govindaraj, Matteo De Benedetti, Valerie Ciarletti, Rafik Hassen-Khodja, Thierry

Germa, Raphael Viards, Gonzalo J. Paz-Delgado, and Laura M. Mantoani. 16th

Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA),

2022 (Dettmann et al., 2022).

This conference paper gives a general overview of the CoRob-X project, which

is related to Contribution 4. The paper presents the overall approach used

within the project, including the control and software architecture or the robotic

systems, called REUs. Additionally, this work depicts the mission phases for

the lava tube exploration, which were later demonstrated in the field trials of

Lanzarote.

• Virtual reality lab for rover navigation using Mars datasets. Raúl Castilla-

Arquillo, Gonzalo J. Paz-Delgado, Matteo Madi, and Carlos J. Pérez-del-Pulgar.

17th Symposium on Advanced Space Technologies in Robotics and Automation (AS-

TRA), 2023

A high-fidelity Virtual Reality Lab to simulate planetary rovers is presented

in this conference paper. Developed by UMA-SRL, the Virtual Reality Lab

uses real data (Martian orbital imagery and rover’s local images) to recreate a

Martian environment with the help of AI. On the one hand, super-resolution

methods are applied to orbital imagery to increase the quality of the textures

of the scenario. On the other hand, Generative Adversarial Networks are used

to create 3D terrain features such as rocks from the rover local images.

• CoRob-X: Demonstration of a cooperative robot team in extensive field tests.

Thomas Vögele, Jorge Ocón, Thierry Germa, Shashank Govindaraj, Carlos J.

Pérez-del-Pulgar, Fredrik Bakkevig Haugli, Raúl Domínguez, Leon Cedir Dan-

ter, Jonathan Babel, Iulia Dragomir, Anne-Claire Berthet, Fabio Polisano, Gon-

zalo J. Paz-Delgado, Laura M. Mantoani, Eric Törn, and Valerie Ciarletti. 17th

Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA),

2023

This conference paper shows the objectives and results of the CoRob-X project

field trials in Lanzarote, Canary Islands, Spain. The paper summarizes the

results of the Lunar lava tube exploration by analyzing the different mission

phases, including the rappelling operation where Contribution 4 was tested.
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1.5 Thesis outline

This doctoral dissertation is divided into seven main chapters, first, introducing the

topic and analyzing the related state of the art, second, describing the four main con-

tributions, third, presenting the performed experiments and results, fourth, stating

the conclusions of the dissertation and some future work. Let us detail each chapter

in the following:

1) Introduction. The first chapter answers where this doctoral dissertation fits in,

why is it necessary to advance the technology in this field, and what problems

the thesis solves. Additionally, this chapter puts the reader in context w.r.t.

the circumstances where the author’s work originated, and summarizes the

contributions and publications related to this doctoral research.

2) State of the art in autonomous mobile manipulation. This chapter is an ex-

tensive analysis of the to-date situation of technology related to algorithms and

architectures required to autonomously perform MM tasks in extraterrestrial

surfaces, i.e. perception, path planning, motion planning, and motion control.

3) Dynamic cost map update to enhance global path planning. The theory be-

hind Contribution 1 is presented in this chapter, describing the functioning of

the proposed approach to dynamically update the cost map of the path planner

once the rover is traversing the scenario. First, the used path planner is intro-

duced to state its peculiarities; second, the procedures to update the costs are

explained, both for the newly found obstacles and the terrain characteristics

estimation.

4) Robust motion planning for coupled mobile manipulation. Contribution 2 is

thoroughly explained in this chapter, i.e. the robust and efficient motion plan-

ner for MM in planetary exploration, focused on mobile robots with a highly

restricted arm workspace. It is a combined path and motion planner, therefore,

the improvements of the path planner for considering later MM tasks are first

detailed, then describing the motion planner itself and the coupled controller

required to coordinate the movements of the mobile platform and the robotic

arm.

5) Optimal motion planning for over-actuated mobile platforms. The fourth

chapter presents Contribution 3, the optimal but lightweight motion plan-

ner for over-actuated mobile platforms. To this purpose, first, it presents the

generic approach to model mobile platforms composed of several kinematic

chains. Afterward, the multi-staged warm-started optimal motion planner is

depicted, with a precise description of each of the stages.

6) Results. This chapter encompasses all the numerical, simulation, laboratory

and field tests performed during this doctoral research, the ones that validate



22 Chapter 1. Introduction

the proposed solutions and demonstrate their advantages and disadvantages

from both quantitative and qualitative points of view. Specifically, four cam-

paigns are included, one for each contribution: first, the round-trip experi-

ments with the dynamic cost map update with HDPR of ESA; second, the thor-

oughly safe MM operations with SherpaTT in ADE; third, the optimal sample

retrieval tests with ExoTeR at ESA-PRL; fourth, the coordinated rappelling to a

lava tube skylight with SherpaTT and CoyoteIII in CoRob-X. This chapter also

analyzes the controllers used to bring the optimal motion plans to the different

platforms, i.e. a simple error-based replanning approach, and an MPC, which

constitute the algorithm used for Contribution 4.

7) Conclusions and future work. The dissertation finishes with this chapter,

which summarizes all the proposed solutions, discusses the results, and pro-

poses some future work, i.e. other aspects related to the topic that need to be

further investigated, problems that have not been completely solved, or solu-

tions that can be yet improved.



Chapter 2

State of the art in autonomous

mobile manipulation

"Ex nihilo nihil fit" -
"Nothing can be made from nothing"

Titus Lucretius Carus
De rerum natura, 1st century B.C.

2.1 Introduction

Teleoperation from Earth is the main hindrance that reduces the scientific return of

Martian rovers, as introduced in the first chapter. This difficulty has been broadly

overcome in the latest NASA Mars missions by gradually including autonomous

navigation capabilities in planetary rovers. The benefits of an autonomous rover

are clear, i.e. increased time and energy efficiency, notably increasing the number of

tasks performed and the driving distance after reducing stale times caused by de-

lays in teleoperation. However, most scientific tasks carried out by planetary rovers

involve MM, i.e. moving the rover and the robotic arm together to place a scientific

tool on a spot of interest in the scenario. And these MM operations are, to date, not

autonomous on planetary rovers.

Autonomous MM will raise to a further grade the scientific return of Martian

rovers, even enabling a broad new variety of functionalities like in-situ resource uti-

lization, assembly, or construction. But, to bring autonomous MM to Mars, space

agencies should first focus on MM applications on Earth: it is here where the tech-

nology is progressing. Autonomous MM is able to tackle repetitive tasks such as

assembly, disinfection, or transportation, but also unstructured and complex tasks

such as inspection, agriculture, or search and rescue. Consequently, there is a vast

range of solutions available in the on-Earth applications literature (Thakar et al.,

2023) that could eventually be used in space robotics too, adapting them to consider

the requirements and constraints of planetary exploration missions.

Let us get into detail about the intelligence required by an autonomous robot,

particularly GNC insofar as it is the most common architecture to provide autonomy
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FIGURE 2.1: Simplified scheme of a GNC autonomous navigation architecture.

to space systems since the Apollo missions (Duncan and Gunnersen, 1964). Similar

to the Sense, Think, Act robotics paradigm, a GNC architecture is subdivided into

three main components as shown in Figure 2.1, which are the following:

• Guidance. This component aims to plan a feasible motion to reach the goal

(Motion planner). For that purpose, it mainly requires the current state of

the robot and a general description of the workspace (Problem formulation),

with a model of the robot and a model of the scenario, usually in the form of

global maps. Additionally, the motion planner commonly receives updated lo-

cal maps of the scenario, to replan the motion if necessary, e.g. if a new obstacle

is found.

• Navigation. Navigation uses the proprioceptive (internal) and exteroceptive

(external) sensors to feed back to Guidance and Control valuable information

about the robot and its surroundings. For instance, this information includes

generating maps and detecting obstacles (Mapping), localizing or positioning

the system (Localization), and measuring the robot’s subsystems state.

• Control. As the component that actuates the system to interact with the real

world, Control continuously commands the robot to follow the motion plan

in function of the current state of the system (Trajectory follower), checking

that the commanded motion is precisely tracked meanwhile filtering any ex-

ternal disturbances (Locomotion Controller), considering the real constraints

and limits of the actuators.

All of the aforementioned components are also necessary to enable autonomous

MM in planetary exploration. In the first place, since the rover still has to au-

tonomously reach an area of scientific interest. In the second place, to perform the

MM tasks inside that area. The main difference is in Guidance: an autonomous rover
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can effectively navigate using a bi-dimensional path planner, whereas a mobile ma-

nipulator requires a more complex motion planner that accounts for the base and

the manipulator. Also, the Control is more complex in MM, since the base and arm

have to be commanded simultaneously to follow the planned motions. As a result,

motion planning and control are the main hindrances that need to be surpassed to

reach a high level of autonomy when performing MM operations.

MM motion planning and control are computationally expensive, too expen-

sive for planetary applications, seeing as how complex it is to generate and per-

form motions considering the system’s kinematic and dynamic constraints, the non-

traversable areas in the scenario, uncertainty, collisions, or the efficiency and time

requirements. The majority of motion planning problems on Earth can be defined

as trajectory-constrained since the robot has to follow a predefined trajectory to per-

form a usually repetitive and well-defined task, e.g. assembly, disinfection, or con-

struction. Trajectory-constrained problems for MM have been explored for a long

time (Oriolo and Mongillo, 2005), achieving quite impressive results lately (Kabir

et al., 2021). Nonetheless, motion planning for MM in planetary exploration is un-

derstood as a goal-constrained problem. Considering the goal as the target of scien-

tific importance in the scenario, this definition means that there is no imposition on

how or when to get to the goal as long as the system’s integrity and limits are satis-

fied. In other words, goal-constrained problems have no particular interest in what

movements the rover performs but in reaching the goal safely, avoiding obstacles or

non-traversable areas in the scenario, and efficiently in time and/or energy terms.

Though less restrictive than trajectory-constrained problems, goal-constrained ones

have a broader amount of solutions, which generally implies a heavier computa-

tional effort.

So, in this chapter, the state of the technology of autonomous MM is exhaustively

presented. First, Section 2.2 depicts in more detail the state-of-art GNC building

blocks to enable autonomous navigation for a planetary rover, i.e. mapping, lo-

calization, path planning, and trajectory following. Second, adding MM to the loop,

Section 2.3 analyzes different on-Earth approaches to solve the goal-constrained mo-

tion planning problem for MM, including sub-optimal and optimal motion planners.

Later on, considering the great variety of ways to bring the planned motion to the

MM robot while reacting to unexpected external events, in Section 2.4 a summary of

reactive control and trajectory following approaches for MM on-Earth is included.

Finally, Section 2.5 concludes the chapter by pointing out where the state of the art

needs to be further pushed to perform autonomous MM in planetary missions.

2.2 Autonomous navigation in planetary missions

As introduced in the first chapter, autonomous navigation capabilities of planetary

rovers have evolved substantially since the first Mars missions. The aforementioned
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GNC architecture has been present in most of the rovers, with four key compo-

nents being especially difficult to address when trying to increase the amount of

self-driving time. These components are the most computationally demanding and

safety-critical ones, i.e. mapping, localization, path planning, and trajectory follow-

ing.

In summary, mapping is the component in charge of modeling the scenario where

the rover will traverse; localization estimates where the system is placed w.r.t. a

given reference frame; path planning generates a trajectory to reach a goal from the

rover’s position, and trajectory following continuously commands the system actua-

tors to track the computed trajectory according to the evolving position of the rover.

Let us detail the purpose, functioning, and state of technology regarding these four

building blocks, throughout the history of planetary exploration to date.

Mapping and terrain assessment

Planetary exploration scenarios are characterized by being static but unstructured.

Mapping and modeling a thoroughly known static scenario is straightforward, con-

versely, an unknown unstructured terrain presents significant uncertainty regarding

the shape of the terrain, the presence of obstacles, and the soil properties. These three

aspects are crucial to ensure the rover’s safety and mission success. First, the shape

of the terrain defines slopes, craters, cliffs, pits, or even big rocks, i.e. areas that the

vehicle cannot access or go through. Second, the presence of obstacles, such as small

rocks, puts in danger the system integrity when located in traversable areas. Third,

the properties of the soil establish how the system will behave when traversing the

terrain. Loose soil may lead to a dangerous sinking of the rover wheels, whereas

rocky soil may damage them. To contemplate these aspects it is common, thus, the

use of two main layers of information about the scenario, the global layer and the

local layer. Let us describe these two layers in detail.

The global layer gives a general overview of the scenario characteristics and is

used to generate an initial global plan for the mission. For that purpose, it is nec-

essary to extract global 3D data from the scenario and arrange it as a heightfield,

commonly called DEM in planetary applications. A DEM is a 2D grid where each

node indicates the height of the terrain in that position of the scenario, which is prac-

tical to later compute slopes and detect the biggest obstacles, such as cliffs or craters

as aforementioned. Building DEMs, also known as topographic mapping, has been

extensively done using aerial stereo imagery (Lacroix, Jung, and Mallet, 2002) on

Earth. Nevertheless, no aerial information is available on extraterrestrial surfaces,

hence, global maps are generated using orbital imagery. For instance, (Gwinner et

al., 2010) were able to generate DEMs of the Martian surface up to 50 m resolution,

using images obtained with the High Resolution Stereo Camera (HRSC) from the

Mars Express, and (Li et al., 2011) use the High Resolution Imaging Science Experi-

ment (HiRISE) instrument to create some remarkable high-quality DEMs from Mars,

up to 1 m resolution. Additionally, it is possible to merge information from orbital
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FIGURE 2.2: NOAH-H terrain classification of the Jezero crater (Wright et al., 2022).

imagery, descent images from the lander, and surface images from the rover and

lander to generate higher-quality maps from Mars (Olson et al., 2007).

The orbital imagery can also be used to perform a first classification of different

areas of the scenario, with a preliminary estimation of the soil properties at each one

to evaluate the traversability of the terrains. (Rothrock et al., 2016) presented the Soil

Property and Object Classification (SPOC), which uses a convolutional neural net-

work to classify different areas on Martian orbital imagery. Another recent example

is the Novelty or Anomaly Hunter-HiRISE (NOAH-H) (Wright et al., 2022), which

uses deep learning techniques to classify the Jezero crater using HiRISE Martian im-

agery, as shown in Figure 2.2.

The local layer, on the other hand, permits the improvement of the global plan

by using local information to update the global one, and replan online if necessary

(Hedrick, Ohi, and Gu, 2020). The local information mainly comes from the rover’s

exteroceptive sensors, which give a more precise estimation of the soil character-

istics and the presence of smaller obstacles. Focusing first on the wheel-soil inter-

action, also known as terramechanics, several soil parameters in off-road scenarios

can mostly define a rover’s behavior, such as vibration, rolling resistance, compact-

ness, friction, and slippage, which is the most critical one. Terrains with a high slip

ratio may sink the wheels of the rover, trapping it and jeopardizing the mission.

This is what happened to the Spirit rover, as shown in Figure 2.3. Indeed, the Mars
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FIGURE 2.3: Wheels of the NASA Spirit rover sinking in loose Martian soil due to
high slippage (NASA/JPL-Caltech).

Exploration Rovers included a visual odometry algorithm, mainly used for localiza-

tion, but also used to estimate the slippage online (Maimone, Cheng, and Matthies,

2007). This visual odometry has been enhanced in the Mars2020 Perseverance rover

to predict future slippage, by growing uncertainty boxes and projecting potential

slip ratios along the path between consecutive visual odometry updates (Verma et

al., 2023). AI can also be used to model terramechanics. For instance, relying on the

rover’s proprioceptive sensors to provide precise slippage estimations (Gonzalez,

Fiacchini, and Iagnemma, 2018) using supervised learning methods such as Support

Vector Machine (SVM)s or artificial neural networks. It is worth mentioning that

reconfigurable rovers, like Rosalind Franklin ExoMars, can avoid slippage by using

a different locomotion mode such as wheel-walking (Azkarate et al., 2015). Besides,

there are methods to estimate the slip ratio meanwhile using wheel-walking, so the

system can return to normal driving when the terrain is safer (Pérez-Del-Pulgar et

al., 2019).

Another critical function of the local layer is the detection and localization of lo-

cal obstacles. These obstacles are the ones big enough to put the system’s integrity in

danger, but small enough to not be detected in the global layer. Local obstacles have

been generally detected in planetary exploration by analyzing a locally generated

DEM (Maimone, 2017). Getting images and generating a DEM requires some com-

putation time, hence, the rover has to stop from time to time to assess the safety of its

surroundings. This is the approach, for instance, of the Rosalind Franklin ExoMars

rover (Bora et al., 2017). A solution to this is to include processors that can perform

highly parallelizable computer vision operations in an efficient manner, such as the

radiation-hardened FPGA onboard Perseverance (Verma et al., 2023). However, new

approaches are trying to avoid the computational effort required to reconstruct the

3D data. For instance, authors in (Gerdes et al., 2020) detect local obstacles efficiently
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by placing a calibration matrix in a particular Region of Interest (RoI) just in front of

the rover. This allows them to estimate the distance to the pixels in the RoI, using

stereo cameras, and quickly detect deviations from the expected values of the cali-

bration matrix. When the deviations are considerable, then an obstacle is blocking

the rover’s path. Also, artificial intelligence is starting to gain popularity for local

obstacle detection, as shown in (Liu et al., 2023), where the authors use a U-shaped

Transformer framework to detect rocks on local images, separating the rock pixels

from the background. Remark that modern AI super-resolution methods help to in-

crease the quality of the rover’s local images (Wang et al., 2021), which can assist in

detecting potential hazards earlier, from further distances.

Local mapping is also crucial for the selection of scientific goals in the scenario.

The scientific return of the mission can be remarkably raised if this high-level task is

performed autonomously, as demonstrated by the AEGIS capability of the Curios-

ity rover (Francis et al., 2017). AEGIS is able to autonomously choose scientifically

interesting targets in the local images of the rover, significantly raising the rate of

scientific observations due to removing stale times from the operators to select the

targets and command the rover. Particularly, the Chemistry and Camera complex

(ChemCam), a remote geochemical spectrometer onboard Curiosity, increased by

25 % its pace of data collection thanks to AEGIS.

Conclusively, mapping implies the combination of the global and local layers

to make up a complete model of the scenario. The global layer provides a general

overview, which is useful for generating a high-level plan, and the local layer gives

the system a more accurate description of the scenario, crucial to creating precise

short-term plans to move and do science in the surroundings of the rover.

Localization

To autonomously reach a target, undoubtedly the rover has to precisely situate it-

self w.r.t. the mapped scenario, which is called localization. A bad localization may

imply that the system does not reach the goal but some other erroneous position, or

that the rover gets too close to hazardous areas (although thinking it is further from

them). On-Earth off-road mobile robots can generally rely on global satellite local-

ization systems such as Global Navigation Satellite System (GNSS) or Galileo, as we

humans do on a daily basis to navigate our cities. Global Positioning System (GPS),

for instance, can provide localization accuracy in the order of cm, far sufficient for

most rover-sized mobile platforms. Nevertheless, there is nothing like GPS on Mars.

Though global positioning can be performed on Mars by using orbital information

from Martian satellites like HiRISE (Tao, Muller, and Poole, 2016), this can only be

done from time to time when the orbiter is in view of the rover. Another solution is

to use imagery from the lander to provide a global estimate of the rover localization,

as was done with Sojourner (Volpe et al., 2000). Nevertheless, this approach restricts

the rover’s mobility to the surroundings of the lander.
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As a result, planetary rovers have to rely on relative localization methods using

their onboard sensors. The most basic relative localization approach is wheel odom-

etry, i.e. estimating the robot’s relative displacements in function of the readings of

the wheel joints’ encoders. Wheel odometry is very poor in estimating changes in

the system’s attitude, hence, it is commonly fused with orientation information re-

trieved from other onboard sensors such as an Intertial Measurement Unit (IMU).

Known as inertial odometry, this was the initial setup of the MERs (Ali et al., 2005),

which also included the so-called Sun finding function to determine the rover’s

heading by means of the direction to the sun. Though better than basic wheel odom-

etry, inertial odometry cannot consider the soil properties to estimate the pose, re-

sulting in considerable errors (in the order of 10 % of the covered distance) when the

wheels experience slip.

Consequently, more advanced localization methods rely on visual information to

improve the accuracy and cope with the soil properties, like visual odometry. This

method consists of continuously obtaining stereo images of the system’s surround-

ings and matching features between them. The features’ position difference within

the images provides an estimation of the relative displacement of the rover between

the acquisition of those images. Hence, visual odometry also considers if the rover is

slipping, resulting in a very robust localization as demonstrated by the MERs (Mai-

mone, Cheng, and Matthies, 2007) and Curiosity (Grotzinger et al., 2012), although

its computational cost restricted its use to critical cases, i.e. when traversing slippery

terrain.

It is on Perseverance where the localization has significantly improved, thanks to

using the FPGA for the visual odometry features matching (Verma et al., 2023). Per-

severance has used visual odometry in 98 % of all its driving to date, with a 99.82 %

success rate. Anyhow, since some positioning uncertainty still remains (in the order

of 1 - 5 %), Perseverance takes this error into consideration to grow the hazardous

areas on the scenario and also performs autonomous attitude corrections from time

to time by tracking the location of the Sun. A similar approach will be used by the

Rosalind Franklin ExoMars rover, i.e. visual odometry fused with wheel and inertial

odometry information (Bora et al., 2017).

Finally, it is of interest to mention the SLAM methods. The concept of SLAM

tries to cope with the inherent coupled uncertainty of localization and mapping

when navigating in an unknown environment: the system cannot localize itself in

a map that has not been built yet; the map cannot be properly generated if the lo-

cation where the map information was obtained is undetermined. Consequently,

SLAM methods tackle the uncertainty by performing localization and mapping co-

ordinately, which has demonstrated great results on Earth in spite of heavy compu-

tational efforts (Stachniss, Leonard, and Thrun, 2016). This computational constraint

is the reason why SLAM has not been brought to space exploration yet, although re-

searchers are investigating new methodologies to achieve efficient planetary SLAM.

As an example, particle filters and scan matching are used in (Geromichalos et al.,
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FIGURE 2.4: Estimated positions of a rover traverse using SLAM localization (red)
vs ground-truth (black). The SLAM algorithm is able to perform a global pose
correction at the end, minimizing the localization error (Geromichalos et al., 2020).

2020) for relative localization and global pose corrections of a planetary rover, achiev-

ing a pose estimation error of 0.5 - 1 % of the traversed distance as shown in Figure

2.4.

Path planning

The information gathered by the perception components (mapping, localization) is

used to decide how to steer the robot to reach the mission targets, i.e. path plan-

ning. Extensively studied in the robotics literature, path planning can be defined as

finding a feasible set of waypoints to reach a goal from the current position of the

robot, considering the system locomotion capabilities and the characteristics of the

scenario, mainly obstacles and non-traversable areas (slopes, sandy soils). Though

there is a vast variety of solutions to the path planning problem in the literature, see

(Sánchez-Ibáñez, Pérez-Del-pulgar, and García-Cerezo, 2021) for more details, let us

focus on those algorithms applied to the use case of planetary exploration.

As extensively explained above, the characteristics of a planetary scenario are

generally obtained from maps in two bi-dimensional layers, the global and the local

ones. The global layer is used to generate a global path that gives the system a gen-

eral plan to reach the target. To date, global paths of Mars exploration missions are

manually, offline generated by ground operators, by drawing a series of waypoints

on orbital imagery to avoid big obstacles or difficult-to-traverse areas, commonly

called keep-out zones. Autonomous navigation comes into place, then, through the
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FIGURE 2.5: AutoNav data on Perseverance, evaluating some candidate arcs (grey
lines) to get to the goal (blue circle) avoiding the keep-out zones (yellow areas)

(Rankin et al., 2023).

local layer, which provides more detailed information on the rover’s surroundings.

Therefore, the path planner can repair the path online if new obstacles are found.

The first Martian rovers including autonomous path planning capabilities were

the MERs with the so-called AutoNav. This software generates a series of arcs from

the rover position and chooses one among them to continue the drive. A voting pro-

cess selects the best arc to follow, considering three main aspects: hazards, steering

time, and distance to the goal. Nevertheless, sometimes the voting process failed

to find a suitable trajectory on the MERs if a complex arrangement of hazards was

blocking the path, due to the simplicity of the method. To solve it, AutoNav was

later extended to include a Field D* path planner (Carsten et al., 2009). Field D* is

a grid-based algorithm using interpolation techniques to generate direct, low-cost

paths on bi-dimensional maps (Ferguson and Stentz, 2006). As a result, the MERs

were able to navigate around hazards in a more robust manner, using the path plan-

ner when the arc selection failed.

A similar AutoNav was later included in the Curiosity rover, using Field D* to

steer the rover around hazards and the so-called keep-out zones (Rankin et al., 2021).

Afterward, AutoNav was noticeably improved in Perseverance with the Approx-

imate Clearance Evaluation Approximate Clearance Evaluation (ACE) algorithm

(Verma et al., 2023). ACE is a kinematics solver able to estimate the potential wheel

footprints and the clearance of the rover’s belly, hence, evaluating more realistically

the candidate arcs than if considering the rover as a circle encompassing the whole

rover body. Therefore, Perseverance is able to traverse safely even in areas with a

high density of hazards. Figure 2.5 exemplifies the path planning operation on Per-

severance’s AutoNav, evaluating a set of candidate arcs to get to the next global



2.2. Autonomous navigation in planetary missions 33

FIGURE 2.6: Example of a FMM-based path planner generating global and local
trajectories in a planetary exploration use case (Sánchez-Ibáñez et al., 2019b).

waypoint.

Path planning for the Rosalind Franklin ExoMars rover will work similarly to

NASA’s method, i.e. a global path generated by ground operators and a local path

planner able to react to new hazards. In this case, A* is the selected local path plan-

ning algorithm (Bora et al., 2017). A* is a classic path planning method (Hart, Nils-

son, and Raphael, 1968), which later originated the Field D* algorithm mentioned

above. It uses a heuristic to evaluate the cost of the candidate paths to the goal, thus

accelerating the search process.

To date, path planners on Martian rovers use old methodologies that are simple,

robust, and predictable. However, more advanced algorithms could eventually pro-

vide much better solutions. Let us highlight some modern path planners such as

the ones based on FMM (Sethian, 1999), able to find the best solution with compara-

ble computational costs to classic graph-search or sampling-based planners. FMM-

based solvers always return the globally optimal, continuous, and smooth path to

reach the goal from any point of the scenario if the solution exists, which is called

completeness. Besides, FMM can be used in multiple layers to tackle global and lo-

cal path planning (Sánchez-Ibáñez et al., 2019b), as shown in Figure 2.6. Optimality,

smoothness, and completeness are crucial features for space missions, thus FMM is
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starting to be tested in planetary exploration use cases (Gerdes et al., 2020). A similar

approach is the Fast Sweeping Method (FSM) (Zhao, 2004), which also allows to con-

sider curvature and orientation (Takei and Tsai, 2013) with the drawback of a slightly

higher computational cost (Gomez et al., 2019). Remark also the Ordered Upwind

Method (OUM) (Shum, Morris, and Khajepour, 2016), which has demonstrated to

minimize the energy spent on the planned paths if combined with an anisotropic

cost model. Anisotropic cost means a cost function that considers not only scalar

values but also directions. This is useful to later obtain paths that minimize the risk

of tip-over or slippage, for instance, approaching the slopes in a more perpendicular

manner (Sánchez-Ibáñez et al., 2023).

Trajectory following

Once the path to reach the next target has been planned, the rover has to follow it,

navigating through the different waypoints that compose the path until the goal is

reached. The component that includes this capability is commonly called trajectory

follower or trajectory controller. Basically, a trajectory follower continuously gener-

ates motion commands (linear and rotational speeds) for the robot to track the tra-

jectory given its position. Like any controller, if external disturbances (localization

errors, slippage) affect the robot’s motion eventually provoking it to deviate from

the trajectory, then the follower compensates for those disturbances by updating the

motion commands to recover the right track.

Initially, Martian rovers did not include a trajectory follower as such. Instead,

AutoNav would drive predefined distances along the planned arcs in an open loop,

in view that the maneuver required to cover a fixed-curvature arc is geometrically

defined. The accumulated positioning errors were compensated in the next plan,

considering that the plan-drive loop covered only short distances. Thus, this loop

was continuously repeated (Carsten et al., 2009). This approach had a main draw-

back when traversing highly slippery soils due to accumulating drift, therefore,

NASA/JPL researchers developed a pure pursuit trajectory follower which was able

to correct the motion commands considering the estimated slip (Helmick et al., 2006).

Pure pursuit is one of the most renowned algorithms for trajectory following (Wal-

lace et al., 1985), which computes the robot velocities according to geometric quan-

tities defined by the user. Among others, these quantities include the look-ahead

distance, i.e. how far is the next point in the trajectory that we are trying to reach,

and the width of the safety corridor, i.e. the maximum distance that the robot is

allowed to deviate from the trajectory before considering it cannot recover.

The Curiosity rover has the same AutoNav setup for trajectory planning and

following. Nevertheless, a significant amount of damage on its wheels motivated

a further development of the trajectory controller. Since the rover used to drive

assuming a flat terrain, the velocity of the wheels was kept constant even if a wheel

stepped on a rock. Hence, the wheel on the rock suffered higher forces and friction

that eventually caused punctures and damage. The solution was a traction control
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algorithm, which modifies the velocity of each wheel individually when one of the

wheels is stepping on a rock or on rough soil (Toupet et al., 2020). This algorithm

has kept Curiosity’s wheels in acceptable conditions, so the rover has exceeded its

design driving distance of 20 km (Rankin et al., 2021) and is still exploring Mars to

date.

Perseverance, again, has a similar trajectory controller within its AutoNav, though

including a notable improvement thanks to the computational capacity increase.

This improvement consists of thinking while driving, i.e. the next plans and motion

maneuvers are computed while the previous one has not finished yet, blending the

motion commands if the planned arcs have similar curvature and direction (Verma

et al., 2023). In consequence, Perseverance does not need to stop between plans,

which results in a smoother and more continuous trajectory following.

Finally, regarding Rosalind Franklin ExoMars rover, it does include a closed-

loop trajectory following functionality (Bora et al., 2017). Considering that ExoMars

has steering actuators in all of its six wheels, the trajectory controller commands

crabbing maneuvers (all six wheels steered to the same direction) to compensate the

lateral errors w.r.t. the path, and full-Ackermann maneuvers or turns on-the-spot to

correct the heading error.

2.3 Goal-constrained motion planning for MM

The motion planning problem of a robot can be defined as finding a feasible trajec-

tory for each actuator of the system to perform a goal task by interacting with the

real world (Latombe, 1991). Planning the motion for MM is a particularization of

this general problem, i.e. finding a feasible trajectory of the mobile base and con-

figurations of the manipulator in order to place the arm’s end effector in certain

poses, to perform a desired task. This entails many more challenges in comparison

to planning a path for a mobile robot, considering a mobile manipulator is a complex

system with multiple constraints and intricate system dynamics (Sandakalum and

Ang, 2022). First, mobile manipulators are usually over-actuated or redundant, gen-

erally with 3 DoF for the mobile base and several more for the manipulator. Over-

actuation provides flexibility since there are infinite possible manners to perform

the desired task, conversely, the motion planning problem is hindered since it has

to select only one of those solutions. Second, the coupling between the manipula-

tor and the mobile base generates particular dynamic behaviors, which are not easy

to handle efficiently by a motion planner. Third, mobile bases widely present non-

holonomic constraints, which prevent the base from moving in certain directions in

the function of its orientation, obstructing the planning process. On top of these

three issues, any robot motion planner needs to consider collision avoidance, energy

consumption, time spent, computational cost, joint limits, task fulfillment precision,

and uncertainty.
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The straightforward solution to tackle the aforementioned issues is to decouple

the mobile base and the manipulator plans, moving the manipulator exclusively

when the base is close to the goal, or when the arm could collide with the environ-

ment (Pilania and Gupta, 2018). That is the current solution in MM for planetary ex-

ploration, however, future missions present further challenges. Planetary missions’

energy and time constraints demand high efficiency, which cannot be achieved with

separate base-arm planning since the rover is missing the chance of moving the arm

at the same time the base is reaching the goal. Additionally, high predictability is

needed to be sure the mission is not going to be jeopardized before starting the mo-

tion. Reactive approaches for MM like the holistic one presented in (Haviland, Sun-

derhauf, and Corke, 2022) are not appropriate thereby, since there is no long-term

awareness of how the system is going to behave. Nevertheless, short-term motion

planning and reactive control can be applied to other space exploration use cases,

as is later discussed in Section 2.4. Besides, the limited computational capacity of

space exploration systems (Gerdes et al., 2020) impedes the use of demanding mo-

tion planners in processing time terms.

In summary, planning the motion for MM in space requires an energy/time

efficient and predictable algorithm, without severely impacting the computational

resources of the robot. These requirements are somehow contradictory, as can be

concluded by observing the two main types of MM motion planners. On the one

hand, sub-optimal motion planners are computationally lightweight (Sandakalum

and Ang, 2022). But, as their name suggests, these planners never find the globally

optimal solution for the problem, e.g. can not provide high efficiency on energy or

time terms. On the other hand, optimal motion planners do maximize the motion

efficiency, although they have a main drawback on their computational complexity,

being their convergence speed expressly sensitive to constraints (Kabir et al., 2021)

such as actuator limits, the base non-holonomic constraints, or collision avoidance.

Let us get into details with a deep analysis of both types of MM motion planners.

Sub-optimal motion planning

Let us denominate sub-optimal to any algorithm that does not find a locally or glob-

ally optimal solution for a particular problem, but finds a feasible solution without

optimizing any particular parameter. In the case of MM motion planning, algo-

rithms that do find an optimal motion plan for one of the subsystems independently

(mobile base or manipulator), but not for the whole system as one, are also con-

sidered sub-optimal. Sub-optimal motion planners are characterized by their low

computational cost, which usually outplays any optimization-based method. Nev-

ertheless, by definition, they flaws in the quality of the provided solutions mainly in

terms of performance efficiency, i.e. invested time and energy. Additionally, some

sub-optimal planners do not generate continuous or smooth motions, which hinders

the later execution by the robot.
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FIGURE 2.7: Example of a sub-optimal MM motion plan generated by MoveIt for
the Stretch RE1 robot.

Decoupled motion planners are a clear example of sub-optimal motion planning,

such as the Hierarchical and Adaptive Mobile Manipulator Planner with Base pose

Uncertainty and its propagation to Arm motions (HAMP-BUA), presented in (Pila-

nia and Gupta, 2018). This sub-optimal planner maintains a constant manipulator

configuration until a possible collision with the environment is detected, or until the

goal pose for the mobile base is reached. Another decoupled approach is available

in the widely-known open-source motion planning library MoveIt1, mainly used for

robotic arms but also including plugins for MM. MoveIt MM motion planner follows

a decoupled sub-optimal approach, combining a great variety of path planners for

the mobile base, like the Dijkstra graph-search algorithm (Dijkstra, 1959) or A* (Hart,

Nilsson, and Raphael, 1968), with several others for the manipulator, such as Rapidly

exploring Random Trees (RRT) Connect (Kuffner and La Valle, 2000) or Probabilistic

RoadMaps (Kavraki et al., 1996). note that RRT is a very popular algorithm mostly

used in 2D path planning (LaValle, 1998), which has evolved throughout the years

to solve a great variety of problems. An example of a MoveIt planned motion for the

differential-drive robot Stretch RE12 and its manipulator can be observed in Figure

2.7. Note that the motion plan, although decoupled, is represented in Figure 2.7 as

being performed at the same time.

As can be observed, decoupled motion planners commonly combine a Cartesian

path planner for the mobile base with a joint space (or configuration space) motion

1https://moveit.ros.org/
2https://hello-robot.com/product
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planner for the manipulator. In this regard, as aforementioned, there is a vast lit-

erature on path-planning algorithms that are used to plan the Cartesian trajectory

of the mobile base, check Nav23 as one of the most renowned open-source libraries

for autonomous navigation of mobile robots. See also (Sánchez-Ibáñez, Pérez-Del-

pulgar, and García-Cerezo, 2021) for a recent and complete review of path planning

algorithms.

Although decoupled solutions are simple and reliable, they lack the time/energy

efficiency that a coupled motion provides. As a result, authors have lately investi-

gated sub-optimal coupled MM motion planning, aiming to maintain a low com-

putational cost and high reliability, while increasing performance efficiency. To do

so, the straightforward and more intuitive approach is to first compute the mobile

base path and later obtain the manipulator configurations in accordance with the

base path. Optimized Hierarchical Mobile Manipulator Planner (OHMP) is a good

example of a coupled motion planner (Li et al., 2020), which first computes a 2D

mobile base path using Probabilistic RoadMaps (PRM)s, and, second, generates the

manipulator configurations by transitioning between safe configurations whenever

a collision state is detected. OHMP demonstrates high efficiency in solving the mo-

tion planning problem in complex static environments.

Literature also includes sub-optimal planners which consider the whole mobile

manipulator as one single high-DoF system for planning. This is the case of the al-

gorithm developed in (Pajak and Pajak, 2017). With the main focus on constraint

compliance, penalty functions at the acceleration level are used to avoid the manip-

ulator singularities and respect constraints such as the non-holonomic base. Addi-

tionally, a reactive algorithm modifies the motion of the whole robot in the vicinity

of obstacles, getting the system out of danger. Another good example of a full-body

MM motion planner is BI2RRT* (Burget, Bennewitz, and Burgard, 2016), which is

used to plan the motion of a mobile manipulator to transport liquids or pull carts.

BI2RRT* is an asymptotically optimal motion planner that generates solutions faster

than standard RRT based planners. An improvement of RRT called RRT-GoalBias

(Shao et al., 2021) is also able to quickly solve the MM motion planning problem,

considering the full system constraints and obstacle avoidance. Nevertheless, it re-

quires a further post-processing step to smooth the initially planned path, a step that

is common in sub-optimal planners, particularly RRT-based ones.

To sum up, sub-optimal MM motion planners can be divided into decoupled,

coupled, and full-body solutions. Decoupled MM planners only move the manip-

ulator when the base is stopped, which is simpler but less efficient. Coupled MM

planners boost efficiency by moving base and arm coordinately, maintaining a low

computational cost. Full-body sub-optimal MM planners consider the whole robot

as one, which raises further the motion efficiency but also increases the complexity

of the algorithm, i.e. being middle-way between a sub-optimal coupled MM plan-

ner and an optimal one. Although more intuitive and computationally lightweight,

3https://navigation.ros.org/
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these three types of sub-optimal motion planners are generally not comparable to

the maximized efficiency that optimization provides, as reviewed in the following.

Optimal motion planning

Motion planners based on optimization techniques generally provide high-quality

solutions at the expense of big computational efforts (the inverse to sub-optimal

ones). This is due to the high-dimensional aspect of the MM motion planning prob-

lem, there are infinite manners to accomplish the goal tasks, i.e. infinite combina-

tions of joint movements to reach the goal from the current state of the robot. From

all these possibilities, the optimization algorithm has to select the one that gives

the best outcome according to some selected criteria, like energy consumption, ex-

ecution time, or distance to collisions. This generates an optimized solution after a

computationally heavy search.

Let us introduce the Linear Quadratic Regulator (LQR), which is a well-known

method used in optimal control. LQR can consider non-linearities if executed se-

quentially, solving at each iteration a linearized convex optimization sub-problem

that drives the planner closer to the solution of the complete non-linear and non-

convex problem. This approach is commonly called sequential convex optimization,

e.g. Iterative Linear Quadratic Regulator (iLQR) (Li and Todorov, 2004) or Sequen-

tial Linear Quadratic Regulator (SLQ) (Sideris and Bobrow, 2005). SLQ and iLQR, as

many other optimal control-based algorithms, find severe difficulties in considering

collision avoidance, and system limits, i.e. constraints.

Constraints, although inevitable, impose behaviors that increase the problem’s

complexity and slow down the algorithm convergence (Todorov and Li, 2005, Sideris

and Rodriguez, 2011). Authors in the motion planning field usually differentiate

two types of constraints: equality and inequality constraints. Equality constraints

are requirements that must be satisfied for the task to be completed, like joint po-

sition goals or end effector trajectories, or kinematics consistency demands, like a

non-holonomic mobile base. These are easier to tackle for the optimizer since they

notably reduce the available space of solutions where the algorithm has to search,

imposing particular robot states at particular times. For instance, over-actuation and

non-holonomic constraints are efficiently tackled with the kinematic planner pre-

sented in (Giftthaler et al., 2017), which makes use of Constrained SLQ (Sideris and

Rodriguez, 2011). This method, integrated into an MPC loop, achieves impressive

controlling frequencies (in the order of 50 Hz) while following MM end effector tra-

jectories, although only applying equality constraints. Remark here that such a high

frequency is achieved since MPC only computes the next few actuation commands,

not a whole, long-term motion plan.

On the contrary, inequality constraints define boundaries that should not be

overcome, such as joint limits or obstacles. These are much more difficult to han-

dle for the optimizer since it has to ensure they are not violated anytime during
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FIGURE 2.8: Example of an optimized collision-free motion plan for a mobile ma-
nipulator, with an omnidirectional mobile base in a static indoor environment

(Petrović et al., 2020).

the motion. A renowned example of constraint-compliant optimization MM mo-

tion planner is the Stochastic Trajectory Optimization for Motion Planning (STOMP)

(Kalakrishnan et al., 2011), which iteratively optimizes derivative-free cost functions

to generate smooth motions, considering obstacles avoidance, task constraints, or

motor torques. A similar stochastic optimization method for trajectory planning is

presented in (Petrović et al., 2020), where the authors represent the robot trajectories

as samples of a continuous-time heteroscedastic Gaussian Process (GP). This leads to

collision-free, smooth trajectories that are less prone to local minima than gradient-

based methods, as shown in the motion plan example of Figure 2.8. Another cele-

brated motion planner is Trajectory Optimization (TrajOpt) (Schulman et al., 2014), a

sequentially quadratic programming convex optimization algorithm that generates

collision-free trajectories for high-DoF robots such as mobile manipulators. TrajOpt

introduces a penalty-increasing method that efficiently drives the system to comply

with constraints.

Lately, researchers have focused on reducing the processing load of constraint-

compliance optimization, trying to accelerate the convergence speed to make the

most of these algorithms while maintaining an affordable computational effort (which

is particularly critical for space applications). A usual approach to achieve this is

to effectively describe the system. Consequently, authors in (Liao et al., 2019) pro-

pose a complete MM kinematic model, describing transfer and Jacobian matrices to

tackle over-actuation. Afterward, the optimization motion planner is divided into

two separate loops: an outer loop to penalize inequality constraints, like joint limits

or obstacles, and an inner loop that finds the collision-free trajectory. Interior-point

methods are used to solve the inequality constraints, and the Newton method for

the equality constraints, which are mainly the goal end effector poses. Additionally,
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a Virtual Kinematic Chain (VKC) is proposed in (Jiao et al., 2021), which is a dis-

tinctive MM modeling method that integrates the mobile base and arm kinematics,

and the object to be manipulated. VKCs improved the success ratio of the trajec-

tory optimization algorithm, which was used to plan the robot’s motion to perform

daily tasks in a household environment. Considering joint kinematic limits, collision

avoidance and the task goals as inequality constraints led the algorithm to converge

in less than 10 s, generating the whole motion plan for the mobile manipulator to

open a door or pick up an object.

A different but equally interesting approach to accelerate the convergence speed

of sequential convex optimization algorithms is the so-called warm starting. To

warm start is to begin the optimization process from an initial solution to the prob-

lem. This solution does not need to be feasible, it will just place the algorithm close

to a candidate solution. Herewith, the optimizer is boosted to converge faster since it

starts nearer to the convex area neighboring the final solution. Warm-start is deeply

studied in (Thakar et al., 2019), where the authors propose a sequential refinement

method for optimization that keeps introducing problem constraints (grasping pose,

gripper speed, collisions) regularly to the optimizer, continuously warm-starting

and polishing the solution. This way the motion planner performance is improved in

comparison with the cold-started planner, which was demonstrated by generating

trajectories for MM pick-up tasks. Another warm start example for over-actuated

MM is presented in (Lembono et al., 2020), where k-Nearest Neighbor (k-NN), Gaus-

sian Process Regressor (GPR) or Bayesian Gaussian Mixture Regressor (BGMR) were

used as approximation methods to warm start, in parallel, multiple trajectory opti-

mizations. As a result, the motion planner was significantly improved, with a 71 %

success rate and four times faster convergence when planning the motion of the 34

DoF humanoid robot Atlas (Boston Dynamics) to reach a given Cartesian pose. Fi-

nally, it is also fascinating to mention the use of artificial intelligence, specifically

deep learning, to improve the performance of optimization-based motion planning

algorithms, as shown in (Ichnowski et al., 2020). Here, two different neural networks

are used to warm start the optimization algorithm, improving noticeably its overall

performance in terms of computational cost.

2.4 Reactiveness: Control and trajectory following for MM

Once generated, the motion plan for the robot has to be executed. Ideally, this mo-

tion plan could be directly brought to the platform by commanding each of the robot

joints as designed, nevertheless, real platforms present further inconveniences. First,

the model’s intrinsic errors. Any model has a balance regarding complexity vs ac-

curacy, which induces some errors w.r.t. the real behavior of the robot. Second, the

non-ideal performance of the sensors and actuators, i.e. dead zones, calibration er-

rors, or coupling wear. These issues can not be always prevented or solved before a

motion plan execution. Third, external disturbances. In planetary exploration, these
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FIGURE 2.9: Basic control scheme to reach a desired reference considering external
disturbances applied to the system.

are mainly system navigation errors, such as localization errors or mapping uncer-

tainty. Localization errors, mainly caused by slippery soils, produce a drift in the

motion of the system w.r.t. the plan. This drift can lead the rover away from its

goal, eventually reaching hazardous areas of the scenario. Additionally, mapping

uncertainty raises the necessity of continuously checking if there are new obstacles

surrounding the rover that could harm the integrity of the system.

As a result, a controller is required to tackle the non-ideal behavior of the robot,

letting the system properly follow any planned motion with an admissible level of

error, as well as reacting to unexpected events. One option is a basic error-feedback

controller, as illustrated in Figure 2.9. This classical approach simply makes use of

the sensed information regarding the robot’s state, to compare it with the desired

motion reference and estimate the current error, which is compensated by a subse-

quent actuation to the system. Although this basic scheme can be used to solve a

great number of control problems in robotics (Siciliano et al., 2009), the MM trajec-

tory following problem requires more advanced techniques.

The traditional widely-used approach to follow MM motion plans is the use of

two coordinated controllers to track simultaneously the reference trajectories for

both systems, the mobile base and the manipulator. This type of control is quite

straightforward and computationally negligible, however, it lacks the flexibility, ver-

satility, and efficiency that a whole-body controller provides. Whole-body control is,

in fact, the current trend, being MPC the most common method to achieve it (Ca-

macho and Bordons, 2007). MPC gives the system a deeper self-knowledge before

deciding how to command the joints, which allows the robot to quickly react to

any unexpected disturbance meanwhile following the desired references as closely

as possible. The main drawback of MPC is its computational demand, which is

even greater if considering the system dynamics. Additionally, the latest advances

in control theory have favored the development of reactive planning algorithms, i.e.

control algorithms able to generate local plans for the system in real-time. Reactive

planning is useful to reach local high-level goals meanwhile reacting to unexpected

events, although the behavior is somehow unpredictable in the sense that there is

no guarantee of how the system is going to behave in the long term. Thus, let us

analyze the state of technology regarding these approaches: coordinated controllers,

MPCs, and reactive planning.



2.4. Reactiveness: Control and trajectory following for MM 43

Coordinated control

The most intuitive approach for a mobile manipulator to execute a motion plan is to

include two controllers, one for the mobile base and another one for the robotic arm.

The two controllers have to be coordinated though, considering that the objective is

to precisely follow the planned trajectories for the mobile base and the end effector.

If not coordinated, there is no guarantee that the performed motion corresponds to

the planned one.

One of the first examples of coordinated control for mobile manipulators is pro-

posed in (Egerstedt and Hu, 2000), with a globally stable, coordinated control al-

gorithm to follow end effector trajectories. This controller is based on two concepts:

the coordinated evolution of the reference points on the two trajectories (mobile base

and end effector), and the use of controllers augmented by position and orientation

error feedback. Similarly, in (Hentout, 2011) a strategy to follow end effector trajecto-

ries is presented, focusing on non-holonomic wheeled mobile manipulators. Several

controller agents place the end effector as close as possible to the preferred config-

uration, while the mobile base avoids the obstacles in the scenario. Nevertheless,

these approaches are very sensitive to drifts in the mobile base localization, notably

affecting the accuracy of the end effector positioning.

Regardless of the existence of more advanced control techniques, as the ones ex-

plained later, coordinated control is still a useful approach for MM when robustness

and low computational effort are required. For instance, (Burgess-Limerick et al.,

2023) presents reactive manipulation on-the-move, which allows performing MM

tasks such as a pick and place given a series of manipulation targets. This is done

using a time-aware coupled controller that reacts to disturbances, avoids obstacles,

and maximizes the manipulability of the system. Remark that the manipulability

measures the capacity of the arm to achieve any velocity in a particular configura-

tion, which is directly related to the distance of that configuration to the manipula-

tor’s singularities. Besides, this method is highly efficient due to its capacity to pick

objects at the same time the mobile base is driving to the place goal.

Model Predictive Control

Predictive controllers provide flexibility, handling of constraints and non-linearities,

and high performance (García, Prett, and Morari, 1989). As a result, they have been

very popular in the industry since the late eighties, a popularity that has been grow-

ing and propagating into the robotics community, with MPC the robotics predictive

controller par excellence. Whole-body MPC has been used to generate walking mo-

tions online (Herdt et al., 2010), track trajectories for mobile robots (Fnadi et al., 2021)

or hexacopters (Neunert et al., 2016), enable quadrupedal locomotion (Farshidian et

al., 2017) or even quadrupedal MM (Sleiman et al., 2021).
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FIGURE 2.10: Basic MPC scheme.

In summary, MPC behaves like any standard controller but includes a prediction

step using a model of the system, as shown in Figure 2.10. This model is used to es-

timate how the system should evolve after applying the controlled actuation. Then,

the estimation is compared with the real measured state of the system, thus comput-

ing a tracking error that includes the effect of external disturbances. The tracking

error is fed back to the controller, which is usually an optimization algorithm, mak-

ing it more aware of how the system is evolving and will evolve.

Focusing on MM, MPC is a great solution to deal with constraints. This is demon-

strated in (Avanzini, Zanchettin, and Rocco, 2018) with a constrained optimization

MPC for tracking MM trajectories, tested with the Keller und Knappich Augsburg

(KUKA) youBot mobile manipulator. The proposed MPC guarantees offset-free

tracking, recursive feasibility, convergence, and stability, including constraints such

as position, velocity and acceleration limits, collision avoidance, or camera Field of

View (FoV) requisites. MPC also provides fast reactive capabilities to the system.

This is shown, for instance, with the stabilization of the inherently unsteady ball-

balancing robot presented in (Minniti et al., 2019). An SLQ-based MPC is integrated

into the control loop, enabling MM tasks such as tracking end effector poses, fol-

lowing manual movements of a human user, or opening doors. Another example of

real-time reactive MPC is presented in (Li and Xiong, 2019), with a nonlinear MPC

implementation used for the avoidance of dynamic obstacles in goal-constrained

MM. This approach makes use of the global robot Jacobian to generate the control

rule, maximizing the distance to obstacles. Moreover, tracking end effector trajec-

tories is one of the most common applications of MPC for MM. For instance, in

(Pankert and Hutter, 2020) a receding horizon MPC scheme is used to track end ef-

fector task-space trajectories for a mobile manipulator, including visual information

to avoid obstacles while respecting joint limits and stability constraints. MPC can

be even used to track a reference lawnmower pattern trajectory for vineyard spray-

ing. This is shown in (Vatavuk, Vasiljevic, and Kovacic, 2022), where MPC reduces

unnecessary spraying waste and pollution while minimizing the robot accelerations

and tool displacements.
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One of the main issues when using MPC is the assessment of the control fre-

quency vs the prediction time horizon. Also known as receding horizon optimal con-

trol, MPC generally defines a short finite time horizon where the prediction is per-

formed, which keeps receding, or moving forward until the global goal is reached.

Generating the actuation trajectory for the complete prediction horizon improves

noticeably the smoothness of the solution since the motion is thoroughly optimized,

i.e. from the current state of the system until the terminal set point, not only for the

next few time steps. This is suggested with Nonlinear Model Predictive Horizon

(NMPH) (Younes and Barczyk, 2021), nevertheless, a long prediction requires big-

ger computational efforts that imply reducing the control frequency. This balance

between frequency and quality is being studied lately in the literature, searching

for intermediate solutions to generate high-frequency smooth controls. The event-

triggered replanning presented in (Luis, Vukosavljev, and Schoellig, 2020) is a re-

markable option, which improves the smoothness of the robot movements in com-

parison to standard MPC approaches without severely impacting the computational

resources. This is achieved by matching the reference for the motion planner with

the platform’s current state only when an external disturbance is detected, as a re-

planning algorithm does. Hence, the jittering, generated by the actuation disconti-

nuities, is removed. Additionally, an adaptive fuzzy-logic system is used in (Yuan

et al., 2023) to approximate the dynamics, which is the most computationally costly

aspect of optimization algorithms as previously explained in Section 2.3. Conse-

quently, faster dynamics estimation allows for the elongation of the prediction hori-

zon. This fuzzy whole-body non-holonomic MPC makes use of a primal-dual neural

network that solves the constrained quadratic programming problem, applied to a

mobile dual-arm robot.

Reactive planning

Short-term control strategies are not always able to deal with uncertain, dynamic en-

vironments, major external disturbances, or unforeseen events if the severity of the

disturbance is noteworthy. Such cases require a significant update of the planned

motion with a reactive planning approach, i.e. an algorithm able to quickly generate

a local replan to surpass the arising hazard. Note that this is an intermediate level be-

tween low-level control and global planning. Indeed, reactive planning should not

substitute the global planning level, since it relies on local information that usually

sinks in local minima, overlooking the mid and long-term behavior of the system.

Consequently, safety-critical use cases like planetary exploration should consider re-

active planning as an additional feature in the motion planning scheme, under the

global planner, to be used only in the case of the emergence of critical disturbances.

Keeping this in mind, there is an extensive state-of-art regarding reactive plan-

ning, some of these works focusing on MM. MPC is a common approach for re-

activeness as done in (Ide et al., 2011), where a quadratic programming method
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is used to optimize the control inputs of a constrained real-time trajectory plan-

ner. This method is integrated into a Reference Hardware 2 mobile manipulator

from MAEKAWA MFG, being the system capable of updating the trajectory in real

time even if a new target was sent during the motion. But, clearly, MPC is not the

only option. A framework for reactive MM is presented in (Dietrich et al., 2012),

tested on a torque-controlled wheeled humanoid robot called Rollin’ Justin. The

proposed whole-body motion concept ensures the safety of the robot, complying

with the physical constraints and self-collision avoidance as well as maintaining a

proper level of manipulability. Reactive planning can be also achieved by mixing

different algorithms, as exemplified with the hybrid control architecture presented

in (Vasilopoulos et al., 2021) that uses a discrete logic planner and a continuous re-

active controller. It is applied to complex MM tasks for a differential drive 2D robot

in a series of simulations, demonstrating the algorithm’s capacity to avoid unantici-

pated obstacles and fulfill the goal manipulation task. Another remarkable example

of reactive planning is presented in (Haviland, Sunderhauf, and Corke, 2022), which

achieves smooth transitions between tasks by integrating a behavior tree into the

reactive planning and control system. This holistic controller is tested with the non-

holonomic Frankie mobile manipulator and the holonomic Omni-Frankie one, able

to efficiently and robustly perform pick and place tasks in a static indoor scenario.

It is worth mentioning the recent studies on Control Barrier Function (CBF)s and

Control Lyapunov Function (CLF)s in robotics (Zeng et al., 2021). Based on quadratic

programming, these methods solve safety-critical constraints in real-time, which has

been proven to be useful for reactive planning of bipedal robots in complex undulat-

ing terrains (Huang and Grizzle, 2023). Although yet to be applied to MM systems,

in the next few years CBF-CLF methods could emerge as the solution to whole-body

reactive control and planning for computationally-limited systems.

Finally, let us highlight the impressive achievements of Reinforcement Learning

(RL) for real-time planning and control, outperforming human pilots in autonomous

drone racing (Song et al., 2023). Since RL algorithms are direct task-solvers, fusing

the planning and control stages into a single goal-oriented solver, they have boosted

versatility and flexibility to cope with external disturbances and model mismatches

in comparison to optimal controllers. Anyhow, optimal controllers will find the

best solution according to the model, which generally performs better than RL if

the model is accurate enough and the external disturbances are not significant (as is

usually the case of planetary rovers).

2.5 Summary and conclusions

From the low-level control of actuators to the high-level decision-making, multi-

ple challenges have been surpassed in the last two decades to enable the degree

of autonomy of nowadays robots. MM, in particular, has required further effort,

considering the high intrinsic complexity of this kind of system, which unites the
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issues of the mobile robotics and manipulation worlds into a single, usually over-

actuated system. Although straightforwardly solved by separating the intelligence

of both subsystems (mobile base and manipulator), present applications demand

higher standards on efficiency, robustness, and computational cost, which cannot

be reached using the simple decoupled approach. In consequence, state-of-art algo-

rithms focus on coupled and whole-body approaches for autonomous MM, achiev-

ing impressive results when guiding and controlling multiple types of MM systems

(wheeled, legged, aerial, orbital, submarine...).

Particularly, planetary exploration rovers require very advanced autonomous

MM capabilities: energy and time-efficient, safety-critical, predictable, and robust

motions, obtained using very limited computational resources. To do so, there are

two particularly critical components of the autonomous MM architecture to be con-

sidered: the motion planner, and the motion control and reactive subsystems. As

thoroughly analyzed above, the state-of-art Earth-focused contributions on these

topics have reached impressive results, however, several challenges are yet to be

overcome to bring these algorithms into a planetary exploration rover. On the one

hand, most authors work with commercial Earth hardware. Space-qualified pro-

cessors, nevertheless, have substantially less computational power, demanding the

software components to be very lightweight and efficient. On the other hand, MM’s

contributions mainly focus on repetitive, industrial tasks, in completely structured,

well-known indoor environments where the main issue is dynamic obstacles, which

are usually humans. Planetary scenarios are exactly the opposite: independent and

thoroughly different tasks in static unstructured environments, with a big level of

uncertainty about the shape of the terrain and the presence of obstacles due to the

low quality of the global information.

Taking the aforementioned challenges into consideration, let us depict the main

gaps in the literature that can be improved to enable autonomous MM in planetary

exploration.

• Seeing that the global information is poor on Mars or the Moon, which causes a

lot of uncertainty for an autonomous navigation system, the local information

gathered by the rover can be used to enrich the global information of the sce-

nario that the rover has available. Feeding back the local information would

reduce the necessity of local replans that decrease the overall time efficiency

during the mission. Besides, this local information (obstacles, terramechanics

characteristics) can be extrapolated from the current terrain being traversed to

similar ones in the scenario, making use of a previous global terrain segmen-

tation map. Such an algorithm would give the rover a better awareness of the

scenario to efficiently plan the consequent motions, even more, so if the MM

mission is a round-trip or is located in areas with regular characteristics.

• Regarding sub-optimal MM motion planning methods, they are suitable for
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space exploration thanks to their low computational cost, however, further re-

search is required to improve two main aspects. On the one hand, time and

energy efficiency, which is one of the main drawbacks of sub-optimal MM

planners, but is an important matter for increasing the scientific return in plan-

etary missions. On the other hand, robustness, since any planned motion has

to be completely safe w.r.t. collisions with the environment and self-collisions

of both the mobile base and the manipulator, to ensure there is no chance of a

collision threatening the mission.

• Optimal MM motion planners provide efficient, constrained-satisfying mo-

tions but demand big computational efforts, even bigger in the case of over-

actuated MM. Such a high computational cost is not suitable for a planetary

exploration rover. Multiple methods are arising in the literature to reduce

the convergence time of the optimization, being warm start a widely-used

approach. In fact, multi-staged warm starts have been demonstrated to no-

ticeably reduce the average number of iterations until convergence to solve

path-constrained trajectory generation problems.

• Recent planetary exploration missions are calling for new, collaborative use

cases for teams of robots, e.g. Lunar caves exploration. To maintain the plat-

forms safe when performing such tasks, whole-body control and reactiveness

are essential, e.g. MPC, which would allow to quickly react to external distur-

bances. Nevertheless, the use on planetary rovers of this type of whole-body,

high-frequency control technique is yet to be tested.

This doctoral research has tried to fill these four gaps, to enable autonomous

MM in future planetary exploration applications. Let us demonstrate how in the

following chapters.



Chapter 3

Dynamic cost map update to

enhance global path planning

"�³½ί³ ³Àώ¼¸ι³ ·¸¾ ÀρέÀ¸ι ¾³ ¸ί¾³ι Àι¿
θ¼ι´¸ρή γι³ ¸½άς ³Àό Ä¿ ¾³ χάÃ¿Å½¸ Ä¿

χρό¾¿ ½³ς, γι³Äί ¸ί¾³ι ³¾¸À³¾όρθωÄη" -
"No loss should be more regrettable to
us than losing our time, for it’s
irretrievable"

Zeno of Citium
3rd century B.C.

3.1 Introduction

Planetary rovers perform their scientific tasks trying to cover the wider area possible,

to reach unexplored zones and uncover the secrets of the corresponding extraterres-

trial surface. Nevertheless, sometimes these systems have to undo their steps due

to insurmountable obstacles, to come back to the global plan after exploring a spe-

cific spot, or after a change in the high-level scientific commands. As a result, it is

common for planetary rovers to cover the same area several times, as can be ob-

served in the traverse maps of Spirit1, Opportunity2, Curiosity3, and Perseverance4.

Some examples of Martian rovers covering twice the same areas are shown in Figure

3.1, particularly from Curiosity (Figure 3.1a) and Perseverance (3.1b). Additionally,

there are planetary missions that are directly planned as a round-trip, i.e. a rover has

to get to a particular spot of the scenario, perform a task, and then return to the lan-

der. Although now discontinued, this was the case of Sample Fetch Rover (Merlo,

Larranaga, and Falkner, 2013), which was supposed to retrieve and bring back to the

lander the soil samples left by Perseverance.

1https://mars.nasa.gov/mer/mission/tm-spirit/spirit-sol2555.html
2https://mars.nasa.gov/resources/22434/opportunitys-final-traverse-map/
3https://mars.nasa.gov/msl/mission/where-is-the-rover/
4https://mars.nasa.gov/mars2020/mission/where-is-the-rover/
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(a) Curiosity’s double round-trip from sol 3347 to
sol 3462.

(b) Perseverance’s round-trip after landing,
which ended just before the Rapid Traverse

Campaign in sol 379.

FIGURE 3.1: Round-trip examples of real Martian rovers. The white lines represent
the estimated rover route, and the red arrows show the traverse direction of the

rover. Data from NASA/JPL-Caltech.

An autonomous rover, as stated in Chapter 2.2, usually relies on two layers of

information. On the one hand, the global layer, with low-resolution maps from or-

bital imagery, which is used for global planning. On the other hand, the local layer,

with high-resolution maps obtained from local images of the rover, which is used for

replanning. This two-independent-layered approach is acceptable if the rover never

comes back in its own steps, however, this is not the usual case as stated above. If

the rover has to cover the same area again but the global layer has not been up-

dated, then it will go through the same hindrances once again: small obstacles, loose

soils, dead-ends... This can be avoided just by dynamically updating the global layer

online with the local layer information, i.e. by feeding back the gathered data dur-

ing the traverse, regarding the detected obstacles and the soil properties. As a result,

the motion planner will generate more efficient trajectories when moving on already

covered areas, since the rover’s awareness of the scenario characteristics is increased.

Besides, this local information can be extrapolated to similar areas of the rover en-

vironment if using a global segmentation map. Hence, new trajectories to explore

unknown areas will also be more efficient in comparison with those paths obtained

only using global information.
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Therefore, the first contribution of this thesis is presented in this chapter: a dy-

namic Guidance methodology that takes advantage of the information gathered by

a rover during the traverse, to enhance the global path planner when reaching the

area of scientific interest for the later MM task. Although with a clear application

on round-trips to improve the planned motion during the return traverse, this ap-

proach benefits any exploration mission where the global information is not reliable

enough, enriching it to get closer to reality. Innovations regarding this work are re-

lated to the online update of the global cost map used by the path planner, in two

main ways. First, by including the already detected local obstacles to avoid them

during the following traverses. Second, by extrapolating dynamically the estimated

soil properties to similar areas, exploiting a previous terrain classification of the sce-

nario.

For this purpose, this work has been supported by previous contributions that

include: a trajectory control method that ensures the rover will follow a safe corridor

(Filip, Azkarate, and Visentin, 2017), a computationally lightweight hazard detector

(Gerdes et al., 2020), able to discern between traversable areas and obstacles during

the rover traverse, and a global-local path planner with hazard avoidance capability

(Sánchez-Ibáñez et al., 2019b), called Dynamic Multilayered path planner (DyMu).

This path planner is based in FMM, a numerical scheme that has been used repeat-

edly throughout this doctoral research and is explained in detail in Section 3.2. Later

on, DyMu is thoroughly described in Section 3.3, to analyze how the path planner

works prior to feeding back the local information. Afterward, the proposed update

methodology is explained, depicting the local obstacles update in Section 3.4 and the

soil parameters update in Section 3.5. Finally, Section 3.6 summarizes the contents

of this chapter.

3.2 Fast Marching Method

FMMs are numerical schemes to solve the non-linear Eikonal equations efficiently

and optimally. These are used in a great variety of applications, e.g. computation of

seismic waves, visibility, reflections, or path planning, among others (Sethian, 1999).

First of all, FMM requires a proper representation of the scenario as an input cost

map Ω. Being p a position vector, in 2D p = [x y], and p̃j the closest discretized

node to pj given the map origin and resolution, the cost map Ω is defined as a dis-

crete 2D (or 3D) grid, where each regularly scattered node p̃j has an associated cost

Ω( p̃j) that represents how easy and safe is for the platform to be placed in that po-

sition. Subsequently, obstacles should have the highest costs, and traversable areas

the lowest ones. Areas surrounding obstacles should also have high costs, to avoid

the platform getting close to them. Additionally, any other feature that influences

the platform’s behavior should be considered in the cost map. For instance, slopes

and terramechanic properties of the soil in the case of rovers.
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FMM numerically solves a particular non-linear Partial Derivative Equation (PDE)

called the Eikonal equation, modeling the rate of propagation of a wave. This wave

expands on the cost map Ω from the goal node p̃g visiting each node p̃j to generate

the cost to go Υ( p̃j, p̃g), which indicates the accumulation of cost required to reach

the goal p̃g from the node p̃j. As indicated in (3.1), the rate of propagation of the

wave at a certain node is equal to the cost at that node Ω( p̃j).

||∇Υ( p̃j, p̃g)|| = Ω( p̃j) ∀ p̃j ∈ Ω (3.1)

The higher the cost Ω( p̃j) the slower the propagation of the wave on that node

p̃j. In this case, the wave propagation starts from the goal p̃g, therefore, the cost to

go of the goal node is zero (Υ( p̃j = p̃g, p̃g) = 0).

The cost to go between the starting p̃0 and the goal nodes p̃g is the minimum

possible if Ω( p̃j) always returns positive non-zero values. Thus, following the Dy-

namic Programming (DP) principles, any point p ∈ Ω is placed in the optimal path

connecting the starting and goal nodes, Γ( p̃0, p̃g), if the sum of the costs to go from

the starting node to the point Υ( p̃0, p) and from the point to the goal node Υ(p, p̃g)

is equal to the minimum cost to go Υ( p̃0, p̃g), as expressed in (3.2).

Υ( p̃0, p) + Υ(p, p̃g) = Υ( p̃0, p̃g) ∀p ∈ Γ( p̃0, p̃g) ∈ Ω (3.2)

Hence, the objective of FMM is to solve the optimization problem defined in

(3.3-3.4), i.e. finding the optimal path Γ( p̃0, p̃g) that minimizes the cost accumulated

along the path Ω(Γ( p̃0, p̃g, l)), being Γ( p̃0, p̃g, l) a continuous function that returns a

point p ∈ Ω given the path length l from the starting node p̃0, with lg the total length

of the path.

Minimize

Γ( p̃0, p̃g)
Υ( p̃0, p̃g) =

∫ lg

0
Ω(Γ( p̃0, p̃g, l)) dl (3.3)

with Υ( p̃j = p̃g, p̃g) = 0 (3.4)

Conclusively, given a cost map Ω, FMM returns the globally optimal, continuous

path to reach a target goal node p̃g from a starting node p̃0. The shape and quality

of the path are dependent on the characteristics of the cost map. Let us explain this

relationship in the following, together with how a cost map is extracted from a DEM

within DyMu.

3.3 Dynamic Multilayered Path Planner

DyMu path planner is the result of a great effort to increase autonomy in mobile

robots, particularly planetary exploration vehicles. As one of the contributions of
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the doctoral thesis of (Sánchez-Ibáñez, 2022) titled "Extreme Path Planning for Ex-

ploration Mobile Robots", the goal of this path planner was to make rovers able to

safely and autonomously wander on extreme surfaces, to reach hardly accessible

areas.

As aforementioned, DyMu requires a description of the scenario as the cost map

Ω, which represents with scalar costs the areas that are easier or harder to traverse,

or the ones that should be avoided. To generate such a cost map in static and un-

structured environments the first step is to obtain a DEM of the scenario, which is

a 2D map where each node indicates the height of the terrain at that position. As

explained in Chapter 2.2, the DEM can be extracted from aerial or orbital imagery

(global DEM), or from the robot (local DEM), using exteroceptive sensors such as

cameras or laser scanners.

An example of the procedure to generate the cost map from a local DEM is shown

in Figure 3.2. From the DEM, Figure 3.2a, the scenario can be characterized by esti-

mating terrain features, detecting obstacles and non-traversable areas. The obstacle

detection uses different metrics, such as the roughness, shown in Figure 3.2b, which

is directly related to the spherical deviation of the vectors perpendicular to the sur-

face. High roughness is derived from abrupt changes in the DEM, which indicates

the presence of obstacles. Additionally, areas with high slopes, shown in Figure 3.2c,

may also not be traversable for the robot and thus must be characterized as obsta-

cles. The traversability map T , Figure 3.2d, gathers this classification, assigning a

category to each of the grid nodes, e.g. obstacles or safe nodes. It also includes a cat-

egory for obstacle dilatation, which considers the size of the robot to avoid getting

too close to unsafe areas.

Thereafter, the traversability map T is used to produce the cost map Ω, shown

in Figure 3.2e. The cost map Ω assigns high costs to the nodes labeled as obstacles

or non-traversable in T , and low costs to the safe ones. DyMu, besides, includes

two main improvements in the cost map w.r.t. similar algorithms. On the one hand,

DyMu can handle different locomotion modes. As explained in Chapter 2.2, there

are rovers capable of performing different locomotion modes such as wheel-walking

(Azkarate et al., 2015), which are useful to traverse, for instance, loose soils. In this

regard, DyMu implements a cost function to consider different locomotion modes,

being able to divide subsequent paths into different sections depending on which

locomotion mode is the most suitable to be used. On the other hand, DyMu includes

two layers for different map resolutions, i.e. the global layer and the local layer. The

global plan is generated on the global layer using orbital/aerial imagery. This global

plan is repaired if necessary during the traverse using the local layer, after gathering

information about the rover’s surroundings with the rover’s onboard sensors.

As aforementioned, DyMu uses FMM as the path planning method. FMM ex-

pands a wave on the cost map, as explained above, being this wave expansion

severely affected by the cost distribution. Additionally, FMM is also the method

used by DyMu for local path repairing, by expanding a second wave on the local



54 Chapter 3. Dynamic cost map update to enhance global path planning

(a) DEM.

(b) Spherical deviation map, which represents
the roughness of the terrain.

(c) Slope map.

(d) Traversability map T . (e) Cost map Ω.

FIGURE 3.2: Example of the required steps to generate a cost map from a DEM.
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FIGURE 3.3: Example of a FMM wave expansion from the goal (a.k.a. cost to go Υ),
in a cost map with several obstacles.

layer of the cost map. Hence, let us provide more details about the FMM-based path

planner and the local replanning methodology below.

Path planning with FMM

According to the FMM optimization problem defined in Section 3.2, the FMM path

planning algorithm is divided into two main steps. First, the expansion of the wave

on the cost map of the scenario. Second, the extraction of the trajectory, making use

of the already expanded wave.

The first step, the wave expansion, aims at generating the cost to go map Υ that

defines how difficult is to reach the goal p̃g from any node p̃j in the scenario, de-

pending on the cost map Ω. Starting from the goal, its four neighboring nodes are

checked, and each one gets assigned an accumulated cost according to the corre-

sponding costs in the cost map. Later on, the process is repeated prioritizing the

nodes that have the lower accumulated cost, until the wave covers the whole map.

For instance, in the simplest possible, unitary cost map (all nodes have a cost of

one), the expanded wave would result in the Manhattan distance from the goal.

Conversely, expanding the wave on a real cost map results in a more complex cost

to go Υ, as shown in Figure 3.3, where isopotential lines indicate the group of nodes

where, if starting from those nodes, the same effort would be required to reach the

goal. Note that the wave expansion on Figure 3.3 contains several obstacles includ-

ing the map borders, since it is risky for the vehicle to get close to unknown areas.

Once the wave has been expanded, the second step is to extract the trajectory Γ.

To do so the Gradient Descent Method (GDM) is used, i.e. the optimal trajectory
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FIGURE 3.4: Gradient descent of the FMM wave (a.k.a. cost to go Υ), indicating the
direction to be followed to reach the goal.
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FIGURE 3.5: Planned trajectories to reach the goal from two different origins 1 and
2.
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FIGURE 3.6: Planned trajectories to reach the goal from two different origins 1 and
2, considering two different terrains a1 and a2 in the cost map, being a1 five times

harder to traverse than a2.

to reach the goal from any node in the map comes defined by the gradient descent

direction of the expanded wave Υ. This statement is clearly demonstrated in Figure

3.4, where each white arrow shows the descent direction of the cost to go Υ at each

node p̃j. As can be observed, the arrows always point to the next isopotential line

so, starting from any node in the map and following the arrows, one always finishes

at the goal, and the covered trajectory is the optimal one to do so. Two examples of

extracted trajectories starting from different origins A and B are shown in Figure 3.5.

These trajectories are continuous, smooth, and optimal, as aforementioned.

Additionally, it is interesting to remark on the behavior of FMM when the cost

map has a segmentation with different types of terrains. Let us say that, due to the

soil properties and presence of obstacles, a rover traverses at 0.1 m/s average speed

on a particular area of the terrain named a1, and at 0.5 m/s average speed on another

one called a2. Then, it is sound that, in the cost map, the cost to traverse a1 should

be five times higher than the cost of a2. As a result, planned trajectories on this cost

map will try to avoid a1. This can be clearly seen in Figure 3.6, which shows the

planned trajectories in the same situation as Figure 3.5 but including the two areas

a1 and a2. As can be observed, the trajectory from A now avoids getting into a1, thus

taking the long way around the obstacle to get to the goal. Note that this behavior

is due to the relative proportion between the costs of a1 and a2, not because of their

absolute values, i.e. the extracted trajectories would be the same if the costs of a1

and a2 are 5 and 1 respectively, or 50 and 10. This relative-cost behavior of FMM is

key to understanding how to handle a segmented terrain to generate the cost map,

or how to update the costs of the different terrains, as will be explained later.
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FIGURE 3.7: Depiction of the global and local layers in the proximity of an obstacle
(Sánchez-Ibáñez et al., 2019b).

Local replanning for hazard avoidance

The replanning procedure proposed in (Sánchez-Ibáñez et al., 2019b) is based on the

use of two different map layers with different resolutions, as aforementioned. This

two-layered approach is depicted in Figure 3.7, where the global nodes, with bigger

sizes, are subdivided into several local nodes. The global nodes provide informa-

tion about the type of terrain they belong to, or if they are completely occupied by

obstacles. Initially, these nodes, i.e. the global layer, are enough to generate a valid

global plan. Nevertheless, new small-sized obstacles are detected during the tra-

verse, which need to be handled by the local layer, for two main reasons. On the

one hand, to precisely represent the area occupied by the new obstacle (red), as well

as the risk area surrounding it (yellow), which indicates the area where it is danger-

ous to place the vehicle due to the risk of collisions. On the other hand, a precise

representation of the obstacle in the local layer permits the repairing of the local tra-

jectory with greater detail, avoiding the obstacle with the shortest path, i.e. in a more

efficient manner.

After detecting an obstacle during the traverse, the repairing (or replanning) pro-

cess takes place in four main steps. First, the global nodes close to the newly detected

obstacles are subdivided into local nodes. Second, every local node covered by the

obstacle is characterized as non-traversable. Third, the risk area is expanded, mod-

ifying the costs of the local nodes located closer to the obstacle. Fourth, a heuristic

FMM is performed on the local layer to replan the trajectory.

This last step, the FMM trajectory replanning, is also the most flexible since two

different approaches for trajectory planning are available: Conservative and Sweep-

ing. As depicted in Figure 3.8, Conservative repairing (green) consists of generat-

ing a path that reconnects to the original one as soon as possible, i.e. repairing the

blocked trajectory to just avoid the obstacle. Conversely, the second approach, i.e.
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FIGURE 3.8: Repaired trajectories in the local layer according to two different meth-
ods, Conservative and Sweeping (Sánchez-Ibáñez et al., 2019b).

Sweeping replanning (pink), generates a completely new trajectory from the cur-

rent position of the vehicle until the goal, but considering the newly found obstacle.

Both approaches have their benefits and drawbacks, check (Sánchez-Ibáñez et al.,

2019b) for more details. However, in this work, Conservative repairing has been

used, given that a repaired trajectory provides direct information about how much

effort the vehicle required to surpass the obstacle, which is not as straightforward

when using the Sweeping method. The magnitude of the deviation, as will be ex-

plained later, is a variable that determines how difficult is to traverse the area sur-

rounding the new obstacle, which gives information regarding how to update the

cost of the neighboring global nodes.

3.4 Obstacles cost update

Usually, the cost map is discretized into nodes, each one with a scalar cost. The first

update procedure lies in increasing the cost of single nodes based on the obstacles

found within them. In this way, the objective is to drive the rover away from these

nodes in further planning executions. Nevertheless, it is very important to deter-

mine how this increase is achieved to avoid being either too conservative or risky.

To solve this issue, we essentially subdivide the area covered by any node p̃G
j (here

referred to as a global node) into a number εT
j of smaller regular portions named

local nodes. The planner hereby represents the area near the rover on a layer made

up of these local nodes, which is hence called the local layer. Therefore, by using a

higher resolution, the planner produces more precise paths, while also representing

obstacles more accurately. The latter is convenient for computing the fraction of the

global node area covered by these obstacles, as illustrated in Figure 3.9a. We refer to



60 Chapter 3. Dynamic cost map update to enhance global path planning

(a) Graphical example of a global node where
the hazard density is η = 28/64 = 0.4375

(b) Three examples of obstacle arrangement af-
fecting the repaired path.

FIGURE 3.9: Illustration of the key concepts behind the cost update parameters:
hazard density (a) and trafficability (b).

such fractions as hazard density η, which is defined in equation (3.5), where εo
j is the

number of local nodes that are occupied by obstacles within the global node p̃G
j .

ηj =
εo

j

εT
j

∈ [0, 1] (3.5)

This parameter seems at first glance useful to determine the increase of the global

node cost, but there is still important information missing regarding the obstacles.

It refers to the way the obstacles are overcome, as seen in Figure 3.9b, and how this

fact would be taken into consideration to improve the global node cost. During the

repairing process (Sánchez-Ibáñez et al., 2019b), the local planner generates a path

to avoid the obstacles within a global node using the local nodes. So, the traverse

distance by the repaired path (dr) can be compared to the original traverse distance

without obstacles (do) to determine the difficulty of overcoming the obstacles within

the global node. It has been defined as trafficability ξ (3.6). This parameter measures

the deviation produced by the repairing process by a ratio between the original and

obstacle avoidance paths’ length.

ξ j =
do

dr
∈ [0, 1] (3.6)

With these two parameters in mind, the cost function for a global node p̃G
j is

formulated as stated in 3.7.

cG
j = c̄G

j (2 + η − ξ) (3.7)

Where c̄G
j is the original cost of the global node p̃G

j , and cG
j is its updated cost af-

ter detecting an obstacle. As can be deduced, the values of η and ξ of all traversable



3.5. Terrain features cost update 61

nodes are initialized to zero and one respectively. While the rover drives and en-

counters obstacles, these values are dynamically updated as a consequence. In the

implementation, we have decided to increase the value of η not only on the respec-

tive node but also on its Moore neighbors. This is done to avoid introducing sharp

cost gradients that, as a consequence, may let abrupt turns appear in the path. Be-

sides, in case the value of η exceeds a threshold, the node is considered an obstacle,

and therefore it cannot be trespassed by any path in further planning executions.

Furthermore, the value of ξ is set to all those nodes containing waypoints that were

substituted by others computed on the local layer.

3.5 Terrain features cost update

The performance of a vehicle when traveling on a certain segmented terrain is deter-

mined by multiple factors, such as terrain parameters like slip, sinkage, or obstacle

density. These parameters, called terrain features in the following, define the cost

map that will be used in the path planner but are difficult to estimate initially. Nev-

ertheless, these values will be more accurate during the traverse, having information

provided by the onboard sensors of the vehicle. For this reason, this section de-

scribes a dynamic segmented terrain cost updating during the traverse, which takes

advantage of the measured terrain features.

The proposed method is based on an initial terrain segmentation with an esti-

mated cost, which is out of the scope of this work. Remark that the cost of each area

of terrain is considered reliable in the sense that it is proportional to the expected per-

formance of the rover and there are no high deviations in the estimated cost along

an area of terrain. For instance, there are two terrains with different initial costs, if

the rover finds the real cost of any terrain is higher than the initial estimation, the

other terrain should increase its cost proportionally if it has not been traversed by

the rover. Keeping this proportionality in mind, we assume there is a similar error in

the initial cost of both terrains, but we still rely on the qualitative aspect of the initial

cost estimation, i.e., which terrains are easier or harder to traverse. Once the features

of the second terrain have been estimated, this proportionality can be updated and,

hence, the cost map. To guarantee this statement, the cost ratios method has been

defined.

The objective of the method is to obtain the cost ratios (ĉ) between the classified

terrains, as a function of the estimated terrain features. The gathered information on

the traversed terrains is compared between them to find the cost ratios. The non-

traversed terrains do not provide any feedback information, thus their cost will be

calculated in attempting to maintain a proportionality w.r.t. the already traversed

terrains. Once the cost ratios are computed, new absolute costs are defined for each

area of terrain.
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A set of M terrain areas has been defined as A = {a1, a2, ..., am, ..., aM}. Each one

has a set of N f terrain features defined as F = { f1, f2, ..., fn, ..., fN f
}, and the corre-

sponding set of the estimated costs for each terrain area is C = {c1, c2, ..., cm, ..., cM}.

This cost represents the initial values of the global nodes that are within each area

of terrain. Once the rover performs a traverse, it crosses a subset of terrain areas

AU ¦ A whose costs are updated and stored in a subset CU ¦ C. Each updated

cost cm is calculated using a parameter ςm, called terrain hardness, which is calcu-

lated as in (3.8), where fm,n represents the estimated value of the feature fn ∈ F in the

terrain am ∈ AU , and W = {ϱ1, ϱ2, ..., ϱn, ..., ϱN f
} are weights of each terrain feature.

ςm =
∑

N f

n=1(ϱn · fm,n)

∑
N f

n=1 ϱn

(3.8)

The proportion between the terrain hardness of every traversed terrain is ob-

tained through the cost ratio ĉm, which is defined in (3.9), where ς0 represents the

terrain hardness of the first traversed terrain that belongs to AU . Obviously, the cost

ratio of the first traversed terrain is 1.

ĉm =
ςm

ς0
; ∀m|am ∈ AU (3.9)

Finally, considering that the non-traversed terrains should maintain the same

cost ratio with regards to the lowest estimated cost of the traversed terrains, aim-

ing at maintaining the same probability of being traversed, the final updated costs

of the traversed terrains CU , are obtained as expressed in (3.10), (3.11) and (3.12),

where ĉmin and cmin are the minimum cost ratio and the initial absolute cost from the

traversed terrains. As a result, the terrain am with the minimum cost ratio ĉm = ĉmin

will preserve the previous lowest cost of the traversed terrains cmin, and the rest will

be proportional to the obtained cost ratios.

cm = cmin ·
ĉm

ĉmin
; ∀cm ∈ CU (3.10)

ĉmin = ĉm|ĉm f ĉj ∀am, aj ∈ AU (3.11)

cmin = cm|cm f cj ∀am, aj ∈ AU (3.12)

In this work, two terrain features have been used to update the cost. The first one

is the slip ratio (Ã), which is defined as a proportion between the surface speed of

the wheel compared to the ground-truth speed of the vehicle, as expressed in (3.13),

where vw is the surface speed of the wheel and vr is the ground-truth speed of the

rover. The former is easily measured according to the rotational speed and the radius

of the wheels; the latter could be estimated by visual odometry or a localization

procedure.
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Ã =
vw − vr

vw
(3.13)

To avoid divisions by zero, as needed in (3.9), the feedback data related to slip

ratio ( fm,1) is obtained as in (3.14), where Ãm is the mean of all the gathered samples

of the slip ratio in the terrain am.

fm,1 =
1

1 − Ãm
; ∀am ∈ AU (3.14)

The second terrain feature used is the already mentioned trafficability (ξ), de-

scribed in the previous section. To ensure that higher values of the feature mean

worse performance of the vehicle, the feedback data related to trafficability ( fm,2) is

computed as shown in (3.15), where ξm is the mean of all the gathered samples of

trafficability in the terrain am.

fm,2 =
1

ξm

; ∀am ∈ AU (3.15)

As will be later explained in Chapter 6.2, the rover continuously takes samples

of Ã and ξ, which the planner saves to compute the average value before updat-

ing the costs. However, not all the samples are valid due to external disturbances

in the measurements. To take this into account, a simple statistical procedure has

been included, which decides whether to accept or reject the obtained samples, even

switching the whole set of samples if a significant deviation is detected. This method

is based on the standard deviation of the mean, with Student T-tests.

3.6 Summary and conclusions

In this chapter, a new dynamic cost map update approach is presented. As the first

contribution of this thesis, this update procedure is integrated into the DyMu path

planner, which is used as a building block for most of the work performed during

this doctoral research as is shown throughout this dissertation.

The presented feedback update methodology improves global path planner per-

formance when approaching an area of scientific interest (where to perform a MM

task) in planetary exploration missions. This approach particularly benefits round-

trip missions, but it is also advantageous to increase the rover awareness of the sce-

nario in any use case where the global information is not sufficiently accurate. This

approach is divided into two update methods. On the one hand, the individual

node cost is increased considering the nearby recently detected obstacles. On the

other hand, the costs of the terrain areas are updated using the gathered information

during the traverse regarding the soil properties or the presence of obstacles. These

costs are extrapolated to terrain areas with similar features, making use of a previ-

ous terrain classification of the scenario. Finally, the proposed algorithms have been

validated by means of simulation and field tests, as explained later in Chapter 6.2.
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Note that in this work only two features for the terrain areas are considered, the

slip ratio and the trafficability. Nevertheless, adding a greater variety of soil param-

eters would substantially improve the rover’s awareness of the terrains and, thus,

the efficiency of the subsequent planned paths. Additionally, the isotropic costs con-

sidered in this work have limitations to represent overturn risks or slip ratios on

big slopes w.r.t. the rover heading, these would be solved by including the cost up-

date methodology in an anisotropic planning algorithm, such as the one presented

in (Sánchez-Ibáñez et al., 2023). The aforementioned issues are proposed as future

work.

After improving the quality of the planned paths with this first contribution, the

efficiency of the global guidance to reach the area of scientific interest is increased.

Anyhow, it is still required to include in the loop a motion planner for the robotic

arm, so both systems (mobile base and manipulator) move coordinately to perform

the scientific MM operations within the area of interest. The following chapters of

this thesis present, thus, two different MM motion planners, which are the second

and third contributions of this doctoral thesis.



Chapter 4

Robust motion planning for mobile

manipulation

"Nemo liber est, qui dominus sui non
est" -
"No man is free who is not master of
himself"

Epictetus
1st century A.D.

4.1 Introduction

Though autonomous navigation technologies have reached impressive heights on

the latest Martian rovers, increasing the autonomy level is yet difficult once the rover

has to perform a MM task in the area of scientific interest. In particular, the motion

planning problem, Guidance, is hindered by the existence of infinite solutions due to

the high kinematic redundancy of these systems, as extensively explained in Chapter

2.3. Besides, planning the motion for MM in planetary exploration presents further

challenges, such as high motion efficiency, low computational effort, predictability,

and robustness. The latter is particularly critical to ensure compliance with mission-

critical constraints, like obstacle and self-collision avoidance. Given the current state

of the art, sub-optimal methods, such as a combined path and motion planner like

OHMP (Li et al., 2020), arise as a good approach to tackle the motion planning prob-

lem for MM in planetary exploration, with low computational cost and high motion

efficiency. This type of sub-optimal coupled path and motion planner is usually di-

vided into two main steps. First, the rover base path is generated, trying to reach the

goal in the shortest manner while avoiding obstacles in the scenario. Second, the arm

motion is computed w.r.t. the already known base path, ensuring that the arm does

not collide with the environment or the rover itself (what is called a self-collision).

Note that the fact that the manipulator motion is based on a previously com-

puted rover path provides several advantages. First, if the planned rover path uses



66 Chapter 4. Robust motion planning for mobile manipulation

globally optimal approaches like FMM (Sethian, 1999), which has already been ex-

tensively presented in this thesis, then the complete motion plan is partially optimal,

and the efficiency is increased. Second, the arm motion range is enclosed in the sur-

rounding volume of the rover path, thus the complexity of the problem is substan-

tially reduced, and so is the computational cost of the algorithm. Third, if the path

planner finds a solution to place the rover close to the goal considering the forth-

coming retrieving operation, then it is guaranteed that the process is feasible, i.e. a

safe motion plan for the manipulator will be found, improving the predictability and

robustness of the algorithm. Nevertheless, further research is required to bring this

type of sub-optimal MM motion planner to planetary rovers, in two main senses.

On the one hand, regarding the rover base path, the stage of approaching the goal

has to guarantee that the rover will be located in the correct orientation to place the

goal within the manipulator workspace. In consequence, planning and controlling

the final orientation of the rover base is essential to avoid unnecessary maneuvers,

which induce wasting energy and time. An algorithm that could solve this problem

was presented in (Takei and Tsai, 2013), where a globally optimal path planner that

considers curvature and orientation was proposed. However, this algorithm is based

on the FSM (Zhao, 2004) which is only recommended for simple path planning sce-

narios with few obstacles (Gomez et al., 2019). In other cases, similar advanced path

planning methods are computationally cheaper, such as FMM. In fact, for a prop-

erly defined cost map representing a particular scenario, FMM always returns a safe

(avoiding obstacles or non-traversable areas) and globally optimal (with maximized

time-energy efficiency) path to reach the goal, if existent.

On the other hand, the manipulator motion planner has to rigorously consider

the collisions with the environment and the self-collisions, which is particularly chal-

lenging bearing in mind that planetary rovers generally have a highly restricted arm

workspace, due to the presence of multiple onboard scientific and engineering tools.

Online self-collision avoidance is a considerably expensive task in computational

terms, meanwhile, an offline computation of the manipulator workspace can no-

tably reduce the computational effort to avoid self-collisions.

Hence, this chapter presents the second contribution of this thesis: an efficient

and robust motion planner that combines path and motion planning for planetary

exploration MM, considering a highly restricted arm workspace. The motion plan-

ner proposed in (Sánchez-Ibáñez et al., 2019a) is extended, resulting in the following

enhancements:

• An improvement in the DyMu path planner (Sánchez-Ibáñez et al., 2019b),

also used within the first contribution of this thesis, to ensure the base trajec-

tory places the rover with the goal sample inside the manipulator workspace,

by planning and controlling the final rover orientation during the stage of ap-

proaching the goal.

• A novel motion planning algorithm for the manipulator that considers offline
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the real workspace of the arm to avoid collisions, hence directly obtaining safe

plans to reach the goal sample location. Besides, the planner increases the

efficiency of the motion plan thanks to a coordinated base-arm motion. To

this end, the motion planner generates the end effector path using FMM 3D,

considering the offline computed collision-free workspace of the manipulator

w.r.t. the mobile base trajectory, to later generate the arm joints motion plan.

• A custom coupled arm-base trajectory controller for the motion plan to be

properly followed by the system.

The rest of this chapter is organized as follows. The first improvement, i.e. the

developed path planning algorithm with control of the final rover orientation, is

explained in Section 4.2. Later on, Section 4.3 details the second improvement, the

motion planning algorithm for MM with a highly restricted arm workspace, and also

details the coupled trajectory controller. Lastly, Section 4.4 concludes this chapter

and proposes some future work.

4.2 Path planning with final approach control

The proposed motion planner for MM consists of two main stages: path planning

for the mobile base and motion planning for the manipulator. The path planning

stage uses the DyMu planner (Sánchez-Ibáñez et al., 2019b), making the most of the

improved methodology that states the first contribution of this thesis (see Chapter

3). In this regard, a DEM provides the height information necessary to compute a

traversability map T , which is used to generate a cost map ΩB. Note that the 2D

cost map for the mobile base is denominated ΩB in the following, instead of Ω. This

is to differentiate it from the 3D cost map used to plan the manipulator movements,

called ΩM, as explained later.

Let us summarize the path planning procedure. First, the traversability map T

is extracted from the DEM, to differentiate safe and unsafe areas using different pa-

rameters such as roughness and slope. Second, the cost map ΩB is generated in

accordance with the traversability T . The cost map ΩB assigns high costs to the

nodes labeled as obstacles or non-traversable in T , and low costs to the safe ones.

Additionally, to increase the smoothness of future paths, cost gradients are gener-

ated in the non-traversable nodes’ proximity, as defined in (4.1), with p̃j ∈ T a node

in the map, ċB a configurable parameter defining the cost sharpness, and DB( p̃j) the

Euclidean distance from the node p̃j to the closest non-traversable node in T . Re-

mark that DB is calculated using standard computer vision algorithms within Open

Source Computer Vision Library (OpenCV)1.

ΩB( p̃j) = 1 + ċB/DB( p̃j) ∀ p̃j ∈ T (4.1)

1https://opencv.org/
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In summary, once the cost map ΩB is generated, FMM computes the optimal

path to reach the goal node p̃g starting from p̃0, i.e. ΓB, which is composed of NB

waypoints ΓB(n). FMM models the propagation rate of a wave by numerically solv-

ing the Eikonal equation, i.e. a non-linear partial derivative equation. This wave is

called the cost to go ΥB. Given, ΥB, FMM extracts ΓB by following the descent di-

rection of the gradient of ΥB, what is called GDM. Check Chapter 3.2 for a detailed

description of FMM, GDM, and the path planning process.

Although functional in most use cases, this path planning approach is not suffi-

cient for a rover that has to approach a sample for a MM operation, since the path

planner has to place the rover close enough to the sample and with proper final ori-

entation, to ensure that the sample is finally inside the manipulator workspace. This

is further hindered in the case of a highly restricted manipulator workspace since

only some particular rover poses leave the sample inside that workspace. For in-

stance, if there is not enough space in front of the rover for manipulation tasks, the

planner has to leave the rover with a certain angle w.r.t. the goal or even turned 90◦

to perform the manipulation on one of the rover sides.

Given these requisites, two aspects need to be considered to ensure the goal is fi-

nally inside the arm workspace. On the one hand, the last segment of the path has to

be a straight line towards the sample, thus restraining the rover orientation in those

last waypoints. This is necessary because, in the vicinity of obstacles, approach-

ing the goal in a straight line benefits the existence of a safe maneuver to place the

sample inside the manipulator workspace. On the contrary, a curved approach to a

target near an obstacle is prone to leaving the rover’s wheels too close to the obsta-

cle, which may impede moving the platform in a manner that leaves the target inside

the manipulator workspace. Since the path planner relies on FMM, which produces

a continuous and optimal path given a cost map, the shape of the resulting path is

subject to variations in the cost of the nodes. Under this premise, the Frontal Ap-

proach Cost Editing (FACE) algorithm is presented, which modifies the cost map in

the close neighborhood of the sample to ensure that the rover approaches it follow-

ing a straight line. On the other hand, the later trajectory controller must steer the

rover precisely enough to ensure that the sample is finally inside the arm workspace,

as aforementioned. Performing such an orientation-controlled but arm-compliant fi-

nal maneuver requires a tailored modification of the trajectory controller, thus, the

Last Section Control (LSC) is proposed. These two improvements together, FACE

and the LSC, ensure the goal sample is reachable by the arm, as further explained

below.

Frontal Approach Cost Editing (FACE)

The main purpose of FACE is to modify the cost map in the proximity of the sam-

ple to ensure that the last waypoints of the path are headed toward the target. This

modification is exemplified in Figure 4.1, with the rover going from an initial posi-

tion (yellow dot) to a position close to the sample (red dot). First, the traversability
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(a) Traversability map T . The nodes are classified
into different categories of traversability as part of
the terrain assessment. The obstacles are dilated
to account for the rover morphology. The sam-
pling area is defined around the sample location

depending on the arm reachability.

(b) 2D cost map ΩB. The cost is defined for each
node according to its category in T . Besides,
traversable nodes located within the blue-yellow
ring may or not be turned into obstacle nodes.
After projecting the obstacles onto the ring from
the sample position, only a small opening remains

traversable in this particular case.

FIGURE 4.1: Showcase of an example in which FACE is used to ensure the planned
path ΓB goes straight towards the sample in its final waypoints.

map is generated, shown in Figure 4.1a. The planner expands the area of the obsta-

cles to consider the shape of the rover, as aforementioned, although FACE includes

two different dilatation areas. The nodes within the first dilatation (green) are not

reachable by either the center of the rover or the manipulator. The second dilatation

(orange) indicates nodes where the rover center cannot enter, but the manipulator

can reach. Note that, even though the rover does not stop on top of the goal, FMM

initially plans the path connecting the initial and the goal positions. This is to, in a

later step, remove the last portion of the path so the rover stops earlier at a certain

distance from the sample, under the maximum arm reachability, what is called the

sampling area (grey).

The traversability map is used to generate the cost map as in Figure 4.1b. Here,

the values of cost, positive and non-zero, are proportional to the proximity to non-

traversable nodes as in (4.1). Those non-traversable nodes are colored in black and

their cost is infinite. The 2D path that FMM gets between two points is affected by

how these values of cost are assigned. An area with constant cost will make the

paths go straight, while a gradient of the cost will curve the paths. Therefore, the

sampling area should be set as a uniform cost to generate straight paths to approach

the sample. However, there may be obstacles in the vicinity, and they must not be

omitted.

FACE is aware of this necessity to make the paths go straight meanwhile avoid-

ing existing obstacles, and edits the cost ensuring the resulting path complies with
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those requirements. As can be seen in Figure 4.1b, the non-traversable nodes not

only include obstacle and dilatation nodes, but also a series of nodes that are located

within a ring centered at the sample location. This ring is the one formed by the

blue and yellow circumferences, whose radius values are configurable by the user.

FACE determines which nodes from this ring are set to obstacle and which are not,

forming an opening so the path goes through it, straight towards the sample.

For that purpose, FACE uses an application of FMM called shadowing, which

was originally presented in the work of Sethian (Sethian, 1999). In a few words,

given a point and obstacles around it, the shadowing serves to project shadows as

if the point in question were a light source. In this case, such a point is the sample

location. The projected shadows pass through the ring, converting traversable nodes

into non-traversable ones. Only those traversable nodes inside the ring that are not

touched by the projected shadows form the opening. This means any path passing

through such nodes will later go straight toward the sample location as if they were

following the light rays. Finally, the resulting path from using FMM is shortened by

removing the last waypoints as aforementioned, as the rover is supposed to stop at

a certain distance from the sample. In Figure 4.1b the last waypoints entering the

straight area (which contains the sampling area defined in the traversability map)

are the ones that are removed.

Last Section Control (LSC)

The trajectory controller ensures the robot follows the planned path under certain

conditions. For instance, the conservative pure-pursuit algorithm ensures the rover

does not deviate from the path beyond a certain distance (Filip, Azkarate, and Visentin,

2017). This can be seen as forming a corridor that delimits the area where the rover

can be located. Inside this corridor, the conservative pure-pursuit provides the rover

with motion commands depending on the waypoints it tracks. Nevertheless, as

aforementioned, the rover must orient itself to make the sample reachable by the

arm at the last waypoints of the path. This adds a new problem that the trajectory

controller must account for. Not only the rover has to drive performing maneuvers

that reduce its deviation w.r.t. the planned path, but it also has to reach this heading

at the end. A feasible solution would be to decouple the problem. First, the rover

is focused on reaching the last waypoint. Second, it performs a turn on the spot,

or point-turn, to set its heading to the desired one. However, this solution is not

efficient in time terms. To reduce the number of maneuvers at the end, a custom

control approach named LSC is presented, which takes over the previous trajectory

controller when the rover is close enough to the sample.

Figure 4.2 shows a scheme of how the LSC works. As can be checked, a sin-

gle full-Ackermann maneuver cannot ensure the rover is well positioned w.r.t. the

sample according to where its arm is placed (colored in purple). Reaching the last

waypoint of the path with a certain heading requires starting from a unique position

(colored in orange). It is then imperative to control the rover to not only make it stop
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FIGURE 4.2: LSC scheme. On the left, the scheme depicts how the rover cannot
arrive at the final waypoint and orientation using a single turning radius for a con-
stant full-Ackermann maneuver. On the right, the vertical and horizontal distances
between the rover and the sample serve as input to the LSC to get the curvature the

rover should use to turn.

at a position close to the final waypoint (admitting a certain level of error) but also

reduce the distance between the optimal pick-up position (in red) and the location

of the sample. Having all this in mind, the LSC takes as inputs only the vertical and

horizontal distances from the rover’s central reference frame to the sample location.

According to these values, the LSC uses a look-up table, plotted at the right side

of Figure 4.2, to dynamically retrieve the curvature of the turning full-Ackermann

maneuver the rover must perform. As the rover advances this look-up table is con-

sulted iteratively, providing a different value of curvature depending on how the

vertical and horizontal distances evolve. Following the example of Figure 4.2, if

the horizontal distance is between −0.3 to −0.5 m, the rover can practically just go

straight, as the optimal pick-up position is more or less in line with the sample with

none or little horizontal distance error. For values of horizontal distance higher than

−0.3 m, the rover has to make a right turn as it advances, which is more pronounced

as it comes closer to the sample.

4.3 Motion planning with restricted arm workspace

Once the rover base path is computed, it is used by the MM motion planner to gen-

erate the arm joints profile of the arm throughout the trajectory, generating a coor-

dinated base-arm motion. The motion planner tries to ensure the operation safety,

i.e. avoiding collisions, efficiently. To do so, a representation of the safe manipulator
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workspace in the form of a reachability volume is generated offline, only once, be-

fore planning the manipulator movements. The reachability volume is obtained by

employing the collision detector algorithm of the Dynamic Animation and Robotics

Toolkit (DART) (Lee et al., 2018), to detect self-collisions and collisions with the en-

vironment for any specified configuration of the system joints. DART makes use

of the Unified Robot Description Format (URDF) (Quigley et al., 2009) of the rover,

mainly requiring the kinematic and collision models of the system. URDF is a robot

descriptor, which assembles the kinematics, dynamics, collisions, and even visuals

of a robot in a straightforward manner, describing the characteristics of the joints

and links that compose the robot, and their relationships. Though many robot de-

scriptors exist in the literature, URDF is the most renowned one and has worldwide

support.

The reachability volume is used by the motion planner, together with the pre-

viously computed rover base path, to generate the arm joints profile to get to the

goal, in three main steps. Firstly, a 3D cost volume is generated, formed by a tunnel

surrounding the rover base trajectory. This tunnel represents the manipulator Carte-

sian workspace at each waypoint of the rover base trajectory, using the reachability

volume but also considering the scenario (obstacles, soil shape). This way, the later

computed motion plan is necessarily safe if encompassed inside this tunnel. Sec-

ondly, the manipulator trajectory is planned inside the tunnel using FMM in a 3D

version. Note that we refer to the manipulator path in the following since it could be

the path for the end effector or the wrist. Third, the manipulator joint profile is ob-

tained by establishing a relation between the base and the manipulator trajectories.

For each waypoint of the base path, a suitable waypoint of the manipulator trajec-

tory is assigned, and then the corresponding arm joints configuration is computed

making use of the IK model of the manipulator.

Finally, a coupled trajectory controller is required to ensure that both the base

path and the manipulator joint profile are properly tracked by the system. The reach-

ability volume computation, the motion planner itself, and the coupled trajectory

controller are explained in further detail below.

Manipulator workspace representation

Let us define W as the manipulator workspace, i.e. a set of 3D discrete nodes p̃j

where the manipulator end effector can be ideally placed considering its movement

range. Then, WR ¢ W is defined as the safe manipulator workspace considering

self-collisions, i.e. a Boolean 3D map indicating for each p̃j if the arm is safe and

reachable (true), or if the manipulator cannot reach the position or is in a collision

state (false). Then, the concept of reachability volume ΩR is introduced. In a similar

way to the Capability Map defined in (Porges et al., 2014), ΩR is a 3D map (ΩR ∈

WR), where ΩR( p̃j) indicates to what extent it is dangerous to place the manipulator

in p̃j w.r.t self-collisions. The main benefit of using ΩR within the motion planner is

that, if every manipulator configuration leaves the arm inside ΩR, it is guaranteed
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(a) (b) (c)

FIGURE 4.3: Example of a distance to collisions volume DM, where the safer nodes
p̃j are represented in red, and the ones closer to collisions are shown in blue.

that no self-collision will occur during the execution. This is assuming that the arm

trajectory controller does not deviate substantially from the plan but, if it does, the

chances of self-collisions are also minimized, since ΩR will maintain the arm the

farthest possible from the closer self-collision. Besides, since ΩR is calculated only

once, offline, it is substantially advantageous to reduce the computational cost of the

motion planner, being ΩR unique for a robot as long as its kinematic characteristics

do not change.

To compute ΩR it is necessary, first, to estimate the safe manipulator workspace

WR, which requires several tools. On the one hand, URDF is used to 3D model the

physical properties of the system, including the collision geometry, which is slightly

expanded to ensure safety even in case of inaccuracies. On the other hand, the URDF

is embedded in a collision detector algorithm, in this case, the one provided by

DART. This is an open source library where kinematic and dynamic algorithms are

developed, in the fields of robotics and computer animation. The collision detection

checks whether there is a collision or not for a certain scenario and configuration of

the robot joints. Lastly, the IK of the manipulator is also necessary, to correlate each

position p̃j ∈ WR with its corresponding arm joints configuration q. Note that, in

this work, each WR is representative of only one solution of the IK, i.e. up/down

elbow and right/left shoulder.

To obtain WR, each node p̃j inside the manipulator workspace W has to be checked.

For every particular p̃j and every possible orientation ϕ = [φ ϑ ψ] (roll, pitch, yaw) of

the end effector, the IK is used to extract the arm joints configuration q to reach that

end effector pose (position p̃j and orientation ϕ). Then, DART checks if q leads to a

collision, employing the URDF model of the robot. Whenever a collision is found,

the node p̃j is categorized as unsafe in WR, and a new one is selected. On the con-

trary, if every end effector orientation ϕ is covered and no collision is detected, then

p̃j is classified as safe in WR.

Finally, ΩR is generated by defining a cost shape inside WR, which indicates to

what extent it is hazardous to place the manipulator at each node p̃j. For this pur-

pose, the distance to collisions volume DM is required. This is a 3D discrete volume
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(DM ∈ WR) where DM( p̃j), indicates the distance from p̃j to the closest unsafe po-

sition (collision) in WR, as shown in Figure 4.3. Thus, unsafe positions in WR have

assigned distance 0 in DM, and safe positions in WR have assigned the Euclidean dis-

tance from p̃j to the closest unsafe one in WR. Using DM a linear cost function inside

the cost volume ΩR has been defined, which is inversely proportional to DM( p̃j) as

stated in equation (4.2).

ΩR( p̃j) = 1 + ċM/DM( p̃j) ∀ p̃j = [x, y, z] ∈ WR (4.2)

Where ΩR( p̃j) is the cost associated with the node p̃j; ċM is a parameter that

defines the sharpness of the cost inside ΩR, and DM( p̃j) is the distance of the position

p̃j to the closest unsafe position in WR. Remark that the minimum cost in ΩR is 1,

as needed for correct performance of the later path planning algorithm with FMM.

Additionally, the cost of the non-reachable or non-safe nodes in WR is set to infinity.

In the particular case of a manipulator with a spherical wrist, the IK model is

easily obtainable with a kinematic decoupling of the position and orientation prob-

lems (Siciliano et al., 2009). Defining q = [qp qo], the first DoF set the wrist position

(position joints, qp) and the last 3 DoF set the end effector orientation (orientation

joints, qo). Making the most of this kinematic decoupling, the safe workspace WR

of a manipulator with a spherical wrist represents all the positions p̃j for the wrist

where the full range of the orientation joints Qo is reachable and safe, i.e. without

self-collisions. This methodology simplifies substantially the motion planning pro-

cedure, as will be explained in the posterior subsection.

The procedure to generate ΩR for a manipulator with a spherical wrist is, thus,

summarized in algorithm 1. First, according to the kinematic configuration of the

manipulator, the wrist workspace W (getManipulatorWorkspace) and the maximum

range Qo of the orientation joints qo (getOrientationJointsRange) are obtained. Sec-

ond, the safe workspace of the manipulator wrist WR is computed, checking if the

manipulator is colliding (isArmColliding) for every node p̃j = [x, y, z] ∈ W and con-

figuration of the orientation joints qo ∈ Qo. Third, once WR is generated, the Eu-

clidean distance volume to the closest collision DM is calculated (computeDistance-

ToCollisions), using again standard computer vision techniques from OpenCV, but

in 3D. This distance volume DM defines the cost function inside the reachability

volume, altogether with ċM, parameter that configures the cost function sharpness

(getCostSharpness). Finally, the reachability volume ΩR is generated, checking every

node p̃j = [x, y, z] ∈ W, and assigning the cost in (4.2) if the position is safe (WR( p̃j)

is true), or infinite cost if the position is not reachable (WR( p̃j) is false).

Manipulator motion planning

Before generating a coupled motion, first of all, it is required to decide when to start

the arm motion w.r.t. the rover base path. That is, to estimate the waypoint ΓB(ι)
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Algorithm 1 Computation of the reachability volume, ΩR, for a manipulator with
spherical wrist

1: W ← getManipulatorWorkspace()
2: Qo ← getOrientationJointsRange()
3: for p̃j = [x, y, z] in W do

4: WR( p̃j) ← true
5: qp ← getWristIK(p̃j)
6: for qo in Qo do

7: q ← [qp qo]
8: if isArmColliding(q) then

9: WR( p̃j) ← false
10: break

11: end if

12: end for

13: end for

14: DM ← computeDistanceToCollisions(WR)
15: ċM ← getCostSharpness()
16: for p̃j = [x, y, z] in W do

17: if WR( p̃j) is true then

18: ΩR( p̃j) ← 1 + ċM/DM( p̃j)
19: else

20: ΩR( p̃j) ← ∞

21: end if

22: end for

of the base trajectory where the arm should start moving, with ι the index of that

waypoint. This is necessary to ensure that the manipulator finishes its movements

just when the rover gets to the last waypoint of the trajectory ΓB(NB), to avoid idle

arm time if finishing the arm motion too soon or idle rover time if finishing too

late. The selection of ΓB(ι) depends on two main factors. On the one hand, the time

required for the rover to follow the trajectory, which is estimated subject to the rover

base nominal speed and the length of the trajectory ΓB. On the other hand, the time

required for the arm to perform the complete motion, which can be estimated based

on the initial and final arm joints’ configurations, and the arm joints’ speed. Note

that the final arm configuration can be computed depending on the goal pose and

the last rover base waypoint ΓB(NB).

Then, a 3D cost volume ΩM is generated on top of the rover base trajectory, fol-

lowing algorithm 2. First, the rover base trajectory ΓB (getRoverBaseTrajectory) and

the trajectory index where to start the arm movements ι (getIndexStartArmMovement)

are fetched. Second, the cost volume ΩM is initialized (initialize3DCostVolume) con-

sidering every node as an obstacle, with infinite cost. Third, the deployment distance

d is defined (getDeploymentDistance). This is a configurable parameter that sets the

fore distance (X-axis) from the arm base to the manipulator end effector (or wrist)

at each waypoint, eventually characterizing when the arm will be mainly mobilized

during the rover movement, as is later explained in detail. The deployment dis-

tance, clearly, always has to be smaller than the maximum range of the manipulator.
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Algorithm 2 Computation of the 3D tunnel cost volume ΩM

1: ΓB ← getRoverBaseTrajectory()
2: ι ← getIndexStartArmMovement()
3: ΩM ← initialize3DCostVolume()
4: d ← getDeploymentDistance()
5: Π ← getReachabilityVolumeSlice(X-axis, d)
6: for ΓB(n) in ΓB, from n = ι to n = NB do

7: wTΓB(n) ← getTransform(ΓB(n))
8: for p̃j = [x, y, z] in Π do

9: ΓB(n)Tp̃j
← getTransform(p̃j)

10: wTp̃j
← wTΓB(n) ·

ΓB(n)T p̃j

11: ΩM(wTp̃j
) ← ΩR(

ΓB(n)T p̃j
)

12: end for

13: end for

Fourth, a slice of the reachability volume is extracted (getReachabilityVolumeSlice),

Π ¢ ΩR, located in the X-axis at d distance. This slice is used to build the tunnel

cost volume, as follows. At each waypoint ΓB(n) in the rover trajectory ΓB (from

ΓB(ι) onwards), Π is placed in the corresponding nodes of the 3D grid ΩM by means

of simple geometrical transformations (getTransform), being jT» the transformation

matrix from j to ». Repeating this process for every waypoint in ΓB ends up creating

a tunnel-shaped cost volume. Note that the tunnel is built differently at the first and

last waypoints. The first waypoint ΓB(0) places every slice Π from the beginning of

the reachability volume ΩR, in the X-axis, to the deployment distance d. Conversely,

the last waypoint ΓB(NB) places every slice Π from d until the end of ΩR. This way,

the tunnel is completely closed, which reduces the computational cost of the later

path planning algorithm.

Finally, the generated 3D cost volume ΩM is used to plan the arm path ΓM in-

side the tunnel, which is composed of S waypoints ΓM(s). The planner used for this

purpose is FMM in a 3D version, which still provides optimal, smooth, and contin-

uous trajectories with low computational cost (Sethian, 1999). FMM3D is defined

similarly to standard FMM, as in Chapter 3.2, but considering now the height z as a

third dimension in the 3D cost volume ΩM and its nodes. The generated manipula-

tor motion will be partially-optimal thanks to the use of FMM3D, in the sense that it

is optimal in compliance with an already optimal rover path, but does not consider

the mobile manipulator problem as a whole, which could lead to local minimum

solutions.

Before obtaining the definitive arm joints profile Λ = {q0, q1, ..., qn, ..., qNB
}, which

indicates the joints position qn of the manipulator at every waypoint ΓB(n) of the

rover base trajectory, it is necessary to establish a relation between the rover and

manipulator trajectories, ΓB and ΓM. Each rover waypoint ΓB(n) is assigned with

one or more waypoints of the wrist trajectory ΓM(s), subject to the previously de-

fined deployment distance d. This assignment takes place as follows. Starting from
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FIGURE 4.4: Scheme showcasing different deployment distances d. For a particular
rover base waypoint ΓB(n), a small deployment distance (de) maintains the arm
end effector closer to the body. Conversely, a big deployment distance (db) keeps

the end effector farther.

the last rover waypoint ΓB(NB), each ΓB(n) gets assigned every manipulator way-

point ΓM(s) that is at a distance lower than d from the current base waypoint ΓB(n).

The current base waypoint ΓB(n) will, thus, seize some assignments from the base

waypoints that have already been checked. This procedure maintains the arm at d

distance from the rover since the arm will always try to reach a manipulator way-

point ΓM(s) that is at d distance from the current base waypoint ΓB(n).

As a result, the motion planner can be configured to behave differently based

on the deployment distance d, as can be observed in Figure 4.4. A long d (longer

than half of the workspace WR size, db) causes the arm (green) to mobilize early

during the operation, keeping the end effector further from the rover body. This

approach is called beginning deployment. Conversely, a short d (shorter than half

of the workspace WR size, de) leads to the opposite effect, i.e. the arm (purple)

mainly moves at the end of the operation, maintaining the end effector closer to

the body, what is called end deployment. Additionally, there exists the possibility of

increasing progressively the deployment distance (from de to db) during the trajec-

tory, which generates smoother arm motions. Called progressive deployment, this

approach is very interesting since it optimizes the efficiency of the motion plan by

distributing equally the arm motion throughout the whole rover base trajectory, as

it is deeply analyzed in Chapter 6.3.

Finally, the complete manipulator motion profile Λ is generated by means of

the IK model of the manipulator. At each rover waypoint ΓB(n), the IK generates

the corresponding manipulator configuration qn, sequentially obtaining the motion

profile. An example of a 3D cost volume ΩM (i.e. the tunnel) is shown in Figure

4.5a; the later manipulator trajectory and its corresponding arm profile are shown

in Figure 4.5b. As can be observed, it corresponds to a progressive deployment
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(Ω

Γ

(a) 3D cost volume ΩM, which is a light blue tunnel surrounding the rover path ΓB.
The rover path is represented as a blue line, and the goal sample is represented as a

black box.

Γ

Γ Λ

(b) Arm motion profile Λ, including the rover path ΓB as a blue line, the manipulator
trajectory ΓM as a yellow line and the manipulator as a chain of black links. The goal

sample is represented as a black box.

FIGURE 4.5: Mobile manipulator motion plan example for a progressive deploy-
ment distance d.
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configuration of the motion planner, i.e. the arm is smoothly deployed during the

motion. Remark that manipulators with spherical wrists have crucial advantages

when computing Λ. In the first place, the position joints qp can be obtained with

the IK of the wrist. This reduces the computational cost of the algorithm since the

complexity of the IK of the wrist is lower. In the second place, the orientation joints

qo can be linearly deployed considering that the whole manipulator trajectory is safe,

as aforementioned. This linear deployment of qo is simple, predictable, optimal, and

computationally negligible.

Coupled base-arm trajectory controller

It is necessary to use a coupled trajectory controller to execute the generated plan.

This component has to ensure, on the one hand, that the rover base properly tracks

the base trajectory ΓB, as explained in Section 4.2. On the other hand, it also has

to command the adequate position and/or velocities to the arm joints to track the

motion profile Λ, depending on the current rover base waypoint ΓB(n). Clearly,

executing both motion plans (base, arm) coordinately is not straightforward, since

the time required to reach the next waypoint ΓB(n) and configuration qn will dif-

fer during the execution. To avoid this, a coupled base-arm trajectory controller is

proposed.

The coupled controller works as follows. First, the modified conservative pure-

pursuit trajectory controller, which includes the LSC presented in Section 4.2, gen-

erates the commands to follow the rover base trajectory, ensuring that the rover is

always close to the trajectory inside the safety corridor. Second, the nominal speeds

of the rover base and the manipulator’s joints are used to estimate the required time

for both systems to reach the next waypoint ΓB(n) and configuration qn. Third, if

one of the systems (base, arm) needs more time than the other to reach the next

waypoint, which is likely to happen, then the other system is slowed down propor-

tionally, to ensure both systems reach the next waypoint ΓB(n) and configuration

qn at the same time, as planned. Even though this approach slows down the whole

motion if one of the systems is not fast enough, the coordination of both systems is

significantly faster than a decoupled solution, as will be demonstrated in Chapter

6.3.

4.4 Summary and conclusions

This chapter presents the second contribution of this doctoral thesis: a coupled base-

arm motion planning algorithm to perform a MM task once a planetary rover has

reached an area of scientific interest. Considering the case of a highly restricted arm

workspace, the proposed algorithm is able to generate a motion plan that, on the

one hand, leaves the goal reachable for the manipulator by precisely planning and

controlling the last stretch of the rover base path and, on the other hand, ensures the

safety of the manipulator motion by preventing self-collisions offline using the real
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workspace of the manipulator. The motion planner makes the rover able to reach

a goal avoiding the obstacles in the scenario and smoothly orient itself to leave the

goal inside the manipulator workspace, while the arm performs its particular motion

plan to be ready to carry out the desired task as soon as the rover reaches the goal.

Finally, the proposed motion planner has been validated by means of simulation,

field tests, and a benchmark with an off-the-shelf MM motion planner, as explained

later in Chapter 6.3.

Though this MM motion planner guarantees the safety of the robot during the

operation in a simple, comprehensive, and straightforward manner, it relies on a

geometric computation of the trajectories both for the mobile base and the manip-

ulator. As a result, this method cannot optimize task-level parameters like energy

spent. Furthermore, despite the fact that the motion is computed coordinately, this

planner does not consider the whole MM system as one. Consequently, it cannot use

the DoFs of the mobile base to compensate for the limitations of the manipulator, or

vice-versa. These issues can be solved, nevertheless, by using optimization-based

full-body motion planners. Let us explore this type of optimal solution in the next

chapter.



Chapter 5

Optimal motion planning for

over-actuated mobile platforms

"Obex agendi procedit agendi. Quod
obstatur, fit via" -
"The impediment to action advances
action. What stands in the way
becomes the way"

Marcus Aurelius
Meditations, 2nd century A.D.

5.1 Introduction

Motion planning and control of mobile systems is a well-known problem in the lit-

erature, as explained in the previous chapters. It entails many challenges depending

on the characteristics of the platform, the scenario, and the goal task. Nonetheless, it

is remarkable that most systems have a common challenge for the motion planner:

the computational effort. Mobile platforms’ computational resources are usually

limited, even more for space (Gerdes et al., 2020; Araguz, Bou-Balust, and Alar-

cón, 2018), air (Kratky et al., 2021) or underwater (Huang, Chen, and Guo, 2018)

applications; or small-sized systems like sub-gram robots (St. Pierre and Bergbre-

iter, 2019). On top of that, the computational requirements increase substantially

according to the system complexity, such as platforms that have redundant DoF, i.e.

have more actuators than required to reach a particular pose. These are commonly

called over-actuated platforms, and a clear example can be found in mobile manip-

ulators. The over-actuation entails the existence of infinite solutions for the motion

planning problem since the same final pose can be reached differently depending

on the selected joints to be moved. Although a drawback in computational terms,

over-actuation is an advantage for motion performance, since there is a great variety

of solutions where to look for the one that best fits the problem’s needs.
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Multiple techniques have been used to solve the motion planning problem for

over-actuated platforms, such as optimal control, potential fields, artificial intelli-

gence, or probabilistic algorithms. As extensively analyzed in Chapter 2.3, one of

the most suitable techniques to tackle over-actuation without excessive computa-

tional load is optimal control: since there are infinite combinations of joint move-

ments to reach the goal, the optimization will find at least the locally optimal one

by defining a cost function that could take into consideration energy consumption,

required time, etc. Optimal control methods find computational hindrances when

considering constraints and dynamics. This can be mitigated by reducing as much

as possible the average number of iterations until convergence of the optimization,

which is achievable through the so-called warm start. The objective of warm start

is to provide the optimization algorithm with a fast-calculated initial solution to the

problem, which is not necessarily feasible but is used as a starting point that places

the algorithm close to the convex area surrounding a local (or global) optimal solu-

tion. Hereby, the optimization is boosted to find the solution faster, in much fewer

iterations.

The latest contributions highlight the use of several stages to warm start the op-

timization, as shown in (Thakar et al., 2019), where a sequential refinement method

for optimization was used to generate trajectories for a mobile manipulator to pick

up parts. This method keeps introducing problem constraints (grasping pose, grip-

per speed, collisions) sequentially to the optimization problem, continuously warm-

starting and refining the solution, which improves the performance of the motion

planner in comparison with the cold-started planner. These results were extended

by the authors in (Kabir et al., 2021), where a multi-staged warm-started motion

planner for a group of robots (up to three manipulators or a mobile manipulator

with two robotic arms) was presented, including a deep analysis of the best sequence

of introduction of the problem constraints (position, velocity, orientation of the end

effector, collisions). The same multi-staged warm-started motion planner was also

used in (Thakar et al., 2022) for surface disinfection with mobile manipulators, gen-

erating first a path to cover the goal area employing a branch and bound-based tree

search. This generated path was used as a constraint to generate the mobile manip-

ulator actuators’ trajectory through the motion planner. As can be observed, these

multi-staged warm start approaches have been applied to path-constrained trajec-

tory generation problems, i.e. tasks where the end effector trajectory is precisely

known a priori, thus, it is added as a problem constraint in terms of end effector

position, velocity, and orientation. However, there are other cases where the initial

trajectory is completely unknown or undefined, which can be denominated as goal-

constrained trajectory generation problems, as previously mentioned in this thesis.

Seeing the current state of the art, it is clear that over-actuated systems are espe-

cially difficult to handle by optimization motion planners, with the computational
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requirements becoming a bottleneck as the system constraints and complexity in-

crease. To tackle this issue, a multi-staged warm start arises as an interesting ap-

proach, which has demonstrated promising results in solving path-constrained tra-

jectory generation problems. Such an computationally-lightweight approach could

be brought to a planetary exploration rover, to perform a MM task inside an area of

scientific interest. Hence, the third contribution of this thesis is presented, a Multi-

staged Warm started optimization Motion Planner (MWMP) for over-actuated mo-

bile platforms, which reduces the computational cost by sequentially introducing

the system constraints. MWMP can be used for any over-actuated mobile system,

although it is mainly aimed at MM.

The presented motion planner includes two main advancements to the state-

of-the-art. First, a generic model for over-actuated mobile platforms, that can be

applied to systems with several serial kinematic chains. This model considers the

system dynamics and external disturbances to optimize the platform energy con-

sumption later during the planning stage. Second, a novel sequence for multi-staged

warm-started motion planning, aimed to solve the goal-constrained trajectory gen-

eration problem on over-actuated mobile platforms. The first warm start stage is a

path planner, making the most of the first contribution of this doctoral thesis, that

computes an initial trajectory for the mobile platform, the second stage takes that

initial trajectory as a warm start and solves only the unconstrained problem, and

the third stage uses this unconstrained solution as a warm start to obtain the final

motion plan with a constrained optimization solver.

The rest of this chapter is organized as follows. Section 5.2 shows the first contri-

bution of this work: the generic model for over-actuated mobile platforms. The sec-

ond contribution, MWMP, is presented and explained in detail in Section 5.3. Lastly,

Section 5.4 states a summary of this chapter and possible lines of future work.

5.2 Generic mobile platform model

Considering T = {t0, t1, ... , tn, ... , tN} as the set of N equally-sized time steps that

define the time horizon, being ∆t the time step size, let us define a state space model

under linear discrete approximations as depicted in (5.1):

x(n + 1) = A(n)x(n) + B(n)u(n) (5.1)

Where A(n) and B(n) are the state transition and input distribution matrices

respectively, and x(n) and u(n) are the state and actuation vectors of the system

respectively, at time step tn. Note that a discrete model is used, i.e. n is used as an

index to get the values at time step tn (tn = n∆t). Also note that, in the following,

any jP» expresses the pose of » w.r.t. j, as jP» = [p ϕ], i.e. a position vector, in

3D p = [x y z], and an orientation vector, in 3D ϕ = [φ ϑ ψ], the roll, pitch, yaw

Euler Angles. Assuming a generic mobile platform composed of a set of K kinematic
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chains, jP» is the pose of the tip link reference frame of the kinematic chain » w.r.t.

j, having w as the world reference frame. For instance, the center reference frame

of a mobile platform would be wP1, and if it is equipped with a manipulator, the

manipulator end effector pose w.r.t. the mobile platform would be 1P2.

Thereafter, a generic mobile platform is represented as a set of K kinematic chains,

with the pose of its tip link reference frame represented as jP». The position of all the

actuation joints belonging to kinematic chain » are denoted as vector q», including

rotational and translational joints. Thus, the corresponding state vector x(n) of a

generic mobile platform is defined as (5.2).

x(n) =
[

wP1
wṖ1 · · · wPK

wṖK
1P2

1Ṗ2 · · · K−1PK

K−1ṖK q1 q̇1 q̈1 q2 q̇2 q̈2 · · · qK q̇K q̈K

]T
(5.2)

With wṖ» the speed of the kinematic chain » w.r.t. the world reference frame;
»−1Ṗ» the speed of the kinematic chain » w.r.t. the kinematic chain » − 1; and q̇»,

q̈» the speed and acceleration, respectively, of each actuation joint of ». Conversely,

assuming a force/torque controlled platform, the actuation vector u(n) is defined as

(5.3).

u(n) =
[

e1 e2 · · · eK δ1 · · · δZ

]T
(5.3)

Where e» represents the actuation effort vector, i.e. forces or torques of the joints

of », and δz are external disturbances applying forces to the system, for instance,

gravity. The total number of external disturbances is defined as Z. Note that, even

though the external disturbances δz are included in the model inside the actuation

vector, doubtlessly they are not under the control of the system. Hence, the values

of the disturbances vector δz should remain fixed according to their estimates, e.g.

9.81 m/s2 for gravity.

Once defined the state and input vectors, a generic representation of the state

transition matrix A(n) is shown in (5.4), where Ij represents the identity matrix with

size (jxj), ||q»|| the number of DoF of the kinematic chain », jR» a rotation ma-

trix given the pose defined in jP», jJ» the Jacobian matrix relating articular with

Cartesian speeds for the kinematic chain » w.r.t. j, I» and V» the inertia and Cori-

olis/centrifugal matrices of » respectively, and ∆t the time step size. On the other

hand, the input distribution matrix B(n) is depicted in (5.5), with ´»
z = −I−1

» γ»
z , and

γ»
z a matrix representing the effect of the perturbation δz into the joints of kinematic

chain ». It is crucial to remark that, with these definitions of A(n) and B(n), some of

their terms could be non-linear, which would eventually hinder the proper function-

ing of the motion planner. For that purpose, the use of Taylor Series Linearization

(TSL) on those terms is recommended.

Finally, it is key to define the system limits, via state-input and pure state con-

straints. On the one hand, the actuation effort e» limits have to be specified as state-

input constraints as expressed in equation (5.6), where C(n) is filled with zeros since
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A(n) =



















































































I6 0 · · · 0 0 0 0 · · · 0 0 0 wJ1∆t 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 wJ1 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
0 0 · · · I6 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 wRK−1

K−1JK∆t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 wRK−1
K−1JK 0

0 0 · · · 0 0 I6 0 · · · 0 0 0 0 0 0 1J2∆t 0 · · · 0 0 0
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. . .
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. . .
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0 0 · · · 0 0 0 0 · · · 0 0 I||q1|| I||q1||∆t 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 I||q1|| − I−1
1 V1∆t 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 −I−1
1 V1 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 I||q2|| I||q2||∆t 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 I||q2|| − I−1
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0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · I||qK || I||qK ||∆t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 I||qK || − I−1
K VK∆t 0

0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 −I−1
K VK 0
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B(n) =
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these constraints do not depend on the states, D(n) indicates with ones or zeros

which actuation effort limit is being defined, and r(n) includes the actual limit val-

ues. On the other hand, as pure state constraints it is important to define the kine-

matic chains world wṖ» and relative »−1Ṗ» speed limits, and the position q», velocity

q̇» and acceleration q̈» limits of the actuation joints, as done in equation (5.7). Partic-

ularly, G(n) indicates which state limit is being defined, filled adequately with ones

or zeros, and h(n) includes the values of those limits.

C(n)x(n) + D(n)u(n) + r(n) f 0 (5.6)

G(n)x(n) + h(n) f 0 (5.7)

Considering this general definition of x(n), u(n), A(n) and B(n), the motion

planning problem for a mobile platform with K serial kinematic chains can be rede-

fined as finding a set of actuation efforts (forces/torques) e» that generate a motion

profile (q», q̇», q̈») for each joint of the platform, to place the tip link of the last kine-

matic chain in certain poses (wPK, wṖK), given the effect of external perturbations (δz)

and the system limits, expressed through the state-input constraints (C(n), D(n) and

r(n)) and the pure state constraints (G(n) and h(n)). Note that some of the states are

not strictly necessary in the model (wṖ», »−1Ṗ», q̈»), but, as will be explained later, are

helpful to set desired behaviors by tuning their corresponding costs, or to establish

system constraints as aforementioned. Also bear in mind that, although required

for the appropriate behavior of the motion planner, the linearization with A(n) and

B(n) induces execution errors. These errors’ significance depends on the time step

size ∆t, being negligible if ∆t is sufficiently small.

5.3 Multi-staged motion planning

The proposed MWMP sequence is designed to deal with highly complex, over-

actuated systems, looking for an efficient solution to the motion planning problem

without severely impacting the computational resources of the system. For that pur-

pose, a sequential warm start procedure is defined in this section, which reduces

substantially the average number of iterations until convergence and, thereupon,

the computational cost of the planner. A general overview of the functioning of

the algorithm and its evolution through the different stages is shown in Figure 5.1,

which is further explained below.

Each stage is executed in a particular order, sequentially. The first stage, called

Path Planning Warm Start (PPWS), consists of a path planner based on the FMM,

although any other path planning algorithm could be used. FMM has been selected

since it provides globally optimal and smooth solutions, with comparable compu-

tational cost to other non-optimal state-of-the-art planners (Sethian, 1999). As can

be observed in Figure 5.1, the path planner requires three inputs to compute the tra-

jectory: the platform initial and goal positions w.r.t. the world frame, w p1(0) and
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Γ
ΩΩ

‘ ‘

‘‘ ‘‘

FIGURE 5.1: Scheme summarizing the general functioning of the multi-staged mo-
tion planning approach. In the first stage (PPWS) an initial trajectory Γ is computed
using FMM. In the second stage (USLQ), this trajectory is used to warm start the
SLQ optimization algorithm to solve the unconstrained motion planning problem.
If the planned motion x′(n), u′(n) satisfies the constraints, the algorithm finishes.
Otherwise, the third stage (CSLQ) takes the unconstrained solution as a warm start
and computes the final motion plan x′′(n), u′′(n), using again the SLQ optimization

solver but with constraints compliance.

w p1(N) respectively, and a cost map Ω representing the characteristics of the sce-

nario, with higher costs where the mobile platform finds difficulties to traverse, like

obstacles. Given this information, FMM takes two different steps to generate a path:

first, a wave expansion, second, the trajectory extraction. This separation is advan-

tageous since it allows the generation of new trajectories quickly as long as the goal

remains the same, as will be explained later. As an output, the path planner gen-

erates the global optimal path Γ to reach the goal w p1(N) from the platform initial

position w p1(0) on the cost map Ω.

To accelerate the convergence speed, the extracted trajectory Γ is forwarded as a

warm start to the next stage called Unconstrained Sequential Linear Quadratic reg-

ulator (USLQ), which makes use of an optimal solver called SLQ regulator (Sideris

and Bobrow, 2005), which is based on the Riccati equation. Although many other

optimal solvers could also be used, SLQ has been selected due to its efficiency when

solving non-linear discrete optimal control problems with near-quadratic conver-

gence, besides, requiring only first derivative information of the system states. As

inputs, the second stage requires the current and goal states of the platform, x0 and

xN , an initial actuation plan u0 usually filled with zeros, a configuration for the solver

i.e. the quadratic costs defined by the state matrix Q(n) and the input matrix R(n),

and a linear state space model of the system, represented by the state transition ma-

trix A(n) and the input distribution matrix B(n). USLQ outputs, then, a complete

unconstrained motion plan for the whole time horizon T, with x′(n) the states and

u′(n) the actuation.
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The above solver does not consider constraints yet, which implies faster conver-

gence but could lead to unfeasible solutions. Thus, in the third stage, every gener-

ated solution is checked to confirm if the system constraints are satisfied. If they are,

then the unconstrained motion plan is taken as correct and the planning pipeline

finishes, x′′(n) = x′(n) and u′′(n) = u′(n), being x′′(n) and u′′(n) the final motion

plan states and actuation respectively. The overall computational cost of MWMP

is reduced noticeably if this happens, since this third stage, called Constrained Se-

quential Linear Quadratic regulator (CSLQ) (Sideris and Rodriguez, 2011), is the

computationally most expensive. Otherwise, again the optimal solver is used to

consider the system constraints, using the unconstrained solution x′(n), u′(n) as a

warm start to boost the CSLQ performance, as will be shown with the obtained re-

sults in Chapter 6.4. This way CSLQ only has to refine the unconstrained solution to

ensure constraint compliance, i.e. it already starts in the vicinity of the constrained

optimal solution. Two main types of constraints are to be defined. On one hand,

the system state-input constraints, which indicate actuation caps under particular

system states, for instance, joint effort limits, defined by the state-input constraints

distribution matrices, with C(n) for the state and D(n) for the input, and the state-

input constraints level r(n). On the other hand, the pure state constraints represent

restrictions on the state vector that can not be overcome, for instance, joint position

limits, defined by the pure state constraints distribution matrix G(n) and the pure

state constraints level h(n).

After finding a constraint-compliant solution, the complete motion plan x′′(n),

u′′(n) is ready to be followed by the platform. Any tracking or control algorithm

could be used to accurately follow the planned motion and compensate for distur-

bances. For instance, MPC, Event-triggered replanning, or other procedures could

be adequate for this purpose, depending on the platform and mission requirements.

Remark that the main prerequisite to using the motion planner is to obtain a state

space model of the mobile platform, defining A(n) and B(n), with the generic pro-

cedure for modeling over-actuated mobile platforms including several kinematic

chains presented above.

Finally, in the following the two main methods used in the motion planner are

analyzed in detail, FMM as a path planner in the first stage and SLQ as an optimal

solver for motion planning in the second and third stages.

Trajectory planning

The goal of the first stage, PPWS, is to generate an initial reference trajectory for the

mobile platform to reach the goal, which will be later used as a warm start of the

optimization algorithm to accelerate its convergence, as can be seen in Figure 5.1. In

particular, we propose FMM (Sethian, 1999) again as the warm start path planner.

As extensively presented during this doctoral dissertation, FMM has been selected

since it extracts a globally optimal, smooth, and continuous path to reach the goal

given a cost map. See Chapter 3.2 for a detailed description of the algorithm.
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In summary, FMM generates the optimal trajectory Γ from the starting position

of the platform until the goal. Considering 1 as the kinematic chain defining the

mobile platform, then Γ(0) = p̃0 = w p1(0) and Γ(N) = p̃g = w p1(N). Following

the nomenclature defined in Chapter 3.2, the objective of FMM is to minimize the

cost accumulated along the path Ω(Γ( p̃0, p̃g, l)) by solving the optimization problem

defined in (5.8-5.9), with Γ( p̃0, p̃g, l) the continuous function that gives a point p ∈ Ω

depending on the path length l from the starting point p̃0, being lg the total length

of the path, and Υ the so-called cost to go, i.e. the expanded FMM wave.

Minimize

Γ( p̃0, p̃g)
Υ( p̃0, p̃g) =

∫ lg

0
Ω(Γ( p̃0, p̃g, l)) dl (5.8)

with Υ( p̃j = p̃g, p̃g) = 0 (5.9)

Apart from the Cartesian positions derived from the FMM path planner, it is

beneficial to enrich the generated path Γ with some more information. On the one

hand, the orientation of the platform at each waypoint is computed to also warm

start the orientation states of the system. Including the robot heading in the trajec-

tory is particularly helpful for platforms with non-holonomic constraints, since it

gives the mobile platform a big hint on how to properly follow the path, being the

yaw obtained geometrically considering the position of two consecutive waypoints.

On the other hand, each waypoint should be timestamped, which can be easily done

by interpolating the total expected time for finishing the operation tN into each time

step tn. Note that there are many different approaches to estimating tN according to

the characteristics of the system, its nominal speed, or the use case, which is out of

the scope of this work.

Later on, so the next stages USLQ and CSLQ converge faster, the trajectory Γ

is used to warm start the pose of the platform wP1 at each time step tn, in two main

senses. First, wP1(n) is initialized to Γ(n). Second, although wP1(n) will freely evolve

during the optimization, a quadratic cost is defined so wP1(n) uses Γ(n) as a refer-

ence solution, as explained later.

To finalize, remark that the wave propagation is, for FMM, the most computa-

tionally expensive step, and the trajectory extraction is computationally negligible.

This is very convenient for replanning the motion since a new optimal trajectory

from the current pose of the platform can be obtained quickly, i.e. without recom-

puting the cost to go Υ. This only needs to be done once, offline, or in case the goal

changes. Again, refer to (Sánchez-Ibáñez et al., 2019b) and Chapter 3.3 for more

details about DyMu, the FMM-based path planner used within this stage.
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Sequential Linear Quadratic optimal solver

The next stages of MWMP make use of an optimal solver, which tackles the uncon-

strained problem in stage two (USLQ) and the constrained one in stage three (CSLQ),

to generate a motion plan for the platform, as shown in Figure 5.1. As aforemen-

tioned, the solver is called SLQ (Sideris and Bobrow, 2005), (Sideris and Rodriguez,

2011).

The standard formulation of a discrete-time optimal control problem is shown in

(5.10-5.13).

Minimize

u(n), x(n)
J = Φ(x(N)) +

N−1

∑
n=0

L(x(n), u(n), n) (5.10)

subject to x(n + 1) = f (x(n), u(n)), x(0) = x0 (5.11)

C(n)x(n) + D(n)u(n) + r(n) f 0 (5.12)

G(n)x(n) + h(n) f 0 (5.13)

Where x(n) is the state vector at time step tn, noticeably, x(0) is the initial state

and x(N) is the final one, and u(n) is the actuation vector; x0 defines the initial state

of the system, at time step t0 = 0. Additionally, (5.12) represents the state-input

inequality constraints with the constraints distribution matrices C(n), D(n) and the

constraints level vector r(n), and (5.13) the pure state constraints with the constraints

distribution matrix G(n) and the constraints level vector h(n), as aforementioned.

In this formulation, J is defined as the total cost to go, and it is composed of

Φ(x(N)), the terminal cost, and L(x(n), u(n), n), the intermediate cost. Assuming a

quadratic performance index, these are defined in (5.14) and (5.15) respectively.

Φ(x(N)) =
1
2
[x(N)− x0(N)]TQ(N)[x(N)− x0(N)] (5.14)

L(x(n), u(n), n) =
1
2
[x(n)− x0(n)]TQ(n)[x(n)− x0(n)]

+[u(n)− u0(n)]TR(n)[u(n)− u0(n)]
(5.15)

With Q(n), R(n) defined as the state and input quadratic cost matrices respec-

tively, at time step tn, and x0(n), u0(n) the state and input references or targets. Note

that x0(N) = xN is the terminal state goal and Q(N) is the terminal state cost matrix,

which is usually configured to have considerably high costs to ensure that the goal

defined in x0(N) is accomplished. Note also the importance of properly tuning Q(n)

and R(n) to precisely represent the desired behavior of the system.

Solving the aforementioned discrete-time optimal control problem, the objective

of the algorithm is to generate the motion plan x(n), u(n) for every time step tn

within the given time horizon T = {t0, t1, ... , tn, ... , tN}. To that purpose, several
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inputs are required. On one hand, the current state of the system x0 and the de-

sired goal state xN are needed. On the other hand, as extensively explained above,

an initial trajectory Γ is fed to the solver to accelerate the convergence speed. Con-

sequently, the corresponding intermediate state costs Q(wP1, n) must be tuned with

appropriate costs at every time step. These have to be high enough to help the solver,

guiding it closer to the globally optimal path, but low enough to avoid forcing the

solver to follow exactly the provided trajectory, which would reduce the variety of

possible solutions to be explored.

Additionally, obstacle avoidance is always a requirement for any mobile plat-

form. Although the warm start trajectory already considers the presence of obstacles

in the scenario, another layer of obstacle avoidance is required, since the solver will

draw a probably similar but new trajectory. Thus, USLQ and CSLQ need the same

cost map Ω used in FMM at PPWS. Ω(wP1(n)) corresponds to a repulsive cost that

gets the system away from danger, which means that the cost increases as the sys-

tem gets closer to obstacles. This way the generated trajectories for the platform base

pose wP1 dynamically get away from obstacles during the motion planning process

in function of the cost map Ω, meanwhile trying to follow the warm start trajectory

Γ. The intermediate cost defined above in (5.15) needs, then, to be reformulated as

in equation (5.16), adding the repulsive cost Ω(wP1(n)), i.e. the cost value associ-

ated to the platform pose wP1 at time step tn. Remark that it is key to maximize the

continuity and linearity of the cost map, otherwise the solver will find difficulties to

converge when encountering non-linearities in the costs.

L(x(n), u(n), n) =
1
2
[x(n)− x0(n)]TQ(n)[x(n)− x0(n)]

+[u(n)− u0(n)]TR(n)[u(n)− u0(n)]

+Ω(wP1(n))

(5.16)

Finally, an overview of the functioning of the solver for the discrete-time optimal

control problem defined in (5.10-5.13) is depicted in Algorithms 3 and 4. Summa-

rizing, given the current state x0, the current actuation plan u(n), the warm start

trajectory Γ, the quadratic costs Q(n) and R(n), the system model A(n) and B(n),

the cost map of the scenario Ω, the state-input C(n), D(n), r(n) and the pure state

G(n), h(n) constraints, this solver computes efficiently the motion plan x(n), u(n)

by iteratively obtaining step plans x̄(n), ū(n) to be applied to the current solution.

To do so, the current active constraints are stored in Cc(n), Dc(n), and Gc(n), which

are later used to consider the constraints during the LQR solution computation. In

particular, the state-input constraints are directly handled within the Predefinitions

step, and the pure state constraints are managed later within the State constraints

management step.

Algorithms 3 and 4 are based on the SLQ solver presented in (Sideris and Bo-

brow, 2005) and (Sideris and Rodriguez, 2011), with a few differences. First, the state

target sequence x0(n) is initialized with the warm start trajectory, as aforementioned.
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Algorithm 3 SLQ solver
1: Initialization
2: x(0) ← getCurrentState()
3: u(n) ← getCurrentControlPlan()
4: x0(wP1) ← getWarmStartTrajectory()
5: C(n), D(n), r(n), G(n), h(n) ← getConstraints()
6: repeat
7: Linearization and quadratization
8: x(n) ← forwardSimulateSystem(x(0), u(n))
9: Q(n), R(n) ← getQuadraticCosts()

10: A(n), B(n) ← getLinearizedSystem(x(n))
11: Ω ← getObstaclesRepulsiveCost()
12: Cc(n), Dc(n), Gc(n) ← getActiveConstraints(C(n), D(n), r(n), G(n), h(n), x(n), u(n))
13: Reference tracking
14: x̄0(n) ← Q(n)(x(n)− x0(n))
15: ū0(n) ← R(n)(u(n)− u0(n))
16: Predefinitions
17: D̂(n) ← (Dc(n)R(n)−1Dc(n)T)−1

18: r̂(n) ← −Dc(n)R(n)−1ū0(n)
19: Â(n) ← A(n)− B(n)R(n)−1Dc(n)T D̂(n)Cc(n)
20: R̂(n) ← B(n)R(n)−1[I − Dc(n)T D̂(n)Dc(n)R(n)−1]B(n)T

21: Q̂(n) ← Q(n) + Cc(n)T D̂(n)Cc(n)
22: x̂0(n) ← x̄0(n) + Cc(n)T D̂(n)r̂(n)
23: û0(n) ← −B(n)R(n)−1[ū0(n) + Dc(n)T D̂(n)r̂(n)]
24: Backward Pass - Riccati matrix difference equation
25: P̂(N) ← Q(N)
26: ŝ(N) ← Ω(wP1(N)) + x̄0(N)
27: for n ← (N − 1); n in T do
28: M̂(n) ← (I + R̂(n)P̂(n + 1))−1

29: P̂(n) ← Q̂(n) + Â(n)T P̂(n + 1)M̂(n)Â(n)
30: ŝ(n) ← Â(n)T M̂(n)T ŝ(n + 1) + ÂT(n)P̂(n + 1)M̂(n)û0(n) + x̂0(n) + Ω(wP1(n))
31: end for
32: Pure state constraints (ζ) management
33: if isConstrained() then
34: for ζm in Cx do
35: m ← getTimestepOfConstraint(ζm)
36: Ψc(m) ← Gc(m)
37: yc(m) ← 0
38: for n ← (m − 1); n −−; n > 0 do
39: Ψc(n) ← Ψc(n + 1)M̂(n)Â(n)
40: yc(n) ← yc(n + 1) + Ψc(n + 1)M̂(n)[û0(n)− R̂(n)ŝ(n + 1)]
41: end for
42: H(ζm), Ψ(ζm), y(ζm) ← hc(m), Ψc(0), yc(0)
43: for ζ j in Cx do
44: n ← min(ζm − 1, ζ j − 1)
45: Fζm ,ζ j

(n + 1) ← 0
46: for i ← n; i g 0 do
47: Fζm ,ζ j

(i) ← Fζm ,ζ j
(i + 1)− Ψc(i + 1)M̂(i)R̂(i)Ψj(i + 1)T

48: end for
49: F (ζm, ζ j) ← Fζm ,ζ j

(0)
50: end for
51: end for
52: ν ← F−1[−Ψx̄(n) + y +H]
53: for n ← 0, ..., N do
54: ŝ(n) ← ŝ(n) + ∑ζ∈Cx ;ζgn ΨT

c (n)ν(ζ)
55: end for
56: end if
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Algorithm 4 SLQ solver: continue
57: Forward Pass
58: for n ← 0; n in T do
59: v̂(n) ← M̂(n)(û0(n)− R̂(n)ŝ(n + 1))
60: x̄(n + 1) ← v̂(n) + M̂(n)Â(n)x̄(n)
61: ¼(n + 1) ← ŝ(n + 1) + P̂(n + 1)x̄(n + 1)
62: µ(n) ← D̂(n)[Cc(n)x̄(n)− Dc(n)R−1(n)B(n)T¼(n + 1) + r̂(n)]
63: ū(n) ← −R−1(n)[BT(n)¼(n + 1) + Dc(n)Tµ(n) + ū0(n)]
64: end for
65: Computed step plan appliance
66: if checkConstraints(x(n), x̄(n), u(n), ū(n), C(n), D(n), r(n), G(n), h(n))
67: or isUnconstrained() then
68: ³ ← computeLineSearch(x(n), x0(n), u(n), u0(n), ū(n))
69: else
70: ³ ← satisfyConstraints(x(n), x̄(n), u(n), ū(n), C(n), D(n), r(n), G(n), h(n))
71: end if
72: x(n) ← x(n) + ³x̄(n)
73: u(n) ← u(n) + ³ū(n)
74: Termination conditions
75: convergence ← checkTermination(x(n), x0(n), u(n), u0(n), ū(n), ³)
76: until convergence

Second, the obstacle repulsive cost Ω(wP1(n)) is included in the backward pass.

Third, at each iteration, the constraints compliance is checked. If no new constraint

is violated, then a standard Line Search for ³ is performed. The line search consists

of finding the best ³, which is the step size used to apply the step solutions x̄(n) and

ū(n), to reduce to the minimum the total cost to go J at each iteration of the solver.

Otherwise, if any constraint is violated, ³ is generated particularly to satisfy the con-

straints. Fourth, several termination conditions are defined, on top of the algorithm

convergence itself. In particular, one of these conditions checks that the last kine-

matic chain pose wPK is close enough to the goal pose wPK(N) to perform the desired

task, depending on a given threshold, and another one ensures that the motion plan

is thoroughly safe. Note that Algorithm 3 encompasses both the unconstrained and

the constrained solvers, with [C(n), D(n), r(n), G(n), h(n), Cc(n), Dc(n), Gc(n)] = 0

in the unconstrained case, which means that Â(n) = A(n), R̂(n) = B(n)R(n)−1B(n)T,

Q̂(n) = Q(n), x̂0(n) = x̄0(n), û0(n) = −B(n)R(n)−1ū0(n) and µ(n) = 0. Besides,

as can be observed, for the unconstrained case the State constraints management is not

required, and the Computed step plan appliance is reduced to the first Line Search.

5.4 Summary and conclusions

In this chapter MWMP is presented, a motion planner for over-actuated mobile

platforms capable of dealing with system dynamics and constraints, such as non-

holonomic constraints or joint limits, without severely impacting the computational

resources of the system. This is achieved by employing a multi-staged warm start

approach, which initializes in several steps the optimal solver, SLQ. In particular, a

novel pipeline with three different stages is used: first, an FMM-based path planner;
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second, an unconstrained SLQ motion planner; third, a constrained SLQ motion

planner. Although this pipeline is functional for most cases, it finds convergence

hindrances when the constraints are too restrictive, since the planner is not able

to escape local minima solutions. To solve this, it is foreseen as future work the

division of the constrained SLQ stage into several steps, including each constraint

sequentially, which aids the solver convergence as suggested in (Kabir et al., 2021).

Furthermore, a generic state space model for over-actuated mobile platforms has

been presented, which can model platforms composed of several kinematic chains in

a straightforward way. Nevertheless, this model is only valid for mobile platforms

with open kinematic chains. Future work will improve the generic model to include

closed-chain systems.

Thanks to the reduced computational cost of MWMP, this motion planner can be

used in MM planetary exploration applications. Hence, MWMP has been applied to

two different use cases, for which it has been integrated into two motion controllers.

On the one hand, a tailored replanning controller, to tackle low-frequency distur-

bances with great smoothness in goal-constrained trajectory following problems. On

the other hand, a receding horizon MPC, to cope with high-frequency disturbances

in dynamic reactive problems. See Chapter 6 in the following for results of the plan-

etary exploration experimental campaigns including MWMP and the controllers.

Particularly, simulated and real experiments with MM rovers were performed, in

two use cases: a sample tube MM retrieval and a rappelling MM support.



Chapter 6

Results

"Si aliquid bonum operibus assequeris,
labor cito praeterit, sed bonum manet"
-
"If you accomplish something good
with hard work, the labor passes
quickly, but the good endures"

Gaius Musonius Rufus
1st century A.D.

6.1 Introduction

Although theoretically functional, all of the presented algorithms require exper-

imental validation to confirm their usefulness: science demands proof. For au-

tonomous robots, proof means bringing the algorithms to the platform, getting the

system to an interesting scenario and use case, performing tests, and analyzing the

results. This experimentation procedure demands multiple complex hardware and

software components to work together, coordinately, before testing the new meth-

ods. Consequently, robotics experimental tests are generally expensive and time-

consuming.

Roboticists have developed, thus, an alternative to ease experimentation: simu-

lations with the software-in-the-loop concept. Software-in-the-loop consists of using

the same software architecture as the real robot in the simulations, to check that the

different components and their connections work correctly before bringing them to

the platform. Since the software architecture is the same in simulations, transferring

any modification to the real system is straightforward. Besides, simulation results

are analyzed to improve the new methods before the real experimentation, and also

to organize the most interesting experimental tests w.r.t. the validation, before actu-

ally going to the real site.

Following the software-in-the-loop concept, during this doctoral research multi-

ple simulation, laboratory, and field tests have been performed to validate the algo-

rithms presented in the previous chapters. Find a summary of all the tests in Table

6.1. Note that those tests marked with a "*" are not analyzed in this dissertation to
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TABLE 6.1: Synopsis of experimental campaigns.

Contribution Location Platform
Tests

Simulation Laboratory Field

1
Decos HDPR

Yes Yes* Yes
(The Netherlands) (ESA)

2
Galopprennbahn Bremen SherpaTT

Yes Yes* Yes
(Germany) (DFKI)

3
ESTEC ExoTeR

Yes* Yes No
(The Netherlands) (ESA)

4
Lanzarote SherpaTT and CoyoteIII

Yes Yes* Yes
(Spain) (DFKI)

maintain the document’s conciseness, since they were either too preliminary, with-

out including all of the involved systems, or did not provide valuable results. Four

main test campaigns have been performed, one for each main contribution of this

doctoral dissertation. First, round-trip navigation with HDPR from ESA, emulating

a sample fetching mission including the dynamic cost map update shown in Chapter

3. Second, an autonomous MM operation with the rover SherpaTT from DFKI, using

the robust motion planner presented in Chapter 4 to cope with its highly restricted

arm workspace. Third, an optimal retrieval of a Martian sample tube with ExoTeR

in the ESA-PRL in ESTEC, using the optimal motion planner depicted in Chapter 5.

Fourth, a rappelling campaign with the DFKI rovers SherpaTT and CoyoteIII in a

Lunar analogue lava tube in Lanzarote, using again the optimal motion planner pre-

sented in Chapter 5 but integrated within an MPC loop. Let us show these results in

more detail in the following.

6.2 Round-trip navigation using dynamic cost maps in plan-

etary surfaces

The proposed method in Chapter 3, i.e. the dynamic cost map update procedure

during the traverse, was validated by means of several experimental tests. The tests

emulated a round-trip mission, where the rover HDPR had to autonomously reach

a certain spot in the scenario, perform a task, and return to the starting point. The

rover HDPR, developed by ESA-PRL, is characterized by having great autonomy

and weight-carrying capacity (Hewitt et al., 2018). The selected scenario for the

test campaign was Decos, a Mars-like terrain including rocks and craters, which is

located close to ESTEC in Noordwijk, The Netherlands. First, simulation experi-

ments were carried out in a virtual environment that emulates the rover dynamics

and its interaction with terrains and obstacles. Second, a field test was performed

to validate the integration of the new cost map update feature within the overall
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FIGURE 6.1: CoppeliaSim simulation environment that includes the virtual sce-
nario of Decos, the model of HDPR, the goal (red ball), and the followed path (blue

line).

GNC architecture that is being developed by ESA in collaboration with UMA-SRL

(Azkarate et al., 2020). A video that illustrates both simulation and real tests was

recorded1. The results of these tests show how the return traverse is improved due

to the dynamic updating of the cost map, as follows.

Simulation campaign

As aforementioned, the software in the loop concept was used to perform several

simulations. In this sense, the CoppeliaSim simulator was used together with a vir-

tual machine that implemented HDPR’s software architecture, i.e. all the software

components used in the real rover from ESA. The virtual environment included sev-

eral models. First, a model of Decos was integrated by including a DEM and tex-

tures of the real scenario, which were obtained using the eBee drone from senseFly

Inc. Second, a simplified model of HDPR, which mimics its kinematic configuration

and locomotion. Figure 6.1 shows an image of the simulation environment, with the

rover following a predefined path.

The software used to control every different component in the GNC architecture

of the rover was implemented within the Robot Construction Kit (ROCK)2, which

is a real-time operating system for robots created and maintained by DFKI RIC. The

proposed cost update algorithm was developed in C++ within the DyMu path plan-

ner (Sánchez-Ibáñez et al., 2019b), which can be found in the UMA-SRL Github orga-

nization3. The communication between ROCK and CoppeliaSim was implemented

1https://youtu.be/e1Tqmn8HFvU
2https://www.rock-robotics.org/
3https://github.com/spaceuma/ARES-DyMu_cpp
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via the remote Application Programming Interface (API) of the simulator, together

with several components in the control software.

The objective of the simulation was to test the functioning of the proposed method

for a round-trip mission, therefore, two paths were planned: an initial path to reach a

certain localization in the map, and a second one to come back to the starting point.

The initial cost map was computed according to a DEM of the terrain, assigning

higher costs to big slopes and obstacles.

During the traverse, the rover gathered information about the environment that

was used later to update the cost map before planning consecutive paths, e.g. to re-

turn to the starting point. To test the performance of the obstacle avoidance method,

the rover encountered several obstacles not considered in the initial cost map. It

was emulated by generating random obstacles during the simulation. Additionally,

the proposed method for cost map updating based on terrain features was tested in

the following way. Since the experimental terrain is composed of only one type of

terrain, it is on purpose wrongly segmented into three terrains, as shown in Figure

6.2a. The first one (a1) takes up the northern path of the scenario and was considered

as loose soil with a high slip ratio (Ã1 = 0.8). The second terrain (a2) occupies the

surrounding area of the central craters, and it was also considered as a high slip ter-

rain (Ã2 = 0.75). Finally, the third terrain (a3) covers the rest of the scenario, without

slip as a rough terrain (Ã3 = 0). The trafficability of the three terrains was initially

estimated as one (ξ1, ξ2, ξ3 = 1) since this feature has to be necessarily measured on

the traverse.

Regarding the aforementioned parameters, the initial cost of the terrains were

c1 = 30, c2 = 25 and c3 = 10. Due to that cost distribution, the initially planned

path (green) took a longer way to reach the objective. This initial path was repaired

continuously during the traverse (blue) due to the newfound hazards. As a result,

the total length of the initial path was 90.13 m, while the repaired one was 99.06 m,

and the rover spent 16 min 24 s to reach the objective at 10 cm/s speed.

When the return traverse was planned, the cost map was already updated, as

exposed in Figure 6.2b. On one hand, the detected obstacles were included in the

cost map; on the other hand, the updated costs of the terrains a1 and a3 concluded

quite similar (c1 = 10.24, c3 = 10), since their measured slip ratio and trafficability

were almost identical (Ã1 = 0.03, Ã3 = 0.01; ξ1 = 0.91, ξ3 = 0.93). The cost of the

terrain a2 remained the same since it had not been traversed. As a consequence, the

return planned path (green line in Figure 6.2b) was shorter and avoided directly the

already detected obstacles, with a total length of 77.84 m. Nevertheless, the rover

still encountered new hazards along this new path, which needed to be repaired

(blue). It increased its length to 88.22 m with a total spent time of 14 min 18 s at the

same velocity.

In summary, a reduction of 13.64 % could be observed for the return path length

during the simulation tests, i.e. the path planner was able to find a better path to re-

turn after updating the cost map using the gathered information. The real reduction,
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(a) Initial segmentation of the terrain within the cost map, planned and traversed paths.
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(b) Updated cost map for the return traverse.

FIGURE 6.2: Round-trip simulation results, showing the initial and final cost maps
with the planned and traversed path. Both images show the segmented terrains
and their cost (color), the first (a) and second (b) planned (green) and followed

(blue) paths.
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TABLE 6.2: Results of the HDPR round-trip simulation tests.

Parameter Outbound traverse Return traverse Reduction
Planned distance 90.13 m 77.84 m 13.64 %
Traveled distance 99.06 m 88.22 m 10.94 %

Time spent 16 min 24 s 14 min 18 s 12.80 %

FIGURE 6.3: HDPR with the stereo cameras used for hazard avoidance and the
GNSS antenna used for localization.

due to the later encountered obstacles, was 10.94 %. Regarding the time spent, there

was a reduction of 12.80 %, saving 2 min 6 s during the return traverse thanks to the

improvements in the cost map. Find the results of the simulation tests summed up

in Table 6.2.

Field test campaign

Once the simulation confirmed the utility of the proposed methods, a field test was

carried out to analyze their impact in an analogue round-trip planetary exploration

mission. For this purpose, the real HDPR was equipped with a GNSS receiver for

ground-truth localization, with complementary Real-Time Kinematic (RTK) correc-

tions coming from a GNSS base station antenna. Besides, a hazard detector was

included to identify local obstacles (Gerdes et al., 2020), which makes use of stereo

cameras. Figure 6.3 illustrates the experimental setup for HDPR.

An aerial image of the scenario during the field test is shown in Figure 6.4, in-

cluding the three patches of terrain, and dummy rocks that were placed randomly

and not considered initially in the DEM. The objective of the mission was to reach
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FIGURE 6.4: Aerial image of Decos and the trajectories covered by HDPR during
the field test.

several key spots during the traverse, shown as yellow dots in Figure 6.4, and return

to the starting point, shown as a green dot. Thus, a new path was planned each time

a key spot was reached, and the cost map was also updated on the traverse. The first

trajectory covered by HDPR during the field test is shown in blue, and the return

trajectory is shown in red. In both paths, the hazard avoidance maneuvers can be

noted. Additionally, the different terrain patches are labeled in Figure 6.4. The initial

segmentation and parameters of the scenario were the same as the ones used in the

simulations, hence the costs were also the same.

Analyzing the rover traverse until it reached the last key spot, the total length of

the planned path on terrain a1 was 43.19 m, and on terrain a3 was 47.15 m. Therefore,

the total planned distance was 90.34 m. Considering the initially estimated slip ratio

of both terrains and a constant rover speed of 10 cm/s, the expected time needed

to cover these distances was 7 min 52 s and 35 min 59 s respectively, with a total of

43 min 51 s. Nevertheless, the real performance of the rover differed significantly

from what was expected. On one hand, the real distance covered by the rover was

101.45 m, which means an increase of 12.30 % (11.12 m), due to the encountered ob-

stacles and the consequent hazard avoidance maneuvers. On the other hand, the

real spent time to cover the paths was 29 min 54 s, which is 31.81 % (13 min 57 s) less

than expected. This difference is caused by errors in the initial terrain parameters

estimation since the real slip ratio of terrain a1 was much lower. In summary, the

initial cost map estimation was clearly not representative of the real situation of the
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TABLE 6.3: Results of the HDPR round-trip field test campaign.

Parameter Outbound traverse Return traverse
Planned distance 90.34 m 62.19 m
Traveled distance 101.45 m 64.31 m

Absolute error 11.12 m 2.12 m
Percent error 12.30 % 3.41 %

Estimated time spent 43 min 51 s 10 min 30 s
Real time spent 29 min 54 s 12 min 22 s
Absolute error 13 min 57 s 1 min 52 s
Percent error 31.81 % 17.78 %

scenario, and therefore the final performance of the rover differed substantially from

what was expected.

Before performing the return traverse, the cost map was updated with the al-

ready found information, i.e., slip ratio, detected obstacles, and trafficability. In con-

sequence, the planned return path evaded the first detected obstacle close to the

starting point. Additionally, as it happened in the simulations, the final costs of the

terrains concluded much the same (c1 = 10, c3 = 10.08), showing that the measured

slip ratio and trafficability of both terrains were almost equal (Ã1 = 0.02, Ã3 = 0.01;

ξ1 = 0.90, ξ3 = 0.88). Once again, the terrain a2 was not traversed hence its cost

remained the same.

Finally, the total planned distance for the return path on terrain a1 was 12.92 m,

and on terrain a3 was 49.27 m, with a total distance of 62.19 m. Considering the up-

dated slip ratios, the expected time to cover these distances were 2 min 12 s and 8 min

18 s respectively, with a total of 10 min 30 s. Let us compare the aforementioned dis-

tances and times with the real ones, as summarized in Table 6.3. Firstly, the final

distance covered by the rover was 64.31 m, i.e. 3.41 % (2.12 m) more than planned.

Secondly, the total time spent during the return traverse was 12 min 22 s, which is

17.78 % (1 min 52 s) more than expected. This increase in both distance covered and

time spent is caused by hazard avoidance maneuvers. Nevertheless, these errors are

noticeably smaller than the ones committed during the first traverse. This improve-

ment is thanks to the information feedback, which is raising the reliability of the cost

map as regards the real situation of the scenario, i.e. the rover is more aware of the

characteristics of the scenario, enhancing the consequent planned paths.

6.3 Robust goal-constrained MM in planetary exploration

Within the context of the European project ADE, as explained before in Chapter 1,

a test campaign was performed with the SherpaTT rover from DFKI. Initially, the

project field trials were planned in Fuerteventura, Canary Islands, Spain, but had to

be disregarded due to the COVID-19 pandemic of early 2020. Consequently, several

minor field test campaigns were carried out close to DFKI in Bremen, Germany,
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(a) Aerial image of the experimental terrain.
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FIGURE 6.5: Depiction of the experimental terrain at Galopprennbahn Bremen,
Germany.

only with the team from DFKI RIC on-site, with the rest of the partners providing

online support. Among the goals of ADE’s tests was to perform an autonomous

dummy MM operation, so SherpaTT could reach a particular spot of the scenario

and perform a manipulation task, moving base and arm in a coordinated manner.

This use case was the perfect application of the robust motion planner presented

in Chapter 4, considering that SherpaTT was equipped with multiple scientific and

engineering tools that considerably limited the free workspace of the robotic arm.

One of the aforementioned field test campaigns was in Galopprennbahn Bremen,

a vast racecourse suitable for long rover traverses, which is shown in Figure 6.5a.

Before these tests, the robust MM motion planner was integrated within SherpaTT’s

software stack and tested within a custom DFKI simulation environment with tai-

lored models for SherpaTT and Galopprennbahn Bremen. To generate the model of

the scenario, a DEM was obtained by aerial surveying of the area, which is shown

in Figure 6.5b. Some of the simulation and field tests in Galopprennbahn are shown

in a supplementary video4. Additionally, a benchmark with an off-the-shelf MM

motion planner was performed, to analyze the advantages and disadvantages of the

proposed method w.r.t. the state of art. Hence, the platform, the simulation tests, the

benchmark, and the Galopprennbahn field test campaign are thoroughly described

below.

Platform survey

The platform used within the robust MM simulation and field tests is SherpaTT.

Shown in Figure 6.6, SherpaTT is a legs-on-wheels rover equipped with a 6 DoF

manipulator, developed at DFKI RIC. Its hybrid locomotion enables walking and

4https://youtu.be/I-cEbNgtQ9c
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FIGURE 6.6: SherpaTT rover in the Lunar crater of the SpaceHall at DFKI RIC,
Bremen.

driving capabilities, i.e. an active suspension system that increases mobility on ir-

regular terrains. Besides, the 6 DoF robotic arm holds an Electro-Mechanical Inter-

face on its end effector, allowing the manipulator to retrieve different tools, placed

in four mounts on the central body, to perform a wide variety of tasks. The rover

has an Emlid Reach GPS with RTK corrections and two GNSS antennas for ground

truth positioning, an IMU mainly used to estimate the rover 3D orientation, and a

Velodyne HDL-32E Light Detection and Ranging (LIDAR) for mapping. Finally, the

rover is also equipped with four NIR Basler acA2040-25gmNIR cameras, one stereo

pair of Localization Camera (LocCam)s on top of an avionics box on the foremost

side of the rover, and another stereo pair of Navigation Camera (NavCam)s on top

of a PTU-E46 Pan & Tilt Unit from FLIR Systems, which is placed on a mast located

also at the front of the rover. The cameras are used for perception purposes, i.e.

NavCam for mapping and LocCam for localization, as the name suggests.

Concerning the robotic arm, its joint specifications are shown in Table 6.4. It

is a 6 DoF manipulator with a Roll-Pitch-Pitch-Roll-Pitch-Roll configuration. The

first three joints, also called position joints, are slower (f 6 ◦/s) because of big gear

ratios. On the other hand, the last three joints are the orientation joints that define

the spherical wrist, weaker but faster and with a wide joint movement range. More

details about the manipulator can be found in (Manz et al., 2012).

Regarding computational resources and software, a standard Intel-Core-i7 PC
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TABLE 6.4: SherpaTT arm joints specifications.

Joint 1 2 3 4 5 6
Type Rot. Rot. Rot. Rot. Rot. Rot.

Orientation Z Y Y Z Y Z

Range (◦)
+175 +55 +165 +175 +125 +175
−175 −120 −100 −175 −125 −175

Speed (◦/s) ±3 ±6 ±6 ±20 ±20 ±20
Gear ratio 7680:1 3000:1 3000:1 160:1 160:1 160:1

Repeatable peak torque (N m) 520 866 433 92 92 92

(a) General point of view (b) Top point of view (c) Front point of view

FIGURE 6.7: Shape of the reachability volume ΩR of SherpaTT, where the safe and
reachable volume for the wrist WR is represented in light blue. The up elbow and

right shoulder solution of the IK is used.

is installed onboard SherpaTT to run the Motion Control Subsystem (MCS), using

the ROCK2 framework. Additionally, the SherpaTT API also runs on the onboard

computer, which allows interchanging information between the robot and external

software components, i.e. for receiving commands or sending sensor data. Besides,

it is the same interface used to communicate with SherpaTT in the simulator, fol-

lowing the software-in-the-loop concept. The SherpaTT API makes use of the Robot

Remote Control library (RRC), see (Danter et al., 2020) for more details.

Finally, the depicted characteristics of SherpaTT were analyzed for their inclu-

sion into the motion planner, as follows. Making use of the URDF of the platform,

the computed reachability volume of the SherpaTT’s manipulator is shown in Figure

6.7, with the safe volume represented in light blue. Note that the wrist reachability

volume was used in this paper, taking advantage of the already mentioned kine-

matic decoupling, seeing that the SherpaTT’s robotic arm has a spherical wrist. Also

note that the up elbow, right shoulder solution of the IK was used, since it keeps the

arm elbow as far as possible from the body. It is remarkable that the presence of the

legs, the avionics box, the mast, and the cameras restricted noticeably the available

free-of-collision workspace of the robotic arm. In particular, a highly unsafe volume

can be observed in the fore part of the rover due to the mast. This was a main re-

striction in the manipulator workspace that had to be considered when planning its

movements. Besides, another non-reachable volume can be observed in the rear part
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of the rover, due to position limits of the first arm joint.

Simulation campaign

The validation of the proposed motion planner was carried out, first, through simu-

lation tests. They were performed using the DFKI Machina Arte Robotum Simulans

(MARS) simulator5, with 3D models of SherpaTT and Galopprennbahn Bremen6,

a racecourse located in Bremen near DFKI RIC. Both the model and the simulator

characteristics are detailed in this section below.

The simulation tests consisted of reaching a particular goal sample in the sce-

nario, to perform a dummy scientific task such as a scanning movement to analyze

the surface. First, the motion planning library received the goal sample pose and

the global DEM of the scenario, which was obtained by a commercial drone sur-

veying the area beforehand; second, the planner processed the DEM to generate the

traversability map and the cost map, to differentiate safe and unsafe areas; third, the

cost map and the reachability volume of SherpaTT were used to generate a motion

plan; fourth, the platform followed the motion plan by controlling both the base and

the manipulator, i.e. sending commands depending on the current rover status. This

motion planning procedure is performed only once, offline, before starting the mo-

tion, i.e. no replanning nor map update capabilities are included in this work. The

motion planning library was launched in the same Central Processing Unit (CPU) as

the simulator, communicating through the SherpaTT API, as aforementioned. The

C++ source code of the motion planner is available in GitHub7 under Massachusetts

Institute of Technology (MIT) open source license.

On the one hand, the goal of the simulations was to confirm that the planned

motions were suitable for the platform and able to be followed by the coupled con-

troller. On the other hand, a deep analysis of the motion planner’s performance

was carried out to demonstrate the advantages of using a coupled approach. A sim-

ple decoupled motion planner and the proposed coupled approach were compared,

considering different planner configurations by changing the deployment distance d

(end deployment, progressive deployment, beginning deployment) and also chang-

ing the velocity of the joints of the manipulator relative to the real ones (x0.6, x0.8,

x1 i.e. the real speed of the arm joints, x1.2 and x1.4). Note that the decoupled mo-

tion planner is just the proposed one but starting the arm motion only in the last

waypoint of the rover trajectory, i.e. base and arm never move at the same time.

The simulation environment can be observed in Figure 6.8, where one of the mo-

bile manipulation tests is shown. The SherpaTT 3D model was directly extracted by

MARS from the robot URDF. Conversely, the terrain model was produced before-

hand for the areas where the robotic tests were to be performed. A global, offline

DEM of the environment was generated by commercial drone surveying hardware

5https://github.com/rock-simulation/mars
6https://goo.gl/maps/wJnPKLG2qY4QQnAt7
7https://github.com/spaceuma/ADE-Mobile_Manipulation
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FIGURE 6.8: Simulation environment in MARS, with SherpaTT executing a coupled
motion plan in the Galopprennbahn Bremen racecourse field.

and software. This approach, i.e. surveying the area beforehand, has various ad-

vantages when considering the final test deployment. First, the different reference

frames can be set before arrival at the test site, including the map or the global frame,

whose position and orientation can be set using the GPS coordinates. Once the in-

tegrated software has been tested in the simulated environment, no change in the

reference frame definition is needed when setting the robot on the field. Second, the

accuracy of the simulation can be evaluated after the rover tests, i.e. the simulated

and real executions can be compared to try to improve the simulator parameters to-

wards achieving better realism, although this is out of the scope of this work. The

generated DEM was also used in simulations by the motion planner for the rover

base path planning, as aforementioned.

Regarding the robotic simulator MARS, its software core is the Open Dynamics

Engine (ODE) 8. The physics engine uses optimization techniques to compute the

contact points and forces to be applied to the simulated rigid body objects. Tun-

ing of different parameters (e.g. material softness) and the robot models (e.g. sim-

plifications through groupings) are needed to avoid instabilities and an acceptable

simulation speed. MARS wraps the ODE with graphical tools, robotic sensors, and

actuator models, as well as several plugins with a great variety of functions. In the

presented research multiple plugins were employed, such as a plugin that manages

the noise levels in sensors, or a plugin that emulates the real connection of the robotic

framework to the sensor and motor drivers of the robot.

Multiple simulation experiments were conducted using the simulation environ-

ment presented above. For each motion planner configuration and arm joint speed,

a total of 40 simulations were run on a single core of an Intel(R) Core(TM) i7-10750H

8https://www.ode.org/
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FIGURE 6.9: Rover initial positions (blue circles) and sample goal positions (red
crosses) in the 40 simulation tests. Note that different combinations of starting pose

and goal were used.

CPU (2.60GHz). At each simulation, the initial rover pose and the goal sample po-

sition were changed as shown in Figure 6.9, maintaining an average separation of

approximately 15 m.

In the first place, Figure 6.10 shows the average computation time required to

obtain the solution for every configuration of the motion planner. As can be ob-

served, the decoupled solution is the fastest (2.85 s), since the computation is simpler.

Nonetheless, the coupled approaches have comparable computation times (4.27 s

progressive deployment, 5.12 s beginning deployment, 10.80 s end deployment), be-

ing slightly higher for the end deployment configuration (10.80 s) due to the bigger

size of the 3D tunnel cost volume, which increases noticeably the number of nodes

to be checked during the 3D trajectory planning phase.

The average distance to the closest self-collision during the motion is another re-

markable result of the simulation tests, as a measure of the risk of self-collisions.

Maintaining a high distance to self-collisions increases the manipulability of the

robotic arm, and reduces the possibilities of self-colliding in case of a positioning

error, e.g. due to a joint failure or de-calibration. As shown in Figure 6.11, the

fact that the arm and base move at the same time does not increase the risk of self-

collisions, which is similar in the decoupled solution (0.23 m) and in the coupled

ones (0.26 m progressive deployment, 0.21 m beginning deployment, 0.34 m end de-

ployment). On top of that, the end deployment configuration is considerably safer

than the other ones (0.34 m), thanks to maintaining the arm in a comfortable and
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FIGURE 6.10: Motion plan computation time. For every configuration of the motion
planner, 40 different simulations were carried out. Showing results for arm joints

relative speed x1.

FIGURE 6.11: Average distance to closest unsafe wrist position. For every config-
uration of the motion planner, 40 different simulations were carried out. Showing

results for arm joints relative speed x1.
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FIGURE 6.12: Average required execution time of the motion plan for the manipu-
lator (green) and the rover base (blue). A blue and green hatch shows when both
systems are moving coordinately, at the same time. 40 different simulations were
carried out for different configurations of the motion planner (decoupled, progres-
sive, beginning, end) and different manipulator relative speeds (x0.2, x0.4, x0.6,

x0.8, x1, x1.2, x1.4).

safer configuration during the motion, deploying mainly afterward in the last way-

points of the trajectory.

As mentioned in Chapter 4, the main contribution of the proposed coupled mo-

tion planner is the increased efficiency in the motion plan execution, mainly in time

terms, meanwhile ensuring the safety of the platform. This can be observed in Fig-

ure 6.12, which depicts the average required execution time of the solution for ev-

ery configuration of the motion planner and speed of the arm joints, differentiating

whenever the manipulator (green) or the base (blue) are moving. Clearly, the decou-

pled solution is the slowest, since the base movements are performed first (179.70 s

on average), then the rover stops, and finally the arm moves. The decoupled results

can be used as a reference for the worst possible motion in efficiency terms, with

an average total required time 19.54 % bigger than the rover base required time. On

the other hand, the coupled solutions coordinate both the base and arm movements,

thus reducing noticeably the total execution time. In particular, the progressive de-

ployment solution is the most efficient for every speed of the arm joints, actually

with almost maximized efficiency since the total spent time is similar to the time re-

quired by the rover base to reach the sample vicinity, only 2.16 % bigger on average,

i.e. the rover base does not need to wait or slow down for the arm to move. This is

thanks to the fact that the arm joints’ movement profile is the smoothest, distributing

the arm joints’ motion throughout the whole rover base trajectory. Only for speed

x0.2 the required time is slightly higher (194.58 s), but this is due to the rover tra-

jectory not being always long enough to give the arm time to move, since the arm

joints are very slow. Anyhow, progressive deployment is still significantly faster
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than the other configurations for speed x0.2, spending only 194.58 s in comparison

to the 271.03 s of the decoupled solution, the 241.10 s of the beginning deployment

or the 245.93 s of the end deployment.

Conversely, the end deployment solution is the slowest among the coupled so-

lutions, since it resembles the decoupled approach, i.e. the arm mainly moves when

the rover is already close to the goal. On average, the end deployment total required

time is 13.72 % bigger than the rover base required time. The beginning deployment

solution is also quite efficient with an average total required time 9.06 % bigger than

the base one, although not as much as the progressive deployment since the main

motion of the arm is performed at the beginning, which slows down the rover base

when the arm starts to move. It is remarkable in Figure 6.12 how the beginning and

end deployments noticeably increase their average execution times when the arm is

slow since the arm joints profile is not properly distributed throughout the trajectory,

which provokes the coupled controller to slow down the rover base motion quite of-

ten during the trajectory. This is not the case for the progressive deployment, which

is completely unaffected by the arm joints’ velocity as long as the rover trajectory is

long enough for the arm to deploy completely.

The aforementioned simulation results demonstrate that the motion planner finds

solutions with comparable computational cost to the decoupled solution, for all of

its configurations. These solutions are equally safe, if not safer, than the standard de-

coupled ones, meanwhile noticeably increasing the mission efficiency in execution

time terms by coordinating the arm and base motions. The progressive deployment

is, conclusively, the best configuration for the motion planner, having maximized

efficiency and maintaining sufficient distance to self-collisions during the motion,

with the smallest computational cost among the coupled approaches. Remark that

the slower the arm w.r.t. the rover base, the greater the importance of using a cou-

pled arm-base motion with a progressive deployment, since the execution of the

motion plan will be noticeably shorter. On the other hand, the faster the arm w.r.t.

the rover base, the less the room for improvement left for the coupled approach,

until it could slow down the motion considering the increased computational time

w.r.t. the decoupled solution of the coupled motion planner. As a result, coupled

arm-base motion planners, like the one proposed in this work, are recommended for

systems with a slow manipulator speed w.r.t. the base movement speed. And, in

particular, a progressive deployment is the best approach for a coupled arm-rover

motion to maximize its efficiency.

Benchmark with an off-the-shelf motion planner

As a way to highlight the strengths and weaknesses of the presented motion plan-

ner, a comparison with an off-the-shelf mobile manipulation motion planner was

performed. The selected motion planner was the one included within MoveIt9, an

9https://moveit.ros.org/



112 Chapter 6. Results

FIGURE 6.13: Motion plan generated by MoveIt for SherpaTT during one of the
benchmark tests, with the planned path in green on top of the Galopprennbahn

Bremen cost map.

open motion planning and control library mainly for robotic arms, used by a great

variety of companies and research institutions worldwide. MoveIt was selected due

to its popularity and its easiness of including new robots, thanks to the direct use of

URDFs.

Remark that there are significant differences between our mobile manipulation

motion planner and the one included within MoveIt. First, MoveIt does not gen-

erate a coupled motion plan for the base and arm, but rather a path for the mobile

base and an independent motion plan for the manipulator, and afterward it executes

both plans at the same time. Our motion planner considers both systems in a cou-

pled manner during the motion planning stage, and also meanwhile executing the

plan. Second, MoveIt does not include a Cartesian planner for mobile manipula-

tion, but a path planner for the mobile platform based on Nav210 and a joint space

planner for the manipulator. Therefore, MoveIt considers self-collisions of the ma-

nipulator with the robot itself, but not collisions with the environment. Third, the

path planner does not guarantee the rover base will reach a position in which the

sample is inside the manipulator workspace, thus additional maneuvers may be re-

quired. Fourth, MoveIt uses A* (Hart, Nilsson, and Raphael, 1968) for the mobile

base path planning, and RRT Connect (Kuffner and La Valle, 2000) for the manip-

ulator joint space motion planning. These are sub-optimal algorithms that do not

always find the globally optimal solution. Conversely, FMM does find the globally

optimal solution, maximizing the motion plan efficiency, which is the reason why it

is used within the presented motion planner.

As before within the MARS simulation campaign, 40 simulation experiments

were carried out using the simulation environment included within MoveIt, based

on Gazebo. For a balanced comparison, the same cost map of Galopprennbahn Bre-

men generated in our simulations was directly fed to MoveIt. The 40 tests were run

on a single core of an Intel(R) Core(TM) i7-10750H CPU (2.60GHz), using the same

10https://navigation.ros.org/
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rover and goal poses as in the MARS simulations campaign. An example of the

motion plan generated during one of the tests is shown in Figure 6.13, where the

planned path for the mobile base, highlighted in green, avoided an obstacle on the

Galopprennbahn Bremen cost map.

The simulations showed that the MoveIt motion planner is computationally fast,

with an average planning time of 0.47 s in comparison to the 2.87 s of our progres-

sive deployment planner. This is without considering the average 1.51 s required for

the cost map generation (in total, the progressive deployment planner takes 4.38 s

to compute the cost map and generate the motion plan), which is directly provided

to MoveIt, and without any computational optimization of our planner code. The

faster computation of MoveIt is also thanks to, as aforementioned, the generation

of the manipulator motion plan in the joint space, without a Cartesian trajectory,

and the use of sub-optimal planners. Nevertheless, the average distance from self-

collisions of MoveIt is low in comparison to ours, 0.12 m vs 0.26 m, i.e. MoveIt mo-

tion plans get closer to possible self-collisions. Additionally, MoveIt does not con-

sider collisions of the manipulator with the scenario when planning the movements

of a mobile manipulator, as aforementioned. Therefore, it can not guarantee that the

planned motion will not lead to a self-collision during its execution. Regarding the

required time for execution of the motion plan, the comparison is not evenhanded,

since MoveIt does not generate coupled motion plans but two independent ones ex-

ecuted at the same time, as stated above. Keeping that in mind, MoveIt requires

slightly more time to execute the motion plan, on average 186.53 s vs. 181.05 s of

the progressive deployment, due to the lower quality of the base path. Both plan-

ners have maximized manipulation efficiency, i.e. the whole manipulator motion is

performed meanwhile the base is reaching the sample.

This comparison with an off-the-shelf motion planner shows, in conclusion, that

the presented motion planner generates safer motion plans, with guaranteed avoid-

ance of self-collisions, with a globally optimal path for the mobile base and max-

imized efficiency of the manipulator plan execution. The slightly higher computa-

tional cost of the proposed method is a drawback, which can be solved by optimizing

the motion planner’s current implementation, or by running some of the planning

tasks in parallel to accelerate the computations, which would require to switch from

FMM to a similar path planner such as FSM (Zhao, 2004).

Field test campaign and lessons learned

An ultimate validation of the presented algorithm was carried out through a field

test campaign, integrating the motion planner into a real platform. The campaign

consisted of several analogue tests to the simulations, with the real SherpaTT in

Galopprennbahn Bremen as shown in Figure 6.14, executing the planned motions to

reach different samples and performing a dummy scientific analysis on them. Due

to time constraints within the field test campaign, only qualitative results could be

extracted from the tests, which are presented in the following as lessons learned.
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FIGURE 6.14: SherpaTT during the field test campaign in Galopprennbahn Bremen.
The rover is equipped with a robotic arm, NavCams with a Pan and Tilt Unit on top
of the mast, LocCams on the avionics box, two Global Navigation Satellite System

antennas, and a Velodyne LIDAR.

Several sensors were required within the field test campaign. For localization,

a Visual Odometry algorithm was used, merging the information received by the

LocCams, the wheel odometry, and the Inertial Measurement Unit. Additionally, a

GPS with RTK corrections was used to get the initial pose and log the ground-truth

positions. The cameras were calibrated before the tests using standard distortion

estimation methods. Lastly, the rover joints were manually re-calibrated in case of a

significant mismatch between the position given by the proprioceptive sensors and

the real ones.

The field tests proceeded similarly to the simulations, as follows. The motion

planning library was launched in a separate Intel-Core-i7 CPU running Ubuntu

18.04, which communicated to the robot through the SherpaTT API using wireless

communication (WiFi). Then, the motion planning library received the DEM of the

scenario and the goal pose, always located inside the DEM, to generate the mo-

tion plan. Lastly, the library controlled the platform (rover base and manipulator)

to properly follow the generated motion plan, reading the rover pose and the joint

states and commanding the base motion commands as well as the arm joints’ po-

sition and velocity. As in the simulations, no updates of the map or replans of the

motion were performed, i.e. the motion plan was generated once, offline, and thor-

oughly followed. Whenever the goal was reached, the library launched the dummy

scanning measurement, and the execution was finished.

The results of one of the field tests are shown in Figure 6.15. The base path
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FIGURE 6.15: Results of one of the MM tests with SherpaTT at Galopprennbahn
Bremen, Germany.

planner avoided the central pit in the scenario, as depicted in Figure 6.15a since the

planner considered the left limits of the pit as non-traversable, as can be observed

in the cost map of Figure 6.15b. Later on, the rover and manipulator were able to

accurately follow the planned trajectory until the last stretch, where the LSC was ac-

tivated to leave the sample within the manipulator workspace and the manipulator

performed the scanning task, as shown in the appended video11.

During the field tests, several issues appeared that led to some lessons learned.

On the one hand, the arm presented some repeatability inaccuracies in the position

of the end effector. This was caused by a small dead zone in the first joint and

some occasional calibration errors on the joints. Although this was partially solved

with a re-calibration of the arm before every test, the mismatch between the robot

model and the real system added some uncertainty w.r.t. the safety of the motion

plans to be executed. This danger was enlarged considering the highly restricted

manipulator workspace on SherpaTT, i.e. the tight space between the legs, the mast,

and the avionic box, since any small error could lead to a collision. Therefore, it was

decided to be more conservative, i.e. maximize the security of the platform during

the field tests. The motion planner was configured to use the beginning deployment

since its motions were the most repetitive (thus predictable) and it maintained the

arm far enough from collisions. Besides, the goal pose of the end effector above the

sample was modified to be farther from the rover body and the avionics box.

On the other hand, an occasional lack of accuracy was observed in the position

of the end effector w.r.t. the sample. This had two main causes. In the first place, the

already mentioned positioning error of the manipulator. In the second place, small

errors in the localization of the rover (fluctuations of the initial GPS position and the

accumulated drift of the Visual Odometry localization) and errors in the position

11See footnote 4.
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of the sample w.r.t. the actual commanded goal. This could not be solved during

the field test campaign, since it required a separate component to detect the sample

online and estimate its position, to feedback continuously the sample position to

the motion planning library and replan the motion, thus, removing the positioning

errors.

Conclusively, even with the aforementioned issues, the motion planning library

was correctly deployed, tested, and verified in the real rover SherpaTT during the

field test campaign. The platform autonomously generated a motion plan to reach a

goal sample, and correctly followed the generated trajectory meanwhile the arm was

deploying, finally leaving the sample within the reachability area of the manipulator

and performing successfully the scanning measurement on the sample.

6.4 Optimal retrieval of Martian sample tubes

A sample tube retrieving rover is a highly over-actuated mobile platform, composed

of a mobile base with multiple actuators (mainly driving and steering joints), and a

robotic arm with several DoF. Considering the energy and time efficiency require-

ments of a planetary exploration mission, a Martian sample tube retrieval is the per-

fect use case to demonstrate the advantages of the optimal motion planning method-

ology proposed in Chapter 5. On the one hand, a deep performance analysis of the

motion planner was carried out with a benchmark between different layouts of the

approach, i.e. using different combinations of the already explained stages. This

comparison confirmed that the proposed warm-start sequence is the most conve-

nient, with a path planning warm start, a first unconstrained stage, and a final con-

strained stage.

On the other hand, several laboratory tests were performed with ExoTeR in the

Martian Analogue Testbed of the ESA-PRL. Using MWMP and the proposed replan-

ning procedure, ExoTeR was capable of successfully reaching a Martian sample tube

and retrieving it with its manipulator. The source code of the MWMP library used

within these tests is available in MatLab12 and C++13, under MIT open source li-

cense.

Below, prior to showing the test results, a complete description of the platform

characteristics, the developed state-space model of the mobile manipulator, the mo-

tion controller, the experimental setup, the scenario, and the motion planner con-

figuration are presented. Later on, the performance benchmark and the laboratory

tests are thoroughly analyzed.

Mobile platform description

Within the research and development carried out at the ESA-PRL, the design and

testing of planetary rover testbeds stands out. This is the case of ExoTeR (Azkarate et

12https://github.com/spaceuma/MWMP-MatLab
13https://github.com/spaceuma/MWMP-Cpp
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FIGURE 6.16: Detail of the experimental setup with ExoTeR approaching a sample
tube, including its actuators (driving, walking, steering and manipulator’s joints,
two-fingers gripper) and its exteroceptive sensors (LocCam, NavCam). Besides, Ex-
oTeR is equipped with an IMU to estimate its orientation and several Vicon Mark-
ers to precisely locate it inside the Martian Analogue Testbed of the ESA-PRL at

ESTEC.

al., 2022), which conceptually mimics the early model of the Rosalind Franklin Exo-

Mars rover, with a scaled-down concept. ExoTeR is a triple-bogie, double-Ackermann

rover, with a locomotion system of 6 x 6 x 4 + 6. This means 6 wheels with 6 driv-

ing actuators, 4 of them steerable (the front and rear ones), which permits double-

Ackermann steering or spot turns. Additionally, all 6 wheels include a walking ac-

tuator, as depicted in Figure 6.16, where ExoTeR is shown at the Martian Analogue

Testbed at ESA-PRL. ExoTeR is also equipped with a five DoF manipulator, called

MA5-E. Its five joints are rotational, with a Roll-Pitch-Pitch-Pitch-Roll configuration,

being the first joint placed looking toward the movement direction of the platform.

Its end effector has attached a two-fingered gripper for sample retrieval purposes.

For localization and perception, ExoTeR has two stereo cameras, a close-range Loc-

Cam, and a long-range NavCam. Finally, ExoTeR has also an IMU for sensing the

platform 3D orientation and has appended several Vicon markers for ground-truth

localization inside the Martian testbed.

Focusing first on the mobile platform base, ExoTeR is a double-Ackermann rover

with steering joints at the front and rear wheels. The central wheels do not steer,

which implies that the rover can not move in every direction depending on the sys-

tem orientation, i.e. non-holonomic constraints. This is a significant non-linearity,

which is tackled inside the system model. The platform minimum turn radius is

0.6 m, due to the geometric distribution of the wheels and the range limit of ±50◦

in the steering joints, although it can perform point turns (change its orientation

with zero linear velocity). Finally, its nominal translational speed is 5 cm/s, with a
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TABLE 6.5: MA5-E joints characteristics.

Joint 1 2 3 4 5
Type Rot. Rot. Rot. Rot. Rot.

Orientation Z Y Y Y Z
Range (◦) ±45 ±170 ±170 ±170 ±170

Speed ( ◦/s) 0.57 0.57 0.57 0.57 0.57
Power (W) 0.75 0.75 0.75 0.75 0.75
Gear ratio 83200:1 83200:1 83200:1 83200:1 83200:1
Efficiency 0.5 0.5 0.5 0.5 0.5

2.85 N m maximum torque of the driving actuators.

Regarding the robotic arm, MA5-E, its main characteristics are outlined in Table

6.5. As can be observed, MA5-E joints have huge gear ratios, which allows the ma-

nipulator to handle heavy payloads, 2 kg, in comparison to the arm weight, 2.4 kg,

and considering the joint motor’s power (6 W). The dynamic effect of external dis-

turbances is consequently negligible, i.e. gravity and the rover base movements.

Nevertheless, the gears also imply an important drawback: the joints move very

slowly, with a maximum rotational speed of 0.57 ◦/s.

The fully extended arm length is 0.527 m, with an additional 0.14 m taking into

account the gripper. The arms end effector reachability is restricted by each joint

position limit, as can be observed in Table 6.5. Doubtlessly, the arm movements are

also limited by the rover body itself and the ground. Regarding the end effector, it

can not reach any orientation because of the limitation of the five DoF configuration.

This issue hinders any manipulation task, especially a sample retrieval operation,

since the end effector can not always approach the sample completely perpendicular

to the ground, with the appropriate gripper yaw w.r.t. the sample tube.

Note that ExoTeR has a series of system constraints, as explained above, which

raise the necessity of using an optimal planner like MWMP. First, a coupled arm-

base motion solves the arm joints’ velocity issues, generating optimal motions where

the arm is already prepared to perform the desired task once the base has reached

the objective. Second, the rover DoF can be used to place the manipulator in a cer-

tain manner to effectively retrieve the sample, i.e. aligning the manipulator’s first

joint and the sample tube, performing completely perpendicular retrieval opera-

tions. This is achieved by properly tuning the costs associated with the goal pose

of the end effector, including its orientation, as later clarified.

Double-Ackermann mobile manipulator model

As a mobile manipulator, ExoTeR is modeled with two different kinematic chains:

the full-Ackermann mobile base and the robotic arm. The dynamic coupling be-

tween them is ignored, seeing that the movements of both the platform and the

manipulator are very slow, generating negligible dynamic effects between them.
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Additionally, the effect of gravity on the manipulator’s joints is also disregarded,

considering the huge gear ratios as aforementioned.

Following the generic state space model explained before, the state vector x(n)

for ExoTeR is defined in (6.1).

x(n) =
[

wP1
wṖ1

wP2
1P2

1Ṗ2 q1 q̇1 q̈1 q2 q̇2 q̈2

]T
(6.1)

Where the kinematic chain 1 represents the mobile base and 2 the manipulator,

thus, q1 corresponds to the mobile base joints, i.e. the wheel driving θd and steering

θs joints, and q2 corresponds to the manipulator joints θm, which are all rotational as

aforementioned. As a result, the state transition matrix A(n) is extracted straight-

forwardly from the generic one, but specifically for a platform with two kinematic

chains. In particular, I1, V1 and wJ1 refer to the inertia, Coriolis/centrifugal, and

Jacobian matrices of the full-Ackermann non-holonomic mobile base, as well as I2,

V2 and 1J2 refer to the five DoF manipulator. Remark that, as aforementioned, the

mobile base Jacobian wJ1 is linearized employing a TSL considering the notable

non-linearity that appears due to the non-holonomic constraints.

The actuators of the system are the six driving and four steering joints of the

wheels of the mobile base and the five rotational joints of the manipulator. As ex-

ternal disturbances, gravity acts on the mobile platform as a constant acceleration.

Thus, the actuation vector u(n) is defined in 6.2.

u(n) =
[

τd τs τm g
]T

(6.2)

Where τd, τs and τm are the actuation torques to the driving, steering, and manip-

ulator joints respectively, and g is the gravity acceleration. Note that ExoTeR joints

only receive position and velocity commands, nevertheless, using the whole dynam-

ics model allows to generate torque-efficient motions. Later on, the joint position and

speed commands are directly extracted from the state vector x(n).

Once more, the input distribution matrix B(n) is directly obtained using the

generic one presented in Chapter 5.2 but with only one external disturbance, the

gravity g. On one hand, the effect of g into the mobile base, γ1
1, generates wheel-soil

friction, which is modeled in a simplified way through the rolling resistance of the

terrain as expressed in (6.3), with ρ the rolling resistance coefficient of the terrain, dw

the diameter of the wheels, m the mass of the vehicle and Nw the number of wheels

of the rover. On the other hand, the effect of g into the manipulator, γ2
1, is ignored as

aforementioned, considering the huge gear ratio of the arm joints.

γ1
1 = ρ

dw

2
m

Nw
(6.3)

Finally, several constraints have been defined to consider ExoTeR limits. On the

one hand, the maximum actuation torque for the driving (τd), steering (τs), and ma-

nipulator (τm) joints are included as state-input constraints. On the other hand, the

limits on the velocity and acceleration of the driving (θ̇d, θ̈d), the steering (θ̇s, θ̈s) and
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the manipulator (θ̇m, θ̈m) joints are defined as pure state constraints. Additionally,

the position limits of the steering θs and manipulator θm joints are also included as

pure state constraints.

Error-based replanning methodology

Given a feasible motion plan, i.e. the state x(n) and actuation u(n) vectors for the

complete planning horizon T, a separate component, the motion controller, needs to

bring it to the mobile platform, ensuring it is properly followed until reaching the

goal. If there are deviations from what was planned, then this component has to

make the right decisions to ensure that the goal is reached. These deviations can be

caused by different means as previously stated in Chapter 2.4, like the model intrin-

sic errors because of the discretization and the linearization. But it is also pertinent

to consider the effect of other agents on the system, such as external disturbances

not considered initially in the model, e.g. the platform localization error, the goal

pose estimation error, or the non-ideal behavior of the actuators. Additionally, the

motion controller needs to prioritize different sub-objectives depending on the use

case, such as robustness and predictability in case of a long-term trajectory follow-

ing, or in fast convergence and energy efficiency in reactive tasks.

Focusing on the sample tube retrieval use case, the motion planner has gener-

ated a mid- or long-term trajectory for the robot to follow to reach a goal sample

and retrieve it with the manipulator. In such a case, the system is not affected by

high-frequency disturbances. Conversely, such an autonomous navigation rover can

suffer disturbances such as new local obstacles, localization drift, or errors in the sys-

tem joints. These inconveniences add up to the target positioning error, induced by

the sample detection and localization subsystem. The sample positioning error is

expected to be higher as farther the rover is from the sample, raising the necessity

of replanning the motion as the positioning error gets smaller, i.e. as the system gets

closer to the goal.

As a result, the motion-following algorithm does not need to be fast, but ro-

bust and predictable to regenerate the motion only in the particular cases when it is

needed, what can be called an error-based replanning methodology. Thus, during

the sample retrieval tests a replanning capability was used, similar to the Event-

triggered one proposed in (Luis, Vukosavljev, and Schoellig, 2020), as follows. First,

the motion plan follower sends sequentially the next actuation command to the plat-

form (or the first one initially). Second, it checks if the goal pose has changed. If this

is the case, then the system replans the whole motion. If not, a third step checks if

there is too much drift in any of the controlled states. This would lead to returning to

the initial stages of the motion planner, using the current platform pose to replan the

motion. Fourth, if no replan is needed and the goal is reached, the follower finishes

the execution. Otherwise, it continues sending actuation commands in accordance

with the already generated motion plan and starts again the sequence.
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FIGURE 6.17: Graph exemplifying the replanning capability. The behavior of a
controlled state x(n) is continuously checked (dark green). If a considerable de-
viation from the previous plan (dark blue) is detected, a new global motion plan
(light blue) is computed from the time step tn onwards. The new state and actu-
ation plans (light red) allow the system to smoothly reach the goal, correcting the

previously accumulated error.

In case one of the states drifts from the planned motion, the behavior of the re-

planning capability is exemplified in Figure 6.17. Starting with a planned motion

(dark blue) from t0 to tN , with N number of time steps of ∆t size, and given the

time evolution of a controlled state x(n) (dark green) in accordance to a given ac-

tuation plan u(n) (dark red), this evolution may differ from the plan, increasingly

accumulating error. When this error surpasses a certain threshold at time step tn,

the predicted behavior of x(n) is completely undesired (light green), thus, a replan

is launched using the previous motion plan, from tn onwards (dark blue), as a warm

start. Thus, the replanned motion (light blue) compensates the accumulated drift

in x(n) by slightly modifying the previous optimal actuation plan u(n) (dark red),

generating a new one (light red) in the neighborhood of the previous solution. In

this way, the state x(n) will still reach the goal as long as the new motion plan is

properly followed.

Experimental setup

The goal of the performed laboratory tests was to demonstrate that ExoTeR can reach

and retrieve a Martian sample tube in a completely autonomous way. The tests were

carried out in the Martian Analogue Testbed at the ESA-PRL, which can be observed

in Figure 6.18a. This is a 9×9 m experimental terrain that is highly representative of

a real Martian environment, including different types of soil (sandy, rocky), rocks, or

small slopes. After processing a 2 cm resolution DEM of the ESA-PRL, a traversabil-

ity map was generated, which is depicted in Figure 6.18b. This traversability map

considers obstacles, slopes, and roughness, and is used to generate the cost map Ω.

For more information about the cost map generation see Chapter 3.3.
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(a) Front image of the Martian Analogue Testbed, in-
cluding some of the lab’s rovers. (b) Traversability map.

FIGURE 6.18: Depiction of the Martian Analogue Testbed of the ESA-PRL at ESA-
ESTEC, Noordwijk, The Netherlands.

The tests include real Martian autonomous navigation restrictions to perform an

illustrative emulation of a sample tube retrieval mission. Therefore, two additional

subsystems were integrated into the platform, apart from the presented MWMP and

replanning algorithms. First, an autonomous sample detection and localization sub-

system based on a Convolutional Neural Network (CNN), which uses the LocCam

stereo images to locate the sample tube with an average under 5 cm position and 5◦

orientation errors (Castilla-Arquillo et al., 2022). Second, a visual odometry algo-

rithm for the platform localization, using the LocCam stereo camera and the IMU,

with 7.50 % average localization drift in position and less than 2◦ orientation error

(Geiger, Ziegler, and Stiller, 2011). The Vicon markers were also used to obtain the

ground-truth localization, not online but for data logging and post-processing pur-

poses.

It was necessary to properly configure the motion planner for the tests. The test’s

total time tN was 160 s, with a time step ∆t of 0.8 s. For the motion planner to con-

verge, the maximum allowed position error was set up to 1 cm and the orientation

error to 10◦. It was considered that the algorithm had converged if the norm of the

stepped actuation ū(n) was lower than 1 % of the norm of the whole actuation vec-

tor u(n). The particular costs that configured the LQR cost matrices Q(n), R(n) are

defined in Table 6.6. Note that the cost of modifying the input gravity disturbance g

in R(n) is the largest, to ensure that it remains as a constant gravity acceleration of

9.81 m/s2 precisely following the reference u0. This gravity disturbance is ignored

by the manipulator, as aforementioned. Additionally, to ensure that the sample was

retrieved perpendicularly to the ground, the goal pose orientation wφ2(N) was filled

with roll w ϕ2(N) = 0, and the pitch wϑ2(N) and yaw wψ2(N) were computed de-

pending on the estimated sample orientation.

Lastly, the replanning was launched if the platform deviated in certain aspects

when following the planned motions. In the first place, if the platform drifted more

than 4 cm from the planned path. In the second place, if any of the controlled joints
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TABLE 6.6: Quadratic costs configuration.

Type Variable Cost

Goal state Q(N)

EE pose wP2 1011

Platform speed wṖ1 106

End effector speed 1Ṗ2 106

State full motion Q(n)

Platform pose wP1 20
Driving wheels speed θ̇d 100
Driving wheels acc. θ̈d 104

Arm joints speed θ̇m 3 · 105

Arm joints acceleration θ̈m 3 · 105

Input full motion R(n)

Wheels driving torque τd 105

Steering joints torque τs 8 · 104

Arm joints torque τm 1011

Gravity g 1015

deviated more than 2.29◦ from the plan. Additionally, every time the goal sample

pose differed more than 3 cm or 17.19◦ from the previous estimation, a complete

motion replan was launched.

Performance evaluation

The performance of the proposed motion planning approach was analyzed using the

aforementioned use case and setup, to showcase its advantages w.r.t. any possible

layout of the stages, for instance, cold-started or single-staged versions of the motion

planner. For that purpose, six different layouts of the motion planner were defined,

which include every possible combination of the three stages (USLQ, PPWS + USLQ,

CSLQ, PPWS + CSLQ, USLQ + CSLQ) and the complete approach (PPWS + USLQ +

CSLQ = MWMP). For every layout, the same 21 motion plans were launched, using

the ESA-PRL scenario with the ExoTeR model and the sample tube retrieval use case,

changing the initial rover pose and the goal sample pose.

Three main parameters were measured within the tests. First, the success rate,

as a percentage. This represents the ratio of finding a successful motion plan in

the 21 tests, i.e. when the algorithm converges in less than 100 iterations, which is

shown in Figure 6.19. Second, the feasibility rate, which represents the percentage

of constraint-compliant motion plans in the 21 tests, which is also shown in Fig-

ure 6.19. Remark that the feasibility rate encompasses the success rate, given that

a motion plan can only be feasible if the solver converges, i.e. if the motion plan is

successful. Hence, every layout that makes use of the CSLQ stage has equal success

and feasibility rates, since the algorithm only converges if the constraints are ful-

filled. Third, the average number of iterations until convergence. If several stages

are established, then the total number of iterations is used. The extracted results

regarding the number of iterations are shown in Figure 6.20. Note that the number

of iterations is employed in the following as a measure of the convergence speed,
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FIGURE 6.19: Measured success and feasibility ratios on the performance tests. For
every layout, 21 different motion plans were launched. Note that the layouts that
include the constrained stage (CSLQ) have the same percentage of successful and
feasible motion plans since this stage ensures feasibility if the algorithm converges.
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FIGURE 6.20: Measured iterations and execution time on the performance tests.
For every layout, 21 different motion plans were launched. Average measurements

are shown, including the standard deviation on the samples.



6.4. Optimal retrieval of Martian sample tubes 125

since the computational time spent is not representative due to its dependency on

external factors, such as the hardware, the quality of the software implementation,

or the CPU usage. Besides, the computational time spent is nearly proportional to

the number of iterations, as an example, spending approximately 25 ms/it in these

tests, run on a single core of an Intel(R) Core(TM) i7-10750H CPU (2.60 GHz).

The results of the performance tests are summarized in Figures 6.19 and 6.20.

The path planner warm start (PPWS + USLQ, PPWS + CSLQ, PPWS + USLQ +

CSLQ), as can be observed, always reduces the average number of iterations w.r.t.

the cold started versions (USLQ, CSLQ, USLQ + CSLQ), reducing also the conver-

gence speed variability. This means that the motion planner’s behavior is more pre-

dictable. Additionally, the fastest layouts are the unconstrained ones (USLQ, 19.85 it;

PPWS + USLQ, 14.65 it), as expected and aforementioned. Although these layouts

have high success ratios (USLQ, 95.24 %; PPWS + USLQ, 95.24 %), they can not

guarantee constraints compliance, thus they also have the lowest feasibility ratios

(USLQ, 38.10 %; PPWS + USLQ, 57.14 %). The slowest layouts are the constrained

ones (CSLQ, 46.64 it; PPWS + CSLQ, 34.31 it), and they still do not reach high fea-

sibility ratios (CSLQ, 52.38 %; PPWS + CSLQ, 47.62 %), due to convergence diffi-

culties considering the high over-actuation and number of constraints. Finally, the

unconstrained-constrained layouts have an intermediate convergence speed (USLQ

+ CSLQ, 31.13 it; MWMP, 24.95 it), having the complete approach (MWMP) a com-

parable convergence speed to the unconstrained layouts. Besides, these layouts also

have the highest feasibility ratios (USLQ + CSLQ, 76.19 %; MWMP, 90.48 %), thanks

to the successive warm start procedure.

In summary, the performance tests demonstrate that the proposed multi-staged

approach (MWMP) improves the behavior of the optimal motion planner, increasing

noticeably the average number of feasible motion plans (90.48 %) and maintaining a

considerably low average number of iterations until convergence (24.95 it).

Laboratory test campaign

Regarding the laboratory tests campaign, four of the most representative tests are

analyzed in this paper, and one of them is shown in a summarizing video14 of the lab

tests campaign. Each test starts from a different rover location, also with a different

pose of the sample tube. Additionally, an example of the evolution of the tests is also

shown in Figure 6.21.

The experiments were run as follows. First, it was assumed that the sample was

inside ExoTeR’s LocCam Field of View (FoV). Therefore, the sample detection and

localization subsystem was launched at the beginning to provide the initial estima-

tion of the sample pose. Then, the sample pose was translated into an end effector

goal pose, just above the sample and approaching the ground perpendicularly, and

this goal pose was fed to MWMP to compute a global initial motion plan. This was

14https://youtu.be/xDFv4Ho4KZs
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TABLE 6.7: Sample tube retrieval lab test results.

Sample Tube Retrieval Test Case 1 2 3 4
First plan number of iterations 17 20 29 13

Number of replans (after goal changed) 6 (6) 5 (3) 7 (2) 7 (5)
Average number of iterations in the test case 13.43 16.60 25.62 60.33

Average arm joints position error (◦) 0.2521 0.2235 0.9167 0.1719
Average steering joints position error (◦) 2.6471 0.0521 0.0997 0.0555

Rover base final pose error (m, ◦) 0.0023, 2.0798 0.036, 0.4183 0.02, 0.0 0.0361, 0.0630
End effector final pose error (m, ◦) 0.0942, 15.8996 0.0221, 12.4332 0.0441, 0.1833 0.0332, 24.9007

Sample pose estimation error (m, ◦) 0.0908, 15.7964 0.0150, 12.0035 0.0220, 0.6303 0.0030, 24.8893

sent to the motion plan follower, which started to send the control commands at

each time step and receive the robot’s measured state. As explained in Section 6.4,

the follower continuously checked if any of the controlled states was accumulating

too much drift, given the defined thresholds. Then, if necessary, the motion was re-

planned using the last motion plan as a warm start to accelerate the computation.

Additionally, the sample detection and localization subsystem was launched repeat-

edly with a frequency of 0.1 Hz, to keep improving the sample pose estimation and

filtering the localization error due to the use of visual odometry, eventually trigger-

ing additional motion replans. Note that even though the sampling frequency was

low (0.1 Hz), the rover’s nominal speed was quite slow too, of 5 cm/s. Thus, a sam-

ple detection was launched every 50 cm, which is sufficient to effectively detect the

sample. Once the end effector had reached its goal pose, the execution was finished,

and a separate sample retrieval component was launched just to perform the final

sample grasping movement.

The carried out laboratory tests are examined in detail in the following. The re-

sults of four of the lab tests are summarized in Table 6.7. First, the initial motion

plan number of iterations (20 it. avg) matches what is expected, seeing the results of

the performance tests (25 it. avg). Furthermore, the average number of iterations in

each test case, i.e. mean of iterations required by the planner to converge in each par-

ticular test case considering the initial plan and the replans, is generally lower than

the first plan iterations. This confirms that using the last motion plan as a warm

start accelerates the motion planning procedure, although it did not happen in case

4, since a sharp turn was required and the steering joints were repeatedly reaching

their limits. It is remarkable that the average errors w.r.t. the planned motion of

the controlled states, i.e. the arm joints (0.3896◦ avg) and the steering joints (0.7105◦

avg), are negligible, which means that the predicted motion was accurate and the

linearization errors do not severely impact the system behavior, thanks to a suffi-

ciently small time step ∆t. Besides, most of the required replans were performed

due to the low accuracy of the sample pose estimator (16 out of 25), which changed

the goal pose substantially several times during the tests, as can be observed in Ta-

ble 6.7. Regarding the non-directly controlled states, the errors of the rover base

(0.0236 m, 0.6417◦ avg) and the end effector (0.0484 m, 13.3556◦ avg) final poses are

acceptable, considering that the end effector final pose error is caused mainly by the
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 6.21: Motion evolution of ExoTeR during two different sample tube re-
trieval tests, using a decoupled motion planning approach (a-d) or MWMP (e-h).
The decoupled solution is not prepared to retrieve the sample once it reaches it (b),
and can not retrieve the sample perpendicularly to the ground (c), with the result
of a defective grasp (d). On the other hand, MWMP generates an optimal motion,
leaving the arm prepared for the retrieval operation as soon as the base stops (f),
being it placed in a certain pose which allows the manipulator to retrieve the sam-

ple perpendicularly (g), with a high-quality grasp (h).

sample pose estimator, being minimal the errors induced by the motion planner it-

self. Therefore, it is confirmed that the system model is representative despite of the

linearization and that the motion planner is accurate enough to ensure a success-

ful sample retrieval, being the 7 cm full opened gripper width enough to cope with

these errors.

Finally, the evolution of Test Case 2 is shown in Figures 6.21e-6.21h, in compar-

ison to another sample retrieval test in Figures 6.21a-6.21d, performed with a stan-

dard non-optimal and decoupled motion planning approach (Mantoani et al., 2022).

As can be observed, although both approaches start from similar situations (Figures

6.21a and 6.21e), MWMP leaves the manipulator prepared for the retrieval operation

as soon as the rover reaches the sample (Figure 6.21f), meanwhile the decoupled so-

lution yet requires to move the arm once the rover stops (Figure 6.21b). Additionally,

the decoupled solution does not place the rover base in a good position considering

the posterior retrieval operation, thus, the gripper orientation is not perpendicular

to the ground and does not match the sample yaw (Figure 6.21c), which, in the end,

generates a defective grasp (Figure 6.21d). Conversely, the optimal motion planner

uses all the system joints (rover and manipulator), placing the base to leave the arm

in a perfectly perpendicular pose w.r.t. the sample. Therefore, the gripper is ori-

entated perpendicularly to the ground and matches the sample yaw (Figure 6.21g),

being the quality of the grasp, thus, much higher (Figure 6.21h).
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FIGURE 6.22: Systems involved in the rappelling mission. SherpaTT’s robotic arm
is attached to CoyoteIII through the TMDS, prepared to start a rappelling operation

into a lava tube in Lanzarote, Canary Islands, Spain.

6.5 Multi-robot rappelling into Lunar lava tubes

The Moon has been the main focus of worldwide space agencies ever since they

existed, as already presented in the first chapters of this thesis. Our satellite could

provide answers to a better understanding of planetary processes and the origin

of our solar system, or it could be used as a space technology testbed, before try-

ing to reach more distant space bodies. But, more importantly, the Moon could be

eventually used as a "space station", to provide shelter to humans when traveling

through our solar system. Among the exploration targets on the Moon, the lava

tubes are particularly interesting, since they are a natural access to the Lunar sub-

surface. Isolated from space radiation, the Lunar subsurface is supposed to keep

intact materials from the formation of our solar system and can be directly used by

humankind as a natural shelter from radiation when staying there. Nevertheless,

getting to the Moon and exploring a Lunar lava tube is still expensive, challenging,

and dangerous for humans, which could be solved by robots. As investigated during

the European CoRob-X project, a multidisciplinary team of robots could coordinate

to autonomously explore a Lunar lava tube. First, mapping the skylight where to

access the lava tube. Second, rappelling a small robot into it, using a big robot as a

mobile anchor. Third, employing the small robot to explore the lava tube interior.

Focusing on the rappelling mission, it involved three main systems as shown in

Figure 6.22. First, the SherpaTT rover, which acts as a mobile anchor that supports

the rappelling with its robotic arm. Second, CoyoteIII, as the small rover able to
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rappel down the skylight to later explore the lava tube. Third, the Tether Manage-

ment and Docking System (TMDS), which is the system that connects the two rovers,

where CoyoteIII can dock to perform the rappelling or receive power and data from

outside the tube.

As can be understood, this mission is quite challenging, considering that a failure

would severely damage CoyoteIII, and probably also SherpaTT. Particularly critical

is, thus, controlling the tension that the tether applies to the rovers, in two main

senses. On the one hand, given the considerable weight of CoyoteIII and the TMDS,

it is essential to properly distribute the tension on SherpaTT’s robotic arm, absorbing

the main efforts with the bigger joints to avoid damaging the smaller ones. On the

other hand, insofar as CoyoteIII would eventually be completely hanging from the

tether, it is crucial to maintain a sufficient amount of tension on the tether when the

rover is approaching the skylight. Otherwise, CoyoteIII could briefly, but abruptly,

fall free when transitioning to a vertical hang, which would result in a sudden pull

from the tether that could harm all of the systems involved.

Consequently, the technology developed within this doctoral work was key to

controlling the tension during the rappelling mission of the CoRob-X project, en-

abling an autonomous rappelling operation. The optimal motion planner presented

in Chapter 5 was integrated into a MPC scheme to control SherpaTT, dynamically

reacting to the forces that the tether applies to the manipulator’s end effector. As a re-

sult, SherpaTT was able to perform MM motions to compensate and distribute those

efforts among the stronger joints of the robotic arm. Additionally, the guided move-

ments of CoyoteIII were coordinated with the deployment of the tether through a

simple proportional controller, which always maintained an acceptable level of ten-

sion on the tether to avoid sudden pulls. Let us present the platforms and the tension

controllers in the following, before showing the results of the simulation campaign

and the real field trials carried out in an analogue Lunar lava tube in Lanzarote,

Canary Islands, Spain.

Platforms description

Three main systems were involved in the autonomous rappelling test, shown in Fig-

ure 6.22. First, SherpaTT, which has already been presented before in this chapter.

It is a four-wheeled, full-Ackermann rover that weighs approximately 230 kg when

fully equipped, i.e. including the power generator and the external avionics box. Its

size makes it capable of carrying heavy payloads, being the perfect system to act as

a mobile anchor during the rappelling operation. SherpaTT has also onboarded a

robotic arm, whose characteristics were summarized before in Table 6.4. It has six

DoF and a spherical wrist, the spherical wrist joints (4, 5, and 6) are the weaker and

smaller ones, due to small gear ratios. Conversely, the shoulder (1 and 2) and el-

bow (3) joints have considerable gear ratios, being thus stronger and bigger, capable

of withstanding considerable efforts. The maximum payload of the manipulator is

25 kg, limited by the spherical wrist joints. The manipulator is also equipped with



130 Chapter 6. Results

a Mini45 force/torque sensor, located at its end effector, and an electro-mechanical

interface, which is able to retrieve different tools and transmit power and data.

The second rover involved in the rappelling is CoyoteIII. Also developed at DFKI

RIC, Bremen, this is a micro-rover with low weight (approximately 20 kg) and high

mobility, which makes it suitable for rappelling and exploring narrow lava tubes. It

has skid-steering locomotion with four wheels, which were initially star-shaped but

later substituted for standard, round ones. This change was required to improve the

locomotion capabilities during the rappelling operation, to carry heavier loads (the

TMDS), and to increase the ground clearance.

A third robotic system is crucial for the rappelling: the TMDS. The TMDS con-

tains the tether that connects both SherpaTT and CoyoteIII. The tether is rolled up

on an actuated spool inside the TMDS, to control the winding (and unwinding) ve-

locity. The TMDS is also equipped with a force sensor, to measure the tension. If the

tension on the tether is too small, then the spool motor is blocked to avoid entan-

glements inside the TMDS. Besides being used as a rope to rappel CoyoteIII down

the skylight, the tether also transmits power and data from SherpaTT to the TMDS

to command its actuators. Additionally, this link can be used to provide energy

to CoyoteIII inside the lava tube, and for communication between the rovers. The

TMDS is connected to the rovers with two different interfaces. On the one hand, the

tether connects directly to SherpaTT’s manipulator end effector through the electro-

mechanical interface. On the other hand, the TMDS has a hot-dock interface that

allows CoyoteIII to quickly dock and carry the TMDS before rappelling, or undock-

ing once the rover is inside the lava tube to start the exploration. Remark that with

this TMDS design, the tether unwinds from CoyoteIII meanwhile it descends, sim-

ilarly to standard human rappelling. This is a fundamental feature, otherwise, the

tether could suffer damage from being dragged on the surface.

Manipulator’s joints tension

For the rappelling mission to be successful it is crucial to control the tension that

the tether applies to both rovers, SherpaTT and CoyoteIII. Otherwise, as aforemen-

tioned, the systems would suffer efforts that they may not be able to withstand,

jeopardizing the mission.

Let us start analyzing the efforts applied to SherpaTT’s robotic arm, which are

depicted in Figure 6.23a. Being Ft (N) the tension on the tether, it generates a force

Fee = Ft into the tip of the arm’s end effector, which can be decomposed in each axis

according to the direction of the last link of SherpaTT’s arm, i.e. Fee = [Fee,x Fee,y Fee,z].

These forces are endured by the whole link, i.e. by the spherical wrist and by the

force/torque sensor, as in (6.4).

[Fw,x Fw,y Fw,z] = [Fs,x Fs,y Fs,z] = [Fee,x Fee,y Fee,z] (6.4)
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(a) The tether and the arm’s last link are not aligned, which generates torques on
the spherical wrist.

τ

(b) The tether and the arm’s last link are aligned, hence, the torques do not affect the spherical
wrist. Instead, they are transferred to the elbow joint, which is stronger.

FIGURE 6.23: Efforts that the tether applies to SherpaTT’s robotic arm during the
rappelling mission.
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Being [Fw,x Fw,y Fw,z] the forces endured by the wrist and [Fs,x Fs,y Fs,z] the forces

measured on the force/torque sensor.

Regarding the torques, Fee,z is aligned with the last link, thus, it does not gener-

ate any torque. Conversely, Fee,x and Fee,y are perpendicular to the last link, therefore,

they generate some torques alongside the robotic arm. The force/torque sensor ex-

periences the torques τs,x and τs,y (N m), as shown in (6.5-6.6).

τs,x = Fee,y dee−s (6.5)

τs,y = Fee,x dee−s (6.6)

Where dee−s (m) is the distance between the tip of the arm’s end effector and the

force/torque sensor. Additionally, Fee,x and Fee,y generate torques in the spherical

wrist of the manipulator, as expressed in (6.7-6.8).

τw,x = Fee,y(dee−s + ds−w) (6.7)

τw,y = Fee,x(dee−s + ds−w) (6.8)

Where ds−w (m) is the distance between the force/torque sensor and the spherical

wrist.

The weakest point of the robotic arm during the rappelling operation is the

spherical wrist. The wrist joints are capable of enduring forces but are not designed

to resist high torques. As a result, these joints yield if τw,x and τw,y are big, which only

happens if Fee,x and Fee,y are considerable, i.e. if there is a significant misalignment

between the directions of the tether and the last link of the arm.

These torques can be eliminated, thus, by aligning the arm with the tether, as

demonstrated in Figure 6.23b. When the tether and the last link of the arm are com-

pletely aligned the tether tension generates only axial forces into the arm, Fee =

Fee,z = Ft. Hence, the force/torque sensor measures directly the tension on the tether,

Fs,z ≃ Ft, being zero the rest of the measured forces and torques ([Fs,x, Fs,y, τs,x, τs,y] ≃

0). Similarly, the spherical wrist only endures the axial force Fw = Ft, no torques,

which are transferred to the elbow joint as in (6.9).

τe,y = Fw,x dw−e (6.9)

Where τe,y is the torque endured by the elbow joint, Fw,x is the transversal force

acting on the spherical wrist (Fw = [Fw,x 0 Fw,z]) according to the elbow-wrist link

direction, and dw−e is the distance between the spherical wrist and the elbow joint.

Consequently, the stronger elbow joint is the one withstanding the torques as de-

sired. Meanwhile, the spherical wrist joints only experience axial forces.

Considering the hazard of torques acting on the spherical wrist, it is necessary to

include a controller that aligns the arm’s last link and the tether to ensure the safety

of the robotic arm during the rappelling operation, since this alignment eliminates

the torques on the wrist, as demonstrated above. In this regard, the over-actuated
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FIGURE 6.24: Pipeline to control the tension that the tether applies to SherpaTT’s
arm, including a commander for the end effector poses and an MPC.

MM capabilities of SherpaTT give the system a lot of possibilities to actively com-

pensate for the measured forces and torques, by moving the mobile base and/or the

manipulator. A MM efforts compensation algorithm was, thus, developed, with two

main components performing two control loops, as shown in Figure 6.24. Let us

detail these two components, the end effector goal pose commander and the MPC

whole-body controller, in the following.

End effector goal pose commander

The first component is the commander, which receives the measurements of the

force/torque sensor to compute a goal end effector pose that would compensate

them. The measured transversal forces, Fs,x and Fs,y, generate a relative linear dis-

placement of the goal pose in the direction of the corresponding force. To do so, they

are scaled to translate the forces to displacements as if a spring were located in the

end effector, following (6.10-6.11).

∆x = Fs,x/kx (6.10)

∆y = Fs,y/ky (6.11)

Where ∆x and ∆y (m) are the relative displacements in the x and y axes of the

end effector respectively, and kx and ky are their scaling factors, i.e. spring constants

(N/m). Similarly, the measured torques, τs,x and τs,y, are translated into a relative

angular displacement of the goal pose, as expressed in (6.12-6.13).

∆ϕ = τs,x/kϕ (6.12)

∆ϑ = τs,y/kϑ (6.13)

With ∆ϕ and ∆ϑ (rad) the relative rotations for the x and y axes of the end effector

respectively, and kϕ and kϑ their scaling factors (N m/rad). Note that the measured

axial force, Fs,z, is ignored, since it does not generate torques on the wrist, and it will

always be present as long as there is tension on the tether. Also, note that all the

force/torque measurements are filtered to erase high-frequency noises affecting the

sensor.
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MPC for enhanced reactiveness

The second component of the efforts compensation algorithm is an MPC. Briefly, the

controller takes the goal end effector pose as input, computes an optimal actuation

for the system’s joints to reach the goal, and actuates the real system. In this regard,

the MPC actuates both the mobile base joints and the manipulator ones to reach

the goal end effector pose, although the mobile base movements are restricted to be

parallel to the skylight to avoid the rover getting too close to it. Besides, the MPC

continuously measures the system’s state to filter disturbances, and checks for new

goals even if the previous one has not been reached yet, hence quickly reacting to

changes in the tension of the tether.

Let us provide more details about the controller. As stated in Chapter 2.4, MPC

is one of the most common controllers in the robotics community for its high, fast

performance. MPC controls the robot to reach a desired goal state while predicting

the robot’s evolution in the immediately following period. This prediction, based on

a model of the system, serves as a comparison to continuously evaluate how the real

system evolves w.r.t. what is expected. Feeding this information back to the con-

troller allows it to wisely compensate for mismatches and disturbances, modifying

its initial plan to still get to the desired goal.

In the rappelling support use case, it is not relevant if the controller fails to find

a suitable solution for the problem from time to time. The priority is to quickly

plan the motion to find new solutions for the next few seconds and keep command-

ing the system, so it reacts as fast as possible to any high-frequency disturbances,

therefore, MPC is the best option. The developed MPC makes use of MWMP, the

optimal motion planner presented in Chapter 5.3. The integration of MWMP into an

MPC scheme is quite straightforward since MWMP is based on optimal control tech-

niques, as follows. In the first place, MWMP receives a Cartesian high-level goal for

the manipulator end effector, from the end effector goal commander. Using the cur-

rent state of the system, MWMP generates a motion plan to reach that goal within the

given prediction horizon, if possible. The prediction horizon, usually smaller than

one second, should be tuned depending on the computational complexity of the mo-

tion planning problem and the frequency of the external disturbances, to be able to

react to them. In the second place, the controller gets this motion plan and starts

sending motion commands to the system. MPC keeps sending the commands until

it hits the configured maximum number of consecutive commands (which is usually

one in most state-of-art MPCs). Remark that a higher number of consecutive com-

mands means smoother movements and less computational cost, but also slower

reactiveness. After sending the configured consecutive commands, the prediction

horizon recedes, MWMP generates a new motion plan according to the current state

of the system, and MPC starts commanding again. These steps are sequentially re-

peated until the goal is reached. Find a summary of the main parameters configuring

the MPC and the arm’s tension controller in Table 6.8.

Note that there are a few issues that could arise given this MPC procedure, as
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TABLE 6.8: Configuration of the arm’s tension control components.

Component Parameter Value

Commander

Stiffness kx (N/m) 3000
Stiffness ky (N/m) 100

Stiffness kϕ (N m/rad) inf
Stiffness kϑ (N m/rad) 10

MPC
Prediction time tN (s) 0.4

Time step ∆t (s) 0.029
Max consecutive commands 14

follows. If a new goal is requested but the previous one has not been reached yet,

the controller will cancel the current plan and substitute the old goal for the new

one. Also, if MWMP eventually fails to find a solution, MPC will keep the previous

one until MWMP manages to generate a new motion plan. If MWMP keeps failing,

it will retry several times until finally rejecting the goal, which indicates that the goal

is not reachable for some reason, e.g. obstacles or system limitations.

Tether tension control

SherpaTT actively moves to compensate for the efforts applied to its manipulator

with the algorithm presented above. But, at the same time, CoyoteIII is rappelling

the skylight at a constant linear velocity, and the TMDS is unwinding the tether.

The relative speed between the two systems, the tether and CoyoteIII, defines the

tension that the tether finally undergoes. A small tension could lead to abrupt pulls

from the rover once the vertical descents starts, as aforementioned. On the contrary,

high tether tension could induce slippage or even sinkage of the rover wheels when

approaching the skylight. As a result, it is essential to control the tether unwinding

speed to induce a reasonable tension to the rover.

In this regard, a simple tether tension controller component was included, as

follows. Intuitively, if the tether unwinds at the same speed as CoyoteIII is advanc-

ing, then the tension on the tether is maintained. If the tether unwinds slower than

CoyoteIII, then the tension increases, and vice versa. According to these rules, the

tension can be directly controlled by slightly modifying the unwinding speed of the

tether depending on the measured and desired tether tensions, as in (6.14).

vu = vc + P(Ft − Fr) (6.14)

Where vu (m/s) is the unwinding velocity of the tether, vc (m/s) is the linear

speed of CoyoteIII, P (m/(s N)) is a configurable proportional gain of the controller,

Ft (N) is the measured tension of the tether and Fr (N) is the desired or reference

tension.

Thus, the measured tension on the TMDS Ft and the current velocity of CoyoteIII

vc are fed back to the controller to modify the tether unwinding speed, therefore
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FIGURE 6.25: Snapshot of a MARS simulated rappelling into a lava tube (bottom
right), with SherpaTT (left) attached to CoyoteIII (center) by a simulated tether.

maintaining adequate tension on the tether. The reference tension was selected un-

der the rappelling state, i.e. low tension when the rover is still approaching the

skylight and high tension when the rover is about to start descending vertically. The

proportional gain P was tuned experimentally, being 0.0005 m/(s N) the final con-

figured value during the tests.

Simulation campaign

Before the real field trials, a simulation campaign was carried out to verify and val-

idate the viability of the rappelling operation, to confirm the usefulness of the MM

MPC tension controller, as well as debug and improve the involved algorithms as

much as possible. To do so, the MARS simulator was used. This is a robotics sim-

ulator developed by DFKI RIC, as already presented before. MARS makes use of

the ODE, including optimization techniques to compute the physics, i.e. the contact

points and forces that are applied to the different bodies. Additionally, MARS wraps

sensors, actuators, and several plugins to cope with various functionalities. The au-

tonomous architecture stack was also integrated within the simulations using the

software-in-the-loop concept, with ROCK as the real-time operating system for both

SherpaTT and CoyoteIII. Within this stack, the newly developed tension controllers

were included.

A snapshot of the MARS simulation environment during one of the rappelling

tests is shown in Figure 6.25. Here, the models of SherpaTT and CoyoteIII were

generated utilizing their URDFs, with the TMDS model included in the URDF of

CoyoteIII. The model of SherpaTT includes, as required, a force/torque sensor on

the manipulator’s end effector. On the other hand, the scenario replicates a real lava

tube located in Lanzarote, Canary Islands, Spain. An aerial survey was performed
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FIGURE 6.26: Depiction of the different initial configurations (downward, elon-
gated, forward) of SherpaTT’s robotic arm during the rappelling tests in simula-

tion.

to obtain the 3D model of the surroundings of the lava tube’s skylight. Then, a rover

with a LIDAR was introduced inside the cave to 3D map its interior. Finally, as

can be observed in Figure 6.25, both models (lava tube’s exterior and interior) were

merged and included in the MARS simulator. As a result, the models of the scenario

and the rovers replicated the later field trials with a good level of precision, which

made the simulations accurate and useful enough to improve the operation before

the real test campaign in Lanzarote.

Apart from the rovers and the scenario, there was another system included in

the rappelling simulation: the tether. The tether is a flexible, non-stretchable system

with variable and controllable length. Due to its physical complexity, a tailored plu-

gin was developed by DFKI to model it, as follows. The virtual tether is composed

of a line of particles. Each particle applies forces to the adjacent particles depending

on the distance between them, as if a spring were placed in between. The constant k

of the spring determines the rigidness of the tether: high k generates a strong, rigid

rope, meanwhile low k generates a loose, stretchable rope. At each timestep of the

simulation, these forces between the particles are computed and applied. Afterward,

the particles’ positions are modified considering their mass, inertia, and additional

external factors, such as contact points or gravity acceleration. Additionally, the

tether can be enlarged or shortened by adding or removing particles respectively.

In this regard, the tether plugin includes as an input the wind/unwind velocity.

According to the simulation timestep and the size of the particles, the plugin con-

tinuously generates new particles at the tether’s end if the commanded velocity is

positive, or erases particles if the velocity is negative.
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After putting together all of these models, the rappelling simulations were car-

ried out. Four types of tests were arranged to confirm the usefulness of the Sher-

paTT’s arm MM MPC tension controller. The goal was to analyze the torques ap-

plied to each joint of the manipulator during the rappelling and see if the MM com-

ponent can redistribute and reduce those torques w.r.t. maintaining the arm still.

Thus, three of these tests had MM disabled and kept the arm in a particular initial

configuration throughout the whole test. These initial configurations are shown in

Figure 6.26, which include a first one with the arm looking downward, perpendicu-

lar to the ground (which is also the one shown in Figure 6.25), a second one called

elongated, with the arm slightly inclined looking towards the skylight (which is the

same starting configuration when MM is enabled, as shown in Figure 6.22), and a

third one with the arm looking forward, parallel to the ground.

As can be observed in the CoRob-X rappelling video15, the simulations were as

follows. SherpaTT and CoyoteIII began looking towards the skylight, already at-

tached by the tether. CoyoteIII started moving in a straight line at a constant ve-

locity to the skylight, meanwhile, the tether got unwinded at a controlled velocity

according to its tension. In those tests where the MM MPC component was acti-

vated, SherpaTT compensated for the tether tension by aligning the arm’s last link

with the tether. Once CoyoteIII was close to the skylight it slowed down, and transi-

tioned to a completely vertical hang from the tether. At this point, the tether started

to contact the ground at the edge of the skylight, and the rover descended gradually

until it touched the bottom of the skylight. Then, the rover kept advancing until it

was sufficiently horizontal inside the cave, when the rover and the tether stopped,

and the rappelling operation was concluded.

The results of four of the rappelling simulation tests are shown in Figure 6.27,

where the applied torques on each joint of SherpaTT’s arm throughout the rap-

pelling operation are depicted, alongside the joints’ torque limits. As can be ob-

served, maintaining the arm looking downward is unsafe, since joints 2, 3, and 5

overcome the torque limits continuously during the rappelling. Maintaining the arm

looking forward is not safe either, with joint 5 also surpassing its maximum torque

for most of the rappelling operation. Conversely, the elongated arm configuration

(the arm’s last link already looking towards the skylight) shows quite good results,

with only high torques in the second joint but within the limits. Nevertheless, be-

ware that the elongated configuration is a very particular case since it is by chance

already orientated to the skylight. Such a good arm configuration cannot be easily

estimated before a rappelling execution, and would not be as valid for any scenario

(for instance, if CoyoteIII has to ascend to get to the skylight rim).

Regarding the simulation test where the MM MPC tension controller was en-

abled, the torques acting on all arm joints are considerably reduced throughout the

rappelling and completely maintained within the limits, as shown in Figure 6.27.

15https://youtu.be/zJE6d-LOpcI
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FIGURE 6.27: Torques experienced by SherpaTT’s arm during the rappelling tests
performed in simulation with MARS. Four different simulations were performed:
one with the MM MPC tension controller enabled, and three without it, maintain-

ing the arm still in different initial configurations.

This is thanks to the dynamic movements of the arm and the mobile base, contin-

uously reacting to the measured forces and torques as intended. Particularly, with

MM the spherical wrist joints (4, 5, and 6) suffer almost no torque during the op-

eration, with just a small increase in joint 5 when the rappelling started until the

MPC was able to compensate it properly. Also, the first joint does not endure almost

any torques, which are mainly absorbed by joint 2, the strongest one. Given these

results, it is confirmed that the MM MPC tension controller increases the safety of

the rappelling operation, by reducing and distributing the torques on SherpaTT’s

manipulator joints.

In summary, these simulations helped debug and improve the algorithms, tuning

the different configuration parameters like the speed of CoyoteIII, the expected ten-

sions on the tether, or the controllers’ gains. They also demonstrated the usefulness

of including the MM MPC controller to increase the safety of the operation. Finally,

some unexpected events lead to a series of lessons learned. First, the simulations

showed that CoyoteIII could continuously turn axially during the vertical descent.

Although not critical itself, this turning sometimes led to undesirable touchdowns

where the rover ended upside down. As a workaround, it was decided to keep

moving the rover’s wheels even during the vertical descent, so the rover advances

as soon as it touches the ground, hence, ensuring a proper landing. Second, in some

cases, the tether kept some tension after CoyoteIII landed, leading to undesirable

pulls even when the systems were already stopped. This issue was directly solved



140 Chapter 6. Results

(a) (b)

FIGURE 6.28: Skylight (a) and lava tube (b) to be explored during the CoRob-X field
trials in Lanzarote, Canary Islands, Spain.

by slightly increasing the unroll speed of the tether after the touchdown, gently de-

positing the rover at the cave, and reducing the tension to a safer level. Third, the

MM MPC for SherpaTT’s arm was occasionally causing small pulls from the tether

meanwhile trying to align the manipulator’s last link. Even though these pulls are

not critical for the success of the operation, they increase the tension on the tether

and induce some slip into the wheels of CoyoteIII, facts that could eventually be

undesirable if happening in a critical stage, such as the transition to the vertical de-

scent. Therefore, the MPC was configured to avoid as much as possible changing the

position of the manipulator’s end effector, instead mainly modifying its orientation.

Lanzarote field trials

The CoRob-X field trials lasted for three weeks, to autonomously explore an ana-

logue Lunar lava tube with a team of three different rovers: SherpaTT, CoyoteIII,

and LUVMI-X. The selected scenario, located in Lanzarote, Canary Islands, Spain,

was composed of a narrow, sharp skylight, shown in Figure 6.28a, which conducted

into a considerably big lava tube, shown in Figure 6.28b. This scenario was selected

since the lava tube’s interior was smooth and flat, ideal for demonstrating an explo-

ration with CoyoteIII.

Regarding the equipment, SherpaTT and CoyoteIII had onboard a CPU running

their control subsystems within ROCK, including the tension controllers as in the
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FIGURE 6.29: Final configuration of SherpaTT’s robotic arm at the end of a rap-
pelling operation. After the forces are compensated, the arm’s last link is perfectly
aligned with the tether, thus, the efforts are transferred to the shoulder (joints 1-2)
and elbow (joint 3), which are stronger, relieving the spherical wrist (joints 4-5-6).

simulations. The rovers were equipped with WiFi antennas to communicate be-

tween them and with the ground monitoring and control station. Additionally, Sher-

paTT communicated with the TMDS through the electro-mechanical interface on the

end effector of its robotic arm. Also, CoyoteIII could establish communication with

the TMDS, but through the hot-dock interface placed on its body. Communicating

through the TMDS was key to sending and receiving information to/from CoyoteIII

once the rover was inside the lava tube since the WiFi couldn’t reach its interior.

The rappelling tests were conducted as follows, as can be observed in the com-

plementary rappelling video16. First, the most suitable spot for the rappelling was

manually selected by human operators (an autonomous selection of the descent spot

was out of the scope of the project). Second, both rovers were placed looking to-

wards that descent spot, in a straight line. Third, SherpaTT deployed the TMDS to

the ground using its robotic arm, CoyoteIII walked on top of the TMDS and docked

to it. Then, the rappelling operation began, in a similar manner as the previous sim-

ulations. CoyoteIII started moving to the skylight at the same time that the tether

was unwinded. The unwinding velocity of the tether was computed by the tether

tension controller presented above. In parallel, SherpaTT continuously modified the

configuration of its robotic arm and the position of its body to compensate for the

tether tension, by using the MM MPC component. Whenever CoyoteIII reached the

skylight and transitioned to a vertical hang, the MM component was stopped, since

the efforts wouldn’t change from then on, and the manipulator was already aligned

16See footnote 15
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(a) CoyoteIII vertically descending through the skylight (DFKI RIC).

(b) CoyoteIII undocking from the TMDS after successfully landing inside the lava
tube (DFKI RIC).

FIGURE 6.30: CoyoteIII rappelling sequence.
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FIGURE 6.31: Torques experienced by SherpaTT’s arm during one of the rappelling
operations performed in a Lunar analogue lava tube in Lanzarote, Canary Islands,
Spain. Since the MM MPC tension controller was enabled, the torques on the arm

joints are maintained within the limits throughout the rappelling.

with the tether as can be observed in Figure 6.29, where it is shown the final state of

SherpaTT in one of the rappelling tests. Besides, moving the manipulator once the

tether is touching the ground is completely undesirable, since it could lead to drag-

ging the tether on the surface and eventually damaging it. Finally, CoyoteIII kept

descending vertically into the lava tube, as depicted in Figure 6.30a, until touch-

down at the bottom of the lava tube. After landing, the rover kept its wheels rolling

until its body was horizontal, as shown in Figure 6.30b. Then, CoyoteIII undocked

from the TMDS, the rappelling operation was considered successful and the execu-

tion stopped.

Multiple rappelling operations were performed during the field trials, not all of

them successful. Initially, a security rope was attached to CoyoteIII. During the first

tests, CoyoteIII got stuck several times in the rim of the skylight due to a pointy rock

touching its belly. Consequently, in one of the tests the docking between CoyoteIII

and the TMDS failed, and both systems had to be manually retrieved from the sky-

light using this security rope. To avoid this rock, the descent spot was later changed.

After that, the rappelling operations started to be mostly successful, despite some

smaller issues due to communication drops between the rovers. Therefore, the se-

curity rope was removed, and multiple successful rappelling operations were per-

formed, all of them with the MM MPC component enabled to ensure the robotic

arm’s safety.

One of the main issues during the field trials was related to the force/torque

sensor placed on the end effector of SherpaTT’s robotic arm. This sensor experienced
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some de-calibration issues in the axial force (Z axis) that made the measurements

slightly jump from time to time, which could not be solved during the field trials.

Though this measurement error was not critical, and did not affect in any sense the

MM MPC tension controller since the axial forces were ignored, the later logged

data from the rappelling tests was not completely reliable for extracting quantitative

conclusions. Anyhow, this data allowed us to perform a qualitative estimation of

the torques experienced by the joints of SherpaTT’s manipulator during one of the

rappelling tests, with similar results to the simulations. As can be observed in Figure

6.31, the torques acting on all the different joints were kept within their limits thanks

to the MM component. In particular, the spherical wrist (joints 4, 5, and 6) did not

experience substantial torques, which were mainly absorbed by the shoulder (joints

1-2) and the elbow (joint 3), due to the alignment of the arm’s last link and the tether.

6.6 Summary and conclusions

This chapter encompasses the results of this doctoral dissertation, i.e. the proofs that

confirm the usefulness of all the proposed methods in the previous chapters. These

results are in the form of, on the one hand, simulation tests, which try to replicate

real scenarios and robots with high accuracy. Since a simulation can be easily per-

formed without the need for big investments in equipment or transport, simulating

is key in robotics to debug, improve, and analyze the performance of the software

(and even hardware) components of the system. On the other hand, the results in-

clude laboratory and field tests with real robots in analogue planetary scenarios.

Performing these real tests is time-consuming, expensive, and especially challeng-

ing for autonomous robots due to the high complexity of the system components

and their interactions. Nevertheless, field tests are essential to demonstrate that the

proposed methodologies can be of use in real systems and scenarios, and eventually

be included in future planetary missions. Consequently, four main simulation and

field test campaigns have been depicted in this chapter, each one focusing on one

contribution of this doctoral research.

The first step for an autonomous MM rover is to autonomously reach the area

of scientific interest in the scenario. Enhancing these autonomous navigation capa-

bilities is the purpose of the first contribution, the dynamic cost map update proce-

dure to enhance path planning in autonomous rovers, which was validated firstly

in a simulation environment within CoppeliaSim, and afterward, in a field test with

HDPR, a planetary rover from ESA-PRL. Results demonstrate that the proposed ap-

proach improves the rover’s path planning performance continuously during the

traverse since the rover’s awareness of the scenario is increased, in two main senses.

First, the estimated terramechanic properties of the terrains (slippage, obstacles den-

sity) are more accurate. Second, the obstacles newly found are included in the cost

map to be later considered when path planning. These cost map update procedure

particularly enhances path planning for round-trip missions as demonstrated in the
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simulation and field tests, although it is also useful to traverse unknown terrains

after extrapolating the gathered information to similar areas of the scenario, mak-

ing the most of a terrain segmentation map. It is worth mentioning that the used

experimental terrain in both the simulation and field tests was limited to only one

type of terrain with an initial, intentionally wrong segmentation. So, a new field test

in a more relevant terrain is foreseen. Moreover, it is proposed as future work the

use of long-range obstacle detection systems, such as panoramic stereo cameras or

a LIDAR, to improve the rover hazard detection capability, being able to feedback

more information to enrich the cost map.

Once the global path planner, which is the one that gets the rover to the target

MM area, was improved with the first contribution, the focus switched to planning

the motion of the mobile manipulator to perform the scientific task. Using the same

path planner as a base, a robust path and motion planner for MM was researched,

which is the second contribution. This algorithm was validated through both sim-

ulation and field tests with the SherpaTT rover of DFKI RIC in Galopprennbahn

Bremen. During the tests the rover was able to reach the goal avoiding obstacles

in the scenario and smoothly orient itself to leave the target inside the manipulator

workspace, meanwhile, the arm was performing its particular motion plan to per-

form a scanning measurement on the sample goal. Besides, a benchmark with an

off-the-shelf motion planner was performed, demonstrating the increased efficiency

of the coupled approach, and the guarantee of self-collision avoidance without a

significant increase in the computational effort. In particular, among the different

possible configurations for the motion planner progressive deployment is the one

that maximizes the efficiency, since the manipulator movements are completely per-

formed meanwhile the rover is still reaching the goal, and the arm joints’ motion is

equally distributed throughout the whole rover base trajectory. Although the pro-

posed motion planner has been demonstrated to be comparable to off-the-shelf plan-

ners in computational terms, it could be improved with a parallel implementation

of some of the motion planning stages, which is foreseen as future work. Addition-

ally, for its use in future space exploration missions, it would be necessary to test

the algorithm with real space conditions, i.e. a space-qualified processing unit run-

ning an autonomous navigation architecture and including communication delays.

Finally, it is foreseen to include on the arm end effector a scientific tool, such as a

sample localization subsystem or a spectrometer, to perform a real scientific task on

interesting areas of the scenario. This tool, altogether with the inclusion of real space

conditions, would allow us to perform a more representative and complete field test

campaign, to confirm that the proposed algorithm could be used in future space

exploration missions.

Though the robust motion planner generates efficient motions for MM with low

computational cost, it is still a sub-optimal method. Therefore, the third contribu-

tion explored an optimal methodology for MM motion planning, able to optimize

parameters like the energy spent. Called MWMP, this whole-body optimal motion
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planner for over-actuated platforms was validated through a performance campaign

through simulations and laboratory tests. The proposed generic model for over-

actuated platforms including several kinematic chains was particularized for the Ex-

oTeR rover, composed of a mobile base and a robotic arm. This MM rover was later

used to perform the laboratory tests. For that purpose, a tailored event-triggered

replanning capability was included, which allows the system to precisely follow the

generated motion plans. The laboratory tests were performed at the Martian Ana-

logue Testbed of the ESA-PRL at ESTEC, to emulate a Martian sample tube retrieval

mission. The tests showcased the advantages of the presented motion planner to

generate accurate motions for over-actuated and constrained platforms, in this case,

allowing ExoTeR to retrieve a sample tube with a high-quality grasp, even consid-

ering the rover and sample localization errors. The proposed multi-staged warm

start sequence has been demonstrated to improve the motion planner convergence

speed and the feasibility of its solutions w.r.t. any cold-started version of the planner

or any other combination of the warm start stages. Nevertheless, it has only been

tested with the SLQ solver. Testing if the proposed sequence also boosts other opti-

mization solvers is planned as future work. Furthermore, as done in related works,

the inclusion of the constraints sequentially inside the CSLQ stage can boost further

the convergence speed, especially for highly constrained and cluttered use cases,

which remains to be tested.

MWMP is lightweight enough to solve complex control tasks as demonstrated

with the fourth contribution, which is the MM MPC tension controller to support

a rappelling rover. This method was validated through a simulation and field test

campaign. On the one hand, a realistic simulation environment was developed,

which included all of the involved systems: the SherpaTT rover as the MM mobile

anchor to support the rappelling, the CoyoteIII rover as the lightweight rappelling

rover, and the TMDS as the tethering interface between both rovers. Additionally,

the scenario of the field test campaign, located in Lanzarote, was accurately 3D mod-

eled and included in the simulator. The results of the simulations showed that using

the MM MPC tension controller ensures the safety of SherpaTT’s robotic arm, con-

versely, maintaining the arm still usually leads to overcoming the arm joints’ torque

limits during the rappelling operation. This statement was confirmed during the

later field trials in Lanzarote, where the rappelling mission was successfully per-

formed several times with the tension controller enabled, without surpassing the

torque limits in any of the arm joints. It is expected to use this MM MPC in fur-

ther use cases, including 3D platforms with faster dynamics and multiple external

disturbances. Thus, a benchmark of the optimal motion planner and the MPC with

other algorithms, such as an off-the-shelf MPC, is planned as future work.



Chapter 7

Conclusions and future work

"Qui fortis est liber" -
"He who is brave is free"

Lucius Annaeus Seneca
Epistulae Morales ad Lucilium,

1st century A.D.

7.1 Introduction

The capacity to manipulate objects was one of the key biological achievements of hu-

man evolution to create our civilization, able to dominate the Earth. Now, humanity

is trying to reach new worlds to further expand our civilization, though humans

are not biologically prepared to strive in the extreme conditions of extraplanetary

surfaces. Robots are, conversely, capable of reaching and exploring other planets in

a much safer and cheaper manner. Nevertheless, robots’ manipulation capabilities

in space are still immature. Manipulation requires not only the proper hardware

but also the intelligence to perform the movements autonomously and efficiently.

For a robot, intelligence is intimately related to computational capacity, however,

space-qualified processors are computationally limited due to the harsh conditions

of space.

Within the indicated context, this dissertation exposes the achievements of the

author’s doctoral research when pushing the boundaries of autonomous MM ap-

plied to planetary exploration vehicles. To do so, advancements in motion planning

and control for planetary MM rovers were investigated, with four main contribu-

tions. In summary, Contribution 1 is a dynamic cost map update procedure, which

enhances the global path planner of a planetary rover when approaching an area of

scientific interest. Contribution 2 is a robust and efficient motion planner to perform

MM scientific tasks in a target area, which generates safe, coupled motions for the

robotic arm and the mobile base in a computationally lightweight manner. To com-

pensate for several weaknesses of Contribution 2, an optimal control-based motion

planner was explored in Contribution 3. This planner can obtain motions for the

whole system (base and arm) that optimize any desired parameter, e.g. minimize

the overall energy spent or maximize the manipulability of the platform. Finally, the
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knowledge acquired during this doctoral research was applied to solve a complex

MM task: a multi-robot rappelling into a Lunar lava tube. To do so, the optimal

motion planner of Contribution 3 was integrated into a fast MPC loop to control the

tension during the rappelling, which is Contribution 4.

This thesis demonstrates the outcomes of the author’s doctoral studies in seven

different chapters. Chapter 1 introduces the conducted research and puts it in con-

text. Chapter 2 analyzes the state of the technology regarding autonomous MM.

Chapters 3, 4, and 5 depict the methodologies behind Contributions 1, 2, and 3 re-

spectively. Chapter 6 shows the experimental campaigns carried out during this

doctoral research and their results, which demonstrate the validity and usefulness

of all the contributions, including the rappelling tension controller of Contribution

4. Lastly, this chapter concludes the dissertation with an overview of each contribu-

tion in Section 7.2, and a proposal of future research lines in Section 7.3, to continue

investigating the topic of autonomous MM in space exploration.

7.2 Conclusions

As thoroughly explained throughout this dissertation, autonomy in space explo-

ration is a huge advantage in terms of time and energy efficiency seeing that the

delays caused by teleoperation are mostly removed. Since a great amount of the

tasks that a planetary rover executes involve MM, performing autonomous MM mo-

tions implies increasing the number and complexity of the tasks that the rover can

carry out during its lifetime. Hence, this thesis explores different ways to enable au-

tonomous MM in space robots, by answering how to plan the motion of planetary

rovers efficiently, to fulfill MM tasks.

To answer this question, technology from on-Earth applications has been ex-

tracted and tailored for the planetary use case, in several steps that establish some

contributions to the field. First, by increasing the awareness of the rover regard-

ing the scenario, enhancing the global path planning process to reach the area of

scientific interest. Second, by including collision avoidance in an efficient yet ro-

bust manner to the motion planning stage, increasing the safety when performing

the MM scientific tasks. Third, by optimizing the energy spent without a heavy

computational effort within the motion planner, maximizing the overall execution

efficiency of the MM motion plan. Fourth, by optimally controlling the motion in

multi-robot MM operations, improving the safety of the systems involved. Let us

summarize and draw some conclusions from each of these four contributions in the

following.

Contribution 1: Dynamic cost map update to enhance global path planning.

Before reaching a spot of scientific interest and performing the MM tasks, a planetary

rover usually drives long distances. Thus, achieving an efficient and autonomous

MM in space requires first achieving an efficient and autonomous global navigation.
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Considering that these traverses usually cover areas with great similarities or even

the same areas in round-trip trajectories, the first question of this doctoral research

arises: how to increase the rover’s awareness of the characteristics of the surround-

ing scenario to improve future plans?

Contribution 1 is, therefore, a dynamic cost map update procedure to continu-

ously improve the quality of the global planned paths during the traverse. Inte-

grated within the DyMu path planner, this feedback update methodology enhances

the rover performance in two main senses. On the one hand, the locally detected

obstacles are dynamically included in the cost map, so the rover does not encounter

them again seeing that they are directly avoided in the global planned paths. On

the other hand, the soil properties estimation is continuously refined during the tra-

verse, modifying the cost of the terrain patches in the cost map. This way, the path

planner is more likely to generate trajectories on the areas of the scenario that are

easier to traverse.

This dynamic cost map update methodology was validated with an experimen-

tal campaign with both simulations and field tests, with the rover HDPR from ESA-

PRL. The conclusion from these experiments is that the dynamic feedback to the cost

map enhances the global path planner since the rover is more aware of the charac-

teristics of the scenario where it is traversing. It is particularly helpful for round-trip

missions, i.e. going to a zone of scientific interest, performing a MM task, and re-

turning to the initial spot. During the return, the rover would cover the same areas,

and all the information gathered in the outbound traverse can be used to improve

the quality of the return paths. Anyhow, this methodology also enhances the path

planner when traversing unknown terrains, since the gathered information can be

extrapolated to similar areas if using a global segmentation of the scenario.

Contribution 2: Robust motion planning for MM.

Once the rover has reached the target scientific area, it has to autonomously perform

a combined MM motion to fulfill the goal scientific task. However, planning such a

motion is computationally expensive given the difficulty of considering collisions if

moving both systems (mobile base and robotic arm) simultaneously. This is the sec-

ond question of this doctoral research: how to consider collision avoidance robustly

and efficiently in the motion planning stage of MM?

Contribution 2 is, hence, a robust and efficient motion planning algorithm for

planetary exploration MM. This algorithm plans first a path for the mobile base that

avoids the obstacles in the scenario until reaching the goal. Then, it plans the mo-

tion for the manipulator according to the mobile base path. The generated motion

plans always leave the target inside the manipulator workspace since the planner

includes a tailored plan-and-control approach in the last stretch of the mobile base

path. Additionally, the proposed method is quite lightweight even in the case of a

highly restricted arm workspace, since the self-collisions are avoided by using an

offline-computed reachability volume of the manipulator.
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The robust motion planner was validated within another experimental campaign

in simulation and field tests with the rover SherpaTT from DFKI RIC. These ex-

periments demonstrated that the proposed planner is efficient thanks to the coor-

dinated motions of the mobile base and the manipulator. A progressive deploy-

ment is, among the possible configurations of the motion planner, the most efficient

approach, seeing that it distributes the manipulator movements equally along the

rover base trajectory. Besides, the motion planner intrinsically guarantees that the

complete plan is safe, with a thorough avoidance of obstacles and self-collisions.

This safety is achieved in a computationally efficient manner, thanks to the offline

computation of the reachability volume.

Contribution 3: Optimal motion planning for over-actuated mobile platforms.

Although the MM motion planner of Contribution 2 solves the problem robustly and

efficiently, it is still a sub-optimal method. As such, it cannot optimize the energy

spent during the MM operation, i.e. the motion efficiency is not maximized. Besides,

though it coordinates the mobile base and the manipulator, the motion is generated

separately. This approach leaves out the possibility of using the DoFs of one of the

systems (mobile base or robotic arm) to compensate for the limitations of the other

one. Nevertheless, these issues can be directly solved with a whole-body, optimal

control-based motion planner, which brings to focus the third question of this doc-

toral research: can optimal control algorithms be applied to MM motion planning in

planetary exploration with admissible computational costs?

Contribution 3 is, thus, an optimal control-based motion planner for over-actuated

mobile platforms. Called MWMP, this planner considers the whole system dynam-

ics and its constraints meanwhile maintaining an acceptable computational cost. To

do so, several stages of warm-started planning are included, i.e. subsequently ini-

tializing the next optimization with a feasible solution to accelerate the convergence

speed. Particularly, three warm start stages are implemented in MWMP, a path

planner (making the most of the first contribution of this doctoral thesis), an uncon-

strained SLQ-based motion planner, and a constrained SLQ-based motion planner.

To use this motion planner a state space model of the system is required, therefore, a

generic model for over-actuated mobile platforms is also presented, which considers

systems with multiple kinematic chains.

Before the experimental campaign, the proposed method was evaluated, testing

the motion plan quality of MWMP w.r.t. any other combination of the warm starts.

These tests proved that the proposed multi-staged warm start sequence improves

the performance and reduces the computational cost, with the fastest convergence

and the highest success rate. Afterward, the viability of MWMP was confirmed with

a laboratory test campaign with the rover ExoTeR from ESA-PRL. In this regard, a

motion plan follower was developed to bring the planned motions to the platform.

This follower checks for errors in the current state of the platform w.r.t. the planned
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motions and requests a new motion plan in case of significant deviations. The lab-

oratory tests confirmed that MWMP generates accurate, constraint-compliant mo-

tions for over-actuated platforms, tackling the non-holonomic constraint of the mo-

bile base, filtering the rover and the goal localization errors, and fulfilling the task in

an efficient, optimized manner.

Contribution 4: Optimal tension control for multi-robot rappelling.

Not all the MM tasks in space are goal-constrained, i.e. with the rover traversing a

scenario to reach a spot of scientific interest and perform a manipulation task. Some

operations require a certain level of reactiveness. A clear example is the case of a

multi-robot rappelling into a lava tube. Briefly, a big rover acting as a mobile anchor

uses its manipulator to support the rappel of a smaller rover through the skylight of

the lava tube. Therefore, the manipulator withstands the weight of the small rover as

it descends. The rover’s weight produces a high tension in the tether that connects

both rovers, and this tension generates high torques into the robotic arm’s joints,

which may damage them if the system does not react on time. Within this context,

the fourth question of this doctoral research arises: can optimal MM control increase

the safety of multi-robot missions in space?

Contribution 4 is, hereby, an optimal MM controller. Applied to a multi-robot

rappelling operation, this controller can compensate for the tension that the tether

applies to the robotic arm of the mobile anchor rover as the small rover rappels down

to the lava tube. This optimal controller makes use of MWMP from Contribution 3

since it is lightweight enough to be integrated into a MPC, high-frequency loop. To

increase the safety of the operation, the proposed MM MPC algorithm continuously

measures the efforts (forces and torques) acting on the manipulator’s end effector

and tries to reduce them by aligning the arm’s last link and the tether. This alignment

eliminates the torques that the tension generates in the wrist of the manipulator,

which has weaker joints, redistributing them to the shoulder and elbow, which have

stronger joints.

The MM MPC methodology for tension control was validated with simulations

and a field test campaign with the rovers SherpaTT and CoyoteIII from DFKI RIC.

The simulation tests showed that enabling the MM MPC component notably reduces

the torques endured by the manipulator during the rappelling. On the contrary,

maintaining the arm still could lead to a mission failure, since the arm joints suffered

torques that surpassed their limits. The usefulness of the proposed controller was

confirmed during the field test campaign, seeing that multiple rappelling operations

were successfully performed without ever exceeding the torque limits of the robotic

arm joints.
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7.3 Future work

From a general point of view, the research carried out throughout this doctoral

research has enhanced the technology until demonstrating autonomous MM with

rover prototypes in analogue environments. Nevertheless, as an academic research

work the maximum reached Technology Readiness Level (TRL) is TRL 5 (validating

the components with a prototype in a relevant environment). In the future, getting

the proposed methods to a real space exploration mission would require reaching

at least TRL 6, qualifying the code, and testing the algorithms with real space con-

ditions, i.e. a space-qualified processing unit running an autonomous navigation

architecture and including communication delays, localization errors, and energy

constraints. In this regard, the algorithms should be adapted to space-grade CPUs

like the LEON III or the LEON IV. Additionally, the motion planners should be tested

to solve a broader scope of real MM scientific tasks, demanding scientific tools to be

attached to the robotic arm end effector, such as a spectrometer, a sample acquisi-

tion tool, or a close-range imager. These enhancements would lead to a more repre-

sentative validation of the proposed methodologies, confirming that they could be

brought into future planetary vehicles.

On the other hand, regarding the contributions themselves, there are several po-

tential advancements to the algorithms and alternative research lines to keep im-

proving the autonomous capabilities of MM rovers. Focusing first on the dynamic

cost map for global path planning, only two parameters have been used to model the

terramechanics of the scenario: the slip ratio and the trafficability. Using a broader

amount of parameters would increase the accuracy of the model w.r.t. the real con-

ditions of the terrain, hence, the path planner would find better ways to traverse

the scenario. This would be demonstrated in a more relevant field test campaign,

on a scenario with multiple types of terrain for the rover to estimate their proper-

ties. Moreover, the local obstacle detection should not only rely on the LocCams.

Panoramic cameras or laser detectors could also be included to increase the number

of detected obstacles, thereby improving the quality of the cost map. Lastly, the cost

map used within this work is isotropic, which cannot take into account the move-

ment direction of the rover but only the terrain shape and properties. A cost map that

considers anisotropy would allow the inclusion of further aspects that are critical for

the rover’s safety, such as the risk of overturns or lateral slippage (Sánchez-Ibáñez

et al., 2023).

Regarding the MM motion planners, although they are already quite efficient

in computational terms (which was the main goal of this doctoral research), their

computational cost could be further reduced with parallel computing devices like

FPGAs. This has been demonstrated with Perseverance since it has onboarded an

FPGA that carries out most of the computer vision tasks (Verma et al., 2023). The vi-

sion tasks used to demand considerable processing efforts in the previous rovers, but
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are significantly more lightweight in Perseverance thanks to a parallel implementa-

tion within the FPGA. Hence, it is foreseen that the proposed robust MM motion

planner and the optimal control-based one could also be accelerated with parallel

implementations.

Furthermore, the optimal MM motion planner for over-actuated mobile plat-

forms has some room for improvement. In computational terms, though it is not

common, there are cases where the constraints are too restrictive and the planner

falls into local minima or is not able to converge at all. On-Earth trajectory-constrained

optimization algorithms have solved this issue by including the constraints sequen-

tially in small steps (Kabir et al., 2021), i.e. adding even more warm start interme-

diate stages to the MWMP pipeline. Moreover, the proposed warm start sequence

has only been tested with FMM and SLQ as the optimization solvers. Nevertheless,

this warm-start approach could accelerate other optimization algorithms too, which

remains to be tested. Last of all, more parameters and constraints could be added to

the cost function of the optimization, such as the instantaneous power consumption,

which, given the available power in the platform, may limit the possible motions to

be performed at a certain time.

Finally, though all the existent rovers, to date, use wheels as their main locomo-

tion, new systems are lately taking the spotlight: walking robots like quadrupeds

(Arm et al., 2023), or flying robots like the Ingenuity helicopter (Balaram, Aung, and

Golombek, 2021). These platforms will also require autonomous MM capabilities

when sent to extraterrestrial surfaces. Hereby, a very interesting research line is to

generalize the proposed motion planners and the MPC methodology to cope with

multiple types of locomotion (wheeled, legged, flying...). To do so, the generic state

space model could be further developed to include a wider variety of systems, for

instance, closed kinematic chains.
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Resumen de la tesis doctoral

El papel de la robótica en la ciencia espacial

El espacio es el principal interrogante que limita el conocimiento humano sobre el

universo y el progreso tecnológico. Explorar el espacio es difícil, costoso y peligroso

para los humanos. Por ello, los robots han surgido en las últimas décadas como

la alternativa más adecuada, llegando más lejos, con menos recursos invertidos y

sin arriesgar vidas humanas. En particular, los vehículos de exploración plane-

taria, también llamados rovers, se han convertido en la mejor opción para llevar

los instrumentos científicos que recogen información de superficies extraterrestres

como Marte (Gao and Chien, 2017) o la Luna. Normalmente instalados en un brazo

robótico, estos instrumentos permiten que el rover ejecute tareas de Manipulación

Móvil o Mobile Manipulation (MM), como realizar mediciones científicas en la su-

perficie (Lehner et al., 2018), extraer muestras de terreno Marciano (Williford et al.,

2018), recoger los tubos con muestras de terreno (Merlo, Larranaga, and Falkner,

2013), o incluso colaborar entre rovers (Brinkmann et al., 2018). Este tipo de robot

se denomina manipulador móvil, es decir, un brazo robótico sin limitaciones en su

espacio de trabajo gracias a la flexibilidad que le proporciona la plataforma móvil.

No obstante, los rovers Marcianos tienen un inconveniente principal: la teleop-

eración desde la Tierra. Esto se debe a la corta duración de las ventanas de comu-

nicación (16 h al día, retrasándose 40 min cada día) y la inmensa latencia (20 min de

media) entre la Tierra y Marte (Lester and Thronson, 2011). Teleoperar un rover en

Marte es, por tanto, una tarea increíblemente difícil, con alto riesgo y muy baja efi-

ciencia. Consecuentemente, la alternativa a la teleoperación es incluir en el rover un

cierto nivel de autonomía, de manera que el rover reaccione a situaciones inesper-

adas o incluso tome decisiones de medio-alto nivel por sí mismo. Esta capacidad

generalmente se denomina navegación autónoma. Aunque no tuvo mucha relevan-

cia en las primeras misiones de exploración planetaria, la navegación autónoma ha

ido poco a poco ganando importancia en las últimas décadas. De hecho, en el último

rover Marciano de la National Aeronautics and Space Administration (NASA), Per-

severance, el llamado Autonomous Navigation (AutoNav) está alcanzando un in-

creíble 78 % de distancia recorrida de forma autónoma en Marte, durante su primer

año Marciano (Verma et al., 2023). Gracias a este nivel tan elevado de autonomía,

la distancia recorrida ha aumentado unos 144 m de media por Sol Marciano (un sol

Marciano es un día solar en Marte, el cual dura 24 h y 39 min aproximadamente) en

comparación con las misiones anteriores, las cuales generalmente no podían recorrer
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más de 30 m/sol. Estos logros son impresionantes, los cuales han sido alcanzados

gracias a un esfuerzo progresivo en investigación y experimentación en los rovers

anteriores. Por ello, revisitemos la evolución de los rovers y su autonomía a lo largo

de la historia de la exploración planetaria.

Navegación autónoma en superficies extraterrestres

El concepto de explorar superficies extraterrestres con robots fue propuesto inicial-

mente con el programa Lunokhod (Caminador Lunar) de la Unión Soviética, siendo

Lunokhod 1 el primer vehículo no tripulado recorriendo una superficie fuera de la

Tierra (Kassel, 1970). Este rover alunizó en 1970 y recorrió 10.54 km durante 11 días

Lunares, es decir, 321 días en la Tierra. Su sucesor fue el rover Lunokhod 2 (Severny,

Terez, and Zvereva, 1975), que alunizó en 1973 y recorrió aproximadamente 39 km.

Ambos rovers fueron completamente teleoperados gracias a la pequeña latencia en-

tre la Luna y la Tierra (aproximadamente 3 s). Los Lunokhod lograron captar miles

de imágenes de la superficie Lunar y también realizaron múltiples análisis del ter-

reno mediante espectrómetros, penetrómetros y telémetros láser.

No fue hasta 25 años después que otro robot alcanzó con éxito otro cuerpo ce-

leste, con la misión de la NASA/Jet Propulsion Laboratory (JPL) Mars Pathfinder.

Esta misión fue una prueba de concepto sobre la exploración Marciana con robots,

concepto que fue confirmado cuando la Carl Sagan Memorial Station amartizó en

1997 con el rover Sojourner (Matijevic et al., 1997). Aunque no puedo recorrer más

de 100 m, Sojourner ya incluía algunos algoritmos básicos de navegación autónoma,

lo que supuso la primera demostración real de este tipo de tecnología. En particular,

Sojourner incluía un método "Go to Waypoint", el cual permitía a los teleoperadores

comandar una serie de puntos que el rover debía alcanzar mediante líneas rectas.

Durante la ejecución, el rover utilizaba la odometría de las ruedas para localizarse

en el escenario, y una serie de sensores para detectar los obstáculos cercanos y evi-

tarlos (Matijevic, 1998).

Más adelante, los abrumadores logros de los Mars Exploration Rover (MER)s de

la NASA (Maimone, Cheng, and Matthies, 2007), Spirit y Opportunity, demostraron

que los vehículos de exploración planetaria garantizan un amplio retorno científico.

Spirit y Opportunity inicialmente tenían una vida útil de 90 días cuando amarti-

zaron en 2004, la cual fue ampliamente superada: Spirit recorrió la superficie Mar-

ciana durante seis años, y Opportunity durante 15. Estos rovers gemelos eran bas-

tante más avanzados que Sojourner, con un procesador y una locomoción diez ve-

ces más rápidos (Rankin et al., 2023). También incluían mejores métodos de nave-

gación autónoma con el denominado AutoNav, con tres características principales.

Primero, odometría visual para la localización, la cual proporcionaba una conver-

gencia exitosa en el 95 % de las actualizaciones en la posición del rover (Maimone,

Cheng, and Matthies, 2007). Segundo, evaluación del terreno, la cual usaba cámaras

estéreo para detectar y estimar la posición de los peligros cercanos. Tercero, un se-

lector de caminos, que elegía la mejor trayectoria para alcanzar un objetivo entre una
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serie de caminos distribuidos siguiendo una Gaussiana (Biesiadecki and Maimone,

2006). Spirit y Opportunity utilizaron AutoNav para recorrer de forma autónoma

1825 m y 2433 m respectivamente, es decir, el 23.60 % y 5.40 % de toda la distancia

que recorrieron en Marte.

Tras el gran éxito de los MERs, el nuevo objetivo fue realizar tareas científicas

más ambiciosas en la superficie Marciana. En concreto, la misión Mars Science Labo-

ratory (MSL) de la NASA fue lanzada en 2012 con el rover Curiosity (Anderson et al.,

2012). Este rover alcanzó la superficie de Marte en el cráter Gale, donde sigue explo-

rando hoy. Curiosity tiene un AutoNav parecido al de los MERs pero con un proce-

sador seis veces más rápido. Sin embargo, las capacidades de navegación autónoma

de Curiosity no destacan demasiado, realizando de forma autónoma solo un 3.77 %

de la distancia total que ha recorrido en Marte. A pesar de tener un equipamiento

mucho mejor, esta distancia es menor que la de los MERs, lo cual se debe a los es-

trictos requerimientos científicos de Curiosity.

Analicemos cómo los teleoperadores planifican y comandan los movimientos

de Curiosity cada sol Marciano (Manning and Simon, 2014). En primer lugar, hay

un equipo que toma las decisiones de alto nivel denominado el Science Operations

Working Group (SOWG). Este equipo está compuesto de científicos, que proponen

distintas tareas a ser desarrolladas por el rover, y los ingenieros del rover, que esti-

man qué tareas son posibles teniendo en cuenta el tiempo y la energía que necesitan.

Los miembros del SOWG iteran varias veces, analizando todas las opciones hasta

que deciden el plan de exploración para el siguiente sol Marciano. Sin embargo, el

SOWG debe terminar con suficiente tiempo antes de la medianoche Marciana. Si

no, los Rover Planner (RP)s no podrán utilizar el plan diseñado por el SOWG y tra-

ducirlo en una serie detallada de acciones de bajo nivel para el rover. Estas acciones

incluyen, por un lado, comandos de movimiento para alcanzar puntos específicos

del escenario, los cuales son seleccionados por los RPs tras observar imágenes or-

bitales y locales del rover. Por otro lado, los comandos de movimiento dan paso

a las tareas científicas, con comandos específicos para el brazo robótico y para los

instrumentos científicos. La secuencia completa de comandos se comprueba varias

veces, finalmente, en un simulador. Con todo esto, para cada sol Marciano, los RPs

necesitan aproximadamente seis horas para traducir el plan del SOWG a una lista

detallada de comandos para el rover. Por último, temprano en la mañana Marciana,

una vez que Curiosity está despierto y funcionando de forma nominal, la lista de

instrucciones es enviada. Así, Curiosity empieza a seguir los comandos sin comuni-

carse más con los teleoperadores hasta que finaliza el sol Marciano. Es importante

tener en cuenta que el rover no sabe cómo reaccionar si algún comando sale mal. En

ese caso, Curiosity deja de seguir las instrucciones hasta que recibe una nueva lista

de comandos, es decir, se pierde por completo el tiempo de trabajo disponible para

Curiosity durante ese sol Marciano.

Como conclusión, aunque Curiosity tiene un AutoNav bastante avanzado para

evitar obstáculos y alcanzar objetivos en el escenario, la distancia real que el rover
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es capaz de recorrer de forma autónoma está muy restringida. Por un lado, debido a

que necesita teleoperación directa para planificar las tareas, seleccionar los objetivos

científicos, y realizar las tareas científicas. Pero también, por otro lado, debido a la

limitada capacidad computacional disponible a bordo, que es utilizada en su mayor

parte para mantener activos y en forma todos los sistemas robóticos y científicos del

rover.

Los inconvenientes en la autonomía de Curiosity se resolvieron más adelante

con las impresionantes capacidades de navegación autónoma del rover Persever-

ance, el cual amartizó en 2021. Perseverance es el primer paso de Mars Sample

Return (MSR), el cual es probablemente el programa de exploración planetaria más

ambicioso hasta la fecha. MSR está compuesto de varias misiones con el objetivo

final de traer de vuelta a la Tierra varias muestras de terreno Marciano, lo cual es

muy interesante desde un punto de vista científico, ya que estas muestras podrían

ser analizadas en la Tierra en laboratorios con equipamiento muy avanzado, mucho

más avanzado del que puede ser enviado a Marte. Perseverance es muy similar a

Curiosity, heredando gran parte de su tecnología, pero incluyendo dos procesadores

y una Field Programmable Gate Array (FPGA), la cual se utiliza para visión por com-

putador. Con todo esto, en Perseverance los algoritmos de navegación autónoma ya

no están limitados por el tiempo de computación, siendo AutoNav capaz de tomar

mediciones del escenario y decidir qué hacer lo suficientemente rápido como para

que el rover se mueva a su velocidad máxima de 4.2 cm/s (Rankin et al., 2023).

Además, Perseverance incluye un algoritmo llamado Autonomous Exploration for

Gathering Increased Science (AEGIS), capaz de seleccionar y adquirir imágenes, de

forma autónoma, de objetivos interesantes desde un punto de vista científico. Uti-

lizar este algoritmo elimina parcialmente la necesidad de teleoperar las tareas cien-

tíficas desde la Tierra, mejorando notablemente la autonomía del rover. De hecho,

Perseverance ha recorrido 13 717 m de forma completamente autónoma, lo cual es el

77.58 % de toda la distancia que este rover ha transitado en Marte. Esto es, en solo

dos años, 12 veces la distancia recorrida de forma autónoma por Curiosity, el cual

lleva ya 11 años explorando Marte.

Destacar también la autonomía de los rovers Marcianos de otras agencias espa-

ciales. Primero, el rover Zhurong de la Chinese National Space Agency (CNSA),

que ha realizado de forma autónoma aproximadamente el 40 % de los 450 m que

ha recorrido en Marte (Ding et al., 2022). Segundo, el rover Rosalind Franklin Exo-

Mars (Vago et al., 2017) de la European Space Agency (ESA). Este rover será lanzado

en 2028 a pesar de la desafortunada guerra en Ucrania, la cuál interrumpió la co-

laboración entre la ESA y la Russian Federal Space Agency (Roskosmos). ExoMars

incluirá la capacidad de alcanzar un objetivo comandado de forma completamente

autónoma, analizando el terreno y planificando una trayectoria viable para alcanzar

el destino (Winter et al., 2017).

Es evidente, por tanto, que las capacidades de navegación autónoma de los rovers

han evolucionado hasta alcanzar resultados impresionantes con Perseverance. Sin
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embargo, además de la navegación, los rovers generalmente hacen ciencia mediante

tareas de manipulación, utilizando sus brazos robóticos para colocar instrumentos

científicos en localizaciones interesantes del escenario. Ejecutar estas tareas de MM

no es aún autónomo, ni siquiera para Perseverance. Un elevado nivel de autonomía

para MM podría abrir la puerta a nuevas tareas interesantes para los rovers plane-

tarios, por ejemplo, ensamblaje, construcción, o colaboración entre robots. Recopile-

mos, por tanto, el pasado, presente, y futuro de la MM en exploración planetaria, y

cómo la MM autónoma puede beneficiar los resultados de este tipo de misión plan-

etaria.

Ciencia e ingeniería planetaria a través de la Manipulación Móvil

El primer rover Marciano, Sojourner, ya tenía a bordo una herramienta científica.

Se trataba de un Alpha Proton X-Ray Spectrometer (APXS), que fue utilizado para

analizar la composición de algunas rocas y del terreno Marciano (Matijevic et al.,

1997). No obstante, los primeros rovers que incluían la capacidad de MM fueron los

MERs, Spirit y Opportunity. Los MERs tenían múltiples instrumentos científicos in-

stalados en el efector final de sus brazos robóticos, como el Microscopic Imager (MI),

un APXS como el de Sojourner, o la Rock Abrasion Tool (RAT), capaz de limpiar ro-

cas o el suelo Marciano para exponer los materiales de las capas inferiores. Gracias

a estas herramientas, los MERs obtuvieron evidencia de que el clima Marciano fue

más caliente en el pasado, con una atmósfera densa y un ciclo activo del agua, car-

acterísticas que hacen posible la existencia de vida microbiana.

Las hazañas científicas de los MERs dispararon el interés de la comunidad espa-

cial en incluir más ciencia en el siguiente programa de exploración Marciana, MSL.

Como resultado, Curiosity fue diseñado con capacidades punteras de MM (Ander-

son et al., 2012). Este rover está equipado con un manipulador de cinco Grados de

Libertad o Degrees of Freedom (DoF)s, llamado Sample Acquisition, Processing, and

Handling (SA/SPaH). Este subsistema puede obtener muestras del interior de rocas

o del suelo mediante un instrumento llamado Collection and Handling for In situ

Martian Rock Analysis (CHIMRA), y procesar dichas muestras con varios labora-

torios científicos a bordo. Además, la Dust Removal Tool (DRT) puede limpiar las

superficies para facilitar el posterior análisis científico con varios instrumentos de

contacto: un APXS y el Mars Hand Lens Imager (MAHLI), el cual obtiene imágenes

microscópicas para analizar los minerales y texturas de la superficie de las rocas y

el suelo Marciano. Gracias a estos instrumentos, los descubrimientos científicos de

Curiosity son abrumadores. Curiosity encontró moléculas orgánicas de carbono en

algunas muestras de terreno, detectó metano en la atmósfera Marciana, y confirmó

la presencia de agua en el pasado en forma de ríos y lagos.

Finalmente, MSL preparó el camino para MSR, con Perseverance. Este rover es

parecido a Curiosity, incluyendo el llamado Sampling and Caching Subsystem (SCS)

(Moeller et al., 2021). El SCS es un brazo robótico de cinco DoFs, capaz de recoger,

sellar y guardar muestras de suelo, rocas y regolitos Marcianos. Este procedimiento
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tiene requisitos de control bastante estrictos, para evitar que se contaminen ya que,

en algún momento, estas muestras serán enviadas a la Tierra. Al igual que Cu-

riosity, el SCS de Perseverance incluye una herramienta de abrasión de rocas y otra

de limpieza de polvo, las cuales preparan las superficies para su posterior análisis

con otros instrumentos. Hasta la fecha, Perseverance ha descubierto la presencia de

rocas volcánicas en el cráter Jezero, donde amartizó. Esto fue un descubrimiento

inesperado, ya que se creía que el origen de las rocas del cráter Jezero era puramente

sedimentario, de un antiguo lago. Además, Perseverance ha recogido ya 23 mues-

tras de suelo y rocas, depositando diez de ellas en la superficie Marciana para que

una misión futura las recoja y las traiga de vuelta a la Tierra.

Aunque ya descartada, la idea inicial para solucionar el problema de traer de

vuelta las muestras era el Sample Retrieval Lander (SRL). SRL era la segunda parte

de MSR, en la cual la ESA proporcionaría el Sample Fetch Rover (SFR), un rover

ligero y rápido diseñado para recoger los tubos con muestras de terreno mediante

MM, y traerlos de vuelta al lugar de amartizaje, donde serían enviados de vuelta a la

Tierra (Merlo, Larranaga, and Falkner, 2013). Ahora, NASA está planificando llevar

a cabo la recogida de los tubos mediante helicópteros equipados con manipuladores,

o con el propio Perseverance. En cualquier caso, la ESA también ha avanzado la tec-

nología de MM en exploración planetaria, con el rover Rosalind Franklin ExoMars.

ExoMars obtendrá muestras de la sub-superficie Marciana, al estar equipado con un

taladro de dos DoFs capaz de alcanzar hasta 2 m de profundidad, para así obtener

muestras bien conservadas del lecho de rocas. Estas muestras están libres de los

daños producidos por la radicación y oxidación presentes en la superficie Marciana,

lo cual favorece la supervivencia de restos químicos que prueben la existencia de

vida, en caso de que los haya.

Marte ha sido, sin lugar a dudas, el actor principal en la exploración planetaria.

No obstante, las agencias espaciales de todo el mundo están lanzándose de vuelta a

explorar la Luna, ya que probablemente, a largo plazo, será usada como una estación

para mantener y facilitar la expansión humana en el espacio. Por ejemplo, la CNSA

ha lanzado dos rovers Lunares, Yutu (Xiao, 2014) y Yutu 2 (Lai et al., 2020), los

cuales alunizaron con éxito en 2013 y 2018 respectivamente. Equipados con brazos

robóticos, espectrómetros, radares de penetración del suelo, o incluso un Advanced

Small Analyzer for Neutrals (ASAN), estos rovers chinos encontraron evidencia de

al menos nueve capas de roca diferentes en la Luna, lo que implica una composi-

ción geológica de la superficie lunar más compleja de lo esperado. Además, estos

rovers proporcionaron imágenes de alta resolución de una eyección Lunar. Por otro

lado, la NASA está planeando lanzar el Volatiles Investigating Polar Exploration

Rover (VIPER) a la Luna en 2024 (Colaprete et al., 2019), para estimar la cantidad de

hielo presente en los polos Lunares, el cual podría ser utilizado por futuros humanos

trabajando en una estación Lunar interplanetaria. También muchas otras agencias

espaciales, empresas privadas, o incluso universidades, están planeando y llevando

a cabo sus propias misiones con rovers para la Luna. Por ejemplo, el rover Lunar
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Pragyan de la Indian Space Research Organisation que alunizó en agosto de 2023

(Goswami, 2020); el rover Yaoki, que realizará la primera exploración comercial de

la Luna en 2023 (YAOKI - Japanese Lunar Rover 2023), o el triste alunizaje fallido del

rover Lunar Rashid de los Emiratos Árabes Unidos en abril de 2023 (Almaeeni et al.,

2021).

Tal y como Perseverance ha demostrado, la autonomía aumenta enormemente

el alcance de las misiones espaciales y dispara el retorno científico. Es de esperar,

por tanto, que realizar las tareas de MM también de forma autónoma facilitará la ex-

ploración científica de las superficies extraterrestres, al mismo tiempo que abrirá la

puerta a una nueva gran variedad de tareas para los rovers. Por ejemplo, permitirá

el mantenimiento y operación autónomos de los landers durante largos períodos

de tiempo, utilizando las capacidades de MM para abrir/cerrar válvulas o conec-

tar/desconectar cables (Klamt et al., 2020). También permitirá recoger materiales o

componentes para transportarlos y ensamblarlos in situ (Schuster et al., 2016). Lle-

gando aún más lejos, un equipo de manipuladores móviles autónomos podría co-

laborar para construir estructuras en superficies extraterrestres, utilizando recursos

in situ (Govindaraj et al., 2019). Este concepto de equipos multirobot explorando

de forma colaborativa es, de hecho, uno de los principales objetivos de los últimos

proyectos de investigación en ciencia planetaria, los cuales generalmente incluyen

un rover grande con capacidades de MM autónoma para recoger muestras geológ-

icas, desplegar instrumentos científicos como una antena de radio (Schuster et al.,

2020), proporcionar energía con baterías portátiles, o incluso transportar los rovers

más pequeños (Brinkmann et al., 2018). Destacar el uso de equipos heterogéneos

de robots con patas para exploración planetaria, incluyendo manipuladores móviles

con patas, como fue propuesto en el Space Resources Challenge de la ESA por el

equipo del Swiss Federal Institute of Technology (ETH) Zurich (Arm et al., 2023).

Así, es indudable afirmar que enormes avances tecnológicos y científicos se han

logrado gracias a la robótica y a la MM en el espacio, y esta tendencia va a seguir cre-

ciendo a medida que las agencias espaciales y otras compañías privadas de todo el

mundo empiecen a contribuir con sus propios rovers para explorar la gran variedad

de superficies extraterrestres de nuestro Sistema Solar. Sin embargo, la autonomía

en el espacio es aún un desafío que requiere un gran esfuerzo de investigación, y to-

davía más si consideramos la MM como la principal forma de realizar tareas científi-

cas e ingenieriles. Desarrollar una tecnología tan avanzada como una MM autónoma

es un reto en la Tierra y, por consiguiente, aún más difícil en Marte o la Luna.

Analicemos brevemente cómo funciona un robot autónomo, utilizando el clásico

paradigma robótico de Sentir, Pensar, Actuar (Siegel, 2003). Sentir engloba todo sub-

sistema a cargo de percibir el entorno del robot o medir su estado interno. Pensar es

donde se localiza la inteligencia artificial, utilizando la información recopilada para

decidir qué hacer y generar un plan. Por último, Actuar se encarga de los subsis-

temas que interaccionan con el mundo real, comandándolos de acuerdo al plan gen-

erado. Estos tres componentes son intrínsecamente requeridos por un robot para ser



178 Resumen de la tesis doctoral

autónomo. Ahora, centrándonos en la autonomía de robots espaciales, el método

más común es una arquitectura de Guiado, Navegación y Control o Guidance, Nav-

igation and Control (GNC) (Gerdes et al., 2020). En este caso, el Guiado (Pensar)

es el subsistema que planifica los movimientos del rover para alcanzar el objetivo y

realizar la tarea; Navegación (Sentir) localiza el rover y mapea el escenario con los

sensores exteroceptivos a bordo del robot, y Control (Actuar) dirige los actuadores

de bajo nivel para seguir adecuadamente los comandos, teniendo en cuenta el estado

del robot y las perturbaciones externas.

La complejidad de un sistema GNC es ya alta para un rover autónomo, y aún

más para un manipulador móvil autónomo. En primer lugar, el rover tiene que al-

canzar la zona de interés científico, con una arquitectura de navegación autónoma

para la base móvil. Después, el rover debe realizar la tarea científica mediante un

movimiento autónomo de MM. Finalmente, el rover tiene que desplazarse al sigu-

iente objetivo científico, generalmente deshaciendo sus propios pasos, navegando de

nuevo por los mismos escenarios. Un proceso de MM autónomo dificulta particular-

mente el subsistema de Guiado, ya que el planificador tiene que tener en cuenta un

alto número de DoFs, lo que implica que existen prácticamente infinitas formas de

resolver el problema de planificación. Además, para casos de exploración extrater-

restres, el planificador tiene que ser lo suficientemente ligero computacionalmente

para ser lanzado en procesadores aptos para el espacio, robusto y predecible para

asegurar que ningún evento fatal ocurrirá, y suficientemente eficientes para mejorar

lo que la teleoperación puede hacer. Por todo esto, es evidente por qué los rovers

planetarios no son capaces aún de realizar las tareas de MM de forma autónoma.

Contribuciones

Un rover de MM completamente autónomo requiere primero un sistema de nave-

gación autónoma eficiente para la base móvil, basado en GNC, para llegar al área

de interés científico donde realizar la tarea de MM. Después, es necesario un plan-

ificador de movimientos para MM, incluyendo ambos: la base móvil y el brazo

robótico. Esto, hasta la fecha, no es posible en sistemas espaciales, principalmente

por su elevado coste computacional. Por ello, esta tesis doctoral intenta llevar más

allá los límites de la exploración espacial autónoma, respondiendo a cómo plani-

ficar de forma eficiente los movimientos de un rover planetario para realizar tareas

de MM, desde la aproximación global del rover al área de interés científico hasta la

ejecución local de la tarea de MM. Esta es una pregunta ambiciosa, la cual requiere

responder primero a una serie de desafíos menores:

• Cuando el rover está navegando para alcanzar el área de interés científico, y

teniendo en cuenta que el rover probablemente tendrá que recorrer las mis-

mas zonas en el futuro, ¿cómo podemos incrementar el conocimiento del que

dispone el rover sobre las características del escenario, para mejorar los planes

de movimiento futuros?
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• Para que el rover realice la tarea científica, ¿cómo podemos considerar las col-

isiones de forma robusta y eficiente, durante la planificación de movimientos

de MM, para garantizar la seguridad del sistema durante la operación?

• Dadas las restricciones energéticas de los vehículos de exploración planetaria,

¿se podrían aplicar algoritmos basados en control óptimo para planificar los

movimientos de MM y optimizar el consumo energético, con un coste com-

putacional admisible?

• Teniendo en cuenta la tendencia de explorar el espacio utilizando equipos de

robots, ¿se podrían utilizar algoritmos de control óptimo para MM con el ob-

jetivo de incrementar la seguridad de las misiones multirobot en el espacio?

Estas cuatro preguntas se exploran a lo largo de esta tesis doctoral, logrando así

una serie de contribuciones en el ámbito de la robótica espacial. Dichas contribu-

ciones son las siguientes:

1. Un procedimiento de actualización dinámica del mapa de costes, para mejo-

rar la navegación autónoma en misiones de ida y vuelta.

La navegación autónoma en rovers planetarios normalmente se divide en dos

capas: la capa global y la capa local. Generalmente independientes, la capa

global se utiliza para planificar los movimientos a medio y largo plazo, uti-

lizando para ello imágenes orbitales. La capa local, por otro lado, se utiliza

para replanificar en caso de que se encuentren nuevos obstáculos con los sen-

sores a bordo del rover. Sin embargo, si el rover tiene que deshacer sus propios

pasos para alcanzar el siguiente objetivo, recorriendo de nuevo las mismas

zonas, se encontrará otra vez los mismos obstáculos locales, a no ser que la

capa global sea actualizada incluyendo la información local.

Por ello, la primera contribución de esta tesis doctoral es un procedimiento

dinámico de actualización del mapa de costes global, el cual incrementa la efi-

ciencia de las trayectorias del rover al moverse en escenarios similares, tras

realimentar la información local recogida por el sistema durante la misión. Se

utilizan dos fuentes principales de información: primero, la posición de los

nuevos obstáculos detectados, que no se consideraron inicialmente en el mapa

global; segundo, las características de los distintos tipos de terreno en el esce-

nario, que son continuamente recalculadas para mejorar la estimación inicial.

Más detalles en el Capítulo 3.

2. Un planificador de movimientos robusto y eficiente para MM en rovers de

exploración planetaria cuyo espacio de trabajo esté limitado.

La presencia de obstáculos en el escenario dificulta la planificación de movimien-

tos seguros para un manipulador móvil. A su vez, las herramientas científi-

cas e ingenieriles a bordo del rover limitan el espacio de trabajo del manip-

ulador, lo que también entorpece al planificador de movimientos. Evitar las
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auto-colisiones (colisiones del manipulador con el propio robot) es crítico pero

requiere un alto esfuerzo computacional, lo cual ha sido normalmente resuelto

mediante una simplificación de la solución, realizando movimientos de MM

desacoplados (primero mover la base móvil, después mover el manipulador).

Ejecutar el movimiento de forma acoplada es más eficiente en términos de en-

ergía y tiempo, pero también más costoso computacionalmente y más arries-

gado. Un movimiento acoplado requeriría, por tanto, un método menos exi-

gente computacionalmente para evitar las colisiones, por ejemplo, calculando

offline el espacio de trabajo del manipulador para luego tener en cuenta las

auto-colisiones de forma directa.

Así, la segunda contribución de esta tesis doctoral es un planificador de movimien-

tos acoplados para manipuladores móviles con el espacio de trabajo restringido,

el cual garantiza la seguridad del robot durante la misión al tener en cuenta

el espacio de trabajo del manipulador antes de planificar los movimientos.

Además, la eficiencia se aumenta notablemente ya que el planificador genera

movimientos coordinados para la base del rover y el brazo, evitando tiempos

muertos al mover ambos sistemas al mismo tiempo. Más detalles en el Capí-

tulo 4.

3. Un planificador de movimientos óptimo y computacionalmente ligero para

sistemas móviles redundantes, aplicado a MM en exploración planetaria.

Los sistemas redundantes como los manipuladores móviles, es decir, platafor-

mas que tienen más DoFs que los necesarios para desplazarse en su espacio

Cartesiano, tienen una movilidad considerablemente compleja. Aunque son

más versátiles, la gran variedad de posibilidades en sus movimientos implica

grandes esfuerzos computacionales para planificarlos. La optimización es uno

de los métodos más comunes para resolver el problema de planificación de

movimientos para sistemas redundantes, no obstante, su eficiencia computa-

cional se ve notablemente afectada al incluir las dinámicas y las restricciones.

Este problema se puede mitigar parcialmente con el llamado "warm start": ini-

cializar la optimización con una solución provisional, rápidamente calculada,

la cual indica al optimizador por dónde empezar a buscar la solución óptima.

Se presenta, así, la tercera contribución de esta tesis doctoral: un planificador

de movimientos con varias etapas de inicialización. Este planificador es ca-

paz de encontrar movimientos eficientes en términos energéticos y temporales,

teniendo en cuenta la cinemática y dinámica del robot redundante, las restric-

ciones del sistema, y las no linealidades. Además, la secuencia de inicialización

reduce el tiempo de convergencia de la optimización, haciendo que el planifi-

cador sea apto para vehículos de exploración planetaria. Más detalles en el

Capítulo 5.
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4. Un controlador predictivo basado en modelos, o Model Predictive Control

(MPC), para realizar MM con un rover grande que apoya a otro más pequeño

mientras este accede a un túnel Lunar de lava mediante rappelling.

Los túneles de lava Lunares son de gran interés científico para estudiar los

orígenes de nuestro Sistema Solar, y también para ser utilizados como refu-

gio en futuras misiones espaciales para incrementar el alcance humano en el

espacio. Ya que es costoso y peligroso explorar estos túneles con astronau-

tas, utilizar un equipo de robots sería una alternativa más barata y segura.

Para ello, un robot pesado podría actuar como un anclaje móvil, utilizando

un brazo robótico para apoyar a un segundo robot, el cual trata de descen-

der hacia el túnel de lava haciendo rappelling, para después explorarlo. Esta

misión es muy desafiante para los sistemas implicados, ya que deben sopor-

tar grandes esfuerzos durante el rappelling. Para incrementar la robustez de

la misión, sería clave controlar esos esfuerzos, en especial los que afectan al

brazo robótico del rover de anclaje. Un control reactivo de tan alta frecuencia

se puede lograr mediante técnicas modernas de control óptimo, como MPC.

Aprovechando la tercera contribución de esta tesis doctoral (el planificador óp-

timo), un controlador óptimo fue desarrollado e integrado en un algoritmo de

compensación de esfuerzos. Este algoritmo es capaz de compensar los esfuer-

zos del brazo robótico durante el rappelling mediante movimientos de MM.

Este controlador de tensiones es, así, la cuarta contribución de esta tesis doc-

toral. Más detalles en el Capítulo 6.

Contexto y motivación

Las misiones de exploración planetaria en curso, y las futuras, están demandando

capacidades de navegación autónoma mejoradas, para seguir incrementando el re-

torno científico, como se ha comentado anteriormente. Por esto, la ESA y la Euro-

pean Commission (EC) están financiando proyectos para potenciar el nivel de au-

tonomía de los rovers planetarios. Esto incluye investigación en planificación de

trayectorias y movimientos, MM, y colaboración entre rovers. El Space Robotics

Laboratory from the University of Málaga (UMA-SRL), Department of Systems En-

gineering and Automation (ISA), ha participado de forma activa en varios de estos

proyectos, gracias a su amplia experiencia en el ámbito de la navegación autónoma

para robots móviles. Este es el contexto donde la investigación de esta tesis doctoral

se realizó. En concreto, el autor de esta tesis trabajó en tres de estos proyectos, los

cuales impactaron significativamente los resultados de su investigación: primero,

una colaboración entre la ESA y el UMA-SRL con tres actividades de investigación

consecutivas; segundo, el proyecto H2020 financiado por la EC llamado Autonomous

Decision making for very long traverses (ADE); tercero, el último proyecto H2020 en

robótica espacial de la EC, llamado Cooperative Robots for Extreme Environments

(CoRob-X). Presentamos estos proyectos a continuación.
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El UMA-SRL lleva colaborando desde 2016 con el Planetary Robotics Labora-

tory, Robotics and Automation Section, European Space Agency (ESA-PRL), el cual

se encuentra en el European Space Research and Technology Center (ESTEC), medi-

ante tres actividades consecutivas de investigación y desarrollo. La primera activi-

dad, con número de contrato 4000118072/16/NL/LvH/gp, se llamó Autonomous

Routing on Extreme Surfaces (ARES), y el objetivo fue desarrollar un planificador

de caminos eficiente para rovers reconfigurables, considerando distintos modos de

locomoción que pueden ser beneficiosos para recorrer distintos tipos de terreno

(Pérez-Del-Pulgar et al., 2017). Las pruebas finales llevados a cabo en el ESA-PRL

con el rover Exomars Testing Rover (ExoTeR) fueron muy prometedores, por lo

que se continuó investigando hasta publicar varios artículos en revistas interna-

cionales de alto impacto. Primero, el Fast Marching Method (FMM), un método

para planificación de caminos que genera trayectorias óptimas y suaves, fue ampli-

ado para mapas multicapa y replanificación dinámica (Sánchez-Ibáñez et al., 2019b).

Segundo, una arquitectura GNC eficiente para navegación autónoma fue propuesta

en (Gerdes et al., 2020). Finalmente, se presentó en (Geromichalos et al., 2020) el

uso de Simultaneous Localization and Mapping (SLAM) y emparejamiento de ma-

pas para localización relativa y absoluta en rovers planetarios. Gracias al planifi-

cador desarrollado en ARES, la segunda actividad, llamada Path and Motion plan-

ning in Planetary Exploration (PM-PE), se centró en investigar la planificación de

movimientos para un rover equipado con un brazo robótico, el cual tiene que recoger

objetos (Sánchez-Ibáñez et al., 2019a). Los tests finales de PM-PE permitieron a Ex-

oTeR recoger tubos de muestra con un plan de movimientos eficiente y robusto. Sin

embargo, fue necesario realizar un movimiento de barrido con el efector final para

tener en cuenta los errores de localización en la posición del rover y de la mues-

tra. Para llevar a cabo una misión completa similar a SFR, el rover debía ser capaz

de detectar e identificar la muestra antes de recogerla, lo cual fue el principal in-

conveniente del proyecto PM-PE. Así, la tercera actividad ESA-UMA, llamada Path

and Motion planning for a Sample Fetching Rover (PM-SFR), se centró en integrar

un sistema inteligente de visión por computador en la arquitectura de navegación

autónoma del rover (Castilla-Arquillo et al., 2022), para detectar los tubos durante

la trayectoria y ejecutar la misión de recogida de muestras de forma completamente

autónoma (Mantoani et al., 2022). Los resultados de esta tercera actividad fueron im-

presionantes, con ExoTeR navegando totalmente autónomo para alcanzar, detectar

y recoger un tubo de muestra.

Fue en el contexto de estas actividades de colaboración entre la ESA y el UMA-

SRL que el autor de esta tesis tuvo el privilegio de realizar dos estancias de inves-

tigación en ESTEC, Noordwijk, Países Bajos, bajo la supervisión del Dr. Martin

Azkarate, con una duración total de seis meses. Durante estas estancias, el autor

investigó y desarrolló parte de los algoritmos que constituyen las contribuciones de

la tesis, y también realizó algunos de los tests de laboratorio y de campo que se
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muestran en el Capítulo 6. En concreto, los algoritmos y experimentos de la Con-

tribución 1 fueron completamente realizados en ESTEC durante la primera estancia

de investigación a finales de 2019; el algoritmo propuesto en la Contribución 2 se

basa en el planificador de movimientos desarrollado para la segunda actividad de

colaboración, PM-PE, y las pruebas de laboratorio de la Contribución 3 fueron com-

pletamente llevados a cabo en el ESA-PRL durante la segunda estancia.

La experiencia adquirida y los algoritmos desarrollados durante la colaboración

ESA-UMA benefició al UMA-SRL para participar en el proyecto europeo Autonomous

DEcision making in very long traverses (ADE) 2021. Este fue un proyecto H2020 finan-

ciado por la EC, perteneciente al Strategic Research Cluster (SRC) en Space Robotics

Technologies. El objetivo de ADE era integrar gran parte de las tecnologías desarrol-

ladas en antiguos proyectos de H2020 para crear una arquitectura de navegación

completamente autónoma, permitiendo al rover navegar largas distancias por sí

mismo, entre 1 y 3 km. Coordinado por GMV Aerospace and Defence S.A., el con-

sorcio estaba formado por 14 entidades, incluyendo el Robotics Innovation Center

(RIC) del German Research Center for Artificial Intelligence (DFKI), el cual estaba a

cargo del rover SherpaTT y del simulador.

UMA-SRL era responsable del componente de MM, el cual generaba un plan

de movimientos para el sistema rover-manipulador con el objetivo de alcanzar un

punto en el escenario y realizar una tarea científica con el brazo robótico (Sánchez-

Ibáñez et al., 2020). En este caso, era especialmente difícil generar movimientos se-

guros ya que el espacio de trabajo del manipulador estaba muy limitado por la pres-

encia de varios instrumentos de localización, detección de obstáculos y generación

de Digital Elevation Map (DEM)s. Consecuentemente, en el contexto de ADE, el

autor de esta tesis investigó y desarrolló un planificador de movimientos robusto,

el cual prioriza la seguridad del manipulador utilizando métodos para evitar las

auto-colisiones. Este planificador es la segunda contribución de esta tesis. Con esto,

las simulaciones del componente de MM para ADE, así como los experimentos de

campo que se realizaron en 2021 en Bremen, Alemania, dieron pie a los resultados

que validan la Contribución 2.

En tercer lugar, el UMA-SRL participó en el proyecto CoRob-X - Cooperative Robots

for Extreme Environments 2023, el cual comenzó en Marzo de 2021, siendo el proyecto

H2020 más desafiante de todos. Al ser el último de los proyectos H2020 en robótica

espacial, las tecnologías desarrolladas en todos los proyectos anteriores fueron in-

tegradas en varias Robotic Explorer Units (REU)s, que tenían que colaborar para ex-

plorar superficies planetarias, con el foco en los túneles de lava de la Luna. CoRob-X

fue coordinado por DFKI, y el UMA-SRL estaba a cargo de la navegación autónoma

de tres de las REUs: los rovers SherpaTT y CoyoteIII del DFKI, y el rover LUVMI-

X de Space Application Services (SAS). Además, en CoRob-X se planificó una tarea

de MM muy arriesgada: CoyoteIII accediendo mediante rappelling a un túnel de

lava, con SherpaTT comportándose como el anclaje móvil que soporta el peso de

CoyoteIII mientras desciende.
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Esta operación de rappelling requería un planificador y controlador de movimien-

tos rápido y eficiente, para que el brazo robótico de SherpaTT se colocara en las

posiciones óptimas que permitieran a CoyoteIII descender de forma segura. Esto

significaba minimizar los esfuerzos que el brazo robótico soportaba, intentando re-

distribuirlos hacia las articulaciones más fuertes del manipulador, además de ase-

gurar que el brazo tenía suficiente movilidad para reaccionar. El desarrollo de un

algoritmo tan complejo motivó la cuarta contribución y la estancia del autor de esta

tesis en el DFKI RIC en Bremen, Alemania, durante todo el año 2022. Esta estancia

de investigación, por otro lado, permitió que se realizara un acuerdo de cotutela

para los estudios de doctorado, con la supervisión conjunta del Dr. Carlos Jesús

Pérez del Pulgar del UMA-SRL y del Dr. Frank Kirchner de la Universität Bremen.

Finalmente, en 2023 se llevaron a cabo los experimentos de campo de CoRob-X en

Lanzarote, Islas Canarias, España, donde se realizaron varios rappelling con éxito a

un túnel de lava, análogo a los existentes en la superficie Lunar.

Publicaciones

Las contribuciones de esta tesis doctoral fueron publicadas en conferencias y revistas

relevantes en el ámbito de la robótica espacial. En concreto, cuatro publicaciones

principales avalan dichas contribuciones, que son las siguientes:

• Improving Autonomous Rover Guidance in Round-Trip Missions Using a

Dynamic Cost Map. Gonzalo J. Paz-Delgado, Martin Azkarate, J. Ricardo

Sánchez-Ibáñez, Carlos J. Pérez-del-Pulgar, Levin Gerdes, y Alfonso García-

Cerezo. International Conference on Intelligent Robots and Systems (IROS) Las Ve-

gas, United States of America (USA), 25-29 10 2020 (Paz-Delgado et al., 2020).

La Contribución 1 de esta investigación doctoral se resumen en este artículo de

conferencia, relacionado con un procedimiento para mejorar los movimientos

planificados de forma dinámica en exploración planetaria. Esto se realiza a

través de una actualización del mapa de costes del planificador de trayectorias,

de modo que el rover sea más consciente de la información que ha recogido

sobre el escenario durante el recorrido, y la pueda usar para generar mejores

caminos sucesivamente durante la misión. El artículo también muestra una

campaña de tests en simulación y experimentos de campo con el rover Heavy

Duty Planetary Rover (HDPR) del ESA-PRL en Decos, un terreno análogo a la

superficie Marciana localizado cerca de ESTEC en Noordwijk, Países Bajos.

• Combined path and motion planning for workspace restricted mobile ma-

nipulators in planetary exploration. Paz-Delgado, J. Ricardo Sánchez-Ibáñez,

Raúl Domínguez, Carlos J. Pérez-del-Pulgar, Frank Kirchner, y Alfonso García-

Cerezo. IEEE Access (Paz-Delgado et al., 2023b).
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Este artículo de revista está directamente relacionado con el proyecto ADE y la

Contribución 2. El artículo presenta un planificador de movimientos y trayec-

torias acoplados para MM en exploración planetaria, considerando el caso de

que el brazo robótico tenga el espacio de trabajo muy restringido. Para asegu-

rar la seguridad durante la misión, el espacio de trabajo del manipulador se

calcula offline y se utiliza durante la etapa de planificación de movimientos,

de modo que se eviten las auto-colisiones. Además, la eficiencia del plan de

movimientos se incrementa, al coordinar los movimientos del rover y del ma-

nipulador. El artículo concluye con una serie de experimentos en simulación

y de campo con el rover SherpaTT del DFKI RIC, llevados a cabo durante el

proyecto ADE.

• Multi-stage warm started optimal motion planning for over-actuated mo-

bile platforms. Gonzalo J. Paz-Delgado, Carlos J. Pérez-del-Pulgar, Martin

Azkarate, Frank Kirchner, y Alfonso García-Cerezo. Springer Journal on Intelli-

gent Service Robotics (JIST) (Paz-Delgado et al., 2023a).

La investigación y resultados de la Contribución 3, el planificador de movimien-

tos óptimo para plataformas móviles redundantes, se presentan en este artículo

de revista. En concreto, se propone un procedimiento genérico para modelar

sistemas móviles redundantes, como manipuladores móviles, y una novedosa

secuencia de inicialización para planificadores de movimiento basados en con-

trol óptimo. Finalmente, concluye mostrando los resultados de una serie de

tests de laboratorio con ExoTeR en el ESA-PRL, los cuales validaron el algo-

ritmo presentado. Este artículo fue portada de la revista Springer JIST, Volu-

men 16, Número 3, Julio 20231.

• Cooperative robotic exploration of a planetary skylight surface and lava tube.

Raúl Domínguez, Carlos J. Pérez-del-Pulgar, Iulia Dragomir, Valérie Ciarletti,

Gonzalo J. Paz-Delgado, Anne-Claire Berthet, Fabio Polisano, Leon Cedric Dan-

ter, Jonathan Babel, y Frank Kirchner. En preparación.

En este artículo de revista se resumen los resultados de los experimentos lleva-

dos a cabo durante 2023 en las pruebas de CoRob-X en Lanzarote, incluyendo

el rappelling con un equipo de robots, el cual está directamente relacionado

con la Contribución 4 de esta tesis. Por ello, se detalla la arquitectura de

rappelling autónomo, incluyendo el MPC para apoyar el rappelling mediante

MM, el equipo multirobot, y los experimentos de rappelling en sí.

Por otro lado, durante sus estudios de doctorado el autor colaboró en múltiples

actividades de investigación y proyectos relacionados con la robótica espacial, con

varias publicaciones más. Las principales se enumeran a continuación:

1https://link.springer.com/journal/11370/volumes-and-issues/16-3
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• Hardware-Accelerated Mars Sample Localization Via Deep Transfer Learn-

ing from Photorealistic Simulations. Raúl Castilla-Arquillo, Carlos J. Pérez-

del-Pulgar, Gonzalo J. Paz-Delgado, y Levin Gerdes. IEEE Robotics and Automa-

tion Letters, pp 99:1-8, 2022 (Castilla-Arquillo et al., 2022).

Este artículo de revista propone un método de inteligencia artificial para, de

forma autónoma, detectar y estimar la posición de tubos con muestras de

terreno Marciano como los de MSR, utilizando una Red Neuronal Profunda

(Deep Neural Network) y aprendizaje transferido (Transfer Learning). El con-

junto de datos utilizados se obtuvo mediante un simulador fotorealista de

Marte en Unreal Engine 4. Este algoritmo de detección de muestras fue in-

tegrado en la arquitectura GNC de ExoTeR, y utilizado durante los tests de

laboratorio en la Contribución 3.

• Choosing the Best Locomotion Mode in Reconfigurable Rovers. Carlos J.

Pérez-del-Pulgar, Pablo Romeo-Manrique, Gonzalo J. Paz-Delgado, J. Ricardo

Sánchez-Ibáñez, y Martin Azkarate. Electronics, 8(7):818, 7 2019 (Pérez-Del-

Pulgar et al., 2019).

Algunos rovers como ExoTeR tienen diferentes modos de locomoción gracias

a la reconfigurabilidad de sus patas y ruedas. En este artículo se analizan, así,

dos modos de locomoción, mediante simulaciones con Vortex Studio. Estos

modos de locomoción son Normal Driving, el modo estándar de conducción

con ruedas, y Wheel-walking, donde las patas son usadas para realizar pe-

queños pasos en una secuencia. Dependiendo de las características del terreno,

el mejor modo de locomoción a utilizar se puede estimar con los resultados de

este artículo. Además, se presenta un nuevo método para estimar el derrape

mientras se usa Wheel-walking.

• Experimental analysis of slip ratio using the wheel walking locomotion mode

in reconfigurable rovers. Salvador Domínguez-Durante, Carlos J. Pérez-del-

Pulgar, Gonzalo J. Paz Delgado, y Martin Azkarate. 30th Mediterranean Confer-

ence on Control and Automation (MED), 2022 (Dominguez-Durante et al., 2022).

Continuando con la investigación previa sobre modos de locomoción en rovers

reconfigurables, este artículo de conferencia presenta la validación experimen-

tal del método de estimación del derrape antes mencionado, el cual permite

calcular el derrape mientras se utiliza Wheel-walking. Con este objetivo, se

propone una metodología para inducir un cierto derrape a un robot, la cual

consiste en un terreno llano y un mecanismo de sujeción móvil.

• Coupled Path and Motion Planning for a Rover-Manipulator System. J. Ri-

cardo Sánchez-Ibáñez, Gonzalo J. Paz-Delgado, Pablo Romeo-Manrique, Car-

los J. Pérez-del-Pulgar, y Martin Azkarate. 15th Symposium on Advanced Space

Technologies in Robotics and Automation (ASTRA), 2019 (Sánchez-Ibáñez et al.,

2019a).
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En este artículo de conferencia los autores presentan el algoritmo en el que se

basó el planificador de movimientos de la Contribución 2. Este primer plani-

ficador de movimientos genera un túnel alrededor de la trayectoria de la base

móvil, en el cual se utiliza FMM en 3D para trazar la trayectoria del efector final

del manipulador. Después, el modelo cinemático inverso del brazo robótico

proporciona las configuraciones del brazo para seguir dicha trayectoria. El

planificador fue finalmente validado mediante simulaciones con ExoTeR en

Vortex Studio.

• Samples detection and retrieval for a Sample Fetching Rover. Laura M.

Mantoani, Raúl Castilla-Arquillo, Gonzalo J. Paz-Delgado, Carlos J. Pérez-del-

Pulgar, y Martin Azkarate. 16th Symposium on Advanced Space Technologies in

Robotics and Automation (ASTRA), 2022 (Mantoani et al., 2022).

La arquitectura de recogida autónoma de muestras que se integró en ExoTeR se

presenta en este artículo de conferencia, incluyendo los algoritmos de Guiado

(planificación y seguimiento de caminos) y el detector de muestras. Se pre-

sentan a su vez dos experimentos, primero, en el terreno experimental de

búsqueda y rescate de la UMA, y, segundo, en el ESA-PRL en ESTEC. Esta

arquitectura de navegación autónoma se compara, más tarde en esta tesis, con

los algoritmos propuestos en la Contribución 3.

• CoRob-X: A cooperative robot team for the exploration of Lunar skylights.

Alexander Dettmann, Thomas Vögele, Jorge Ocón, Iulia Dragomir, Shashank

Govindaraj, Matteo De Benedetti, Valerie Ciarletti, Rafik Hassen-Khodja, Thierry

Germa, Raphael Viards, Gonzalo J. Paz-Delgado, y Laura M. Mantoani. 16th

Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA),

2022 (Dettmann et al., 2022).

Este artículo de conferencia proporciona una visión general del proyecto CoRob-

X, el cual está relacionado con la Contribución 4. El artículo introduce los dis-

tintos algoritmos utilizados en las REUs y las distintas fases de la misión de

exploración del túnel de lava, la cual fue más adelante realizada mediante los

experimentos de campo en Lanzarote.

• Virtual reality lab for rover navigation using Mars datasets. Raúl Castilla-

Arquillo, Gonzalo J. Paz-Delgado, Matteo Madi, y Carlos J. Pérez-del-Pulgar.

17th Symposium on Advanced Space Technologies in Robotics and Automation (AS-

TRA), 2023

En este artículo de conferencia se presenta un laboratorio de realidad virtual

de alta fidelidad para simular rovers planetarios. Desarrollado por el UMA-

SRL, el laboratorio de realidad virtual utiliza información orbital de Marte y

de los rovers para generar un entorno Marciano con la ayuda de algoritmos

de inteligencia artificial. Por un lado, métodos de superresolución permiten



188 Resumen de la tesis doctoral

incrementar la calidad de las imágenes orbitales para así generar mejores tex-

turas en el escenario. Por otro lado, se utilizan redes neuronales para crear

elementos del terreno en 3D, como rocas, a partir de las imágenes locales del

rover.

• CoRob-X: Demonstration of a cooperative robot team in extensive field tests.

Thomas Vögele, Jorge Ocón, Thierry Germa, Shashank Govindaraj, Carlos J.

Pérez-del-Pulgar, Fredrik Bakkevig Haugli, Raúl Domínguez, Leon Cedir Dan-

ter, Jonathan Babel, Iulia Dragomir, Anne-Claire Berthet, Fabio Polisano, Gon-

zalo J. Paz-Delgado, Laura M. Mantoani, Eric Törn, y Valerie Ciarletti. 17th

Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA),

2023

Este artículo de conferencia muestra los objetivos y resultados de los experi-

mentos de campo de CoRob-X en Lanzarote, Islas Canarias, España. El artículo

resume los resultados de la exploración de un túnel de lava análogo a la Luna,

analizando las distintas fases para llevarla cabo, incluyendo el rappelling en el

cual se utilizaron los algoritmos de la Contribución 4 de esta tesis doctoral.

Estructura de la memoria

Esta tesis doctoral se divide en siete capítulos, primero, introduciendo el tema y

analizando el estado del arte, segundo, describiendo las cuatro contribuciones prin-

cipales, tercero, presentando los experimentos realizados y los resultados, y cuarto,

extrayendo las conclusiones del trabajo realizado y describiendo algunas líneas de

trabajo futuro. En concreto, los capítulos que conforman la tesis son los siguientes:

1. Introducción. El primer capítulo da contexto a la tesis doctoral, explicando

donde encaja la investigación realizada, por qué es necesario mejorar la tec-

nología en este ámbito, y qué problemas soluciona la tesis. Además, este capí-

tulo pone al lector en contexto sobre en qué circunstancias se originó este tra-

bajo, y resume las contribuciones y publicaciones llevadas a cabo.

2. Estado del arte en manipulación móvil autónoma. Este capítulo es un análisis

completo de la situación actual de la tecnología en relación con los algoritmos

y arquitecturas necesarios para realizar MM de forma autónoma en superfi-

cies extraterrestres, principalmente hablando de percepción, planificación de

caminos, planificación de movimientos, y control de movimientos.

3. Actualización dinámica del mapa de costes para mejorar la planificación

global de caminos. La teoría detrás de la Contribución 1 se presenta en este

capítulo, describiendo cómo funciona la metodología propuesta para actu-

alizar de forma dinámica el mapa de costes del planificador de trayectorias

una vez que el rover está recorriendo el escenario. Primero, el planificador

utilizado se introduce para destacar sus peculiaridades; segundo, se exponen
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los procedimientos para actualizar los costes, tanto para los nuevos obstáculos

detectados como para la estimación de características del terreno.

4. Planificación robusta de movimientos para manipulación móvil acoplada.

La Contribución 2 se explica al completo en este capítulo, es decir, el planifi-

cador robusto y eficiente de movimientos para MM en exploración planetaria,

enfocado en robots móviles en los que el espacio de trabajo del manipulador

está muy restringido. Se trata de un planificador combinado de trayectorias

y movimientos, por tanto, se detallan primero las mejoras del planificador de

trayectorias para tener en cuenta la tarea de MM, para después describir el

planificador de movimientos en sí y el controlador acoplado necesario para

coordinar los movimientos de la base móvil y el brazo robótico.

5. Planificación óptima de movimientos para robots móviles redundantes. El

cuarto capítulo presenta la Contribución 3, el planificador de movimientos óp-

timo y computacionalmente ligero para robots redundantes. Para ello, se intro-

duce primero un método genérico para modelar robots móviles redundantes

compuestos de varias cadenas cinemáticas. Después, se analiza el planificador

óptimo con varias etapas de inicialización, con una descripción detallada de

cada una de esas etapas.

6. Resultados. Este capítulo incluye todas las pruebas numéricas, de simulación,

de laboratorio y de campo llevadas a cabo durante estos estudios doctorales,

aquellas que validan las soluciones propuestas y demuestran sus ventajas y

desventajas desde los puntos de vista cualitativo y cuantitativo. En concreto, se

incluyen cuatro campañas experimentales, una para cada contribución. Primero,

los experimentos de ida y vuelta con la actualización dinámica del mapa de

costes, realizados con HDPR de la ESA. Segundo, los experimentos de MM

completamente segura con SherpaTT en ADE. Tercero, los experimentos de

recogida óptima de muestras con ExoTeR en el ESA-PRL. Cuarto, el rappelling

coordinado para acceder túneles de lava Lunares, con SherpaTT y CoyoteIII

en CoRob-X. Este capítulo también analiza los controladores utilizados para

seguir los planes de movimiento óptimo con las distintas plataformas, es decir,

el algoritmo de replanificación basado en error y el MPC. Este último consti-

tuye la Contribución 4.

7. Conclusiones y trabajo futuro. La tesis finaliza con este capítulo, el cual re-

sume todas las soluciones propuestas, analiza los resultados, y propone algu-

nas líneas de trabajo futuro, es decir, otros aspectos relacionados con la MM

autónoma que necesitan más investigación, problemas que aún no han sido

resueltos, o soluciones que pueden ser mejoradas.
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Tal y como se ha explicado a lo largo de esta tesis doctoral, la autonomía en la explo-

ración espacial es una gran ventaja en términos de eficiencia energética y temporal,

teniendo en cuenta que se eliminan casi por completo los retrasos que genera la

teleoperación directa desde la Tierra. Ya que una gran cantidad de las tareas cientí-

ficas que un rover realiza incluyen MM, realizar los movimientos de MM de forma

autónoma implica incrementar el número y la complejidad de las tareas que el rover

puede llevar a cabo a lo largo de su misión. Esta tesis doctoral, por tanto, explora

diferentes formas de alcanzar la realización autónoma de tareas de MM en robots

espaciales. Para ello, se responde a cómo planificar los movimientos de un rover

planetario de forma eficiente, para llevar a cabo tareas de MM.

Para dar respuesta a esta pregunta, la tecnología terrestre se ha analizado, ex-

traído y particularizado al caso de la exploración planetaria, en varios pasos que

constituyen varias contribuciones. Primero, incrementando el conocimiento que el

rover posee respecto al escenario, mejorando el planificador global de trayectorias

cuando el rover trata de alcanzar la zona de interés científico. Segundo, incluyendo

la evasión de obstáculos de una forma eficiente a la par que robusta en el planifi-

cador de movimientos, para así incrementar la seguridad cuando se realizan tareas

científicas de MM. Tercero, optimizando la energía que se utiliza en los movimien-

tos sin necesidad de un gran esfuerzo computacional, mediante un planificador óp-

timo que maximiza la eficiencia de los movimientos de MM. Cuarto, controlando de

forma óptima los movimientos en operaciones de MM multirobot, mejorando la se-

guridad de los sistemas involucrados. A continuación, se resumen y extraen algunas

conclusiones respecto a estas cuatro contribuciones.

Contribución 1: Actualización dinámica del mapa de costes para mejorar la plan-

ificación global de caminos.

Antes de alcanzar un lugar de interés científico y realizar una tarea de MM, un rover

planetario generalmente recorre largas distancias. Por ello, alcanzar un nivel de

autonomía y eficiencia en MM primero requiere conseguir una navegación global

autónoma y eficiente. Teniendo en cuenta que estos recorridos generalmente se re-

alizan en áreas con grandes similitudes, o incluso en las mismas áreas mediante

trayectorias de ida y vuelta, la primera pregunta de esta tesis doctoral es: ¿cómo

incrementar el conocimiento del rover sobre las características del escenario para

mejorar los futuros planes de movimiento?
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La Contribución 1 es, por tanto, un procedimiento de actualización dinámica del

mapa de costes para mejorar continuamente la calidad de planificación de trayec-

torias globales durante el recorrido. Integrada dentro del planificador de trayecto-

rias Dynamic Multilayered path planner (DyMu), esta metodología de actualización

mediante realimentación mejora el comportamiento del rover en dos sentidos prin-

cipalmente. Por un lado, los obstáculos detectados localmente se incluyen dinámi-

camente en el mapa de costes. Así, el rover no volverá a toparse con ellos, al ser

evitados directamente en la trayectoria global. Por otro lado, la estimación de las

propiedades del terreno se va afinando continuamente durante el recorrido, modif-

icando el coste de las distintas áreas del mapa de coste. Así, el planificador tenderá

a generar las trayectorias sobre aquellas áreas del escenario que son más fáciles de

recorrer.

Esta metodología de actualización dinámica del mapa de costes fue validada me-

diante una serie de experimentos tanto en simulación como en el campo, con el rover

HDPR del ESA-PRL. La conclusión de estos experimentos es que la realimentación

dinámica al mapa de costes mejora el planificador global de trayectorias, ya que el

rover es más consciente de las características del escenario. Es especialmente útil

para misiones de ida y vuelta, es decir, aquellas en las que el rover va a un lugar

de interés científico, realiza una tarea de MM, y vuelve al punto inicial. Durante el

camino de retorno el rover recorre las mismas áreas, y toda la información recogida

en el camino de ida se utiliza para mejorar la calidad de las trayectorias de vuelta. En

cualquier caso, esta metodología también mejora el planificador cuando se recorren

terrenos desconocidos, ya que la información recogida in situ puede extrapolarse a

zonas similares del escenario, utilizando para ello un mapa de segmentación global.

Contribución 2: Planificador de movimientos robusto y eficiente para MM.

Una vez que el rover ha alcanzado la zona de interés científico, tiene que realizar

de forma autónoma un movimiento combinado de MM para llevar a cabo la tarea

científica objetivo. Sin embargo, planificar ese movimiento es computacionalmente

costoso debido a la dificultad de tener en cuenta las colisiones, si ambos sistemas

(base móvil y brazo robótico) se mueven al mismo tiempo. Esta es la segunda pre-

gunta de esta tesis doctoral: ¿cómo tener en cuenta las colisiones de forma robusta y

eficiente durante la planificación de movimientos para MM?

La Contribución 2 es, así, un planificador robusto y eficiente de movimientos

para MM en exploración planetaria. Este algoritmo planifica primero un camino

para la base móvil que evita los obstáculos del escenario hasta alcanzar el objetivo.

Después, planifica los movimientos del manipulador teniendo en cuenta la trayec-

toria de la base móvil. El plan de movimientos generado siempre deja el objetivo

dentro del espacio de trabajo del manipulador, ya que el planificador incluye una

metodología específica de planificación y control en el último tramo de la trayectoria

de la base móvil. Además, el método propuesto es bastante ligero computacional-

mente incluso en el caso de que el espacio de trabajo del manipulador esté muy
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limitado, ya que las auto-colisiones se tienen en cuenta utilizando un volumen de

alcance del manipulador calculado offline.

Este planificador robusto de movimientos fue validado mediante una segunda

campaña de experimentos en simulación y de campo, con el rover SherpaTT del

DFKI RIC. Estos experimentos demostraron que el planificador propuesto es efi-

ciente gracias a los movimientos coordinados de la base móvil y del manipulador.

Un despliegue progresivo del brazo es, entre todas las configuraciones posibles del

planificador, la opción más eficiente, al distribuir los movimientos del brazo a lo

largo de toda la trayectoria del rover. Además, el planificador de movimientos

garantiza de forma intrínseca que el plan es seguro, evitando completamente los

obstáculos y las auto-colisiones. Esta seguridad se alcanza de una manera computa-

cionalmente eficiente, gracias al volumen de alcance del brazo robótico, calculado

previamente, offline.

Contribución 3: Planificador óptimo de movimientos, y computacionalmente ligero,

para sistemas móviles redundantes.

Aunque el planificador de movimientos para MM de la Contribución 2 resuelve el

problema de forma robusta y eficiente, sigue siendo un método subóptimo. Como

tal, no puede optimizar la energía utilizada durante la operación, por lo tanto, la

eficiencia de los movimientos de MM no se maximiza. Además, aunque coordina la

base móvil y el manipulador, el movimiento es generado por separado. Este método

no permite, por ello, utilizar los grados de libertad de uno de los sistemas (base

móvil o brazo robótico) para compensar las limitaciones del otro. Estos problemas se

pueden solucionar directamente con un planificador óptimo de movimientos basado

en control óptimo para el robot completo, lo que genera la tercera pregunta del doc-

torado: ¿pueden los algoritmos de control óptimo ser aplicados a la planificación de

movimientos de MM en exploración planetaria, con un coste computacional admis-

ible?

La Contribución 3 es, así, un planificador de movimientos basado en control óp-

timo para robots móviles redundantes. Llamado Multi-staged Warm started opti-

mization Motion Planner (MWMP), este planificador tiene en cuenta las dinámicas

del sistema completo, y sus restricciones, al mismo tiempo que mantiene un coste

computacional aceptable. Para ello se incluyen varias etapas de inicialización para

acelerar la velocidad de convergencia de la optimización. En concreto, tres etapas

de inicialización se incluyen en MWMP: un planificador de caminos (aprovechando

las mejoras de la primera contribución de esta tesis doctoral), un planificador de

movimientos sin restricciones basado en Sequential Linear Quadratic Regulator (SLQ),

y un planificador de movimientos con restricciones también mediante SLQ. Para uti-

lizar este planificador se necesita un modelo en espacio de estados del sistema, por

tanto, también se presenta un procedimiento genérico para modelar robots móviles

redundantes que incluyen múltiples cadenas cinemáticas, por ejemplo, manipuladores

móviles.
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Antes de las pruebas experimentales, el método propuesto fue evaluado, com-

parando MWMP con cualquier otra combinación de las etapas de inicialización. Esta

comparativa demostró que la secuencia de inicialización propuesta mejora el com-

portamiento y reduce el coste computacional, con la convergencia más rápida y el

porcentaje de éxito más elevado. Después, la viabilidad de MWMP fue confirmada

con una serie de pruebas de laboratorio con ExoTeR en el ESA-PRL. Para ello, un

seguidor de movimientos fue desarrollado, con el objetivo de que el rover fuera ca-

paz de realizar los movimientos planificados con MWMP. Este seguidor comprueba

si existen errores en el estado actual del robot respecto a lo planificado, y solicita

un nuevo plan de movimientos en caso de que las desviaciones sean significativas.

Los tests de laboratorio confirmaron que MWMP genera movimientos precisos y

que cumplen las limitaciones del sistema, siendo capaz de resolver las restricciones

no-holónomas de la base móvil, de filtrar los errores de localización del rover y del

objetivo, y de llevar a cabo la tarea de MM de una forma eficiente y optimizada.

Contribución 4: Control óptimo de la tensión en rappelling multirobot.

No todas las aplicaciones de MM en el espacio necesitan que el rover alcance primero

un punto de interés científico en el escenario para realizar la tarea de manipulación.

En algunos casos se necesita una cierta capacidad de reacción. Un ejemplo claro es

el caso de una operación de rappelling multirobot en un túnel de lava. Brevemente,

un rover grande que se comporta como un anclaje móvil usa su manipulador para

permitir que un segundo rover descienda hacia el túnel de lava haciendo rappelling.

Por lo tanto, el manipulador soporta el peso del rover pequeño mientras este de-

sciende. El peso del rover genera unos esfuerzos grandes en la cuerda que conecta

ambos sistemas, la cual a su vez transmite esos esfuerzos a las articulaciones del

brazo robótico. Estos esfuerzos, en concreto los pares, pueden dañar las articula-

ciones del brazo si el sistema no reacciona a tiempo. En este contexto surge la cuarta

pregunta que esta tesis doctoral trata de responder: ¿puede un control óptimo de

MM incrementar la seguridad en misiones multirobot en el espacio?

La contribución 4 es, por tanto, un controlador óptimo para MM. Aplicado a

una operación de rappelling multirobot, este controlador puede compensar la ten-

sión que la cuerda aplica al brazo robótico del rover grande (el que actúa como un

anclaje móvil), mientras el rover pequeño realiza el rappelling y desciende hacia el

túnel de lava. Este controlador óptimo utiliza el planificador óptimo MWMP de la

Contribución 3, ya que es suficientemente ligero computacionalmente como para

ser integrado en un bucle MPC de alta frecuencia. Para mejorar la seguridad de la

operación, este algoritmo de control mide continuamente los esfuerzos (fuerzas y

pares) que actúan en el efector final del manipulador, y trata de reducirlos. Para

ello, intenta alinear el último eslabón del manipulador y la cuerda, eliminando los

pares que genera la tensión de la cuerda en la muñeca del manipulador. Los pares

se redistribuyen, así, a las articulaciones del hombro y del codo del brazo robótico,
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que son más fuertes, evitando que afecten a las articulaciones de la muñeca, que son

más débiles.

La metodología MPC de MM para el control de la tensión fue validada medi-

ante simulaciones y experimentos de campo con los rovers SherpaTT y CoyoteIII

del DFKI RIC. Los tests en simulación demostraron que el controlador óptimo re-

duce notablemente los pares que el manipulador soporta durante el rappelling. Por

el contrario, las simulaciones también mostraron que mantener el brazo quieto po-

dría llevar a un fallo total, ya que las articulaciones podrían tener que soportar pares

superiores a sus límites. La utilidad del controlador propuesto fue finalmente con-

firmada en los experimentos de campo, ya que múltiples operaciones de rappelling

fueron ejecutadas con éxito, sin exceder nunca los límites de par en ninguna de las

articulaciones del brazo robótico de SherpaTT.
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