

Michaela Kümpel

Michaela Kümpel

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht
anderweitig zu Prüfungszwecken vorgelegt und keine anderen als die angegebenen
Hilfsmittel verwendet habe. Sämtliche wissentlich verwendete Textausschnitte,
Zitate oder Inhalte anderer Verfasser wurden ausdrücklich als solche gekennze-
ichnet.

Bremen, den April 12, 2024

Michaela Kümpel

Michaela Kümpel

Michaela Kümpel

Abstract

Knowledge Graphs have been a research trend. The idea to acquire knowledge
from the Web and make it accessible for users to answer queries has resulted in
many famous knowledge graphs in industry (e.g. Google, Facebook or Amazon)
as well as research (e.g. wikidata, WordNet or FrameNet). Due to their success,
one can come to the conclusion that knowledge graphs might also help robots in
answering complex queries in the same way that they help humans. In order to
access knowledge graphs in robotic applications, one has to initially understand
how robot control systems work. A robot can use a range of sensors to perceive
its environment and build an internal belief state, a model of the environment,
to make sense out of the perceived data. This means that a robot will use one of
its sensors (e.g. a camera) to perceive an apple on the table in front of it. In its
belief state it will then store the information that there is an apple and a table
available in the environment (which are set in relation to the robot by storing
exact object positions) but it might add the information that the apple is on
the table, which more specifically relates the position of the apple to the position
of the table as well as the robot itself in its belief state. If the robot is given
the task to “cut the apple”, the robot will access its belief state to reason about
where it might find an apple to then perform the given task by relating the task
to the environment information of its belief state. A belief state can also link to
a knowledge base with additional knowledge that the robot might need. If we
change the given task to “give me the milk” but do not change the environment
so that the robot still only detects an apple on a table, the robot would not be
able to fulfil this task without additional knowledge. However, if the belief state
is linked to a knowledge base that offers the information that milk is a perishable
product that usually is stored in a fridge, the robot can access this knowledge
base to infer that it must search for a fridge in order to accomplish the given
task.

Much of such additional knowledge that is needed to perform tasks is available
on the Web. An agent that is enabled to access knowledge graphs containing Web

i

Michaela Kümpel

information can infer that the apple perceived on the table is a pome fruit of a
food taxonomy, which has a core that usually is removed before eating. However,
in order for a robot to access this information, we have to translate the object
knowledge contained in a knowledge graph to environment information perceived
by an agent in its belief state. What is more, if we want the robot to know
how to hold the apple in order to cut it or how to remove the core of the apple,
both the object and environment information needs to also be linked to action
information. A knowledge graph that links object to environment and action
information makes the contained knowledge actionable.

This Thesis proposes a five-step methodology for creating actionable knowl-
edge graphs that follows existing knowledge engineering standards but links ob-
ject knowledge to environment and action knowledge to enable various applica-
tions in daily environments, on different agents. The methodology is exemplary
applied in two scenarios with different foci to create a product knowledge graph
and a food cutting knowledge graph. The product knowledge graph aims at en-
abling omni-channel applications in unknown environments. It therefore contains
product-related knowledge that is used by different agents such as smartphone,
smart glass and robot, which aim at providing shopping assistance in a retail
store. In order to provide user assistance like routing a customer to a searched
product on different devices such as robot or smartphone, this scenario focuses on
accessing relevant Web knowledge about products in a retail store that is linked
to precise, reliable and agent-independent environment information. The food
cutting knowledge graph aims at enabling robots to execute task variations of
cutting actions. Here, the idea is to access Web knowledge to enable a robot to
autonomously perform a range of cutting tasks. Therefore, this scenario focuses
on how object information can influence action execution, how the needed knowl-
edge can be acquired from the Web and how it can be modelled in a knowledge
graph in such a way that a robot can use it to execute tasks. The methodology is
validated by showcasing various applications that are enabled by the two exem-
plary knowledge graphs. The applications range from smartphone applications
for shopping assistance that highlight interesting product features or route to
a searched product over smart glass applications like shopping assistance and a
recipe application to robot applications for shopping assistance and execution of
cutting task variations on different fruits and vegetables.

ii

Michaela Kümpel

Zusammenfassung

Wissensgraphen sind ein Forschungstrend. Die Idee, Wissen aus dem Internet
zu akquirieren und es Nutzern zur Beantwortung von Anfragen zugänglich zu
machen, hat zu vielen berühmten Wissensgraphen in der Industrie (z.B. Google,
Facebook oder Amazon) und in der Forschung (z.B. wikidata, WordNet oder
FrameNet) geführt. Aufgrund ihres Erfolges kann man zu dem Schluss kommen,
dass Wissensgraphen auch Robotern bei der Beantwortung komplexer Anfragen
helfen könnten. Um Wissensgraphen in Roboteranwendungen nutzen zu können,
muss man jedoch zunächst verstehen, wie Robotersteuerungssysteme funktion-
ieren. Ein Roboter kann eine Reihe von Sensoren verwenden, um seine Umge-
bung wahrzunehmen und ein internes Modell der wahrgenommenen Umgebung
aufzubauen, welches die wahrgenommenen Daten in einen Zusammenhang bringt.
Das bedeutet, dass ein Roboter mit einem seiner Sensoren (z.B. eine Kamera)
einen Apfel auf dem Tisch vor ihm wahrnehmen kann. In seinem internen Mod-
ell speichert er dann die Information, dass in der Umgebung ein Apfel und ein
Tisch vorhanden sind (die durch die Speicherung der genauen Objektpositionen
in Beziehung zum Roboter gesetzt werden), aber er könnte zusätzlich die In-
formation hinzufügen, dass der Apfel auf dem Tisch liegt, was die Position des
Apfels mit der Position des Tisches sowie des Roboters weiter spezifiziert. Wenn
der Roboter nun die Aufgabe “Schneide den Apfel” erhält, greift er auf sein in-
ternes Modell zu, um zu überlegen, wo er einen Apfel finden könnte, um dann die
gestellte Aufgabe auszuführen, indem er die Aufgabe mit den Umgebungsinfor-
mationen seines internen Modells in Beziehung setzt. Das interne Modell kann
dabei auch mit einer Wissensbasis verknüpft sein, die zusätzliches Wissen enthält,
welches der Roboter möglicherweise benötigt. Wenn wir die gegebene Aufgabe
in “Gib mir die Milch” ändern, aber die Umgebung nicht verändern, so dass
der Roboter weiterhin nur einen Apfel auf einem Tisch erkennt, wäre er ohne
zusätzliches Wissen nicht in der Lage, diese Aufgabe zu erfüllen. Wenn das interne
Modell jedoch mit einer Wissensbasis verknüpft ist, die die Information enthält,
dass Milch ein verderbliches Produkt ist, das normalerweise in einem Kühlschrank

iii

Michaela Kümpel

aufbewahrt wird, kann der Roboter auf diese Wissensbasis zugreifen und daraus
ableiten, dass er nach einem Kühlschrank suchen muss, um die gegebene Aufgabe
zu erfüllen.

Ein Großteil dieses zusätzlichen Wissens, das zur Erfüllung von Aufgaben
benötigt wird, ist im Internet verfügbar. Ein Agent, der in der Lage ist, auf Wis-
sensgraphen mit Web-Informationen zuzugreifen, kann daraus schließen, dass es
sich bei dem Apfel auf dem Tisch um ein Kernobst einer Lebensmitteltaxonomie
handelt sowie dass Kernobst ein Kerngehäuse hat, das normalerweise vor dem
Verzehr entfernt wird. Damit ein Roboter jedoch auf diese Informationen zu-
greifen kann, muss das in einem Wissensgraphen enthaltene Objektwissen mit
dem internen Modell des Agenten verbunden werden. Wenn der Roboter außer-
dem wissen soll, wie er den Apfel halten muss, um ihn zu schneiden, oder wie er
das Kerngehäuse entfernen muss, müssen sowohl die Objekt- als auch die Umge-
bungsinformationen mit Aktionsinformationen verknüpft werden. Ein Wissens-
graph, der Objekt-, Umgebungs- und Handlungsinformationen verknüpft, macht
das enthaltene Wissen handlungsfähig.

In dieser Arbeit wird eine fünfstufige Methodik zur Erstellung von hand-
lungsfähigen Wissensgraphen vorgeschlagen, die sich an bestehenden Standards
der Wissensmodellierung orientiert, dabei aber Objektwissen mit Umgebungs-
und Handlungswissen verknüpft, um verschiedene Anwendungen in alltäglichen
Umgebungen und auf unterschiedlichen Agenten zu ermöglichen. Die Methodik
wird beispielhaft in zwei Szenarien mit unterschiedlichen Schwerpunkten ange-
wandt, um einen Produktwissensgraphen und einen Wissensgraphen zum Schnei-
den von Lebensmitteln zu erstellen. Der Produktwissensgraph zielt darauf ab,
Omnichannel-Anwendungen in unbekannten Umgebungen zu ermöglichen. Er
beinhaltet daher Produktinformationen, die von verschiedenen Agenten wie Smart-
phones, Smart Glasses und Robotern genutzt werden, um Nutzer beim Einkauf
in einem Einzelhandelsgeschäft zu unterstützen. Um z.B. den Nutzer auf ver-
schiedenen Geräten wie Roboter oder Smartphone zu einem gesuchten Produkt
zu leiten, konzentriert sich dieses Szenario auf den Zugriff auf relevante Produk-
tinformationen aus dem Internet, die mit präzisen, zuverlässigen und agentenun-
abhängigen Umgebungsinformationen verknüpft ist. Der Wissensgraph für das
Schneiden von Lebensmitteln zielt darauf ab, Roboter in die Lage zu versetzen,
Aufgabenvariationen von Schneideaktionen auszuführen. Daher konzentriert sich
dieses Szenario auf die Frage, wie Objektinformationen die Ausführung von Aktio-
nen beeinflussen können, wie das benötigte Wissen aus dem Internet gewonnen
werden kann und wie es in einem Wissensgraphen so modelliert werden kann,
dass ein Roboter es zur Ausführung von Aufgaben nutzen kann. Die Methodik
wird anhand verschiedener Anwendungen, die durch die beiden beispielhaften
Wissensgraphen ermöglicht werden, validiert. Die Anwendungen reichen von
Smartphone-Anwendungen zur Einkaufsunterstützung, die interessante Produk-

iv

Michaela Kümpel

tmerkmale hervorheben oder zu einem gesuchten Produkt führen, über Smart-
Glass-Anwendungen wie Einkaufsunterstützung und eine Rezeptanwendung bis
hin zu Roboteranwendungen zur Einkaufsunterstützung und Ausführung von
Schneideaufgaben auf verschiedenen Obst- und Gemüsesorten.

v

Michaela Kümpel

vi

Michaela Kümpel

Acknowledgements

I am not the type to really read acknowledgements but rather dive into the text.
If you do, this is for you. And if you don’t know me, even more so. Me, I am
a mom of three. Why do I tell you this? Because it still makes a difference. I
was naive enough to think that I could just as easily get my PhD as before kids,
or as men. Unfortunately, even in the 2020s, it is not easy. You need nerves,
and people that support you. If by any chance you are a mother reading this,
please feel encouraged to pursue your goals. Also, feel free to contact me. I
will try to support you in the ways I can. This already leads me to thank the
person that helped me through my journey: Sabine Veit. Without you I most
likely would have given up due to university bureaucracy. Thank you so much, I
will try my best to be a similar help to others! Next, thank you Michael Beetz
for believing in me. I remember the day when you asked me if I really wanted
to work towards a PhD (to which I nodded enthusiastically). You could have
questioned me, like others, but you believed in me and supported me. Thank
you for that. You are an inspiration and I appreciate all the 5 minute talks in
front of the coffee machine where you just shared the brightest ideas. Due to
both our restricted time schedules I learned to pack all important things into
such a 5 minute discussion - this will surely be very helpful in the future as well!
Next I want to thank my family, and most importantly my kids. You actually
deserve the most gratefulness. Thank you for your patience, for dealing with me
being in submission mode and not having time for your problems, for me being
late, not watching your sports game but rather working or not preparing lunch,
for your support. I love you. Last but not least, I want to thank all my students
for their works and my colleagues and outside collaborators for the discussions
and cooperation that have led to this Thesis.

vii

Michaela Kümpel

viii

Michaela Kümpel

Acronyms

API Application Programming Interface

AR Augmented Reality

bfo Basic Formal Ontology

cdno Compositional Dietary Nutrition ontology

ChEBI Chemical Entities of Biological Interest

CRAM Cognitive Robot Abstract Machine

DL Description Logic

doid human disease ontology

DUL DOLCE+DnS Ultralite

ETL extract load transform

FDA Food & Drug Administration

FoodKG Food Knowledge Graph

FoodOn Food Ontology

GTIN Global Trade Identification Number

hpo human phenotype ontology

KnowRob Knowledge Processing for Robots

LLM Large Language Model

NDRF National Drug File

ix

Michaela Kümpel

NEEM Narrative enabled episodic memory

OBO Foundry Open Biological and Biomedical Ontology Foundry

OWL Web Ontology Language

QR code Quick response code

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RT-2 Robotics Transformer 2

semDT semantic Digital Twin

SOMA Socio-physical Model of Activities

SPARQL SPARQL Protocol And RDF Query Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

x

Michaela Kümpel CONTENTS

Contents

1 Introduction 1
1.1 Challenges . 7

1.1.1 Creation of Knowledge Graphs for Agents 7
1.1.2 Integration of Environment Information 7
1.1.3 Integration of Action Information 8

1.2 Approach for Creating Actionable Knowledge Graphs 9
1.2.1 Gathering and Linking the Needed Knowledge for Action-

able Knowledge Graphs 9
1.2.2 Using semantic Digital Twin Environments in Actionable

Knowledge Graphs . 9
1.2.3 Using Actionable Knowledge Graphs to Parameterise Robot

Action Plans for Flexible Manipulation 10
1.3 Example Scenarios . 12
1.4 Contribution . 13
1.5 Outline . 15

2 Ontologies and Knowledge Graphs for Knowledge Repre-
sentation and Action Execution 17
2.1 Background: Ontologies, Knowledge Graphs and Linked Data . . 17

2.1.1 Ontologies . 18
2.1.2 Knowledge Graphs . 19
2.1.3 Linked Data and Semantic Web 20

2.2 Description Logic for Specification of Ontologies 21
2.3 Using Knowledge Representation for Robotic Action Execution . . 21
2.4 Other Approaches for Robotic Action Execution 23

3 Methodology for Creating Actionable Knowledge Graphs 31
3.1 Define Necessary Knowledge Sources 34

3.1.1 General Object Knowledge 34

xi

Michaela Kümpel CONTENTS

3.1.2 Environment Structure . 35
3.1.3 Action Execution . 37

3.2 Acquire the Needed Information 38
3.2.1 Extracting Information from Unstructured Sources 39
3.2.2 Extracting Information from Semi-structured Sources . . . 40
3.2.3 Extracting Information from Structured Sources 41

3.3 Process the Acquired Data . 41
3.3.1 Cleaning, Standardising and Enriching the Acquired Web

Data . 42
3.3.2 Enrichment of Environment Information 42
3.3.3 Enrichment of Action Information 44

3.4 Link Distributed Knowledge Chunks 46
3.4.1 Ontology Alignment . 46
3.4.2 Interlinking Object Information 47
3.4.3 Linking Object to Environment Information 48
3.4.4 Linking Object to Action Information 49

3.5 Translate Knowledge to Robot Plan 50
3.6 Discussion and Related Work . 51

4 An Actionable Product Knowledge Graph for Omni-channel
User Assistance Applications 53
4.1 Define Necessary Knowledge Sources 55

4.1.1 General Object Knowledge 56
4.1.2 Environment structure . 59
4.1.3 Action Execution . 60
4.1.4 Resulting Knowledge Graph Structure 60

4.2 Acquire the Needed Information 61
4.2.1 Extracting Information from Unstructured Sources 61
4.2.2 Extracting Information from Semi-structured Sources . . . 63
4.2.3 Extracting Information from Structured Sources 63

4.3 Process the Acquired Data . 65
4.3.1 Enrichment of Environment Information 66

4.4 Link Distributed Knowledge Chunks 67
4.4.1 Ontology Alignment . 68
4.4.2 Object Entity Linking . 68
4.4.3 Linking Object to Environment Information 69

4.5 Translate Knowledge to Robot Plan 70
4.6 Evaluating the Created Graph through Competency Questions . . 70
4.7 Discussion and Related Work . 71

xii

Michaela Kümpel CONTENTS

5 An Actionable Food Cutting Knowledge Graph for Robotic
Task Execution 73
5.1 Define Necessary Knowledge Sources 75

5.1.1 General Object Knowledge 75
5.1.2 Environment Structure . 77
5.1.3 Action Execution . 77
5.1.4 Resulting Knowledge Graph Structure 78

5.2 Acquire the Needed Information 79
5.2.1 Extracting Information from Unstructured Sources 79
5.2.2 Extracting Information from Structured Sources 81

5.3 Process the Acquired Data . 82
5.3.1 Enrichment of Object Information 82
5.3.2 Enrichment of Action Information 83

5.4 Link Distributed Knowledge Chunks 85
5.4.1 Ontology Alignment . 85
5.4.2 Linking Object to Environment Information 85
5.4.3 Linking Object to Action Information 86

5.5 Translate Knowledge to Robot Plan 87
5.6 Evaluating the Created Graph through Competency Questions . . 89
5.7 Discussion and Related Work . 89

6 Applications of Actionable Knowledge Graphs 91
6.1 Knowledge Retrieval in Actionable Knowledge Graphs 91

6.1.1 Robotic Agent . 92
6.2 Applications . 96
6.3 Discussion . 108

7 Conclusion 111

A Prior Publications 115

B Supervised Student Works 117
2.1 Student Works that Contributed to this Thesis 117

Bibliography 121

xiii

Michaela Kümpel CONTENTS

xiv

Michaela Kümpel LIST OF FIGURES

List of Figures

1.1 Basic perception action loop where an agent perceives its envi-
ronment to create a belief state, linked to a knowledge graph and
action knowledge, to then perform an action. 5

1.2 Cutting action broken down into body movements of the robot and
the parameters that need to be inferred. 11

2.1 Connecting Robots to Linked Data. 23
2.2 Example of robot using LLMs from (Ahn et al., 2022). 24

3.1 The methodology proposed in this work for creating actionable
knowledge graphs. 32

3.2 Step 1 of the methodology. 34
3.3 Step 2 of the methodology. 38
3.4 Step 3 of the methodology. 41
3.5 Step 4 of the methodology. 46
3.6 Linking scene graph environment information to symbolic object

information (published in (Kümpel et al., 2021)). 48
3.7 Representation of task-specific object knowledge that is important

for executing cutting actions on an orange. 49
3.8 Step 5 of the methodology. 50

4.1 Overview of ProductKG ontologies and their links to external
sources. 61

4.2 Robot map and AR map for localisation of agents. 67
4.3 Plan description for LookingAt action. 70
4.4 Plan description for Navigation action. 70

5.1 Food cutting knowledge graph structure. 79
5.2 Cutting Task dependencies. 83

xv

Michaela Kümpel LIST OF FIGURES

5.3 Representation of task dependencies and number of task repeti-
tions as visualised in Fig. 5.2. 84

5.4 Representation of environment-specific object knowledge that is
important for executing cutting actions in order to identify the
object to cut. 86

5.5 Representation of task-specific object knowledge that is important
for executing cutting actions on an apple or orange. 87

5.6 CRAM representation of high-level cutting action. 88
5.7 Food cutting parametrisation with ontology. 88

6.1 Architecture that enables access of both digital and robotic agents. 92
6.2 Prolog query to retrieve the article position of a searched product. 93
6.3 SPARQL query asking for the GTIN of the cheapest new body

lotion. 93
6.4 SPARQL query asking for the position needed to perform a cutting

task. 94
6.5 Prolog module with query asking for the position needed to per-

form a cutting task. 95
6.6 SPARQL query asking for the labels of a given product. 96
6.7 Smart Glass Shopping Assistance (Partly published in (Kümpel

and Beetz, 2023)). 97
6.8 Smart Glass Recipe Assistant (Partly published in (Kümpel and

Beetz, 2023)). 98
6.9 Smartphone Recipe Support (Partly published in (Kümpel and

Beetz, 2023)) . 99
6.10 Smartphone Ingredient Substitution. (Partly published in (Kümpel

and Beetz, 2023)) . 99
6.11 Smartphone Shopping Support. (Partly published in (Kümpel and

Beetz, 2023)) . 100
6.12 Smartphone Routing Application. 101
6.13 Nutrition recommender website that offers to scan a product at

hand to get product information. 102
6.14 Visualisation of performed actions in a smart glass. 103
6.15 Visualisation of performed actions in a smartphone application. . 104
6.16 Shopping Assistants enabled by actionable knowledge graphs (Partly

published in (Kümpel et al., 2023)). 105
6.17 Food Cutting Robots: Web Interface to the food cutting knowledge

graph where users can query for the parameters needed for task
execution. 106

6.18 A simulated robot executing the necessary body motions needed
to “Quarter an apple”. 107

xvi

Michaela Kümpel LIST OF FIGURES

6.19 Robot Simulation of performing task variations of cutting. 108

xvii

Michaela Kümpel LIST OF FIGURES

xviii

Michaela Kümpel LIST OF TABLES

List of Tables

4.1 Competency Questions the product knowledge graph should be
able to answer. 54

4.2 Ontologies contained in ProductKG with their most relevant prop-
erties and number of contained axioms. Italic information sources
belong to ProductKG while all other mentioned sources are external. 62

4.3 Amount of results that can be retrieved for the different compe-
tency questions. 71

5.1 Competency Questions the food cutting knowledge graph should
be able to answer. 74

5.2 Information sources contained in the food cutting knowledge graph
and their offered properties. 80

5.3 Analysing the occurrences of 15 different hyponyms for cut in the
WikiHow data from (Zhang et al., 2020). 81

5.4 Solutions developed in this Thesis to answer the Competency Ques-
tions of Table 5.1. = means that the solution for cutting would
work for other tasks as well. 90

6.1 Applications (App.) presented in the following with the devices
used and the sources accessed. 96

xix

Michaela Kümpel LIST OF TABLES

xx

Michaela Kümpel CHAPTER 1. INTRODUCTION

Chapter 1
Introduction

One of the visions of AI-powered and cognition-enabled robotics are autonomous
household robots that can accomplish everyday tasks. Everyday tasks in house-
hold environments require robots to perform manipulation actions including pour-
ing, cutting or cleaning in natural contexts. Household robots have the potential
to support us in a number of daily activities from meal preparation to elderly
care and some robots already are able to clean the breakfast table (Kazhoyan
et al., 2021) or prepare drinks (Sung and Jeon, 2020) and pancakes (Beetz et al.,
2011b). Yet, the ability of robots to perform new task variations, act in unknown
environments or support us in more complex everyday tasks such as cleaning
dishes is still very limited. In particular, robots fail in situations where they are
challenged by new tasks, new environments or new objects for which they lack
knowledge.

If we reduce the scope and look at digital agents1 such as smartphone applica-
tions that support us in daily activities, we can see that digital agents are similarly
challenged by new environments and new objects. Digital agents like shopping
assistance applications shown in (Davis et al., 2006; Álvarez Márquez and Ziegler,
2017; Mora et al., 2020), codecheck2 or food recommenders like FoodWiki (Çelik
et al., 2015) or Food4healthKG (Fu et al., 2023) have proven to be able to answer

1This work distinguishes between a robotic and a digital agent, where a robotic agent is any
agent with a sensor and an effector like a robot arm and a digital agent is any agent with a
sensor but without effector like a smartphone or smart glasses.

2codecheck app: https://codecheck-app.com/de/

1

https://codecheck-app.com/de/

Chapter 1. Introduction

complex queries and offer appropriate user assistance on websites or in a given
environment. These applications usually rely on the recognition of barcodes or
images of products. While these applications offer lots of information in a given
environment, the transferability of such applications to new environments, par-
ticularly to products without barcodes like meat or fruit, is very limited. I claim
that if digital agents can be enabled to use semantic environment information to
detect objects that are not in the field of view or use environment maps created
by different agents like precise camera systems, they can overcome this limitation
and be able to answer user requests in new environments.

Hypotheses 1:
Enabling (digital) agents to recognise products without a barcode, that
change in appearance or are not in the field of view, will enable them to
provide information in new environments or on new objects.

Looking at robotic agents that are to autonomously perform tasks in daily
environments, we do not only have to consider environment information but also
action information. A robot that knows how to cut a slice of bread but is given the
task to “Quarter an apple” needs to be able to infer that quartering is a variation
of cutting, what tool needs to be used for quartering, and how to move its body
to successfully perform the task. Although such knowledge can be implemented
manually into a robot knowledge base, it is unfeasible to manually model it for
all meal preparation tasks that a robot might need to perform. If we consider
how humans would behave in such a situation, the Web as a knowledge source
providing information comes into mind. The Web offers plenty of sources that
can be accessed to retrieve information. A human that wants to know how to
prepare a new recipe might use the Web to search for preparation instructions or
instruction videos. I argue that a robot that is enabled to access Web information
and reason about it would similarly benefit from it.

Hypothesis 2:
If robots can be enabled to access and understand Web information, they
can use it for action execution.

2

Much of the knowledge needed to refine and execute vague tasks such as
“Cut the bread” or “Get me lactose-free milk” and transfer them to new task
variations is contained in instruction Websites like WikiHow, encyclopedic Web-
sites like Wikipedia and WordNet (Miller, 1995), and many other web-based
information sources. The idea to access the Web for an integration of object
knowledge into robotic applications has been around since the 2000s (e.g. (Fensel
and Bussler, 2002)) and exemplary applied to robotics in 2011 (Tenorth et al.,
2011; Waibel et al., 2011). Web knowledge is distributed on many Websites and
comes in different formats that often are not machine-readable. What is more,
knowledge sources offering general knowledge like encyclopedic knowledge or tax-
onomies usually are not linked to knowledge sources offering specific knowledge
like product data or object properties, thus making it hard to link specific ob-
jects at hand to general object knowledge. I argue that if we can link general
knowledge about actions and objects to specific knowledge about object proper-
ties and tasks, robotic agents can use the knowledge to understand task variations
as well as the role of objects in a given task, thus enabling them to access Web
information similarly to humans.

Hypothesis 3:
If we can link specific and general object and task knowledge from dis-
tributed Web sources, a robot can use the knowledge to understand task
variations as well as the role of tools and objects in given tasks.

In the World Wide Web there have been developments towards a Semantic
Web (Berners-Lee et al., 2001), an extension of the current Web (Sirin et al.,
2003). These developments have made knowledge graphs (see Sec. 2.1.2) popular
for knowledge representation ever since Google proclaimed to be using knowl-
edge graphs in 2012 (Blog, 2012). On the one hand, this has led to large web-
based knowledge sources like wikidata, FrameNet (Baker et al., 1998) or the LOD
cloud (Fernández et al., 2017) and it has been shown that such sources are a pow-
erful tool that can be used to efficiently answer questions and reason about the
contained information such as in health specific consumer support applications
like recipe recommenders (e.g. (Cantais et al., 2005; Haussmann et al., 2019)). On

3

Chapter 1. Introduction

the other hand, such example applications as well as open sources like wikidata
are not applicable in agent applications that link to user environments like pro-
viding recipe recommendations for leftover products. I argue that the Semantic
Web contains lots of valuable knowledge that is useful for daily applications and
especially for robotic applications where robots need to reason about available
information. However, if robots are to use knowledge graphs, knowledge graphs
need to be linked to the perceived objects of the environment.

Hypothesis 4:
In order to make the existing (Semantic) Web knowledge applicable for
agents in daily applications, there is a need to link such knowledge sources
to the real world so that agents can relate perceived objects to Web knowl-
edge and reason about the information.

Through this, Web knowledge can enable digital agents like smartphone ap-
plications to link recipe recommendations to products at hand or robotic appli-
cations to link object information like food properties to an environment map of
product locations.

For robotic manipulation applications, we additionally need to consider ac-
tion information. A robot needs to be able to translate task requests into body
movements and reason about object information to distinguish between cutting
a slice of bread and quartering an apple. Everyday manipulation tasks, such as
“Cut it into pieces” are broadly scoped as they include, for example, cutting a
large variety of fruits, vegetables, bakery items or meat, with a variety of tools,
for a variety of purposes, in many different contexts. For this, (Web) knowledge
needs to additionally be translatable to body movements of a robot, thus making
the knowledge actionable.

The key question is: How can we make such abstract knowledge actionable
for agents?

To answer this question, we have to start looking at the perception action loop
of agents. Figure 1.1 is based on the perception action loop proposed by Russel

4

Figure 1.1: Basic perception action loop where an agent perceives its environment to create
a belief state, linked to a knowledge graph and action knowledge, to then perform an action.

and Norvig, where an agent is defined as “anything perceiving its environment
through sensors and acting upon that environment through effectors” (Russell,
2010), p. 31-32. Since digital agents have no effector, they only sense their envi-
ronments, while the user acts upon it. Fig. 1.1 appends the model of Russel and
Norvig by adding environment, object as well as action knowledge as knowl-
edge sources for the agent belief state, which I model as a knowledge graph. A
robot uses its sensors to perceive its environment and build an internal belief
state, a model of the environment, to make sense out of the perceived data. The
environment knowledge of the knowledge graph therefore consists of environ-
ment information sensed by the agent as in positions of objects perceivable by the
agent, which is semantically enhanced and generalised through relations such as
number of shelf floors of each shelf or doors of a cupboard, their height, the type
of handle, etc. The object knowledge consists of general object information like
a classification of objects (e.g. a milk is a dairy product, and is usually stored in
a fridge) as well as their specific properties (e.g. objects with this barcode are of
type milk and come in a glass bottle), which has to be linked to the environment
information in order for agents to successfully make the contained knowledge
applicable. Action knowledge is knowledge about action categories as well as
the translation of task requests into body movements. For example, a cutting
action will always be broken down into the same body movements, which can be
parameterised based on the agent performing the task, available objects, etc.

5

Chapter 1. Introduction

The idea behind this is that if an agent has access to a knowledge graph with
its object information (i.e. “milk is a dairy product”, “milk is usually stored in
Tetra Paks”, “a Tetra Pak is a container for liquids”, “milk is usually stored in
a fridge”), which can be grounded in real world environments with exact object
positions (i.e. “Object A is a fridge”, “Object B with barcode 123 is a milk”) as
well as action information (i.e. for the task to “put the milk in the fridge” the
agent has to pick up object B → lift object B → navigate to object A → open
object A → place object B into object A), the contained knowledge becomes
perceivable and actionable to users and robots. I argue that Web knowledge can
be made actionable if it is linked to action knowledge that a robot can translate
to body movements.

Hypothesis 5:
In order to make the existing (Semantic) Web knowledge actionable for
robotic agents, the knowledge needs to be translatable to body movements
of the robot.

In summary, to enable agents to successfully and autonomously perform ac-
tions in new environments, on new objects and for task variations, I hypothesise
that:

1. Agents that can access semantic environment information are able to make
sense of new environments and thus operate in them.

2. Agents that are enabled to access Web information like humans do can
similarly use it for action execution.

3. In order for robots to access Web information, distributed sources offering
general and specific object knowledge need to be linked.

4. To further make the Web knowledge applicable in daily applications, it
needs to be linked to perceived environment information.

5. Web knowledge can be used for execution of actions (and thus task varia-
tions) if, and only if, the knowledge is linked to action knowledge that can
be translated to robot movements.

6

1.1 Challenges

Making knowledge graphs actionable entails several challenges. The following
section will detail the challenges in creating knowledge graphs for agents that
need to contain general and specific knowledge that is interlinked and accessible,
in integrating environment information and linking it to object information and
lastly, in translating Web knowledge to robot body movements.

1.1.1 Creation of Knowledge Graphs for Agents

There has been lots of research on creation of knowledge graphs. However, no one-
fit-all construction approach exists and no methodology for creation of knowledge
graphs for agent applications has been proposed. Many existing knowledge graphs
focus on properly modelling a domain of interest to offer support to humans.
Thus, they provide information that a Granny Smith apple is a pome fruit and a
pome fruit has a core with seeds, for example. An agent however does not know
what a Granny Smith apple is. It also does not know that humans usually remove
the core of an apple before eating or the shape an apple has. Such knowledge is
important if the agent is given a task to “Cut the apple”.

Therefore, actionable knowledge graphs have to include such common-sense
object information that is relevant for action execution and semantically encoded
so that agents can reason about it.

This reveals the challenges to 1) define the knowledge and object properties
an agent needs for action execution, 2) acquire the needed data and 3) link
it in such a way that an agent can query it.

1.1.2 Integration of Environment Information

Household environments are changing, not standardised and open. Therefore,
actionable knowledge graphs need to encode environment information semanti-
cally and link it to background information in order to model that milk is usually
stored in the fridge but long-life milk can as well be stored at room temperature
and thus in a cabinet or storage room, for example.

7

Challenges

Additionally, robotic agents use a different reference frame in their environ-
ments than digital agents. If both agents are to access environment information,
the environment information needs to be translatable so that the different agents
can successfully exchange information and route a user to a searched location,
for example.

Lastly, even if environment information is available in machine-readable form
for different agents, it needs to be linked to object information for an agent to
know that an object perceived on the table, which is round and red, is a Granny
Smith apple, some other apple, or a cherry.

This reveals the challenges to 4) find ways to acquire and standardise Web
knowledge from distributed sources that offer the information in different
formats, 5) encode environment information in such a way that different
agents can use it in applications and 6) link perceived objects in the envi-
ronment to objects of a knowledge graph.

1.1.3 Integration of Action Information

A robot that is to execute task variations needs to know that slicing, dicing and
quartering are action verbs that belong to the action category of cutting. It
further needs to know that chopping and dicing are similar in their execution,
while they are different to slicing and halving.

In addition to such an action classification, an agent needs to know how
different action verbs influence action parameters. This means that for a given
action category, the factors that influence action execution (e.g. position, speed
or angle) need to be defined. What is more, the action plan of the robot needs
to be adapted in such a way that it can be parameterised for execution of task
variations.

For successful action execution an agent needs to also link action to object
information. For the task of “cutting the apple” the agent needs to know if the
given object is an apple, if it can be cut and what tool it can use to cut the apple.

8

This reveals the challenges to 7) create an action classification an agent
can use for action execution, 8) determine parameters that influence action
execution and provide the robot with ways to use these parameters for
an execution of task variations and 9) relate object information to task
information that a robot can reason about for action execution.

1.2 Approach for Creating Actionable Knowledge Graphs

The following section describes my approach to solve the given challenges. I
propose to create actionable knowledge graphs out of Web information that link
object to environment and action information, use semantic Digital Twins for a
semantically enhanced environment representation that can link to object infor-
mation and parameterise robot action plans with actionable knowledge graphs to
enable robots to perform task variations.

1.2.1 Gathering and Linking the Needed Knowledge for Actionable Knowledge
Graphs

Previous work proposed a methodology for knowledge engineering which is ca-
pable of creating ontologies out of Web information that formalise hierarchies of
tasks and link them to the respective types of actions to make them actionable
for robots (Töberg et al., 2023). The work has shown how challenges 1) - 3)
can be solved. This Thesis extends the idea and generalises the methodology
for creation of different actionable knowledge graphs that can be used by various
agents, in new environments and for execution of new task variations. In par-
ticular, this Thesis describes how object knowledge graphs can be created from
Web information to then link them to environment and action information.

1.2.2 Using semantic Digital Twin Environments in Actionable Knowledge Graphs

The concept of a Digital Twin, “the digital equivalent to a physical product” was
introduced by Grieves in 2003 (Grieves, 2011). Using Digital Twins to create
exact virtual representations of the real world has been a technology trend in
digitisation of manufacturing and industry (Augustine, 2020). A semantic Digital

9

Approach for Creating Actionable Knowledge Graphs

Twin (semDT) can be described as the semantic connection of object information
into a digital representation of an environment. While a semDT offers detailed
environment information, it only offers limited object or product information from
connected enterprise management systems. Prior work has demonstrated that
semDTs can successfully be used for linking object to environment information in
the retail domain for customer support (Kümpel et al., 2021, 2023), thus providing
a solution for challenge 6). SemDTs can additionally be used for user support
in daily activities on different agents as shown in (Kümpel and Beetz, 2023) and
therefore offer a solution for challenge 5). I therefore extend the idea and link
semDTs to knowledge graphs of domain-specific object information acquired from
Web sources to solve the challenge in 4).

1.2.3 Using Actionable Knowledge Graphs to Parameterise Robot Action Plans
for Flexible Manipulation

If robots are to further use knowledge graphs for action execution, knowledge
graphs have to not only be connected to environment information but also include
action information that can be broken down into body movements. Only then
the robot knows how to move its body in order to achieve the goals implied
by a request and avoid causing unwanted side effects. An action classification
further helps to differentiate tasks. In the case of cutting, action verbs should
be classified in regards to their execution. This means that a chopping task will
be more closely related to a dicing task since both have result objects in similar
amount and shape. In addition to this action classification, task dependencies
should be available. A quartering task depends on the execution of a halving
task, for example. Modelling such knowledge can solve the challenge in 7).

The body motions of robots can be stated in terms of motion constraints and
motion objectives. For example, when picking up a knife, example constraints
are to hold the knife by its handle and to keep the blade horizontal, and ob-
jectives include generating smooth motions and minimising acceleration to avoid
contacting anything other than a cuttable object and its underlying surface. Us-
ing online projection (Kazhoyan and Beetz, 2019), actions can be broken down
into a small set of body movements with different parameterisation. Consider
the action of cutting and the body movements as depicted in Figure 1.2. Each

10

Figure 1.2: Cutting action broken down into body movements of the robot and the
parameters that need to be inferred.

cutting action can be broken down into a sequence of tasks: pick up → cut →
place. These tasks can then be broken down into body movements. For picking
up, they would be: approach → grasp → lift. For cutting, they would be
approach → lower → lift and for placing approach → release → lift. Even
with this small example it becomes clear that many different actions can be bro-
ken down into the same body movements that only generate different behaviour
because of their parameterisation. For example, while in the main cutting action
for the approach body movement the robot has to know to approach a cuttable
object in a certain cutting position above it and with the arm holding the tool,
at the same time it has to be able to infer that for the picking up task it has to
approach the tool that can be used for cutting with an arm it can use for cutting
and in a position that voids collision with other objects. To solve the challenge in
8) one therefore has to define the parameters that might influence each of these
given body movements and make them available as parameters in the general
action plan.

With such generalised action descriptions, the ultimate reasoning task is to
infer the constraints and objectives that the body motion of the robot should
satisfy and maximise given a vague task request. For a cutting action, the robot
would need to know which tool can be applied to which object. Additionally,
object information that changes action execution, such as the existence of a peel
that needs to be removed prior to cutting, needs to be available. Integrating the
knowledge into the action plan solves the challenge in 9).

11

Example Scenarios

1.3 Example Scenarios

This work describes a methodology for creating actionable knowledge graphs and
their applications for two example scenarios:

1. Omni-channel User Assistance The user assistance scenario aims at
supporting users in daily environments like retail stores or at home. A
focus lies on omni-channel applications (Taylor et al., 2019) providing a
seamless shopping experience that is independent of the used device (i.e.
channel) or environment.

For this, the ProductKG knowledge graph (Kümpel and Beetz, 2023) was
created. It contains product information like ingredients, allergens, labels or
brands, which was acquired from various websites. The ProductKG knowl-
edge graph links to a semDT created by a robotic agent scanning the store
as in (Beetz et al., 2022), which is transformed to environment information
that can also be used by digital agents. The ProductKG knowledge graph
can be used in various applications such as a product finder smartphone
app, a service application for smart glasses to highlight product informa-
tion according to user preferences or for service robots to route customers
to a searched product, amongst others. Due to its modularity, it can just
as well be used in household environments to highlight recipes that can be
prepared with a product in the fridge, for example.

2. Robots Executing New Task Variations In this scenario, the goal is
to empower robot agents to autonomously and flexibly execute a range of
underspecified task requests for a set of different objects, namely fruits and
vegetables, in a given action category, namely cutting.

In (Töberg et al., 2023), a methodology for creating an ontology for per-
forming new task variations of a cutting action was proposed. Here, a robot
that knew how to cut a slice of bread as discussed in (Dhanabalachandran
et al., 2021) should be enabled to quarter an apple. This work builds upon
that methodology, generalises it and details how robots can use an action-
able knowledge graph for executing new task variations on new objects as in
quartering an apple or chopping a cucumber. The food cutting knowledge

12

graph links environment to object and action information and can be used
by robotic agents for execution of task variations.

1.4 Contribution

This thesis builds upon the mentioned previous works to create knowledge graphs
that link object to environment and action information. In particular, I present
a methodology for creating actionable knowledge graphs by creating two distinct
object knowledge graphs from Web information that link to environment and
action information and can be used for various user applications in household
environments by digital and robotic agents.

The contributions of this work are:

1. A five step methodology for creating actionable knowledge graphs for the
use in different applications, domains and on different agents is proposed.

2. The knowledge acquisition, processing and linking methods needed for cre-
ating actionable knowledge graphs are described in detail for two example
knowledge graphs with different focus: a product knowledge graph for user
applications like recipe recommender and product finder, as well as a food
cutting knowledge graph robots can use to execute new task variations of
cutting actions.

3. Solutions for representing environment information for digital and robotic
agents and connecting it to object information are presented. Therefore,
semDTs of environments are created, linked to the object knowledge graphs
and then accessed by both digital and robotic agents to show its applica-
bility.

4. A solution for integrating action information in knowledge graphs and link-
ing it to object information for task execution is proposed. While the
solution is discussed for task variations of cutting, this Thesis also shows
how it can be transferred to other meal preparation tasks like pouring.

5. A new approach for translating action knowledge to parameters that influ-
ence body movements of the robot using a knowledge graph that the robot

13

Contribution

can reason about is presented.

6. The example knowledge graphs are made publicly available on websites with
tutorials and standard SPARQL APIs through triply3 for accessibility. The
ProductKG website including example queries that can be accessed through
a grlc API (Meroño-Peñuela and Hoekstra, 2016) is available at https:
//michaelakuempel.github.io/ProductKG/, the ProduktKG application
page is available at http://productkg.informatik.uni-bremen.de. The
food cutting knowledge graph is available at https://food-ninja.github.
io/FoodCutting with a web interface to query the graph. Jupyter note-
books for querying the knowledge graph and running a robot simulation
of the food cutting project are available at https://moodle.intel4coro.
de/course/view.php?id=8.

The contributions are validated by various applications that support users in
daily activities using their smartphone, smart glasses or robot assistants in retail
and household environments, some of which have already been shown in prior
publications:

Kümpel M, Mueller CA, Beetz M. Semantic Digital Twins for Retail Logis-
tics. In Dynamics in Logistics: Twenty-Five Years of Interdisciplinary Logistics
Research in Bremen, Germany 2021 Sep 22 (pp. 129-153). Cham: Springer In-
ternational Publishing.

Kümpel M, Dech J, Hawkin A, Beetz M. Robotic Shopping Assistance for
Everyone: Dynamic Query Generation on a Semantic Digital Twin as
a Basis for Autonomous Shopping Assistance. In Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Systems 2023
May 30 (pp. 2523-2525).

M. Kümpel and M. Beetz. ProductKG: A Product Knowledge Graph
for User Assistance in Daily Activities. In Ontology Showcase and Demon-
strations Track, 9th Joint Ontology Workshops (JOWO 2023), co-located with

3The datasets can be found at: https://krr.triply.cc/mkumpel/

14

https://michaelakuempel.github.io/ProductKG/
https://michaelakuempel.github.io/ProductKG/
http://productkg.informatik.uni-bremen.de
https://food-ninja.github.io/FoodCutting
https://food-ninja.github.io/FoodCutting
https://moodle.intel4coro.de/course/view.php?id=8
https://moodle.intel4coro.de/course/view.php?id=8
https://krr.triply.cc/mkumpel/

FOIS 2023, 19-20 July, 2023, Sherbrooke, Québec, Canada, 2023.

M. Kümpel, J.-P. Töberg, V. Hassouna, M. Beetz and P. Cimiano. Towards a
Knowledge Engineering Methodology for Flexible Robot Manipulation
in Everyday Tasks. In Workshop on Actionable Knowledge Representation and
Reasoning for Robots (AKR3) at Extended Semantic Web Conference (ESWC
2024).

M. Kümpel, V. Hassouna, J.-P. Töberg, P. Cimiano and M. Beetz. Cut, Chop,
Slice or Dice: Parameterising General Action Plans Using Knowledge
Graphs. In International Conference on Intelligent Robots and Systems (IROS
2024). submitted.

A full list of prior publications can be found in Appendix A.
Parts of this work are based on supervised student Theses, which are listed

in Appendix B.

1.5 Outline

The remainder of this work is structured as follows: Chapter 2 is giving an
overview over ontologies, knowledge graphs, Linked Data as well as their com-
monalities and differences. It continues to introduce and compare knowledge
representation as well as other approaches for robotic action execution. In Chap-
ter 3 a five-step methodology for creation of actionable knowledge graphs is pre-
sented. The methodology distinguishes between object, environment and action
information that needs to be defined, acquired, processed and linked for a given
domain and target application. For robotic applications it further needs to be
translated to body movements. In Chapter 4 the methodology is exemplary ap-
plied for creation of a product knowledge graph and omni-channel applications,
where the focus lies on encoding environment information in a flexible way to
allow for different agents to use the contained knowledge in user support appli-
cations. After that, in Chapter 5, the methodology is applied for creation of
a food cutting knowledge graph in order to enable robots to execute new task

15

Outline

variations of cutting, where the focus lies on translating the contained knowledge
to body movements of the robot. Chapter 6 shows how different agents can
access actionable knowledge graphs as well as various applications of both the
product and food cutting knowledge graph. Chapter 7 concludes.

16

Michaela Kümpel Background: Ontologies, Knowledge Graphs and Linked Data

Chapter 2
Ontologies and Knowledge Graphs for
Knowledge Representation and Action
Execution

This chapter gives an overview and demarcation of ontologies, knowledge graphs
and Linked Data, shows how specifications of ontologies or knowledge graphs
can be delineated using Description Logic and lastly points out how knowledge
representation or other techniques can be applied for robotic action execution.

2.1 Background: Ontologies, Knowledge Graphs and Linked
Data

The discussion on the commonalities and differences between ontologies and
knowledge graphs are very controversial. Denny Vrandecic, the founder of wiki-
data, stated in 2022 ”What has been ontologies, now are knowledge graphs“, infer-
ring that there is no difference between an ontology and a knowledge graph. Many
researchers disagree to this statement. Although popular examples of knowledge
graphs like Google, Facebook or Amazon have greatly increased interest in the
topic starting in the 2010s, we are still lacking a definition of a knowledge graph
in comparison to an ontology.

Nevertheless, the following sections describe the terms ontology and knowl-
edge graph and give a working definition of a knowledge graph for this thesis. To

17

Background: Ontologies, Knowledge Graphs and Linked Data

complete the list, the term Linked Data is also introduced. The chapter closes
with an overview of related work.

2.1.1 Ontologies

In the field of artificial intelligence, Tom Gruber coined the definition of an ontol-
ogy in 1993 as ”An explicit specification of a contextualisation” (Gruber, 1993),
which is based on the view of Genesereth and Nielsson who describe conceptuali-
sations of objects that exist in the real world, and their interrelations (Genesereth
and Nilsson, 1987). Grubers definition of an ontology was extended in the late
1990s, where the importance of a shared conceptualisation was highlighted and
discussed (Borst, 1999; Studer et al., 1998). Optimally, such a shared conceptu-
alisation has a formal description and is machine-understandable so that it can
be understood, reused and extended.

Ontologies thus formally describe a domain of interest by defining objects and
their interrelations. They can be specified using triples that delineate the relation
between two objects such as <milk A is a Cows milk> or between an object
and its properties as in <milk A has nutrient saturated fatty acids>. To
represent the contained knowledge, ontologies can use different standards like the
Resource Description Framework (RDF), the Resource Description Framework
Schema (RDFS) or the Web Ontology Language (OWL) to describe triples of
entities and their properties (Hitzler et al., 2007)

<subject predicate object>

and thereby formally model the structure of a system by classifying knowledge
chunks as subjects and objects, their hierarchy (called taxonomy), and their re-
lations (as predicates) (Guarino et al., 2009). Through such a formal descrip-
tion, ontologies are machine-readable and can easily be reused as well as ex-
tended (Borst, 1999). What is more, using an ontology and ontology language
enables programs to be fairly independent of the tasks that shall be executed, the
robots or users to query the program, and their environments (Olivares-Alarcos
et al., 2019) since the knowledge about tasks, agents and environments is stored
as general knowledge chunks that are combined by their relations.

18

Furthermore, ontologies can be divided into different categories (Guarino,
1998):

• Top-level ontologies describe basic concepts like time or measurement that
are applicable for many domains and use cases.

• Domain or task ontologies usually are based on a top-level ontology and
describe a domain or task of interest with its concepts. There are domain
ontologies for food, products, diseases or illnesses as well as task ontologies
for disease diagnosis or recipe recommenders, for example.

• Application ontologies include both domain and task concepts and hence
can include roles of objects.

2.1.2 Knowledge Graphs

In (Ehrlinger and Wöß, 2016), Ehrlinger and Wöß point out that even the creators
of the YAGO2 knowledge graph (Hoffart et al., 2013) refer to their knowledge
graph as an ontology (supporting the claim that both actually are the same) and
evaluate the use of the term knowledge graph in order to define it. Ehrlinger and
Wöß suggest that the difference of a knowledge graph and an ontology could be
interpreted as a matter of quantity (i.e. a knowledge graph is a large ontology),
extended requirements (i.e. a built-in reasoner makes an ontology a knowledge
graph) or integration (i.e. a knowledge graph extends a knowledge-based system
with an integration system) and conclude with this definition of a knowledge
graph: “A knowledge graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge.” (Ehrlinger and Wöß, 2016). Noy
et al. highlight the fact that usually large scale data from a variety of sources is
integrated into knowledge graphs (Noy et al., 2019).

What these previous definitions are missing is the key aspect that actu-
ally made knowledge graphs like Google, Amazon, eBay, Facebook or LinkedIn
(see Hogan et al. (2021)) successful: their major constituent being web informa-
tion (i.e. any data that is available in the World Wide Web). In these knowledge
graphs, web information can be textual information based on keywords found on
different websites, semi-structured information like price comparisons gathered

19

Background: Ontologies, Knowledge Graphs and Linked Data

from different websites as well as structural data from a single source that se-
mantically connects such information to create graphs of befriended people and
their properties or products that might be bought together. In this thesis I ex-
tend the definition of Ehrlinger and Wöß to include both facts that knowledge
graphs integrate web information but also incorporate information from a vari-
ety of sources such as Enterprise Resource Planning (ERP) systems or (local)
ontologies (that give meaning to the contained facts and allow reasoning on it).

Thus, in contrast to other works, a knowledge graph in this thesis can contain
both assertional box (ABox) and terminology box (TBox) descriptions. While
terminology box knowledge defines the main objects of a domain of interest and
their properties as a common vocabulary like in top-level ontologies that can be
described as the ontology layer of the knowledge graph, assertional box data adds
facts to such TBoxes by integration of large amounts of examples and therefore
can be described as the factual layer of the knowledge graph. I also want to
highlight the fact that a knowledge graph usually contains domain information
since it is constructed to answer certain queries regarding a domain of interest
and thus define a knowledge graph as:

Definition 2.1.1 (Knowledge Graph). A knowledge graph acquires and
integrates domain information from the Web, among a variety of sources,
contains a factual as well as an ontology layer and can apply a reasoner to
derive new knowledge.

2.1.3 Linked Data and Semantic Web

When structured data like ontologies or knowledge graphs are published on the
Semantic Web and linked to each other, they are referred to as Linked Data (Bizer
et al., 2011), enabling machines to surf the Web. If the data is openly accessible
as well, it is called Linked Open Data. The Semantic Web (Berners-Lee et al.,
2001) aims at structuring content of Web pages by using standardised formats
to represent entities, their properties and relations in ontologies that can be
understood by robotic or software agents.

20

2.2 Description Logic for Specification of Ontologies

To specify content of ontologies (or knowledge graphs), one can use Description
Logic (DL)(Baader et al., 2017). DL axioms describe ontology content using
statements such as in the following:

Orange ⊑ Fruit (2.1)
Orange ⊑ ∃hasDisposition.Cuttability (2.2)
Orange ⊑ Fruit ⊓ ∃hasDisposition.Cuttability (2.3)
Orange ⊑ ∃hasPart.(Peel ⊓ ∃hasEdibility.MustBeAvoided) (2.4)

Peelability ⊑ (affordsTrigger.Peeler ⊔ affordsTrigger.Hand) (2.5)
Orange ⊑ ∃hasPart.(= 1 Peel) (2.6)

Slice ∪̇ FoodPart (2.7)

Statement (2.1) means that an orange is a fruit, where ⊑ denotes a subsump-
tion relation. Axiom (2.2) means that an orange is part of all things that have
a cuttability disposition, where ∃ denotes existence. To connect both statements
one can use a ⊓, a logical and as an intersection in statement (2.3), which trans-
lates to an orange is a fruit and has a cuttability disposition. The axiom in (2.4)
connects two statements through a conjunction ⊓ of the subset denoted through
the square brackets [], which means an orange has a peel and the peel must not be
eaten. Statement (2.5) instead connects two statements using a ⊔, a union oper-
ator, which means that the peelability affords both a peeler or a hand as triggers.
Statement (2.6) connects an object with a number restriction =, which in this
case means that an orange has exactly one peel and statement (2.7) can be used
to declare that two classes are disjoint, in this case a slice is a disjoint class of
FoodPart.

2.3 Using Knowledge Representation for Robotic Action Exe-
cution

Robots need a cognitive architecture for successful task and motion planning and
execution. Some cognitive architectures for robots are SOAR (Laird, 2019) and

21

Using Knowledge Representation for Robotic Action Execution

iCub (Vernon et al., 2010), but this work is based on the Cognitive Robot Abstract
Machine (CRAM) (Beetz et al., 2010), which has successfully been used for robots
executing household activities such as cooking (Beetz et al., 2011a) and setting the
table (Kazhoyan et al., 2021) as well as for robotic retail store assistants (Cavallo
et al., 2022) or even for robots executing chemical experiments (Lisca et al.,
2015). CRAM supports extended failure handling such as proposed in (Diab
et al., 2020), which is also described in (Dhanabalachandran et al., 2021).

The high-level plan executive of CRAM uses Knowledge Processing for Robots
(KnowRob) (Beetz et al., 2018b) as a knowledge processing and reasoning frame-
work that can load ontologies or knowledge graphs for knowledge representation.

Using the same frameworks CRAM and KnowRob, there has been research on
plan projection for vaguely defined tasks (Kazhoyan and Beetz, 2019) as well as
understanding and grounding natural language instructions (Nyga et al., 2018).
For this, a robot that is told to “cut the cucumber”, while knowing how to cut a
bread and what a cucumber looks like, might actually be able to perform the task
with the known action parameters since it calculates the most probable solution.
However, if given the different task to “slice the apple” and the robot does not
know the meaning of the word “slice” or its most probable search space, it would
not be able to perform the task. Also, the robot needs to have knowledge about
the apple’s features and properties necessary for the “slicing” task to succeed as
will be detailed in the following chapters.

Another approach introduced in (Mitrevski et al., 2021) focuses on the gen-
eralisation of already executable actions on unknown objects. By employing
an object ontology, parameterised execution models for manipulation tasks like
grasping or stowing can successfully be transferred to unknown objects.

In (Kümpel et al., 2020) we have presented the idea to use Linked Data to help
robots understand product-related actions. The idea is visualised in Figure 2.1.
Here, the robot connects its belief state of objects perceived in the environment
to an ontology or knowledge graph offering additional product information like
a classification similar to the product knowledge graph described in chapter 4
as well as to its action model so that the object knowledge can be used for ac-
tion execution. The knowledge graph is further connected to outside sources like
wikidata or open food facts and therefore can be called Linked Data. The robot

22

Figure 2.1: Connecting Robots to Linked Data.

accesses the knowledge through a propagation of existing links and, in theory, can
answer many different questions. In practice however, using Linked Data poses a
major challenge: query requests can not be propagated, i.e. an Application Pro-
gramming Interface (API) and query service on a knowledge graph only offers to
query the contained knowledge. Therefore, even if we create links to wikidata, we
cannot obtain further information from wikidata through the knowledge graph
API but must send an additional query to the wikidata API. Thus it is more
practicable to define the needed knowledge, acquire it and integrate it in the
knowledge graph so that wikidata links act more like a connector for modularisa-
tion. In that case the knowledge graph can also be used for a different application
with another ontology based on wikidata entries.

2.4 Other Approaches for Robotic Action Execution

Correctly executing new task variations is still a big challenge in robotics due to
the fact that tasks are often underspecified and assume common-sense knowledge
about objects and the environment. There are approaches focusing on detection
of task sequences to enable robots to infer the next step, using image recogni-
tion (Ramirez-Alpizar et al., 2021) as well as approaches to infer the next action
to be performed based on natural language processing (Sera et al., 2021). How-
ever, these approaches are based on known actions.

Due to the great success of Large Language Models (LLMs), one idea is to use
these language models or the even newer approach of the Robotics Transformer

23

Other Approaches for Robotic Action Execution

2 (RT-2) to combine large language with vision models for robotic task execution
instead of a knowledge representation approach.

Using Large Language Models for Action Execution The everyday robots
project uses LLMs to ground robotic affordances and infer the everyday task to
be executed (Ahn et al., 2022). Using this approach, the instructions usually have
to be altered to be very specific for the agents to infer the tasks to be executed.
What is more, LLMs rely on existing data. One problem with performing new
task variations is that it is unclear if the needed data is available. Even then, most
robots would have problems in task execution based on the given information.
For example, the paper lists the following prompt as a basis for task experiments:

Figure 2.2: Example of robot using LLMs from (Ahn et al., 2022).

24

The paper shows that the robot used in their experiments was able to perform
the given tasks based on the given prompts. Unfortunately, they never show
where the robot actually placed the objects, which actually plays an important
role. If we look at Figure 2.2, the user asks the robot to bring them two different
sodas. Here, the robot randomly chooses to find a coke and a pepsi can. It
remains unclear why the robot chose those specific drinks.

Since the robots of the everyday robots project were able to execute actions
based on natural language instructions, I decided to try it out myself. For this, I
used chatGPT version 3.5 from openAI in the two examples of Listing 2.1 and 2.2
with the goal of retrieving action parameters for a task variation of cutting.

Listing 2.1: Prompt in chatGPT asking how to slice an orange

1 User: For cutting a slice of bread , I
2 first pick up a cutting tool by approaching it with my arm ,

grasping it and lifting it.
3 Then I cut the bread by approaching it , lowering the cutting

tool and lifting the cutting tool.
4 Finally I place the cutting tool by approaching a placing

position , releasing the cutting tool and lifting my arm.
5 How do I slice an orange ?

7 chatGPT : Slicing an orange involves a similar step -by -step
process as you described for cutting a slice of bread. Here ’s
how you can slice an orange :

8 1. Gather Supplies : You ’ll need a sharp knife and a cutting
board. Make sure both are clean and in good condition .

9 2. Wash the Orange : Rinse the orange thoroughly under cold water
to remove any dirt or residue from the skin.

10 3. Prepare the Work Area: Place the cutting board on a stable
surface . Ensure it’s not wobbly and won ’t move during the
cutting process .

11 4. Hold the Orange : Hold the orange with one hand. Position it
on the cutting board so that the stem end and blossom end are
facing up and down respectively . This will help stabilize the
orange .

12 5. Pick Up the Knife: Approach the knife on the counter with
your arm , grasp the handle firmly , and lift it.

13 6. Cut the Top and Bottom : With the knife in hand , cut a thin

25

Other Approaches for Robotic Action Execution

slice off the stem end and the blossom end of the orange . This
will create flat surfaces for stability .

14 7. Place the Cutting Tool: Approach a designated placing
position for the knife , release the cutting tool , and lift
your arm.

15 8. Slice the Orange : Hold the orange firmly on one of the flat
ends you just created . Approach the orange with the knife ,
lowering the cutting tool , and then lift the cutting tool.
Make a vertical cut from the top to the bottom of the orange ,
following the curvature of the fruit.

16 9. Repeat for Other Slices : Turn the orange slightly and repeat
the slicing process to create more orange slices . You can
adjust the thickness of the slices according to your
preference .

17 10. Place the Cutting Tool: Approach the designated placing
position for the knife again , release the cutting tool , and
lift your arm.

18 11. Serve or Store: Your orange slices are now ready to be served
or used in various dishes . If you’re not using them

immediately , you can store them in an airtight container in
the refrigerator .

19 Just like with cutting tools and other kitchen tasks, be careful when using a
knife to slice the orange. Make sure to keep your fingers and hands away
from the blade to avoid any accidents. If you’re not comfortable using a
knife, consider seeking assistance from someone experienced in kitchen
activities.

In Listing 2.1 I prompted chatGPT, detailing how a robot would perform a
cutting action on a bread by breaking down cutting into the tasks of picking up,
cutting and placing, and further breaking those tasks down into body movements
with the parameters that should be inferred. I then asked how an orange should
be sliced. The idea behind this specific question was that the answer would be
similar to the input. Surprisingly, the response was very different to my expecta-
tion and not only mentioned safety measures but also gave a very detailed task
description of how to slice an orange including preparation and postprocessing
information, beginning with gathering the needed supplies in line 7, over washing
the orange and preparing the work area in line 8 and 9 to storing left overs in
line 17. Some of the task descriptions do look similar to the given input. Step

26

5 in line 11 pretty much repeats the input of a picking up task to approach a
knife on the counter with an arm, grasp the handle firmly, and lift it. If we look
over the fact that apparently the only storage location of knives is the counter
top, the command could actually be used for robotic task execution. This most
probably is not true for step 6 in line 12. Here, the stem and blossom of the
orange should be cut. What is more, the user is expected to know what the stem
end and blossom end of the orange are, and how to cut them off. The next step
in line 7 suggests to place the knife. Here, the motions could be translated to
robotic action plans but the cutting action is not finished so the knife should
actually not be placed yet. After placing the knife in step 7, chatGPT suggests
to then slice the orange and place the cutting tool again. Overall, the request
resulted in a very detailed description. One aspect to note is that the orange was
not peeled before slicing.

Since the question in Listing 2.1 resulted in such specific task steps, I decided
to ask a more general question with a task variation on how to dice a cucumber
as a robot, as shown in Listing 2.2.

Listing 2.2: Prompt in chatGPT asking how to slice an orange

1 User: As a robot , how do I dice a cucumber ?

3 chatGPT : As a robot , dicing a cucumber involves a precise and
controlled process . Here ’s how you can do it:

4 Note: Please ensure that you are programmed to handle objects safely and
accurately. If you’re unsure about your capabilities or safety measures,
it’s best to get assistance from a human operator.

5 1. Gather Supplies : Ensure you have a sharp knife , a cutting
board , and a cucumber .

6 2. Prepare the Work Area: Place the cutting board on a stable
surface where you can work without any obstructions .

7 3. Pick Up the Knife: If you have an articulated arm , approach
the knife on a secure surface , grasp the handle securely , and
lift it.

8 4. Prepare the Cucumber : Hold the cucumber firmly with your
gripping mechanism . Position it on the cutting board so that
it’s stable and won ’t roll.

9 5. Make the First Cut: Approach the cucumber with the knife ,

27

Other Approaches for Robotic Action Execution

lowering the blade to make a straight cut off one end. This
creates a flat base for stability .

10 6. Cut into Sections : Approach the cucumber with the knife again
, lower the blade , and slice the cucumber into sections of the

desired length . Each section should be roughly the length of
the diced pieces you want.

11 7. Place the Cutting Tool: Approach a designated placing
position for the knife , release the cutting tool , and lift
your arm or gripping mechanism .

12 8. Slice into Sticks : Take one of the cucumber sections and
approach it with the knife. Make vertical cuts along the
length of the cucumber , creating thin , long sticks . These
sticks will form the basis for your diced cucumber .

13 9. Place the Cutting Tool: Approach the designated placing
position for the knife , release the cutting tool , and lift
your arm or gripping mechanism .

14 10. Dice the Cucumber Sticks : Take a bunch of cucumber sticks and
approach them with the knife. Make horizontal cuts across the
sticks to create evenly sized cubes. The size of the cubes

can vary based on your desired outcome .
15 11. Place the Cutting Tool: Approach the designated placing

position for the knife , release the cutting tool , and lift
your arm or gripping mechanism .

16 12. Serve or Store: Your diced cucumber is now ready to be used
in salads , dishes , or as a garnish . If not used immediately ,
ensure proper storage to maintain freshness .

17 Remember, safety is of utmost importance. Always ensure that your
programming, sensors, and mechanics are capable of handling the cutting
process without causing harm to yourself or others. If you’re unsure
about your capabilities, it’s best to get human assistance.

Similar to List. 2.1, in List. 2.2 the reply consists of a long list of tasks and
safety information. After a similar description of how to prepare the work area
in steps 1 to 4 (lines 4-7) as in the previous reply on how to slice an orange, the
actual cutting action starts in step 5 and 6, line 8 and 9. This slicing description
resembles the input parameters in List. 2.1 and therefore could be understood by
a robotic agent. In the following steps however, the knife is being placed three
times, in step 7, 9 and 11 and never picked up again to continue cutting, although
steps 8 and 10 describe to further slice and dice the cucumber.

28

Considering the three examples of LLMs, one can conclude that LLMs can
be used to teach robots how to execute task variations. However, this heav-
ily depends on chatGPT being able to access all relevant knowledge about task
variations and objects to cut, which we can not influence, and requires lots of en-
gineering effort in correctly prompting chatGPT in addition to the translation of
results into body movements. If we also consider the implications for task execu-
tion especially in regards to human safety when an instruction is misinterpreted,
LLMs do not seem to offer an appropriate solution for robotic task execution.

29

Other Approaches for Robotic Action Execution

30

Michaela Kümpel
CHAPTER 3. METHODOLOGY FOR CREATING ACTIONABLE

KNOWLEDGE GRAPHS

Chapter 3
Methodology for Creating Actionable
Knowledge Graphs

I propose a five step methodology for creating actionable knowledge graphs that
can be accessed by digital agents for user assistance as well as by robotic agents
for action execution. A precondition that has to be met before starting the
creation process is to define the domain of interest and the competency questions
the knowledge graph should be able to answer. Competency questions should be
as specific as possible and belong to one of the following two categories:

1. Selection questions that check whether there exist entities in the knowl-
edge graph that satisfy a restriction such as “Are there any products in this
shelf that have ingredients which might cause contact dermatitis?”.

2. Binary questions that can be answered with yes or no as in “Is this
product vegan?”.

In (Ren et al., 2014), in addition to these two categories Counting questions
are proposed. However, for most agent applications that this work aims at, nu-
meric results from counting questions can be disregarded.

After defining competency questions, one can focus on one question at a time
and incrementally work through the methodology to create an actionable knowl-
edge graph that is able to answer the questions at hand. The methodology can

31

Chapter 3. Methodology for Creating Actionable Knowledge Graphs

Figure 3.1: The methodology proposed in this work for creating actionable knowledge
graphs.

shortly be described by
What? - meaning that first the data to be acquired needs to be defined
How? - to then find the right way to acquire the data
Fit - fit it to standards and process it so that its semantics can be queried
Link - link it to other acquired and existing data and finally
Translate - translate actions to body movements of a robot.

In the end, the created knowledge graph should not only answer the competency
questions but also enable agents to access it to translate the contained knowledge
into body movements or relate it to the current environment. The steps of the
methodology are depicted in Figure 3.1. While steps 1 to 4 are required for cre-
ating actionable knowledge graphs for any agent, step 5, the translation of action
information to body movements of a robot, is only needed in robotic applications
for action execution.

Another aspect to keep in mind when developing a knowledge graph (or on-
tology), are the FAIR guiding principles for scientific data management and stew-
ardship (Wilkinson et al., 2016). They were proposed in 2016 in order to improve
the reusability of data holdings and introduce four principles: Findability, Acces-
sibility, Interoperability, and Reusability:

• Findability: Only if knowledge sources are available to external people,
they will inspect and use or even extend the contained knowledge. For
this, developed knowledge graphs should be openly accessible, preferably
on a website with additional information about the graph. Since website
Uniform Resource Locators (URLs) or knowledge graph versions change,

32

one can use persistent URLs1 that redirect the user to the current storage
location/ URL and do not change even if the landing page or source file
changes, making it easier for users to find and access the knowledge.

• Accessibility: To help users to inspect, query and reuse the created knowl-
edge graph, it should not only be findable on a website, but also easily
accessible. Thus, the knowledge graph storage location should be given,
preferably providing a standard API and a tutorial on how to query it.
Example queries can be saved and made available as well. One tool that
can be used for this is grlc (Meroño-Peñuela and Hoekstra, 2016), where an
API can be created for a github query folder. Additionally, Sparklis (Ferré,
2017) can be used to provide an interface for users that are not familiar with
SPARQL Protocol And RDF Query Language (SPARQL) or API access to
inspect the knowledge graph content.

• Interoperability: When knowledge is findable and easily accessible on the
Web, users might want to reuse it in their applications. Interoperability
has many benefits and can be increased by reusing existing vocabularies,
top-level and domain ontologies.

• Reusability: To further ease reusability of knowledge, one should also focus
on documenting the knowledge graph, providing different language labels,
comments, links and annotation properties as well as usage instructions. A
clearly stated licence that clarifies the terms of use should also be available.

The following sections will explain each step of the proposed methodology in
detail. The usability of the methodology for the example scenarios is explained
in the next chapters.

1Link to the persistent url (purl) administration page: https://purl.prod.archive.org/

33

https://purl.prod.archive.org/

Define Necessary Knowledge Sources

3.1 Define Necessary Knowledge Sources

Figure 3.2: Step 1 of the
methodology.

Knowledge graphs can be created manually, by access-
ing structured external (Web) sources and by accessing
unstructured external (Web) sources (Heist et al., 2020).
Since manual creation of knowledge graphs comes at high
cost and lots of information and tools for information
retrieval already are available on the Web, one should
search for existing knowledge sources that best fit the
domain of interest. This includes structured as well as
unstructured sources that offer information about 1) gen-
eral object knowledge, 2) environment structure and 3)
action execution. In general, the resulting knowledge graph should consist of
at least one taxonomy describing the domain of interest as well as at least one
ontology providing additional object information.

Together with the created competency questions this step can be used to
tackle challenge 1) to define the needed knowledge and object properties
an agent needs for action execution.

3.1.1 General Object Knowledge

The Web as well as the Semantic Web offer vast amounts of object knowledge,
making it hard for users to find sources that best fit their domain of interest.
However, there are ways that can support users in finding the right sources. For
structured external sources, users can

• search for published ontologies in ontology catalog websites like the Linked
Open Vocabularies for Internet of Things (LOV4IoT) 2 or search websites
offering open datasets like Google 3, TriplyDB 4 or the LOD cloud 5.

2The linked open vocabularies website can be found at http://lov4iot.appspot.com/
3The Google datasets are available at https://datasetsearch.research.google.com/
4The TriplyDB datasets are available at https://triplydb.com/
5The LOD cloud is available at https://lod-cloud.net

34

http://lov4iot.appspot.com/
https://datasetsearch.research.google.com/
https://triplydb.com/
https://lod-cloud.net

• use wikidata with its connection to many linked sources as a starting point
to investigate the sources offering information about the domain of interest.
If one searches for the verb “cutting” in wikidata, for example, in the result
list there are many indentifiers from external sources linking to KBPedia,
Freebase and WordNet, for example. The search for “apple” results in
links to Open Food Facts, USDA, FoodOn or GS1, all offering not only a
taxonomy but also different information about the domain.

For unstructured sources, i.e. websites providing information in different for-
mats and in natural language text, it is a good idea to first check the websites’
robots file6 whether automated data retrieval is allowed. In addition to acces-
sibility, trustworthiness of the acquired data should be considered in order for
the knowledge graph to be as reliable as possible. Gil and Artz (Gil and Artz,
2007) introduce some factors that influence content trust of websites. For exam-
ple, website creator expertise and authority, recency and update frequency of the
presented information as well as number of websites offering similar information
influence content trust and should be considered. Furthermore, many websites
with consumer focus already offer standard interfaces to access data.

3.1.2 Environment Structure

Depending on the domain of interest, different types of environment information
can be integrated in a knowledge graph. Highly structured environments like
retail stores facilitate automated generation of environment information, which
is due to

• the objects available in the environment. Products often hold a bar-
code as identifier that can easily and reliably be perceived with cameras.
What is more, products usually are stored in shelves or cabinets facing the
user, thus increasing the chance of successful image recognition.

• little environment variation. In a retail store, all shelves and spaces
between shelves are standardised and look similar. Even lighting conditions
are standardised for an optimal article presentation.

6A robots file is the /robots.txt file located at the root of a website with instructions for
web robots on how to crawl the website and which information can be extracted.

35

Define Necessary Knowledge Sources

• object presentation. Very good lighting conditions not only make it
easier for customers to find products but also make object perception easier.

• ease of object identification. Perceived products can be identified by
their barcode or product image, which usually also are available in Web
stores and consumer websites. Thus, objects perceived in the environment
can reliably be linked to object information from the Web.

• availability of environment information. Digital agents can already
create environment models of retail stores autonomously (Beetz et al.,
2022).

In less structured environments like households, reliable object identification is
harder and heavily relies on perception techniques. Still, while a robot routing
a customer to the correct product location does need reliable environment infor-
mation, other applications like recipe recommenders can already support users if
they include basic environment information like being able to perceive a product.
We can distinguish between four forms of environment information that can be
integrated in knowledge graphs:

1. Identification via barcode or QR code is the easiest form of inte-
gration as detailed before. Barcode information can easily be linked to
product information available on the Web. Similarly, objects like shelves
can be equipped with QR codes that link to shelf information in the object
knowledge graph. Dependent on the application, QR codes can then relate
to a fixed reference coordinate for robotic applications as well as be used as
world anchors that can be detected in AR applications and visualise digital
content in relation to the anchor position.

2. Identification via Image recognition is a reliable solution for domains
with a relatively small set of objects. While linking of product image in-
formation to object information from websites still is fairly easy due to the
amount of available information on the Web, image recognition does not
work reliably in retail environments with lots of similar products standing
next to each other or very small products like toothpaste and toothbrush
being placed without spacing.

36

3. Identification via 3D object recognition is a very reliable solution for
object recognition but comes at the cost of having 3D models available,
which usually have to be manually linked to object knowledge.

4. Identification via employed semantic Digital Twins is the most re-
liable solution for localisation of objects in an environment. It has been
shown that robotic agents can autonomously create semDTs of environ-
ments (Beetz et al., 2022) that can be used to retrieve precise article po-
sitions both by robotic as well as digital agents (Kümpel et al., 2023).
SemDTs are semantically enhanced environment models that allow for link-
ing the contained environment information to object information in a knowl-
edge graph. However, reliant on the environment structure, it might not be
possible to automate the linking.

Depending on the domain of interest, one approach might be more applicable
than others. While users will accept to scan a barcode or lift a product for image
recognition to see recommended recipes, they most likely will not accept a routing
application giving wrong position information.

3.1.3 Action Execution

For action execution, knowledge sources need to comprise rudimentary concepts
necessary for the execution of general manipulation tasks, covering environmen-
tal aspects like agents, objects and situations as well as temporal and physical
aspects like trajectories or forces. Situations define tasks already available and
executable by the robot, thus serving as a foundation for the hierarchical rep-
resentation of more complex tasks. Due to the availability of approaches in the
domain of cognitive robotics, knowledge about robotic movement or manipula-
tion concepts is collected in top-level ontologies like the Socio-physical Model
of Activities (SOMA) (Beßler et al., 2022) or the Event-Model-F (Scherp et al.,
2012).

In addition to general knowledge about actions and objects, knowledge about
their relation is needed. This knowledge consists of object features and properties
which are relevant for the current manipulation action. Due to the speciality of
this knowledge, the sources need to be specific for the execution domain since gen-

37

Acquire the Needed Information

eral sources only offer a broad coverage that can not be translated into motions.
In particular, sources should deliver general information about existing objects
and their usage, represented through the concepts disposition and affordance. In
general, a disposition describes the property of an object, thereby enabling an
agent to perform a certain task (Turvey, 1992a) as in “a knife can be used for
cutting”, whereas an affordance describes what an object or the environment of-
fers an agent (Bornstein and Gibson, 1980) as in “an apple affords to be cut”. In
works like (Beßler et al., 2020a, 2022), both concepts are set in relation by stating
that dispositions allow objects to participate in events realising affordances. An
application example of how the SOMA top-level ontology can be used is shown
in (Pomarlan and Porzel, 2022). However, since the available structured resources
are top-level ontologies, they do not cover object dispositions very well, which
is why a manual and semi-automated process of collecting data for a knowledge
graph is necessary.

Knowledge sources employed for linking action to object information should
handle dispositions and affordances as well as describing any other properties or
features that are relevant for grounding basic manipulation actions like grasping,
holding or transporting to support basic planning. This knowledge supports the
robot in understanding and recognising objects and their purpose during task
execution. Due to the lack of structured sources available, action knowledge
usually has to be created manually or extracted from unstructured sources.

3.2 Acquire the Needed Information

Figure 3.3: Step 2 of
the methodology.

When acquiring Web knowledge, the goal is to transform
the extracted data into facts stored in modular ontologies.
For example, product information like ingredients should
be stored in one ontology while product information like
brands should be stored in a separate ontology. Such a
modular approach supports reuse of specific parts of the
created knowledge graph for different purposes in the fu-
ture. Knowledge acquisition methods can be categorised
based on the knowledge that is to be accessed: 1) unstruc-

38

tured external (Web) sources, usually textual information,
2) semi-structured external (Web) sources such as tables on a website or relational
databases and 3) structured external (Web) sources like ontologies. Available
methods are further detailed in the following.

This step can be used to tackle challenge 2) to acquire the previously defined
knowledge and the first half of challenge 4) to acquire Web knowledge in
different formats from distributed sources.

3.2.1 Extracting Information from Unstructured Sources

In contrast to Semantic Web sources, websites created for human access often
provide textual information. Since machines cannot reason over textual informa-
tion, it usually is classified as unstructured information. Information Extraction
describes the process of converting text to structural information like entities
and their relations (Etzioni et al., 2008a). To acquire textual information from
websites, Python and the Beautiful Soup library can be used. The extracted
information can then easily be transformed to ontologies with the Owlready li-
brary (Lamy, 2017). The research field of Information Extraction has also led to
many different tools that can be used for acquiring data. Example tools that can
be used for different purposes are listed below.

• For Taxonomy Creation, one can use a pattern-based approach for tax-
onomy induction (Davulcu et al., 2003a). Another approach is to access
online stores for taxonomy creation since they are designed in a taxonomy-
directed structure that can be used for Information Extraction as shown
in (Davulcu et al., 2003b; Tenorth et al., 2011).

• For Learning Dictionaries from text, multi-level bootstrapping can be
applied (Riloff et al., 1999). Here, only some seed words need to be given
as input and the algorithm will learn dictionaries of similar sentences. This
is especially useful in text that offers similar information in large varieties,
such as recipe preparation instructions where one might use it to learn a
dictionary of all pouring actions and their destinations, for example. For

39

Acquire the Needed Information

other text covering different domains, lots of unwanted relations might be
learned that require postprocessing.

• If one wants to retrieve all relations in a text, Open IE is the right tool
to use (Etzioni et al., 2008b). Here, the KnowItAll sytsem (Etzioni et al.,
2005) was the first unsupervised system proposed that only needs a small
set of domain-independent extraction patterns to then automatically label
and extract relations. Building upon this, the TextRunner system (Yates
et al., 2007) was built to be more scalable and general.

• To retrieve only certain relations (which are predefined) in a text, tools
like Snowball (Agichtein and Gravano, 2000) or DIPRE (Brin, 1998) can
be used as explained in more detail in (Nasar et al., 2021).

• To deeper dive into natural language processing and extract word con-
junctions or retrieve hyponyms in texts, the Stanford CoreNLP (Man-
ning et al., 2014) toolkit can be used.

The presented tools can be used to tackle challenge 7) to create an action
classification that agents can use.

3.2.2 Extracting Information from Semi-structured Sources

Semi-structured sources such as relational databases storing their data in csv, json
or xml format do not need much processing since the data already is available
in tabular form. However, the tabular data needs to be transformed to a graph
structure by defining relations between entities if machines should be able to
interpret it. Protègè, the standard tool for ontology editing, offers the cellfie
plugin (Hardi, 2018) that can also be used to convert semi-structural sources to
ontologies by defining rules, ranges of data and automatic mapping to relations.
Additionally, tabular data can be mapped to RDF format using the R2RML
standard (Consortium et al., 2012) and the RML mapping language (Dimou
et al., 2014) through statements defining the mapping relation.

40

3.2.3 Extracting Information from Structured Sources

Structured sources like ontologies or knowledge graphs published on the Web do
not have to be recreated manually. One can query the source to retrieve a sub-
graph of it using SPARQL CONSTRUCT queries (Kostylev et al., 2015). How-
ever, by creating subsets of existing knowledge graphs, updates of the retrieved
sources will not be displayed in the extracted source. To address this problem,
one can either reconstruct the source from time to time or use a framework for
keeping the acquired source up to date using extract load transform (ETL) as
proposed in (Bansal, 2014).

3.3 Process the Acquired Data

Figure 3.4: Step
3 of the

methodology.

Web sourced knowledge graphs essentially contain logical state-
ments about entities and their relationships that are acquired
from Web sources as described in the previous section. How-
ever, Knowledge acquired from the Web can be of poor quality.
To solve this, different techniques for knowledge processing ex-
ist that focus on ”cleaning” of the acquired data to make sure
that the statements are correct (i.e. they do not contain con-
tradictions or false information). With this, reasoning about
the contained information will also produce conclusions that
we as humans would regard as true.

Processing of the acquired data thus aims at increasing data
quality as well as semantically enhancing the data so that each created source
can be used to answer questions about the contained data. To further enrich the
acquired data, manual ontology editing is needed. This is especially important
for environment and action information, as will be discussed in the following.

This step can be used to tackle the second half of challenge 4) to find
ways to standardise Web knowledge in different formats from distributed
sources.

41

Process the Acquired Data

3.3.1 Cleaning, Standardising and Enriching the Acquired Web Data

In order to clean acquired data, especially if it was extracted from text, natural
language processing tools can be applied:

• For Coreference Resolution, the identification of ambiguous noun phrases
as in “Cut it into slices”, where the object to be cut is unclear and should
reference to an explicit object of the ontology, many different tools have
been developed. These tools like Sucre (Kobdani and Schütze, 2010) or
BART (Versley et al., 2008) are based on the learning approach proposed
in (Soon et al., 2001).

• To filter for certain parts of speech like verbs or adjectives, Part-of-Speech
Tagging(Voutilainen, 2003) can be used. The tools usually rely on hidden
Markov models such as in (Banko and Moore, 2004) and can be applied to
different languages (e.g. German in (Schmid, 1999)).

The following standardisation of data further helps in increasing the quality
of the data and making linking of knowledge chunks easier:

• Conversion of all textual information to all lower case format.

• Strict splitting of textual and numeric information or removal of numeric
information.

• Removal of special characters.

Additionally, simple automated data categorisation can increase the encoded
semantic knowledge. For example, string matching techniques (Charras and
Lecroq, 2004) can be used to classify product ingredients like sunflower or corn
oil as oil, which then enables users to search for or filter out all products that
contain oil.

3.3.2 Enrichment of Environment Information

Environment knowledge is about data items such as images, sound recordings or
coordinate values. These can be attached to logical entities in a knowledge graph
but the data itself cannot be used by a reasoner to reach conclusions. Therefore,

42

the focus here should be to accurately model the real environment and link the
model to data items in the knowledge graph.

In Sec. 3.1.2 different forms of environments information that can be inte-
grated in knowledge graphs have been presented. If only barcodes of products
are used for object identification, the acquired data does not need to be enriched
for linking it to object knowledge. However, if any other object identification
shall be used in applications, the acquired environment data has to be extended
as detailed in the following:

1. If QR codes are used to easily identify landmarks in the environment like
shelves in a store or a cupboard in a kitchen, the QR codes have to seman-
tically link to the object of interest, which can be integrated by adding rela-
tions such as <QR code 1 has QR code 123>, <QR code 1 has depiction
image A>, which then links image information perceivable by a camera to
a code that can ultimately be mapped to object information (which will be
discussed in the next section).

2. When using image recognition for object identification, the only way
of improving success rates for recognition are to provide as many images
in different orientations, viewing angles and lighting conditions as possible
for training. Manual integration of additional images into the knowledge
graph can easily be done by adding more relations to a given object as in
<object 2 has depiction image B, has depiction image C>.
Since the object information most likely was extracted from websites in com-
bination with images, the object information already links to at least one
image. Image recognition databases like Vuforia 7 additionally allow upload
of multiple images for a single object. The database already is integrated
in the Unity development platform, can easily be used for Augmented Re-
ality (AR) applications and allows for assigning the same object identifier
for multiple images.

3. 3D object models can similarly be encoded as environment information
as QR codes in the example above by providing a link to the file or a file
name for the 3D model: <object Z path to model link B>.

7Vuforia image recognition: https://library.vuforia.com/objects/image-targets

43

https://library.vuforia.com/objects/image-targets

Process the Acquired Data

4. SemDTs already provide semantically enhanced environment information
for robotic agents and only need further processing if digital agents are to
use the contained information. The positions in the semDT use a fixed ref-
erence frame with a given origin, usually set to a randomly chosen corner
of the room. All objects perceived by the robot then are set in relation
to this origin as in <barcode 2 has x position 0.12, has y position
1.5>, <QR code 1 has x position 2.2, has y position 0.05>. In con-
trast to robots, Augmented Reality devices use the varying device position
when starting an application as origin and display digital content relative to
the device position. To solve this discrepancy, all product locations have to
be encoded in relation to shelf, cupboard or other object positions that can
be perceived in the environment as in <product 1 stored on shelf 12,
stored in shelf floor 8>, <shelf 12 has QR code QR code 1>.
Simple relations such as stored on or stored in can easily be created in
structured environments like retail stores. In household environments with-
out barcodes or QR codes, detailed inspection of semDT data and its ac-
companying 3D models is needed to classify an object as product, cupboard
or table and then relate it to other object positions.

The translation of object positions with a set origin to positions with a
changing origin can be used to tackle challenge 5) to encode environment
information in such a way that different agents can use it in applications.

3.3.3 Enrichment of Action Information

Action knowledge is about how to set up an agent to behave in an appropriate
way. The focus is on correctly performing given tasks, parameterising them
to successfully perform task variations, and avoid unwanted effects. Thus, the
important factor here is how to make the knowledge actionable, i.e. we do not
only form subgraphs or link data items, but we need actual programs running on
robots to make the robot successfully perform a task.

44

As only top-level action information can be acquired from the Web, the ac-
quired data has to be enriched to model and reason about relevant object fea-
tures and properties that are important for action execution. For example, the
SOMA (Beßler et al., 2022) ontology contains top-level descriptions of how events
consist of actions that are performed by agents and include objects that take on
roles during action execution. Actions further can execute a number of tasks
like navigating, or pouring. They also come with basic descriptions of their dis-
positions and affordances, such as <Pouring is task afforded by Pourable>.
Thus, it can be used for a broad range of different tasks already. However, when
it comes to more specific tasks like distinguishing between cutting, slicing and
dicing, task information needs to be enhanced so that a robot can infer the needed
knowledge. Additionally, the tasks still need a formal definition and a connec-
tion to the existing objects. This includes knowledge influencing task execution,
like e.g. the existence of a core or peel for a fruit but also the creation of task
variations as explained in (Kümpel et al., 2024). In particular, parameters that
can influence motion execution of the robot have to be integrated, such as

• the tool being used for action execution. Some objects might only afford
certain tools to be used or have different action parameters based on the
tool being used (e.g. imagine using a knife instead of scissors for cutting).

• information about the object affording the action to be executed. For
example, an orange does not have a core that needs to be removed and
therefore should not afford a core removal action.

• changes in object appearance, shape or amount have to be modelled
if they influence action execution. If the goal is to create dices of a
cucumber, for example, the base object might first be cut into two objects:
a piece and a slice, where the slice will need to be cut again to create dices.

45

Link Distributed Knowledge Chunks

3.4 Link Distributed Knowledge Chunks

Figure 3.5: Step
4 of the

methodology.

The previous steps have defined necessary data sources to then
extract information and process the acquired data, leading to
knowledge chunks with modular domain knowledge that can
be queried. Now the knowledge chunks have to be linked to
connect the contained information, allow for more advanced
reasoning and ultimately link object to environment and ac-
tion information to make the knowledge graph actionable. For
this, one first has to align the knowledge chunks with top-level
ontologies to then connect object, environment and action in-
formation following the Linked Data standards set by Bizer,
Heath et al. (Bizer et al., 2007), which are:

• Use the RDF data model to publish structured data on the web.

• Use RDF links to interlink data from different data sources. Linkage of the
data generates a graph, in which the nodes are Uniform Resource Identifiers
(URIs) of the represented entities and edges resemble the relation between
two nodes.

• Re-use as many existing URIs as possible and unique identifiers like article
numbers as part of the URI.

• Re-use existing terms/vocabularies if possible.

• Use the owl:sameAs property to interlink two data sources.

This step can be used to tackle challenge 3) to link the acquired Web
knowledge in such a way that an agent can query it.

3.4.1 Ontology Alignment

Ontology alignment can be achieved by using an upper ontology like SUMO (Niles
and Pease, 2001) or DOLCE+DnS Ultralite (DUL) (Presutti and Gangemi, 2016)
and reusing the available relations as well as existing vocabularies. However,

46

one major challenge in ontology alignment of ontologies with different foci is
the use of diverse upper ontologies. For example, while the action ontology
SOMA is based on the DUL ontology with its descriptions of relations of actions,
objects and agents at a given time and space, the Open Biological and Biomedical
Ontology Foundry (OBO Foundry) ontologies are based on the Basic Formal
Ontology (bfo) (Otte et al., 2022) defining occurrents and continuants over a
period of time (Mascardi et al., 2007). Thus, external concepts like processes
that are defined as occurents in bfo need to be aligned with the definitions of
tasks, actions and processes as events from DUL.

3.4.2 Interlinking Object Information

Since knowledge graphs usually consist of data from many different sources,
chances are high that the used sources use different terms to identify similar
objects. In simple cases like linking an “apple” from source A to “apples” in
source B, string matching techniques can be used. Mapping words to vectors,
i.e. learning word embeddings where similar vectors indicate semantically similar
words (Bhoir et al., 2017) has proven successful. For word embeddings, Word2Vec
can be used to link taxonomies but also to expand the contained knowledge by
learning sibling classes (Wohlgenannt and Minic, 2016). Similarly, Node2Vec can
be used for graph data with good results. If we want to link quite different on-
tologies such as a taxonomy to a brand ontology, the domain of interest changes
from linking two ”shampoo” classes to linking one ”shampoo” class to ”Elvital
Dream Length Super Strengthening Shampoo”, for example. Here, the distinct
product name consists of multiple words. One solution for this is to create a
class hierarchy. Another solution is to handle both classes as branches that shall
be linked, in which case Doc2Vec has been shown to efficiently handle multiple
words with context (Lau and Baldwin, 2016).

The links can be created either by using the owl:sameAs property, stating
that both apples of source A and B are the same, as proposed by Bizer, Heath et
al. (Bizer et al., 2007), or using the oboInOwl:hasDbXref annotation property to
link a logical entity to a data source by stating a cross reference annotation link
to an external source, as proposed by the gene ontology (GO) consortium (Con-
sortium, 2019).

47

Link Distributed Knowledge Chunks

Additional linking of ontology terms to wikidata highly increases the knowl-
edge that can be accessed. The automatic linking of ontology terms to wikipedia
(or wikidata) is called entity linking in (Lin et al., 2012).

Figure 3.6: Linking scene graph environment information to symbolic object information
(published in (Kümpel et al., 2021)).

3.4.3 Linking Object to Environment Information

The effort needed for integrating environment information into an object knowl-
edge graph highly depends on the environment information used. If barcodes or
other unique object identifiers are used, environment and object information can
easily be linked as explained in prior work (Kümpel et al., 2021) and depicted in
Figure 3.6. Here, an agent querying the knowledge graph can use the recognised
article number/ barcode number to query for product information. For robots
acting in household environments, a perception framework for task aware robot
manipulation has been proposed in (Balint-Benczedi et al., 2016). The frame-
work is able to adapt robot perception in accordance with the task at hand. If
the perception framework is used to create scene graphs of environments and
perceived objects are classified as “apple” or “milk”, perception results can easily
be linked to object information using the techniques described in the previous
Sec. 3.4.2.

When using digital agents, scene graphs seldom are available. Integrating
environment information like landmarks with QR codes or 3D models with object
information therefore usually requires manual connection of environment object
identifier and object as in <shelf 12 identified by QR code 1>.

48

This step can be used to tackle challenge 6) to link perceived objects in the
environment to objects of a knowledge graph.

3.4.4 Linking Object to Action Information

Once action specific object knowledge like object dispositions and affordances
relevant for action execution have been defined, it needs to be connected and
integrated into the knowledge graph. To do so, the conditions that are necessary
for the different tasks to be performed need to be described using the previously
identified object features. For example, if a fruit the robot wants to cut has a
peel, the task to remove it needs to be executed before additional cutting can
be achieved. Thus, for an orange one would add the dispositions of peelability
and cuttability as well as the property that it has a peel. For the peel one would
then add the constraint that it must be avoided. Additionally, one should add
that the peelability affords the task of Peeling by hand or peeler. This can be
formalised as shown in Figure 3.7. The orange in this example then needs to link
to an orange of the object knowledge graph. Again, this can be achieved using
the previously presented methods (see Sec. 3.4.2)

Orange ⊑ Fruit∧∃hasDisposition.Cuttability ∧∃hasDisposition.Peelability ∧
∃hasPart.[Peel ⊓ ∃hasEdibility.MustBeAvoided]

Peel ⊑ FruitPart
Peelability ⊑ ∃affordsTask.Peeling ⊓

∃(affordsTrigger.Peeler ∨ affordsTrigger.Hand)
Cuttability ⊑ ∃affordsTask.Cutting ⊓ ∃affordsTrigger.Knife

Figure 3.7: Representation of task-specific object knowledge that is important for executing
cutting actions on an orange.

The enrichment of action information to model object knowledge that in-
fluences action execution can be used to tackle challenge 9) to relate object
information to task information that a robot can reason about for action
execution.

49

Translate Knowledge to Robot Plan

3.5 Translate Knowledge to Robot Plan

Figure 3.8: Step 5 of
the methodology.

If robot agents are to use the knowledge graph for action
execution, it needs to be connected to the cognitive ar-
chitecture employed by the robot for task planning. This
allows the robot to query the created ontology to gather
important action parameters for execution of manipulation
tasks in the current environment.

Figure 1.2 shows the general cutting action and how
it is broken down into tasks and body movements of the
robot. Here, the general cutting action already was edited
so that it can be parameterised in regards to a cutting position and the object to
cut. If these parameters are not set, the robot would try out a position it retrieves
from its search space, which was set to possible cutting locations near the end of
the object to cut, for example. Thus, the parameterisation is important since it
changes the way how the cutting task is executed by a robot. If the robot is to
execute more task variations of cutting, the action plan might need to be changed
to request even more parameters while the knowledge graph should integrate all
information needed for a robot to infer the parameters it needs for successful
action execution. For example, if the robot was taught to cut an object as in
creating slices of bread, the knowledge graph should contain the information that
for other cutting tasks like quartering an apple, a different position in the middle
of an object is needed. Since this work is based on KnowRob (Beetz et al.,
2018b), which can be accessed by the cognitive architecture CRAM (Beetz et al.,
2010) and uses Prolog (Bramer, 2005) for inferring parameters, queries must be
available in Prolog in order for a robot to execute them.

For different actions, different action parameters are needed. A pouring action
will depend on the viscosity of the liquid to pour and the container size that
influence the pouring angle, for example.

The translation of knowledge to robot body movements can be used to
tackle challenge 8) to determine parameters that influence action execution
and provide the robot with ways to use the parameters.

50

3.6 Discussion and Related Work

This chapter has introduced a five-step methodology for creating actionable
knowledge graphs that can be used as a guideline for creating knowledge graphs
that are grounded in the environment or even in robotic actions. Due to the
many different application domains of knowledge graphs and the range of agents
accessing knowledge graphs, the methodology describes a general guideline for
different domains and agents. Therefore, when using the methodology for cre-
ation of actionable knowledge graphs, some steps of the methodology will be
more important than others, while some steps might even be left out or need to
be extended. The next chapters show how different steps need more attention
than others in two example scenarios in different domains and applications.

Although the need for a unified methodology for creating ontologies has al-
ready been remarked in 1996 (Uschold, 1996) and there has been lots of re-
search on creation of knowledge graphs, no one-fit-all construction approach ex-
ists. There has also been approaches to include spatial and temporal knowledge
in the YAGO2 knowledge graph (Hoffart et al., 2013), which resulted in ob-
ject knowledge that semantically models time spans and regions. However, no
methodology for creation of actionable knowledge graphs that link to perceived
environments (instead of GPS coordinates) and action information has been pro-
posed. In general, related work in creation of knowledge graphs suggests to first
acquire the needed data to then construct a data and concept layer and finally
process the acquired information to generate the knowledge graph (e.g. (Ryen
et al., 2022; Wang and Yang, 2019)), which is similar to the approach of steps
1-3 in this work without differentiating between object, action and environment
knowledge. Many existing works focus on presenting tools for knowledge engi-
neering, but automated approaches or a detailed description of a methodology
for knowledge graph creation are still lacking. There has been little research
on linking knowledge graphs to environment information or action information.
In (Pomarlan and Porzel, 2022), objects are linked to affordances and dispositions
in broader contexts than in this work. The robot knowledge graph (R-KG) (Hao
et al., 2020) links environment objects and their attributes to support the cre-
ation of semantic maps. Hence, the created knowledge graph can be categorised

51

Discussion and Related Work

as a semantically enhanced environment model like the semantic Digital Twin
used in this work and is different to the actionable knowledge graphs created in
this work.

The presented methodology can be applied for creation of different actionable
knowledge graphs as will be shown in the following two chapters.

52

Michaela Kümpel
CHAPTER 4. AN ACTIONABLE PRODUCT KNOWLEDGE GRAPH FOR

OMNI-CHANNEL USER ASSISTANCE APPLICATIONS

Chapter 4
An Actionable Product Knowledge
Graph for Omni-channel User Assistance
Applications

This chapter describes how the methodology introduced in the previous chapter
can be applied in a user assistance scenario. The scenario aims at supporting
users in daily environments like retail stores or households and has a focus on
omni-channel applications that are independent of the used device (Taylor et al.,
2019).

Although we have seen many interesting consumer applications in the of-
fline retail domain like mobile (Waltner et al., 2015; Davis et al., 2006) or robot
shopping assistance (Gross et al., 2008; Chen et al., 2017), robotic depalletising
and shelf replenishment (Caccavale et al., 2020; Costanzo et al., 2021) or click-
and-collect services and smart shopping carts, they often are too customised,
meeting only certain consumer profiles. What is more, the same consumer will
demand different product information like its availability and price, ingredients
that might cause allergic reactions or harm the environment, recommendations
for complementary products as well as convenient return policies, depending on
the temporal relation to the actual purchase (before, during or after) (Lockie,
2014) and the users’ personal relationship to the device used for information
retrieval (Riegger et al., 2022). The same user might want to check product

53

Chapter 4. An Actionable Product Knowledge Graph for Omni-channel User
Assistance Applications

availability on their smartphone before shopping, use a shopping robot to locate
the searched product in the store and check store return policies on a website
after purchase. In order for applications to turn into omni-channel applications
providing a seamless shopping experience that is independent of the used device
or environment (Taylor et al., 2019), I suggest that they should: a) share one
source of data, b) be modular and generalised so that they can be instantiated
for a personalisation that takes into account the temporal relation to purchase
and c) include semantically encoded environment information. The methodology
proposed in this Thesis can easily be used to provide omni-channel application
as has been demonstrated in (Kümpel et al., 2023) and will be described in this
chapter.

The next sections will describe in detail how the methodology can be applied
for creating a product knowledge graph, the ProductKG (Kümpel and Beetz,
2023) for user assistance in daily scenarios.

Competency Questions The product knowledge graph for user assistance
should be able to answer the questions detailed in Table 4.1.

Q1 Where is [product category]?
Q2 Where is [product category] containing [ingredient]?
Q3 Where is [product category] with [any preference]?
Q4 Where is [product category] with [any two preferences]?
Q5 Does this product contain [ingredient]?
Q6 Show me the brand of this product
Q7 Show me labels awarded to this product
Q8 Show hazard information for this product
Q9 What recipes can be prepared with this product?
Q10 Can this product be substituted by other products?
Q11 What are the nutritional values of this product?
Q12 Can the product or ingredients of it cause any disease?
Q13 Can the product or ingredients of it cause any symptom?
Q14 Can the product or ingredients of it ease any symptom?

Table 4.1: Competency Questions the product knowledge graph should be able to answer.

The competency questions Q1-Q8 aim at increasing the shopping experience
and assisting customers in a store. While Q1 to Q4 help users in finding product

54

locations with Q1 providing a simple category search, Q2 offering to filter for
product ingredients and Q3 and Q4 narrowing down the result set to products
that offer another preference besides ingredients (here a preference is a rela-
tion that can be filtered for, i.e. brand and labels). Q5 to Q8 can be used to
show/ highlight interesting product information like contained ingredients (Q5),
its brand (Q6) or labels (Q7) as well as hazard information of the product (Q8).
Q9 to Q14 relate the product to different other domains like recipes (Q9), ingre-
dient substitution (Q10), diseases (Q12) and symptoms (Q13 and Q14) as well
as nutritional values (Q11). These competency questions will usually be asked
before or after shopping.

Since the focus of the product knowledge graph is to create omni-channel
applications, both robotic and digital agents should be able to answer the com-
petency questions.

4.1 Define Necessary Knowledge Sources

Before defining specific knowledge chunks that should be integrated into the
knowledge graph, the top-level ontology to be used should be specified. What
is more, for many domains vocabularies exist and should be reused. Due to the
restriction that the knowledge graph should contain action information, I propose
to reuse the top-level ontology DUL (Presutti and Gangemi, 2016), as it is reused
by the SOMA ontology (Beßler et al., 2020b). For products, the product types
ontology1 can be reused to integrate specific terms that already are linked to
wikidata. For shopping related information, the Good Relations web vocabulary
for E-Commerce2 can be reused.

To further define the knowledge sources necessary for creating a product
knowledge graph for user assistance, one has to bear in mind the competency
questions defined previously in relation to the three different types of knowledge
actionable knowledge graphs consist of: object, environment and action knowl-
edge.

1The product types ontology is available at http://www.productontology.org/
2Good Realtions vocabulary: http://www.heppnetz.de/ontologies/goodrelations/v1

55

http://www.productontology.org/
http://www.heppnetz.de/ontologies/goodrelations/v1

Define Necessary Knowledge Sources

4.1.1 General Object Knowledge

In the Semantic Web, food ontologies have been a research focus for a while,
resulting in partially interlinked and publicly available domain ontologies with
consumer applications ranging from agricultural over health specific to recipe
centered (e.g. (Dooley et al., 2018b; Cantais et al., 2005; Haussmann et al., 2019)).
Contrary to this, non-food product information in the Semantic Web has only
been mentioned as support for food ontologies so far (Boulos et al., 2015). There
has also been research on the creation of product knowledge graphs (e.g. (Lee
et al., 2006; Zalmout et al., 2021)), highlighting the benefits of using ontologies
or knowledge graphs as databases but lacking publicly available sources.

If we look at the competency questions in Tab. 4.1, we can infer the object
knowledge the product knowledge graph should contain:

• Q1: product categorisation. Existing shopping applications try to integrate
a product categorisation by remembering previously bought items (Davis
et al., 2006) or offering a limited set of product categories that can be chosen
from (Thompson et al.). As most knowledge graphs, the product knowledge
graph needs a taxonomy. Using a product taxonomy to retrieve information
about the product class offers some advantages: there is a broader range
of products to be chosen from as well as the possibility to infer parent,
sibling and children classes. Hence a digital assistant can find the shelf
holding cereal even if the store offers cereal in a broader context like grain
products. The FoodOn ontology (Dooley et al., 2018b) or the Bremen
Ambient Assisted Living (BAALL) ontology (Krieg-Brückner et al., 2021)
provide an extensive food taxonomy but lack non-food objects. For product
taxonomies, GS1 proposes the Global Product Classification (GPC) stan-
dard3 that could be used as shown in (Allweyer et al., 2021). However, the
GPC standard covers products from cars or camping products over clothes
and video games to gasoline and medicine and therefore seems too extensive
for the given use case. Therefore I chose to access online stores for taxonomy
creation. Previous attempts in taxonomy creation from online stores show
its applicability but are spamming the used website to call children and

3The GPC standard: https://www.gs1.org/standards/gpc

56

https://www.gs1.org/standards/gpc

sibling websites for Information Extraction (Davulcu et al., 2003b; Tenorth
et al., 2011). Since online stores usually offer a sitemap in their robots file4,
I propose to use this sitemap for Information Extraction to avoid spamming
of websites and be more time-efficient. Sitemaps of online stores are usually
hidden .xml files that consist of a list of Uniform Resource Locators (URLs)
of children websites so that crawlers can easily access them.

• Q2: product ingredients. Packaged food usually contains a large amount of
different ingredients that often are hard to understand or have ambiguous
names. At the same time, ingredient filter for harmful substances or ingre-
dients that might cause allergies are very helpful for making informed deci-
sions. Many online stores offer ingredient information that can be crawled.
The classification of ingredients as allergens is available at Drugbank5 or in
the Chemical Entities of Biological Interest (ChEBI)6 ontology.

• Q6: product brand. Consumers are interested in product brand information
and might search for store brands as substitutes for interesting products.
They might as well be loyal to a certain brand and want to search for it. To
allow for such applications, ProductKG includes a brand ontology, which
classifies brands and allows for linking brands to a business entity. The
brand ontology reuses the Good Relations vocabulary for E-Commerce7 and
can be constructed by extracting product brand information from product
websites.

• Q7: product labels. Labels certify certain quality standards of products,
their ingredients, packaging or production processes and play an important
role in shopping decision processes. Label criteria can be acquired from the
Web and can additionally be categorised into label classes like vegan for
all labels certifying vegan products such as the V label. Supplementary,
the label ontology should be complemented with an image database to be

4A robots file is the /robots.txt file located at the root of a website with instructions for
web robots on how to crawl the website and which information can be extracted.

5Drugbank: https://go.drugbank.com/
6Chemical entities of biological interest: https://www.ebi.ac.uk/chebi/
7Good Realtions vocabulary: http://www.heppnetz.de/ontologies/goodrelations/v1

57

https://go.drugbank.com/
https://www.ebi.ac.uk/chebi/
http://www.heppnetz.de/ontologies/goodrelations/v1

Define Necessary Knowledge Sources

used in AR applications. Product label information can be acquired from
product websites like Open Food Facts8 or Codecheck9.

• Q8: hazard information. Similar to product ingredients or labels, hazardous
chemical ingredients influence customer decision processes. Ingredient clas-
sification criteria as well as images are available online. For example, the
ChEBI ontology or the National Drug File (NDRF) of BioPortal10 offer
information on hazardous product ingredients while hazard images are also
available on wikidata.

• Q9: recipes. Many people use either cookbooks or apps and websites
to search for recipes and ideas what to cook. The success of Vorwerks’
Thermomix or cook boxes such as HelloFresh can be attributed to their
simplification of the cooking process as well as their recipe recommen-
dation. A recipe recommender based on ontologies is Food Knowledge
Graph (FoodKG) (Haussmann et al., 2019), which links ingredients to the
taxonomy of the Food Ontology (FoodOn) but only offers a small set of
recipes and ingredients.

• Q10: substitutes. The FoodKG recipe recommender proposes a method to
link substitute ingredient information using the Cook’s Thesaurus (Hauss-
mann et al., 2019). This approach can be reused with standardised ingre-
dients but I extend the idea by an inclusion of a purpose and quantity
information. That way a recipe recommender can propose to substitute
wheat flour with the same amount of almond or millet flour (amongst oth-
ers) if the purpose is baking but instead propose buckwheat flour if the
purpose is thickening (of a sauce), for example.

• Q11: nutritional values. Nutrition ontologies play an important role in
recommender systems as seen in (Esṕın et al., 2016; Tumnark et al., 2013).
The goal is to link products to nutrition properties. The nutrition properties
are being used for product-specific nutrition information as in <Product A
has sugar 1.5 g>. Unfortunately, such information is not available online.

8Open Food Facts: https://world.openfoodfacts.org/
9Codecheck website: https://www.codecheck.info/

10NDRF at BioPortal: https://bioportal.bioontology.org/ontologies/NDFRT/

58

https://world.openfoodfacts.org/
https://www.codecheck.info/
https://bioportal.bioontology.org/ontologies/NDFRT/

Instead, the FoodData central 11 from the U.S. Department of agriculture
offers extensive nutritional information for product classes.

• Q12: diseases. Product ingredients can trigger diseases. To model this,
ingredient information can be classified according to chemical Websites like
ChEBI and then linked to disease information from existing ontologies like
the human disease ontology (doid) (Schriml et al., 2012, 2022).

• Q13: symptoms. Diseases trigger symptoms and both symptoms and dis-
eases can sometimes be treated by ingestion of nutrients. An example ontol-
ogy describing symptoms is the human phenotype ontology (hpo) (Robinson
and Mundlos, 2010). There also are websites that offer information on how
symptoms can be treated like PatientsLikeMe 12.

4.1.2 Environment structure

In order to reliably answer competency questions Q1-Q4, detailed environment
information is needed. Doering et al. (Doering et al., 2015) use a shopping robot
to guide customers to a searched product in a home improvement store. For lo-
calisation of products, they reuse a database designed for stocktaking of human
employees. Unfortunately, they are only able to locate 83% of articles the store
holds. Recent research has focused on standardised mapping, in particular of
retail environments. The benefits of using standardised maps has been identified
in (Davis et al., 2006). In (Brenner and Hummel, 2017) a Digital Twin is success-
fully used to offer a standardised map with exact real-time article positions. The
idea of creating semDTs of retail environments as standardised maps has been
proposed in (Kümpel et al., 2021) for shopping assistance or shop-floor assistance
for product refilling. It has additionally been shown how semDTs can be used in
retail applications to route a customer to a searched product on different devices
such as smartphone and robot (Kümpel et al., 2023). In contrast to the approach
of Doering et al. (Doering et al., 2015), for example, semDTs are very accurate
since they are based on such standardised maps created by robotic agents. Ad-
ditionally, semDTs enable robots as well as smartphones, smart glasses or other

11Food Data central: https://fdc.nal.usda.gov/
12PatientsLikeMe website: https://www.patientslikeme.com/

59

https://fdc.nal.usda.gov/
https://www.patientslikeme.com/

Define Necessary Knowledge Sources

devices to use current and exact location information. SemDTs are reliable and
can be created on a daily basis as the success of Ubica robotics 13 demonstrates.
However, a shopping assistant should not be expected to know more than a
shopkeeper. For example, a customer should expect to retrieve the usual storage
location of a product they are searching for. SemDTs and the shopping assistants
introduced in this work should not be able to identify a soap on the desk as a
misplaced product and lead a customer (or store employee) to this misplaced
product.

In open household environments, creation of semDTs is challenging. There-
fore, the knowledge graph should not only contain semDT environment informa-
tion but also product identifiers like barcodes or product images to enable user
assistance in household environments.

4.1.3 Action Execution

The competency questions defined for the product knowledge graph reveal that
not much action information is needed. If the SOMA (Beßler et al., 2020b) ontol-
ogy is integrated, basic tasks, in particular navigation tasks to route a customer
to a searched product already are defined and can be performed by a robot. How-
ever, if robots are to replenish shelves or perform click & collect orders, additional
information needs to be added to the knowledge graph.

4.1.4 Resulting Knowledge Graph Structure

With the given competency questions and their implications, the knowledge graph
structure in Figure 4.1 can be created. Here, the main focus is on the product,
i.e. the object knowledge in the different ontologies to assist different user needs.
The modular ontologies in ProductKG have different foci that can be used to
retrieve additional product information for different applications. All ontologies
contained in ProductKG with their most relevant properties and their current use
in applications as well as the number of axioms are detailed in Table 4.2. In order
for the knowledge graph to be actionable, the object knowledge additionally links
to action knowledge from the SOMA ontology by defining a product as an object

13Ubuca robotics: https://www.ubica-robotics.eu/

60

https://www.ubica-robotics.eu/

Figure 4.1: Overview of ProductKG ontologies and their links to external sources.

and to a semantic Digital Twin by linking barcode identifiers of products to recog-
nised barcodes in the semDT as well as a location ontology that translates semDT
environment information to semantically enhanced environment information that
can be used in Augmented Reality applications.

4.2 Acquire the Needed Information

ProductKG consists of modular ontologies that contain structured, semi-structured
or unstructured information as described in the following.

4.2.1 Extracting Information from Unstructured Sources

Due to the domain of interest and most needed product information being avail-
able in semi-structured or structured HTML documents, no natural language
processing needs to be applied.

61

Acquire the Needed Information

Table 4.2: Ontologies contained in ProductKG with their most relevant properties and
number of contained axioms. Italic information sources belong to ProductKG while all other

mentioned sources are external.

Ontology Information Sources Offered Properties Axioms
Product Good Relations vocab gr:hasEAN UCC-13 8,603
Taxonomy wikidata wikientry

Aldi Nord, dm trust:source
Food Ontology oboInOwl:hasDbXref
semDT pathToCadModel

Location semDT loc:has stock 7,721
Ontology loc:stored in/ stored on
Dimension QUDT qudt:unit/ hasQuantity 4,312
Ontology Good Relations vocab gr:depth/ height/ width/ weight
Brand Good Relations vocab gr:hasBrand/ name 5,669
Ontology has StoreBrand
Packaging has PackagingMaterial 5,435
Ontology has RecyclingProperty
Label Friend of a Friend foaf:depiction 3,341
Ontology has label
Nutrition QUDT qudt:has quantity 95,192
Ontology has nutrient
Symptom Disease has symptom 1,487
Ontology Nutrient possible treatment
Disease Ingredient triggers 582
Ontology Symptom symptom of
Ingredient has ingredient 18,050
Ontology has trace
Recipe FoodKG food:isRecommendedForCourse 295,231
Ontology hasMealType

QUDT qudt:has Quantity
Substitute Ingredient has substitute 2,0580
Ontology has purpose

QUDT qudt:has Quantity
Allergen Disease has trigger 1,327
Ontology FOAF foaf:has depiction

Ingredient owl:same as

62

4.2.2 Extracting Information from Semi-structured Sources

For creation of the ProductKG ontologies, semi-structured Web information can
be acquired to create structured knowledge sources that machines can query. In
order for ProductKG to be usable in various environments, it needs a general
product taxonomy that can be used for different domains of daily activities like
at home, in drugstores and grocery stores. As mentioned before, I chose a more
generalised approach and use Information Extraction techniques on online store
sitemaps of different retail domains to automatically create a general product
taxonomy.

For this general product classification I create a product class structure from
sitemaps of two online stores representing different retail sectors, namely Aldi-
Nord14 (grocery store) and dm15 (drugstore). I then use Owlready (Lamy, 2017)
to generate ontologies out of the extracted information. The resulting product
taxonomies are merged into one global product taxonomy that additionally inte-
grates the food product structure of the FoodOn taxonomy.

Online stores usually offer product information like ingredients or brand and
product name in semi-structured HTML format. Thus, one can apply Informa-
tion Extraction techniques to acquire product ingredient information for use in
the ingredient ontology and information like brand, awarded labels, weight, filling
capacity and country of origin from Codecheck16, a consumer-oriented product
information website.

4.2.3 Extracting Information from Structured Sources

For ProductKG, both structured object and environment information can be
acquired as described in the following.

i) Structured Product Information

ProductKG integrates parts of structured Web information like the FoodKG
ontologies (Haussmann et al., 2019) for a product-specific recipe recommenda-
tion. This is done by reusing the food product classification of the FoodOn

14Aldi-Nord sitemap: https://www.aldi-nord.de/.aldi-nord-sitemap.xml
15dm sitemap: https://www.dm.de/?view=asSitemap
16Codecheck website: https://www.codecheck.info/

63

https://www.aldi-nord.de/.aldi-nord-sitemap.xml
https://www.dm.de/?view=asSitemap
https://www.codecheck.info/

Acquire the Needed Information

ontology (Dooley et al., 2018b) (that has its own import file17), which then
is intertwined with the product classification in the product taxonomy. With
this, products can be identified as ingredients and recipes available in FoodKG
can be searched for. ProductKG also integrates nutrition information from the
Compositional Dietary Nutrition ontology (cdno) (Andrés-Hernández et al., 2020)
by extracting nutrient classes as well as nutritional product information like
Nutri-Score, product labels or packaging size for food products from Open Food
Facts 18 using Information Extraction techniques in their HTML websites. For
food classes, product class nutrition information from the FoodData central is
accessed through its API.

ii) Structured Environment Information

In order to generalise applications for the use on different devices and in differing
applications, we need to have precise, interchangeable environment information.
A standardised map is also beneficial for localisation of products in a store as
discussed previously. Thus, I create a location ontology that is linked to precise
environment information in a semantic Digital Twin environment model. A loca-
tion ontology can be generated for any indoor environment following the approach
described in (Beetz et al., 2022) and (Kümpel et al., 2021).

The location ontology used in ProductKG is created using the knowledge pro-
cessing framework KnowRob (Tenorth and Beetz, 2009b; Beetz et al., 2018b) and
the semDT environment model created through robot stocktaking. KnowRob
can be seen as one of the currently most influential knowledge representation
and processing systems in the field of cognitive robots (Olivares-Alarcos et al.,
2019; Thosar et al., 2018b). Since KnowRob is an ontology-based system, the
semDT is stored in OWL format, allowing for more advanced reasoning on the
comprised information. The semDT therefore includes object properties, i.e. rela-
tions between individuals, in the following way: <Product Z has pose Pose A>.
It also includes data properties, i.e. relations of individuals to data like <Pose A
has xposition 0.29>.

17The food product import file is available at: http://purl.obolibrary.org/obo/foodon/
imports/foodon_product_import.owl

18Open Food Facts: https://world.openfoodfacts.org/

64

http://purl.obolibrary.org/obo/foodon/imports/foodon_product_import.owl
http://purl.obolibrary.org/obo/foodon/imports/foodon_product_import.owl
https://world.openfoodfacts.org/

The process of creating the semDT environment model consists of two major
steps: layout detection and store monitoring. During layout detection, rarely
changing features of the store (like room size and shelf positions) are captured.
This task needs to be performed once for each new store layout. The store
monitoring process is the repeating process of stocktaking.

• Layout Detection: The layout detection starts with the creation of a 2D
map of the store using grid mapping as simultaneous localisation and map-
ping technique (Grisetti et al., 2007). Afterwards, the robot drives through
the store to create a basic scene graph of the environment without product
information. Each shelf is detected using a Quick response code (QR code).
The position data is added to the semDT in such a way that shelf positions
in relation to other shelves or points of interest can be calculated and rea-
soned about.

• Store Monitoring: During store monitoring, frequently changing product
positions are detected automatically by the robot. For each shelf, the robot
scans the shelf vertically to detect shelf layers and horizontally for each shelf
layer to detect price labels and product separators. The stock as the number
of products between two product separators is estimated based on detected
product features of an RGB-D camera similar to other approaches (Donahue
et al., 2014). Each price label contains a barcode that encodes the Global
Trade Identification Number (GTIN) of a product, thereby adding prod-
uct information to the semDT. This product information is continuously
updated based on sales data. If the store monitoring process is performed
regularly, the semDTs of two different time points can be compared to de-
tect irregularities between calculated inventory and actual inventory that
can be reasoned about.

4.3 Process the Acquired Data

For an amplification of semantic information, the acquired data is processed and
standardised. As proposed in the methodology, I use string matching to cate-
gorise ingredients. All ingredients enclosing the strings alcohol, alcohols or its
german equivalent alkohol are categorised as <alcohol rdf:type Alcohol>,

65

Process the Acquired Data

for example. This is done for all products of the knowledge graph, which means
both for food and non-food products. Through such a classification an agent can
already reason about the use of products. For example, while most (or all) alco-
hols can be assumed to be toxic, an agent can infer that if the product contains
alcohol and is a food product, it should still be suitable for consumption.

What is more, string matching is used to classify product ingredients as aller-
gens according to information from the U.S. Food & Drug Administration (FDA)
website19. Besides this, extracted product categories are standardised to lower
case words while special characters and numbers are deleted. This allows for
an accurate matching of categories of different stores. Furthermore, additional
semantic information is added manually as in linking a specific label to a label
category.

4.3.1 Enrichment of Environment Information

The positions in the semantic Digital Twin use a fixed reference frame with a
given origin, usually set to a randomly chosen corner of the room. In contrast to
this, AR devices use the varying device position when starting an application as
origin and display its digital content relative to the device position. To solve this
discrepancy for a use of the location ontology in both robot and AR applications,
all product locations in the location ontology can be encoded relative to shelf,
table or other object positions.

Localisation While robots can easily use the semDT to localise themselves
even in unknown environments, digital agents need additional services for suc-
cessful localisation in unknown environments. Using game engine technology to
complement knowledge based systems has proven to effectively support decision
process especially for object manipulation (Haidu et al., 2018). Game engines
can also be used for creation of device-independet applications. Applications de-
veloped with the Unity game engine can be used on Smartphones, HoloLens or
Magic Leap. Thus, I use the Unity game development platform20 for creation of
the shopping assistant applications.

19FDA website: https://www.fda.gov/
20Unity game engine: https://unity.com/

66

https://www.fda.gov/

Figure 4.2: Robot map and AR map for localisation of agents.

In the AR shopping applications I use spatial perception and match the world
origin of the game to the reference frame origin of the semantic Digital Twin
as shown in Fig. 4.2. Here, a world Anchor is used for locking positions in
the physical space, a technique that has proven effective in other work (Jakl
et al., 2018). World anchors need to be created once and will be loaded in every
subsequent run of the application. Child anchors can be set in relation to such
a world anchor in the same manner as shelves are set in relation to the world
origin of the semDT and can be used as goal positions for routing applications,
for example. Thus, product positions can be inferred relative to world anchors
and digital content can be displayed.

4.4 Link Distributed Knowledge Chunks

ProductKG links to existing data sources by re-using many available URIs and
standard vocabulary as proposed in the Linked Data standards by Bizer, Heath
et al. (Bizer et al., 2007). I do not, however, use the owl:sameAs property but
the oboInOwl:hasDbXref annotation property to interlink two data sources, as
proposed by the gene ontology (GO) consortium (Consortium, 2019). Both the
GO and the FoodOn workgroup are part of the OBO Foundry (Smith et al.,
2007), a community focusing on the development of interoperable ontologies for
the biological sciences. Thus, I chose to reuse some of the OBO foundry ontologies
(besides FoodOn and cdno, ProductKG links to doid (Schriml et al., 2012, 2022)

67

Link Distributed Knowledge Chunks

and the human phenotype ontology (Robinson and Mundlos, 2010)) since they
are openly accessible, are already following the same upper ontologies and have
a strong community.

The product classification is further linked to wikidata whenever possible.

4.4.1 Ontology Alignment

One major challenge in ontology alignment of ontologies with different foci like
products, food or actions is the use of diverse upper ontologies. While Produc-
tKG is based on DUL with its descriptions of relations of actions, objects and
agents, the OBO foundry ontologies are based on bfo defining occurrents and
continuants. Thus, external concepts like processes that are defined as occurents
in bfo need to be aligned with the definitions of tasks that classify actions, which
are events in DUL. To simplify ontology reuse in ProductKG, I focus on the do-
main and solely integrate product information. In particular, the main DUL class
ProductKG is based upon is PhysicalObject - the class of all objects perceivable
in an environment. In DUL, a PhysicalObject ⊑ Object ⊑ Entity.
In bfo, a FoodProduct ⊑ FoodMaterial ⊑ MaterialEntity ⊑ Continuant ⊑
Enity.
In ProductKG, the terms can be aligned by stating that a
FoodProduct(bfo) ⊑ groceries ⊑ (ProductOrService(gr) ⊓PhysicalObject(DUL))
a food product of the Food Ontology is a subclass of groceries in ProductKG,
which belongs to the intersection of the Product or Service class of the Good
Relations vocabulary and the physical object class of DUL.

4.4.2 Object Entity Linking

Each product instance in the product taxonomy is assigned a Global Trade Identi-
fication Number (GTIN), a unique identifier encoded in the price tags of products.
The entities of these product instances or the product class are reused in all other
ontologies holding product-specific information. Through this, product relations
and properties from all ontologies related to the product taxonomy can easily
be queried. This is different for the nutrition ontology since it links to FoodOn
classes. Therefore, nutrition information is linked to products by creation of a

68

food-nutrition ontology, which links nutrition to the FoodOn classification that
already is intertwined with the product taxonomy and hence can be used for food
products in the product taxonomy.

Furthermore, ProductKG links to many ontologies by referencing them with
the oboInOwl:hasDbXref annotation as in <tax:OatFlour oboInOwl:hasDbXref
http://purl.obolibrary.org/obo/FOODON 03301312>. Since FoodOn provides
a much more detailed classification of food products, links them to the plant on-
tology and other sources, the annotation property provides the link to access such
additional information if needed (which in fact is not needed for the domain of
the product knowledge graph). For allergens, it links to ChEBI, the NDRF or
Drugbank. Symptoms and diseases reference the hpo, cdno and doid ontologies.

4.4.3 Linking Object to Environment Information

To make environment information accessible for digital agents in the location on-
tology, the semDT environment model can be translated by assigning shelf classes
to recognised QR codes (e.g. <QR code 123 identifies shelf 1>) followed by
relating all recognised products to the shelf by assigning <Product A stored on
shelf 1> until the next QR code is recognised. To further relate products to
the shelf floors they are stored on, the product position can be analysed. If the
y position of a recognised barcode changes, it belongs to a different shelf floor
than the previously recognised products. Since the robot scans shelf floors from
top to bottom, shelf floors can easily be linked to product positions by assigning
<Product A stored on shelf floor 1>. To further link images to products,
one can assign <Product A has depiction image C> as described in Chapter 3.

For digital agents using world anchors for localisation, anchor points can be
named in accordance to knowledge graph entities for an automated allocation of
queried content to anchor positions.

69

Evaluating the Created Graph through Competency Questions

1 (an action
2 (type LookingAt)
3 (an object
4 (type product)))

Figure 4.3: Plan description for LookingAt
action.

1 (an action
2 (type Navigation)
3 (to (a location
4 (in front of (an object
5 (name shelf 2))))))

Figure 4.4: Plan description for Navigation
action.

4.5 Translate Knowledge to Robot Plan

Action information in KnowRob is stored as episodic memories (Bartels et al.,
2019) of performed actions based on general plan descriptions (Koralewski et al.,
2019). These general plan descriptions follow an action and task hierarchy where
a stocktaking action performed by a robot can be comprised of different tasks like
driving, positioning, and scanning. Figure 4.3 shows a general plan description
for the action of looking at a product, a subaction of the stocktaking action.
Figure 4.4 describes the plan for a navigation action to a destination. With
this general plan, the robot knows how to perform a navigation action. Position
information for the location shelf 2 can be inferred from the knowledge graph.

In addition to the action hierarchy, episodic memories can store agent in-
formation as participant or performer of an action, assign roles to objects for a
certain action (e.g., shelf 2 in the general plan in Fig. 4.4 would be assigned
the role destination) and log times and duration of the performed actions.

4.6 Evaluating the Created Graph through Competency Ques-
tions

The created product knowledge graph is able to answer all competency questions
posed in Table 4.1. To further evaluate the graph I created SPARQL queries
for every competency question to retrieve the amount of instances that would
be returned in an application. The ProductKG knowledge graph contains 1205
products with a Global Trade Identification Number (GTIN) identifier and 10,000
recipes. The table shows the amount of products/ recipe ingredients that can be
retrieved for the different competency questions, which can be used for different
applications. For the table, the competency questions were further refined for a
differentiated view on the contained knowledge.

70

Number of products with a GTIN 1,205
Q1 Number of products with a category assigned 712
Q2 Number of products with a category and ingredients 447
Q3 Number of products with a category and a preference 472
Q4 Number of products with a category and two preferences 454
Q5 Number of products with ingredients 451
Q6 Number of products with a brand 471
Q7 Number of products with labels 293
Q8 Number of products with hazardous ingredients 310
Q9a Number of ingredients in recipes 401,634
Q9b Number of products that link to ingredients 58
Q10 Number of ingredients with Substitutes 185
Q11a Number of food objects with nutritional values 2,707
Q11b Number of products with nutritional values 62
Q12 Number of products that can cause a disease 334
Q13a Number of products that can cause a symptom 54
Q13b Number of ingredients that can cause a symptom 13
Q14a Number of products that can ease a symptom 451
Q14b Number of ingredients that can ease a symptom 58

Table 4.3: Amount of results that can be retrieved for the different competency questions.

4.7 Discussion and Related Work

This chapter has shown how the methodology presented in Chapter 3 can be
applied for creating a product knowledge graph with omni-channel consumer
applications. While the applications will be shown in Chapter 6, this chapter
focused on how to create an actionable knowledge graph that can be accessed in
different and new environments both by digital and robotic agents to accurately
and reliably locate articles and support users in daily shopping activities.

Since localisation of objects is very important for many applications, recent re-
search has focused on standardised mapping, in particular of retail environments.
The benefits of standardised maps has been pointed out in (Davis et al., 2006).
The idea of creating semantic Digital Twins of retail environments as standard-
ised maps has been proposed in (Kümpel et al., 2021) for shopping or shop-floor
assistance. In contrast to other approaches, semDTs are very accurate since they
encode environment information perceived by sensor data, which is very accurate

71

Discussion and Related Work

in standardised retail environments. It has additionally been shown how semDTs
can be used in retail applications to route a customer to a searched product on
different devices such as smartphone and robot (Kümpel et al., 2023).

There has also been research on creation of product knowledge graphs (e.g.
(Lee et al., 2006; Zalmout et al., 2021)) and food product knowledge graphs,
resulting in partially interlinked domain ontologies with consumer applications
ranging from agricultural over health specific to recipe centred (e.g. (Dooley et al.,
2018b; Cantais et al., 2005; Haussmann et al., 2019)). Although the created on-
tologies, knowledge graphs and their exemplary applications are impressive, they
do not connect the contained object or product information to environment infor-
mation like the ProductKG does. ProductKG contains different modular ontolo-
gies that offer information for different daily applications that can be accessed
from different agents. ProductKG therefore is an example of a knowledge graph
that contains vast product information to answer complex user queries, which is
linked to precise environment information that can be translated to positions on
different agents.

It has to be noted that semDTs can not easily be created for all environ-
ments. Retail environments are very structured, thus making it easy for robots
to perceive the available objects. In contrast, household environments are open
and less standardised, making it more difficult to accurately identify all available
objects.

72

Michaela Kümpel
CHAPTER 5. AN ACTIONABLE FOOD CUTTING KNOWLEDGE

GRAPH FOR ROBOTIC TASK EXECUTION

Chapter 5
An Actionable Food Cutting Knowledge
Graph for Robotic Task Execution

This chapter describes how the methodology introduced in Chapter 3 can be
applied to teach a robot new task variations of cutting. In particular, a robot
that knows how to cut a slice of bread shall be enabled to quarter an apple or
slice an orange by accessing the actionable knowledge graph.

Remember, robots are challenged by situations where they are confronted
with new tasks, new environments or new objects for which they lack knowledge.
The high success in automation of simpler tasks such as vacuum cleaning or
lawn mowing is due to the fact that: i) these tasks show a small variance, ii)
are less context-dependent and iii) environments are not of interest other than
with respect to the need to avoid obstacles (although most vacuum cleaners don’t
even avoid walls or other obstacles). These robots are typically pre-programmed
or trained for specific tasks only, and can not fulfil new requests. The previous
chapter has already shown how semantic Digital Twins help robots to localise and
efficiently perform tasks in unknown environments. This chapter will detail how
actionable knowledge graphs can be used by robots to learn new task variations on
new objects by allowing robots to build upon and reuse existing Web knowledge
to infer how to address a new task or carry out known tasks on new objects.
Rather than training a robot specifically to perform in every possible context, on
every possible object, etc., actionable knowledge graphs can equip a robot with
relevant background and common-sense knowledge that allows them to generalise

73

Chapter 5. An Actionable Food Cutting Knowledge Graph for Robotic Task
Execution

to unseen tasks without having been specifically trained for them. A crucial
aspect is that the knowledge can be linked to the actual programs that execute
the action on the robot so that the knowledge supports manipulation. For this,
one has to bear in mind that the created knowledge graph is not supposed to
perfectly model an action domain but shall be used to return query results that
can parameterise body movements for different behaviour.

Competency Questions The food cutting knowledge graph should help users
in answering the questions detailed in Table 5.1.

Q1 What are task variations of cutting?
Q2 What are the commonly used action verbs in the context of cutting actions?
Q3 What food can be cut/ sliced/ diced?
Q4 What tool can be used for a specific cutting action?
Q5 What position is needed for cutting?
Q6 How often does the cutting action need to be performed?
Q7 Does the given cutting action depend on another (prior) action?

Table 5.1: Competency Questions the food cutting knowledge graph should be able to
answer.

While Q1 and Q2 can be used to understand the domain of interest since they
aim at properly integrating different kinds of cutting actions such as chopping,
dicing, slicing or quartering as well as their part of speech (i.e. cutting (substan-
tive) relates to cut (verb)), Q3 and Q4 aim at properly modelling the dispositions
and affordances of objects involved in cutting actions. Q5 to Q7 are needed in
order for a robot to be able to actually perform task variations of a cutting ac-
tion. For the execution of task variations, the robot needs to know the position
for cutting (e.g. for halving a different position is needed than for slicing), how
often the action needs to be performed (for halving only one cut is needed while
slicing a whole cucumber will require many repetitions of the cutting action), if
prior actions like peeling or core removal are required as well as a translation to
the actual body movements for performing the cutting task.

74

5.1 Define Necessary Knowledge Sources

Due to the high importance of action information in the food cutting knowledge
graph, the DUL top-level ontology (Presutti and Gangemi, 2016) as well as the
SOMA action ontology (Beßler et al., 2022) should be reused. The combination of
motion and task planning with detailed information from SOMA can help robots
to find a fitting plan to their action. Another resource that should be included is
an ontology of common failures that helps to diagnose unsuccessful actions and
to find alternative paths to recover from them (Diab et al., 2020; Akbari et al.,
2019). The failure interpretation ontology in (Diab et al., 2020) covers a wide
variety of possible failures that often take place in autonomous planning and
execution. The failure ontology includes both the failure classification as well as
the reasoning for why the action has failed. Some examples are failures based on
location and geometry, direct hardware failures of the robot, as well as failures
dependent on faulty reasoning skills and shortcomings in cognitive ability.

For instance, if a robot is not able to grasp an object because it cannot reach
it, the ontology diagnoses it as a reachability failure. In case the robot was unable
to reach the object with a previously applied grasp (e.g. from the side), the failure
handling would propose to re-adapt its action plan by trying another grasping
pose, such as a from the top. By having access to failure knowledge, robotic
agents can reason about their failures to reach the desired goal states of subtasks
in the action plan and can re-calibrate their actions to succeed with the plan.

To further define the knowledge sources that should be integrated into the
food cutting knowledge graph, one should consider the competency questions
and their implications on object, environment and action information that is
needed.

5.1.1 General Object Knowledge

To include general object knowledge about fruits and vegetables, one can employ
the FoodOn ontology (Dooley et al., 2018a) as a taxonomy. To further define
needed object knowledge, let us consider the competency questions in Table 5.1.

• Q3: Object dispositions and affordances. When cutting fruits and veg-
etables, important object information about the cuttable object can be its

75

Define Necessary Knowledge Sources

shape, size, color, genus or anatomical parts. While some of such informa-
tion might be available in plant taxonomies like the plant ontology (Jaiswal
et al., 2005), most of the needed information is not available in structured or
semi-structured sources. One solution is to gather the needed information
about which anatomical parts exist and are relevant for the cutting tasks
from biological books about fruit anatomy (e.g. (Crang et al., 2018)) or
instructional videos from the cooking domain (e.g. (Epicurious, 2019)). For
both approaches, the information needs to be modelled manually. It seems
that no matter which anatomical parts are present in a fruit or vegetable,
the important influence factor for action parameterisation in cooking activ-
ities is the parts’ edibility. On the one hand, both an apple and an orange
do have a peel, but peeling is only mandatory for an orange since its peel
is inedible1, while an apple will usually only be peeled if it is specifically
stated in the instruction of a recipe. On the other hand, both an apple and
an orange do have some form of a core, but since the core of an apple is
inedible (i.e. usually removed before eating), we can infer that it has to be
removed before eating.

• Q4: Tool dispositions and affordances. The objects involved in cutting
food (i.e. bread, knives and cutting board) should also be modelled and
set in relation to their dispositional properties. However, the dispositional
property of an object varies based on the requirements of the environment.
For example, a CuttingBoard can be used to provide support to any object
which undergoes cutting, with a disposition type Deposition. However, the
same CuttingBoard can also be used as a cover for a container, as in the case
in which there is no lid available for a pot, as both have the disposition type
of Coverage as explained in (Pomarlan and Bateman, 2020). The purpose to
model the dispositions of objects is to enable the robot to infer the potential
tasks afforded by the objects and what actions are possible given a set of
objects, similarly to how a human can reason about the possibilities with
particular objects. In reverse, it also makes it possible to reason about the
possibility to execute the task given a set of objects.

1Although sometimes orange peels are used for cooking, for simplicity it is assumed that
they still need to be removed from the rest of the orange.

76

5.1.2 Environment Structure

To reliably answer the competency questions in Table 5.1, the knowledge graph
does not need to encode much environment information since the robot only
needs to be enabled to recognise different food objects and tools to be used for
cutting. The existing perception framework is able to detect such objects. To
further increase recognition success rates, additional object images can easily be
acquired from the Web. For food like apple, orange or cucumber, many images
are freely available just like online stores offer many images of different knives.

5.1.3 Action Execution

Relevant knowledge for action execution of task variations is not offered in struc-
tured or semi-structured sources. One source that offers part of speech informa-
tion as well as linkage of words with similar meaning is FrameNet (Baker et al.,
1998). For the word cutting, FrameNet offers the information “The Agent is the
person cutting the Item into Pieces.”2, thus linking an agent to a cutting action,
a cuttable object as well as result objects similar to the approach in SOMA.
However, FrameNet equals cutting to carving, chopping, slicing and dicing and
therefore needs adaptions if it is to be used for action execution of different cutting
tasks. To further define the necessary object properties, one can use unstructured
sources like Biology textbooks (Crang et al., 2018), cooking videos (Epicurious,
2019), large language models or WikiHow instructions. WikiHow articles describe
tasks with different levels of granularity, covering high-level (“How to Make an
Apple Pie”) as well as low-level task instructions necessary to achieve the high-
level tasks (“How to Core Apples”) (Zhou et al., 2022) and offer information on
Websites that can easily be accessed. Therefore, WikiHow is a good source to
analyse possible commands as well as task relations.

Furthermore, the competency questions 5-7 have to be considered for action
execution:

• Q5: Cutting position. A cutting action in SOMA can be executed by the
robot as it translates the cutting task into subtasks of picking up, cutting

2FrameNet cutting frame https://framenet2.icsi.berkeley.edu/fnReports/data/
frameIndex.xml?frame=Cutting

77

https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Cutting
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Cutting

Define Necessary Knowledge Sources

and placing. From the ontology, the robot can further infer some of the
action parameters needed for performing the task: the object to grasp
and object to approach as described in (Dhanabalachandran et al., 2021).
Since the robot knows how to cut a slice of bread but doesn’t know any
other cutting actions, at least one more important action parameter needs
to be added to the ontology, which is the halving pose. Contrary to the
slice pose, which is near an end of an object in order to produce a slice,
the halving pose is in the center of an object.

• Q6: Number of repetitions. The initial task parametrisation will let a robot
cut one slice of bread if it is told to “cut the bread”. If we want the robot
to be enabled to cut the whole bread or to know how often to perform a
cutting action if told to “quarter an apple”, the ontology needs to integrate
the needed number of repetitions or - since the number of repetitions heavily
relies on the type of food being cut and the size of pieces being produced
- other information that can be used by a robot to infer the number of
repetitions.

• Q7: Task dependencies. As mentioned before, some food affords additional
tasks like peeling. What is more, some tasks need to be performed prior to
cutting for a cutting action to be successful/ have the intended outcome.
Such knowledge needs to be integrated into the ontology. In addition to
that, some tasks depend on other tasks. For quartering an apple, for ex-
ample, one actually has to cut the apple into halves to then again halve
the created pieces to create quarters of an apple. Task dependencies thus
strongly relate to the number of repetitions mentioned in Q6.

5.1.4 Resulting Knowledge Graph Structure

Considering the sources needed for creating an actionable food cutting knowledge
graph as discussed previously, the knowledge graph structure in Figure 5.1 can be
created, which connects the three top-level ontologies DUL, SOMA and FoodOn
(including the plant ontology) and further defines classes that are necessary for
the domain of cutting. Through the integration of SOMA the knowledge graph
links object to action as well as environment information, since it uses image

78

Figure 5.1: Food cutting knowledge graph structure.

recognition to perceive food objects. The resulting knowledge graph contains 480
axioms and offers the properties detailed in Table 5.2.

5.2 Acquire the Needed Information

The food cutting knowledge graph mainly consists of top-level ontology excerpts
that are manually extended by knowledge from unstructured sources as defined
through the competency questions and explained in the following.

5.2.1 Extracting Information from Unstructured Sources

The food cutting knowledge graph shall contain information on how a cutting
action is different to a slicing or halving action. To investigate the relevance of
these different commands, one can examine the occurrences of Cutting and its
hyponyms (that can be found in lexical resources like FrameNet, WordNet or
Thesaurus) in WikiHow articles. Through an analysis of WikiHow instructions,
relevant cutting hyponyms for the cooking domain can be identified and added
to the ontology. The hyponyms with the most occurences in WikiHow articles
are detailed in Table 5.3. The given 15 cutting verbs can be grouped into action
groups that have similar results and require similar body motions.

Hence, the knowledge graph should contain the action classes cutting, slicing,
dicing, julienning, halving and quartering as well as the action class filleting
(which actually is a preparation step).

To further include the objects identified as necessary for task execution through
the competency questions, the following classes are created:

79

Acquire the Needed Information

Information Offered Usage
Source Properties

DUL classifies a disposition can classify a specific
tool to use

SOMA
hasDisposition an object has a disposition
affordsTask a disposition affords a specific task

to be executed
affordsTrigger a disposition affords a specific

tool as trigger

cut

hasPart a food has some food part
hasEdibility a food part has an edibility

such as it should be avoided
offersPosition a cutting task offers a slicing or

halving position
hasInputObject a cutting task has an input object,

either a food or a piece of food
hasResultObject a cutting task has two result objects
requiresPriorTask a cutting task might require a

prior task to be executed
repetitions a cutting task needs a number

of repetitions

Table 5.2: Information sources contained in the food cutting knowledge graph and their
offered properties.

• Tool, Food ⊑ DUL : PhysicalObject

• FoodPart, FOODON 00001057 ⊑ Food (where the FOODON 00001057
ID identifies a “plant fruit food product”, A food product derived from plant
fruit.3)

• Knife, Spoon, Peeler, AppleCutter ⊑ Tool

• CuttingAction ⊑ DUL : Task

• Cutting, Slicing, Julienning, Dicing, Halving, Quartering ⊑ CuttingAction

• slicing position, halving position ⊑ DUL : SpaceRegion

3The FoonOn taxonomy and its FOODON 00001057 ID can be accessed here: http://
purl.obolibrary.org/obo/FOODON_00001057

80

http://purl.obolibrary.org/obo/FOODON_00001057
http://purl.obolibrary.org/obo/FOODON_00001057

Table 5.3: Analysing the occurrences of 15 different hyponyms for cut in the WikiHow data
from (Zhang et al., 2020).

Verb Occurrences action execution action group
cut 23486 Creating a slice cutting
chop 9221 Cutting into pieces dicing
slice 8200 Creating many slices slicing
mince 2164 Similar to dicing, but more finely cut dicing
dice 1631 Creating cubes dicing
pare 921 Creating a slice cutting
carve 888 Creating a slice cutting
cube 516 Creating cubes dicing
halve 346 Cutting into halves halving
julienne 189 Creating stripes julienning
snip 162 Cutting into pieces slicing
saw 149 Cutting with different motion cutting
quarter 125 Cutting into quarters quartering
fillet 91 Preparing food before cutting filleting
sliver 54 Creating thin slices slicing

• Peeling, CoreRemoving, StemRemoving, F illeting ⊑ DUL : Task

• Cuttability, Edibility, CoreRemovability, Peelability, StemRemovability, ⊑
SOMA : Disposition

• Cube, Slice, Stripe ⊑ Shape

5.2.2 Extracting Information from Structured Sources

The information extracted from structured sources is restricted to modelling a
basic class structure. Therefore, the following classes are extracted:

• DUL : Task ⊑ DUL : EventType ⊑ DUL : Concept ⊑ DUL : SocialObject ⊑
DUL : Object ⊑ DUL : Entity

• Food, Tool ⊑ DUL : PhysicalObject ⊑ DUL : Object ⊑ DUL : Entity

• DUL : SpaceRegion ⊑ DUL : Region ⊑ DUL : Abstract ⊑ DUL : Entity

• Shape, SOMA : Disposition ⊑ ObjectProperty ⊑ DUL : Quality

81

Process the Acquired Data

To additionally include plant fruits that can be found as ingredients in recipes
such as in the Recipe1M dataset (Marın et al., 2021), all subclasses of the plant
fruit food product class of FoodOn can be acquired. To reduce the problem space
(since for every food object dispositions and FoodPart relations need to be cre-
ated), recipe instructions can be analysed in regards to containing plant fruit
ingredients, similarly to analysing occurences of tasks in WikiHow descriptions.
If all plant fruits that occur in at least 1% of instructions shall be included in the
ontology, the following 19 food products can be added:
almond, apple, banana, bean, cherry, citron, coconut, cucumber, kumquat, lemon,
lime, olive, orange, pepper, pineapple, pumpkin, strawberry, squash, tomato.

5.3 Process the Acquired Data

Due to the fact that for creation of the food cutting knowledge graph not much
information can be automatically extracted from unstructured sources, the data
doesn’t need to be cleaned. On the contrary, the data needs to be enriched to se-
mantically model task dependencies as well as object affordances and dispositions
so that robots can access the graph for inferring parameters for action execution.

5.3.1 Enrichment of Object Information

Following Turvey’s definition of dispositions (Turvey, 1992b), for the disposition
type Cuttability the objects of type CuttingTool act as bearer and the objects
of type Food act as trigger for the task of cutting. In household environments,
the most essential objects include knives that play the role of the CuttingTool
that afford cutting. To further differentiate between the dispositions of different
knives, the following tools are added to the knowledge graph as cutting, core
removal or peeling tools:

• KitchenKnife, BreadKnife ⊑ Knife ⊑ CuttingTool

• KitchenKnife, Spoon ⊑ CoreRemovalTool ⊑ Tool

• Peeler, Hand ⊑ PeelingTool ⊑ Tool

• AppleCutter ⊑ CuttingTool

82

In addition to such a tool classification, the extracted food can further be
classified. The plant ontology (Jaiswal et al., 2005) offers some classes that can
be reused to refine the contained food knowledge. Here, the goal is to only include
plant classes that help to infer food part edibility and not to best model the plant
taxonomy. For example, it is beneficial to define a “citrus fruit” class as a parent
class of lemon, lime and orange that all have an inedible peel. Therefore, the
following class relations are added to the knowledge graph:

• cherry, olive ⊑ stonefruit

• almond, coconut ⊑ nutfruit(PO 0030102)

• citron, kumquat, lemon, lime, orange ⊑ citrusfruit(FOODON 03301337)

• apple ⊑ pomefruit(PO 0030110)

• cucumber, pumpkin, squash ⊑ pepofruit(PO 0030111)

• banana, pepo fruit, pepper, pineapple, pome fruit, tomato ⊑ berryfruit

(PO 0030108)

5.3.2 Enrichment of Action Information

The food cutting knowledge graph already contains the different action groups
that were analysed in Tab. 5.3. However, if we closely look at how different
cutting actions are performed, task dependencies can be identified as visualised
in Figure 5.2. Here, three different starting tasks are distinguished: 1) cutting,

Figure 5.2: Cutting Task dependencies.

83

Process the Acquired Data

Cutting ⊑ = 1 repetitions
Halving ⊑ = 1 repetitions
Quartering ⊑ = 1 repetitions ⊓ (requiresPriorTask.Halving)
Slicing ⊑ > 1 repetitions
Julienning ⊑ > 1 repetitions ⊓ (requiresPriorTask.Slicing)
Dicing ⊑ > 1 repetitions ⊓ (requiresPriorTask.Julienning)

Figure 5.3: Representation of task dependencies and number of task repetitions as
visualised in Fig. 5.2.

which was defined as cutting off one slice in Tab. 5.3, 2) slicing, which is a repeated
cutting action, performed until the whole food is cut into slices of similar thickness
and 3) halving, which is a single cutting action at the centre of a food object. The
three additional cutting tasks julienning, dicing and quartering actually depend
on the tasks of slicing and halving. For 4) quartering, the halves created through
halving a food can be halved again to create quarters of the food object, while
for 5) julienning the slices created through slicing are taken as input objects to
create stripes of food and for 6) dicing the stripes created through julienning are
cut into cubes.

These task dependencies can also be modelled in the knowledge graph as
shown in Figure 5.3, where the number of repetitions is stated as either being
equal to one or more than one. The idea behind this is that the robot can
easily calculate an approximate slice/ stripe or cube thickness based on food
object size but it does not know whether to cut once or multiple times. To
further enable robots to easily query cutting tasks in the knowledge graph for
automated retrieval of task information, all action adjectives of Table 5.3 and
their corresponding action verbs should be added to the knowledge graph. This
can be done by creating subclasses as in the following:

• Carving, Paring, Sawing ⊑ Cutting

• Slivering, Snipping ⊑ Slicing

• Chopping, Cubing, Mincing ⊑ Dicing

All cutting actions then are assigned an annotation property with the respective
action verb as in <cutting verb cut>.

84

5.4 Link Distributed Knowledge Chunks

At this point the food cutting knowledge graph contains food objects, object
shape, tools for cutting food, different cutting tasks and cutting positions as well
as object dispositions. Now, food objects need to be set in relation to object
dispositions, tools and cutting tasks. What is more, task relations should be
modelled by integrating food part inedibility.

5.4.1 Ontology Alignment

Since we use the same top-level ontologies as in the previous chapter, the ontolo-
gies can similarly be aligned.

In DUL, an action executes a task and can have a physical object as a partic-
ipant. From SOMA we know that cutting is a task performed on an object. We
have to add the information that fruits and vegetables from the FoodOn taxon-
omy are food. Remember, in DUL, a PhysicalObject ⊑ Object ⊑ Entity.
In bfo, a PlantFruitFoodProduct ⊑ FoodMaterial ⊑ MaterialEntity

∈ Continuant ∈ Enity. In the food cutting knowledge graph, the terms can be
aligned by stating that
PlantFruitFoodProduct(bfo) ⊑ Food ⊑ PhysicalObject(DUL) ⊑ Object ⊑
Entity

all food objects extracted from the FoodOn and plant ontologies, which are sub-
classes of the plant fruit food product class, are of type food, that belongs to the
physical object class of DUL, which again is an object and entity in DUL.

5.4.2 Linking Object to Environment Information

To model the position needed for performing different cutting tasks, the following
axioms are added to the knowledge graph:

• Cutting, Slicing, Julienning, Dicing ⊑ ∃offersPosition.slicing position

• Halving, Quartering ⊑ ∃offersPosition.halving position

To further link existing food objects and food parts available in the environ-
ment to task execution, input and result objects for the different cutting tasks

85

Link Distributed Knowledge Chunks

Slice ∪̇ (FoodPart ⊑ Food)
Cutting ⊑ ∃hasInputObject.(Food ⊔ FoodPart) ⊓ hasResultObject.

(= 1 FoodPart) ⊓ hasResultObject.(= 1 Slice)
Slicing ⊑ ∃hasInputObject.(Food ⊔ FoodPart) ⊓ hasResultObject.

(= 1 FoodPart) ⊓ hasResultObject.(= 1 Slice)
Julienning ⊑ ∃hasInputObject.Slice ⊓ hasResultObject.(= 1 Slice) ⊓

hasResultObject.(= 1 Stripe)
Dicing ⊑ ∃hasInputObject.Stripe ⊓ hasResultObject.(= 1 Stripe) ⊓

hasResultObject.(= 1 Cube)
Halving ⊑ ∃hasInputObject.Food ⊓ hasResultObject.(= 2 Halve)
Quartering ⊑ ∃hasInputObject.Halve ⊓ hasResultObject.

(= 2 FoodPart)

Figure 5.4: Representation of environment-specific object knowledge that is important for
executing cutting actions in order to identify the object to cut.

need to be defined. This can be done as demonstrated in Figure 5.4. Here, each
cutting task is assigned an input object and two resulting objects. For all tasks
that do not depend on a prior cutting task to be executed, these input objects
are defined either as only Food or FoodPart. For all tasks that do depend on a
prior cutting task to be executed, the result object of the prior task is taken as
input object.

5.4.3 Linking Object to Action Information

To model food part edibility, food parts that usually are removed before eating
like the core of an apple or cherry, the peel of an orange, the stem of a cucumber
and the seeds of a pumpkin are classified as being inedible.

Including important object features such as the ones in Fig. 5.5 in the ontology
enables robots to infer that the core of an apple or the peel of an orange needs
to be removed during (or prior to) task execution. The statements link object
dispositions to food objects, cutting tasks and tools that can be used for the
specific tasks. In general, the modelled knowledge distinguishes between edible
parts (e.g. apple skin), parts that must be removed before eating due to health or
taste reasons (e.g. orange peel) and parts that should be removed but can be eaten
if necessary (e.g. apple core). What is more, Fig. 5.5 shows that the knowledge

86

Apple ⊑ ∃hasDisposition.(Cuttability ⊓ [∃affordsTask.CuttingAction] ⊓
[∃affordsTrigger.CuttingTool])

Apple ⊑ ∃hasDisposition.(Peelability ⊓ [∃affordsTask.Peeling] ⊓
[∃affordsTrigger.Peeler])

Apple ⊑ ∃hasDisposition.(CoreRemovability ⊓
[∃affordsTask.CoreCutting] ⊓ [∃affordsTrigger.CuttingTool])

Apple ⊑ ∃hasPart.(Core ⊓ hasEdibility.ShouldBeAvoided)

Orange ⊑ ∃hasDisposition.(Cuttability ⊓ [∃affordsTask.CuttingAction] ⊓
[∃affordsTrigger.Knife])

Orange ⊑ ∃hasDisposition.(Peelability ⊓ [∃affordsTask.Peeling] ⊓
[∃affordsTrigger.Hand])

Orange ⊑ ∃hasPart.(Peel ⊓ hasEdibility.MustBeAvoided)

Core, Peel ⊑ FoodPart

Figure 5.5: Representation of task-specific object knowledge that is important for executing
cutting actions on an apple or orange.

graph also models that an apple affords to be peeled. If a recipe states to peel
an apple before cutting, a robot can still use the knowledge graph for action
execution since it can infer the correct tool to use for the task. However, since
the peel of an apple is edible and does not need to be removed, the additional
inedibility statement is not added for the apple peel and therefore the robot will
usually cut the apple without peeling it beforehand.

5.5 Translate Knowledge to Robot Plan

The cognitive architecture CRAM is utilised to carry out robot actions in human
environments (Beetz et al., 2010). CRAM adopts action descriptions expressed
as generalised plans, capable of executing a broad range of variations within a
particular action category (Kazhoyan et al., 2021). The highest-level action desig-
nator for cutting food is illustrated in Figure 5.6, which functions as a placeholder
for information that is yet to be determined. Notably, the cutting task requires
the specification of several parameters, including ?repetitions, ?prior action,
?depends on action, ?object acted on, ?object, ?arm, ?arm, ?pose and

87

Translate Knowledge to Robot Plan

?goal, all of which are represented as variables and will be served with informa-
tion queried from the knowledge graph at runtime based on the context of the
task action.

(perform
(an action

(type :cutting (?repetitions (:boolean)))
(?prior action (an action (type :preparing)))
(?depends on action (an action (type :cutting)))
(?object acted on (an object (type :food) (pose ...) ...))
(?object (an object (type :tool) (pose ...) ...))
(?arm (a body part (type :arm) (pose ...) ...))
(?arm (a body part (type :arm) (?pose (on :food)) ...))
(?goal (:success (:cutting (on :food))))))

Figure 5.6: CRAM representation of high-level cutting action.

The process of querying data from the knowledge graph not only enables
generalisation but also facilitates the development of robust tasks that can be
applied to various cutting setups.

A cutting action in the food cutting knowledge graph can be executed by
the robot as it translates the cutting task into subtasks of picking up, cutting
and placing, where the picking up task is further broken down into approach-
ing, grasping and lifting, the cutting task can be broken down into the body
movements of approaching, lowering and lifting and the placing task can be bro-
ken down into approaching, releasing and lifting. From the knowledge graph, the
robot can infer the action parameters needed for performing the task as visualised
in Figure 5.7: additional actions that need to be performed in advance like peel-

Figure 5.7: Food cutting parametrisation with ontology.

88

ing can be inferred as ?prior actions, cutting tasks that depend on each other
like quartering depends on halving as visualised in Figure 5.3 can be queried by
?depends on action. To start execution of the task, the tool to pick up can
be inferred as ?object, for cutting, the cuttable object as ?object acted on,
the cutting ?pose as well as the number of ?repetitions can be queried and
for placing, the tool as object to place can be inferred. In CRAM, the ?goal is
reached when the action was performed successfully, which means that the body
parts are at their initial positions and, for the task of cutting, the ?object has
been placed and the ?object acted on has been cut.

The next chapter will show the queries the robot uses to infer action parame-
ters as well as applications of both actionable knowledge graphs presented in this
Thesis.

5.6 Evaluating the Created Graph through Competency Ques-
tions

The created food cutting knowledge graph can be used to answer all posed com-
petency questions posed in Table 5.1. For an additional evaluation and future
extension of the approach to other actions, for each competency question the
found solution is given in Table 5.4. The contained knowledge can successfully
be used by robotic agents to perform task variations of cutting. What is more, the
proposed solution can be extended to other meal preparation tasks like pouring
or stirring.

5.7 Discussion and Related Work

This Chapter has shown how the methodology presented in Chapter 3 can be
applied for creating a food cutting knowledge graph that can be used by robots
to learn and execute new task variations of cutting actions. In particular, I
have presented how action groups that represent similar body movements can
be created for a specific action category and how to acquire and link object
knowledge to object properties. The action groups relate to object dispositions
and have affordances that are used to parameterise general action plans. Thus,

89

Discussion and Related Work

a robot can execute task variations by querying the actionable knowledge graph
with a given task and fruit or vegetable.

This work is based on the knowledge framework KnowRob (Beetz et al., 2018a;
Tenorth and Beetz, 2009a), one of the most influential knowledge and reasoning
frameworks in the field of cognitive robotics (Olivares-Alarcos et al., 2019; Thosar
et al., 2018a). Other robotic knowledge frameworks with similar functionalities
are ORO (Lemaignan et al., 2010), OROSU (Gonçalves and Torres, 2015) and
PMK (Diab et al., 2019). KnowRob recently got extended by SOMA (Beßler
et al., 2022), which defines roles of objects during events, and how they can be
used for a more flexible task execution (Beßler et al., 2020a). It has already been
shown how the task of cutting bread can be flexibly adapted if a given object
cannot be used for task execution in (Dhanabalachandran et al., 2021). Therefore,
this work also uses SOMA as an upper ontology for translation of actions into
body movements.

Although the proposed methodology can successfully be used by robotic
agents to perform task variations of cutting, in the proposed version the knowl-
edge was mostly acquired and added manually. Some of the knowledge acquisition
solutions can be automated. Additionally, the created knowledge graph is rather
small, containing only 19 food products. However, I the methodology can easily
be extended to include all FoodOn food products and a broader range of tasks.
Additionally, it can be used to teach robots how to execute task variations of
other meal preparation actions.

solution for cutting for other tasks
Q1 defining action groups =
Q2 analysing lexical resources =
Q3a modelling food cuttability modelling object to tool disposition
Q3b modelling task dependencies =
Q4 modelling tool dispositions =
Q5 modelling cutting positions model positions, speed, angle
Q6 modelling task repetitions =
Q7 Defining additional actions =

Table 5.4: Solutions developed in this Thesis to answer the Competency Questions of
Table 5.1. = means that the solution for cutting would work for other tasks as well.

90

Michaela Kümpel Knowledge Retrieval in Actionable Knowledge Graphs

Chapter 6
Applications of Actionable Knowledge
Graphs

This Chapter shows how both robotic and digital agents can easily query action-
able knowledge graphs for knowledge retrieval and shows exemplary applications
of the actionable knowledge graphs created in Chapter 4 and 5. The applications
use different environment information for assisting users in daily activities and
can be deployed on different agents. What is more, object as well as activity
knowledge can be visualised in applications for user assistance.

6.1 Knowledge Retrieval in Actionable Knowledge Graphs

One of the benefits of using actionable knowledge graphs is their platform-
independency. Both a robotic agent running KnowRob and a digital agent like
a smartphone can easily connect to the knowledge graph database by access-
ing its REST API. Since SPARQL is the standard query language for graph
databases (Angles and Gutierrez, 2008), I use it to access the actionable knowl-
edge graph database.

In (Kümpel et al., 2023) we proposed a query template to be used by various
agents to dynamically generate queries for shopping assistance. However, for the
actionable knowledge graphs proposed in this work the query template can not
be used since agents are expected to ask a broader range of queries instead of
retrieving only product locations. In actionable knowledge graphs, the agents

91

Knowledge Retrieval in Actionable Knowledge Graphs

Figure 6.1: Architecture that enables access of both digital and robotic agents.

are expected to send queries based on user input and application type that are
accompanied by variable input such as a perceived object, barcode, image or
position information as visualised in Fig. 6.1. The query results can be textual
information, images (i.e. the URIs of images stored in the actionable knowledge
graph) and tabular information. For a routing application, the query would
include a starting position and ask for a destination. The actionable knowledge
graph would return a shelf ID, which is sufficient for digital agents to guide a user
to the shelf when each shelf ID is assigned to an anchor in the routing application.
The robot needs to translate the shelf ID to a 6D pose for navigation, which can
easily be inferred from the map available within a SemDT. If the query is based
on a perceived object like a milk carton in the fridge, the query response might
be a recipe text that can be displayed in an application or label IDs that enable
visualisation of different image information as well as action parameters a robot
needs for action execution.

6.1.1 Robotic Agent

The robots used in this work use the cognitive architecture CRAM and the
KnowRob knowledge processing framework. KnowRob can be queried in Prolog,
a logic programming language. The Prolog implementation used in KnowRob
also includes a SPARQL client library to easily include SPARQL query results
but also offers the sparqlprog library that translates prolog queries to SPARQL.
Both approaches can successfully be used to translate SPARQL query results into
body modevements as will be shown in the following.

92

sparql query(’query’, Row, # call SPARQL query
[endpoint(’SPARQL endpoint’)]), # from SPARQL endpoint
get product type(?GTIN, P), # retrieve product to GTIN
has type(I, P), # retrieve item to product
is at(I, [’map’, T, R]). # retrieve position

Figure 6.2: Prolog query to retrieve the article position of a searched product.

PREFIX loc: <http://purl.org/ProductKG/location#>
PREFIX tax: <http://purl.org/ProductKG/product-taxonomy#>
PREFIX gr: <http://purl.org/goodrelations/v1#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#>

select ?GTIN where {
?product rdf:type tax:bodylotion.
?product gr:hasEAN UCC-13 ?GTIN.
?product loc:has flag "NEW".
?product loc:has price ?price.

} ORDER BY ?price

Figure 6.3: SPARQL query asking for the GTIN of the cheapest new body lotion.

Using the SPARQL Client library

Using the SPARQL client library, a regular SPARQL query can be included in
a Prolog query, where Prolog will only deal with the returned result. This is
a good solution when a single return value is expected and the result can be
understood by the robot. When the result consists of more than one value, only
the first returned value is taken and processed. Therefore, using the SPARQL
client library can only be used in a limited number of applications. It is a very
good solution for a routing application, where a single product or shelf is searched
for.

A Prolog query to retrieve the article position of a searched product is shown
in Figure 6.2. The first two lines call a SPARQL query at a specific SPARQL
endpoint. The SPARQL queries used for shopping assistance return the GTIN of
all products that match the consumer preferences. The returned GTIN is used
as input for the next query in lines 3 to 5. Line 3 and 4 retrieve all articles
with the given GTIN from the actionable knowledge graph. For these articles
the corresponding position in form of T (Transformation) and R (Rotation) of the
products in world coordinates are returned in line 6.

A SPARQL query asking for the GTIN of the cheapest new body lotion (a
routing example) would be formulated as shown in Fig. 6.3. Following the prefix

93

Knowledge Retrieval in Actionable Knowledge Graphs

declarations in lines 1 to 4, the query searches for the GTIN of all products that
are of type body lotion and are assigned a NEW flag. Flags like NEW and SALE
are encoded in the product price tags and can automatically be detected. The
Figure shows a query to retrieve the GTIN of a searched product category. In
the example query the product category is tax:body lotion. All additional
preferences can easily be queried, here the agent retrieves all instances that are
assigned a NEW flag from the location ontology and gets the cheapest product by
ordering the result set by ascending price.

Using the sparqlprog library

For robotic applications that require processing of more than one result, the spar-
qlprog library can be used. For this, SPARQL queries need to be translated to
Prolog queries. Let us consider a simple SPARQL query such as in Figure 6.4.
Here, for an input parameter ? task such as SOMA:Cutting or cut:Halving
as listed in Table 5.3, all restrictions that satisfy the condition <? task rdfs
subClassOf ?restriction>, ?restriction owl:onProperty cut:requiresPosition>
are retrieved. In the previous Chapter the positions for different cutting actions
have been defined as slicing position (which is at the end of an object) and
halving position (which is in the middle of an object). Thus, the returned
variable ?position will be one of the two.

This query can be translated to Prolog like shown in the Prolog module in Fig-
ure 6.5. To use the sparqlprog library as well as rdfs and owl statements in queries,
some additional libraries need to be used by stating use module(...). The
rdf db library is needed to handle loading of rdf databases. Similar to calling a
SPARQL query using the SPARQL client, the SPARQL endpoint needs to be de-
fined. Prefixes also need to be declared in Prolog by using the rdf register prefix(...)

PREFIX cut: <http://www.ease-crc.org/ont/food cutting#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select ?position where {
? task rdfs:subClassOf ?node.
?node owl:onProperty cut:requiresPosition.
?node owl:someValuesFrom ?position. }

Figure 6.4: SPARQL query asking for the position needed to perform a cutting task.

94

:- module(pose, #Define module (name = pose)
[position to be used/2]). #Define callable routine and no. of parameters

#Define outside modules that need to be loaded
:- use module(library(semweb/rdf db)),

use module(library(sparqlprog)),
use module(library(semweb/rdfs)),
use module(library(sparqlprog/ontologies/owl)).

#Define SPARQL endpoint to be accessed
:- sparql endpoint(fc, ’SPARQL endpoint’).

#Register prefixes for the query
:-rdf register prefix(cut, ’http://www.ease-crc.org/ont/food cutting#’)
:-rdf register prefix(owl, ’http://www.w3.org/2002/07/owl#’)
:-rdf register prefix(rdfs, ’http://www.w3.org/2000/01/rdf-schema#’)

#The callable routine with input parameter Action and result parameter
Pose that accesses the previously defined SPARQL endpoint

position to be used(Action,Pose):- fc ??
rdfs subclass of(Node, Action),
rdf(Node, owl:’onProperty’, cut:’requiresPosition’),
rdf(Node, owl:’someValuesFrom’, Pose).

Figure 6.5: Prolog module with query asking for the position needed to perform a cutting
task.

statement. Finally the query asking for the cutting position to be used is defined
by retrieving triples of rdf and rdfs subclass of statements similar to the
SPARQL query in Figure 6.4.

Digital Agent Digital agents can easily access the actionable knowledge graph
through its SPARQL REST API. Applications on agents will usually be built in a
game engine like the Unity game development platform, which offers a library for
making Web requests called UnityWebRequest1 as well as a JSON Serialization
to convert Unity objects to and from JSON format. If the game objects in the
agent application are named in accordance to objects in the knowledge graph,
query results can easily be processed and visualised.

Figure 6.6 shows a SPARQL query that can be used by a digital agent to
retrieve all labels of a given product. If a product is perceived by the agent, the
query will return the labels, which then can be visualised in the application.

1Unity web requests library: https://docs.unity3d.com/Manual/UnityWebRequest.html

95

Applications

PREFIX gr: <http://purl.org/goodrelations/v1#>
PREFIX lbl: <http://purl.org/ProductKG/label#>
PREFIX trust: <http://purl.org/ProductKG/trust#>

select DISTINCT ?label ?lblsource where {
?product gr:hasEAN UCC-13 ? GTIN.
?product lbl:has label ?label.
?label trust:source ?lblsource.}

Figure 6.6: SPARQL query asking for the labels of a given product.

App. device sources accessed
(i) smart glass ProductKG: taxonomy, ingredients, allergens, label
(ii) smart glass ProductKG: recipes
(iii) smartphone ProductKG: recipes
(iv) smartphone ProductKG: recipes, substitutes
(v) smartphone ProductKG: taxonomy, label, ingredients, allergens
(vi) smartphone ProductKG: taxonomy, label, ingredients, brand, location
(vii) website ProductKG: taxonomy, nutrition, disease, symptom,

recipes, ingredients
(viii) smart glass Narrative enabled episodic memorys (NEEMs)
(ix) smartphone NEEM experience data
(x) robot ProductKG: taxonomy, label, ingredients, brand, location
(xi) robot food cutting graph

Table 6.1: Applications (App.) presented in the following with the devices used and the
sources accessed.

6.2 Applications

To demonstrate the applicability of actionable knowledge graphs as one source
of data for a range of consumer applications, many user assistance applications
for use in daily environments were developed. In omni-channel applications with
one source of data, it does not matter if the consumer accesses the information
through a Web interface, a smartphone, smart glasses or via interaction with
a robot. The following applications show how the same data can be accessed
through various channels for different applications. The applications also show
how actionable knowledge graphs can use the different techniques described in 3
to link environment, action and object information in applications with different
foci.

Table 6.1 shows the devices used and sources accessed for each application.

96

Figure 6.7: Smart Glass Shopping Assistance (Partly published in (Kümpel and Beetz,
2023)).

i) Smart Glass Shopping Assistance

The smart glass shopping assistance application visualised in Figure 6.7 high-
lights all objects that do not comply with a set preference. A user can specify a
preference such as an unwanted ingredient, which is taken as input value to query
the knowledge graph. The knowledge graph returns all product GTINs that com-
ply with the given preference so that all products that contain the ingredient get
a digital overlay, a red X. To localise the HoloLens in the retail laboratory I use
spatial perception and match the world origin of the Unity game to the refer-
ence frame origin of the robot environment map. To load an environment map,
a user has to scan a QR code that loads the semDT map including the parent
Anchor. An anchor position has to be set once and can be loaded automatically
in subsequent runs of an application. Product positions are inferred relative to
this parent anchor using semDT information. Each product in the Unity game
is created as a X game object named according to the knowledge graph GTINs.
Thereby, objects can be set visible or invisible automatically according to the
query result.

A consumer in the store will see a menu on the wall, displaying options of pref-
erences like vegan, eco-friendly or no alcohol. Once a preference is chosen,
all opposing products will be highlighted as depicted in Figure 6.7.

ii) Smart Glass Recipe Application

The smart glass recipe application for houshold environments, which is visualised
in Figure 6.8, to the right, was developed under my supervision by Andreas Keil

97

Applications

Figure 6.8: Smart Glass Recipe Assistant (Partly published in (Kümpel and Beetz, 2023)).

as part of his Bachelor Thesis “Development of a hands-free cooking assistant
based on a recipe ontology”. For the recipe application, no semDT map is used.
Instead, at application start the recipe application screen will be visible in 2
meter distance right before the user so they can see the application but also the
environment around them. The screen can then easily be moved by clicking on
the top right corner.

At start, the user is presented an overview screen with dropdown menu, search
field and search buttons, all allowing to search for specific recipes or recipes types
(such as soups, salads or main dishes). The application offers roughly 10,000
recipes that were extracted from the 1 Mio. recipe dataset (Marın et al., 2021).
Although the whole dataset with more than 1 million recipes is available in owl
format, its size leads to very long search and load times in the recipe application.
Therefore, I decided to only use a subset of randomly chosen 10,000 recipes for the
smart glass application. Once a recipe is selected, its ingredients and preparation
instructions are returned from the knowledge graph and will be displayed.

iii) Smartphone Recipe Support

The smartphone recipe application visualised in Figure 6.9 recognises a product
at hand and recommends recipes that can be prepared with the given product.
The application was developed under my supervision by Andrew-Adair Saunders
as part of his Bachelor Thesis “Augmented Reality Linked Data Recipe Finder”.
It uses image recognition to detect product barcodes and therefore only works
for packaged products that have a barcode.

If a barcode is detected, the product type (i.e. its classification) is inferred.

98

Figure 6.9: Smartphone Recipe Support (Partly published in (Kümpel and Beetz, 2023))

Product types are linked to ingredients from the FoodKG (Haussmann et al.,
2019), which then link to recipes, which names are displayed in a result list.
Recipes can be selected to open the linked recipe website to see preparation
instructions.

Figure 6.10: Smartphone Ingredient Substitution. (Partly published in (Kümpel and Beetz,
2023))

iv) Smartphone Ingredient Substitution

The recipe ingredient substitution application visualised in Figure 6.10 allows to
search for recipes and shows possible ingredient substitutes. The work was devel-

99

Applications

oped under my supervision by Vanessa Niemeyer as part of her Bachelor Thesis
“A food substitute ontology with smartphone application”. The recipe ingredient
substitution application is based in the HoloLens recipe application in (ii) as well
as the 10,000 recipes from the 1 Mio. recipe dataset (Marın et al., 2021) and sim-
ilarly allows to search for recipes or filter recipe types. However, this application
extends the functionality and integrates an ingredient substitution recommender.

The user can search for a recipe or recipe category to then choose one of the
available recipes. Here, not only the needed ingredients and preparation instruc-
tions are shown, but also substitute ingredients, their amount and the purpose of
substitution. The possibility and amount of substitution highly depend on substi-
tution purpose such as baking, cooking or frying. Therefore, possible ingredient
substitutes with the substitute amount for different purposes are displayed.

Figure 6.11: Smartphone Shopping Support. (Partly published in (Kümpel and Beetz,
2023))

v) Smartphone Shopping Support

A shopping assistant application that highlights interesting product information
such as product labels or ingredients is visualised in Figure 6.11. The shop-
ping assistant application is based on image recognition and recognises images of
products in a store.

A consumer using the app can scan a product they are interested in, which
will lead to the knowledge graph being queried with the recognised product GTIN
to retrieve product name, labels and ingredients so that the user instantly sees

100

interesting product information like which label the recognised product has or
if it contains hazardous ingredients as well as an information slider displaying
the name of the recognised product on the bottom of the screen. By clicking
on or sliding of the product name, additional product information like contained
ingredients and allergens are listed. Aside from that, the product can be added
to the shopping cart.

Figure 6.12: Smartphone Routing Application.

vi) Smartphone Routing Application

The routing application visualised in Figure 6.12 helps users in retail stores to
find searched products. It was developed under my supervision by Toni Aleksan-
drov Kozarev as part of his Bachelor Thesis “Developing a Mobile Application
for Product Finding in Digital Twins of Retail Stores using Augmented Reality”.
The routing application uses the semDT map and loads a parent anchor at the
reference frame origin of the robot map by scanning a QR code.

After scanning the QR code to start the application, the user can search
for a product category and set preferences like cheapest price or filtering out

101

Applications

ingredients to then start the routing to the product destination. Upon clicking the
start routing button, the app will query the knowledge graph with the searched
product category and retrieve the shelf position where the product category can
be found. The shelf position then is translated to an anchor point in the routing
application and the shortest path to the destination (which is marked by a green
cube) is calculated. Using an obstacle mesh, shelves are treated as obstacles and
thus avoided. The application will display the camera view and augment a path
(in blue) to the product destination. The application uses the odometry sensors
of the Smartphone to constantly detect changes in direction and will calculate a
new path if needed. Figure 6.12 shows how a user would first start the app and
search for a product in the first line. In the second line, the app is used to route
to two different article locations.

Figure 6.13: Nutrition recommender website that offers to scan a product at hand to get
product information.

vii) Nutrition Recommender Website

Figure 6.13 shows an example nutrition recommender application that has dif-
ferent features that allow a user to scan a product barcode to get product in-
formation, filter products based on nutritional preferences, get information on

102

how nutrients can treat symptoms of diseases as well as information on diseases
and how symptoms, diseases and nutrients relate to product ingredients as well
as a recipe page which integrates the data of the smartphone recipe application
described previously. The website is a joint effort of my students and me and is
based on developments towards Bachelor Theses from Sorin Arion and Naser Azizi
“A nutrition ontology with web interface for customer specific dietary recommen-
dations” and Meike Wienholt “A chemical- and medical-based ontology for the
extension of a web application for the detection of possible harmful substances in
products”. It is available at http://productkg.informatik.uni-bremen.de/.

The website is based on a user profile that contains recommended nutritional
intake values for different user groups. A user can (but does not need to) en-
ter personal information like weight, age, gender and daily activity level. The
data is not saved, but the user is instantiated based on the given input values.
In (Kümpel and Beetz, 2023), I have shown how a user can use the website to
search for products that are rich in vitamin D, find nutritional values of coffee and
nutrients and products that might treat a headache. Based on this, the user can
proceed to see detailed product information or what recipes could be prepared
with it. If openly accessible semDTs are connected to the underlying knowledge
graph, users can also see where a searched product is available or compare prices.

Figure 6.14: Visualisation of performed actions in a smart glass.

viii) Visualising Shopping Actions on Smart Glasses

KnowRob can be used for accessing narrative-enabled episodic memories (NEEMs)
(Bozcuoglu, 2019), semantically enhanced experiments that store information
about actions performed by robots or other agents, involved objects and agents
using the SOMA ontology. Through the use of KnowRob and SOMA, content

103

http://productkg.informatik.uni-bremen.de/

Applications

from actionable knowledge graphs can easily be aligned to experiment data. Thus,
movements can be augmented into a given environment. This is especially useful
for analysing movements, finding an optimal path or failure handling. In retail
environments, experiments can be queried to augment user movements when per-
forming shopping actions. The smart glass application depicted in Figure 6.14
was developed under my supervision by Klaus Prüger in the context of his Bach-
elor Thesis “Visualization of virtual memories in Augmented Reality”. It shows
how shopping actions can be visualised in a retail environment.

The application uses the QR code visualised in Fig. 6.12 to localise the device
at the frame origin of the NEEM experiments. It then queries for all actions
performed in an experiment and visualises them by augmenting a box at specified
time intervals of the action. Here, the AR objects of one colour belong to one
action performed by a user, such as taking a specific product out of a shelf. Such
a visualisation can be useful for analysing routes of customers through the store,
for example.

Figure 6.15: Visualisation of performed actions in a smartphone application.

ix) Visualising Robot Experiments on Smartphone

In household environments, NEEMs can be queried to augment robot movements
during execution of experiments like pouring liquids or setting the table. This
application also was developed under my supervision by Timo Hoheisel and Den-
nis Riemer in the context of their Bachelor Thesis “LAB AR: “Development of a
Mobile App for Seamless Integration and Visual Representation of Recorded Robot
Experiment Data to Enhance Traceability Using AR Objects.””. The smartphone

104

application in Figure 6.15 can visualise experiments performed by a robot such
as pouring liquids into a bowl. Since the robot experiments have different ref-
erence frame origins, different experiments need different QR codes or different
placement of a QR code to show action information at the correct position.

On application start, all available NEEMs are listed so that one NEEM can
be selected. Again, actions are displayed by coloured objects that are augmented
onto the environment. Initially, each colour represents an object and its tra-
jectory, but object colours can be changed manually. Object position changes
during the experiment are visualised by lines between the boxes. In addition to
this visualisation of experiment data, the application allows for a change of view
to an animation mode, where the user can scan a QR code at a goal position to
retrieve and visualise the optimal position for performing the experiment task,
which can be simulated as shown in Fig. 6.15.

Figure 6.16: Shopping Assistants enabled by actionable knowledge graphs (Partly published
in (Kümpel et al., 2023)).

x) Robot Shopping Assistant

Robots can use semDTs for shopping assistance as shown in (Kümpel et al.,
2023), which is visualised in Figure 6.16. If the robots can use semDTs for shop-
ping assistance and actionable knowledge graphs can contain semDTs, actionable
knowledge graphs can just as well be used for shopping assistants. The appli-
cation uses the same framework and query template as the smartphone routing
application in (vi).

105

Applications

A user can start interaction by searching for a product category on the website
displayed on the shopping robots’ tablet. Additionally, preferences like price,
ingredients, labels or brand can be specified to narrow the search. The robot
queries the knowledge graph with the searched product category and retrieves the
shelf ID and product GTINs, which can be translated to coordinates as shown
in Figure 6.3 and 6.2. To optimise localisation and navigation performance, the
service robots use VR tracking for localisation in the semDT map.

Figure 6.17: Food Cutting Robots: Web Interface to the food cutting knowledge graph
where users can query for the parameters needed for task execution.

xi) Robot Performing Task Variations of Cutting

Robots that autonomously perform meal preparation tasks are one of the visions
of AI. In previous work (see (Dhanabalachandran et al., 2021)) we have shown in
a robot simulation how a robot can use the SOMA action ontology in combination
with a failure ontology to adapt to unforeseen situations. In the example use case,
the robot was able to adapt its plan in case there are two knives available and it
first grasps a dull knife. The simulated robot handled the situation, recognised a
failure and adapted its plan to take the other knife for cutting. The simulation
is depicted in Figure 6.18.

Based on the success of that work, we extended the idea and let the simulated
robot access an actionable knowledge graph, the food cutting knowledge graph,
for action execution. Now, the robot is given the task to “Quarter an apple” and
is given an apple and a knife in its environment. The robot queries the knowledge
graph with the given task and perceived object to retrieve the motion parameters
needed to perform a cutting action. We created a website that interfaces to the
knowledge graph so users can try out how a robot would query the knowledge

106

Figure 6.18: A simulated robot executing the necessary body motions needed to “Quarter
an apple”.

graph. It is depicted in Figure 6.17, on the right. Through the knowledge graph,
the robot successfully infers the parameters needed to perform task variations of
cutting actions. For quartering the apple it knows that it first has to take the
knife to then approach, lower and lift the knife to first halve the apple. The
robot further infers that it needs to cut both halves again for quartering, thus
taking the apple halves for cutting them again by approaching the apple halves
and lowering and lifting the knife. To make the contained knowledge and the
translation of task requests into body movements understandable for users, we
created the website with a web interface to the actionable knowledge graph where
a user can choose between one out of the 15 available tasks and one of the 19
available food objects currently available in the knowledge graph and query for the
body movements and objects needed for a robotic agent to successfully perform
the selected cutting action. What is more, we created jupyter notebooks where
users can query the knowledge graph for the query parameters that are taken as
input for a robot simulation. The simulation is using the same frameworks as the
real robot and thus can be used for testing. In Figure 6.19 the simulated robot
is depicted in three example tasks:

• cutting: The basic parameterisation of cutting is to cut off one slice at the

107

Discussion

Figure 6.19: Robot Simulation of performing task variations of cutting.

end of the food object.

• halving: For halving, the robot adapts the cutting position to be at the
center of an object.

• slicing: Slicing requires the robot to perform multiple cutting actions in
order to cut the whole object into slices.

The jupyter notebooks of the experiments can be found at: https://moodle.
intel4coro.de/course/view.php?id=8. Here, you can check out the web in-
terface, inspect the knowledge graph and run the simulation.

6.3 Discussion

This Chapter has shown how agents can use different interfaces and pose queries
to retrieve knowledge graph content. While digital agents will usually directly
access the graph database API and pose SPARQL queries, robotic agents can
either pose SPARQL queries (which reduces flexibility since it has to be known
when to access the graph database and pose SPARQL queries beforehand) or use
either the SPARQL Client library or the sparqlprog library of Prolog to query
the graph database in Prolog modules. This allows for a more flexible approach
to accessing knowledge graph content.

I proceeded to show different applications of the two actionable knowledge
graphs introduced in Chapter 4 and 5. While some of the applications show
how knowledge graph information can be augmented into the environment on
digital agents, others are based on precise environment information that enable
routing applications both on robot and digital agent and even others are used for
robotic action execution. The applications can be seen as a proof of concept that
actionable knowledge graphs manage to link object information from the Web

108

https://moodle.intel4coro.de/course/view.php?id=8
https://moodle.intel4coro.de/course/view.php?id=8

to current environment information as well as to action information that can be
translated to robot body movements.

109

Discussion

110

Michaela Kümpel CHAPTER 7. CONCLUSION

Chapter 7
Conclusion

In this Thesis I presented a five-step methodology for creating actionable knowl-
edge graphs from Web information that follows existing knowledge engineering
standards but also shows how to link object knowledge to environment and action
knowledge to enable various user support applications in daily environments, on
different agents. The methodology is exemplary applied in two scenarios with
different foci to create a product knowledge graph and a food cutting knowledge
graph.

The product knowledge graph shows how actionable knowledge graphs can
be used for omni-channel applications in unknown environments. It therefore
contains relevant product-related Web knowledge in modular ontologies that is
successfully used by different agents such as smartphone, smart glass and robot
for shopping assistance in a retail store. To achieve this, the agents access a
standardised map created by a robot performing stocktaking in a retail store.
I present a solution for representing environment information in a standardised
map for digital and robotic agents and how it can be connected to object infor-
mation. In this regard, semDTs of environments are created, linked to the object
knowledge graph and then accessed by both digital and robotic agents to show
its applicability. The product knowledge graph and its shopping applications
support Hypotheses 1 that i stated.

111

Chapter 7. Conclusion

Agents that are enabled to locate objects that are not in the field of view
can execute actions in new environments or on new objects.

The product knowledge graph with its semDT environment knowledge can be
used for routing a customer to a searched product on smartphone or robot even
when it is not in sight. What is more, the agents do not have to create a map of
the environment themselves but access an environment map created by another
agent.

The smartphone and smart glass shopping applications that highlight inter-
esting product information based on semDT information support Hypothesis 4
that I stated.

If object knowledge from the Web is linked to perceived objects at hand,
agents can reason about the information.

By linking object to environment knowledge in the actionable knowledge
graph, the agents can relate perceived objects to knowledge graph information
in the shopping applications. This enables them to make sense of the perceived
objects (e.g. “this is a shampoo”) to then augment interesting product informa-
tion into the environment and support users. They can further access connected
knowledge and reason about the brand of the shampoo or if it is dermatologically
tested, for example.

The food cutting knowledge graph shows how robots can access actionable
knowledge graphs to execute task variations of cutting actions. I present a new
approach for integrating action information in knowledge graphs and linking it to
object information for task execution. This is shown for the execution of cutting
task variations on different fruit, which can be queried in a web interface, and
simulated. This supports Hypothesis 2 that I stated.

Robots that are enabled to access Web information can use it for action
execution.

112

However, this is only true for simple tasks like shown in the robot shopping
assistance application. Here, the robot performs the simple task of navigating to
a queried location, which it retrieves from the actionable knowledge graph. For
more complex actions like meal preparation actions that require a sequence of
tasks and body movements to be executed, the Web knowledge needs to further
be translatable to body movements of the robot.

Thus, I use actionable knowledge graphs to parameterise general action plans
to translate the knowledge of the actionable knowledge graph into body move-
ments of a robot, which supports Hypothesis 5 that I stated.

A robot can use an actionable knowledge graph to translate the contained
knowledge into body movements.

The acquired Web knowledge in the food cutting knowledge graph can be
used to execute 14 distinct cutting tasks on 19 different fruits and vegetables.

For the food cutting knowledge graph, the importance of creating action
groups that lead to similar robot movements is highlighted. It is further analysed
how object information can influence action execution, how the needed knowl-
edge can be acquired from the Web and how it can be modelled in a knowledge
graph in such a way that a robot can use it to parameterise and execute different
cutting tasks. This supports Hypothesis 3 that I stated.

A robot can use an actionable knowledge graph to understand task varia-
tions as well as the role of tools and objects in a given task.

Using the food cutting knowledge graph, the robot understands task varia-
tions in such a way that it knows the specific body movement that is needed
to successfully perform the task variation and reach the desired result. It also
knows how specific object features such as a peel of an orange change the action
execution, namely to first peel the orange before cutting it. It also knows what
tools can be used to perform the given task.

113

Chapter 7. Conclusion

The methodology is validated by showcasing various applications that are en-
abled by the two exemplary knowledge graphs. The applications have different
foci and range from smartphone applications for shopping assistance that high-
light interesting product features or route to a searched product over smart glass
applications like shopping assistance and a recipe application to robot applica-
tions for shopping assistance and execution of cutting task variations on different
fruits and vegetables.

The presented methodology can be used to create actionable knowledge graphs
but can be seen as a guideline and not as a complete toolbox. The proposed tools,
techniques and software are examples that can be applied for different domains
and applications but as new tools and techniques are constantly being developed,
the list is not exhaustive. Instead, I focus on a detailed description of the knowl-
edge acquisition, processing and linking methods needed to create actionable
knowledge graphs and show how it can be applied for two example knowledge
graphs with different focus: a product knowledge graph for user applications
like recipe recommender and product finder, as well as a food cutting knowledge
graph for robot applications and teaching robots new task variations of cutting.

I hope that this Thesis sparks interest in the creation of actionable knowledge
graphs and that it will be used by researchers to extend the methodology but
also to create more actionable knowledge graphs and especially enable more agent
applications using Web knowledge.

114

Michaela Kümpel APPENDIX A. PRIOR PUBLICATIONS

Appendix A
Prior Publications

M. Kümpel, V. Hassouna, J.-P. Töberg, P. Cimiano and M. Beetz. Cut, Chop,
Slice or Dice: Parameterising General Action Plans Using Knowledge
Graphs. In International Conference on Intelligent Robots and Systems (IROS
2024). submitted.

M. Kümpel, J.-P. Töberg, V. Hassouna, M. Beetz and P. Cimiano. Towards
a Knowledge Engineering Methodology for Flexible Robot Manipula-
tion in Everyday Tasks. In Workshop on Actionable Knowledge Representa-
tion and Reasoning for Robots (AKR3) at Extended Semantic Web Conference
(ESWC 2024).

M. Kümpel and M. Beetz. ProductKG: A Product Knowledge Graph
for User Assistance in Daily Activities. In Ontology Showcase and Demon-
strations Track, 9th Joint Ontology Workshops (JOWO 2023), co-located with
FOIS 2023, 19-20 July, 2023, Sherbrooke, Québec, Canada, 2023.

Kümpel M, Dech J, Hawkin A, Beetz M. Robotic Shopping Assistance
for Everyone: Dynamic Query Generation on a Semantic Digital Twin
as a Basis for Autonomous Shopping Assistance. In Proceedings of the
2023 International Conference on Autonomous Agents and Multiagent Systems
2023 May 30 (pp. 2523-2525).

115

Appendix A. Prior Publications

Kümpel, M., Dech, J., Hawkin, A. and Beetz, Michael, Evaluation of Au-
tonomous Shopping Assistants Using Semantic Digital Twin Stores, In
AIC’23: 9th workshop on Artificial Intelligence and Cognition, 2023.

Kümpel M, Mueller CA, Beetz M. Semantic Digital Dwins for Retail
Logistics. In Dynamics in Logistics: Twenty-Five Years of Interdisciplinary
Logistics Research in Bremen, Germany 2021 Sep 22 (pp. 129-153). Cham:
Springer International Publishing.

Kümpel, M., Buchinger, M., Sellami, M., Balta, D. and Beetz, Michael,
Trust, But Verify: Towards Trustworthiness in Digital Assistants Based
on Verifiable Claims in Knowledge Graphs, In AIC’23: 9th workshop on
Artificial Intelligence and Cognition, 2023.

Krieg-Brückner, Bernd, Nolte, Mark Robin, Pomarlan, Mihai and Kümpel,
Michaela, The Downgrading Axioms Challenge for Qualitative Com-
position of Food Ingredients, In SemREC 2022, 2nd Semantic Reasoning
Evaluation Challenge 2022, vol. 3337, pp. 6-15, 2022.

Michaela Kümpel and Michael Beetz, Realizing Trustworthiness in Linked
Data Applications Based on Individual Data Source Trust Assessment.
Extended Abstract, In JOWO 2021.

Kümpel, M., de Groot, A., Tiddi, I. and Beetz, M., 2020, October. Using
Linked Data to Help Robots Understand Product-related Actions. In
JOWO 2020, The Joint Ontology Workshops, vol. 2708, 2020.

116

Michaela Kümpel Student Works that Contributed to this Thesis

Appendix B
Supervised Student Works

2.1 Student Works that Contributed to this Thesis

The following student works resulted in ontologies that are part of the Knowledge
Graphs presented in this work:

• Bachelor Thesis of Daniel Schmidt: Standardisierung eines im Inter-
net gescrapten Rezeptsatzes in eine Ontologie (Standardizing a web-
scraped recipe dataset into an ontology), 2023

• Bachelor Thesis of Meike Wienholt: Eine chemisch- und medizinisch-
basierte Ontologie zur Erweiterung einer Web-Anwendung für die
Erkennung von möglichen Gefahrstoffen in Produkten (A chemical-
and medical-based ontology for the extension of a web application for the
detection of possible harmful substances in products.), 2023

• Bachelor Thesis of Vanessa Niemeyer: Eine Ontologie für Lebensmit-
telersatzprodukte mit Smartphone-Anwendung (A food substitute
ontology with smartphone application), 2023

• Bachelor Thesis of Karin Doberstein: Eine Lebensmittelallergene On-
tologie zur Erweiterung einer Mobilgeräte-Applikation mit Zweck
der Erkennung enthaltener Allergene in Produkten (A food allergen
ontology to extend a mobile application for detecting allergens in products),
2022

117

Student Works that Contributed to this Thesis

• Bachelor Thesis of Naser Azizi and Sorin Arion: Eine Nährwert On-
tologie mit Web-Anwendungen für benutzerspezifische empfoh-
lene Nährwertzufuhr (A nutrition ontology with web interface for cus-
tomer specific dietary recommendations), 2022

The following student works were also supervised by me and contributed
towards this Thesis:

• Bachelor Thesis of Timo Hoheisel and Dennis Riemer: LAB AR: “En-
twicklung einer mobilen App für die nahtlose Integration und vi-
suelle Darstellung aufgezeichneter Roboter-Experimentdaten zur
Verbesserung der Nachvollziehbarkeit mittels AR-Objekten” (LAB
AR: “Development of a Mobile App for Seamless Integration and Visual
Representation of Recorded Robot Experiment Data to Enhance Trace-
ability Using AR Objects.”), 2023

• Bachelor Thesis of Fabian Jänecke: Produktinformationen in einer
Kunden-Assistenzanwendung basierend auf Ontologien (Product
information in a customer assistance application based on ontologies), 2023

• Bachelor Thesis of Andreas Keil: Entwicklung eines hands-free cook-
ing assistant auf Grundlage einer Rezeptontologie (Development of
a hands-free cooking assistant based on a recipe ontology), 2023

• Bachelor Thesis of Fabian Rosenstock: Comparing the Usability of
Internet and Web of Things Ontologies for Different Everyday
Scenarios, 2023

• Bachelor Thesis of Henri Bührmann: Entwurf und Entwicklung eines
Frameworks zur automatischen Klassifizierung von Produktstam-
mdaten des Einzelhandels aus unterschiedlichen Datenquellen, 2023

• Bachelor Thesis of Toni Aleksandrov Kozarev: Developing a Mobile
Application for Product Finding in Digital Twins of Retail Stores
using Augmented Reality, 2022

• Bachelor Thesis of Andrew-Adair Saunders: Augmented Reality Linked
Data Recipe Finder, 2022

118

• Bachelor Thesis of Nazmi Ahmad: Generierung von Episodic Memo-
ries in einem Virtual-Reality-Modell (Generation of Episodic Memo-
ries in a Virtual-Reality-Model), 2022

• Bachelor Thesis of Callum Jänicke: The Wikidata Use Case: Ana-
lyzing the usability of Wikidata Knowledge for Software Agents,
2022

• Bachelor Thesis of Jan-Andree Pangritz: Erzeugung einer Ontologie
für eine Anwendung in der Trennung von Produktverpackungen
(Ontology creation and application for package separation), 2022

• Bachelor Thesis of Klaus Prüger: Visualisierung von virtuellen Gedächtnissen
in Augmented Reality (Visualization of virtual memories in Augmented
Reality), 2022

• Master Thesis of Jonas Dech: A Knowledge Based Shopping Assistant
in a Retail Environment using VR Tracking, 2022

• Bachelor Thesis of Luca Barre: Ontologie-basierte Sprachauswahl eines
AR-Shopping Assistenten (Ontology-based speech selection in Augmented
Reality Shopping Assistance), 2021

• Bachelor Thesis of Maik Daniel Klause: Evaluation of Linked Data in
Cognitive Robot Control for kitchen scenarios, 2021

• Master Thesis of Anna de Groot (collaboration with VU Amsterdam):
Knowledge Graph Enabled Virtual Reality in the Kitchen Do-
main, 2020

119

Student Works that Contributed to this Thesis

120

Michaela Kümpel REFERENCES

References

Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large
plain-text collections. In Proceedings of the fifth ACM conference on Digital
libraries, pages 85–94, 2000.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil J. Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei
Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet,
Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia,
Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do As I Can,
Not As I Say: Grounding Language in Robotic Affordances, August 2022.

Aliakbar Akbari, Fabien Lagriffoul, and Jan Rosell. Combined heuristic task and
motion planning for bi-manual robots. Autonomous robots, 43(6):1575–1590,
2019.

Oliver Allweyer, Christian Schorr, Andreas Mohr, and Rolf Krieger. Product clas-
sification using partially abbreviated product names, brands and dimensions.
In Data Management Technologies and Applications: 9th International Con-
ference, DATA 2020, Virtual Event, July 7–9, 2020, Revised Selected Papers
9, pages 223–244. Springer, 2021.

121

References

Jesús Omar Álvarez Márquez and Jürgen Ziegler. Improving the shopping ex-
perience with an augmented reality-enhanced shelf. Mensch und Computer
2017-Workshopband, 2017.

Liliana Andrés-Hernández, Abdul Baten, Razlin Azman Halimi, Ramona Walls,
and Graham J King. Knowledge representation and data sharing to unlock
crop variation for nutritional food security. Crop Science, 60(2):516–529, 2020.

Renzo Angles and Claudio Gutierrez. The expressive power of sparql. In Inter-
national Semantic Web Conference, pages 114–129. Springer, 2008.

Peter Augustine. The industry use cases for the digital twin idea. In Advances
in Computers, volume 117, pages 79–105. Elsevier, 2020.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to de-
scription logic. Cambridge University Press, 2017.

Collin F Baker, Charles J Fillmore, and John B Lowe. The berkeley framenet
project. In COLING 1998 Volume 1: The 17th International Conference on
Computational Linguistics, 1998.

Ferenc Balint-Benczedi, Patrick Mania, and Michael Beetz. Scaling percep-
tion towards autonomous object manipulation — in knowledge lies the power.
In International Conference on Robotics and Automation (ICRA), Stock-
holm, Sweden, 2016. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=7487801.

Michele Banko and Robert C Moore. Part-of-speech tagging in context. In COL-
ING 2004: Proceedings of the 20th International Conference on Computational
Linguistics, pages 556–561, 2004.

Srividya K Bansal. Towards a semantic extract-transform-load (etl) framework
for big data integration. In 2014 IEEE International Congress on Big Data,
pages 522–529. IEEE, 2014.

Georg Bartels, Daniel Beßler, and Michael Beetz. Episodic memories for safety-
aware robots: Knowledge representation and reasoning for robots that safely
interact with human co-workers. KI-Künstliche Intelligenz, 33:123–130, 2019.

122

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7487801
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7487801

References

Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. CRAM - A Cogni-
tive Robot Abstract Machine for Everyday Manipulation in Human Environ-
ments. In Ren C. Luo and Hajime Asama, editors, Proceedings of the 2nd
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2010), pages 1012–1017, Taipei, Taiwan, 2010. IEEE. ISBN 978-1-4244-6674-0.
doi: 10.1109/IROS.2010.5650146.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz
Mösenlechner, Dejan Pangercic, Thomas Rühr, and Moritz Tenorth. Robotic
Roommates Making Pancakes. In 2011 11th IEEE-RAS International Con-
ference on Humanoid Robots, pages 529–536, Bled, Slovenia, October 2011a.
IEEE. ISBN 978-1-61284-866-2 978-1-61284-868-6. doi: 10.1109/Humanoids.
2011.6100855.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz
Mösenlechner, Dejan Pangercic, Thomas Rühr, and Moritz Tenorth. Robotic
roommates making pancakes. In 2011 11th IEEE-RAS International Confer-
ence on Humanoid Robots, pages 529–536. IEEE, 2011b.

Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan
Bozcuoglu, and Georg Bartels. KnowRob 2.0 - A 2nd Generation Knowledge
Processing Framework for Cognition-enabled Robotic Agents. In Alex Zelinsky
and Frank Park, editors, Proceedings of the 2018 IEEE International Confer-
ence on Robotics and Automation, pages 512–519, Brisbane, Australia, 2018a.
IEEE. ISBN 978-1-5386-3081-5. doi: 10.1109/ICRA.2018.8460964.

Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan
Bozcuoğlu, and Georg Bartels. Knowrob 2.0—a 2nd generation knowledge
processing framework for cognition-enabled robotic agents. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 512–519.
IEEE, 2018b.

Michael Beetz, Simon Stelter, Daniel Beßler, Kaviya Dhanabalachandran,
Michael Neumann, Patrick Mania, and Andrei Haidu. Robots Collecting Data:
Modelling Stores, pages 41–64. Springer International Publishing, Cham, 2022.
ISBN 978-3-031-06078-6. doi: 10.1007/978-3-031-06078-6 2.

123

References

Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

Daniel Beßler, Robert Porzel, Mihai Pomarlan, Michael Beetz, Rainer Malaka,
and John Bateman. A Formal Model of Affordances for Flexible Robotic Task
Execution. In Frontiers in Artificial Intelligence and Applications - Volume
325: ECAI 2020, volume 325 of Frontiers in Artificial Intelligence and Appli-
cations, pages 2425–2432, Santiago de Compostela, Spain, 2020a. IOS Press.
doi: 10.3233/FAIA200374.

Daniel Beßler, Robert Porzel, Mihai Pomarlan, Abhijit Vyas, Sebastian Höffner,
Michael Beetz, Rainer Malaka, and John Bateman. Foundations of the socio-
physical model of activities (soma) for autonomous robotic agents. arXiv
preprint arXiv:2011.11972, 2020b.

Daniel Beßler, Robert Porzel, Mihai Pomarlan, Abhijit Vyas, Sebastian Höffner,
Michael Beetz, Rainer Malaka, and John Bateman. Foundations of the Socio-
physical Model of Activities (SOMA) for Autonomous Robotic Agents. In
Formal Ontology in Information Systems, volume 344 of Frontiers in Artificial
Intelligence and Applications, pages 159–174. IOS Press, 2022. URL https:
//ebooks.iospress.nl/doi/10.3233/FAIA210379.

Snehal Bhoir, Tushar Ghorpade, and Vanita Mane. Comparative analysis of
different word embedding models. In 2017 International conference on advances
in computing, communication and Control (ICAC3), pages 1–4. IEEE, 2017.

Chris Bizer, Richard Cyganiak, Tom Heath, et al. How to publish linked data on
the web. 2007.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The story so far.
In Semantic services, interoperability and web applications: emerging concepts,
pages 205–227. IGI global, 2011.

GO Blog. Introducing the knowledge graph: thing, not strings. Introducing the
Knowledge Graph: things, not strings, 2012.

124

https://ebooks.iospress.nl/doi/10.3233/FAIA210379
https://ebooks.iospress.nl/doi/10.3233/FAIA210379

References

Marc H. Bornstein and James J. Gibson. The Ecological Approach to Visual
Perception. The Journal of Aesthetics and Art Criticism, 39(2):203, 1980.
ISSN 00218529. doi: 10.2307/429816.

Willem Nico Borst. Construction of engineering ontologies for knowledge sharing
and reuse. 1999.

Maged N Kamel Boulos, Abdulslam Yassine, Shervin Shirmohammadi,
Chakkrit Snae Namahoot, and Michael Brückner. Towards an “internet of
food”: food ontologies for the internet of things. Future Internet, 7(4):372–
392, 2015.

Asil Kaan Bozcuoglu. Fast Robot Learning using Prospection and Experimental
Knowledge: A Cognitive Approach with Narrative-Enabled Episodic Memories
and Symbolic Knowledge. PhD thesis, Universität Bremen, 2019.

Max A Bramer. Logic programming with Prolog, volume 9. Springer, 2005.

Beate Brenner and Vera Hummel. Digital twin as enabler for an innovative
digital shopfloor management system in the esb logistics learning factory at
reutlingen-university. Procedia Manufacturing, 9:198–205, 2017.

Sergey Brin. Extracting patterns and relations from the world wide web. In
International workshop on the world wide web and databases, pages 172–183.
Springer, 1998.

Riccardo Caccavale, Pierluigi Arpenti, Gianmarco Paduano, Andrea Fontanellli,
Vincenzo Lippiello, Luigi Villani, and Bruno Siciliano. A flexible robotic de-
palletizing system for supermarket logistics. IEEE Robotics and Automation
Letters, 5(3):4471–4476, 2020.

Jaime Cantais, David Dominguez, Valeria Gigante, Loredana Laera, and
Valentina Tamma. An example of food ontology for diabetes control. In
Proceedings of the International Semantic Web Conference 2005 workshop on
Ontology Patterns for the Semantic Web, pages 1–9, 2005.

Alberto Cavallo, Marco Costanzo, Giuseppe De Maria, Ciro Natale, Salvatore
Pirozzi, Simon Stelter, Gayane Kazhoyan, Sebastian Koralewski, and Michael

125

References

Beetz. Robotic Clerks: Autonomous Shelf Refilling. In Luigi Villani, Ciro
Natale, Michael Beetz, and Bruno Siciliano, editors, Robotics for Intralogistics
in Supermarkets and Retail Stores, volume 148, pages 137–170. Springer Inter-
national Publishing, Cham, 2022. ISBN 978-3-031-06077-9 978-3-031-06078-6.
doi: 10.1007/978-3-031-06078-6 6.

Duygu Çelik et al. Foodwiki: Ontology-driven mobile safe food consumption
system. The scientific World journal, 2015, 2015.

Christian Charras and Thierry Lecroq. Handbook of exact string matching algo-
rithms. 2004.

Yingfeng Chen, Feng Wu, Wei Shuai, and Xiaoping Chen. Robots serve humans
in public places—kejia robot as a shopping assistant. International Journal of
Advanced Robotic Systems, 14(3):1729881417703569, 2017.

Gene Ontology Consortium. The gene ontology resource: 20 years and still going
strong. Nucleic acids research, 47(D1):D330–D338, 2019.

World Wide Web Consortium et al. R2rml: Rdb to rdf mapping language. 2012.

Marco Costanzo, Giuseppe De Maria, Gaetano Lettera, and Ciro Natale. Can
robots refill a supermarket shelf?: Motion planning and grasp control. IEEE
Robotics & Automation Magazine, 28(2):61–73, 2021.

Richard Crang, Sheila Lyons-Sobaski, and Robert Wise. Fruits, Seeds, and
Seedlings. In Plant Anatomy : A Concept-Based Approach to the Struc-
ture of Seed Plants, pages 649–678. Springer International Publishing Imprint:
Springer, Cham, 2018.

Zachary Davis, Michael Hu, Shreyas Prasad, Michael Schuricht, PM Melliar-
Smith, and Louise E Moser. A personal handheld multi-modal shopping as-
sistant. In International conference on Networking and Services (ICNS’06),
pages 117–117. IEEE, 2006.

Hasan Davulcu, Sukumar Koduri, and Saravanakumar Nagarajan. Datarover:
a taxonomy based crawler for automated data extraction from data-intensive

126

References

websites. In Proceedings of the 5th ACM international workshop on Web in-
formation and data management, pages 9–14, 2003a.

Hasan Davulcu, S. Vadrevu, S. Nagarajan, and Iv Ramakrishnan. Ontominer:
Bootstrapping and populating ontologies from domain-specific web sites. Intel-
ligent Systems, IEEE, 18:24 – 33, 10 2003b. doi: 10.1109/MIS.2003.1234766.

Kaviya Dhanabalachandran, Vanessa Hassouna, Maria M. Hedblom, Michaela
Kümpel, Nils Leusmann, and Michael Beetz. Cutting Events: Towards Au-
tonomous Plan Adaption by Robotic Agents through Image-Schematic Event
Segmentation. In Proceedings of the 11th on Knowledge Capture Conference,
K-CAP ’21, pages 25–32, New York, NY, USA, December 2021. Association
for Computing Machinery. ISBN 978-1-4503-8457-5. doi: 10.1145/3460210.
3493585.

Mohammed Diab, Aliakbar Akbari, Muhayy Ud Din, and Jan Rosell. PMK—A
Knowledge Processing Framework for Autonomous Robotics Perception and
Manipulation. Sensors, 19(5):1166, March 2019. ISSN 1424-8220. doi: 10.
3390/s19051166.

Mohammed Diab, Mihai Pomarlan, Daniel Beßler, Aliakbar Akbari, Jan Rosell,
John Bateman, and Michael Beetz. An Ontology for Failure Interpretation
in Automated Planning and Execution. In Manuel F. Silva, José Lúıs Lima,
Lúıs Paulo Reis, Alberto Sanfeliu, and Danilo Tardioli, editors, Robot 2019:
Fourth Iberian Robotics Conference, volume 1092, pages 381–390. Springer In-
ternational Publishing, Cham, 2020. ISBN 978-3-030-35989-8 978-3-030-35990-
4. doi: 10.1007/978-3-030-35990-4 31.

Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik
Mannens, and Rik Van de Walle. Rml: A generic language for integrated rdf
mappings of heterogeneous data. Ldow, 1184, 2014.

Nicola Doering, Sandra Poeschl, Horst-Michael Gross, Andreas Bley, Christian
Martin, and Hans-Joachim Boehme. User-centered design and evaluation of a
mobile shopping robot. International Journal of Social Robotics, 7(2):203–225,
2015.

127

References

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. In International conference on machine learning,
pages 647–655. PMLR, 2014.

Damion M. Dooley, Emma J. Griffiths, Gurinder S. Gosal, Pier L. Buttigieg,
Robert Hoehndorf, Matthew C. Lange, Lynn M. Schriml, Fiona S. L.
Brinkman, and William W. L. Hsiao. FoodOn: A harmonized food on-
tology to increase global food traceability, quality control and data inte-
gration. npj Sci Food, 2(1):23, December 2018a. ISSN 2396-8370. doi:
10.1038/s41538-018-0032-6.

Damion M Dooley, Emma J Griffiths, Gurinder S Gosal, Pier L Buttigieg, Robert
Hoehndorf, Matthew C Lange, Lynn M Schriml, Fiona SL Brinkman, and
William WL Hsiao. Foodon: a harmonized food ontology to increase global
food traceability, quality control and data integration. npj Science of Food, 2
(1):1–10, 2018b.

Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs.
SEMANTiCS (Posters, Demos, SuCCESS), 48(1-4):2, 2016.

Epicurious. How To Slice Every Fruit — Method Mastery — Epicurious
(Youtube), November 2019. URL https://youtu.be/VjINuQX4hbM.

Vanesa Esṕın, Maŕıa V Hurtado, and Manuel Noguera. Nutrition for elder care:
a nutritional semantic recommender system for the elderly. Expert Systems, 33
(2):201–210, 2016.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S Weld, and Alexander Yates. Unsupervised named-
entity extraction from the web: An experimental study. Artificial intelligence,
165(1):91–134, 2005.

Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld. Open
information extraction from the web. Commun. ACM, 51(12):68–74, December
2008a. ISSN 0001-0782. doi: 10.1145/1409360.1409378.

128

https://youtu.be/VjINuQX4hbM

References

Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S Weld. Open
information extraction from the web. Communications of the ACM, 51(12):
68–74, 2008b.

Dieter Fensel and Christoph Bussler. Semantic web enabled web services. In
Advances in artificial intelligence: 25th Annual German Conference on AI,
volume 2479, page 316. Springer, 2002.

Javier D Fernández, Wouter Beek, Miguel A Mart́ınez-Prieto, and Mario Arias.
Lod-a-lot: A queryable dump of the lod cloud. In The Semantic Web–ISWC
2017: 16th International Semantic Web Conference, Vienna, Austria, October
21-25, 2017, Proceedings, Part II 16, pages 75–83. Springer, 2017.

Sébastien Ferré. Sparklis: An expressive query builder for sparql endpoints with
guidance in natural language. Semantic Web, 8(3):405–418, 2017.

Chengcheng Fu, Zhisheng Huang, Frank van Harmelen, Tingting He, and Xing-
peng Jiang. Food4healthkg: Knowledge graphs for food recommendations
based on gut microbiota and mental health. Artificial Intelligence in Medicine,
145:102677, 2023. ISSN 0933-3657. doi: https://doi.org/10.1016/j.artmed.
2023.102677. URL https://www.sciencedirect.com/science/article/
pii/S0933365723001914.

Michael R Genesereth and Nils J Nilsson. Logical foundations of. Artificial
Intelligence. New York: Morgan Kaufmann Publishers, 1987.

Yolanda Gil and Donovan Artz. Towards content trust of web resources. Journal
of Web Semantics, 5(4):227–239, 2007.

Paulo J.S. Gonçalves and Pedro M.B. Torres. Knowledge representation applied
to robotic orthopedic surgery. Robotics and Computer-Integrated Manufactur-
ing, 33:90–99, June 2015. ISSN 07365845. doi: 10.1016/j.rcim.2014.08.014.

Michael Grieves. Virtually perfect: driving innovative and lean products through
product lifecycle management. Space Coast Press, 2011.

129

https://www.sciencedirect.com/science/article/pii/S0933365723001914
https://www.sciencedirect.com/science/article/pii/S0933365723001914

References

Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques
for grid mapping with rao-blackwellized particle filters. IEEE transactions on
Robotics, 23(1):34–46, 2007.

H-M Gross, H-J Boehme, Christof Schröter, Steffen Müller, Alexander König,
Ch Martin, Matthias Merten, and Andreas Bley. Shopbot: Progress in devel-
oping an interactive mobile shopping assistant for everyday use. In 2008 IEEE
International Conference on Systems, Man and Cybernetics, pages 3471–3478.
IEEE, 2008.

Thomas R Gruber. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

Nicola Guarino. Formal ontology in information systems: Proceedings of the first
international conference (FOIS’98), June 6-8, Trento, Italy, volume 46. IOS
press, 1998.

Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology? Hand-
book on ontologies, pages 1–17, 2009.

Andrei Haidu, Daniel Beßler, Asil Kaan Bozcuoglu, and Michael Beetz. Knowrob-
sim — game engine-enabled knowledge processing for cognition-enabled robot
control. In International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 2018. IEEE. doi: 10.1109/IROS.2018.8593935.

Wu Hao, Jiao Menglin, Tian Guohui, Ma Qing, and Liu Guoliang. R-kg: a novel
method for implementing a robot intelligent service. AI, 1(1):6, 2020.

J Hardi. Cellfie plugin, 2018.

Steven Haussmann, Oshani Seneviratne, Yu Chen, Yarden Ne’eman, James
Codella, Ching-Hua Chen, Deborah L McGuinness, and Mohammed J Zaki.
Foodkg: a semantics-driven knowledge graph for food recommendation. In
International Semantic Web Conference, pages 146–162. Springer, 2019.

Nicolas Heist, Sven Hertling, Daniel Ringler, and Heiko Paulheim. Knowledge
graphs on the web–an overview. Knowledge Graphs for eXplainable Artificial
Intelligence: Foundations, Applications and Challenges, pages 3–22, 2020.

130

References

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York Sure. Semantic
Web: Grundlagen. Springer-Verlag, 2007.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.
Yago2: A spatially and temporally enhanced knowledge base from wikipedia.
Artificial intelligence, 194:28–61, 2013.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De
Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, et al. Knowledge graphs. ACM Computing Sur-
veys (Csur), 54(4):1–37, 2021.

Pankaj Jaiswal, Shulamit Avraham, Katica Ilic, Elizabeth A Kellogg, Susan Mc-
Couch, Anuradha Pujar, Leonore Reiser, Seung Y Rhee, Martin M Sachs,
Mary Schaeffer, et al. Plant ontology (po): a controlled vocabulary of plant
structures and growth stages. Comparative and functional genomics, 6(7-8):
388–397, 2005.

Andreas Jakl, Lucas Schöffer, Matthias Husinsky, and Markus Wagner. Aug-
mented reality for industry 4.0: Architecture and user experience. In FMT,
pages 38–42, 2018.

Gayane Kazhoyan and Michael Beetz. Executing Underspecified Actions in Real
World Based on Online Projection. In 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 5156–5163, November
2019. doi: 10.1109/IROS40897.2019.8967867.

Gayane Kazhoyan, Simon Stelter, Franklin Kenghagho Kenfack, Sebastian Ko-
ralewski, and Michael Beetz. The Robot Household Marathon Experiment.
In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 9382–9388, May 2021. doi: 10.1109/ICRA48506.2021.9560774.

Hamidreza Kobdani and Hinrich Schütze. Sucre: A modular system for corefer-
ence resolution. In Proceedings of the 5th International Workshop on Semantic
Evaluation, pages 92–95, 2010.

131

References

Sebastian Koralewski, Gayane Kazhoyan, and Michael Beetz. Self-specialization
of general robot plans based on experience. IEEE Robotics and Automation
Letters, 4(4):3766–3773, 2019.

E Kostylev, J Reutter, and Mart́ın Ugarte. Construct queries in sparql. In 18th
International Conference on Database Theory (ICDT 2015), 2015.

Bernd Krieg-Brückner, Serge Autexier, and Mihai Pomarlan. The baall ontology-
configuration of service robots, food, and diet. In JOWO, 2021.

Michaela Kümpel, Anna de Groot, Ilaria Tiddi, and Michael Beetz. Using linked
data to help robots understand product-related actions. In JOWO, 2020.

Michaela Kümpel and Michael Beetz. Productkg: A product knowledge graph
for user assistance in daily activities. In Ontology Showcase and Demonstra-
tions Track, 9th Joint Ontology Workshops (JOWO 2023), co-located with FOIS
2023, 19-20 July, 2023, Sherbrooke, Québec, Canada., 2023.

Michaela Kümpel, Christian A. Mueller, and Michael Beetz. Semantic digital
twins for retail logistics. In Michael Freitag, Herbert Kotzab, and Nicole
Megow, editors, Dynamics in Logistics: Twenty-Five Years of Interdisciplinary
Logistics Research in Bremen, Germany, pages 129–153. Springer Interna-
tional Publishing, Cham, 2021. ISBN 978-3-030-88662-2. doi: 10.1007/
978-3-030-88662-2 7.

Michaela Kümpel, Jonas Dech, Alina Hawkin, and Michael Beetz. Robotic shop-
ping assistance for everyone: Dynamic query generation on a semantic digital
twin as a basis for autonomous shopping assistance. In Proceedings of the
22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), pages 2523–2525, London, United Kingdom, 2023. doi:
10.5555/3545946.3598989.

Michaela Kümpel, Vanessa Hassouna, Jan-Phillip Töberg, Phillip Cimiano, and
Michael Beetz. Cut, chop, slice or dice: Teaching robots new task variations
using web knowledge. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2024. submitted.

132

References

John E. Laird. The Soar Cognitive Architecture. MIT Press, 2019. ISBN 978-0-
262-53853-4.

Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python with
automatic classification and high level constructs for biomedical ontologies.
Artificial intelligence in medicine, 80:11–28, 2017.

Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with
practical insights into document embedding generation. 2016.

Taehee Lee, Ig-hoon Lee, Suekyung Lee, Sang-goo Lee, Dongkyu Kim, Jonghoon
Chun, Hyunja Lee, and Junho Shim. Building an operational product ontology
system. Electronic Commerce Research and Applications, 5(1):16–28, 2006.

Séverin Lemaignan, Raquel Ros, Lorenz Mösenlechner, Rachid Alami, and
Michael Beetz. ORO, a knowledge management platform for cognitive ar-
chitectures in robotics. In Ren C. Luo and Hajime Asama, editors, Proceedings
of the 2nd IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 3548–3553, Taipei, Taiwan, 2010. IEEE. ISBN 978-1-4244-6674-0.
doi: 10.1109/IROS.2010.5649547.

Thomas Lin, Oren Etzioni, et al. Entity linking at web scale. In Proceedings
of the joint workshop on automatic knowledge base construction and web-scale
knowledge extraction (AKBC-WEKEX), pages 84–88, 2012.

Gheorghe Lisca, Daniel Nyga, Ferenc Balint-Benczedi, Hagen Langer, and
Michael Beetz. Towards Robots Conducting Chemical Experiments. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5202–5208, Hamburg, Germany, September 2015. IEEE. ISBN
978-1-4799-9994-1. doi: 10.1109/IROS.2015.7354110.

Will Lockie. Delivering an effective click-and-collect strategy: A retailer case
study. Journal of Digital & Social Media Marketing, 2(2):139–152, 2014.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language

133

References

processing toolkit. In Association for Computational Linguistics (ACL) Sys-
tem Demonstrations, pages 55–60, 2014. URL http://www.aclweb.org/
anthology/P/P14/P14-5010.

Javier Marın, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf
Aytar, Ingmar Weber, and Antonio Torralba. Recipe1m+: A dataset for learn-
ing cross-modal embeddings for cooking recipes and food images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 43(1):187–203, 2021.

Viviana Mascardi, Valentina Cord̀ı, Paolo Rosso, et al. A comparison of upper
ontologies. In Woa, volume 2007, pages 55–64, 2007.

Albert Meroño-Peñuela and Rinke Hoekstra. grlc Makes GitHub Taste Like
Linked Data APIs. In The Semantic Web: ESWC 2016 Satellite Events, Her-
aklion, Crete, Greece, May 29 – June 2, 2016, pages 342–353. Springer, 2016.
ISBN 978-3-319-47602-5. doi: 10.1007/978-3-319-47602-5\ 48.

George A Miller. Wordnet: a lexical database for english. Communications of
the ACM, 38(11):39–41, 1995.

Alex Mitrevski, Paul G. Plöger, and Gerhard Lakemeyer. Ontology-Assisted Gen-
eralisation of Robot Action Execution Knowledge. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 6763–6770,
Prague, Czech Republic, September 2021. IEEE. ISBN 978-1-66541-714-3. doi:
10.1109/IROS51168.2021.9636791.

Daniel Mora, Robert Zimmermann, Douglas Cirqueira, Marija Bezbradica,
Markus Helfert, Andreas Auinger, and Dirk Werth. Who wants to use an
augmented reality shopping assistant application? 2020.

Zara Nasar, Syed Waqar Jaffry, and Muhammad Kamran Malik. Named entity
recognition and relation extraction: State-of-the-art. ACM Computing Surveys
(CSUR), 54(1):1–39, 2021.

Ian Niles and Adam Pease. Towards a Standard Upper Ontology. In Proceedings
of the International Conference on Formal Ontology in Information Systems -

134

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

References

FOIS ’01, volume 2001, pages 2–9, Ogunquit, Maine, USA, 2001. ACM Press.
ISBN 978-1-58113-377-6. doi: 10.1145/505168.505170.

Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. Industry-scale knowledge graphs: Lessons and challenges: Five
diverse technology companies show how it’s done. Queue, 17(2):48–75, 2019.

Daniel Nyga, Subhro Roy, Rohan Paul, Daehyung Park, Mihai Pomarlan, Michael
Beetz, and Nicholas Roy. Grounding Robot Plans from Natural Language
Instructions with Incomplete World Knowledge. In Proceedings of The 2nd
Conference on Robot Learning, pages 714–723. PMLR, 2018. URL https:
//proceedings.mlr.press/v87/nyga18a.html.

Alberto Olivares-Alarcos, Daniel Beßler, Alaa Khamis, Paulo Goncalves, Maki K.
Habib, Julita Bermejo-Alonso, Marcos Barreto, Mohammed Diab, Jan Rosell,
João Quintas, Joanna Olszewska, Hirenkumar Nakawala, Edison Pignaton,
Amelie Gyrard, Stefano Borgo, Guillem Alenyà, Michael Beetz, and Howard Li.
A Review and Comparison of Ontology-based Approaches to Robot Autonomy.
The Knowledge Engineering Review, 34(29):1–38, 2019. ISSN 0269-8889. doi:
10.1017/S0269888919000237.

Alberto Olivares-Alarcos, Daniel Beßler, Alaa Khamis, Paulo Goncalves, Maki K
Habib, Julita Bermejo-Alonso, Marcos Barreto, Mohammed Diab, Jan Rosell,
Joao Quintas, et al. A review and comparison of ontology-based approaches to
robot autonomy. 2019.

J Neil Otte, John Beverley, and Alan Ruttenberg. Bfo: Basic formal ontology.
Applied ontology, 17(1):17–43, 2022.

Mihai Pomarlan and John A Bateman. Embodied functional relations: A formal
account combining abstract logical theory with grounding in simulation. In
FOIS, pages 155–168, 2020.

Mihai Pomarlan and Robert Porzel. Narrative objects. 2022.

Valentina Presutti and Aldo Gangemi. Dolce+ D&S Ultralite and its main on-
tology design patterns. In Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz,

135

https://proceedings.mlr.press/v87/nyga18a.html
https://proceedings.mlr.press/v87/nyga18a.html

References

Adila Krisnadhi, and Valentina Presutti, editors, Ontology Engineering with
Ontology Design Patterns: Foundations and Applications, number 25 in Stud-
ies on the Semantic Web, pages 81–103. AKA GmbH Berlin, 2016. ISBN
978-3-89939-715-6.

Ixchel G. Ramirez-Alpizar, Ryosuke Hiraki, and Kensuke Harada. Cooking Ac-
tions Inference based on Ingredient’s Physical Features. In 2021 IEEE/SICE
International Symposium on System Integration (SII), pages 195–200, Iwaki,
Fukushima, Japan, January 2021. IEEE. ISBN 978-1-72817-658-1. doi:
10.1109/IEEECONF49454.2021.9382721.

Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z Pan, Kees Van Deemter, and
Robert Stevens. Towards competency question-driven ontology authoring. In
The Semantic Web: Trends and Challenges: 11th International Conference,
ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings 11, pages
752–767. Springer, 2014.

Anne-Sophie Riegger, Katrin Merfeld, Jan F Klein, and Sven Henkel. Technology-
enabled personalization: Impact of smart technology choice on consumer shop-
ping behavior. Technological Forecasting and Social Change, 181:121752, 2022.

Ellen Riloff, Rosie Jones, et al. Learning dictionaries for information extraction
by multi-level bootstrapping. In AAAI/IAAI, pages 474–479, 1999.

Peter N Robinson and S Mundlos. The human phenotype ontology. Clinical
genetics, 77(6):525–534, 2010.

Stuart J Russell. Artificial intelligence a modern approach. Pearson Education,
Inc., 2010.

Vetle Ryen, Ahmet Soylu, and Dumitru Roman. Building semantic knowledge
graphs from (semi-) structured data: a review. Future Internet, 14(5):129,
2022.

Ansgar Scherp, Thomas Franz, Carsten Saathoff, and Steffen Staab. A core
ontology on events for representing occurrences in the real world. Multimedia
Tools and Applications, 58:293–331, 2012.

136

References

Helmut Schmid. Improvements in part-of-speech tagging with an application to
german. In Natural language processing using very large corpora, pages 13–25.
Springer, 1999.

Lynn M Schriml, James B Munro, Mike Schor, Dustin Olley, Carrie McCracken,
Victor Felix, J Allen Baron, Rebecca Jackson, Susan M Bello, Cynthia Bearer,
et al. The human disease ontology 2022 update. Nucleic acids research, 50
(D1):D1255–D1261, 2022.

Lynn Marie Schriml, Cesar Arze, Suvarna Nadendla, Yu-Wei Wayne Chang, Mark
Mazaitis, Victor Felix, Gang Feng, and Warren Alden Kibbe. Disease ontology:
a backbone for disease semantic integration. Nucleic acids research, 40(D1):
D940–D946, 2012.

Issei Sera, Natsuki Yamanobe, Ixchel G. Ramirez-Alpizar, Zhenting Wang, Wei-
wei Wan, and Kensuke Harada. Assembly Planning by Recognizing a Graphical
Instruction Manual. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 3138–3145, Prague, Czech Republic,
September 2021. IEEE. ISBN 978-1-66541-714-3. doi: 10.1109/IROS51168.
2021.9636041.

Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of
web services using semantic descriptions. In 1st Workshop on Web Services:
Modeling, Architecture and Infrastructure, pages 17–24, 2003.

Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ireland, Christo-
pher J Mungall, et al. The obo foundry: coordinated evolution of ontologies to
support biomedical data integration. Nature biotechnology, 25(11):1251–1255,
2007.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. A machine learning
approach to coreference resolution of noun phrases. Computational linguistics,
27(4):521–544, 2001.

Rudi Studer, V Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. Data & knowledge engineering, 25(1-2):161–197, 1998.

137

References

Hye Jin Sung and Hyeon Mo Jeon. Untact: Customer’s acceptance intention
toward robot barista in coffee shop. Sustainability, 12(20):8598, 2020.

Daniel Taylor, Sebastian Brockhaus, A Michael Knemeyer, and Paul Murphy.
Omnichannel fulfillment strategies: defining the concept and building an
agenda for future inquiry. The International Journal of Logistics Management,
2019.

M. Tenorth, U. Klank, D. Pangercic, and M. Beetz. Web-enabled robots. IEEE
Robotics Automation Magazine, 18(2):58–68, June 2011. ISSN 1558-223X. doi:
10.1109/MRA.2011.940993.

Mori Tenorth and Michael Beetz. KNOWROB - Knowledge Processing for Au-
tonomous Personal Robots. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4261–4266, St. Louis, MO, USA, October
2009a. IEEE. ISBN 978-1-4244-3803-7. doi: 10.1109/IROS.2009.5354602.

Moritz Tenorth and Michael Beetz. Knowrob—knowledge processing for au-
tonomous personal robots. In 2009 IEEE/RSJ international conference on
intelligent robots and systems, pages 4261–4266. IEEE, 2009b.

Moritz Tenorth, Ulrich Klank, Dejan Pangercic, and Michael Beetz. Web-enabled
robots. IEEE Robotics & Automation Magazine, 18(2):58–68, 2011.

Christopher Thompson, Haris Khan, Daniel Dworakowski, Kobe Harrigan, and
Goldie Nejat. An autonomous shopping assistance robot for grocery stores. In
Workshop on Robotic Co-workers 4.0: Human Safety and Comfort in Human-
Robot Interactive Social Environments 2018 IEEE/RSJ.

Madhura Thosar, Sebastain Zug, Alpha Mary Skaria, and Akshay Jain. A Re-
view of Knowledge Bases for Service Robots in Household Environments. In
Proceedings of the 6th International Workshop on Artificial Intelligence and
Cognition, pages 98–110, Palermo, Italy, 2018a.

Madhura Thosar, Sebastian Zug, Alpha Mary Skaria, and Akshay Jain. A review
of knowledge bases for service robots in household environments. In AIC, pages
98–110, 2018b.

138

References

Piyaporn Tumnark, Filipe Almeida da Conceição, João Paulo Vilas-Boas, Lean-
dro Oliveira, Paulo Cardoso, Jorge Cabral, and Nonchai Santibutr. Ontology-
based personalized dietary recommendation for weightlifting. 2013.

Michael T. Turvey. Ecological foundations of cognition: Invariants of perception
and action. In Herbert L. Pick, Paulus Willem van den Broek, and David C.
Knill, editors, Cognition: Conceptual and Methodological Issues., pages 85–117.
American Psychological Association, Washington, 1992a. ISBN 978-1-55798-
165-3. doi: 10.1037/10564-004.

MT Turvey. Ecological foundations of cognition: Invariants of perception and
action. 1992b.

Jan-Phillip Töberg, Michaela Kümpel, Vanessa Hassouna, Michael Beetz, and
Phillip Cimiano. Towards a knowledge engineering methodology for flexible
robot manipulation in everyday tasks. In European Semantic Web Conference,
2023. submitted.

Mike Uschold. Building ontologies: Towards a uni ed methodology. In Proceedings
of 16th Annual Conference of the British Computer Society Specialists Group
on Expert Systems. Citeseer, 1996.

David Vernon, Claes von Hofsten, and Luciano Fadiga. The iCub Cognitive
Architecture, volume 11, pages 121–153. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. ISBN 978-3-642-16903-8 978-3-642-16904-5. doi: 10.1007/
978-3-642-16904-5 7.

Yannick Versley, Simone Paolo Ponzetto, Massimo Poesio, Vladimir Eidelman,
Alan Jern, Jason Smith, Xiaofeng Yang, and Alessandro Moschitti. Bart: A
modular toolkit for coreference resolution. In Proceedings of the ACL-08: HLT
Demo Session, pages 9–12, 2008.

Atro Voutilainen. Part-of-speech tagging, volume 219. The Oxford handbook of
computational linguistics, 2003.

Markus Waibel, Michael Beetz, Javier Civera, Raffaello d’Andrea, Jos Elfring,
Dorian Galvez-Lopez, Kai Häussermann, Rob Janssen, JMM Montiel, Alexan-

139

References

der Perzylo, et al. Roboearth. IEEE Robotics & Automation Magazine, 18(2):
69–82, 2011.

Georg Waltner, Michael Schwarz, Stefan Ladstätter, Anna Weber, Patrick Luley,
Horst Bischof, Meinrad Lindschinger, Irene Schmid, and Lucas Paletta. Mango-
mobile augmented reality with functional eating guidance and food awareness.
In International Conference on Image Analysis and Processing, pages 425–432.
Springer, 2015.

XiuQing Wang and ShunKun Yang. A tutorial and survey on fault knowledge
graph. In Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and
Health: International 2019 Cyberspace Congress, CyberDI and CyberLife, Bei-
jing, China, December 16–18, 2019, Proceedings, Part II 3, pages 256–271.
Springer, 2019.

Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle
Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E Bourne, et al. The fair guiding princi-
ples for scientific data management and stewardship. Scientific data, 3(1):1–9,
2016.

Gerhard Wohlgenannt and Filip Minic. Using word2vec to build a simple ontology
learning system. In ISWC (Posters & Demos), 2016.

Alexander Yates, Michele Banko, Matthew Broadhead, Michael J Cafarella, Oren
Etzioni, and Stephen Soderland. Textrunner: open information extraction on
the web. In Proceedings of Human Language Technologies: The Annual Con-
ference of the North American Chapter of the Association for Computational
Linguistics (NAACL-HLT), pages 25–26, 2007.

Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang, and Xin Luna Dong. All
you need to know to build a product knowledge graph. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 4090–4091, 2021.

Li Zhang, Qing Lyu, and Chris Callison-Burch. Reasoning about Goals, Steps,
and Temporal Ordering with WikiHow. In Proceedings of the 2020 Conference

140

References

on Empirical Methods in Natural Language Processing (EMNLP), pages 4630–
4639, Online, 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.emnlp-main.374.

Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, Pengcheng Yin, Chris Callison-
Burch, and Graham Neubig. Show Me More Details: Discovering Hierarchies of
Procedures from Semi-structured Web Data. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics. arXiv, March 2022.
doi: 10.48550/arXiv.2203.07264.

141

References

142

Michaela Kümpel Glossary

Glossary

Anchor An anchor, also called world anchor, is used as a reference point for
localisation in Augmented Reality applications. A world anchor is a digital
(not necessarily visible) object at a specific coordinate which can also be
attached to some real world object like a table or shelf that can be detected
in an application..

AR In Augmented Reality (AR), digital content like holograms is projected onto
the real environment. On Smartphones, the camera view is used and aug-
mented with digital objects while smart glasses have a see-through display
to augment digital objects onto the environment..

CRAM The cognitive robot abstract machine (CRAM) is a cognitive architec-
ture that provides an entry point for implementing and deploying software
on autonomous robots. It can be seen as the connection of the multiple
software frameworks needed in robotics: Planning, Perception, Manipula-
tion as well as Reasoning. In CRAM, actions are implemented as general
plans that can be parameterised..

KnowRob KnowRob is a knowledge processing framework that provides a robot
with knowledge representation and reasoning while being grounded in a
robots’ physical system. Its logic programming language Prolog enables
reasoning over various sources..

Prolog Prolog is a logic programming language that enables declarative pro-
gramming, which can be used to highlight the problem at hand instead of

143

Glossary

the way how to solve it. Different sources can be integrated by resolving
them to variables..

SemDT A semantic Digital Twin (semDT) is a symbolic representation of robots,
human beings, and their environment as physical elements connected to
complementary non-physical entities as well as their properties and inter-
relations, represented by data structures of Virtual Reality scene graphs.
Thereby abstract information associated with the entity of interest can be
inferred, reasoned about, and visualised through a variety of media to pre-
dict current or future conditions. Particularly, actions can be simulated,
and hypothetical scenes can be rendered to support and enhance decision-
making. (Kümpel et al., 2021).

SOMA The socio-physical model of activities (SOMA) is a top-level ontology
based on DUL that describes agents and objects as well as the roles they
play during events. This is done by using the concepts disposition and
affordance, that can be used to set objects in relation..

URI An Uniform Resource Identifier (URI) identifies a resource. In contrast to
a Uniform Resource Locator (URL), which usually identifies a website, an
URI can also identify a person, an object or a file which does not need to
be resolved to a website address..

144

	Introduction
	Challenges
	Creation of Knowledge Graphs for Agents
	Integration of Environment Information
	Integration of Action Information

	Approach for Creating Actionable Knowledge Graphs
	Gathering and Linking the Needed Knowledge for Actionable Knowledge Graphs
	Using semantic Digital Twin Environments in Actionable Knowledge Graphs
	Using Actionable Knowledge Graphs to Parameterise Robot Action Plans for Flexible Manipulation

	Example Scenarios
	Contribution
	Outline

	Ontologies and Knowledge Graphs for Knowledge Representation and Action Execution
	Background: Ontologies, Knowledge Graphs and Linked Data
	Ontologies
	Knowledge Graphs
	Linked Data and Semantic Web

	Description Logic for Specification of Ontologies
	Using Knowledge Representation for Robotic Action Execution
	Other Approaches for Robotic Action Execution
	Methodology for Creating Actionable Knowledge Graphs
	Define Necessary Knowledge Sources
	General Object Knowledge
	Environment Structure
	Action Execution

	Acquire the Needed Information
	Extracting Information from Unstructured Sources
	Extracting Information from Semi-structured Sources
	Extracting Information from Structured Sources

	Process the Acquired Data
	Cleaning, Standardising and Enriching the Acquired Web Data
	Enrichment of Environment Information
	Enrichment of Action Information

	Link Distributed Knowledge Chunks
	Ontology Alignment
	Interlinking Object Information
	Linking Object to Environment Information
	Linking Object to Action Information

	Translate Knowledge to Robot Plan
	Discussion and Related Work

	An Actionable Product Knowledge Graph for Omni-channel User Assistance Applications
	Define Necessary Knowledge Sources
	General Object Knowledge
	Environment structure
	Action Execution
	Resulting Knowledge Graph Structure

	Acquire the Needed Information
	Extracting Information from Unstructured Sources
	Extracting Information from Semi-structured Sources
	Extracting Information from Structured Sources

	Process the Acquired Data
	Enrichment of Environment Information

	Link Distributed Knowledge Chunks
	Ontology Alignment
	Object Entity Linking
	Linking Object to Environment Information

	Translate Knowledge to Robot Plan
	Evaluating the Created Graph through Competency Questions
	Discussion and Related Work

	An Actionable Food Cutting Knowledge Graph for Robotic Task Execution
	Define Necessary Knowledge Sources
	General Object Knowledge
	Environment Structure
	Action Execution
	Resulting Knowledge Graph Structure

	Acquire the Needed Information
	Extracting Information from Unstructured Sources
	Extracting Information from Structured Sources

	Process the Acquired Data
	Enrichment of Object Information
	Enrichment of Action Information

	Link Distributed Knowledge Chunks
	Ontology Alignment
	Linking Object to Environment Information
	Linking Object to Action Information

	Translate Knowledge to Robot Plan
	Evaluating the Created Graph through Competency Questions
	Discussion and Related Work

	Applications of Actionable Knowledge Graphs
	Knowledge Retrieval in Actionable Knowledge Graphs
	Robotic Agent

	Applications
	Discussion

	Conclusion
	Prior Publications
	Supervised Student Works
	Student Works that Contributed to this Thesis
	Bibliography

