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Abstract

The oceans play a central role in regulating climate by absorbing carbon dioxide from
the atmosphere and sequestering heat through ocean biogeochemical (BGC) processes.
Predicting climate change necessitates a thorough understanding of these BGC processes
and the coupling between marine ecosystems and the global carbon cycle. Ocean BGC
models are tools employed for this purpose. However, current ocean models used to sim-
ulate and thus better understand the ocean BGC processes are highly uncertain in their
parameterization. For example, zooplankton grazing on phytoplankton is a function of
available phytoplankton and zooplankton population and is parameterized, assuming
the grazing rate increases linearly with the phytoplankton concentration until a maxi-
mum grazing rate is reached. However, the value of this maximum grazing rate is not
precisely known. BGC models encompass a variety of processes, each characterized by
multiple such kinds of process parameters. The values of these parameters are often
poorly constrained by laboratory experiments or the limited availability of observations.
Uncertainty in the parameter values results in significant uncertainty in the model out-
puts.

This work delves into research to quantify uncertainties that arise in ocean BGC models
and obtain improved parameters to reduce those uncertainties utilizing the BGC ocean
model RecoM2 (Regulated Ecosystem Model Version 2). It involves two procedures for
the specification uncertainties in model parameterization: i) sensitivity analysis to deter-
mine relatively important parameters for estimation in data assimilation simulations and
ii) parameter estimation to obtain optimized parameter values using data assimilation.

A Global Sensitivity Analysis (GSA) is performed to identify which parameters influence
the uncertainty of model outputs the most in a one-dimensional (1-D) configuration at
two ocean sites in the North Atlantic (BATS) and the Mediterranean Sea (DYFAMED),
respectively. The study provided a detailed analysis of parameter sensitivities under
two distinct environmental conditions by computing variance-based sensitivity indices
on key model outputs.

This dissertation uses the Parallel Data Assimilation Framework – PDAF to implement
ensemble data assimilation for estimating BGC state variables and parameters, focusing
predominantly on assimilating satellite ocean color data. First, data assimilation ex-
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Abstract

periments are carried out in a 1-D model using an ensemble Kalman Filter to estimate
preselected BGC parameters at BATS and DYFAMED stations. These stations were
specifically chosen because they are distinct enough from each other and possess long-
term time series data, thereby facilitating a deeper understanding of the BGC processes
under varying environmental conditions. Subsequently, the scope and application of ex-
periments are broadened to a global scale 3-D model by incorporating spatial variations
in parameter values. By assimilating ocean color-derived surface chlorophyll-a concen-
tration, this work estimates spatially temporally varying values of the most influential
parameters provided by the GSA in a global model set up for improved model prediction.
The effects of estimated spatially varying parameters on the BGC fields and dynamics
are assessed for insights into BGC modeling.

This work finds that the grazing parameter, the maximum chlorophyll-to-nitrogen ratio,
the photosynthesis–irradiance parameters, and the chlorophyll degradation rate are par-
ticularly important for BGC simulation. Replacing the default parameter values with
the optimal values obtained in this work improves the model outcomes in both 1-D and
3-D configurations, with a notable reduction of model data root mean squared errors
relative to assimilated and independent data. The estimated parameters compensate
for model deficiencies not attributed to parameter uncertainties, a finding supported by
data assimilation literature. The spatial variations of the obtained parameter values
are similar to those reported from observation, indicating that ocean color data can
adequately constrain spatially varying BGC simulations. Moreover, the dynamical vari-
ations of model simulation using the estimated set of parameter values are closer to the
satellite observations than that of using the uniform default parameter values.

The methodologies in this work are applied to the REcoM2 model. While the obtained
parameter values may not be directly transferable to other BGC models, the methods
used are applicable to other ocean models. This work underscores the importance of
spatially varying parameter optimization and highlights the potential benefits of incor-
porating spatially varying BGC parameters in regional and global 3-D BGC models.
Through such rigorous scientific endeavors, we inch closer to a more coherent under-
standing of the complex interplay between the ocean BGC processes and the carbon
cycle, paramount in the era of escalating climate change.
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Zusammenfassung

Die Ozeane spielen eine zentrale Rolle bei der Regulierung des Klimas, indem sie
Wärme speichern und Kohlendioxid durch biogeochemische Prozesse aus der Atmo-
sphäre aufnehmen. Um den Klimawandel vorherzusagen, ist ein tiefes Verständnis
der biogeochemischen Prozesse und der Kopplung zwischen marinen Ökosystemen und
dem globalen Kohlenstoffkreislauf erforderlich. Ozeanische Biogeochemie-Modelle sind
Werkzeuge, die zu diesem Zweck eingesetzt werden. Die derzeitigen Ozeanmodelle zur
Simulation biogeochemischer Prozesse sind jedoch in ihrer Parametrisierung sehr un-
sicher. Zum Beispiel ist das Abweiden von Phytoplankton durch Zooplankton eine
Funktion des verfügbaren Phytoplanktons und der Zooplanktonpopulation und wird
parametrisiert, indem angenommen wird, dass die Abweidungsrate mit der Phytoplank-
tonkonzentration ansteigt, bis eine maximale Abweidungsrate erreicht ist. Der Wert
dieser maximalen Abweidungsrate ist jedoch nicht genau bekannt. BGC-Modelle um-
fassen eine Vielzahl von Prozessen, die jeweils durch mehrere solcher Prozessparameter
charakterisiert sind. Die Werte der biologischen Prozessparameter sind oft nur unzure-
ichend durch Laborexperimente oder begrenzt verfügbare Beobachtungen eingeschränkt.
Unsicherheit in den Parameterwerten führt zu erheblicher Unsicherheit in den Model-
lergebnissen.

Diese Arbeit geht der Fragestellung nach, Unsicherheiten zu quantifizieren, die in
ozeanischen biogeochemischen Modellen auftreten, und verbesserte Parameter zu erhal-
ten, um diese Unsicherheiten mit dem biogeochemischen Ozeanmodell RecoM2 (Regu-
lated Ecosystem Model Version 2) zu reduzieren. Es beinhaltet zwei Verfahren zur Spez-
ifikation von Unsicherheiten in der Modellparametrisierung: i) Eine Sensitivitätsanalyse
zur Bestimmung relativ wichtiger Parameter für die Schätzung in Datenassimilationssim-
ulationen und ii) eine Parameterschätzung zur Erlangung optimierter Parameterwerte
durch Datenassimilation.

Eine Globale Sensitivitätsanalyse (GSA) wird durchgeführt, um zu identifizieren, welche
Parameter den Unsicherheitsgrad der Modellausgaben am meisten in einer eindimension-
alen (1-D) Konfiguration an zwei Ozeanstandorten im Nordatlantik (Bermuda Atlantic
Timeseries Station, BATS) und im Mittelmeer (Dynamique des Flux Atmosphériques en
MEDiterranée, DYFAMED) beeinflussen. Die Studie lieferte eine detaillierte Analyse
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der Parametersensitivitäten unter zwei unterschiedlichen Umweltbedingungen, indem
varianzbasierte Sensitivitätsindizes für Schlüsselmodellausgaben berechnet wurden.

Diese Dissertation verwendet das Parallel Data Assimilation Framework - PDAF, um
eine Ensemble-Datenassimilation zur Schätzung von BGC-Zustandsvariablen und -parametern
zu implementieren, wobei der Schwerpunkt hauptsächlich auf der Assimilation von
Satelliten-Ozeanfarbdaten liegt. Zunächst werden Datenassimilationsexperimente in
einem eindimensionalen Modell mit einem Ensemble Kalman Filter durchgeführt, um
vorausgewählte biologische Parameter an den BATS- und DYFAMED-Stationen zu
schätzen. Diese Stationen wurden speziell ausgewählt, weil sie sich deutlich voneinander
unterscheiden und Langzeit-Zeitreihendaten besitzen, wodurch ein tieferes Verständnis
der Prozesse unter verschiedenen Umweltbedingungen ermöglicht wird. Anschließend
werden der Umfang und die Anwendung von Experimenten auf ein globales dreidimen-
sionales Modell erweitert, wobei mögliche räumliche Variationen in den Parameterw-
erten berücksichtigt werden. Durch die Assimilation der aus Ozeanfarben abgeleiteten
Oberflächen-Chlorophyll-a-Konzentration schätzt diese Arbeit raumzeitlich variierende
Werte der einflussreichsten Parameter, die von der GSA in einer globalen Modellkonfig-
uration für eine verbesserte Modellvorhersage bereitgestellt werden. Die Auswirkungen
der geschätzten räumlich variierenden Parameter auf die biogeochemischen Felder und
Dynamiken werden zur Einsicht in dieModellierung bewertet.

Diese Arbeit stellt fest, dass die maximale Abweiderate, das maximale Chlorophyll-
zu-Stickstoff-Verhältnis, die Photosynthese-Irradianz-Parameter und die Chlorophyll-
Abbaugeschwindigkeit besonders wichtig für die Simulation sind. Das Ersetzen der Stan-
dardparameterwerte durch die in dieser Arbeit erhaltenen optimalen Werte verbessert
die Modellergebnisse sowohl in 1-D- als auch in 3-D-Konfigurationen, wobei ein be-
merkenswerter Rückgang der mittleren quadrierten Modell-Daten-Diskrepanzen im Ver-
hältnis zu assimilierten und unabhängigen Daten zu verzeichnen ist. Die geschätzten
Parameter kompensieren Modellmängel, die nicht auf Parameterunsicherheiten zurück-
zuführen sind, ein Befund, der durch die Datenassimilationsliteratur unterstützt wird.
Die räumlichen Variationen der erhaltenen Parameterwerte ähneln denen, die aus Beobach-
tungen berichtet werden, was darauf hindeutet, dass Ozeanfarbdaten räumlich vari-
ierende biogeochemische Simulationen angemessen einschränken können. Darüber hin-
aus sind die dynamischen Variationen der Modellsimulation mit dem geschätzten Pa-
rametersatz den Satellitenbeobachtungen näher als die Verwendung der einheitlichen
Standardparameterwerte.

Die in dieser Arbeit verwendeten Methoden werden auf das REcoM2-Modell angewen-
det. Während die erhaltenen Parameterwerte möglicherweise nicht direkt auf andere
biogeochemische Modelle übertragbar sind, sind die verwendeten Methoden auf andere
Ozeanmodelle anwendbar. Diese Arbeit unterstreicht die Bedeutung der räumlich vari-
ierenden Parameteroptimierung und hebt die potenziellen Vorteile der Einbeziehung
von räumlich variierenden Parametern in regionalen und globalen 3-D-biogeochemischen
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Modellen hervor. Durch solche rigorosen wissenschaftlichen Bemühungen nähern wir
uns einem kohärenteren Verständnis des komplexen Zusammenspiels zwischen ozeanis-
chen biogeochemischen Prozessen und dem Kohlenstoffkreislauf, das im Zeitalter des
eskalierenden Klimawandels von größter Bedeutung ist.
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Chapter 1

Introduction

The oceans play a central role in shaping our climate by absorbing atmospheric carbon
dioxide (CO2) and sequestering heat. As the largest carbon reservoir, oceans control
the atmospheric CO2 concentration on decadal or longer scales (Khatiwala et al., 2013;
McKinley et al., 2016). The seasonal dynamics of carbon and nutrient cycles in the upper
ocean determine the productivity of ecosystems, the net exchange of CO2 between the
atmosphere and the ocean, and the distribution of many elements in the sea. Ocean
biogeochemical (BGC) processes directly regulate the changes and variability in marine
ecosystems and the overall balance, distribution, and cycling of these elements. Thus,
BGC processes are ultimately tied to larger-scale climates, potentially modifying the
global climate (Hatje et al., 2022). Improving our ability to predict the effects of climate
change on ecosystems and vice-versa requires a comprehensive understanding of ocean
biogeochemical (BGC) processes and how they relate to climate processes.

Traditional laboratory experiments are limited in exploring the large-scale effects of
climate change on ocean BGC dynamics and how they lead to changes in global fluxes.
Hence, scientists use numerical models to understand ocean BGC processes and their
effects on the global carbon cycle and to project their potential changes with changing
climate. Ocean BGC model outputs are increasingly used by the scientific community
and environmental managers to inform policy (see Bindoff et al., 2019) and to develop
marine environmental applications and services (Fennel et al., 2019). However, the
current BGC models, used to simulate the ocean BGC cycle and thus better understand
the marine ecosystem processes, are highly uncertain (see Rohr et al., 2023) and sensitive
to BGC parameter choice (see Brett et al., 2021). The uncertainties are unavoidable,
but uncertainty quantification (UQ) of the ocean BGC models can make the models
more useful and mitigate the discrepancies in the model outputs. This thesis aims to
i) quantify the uncertainties arising in an ocean BGC model and ii) to reduce those
uncertainties for improved model predictions.

This chapter provides the basis that motivates the research aim of the thesis by first dis-
cussing the background and identifying current research gaps, followed by the research
objectives and provides an overview of the thesis structure, highlighting the intercon-
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nections between the chapters.

1.1 Application of Ocean BGC Models
Ocean BGC models are a primary tool for investigating ocean biogeochemistry, marine
ecosystem functioning, and the global carbon cycle. They are essential to Earth sys-
tem models utilized to generate climate projections (Orr et al., 2017). Approximately
one-fourth of the CO2 emitted by human activities is absorbed by the global ocean
(Friedlingstein et al., 2022). Ocean BGC models are central in quantifying the patterns
and rates of ocean anthropogenic CO2 uptake (see Crisp et al., 2022) and estimating
the global carbon budget (e.g., Friedlingstein et al., 2022; Hauck et al., 2020). Fur-
thermore, they are pivotal in understanding future ocean CO2 uptake and predicting
the atmosphere-ocean CO2 flux on a global scale, which is crucial for assessing carbon
policy and management strategies (Ilyina et al., 2021).

Given the substantial CO2 uptake capacity of the ocean, various deliberate CO2 re-
moval or negative emissions approaches have been proposed to mitigate climate change
(Gattuso et al., 2018). However, there are significant knowledge gaps concerning these
ocean-based CO2 removal methods. These uncertainties encompass the effectiveness
of CO2 uptake, long-term carbon storage, verification and accounting of the methods,
scalability, and potential environmental impacts (National Academies of Sciences, Engi-
neering and Medicine, 2022). In addressing these critical questions, Ocean BGC models
assume a crucial role, facilitating the verification of CO2 removal techniques and ensuring
accurate carbon accounting.

The ocean’s uptake of anthropogenic CO2, which mitigates atmospheric CO2 accumu-
lation and climate change, leads to aqueous CO2 and lower the pH of seawater, a phe-
nomenon called ocean acidification (Feely et al., 2009). In addition, the oxygen content
of the global ocean declines because of reduced ventilation of the deep ocean from global
warming (see Levin, 2018; Oschlies et al., 2018), resulting in deoxygenation. Ocean
BGC models serve as valuable tools for exploring ocean acidification (e.g., Gehlen et
al., 2007; Ilyina et al., 2009; Krumhardt et al., 2019) and deoxygenation (e.g., Andrews
et al., 2017; Bopp et al., 2017). In coastal ecosystems, acidification is compounded by
additional factors such as eutrophication, acidic freshwater discharge, and terrestrial
organic carbon inputs. Regional Ocean BGC models are used to analyze the synergy
between acidification and eutrophication (Laurent et al., 2017) and to characterize the
highly variable physical and biogeochemical conditions (Hauri et al., 2020; Rutherford
et al., 2021). Ocean BGC models have proven instrumental in quantifying the time of
emergence when anthropogenic changes exceed natural variability (Hauri et al., 2013).
Further applications include investigating how anthropogenic CO2 trends amplify the
frequency of extreme acidification events (Hauri et al., 2021) and compound events with
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overlapping extremes of acidification, marine heatwaves, and deoxygenation (Gruber et
al., 2021). These insights are essential for comprehending the complexities and potential
impacts of ongoing changes in the ocean ecosystem and the associated environmental
consequences.

Further, ocean BGC models play a crucial role in studying the economic implications of
climate change on fisheries (e.g., Loukos et al., 2003). Researchers have utilized these
models to explore the potential impact of climate change on fish catch and global fishery
revenues (Cheung et al., 2010; Lam et al., 2016). However, such projections are accom-
panied by large uncertainties, particularly concerning the lower trophic level biomasses
and production as projected by ocean BGC models (Lotze et al., 2019). Recent advance-
ments have led to the direct integration of ocean BGC models with higher trophic level
models, enabling the examination of top-down control exerted by higher trophic levels
on planktonic ecosystems and marine biogeochemical cycles in general (e.g., Archibald
et al., 2019; Aumont et al., 2018).

Ocean BGC models have emerged as a powerful and indispensable tool for developing
marine environmental applications and ecological forecasting (Fennel et al., 2019; Gehlen
et al., 2015). By optimally integrating models and observations, data assimilative ocean
BGC models offer short-term ecological forecasts in diverse coastal systems and at the
global scale (see Fennel et al., 2019; Gehlen et al., 2015). Furthermore, these data
assimilative models enable the generation of reanalysis datasets (e.g., Carroll et al.,
2020; Ciavatta et al., 2016), which facilitates the reconstruction of historical marine
conditions and provides a comprehensive view of past ecological trends. These reanalysis
datasets further serve to model validation and enhance our understanding of long-term
ecosystem changes.

1.2 Model Uncertainties
Similar to any geoscientific model, the objective of ocean BGC models is predominantly
to replicate the state and dynamics of real-world systems in the oceans as accurately
as possible, or at the very least, to the extent that provides pertinent insight into the
targeted problem or region of interest. Replicating the state and dynamics of a real-
world system requires the model to incorporate an adequately accurate description of
the system, as the model is an abstract representation of a system and related processes
(Turner & Gardner, 2015).

The process of geoscientific modeling always demands a degree of concession within
the facets of model design and implementation. It is essential to realize that models
are not true or false, not even in the sense of being closer to the real-world system
of interest. They are simply less uncertain (better) or more (worse) concerning how
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closely they resemble all the data we have of the target system. Thus, model quality is
primarily contingent on their degree of uncertainty. Complex models are seen as more
accurate, and simple ones as more general. A lack of detail may lead to systematic bias
in predictions - but adding detail to a model only guarantees an increase in reliability
if the added processes are essential, well-understood, and reliably estimated (Turner &
Gardner, 2015).

“O’Neill’s Conjecture” was that there may be an optimal balance between model com-
plexity and model uncertainty (O’Neill, 1973, Figure 1.1). Systematic bias caused by
the lack of details in simplistic models can be diminished by enhancing their complexity,
for instance, by increasing the number of plankton function types. However, beyond a
certain threshold, the increased complexity inadvertently amplifies model uncertainty,
primarily due to the uncertainty stemming from model parameter values or ‘parameter
uncertainty’. Because ocean BGC processes are diverse and complex, a more complex
model will require a large amount of data for estimating all model parameters reliably,
which would be very difficult, if not impossible, to measure.

The systematic point here is that model utility depends on the uncertainty trade-offs in
their construction. Uncertainties are built up from collecting data onwards via deciding
what the model should focus on (scale and scope) and boundaries of target systems
to parameter selection and design functionality of the model (how it should work).
When sharing these models with potential users, communicating these trade-offs and
uncertainties is a moral imperative (Kaiser et al., 2022). This is especially important
when using models to predict future events. In very complex systems, or those we do
not fully understand, even a model accurately depicting current processes might not
accurately predict a future outcome. Because ocean BGC processes are diverse and
complex, a model that can reasonably mimic observed dynamics will be complex with
the optimal balance towed toward complexity.

Figure 1.1 Depiction of the O’Neill conjecture; drawn after Turner and Gardner (2015).
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Current ocean BGC models that are used to generate climate projections are associated
with substantial uncertainties. In state-of-the-art Earth System Models (ESMs), the in-
organic chemistry is regulated by well-defined chemical and thermodynamic formulations
(G. Flato et al., 2014). Conversely, the representations of biological processes, such as
marine productions, are highly uncertain (Bopp et al., 2013; Kwiatkowski et al., 2020;
Löptien & Dietze, 2019; Tagliabue et al., 2021). Despite advances in climate science
achieved through global collaborative efforts, future climatic change projections remain
significantly uncertain, particularly in ecosystem projection (Bopp et al., 2013; Laufköt-
ter et al., 2015; Lotze et al., 2019; Rohr et al., 2023). Figure 1.2 shows the decline in
global marine biomass in 2090–2099 relative to 1990–1999 under different climate scenar-
ios coupled with large uncertainties. The latter is derived from a multimodal ensemble;
however, the uncertainty of individual models remains unspecified. The uncertainty of
ocean BGC models becomes more pronounced at regional scales compared to global es-
timates (Tagliabue et al., 2021; Vancoppenolle et al., 2013), posing significant challenges
for BGC models’ application in regional impact studies.

Figure 1.2 Projections of marine biomass changes in future climate scenarios are highly
uncertain. The figure shows the projected mean changes in percent of mag-
nitude and their standard deviations in 2090-2099 relative to 1990-1999 for
net primary production (NPP), phytoplankton, and zooplankton biomass in
four Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and
RCP8.5). Figure from Lotze et al. (2019).

To enhance the meaningful interpretation and application of ocean BGC simulations,
it is imperative to accurately quantify the uncertainty present in the model outputs.
This step is crucial for ensuring accurate and reliable interpretation of scientific find-
ings. Assessment of the current state and development of new strategies for mitigation,
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adaptation, and protection of socio-ecological systems require adequate uncertainty in-
formation of BGC analysis and predictions that provide decision-makers and the public
with the necessary information to assess the impact of policy decisions.

Ocean BGC models are spatially explicit models that describe the transformations of
BGC constituents, including nutrients, functional plankton groups, non-living organic
matter, dissolved gases, and variables of the inorganic carbon system contained in seawa-
ter by ecosystem growth and interactions. The representation of growth and ecosystem
interactions in BGC models is based on, besides the conservation of mass, a large part of
heuristic mathematical descriptions of observed processes, e.g., between prey density of
zooplankton and their grazing rates. Either through choice or necessity, each BGC trans-
formation in the model is described by simplified schemes known as parameterizations
(Hourdin et al., 2017) which require closure parameters.

Ocean BGC models include a wide variety of bio-physical processes – each represented
by a parameterization (Franks, 2009; Geider et al., 1998) that requires at least one, but
typically more, BGC model parameter (see Fennel et al., 2022). Therefore, they involve
many input parameters, usually several times more than the state variables. The values
of these numerous input parameters are not precisely known. The uncertainty of these
parameter values is quite large (see Schartau et al., 2017) and potentially translates into
significant uncertainties in model outputs. To accurately determine the uncertainty in
model predictions, it is essential to quantify the uncertainty related to parameter values
rigorously.

Specifying these parameter values rests upon the assumption that optimal parameter
values exist if the underlying model can adequately replicate the real world, not just for
one particular state but for the full spectrum of system states the model is designed to
explore. In addition, if optimal parameter values exist, they can be determined, and a
means must exist to estimate them. As ocean BGC models are highly uncertain in their
parametrization (see Fennel et al., 2022; Schartau et al., 2017) and the larger portion
of uncertainties in the ocean BGC model outputs source from imprecision parameter
values (Friedrichs et al., 2007; Ilyina et al., 2013; Kwiatkowski & Orr, 2018), we see
the uncertainty quantification of these ocean BGC models as a parameter estimation
problem.

Ocean BGC models can be computationally expensive in terms of the number of pro-
cessors required to run the model, the amount of memory needed to run the model, and
the amount of time necessary to complete a simulation. Due to the increasing availabil-
ity of computing resources, more processes are incorporated into BGC models. Thus,
the state-of-art ocean BGC models have become more and more complex (see Mignot
et al., 2023). However, more complex does not necessarily imply more realistic (T. R.
Anderson, 2005; Friedrichs et al., 2007; Ward et al., 2013) unless the added processes
and related parameters are well known (Denman, 2003).
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In modeling practice, modelers frequently rely on previously published parameter val-
ues. This preference is driven mainly by the substantial time and effort associated with
parameter estimation. The reliance on reference values persists even if the referenced
values were derived from a different model configuration or an entirely different model.
This practice may lead to inappropriate parameter selection and, consequently, signifi-
cant uncertainties within model experiments. Employing fixed parameter values within
model ensembles implies that the resultant uncertainties in model predictions will not
encompass variations from uncertainties in the parameter values themselves. Neglecting
parameter uncertainty consequently underestimates the overall uncertainty inherent in
the model predictions. Therefore, despite the challenges, it was recommended that pa-
rameter estimation should be a routine part of ocean BGC modeling and be documented
as part of the scientific publishing of results (see Schartau et al., 2017).

In this context, to mitigate model uncertainty, sensitivity analysis (SA) plays a pivotal
role. SA aims to determine the relative influence of the inputs on some given outputs
in a complex system, like an ocean BGC model. Indeed, SA can help better understand
the model’s behavior and identify the most influential model parameters that should be
studied carefully. SA helps to focus parameter estimation efforts on these parameters.
However, despite being a critical step for any ocean BGC modeling study, SA is often
overlooked or not reported – the study of Shimoda and Arhonditsis (2016) revealed that
less than half of the BGC modeling studies performed quantitative parameter sensitivity
analyses.

1.3 Parameter estimation
Parameter values can either be rooted in laboratory experiments or require sufficient
observational data to drive the model and evaluate the model simulations. The model
needs to maintain a stable reference state and be able to reproduce climatological phe-
nomena. However, specific models, such as ocean BGC models, may not consistently
achieve this stability. These models are susceptible to drift (A. S. Gupta et al., 2012)
and might display multiple stable states (Hawkins et al., 2011). Additionally, compu-
tational limitations can come into play. It is crucial to ensure that there is capacity to
conduct a vast number of simulations and that these simulations can run long enough
to explore the parameter space thoroughly.

Parameter estimation is often termed as “tuning” (e.g., Hourdin et al., 2017). In gen-
eral, tuning a model involves bringing the model to an equilibrium state under specific
boundary conditions, mainly sourced from observations. Subsequently, these simula-
tions are evaluated against observational datasets, with the extent of deviation between
the model and observations being quantified using a predetermined statistical algorithm.
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However, it is noteworthy that tuning itself can refer to the manual adjustment of pa-
rameter values (e.g., Samuelsen et al., 2015), distinct from parameter estimation. The
approaches used for parameter estimation of ocean BGC models can be grouped into
the following broad categories:

• Bayesian estimation: This approach consists of running the model forward multiple
times with different combinations of parameter values where parameters are treated
as random variables, and values are chosen based on their “posterior probability”.
The parameter can be varied individually or multiple parameters simultaneously
(e.g., Chien et al., 2020; V. Jones et al., 2013; Mattern & Edwards, 2017; Oliver
et al., 2022). However, utilizing Bayesian estimation necessitates knowledge of the
prior distributions of parameter values, which are often unknown. Furthermore, this
approach may demand a large number of ensemble simulations even when dealing
with a relatively low dimensionality parameter space (Guillas et al., 2009), which is
computationally infeasible with global three-dimensional (3–D) simulations.

• Maximum likelihood estimation (MLE): In this approach, the values of parameters
are not treated as random variables but rather as fixed, unknown constants. MLE
seeks the parameter values that maximize the probability of the data given the
parameter set (Casella & Berger, 2002). Therefore, in a non-Bayesian context,
the likelihood is not a conditional probability because one set of random variables
depends on another.

• Data Assimilation (DA): Ocean BGC parameter estimation is greatly aided by
DA (see Ford et al., 2018), which infers parameter values from optimal match be-
tween simulated output and observational data (Asch et al., 2016; Eknes & Evensen,
2002). A variety of DA techniques have been successfully applied to BGC models for
state estimation, parameter estimation, and joint (state and parameter) estimation.
Ensemble-based sequential DA techniques like the Ensemble Kalman Filter (EnKF,
see Vetra-Carvalho et al., 2018, for a review) offer a simple but efficient framework
for joint state and parameter estimation by augmenting them in the “state vector”
and treating them as time-varying (J. L. Anderson, 2001). Note that the sequential
DA is usually also a Bayesian approach. The sequential DA consists of two pri-
mary steps executed consecutively: a forecast and analysis steps. If the sequential
algorithm is accurate, it should approximate the posterior parameter distribution
according to Bayes’ theorem when observational data becomes available.

• Machine learning: Machine learning techniques are designed to identify and quantify
unspecified associations between input and output datasets independent of under-
standing the intrinsic physical processes (Y. Kim & Nakata, 2018). This approach
facilitates the exploration and exploitation of previously unrecognized relationships.
However, it simultaneously raises questions concerning the validity and applicability
of these relationships in states that extend beyond the scope encompassed by the
training datasets.
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Given the potential advantages of DA over the alternatives (see Schartau et al., 2017),
we adopt the approach in this dissertation. DA aids in estimating the values for BGC
parameters that are difficult (if not impossible) to measure. In the broadest sense, DA
techniques can be categorized as either sequential approaches or variational approaches,
each with its distinct advantages and disadvantages. Variational algorithms minimize a
cost function of the weighted sum of squared model-data differences. Sequential methods,
on the other hand, rely on approximating the probability distribution generated from an
ensemble of model initial states at a particular time based on observations of the state
until that time.

The variational DA approaches have been applied to parameter estimation applications
in one-dimensional (1–D) BGC models (Bagniewski et al., 2011; Fiechter et al., 2011,
2013; Friedrichs et al., 2006, 2007; Laiolo et al., 2018; Pelc et al., 2012; Song et al., 2016;
Ward et al., 2010; Xiao & Friedrichs, 2014a, 2014b; Zhao et al., 2005) but have shown
limited success in constraining parameters for 3–D models (see Mattern & Edwards,
2017).

On the other hand, sequential DA approaches applied to BGC models (Ciavatta et al.,
2014, 2016, 2018; Gharamti, Samuelsen, et al., 2017; Gharamti, Tjiputra, et al., 2017;
Goodliff et al., 2019; J. T. Hu et al., 2012; E. M. Jones et al., 2016; Natvik & Evensen,
2003; Nerger & Gregg, 2007, 2008; Pradhan et al., 2019, 2020; Simon et al., 2012,
2015; Triantafyllou et al., 2007) showed promising performance to improve the BGC
simulation. The method also provides an efficient way for parameter estimation by
the state augmentation approach (J. L. Anderson, 2001), where the state variables and
parameters are combined in an augmented state vector, and the parameters are treated as
time-varying variables with small artificial evolution noise. The most common sequential
methods used in these studies are different variants of EnKF.

The values of the parameters depend on the physical and biogeochemical (see Follows
et al., 2007) context, thus varying spatially and temporally, while in practice, they are
used as constant values across space and time in the model simulations. Studies that
estimated BGC parameters in multiple locations (e.g., Friedrichs et al., 2007; Gharamti,
Tjiputra, et al., 2017; Losa et al., 2004; Mamnun et al., 2022; Schartau & Oschlies, 2003)
found different estimated parameter values across locations. Sometimes parameter values
estimated from a 1–D assimilative application are used in a 3–D implementation (e.g.,
McDonald et al., 2012; Oschlies & Schartau, 2005; St-Laurent et al., 2017).

Losa et al. (2004) estimated 6 BGC parameters into a simple box model (0-D) in the
North Atlantic by varying the parameters values in different cells. Tjiputra et al. (2007)
estimated spatially varying BGC parameters using an adjoint method by assimilating
satellite chlorophyll-a concentration. They showed that using estimated spatially vari-
able parameters improved the global simulation of NPP. Doron et al. (2013) estimated
five spatially varying biogeochemical parameters by assimilating ocean color derived
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chlorophyll-a into a 3–D regional model and found better model-data agreement using
spatially varying estimated parameters than the reference simulation using uniform pa-
rameters’ values. They found that using spatially varying parameter values reduced
the RMSD between the model output and the observations compared to the simulation
with uniform parameters. Simon et al. (2015) estimated four spatially varying BGC
parameters in the North Atlantic and the Arctic Ocean and found that regional patterns
of estimated parameters can be associated with Longhurst provinces in regions where
the model performs well but not in the region of model deficit. Simon et al. (2015)
also demonstrated that BGC predictions generally benefit spatially varying parameter
estimation. Xu et al. (2022) estimated spatially varying BGC parameters in the Bohai,
Yellow, and East China Seas assimilating satellite chlorophyll-a data using an adjoint
method and found that variational data assimilation can also determine reasonable pa-
rameter values of ocean BGC model. Using an idealized twin experiment, Singh et al.
(2022) showed that estimating spatially varying ocean BGC parameters is feasible using
ensemble-based data assimilation techniques in global-scale models.

Incorporating temporally varying parameters can significantly improve the agreement
between models and observations (e.g., Mattern et al., 2012, 2014; Roy et al., 2012;
Simon et al., 2015). Simon et al. (2015) specifically identified seasonal patterns in
estimated parameters and advocated using time-dependent parameters in ocean BGC
models. However, they also highlighted that in regions with substantial model errors,
the parameter values either converge to extreme values resulting in larger model errors,
or may diverge toward a high ensemble spread. Singh et al. (2022) also noted that even
in an ideal model setting, certain BGC parameters fail to converge to their true values
when significant model errors occur.

1.4 Objectives of the thesis
The aim of the thesis is to study the uncertainties that arise in ocean BGC models,
and to obtain improved parameters to reduce those uncertainties and improve model
predictions. We utilize the BGC model Regulated Ecosystem Model 2 (REcoM2, Hauck
et al., 2013, see section 2.3 in Chapter 2) in this dissertation. REcoM2 is recognized
as an intermediate-complexity model extensively utilized by the scientific community
to investigate marine BGC dynamics (e.g., Álvarez et al., 2018; Hauck et al., 2020;
Laufkötter et al., 2015; Völker & Tagliabue, 2015). Its judicious balance of complexity
ensures its suitability for representative uncertainty analyses.

The specific objectives of this dissertation are:

1. To identify the model parameters controlling the processes in the biogeochemical
model REcoM2 and are the most influential on the variability of model outputs.
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2. To estimate uncertain parameters of REcoM2 by applying ensemble data assimila-
tion and to assess their uncertainty in BGC simulations.

3. To study the effect of estimated spatially and temporally varying parameters on the
biogeochemical fields and dynamics.

1.5 Outline
This dissertation comprises five distinct yet interrelated chapters. While each chapter
delves into its unique focus, its themes are intertwined and not mutually exclusive. How-
ever, the chapters have been structured to stand alone and can be read independently.
There may be textual overlap, which serves as a bridge to ensure this independent read-
ability. The subsequent chapters are structured as follows.

Chapter 2: Global sensitivity analysis of a one-dimensional ocean biogeochemical model

Chapter 2 presents the results of a global sensitivity analysis (GSA) of the BGC model
REcoM2 with regard to the sensitivity of its input parameters. REcoM2 model involves
many process parameters as inputs which are not precisely known. This study aims to
identify the parameters whose value significantly impacts the uncertainty of model out-
puts of interest. This is achieved by computing variance-based sensitivity indices, which
measure the relative contribution of individual input parameters on the overall variabil-
ity of a chosen model output. This study utilized a 1–D configuration of REcoM2 at
two ocean sites in the North Atlantic (BATS) and the Mediterranean Sea (DYFAMED).
The first and total order Sobol’ indices were estimated for 12 model outputs of interest
commonly considered for the calibration and validation of BGC models.

This study i) offers a comprehensive list of the most important BGC parameters that
should be emphasized in future BGC modeling case studies, parameter estimation and
optimization, and for further development of BGC models and ii) helps us select pa-
rameters for estimation with data assimilation. Likewise, the parameter estimation
experiment study of Chapter 3 provides essential information about error margins and
possible ambiguities of parameter estimates and complements this study.

This chapter reproduces a manuscript (Mamnun et al., 2023) accepted for publication
in the peer-reviewed journal Socio-Environmental Systems Modelling.

Chapter 3: Uncertainties in ocean biogeochemical simulations: Application of ensemble
data assimilation to a one-dimensional model

Chapter 3 reports the uncertainty quantification of model fields and parameters within
a 1–D configuration of the REcoM2 model at two BGC time-series stations – BATS
and DYFAMED. This study utilized the identical model setup of the study in Chapter
2. By assimilating 5-day satellite chlorophyll-a concentration and monthly in situ NPP
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data for three years applying an ensemble Kalman filter, the values of ten preselected
parameters were estimated at both sites. The study further evaluated the effectiveness
of the estimated parameter values on the model’s predictive performance. It is found
that the estimated set of parameters improved the model prediction up to 66% for the
surface chlorophyll-a and 56% for NPP. The chapter presents a detailed assessment of the
differences between the two stations, which exhibit distinct environmental conditions.

This study obtained different parameter values in the two stations. As mentioned above,
BGC parameters can vary substantially across space, depending on physical and ecosys-
tem context. Consequently, regional and global 3–D models should benefit from spatially
varying parameter values. The insights from this study serves as an essential base for
conducting spatially and temporally varying ocean BGC parameter estimation studies
at the global level in Chapter 4.

This chapter replicates the peer-reviewed article Mamnun et al. (2022), published in
Frontiers in Marine Science.

Chapter 4: Estimation of spatially and temporally varying biogeochemical parameters in
a global ocean model

Chapter 4 estimates spatially and temporally varying parameters in a global ocean BGC
model. Nine selected BGC process parameters of REcoM2 are estimated with hetero-
geneity in parameter values across space and over time using ensemble data assimilation
techniques. The parameters were selected based on the GSA presented in 2. The meth-
ods used in the 1–D model configuration, as presented in Chapter 3, were extended in this
study to estimate spatially varying parameter values in a 3–D global ocean model. For
estimating spatially varying parameters, each parameter is defined as a two-dimensional
(2–D) field, which is then updated utilizing the cross covariances with the observation.
In this study, satellite ocean color data are assimilated to simultaneously estimate the
BGC model states and parameters.

This study further assessed the improvement in model predictions with space and time-
dependent parameters compared to the simulation with globally constant parameters
against assimilative and independent data. The model simulations with this set of es-
timated parameters are closer to the observations than the reference simulations using
uniform values of the parameters. The spatial variabilities of the parameter estimates
and the effect of estimated spatially varying parameter values on model fields and dy-
namics are discussed in this chapter.

Chapter 4 draws from a manuscript in preparation titled “Spatially Varying Biogeochem-
ical Parameter Estimation in a Global Ocean Model” to be submitted to a peer-reviewed
journal.

Chapter 5 makes concluding remarks and outlook for future work.
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1.6 Contributions to Co-authored Publications
This dissertation follows the format of a “cumulative thesis,” comprising three co-
authored articles, in addition to introduction and conclusion chapters. The Author
Contributions to these articles are as follow:

Article 1 Mamnun, N., Völker, C., Krumscheid, S., Vrekoussis, M., & Nerger, L. (2023).
Global sensitivity analysis of a one-dimensional ocean biogeochemical model. Socio–
Environmental Systems Modelling, 5, 18613. https://doi.org/10.18174/sesmo.18613.

Mamnun, N., Völker, C., Krumscheid, S., Vrekoussis, M., and Nerger, L. contributed
to conceptualizing and defining experiments. Mamnun, N. carried out the experiments,
analyzed data and wrote the manuscript. Völker, C., Krumscheid, S., Vrekoussis, M.,
and Nerger, L. contributed to improving the manuscript draft. Völker, C., Vrekoussis,
M., and Nerger, L supervised the overall research.

Article 2 Mamnun, N., Völker, C., Vrekoussis, M., & Nerger, L. (2022). Uncertainties
in ocean biogeochemical simulations: Application of ensemble data assimilation to a
one-dimensional model. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.
2022.984236.

Mamnun, N., Völker, C., Vrekoussis, M., and Nerger, L. contributed to conceptualizing
and defining experiments. Mamnun, N. carried out the experiments, analyzed data
and wrote the manuscript. Völker, C., Vrekoussis, M., and Nerger, L. contributed to
improving the manuscript draft. Völker, C., Vrekoussis, M., and Nerger, L supervised
the overall research.

Article 3 Mamnun, N., Völker, C., Vrekoussis, M., & Nerger, L. (in preparation). Spa-
tially Varying Biogeochemical Parameter Estimation in a Global Ocean Model. Journal
of Geophysical Research: Oceans

Mamnun, N., Völker, C., Vrekoussis, M., and Nerger, L. contributed to conceptualizing
and defining experiments. Mamnun, N. carried out the experiments, analyzed data
and wrote the manuscript. Völker, C., Vrekoussis, M., and Nerger, L. contributed to
improving the manuscript draft. Völker, C., Vrekoussis, M., and Nerger, L supervised
the overall research.
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Chapter 2

Global sensitivity analysis of a one-dimensional
ocean biogeochemical model

This chapter presents a varience-based global sensitivity analysis (GSA) of a one-
dimensional ocean biogeochemical (BGC) model, the Regulated Ecosystem Model 2
(REcoM2), regarding important model outputs that are commonly considered for cal-
ibration and validation of BGC models. The GSA is performed by computing Sobol’
sensitivity indices at two ocean biogeochemical time series stations – the Bermuda At-
lantic Time-series Study station in the North Atlantic Ocean and the Dynamique des
Flux Atmosphériques en Méditerranée (DYFAMED) station in the Mediterranean Sea
to identify the parameters whose uncertainty has the largest impact on the uncertainty
of the selected model outputs. These stations with distinct environmental conditions
are chosen to better understand parameter uncertainty under varying environmental
conditions. This study finds that model predictions are most sensitive to photosynthe-
sis parameters, the maximum chlorophyll to nitrogen ratio, the chlorophyll degradation
rate, grazing parameters, and remineralization parameters. The GSA lists relatively
important BGC parameters for data assimilative experiments to estimate optimal pa-
rameter values. This chapter replicates the peer-reviewed manuscript of the same title
accepted for publication in the Socio-Environmental Systems Modelling.

Citation: Mamnun, N., Völker, C., Krumscheid, S., Vrekoussis, M., & Nerger, L. (2023).
Global sensitivity analysis of a one-dimensional ocean biogeochemical model. Socio–
Environmental Systems Modelling, 5, 18613. https://doi.org/10.18174/sesmo.18613.
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Chapter 2. Global Sensitivity Analysis in 1–D Model

abstract
Ocean biogeochemical (BGC) models are a powerful tool for investigating ocean biogeo-
chemistry and the global carbon cycle. The potential benefits emanating from BGC sim-
ulations and predictions are broad, with significant societal impacts from fisheries man-
agement to carbon dioxide removal and policy-making. These models contain numerous
parameters, each coupled with large uncertainties, leading to significant uncertainty in
the model outputs. This study performs a global sensitivity analysis of an ocean BGC
model to identify the uncertain parameters that impact the variability of model outputs
most. The BGC model Regulated Ecosystem Model 2 is used in a one-dimensional con-
figuration at two ocean sites in the North Atlantic (BATS) and the Mediterranean Sea
(DYFAMED). Variance-based Sobol’ indices are computed to identify the most influen-
tial parameters for each site for the quantities of interest (QoIs) commonly considered
for the calibration and validation of BGC models. The most sensitive parameters are
the maximum chlorophyll to nitrogen ratio, chlorophyll degradation rate, zooplankton
grazing and excretion parameters, photosynthesis parameters, and nitrogen and carbon
remineralization rate. Overall, the sensitivities of most QoIs were similar across the two
sites; however, some differences emerged because of different mixed layer depths. The
results suggest that implementing multiple zooplankton function types in BGC models
can improve BGC predictions. Further, explicitly implementing heterotrophic bacteria
in the model can better simulate the carbon export production and CO2 fluxes. The
study offers a comprehensive list of the most important BGC parameters that need to be
quantified for future modeling applications and insights for BGC model developments.

2.1 Introduction
Ocean biogeochemical (BGC) processes play a central role in shaping our climate by
absorbing and sequestering atmospheric carbon dioxide (CO2). Improving our ability to
predict the climate and assess the impacts of climate change on the ecosystems requires
a comprehensive understanding of the ocean BGC processes and how they relate to
the global climate. Numerical Ocean BGC models are, in addition to measurements, the
primary tools for investigating ocean BGC processes and their effects on the carbon cycle
and marine ecosystem functioning. BGC models are essential to earth system models
used to generate climate projections (Orr et al., 2017) and estimate the global carbon
budget (e.g., Hauck et al., 2020). Ocean BGC model outputs also support management
decisions and policy-making, such as end-to-end models of the marine environment and
fisheries (e.g., Fennel et al., 2019; Lavoie et al., 2021) and for assessing the economic
impacts of climate change, for example, on fisheries (Tommasi et al., 2017), thereby
providing information on how to mitigate the future effects. BGC models have been
used to forecast marine ecosystems operationally (e.g., Gutknecht et al., 2019) and
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generate reanalysis datasets (e.g., Carroll et al., 2020).

The evaluation of these models involves a wide variety of complex biological and chemical
processes described by often simplified schemes in models known as parameterizations.
Hence, ocean BGC models include numerous parameters. The values of these parameters
are often poorly constrained by theory or observation and are not precisely known. The
uncertainty of these parameter values is substantial (Schartau et al., 2017) and, in turn,
translates into possibly significant uncertainty in the model outputs. The values of
these parameters are usually constrained only from the limited field data or laboratory
experiments but usually not in the ocean basin of interest. Therefore, modelers must
adjust and tailor model parameters and configuration in each application case (Wagener
& Pianosi, 2019) to calibrate the BGC model using observational data, either manually
or through optimization algorithms that minimize the misfit between simulations and
available data. Focusing on the most influential parameters for the model outputs of
interest is crucial to ensure robust and high-quality model prediction. Quantifying the
uncertainty caused by these parameters is essential to improve the reliability of the
models. Identifying the most relevant input parameters using a computationally cheap
one-dimensional (1–D) setup permits significant computational savings compared to a
three-dimensional (3–D) global-scale one by putting numerical effort into the appropriate
parameters.

Further developments and improvements of these models are essential to advance our
understanding of ocean BGC processes and ensure greater model realism. Sensitivity
analysis (SA) is a well-established tool to identify the most influential model parameters
and critical relationships within a system, to guide model assessments, and navigate
model development (Razavi et al., 2021; Wagener & Pianosi, 2019), especially in a
policy context (Saltelli & Funtowicz, 2014). BGC simulations and predictions are used
to assess the current state and develop new strategies for mitigating, adapting, and
protecting socio-ecological systems. These require adequate uncertainty assessment that
provides decision-makers and the public with the necessary information to assess the
impact of policy decisions. In turn, uncertainty assessment in model predictions and
analysis requires proper uncertainty quantification of model parameters.

SA methods have commonly been divided into two broad categories, namely local sen-
sitivity analysis (LSA), where input factors are varied one-at-a-time (OAT) around the
reference values, and global sensitivity analysis (GSA), which assesses the behavior of
model outputs by perturbing the entire space of input parameters. In developing and
applying the marine BGC models, SA has seldom been performed and reported (e.g.,
Chien et al., 2020; Leles et al., 2018) and is usually not an integral part of a new mod-
eling application (Prieur et al., 2019). The most common approach in BGC modeling
is to conduct a local analysis with a few experiments by varying the parameter values
OAT or simultaneously (e.g., Baklouti et al., 2006; Kriest et al., 2012; Kvale & Meissner,
2017).
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Some studies assessed the adjoint sensitivity (e.g., Fennel et al., 2001; Ji et al., 2015;
Tjiputra & Winguth, 2008) of model output to its inputs by computing gradients. How-
ever, it is important to understand that gradient-based SA is a local method because
the gradient is a local notion computed in the vicinity of the parameter’s current value.
Therefore, this gradient, which is a way to quantify the influence of a parameter on
model outputs, can be quite different depending on the chosen value of the parame-
ters. To address this, Sobol’ and Kucherenko (2009) introduced derivative based global
sensitivity measures (DGSM).

Variance-based sensitivity indicators, in particular so-called Sobol’ indices (Saltelli et al.,
2004; Sobol’, 2001) are widely recognized and popular GSA measures (see Razavi et al.,
2021) which provide comprehensive insight into a system’s behavior by quantifying each
input’s contribution to output variance (first-order indices), including their interactions
(total-order indices), across the entire parameter space (Saltelli et al., 2008). The com-
putation of Sobol’ indices requires a massive number of model evaluations to explore the
entire parameter space, which increases exponentially with the number of parameters
for grid-based approaches.

As indicated above, ocean BGC models involve numerous parameters, usually several
times more than the state variables, ranging from half a hundred to a few hundred.
The high number of parameters in the ocean BGC models make GSA computationally
very expensive. Therefore, a preliminary screening analysis, such as the OAT screening
approach introduced by Morris (1991), is usually carried out to reduce the number of
input dimensions before a GSA based on Monte Carlo sampling is performed (e.g.,
Sankar et al., 2018; Wang et al., 2018). DGSMs, regarded as extensions of the Morris
method (Morris, 1991) and related to Sobol’ total-order indices (Sobol’ & Kucherenko,
2009, 2010), have been widely employed for screening across various fields. However,
the application of DGSM in ocean BGC models remains unexplored. Another way to
limit the number of model evaluations to a few thousand is to implement a gradient-
informed sampling to compute Sobol’ indices (e.g., Andersen et al., 2021; Leles et al.,
2018). Nonetheless, Prieur et al. (2019) showed that implementing a direct Monte Carlo
sampling-based GSA is feasible for ocean BGC models. Some studies used additional
techniques of GSA, such as Gaussian emulators or machine learning approaches (e.g.,
Scott et al., 2011).

The high demand for computational resources of GSA is why LSA is typically preferred
over GSA in ocean BGC models. However, LSA can lead to misleading conclusions and,
thus, to a misunderstanding of the influence of every individual process on the simulation
results (Prieur et al., 2019). On the other hand, most of the GSA studies for ocean
BGC models considered a small set of input parameters due to being computationally
expensive. With the increasing availability of computational resources and advances in
the GSA algorithms, it is now possible for the scientific community to make GSA the
first choice, mainly when dealing with highly parameterized models (Prieur et al., 2019).
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This study uses a high-performance computer to make the GSA of an ocean BGC model
with a large set of parameters feasible. The GSA focused on computing the sensitivity
measures of its input parameters. We consider the BGC model Regulated Ecosystem
Model 2 (REcoM2, Hauck et al., 2013) in a one-dimensional configuration at two ocean
sites for which observational time series data are available: 1) the Bermuda Atlantic
Time-series Study (BATS, Steinberg et al., 2001) in the North Atlantic; and 2) the
DYFAMED station (J. C. Marty, 2002) in the Mediterranean Sea. The GSA aims to
identify the parameters whose uncertainty impacts the variability of BGC model outputs.
We compute variance-based Sobol’ indices (Saltelli et al., 2004; Sobol’, 2001) to assess
the most influential parameters for each location for different model outputs that are
commonly considered for calibration and validation of BGC models.

2.2 Biogeochemical Models
Biogeochemistry deals with the exchange and transformations of chemical matter me-
diated by biological activity within and between reservoirs of the Earth system. In the
marine environment, biogeochemistry focuses on the uptake and cycling of carbon and
nutrients, e.g., nitrogen, phosphorus, silicon, and iron, between the ocean’s organic and
inorganic compartments. Therefore, ocean BGC models represent how these chemical
species are converted from inorganic matter into organic matter and vice-versa. They
are spatially explicit models consisting of components that describe the ocean’s physical
environment (e.g., temperature and salinity), the marine ecosystem (e.g., phytoplank-
ton, zooplankton), the cycling of inorganic and detrital matter, and air-sea interactions
and gas transfer.

Ocean BGC models are generally a set of nonlinear equations of marine physical, bio-
geochemical, and ecological processes (see Fennel et al., 2022; Franks, 2002) that are
translated into computer code, with each equation expressing how each component of
the model (e.g., the biomass of phytoplankton) changes with time due to the hydrody-
namical effects (e.g., ocean circulation and mixing) and to fluxes between the various
components of the marine ecosystem. The common form of these equations is:

∂C

∂t
= dynamics+ SMS(C) (2.1)

Here C represents the concentration of a given biological state variable for instant nu-
trients or the biomass of phytoplankton groups; dynamics includes the advection and
transport processes affecting the concentration of C. The term SMS(C), where SMS
stands for sources minus sinks, represents the changes of C due to biological processes,
air-sea gas exchange, atmospheric deposition, sediment-water exchange, river input, and

19



Chapter 2. Global Sensitivity Analysis in 1–D Model

any transport not arising from ocean circulation, such as the vertical sinking of organic
matter.

The SMS components of BGC models describe how ocean biology converts inorganic
into organic matters and vice-versa. Phytoplankton takes up inorganic elements, i.e.,
carbon, nitrogen, silicate, phosphorus, and iron, as nutrients. They gain energy from
the sunlight using photosynthesis and convert the inorganic elements into organic ones
when they grow. In turn, zooplankton consumes phytoplankton. When phytoplankton
and zooplankton die, they sink as part of the detrital matter to the depth where most
parts are remineralized back to inorganic form, and the rest are consumed by benthos -
organisms that live at or near the bottom of the ocean.

One of the simplest forms of ocean BGC models is the nutrient-phytoplankton-zooplankton-
detritus (NPZD) model (see Franks, 2002). It represents how the elements (commonly
nitrogen) flow from inorganic nutrients (N) to phytoplankton (P), to zooplankton (Z),
how organic matter ends up in a non-living organic pool (detritus, D), and how it is
remineralized back to the inorganic pool (Figure 2.1).

In NPZD models, only nitrogen is typically processed as it is either available as
an inorganic nutrient or present in phytoplankton, zooplankton, or detritus in or-
ganic form. Carbon and phosphorus are assumed to be in the Redfield ratios (Car-
bon:Nitrogen:Phosphorus = 106:16:1, Redfield, 1934) with nitrogen. The NPZD model
describes the concentration of the four variables (N, P, Z, D) in a homogeneous vol-
ume or box by ignoring the physical term dynamics. Consequently, the equations are
simplified to rate equations for the four state variables. Assuming a closed system, the
terms on the right-hand side of the equation reflect transformations between the state
variables.

dN

dt
= remineralization − uptake (2.2)

dP

dt
= uptake − (assimilated grazing1 + sloppy feeding2 + phyto. mortality) (2.3)

dZ

dt
= assimilated grazing − (excretion + zoo. mortality) (2.4)

dD

dt
= sloppy feeding + phyto. mortality + excretion + zoo. mortality − remineralization

(2.5)

The conversions of variables are mass conserving, with gain in one component to an-
other balanced by a corresponding loss. Also, the four equations make a coupled system
of equations because the terms on the right-hand side depend on multiple state vari-
1Marine zooplankton consume a portion of phytoplankton, which refers to assimilated grazing.
2The unconsumed parts are released as dissolved or particulate organic matter, which refers to sloppy
feeding.
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Phytoplankton

Zooplankton

Detritus

Nutrients

Sun Light

Figure 2.1 Schematic of a typical NPZD model with its compartments of nutrients, phy-
toplankton, zooplankton, and detritus. The elements (e.g., N) flow from the
inorganic nutrients to phytoplankton, to zooplankton, produce nonliving or-
ganic matter detritus, and remineralize back to the inorganic pool. Arrows
between compartments indicate the fluxes between them. The dotted arrows
imply boundary interactions with the atmosphere and the ocean floor.

ables. A simplified scheme describes each BGC transformation, referred to as parame-
terization. The parameters are defined using conceptual understanding from laboratory
experiments, field studies, and biological theory (Franks, 2002).

Most current ocean BGC models are extensions of the basic NPZD framework, includ-
ing more complex BGC model components. Additional state variables include multiple
nutrients such as nitrate, ammonium, phosphate, silicate, and dissolved iron; dissolved
organic matters, e.g., dissolved organic carbon and nitrogen; numerous phytoplankton
and zooplankton functional groups; dissolved gases, for example, oxygen; dissolved in-
organic carbon and related properties such as alkalinity.

Ocean BGC models often employ simplified plankton grouping, often referred to as
plankton functional types (PFTs, Baretta et al., 1995), for example, diatoms (silicifying
phytoplankton), diazotrophs (nitrogen fixers), etc. Organism size is frequently used
to differentiate between different PFTs, such as micro-, meso- and macrozooplankton.
Multiple PFTs are included to account for the biogeochemically distinct roles played by
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different functional groups.

Multiple nutrients are needed to address spatial and temporal switches between limiting
nutrients and unique requirements by some functional phytoplankton groups, such as
diatoms. Many ocean BGC models use the standard Redfield ratios of organisms and
fluxes within the marine food web. This simplification allows models to use a single
element (e.g., carbon, nitrogen, or phosphorus) as “currency”, which reduces computa-
tional costs substantially. However, there are significant deviations around this Redfield
stoichiometry (Martiny et al., 2013). A deeper understanding of the drivers of these
deviations has enabled the development of a growing number of models with dynamic
stoichiometry (Daines et al., 2014; Ward et al., 2012). This dynamism comes with a com-
putational cost; each element within each PFT needs a variable rather than tracking a
single nutrient currency for each. Chlorophyll is usually included within the models to
compare the output to satellite ocean color data. Chlorophyll concentrations are often
represented in the model by dynamic chlorophyll to carbon ratios (Geider et al., 1998).
Due to photoacclimation, the chlorophyll to carbon ratio can vary by one order of mag-
nitude (Fennel & Boss, 2003). Many, but not all, BGC models account for variations
in the chlorophyll to carbon ratio using a parameterization of photoacclimation (Geider
et al., 1997).

Including the inorganic carbon cycle is crucial for any ocean BGC model used for climate
studies (Orr et al., 2017), which requires state variables presenting for dissolved inor-
ganic carbon and alkalinity unless alkalinity can be inferred from other state variables,
typically salinity. Including these two properties enables the calculation of other car-
bonate system properties, such as the partial pressure of carbon dioxide (pCO2), which
is required to parameterize air-sea gas exchange and pH. The latter is of considerable
interest, given concerns about ongoing ocean acidification. Another standard state vari-
able in ocean BGC models is oxygen because of its relevance for ecosystem health and
functioning.

Ocean circulation and mixing are essential for redistributing the inorganic and organic
tracers and plankton (phytoplankton and zooplankton). As such, these models must
include a representation of ocean currents, mixing, temperature, salinity, and density.
Vertical mixing is particularly important as it controls the supply of nutrients from deep
waters to the euphotic zone where phytoplankton grow. The transformations between
BGC state variables are connected to their advective and dispersive transport arising
from ocean circulation by partial differential equations of the general form given by
Equation 2.1, which can be rewritten for each state variable C:

∂C

∂t
= −u · ∇3C +∇2 · kH∇2C +

∂

∂z

(
kV

∂C

∂z

)
+ SMS (C) (2.6)

Here, u·∇3C represents the advective transport of the constituent C (u is the fluid veloc-
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ity vector), the terms ∇2 · kH∇2C and ∂
∂z

(
kv

∂C
∂z

)
represent dispersion in the horizontal

and vertical directions, respectively. The parameters kH and kV are the horizontal and
vertical dispersion coefficients, respectively, while ∇3 =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
and ∇2 =

(
∂
∂x ,

∂
∂y

)
are three-dimensional and two-dimensional operators, respectively. The combination of
the first three terms on the right-hand side is referred to simply as dynamics in Equa-
tion 2.1. As physical transport processes operate in all three spatial directions, Equa-
tion 2.6 is three-dimensional in space and includes partial derivatives to time, t, and
the three spatial dimensions, x , y, and z. In addition to the equation of this form for
each BGC state variable, ocean BGC models include partial differential equations for
the physical state variables, including temperature, salinity, and velocity, and param-
eterizations for horizontal and vertical dispersion coefficients, which can vary in space
and time.

Except for a few highly idealized cases — for example, when considering only one spatial
dimension or a circular or rectangular two-dimensional domain with homogeneous initial
conditions and constant forcing — the solution to these equations cannot be obtained
analytically and must be approximated numerically (Glover et al., 2011). The equations
are discretized using finite differences in time with time steps ∆t on a three-dimensional
grid representing the model domain. In the finite-difference methods, the derivatives in
the differential equations are replaced by finite difference approximations; for instance,
∂C
∂t and ∂C

∂x become ∆C
∆t and ∆C

∆x , respectively. Replacing the differential equations leads
to a system of prognostic equations, which include only basic arithmetic operations on
defined quantities that can be carried out on a computer (Glover et al., 2011).

2.2.1 Regulated Ecosystem Model 2

In this study, we consider the BGC model Regulated Ecosystem Model 2 (REcoM2,
Hauck et al., 2013). REcoM2 describes two phytoplankton classes, diatoms, and

nanophytoplankton, with an implicit representation of calcifiers and a generic het-
erotrophic zooplankton class (Figure 2.2). It has one class of organic sinking particles
whose sinking speed increases with depth and a class of organic matters.

REcoM2 simulates 22 passive tracers (see Figure 2.2 and Appendix A.1). The intra-
cellular stoichiometry of carbon, nitrogen, calcite and chlorophyll (Carbon:Nitrogen:
Chlorophyll) pools for nanophytoplankton and carbon, nitrogen, silicate, and chlorophyll
(Carbon:Nitrogen:Silica:Chlorophyll) pools for diatoms are allowed to respond dynam-
ically to environmental conditions following Geider et al. (1998) and Hohn (2009) for
the silicate quota. The intracellular iron pool is a function of the intracellular nitrogen
concentration (fixed Iron:Nitrogen), as iron is physiologically mainly linked to nitrogen
metabolism and the photosynthetic electron transport chain (Behrenfeld & Milligan,
2013; Geider & La Roche, 1994). Dead organic matter is transferred to detritus by
aggregation and grazing by one zooplankton class, and the sinking and advection of de-
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tritus are represented explicitly. The model has two external iron sources: atmospheric
dust deposition and sedimentary input. The iron cycle in the model is driven by bio-
logical uptake, remineralization, and scavenging onto biogenic and lithogenic particles.
There are 68 BGC parameters in REcoM2 which are summarized in Appendix A.2.

Dust CO2

LightFe
Benthos

N, C, Si, CaCO3

Zooplankton
ZooN, ZooC

Nutrients
ALK, DIN, DIC, DSi, DFe

Diss. Organic Matter
DON, DOC

Detritus
DetN, DetC, DetSi, 

DetCaCO3Sinking

Nanophytoplankton
NanoN, NanoC, NanoChl, 

NanoCaCO3
Diatoms

DiaN, DiaC, DiaChl, DiaSi

Growth

Resp.

DO2

Figure 2.2 Schematic diagram of the BGC model REcoM2. The abbreviations are for the
22 passive tracers – dissolved inorganic carbon (DIC) and alkalinity (ALK) for
the carbonate system; the macro-nutrients dissolved inorganic nitrogen (DIN)
and silicic acid (DSi); the trace metal dissolved iron (DFe), nanophytoplank-
ton biomass content of carbon (NanoC), nitrogen (NanoN), calcium carbonate
(NanoCaCO3) and chlorophyll (NanoChl); diatoms biomass content of carbon
(DiaC), nitrogen (DiaN), silica (DiaSi) and chlorophyll (DiaChl); zooplankton
biomass content of carbon (ZooC), nitrogen (ZooN); detritus content of carbon
(DetC), nitrogen (DetN), silicate (DetSi) and calcium carbonate (DetCaCO3);
extra-cellular dissolved organic carbon (DOC) and nitrogen (DON); and dis-
solved oxygen (DO2). Arrows depict source and sink terms.

2.3 Global sensitivity analysis
Many mathematical models involve input parameters that are not precisely known. GSA
aims to identify the parameters whose uncertainty influences the variability of a Quantity
of Interest (QoI) most - for instance, by computing Sobol’ indices. Let our model output
of interest be Y , which is, in abstract terms, a function of the vector of the distributed
parameters, �X = {X1, X2, X3, · · · , Xn} with n = | �X|, i.e.,
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Y = f
(
X⃗
)
= f (X1, X2, X3, · · · , Xn) (2.7)

2.3.1 Uncertainty Propagation

Sources of uncertainties in a mathematical model can be multifold, especially for complex
models like ocean BGC. Since the scope of GSA is to identify which model parameters
are most influential in the variability of QoIs, we project all uncertainties onto the model
input parameters. The main idea is to propagate uncertainties through the model by
perturbing the parameters to determine the QoI’s sensitivities with respect to these
uncertainties. We use the Monte Carlo method, where distribution functions determine
the range and probability of parameter values for uncertain parameters.

Deterministic numerical integration encounters problems if the underlying function has
many variables. The number of function evaluations required increases exponentially
with the number of dimensions, sometimes called the ‘curse of dimensionality.’ The
Monte Carlo method breaks out of this dimensional constraint by solving the definite
multidimensional integral for a QoI probabilistically. Such modification will turn the
inherently deterministic model into a stochastic one.

In order to describe the domain of uncertainty, we define a probability space for the
parameters of X⃗ by assigning suitable probability density functions r(X⃗). The respective
probability functions r(X⃗) enable us to formulate the expected value of Y , E[Y ] which
can be written mathematically as:

E[Y ] ≡
∫
Ωn

f
(
X⃗
)
r
(
X⃗
)
dX⃗ (2.8)

where Ωn ⊆ Rn is the parameter domain in the n–dimensional hypercube. However,
without loss of generality we assume that Ωn ⊆ [0, 1]n instead of Rn since all parameters
can be, in theory, mapped to the n-dimensional unit hypercube thanks to the inverse
transformation method.

2.3.2 Derivative-based Global Sensitivity Measure (DGSM)

DGSM is a model independent GSA approach that examines the relative influence of
different model parameters on a given QoI by calculating the expected value of the square
of the derivative of the function f with respect to that parameter.

Let f : Rn → R and denoted by ∂f(X⃗)
∂Xi

its partial derivative with respect to the input
parameter Xi evaluated at X⃗ = (X1, X2, · · · , Xn)

T ∈ Rn. The DGSM, as defined by
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Sobol’ and Kucherenko (2009), with respect to the i-th input can be written as

DGSMi ≡ E
(

∂f

∂Xi

(
X⃗
))2

=

∫ (
∂f

∂Xi

(
X⃗
))2

r
(
X⃗
)
dX⃗ (2.9)

Here, E denotes the expected value of the squared partial derivative with respect to the
input Xi and r(X⃗) is the probability density functions of X⃗.

The principle underlying this approach is that the parameters that cause larger variations
in the model output will have larger derivatives, and hence, will have larger DGSM
values. Therefore, the DGSM value provides an indication of the relative influence of
the input parameters on the output.

For simple and differentiable models the derivative may be directly calculated using cal-
culus. However, for more complex models, particularly those involving non-differentiable
functions, or many input parameters like ocean BGC, one needs to resort to numerical
methods to approximate the derivative. The most common approach is the finite dif-
ference method, which involves calculating the change in the model output for a small
perturbation in the parameter of interest:

df

dXi
≈

f (X1, · · · , Xi, Xi +∆Xi, · · · , Xn)− f (X1, · · · , Xi, Xi −∆Xi, · · · , Xn)

2∆Xi
(2.10)

where, ∆Xi is a small increment to the parameter Xi while the other input parameters
remain unchanged.

2.3.3 Variance-based sensitivity measures

Since we treat the input parameters X⃗ = {X1, X2, · · · , Xn} as random variables, the
model response Y is turned into stochastic due to the uncertainty in X⃗, although the
integral is deterministic. The overall uncertainty in the sense of variability (or spread)
in Y caused by X⃗ is the variance of Y , V ar[Y ]. We are interested in variance-based
sensitivity measures that quantify how much of V ar[Y ] can be attributed to each Xi,
for i ∈ {1, 2, · · · , n}.

The Sobol’ indices (Sobol, 1993) were first introduced to measure the sensitivity of the
output to each of the inputs Xi. Under the assumption of independent inputs, V ar[Y ]

is decomposed as a sum of variance components attributable to each Xi. Homma and
Saltelli (1996) define the first-order Sobol’ index, Si of Xi as

Si ≡ V ar [E [Y |Xi]] = V ar [Y ]− E [V ar [Y |Xi]] (2.11)

By definition, Si leaves out the variability of Y caused by interactions of Xi with other
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inputs. The right-hand side of Equation 2.11 can be interpreted as the expected reduc-
tion in V ar[Y ] when we fix the value of Xi to a constant. To complement the first-order
Sobol’ index (Homma & Saltelli, 1996) define the total-order Sobol’ index Ti of Xi as

Ti ≡ V ar [Y ]− V ar [E [Y |X∼i]] = E [V ar [Y |X∼i]] (2.12)

where X∼i denotes the vector of all input parameters X⃗ except Xi. Here, Ti is the
expected variance that remains in Y when the values of every parameter except Xi

could be fixed to a constant.

These two Sobol’ indices are widely used and are a robust measure of parameter sensi-
tivity. The first- and total-order sensitivity indices can be related to the objectives of
GSA (Saltelli et al., 2004, 2008). The first-order Sobol’ index, also known as the main
effect (Homma & Saltelli, 1996), tells us how much variance of model output Y , V ar[Y ],
can be reduced when we fix the respective parameter. The sum of the first-order Sobol’
indices can not exceed 1 (Glen & Isaacs, 2012). Therefore, in the case of a large set of
input parameters, the first-order Sobol’ indices of many input parameters are close to 0,
and the corresponding parameters have low main effects. The main effects or total-order
Sobol’ indices are relevant to parameter prioritization in identifying the most influential
parameter since fixing a parameter to a constant with the highest index value would,
on average, lead to the most significant reduction in the output variation. However, a
low first-order Sobol’ sensitivity index value does not imply that the model output is
independent of the input parameter Xi as it does not capture the interaction with other
parameters (Plischke et al., 2013; Saltelli et al., 2008).

The total-order Sobol’ indices, also known as the total effects (Homma & Saltelli, 1996),
provide us with the sensitivity due to interactions among a given parameter Xi and all
other parameters. The total-order index is relevant in identifying the least influential
parameters since fixing any parameter with a minimal total effect would not signifi-
cantly reduce output variation. Therefore, using the total-order Sobol’ index to identify
which parameter can be excluded for surrogate modeling would be more exact, though
computationally expensive.

GSA sometimes includes a screening step to reduce the computational burden, as Saltelli
et al. (2008) recommended. The screening step aims to identify all non-influential pa-
rameters conditional on the chosen QoI and concentrate the detailed GSA on influential
parameters. We also applied this approach in this study. After screening, we deal with
uncertainty propagation, where some values of X⃗ are considered to be uncertain while
others are not. We thus split the input into a vector χ⃗ of undisturbed parameters and
a vector x⃗ of parameters screened as uncertain, i.e., X⃗ = (χ⃗, x⃗), which enable us to
reformulate E[Y ] with regard to X⃗:

27



Chapter 2. Global Sensitivity Analysis in 1–D Model

E [f (χ⃗, x⃗)] ≡
∫
Ωd

f (χ⃗, x⃗) r (x⃗) dx⃗ (2.13)

in contrast to Equation 2.8 we integrate over the function of vector x⃗ = (x1, x2, · · · , xd).
The integral bounds are, therefore, only d–dimensional here.

2.3.4 Computing of Sobol’ indices

For simple models, SA can be done analytically by directly computing the first- and
total-order effects according to Equations 2.11 and 2.12. However, this is generally pro-
hibitive for complex models like ocean BGC. In those cases, one evaluates the model with
perturbed input parameter values and then uses the resulting output values to estimate
sensitivity indices of interest using suitable sample averages. Many different estimation
procedures of the Sobol’ indices have been proposed and studied. However, the tra-
ditional method has two big drawbacks. First, it relies on a particular experimental
design that may be unavailable in practice. Second, its computational cost may be pro-
hibitive when estimating several indices. Naturally, the cost of an estimator depends on
the cost of each evaluation of the computational model and the number of evaluations.
For the traditional estimator, the number of model calls for all the first-order Sobol’
indices grows linearly with the number of input parameters. For most of the traditional
estimators, the number of required model evaluations is (n + 2) × N , where n is the
number of input parameters and N is the sample size (i.e., the number of perturbed
input parameter replica).

In recent years a few estimators have been developed to estimate the first-order global
sensitivity indices with only N number of model evaluations, for example, the random
balance designs method (Tarantola et al., 2006) or double loop reordering approaches
proposed by Kucherenko and Song (2017). Gamboa et al. (2022) presented an estimator
based on rank statistics using an empirical correlation coefficient introduced by Chat-
terjee (2020), which can estimate the first-order Sobol’ indices with a unique N -sample,
thus, N model evaluations. We applied the estimator developed by Gamboa et al. (2022)
to compute first-order Sobol’ indices in this study. For total-order Sobol’ indices, we
utilized the nearest neighbor search proposed in Broto et al. (2020), which needs only
N model evaluations.

2.3.5 Implementation in this study

In this study, we used a one-dimensional (1–D) coupled hydrodynamic-biogeochemical
model. In the coupled model, the Massachusetts Institute of Technology General Cir-
culation Model (MITgcm, Marshall, Adcroft, et al., 1997) simulates ocean dynamics
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and tracer transport, while REcoM2 (see Section 2.2.1) handles ocean BGC processes
and transformation. MITgcm is a finite volume, general circulation model with a non-
hydrostatic capability that allows the model to be used for describing small-scale to
global-scale processes. REcoM2 is coupled with MITgcm as a combined model system.

We used the identical model set-up of Mamnun et al. (2022). A 1–D configuration of the
coupled MITgcm-REcoM2 was set up at two ocean sites, BATS in the North Atlantic
Ocean and DYFAMED in the Mediterranean Sea, for which observational time series
data are available. Both stations are in an oligotrophic environment, i.e., exhibiting low
primary production.

The 1–D water column model consists of 30 vertical layers. The vertical grid intervals
increase as the depth increases, starting at 10 meters near the surface and reaching 100
meters near the lowermost layer, encompassing a total model depth of 1188 meters. Since
we focus on ecosystem processes within the euphotic zone and their connection to vertical
nutrient transport from the mesopelagic, we have restricted our model configuration to
slightly over the upper 1000 meters, ensuring ample distance from the seabed at both
sites. The model time step was 1 hour (3600 seconds).

The model temperature, salinity, DO2, DIN, and DSi fields were initialized with in situ
bottle data. We obtained in situ data for BATS from its website (https://bats.bios.edu/)
and for DYFAMED from Coppola et al. (2021). We initialized the ALK and DIC fields
of the model from the mapped climatology of the GLobal Ocean Data Analysis Project
(GLODAPv2, Lauvset et al., 2016) at both sites, and DFe with data from the U.S.
GEOTRACES North Atlantic Transect (GA-03, Boyle et al., 2015) at BATS and from
the data reported in Guieu and Blain (2013) at DYFAMED. We initialized all other pas-
sive tracers with small uniform values. We force the model with inter-annually varying
atmospheric forcing data from the Coordinated Ocean Research Experiments version 2
(COREv2, Large & Yeager, 2008) for BATS and ERA5 (Hersbach et al., 2020) single
levels data for DYFAMED. We used the monthly dust deposition field from the present-
day simulation of Albani et al. (2014) to compute DFe input flux from the atmosphere,
assuming 3.5% iron content in dust particles and 2% solubility.

As mentioned above, REcoM2 includes 68 uncertain input parameters. Our model does
not touch the ocean bottom; therefore, we excluded the five parameters related to the
benthic layer. In REcoM2, the linear slope of Arrhenius function is fixed to 4500, there-
fore, we also excluded this parameter from our analysis. We considered the remaining
62 parameters for the GSA.

The first step to implement a GSA was to propagate uncertainties into the model by
perturbing the input parameters applying the Monte Carlo method. We assume that
each parameter has some predefined reference value. The uncertainties address rela-
tively small deviations. It is plausible to employ a probability density function where
the statistical properties of mean, median, or mode lie close to the reference value and
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where values are more improbable the more they diverge from the reference value. Such
intuition naturally excludes uniform or exponential distributions, for example. A com-
monly used distribution for this purpose is the normal distribution. With a normal
distribution N(1, σ2) for some standard deviation, we would center its bell curve to 1
such that uncertainties are realized by a factor multiplication of the reference value with
a normally distributed variable. However, a normal distribution may not be suitable for
BGC parameters. Campbell (1995) demonstrated that log-normal statistics reasonably
describe many BGC variables (e.g., chlorophyll-a concentrations) in the ocean. There-
fore, a common distribution used for BGC parameters is the log-normal distribution.
Furthermore, BGC parameters are always positive quantities. Utilizing the log-normal
parameter guarantees the positiveness of parameter values. Notably, some BGC param-
eters are ratio of quantities and constrained between 0 and 1, thus assumed to follow a
beta distribution.

The Monte Carlo approach samples points uniformly at random on a unit hypercube
Ωn. In this study, we employ the pseudo-random number generator, random, embedded
in the core Python library (van Rossum & the Python development team, 2022) for
generating random numbers. We transformed the random values onto a probability
density function in the interval [0; 1). For the transformation, we specified a probability
distribution for each input parameter with the following assumption.

1. The uncertainties of the various parameters are independent.
2. The ratio parameters constraining value between 0 and 1 follow a beta distribution.
3. The parameter “reference temperature” follows a normal distribution.
4. Other parameters follow a log-normal distribution.
5. The standard deviation of the distribution is 50% of their reference value.

We used a sample size of one hundred thousand (105). Therefore, the Monte Carlo
method gave 105 sets of parameter values. The sample size 105 was chosen, guided by a
convergence test.

Application of a quasi-Monte Carlo (qMC) method based on low discrepancy sequences
(e.g., Sobol’ sequences) often surpasses the performance of standard Monte Carlo meth-
ods by several orders of magnitude, which manifests a noteworthy decrease in the number
of necessary model evaluations (Kucherenko & Song, 2017; Kucherenko et al., 2011; Ök-
ten & Liu, 2021). However, a preceding study (Thelen, 2021) has demonstrated that
despite the better convergence rate of qMC compared to the standard Monte Carlo, the
qMC based Sobol’ sequences sometimes give negative or unreasonably high values of
Sobol’ indices for REcoM2 model parameters. Although demanding in computation re-
sources, a standard Monte Carlo method-based sampling for GSA has become affordable,
thanks to the advancements of high-performing computers.

The next step was to evaluate the model for each parameter set. We performed model
simulations for ten years (1990–1999) at both stations and saved time-average output
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values every five days. To minimize the effects of model initialization, we excluded the
first five years of simulations as a spin-up period (1990–1994). The output values were
processed across the analysis period of the later five years (1995–1999).

Running the ocean BGC model several thousand times is computationally very costly
despite using a 1–D column model. The high demand for computational resources is
why LSA is typically preferred in practice over GSA for ocean BGC models. For com-
putationally expensive ocean BGC models with many parameters, applying a standard
Monte Carlo method-based sampling for GSA is often not feasible due to the necessity
for a substantial sample size. In this study, we make GSA tractable with a large set of
parameters using a high-performance computer. A single model simulation took around
5 minutes using one processor core. Using 960 cores (10 compute nodes) of the computer
we were able to perform 100,000 simulations in about 9 hours.

We computed Sobol’ indices using the R package sensitivity (Iooss et al., 2022).
Though, the estimator used in this study allows us to compute the total-order Sobol’
indices with N = 105 model evaluations, with all 62 model parameters, the estimator
needs a very large matrix for computing the total-order Sobol’ indices. This makes it
impractical to compute the total-order Sobol’ indices for all 62 parameters, even in a
high-performance computer.

To reduce the computational burden, we carried out a screening step using first-order
Sobol’ indices and DGSM. The screening step aims to identify all influential and non-
influential parameters on the chosen QoIs and concentrate the detailed GSA on influen-
tial parameters Saltelli et al. (2008).

We computed DGSMs utilizing the Python library Sensitivity Analysis Library (SALib,
Herman & Usher, 2017; Iwanaga et al., 2022). We drew samples using the qMC (Sobol’)
sequence combined with the finite difference approach with small increment, as im-
plemented in the SALib for each input parameter. The abovementioned probability
distribution with a 50% standard deviation determined the bounds of parameter values.
The sample size was 1000.

The screening step identified 28 uncertain parameters (see section 4.1) for which we
computed both first- and total-order Sobol’ indices. Note that the screening step is
essential for a traditional method as it reduces the number of input parameters, thus
reducing the requirements of high number N × (n+2) of model runs, where n is number
of input parameters.

2.3.6 Quantities of interest

One defines the QoIs according to the primary scientific objectives of the sensitivity
study. We considered QoIs that are commonly used for the calibration and validation
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of BGC models as our QoIs. GSA applies to scalar output quantities. Therefore, to
apply the GSA method, we reduced the time variations of QoIs to scalar indicators by
time-averaging. The QoIs considered in the study are listed in Table 2.1.

Table 2.1 Quantities of interest chosen for the present study.
QoI Description
SURF_TOTCHL Mean surface total chlorophyll-a
SURF_NANOCHL Mean surface nanophytoplankton chlorophyll-a
SURF_DIACHL Mean surface diatom chlorophyll-a
MBP_TOTCHL Annual peak surface total chlorophyll-a
MBP_NANOCHL Annual peak surface nanophytoplankton chlorophyll-a
MBP_DIACHL Annual peak surface diatom chlorophyll-a
TOTNPP Mean net primary production (NPP)
NANONPP Mean nanophytoplankton NPP
DIANPP Mean of Annual diatom NPP
EXPORTC Annual mean export production of carbon
pCO2 Mean partial pressure of CO2

CO2FLUX Mean surface flux of CO2

2.4 Results
2.4.1 Screening step

In the screening step, we estimated the first-order Sobol’ indices and their 95% confidence
interval for all 62 parameters regarding each QoI at both locations. The first-order Sobol’
indices for mean surface chlorophyll-a at both stations are presented in Figure 2.3A. As
we used a large sample size (N = 105), the 95% confidence intervals are close to zero
and not visible in a plot therefore not shown in Figure 2.3B. A threshold value of 0.02
clearly separates the high and low first-order indices (Figure 2.3A).

Only ten parameters have a first-order index greater than the threshold value of 0.02
against mean surface chlorophyll-a at least one station (Figure 2.3A). We obtained sim-
ilar results for the other QoIs (see Appendix A.3). 26 model parameters have a first
Sobol’ index greater than 0.02 for at least one of the QoIs and for at least one station.

However, employing first-order Sobol’ indices to screen out non-influential parameters
has certain limitations. Specifically, it can result in erroneous conclusions (Sobol’ et al.,
2007) as the first-order index of a parameter does not account for its interaction with
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other parameters. A parameter with a negligible estimated first-order Sobol’ index may
still have a high total-order index due to significant interactions with other parame-
ters, and thereby the parameter remains influential to the variability of model outputs.
To address this concern, we supplemented the screening using first-order indices with
DGSM, given its global nature and relation with Sobol’ total order indices (Sobol’ &
Kucherenko, 2009). We computed DGSMs and their 95% confidence interval of all 62
parameters for each of the QoIs. Figure 2.3B shows DGSMs and their 95% confidence
interval for mean surface chlorophyll-a (SURF_TOTCHL).
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Figure 2.3 A) First-order Sobol’ indices and B) DGSMs and their 95% confidence inter-
val of 62 parameters for mean surface chlorophyll-a (SURF_TOTCHL). In
both plots, parameters for which the sensitivity measures are greater than the
threshold value at both stations are written in red, at only BATS in black,
and at only DYFAMED in blue. The x-axis labels are the serial number of
parameters in Appendix A.2.

Similar to Sobol’ first-order indices we can identify a threshold value that clearly sep-
arates the high and low DGSM. In case of DGSM the threshold value is 0.5, much
higher than the one for first-order indices because of their interaction effects. Overall,
the important parameters are the same except for nitrogen uptake ratio (σN

Dia) and the
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minimum cell quota of nitrogen for nanophytoplankton, which have high DGSMs but
low Sobol’ first-order indices at both stations. On the other hand, nanophytoplankton
maximum chlorophyll to nitrogen ratio (qCHL:Nmax

Nano ) has high first-order indices but low
DGSMs.

We applied an approach analogous to the one previously employed for screening parame-
ters through the utilization of Sobol’ first-order indices to DGSMs. Similar to Sobol’ first
order indices only 12 parameters exhibit high DGSM values for SURF_TOTCHL and
can be distinctly separated by a threshold value of 0.5 (see Figure 2.3B). Through the
utilization of DGSM, we shortlisted 26 parameters. It is noteworthy that each approach
shortlisted two uncommon parameters to each other. Figure 2.4 summarizes the number
of QoI for which the estimate of the first-order Sobol’ index and DGSMs exceeded the
threshold value. We merged both approaches and shortlisted 28 parameters based on
the fact that they are influential for at least one chosen QoI at least at one station. The
shortlisted parameters are presented in Table 2.2.

2.4.2 Parameter sensitivity

We computed first- and total-order Sobol’ indices of those 26 influential shortlisted pa-
rameters for each of the QoIs at both locations. The first-order Sobol’ indices of the
shortlisted parameters corroborated with the first-order Sobol’ indices of the screening
step. The relative ranking of the most influential parameters was consistent for all the
QoIs at both locations.

Figure 2.5 shows the total-order Sobol’ indices of the short-listed parameters for mean
surface chlorophyll-a at both stations. The total-order indices are far larger than the first-
order indices. This shows that the parameters contribute to the total variance primarily
through their interactions with other parameters. However, it is not possible to define
a threshold value for the total-order Sobol’ indices. Nonetheless, total-order Sobol’
indices provide us with the rank of the most critical parameters and bring important
information since input parameters with a very low value for both first-order and total-
order Sobol’ index can be fixed to a reference value in a calibration procedure. The
seven most influential parameters for mean surface chlorophyll-a, annual peak surface
chlorophyll-a, mean NPP, mean carbon export production and mean pCO2 with their
ranking according to the first- and total-order Sobol’ indices are presented in Table 2.3
for both stations. Though the ranking order differs in the two locations, the top seven
influential parameters are more or less similar across both stations.

Figure 2.6 shows the first- and total-order Sobol’ indices regarding all of the QoIs for
each of two stations. As total-order indices are large and not on a similar scale across
the two stations, we normalized them for better visibility and comparison; and plotted
the normalized values. Overall, the most sensitive parameters are the maximum chloro-
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Figure 2.4 Number (count) of QoIs (y-axis) for which the estimate of; A) the first-order
index and B) the DGSM exceed a threshold value. Here, for each of the
screening approaches, the parameters whose sensitivity measures are larger
than the threshold for at least one QoI at any one station are plotted and
rest of the parameters whose sensitivity measures stayed within the threshold
value for all QoIs at both locations are not shown. The symbol of uncommon
parameters in each group is written in red.

phyll to nitrogen ratio, chlorophyll degradation rate, zooplankton grazing and excretion
parameters, photosynthesis parameters, and nitrogen and carbon remineralization rate.

For the mean surface chlorophyll-a (SURF_TOTCHL) simulation, the maximum chlorophyll-
a to nitrogen ratio of nanophytoplankton (qCHL:Nmax

Nano ) and two grazing parameters, the
maximum grazing rate (ξ) and grazing efficiency (γ) are the most influential parameters
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Table 2.2 Shortlisted parameters for which the first-order Sobol’ indices and DGSMs are
greater than the threshold values for at least one QoI at any one station.

Parameter Description
KW Light attenuation coefficient
KN

Nano Nanophytoplankton half-saturation constant for nitrogen uptake
KN

Dia Diatom half-saturation constant for nitrogen uptake
σN
Nano Nanophytoplankton nitrogen to carbon uptake ratio

σN
Dia Diatom nitrogen to carbon uptake ratio

V Nmax
Nano Nanophytoplankton maximum nitrogen uptake

αNano Nanophytoplankton initial slope of P-I curve
αDia Diatom initial slope of P-I curve
µmax
Nano Nanophytoplankton maximum photosynthesis rate

µmax
Dia Diatom maximum photosynthesis rate

qN :Cmin
Nano Nanophytoplankton minimum cell quota of nitrogen (N:C)
qN :Cmax
Nano Nanophytoplankton Maximum cell quota of nitrogen (N:C)
qN :Cmax
Dia Diatom Maximum cell quota of nitrogen (N:C)
qCHL:Nmax
Nano Nanophytoplankton maximum of chlorophyll to nitrogen ratio
qCHL:Nmax
Dia Diatom maximum of chlorophyll to nitrogen ratio
ζNNano Nanophytoplankton cost of nitrogen biosynthesis
dCHL
Nano Nanophytoplankton chlorophyll degradation rate

dCHL
Dia Diatom chlorophyll degradation rate

ϵCNano Nanophytoplankton excretion rate of carbon
ϵCDia Diatom excretion rate of carbon
ϵNNano Nanophytoplankton excretion rate of nitrogen
ϵNDia Diatom excretion rate of nitrogen
ξ Maximum grazing rate by zooplankton
γ Grazing efficiency of zooplankton
φ Half-saturation constant for grazing
ϵNHet Zooplankton nitrogen excretion rate
ρPON Particulate organic nitrogen degradation rate of detritus
ρPOC Particulate organic carbon degradation rate of detritus
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Figure 2.5 Total-order Sobol’ indices of the 26 shortlisted parameters regarding mean
surface chlorophyll-a (SURF_TOTCHL). For a description of the parameters,
see Table 2.2.

at both stations (Table 2.3 and Figure 2.6). At DYFAMED, ξ and γ show less sensi-
tivity for first-order Sobol’ indices but are highly influenced by their interactions with
other parameters. Other sensitive parameters at BATS are the zooplankton nitrogen
excretion rate (εNHet), the nanophytoplankton chlorophyll degradation rate (dCHL

Nano), the
half-saturation constant for grazing (ϕ), the nanophytoplankton excretion rate of nitro-
gen (εNNano), the maximum chlorophyll to nitrogen ratio of diatoms (qCHL:Nmax

Dia ), the
initial slope of photosynthesis-irradiance curve of nanoplankton (αNano), diatom chloro-
phyll degradation rate (dCHL

Dia ), and the maximum photosynthesis rate of nanophyto-
plankton (µmax

Nano). These parameters are also sensitive at DYFAMED except for two
diatom-related parameters, dCHL

Nano and dCHL
Dia . In addition, the particulate organic nitro-

gen degradation rate of detritus (ρPON) is also sensitive at DYFAMED (Figure 2.6).

The sensitive parameters for nanophytoplankton surface chlorophyll-a (SURF_NANOCHL)
are similar to SURF_TOTCHL except for diatom-related parameters. From the model
outputs, we found that the diatoms had less than a 10% contribution to the annual
mean surface chlorophyll-a concentration; therefore, it is apparent that the diatom pa-
rameters are not sensitive to SURF_NANOCHL. Similar to SURF_NANOCHL, the
maximum chlorophyll-a to nitrogen ratio of diatom is the most influential parameter
for the diatom surface chlorophyll-a (SURF_DIACHL). However, the other sensitive
parameters for this QoI vary from SURF_TOTCHL and SURF_NANOCHL at both
stations. The grazing parameters show less sensitivity to SURF_DIACHL compared
to SURF_NANOCHL. For SURF_DIACHL, some of the nanophytoplankton parame-
ters e.g., αNano, µmax

Nano, qCHL:Nmax
Nano and qN :Cmax

Nano (nanoplankton maximum cell quota of
nitrogen) are also influential at both locations (Figure 2.6).
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qCHL:Nmax
Nano was the most influential parameter in determining the annual peak surface

chlorophyll-a (MBP_TOTCHL) at both stations with its main- and total-effects. The
other sensitive parameters for MBP_TOTCHL at BATS are qCHL:Nmax

Dia , the grazing
parameters γ, ξ and ϕ, zooplankton excretion parameter ϵNHet, and CHL loss parameter
dCHL
Nano. At DYFAMED, qCHL:Nmax

Dia is not sensitive regarding MBP_TOTCHL. The rem-
ineralization parameter ρPON shows high sensitivity at BATS. In addition to the above-
mentioned parameters αNano, µmax

Nano and qN :Cmax
Nano were sensitive for MBP_TOTCHL at

both stations. The sensitive parameters for the annual peak nanophytoplankton sur-
face chlorophyll-a (MBP_NANOCHL) are analogous to MBP_TOTCHL, except for
the diatom parameters and slight shifts in ranking. For annual peak surface diatom
chlorophyll-a (MBP_DIACHL), two nanophytoplankton parameters, µmax

Nano and αNano

were also sensitive, which highlights the interaction between the two phytoplankton
groups (Figure 2.6). The nanophytoplankton maximum nitrogen uptake (V Nmax

Nano ) shows
sensitivity to MBP_NANOCHL and MBP_TOTCHL when interacting with other pa-
rameters at both locations.

For simulating NPP (totnpp in Table 2.1), the grazing parameters γ, ξ, and φ, pho-
tosynthetic parameter αNano and µmax

Nano, the zooplankton respiration parameters ϵNHet,
the nanophytoplankton excretion rate of carbon (ϵCNano), the light attenuation coeffi-
cient KW , and the cell quota qCHL:Nmax

Nano and qC:Nmax
Nano were sensitive at both locations

(Table 2.3 and Figure 2.6). In addition dCHL
Nano and ρPON were sensitive at DYFAMED.

At BATS, γ and ξ had their highest values for both first- and total-order Sobol’ in-
dices, whereas at DYFAMED, they have the highest values for total-order Sobol’ indices
but relatively lower value for first-order indices. Overall, zooplankton parameters are
more sensitive at BATS compared to DYFAMED. The influential parameters for total
NPP (TOTNPP) and nanophytoplankton NPP (NANONPP) are the same, except for
the ranking difference. Comparably, a higher number of parameters showed sensitiv-
ity for diatom NPP than other quantities of interest at both stations with the initial
slope of photosynthesis–irradiance curve of diatom (αNano), the diatom maximum pho-
tosynthesis rate (µmax

Dia ) and qCHL:Nmax
Dia the most sensitive parameters for diatom NPP

(DIANPP). (V Nmax
Nano ) has a small main effect but a high total effect on NANONPP and

TOTNPP at BATS. Similar effects of nanophytoplankton cost of nitrogen biosynthesis
(ζNNano) were found at DYFAMED.

The remineralization parameters ρPON and ρPOC are the most influential parameters
for the simulation of export production of carbon (EXPORTC) at BATS followed by
the photosynthesis parameter αNano, the cell quota qC:Nmin

Nano , qC:Nmax
Nano and qCHL:Nmax

Nano ,
photosynthesis parameter µmax

Nano and grazing parameter γ. At DYFAMED, ρPON , γ,
qC:Nmin
Nano and ξ are the most influential parameters for export production simulation.

The most influential parameters for the simulation of the partial pressure of carbon
dioxide (pCO2) and surface flux of carbon dioxide (CO2FLUX) are the remineralization
rate of nitrogen ρPON and carbon ρPOC, and the light attenuation coefficient (KW )
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at BATS. At DYFAMED the most influential parameters are ρPON , ρPOC, qC:Nmax
Nano

and the grazing parameter γ.

Table 2.3 Ranking of the seven most influential model parameters on mean sur-
face chlorophyll-a (SURF_TOTCHL), annual peak surface chlorophyll-a
(MBP_TOTCHL), mean NPP (TOTNPP), mean carbon export production
(EXPORTC) and mean pCO2 from the first- and total-order Sobol’ indices.

QoI Rank BATS DYFAMED

first-order total-order first-order total-order

1 γ qCHL:Nmax
Nano qCHL:Nmax

Nano qCHL:Nmax
Nano

2 qCHL:Nmax
Nano γ dCHL

Nano ξ

3 ξ ξ ϵNNano γ

SURF_TOTCHL 4 ϵNHet φ ρPON φ

5 dCHL
Nano ϵNNano ϵNHet ρPON

6 φ ρPON ξ dCHL
Nano

7 ϵNNano αNano γ ϵNNano

1 qCHL:Nmax
Nano qCHL:Nmax

Nano qCHL:Nmax
Nano qCHL:Nmax

Nano

2 γ qCHL:Nmax
Dia ρPON ρPON

3 qCHL:Nmax
Dia ξ dCHL

Nano ξ

MBP_TOTCHL 4 ξ γ αNano dCHL
Nano

5 φ φ φ φ

6 ϵNHet V Nmax
Nano ϵNNano αNano

7 dCHL
Nano ϵNNano γ V Nmax

Nano

1 γ γ αNano ξ

2 ξ ξ ϵCNano γ

3 αNano φ ρPON µmax
Nano

TOTNPP 4 µmax
Nano ϵNHet ξ φ

5 ϵCNano αNano ϵNHet qCHL:Nmax
Nano

6 φ µmax
Nano qCHL:Nmax

Nano αNano

7 ϵNHet V Nmax
Nano γ ζNNano

1 ρPON ρPON ρPON ρPON

2 ρPOC qCHL:Nmax
Nano γ γ
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3 qN :Cmin
Nano ρPOC qN :Cmax

Nano qN :Cmax
Nano

EXPORTC 4 qN :Cmax
Nano µmax

Nano ξ ρPOC

5 qCHL:Nmax
Nano αNano ρPOC σN

Nano

6 µmax
Nano qN :Cmax

Nano ϵNHet ϵNNano

7 γ γ φ ϵNDia

1 ρPOC ρPOC ρPON ρPON

2 γ ρPON ρPOC ρPOC

3 ρPON γ qN :Cmax
Nano qN :Cmax

Nano

pCO2 4 qN :Cmax
Nano φ qN :Cmin

Nano σN
Nano

5 qN :Cmin
Nano αNano γ ϵNNano

6 ξ αDia φ ϵNDia

7 αNano ϵNHet ϵNHet ϵNHet

2.5 Discussion
2.5.1 Parameter sensitivity across locations

We undertook a GSA with variance-based sensitivity methods to analyze the sensitivity
of model outputs in a 1–D configuration of the ocean BGC model MITgcm-REcoM2
for two ocean locations. Overall, the sensitivity responses of most of the QoIs were
similar between the two locations. However, some differences emerged, which can be
attributed to the availability of nutrients and, specifically, continuous upwelling and
strong convective mixing differing mixed layer depth.
Surface chlorophyll-a is often the first choice of model output for calibration and valida-
tion of ocean BGC models, as it can be compared to satellite ocean color products that
are widely available and have good spatial coverage. In REcoM2, chlorophyll-a synthesis
is coupled with nitrogen uptake, with its rate being proportional to nitrogen uptake by
phytoplankton (Hauck et al., 2013). The chlorophyll-a synthesis is represented by the
cell quota, the maximum chlorophyll-a to nitrogen ratio for the respective phytoplank-
ton group (qCHL:Nmax

Nano for nanophytoplankton and qCHL:Nmax
Dia for diatoms). Therefore,

the maximum chlorophyll-a to nitrogen ratios significantly contribute to the variabil-
ity of surface CHL. At both locations, qCHL:Nmax

Nano has the highest value in both first-
and total-order indices. In contrast, qCHL:Nmax

Dia has little influence on the total surface
chlorophyll-a simulations because of low diatom contributions to the annual total phyto-
plankton population in oligotrophic environments. The contribution of diatoms to total
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Figure 2.6 First- and total-order Sobol’ sensitivity indices of the short-listed parameters
regarding all included QoIs at both stations. For better visibility, the total-
order Sobol’ indices were normalized. For a description of QoI and parameters,
see Table 2.1 and Table 2.2, respectively.
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surface chlorophyll-a concentration is generally less than 10% at both stations, which
agrees with data from in situ observations from Steinberg et al. (2001) for BATS and
J.-C. Marty et al. (2008) for DYFAMED.
The annual peak surface chlorophyll-a concentration at BATS is sensitive to qCHL:Nmax

Dia .
Diatom contribution to the total phytoplankton biomass can exceed 30% during the
bloom period at this station (Nelson & Brzezinski, 1997). Albeit their low abundance
and biomass, diatoms grow actively during the spring bloom period at BATS and have
a higher contribution to NPP. REcoM2 chlorophyll-a production is computed as a func-
tion of irradiance and nitrogen uptake. The uptake of nitrogen by the phytoplankton
is converted to chlorophyll-a using the parameters maximum chlorophyll to nitrogen
ratio (qCHL:Nmax

Nano and qCHL:Nmax
Dia ) . The highest possible chlorophyll-a synthesis is

down-regulated by this ratio, which depends on photosynthesis and light absorption. It
increases under low irradiance and decreases as photosynthesis becomes light-saturated.
Therefore, during the bloom period, when photosynthesis is significant, changes in this
ratio produce a large variability in the chlorophyll-a synthesis. As diatom photosyn-
thesis is high during bloom peak at BATS, changes in qCHL:Nmax

Dia lead to considerable
variability in the chlorophyll-a synthesis. On the other hand, unlike BATS, diatoms are
less abundant during the spring bloom at DYFAMED. REcoM2 underestimates diatom
production at the station, hence, qCHL:Nmax

Dia is not important for the phytoplankton
bloom at DYFAMED in our analysis.
As the chlorophyll-a concentration products derived from satellite ocean color are widely
available, chlorophyll-a is often included in the model as a proxy for living phytoplankton
biomass so that the chlorophyll-a simulation can be used for model validation. Photoin-
duced and microbial processes lessen chlorophyll-a before the phytoplankton are grazed
or die. The overall chlorophyll-a loss, in turn, contributes to phytoplanktonic carbon
loss. Therefore, loss of chlorophyll from functional cells is necessary in REcoM2, and
is parameterized by a fixed chlorophyll degradation rate (dCHL

Nano for nanophytoplankton
and dCHL

Dia for diatom). These parameters are highly influential for the simulation of
surface chlorophyll-a concentration (Figure 2.6), which are difficult to constrain by ob-
servations (Mamnun et al., 2022). They become even more important during low-growth
conditions in winter. The latter is supported by the higher sensitivities computed for the
annual mean surface chlorophyll-a compared to the mean peak surface chlorophyll-a. The
chlorophyll-a loss term, in reality, describes processes in senescent or photo-stressed cells,
thus playing a pivotal role in phytoplankton carbon to chlorophyll ratios (Álvarez et al.,
2018). Our results suggest that replacing the simple chlorophyll degradation model with
a more process-based description of the degradation of photosystem functionality can
lead to improved modeled carbon to chlorophyll ratios and should be pursued further,
as also indicated in Álvarez et al. (2018).
Our study emphasizes the importance of the parameters describing the zooplankton graz-
ing process, such as ξ, γ and φ for BGC simulations (Figure 2.6). Zooplankton grazing
is vital in the ocean food web and biogeochemical cycles (see Steinberg & Landry,
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2017). The grazing parameters in ocean BGC models strongly impact the phytoplank-
ton dynamics and nutrient cycling processes (T. R. Anderson et al., 2013; Karakuş et al.,
2022; Le Quéré et al., 2016). They regulate the phytoplankton biomass in the photic
zone, thus controlling the biological production and the carbon and nutrients uptake by
photosynthesis. Previous sensitivity studies of ocean BGC models (e.g., Bracis et al.,
2020; Chien et al., 2020; Prieur et al., 2019; Tjiputra et al., 2007) indicated that zoo-
plankton grazing parameters are very sensitive BGC parameters for simulated variables
related to phytoplankton dynamics. (Chenillat et al., 2021) showed that small changes
in grazing rate greatly affect the plankton ecosystem model. (Makler-Pick et al., 2011)
performed a GSA study by including three zooplankton groups in a BGC model and
did not find zooplankton grazing parameters as the most influential sloppy feeding and
grazing rate of zooplankton was overall sensitive, though. REcoM2 parameterized only
one zooplankton group to represent the entire zooplankton community and its impact
on the marine ecosystem. As most zooplankton communities vary across space and time,
a single zooplankton group might provide a too limited description of the grazing pro-
cess of an entire ecosystem. Increasing the number of zooplankton groups would likely
weaken the sensitivity of grazing parameters, which suggests that implementing multi-
ple zooplankton function types in BGC models would likely improve chlorophyll-a and
NPP simulation, provided that efforts are invested in estimating parameters character-
izing the grazing in marine ecosystems. It has been shown (Karakuş et al., 2022) that
representing multiple zooplankton groups in an ocean BGC model strongly impacts the
seasonal dynamics of phytoplankton, food web structure, and elemental cycles.
The grazing parameters show stronger sensitivity at BATS compared to DYFAMED. In
addition to being grazed by zooplankton, in REcoM2, phytoplankton mortality is repre-
sented by non-physiological terms such as aggregation. The aggregation is assumed to be
proportional to phytoplankton abundance, becoming more important during the spring
bloom period. In REcoM2, mortality dominates the loss process compared to grazing
in nutrient-abundant areas (Laufkötter et al., 2016). The grazing parameters strongly
influence BGC simulations at BATS because zooplankton consumes most of the primary
production at this location, consistent with in situ measurements reported by Evelyn and
Michael (1998). At BATS, reduced ξ increases phytoplankton biomass in the euphotic
zone, thus increasing nutrient uptake by photosynthesis. As grazing parameters are less
sensitive at DYFAMED compared to BATS, the aggregation parameters should have
some sensitivity (Laufkötter et al., 2016) at DYFAMED. However, our sensitivity analy-
sis shows that aggregation parameters do not have much influence on the phytoplankton
dynamics at DYFAMED. This suggests that the aggregation parameterization does not
properly represent the phytoplankton mortality process at the station. It is likely that
explicitly representing phytoplankton mortality as physiological mortality can improve
the simulation in oligotrophic regions. The effect of grazing parameters at DYFAMED
increases when they interact with other parameters. Increasing influence because of
interaction indicates strong co-dependencies of zooplankton grazing on phytoplankton
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dynamics and nutrient cycling.
The GSA shows that the zooplankton nitrogen excretion rate, ϵNHet is sensitive to BGC
simulations. The rate ϵNHet mainly controls the DON released by zooplankton. In addi-
tion, DON concentration is reduced when ϵNHet is small, reducing the amount of organic
matter that is immediately recycled into nutrients in the euphotic zone. Hence, the
parameter influences the balance between new and regenerated nitrogen, which affects
the BGC cycle. An increase in ϵNHet reduces zooplankton biogenic concentration. It thus
increases the flux of regenerated nitrogen, which leads to an increase in primary produc-
tion, chlorophyll-a concentration and nitrogen assimilation. However, the zooplankton
excretion rate of carbon ϵCHet, did not show sensitivity in our analysis. In the oligotrophic
regions, the zooplankton excretion of carbon regulates primary production by supplying
regenerated nutrients, especially when the zooplankton concentration is high (Popova
et al., 2006). (Druon & Le Fèvre, 1999) found that increasing the zooplankton excretion
rate of carbon in a BGC model could enhance primary productivity. Since ϵCHet impacts
the zooplankton biomass, it would also help control the grazing pressure, hence sloppy
feeding, over a more extended period. Over longer time scales, changes in HetC would
influence regenerated nutrients, which would change photosynthesis and carbon uptake,
but that is not evident in our analysis. One reason is that carbon content loss from zoo-
plankton is dominated by carbon-rich fecal pellets of macrozooplankton (Karakuş et al.,
2022), which our model does not represent explicitly. The representation of macrozoo-
plankton fecal pellets and their contribution to sinking particles are significant in ocean
BGC models (Laufkötter et al., 2016). Our results highlight the critical role of macro-
zooplankton in the carbon and nutrient cycles. Thus, representing macrozooplankton in
the BGC model would improve future projections of carbon cycling.
The photosynthesis parameters maximum growth rate (µmax) and initial slope of
photosynthesis-irradiance curve (α) show sensitivity at both stations. Annual upwelling
and intense convective mixing maintain a seasonal supply of essential nutrients to the
surface for phytoplankton growth at both locations (Sweeney et al. (2003) for BATS;
J.-C. Marty et al. (2008) for DYFAMED). Because of atmospheric dust input, iron avail-
ability does not limit phytoplankton growth either at BATS (Nelson & Brzezinski, 1997)
or at DYFAMED (Mayot et al., 2020). Therefore, the increasing growth rate increases
photosynthesis. However, the GSA suggests that photosynthesis parameters have a low
sensitivity on export production at the two sites investigated here, though these pro-
cesses are essential for DIC in general (Olsen et al., 2008). In our study, the parameters
related to phytoplankton growth had relatively low importance for BGC simulations.
The low sensitivity of phytoplankton growth parameters can be because the model was
implemented in two oligotrophic areas with a fully stratified water column and relatively
low primary production. Therefore, the mass of organic matter exported from the sur-
face to the depth is low. In our simulation, the weak connection between the euphotic
(productive) zone and the lower layers makes the export production less dependent on
phytoplankton growth.
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Our study indicates that the surface CO2 fluxes and pCO2 are mostly sensitive to the
remineralization parameters ρPON and ρPOC , the grazing parameter γ, and cell quota
qN :Cmax
Nano and qN :Cmin

Nano . Remineralization parameters control the dissolved organic matter.
An increase in remineralization rate decreases dissolved organic matter concentration at
the surface and enhances regenerated nutrients, increasing photosynthesis and carbon
uptake. In REcoM2, the remineralization is not regulated by biological processes. It is
likely that implementing heterotrophic bacteria explicitly in the model has the potential
for an improved simulation of export production and CO2 fluxes. Reducing γ would
substantially increase the uptake of atmospheric CO2. The results agree with previous
sensitivity studies, which indicated that the sea-to-air CO2 flux and surface pCO2 are
sensitive to grazing parameters.

2.5.2 First-order vs. total-order Sobol’ indices

Figure 2.7 shows a scatter plot of first-order and total-order indices. The relation be-
tween first-order and total indices is not linear. More precisely, the parameters with a
high first-order Sobol’ index generally have a larger total-order Sobol’ index value than
those with a low first-order Sobol’ index. Nevertheless, this generalization may vary
significantly for some parameters. For example, the maximum growth rate corresponds
to the largest first-order Sobol’ index, which has a total-order index smaller than several
other parameters with much smaller first-order indices at BATS. On the other hand,
some parameters with a small first-order Sobol’ index have a high total-order index.
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Figure 2.7 Scatterplot of first-order (x-axis) and total-order (y-axis) Sobol’ indices of the
short-listed parameters for NPP.

Note that the sum of first-order Sobol’ indices is less than 1 and the sum of total-
order Sobol’ indices equals far more than 1. This indicates that the BGC models are not
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additive models of the form of Equation 2.7. This is due to correlations between different
BGC parameters (Mamnun et al., 2022). Co-dependencies between parameters make
any simple interpretation of Sobol’ indices non-trivial. As mentioned above, computing
total-order Sobol’ indices may not always be affordable, depending on the computational
resources available. However, they bring essential information since input parameters
with a minimal value for their total Sobol’ index can be fixed to a nominal value in a
calibration procedure.
The hypothesis of uncorrelated input parameters is common in GSA regardless of the
method used (see Razavi et al., 2021). This assumption, however, faces challenges in
real-world problems, where it becomes a rare exception to find models without correlated
input parameters, particularly in models representing highly complex systems or systems
with numerous parameters like those used in earth system modeling. The correlation
effect is distinct from the ‘total effect’, which denotes the non-additive influence of indi-
vidual parameters on the QoI (Razavi & Gupta, 2015). The presence of dependent input
parameters might indeed induce errors and bias in the GSA outcomes. Yet, they are used
to identify the most uncertain parameters and provide vital insights that enhance our
understanding of the modeled system which our results also demonstrated. Researchers
in various fields frequently utilize Sobol’ indices in their models, even when dealing with
dependent inputs (e.g., Islam & Karadogan, 2019; Kalra et al., 2017; Prieur et al.,
2019). They recognize, however, that overlooking the correlation effects can introduce
biases into the results of GSA. This understanding underscores the need for careful con-
sideration and potential adjustment when interpreting the outcomes of such analyses.
Recently, some methods have emerged to accommodate correlated inputs, including but
not limited to copula-based techniques (e.g., Kucherenko et al., 2012; Sheikholeslami
et al., 2021) and applications of game-theory concepts (e.g., Iooss & Prieur, 2019; Owen
& Prieur, 2017; Owen et al., 2014). However, these novel methods’ applications are still
on the horizon for ocean BGC models.

2.5.3 Implications of our study

Modelers usually rely on previous SA studies for targeted parameters to be tuned during
calibration for a new modeling application (see Wagener & Pianosi, 2019). However,
most previous SA studies are conducted on a single location, mainly because of computa-
tional constraints. The conventional LSA can result in misleading conclusions and, thus,
a misinterpretation of the influence of process parameters on the critical model outputs
(Prieur et al., 2019). Ocean BGC models contain many parameters, so conducting a
GSA for the output of these models is computationally expensive. Therefore, ocean
BGC modelers prefer the LSA to GSA. With the availability of high-performing com-
puting technologies and recent advances in computation algorithms, BGC researchers
can apply the GSA methods presented in this study with little effort before any new
modeling application. The methods set here can be applied to analyze the sensitivity
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of other ocean BGC model outputs or QoIs (e.g., dissolved oxygen in surface layers) as
well as other locations of the world ocean.
As indicated above, the main aim of GSA is to identify the parameters that have the
most impact on a QoI. Thus, GSA helps prioritize the parameters for estimation with
data assimilation (see Dowd et al., 2014, for a review of data assimilation into ocean
BGC models) which we apply in an ongoing study. In model tuning, it prioritizes the
most influential parameters for the model outputs to focus on optimization efforts, that
minimize the misfit between simulations and available data, on these few parameters.
Before starting with parameter estimation, a preceding GSA could provide helpful in-
formation, e.g., selecting only parameters to which the observed variables are sensitive.
Likewise, an identifiability analysis could complement the SA by furnishing information
on parameter range and possible ambiguities of parameter estimates (Schartau et al.,
2017).
GSA could also serve as an additional tool for model evaluation during the calibration of
an ocean BGC model. It can provide a system-level assessment (e.g., Leles et al., 2018),
assuming that the influential parameters identified by the GSA reflect the most critical
processes of interest. Any dissimilarity between observed data and the outcomes of GSA
in terms of the most significant process parameters would require an examination into
the parameterization and the cause of the discrepancy (see H. V. Gupta & Razavi, 2018)
and thereby help parameter identification in the ocean BGC model. If the discrepancies
come from parameter values, this deserves a new round of calibration. On the other hand,
if the discrepancies do not match the current knowledge of the modeled systems, this
demands investigation of the model structure and parameterization to better reflect the
knowledge of essential processes in the marine ecosystem. For example, at both locations,
the aggregation parameters are not influential for any of the QoIs. REcoM2 describes the
loss process of phytoplankton by grazing and aggregation, where aggregation dominates
grazing (Laufkötter et al., 2016). A recent study by Mamnun et al. (2022) found that
aggregation parameters influence the surface chlorophyll-a concentration at DYFAMED -
an increase in the specific aggregation rate of both phytoplankton and detritus decreases
surface chlorophyll-a concentration significantly. Therefore, the absence of influence
of aggregation parameters does not correspond with current knowledge of the systems
modeled and needs investigations into these parameterizations and maybe changes in
the model structure.

2.6 Conclusion
We performed a GSA of an ocean BGC model concerning the sensitivity of its input pa-
rameters. The GSA aimed to understand which model parameters contribute the most
to the model uncertainty. We consider the BGC model REcoM2 in a one-dimensional
configuration at two ocean sites. We estimated variance-based Sobol’ indices for each
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parameter at both stations. For mean chlorophyll-a simulations, we found that the max-
imum chlorophyll to nitrogen ratio, chlorophyll degradation rate, and parameters related
to zooplankton grazing and excretion were sensitive at both stations. For predictions of
net primary production, the most influential parameters are those related to photosyn-
thesis, zooplankton grazing, and the excretion of organic matter by phytoplankton and
zooplankton. Export production of carbon, pCO2 and surface CO2 flux are sensitive to
mainly the remineralization of nutrients and grazing by zooplankton. The parameters
related to diatoms were not significant because the contribution of the phytoplankton
group to the overall phytoplankton community was low at both locations.
Our results suggest that implementing multiple zooplankton functional types in BGC
models will likely improve chlorophyll-a and NPP prediction, provided that efforts are
invested in estimating parameters characterizing the grazing in marine ecosystems. The
GSA indicates that explicitly representing phytoplankton mortality as physiological mor-
tality, currently not used in REcoM2, can improve simulation in oligotrophic regions.
Our results also indicate that the explicit representation of heterotrophic bacteria in
the model can potentially improve the simulation of carbon export production and CO2
fluxes.
Despite the limitation of the one-dimensional model configuration, our application offers
a comprehensive list of the most important biogeochemical parameters that need to be
quantified for future applications of a global configuration. The insight gained from
the GSA will be broadly applicable in future BGC modeling case studies, parameter
estimation and optimization, and for further development of BGC models. Stakeholders,
policies, and society need reliable information for decision-making, not only in the current
state but also in space and time. This study’s insight will help increase the reliability of
BGC models and predictions to society.
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Chapter 3

Uncertainties in ocean biogeochemical simu-
lations: Application of ensemble data assim-
ilation to a one-dimensional model

In this chapter, an ensemble data assimilation approach is applied to the same one-
dimensional model configuration from Chapter 2 at two ocean cites, BATS in the At-
lantic Ocean and DYFAMED in the Mediterranean Sea, where observational time series
data exist to quantify the uncertainty arising from the parameterization within REcoM2
at these stations. Using the Parallel Data Assimilation Framework – PDAF, an en-
semble Kalman filter is applied to assimilate satellite ocean color data and in situ net
primary production data to estimate ten selected biogeochemical parameters and eight
model state variables. This chapter presents interdependence features of the estimated
parameters in relation to the significant biological processes and delves into the nuanced
differences at the two specified stations, each with its unique environmental conditions.
In general, the estimated parameter values result in improved model prediction and re-
duced prediction uncertainty. The method applied here was successful and served as an
essential base for conducting spatially and temporally varying ocean BGC parameter
estimation studies at the global level. Estimation of spatially and temporally varying
parameter values in a 3–D global ocean setup REcoM2 is presented in Chapter 4.
This chapter is a reproduction of a peer-reviewed journal article with the same title.

Citation: Mamnun, N., Völker, C., Vrekoussis, M., & Nerger, L. (2022). Uncertainties
in ocean biogeochemical simulations: Application of ensemble data assimilation to a
one-dimensional model. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.
2022.984236
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Abstract
Marine biogeochemical (BGC) models are highly uncertain in their parameterization.
The value of the BGC parameters are poorly known and lead to large uncertainties in
the model outputs. This study focuses on the uncertainty quantification of model fields
and parameters within a one-dimensional (1–D) ocean BGC model applying ensemble
data assimilation. We applied an ensemble Kalman filter provided by the Parallel Data
Assimilation Framework (PDAF) into a 1–D vertical configuration of the biogeochem-
ical model Regulated Ecosystem Model 2 (REcoM2) at two BGC time-series stations:
the Bermuda Atlantic Time-series Study (BATS) and the Dynamique des Flux Atmo-
sphériques en Méditerranée (DYFAMED). We assimilated 5-days satellite chlorophyll-a
concentration and monthly in situ net primary production (NPP) data for three years
to jointly estimate ten preselected key biogeochemical parameters and the model state.
The estimated set of parameters resulted in improvements in the model prediction up
to 66% for the surface chlorophyll-a and 56% for NPP. Results show that assimilating
satellite chlorophyll-a concentration data alone degraded the prediction of NPP. Simul-
taneous assimilation of the satellite chlorophyll-a data and in situ NPP data improved
both surface chlorophyll-a and NPP simulations. We found that correlations between
parameters preclude estimating parameters independently. Co-dependencies between
parameters also indicate that there is not a unique set of optimal parameters. Incorpo-
ration of proper uncertainty estimation in BGC predictions, therefore, requires ensemble
simulations with varying parameter values.

3.1 Introduction
Outputs from marine biogeochemical (BGC) models are increasingly used for scientific
purposes (e.g., Carroll et al., 2020; Ciavatta et al., 2016; Goodliff et al., 2019; Pradhan
et al., 2020), environmental management (e.g., Fennel et al., 2019; E. M. Jones et
al., 2016) and to inform policy (Brown & Caldeira, 2017). Including an ocean BGC
component in Earth System Models is essential for climate simulation and prediction
(see G. M. Flato, 2011; Orr et al., 2017). Ocean BCG model outputs and reanalysis
data are key requirements for developing marine environmental applications and services
(Gehlen et al., 2015), monitoring and predicting algal blooms (Flynn & McGillicuddy,
2018) and monitoring the movement of fish populations (Tommasi et al., 2017).
Ocean BGC models are composed of different components of the marine systems, in-
cluding the marine ecosystem (e.g., phytoplankton, zooplankton), physical environment
processes (e.g., ocean circulation and mixing), the cycling of inorganic and detrital mat-
ter, and air-sea interactions and gas transfer. These models aim at replicating the state
and dynamics of the ecosystem components (flow of matter and energy between inor-
ganic nutrients and marine plankton) as close as possible to the real world, or at least
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with reasonable accuracy to generate useful insights into the problem being studied. To
achieve the latter, the model needs to incorporate a sufficiently accurate description of
the representation of the real processes.
The description of growth and ecosystem interactions in BGC models is based, besides
the conservation of mass, largely on heuristic mathematical descriptions of observed
processes, such as the relation between prey density of zooplankton and their grazing
rates. The numerous parameters involved in these descriptions are often taken from
laboratory experiments on single species, while in the model, they are applied in a more
general sense as describing whole classes of organisms. BGC models are thus highly
uncertain regarding these parameters (see Schartau et al., 2017). Uncertainty in the
parameter values translates into uncertainty in the model prediction. Thus, neglecting
parameter uncertainty will result in underestimating the uncertainty in the model out-
puts. Therefore, the parameter uncertainties must be properly quantified to improve
model predictions and the quality of reanalysis data.
Data assimilation (DA) techniques allow us to estimate model parameters and their un-
certainty using observational data (see Wikle and Berliner, 2007). DA combines models
and observations in an effort to obtain an accurate estimation of the state of the mod-
elled system. DA approaches can be categorized as either variational or sequential. Both
have been applied to BGC models for state estimation, parameter optimization and/or
both in a broader sense. Variational algorithms minimize a cost function of the weighted
sum of squared model-data differences. Sequential methods, on the other hand, rely on
approximating the probability distribution generated from an ensemble of model initial
states at a particular time based on observations of the state until that time.
The variational DA approaches have been applied to parameter optimization applications
in one-dimensional (1–D) BGC models (e.g., Friedrichs, 2001; Friedrichs et al., 2006,
2007; Laiolo et al., 2018; Pelc et al., 2012; Song et al., 2016; Xiao & Friedrichs, 2014a,
2014b; Zhao et al., 2005) but have shown limited success in constraining parameters
(see Mattern & Edwards, 2017). Parameter estimation applications of the variational
approach to three-dimensional (3–D) problems have not yet been demonstrated. On the
other hand, sequential DA approaches applied to BGC models (Ciavatta et al., 2014,
2016, 2018; Gharamti, Samuelsen, et al., 2017; Gharamti, Tjiputra, et al., 2017; J. T.
Hu et al., 2012; E. M. Jones et al., 2016; Natvik & Evensen, 2003; Nerger & Gregg,
2007, 2008; Pradhan et al., 2019, 2020; Simon et al., 2012, 2015; Triantafyllou et al.,
2007) showed promising performance to improve the BGC simulation. The method also
provides an efficient way for parameter estimation by the state augmentation approach
(J. L. Anderson, 2001), where the state variables and parameters are combined in an
augmented state vector, and the parameters are treated as time-varying variables with
small artificial evolution noise. The most common sequential methods used in these
studies are different variants of the Ensemble Kalman Filter (EnKF, see Vetra-Carvalho
et al., 2018 for a review) that is also used in this study.
Running a BGC model multiple times over a large 3–D domain for sequential assimilation
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is computationally very expensive. Therefore, often parameter optimization is performed
in a 1–D model and then used in a 3–D model (e.g., Hoshiba et al., 2018; Kane et al.,
2011; McDonald et al., 2012; St-Laurent et al., 2017; Wang et al., 2018). Recently, Singh
et al. (2022) have implemented biogeochemical parameter estimation in a 3–D global
model by assimilating synthetic observations. However, the study could only afford
assimilation of monthly mean data because of the high computational cost.
Fennel et al. (2001) found poor results in a parameter optimization study using data
assimilation to a simplified marine BGC model. They suggested that any parameter
optimization study requires proper uncertainty analysis. Over time, BGC DA has im-
proved through substantial developments of DA techniques, utilization of satellite data
(e.g., ocean color) and deployment of new measurement platforms (e.g., ARGO). Despite
the progress made, most of the BGC DA literature acknowledges that the structure and
equations of BGC models are uncertain, and the quality, sparsity, and relationship be-
tween BGC observations and the BGC model state variables is challenging (see Schartau
et al., 2017). Only a few studies have partially assessed the uncertainties in the BGC
models, including uncertainty in the model parameters and DA itself. The ensemble DA
algorithms can improve model state and parameter estimation with uncertainty quantifi-
cation, as demonstrated in other scientific fields (e.g., L. Y. Hu et al., 2013; Moradkhani
et al., 2005; Pathiraja et al., 2018).
Towards the direction of improving model predictions, this study focuses on the quan-
tification of the uncertainty of model fields and parameters within a 1–D ocean BGC
model. We used ensemble DA as a method of uncertainty quantification applied to the
BGC model Regulated Ecosystem Model 2 (REcoM2, Hauck et al., 2013; Schourup–
Kristensen et al., 2014). The analysis was performed at two BGC time-series stations -
the Bermuda Atlantic Time-series Study (BATS, Steinberg et al., 2001) in the North
Atlantic and the Dynamique des Flux Atmosphériques en Méditerranée (DYFAMED,
J. C. Marty, 2002) at the North-west Mediterranean Sea. We estimated ten selected

BGC parameters controlling the source and sink of phytoplankton and assessed the inter-
dependency of the estimated parameters in these two stations to get insights into BGC
processes. We further assessed how useful the estimated parameters are to improve the
prediction capability of REcoM2.

3.2 Materials and Methods
3.2.1 Model description

The BGC model REcoM2 is a so-called quota model (Droop, 1983). It simulates 22
tracers including, among others, dissolved inorganic carbon and alkalinity for the car-
bonate system, the macro-nutrients dissolved inorganic nitrogen (DIN) and silicic acid,
biomass content of carbon (C), nitrogen (N), silicate (Si), calcium carbonate (CaCO3)
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and chlorophyll-a, and the trace metal iron (Fe) (see Appendix A.1 for a list of all
22 tracers). REcoM2 has two phytoplankton classes, nanophytoplankton, with an im-
plicit representation of calcifiers and diatoms. The intracellular stoichiometry of carbon,
nitrogen, calcite and chlorophyll (C:N:Chl) pools for nanophytoplankton, and carbon,
nitrogen, silicate and chlorophyll (C:N:Si:Chl) pools for diatoms are allowed to respond
dynamically to environmental conditions following Geider et al. (1998) and Hohn (2009)
for the Si quota. The intracellular iron pool is a function of the intracellular nitrogen con-
centration (fixed Fe:N), as iron is physiologically mainly linked to nitrogen metabolism
and the photosynthetic electron transport chain (Geider & La Roche, 1994). Dead or-
ganic matter is transferred to detritus by aggregation and grazing by one zooplankton
class, and the sinking and advection of detritus are represented explicitly. See Figure 2.2
for a schematic of REcoM2 model pathways.
We used the Massachusetts Institute of Technology General Circulation Model (MITgcm,
Marshall, Adcroft, et al., 1997) to simulate ocean circulation and mixing. MITgcm

solves the time-dependent, Boussinesq-approximated Navier-Stokes equations with or
without hydrostatic approximation and conservation equations for salinity and energy.
REcoM2 is coupled with MITgcm online at every time step, set up to 1 hour (3600s).
The total depth of the model setup is 1188 meters. The model has 30 vertical layers.
The vertical grid spacing increases with depth from 10m near the surface to 100m near
the bottom layer. As we are interested in ecosystem processes in the euphotic zone, and
their coupling to vertical nutrient transports from the mesopelagic, we have limited our
model setup to a bit more than the upper 1000 m, well above the sea-floor for both sites.
Thus, the total depth of the model setup is independent of location and bathymetry.
The coupled MITgcm-REcoM2 model is configured in a 1–D vertical configuration at
the geolocations of BATS (31◦40′N, 64◦10′W) located in the subtropical gyre of the
North Atlantic (Sargasso Sea) and DYFAMED (43◦25′N, 7◦52′E) located in the Liguro-
Provencal current of the Ligurian Sea at the north-western Mediterranean Sea. Both
stations have long-term time series records with a wide variety of BGC variables. The
choice of using two different stations in this study is to gain a better insight into the
same BGC processes under different environmental conditions.
BATS and DYFAMED, provide contrasting sampling schemes and environments. At
BATS, the mesoscale eddies are a significant feature in the Sargasso Sea and impart
an additional level of biogeochemical variability (Sweeney et al., 2003). On the other
hand, the biogeochemical variability at DYFAMED is mainly induced by the seasonal
succession of hydrological conditions (de Fommervault et al., 2015). DYFAMED has a
shallower mixed layer compared to BATS in summer and fall (off-peak period) because
it is highly saline (>38 psu) with a very shallow thermocline (J. C. Marty & Chiaverini,
2010). Another distinct feature of DYFAMED is that it receives significant atmospheric
input from the deserts of North Africa and the industrialized countries bordering the
Mediterranean Sea (J. C. Marty, 2002), which allows phytoplankton to grow at the
surface even in the oligotrophic period. As a result of shallower mixed layer depth and
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large atmospheric nutrient deposition, DYFAMED has higher surface chlorophyll-a and
lower vertically integrated net primary production (NPP) during the off-peak period
compared to BATS. Notably, despite being close to the coast, DYFAMED is protected
from lateral inputs by a coastal current, acting as a barrier to exchanges with the coastal
zone.
We initialized the temperature, salinity, dissolved oxygen, nitrate and silicate fields of
the model at both stations with in situ bottle data – obtained for BATS from its website
(BATS Team, Last access: June 2022) and for DYFAMED from Coppola et al. (2021).
The total alkalinity and dissolved inorganic carbon fields at BATS were initialized with
data from the mapped climatology of the GLobal Ocean Data Analysis Project (GLO-
DAPv2, Lauvset et al., 2016). At DYFAMED these fields were initialized from bottle
data (Coppola et al., 2021). The dissolved iron is initialized with data from the U.S.
GEOTRACES North Atlantic Transect (GA-03, Boyle et al., 2015) at BATS and from
the data reported in Guieu and Blain (2013) at DYFAMED. All other passive tracers
were initialized with small uniform values. We use inter-annually varying atmospheric
forcing – the Coordinated Ocean Research Experiments version 2 (COREv2, Large &
Yeager, 2008) for BATS and ERA5 hourly data on single levels (Hersbach et al., 2018;
Hersbach et al., 2020) for DYFAMED. Iron deposition was estimated from the monthly
present-day simulation of Albani et al. (2014) at both stations.
To prevent long-term drifting and to avoid compensating for hydrographic errors caused
by the 1–D setup, which ignores lateral advection, we apply a relaxation of temperature
and salinity at every time step from the surface down to 400 m depth at BATS and from
the surface down to 250 m at DYFAMED. The relaxation depth was determined as no
clear seasonal temperature variability can be observed below this depth according to the
long-term bottle data.
We additionally applied restoring sea surface salinity (SSS) to the monthly climatol-
ogy with a timescale of ten days at BATS and two days at DYFAMED. The monthly
climatology of SSS was calculated from the in situ bottle data at both stations. At DY-
FAMED, while the vertical processes dominate in setting water properties, the lateral
advection still plays a major role (Béthoux et al., 1998). However, the cyclonic circula-
tion of the Ligurian Sea is not represented in the 1–D framework at this site. During the
phase of intense and dry winds associated with surface buoyancy loss, the advection of
homogeneous water columns becomes dominant and drives a doming of isopycnals which
drift away from the 1–D model SSS from its climatology more frequently than BATS.
This drifting of model SSS leads to a deeper mixed layer at DYFAMED in the winter.
This required us to restore SSS more frequently at DYFAMED than BATS.
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3.2.2 Data Assimilation (DA)

3.2.2.1 Observational data

We assimilate two sets of observations: i) satellite chlorophyll-a concentration, and ii)
in situ vertically integrated NPP.
We obtained the satellite chlorophyll-a concentration data from the ESA (European
Space Agency) Ocean Color Climate Change Initiative (OC-CCI, Sathyendranath et al.,
2019) time-series data product. It is a daily merged product of MODIS-Aqua, MERIS,
SeaWiFS, and VIIRS on a sinusoidal grid at 4 km resolution. We downloaded the 5-
days average dataset via FTP from the OC-CCI website (European Space Agency, Last
access: March 2023). We take an area of a one-degree square at each site and average
all available values in the area as the representative data value for the station.
The chlorophyll-a concentrations provided in the OC-CCI dataset are not bias cor-
rected. However, the dataset provides per pixel biases and root mean squared deviation
(RMSD). We calculate the unbiased chlorophyll-a concentration and its variance based
on Appendix A of Ciavatta et al. (2016). The variances were used as observation errors in
the DA. Figure 3.1A shows the average chlorophyll-a concentration (green dots) in 5-day
intervals and its standard deviation as error bars at BATS. From the error bars, large
uncertainty is evident in the data. As the chlorophyll-a concentration is lognormally
distributed (Campbell, 1995), we used logarithmically transformed (log-transformed)
concentrations in the DA implementation.
We obtained the 14C primary production data for BATS from the BATS website (BATS
Team, Last access: June 2022) and for DYFAMED from Coppola et al. (2021). The
methods for the sample collection and the calculation of 14C primary production are
described in the US Joint Global Ocean Flux Study (JGOFS) protocol (JGOFS, 1997;
Laws et al., 2002) for BATS and J.-C. Marty et al. (2008) for DYFAMED. We calculated
the water column integrated NPP in mgC m−2 d−1 from the measurements at individual
depths by trapezoidal integration, assuming that the rate from the surface to the nearest
measure is constant and the rate after 200m is zero (see JGOFS, 1997). Figure 3.1B
shows the integrated NPP at BATS from October 1999 to December 2002. For all DA
runs, we assume a Gaussian error distribution with a relative error of 0.25 for NPP at
both stations.

3.2.2.2 DA method

The DA was performed using the Parallel Data Assimilation Framework (PDAF, Nerger
& Hiller, 2013) – a free and open-source software designed to implement ensemble data
assimilation with existing numerical models. PDAF provides fully implemented and
optimized data assimilation algorithms, in particular, ensemble-based Kalman filters.
We applied the ensemble-based Error-Subspace Transform Kalman Filter (ESTKF,
Nerger et al., 2012b) in this study. The ESTKF is an ensemble square root filter that
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Figure 3.1 Observational data during the study period at BATS. (A) OC-CCI satellite
chlorophyll-a concentration. The green dots depict data values and the red
lines standard deviations. (B) Vertically integrated NPP (green) and assumed
errors (red).

computes the weights for the ensemble transformation directly in the error-subspace
represented by the ensemble.
We used a 108-member ensemble. To make the BGC processes slightly different in each
ensemble member and generate varying model states (ensemble members), we randomly
perturbed ten parameters. The parameters are chosen following earlier studies (e.g.,
Ciavatta et al., 2016; Doron et al., 2013; J. T. Hu et al., 2012; Pradhan et al., 2019,
2020) and model descriptions (e.i., Hauck et al., 2013; Schourup–Kristensen et al., 2014)
that they control the key BGC processes of the model and that their values are poorly
constrained. As we assimilated chlorophyll-a concentration and NPP data, we focused on
the parameters related to phytoplankton production, and to those that directly influence
phytoplankton mortality. Four of the selected parameters are related to phytoplankton
sources, while the remaining six are related to the phytoplankton sinks.
A brief description of the ten selected parameters is provided below. A list of all REcoM2
parameters can be found in the Appendix A.1.
Maximum photosynthesis rate of nanophytoplanktons (µmax

Nano) and diatoms (µmax
Dia ): Phy-

toplankton takes up nutrients from the inorganic nutrient pool and energy from the
sunlight to produce biomass to grow. The process is known as photosynthesis. REcoM2
calculates the C-specific photosynthesis (P ) based on the maximum photosynthesis rate
Pmax which has an intrinsic maximum growth rate of µmax (time−1) and is limited
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(0 < flim < 1) by either physical conditions (e.g., temperature, turbulence) or resources
such as light, nutrients and dissolved inorganic carbon.

Pmax = µmax · fT ·
(
fFe
lim, fN :Cmin

lim , fSi:Cmin
lim

)
(3.1)

where, fT is an Arrhenius function of temperature dependency. fFe
lim, fN :Cmin

lim and
fSi:Cmin
lim are growth-limitation by iron, nitrogen and silicon and are calculated using

the Liebig law of the minimum, in which the most limiting nutrient limits production
(O’Neill et al., 1989).
Initial slope of the photosynthesis-irradiation (P-I) curve of nanophytoplankton (αNano)
and diatoms (αDia): P depends on how much photosynthetically available radiation
(PAR) the cell can harvest. This is controlled by the initial slope of the P-I curve
(α), which represents the photosynthetic efficiency under light levels close to zero and
is obtained by multiplication of the light-harvesting efficiency per chlorophyll with the
intracellular chlorophyll to carbon ratio (qChl:C). α is used to model P as a saturating
function of PAR.

P = Pmax

(
1− exp

(
−α · qChl:C · PAR

Pmax

))
(3.2)

The C-specific photosynthesis rate, P, is calculated for both nanophytoplankton (PNano)
and diatoms PDia) with αNano and αDia, respectively.
Chlorophyll degradation rate of nanophytoplanktons (dCHL

Nano) and diatons (dCHL
Dia ):

Chlorophyll concentrations are used as a proxy for living phytoplankton biomass. Pho-
toinduced and microbial processes can degrade chlorophyll before the phytoplankton dies
or is eaten by the zooplankton. In REcoM2, chlorophyll is degraded with a fixed rate
dCHL which contributes to the overall chlorophyll loss, in turn phytoplanktonic carbon
loss. As phytoplanktonic carbon loss is calculated for both nanoplankton and diatom
REcoM2 uses two chlorophyll degradation rate parameters dCHL

Nano and dCHL
Dia

Maximum grazing rate (ξ ) and grazing efficiency (γ): Zooplanktons consume phyto-
plankton in a process known as grazing. The grazing function describes a rectangular hy-
perbolic relationship between phytoplankton nitrogen (N) abundance, with a sigmoidal
dependency of nutritional intake to resource density with an N-specific maximum grazing
rate (ξ). It depends on temperature following the same relationship as for phytoplankton
growth (fT ). The grazing G on nanophytoplankton and diatoms is defined as:

G = ξ ·
(NNano +N ′

Nano)

φ1 +
(
NDia +N ′

Dia

) · fT ·Nhet (3.3)

N ′
Dia encompasses a preference term for grazing on diatoms, relative to that on nanophy-

toplankton:

N ′
Dia = τ ·

N2
Dia

φ2 +N ′
Dia

(3.4)
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Here, τ is the maximum diatom preference and is smaller than 1, which implies that
zooplankton grazes preferably on nanophytoplankton; the effective grazing preference is
allowed to vary with diatom biomass, with φ2 being the half-saturation parameters for
grazing preference of diatoms. φ2 = 0 implies a constant preference.
The phytoplankton biomass that enters the zooplankton may be incorporated into new
biomass, voided through defecation to Pellets assuming a fixed grazing efficiency (γ)
which determines how much of the grazed phytoplankton is built into heterotrophic
biomass.
Specific aggregation rate of phytoplankton (ΦPhy) and detritus (ΦDet): A non-
physiological mortality term denoted as aggregation loss describes a part from the grazing
loss of phytoplankton to sinking detritus. The removal of material from oceanic surface
waters and its subsequent transport to the ocean interior is driven by the formation and
sinking of particles. However, only larger particles with high settling rates significantly
contribute to the vertical flux reaching the sea floor (Mccave, 1984). The collection of
smaller particles into larger ones is called aggregation. The aggregation rate g is assumed
to be proportional to the abundance of phytoplankton and detritus:

g = ΦPhy ·NNano +ΦPhy ·NDia +ΦDet ·NDet (3.5)

Where the phytoplankton-specific aggregation rate (ΦPhy) and detritus-specific aggre-
gation rate (ΦDet) reflect the roles of phytoplankton and detritus in the aggregation
process. Phytoplankton-specific aggregation rate, ΦPhy is assumed to be the same for
nanoplanktons and diatoms.
We keep the reference values, hereafter referred to as the default values, of the parameters
as used in Hauck et al. (2013). We perturbed the parameters assuming a lognormal
distribution with a relative variance of 0.25 for all the selected parameters. Hence, each
ensemble member was started from the same initial condition but with different values
for the perturbed parameters. The DA process was initialized from the ensemble of
model states at the end of the spin-up period (see section 3.2.2.3).
We estimated eight BGC model state variables, total chlorophyll-a, and vertically inte-
grated NPP using the ESTKF in all DA simulations. The eight model state variables
are:

1. Nanophytoplankton content of carbon
2. Diatom content of carbon
3. Nanophytoplankton content of nitrogen
4. Diatom content of nitrogen
5. Nanophytoplankton calcium carbonate
6. Biogenic silica for diatoms
7. Nanophytoplankton chlorophyll-a
8. Diatom chlorophyll-a

Note that total chlorophyll-a and vertically integrated NPP are diagnostic model vari-
ables. For these two diagnostic variables, the observation operator selects the corre-
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sponding values from the state vector. The eight model state variables are updated
through the ensemble-estimated cross covariances to total chlorophyll-a and vertically
integrated NPP when observations are available. The total chlorophyll-a and the ver-
tically integrated NPP estimated by the DA process are not distributed to the model,
but stored as diagnostic variables.
One issue of parameter estimation through DA is that in the analysis step, the value of
parameters in each ensemble member changes toward the optimal values. As a result, the
ensemble spread decreases, and the parameter ensemble may collapse before an optimal
parameter value is found. To avoid this, we inflated the variance of the parameter
ensemble in every assimilation cycle by 2.56%.

3.2.2.3 DA Experiment

DA experiments were performed from October 1999 to December 2002 for BATS and
from October 1997 to December 2000 for DYFAMED. The difference in the chosen period
was caused by the availability of the in situ bottle NPP data. The model was first run
with 108 ensemble members using the perturbed parameters from January 1990 as a
spin-up for both stations. We conducted three types of DA experiments.

• EXPState_DP – State estimation with the default parameters: We performed state
estimation experiments with the default parameters as the reference simulations.

• EXPJoint_DP – Joint state-parameter estimation: In these experiments, we aug-
mented the state vector by the ten selected BGC parameters and updated them in
each assimilation cycle together with the state variables. Therefore, the selected
parameters vary over time in this experiment.

• EXPState_EP – State estimation with estimated parameters: To assess the effect
of the estimated parameters on model prediction, we performed state estimation
experiments (DA runs for model state) with the estimated parameters.

For each type of experiment, we implemented four simulations: i) Free-run (ensemble run
without DA), ii) satellite chlorophyll-a only assimilation, iii) vertically integrated NPP
only assimilation, and iv) combined assimilation of satellite chlorophyll-a and vertically
integrated NPP. The free-run simulation of EXPJoint_DP is identical to the free-run
simulation of EXPState_DP . Therefore, we did not repeat the free-run simulation in the
EXPState_DP .

3.3 Results
In this section, we first present the results of the joint state-parameter estimation from
the EXPJoint_DP (section 3.3.1), particularly the estimation of ten model parameters.
Then, we assess the performance of the estimated parameters (EXPState_EP ) compared
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to the reference simulations (EXPState_DP ), state estimation with the default parame-
ters) and the prediction capabilities of DA in general for both stations (section 3.3.2).

3.3.1 Joint state-parameter estimation (EXPJoint_DP )

The ensemble evaluation of surface chlorophyll-a concentration and vertically integrated
NPP shows that the free-run with default parameters (EXPJoint_DP ) performs poorly at
both stations (Figure 3.2). At BATS, the free-run overestimates the surface chlorophyll-
a concentration compared to satellite data (Figure 3.2A) and underestimates the NPP
compared to bottle data (Figure 3.2B). The free-run performs better at DYFAMED than
at BATS for surface chlorophyll-a concentration. At DYFAMED, the model produces
realistic surface chlorophyll-a concentrations during the bloom period but overestimates
them during the oligotrophic periods (Figure 3.2C). NPP is overestimated at DYFAMED
for both free-run and combined assimilation of EXPJoint_DP (Figure 3.2D). The simula-
tion with combined assimilation of satellite chlorophyll-a and vertically integrated NPP
of EXPJoint_DP performs better because the filter brought the model state close to the
observations during the first bloom period for both stations.
NPP shows larger discrepancies at BATS. The filter even pushed the NPP simulation
away from the observations at the station to compensate for the correction in the sur-
face chlorophyll-a concentration. In the DA process, satellite chlorophyll-a data had a
stronger influence than the in situ 14C primary production data on the overall change of
the states.

3.3.1.1 Evaluation of parameter estimates

We estimate values of the same ten parameters Section 3.2.2.2 that were perturbed to
generate the ensembles at both stations. The objective was to get an optimized set of
parameters to improve the model prediction, from which we can gain insight into the
interaction between phytoplankton growth and decay. The minimization of the model-
data misfit in the assimilation run compared to the free-run presented above is mostly
due to the simultaneous update of the selected parameters. The value of parameters
obtained at the final DA cycle (time step) is the estimated parameter value. Table 3.1
shows the default values and estimated values at the end of the experiment of the 10
selected parameters for both stations.
The initial slope of the photosynthesis-irradiance (P-I) curve of nanoplankton (αNano),
and diatom (αDia), maximum photosynthesis rate of nanoplankton (µmax

Nano), and max-
imum grazing rate (ξ ) were changed the most at both stations. The maximum pho-
tosynthesis rate of diatoms (µmax

Dia ), nanoplankton chlorophyll degradation rate (dCHL
Nano),

and grazing efficiency (γ) were changed significantly at BATS but not much at DY-
FAMED. The two aggregation parameters, the phytoplankton-specific aggregation rate
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Figure 3.2 The ensemble evaluation of log-transformed surface chlorophyll-a concentra-
tion at (A) BATS and (C) DYFAMED, and NPP at (B) BATS and (D) DY-
FAMED for joint state-parameter estimation (EXPJoint_DP ). The red dashed
lines show ensemble members for the free-run, and the solid red line shows
their mean. Gray dashed lines are ensemble members of the simulation with
combined assimilation of satellite surface chlorophyll-a and in situ NPP data,
and the solid black line is their mean. The green dots represent observations
(satellite data for surface chlorophyll-a and bottle data for NPP).

(ΦPhy) and the detritus-specific aggregation rate (ΦDet) were changed significantly only
at DYFAMED. Significant change refers to more than one-third (36%) of change after
the final DA time step.
The ensemble evaluations of all ten parameters for satellite chlorophyll-a only assimila-
tion and combined assimilation of satellite chlorophyll-a and vertically integrated NPP
resulting from the EXPJoint_DP for both stations are presented in Appendix A.4. Here
we focus on the parameters that changed significantly at one or both stations when
assimilating both datasets in the experiment EXPJoint_DP and examine their temporal
evolution and variability at the two stations.
The evolution of the assimilated values of αNano and µmax

Nano for both stations is shown
in Figure 3.3. At BATS, αNano reached a final value of 0.45 and had much larger
updates (increased more than 200% than its initial value) than at DYFAMED where
the parameter increased 50% from the initial value (Figure 3.3A and C, Table 1). The
large change at BATS is related to the large bias of surface chlorophyll-a compared to
observations (see Figure 3.2). At DYFAMED, on the other hand, the model without DA
represented the surface chlorophyll-a much better (see Figure 3.2). The value of αNano
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Table 3.1 The ten BGC parameters that are estimated in this study: the default and the
estimated values. The estimated values are the parameter values achieved at
the end of the experiment (EXPJoint_DP ).

Parameter Unit Default
Value

Estimated
Value

at BATS

Estimated
Value

at DYFAMED

αNano
mmolC(mgChl)−1

(Wm−2d)−1 0.15 0.45 0.21

αDia
mmolC(mgChl)−1

(Wm−2d)−1 0.19 0.09 0.26

µmax
Nano d−1 3.00 1.98 1.59
µmax
Dia d−1 3.50 0.96 4.10

dCHL
Nano d−1 0.10 0.11 0.10
dCHL
Dia d−1 0.10 0.11 0.10
ξ mmolNm−3d−1 2.40 3.52 3.37
γ dimensionless 0.40 0.91 0.49

ΦPhy (mmolNm−3)−1d−1 0.015 0.013 0.021
ΦDet (mmolNm−3)−1d−1 0.165 0.181 0.23

at DYFAMED was increased from the default value of 0.15 by around 50% in the first
year and stabilized after that for the rest of the assimilation period with a final value of
0.21 (Figures 3.3B and D, Table 1). This change could relate to the overestimation of
surface chlorophyll-a during the off-peak period at this site.
At both stations the reduction of surface chlorophyll-a concentration led to a decrease
in µmax

Nano which is partly compensated by an increase in αNano. The value of µmax
Nano

decreased around one-third after the first spring bloom at BATS (Figure 3.3B). Approx-
imately the same value is reached after the later blooms, while it is slightly higher during
the off-peak periods. At DYFAMED, updates to µmax

Nano occurred only during the second
bloom period with a decrease of around 45% (Figure 3.3D).
The change in αNano and µmax

Nano were induced by the correlation between the observa-
tions and the model resulting from the ensemble. At both stations, αNano is negatively
correlated with surface chlorophyll-a concentration during off-peak periods, while the
correlation coefficient becomes positive at the beginning of the bloom periods (Fig-
ure 3.3A and C, bottom panels). For µmax

Nano the correlation is also positive around the
beginning of blooms. However, it does not show extended periods of negative values
(Figure 3.3B and D, bottom panels). These correlations also denote that a varying de-
pendence between the photosynthesis parameters and the seasonal ecosystem variability
exists. Lower values of correlation coefficients between surface chlorophyll-a concen-
tration and αNano during the bloom period indicate that this parameter is difficult to
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constrain with surface chlorophyll-a and uncertainty increases during a bloom period.

Figure 3.3 Evaluation of αNano for (A) BATS and (C) DYFAMED and µmax
Nano for (B)

BATS and (D) DYFAMED for combined assimilation of satellite surface
chlorophyll-a and in situ NPP simulations of EXPJoint_DP . Top panels show
the ensemble evaluation (gray dashed line) and the associated ensemble means
(black solid line). The default and estimated values are shown as dashed lines
(red for default and blue for estimated). The bottom panels show the correla-
tion of parameter value with the surface chlorophyll-a concentration at each
assimilation cycle.

The loss parameter dCHL
Nano increased by 60% at BATS and decreased by 10% at DY-

FAMED from its initial value at the end of the experiment with a final value of 0.16 d-1
and 0.09 d-1, respectively (Figure 3.4). At BATS, dCHL

Nano first increased by around 80%
after the first bloom period, further increased slightly during the second bloom period,
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but then decreased slightly until the third bloom period (Figure 3.4A). This suggests
high uncertainty of dCHL

Nano at BATS. Similarly, at DYFAMED, the parameter increased
first and then decreased after the second bloom period. This indicates that parameter
values can have large inter-annual variation (Figure 3.4B).
For both stations, the correlation of dCHL

Nanowith surface chlorophyll-a is significant during
the beginning of the bloom and becomes weaker later in the bloom period. One possible
explanation for this weak correlation is that during the bloom period, grazing becomes
prominent for loss of chlorophyll-a thus, the grazing parameters compensate dCHL

Nano. At
BATS, the high variability of the correlation coefficient indicates high uncertainty of the
parameter at the station.

Figure 3.4 Evaluation of dCHL
Nano for (A) BATS and (B) DYFAMED analogous to Fig-

ure 3.3.

For the grazing parameters ξ and γ, Figure 3.5 shows the ensemble members and their
means. The value of ξ is increased from its default value by around 50% in the first
spring bloom at BATS (Figure 3.5A). In contrast, it remained nearly unchanged at DY-
FAMED during the first year but increased by around 40% in the second spring bloom
(Figure 3.5B). This behavior could be related to the higher bias of the free-run simula-
tions (overestimation of surface chlorophyll-a) during the second year at DYFAMED. In
the first year, the bias was compensated by other parameters e.g., αNano and dCHL

Nano.
While at BATS, γ increased by around 125%, at DYFAMED the increase was smaller
which is around 20% (Figure 3.5C and D).γ appears to show a continuously increasing
trend at BATS from the beginning of the second bloom period.
Both grazing parameters showed a similar pattern of correlation with surface chlorophyll-
a. At BATS, we see a positive correlation to the surface chlorophyll-a, mainly during
the off-peak periods (Figure 3.5C). On the contrary, the correlation is mainly positive
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during the bloom periods and negative at the other times of the year at DYFAMED
(Figure 3.5D).

Figure 3.5 Evaluation of ξ for (A) BATS and (C) DYFAMED, and γ for (B) BATS and
(D) DYFAMED analogous to Figure 3.3.

The aggregation parameter ΦPhy decreased slightly at BATS (Figure 3.6A) but increased
at DYFAMED between the first and second spring bloom with a final value of 0.021,
which is about 40% larger than the default value (Figure 3.6B). This change is connected
to a negative correlation between the parameter and chlorophyll-a at the station. At
DYFAMED, ΦPhy is negatively correlated after the first bloom termination to the next
initialization when its values change. From the second bloom the parameter reaches
a stable value and shows only a weak correlation. On the other hand, ΦPhy is not
well correlated with surface chlorophyll-a at BATS, which explains minor changes in
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the parameter in the station (Figure 3.6A). The other aggregation parameter ΦDet also
exhibits a similar pattern as ΦPhy (not shown).

Figure 3.6 Evaluation of ΦPhy for (A) BATS and (B) DYFAMED analogous to Figure 3.3.

3.3.1.2 Correlation among the parameters

To assess how strongly different parameters are correlated, we computed the Pearson
correlation coefficients between each possible pair of parameters over time for both sta-
tions. The correlations are shown in Figure 3.7. Using T-test to determine statistical
significance, there are five parameter pairs at BATS (Figure 3.7A) and three pairs at
DYFAMED (Figure 3.7B) for which it is possible to reject the null hypothesis of no cor-
relation at the p=0.01 probability level. The explanation of the computed relationships
is the following:

• αNano versus µmax
Nano: Increases in αNano mean that less chlorophyll-a is required

to achieve the same primary production while increases in µmax
Nano result in higher

chlorophyll-a production. Therefore, balance among chlorophyll-a concentration
and NPP accounts for the negative relationship between these two photosynthesis
parameters. The correlation at both sites becomes significant after the first year of
parameter estimation, pointing out that the optimal values of these two parameters
depend on each other.

• ξ versus γ: Increases in both grazing parameters ξ and γ reduce the yield of
chlorophyll-a concentration, accounting for the positive relationship. The corre-
lations decreased over time and became insignificant when the value of the param-
eters got optimal. Constraining these two parameters individually may produce
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unrealistic values.
• αNano versus dCHL

Nano: Decreases in αNano increase chlorophyll-a concentration for the
same primary production while increases in dCHL

Nano compensate for this by decrement-
ing chlorophyll-a concentration before decease of the phytoplankton, accounting for
the negative relationship.

• dCHL
Nano versus ξ: Increase in the chlorophyll degradation rate reduces the abundance

of phytoplankton. So, the zooplankton can graze less, which accounts for the nega-
tive relationship.

• dCHL
Nano versus γ: Similar to the previous point, a higher chlorophyll degradation

rate means less phytoplankton abundance for grazing. dCHL
Nano is strongly correlated

with both ξ and γ at BATS only because of the large overestimation of the surface
chlorophyll-a concentration at the station. This large overestimation is not present
at DYFAMED.

• dCHL
Nano versus ΦPhy: Increases in chlorophyll degradation result in decreased aggrega-

tions of senescent cells. Aggregation is a significant pathway by which nanoplankton
contribute to export production in low biomass environments (Jackson et al., 2005).
Therefore, it accounts for negative correlations.

3.3.2 Model performance with estimated parameters

To evaluate the effect of the parameter estimation, we performed state estimation ex-
periments (with perturbed parameters but no parameter estimation) using the default
parameter values (EXPState_DP ) and the estimated parameter values (EXPState_EP ).

3.3.2.1 Surface chlorophyll-a and NPP

The log-transformed surface chlorophyll-a and its uncertainty estimate for both sta-
tions using default and estimated parameters over the study period are presented in
Figures 3.8A and C. Root mean square errors (RMSE) of simulated log-transformed
surface chlorophyll-a against satellite (assimilated) and bottle (independent) data are
summarized in Table 3.2. As seen in both Figures 3.8A and C, the estimated parame-
ters improve the model predictions of surface chlorophyll-a concentration substantially
at both sites. The RMSE of surface chlorophyll-a concentration simulations was reduced
by about 66.67% against satellite data and about 44.78% against bottle data. At DY-
FAMED, RMSE for log-transformed surface chlorophyll-a concentration was reduced by
28.58% and 11.11% against satellite and in situ bottle data, respectively.
The improvements are larger at BATS with a strong reduction of RMSE for log-
transformed surface chlorophyll-a concentration. This large improvement is because the
default parameters perform poorly at BATS. Most of the concentrations from satellite
and bottle data fall below the ensemble from the simulation with default parameters at

67



Chapter 3. Application of ensemble data assimilation to a 1–D model

Figure 3.7 The Pearson correlation coefficients between each pair of the ten biogeochem-
ical parameters at (A) BATS and (B) DYFAMED. The solid lines denote
significantly correlated pairs.

Table 3.2 RMSE of log-transformed surface chlorophyll-a concentration from combined
assimilation of satellite chlorophyll-a and in situ NPP data of EXPState_EP

against satellite and bottle data at both stations.

Variable Experiment
BATS DYFAME

Satellite data Bottle data Satellite data Bottle data

Chl-a EXPState_DP 0.72 0.67 0.28 0.36
EXPState_EP 0.24 0.37 0.20 0.32

NPP EXPState_DP 129.3 248.6 48.5 72.6
EXPState_EP 56.2 129.8 46.9 66.4

Chl-a = Chlorophyll-a
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the station. However, they fall inside the ensemble range when the estimated parameters
are used (Figure 3.8A). At DYFAMED some observations fall outside of the ensemble
for default parameters and remain outside of the ensemble for estimated parameters
(Figure 3.8C). At DYFAMED, satellite data shows brief blooms during autumn, which
the model does not reproduce. A possible explanation can be that the model does
not represent destratification correctly as the 1–D framework does not capture cyclonic
circulation.
The NPP predictions for default (EXPState_DP ) and estimated parameters
(EXPState_EP ) and their uncertainty estimates are shown in Figures 3.8 B and D. We
compare NPP simulations with in situ bottle data (assimilated observation) and monthly
satellite-derived data (independent observation) obtained from the Ocean Productivity
website at the Oregon State University (Ocean Productivity, Last update 2021). The
satellite-derived data is NPP computed using the Carbon, Absorption, and Fluorescence
Euphotic-resolving (CAFE) model (Silsbe et al., 2016) based on SeaWiFS satellite data.
RMSEs of the ensemble mean NPP of combined satellite chlorophyll-a and in situ NPP
assimilation of both EXPState_DP and EXPState_EP against in situ bottle and satellite-
derived data are presented in Table 2. As can be seen, the estimated parameters largely
improve the NPP prediction at BATS and little improvement at DYFAMED. Despite the
improvement, there are still large discrepancies at BATS. The RMSE of NPP simulation
was reduced by 56.5% against satellite data and 47.78% against in situ bottle data at
BATS, and by 3.30% and 8.54% against satellite-derived and bottle data respectively.
At BATS, model simulations agree reasonably with satellite NPP estimations but show
large discrepancies with the bottle data. The concentrations in bottle data are much
higher, particularly during oligotrophic periods. Notably, the bottle data at BATS shows
no apparent seasonality. Due to this behavior, we suspect large uncertainty in the 14C
NPP measurements. At DYFAMED, the improvements are smaller compared to BATS.

3.3.2.2 Phytoplankton phenology indices

To further assess the influence of the estimated parameters, we examine five phytoplank-
ton bloom phenology indices, namely i) initiation, ii) peak time, iii) termination time,
iv) duration, and v) peak value. At both stations, the initiation generally occurs in De-
cember/January (Figure 3.9A and F), bloom peaks mostly 4-6 weeks later (Figure 3.9B
and G), and the termination is in March/April (Figure 3.9C and H). Differences in the
timing of these phenological events between the simulations with default (EXPState_DP )
and estimated parameters (EXPState_EP ) are relatively small, with the observed timing
of these indices falling within the ensemble range.
At BATS, the range for these phenological timings is broader, indicating a large uncer-
tainty of these matrices on the selected BGC parameters, at least the parameters we
selected in this study. At both stations, the model-simulated bloom duration is shorter
than the satellite observation. At BATS, the bloom duration with estimated parame-
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Figure 3.8 Comparison of log-transformed surface chlorophyll-a concentration of com-
bined assimilation of satellite chlorophyll-a and in situ NPP simulations
with default (EXPState_DP ) and estimated parameters (EXPState_EP ) at (A)
BATS and (B) DYFAMED, and of NPP simulations with default and esti-
mated parameters at (C) BATS and (D) DYFAMED. The red line shows the
ensemble mean with default parameters and the blue line is for estimated pa-
rameters. The green dots show satellite data, and the black dots are bottle
data.

ter values falls within the ensemble range for the first and second years (Figure 3.9D).
However, it gets even shorter in the third year. At DYFAMED, bloom durations with
estimated parameter values did not change much compared to default parameter values
(Figure 3.9I). The blooms occur earlier at BATS for EXPState_EP , with its peak con-
centrations being strongly reduced compared to EXPState_DP and coming closer to the
observations (Figure 3.9E). Estimated parameter values had less influence on the peak
concentration at DYFAMED (Figure 3.9J). At DYFAMED, the bloom peaks in both
model and observation have higher chlorophyll-a concentration than at BATS. However,
the bloom duration is rather short compared to BATS.

3.4 Discussions
3.4.1 Parameter estimation

Similar to some earlier studies (e.g., Gharamti, Tjiputra, et al., 2017; Mattern et al.,
2010), our results show that ensemble DA techniques are generally suitable for param-
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Figure 3.9 Phytoplankton phenology metrics (A–E) bloom initiation, peak time, termi-
nation, duration and peak value at BATS and (F–J) = DYFAMED. The
black stars are calculated from satellite data; the boxes show the quartiles of
the ensemble of the combined chlorophyll-a and NPP assimilation, while the
whiskers extend to show the rest of the ensemble members except for points
determined to be “outliers” using the inter-quartile ranges.
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eter estimation in a 1–D ocean BGC model to decrease the model-data misfit. In the
experiments conducted here, a notable reduction of RMSE of surface chlorophyll-a and
NPP was achieved compared to simulations using the default parameters. The default
parameter values used in this study (Table 3.1) have been optimized for a global model
configuration. Therefore, we can expect distinct parameter values as optimal at the two
different sites considering the distinct environmental conditions.
The DA process generally decreased the growth parameters and increased the loss param-
eters to reduce model-data misfit. This behavior corroborates that at the oligotrophic
BATS and DYFAMED sites, the production is less than the global average.
At both stations, the parameters describing nanoplankton dynamics had much larger
adjustments than those for diatoms. This was because of low diatom contributions to
the total phytoplankton population in the oligotrophic environment. At BATS, the
contribution of diatoms to total chlorophyll-a biomass is generally less than 10% (Stein-
berg et al., 2001) and to the annual primary productivity is less than 13% (Nelson &
Brzezinski, 1997). In the annual cycle, the phytoplankton biomass and production at
DYFAMED are dominated by nanoplankton (J.-C. Marty et al., 2008). Even though
diatoms are a small component of the phytoplankton at both sites they grow actively
during the spring bloom period and their abundance increases. Specifically, the diatom
biomass can exceed 25% at both BATS (Nelson & Brzezinski, 1997) and DYFAMED
(Mayot et al., 2020) during the spring bloom. Hence, the changes in diatom parameters
are mainly related to bloom period production.
Changes in the photosynthesis-irradiance parameters α and µmax for both phytoplankton
groups were crucial in reducing the model-data misfits and thus improving the prediction
capability of REcoM2. These parameters express the physiological state of chlorophyll-a
or, more generally, are used to characterize phytoplankton production. Under low light
conditions, photosynthesis is a linear function of irradiance with the initial slope (Mac-
Intyre et al., 2002), whereas, at light saturation, it proceeds at the maximum rate µmax

(Falkowski, 1981). A higher value of α means that under light-limiting conditions less
chlorophyll-a concentration is needed to obtain the same primary production. Therefore,
the model yields enough nanoplankton production with low chlorophyll-a in winter when
light is limiting. On the other hand, decreased µmax leads to less production, when light
is not limiting. αNano changed the most at both stations – increased by 220% at BATS
and 50% at DYFAMED.
At BATS, assimilating in situ NPP data together with satellite chlorophyll-a had a
large influence on changes in these two photosynthesis parameters. Assimilation of only
satellite chlorophyll-a concentration resulted in a value of αNano=0.22 at the station,
which is only about half the value obtained when we assimilate both observation types.
Further µmax

Nano is reduced strongly to about one quarter (µmax
Nano = 0.72) of the default

value at BATS when only the satellite chlorophyll-a is assimilated. At DYFAMED,
on the other hand, assimilation of in situ NPP together with satellite chlorophyll-a
made little difference in the estimate of αNano. Furthermore, assimilation of satellite
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chlorophyll-a did not change the µmax
Nano much at the site.

We found an opposite sign in updating these two photosynthesis parameters for diatoms.
At BATS, αDia decreased by about 52%, while the parameter increased by about 37%
at DYFAMED. Similarly, µmax

Dia decreased around 72% at BATS and increased 17%
at DYFAMED. Both α and µmax vary with temperature, ambient inorganic nutrient
(nitrate and phosphate) concentrations, and phytoplankton functional type. However,
the relations are not linear, and the cause and effects in these relationships are unclear
(Richardson et al., 2016). Diatom-dominated communities exhibit higher α and lower
µmax (Richardson et al., 2016). At DYFAMED, the discrepancies of surface chlorophyll-
a concentration are less during the bloom spring period than the rest of the year. Most
of the adjustment in the states and parameters happens during non-bloom periods when
the diatom abundance is negligible at DYFAMED. On the other hand, most of the filter
updates happen during the bloom period at BATS. This explains the higher value of
αDia and lower value of µmax

Dia at DYFAMED than BATS.
At BATS, satellite chlorophyll-a only assimilation reduces the simulated chlorophyll-a
concentration to minimize model data misfit, which also reduces phytoplankton pro-
duction in the model and increases the biases in NPP simulation during the non-bloom
season (Figure 3.10). Simultaneous assimilation of satellite chlorophyll-a and in situ NPP
data decreases the simulated chlorophyll-a concentration. On the contrary, it increases
NPP in the non-bloom period and thus a smaller chlorophyll-a concentration is suffi-
cient for high phytoplankton production. Therefore, to simulate high production with
low chlorophyll-a concentration during the light-limiting conditions of the non-bloom
period, the filter adjusts αNano to a high value and µmax

Nano to a lower value. However,
during the bloom season when diatoms have a larger contribution, the filter has smaller
updates in the NPP simulation. Therefore, the estimation of αDia and µmax

Dia do not
show much difference between satellite chlorophyll-a only assimilation and simultaneous
assimilation of satellite chlorophyll-a and in situ NPP.
The photosynthesis parameters α and µmax have different values at the two stations.
Spatial variability of these parameters due to temperature, nutrient availability and
phytoplankton composition (H. A. Bouman et al., 2000). In REcoM2, these parameters
are based on the mean values of Geider et al. (1998). In our experiment, the estimated
values of α and µmax for both phytoplankton groups (nanoplankton and diatoms) are
within the range of Geider et al. (1998) and other BGC model literature (e.g., T. R.
Anderson, 1993; Fasham et al., 1990). Similar values were reported at BATS from in
situ profiles by Kovač et al. (2018) and in the Mediterranean Sea from a BGC-Argo data
by Barbieux et al. (2019).
True values of BGC parameters (if available) are not constant over time and change
during seasons (Simon et al., 2015) due to species composition. They also show interan-
nual variability, which is also observed in our experiments. For example, dCHL

Nano showed
large variability during each assimilation cycle for both stations. Though the overall up-
dates are small, the estimates of the parameter hardly stabilized over the course of the
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Figure 3.10 Simulated (A) log-transformed surface chlorophyll-a and (B) NPP in the
parameter estimation experiments (EXPJoint_DP ) for free-run, satellite
chlorophyll-a only assimilation and simultaneous assimilation of satellite
chlorophyll-a and in situ NPP.

assimilation experiments, indicating a large uncertainty of the parameter with regard
to chlorophyll-a concentration and NPP simulation. At DYFAMED, the final estimate
of the parameter is close to the default value. However, it is quite variable in between
and updated at each assimilation cycle. The parameter is less constrained during bloom
peak episodes. Intra and inter-annual variations indicate that time-dependent param-
eters should be used in ocean BGC models. It also suggests that parameter values
resulting from a short period may not be suitable for multi-decadal ecosystem studies
or generating long biogeochemical reanalysis.
Though we get similar values of dCHL

Nano at BATS, when assimilating only satellite
chlorophyll-a and by the simultaneous assimilation of satellite chlorophyll-a and in situ
NPP data, the value of dCHL

Nano converges after the second bloom period for the earlier
case at both sites. In contrast, simultaneous assimilation leads to time-varying param-
eter estimates. At DYFAMED, we obtain similar variation over time. However, the
change in the parameter value is smaller.
Loss of chlorophyll from functional cells, here described by a chlorophyll degradation rate
dCHL is a necessary, but hard to constrain process in quota-based ecosystem models.
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The original model by Geider et al. (1998) , which primarily describes photoacclimation
on timescales of days, contains no such term, which becomes mainly important during
low-growth situations in winter and at the lower boundaries of the euphotic zone. With-
out a chlorophyll loss term, which in reality describes complicated processes in senescent
or photostressed cells, phytoplankton C:Chl ratios become unreasonable in such situa-
tions. The parameter is therefore usually tuned subjectively until when a reasonable
agreement between observation and simulation is found and may not be suitable for
biogeochemical models other than those for which they were tuned. A wide range of
values of this parameter can led to improvement in the model results as the parameter
shows correlation with other parameters (Figure 3.7). The estimated values resulted
from all our joint-estimation experiments are below 0.25. It has been shown (Álvarez
et al., 2018) that a replacement of the simple chlorophyll degradation model by a more
process-based description of the degradation of photosystem functionality can lead to
improvements in modeled C:Chl ratios. This should be pursued further.
In REcoM2, phytoplankton mortality is described by grazing and aggregation. The graz-
ing parameters have large updates in both stations. At BATS, changes in the grazing
parameters were prominent, while changes in aggregation were prominent at DYFAMED.
In REcoM2, the loss process is dominated by aggregation compared to grazing (Laufköt-
ter et al., 2016). However, at BATS, the model overall underestimated NPP compared to
the in situ observations but overestimated surface chlorophyll-a (see Figure 3.2). There-
fore, to reduce the model-data misfit of NPP and chlorophyll-a, the simulation had
to keep the phytoplankton population sufficiently low through enhanced grazing. On
the other hand, the model overestimated NPP compared to in situ observations, which
compensated for more aggregation rather than grazing.
The durations of the spring blooms reproduced by the model and the filter are too short
compared to the satellite data (Figure 3.9). Ensemble members using the default param-
eters overestimate the chlorophyll-a concentration during the bloom periods at BATS.
The model state with estimated parameters displays a better fit to the observations at
this site. This is an additional indication justifying the increased grazing at BATS. At
DYFAMED, on the other hand, the surface chlorophyll-a concentration exhibits a better
fit to the observations during the bloom period justifying the increased aggregation.
At BATS, the estimated maximum grazing rate of zooplankton ξ exceeds what is com-
monly considered a ‘realistic’ value in the biogeochemistry literature. Most likely, this
parameter compensating for the other grazing parameter, i.e., γ, which indicates large
uncertainty of the grazing process at BATS. Including both grazing parameters in the
estimation process enabled the model to follow a trajectory that better fits with satellite
chlorophyll-a concentration and in situ NPP. Satellite chlorophyll-a assimilation pro-
duces a more reasonable value of γ at BATS (0.61) but increases discrepancies in NPP
simulation. Anderson et al. (2015) also used similarly high value of γ and found good
agreement between simulation and observation of primary production but at different
locations. In addition, more realistic values of both grazing parameters could be ob-
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tained by representing phytoplankton mortality as physiological mortality in addition to
aggregation as is currently used in REcoM2.
Though sparse in time, the assimilation of in situ NPP had a large impact on the
parameter estimates at both sites, particularly at BATS. Parameter estimation with
only satellite chlorophyll-a assimilation improves the modeled surface chlorophyll-a but
deteriorates NPP (Figure 3.10). Assimilation of both satellite chlorophyll-a and bottle
NPP data improves the NPP prediction by 25% compared to satellite chlorophyll-a only
assimilation without deteriorating the chlorophyll-a prediction. Satellite chlorophyll-
a data is insufficient to constrain the BGC parameters even though they are closely
related. However, 14C primary production shows large discrepancies with satellite-based
estimations as discussed in section 3.4.3.
We found correlations between some of the parameters which preclude those parame-
ters from being estimated independently. Correlation between parameters can prevent
estimating realistic parameter values. Co-dependencies between parameters mean that
different sets of parameter values can be optimal. This suggests that BGC models have
no single optimal configuration. Therefore, model parameters cannot be meaningfully
“tuned” without additional conditions.
Some studies noted that BGC parameters often could not be effectively constrained,
especially in high-dimensional cases when many parameters are considered together
(Fiechter et al., 2013; Ward et al., 2010, 2013) due to the lack of available observa-
tions or specific types of observations. The optimal value of each parameter can depend
on other variables that we have not assimilated. While we have reduced the model-
data misfit substantially, correlations among parameters and dependence on other state
variables lead to uncertainties in the estimated values of some parameters.
By perturbing ten selected parameters and updating them to bring the model close to
observations, we assume that the remaining BGC parameters do not contribute to the
model uncertainty. However, the existing knowledge of the BGC parameter uncertainties
and their covariances is not sufficient to define a subset of parameters that is optimal.
In this study, we assessed how uncertainties in a limited set of parameters are related to
each other. Some of our results may depend upon the subset of parameters chosen for
perturbation. Different combinations of parameters might lead to better model estimates
than others. The covariances of BGC parameter uncertainties will need to be further
explored.

3.4.2 Usefulness of estimated parameters

In section 3.3.1.1, we presented that the estimated parameters improved the predic-
tion capability of REcoM2 substantially. However, limitations remain depending on
the purpose of their use. One limitation is that parameter estimation experiments were
conducted for three years. Thus, the improved parameters may not be optimal for long-
term climate simulations/projections. Furthermore, the parameters varied over time,
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and not all parameters converged to a constant value. Using the values from the end
of the parameter estimation experiments as parameters for the subsequent experiments
showed improved model skill. Nonetheless, it is not clear whether these values are the
optimal choices.
An alternative to the parameter values at the end of the experiments is to take time av-
eraged values over some later part of the experiment as estimated parameters. However,
not all BGC parameters converge during the parameter estimation experiment. For ex-
ample, αNano and γ do not have any clear convergence at BATS even after three years
of data assimilation. We also performed an experiment using the estimated parameters
averaged over the entire period of the DA experiment. The parameter values taken at
the end of the experiments outperform the time-averaged parameter estimates. This also
raises the question of the optimal length of the experiment, which is hard, if not impos-
sible, to define. The three years period used in our experiments repeatedly covers the
bloom and non-bloom seasons which should be sufficient for the parameter estimation.
In our experiment some parameters did not converge. For these parameters, optimal
values might vary in time in order to react to varying growth conditions. We estimated
parameters in two different locations and found distinct optimal parameter values. This
points to the fact that BGC parameters can vary substantially across space dependent
of physical and ecosystem context. This implies that regional and global 3–D models
should profit from using spatially varying parameter values. The methods we used here
to estimate parameters can be extended to estimate spatially varying parameter values
in a 3–D model. For this, each parameter has to be defined as a 3–D field which then
can be estimated utilizing the cross covariances with the observation analogous to the
1–D setup.
The existence of correlations between some parameters indicates that there is no single
combination of model parameters that can be considered to be optimal. This means that
predictions of a single model configuration are likely to underestimate the magnitude of
the uncertainty around the best estimates. Using an ensemble with perturbed parameters
will help to represent this uncertainty.
In addition, we did not consider the uncertainty of the physical simulations in this study.
It is possible that BGC parameters also compensate for uncertainties from model physics.
Whereas ensemble-based DA would allow us to quantify uncertainty in model param-
eters, in the structure and in the forcing data used to compute the model predictions,
the experiments implemented here focused only on parameter uncertainty and did not
allow for quantification of uncertainty in the physical simulations.

3.4.3 Discrepancies of bottle NPP data at BATS

In situ bottle, NPP has large discrepancies with model predictions (Figure 3.8). At
BATS, in situ NPP shows no prominent seasonality, at least for the period of our
experiments. We further explored the satellite-derived NPP estimation based on the
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CAFE model. We compared the monthly mean satellite-derived NPP with the monthly
mean NPP resulting from the state estimation experiment with estimated parameters
(EXPState_EP ) and in situ bottle data at BATS. Both model and satellite data show
a clear seasonal cycle, whereas in situ bottle data is rather erratic (Figure 3.11). Tin
et al. (2016) also found that satellite-based estimation captures the strong seasonality.
In contrast, in situ data shows more variability due to errors in the measurement. Saba
et al. (2010) found that ocean BGC models underestimate the NPP at BATS.

Figure 3.11 Comparison of monthly mean simulated NPP of EXPState_EP , satellite-
derived NPP based on SeaWiFS satellite and in situ bottle data. The box
denotes the lower to upper quartile values of ensemble members. The hori-
zontal line on the box is the median of the ensemble. The whiskers show the
range of the ensemble.

Another explanation for the large model-data misfit at BATS is the absence of picoplank-
ton in REcoM2, which causes the increase in phytoplankton biomass in the summer
(White et al., 2015). At BATS picoplankton dominates the phytoplankton community
during the off-peak period, becomes abundant in late spring to early winter but is usually
scarce during the bloom period (Steinberg et al., 2001). Furthermore, the productivity
of picoplankton is higher than other phytoplankton in the western Sargasso Sea (Malone
et al., 1993) and is sensitive to nitrogen limitation. In summer and fall, when the ther-
mocline is shallow (deep nitracline), nitrogen levels (Nitrate + Nitrite) go below 80m
from the surface. Therefore, picoplankton grows in the deeper part of the euphotic zone
(DuRand et al., 2001). Another possibility is that in fall when deep mixing does not
occur, the temperature of the euphotic zone rises and picoplankton grows deep in the
water column below the euphotic zone (Fawcett et al., 2014). Thus, picoplankton has a
greater impact on deep chlorophyll maximum (DCM) during the off-peak period, which
is not represented in REcoM2. Therefore, REcoM2 may underestimate the total NPP
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in picoplankton-dominated regions.
A DCM is a common feature that occurs below the mixed layer in the oligotrophic
ocean. We further investigate the vertical profile of chlorophyll-a concentrations for the
existence of a deep chlorophyll maximum layer (DCML) at BATS. As can be seen in
Figure 3.12, the simulated depths of DCML are shallower than the observed DCML
during the off-peak periods. DA application did not change the DCML and the vertical
structure of the chlorophyll-a profile much. Any deepening in DCML should reflect NPP
increases. The observed DCML peaks between 60 and 120m (Figure 3.12), indicating
active picoplankton production during the off-peak period at BATS, which is absent in
the model. High surface chlorophyll-a concentrations in spring are associated with deep
convective mixing, which leads to a shallower DCML. At BATS, most of the phyto-
plankton groups increase during bloom periods rather than any single group (Steinberg
et al., 2001). This suggests that the picoplankton grows above the euphotic zone during
the bloom period at BATS. However, during the off-peak period, the most important
biomass component of the DCML is picoplankton which the model does not represent.
This could also explain the underestimation of NPP at BATS by REcoM2.

Figure 3.12 Simulations of chlorophyll-a concentration of EXPState_EP at BATS. The
black solid lines represent DCML.
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3.5 Conclusions
In this study, we estimated the values of ten preselected parameters of the BGC model
REcoM2 and evaluated the effectiveness of the estimated parameters on the predictive
performance of the model, including the uncertainty quantification of the parameters at
two BGC time-series stations – BATS and DYFAMED. The parameters characterize the
major processes of phytoplankton sources and sinks, such as photosynthesis, chlorophyll
degradation, grazing and aggregation. We used a 1–D configuration of the coupled
MITgcm-REcoM2 model and assimilated 5-day satellite chlorophyll-a concentration and
monthly in situ NPP for 3 years at both sites applying the ESTKF, an ensemble square
root filter. The estimated parameters were assessed and found to improve the prediction
capability and the seasonal variability of the model simulations.
The parameter estimation procedure generated improved parameter values when satel-
lite chlorophyll-a and in situ NPP data were simultaneously assimilated. Assimilating
satellite chlorophyll-a data alone did not adequately constrain the model. In this case,
the filter adjusted the model towards optimal chlorophyll-a simulations. However, it
generated parameter values that resulted in larger model-data misfits for NPP. We also
found large discrepancies in situ NPP data, which may arise not only from the 14C
methodology but also from the distribution of particles and organisms in the highly
oligotrophic BATS and DYFAMED waters (Harris et al., 1989).
The strongest updates of the parameters happen during the spring blooms at both
stations. As the spring bloom intensity at BATS is lower than at DYFAMED, the pattern
of changes in the parameters at BATS is more irregular, not only in one season but
throughout the entire assimilation period. As expected, the parameter update is strongly
linked to the bias in the estimates of the state variables. Given the large bias in surface
chlorophyll-a at BATS, some parameters (e.g., αNano and γ) may be subject to changes
even after three years of assimilation, whereas at DYFAMED, we obtained more stable
parameter values. The contribution of diatoms in the phytoplankton community is larger
at BATS than at DYFAMED. This complements our finding that grazing parameters
are more important than aggregation for describing phytoplankton mortality at BATS.
We found that dependences between some parameters exist – a change in one parameter
affects the evolution of others. This behavior indicates that multiple different combina-
tions of parameter values are possible, and therefore they cannot be estimated indepen-
dently. It further suggests that BGC models have no single optimal configuration and
predictions from single model configuration are likely to underestimate the magnitude of
the uncertainty around the best estimates. The solution is to design ensemble modeling
approaches using a sufficiently large ensemble with perturbed parameters.
Given the high parameter uncertainty of BGC models, parameter estimation is essential.
However, the model simulations depend on the parameter values in non-linear ways and
vary spatially and temporally, which requires a systematic examination of parameters
in time and space. Estimating spatial and temporal varying parameter values will allow
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for efficient exploration of BGC process and modeling at the basin and global level. We
believe that the method and learning from this study will serve as an important base for
conducting spatially and temporally varying ocean BGC parameter estimation studies
at the global level. Estimation of spatially and temporally varying parameter values in
a 3–D global ocean BGC model will be considered in future studies.
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Chapter 4

Spatially varying biogeochemical parameter
estimation in a global ocean model

This chapter extends the scope and application of data assimilative experiments from
location-specific to a global scale by incorporating spatial variations in parameter values
within a 3–D model. Using the Parallel Data Assimilation Framework - PDAF, this
study employs an ensemble Kalman filter to estimate the optimal parameter values
by assimilating satellite ocean color data. The study estimates spatially and temporally
varying values of nine parameters selected based on a sensitivity analysis (See Chapter 2)
and obtained global parameters maps, allowing more interpretation than the location-
specific 1–D analysis. The spatial variations of the obtained parameter values are similar
to those reported from observation. The dynamical variations of model simulation using
the estimated set of parameter values are closer to the observations than that of using the
uniform default parameter values. This chapter presents the effects of estimated spatially
and temporally varying parameters on the BGC fields and dynamics for insights into
BGC modeling.
This chapter is based on a manuscript in preparation titled ‘Spatially Varying Biogeo-
chemical Parameter Estimation in a Global Ocean Model’, planned to be submitted to
an open-access journal.

Citation: Mamnun, N., Vl̈ker, C., Vrekoussis, M., & Nerger, L. (In preparation). Spa-
tially Varying Biogeochemical Parameter Estimation in a Global Ocean Model.
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Abstract
Ocean biogeochemical (BGC) models are a primary tool for investigating ocean biogeo-
chemistry and the global carbon cycle. These models contain many uncertain and often
poorly constrained parameters that describe physical and biochemical processes, result-
ing in large uncertainties in the model outputs. Although these BGC process parameters
are often used as constant values in model simulations, in reality they can vary across
space and time. This study assimilates satellite ocean color data into the ocean BGC
model Regulated Ecosystem Model 2 (REcoM2) to estimate spatially and temporally
varying parameters in a global model setup. We apply an ensemble Kalman filter pro-
vided by the Parallel Data Assimilation Framework – PDAF to simultaneously estimate
selected, selected based on a sensitivity analysis, uncertain parameters and the BGC
model states. We then quantify the spatiotemporal uncertainties linked to the estimated
parameters and the prediction uncertainties induced by those parameters. We further
assess the performance of REcoM2 using the estimated spatially and temporally vary-
ing parameters. We show that ocean color-derived surface chlorophyll-a concentration
can effectively constrain the uncertainty in the BGC model parameters. The parameters
converge in most of the world’s oceans in less than a year and reduce the BGC parameter
uncertainty. The model simulations with the set of estimated parameters are closer to
the observations than the reference simulation using spatially uniform parameter values,
with a 52% reduction of root mean square error for surface chlorophyll-a concentration.

4.1 Introduction
Ocean biogeochemical (BGC) models provide an integral tool for studying ocean BGC
processes and their effect on the global carbon cycle. They are an essential component of
the Earth system models used to simulate climate projections (Orr et al., 2017). These
models play a central role in quantifying the patterns and rates of ocean anthropogenic
CO2 uptake (see Crisp et al., 2022) and estimating the global carbon budget (see
Hauck et al., 2020). The latter is important because the global ocean absorbs more
than a quarter of anthropogenic emissions of CO2 (Friedlingstein et al., 2022). In this
direction, ocean BGC models are pivotal for i) characterizing future ocean CO2 uptake
and its sensitivity to climate change under different policy scenarios (see Crisp et al.,
2022), ii) assessing the predictability of global-scale atmosphere-ocean CO2 flux relevant
to carbon policy and management (Ilyina et al., 2021), and iii) investigating deliberate
CO2 removal (see Gattuso et al., 2018).
Ocean BGC models are further used to investigate ocean deoxygenation (e.g., Andrews
et al., 2017; Bopp et al., 2017), ocean acidification (e.g., Gehlen et al., 2007; Ilyina et al.,
2009; Krumhardt et al., 2019), and to study compound events with overlapping extremes
of acidification, marine heatwaves and deoxygenation (e.g., Gruber et al., 2021; Hauri
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et al., 2021). They are used to assess the economic impact of climate change on fisheries
(e.g., Loukos et al., 2003) and to project changes in fish catch potential (e.g., Cheung
et al., 2010; Lam et al., 2016). These models are used to develop marine environmental
applications and services (e.g., Gutknecht et al., 2019; E. M. Jones et al., 2016) and to
generate reanalysis datasets (e.g., Carroll et al., 2020; Ciavatta et al., 2016).
Ocean BGC models are spatially explicit models that describe the transformations of
BGC constituents by ecosystem growth and interactions. BGC constituents include
nutrients, functional plankton groups, non-living organic matter, dissolved gases, and
variables of the inorganic carbon system contained in seawater. Either through choice
or necessity, each BGC transformation in the model is described by simplified process
formulation known as parameterizations, which require process parameters. Ocean BGC
models include various biophysical processes and involve numerous process parameters
(see Fennel et al., 2022). The uncertainty of these parameter values is quite large (see
Schartau et al., 2017), leading to possibly significant uncertainty in the model outputs.
Ocean BGC models describe numerous plankton species into a handful of functional
types - for instance, all the zooplankton are described as a generic class in REcoM2.
The available reference parameter values related to these functional classes were usually
taken from laboratory experiments targeting single species, while in the model, they are
applied broadly to describing whole classes of organisms. The values of the parameters
depend on the physical and biogeochemical context (see Follows et al., 2007), which
influences the ecosystem species distribution and the acclimation of individual species.
Thus, in reality, the parameter values vary spatially and temporally, while in practice,
they are used as constant across space and time in the model simulations.
In this context, data assimilation (DA) aids in estimating the values for BGC parame-
ters, which are difficult (if not impossible) to measure. DA infers for parameter values,
resulting in an optimal match between simulation output and observations. Due to the
high computational expense of running a data assimilative model multiple times over
a large three-dimensional (3–D) domain, parameter optimization is often carried out in
a one-dimensional (1–D) BGC model. Studies estimated BGC parameters in multiple
locations (e.g., Friedrichs et al., 2007; Gharamti, Tjiputra, et al., 2017; Mamnun et
al., 2022; Schartau & Oschlies, 2003) and found different estimated parameter values
across locations. Sometimes, parameter values estimated from a 1–D assimilative appli-
cation are then used in a 3–D implementation (e.g., McDonald et al., 2012; Oschlies &
Schartau, 2005; St-Laurent et al., 2017).
Losa et al. (2004) estimated six BGC parameters into a simple box model (0-D) at
different locations in the North Atlantic and obtained varying parameters in different
cells. Tjiputra et al. (2007) estimated spatially varying BGC parameters using an adjoint
method by assimilating satellite chlorophyll-a concentration. They showed that using
estimated spatially variable parameters improved the global simulation of net primary
production (NPP). Doron et al. (2013) estimated five spatially varying BGC parame-
ters by assimilating ocean color-derived chlorophyll-a into a 3–D regional model. They
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found better model-data agreement using spatially varying estimated parameters than
the reference simulation using uniform ones. Estimating four spatially varying BGC pa-
rameters, Simon et al. (2015) found regional patterns of estimated parameters similar to
the Longhurst provinces (Longhurst, 2007) in the regions where the model used performs
reasonably. They demonstrated that BGC predictions generally benefit from spatially
varying parameter estimates. Xu et al. (2022) estimated spatially varying BGC parame-
ters in the Bohai, Yellow, and East China Seas, assimilating satellite chlorophyll-a data
using an adjoint method and obtaining reasonable parameter values. Using an idealized
twin (identical twin) experiment, Singh et al. (2022) showed that estimating spatially
varying ocean BGC parameters is feasible using ensemble-based data assimilation tech-
niques in global-scale models.
Incorporating temporally varying parameters can significantly improve the agreement
between models and observations (e.g., Mattern et al., 2013, 2014; Roy et al., 2012;
Simon et al., 2015). Simon et al. (2015) specifically identified seasonal patterns in
estimated parameters and advocated using time-dependent parameters in ocean BGC
models. However, they also highlighted that in regions with substantial model errors,
the parameter values either converge to extreme values, resulting in larger model errors
or may diverge toward a high ensemble spread. Singh et al. (2022) also noted that even
in an ideal model setting, certain BGC parameters fail to converge to their true values
when significant model errors occur.
The high parameter uncertainty of BGC models, combined with sparse and error-prone
BGC observations, poses significant challenges in establishing relationships among BGC
parameters, model state variables, and observations. In a high-dimensional BGC model,
the number of unknown model state variables and parameters exceeds the available
observations, creating an underdetermined inverse problem that DA seeks to solve by
utilizing a small number of observations to estimate a large set of unknowns. Despite
the benefits of using satellite-derived surface observations for BGC state estimations
(e.g., Ford & Barciela, 2017; Goodliff et al., 2019; Gregg, 2008; Nerger & Gregg, 2007,
2008; Pradhan et al., 2019, 2020), it remains unclear how effectively they can constrain
uncertain BGC parameters in a 3–D global ocean model and estimate their spatially
varying values. Additionally, the response of the joint state-parameter estimation algo-
rithm to the highly nonlinear relationships and non-Gaussian error statistics inherited
from convection is poorly understood.
This study applies DA to estimate nine spatially and temporally varying parameters in
a global ocean biogeochemical model. We assimilated ocean color-derived chlorophyll-a
concentration into a global setup of the BGC model Regulated Ecosystem Model Ver-
sion 2 (REcoM2, Hauck et al., 2013; Schourup–Kristensen et al., 2014). We estimated
nine spatially and temporally varying REcoM2 parameters, chosen based on a global
sensitivity analysis (Mamnun et al., 2023). We further assessed the skill of REcoM2 in a
simulation using the estimated spatially and temporally varying parameters. We discuss
the effect of estimated spatially and temporally varying parameters on BGC processes
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and modeling.

4.2 Materials and Methods
4.2.1 The Coupled Hydrodynamic -Biogeochemical Model

In this study, we used a coupled hydrodynamic-biogeochemical model. The Mas-
sachusetts Institute of Technology General Circulation Model (MITgcm, Marshall, Ad-
croft, et al., 1997; Marshall, Hill, et al., 1997) solves the ocean dynamics and tracers
transport, while REcoM2 handles BGC reactions and transformation.
MITgcm is a 3–D, finite-volume, general circulation model. It solves the time-dependent,
Boussinesq-approximation Navier-Stokes equations with or without hydrostatic approx-
imation and conservation equations for salinity and energy. The non-hydrostatic ca-
pabilities allow the users to use the model to study small-scale and global processes.
The open-source MITgcm code (Campin et al., 2023) can be customized to different
configurations by modifying its available packages or coupling new packages according
to the user’s requirements and the design of the numerical experiment. A sea ice model
(Losch et al., 2010) is integrated with MITgcm. The BGC model REcoM2 is coupled
with MITgcm as an additional package (Losch et al., 2008).
REcoM2, a so-called quota model (Droop, 1983), describes the two phytoplankton groups
– nanophytoplankton and diatoms, and a generic heterotrophic zooplankton class. The
nanophytoplankton has an implicit representation of calcifiers. REcoM2 has one class
of organic sinking particles whose sinking speed increases with depth.
The model describes the carbon cycle, the nutrients nitrogen, silicon and iron, and
chlorophyll. The intracellular stoichiometry of carbon, nitrogen, calcite, and chlorophyll
(C : N : Chl) pools for nanophytoplankton and carbon, nitrogen, silicate, and chlorophyll
(C : N : Si : Chl) pools for diatoms are allowed to respond dynamically to the environ-
mental conditions following Geider et al. (1998) and Hohn (2009) for the Si quota. The
intracellular iron pool is a function of the intracellular nitrogen concentration (fixed
ironto nitrogen ratio), as iron is physiologically mainly linked to nitrogen metabolism
and the photosynthetic electron transport chain (Behrenfeld & Milligan, 2013; Geider &
La Roche, 1994). Dead organic matter is transferred to detritus by aggregation and graz-
ing by the zooplankton group, and the sinking and advection of detritus are represented
explicitly.
The model has two external iron sources: atmospheric dust deposition and sedimentary
input. The iron cycle in the model is driven by biological uptake, remineralization, and
scavenging onto biogenic and lithogenic particles.
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4.2.2 Model setup

This study employs a global model configuration of the so-called Lat-Lon-Cap 90 grid
(LLC90, Forget et al., 2015), representing the spherical Earth in a Cartesian curvilin-
ear coordinate system using a cubed-sphere structure in the northern hemisphere and
a dipolar grid arrangement in the southern hemisphere. The Cartesian curvilinear co-
ordinate grid system has five faces covering the globe (figure 4.1A). The grid cells are
approximately aligned with lines of latitude and longitude between 70◦S and ~57◦N,
and a unique Arctic “cap” is positioned north of ~57◦N. Each of the four faces south of
~57◦N is partitioned into three tiles, and the Arctic “cap” has a single tile. Thus, the
grid consists of 13 tiles. In the case of LLC90, each tile comprises 90×90 horizontal grid
cells (hence LLC90). The horizontal model grid resolution varies spatially, ranging from
22km to 110km, with the highest resolutions at high latitudes and the lowest resolution
at mid-latitudes (figure 4.1B). There are 50 vertical levels. The vertical grid spacing
increases with depth from 10m at the surface layer to 456.5m at the bottom layer.

(B) LLC90 Grid Resolution(A) Lat-Lon-Cap (LLC) Grid

3

5
4

1

2

Figure 4.1 Lat-Lon-Cap (LLC) Grid. A) Five faces of the LLC grid. The figure is adopted
from Forget et al. (2015); B) The horizontal resolution of the LLC90 grid.

We initialized the temperature, salinity, and dissolved oxygen (DO2) fields using the
winter mean data from the World Ocean Atlas 2018 (WOA-18, Boyer et al., 2018;
García et al., 2019a; Locarnini et al., 2019; Zweng et al., 2019). For the dissolved
inorganic nitrogen (DIN) and silica (DSi) fields, we used annual climatology from WOA-
18 (García et al., 2019b). The total alkalinity (ALK) and the dissolved inorganic carbon
(DIC) fields were initialized with mapped climatological data from the GLobal Ocean
Data Analysis Project (GLODAPv2, Lauvset et al., 2016). To initialize the dissolved
iron (DFe) field, we relied on concentrations obtained from a previous PISCES model
run. We used the monthly dust deposition field from the present-day simulation of
Albani et al. (2014) to compute DFe input flux from the atmosphere, assuming 3.5%
iron content in dust particles and 2% iron solubility. All other passive tracers were
initialized with small arbitrary values.
We utilized the inter-annually varying atmospheric forcing (temperature, humidity,
downward radiation, and precipitation) from the 6-hourly ERAInterim reanalysis fields
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(Dee et al., 2011) from 1992 to 2018 and from ERA-5 hourly reanalysis fields (Hersbach
et al., 2020) for 2019 to 2021. For consistency, hourly ERA5 data were interpolated to
6-hourly data. Freshwater runoff is forced using the river and ice-sheet melting runoff
data from the JRA55-do dataset (Tsujino et al., 2018).

4.2.3 Data Assimilation Methods

We employ an ensemble-based sequential DA approach, the Ensemble Kalman Filter
(EnKF, see review by Vetra-Carvalho et al., 2018), the most common sequential DA
method used for BGC models. EnKFs utilize an ensemble of model state realizations to
account for model uncertainties. Each realization is represented by a model state vector,
which may encompass multiple state variables and process parameters from the coupled
physical-biogeochemical system. Subsequently, when observations become available, the
ensemble states undergo an update by integrating the observations with the model fore-
cast. A weight matrix is computed based on a covariance matrix of the model forecast
ensemble and the observation error to determine the influence of the observations on the
model state. The weight matrix assigns relative weights to the forecast and the observa-
tions. Upon completing the analysis step, the updated ensemble of state vectors serves
as the input for the subsequent forecast phase. This iterative process allows EnKFs to
effectively assimilate data and improve the accuracy of the model predictions.

Error Subspace Transform Kalman Filter

We implemented the ensemble DA with the Parallel Data Assimilation Framework
(PDAF, Nerger & Hiller, 2013), an open-source software (accessible at http://pdaf.awi.
de). PDAF offers comprehensive and parallelized ensemble filter algorithms and support
for parallel ensemble integrations and can be implemented within existing model code
as a library. PDAF currently contains the ability to implement many variants of EnKF.
We used the localized (Nerger et al., 2012a) error subspace transform Kalman filter
(ESTKF, Nerger et al., 2012b) for all of our DA experiments in this study. ESTKF
is a highly efficient filter for high-dimensional models. As an ensemble square root fil-
ter, ESTKF computes the weights for the ensemble transformation directly in the error
subspace represented by the ensemble and can be used with a deterministic minimum
transformation, allowing the use of small ensembles. Domain localization (Nerger et al.,
2012a) is used in this study. In the domain localization approach, each vertical column of
the model grid is considered a disjoint local domain. Only observations with a distance
smaller than a cut-off radius are used in the analysis step for a given local domain. No
ensemble inflation is used in this study.
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Ensemble Generation

We apply perturbations to nine process parameters of the REcoM2 model to generate
an ensemble of BGC model states. Our goal is to minimize the uncertainty associated
with the initial parameter values through stochastic estimations using satellite-derived
surface chlorophyll-a concentration data. Accordingly, we targeted the perturbation
to parameters showing high sensitivity to the model outputs of surface chlorophyll-a
concentration. The selection of these nine parameters was informed by a sensitivity
analysis conducted by Mamnun et al. (2023).
Among the nine selected model process parameters, four are phytoplankton
photosynthesis-irradiance parameters (H. A. Bouman et al., 2018), two cell quotas - the
maximum chlorophyll to nitrogen ratios, two parameters for chlorophyll degradation,
and one zooplankton grazing-related parameter. Table 4.1 lists the selected parameters,
including their symbols, units, and default values. We adopted the values used by Hauck
et al. (2013) as default values.
We utilized a lognormal function to generate random perturbations across all the se-
lected parameters. The respective default values of the parameters were considered the
expected value of the distribution, with a standard deviation set at 25% relative to
the default value. These perturbations induce subtle differences in the biogeochemical
processes across different ensemble members, consequently generating a diverse range
of model outcomes. We defined each selected parameter as a two-dimensional (2–D)
field within the model and established that each ensemble member has a different set of
parameter values. In each ensemble member, the initial values of these parameters were
identical across all 2–D grid points.

The (augmented) state vectors

From the BGC model, we included eight model state variables and the total chlorophyll-
a concentration of phytoplankton in the state vector. The state variables consist of the
following:

1. Biomass content of carbon in nanophytoplankton
2. Biomass content of carbon in diatoms
3. Biomass content of nitrogen in nanophytoplankton
4. Biomass content of nitrogen in diatom
5. Calcium carbonate concentration of nanophytoplankton
6. Biogenic silica concentration of diatoms
7. Chlorophyll-a concentration of nanophytoplankton
8. Chlorophyll-a concentration of diatoms

We assimilate the surface chlorophyll-a concentration of phytoplankton, the surface
chlorophyll-a concentration of all phytoplankton available in the ocean. We, therefore,
include a variable “total chlorophyll-a concentrations” in the state vector by summing
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Table 4.1 The nine selected BGC parameters with their symbol, unit and default value.

Parameter Symbol Unit Default value

1 Nanophytoplankton Initial
slope of the Photosynthesis-
irradiance curve

αNano

mmolC (mgChl)−1

(Wm−2d)−1 *
0.14

2 Diatom initial slope of the
Photosynthesis-irradiance
curve

αDia

mmolC(mgChl)−1

(Wm−2d)−1
0.19

3 Nanophytoplankton Maxi-
mum photosynthesis rate

µmax
Nano d−1 3.00

4 Diatom maximum photosyn-
thesis rate

µmax
Dia d−1 3.50

5 Maximum chlorophyll to nitro-
gen ration of Nanophytoplank-
ton

qChl:Nmax
Nano mg Chl (mmolN)−1 3.15

6 Maximum chlorophyll to nitro-
gen ration of diatom

qChl:Nmax
Dia mg Chl (mmolN)−1 4.2

7 Nanophytoplankton Chl
degradation rate

dChl
Nano d−1 0.10

8 Diatom Chl degradation rate dChl
Dia d−1 0.10

9 Maximum grazing rate of zoo-
plankton

ξ mmol N m−3 d−1 2.4

* The unit indicates millimoles of carbon produced per milligram of chlorophyll, ad-
justed for the amount of light energy received daily per square meter.

up the chlorophyll-a concentration of nanophytoplankton and diatoms. The observa-
tion operator for this variable, total chlorophyll-a concentrations, selects corresponding
values from the state vector and subsequently updates the eight model state variables
through cross-covariances with the total chlorophyll-a concentration.
We applied the state augmentation approach (J. L. Anderson, 2001), which merges state
variables and parameters into an augmented state vector, treating the parameters as
time-varying variables. This augmented state vector method facilitates the estimation
of parameters, given the observation of specific variables and the multivariate covariances
between model parameters and model variables.
EnKF’s optimality, based on a Gaussian state distribution (Evensen, 2003), is challenged
in the ocean BGC model due to non-Gaussian state distribution (Nerger & Gregg, 2007)
arising from uncertainty in BGC parameters. To address this challenge, we transformed
the chlorophyll-a concentration, both model and observation, to a logarithmic scale,
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following the assumption that its distribution is lognormal (Campbell, 1995). This
logarithmic transformation was applied also to other BGC state variables, assuming
a similar probability distribution as chlorophyll-a concentration. Moreover, since the
parameters were perturbed following a lognormal distribution, we also log-transformed
their values before each assimilation cycle for analysis.
An advantage of the log-transformation approach is that it prevents estimating unreal-
istic negative concentrations or parameters during the assimilation process, which could
otherwise arise due to the Kalman filter’s linear combination of model estimates and
observations. By employing this technique, we ensure that the assimilation maintains
the integrity of BGC variables and parameters as positive quantities, aligning with their
inherent natural constraints.

4.2.4 Experiments design

Three sets of experiments have been performed in this study – (i) reference simulations,
(ii) joint state-parameter estimation, and (ii) adjusted simulations. The experiments are
as follows, and an overview of all experiments performed is presented in Table 4.2.

Reference Simulations

To assess the effectiveness of our parameter estimation and skills of estimated parameters
we conducted four reference simulations using default parameter values (DPVs). We
adopted the parameter values used in the study by Hauck et al. (2013) as DPVs. The
reference simulations are:

• Reference single forward run (REF_FOR): We conducted a single 30-year model
run from 1992 to 2021, using the initial conditions specified in Section 2.2 Model
setup. This simulation served as the basis for initializing the ensemble reference
simulations.

• Reference ensemble free run (REF_FRE): We performed a 40-member ensemble
simulation spanning three years from 2019 to 2020. The ensemble models were
initialized using the restart files from the REF_FOR run. For each ensemble state,
perturbations to the DPVs of selected model parameters were applied to generate
the BGC ensembles. The hydrodynamic model states were kept identical for each
of the ensemble members.

• Reference Reanalysis (REF_REA): We conducted a BGC state estimation experi-
ment by assimilating satellite-derived chlorophyll-a concentration data using a 40-
member ensemble. The ensemble models were initialized using the same restart files
of the experiment REF_FRE at the beginning of 2018 with perturbed parameter
values. The REF_ REA experiment was run for three years, from January 2018 to
December 2020. During the first year, no DA was performed to allow the model to
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undergo a spin-up and reach a stable state. Subsequently, the DA was applied for
the years 2019 and 2020.

Joint State-Parameter Estimation (JSPE)

In these experiments, we augmented the state vector by 2–D fields of the selected BGC
parameters and updated them in each assimilation cycle together with the state variables.
The initial model states were identical to the initial states of REF_REA. Similar to the
experiment REF_REA, the year 2018 was considered a spin-up, and in the next year
(2019), only state estimations were performed identically to the experiment REF_REA
to minimize the model uncertainties sourced from other than parameter perturbation.
Subsequently, the BGC state variables and parameters were updated simultaneously by
DA analysis in 2020.

Adjusted Simulations

We implemented three experiments with the estimated parameter values (EPVs) result-
ing from the experiment JSPE. They are similar to the reference simulations, except we
utilized the estimated spatially varying parameter values here. The experiments are:

• Adjusted single forward run (ADJ_FOR): This is a single 30-year model run iden-
tical to the experiment REF_FOR, but using the estimated spatially varying pa-
rameter values.

• Adjusted 40-member ensemble free run (ADJ_FRE): This experiment is identical
to REF_FRE, but uses the estimated spatially varying parameters.

• Adjusted state estimation of BGC assimilation (ADJ_REA): This experiment is
identical to REF_REA, but using the estimated spatially varying parameters.

4.2.5 Observational data

The DA process utilized remotely sensed surface chlorophyll-a concentration obtained
from the European Space Agency’s Ocean Colour - Climate Change Initiative project
(OC-CCI; Sathyendranath et al., 2019) product, Version 6.0. This product was created
by merging satellite data from multiple sensors. The dataset consists of a 5-day mean
level-3 binned data presented on a global sinusoidal grid with a resolution of 4 km.
The dataset includes per-pixel error statistics estimated by analyzing match-ups be-
tween in situ data and ocean color. We used these error statistics as observation uncer-
tainty in the DA analysis. Specifically, we computed and assimilated unbiased values of
chlorophyll-a concentration interpolated on the model grid analogous to Pradhan et al.
(2019).
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Table 4.2 The experiments performed in this study.

Experiment Description Parameter Used Time period

REF_FOR Reference single for-
ward run

DPVs 1992-2021

REF_FRE Reference 40-member
ensemble free run

Perturbed DPVs 2019-2020 and one-
year prior spin-up

REF_REA Reference state esti-
mation with BGC as-
similation

Perturbed DPVs 2019-2020 and one-
year prior spin-up

JSPE Joint state-
parameter estimation
with BGC assimila-
tion

Spatiotemporal vary-
ing

2020 plus one-year
prior state-only esti-
mation and one year
spin-up

ADJ_FOR Adjusted single for-
ward run

Spatially EPVs 1992-2021

ADJ_FRE Adjusted 40-member
ensemble free run

Spatially varying per-
turbed EPVs

2019-2020 and one
year prior spin-up

ADJ_REA Adjusted state esti-
mation of BGC as-
similation

Spatially varying per-
turbed EPVs

2019-2020 and one-
year prior spin-up

4.3 Joint state-parameter estimation
4.3.1 Impact of the joint estimation on the state variables

For accurate parameter estimation, it is essential that the assimilation effectively con-
strains the uncertainty of state variables. The uncertainty in these state variables, espe-
cially at the surface, can significantly impact near-surface BGC processes. In this study,
all assimilation experiments improved the simulation of surface chlorophyll-a concentra-
tion compared to the free run (REF_FOR), as measured by root mean square errors
(RMSE) relative to the assimilative observations. Specifically, the JSPE reduced the
RMSE between observations and model output by 51%, compared to the RMSE from
the REF_FOR.
Figure 4.2 shows the area-weighted RMSE for surface chlorophyll-a for the experiments
REF_FOR and JSPE. During the spring, the concentration of surface chlorophyll-a
obtained from each experiment is highly depleted, resulting globally in a large RMSE
compared to observations (Figure 4.2A). The model (REF_FOR) is more skillful in
the equatorial region (Figure 4.2B) than the higher latitudes. The joint parameter-
state estimation was comparatively more effective in mid-latitudes than the low and
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high latitudes (Figure 4.2C, D). The model performs poorly during spring in the high
latitude of the respective hemisphere, and so does the joint state-parameter estimation
(Figure 4.2E, F), most likely because of the low number of observations. JSPE has
an enormous influence during the spring bloom in the north. However, the remaining
RMSE is still high.

Figure 4.2 Comparison of area-weighted RMSE of log-transformed surface chlorophyll-a
concentration relative to the OC-CCI data (A) for all available observations
(Global); (B) from the 10◦S–10◦SN latitude (Low Latitude); (C) 10◦N–50◦N
- (Mid-Latitude North); (D) 10◦S–50◦S (Mid-Latitude South); (E) North of
50◦N (High Latitude North) and (F) South of 50◦S (High Latitude South)

We evaluated the spatial distributions of the monthly mean of the logarithm of surface
chlorophyll-a concentration for April and September (Figure 4.3). These two months
chosen as the global area-weighted RMSEs are higher than the other months. We com-
pare the ensemble mean of surface chlorophyll-a concentration simulated without DA
(REF_FRE) and with DA (Analysis of JSPE) to observations. REF_FRE performed
poorly with high positive bias in high latitudes. The JSPE experiment shows a better
field with spatial pattern closer to the observations than the REF_FRE. However, in
particular, in September, the model still overestimates the chlorophyll-a concentration
compared to the observations.
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ObservationsREF_FRE JSPE Ana REF_FRE - JSPE Ana

Figure 4.3 Monthly mean log-transformed surface chlorophyll-a concentrations for April
2020 (A-D) and September 2020 (E-H). From left to right: (REF_FRE); ESA
OC-CCI data; JSPE analysis results and difference of JSPE analysis results
from REF_FRE.

4.3.2 Parameter Estimation

This section discusses the estimated spatially varying BGC model process parameters.
The DA estimates the parameters using their correlation with the total chlorophyll-a field
(e.g., J. L. Anderson, 2001). The robust performance of the DA simulation compared
to the free run for state estimation (Section 4.3.1) is partly due to the simultaneous op-
timization of the model parameters. In this section, we emphasize the spatial variability
of the estimates of these parameter values. Figure 4.4 shows estimated parameter values
in the global ocean for the nine parameters we considered for this study at the end of the
first year of data assimilation. The global average, minimum, maximum, and standard
deviation of spatially varying estimated parameters are presented in Table 3. The values
of the BGC parameters vary in regions depending on the physical and BGC conditions
naturally. All nine estimated parameters exhibit values larger and smaller than their
default value, showing that DA optimizes the model’s parameterization regionally with
correlation to the observation.

Initial slope of the P-I curve of nanophytoplankton (αNano) and diatoms (αDia)

The initial slope of the P-I curve (α) delineates the efficiency with which an organism
conducts photosynthesis under limited light conditions by characterizing the relationship
between photosynthetic rate and light intensity (Denman, 2003). The estimated values
of αNano and αDia increase in most parts of the globe (Figure 4.4A and D) relative
to their respective default values, and so do the global averages for both (Table 4.3).
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A higher value of α indicates that a lower chlorophyll-a concentration is sufficient to
achieve equivalent primary production under light-limited conditions. Consequently, the
model predicts adequate phytoplankton production with reduced chlorophyll-a during
winter when light is limited. However, to compensate for the negative model bias in the
Subtropical South Pacific Ocean, the filter increased the values of αNano even though the
light is not limited here. However, αDia has only slightly increased in this region, perhaps
due to iron limitation diatom growth is limited thus not sensitive here. The Subarctic
Atlantic Ocean is another region where the values of both αNano and αDia increased
to compensate for where the REF_FRE produces low chlorophyll-a (Figure 4.3). On
the other hand, the values of αNano decrease in the Subantarctic Zone of the Antarctic
Circumpolar Current while the values of αDia increase in this region. In the coastal
areas, the values of αNano increase in general, whereas the values αDia show no clear
pattern of changes in coastal areas.
Compared to observations (see H. A. Bouman et al., 2018; Marañón & Holligan, 1999),
the estimated values of αNano are higher than the maximum observed values in the
Subtropical South Pacific Gyre, the South Atlantic, and the Barents Sea (Figure 4.4A).
The values of αDia show no such extreme values; higher values are observed in the
iron-limited South Pacific Ocean and the Barents Sea, though.

Maximum photosynthesis rate of nanophytoplankton (µmax
Nano) and diatoms (µmax

Dia )

The maximum photosynthesis rate of phytoplankton (µmax) defines the peak rate at
which phytoplankton can transform inorganic carbon into organic matter through pho-
tosynthesis under optimal light and nutrient conditions (Denman, 2003). Unlike αNano

and αDia, the values of µmax
Nano and µmax

Dia change in opposite directions – the global aver-
age of µmax

Nano decreases from its default value, whereas that of µmax
Dia increases (Table 4.3).

Similarly, the spatial patterns of the estimated values of µmax
Nano and µmax

Dia show opposite
signs – in those regions where the values of µmax

Nano increase from its default value, the
values of µmax

Dia decrease from its default value, and vice versa (Figure 4.4B, E). Both
nanophytoplankton and diatoms compete for similar resources, such as light and nu-
trients. The model has a competition term between nanophytoplankton and diatoms
for a shared resource (Hauck et al., 2013), which might lead to an inverse relationship
between their maximum photosynthesis rates. In general, the values of µmax

Nano increase
where the model highly underestimates the chlorophyll-a simulation, e.g., the Arctic
Atlantic Ocean and the Subarctic Atlantic Ocean.

The maximum chlorophyll to nitrogen ratio in nanophytoplankton (qChl:Nmax
Nano ) and

diatoms (qChl:Nmax
Dia )

The maximum chlorophyll to nitrogen ratio (qChl:Nmax) defines the upper limit of
chlorophyll-a that can be produced per unit of phytoplankton nitrogen, reflecting the
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maximum chlorophyll content associated with specific nitrogen biomass in phytoplank-
ton (Omta et al., 2017). The global spatial average values of qChl:Nmax

Nano and qChl:Nmax
Dia

lower their default value (Table 4.3). The chlorophyll to nitrogen ratio reflects the
ability of phytoplankton to utilize available nitrogen for growth and chlorophyll pro-
duction. Therefore, the maximum Chl to nitrogen ratio indicates how efficiently the
phytoplankton cells utilize nitrogen resources. A lower value of qChl:Nmax implies that
phytoplankton can produce less chlorophyll per unit of nitrogen than those of higher
value. The filter reduces the values of qChl:Nmax

Nano and qChl:Nmax
Dia over the large part of

the global ocean (Figure 4.4 C, F) to compensate for the overall overestimation of the
surface chlorophyll-a simulation. However, the values of qChl:Nmax

Nano are increased in the
Subtropical Pacific Ocean, where the model underestimates the surface chlorophyll-a
concentrations, whereas the values of qChl:Nmax

Dia are not changed much in this region.
Relatively less update of parameters related to diatoms in the Subtropical Pacific Ocean
implies that diatom concentrations dominate less here, possibly because of iron defi-
ciency. The values qChl:Nmax

Dia show extreme in some regions, e.g., the Norwegian Sea,
the Bellinghausen Sea, and the Amundsen Sea.

Chlorophyll degradation rate of nanophytoplanktons (dChl
Nano) and diatoms (dChl

Dia)

The chlorophyll degradation rate (dChl) represents the rate at which chlorophyll is broken
down or degraded, thus affecting the amount of chlorophyll available in phytoplankton,
which in turn influences phytoplankton production. Though the global spatial average
values of dChl

Nano and dChl
Dia are close to their default values (Table 4.3), they vary spatially

two orders of magnitude (with 51% and 40% standard deviation of the global mean,
respectively). The patterns of spatial variation of these two dChl

Nano and dChl
Dia are similar

(Figure g, h) and directed by the model data misfit.

The maximum grazing rate of zooplankton (ξ)

ξ represents the maximum possible rate at which zooplankton can consume phytoplank-
ton under ideal conditions – a measure of the grazing pressure zooplankton can exert on
phytoplankton populations. The global average value ξ is higher than its default value
(Table 4.3). A higher value of ξ can lead to a higher removal rate of phytoplankton from
the system, thus decreasing the surface chlorophyll-a concentration and a lower of ξ leads
to an increase in the surface chlorophyll-a concentration. The values of this parameter
increase in a large part of the world’s oceans to compansate the overestimation of surface
chlorophyll-a by the model. The value decreased in the Arctic and Subarctic Atlantic
Ocean, the East and West India Coast, the South Subtropical Convergence, and some
parts of the Sub-Antarctic Water Ring. The dynamic range of estimated ξ values is quit
high with values ranging from 0.12 to 20.34 mmolNm−3d−1 One possible interpretation
for the resulting extensive range in ξ is that we did not adjust the grazing efficiency (γ),
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which is highly sensitive to the surface chlorophyll-a simulation. Thus, a change in ξ

would compensate for γ.

Figure 4.4 Estimated parameters values for initial slope of the Photosynthesis-irradiance
curve of nanophytoplankton (A) and diatoms (D); maximum photosynthesis
rate of nanophytoplankton (B) and diatoms (D); maximum chlorophyll to
nitrogen ratio of nanophytoplankton (C) diatoms (F); Chl degradation rate
nanophytoplankton (G) and diatoms (H); maximum grazing rate (I). The bold
value indicated by the major tick mark on the color bar represents the default
value.

The joint state-parameter estimation reduces the ensemble spread relative to the initial
spread across all parameters. A spatial consistency is observed in the retrieved pattern
values that align well with the spatial distribution of chlorophyll-a, though discrepancies
persist. Small-scale noise is likely due to spurious correlations in our finite ensemble size
of 40. Regions, where the estimation does not converge correspond to regions where the
model exhibits deficiencies in simulating surface chlorophyll-a.
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Table 4.3 The default value, global average, minimum, maximum and standard deviation
(percentage relative to global average) of spatially varying estimated parame-
ters.

Parameter Default
value

Average
value

Minimum
value

Maximum
value

Standard
Deviation

1 αNano 0.14 0.23 0.009 2.4 0.17 (73%)
2 αDia 0.19 0.26 0.01 1.5 0.19 (73%)
3 µmax

Nano 3.00 2.67 0.38 17.72 1.14 (43%)
4 µmax

Dia 3.50 4.20 0.20 29.84 2.06 (49%)
5 qChl:Nmax

Nano 3.15 3.02 0.44 7.87 0.74 (24%)
6 qChl:Nmax

Dia 4.2 3.32 0.23 40.43 1.31 (31%)
7 dChl

Nano 0.10 0.107 0.001 0.98 0.055 (51%)
8 dChl

Dia 0.10 0.1007 0.001 0.43 0.04 (40%)
9 ξ 2.4 3.18 0.12 20.34 0.24 (62%)

4.3.3 Temporal evaluation along the Atlantic Ocean

To further elaborate, we monitored the time evolution of the estimated parameter values
in 12 Longhurst provinces (Longhurst, 2007) along the Atlantic Ocean (see Figure 4.5).
Most changes in the parameters occur during the bloom periods. In the low and mid-
latitudes, most parameters reach more stable values by 30 DA cycles and show minor
variability over time. However, as expected in the high latitudes, the parameters show
more considerable temporal variability than in low and mid-latitudes.
The photosynthesis-irradiance αNano and αDia exhibit large temporal variability in the
Polar provinces (Figure 4.5A, D), predominantly due to the latitudinal distribution of in-
cident irradiance. In the Northern Hemisphere, heightened irradiance during the spring
and summer months leads to decreased αNano and αDia values in the ARCT and SARC
provinces. Conversely, during autumn, the values of both parameters continuously in-
crease, surpassing their default values. They remain relatively stable for the remainder
of the year. In the ANTA and SANT provinces, αNano and αDia consistently remain
above their default values. In mid and low latitudes, most variations in these parameters
occur during the initial cycles of DA experiments, after which they either stabilize or
exhibit a discernible trend. Notably, αNano undergoes more pronounced changes than
αDia in these mid and low-latitudinal provinces.
The opposite signs of chages in photosynthetic parameters µmax

Nano and µmax
Dia are also

evedent in thier temporal evaluations (Figure 4.5A and D). Large updates in these
parameters occur in ARCT and SARC provinces where the values of µmax

Nano contineously
icreased and the values of µmax

Dia decreased from the begening of DA experiments untill the
spring bloom then values for both parameter show steady. In the most of the provinces
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Table 4.4 Code corresponding to Longhurst province, as defined by Longhurst (2007),
included in the analysis.

Code Province Code Province
ARCT Atlantic Arctic WTRA Western Tropical Atlantic
SARC Atlantic Subarctic ETRA Eastern Tropical Atlantic
NADR North Atlantic Drift SATL South Atlantic Gyre
NASE North Atlantic Subtropical

Gyre East
SSTC South Subtropical Convergence

NASW North Atlantic Subtropical
Gyre West

SANT Subantarctic

NATR North Atlantic Tropical Gyre ANTA Antarctic

the values of these parameters converges and not clear temporal variabilities are notice.
The temporal evaluations of the photosynthetic parameters µmax

Nano and µmax
Dia reveal op-

posite trends in their changes (Figure 4.5B, E). In the ARCT and SARC provinces,
there are substantial updates to these parameters: µmax

Nano values consistently increase,
while µmax

Dia values decrease from the start of the DA experiments up to the spring bloom.
Subsequently, the values for both parameters stabilize. In most provinces, the values of
these parameters converge, and no distinct temporal variations are observed.
The qChl:Nmax

Nano and qChl:Nmax
Dia exhibit pronounced temporal variability, especially in the

Polar provinces (Figure 4.5C and F). In most provinces, these values are consistently
below their default levels. Thus, each province has lower values than default in the final
estimates. Although both parameters deviate from their default values, they do not
exhibit similar patterns of change.
The values of dChl

Nano and dChl
Dia exhibit similar trends over time. In most provinces ex-

amined, both parameters increase from their default values (Figure 4.5G and H). How-
ever, in the ARCT and SARC provinces, there is a significant reduction in their values.
Provinces where dChl

Nano and dChl
Dia values increase also display temporal variability, with

particularly elevated values observed during the spring and summer.
The grazing parameter ξ undergoes substantial updates during the initial DA cycles.
ξ regulates phytoplankton biomass at the surface when phytoplankton concentration is
high. Thus, To counteract the model’s general overestimation of surface chlorophyll-a
concentration, the values of ξ increase in most provinces to reduce phytoplankton con-
centration. Notable exceptions include the ARCT, SARC, SSTC, and SANT provinces.
Despite these large updates, no discernible seasonal variability is observed.
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Figure 4.5 Temporal evaluation of average estimated parameter values across the 12
Longhurst provinces as listed in Table 4.4. The numbering of the subplots
corresponds to that in Figure 4.4.

4.3.4 Model Run with Estimated Parameters

We verify the state accuracy of a single model forward run and an ensemble free run that
uses the final parameter’s estimates of experiments JSPE. We refer to them as ADJ_FRE
and ADJ_REA, respectively. We compare the performance against the reference runs.
This section presents the accuracy of the state variables in the reanalysis, which started
in January 2019 and was run until December 2020 using spatially varying estimated
parameters.
We first compare the annual average of chlorophyll-a concentrations obtained from both

102



Chapter 5. Spatially varying biogeochemical parameter estimation in 3–D model

simulations averaged from 2017 to 2021, with reference to OC-CCI averaged from the
exact durations in Taylor diagrams (K. E. Taylor, 2001). The surface chlorophyll-a
concentration simulated by the experiment ADJ_FRE outperforms the reference run
(REF_FRE) with a 26% reduction of RMSE for the annual average of the surface
chlorophyll-a concentrations from 2017 to 2021 (Figure 5). The correlation coefficient of
the ADJ_FRE with OC-CCI data is much higher (0.73) than the correlation coefficient
of the REF_FRE (0.52). Then, we compare the monthly average for April and October
from 2017 to 2021, also with reference to OC-CCI monthly averaged data from the same
durations as the spring in the northern and southern hemispheres, respectively.

Figure 4.6 Taylor diagrams illustrating the comparison of surface chlorophyll-a concen-
tration from model simulations with default parameters and estimated param-
eters against satellite observations for the period 2019-2021. The diagrams
represent: (A) Annual mean, (B) Monthly mean for April, and (C) Monthly
mean for October.

We evaluated the spatial distributions of the modeled vertically integrated NPP for de-
fault and estimated parameters and compared them with estimatesbased on satellite
data , such as the updated carbon-based productivity model (CbPM, Westberry et al.,
2008). CbPM uses spectrally resolved light attenuation based on a semi-analytical al-
gorithm the Garver-Siegel-Maritorena (GSM, Betancur-Turizo et al., 2018). Over large
parts of the global ocean, the vertically integrated NPP simulations agree reasonably
with the observations. Nevertheless, there are regional differences. The misfits between
the model simulations and satellite data-based estimates are large in high latitudes and
coastal areas. Large deficiencies are particularly evident in coastal regions, which could
be linked to model parameter estimation deficiencies or high uncertainty of satellite-data
based NPP estimates in coastal water (see Westberry et al., 2008). The GSM algorithm
used to estimate CbPM NPP tries to distinguish the optical signatures from phyto-
plankton, particles, and dissolved organic matter but still requires regional tuning in
coastal regions, where non-biotic optically active material makes chlorophyll-a retrieval
challenging.
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CbPMREF_FOR ADJ_FOR

Figure 4.7 Monthly mean vertically Integrated NPP. The top row (A-C) is for April 2020,
and the bottom (D-F) is for October 2020. The left column (A and D) is the
reference simulation of a single model with DPVs (REF_FOR), the middle
column (B and E) is for satellite-based estimation and the right column (C
and F) is from the simulation of a single model with EPVs (ADJ_FOR).

4.4 Discussion
4.4.1 Subset of Parameters

In this study, we estimate the spatially varying values of nine parameters on a global
scale using ocean color data assimilation. The number of parameters considered is com-
parable to other studies (e.g., Gharamti, Samuelsen, et al., 2017; H. H. Kim et al.,
2021; Losa et al., 2004; Mamnun et al., 2022; Singh et al., 2022), which typically ranges
from 3 to 15. Utilizing DA to estimate many BGC parameters may result in low pre-
dictive skills due to overfitting to observational noise (Friedrichs et al., 2007). The
efficacy of parameter estimation depends on the sufficiency of available observations to
accurately constrain the chosen parameters (Thacker, 1989). Directly correlating sur-
face chlorophyll-a with phytoplankton biomass is challenging, given the variability and
often ambiguous nature of the chlorophyll-to-biomass ratio. Even with a known chloro-
phyll to biomass ratio, satellite chlorophyll-a observations primarily inform parameters
sensitive to surface chlorophyll-a. Nevertheless, several state variables other than sur-
face chlorophyll-a might exhibit high sensitivity to the same parameters (Mamnun et
al., 2023). Consequently, relying solely on satellite chlorophyll-a data for parameter
estimation may leave these variables inadequately constrained. Relying on a singular
observation type might be insufficient to differentiate between multiple viable parame-
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ter combinations, exemplifying the underdetermination issue frequently encountered in
BGC modeling (Ward et al., 2010).
We considered nine preselected parameters to align the model more closely with ob-
servational data, assuming that other BGC parameters do not significantly influence
model uncertainty (Mamnun et al., 2023). Nonetheless, the current understanding of
BGC parameter uncertainties and their interrelationships is inadequate for determining
an optimal parameter subset. The outcomes of our analysis might be influenced by the
specific parameters we chose to modify. Different parameter combinations could yield
more accurate model predictions.
Analogous to the underdetermination problem, correlations between parameters can
hinder the identification of a single optimal set of parameter values (Fiechter et al., 2011;
Mamnun et al., 2022; Mattern et al., 2017). A notable manifestation of these parameter
co-dependencies is the cancellation of uncertainties. In such cases, the model may align
with available observations, not because each parameter value is optimal but because the
uncertainties in correlated parameters offset each other. Therefore, individual parameter
values may not be portable to other model configurations.

4.4.2 Spatial variation of estimated parameters

Allowing spatial variation in parameter values reduced the model data misfit with re-
spect to both assimilated and independent data (section 3.3). However, this does not
inherently validate the significance of these variations in relation to the foundational
BGC processes. In this section, we aim to explore the spatial patterns of the estimated
parameters concerning the primary environmental factors that dictate variability in these
parameters and chlorophyll-a concentration.

Photosynthesis-irradiance parameters

The photosynthesis-irradiance parameters vary in response to various factors, from en-
vironmental to community composition (Bouman et al., 2018). Physical forcing governs
nutrient availability, modulates the mean irradiance in the surface mixed layer, and crit-
ically influences phytoplankton cells’ physiological performance (Carvalho et al., 2020).
The estimated values of photosynthesis-irradiance parameters exhibited large spatial
differences.
The values of αNano and αDia vary globally by two degrees of magnitude. This agrees
with other global studies (see Bouman et al., 2018). The parameter values generally
increased in high-latitude regions (Figures 4.4A and D). An increased value for the pa-
rameter α signifies enhanced photosynthetic efficiency of phytoplankton in a low-light
environment. The parameter α is modulated by environmental variables that exhibit
pronounced latitudinal variations, such as temperature and light availability (Harrison &
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Platt, 1986). The upper ocean physical dynamics and their influence on temperature and
light conditions critically shape the photosynthetic efficiency of marine phytoplankton
in polar and temperate regions (H. Bouman et al., 2005; Harrison & Platt, 1986). Al-
though large-scale shifts in the estimated αNano and αDia values are observed, temporal
differences between seasons are only observed at higher latitudes.
In the oligotrophic Subtropical Pacific Ocean, the values αNano and αDia show increasing
trends but never converge in the DA process. In these regions, the model consistently
produces low nanophytoplankton chlorophyll-a concentration, mostly likely because of
a limited supply of nutrients, thus negatively biased with observations. To compensate
for the consistent biases, the filter raised the values of both αNano and αDia in the
ocean basin. In contrast, the extreme values of αNano around 30◦S of the basin indicates
that the values of the parameter compensate for the uncertainty produced by other
parameters or other components of the modeling system.
The estimated values of αNano and αDia in the oligotrophic North Atlantic were similar
to the observations (see H. A. Bouman et al., 2018). The spatial pattern obtained in this
study is also similar to Losa et al. (2004). For instance, some gradients of the values are
observed. The values of αNano decrease with the increase of the latitude. Although the
gradient for αDia is not prominent, it exhibits a similar pattern, i.e., the values increase
from north to south. Similar spatial patterns were obtained by Losa et al. (2004). The
values around the Bermuda Atlantic Time-series Study (BATS) agree with the value
obtained by Mamnun et al. (2022) and Spitz et al. (2001).
A higher value of the maximum growth rate increases photosynthesis, thus increasing
phytoplankton biomass. A higher phytoplankton growth rate will initially increase the
productivity in these oligotrophic subtropical Pacific and subtropical Atlantic regions.
However, the nutrient may be depleted over more extended periods (5 or more years) be-
cause there would be less supply of new nutrients below the euphotic zone. Subsequently,
this condition leads to a reduction in the overall biological productivity.
There is generally a poor correlation between biomass and phytoplankton production
in high latitudes (Platt et al., 1991). The relative uncoupling between the chlorophyll-
a and the production distributions allowed the filter to make the parameters µmax

Nano

and µmax
Dia highly variable over space. µmax

Nano varied globally by a factor of ∼46 in this
study (range: 0.38 to 17.72 d−1) similar to observations (Marañón & Holligan, 1999).
However, the µmax

Dia variation was two degrees of magnitude, which is comparatively larger
than reported in the observation (see H. A. Bouman et al., 2018). Diatoms have higher
values of maximum photosynthesis rate depending on their size (Richardson et al., 2016).
However, spatially varying estimates of this study show no indication of having higher
values of µmax

Dia compared to µmax
Nano.

Spatiotemporal differences in the photosynthesis parameters µmax
Nano and µmax

Dia are likely
driven by changes in oceanographic conditions (e.g., temperature, stratification, macro
and micronutrient availability) (Geider et al., 1996) and in community structure and
other biological processes that may consume cellular energy at the expense of carbon
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fixation (Puxty et al., 2016). Cold water at high latitudes may limit the photosynthesis
parameters µmax

Nano and µmax
Dia for carbon fixation (Smith Jr & Donaldson, 2015), which is

reflected in the generally low values of these parameters in the boreal and austral polar
regions (Figures 4.4B and E). Sea surface temperature (SST) can govern the variations
in photosynthesis parameters (Behrenfeld & Falkowski, 1997a, 1997b; Harrison & Platt,
1980; Zaiss et al., 2021). However, in this study, the warm temperatures encountered
in tropical latitudes were not accompanied by consistently elevated values of µmax

Nano and
µmax
Dia . Similarly, Marañón and Holligan (1999) found no significant dependency of these

parameters on SST. The lack of correlation between SST and maximum photosynthesis
rate in the open ocean justified the latitudinal pattern of estimated parameter values in
the current study.
Nutrient availability is the main factor controlling the large variability of photosynthesis
parameters (Marañón & Holligan, 1999). The estimated photosynthesis parameters
µmax
Nano and µmax

Dia in this study are correlated to the variations in the annual maximum
mixed layer depth (MLD), which can be seen as a proxy for nutrient flux into the upper
mixed layer. To delve deeper into the relationship between nutrient availability and
photosynthesis parameters, we examined the model’s annual maximum MLD for 2020.
Figure 4.8 provides a visual representation of this analysis, with Figure 4.8A illustrating
the maximum MLD and Figure 4.8B highlighting the month in which this maximum
MLD occurred.

Figure 4.8 (A) Annual maximum MLD of MITgcm for 2020; and (B) The month of the
year when maximum MLDs of MITgcm were found in 2020.

Moreover, there is an inverse relationship between temperature and nutrient supply in
the open ocean (Sathyendranath et al., 1991). Thus, an increase in µmax

Nano in associa-
tion with the upwelling areas and lower values of µmax

Nano were estimated in the southern
central gyre compared to those in the northern central gyre, presumably reflecting the
enhanced stability of the water column in the former. Deep MLD and strong convective
mixing in the North Atlantic (Artic and Subarctic) Ocean in the MITgcm (Figure 4.8)
result in high nutrient concentrations at the surface to increase the µmax

Nano and thus in-
creased phytoplankton concentration and surface chlorophyll-a. However, as the model
chlorophyll-a concentrations are positively biased to minimize the model data misfit,
the filter compensates for phytoplankton production by reducing µmax

Dia and generating
an inverse pattern of these two parameters estimates. Similar inverse patterns of up-
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dates in the estimated values µmax
Nano and µmax

Dia were found at BATS by (Mamnun et al.,
2022). In a large part of the Southern Ocean, annual maximum MLD goes deeper than
500m (Figure 4.8) before austral summer (Figure 4.8B); thus, the model simulates high
chlorophyll-a concentration. As the filter does not know the joint uncertainty of parame-
ter values to bring the model close to observation, the filter reduced the values of µmax

Nano.
Moreover, it is known that satellite observations underestimate chlorophyll-a concen-
tration in the Southern Ocean (Johnson et al., 2013). In the regions of model deficits
(e.g., Sub-Artic Atlantic), the filter estimated these two parameters (µmax

Nano and µmax
Dia )

commonly considered unrealistic (see H. A. Bouman et al., 2018) until a reasonable
agreement between observation and simulation is found.
Spatial variation in surface irradiance may also influence the latitudinal variation in the
values of µmax

Nano and µmax
Dia . The combination of lower surface irradiances and deep con-

vective mixing in high latitudes results in markedly lower light levels within the mixed
layer, which may result in photoacclimation to lower light levels by modulating pigment
content per cell and hence maximum photosynthesis rate (Cullen, 1982; Sathyendranath
et al., 2009). However, the influences of the irradiance on the variability of parameters
controlling the maximum photosynthesis rate are poorly understood (Marañón & Hol-
ligan, 1999). In this study, we have not found any indication that irradiance influences
the spatial variation of µmax

Nano and µmax
Dia , which also agrees with the findings of Marañón

and Holligan (1999). Moreover, culture studies have invoked viral infection as another
potential source of variability poorly understood in natural marine systems (Puxty et al.,
2016) and is not described in models.

Maximum Chlorophyll-to-nitrogen ratio

The variations of the maximum chlorophyll-to-nitrogen ratio (qChl:Nmax) in the open
ocean are caused by an imbalance between the light absorption and energy demands for
photosynthesis and biosynthesis in phytoplankton cells (Geider et al., 1996). qChl:Nmax

can also change because of variations in phytoplankton photoacclimation or physiological
differences across phytoplankton groups, from a lower value for smaller species to a higher
value for larger diatom cells (Geider et al., 1998). In the REcoM2, carbon-specific nitro-
gen assimilation is converted to chlorophyll units by multiplying by qChl:Nmax for each
phytoplankton class (Hauck et al., 2013). In our estimates, the qChl:Nmax

Nano and qChl:Nmax
Dia

values increased in general to minimize overall positive bias in simulated chlorophyll-a
concentration. However, the estimates of qChl:Nmax

Nano and qChl:Nmax
Dia show a relatively

small degree of spatial variability compared to other parameters considered in this study
(Table 4.3).
Growth irradiance significantly regulates qChl:Nmax ratios (A. H. Taylor et al., 1997).
The dependency of photoacclimation on light is pivotal for accurately predicting the
stoichiometry of phytoplankton within light gradients (Álvarez et al., 2018). The pho-
toacclimation term in the original model by Geider et al. (1998) ties chlorophyll syn-
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thesis to the light saturation level of the photosynthetic apparatus. Specifically, when
pigments absorb light in excess of what is utilized for photosynthesis, there is a down-
regulation in the synthesis of chlorophyll-a. According to this model, the reduction in
light-harvesting complexes arises purely from dilution, given that the rate of chlorophyll
synthesis decreases compared to carbon fixation. Notably, in REcoM2, in addition to the
downregulated chlorophyll synthesis with qChl:Nmax

Nano and qChl:Nmax
Dia , loss of chlorophyll

from functional cells is described by a chlorophyll degradation rate.

Chlorophyll degradation rates

Constraining the chlorophyll degradation rates (dChl
Nano and dChl

Dia) presents a challenge in
quota-based BGC models. The original model by (Geider et al., 1998) described photoac-
climation over day-long timescales, but it lacks a term accounting for Chl degradation.
This inclusion of the Chl degradation rate becomes particularly significant during low-
growth periods in winter and at the lower reaches of the euphotic zone. Without a term
for chlorophyll loss, which represents intricate processes in aging of photostressed cells,
the carbon to chlorophyll ratios (C:Chl) in phytoplankton can become skewed.
Consequently, this parameter is often subjectively adjusted until a satisfactory alignment
between observational data and model simulations is achieved. However, this approach
might not be universally applicable across different BGC models. Interestingly, this pa-
rameter’s broad spectrum of values can enhance model outcomes, mainly since it exhibits
correlations with other parameters (Mamnun et al., 2022). Our estimation experiments
yielded values varying by three orders of magnitude, with lower values going as low as
0.001. We consider our estimated’ spatial variation of dChl

Nano and dChl
Dia as reasonable

as they did not get extremely high. Replacing the rudimentary chlorophyll degrada-
tion model with a more detailed process-based depiction of photosystem functionality
degradation can refine the modeled C:Chl ratios (Álvarez et al., 2018). However, little
attention has been paid to that direction.

Maximum grazing rate of zooplankton

The estimated maximum grazing rate of zooplankton (ξ) shows sizeable spatial variabil-
ity. Although zooplankton consists of a large variety of taxa, from unicellular flagellates
to multicellular organisms, the version of REcoM2 we used describes only one generic zoo-
plankton group, which is common in the majority of ocean BGC models (Séférian et al.,
2020). Zooplankton grazing is the largest source of uncertainty in the ocean BGC models
for generating climate projections (Laufkötter et al., 2015; Rohr et al., 2023). Zooplank-
ton grazing influences carbon exchange, modulates surface phytoplankton biomass, and
consequently governs biological production and nutrient uptake through photosynthe-
sis. Incorporating a more intricate and complex representation of zooplankton grazing
reduces biases in surface chlorophyll-a concentrations (Karakuş et al., 2022). Moreover,
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in our estimation, we did not consider another sensitive grazing parameter, the grazing
efficiency (γ) (Mamnun et al., 2023) because ξ and γ are highly correlated (Mamnun
et al., 2022). Therefore, it is most likely that the ξ values were compensated for other
beta and other grazing parameters.
The values of ξ are notably low in the Arctic and Subarctic Atlantic oceans (Figure 4.4I).
During a spring bloom, the biomass of zooplankton trails behind the growth and accu-
mulation due to the effects of temperature on zooplankton development (Daase et al.,
2013; Søreide et al., 2010). As a result, there can be instances where phytoplankton and
zooplankton exhibit either a negative correlation (e.g., when phytoplankton increases
while zooplankton biomass is low or vice versa) or a positive correlation (e.g., when both
populations are on the rise). These dynamics were evident in our study. In REcoM2,
surface ocean phytoplankton biomass typically diminishes due to aggregated sinking or
grazing, as the model does not include physiological mortality. During the spring bloom,
the growth interplay between zooplankton and phytoplankton was more synchronized,
mainly as much of the frontal structure had dissipated by then (Dong et al., 2021).
Given the spatiotemporal fluctuations observed throughout the study, comprehending
the intricate relationship between phytoplankton and zooplankton remains complex.
Reducing the value of ξ in the oligotrophic Subtropical South Pacific Ocean (Figure
4i), where the model underestimates chlorophyll-a (Figure 4.3), substantially increases
the phytoplankton production in the simulations to cover the underestimation. Saito
et al. (2005) also found that grazing parameters in this region are highly uncertain.
In regions with strong upwelling and convective mixing, such as the Southern Ocean
and the Tropical North Pacific, increasing the grazing rate substantially reduces surface
chlorophyll-a concentration to minimize misfit with observations. The sensitivity studies
with 1–D model configurations in the Tropical North Pacific Ocean (Chai et al., 2002;
Dugdale et al., 2002) also agree. The filter increased the values of ξ around the BATS
site, which agrees with the study with a 1–D model configuration of REcoM2 (Mamnun
et al., 2022) and other previous studies (Doron et al., 2013; Losa et al., 2004). In situ
measurements (Evelyn & Michael, 1998) also show that the grazer community consumes
most of the production at this location. In addition, increases of ξ in the high-nutrient,
low chlorophyll regions of the Southern Ocean suppress phytoplankton mass on the
surface, thereby compensating for overestimated surface chlorophyll-a by the model.

4.4.3 Parameter compensation for other model deficiencies

In this study, we have focused exclusively on the uncertainties arising from BGC param-
eters. By treating only nine biological parameters as stochastic and by updating them
to fit the observations, we do not account for the fact that model-data discrepancies are
also caused by other sources of model error, such as the other biological parameters,
parameters of the underlying physical model, physical forcing, boundary, and initial
conditions as well as the functional form of the equations themselves. However, it is
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critical to acknowledge that errors may also emanate from other components of coupled
modeling systems, such as ocean physics and sea ice dynamics, atmospheric forcing, or
inherent structural inadequacies in the model framework. While the model reasonably
agrees with existing observations, this concordance may be because BGC parameter un-
certainties offset imitations in other model components or structural uncertainties. Such
compensatory errors pose significant challenges for future climate projections. However,
they may yield plausible simulations for the present state, but they erode confidence in
the model’s predictive capability for future scenarios (Löptien & Dietze, 2019).
The free run consistently produces a thin line of elevated chlorophyll-a in the subtropical
gyres, most visible in the Subtropical South Atlantic and Indian Ocean (Figure 4.3).
The feature is not seen in satellite data, and DA analysis somewhat dissolved the line
of elevated chlorophyll-a. Directly at the transition from iron to nitrogen limitation,
neither of the two limitation terms is as low as in the centers of the limited regions. In
the REcoM2 code, the co-limitation is calculated as a minimum of two limitation terms,
so there is less limitation directly at the transition than in the equilibrium regions.
Although the values of chlorophyll-a in these features are relatively small and proba-
bly do not affect global biogeochemical cycles much, the parameter estimation process,
responded to this model deficiency. This is particularly visible for the maximum chloro-
phyll to nitrogen ratio of nanophytoplankton and maximum grazing rate in Figure 4.4C
and I. These parameters had larger changes in the transition regions to compensate for
the elevated chlorophyll-a.
Whenever uncertainties from different sources compensate for each other, the ocean BGC
model may yield reasonable outputs for the period for which the parameter estimation
was implemented. However, this compensatory behavior compromises the model’s util-
ity for gaining mechanistic insights and being a reliable predictive instrument beyond
that specific timeframe. This phenomenon is particularly concerning when consider-
ing slow climate BGC feedback mechanisms, which are inherently challenging to probe
with current observations. A judicious strategy for model development would involve
applying Occam’s razor (Sober, 1981). This could be accomplished by restricting the
number of BGC variables to only those essential and focusing on processes for which
a well-founded conceptual or theoretical understanding of their climate sensitivity ex-
ists. Nevertheless, the optimal approach may vary depending on the specific scientific
questions being addressed, introducing an element of subjectivity into the process.
In practice, when uncertainties beyond just model parameter uncertainties influence
the parameter estimations, the outcomes of parameter estimates become indeterminate
in their effectiveness. While compensating for these uncertainties can mitigate some
deficits, it does not address all of them. This phenomenon was evident in Simon et al.
(2015), where they conducted parameter estimation on a regional BGC model for the
North Atlantic and Arctic Oceans. Furthermore, parameter estimates optimized for
a specific location or regional scale can deteriorate model outcomes for other regions,
as highlighted by (Friedrichs et al., 2007). This underscores the need for estimating
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spatially varying BGC parameters.

4.5 Conclusion
We employed ensemble DA to estimate spatiotemporally varying values of nine un-
certain parameters within a 3–D global ocean BGC model by assimilating satellite-
derived surface chlorophyll-a concentrations. The estimated parameters are the initial
slope of the P-I curve for nanophytoplankton and diatoms, the maximum photosynthe-
sis rate of nanophytoplankton and diatoms, the maximum chlorophyll-to-nitrogen ratio
for nanophytoplankton and diatoms, chlorophyll degradation rate of nanophytoplank-
ton and diatoms, and the maximum grazing rate of zooplankton. Leveraging an EnKF,
we adopt the augmented state vector approach, grounded in multivariate correlations
between BGC parameters and observed state variables, i.e., surface chlorophyll-a con-
centration in this study. In addition to the chosen nine parameters, the DA updated
eight model state variables, biomass content of carbon, nitrogen and calcium carbonate
of nanophytoplankton, biomass content of carbon, nitrogen and silicate of diatoms, and
chlorophyll-a concentration in nanophytoplankton and diatoms, which were used as the
initial conditions for the next forecast cycle.
The resulting parameter estimates span a range above and below the default value,
underscoring the efficacy of DA in enhancing the model’s regional parameterization.
Notably, simulations conducted with the spatially varying values of this optimized pa-
rameter set align more closely with observations compared to the reference simulation
that employs spatially uniform default parameter values.
A notable, albeit anticipated, consequence of augmented-state parameter estimation is
the filter’s unpredictable use of the additional degrees of freedom. Although our pri-
mary objective is to achieve the best parameter estimates by minimizing its uncertainty,
the DA process may inadvertently offset the uncertainty from other sources. This can
result in suboptimal parameter estimates yet improved state estimates. Such parameter
estimates, resulting from compensation of other uncertainties, restrict the portability of
these estimates to a different model configuration or a different model.
While our results demonstrate the efficacy of the estimation method assimilating ocean
color data, possible extensions and improvements of the method are numerous, and fur-
ther developments of DA for different types of observations should be explored. The
methodology evaluated in this study is not exclusive to the MITgcm-REcoM2 model
and does not necessitate extensive inverse model developments. Thus, it can be adapted
to other models, provided that the ensemble simulations, which describe the model’s
response to parameter uncertainty, are computationally viable. Our approach offers
a valuable alternative for consideration in a research environment with multiple coex-
isting models and limited computational resources for expanding variable counts and
calibrating parameters.
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5.1 Conclusion
To improve our ability to predict climate and to asses the effects of climate change
on ecosystems, accounting for the influence of the carbon cycle and how they relate
to climate processes is fundamental. Ocean biogeochemical (BGC) models provide an
integral tool for investigating ocean biogeochemistry and its effects on the carbon cycle.
These models are highly uncertain in their parametrization. These uncertainties are
unavoidable. Nonetheless, uncertainty quantification (UQ) of the BGC models can make
the models more useful and mitigate discrepancies in the model outputs. UQ for ocean
BGC models is used broadly to describe parameter sensitivity analyses and parameter
estimation problems, including characterization of the uncertainty in the model fields
and process parameters, specification of uncertainties in parameter estimates, and model
parameterizations. In this dissertation, UQ methods were successfully applied to improve
model predictions of an ocean BGC model, the Regulated Ecosystem Model Version 2
(REcoM2). The above sets the overall goal of this dissertation, focusing on identifying
and quantifying uncertainties arising in ocean BGC models and obtaining improved
parameters to reduce those uncertainties and yield improved model predictions. The
dissertation provides two approaches toward reaching its goal:

a) Parameter sensitivity analyses aiming to evaluate the impact of parameter uncer-
tainties on the variability model outputs and

b) Parameter estimation aiming to estimate the optimal parameter values given obser-
vational data.

Three interlinked but not mutually exclusive studies were carried out to address the un-
certainties in ocean BGC models utilizing REcoM2. The first study focuses on sensitivity
analysis to identify the process parameters most influential to model outputs. The sec-
ond study delves into uncertainty quantification, employing ensemble data assimilation
to estimate uncertain process parameters in two ocean sites for which observational time
series data are available. The third study uses a global model setup to estimate spatially
varying parameters by expanding the scope and applicability from a location-specific
focus of the second study.
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Study 1: Global sensitivity analysis (GSA) at two locations (BATS and DYFAMED)
utilizing a simplified one-dimensional (1–D) model setup

Ocean BGC models contain numerous parameters, often exceeding the number of vari-
ables. The uncertainties in these parameters can lead to possibly significant uncertainty
in the model outputs. To get reasonable model outputs, it is essential to calibrate the
parameters in each application case using observational data, either manually or through
optimization algorithms that minimize the misfit between simulations and available data.
It is vital to prioritize the parameters that impact the uncertainty of model outputs the
most. A GSA of REcoM2 was conducted to obtain insights into which model parameters
most influence the uncertainty of an output quantity of interest.
Utilizing a 1–D configuration of the coupled MITgcm- REcoM2 model at two ocean
time series stations, this study computed variance-based Sobol’ indices (Sobol’, 1993) of
model parameters for chosen model outputs that are commonly considered for calibration
and validation of ocean BGC models. The two stations are 1) the Bermuda Atlantic
Time-series Study (BATS, Steinberg et al., 2001) in the North Atlantic and 2) the
DYFAMED station (DYFAMED, J. C. Marty, 2002) in the Mediterranean Sea. Sobol’
indices measure the relative contribution of individual input parameters to the variance
of a model output or quantity of interest (QoI). In the dissertation, the focus was set on
the first- and total-order Sobol’ indices. The first-order index of a parameter measures
the expected reduction in the variance of QoI if the parameter could be set as fixed value
(Homma & Saltelli, 1996), thus leaving out the variability of QoI caused by interactions of
the respective input parameter with others. The total-order index of an input parameter
provides how much variance remains in the QoI if every parameter except the respective
one could be set as fixed value (Homma & Saltelli, 1996), thus accounting for interactions
with other input parameters.
The traditional local sensitivity methods can lead to inaccurate conclusions and can
result in misconceptions about the influence of individual processes on model outcomes
(Prieur et al., 2019). However, the local methods are typically preferred in practice
because GSA is computationally expensive. A key takeaway from our study for future
ocean BGC studies is the following:
The continual growth in computational resources, coupled with advancements in sensi-
tivity measure estimation algorithms, has made it feasible to execute a GSA of a 1–D
BGC model considering a large number of input parameters. Even resource-intensive
indices like total-order Sobol’ indices can be efficiently computed, particularly with a high-
performing computer. However, it is noteworthy to mention that implementing such a
GSA into a 3–D model is still out of reach.
The results of our GSA can be summarized as follows. The most important parameters
for chlorophyll-a simulations are the cell quota chlorophyll to nitrogen ratio, ones related
to grazing by zooplankton, chlorophyll degradation rate, and photosynthesis parameters.
The most influential parameters for net primary production (NPP) predictions are pho-
tosynthesis, grazing parameters, cell quota carbon to nitrogen ratio, excretion of organic
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carbon by phytoplankton, and zooplankton respiration. Export production and CO2

flux are influenced mainly by the remineralization of nutrients and grazing by zooplank-
ton. Overall, the sensitivity responses of most of the QoIs were similar between the two
locations.
The primary output achieved by this GSA is a list of the most important BGC param-
eters that need to be quantified for the future. In the context of UQ for a model with
many parameters, like ocean BGC models, GSA streamlines the optimization process by
concentrating on those parameters. This study was the basis for selecting parameters for
estimation with data assimilation in the subsequent projects (Study 3). Ranking of the
most influential REcoM2 parameters could be useful for the optimization efforts of other
models. However, we recommend a GSA before starting any parameter optimization
study.
The added value of GSA lies in assisting modelers in comprehending the behavior of
their models and pinpointing the most influential parameters. For example, the results
of this study suggest that implementing multiple zooplankton function types in BGC
models may be useful to improve chlorophyll-a and NPP prediction, provided that efforts
are invested in estimating parameters characterizing the grazing in marine ecosystems.
In addition to grazing, aggregation parameters account for phytoplankton mortality
in REcoM2. The physiological mortality is not explicitly represented in the model.
However, phytoplankton biomass (in terms of chlorophyll-a concentration and NPP)
simulation of REcoM2 is not sensitive to the aggregation parameters, indicating that
representing phytoplankton mortality as physiological mortality explicitly can improve
the model outputs in oligotrophic regions. The GSA results also indicate that explicitly
implementing heterotrophic bacteria in the model has the potential for better simulating
the export production and CO2 fluxes.
GSA can be invaluable for model reduction as it highlights essential parameters that
cannot be held constant. Sobol’ et al. (2007) argued that model reduction based on
first-order Sobol’ indices can lead to erroneous conclusions. The GSA carried out in this
study also agrees the argument. The first-order Sobol’ indices for the maximum nitrogen
uptake, the minimum cell quota of nitrogen (C:N), and the cost of nitrogen biosynthesis
were very low. However, these parameters could not be screened out due to their high
total-order indices – strong interaction with other parameters.
The above insights gained from the GSA will be useful for future BGC modeling case
studies, parameter estimation and optimization, and further development of BGC mod-
els. The methods presented in this study are broadly applicable to other ocean BGC
models and other intricate modeling domains.
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Study 2: Application of ensemble data assimilation to a 1–D model for parameter
estimation

The values of the numerous parameters involved in ocean BGC models are poorly known.
The available reference values were taken from laboratory experiments on single species
or estimated with limited field data of a single field campaign. However, in the model,
they are applied more broadly to describing whole classes of organisms and for all physical
and biogeochemical contexts. Using the identical model setup as in the previous GSA
experiments (Study 1), ten important BGC parameters were estimated by applying the
ensemble data assimilation technique.
This study utilized an Ensemble Kalman Filter, the Error-Subspace Transform Kalman
Filter (ESTKF; Nerger et al., 2012a), provided by the Parallel Data Assimilation Frame-
work (PDAF; Nerger & Hiller, 2013) to assimilate satellite chlorophyll-a concentration
data and in-situ observations of net primary production. This study used a 108-member
ensemble. The varying model states (ensemble members) were generated by randomly
perturbing the selected ten parameters, assuming a lognormal distribution with a rel-
ative variance of 0.25 for all the selected parameters. DA experiments were performed
from October 1999 to December 2002 for BATS and from October 1997 to December
2000 for DYFAMED. The difference in the chosen period was caused by the availability
of the in situ flask NPP data.
Consistent with previous studies (e.g., Gharamti, Samuelsen, et al., 2017; Mattern et al.,
2010), our findings affirm that ensemble DA techniques effectively enhance parameter es-
timation in 1–D ocean BGC models, reducing the discrepancy between model predictions
and data. Notable adjustments were observed in parameters related to phytoplankton
photosynthesis rate, chlorophyll degradation, and grazing. Consequently, these param-
eter adjustments substantially improved model prediction, decreasing the Root Mean
Square Error (RMSE) by up to 66% for surface chlorophyll-a and 56% for NPP relative
to assimilated data. Compared to independent data, the RMSE was reduced by up to
43% for chlorophyll-a and 18% for NPP.
When satellite chlorophyll-a and in situ NPP data were assimilated simultaneously, the
parameter estimation process yielded enhanced parameter values. Solely assimilating
satellite chlorophyll-a data did not sufficiently refine the model, especially at the BATS
station. In this case, the filter optimized the surface chlorophyll-a simulations. Solely
assimilating satellite chlorophyll-a led to greater discrepancies between simulated and
in situ NPP data. While surface chlorophyll-a simulations are sensitive to the chosen
parameters, the surface chlorophyll-a observation might not encompass information for
all parameters. Consequently, certain variables might remain inadequately defined by
surface chlorophyll-a. This issue is known as the underdetermination problem in ocean
BGC data assimilation (Ward et al., 2010).
The large discrepancies between the simulated and in situ NPP data at the BATS station
could be attributed to the 14C methodology and the distribution of particles and organ-
isms in the highly oligotrophic waters (Harris et al., 1989). While in situ NPP displayed
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minimal seasonality during the study period, satellite-based estimates highlighted pro-
nounced seasonal variations. Additionally, the in situ data exhibited greater variability,
potentially stemming from measurement errors, suggesting substantial uncertainty in
the in situ flask data measurements.
Analogs to the underdetermination problem parameter interdependencies are evident in
ocean BGC models (see Tjiputra et al., 2007). This study also found that co-dependencies
among parameters prevent the estimation of a unique optimal parameter set, indicating
the necessity for additional conditions to achieve meaningful BGC parameter estimations.
In this study, parameter estimations resulted in distinct optimal parameter values for
each of the locations of the experiment. Similar findings have been reported in previous
studies, where BGC parameters estimated across various locations yielded differing val-
ues (e.g., Friedrichs et al., 2007; Gharamti, Tjiputra, et al., 2017; Schartau & Oschlies,
2003; Tjiputra et al., 2007). Such variations indicate that BGC parameters can exhibit
significant spatial variability influenced by physical conditions and ecosystem contexts.
Consequently, regional and global 3–D models would benefit from incorporating these
spatially varying parameter values. This estimation method can be adapted for a 3–D
model.

Study 3: Spatially varying parameters estimation in a 3–D global ocean model

Chapter 4 of this dissertation presents spatially and temporally varying parameter val-
ues in a 3–D global ocean model by assimilating Ocean Color Data. Nine parameters
were chosen based on the GSA presented in Chapter 2. Each of the nine selected pa-
rameters was defined as a 2–D field for estimating spatially varying parameter values,
which then was updated by leveraging cross covariances with satellite chlorophyll-a ob-
servations. This study utilized domain localization (Nerger et al., 2012a) of ESTKF also
using PDAF. Each horizontal model grid point is considered a disjoint local domain in
domain localization. Only observations with a distance smaller than a cut-off radius
(localization radius) are considered for a given local domain. The parameter values were
updated at each grid point with a distance-weighted influence of the observation within
the localization radius.
The estimated parameters exhibit values larger and smaller than the default value, show-
ing an effective impact of data assimilation on the model’s parameterization regionally.
The parameter values converge within six months in a large part of the globe. The
model simulations with the set of estimated parameters are closer to the observations
than the reference simulations using constant parameter values for surface chlorophyll-a
concentration and vertically integrated NPP. However, estimated spatially varying pa-
rameter values lead to more extended spring bloom periods compared to the estimates
from satellite observation.
The dynamic range of estimated parameter values was within the values reported from
observations and other studies. The spatial variations of estimated parameter values
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were similar to observed variations and explainable with our current understanding of
the regional BGC process. We obtained a range of variation of about two orders of
magnitude for the photosynthesis parameters, which agrees with the observed variability
(H. A. Bouman et al., 2018). Platt et al. (1991) highlighted a weak correlation be-
tween biomass and production, particularly at high latitudes. This observation is further
supported by Marañón and Holligan (1999), who extended this assertion to mid and
low latitudes. The weak correlations between chlorophyll-a concentration and production
distributions elucidate the limited enhancement in vertically integrated NPP relative to
surface chlorophyll-a when incorporating estimated spatially varying parameter values.
Significant variability in the maximum grazing rate is primarily attributed to grazing
pressure being the predominant source of uncertainty in REcOM2, as detailed in Chap-
ter 2 (Mamnun et al., 2023). This observation aligns with the findings of Rohr et al.
(2023), which identified similar patterns across numerous BGC models in Coupled Model
Intercomparison Project Phase 6. Such variability implies that pronounced disparities
in the magnitude of grazing parameters within models might dominate key qualitative
differences in marine primary production, thereby influencing the dynamics of phyto-
plankton populations. This study indicates the potential benefits of refining the por-
trayal of zooplankton grazing in marine biogeochemical models, which could yield more
accurate and consistent estimations of the marine carbon cycle.
An interesting, though not surprising, effect of joint state-parameter estimation is the
filter’s unpredictable use of the additional degrees of freedom. While our goal is to estimate
the parameters to the best possible accuracy, the filter algorithm might compensate for
model deficits instead, resulting in extreme parameter values but better state estimates.
Based on all findings, the UQ methods in this dissertation have been proven to apply well
to the complex BGC model REcoM2. They are model-independent and, therefore, can
be used for other models. While the parameter values derived from our study may not
be directly transferable to other models, the insights gained can enhance the evaluation
and refinement of predictions in general BGC models. This research underscores the
potential advantages of incorporating spatially varying process parameters in regional
and global 3–D BGC models.

5.2 Outlook
Sensitivity analysis evaluates the extent to which a model’s outputs rely on its assump-
tions and input parameters. It addresses the balance between model complexity and
interpretability, determining when the quality of its input parameters justifies its com-
plexity. A prior sensitivity analysis was recommended as essential for modeling appli-
cations related to model quality (see Razavi et al., 2021). When a model is considered
appropriate for a specific research question, conducting a sensitivity analysis is urged
to be routine practice (see Saltelli et al., 2021). Notably, many ocean BGC modeling
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studies either neglect this crucial step or fail to report it (Shimoda & Arhonditsis, 2016).
The GSA detailed in this dissertation revealed that aggregation exhibits lower sensitivity
than grazing, shedding light on the uncertainties associated with estimated aggregation
parameters.
Additionally, we discerned that the sensitivities of photosynthesis parameters have min-
imal impact on chlorophyll-a simulations while interacting with other parameters. As
such, they cannot be effectively constrained using surface chlorophyll-a observations
when many parameters are considered concurrently. This sensitivity analysis proved
invaluable for selecting target parameters to be estimated, streamlining our parame-
ter estimation efforts on a limited number of parameters. Therefore, we advocate for
modelers to conduct sensitivity analyses in all BGC modeling applications.
Ocean BGC models continue to be developed to include more details of the BGC pro-
cesses, for example, incorporating advanced carbonate chemistry (Gürses et al., 2023),
including additional nutrients (Tagliabue et al., 2018), and carbon pools (Polimene et
al., 2018), adding additional model components (Ye et al., 2023) and including more
ecological diversity and other trophic levels (e.g., Leles et al., 2018; Stock et al., 2017;
Zakem et al., 2018). As BGC models become more complex (such as resolving more
phytoplankton function types and nutrient pools) the parametric uncertainty will likely
to increase (Figure 1.1). Simply developing satellite chlorophyll-a concentration-based
DA systems may not be sufficient to capture all complexities. An outlook for future
studies can be toward novel assimilation of ocean-color products (e.g., remote sensing
reflectance, phytoplankton functional types, ocean carbon stocks) and in situ observa-
tion (e.g., BGC-ARGO) and observational constraints, and of the uncertainties of DA
itself (e.g., applying nonlinear filters).
On the other hand, the evolution of model development could be tailored to accom-
modate novel observational products. For instance, as advancements in ocean color
products occur, it might become evident that the determination of phytoplankton size
distribution is more reliable than its function (Kostadinov et al., 2023). Should this be
the case, prioritizing the simulation of size distribution in models is a beneficial avenue.
Given the relatively small number of studies that have addressed spatially varying pa-
rameter estimation, it is worthwhile to continue present approaches and try new ones.
The methods menonstrated in this dissertation are well applicable to included more ob-
servation types into DA model. As satellite-derived chlorophyll-a concentration is highly
uncertain (Zhang et al., 2022, and references therein) it is likely that the assimilation
of less uncertain products, such as vertical attenuation at 490 nm or remote-sensing
reflectance, is a worthwhile direction.
The spatially varying values of all parameters considered here were estimated reasonably
well, as evidenced by the reduction in uncertasinties compared to when using uniform
default values. Additionally, the spatial variations of these values align well with our un-
derstanding of BGC processes and are similar to observations. However, we observed that
parameter estimates can sometimes compensate for model deficits. These compensations
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of model deficits also affect state estimation, and the resulting parameter estimations
become unpredictable. While compensating for specific model deficits can be advan-
tageous, it is not universally beneficial. This phenomenon was distinctly highlighted
in the study by Simon et al. (2015), who conducted joint state-parameter estimation
on an ecosystem model for the North Atlantic and Arctic Oceans. Therefore, Future
research should look into the effect of assimilating observation from different modeling
components, especially the components where the model performs poorly.
When observations span multiple compartments of the earth system, such as the ocean,
sea ice, and biogeochemistry, an approach known as weakly coupled data assimilation
(WCDA; Penny & Hamill, 2017) is often employed. WCDA assimilates data inde-
pendently in their respective components, with other model components dynamically
adjusting to these changes during simulations. In contrast, strongly coupled data as-
similation (SCDA; Penny & Hamill, 2017; Penny et al., 2019) allows for updates across
model components. For state estimation, SCDA has been shown to surpass WCDA in
performance (Goodliff et al., 2019; Tang et al., 2020, 2021; Yu et al., 2018). This outcome
is attributed to its ability to enhance the dynamical consistency of initial conditions and
broaden the influence of observations within their respective components. Singh et al.
(2022) demonstrated the advantages of cross-compartment updates in SCDA through a
twin experiment utilizing synthetic observations. Given these findings, it is imperative
to explore further the effects of both WCDA and SCDA on parameter estimates within
a realistic model using actual observations.
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Appendices

A.1 List of tracers simulated by the Regulated Ecosystem
Model 2 (REcoM2)

Table A.1 Tracers simulated by REcoM2

SL Tracer Unit

1 Dissolved Inorganic Nitrogen mmol m−3

2 Dissolved Inorganic Carbon mmol m−3

3 Total Alkalinity mmol m−3

4 Biomass content of Nitrogen in nanoplankton mmol m−3

5 Biomass content of Carbon in nanoplankton mmol m−3

6 Chlorophyll-a concentration of nanoplankton mg m−3

7 Nitrogen content of detritus mmol m−3

8 Carbon content of detritus mmol m−3

9 Biomass content of Nitrogen in heterotrophic
zooplankton

mmol m−3

10 Biomass content of carbon in heterotrophic zoo-
plankton

mmol m−3

11 Dissolved organic Nitrogen mmol m−3

12 Extra-cellular organic Carbon mmol m−3

13 Biomass content of Nitrogen in Diatoms mmol m−3

14 Biomass content of Carbon in diatoms mmol m−3

15 Chlorophyll-a concentration of diatoms mg m−3
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16 Biomass content of Silicate in diatoms mmol m−3

17 Dissolved inorganic Silicate mmol m−3

18 Dissolved Iron mmol m−3

20 Dissolved oxygen mmol m−3

21 Biomass content of calcium carbonate in phyto-
plankton

mmol m−3

22 Content of calcium carbonate in detritus mmol m−3
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A.2 List of Parameters in the Regulated Ecosystem Model 2
(REcoM2)

Table A.2 REcoM2 parameters, their Symbol, unit, and default value

SL Parameter Symbol Unit Value

1 Default temperature Tref Kelvin 188.15

2 Chlorophyll-a specific attenua-
tion coefficient

αCHL m−1(mgCHL)−1 0.03

3 Light attenuation coefficient KW m−1 0.04

4 Nanophytoplankton half-
saturation for nitrogen uptake

KN
Nano mmolNm−3 0.55

5 Diatom half-saturation for nitro-
gen uptake

KN
Dia mmolNm−3 1.0

6 Diatom half-saturation for sili-
cate uptake

KSi
Dia mmolSim−3 4.0

7 Nanophytoplankton half-
saturation for iron uptake

KFe
Nano mmolFem−3 0.02

8 Diatom half-saturation for iron
uptake

KFe
Dia mmolFem−3 0.12

9 Nanophytoplankton nitrogen to
carbon uptake ratio

σN
Nano molN(molC)−1 0.20

10 Diatom nitrogen to carbon up-
take ratio

σN
Dia molN(molC)−1 0.20

11 Diatom silicate to carbon uptake
ratio

σSi
Dia molSi(molC)−1 0.20

12 Nanophytoplankton maximum
nitrogen uptake

V Nmax
Nano dimensionless 0.7

13 Diatom maximum nitrogen up-
take

V Nmax
Dia dimensionless 0.7

14 Iron scavenging rate KScav
Fe (mmolCm−3)−1 0.0156

15 Nanophytoplankton initial slope
of P-I curve

αNano mmolC(mgChl)−1 0.14

16 Diatom initial slope of P-I curve αDia mmolC(mgChl)−1 0.19
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17 Nanophytoplankton maximum
photosynthesis rate

µmax
Nano d−1 3.0

18 Diatom maximum photosynthe-
sis rate

µmax
Dia d−1 3.5

19 Redfield ratio of carbon and ni-
trogen

qC:N
Redfield molC(molN)−1 6.625

20 Nanophytoplankton iron to ni-
trogen ratio

qFe:N
Nano molFe(molN)−1 0.033

21 Diatom iron to nitrogen ratio qFe:N
Dia molFe(molN)−1 0.033

22 Calcite production ratio Ψ dimensionless 0.01

23 Nanophytoplankton minimum
cell quota of nitrogen

qN :Cmin
Nano molN(molC)−1 0.04

24 Nanophytoplankton Maximum
cell quota of nitrogen

qN :Cmax
Nano molN(molC)−1 0.20

25 Diatom minimum cell quota of
nitrogen (N:C)

qN :Cmin
Dia molN(molC)−1 0.04

26 Diatom maximum cell quota of
nitrogen (N:C)

qN :Cmax
Dia molN(molC)−1 0.20

27 Diatom minimum cell quota of
silica

qSi:Cmin
Dia molSi(molC)−1 0.04

28 Diatom maximum cell quota of
silica

qSi:Cmax
Dia molSi(molC)−1 0.80

29 Nanophytoplankton maximum of
chlorophyll to nitrogen ratio

qCHL:Nmax
Nano mgCHL(mmolN)−1 3.78

30 Diatom maximum of chlorophyll
to nitrogen ratio

qCHL:Nmax
Dia gCHL(molN)−1 4.2

31 Diatom minimum silica to nitro-
gen ratio

qSi:Nmin
Dia molSi(molN)−1 0.30

32 Nanophytoplankton mainte-
nance respiration rate

ηNano d−1 0.01

33 Diatom maintenance respiration
rate

ηDia d−1 0.01

34 Nanophytoplankton cost of ni-
trogen biosynthesis

ζNNano molC(molN)−1 2.33
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35 Diatom cost of nitrogen biosyn-
thesis

ζNDia molC(molN)−1 2.33

36 Diatom cost of silica biosynthesis ζSiDia molSi(molN)−1 0.5

37 Nanophytoplankton chlorophyll
degradation rate

dCHL
Nano d−1 0.1

38 Diatom chlorophyll degradation
rate

dCHL
Dia d−1 0.1

39 Nanophytoplankton excretion
rate of carbon

ϵCNano d−1 0.05

40 Diatom excretion rate of carbon ϵCDia d−1 0.05

41 Nanophytoplankton excretion
rate of nitrogen

ϵNNano d−1 0.05

42 Diatom excretion rate of nitrogen ϵNDia d−1 0.05

43 Maximum grazing rate by zoo-
plankton

ξ mmolNm−3d−1 2.4

44 Grazing efficiency of zooplankton γ dimensionless 0.4

45 Half-saturation constant for
grazing

ϕ (mmolNm−3)2 0.35

46 Phytoplankton specific aggrega-
tion rate

φPhy (mmolNm−3)−1 0.015

47 Detritus specific aggregation rate φDet (mmolNm−3)−1 0.165

48 Time-scale for restoring towards
Redfield

Khet d−1 0.01

49 Quadratic mortality rate of zoo-
plankton

mhet (mmolNm−3)−1 0.05

50 Zooplankton carbon excretion
rate

ϵCHet d−1 0.15

51 Zooplankton nitrogen excretion
rate

ϵNHet d−1 0.15

52 PON degradation rate of detritus ρPON d−1 0.165

53 POC degradation rate of detritus ρPOC d−1 0.15

54 Maximum silicate dissolution
rate

ρSi d−1 0.02
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55 Detritus sinking velocity V Sink
Det d−1 20.0

56 Stickiness for polysaccharides to
polysaccharides

φPCHO (mmolCm−3)−1 0.0075

57 Stickiness for TEP to polysac-
charides

φTEP (mgm−3)−1 -1.240

58 Total ligand concentration of
iron

LT µmolm−3 1.0

59 Ligand stability constant of iron KF eL m3µmol−1 200

60 Dissolved organic nitrogen rem-
ineralization rate

ρDON d−1 0.11

61 Dissolved organic carbon rem-
ineralization rate

ρDOC d−1 0.10

62 Extracellular organic carbon
remineralization rate

ρEOC d−1 0.10

63 Benthos iron to nitrogen ration qFe:N
Nano molFe(molN)−1 0.33

64 Particulate organic carbon
degradation rate in sediment

dC d−1 0.005

65 Particulate organic nitrogen
degradation rate in sediment

dN d−1 0.005

66 Silicate degradation rate in sedi-
ment

dSi d−1 0.005

67 Calcium carbonate degradation
rate in sediment

dCaCO3 d−1 0.005

68 Linear slope of Arrhenius func-
tion

Ae Kelvin 4500
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A.3 Figures of first-order Sobol’ indices
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Figure A.1 First-order Sobol’ indices regarding mean surface total chlorophyll-a
(surf_totchl) for all 63 parameters. For parameters which the first-order
Sobol’ indices are greater than the threshold value at both stations are writ-
ten in red, at only BATS in black, and at only DYFAMED in blue. For
a description of the parameters, see Appendix A. The x-axis labels are the
serial no. of parameters in Appendix A.2.
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Figure A.2 First-order Sobol’ indices regarding mean surface nanophytoplankton
chlorophyll-a (SURF_NANOCHL) for all 63 parameters. The legends and
text color are analogous to Figure A.1.
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Figure A.3 First-order Sobol’ indices regarding mean surface diatom chlorophyll-a
(SURF_DIACHL) for all 63 parameters. The legends and text color are
analogous to Figure A.1.
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Figure A.4 First-order Sobol’ indices regarding annual peak surface total chlorophyll-a
(MBP_TOTCHL) for all 63 parameters. The legends and text color are
analogous to Figure A.1.
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Figure A.5 First-order Sobol’ indices regarding annual peak surface nanophytoplankton
chlorophyll-a (MBP_NANOCHL) for all 63 parameters. The legends and
text color are analogous to Figure A.1.
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Figure A.6 First-order Sobol’ indices regarding annual peak surface diatom chlorophyll-
a (MBP_DIACHL) for all 63 parameters. The legends and text color are
analogous to Figure A.1.
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Figure A.7 First-order Sobol’ indices regarding mean net primary production (TOTNPP)
for all 63 parameters. The legends and text color are analogous to Figure A.1.
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Figure A.8 First-order Sobol’ indices regarding mean nanophytoplankton NPP
(NANONPP) for all 63 parameters. The legends and text color are anal-
ogous to Figure A.1.
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Figure A.9 First-order Sobol’ indices regarding the mean diatom NPP (DIANPP) for all
63 parameters. The legends and text color are analogous to Figure A.1.
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Figure A.10 First-order Sobol’ indices regarding the mean export production of carbon
(EXPORTP) for all 63 parameters. The legends and text color are analogous
to Figure A.1.

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.02 Kw nano qC :Nmax
Nano

PON
POC

BATS
DYFAMED

Figure A.11 First-order Sobol’ indices regarding the mean surface flux of CO2
(CO2FLUX) for all 63 parameters. The legends and text color are anal-
ogous to Figure A.1.
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Figure A.12 First-order Sobol’ indices regarding the mean partial pressure of CO2
(pCO2) for all 63 parameters. The legends and text color are analogous
to Figure A.1.
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A.4 Figures of ensemble evaluation of parameter estimates
A.4.1 Satellite chlorophyll-a only assimilation

Figure A.13 Evaluation of nanoplankton initial slope of the P-I curve (αNano) at
A) BATS and B) DYFAMED for satellite chlorophyll-a only assimilation.
Gray dashed lines represent ensemble members and the black solid line shows
associated ensemble means. The default and estimated values are shown as
dashed lines (red for default and blue for estimated). The green dashed line
is the surface chlorophyll-a concentration from the assimilation run with the
y-axis value on the right-hand side.

Figure A.14 Evaluation of diatoms initial slope of the P-I curve (αDia) at A) BATS and
B) DYFAMED analogous to Figure A.13.

Figure A.15 Evaluation of nanoplankton maximum photosynthesis rate (µmax
Nano) at

A) BATS and B) DYFAMED analogous to Figure A.13.
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Figure A.16 Evaluation of diatoms maximum photosynthesis rate (µmax
Dia ) at A) BATS

and B) DYFAMED analogous to Figure A.13.

Figure A.17 Evaluation of nanoplankton chlorophyll degradation rate (dCHL
Nano) at

A) BATS and B) DYFAMED analogous to Figure A.13.

Figure A.18 Evaluation of diatoms chlorophyll degradation rate (dCHL
Dia ) at A) BATS and

B) DYFAMED analogous to Figure A.13.

Figure A.19 Evaluation of maximum grazing rate (ξ) at A) BATS and B) DYFAMED
analogous to Figure A.13.
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Figure A.20 Evaluation of grazing efficiency (γ) at A) BATS and B) DYFAMED analo-
gous to Figure A.13.

Figure A.21 Evaluation of phytoplankton specific aggregation rate (ΦPhy) at A) BATS
and B) DYFAMED analogous to Figure A.13.

Figure A.22 Evaluation of detritus specific aggregation rate (ΦDet) at A) BATS and
B) DYFAMED analogous to Figure A.13.

163



Appendices

A.4.2 Simultaneous assimilation of satellite chlorophyll-a and in-situ NPP

Figure A.23 Evaluation of nanoplankton initial slope of the P-I curve (αNano) at
A) BATS and B) DYFAMED simultaneous assimilation of satellite
chlorophyll-a and in-situ NPP. Gray dashed lines represent ensemble mem-
bers and the black solid line shows associated ensemble means. The default
and estimated values are shown as dashed lines (red for default and blue for
estimated). The green dashed line is the surface chlorophyll-a concentration
from the assimilation run with the y-axis value on the right-hand side.

Figure A.24 Evaluation of diatoms initial slope of the P-I curve (αDia) at A) BATS and
B) DYFAMED analogous to Figure A.23.

Figure A.25 Evaluation of nanoplankton maximum photosynthesis rate (µmax
Nano) at

A) BATS and B) DYFAMED analogous to Figure A.23.
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Figure A.26 Evaluation of diatoms maximum photosynthesis rate (µmax
Dia ) at A) BATS

and B) DYFAMED analogous to Figure A.23.

Figure A.27 Evaluation of nanoplankton chlorophyll degradation rate (dCHL
Nano) at

A) BATS and B) DYFAMED analogous to Figure A.23.

Figure A.28 Evaluation of diatoms chlorophyll degradation rate (dCHL
Dia ) at A) BATS and

B) DYFAMED analogous to Figure A.23.

Figure A.29 Evaluation of maximum grazing rate (ξ) at A) BATS and B) DYFAMED
analogous to Figure A.23.
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Figure A.30 Evaluation of grazing efficiency (γ) at A) BATS and B) DYFAMED analo-
gous to Figure A.23.

Figure A.31 Evaluation of phytoplankton specific aggregation rate (ΦPhy) at A) BATS
and B) DYFAMED analogous to Figure A.23.

Figure A.32 Evaluation of detritus specific aggregation rate (ΦDet) at A) BATS and
B) DYFAMED analogous to Figure A.23.
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