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Abstract

The advent of Autonomous Driving (AD) promises a revolution in transportation,
with the vision of enhancing road safety, reducing traffic congestions and providing
better accessibility. Though, with autonomous systems taking over vital functions
previously performed by a human driver, ensuring their safety and security is
paramount. Currently developed vehicles have not yet reached full autonomy,
but already offer high driving automation. These modern vehicles are historic-
ally grown systems that consist of an orchestration of mechanical and electronic
components with different criticality and maturity levels. High-level computing
units running AI-based software are combined with classical actuators to make
software commanded driving possible. Various interconnected devices are added
to this structure for entertainment reasons and also to enhance the AD function
through Vehicle-to-X communication. The result is a complex system consisting
of components with critical functional dependencies, access relationships from the
outside, redundancy specifications as well as repair and protection measures. Tra-
ditionally safety has always been a primary concern in automotive development.
However, with increasing connectivity, security concerns are rising dramatically.
While this risk has not remained unrecognized, security is still not targeted sat-
isfactorily. Furthermore, it is still widely adopted to analyse safety and security
separately in practice. This is a misjudged approach, given the fact that the two
properties are intertwined: A security attack on a component endangers its correct
operation and thus the system safety. Vice versa, a safety failure of a cryptography
module increases the vulnerability of the components relying on it, favouring se-
curity attacks. The present dissertation addresses this issue with the development
of a quantitative analysis method that is capable of modelling complex, critical
systems and viewing the occurrence of safety failures and security attacks in par-
allel, as well as in dependence to one another. Therefore, a graph-based modelling
of system level components and their dependencies is developed and a transform-
ation into Continuous-Time Markov Chains formalized. In that, the occurrences
of single failures and attacks of the individual components are modelled by state
changes due to defined probability rates and their consequences to the system’s
capability of maintaining functional are reflected. The goal is to prepare for a
quantitative analysis that yields the system failure probability over a specified
time (observation period). The results can be used to support the development
and the certification process of new vehicular architectures. In order to allow for a
comfortable modelling and evaluation of complex system structures, this method
is implemented in a tool called ERIS.
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1 Introduction

Throughout the last decades an immense growth in the application of software
and concomitant connectivity features of electronic systems could be registered.
Systems that have previously consisted of mechanical components are now run by
software controlled electronic components. In order to manage this software and
keep it up to date, as well as for comfort and entertainment reasons, the connectiv-
ity of these systems has been increasing by the provision of, e.g., Wireless Local
Area Network (WLAN) or Bluetooth interfaces. While this is a huge technological
success and key to achieving higher degrees of automation up to full autonomy,
it means significant challenges for safety and security: Former deterministic and
relatively simple to proof systems are now rewritten in software, which is more
prone to errors, difficult to assess in its completeness and potentially offers entry
points for remote attacks.

The automotive vehicle makes for a prime example. While formerly being a purely
mechanical system nowadays the vehicle consists of a plethora of mechanical and
electronic components, employing various software applications and providing di-
verse communicating interfaces to the outside. By striving for higher degrees of
automation in vehicles, we can witness this trend rising. Automation features
have the primary goal of enhancing road safety. For instance, driver assistance
systems are installed to provide the human driver with additional information and
warnings, or even intervene in dangerous situations by, e.g., emergency braking.
With 94% of car crashes being caused by human error according to a survey by
the National Highway Traffic Safety Administration (NHTSA) published in 2008
[Adm08], the vision for driving completely autonomously is even greater: Manu-
facturers and advocates are claiming that with evolving technology autonomous
driving, next to reducing traffic congestions and providing a better accessibil-
ity, will be capable of eliminating accidents caused by human error [She+21] en-
tirely.

In order to achieve this high level of autonomy, current vehicle structures are
being rethought: The centre piece of modern and future vehicles is becoming a
system that combines manifold sensing components with exceedingly complex per-
ception and decision making units coupled to classical actuators. Thereby diverse
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1 Introduction

sensors, prominently Radio Detection And Ranging (RADAR), Light Detection
And Ranging (LIDAR) and camera, are being deployed in order to gather holistic
information of the vehicle’s surroundings. The fusion of the thereby sensed data
is meant to create a perception that is equal or superior to human capabilities.
High performance computing units running Artificial Intelligence (AI) based ap-
plications are required to analyse this data and determine decisions to manoeuvre
the vehicle quickly and safely. In particular, objects and their velocity must be
identified and trajectories to manoeuvre around them computed. Naturally this
makes a highly critical and timely task in which potential failures or simply a slow
computation are likely to have a fatal impact. To make this kind of computer
commanded driving possible in general, these computing units must interact with
the classical and critical actuators, such as the engine control unit and the brake
and acceleration system, which have previously been operated mechanically by the
human driver.

Furthermore, several interconnected devices are being installed. On the one hand,
there are dedicated routers that support the autonomous driving task by enabling
the communication with other vehicles or the infrastructure (Vehicle-to-X (V2X)),
as well as the manufacturer’s servers. According to the research of [She+21] a func-
tioning V2X connection is mandatory to guarantee safety of completely autonom-
ous vehicles. In addition to serving as a platform of exchanging information of
the current driving situation, these interfaces are being used to provide software
updates for various installed applications. On the other hand, there are comfort
components like the frequently advancing infotainment system providing Universal
Serial Bus (USB), WLAN or Bluetooth interfaces that also allow external devices
like smartphones to connect with the system. This yields an overall system that
combines highly diverse components with respect to their criticality, nature and
maturity level of the operating software.

While it is questionable that this system is capable of eliminating all human-caused
accidents, since the NHTSA also categorized causes such as “false assumption of
other’s action” and “decision error” [Adm08] which could equally be machine er-
rors, with the exceeding use of software and the reliance on connectivity features,
also new failure sources are being introduced. For instance, in October 2023 an
accident with an General Motor’s Cruise self-driving taxi occurred in San Fran-
cisco, hitting a person and dragging her along as a result of performing a pull-over
manoeuvre. Even though the initial collision may have been unavoidable, Cruise
lost their self-driving taxi license, as it was argued that it was not able to react
appropriately to an accident and should have stopped with a person underneath it
[Hei23]. Based on Cruise’s statement “(...) the Cruise collision detection subsystem
may cause the Cruise AV to attempt to pull over out of traffic instead of remaining
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1 Introduction

stationary when a pullover is not the desired post-collision response.” [Cru23] it can
be assumed, that this accident aggravated due to the system (supposedly) trying
to reach the safe state. This incident could also be categorized as a decision error,
which emphasizes the challenge of ensuring an autonomous vehicle’s safety and se-
curity. Likewise, the demonstration of the vehicle’s correctness to regulators and
the public is becoming an increasingly difficult task.

1.1 Motivation

Within automotive development, safety has always been a primary concern. This
fact is reflected by various safety-oriented developments, from driver assistance
systems meant to increase road safety up to internals like safety-optimized com-
munication systems such as the Controller Area Network (CAN) bus. With recent
developments, we can see that safety concerns are even rising: An exceeding use of
software-based components is becoming necessary to reach higher levels of auto-
mation, while these electronic components are being much more prone to errors
than formerly deployed mechanical components [TD21] and it is impossible to write
error-free software code [Tor00]. At the same time, the increasing connectivity and
the partial reliance on it leads to a remarkable rise of security concerns. With secur-
ity attacks essentially being the exploit of some open security gap, they are errors
by design and thus have a high potential to scale; when a vulnerability is found
it will most likely affect the entire vehicle series. Further, currently developed
hybrid architectures combine unprotected legacy components with highly inter-
connected devices, creating room for fatal security attacks. As stated in [Wat19],
there were about 50 million connected vehicles in the U.S. in 2019 already, and
further, every major carmaker is integrating connectivity features in their vehicles.
This trend and the recurring reports of security attacks on cars [Kos+10; MV15;
Amm+20] clarify that security concerns must be treated with equal importance
as safety.

Moreover, safety and security are partly intertwined: Security attacks can impact
the system’s safety, and vice versa, safety failures can condition the system’s secur-
ity. For example, the corruption of a critical component by an attacker endangers
the correct operation of other components and the system. The other way around;
the failure of a cryptography module increases the vulnerability of components
that rely on it. Likewise, safety-oriented redundancy concepts must include the
possibility of component outages and malfunction through successful attacks. In
[Gla+15] it is argued that even though this problem has been recognized by the
industry, challenges due to “the differing maturity levels, grey areas in law, [and]
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1 Introduction

dissimilarities in content“ exist, constraining an integrated evaluation of safety and
security. As a consequence, it is still widely adopted to assess safety and security
separately.

This thesis aims to address this issue by providing a methodology that is capable
of handling these new vehicular architectures while viewing safety and security in
combination. Therewith, this methodology is meant to support the automotive
industry in proving the satisfaction of an automated and autonomous vehicle’s
safety and security requirements demanded by legislators and the public. The
first step in achieving this is the development of a graph-based model that is
capable of picturing the rather unique aspects of a critical, complex system such
as the autonomous vehicle:

• the co-existence of components of varying criticality

• their failure behaviour and their vulnerability to security attacks in terms of
probability rates

• redundancy specifications in combination with failure management and re-
pair processes

• functional data dependencies

• commanding and connectivity dependencies through diverse interfaces

• as well as protection measures like the guarantees provided by cryptographic
modules.

The resulting dependency graph offers a playground where safety and security
events can happen in parallel but also in dependence to one another. In order
to quantitatively analyse the operational capabilities of the modelled system a
transformation from that graph into a Continuous-Time Markov Chain (CTMC)
is determined. This allows to evaluate the system’s operativeness in regard to a
specified amount of passed time. In reality this could be, for example, the probab-
ility that the vehicle runs into a critical system failure during its envisaged lifetime.
These analyses can, on the one side support the validation process of the vehicle,
and on the other side support the development process by comparing the risk for
critical system failures in different architectures.
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1 Introduction

1.2 Outline

The dissertation is structured as visualized in Table 1.1.

Table 1.1: Outline

Introduction and Scope
Introduction Motivation • Problem Statement
Modelling Modern Vehicle • Automation Levels • Safety and Security

• Risk and Quality Assessment • Assessment Approaches
Main Contributions

Modelling Modelling of Real World Effects
Formalization Formal System Model as Dependency Graph • Transform-

ation into Quantitative Model • Evaluation Principle •
Scalability

Extensions
Modularization Dependency Graph Modularization for a Scalable Evalu-

ation • Modularization Heuristics
Recovery Component Recovery
Automation Tool Support for an Automatic System Assessment

Closure
Related Work Delimitation to similar Methods and Approaches
Conclusion Summary • Challenges • Extended Application •

Future Work

The subsequent Chapter 2 provides an overview of the fundamental concepts re-
quired to understand the developed methodology. Thereby, the modern vehicle
and its automation levels as well as the basics to risk and quality assessment are
concerned. Furthermore, the principle and mathematical background of evaluation
approaches applied in this thesis is given. Chapter 3 and 4 concern the cardinal
modelling part of the approach. Thereby, Chapter 3 acts as a transition layer
between the real-world effects to the formal methodology by discussing the pre-
dominant safety and security effects present in an (autonomous) vehicle that are
meant to be regarded. Chapter 4 presents a graph-based formalization of this mod-
elling and an accompanying solution in terms of a transformation into a Markov
chain. Exemplarily, evaluation options and a statement regarding the scalability
of the method are given, which shows its effectiveness, but also its Achilles heel,
the exponential state growth. The subsequent Chapter 5 presents a modulariza-
tion of the graph-based model with the goal of conquering the exponential state
growth and making the methodology viable for analysing realistic architectures of
autonomous vehicles. Thereby, an additional evaluation method that transforms
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the approach into a hybrid model by making use of Monte-Carlo simulation and
Markov analysis is introduced. Chapter 6 extends the existing concept by vari-
ous possibilities of component recovery, in orientation to existing approaches from
component and system level. In Chapter 7 the implementation of the methodology
into a tool named ERIS is presented and an exhaustive example evaluation with
it is performed. Lastly, Chapter 8 sets this work into relation of other similar ap-
proaches. The thesis is closed by a summary of the conducted work, a view on the
challenges during its development as well as extended application possibilities and
a discussion of relevant future extensions in Chapter 9.
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2 Fundamentals

In this chapter fundamental aspects and methods which are used throughout this
thesis are presented. The first Section 2.1 introduces the levels of driving automa-
tion and current pinnacle. This is followed by an overview of the basic structure
and components of a modern, automated vehicle in Section 2.2, which is required
to understand the later following application examples for the methodology de-
veloped in this thesis. The third Section 2.3 concerns the fields of functional
safety and cybersecurity. Thereby, a general definition of either term is given and
viewed in relation to the autonomous vehicle. Common parallels and differences
between both fields are discussed and it is described how safety failures and se-
curity incidents are intertwined. Afterwards, a detailed summary of their risk and
quality assessment is given and further divided into qualitative and quantitative
approaches. This is followed by a brief review of the behaviour in failure cases
and fault tolerance strategies. In Section 2.5 the different paradigms of assessment
methods, namely analytical, numerical and simulation-based, are presented. It is
emphasized that oftentimes approaches cannot clearly be classified, because they
make use of varying types of techniques. The Section is closed by the introduction
of two selective methods; probabilistic model checking on behalf of Markov chains
and stochastic simulation with the focus on the Monte-Carlo method, which both
find application the later chapters of this thesis.

2.1 Levels of Driving Automation

In dependence to price category and purpose, currently developed vehicles im-
plement various types and different quality of automation features. Low-priced
consumer vehicles usually only implement the legally required automation fea-
tures, e.g., emergency brake assist (see also [Nor]). High-priced vehicles, however,
tend to implement more sophisticated automation up to first implementations of
autonomy in very particular use cases, for instance, autonomous parking assists or
highway/autobahn lane keeping assists. With these assistance systems being cap-
able of autonomously performing a defined task, their application is bound to very
specific scenarios and at the moment they still require a human driver to be ready

14



2 Fundamentals

to intervene in emergency cases, or if the scenario changes. Though, whilst still
mostly part of research, also higher automated vehicles that can operate without
a human control instance in specified scenarios are being developed. The different
maturity of these implementations shows that a consistent definition becomes ne-
cessary when discussing and examining modern vehicles. Therefore, the Society of
Automotive Engineers (SAE) has published an international standard (SAE J3016
[21c]) categorizing vehicles into six levels of automation. Figure 2.1 pictures these
six levels of automation inspired by the visualisation made in [SAE21]. The first

Level 0

No Driving

Automa�on

Level 1

Driver 

Assistance

Level 2

Par�al

Driving

Automa�on

Level 3

Condi�onal

Driving

Automa�on

Level 4

High

Driving

Automa�on

Level 5

Full

Driving

Automa�on

The support feautres must constantly be 

supervised by a human driver. 

A human is not driving whenever these 

automated driving features are engaged.

A human 

must take over

 on request.

These automated driving 

features do not require

human driving/supervision.

A human is driving whenever these support

features are engaged.

Figure 2.1: Levels of Driving Automation by SAE J3016 [21c; SAE21]

three levels refer to solutions that strictly require a human driver and are thus
often called automated, while the other levels are referred to as autonomous. In
level 0 the human driver is completely in control, however, safety mechanisms like
the Anti-lock Braking System (ABS) may exist. In level 1 assistance systems spe-
cific to the Operational Design Domain (ODD) are present, supporting the human
operator in the driving task. Thus this level concerns systems as the Lane Depar-
ture Warning System (LDWS) which is meant to work in control with a human
driver. Level 2 describes systems with an active automation that is taking over
vital parts of the driving task. However, the human operator must supervise this
task and also perform several subtasks himself. For instance, advancements of the
LDWS that employ automatic steering and acceleration that must be monitored
and supervised by the human operator at any time. In level 3 an ODD-specific
performance of autonomous driving systems is active, which does not require ex-
plicit supervision, yet the human operator must be ready to take over whenever
the system requests it. An Automated Lane Keeping System (ALKS), which can
be seen as a further advancement of the LDWS by not only warning the driver but
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2 Fundamentals

steering and holding the lane autonomously in a defined ODD, matches this cat-
egory. In that way, driving on the highway can be performed autonomously under
the condition that the human takes over whenever the vehicle is leaving that ODD,
which may be due to a planned road change, but also due to the experience of
unplanned scenarios like accidents. Level 4 defines systems that cannot only drive
autonomously in specified ODDs, but also engage autonomous fallback systems.
Here the present human is merely a passenger. Lastly, level 5 describes systems
that unconditionally (not ODD-specific) perform the entire driving task and fall-
back system autonomously. It should be noted that the level of an automotive
application is not only describing its capabilities, but also the safety requirements
it must fulfil. Following from that, in level 2 and to some extent in level 3 systems
the safety responsibility can be transferred to the human operator, simplifying the
proof of requirement satisfaction to the regulators. Likewise we can see that it
is significantly easier to prove the satisfaction of the safety requirements of level
4 applications than of level 5, as they only have to function in a very particular
environment. Thereby, despite the vision of autonomous vehicles being to become
safer than the human driver, the minimum condition is to be as safe as an attent-
ive and skilled human driver (e.g. seen in the safety performance models of ALKS
given in the UNECE 165 regulation [21a])

The leading manufacturers of autonomous vehicles, Waymo1, Cruise2 and Argo AI3

together with Ford and Volkswagen Group, are currently developing and testing
level 4 vehicles [SS21]. Additionally to that, several other automakers are working
on autonomous driving systems or providing lower level autopilots. For example,
Tesla4 is providing an autopilot that can be categorized as level 2 with a tendency
to level 3 [SS21; Per22] and is additionally working on fully autonomous vehicles
[Gon22]. Traditional manufacturers like Mercedes-Benz5 and BMW6 reach auto-
mation level 3 with their self-driving technologies [Per22]. In this thesis the focus
is set on vehicles with level 3 or higher.

2.2 Modern Vehicle

The modern vehicle is a historically grown system that consists of an orchestra-
tion of mechanical and electronic components. Thereby, electronic components

1https://waymo.com/ visited on 22nd January 2023
2https://getcruise.com/ visited on 22nd January 2023
3https://www.argo.ai/ visited on 22nd January 2023
4https://www.tesla.com/ visited on 22nd January 2023
5https://www.mercedes-benz.de/ visited on 22nd January 2023
6https://www.bmw.de/ visited on 22nd January 2023
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are equipped with dedicated firm- and software to manage and control the beha-
viour of the mechanical parts (e.g the ABS controlling the brakes). By striving
for higher levels of automation, electronic components are in duty of taking over
more and more vital controlling tasks that have previously been performed by the
human driver. Depending on the level of automation, several assistance system
up to an entire Self Driving System (SDS) are implemented in the vehicle. As
a consequence, the implemented software is becoming increasingly complex. Ac-
companying, powerful perception mechanisms become mandatory and make sub-
stantial sensor usage necessary. This leaves the modern vehicle a complex system
that integrates a plethora of components with varying properties and criticality
levels. Precisely, highly safety-critical components that guarantee the driving func-
tionality of the vehicle, such as the engine control unit, are combined with inter-
connected comfort devices, like the infotainment system and highly sophisticated
and intelligent computing units that perform autonomous driving tasks (AI com-
puters). Summarizing, a hybrid consisting of normal, historically grown vehicle
components, referred to as legacy components, and the newly added AI and sensing
components arises.

CU1

CU2

CUE

Self Driving System
Legacy Components 

AI Sensors

Cameras

LIDARs

RADARs

IMU

HD Map

Actuators

X-by-wire

SDS Gateway

CAN Gateway

Ethernet
CAN
FlexRay

Figure 2.2: Modern Vehicle Architecture with SDS

While the architecture of farther future autonomous vehicle may be reinvented
to follow a more centralized approach, in the course of this thesis such a hybrid
system is assumed. For manifold reasons, it is additionally conceivable that also
near future autonomous vehicles will maintain this architecture: First of all, the
legacy components have been deployed for decades and have been tested heav-
ily to ensure functional safety. Secondly, on-going contracts between vehicle and
component manufacturers exist, making it unlikely that these components will be
completely erased from the vehicle in the near future. And lastly, development,
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testing and regulation of new vehicle parts and applications are tedious and lengthy
processes.

Figure 2.2 pictures the assumed architecture of a modern vehicle previously es-
tablished for a case study of the methodology presented in this thesis [RHK21].
On the left hand side, sensing components that provide the necessary data for
the AI perception are sketched. These are tethered to the computing units of
the SDS via Ethernet and by making use of a dedicated gateway. The legacy
components are internally placed on several, gateway-connected CAN buses. To
communicate with the other vehicle components (e.g. the SDS) CAN messages
are transformed to Ethernet packets and communicated via the CAN gateway and
vice versa. The SDS has a FlexRay connection to the (mechanical) actuators that
perform x-by-wire tasks, namely drive-by-wire, steer-by-wire and break-by-wire.
This connection is essential to establish the driving functionality based on the
processed data of the legacy components and the AI perception mechanisms. To
provide a more detailed insight into these different vehicle components of current
and near future autonomous vehicles, the following gives an introduction to the
most important ones.

2.2.1 Internal Communication Systems

In order to meet the requirements of the divergent components of a modern vehicle,
different communication systems for commanding and exchanging data between
them have been developed. Table 2.1 gives an overview of the most commonly
implemented systems and technologies (see [WWP04] for legacy bus systems and
[Röd17] for Ethernet). Local Interconnect Network (LIN), CAN and FlexRay are

Table 2.1: Vehicular Communication Systems

Type Application Bandwidth
LIN Low-level communication systems 20 kBit/s
CAN Soft real-time systems 1 MBit/s
FlexRay Hard real-time systems (X-by-wire) 10 MBit/s
MOST Multimedia, Telematics 24 MBit/s
Ethernet Smart Systems, Multimedia 10 MBit/s – 1 GBit/s

used for low-level communication networks of often safety critical components.
Thereby, LIN is the cheapest with the lowest data rate and often used to connect
simple sensors, such as the rain detection sensor, to other bus systems. CAN
and FlexRay are more developed and highly safety optimized, whereas FlexRay
provides a higher data rate and two channel redundancy. Both are not well suited
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for multi-media transmissions, as they are too cost-intensive (financially) and their
rather low data rate is not befitting real-time video and audio transmissions. Media
Oriented Systems Transport (MOST), on the other hand, was especially designed
for this task and provides, amongst other things, a very a high data rate. Auto-
motive Ethernet is seen as the communication system for future vehicles, because
it makes a cost-efficient solution for providing a very high bandwidth and being
real-time capable. This is key to enabling automation features, since the data of
the various perception sensors is fused together and requires a high bandwidth
to be transmitted to the processing unit (SDS). Further, its timely processing
and the resulting commanding of the actuators is essential for a safe autonomous
driving process. Furthermore, security requirements are rising with the increasing
connectivity of vehicles and the legacy bus systems are often mostly unprotected
against security attacks (see [WWP04; MV14]). Ethernet on the contrary, provides
several possibilities for ensuring security and privacy means. Tested and proven
solutions already exist in the non-automotive context, which may be transferred
to the usage in automotive Ethernet. In the farther future it is conceivable that
most of the commonly used bus systems will be replaced by automotive Ether-
net.

2.2.2 Legacy Components

Legacy components are seen as the historically grown components of a normal
vehicle. These are usually based on some Electronic Control Unit (ECU) that
runs a dedicated firmware, like the engine control unit or the body control module.
As mentioned earlier, in the future it is likely that many currently implemented
legacy components will be replaced by software processes of the SDS. However, for
current and near future vehicles, several legacy components persist. Depending on
their task and criticality, they are situated on the different vehicle buses as intro-
duced before. Typically there is a MOST bus connecting multi media components
such as the navigation system, telematic control unit, the radio, the infotainment
system and so on. Then there exist several different CAN buses. For instance, a
comfort CAN bus that contains components like the energy management, body
control module, parking assistance, door controls etc., and the highly critical motor
CAN bus containing, among others, the engine control unit, the ABS, the airbag
system. All of these buses are connected to the On-Board Diagnostic II (OBD-II)
interface for diagnosis purposes. This layout highly depends on the vehicle make
and model, however, as an example [Pen09] depicts some actual bus topologies
and their components.
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2.2.3 Self Driving System

The SDS is the centre piece of an autonomous vehicle that takes over the task of
the human driver. It consists of a number of high performance computing units
running an array of software applications. These applications can be grouped
into six functional modules: localization, detection, prediction, mission planning,
motion planning and actuation, following the software stack proposed by Auto-
ware [Kat+18]. This open-source Robot Operating System (ROS) based frame-
work for autonomous driving is visualized in Figure 2.3. Due to the high safety

Figure 2.3: Autoware Software Stack [Kat+18]

criticality of the SDS its computing units are usually redundantly designed. The
SDS pictured in Figure 2.2 shows three computing units, with CU1 and CU2
being completely redundant and CUE depicting an emergency computing unit
which is acting as fallback system. Several different redundancy concepts are
plausible with this structure. Recently, there has been an increasing discussion
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on the implementation of Fault Detection Isolation and Recovery (FDIR) pro-
cesses, formerly applied in the space domain, in vehicles (see for example [Kai+20]
and Section 6.1.3). Roughly speaking, these processes allow for the detection and
identification of faulty hard- and software. Once the affected part is identified,
it is isolated and a recovery process is triggered to maintain a safe system state.
Thereby, the availability of the system can be drastically increased. On behalf of
this, the vehicle gains the possibility to adapt itself. First efforts regarding this
have been made in the SafeAdapt Project7 [SDW14] or more recently in SelfAuto-
DOC8.

A sophisticated way to achieve this self-adaption mechanisms is to use the two re-
dundant CUs in the following way: The software applications between those CUs
are split somewhat equally, but the respective other CU is running an emergency
copy. Therewith, each CU is potentially capable of performing the entire driving
process. This requires to consider two different software process states: active and
active-hot. Thereby the active state describes the normal application operation,
while active-hot describes some sort of stand-by mode, where the application is
performing its designated task but not communicating to other applications and
the actuators. Therewith, active-hot applications can run a degraded mode. The
idea with it is that if one CU fails to provide its functionality or to keep the ap-
plication alive (due to an overload or the application itself being erroneous), the
active-hot instances running on the other CU can be switched to active, taking
over the vital functions previously performed by their copy (see also [RHK21]).
This means that in normal operation the two computing units work in parallel,
however, minor problems up to the entire outage of a CU can be covered by the
respective other CU to maintain a safe operational state. Additionally to that,
the emergency computing unit CUE is installed in an analogous way that takes
over the control in case both, CU1 and CU2 fail, to ensure that at least manoeuv-
ring and halting in a safe position (e.g. on the verge) can be performed safely.
Therefore, CUE is running a degraded version of the most necessary applications.
However, a takeover of CUE does not necessarily mean that both CUs have failed
hardware-based, it could also mean that the same software application on either
device ceased to operate correctly. As a detail, therefore it can be highly beneficial
to run a differently programmed application on at least the emergency computing
unit.

7https://www.safeadapt.eu/ visited on 30th September 2023
8https://www.tttech.com/innovation/research-projects/other/selfautodoc visited on

30th September 2023
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2.2.4 Connectivity Components

Connectivity components describe the type of components that offer interfaces
to communicate with the environment outside the vehicle. Commonly applied
technologies are Bluetooth, Global System for Mobile Communications (GSM)
and WLAN, though some components also offer physical interfaces like USB. While
these connections are very useful and even become necessary at high automation
levels [She+21], they also can open vulnerabilities by acting as initial entry points
for potential attackers.

The telematics unit provides an interface to the backend and external servers of
the vehicle’s manufacturer or maintainer. This connection is used to provide the
vehicle with various information, such as traffic data and weather conditions. But
it is also used to perform software updates, (re)-configurations and trigger repair
behaviour of different vehicle components. Further, it can be used to provide
the servers with internal housekeeping data for, e.g., diagnostic purposes. This
makes the telematics unit a key component of maintaining the functionality of the
modern vehicle during its envisaged lifetime. Additionally to that, a Vehicular ad
hoc Network (VANET) router to enable the communication with other autonom-
ous vehicles, or smart infrastructures, is connected to the computing units of the
SDS. While this communication system is still experimental, the idea is that it
can be used in the future to share various information on the road with other
vehicles and smart infrastructures. This information shared among vehicles in-
cludes current driving speed, braking behaviour but also more general informa-
tion such as traffic and weather conditions. Further, infrastructures, naturally
traffic lights, but also parking lots are integrated in this system to signal their
status information including the amount of currently available parking spaces (for
more information of the VANET technology and applications view [LA21]). While
VANET communication offers great solutions in supplying diverse information,
it also is very risky from a security point of view, as false data may easily be
spread and the existing interfaces misused. Though this risk has not remained
unrecognized and several research publications targeting this problem exist, e.g.
[Has+17].

The infotainment system can be seen as a connected component as it usually offers
connection interfaces to multimedia devices via both, wireless and wired interfaces.
Its function volume depends on the concerned vehicle and manufacturer, however,
it is usually characterized by being connected to the CAN bus and providing some
Human Machine Interface (HMI) to the passengers. In this way, the passengers
can steer functions, in particular, the climate control, the lights, the radio and
other, which makes a commanding connection to other CAN bus components ne-
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cessary. State information such as the heat and the adjusted settings, but also
the current driving speed are displayed to the passengers or used for further sys-
tems (e.g. automatically adjusted radio sound in relation to driving speed). The
OBD-II interface provides a direct, physical connection to the CAN bus which can
be accessed from inside the vehicle. The interface is used for diagnostic purposes
and thus usually only accessed in the repair shop with special devices, though
applications and tools for passenger use exist as well. Usually the OBD-II in-
terface is write-protected, requiring the authentication of the device in order to
send commands, while the traffic may be read by anyone. As stated by Ammar
et al. [Amm+20], the ISO 15031-7 [13] defines the access control of the inter-
face and suggests a simple challenge-response protocol with pre-shared keys and a
dedicated crypto function among the connected device and the vehicle. However,
this procedure is only very vaguely described which in practice leads to unprotec-
ted OBD-II interfaces or poorly implemented (non-standardized) protocols with
improper key length [Amm+20].

Several ways of tempering with these connectivity components are conceivable:
existing interfaces or connected devices such as smartphones and USB sticks may
be misused in masquerade attacks where the attacker impersonates authorities,
for one, the manufacturer’s servers to deploy malicious commands or malware. As
mentioned, the poor authentication scheme of the OBD-II interface can be attacked
by replay or brute force attacks, yielding direct access to the CAN bus allowing
the attackers to clone vehicle keys or insert other malicious commands. For more
information, Miller and Valasek provide an excellent overview on remote attack
surfaces in vehicles [MV14]. Usual countermeasures to lower the risk for security
attacks are: Following cryptographic guidelines, keeping the used communication
protocols up to date and requiring authenticated and/or encrypted communication.
Lately there has been an increasing research regarding automotive specific security,
for instance, domain specific Intrusion Detection Systems (IDSs) (see for example
[Al-+19]). and installing firewalls and IDSs.

2.2.5 Sensors

Modern vehicles are equipped with an increasing number of sensors, each fulfilling
different purposes. Some are meant to enhance safety, such as tire pressure sensors
and temperature sensors. Others enhance the comfort of the human driver, like
the rain detection sensor which yields the necessary data to automatically activate
the wipers. In a normal vehicle with a human control instance these sensors are
mostly uncritical, however, for vehicles with higher degrees of automation these
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sensors become essential to perceive the status of the vehicle and its environ-
ment.

In accordance to the increasing levels of automation, the number and the sig-
nificance of these sensors is rising. For the environment perception commonly
RADARs, LIDARs and different types of cameras, e.g., 3D cameras are used to de-
liver the necessary data. The data produced by these imaging devices is combined
and enriched with further information, specifically positioning and localization
based on HD maps and Global Positioning System (GPS) or Global Navigation
Satellite System (GNSS) (sensor fusion). Based on this preprocessed data, the
applications of the SDS are executed.

Figure 2.4: Boss Sensor Placement [UA+09]

To provide an example setup of these SDS perception sensors, Figure 2.4 shows the
sensor structure of the autonomous vehicle BOSS, developed by the Carnegie Mel-
lon University for the DARPA Urban Challenge [UA+09]. The vehicle is equipped
with multiple RADARs and LIDARs that cover different ranges:

• long-range RADAR (ARS)

• long range LIDAR (XT)

• mid-range LIDAR (ISF)

• low-range LIDAR (LMS)

Additionally to that, a low-range 360° LIDAR is placed on top of the vehicle (HDL)
and the only sensor in this setup that is capable of providing 3D information. Two
high dynamic-range cameras (PGFs) used for road estimation. Furthermore, a
GPS sensor is used to support the localization in the lane. As mentioned in
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[DRU08] the redundant design enables tolerance to single sensor failures. Due to
the critical consequences of false perceptions, a redundant and fault tolerant sensor
structure is highly relevant.

2.3 Safety and Security

The concepts of functional safety and cybersecurity are complementary, yet also
share strong parallels. Consider a system that is operating in some environment
with the system being able to affect the environment and vice versa. Safety can
be described as the inability of the system to affect its environment in an undesir-
able way and security as the inability of the environment to affect the system
in an undesirable way (see [Lin+06]). In regard of automated and autonom-
ous vehicles functional safety relates to the protection of the vehicle’s passen-
gers, other road users, and the surroundings against the consequences of internal
vehicle failures. Security, on the other hand, relates to the protection of the
vehicle’s safety, including its passengers, road users and surroundings, against
the consequences of malicious attacks originating from attackers that reside in
the environment. Furthermore, it concerns the protection of private information,
hence privacy, e.g., concerning the passengers private data and ensuring that it
is not leaked to the environment, for instance, to insurance companies without
consent.

Albeit safety and security are complementary concepts their effects and their re-
lated measures share strong parallels and cause interdependencies. Safety failures
can increase the security-wise vulnerability of the system, if, as an illustration, se-
curity enhancing components like cryptographic modules or firewalls are affected.
While some security incidents such as attacks on the privacy of the user do not
affect the system’s safety at all, Denial of Service (DOS) or ransomware attacks on
system components can lead to critical consequences for the safety of the system,
in dependence to the criticality of the affected component. In some cases safety
and security solutions have very similar goals. For example in messaging, Error
Correcting Codes (ECCs) (safety) and Message Authentication Codes (MACs) (se-
curity) both aim to ensure the integrity of the communicated message. Though,
ECCs address the correction of bit flips caused by noisy communication channels
and MACs focus on the protection against malicious tempering of messages like
masquerade attacks.

However, a valuable safety measure can create a security gap at the same time. The
automotive CAN bus illustrates this excellently. As we saw earlier, the CAN bus is
highly safety-optimized to ensure the correct and timely communication between
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critical vehicle components. Though, security concerns were not regarded during
its development and consequently it contains several safety enhancing features that
can greatly play into the attacker’s hands. For example, CAN bus controllers (the
sending and receiving unit) are switched into an bus-off error state which prohibits
them from sending any messages to stop a faulty controller from causing trouble.
Simplified speaking, this state is triggered after a certain threshold of erroneous
messages sent and received by the concerned controller is detected. Work like
[FS17] have shown how this initial safety measure can be exploited by an attacker
to evoke the bus-off state of a certain component and thereby actually violate the
system’s safety. Attacks on CAN bus controllers could be avoided by the imple-
mentation of security measures. [NR16] for example proposes an authentication
scheme for CAN bus messages that provides can bus controllers with the ability
of verifying the authenticity of received messages and also monitoring the bus to
detect fraudulent messages, allegedly sent by itself.

So if we have a solution, why is it not a common practice yet? The problem is
that the addition of security measures can also pose strong implications to safety:
An increased computational power on both the sending and the receiving con-
troller is required to compute and verify cryptographic hashes, and the message
length increases accordingly. Following from that, the required time until a mes-
sage or command is actually processed by the intended receiver heavily increases.
For highly critical commands, like braking, authentication can seriously lower se-
curity risks, however, due to their strong time-requirements safety risks may rise
simultaneously.

2.3.1 Failure and Incident

Safety problems are usually distinguished by the three categories: Error, fault and
failure (note that further distinctions exist but are not relevant for our scope).
While a safety failure is mostly consistently defined as the inability of the com-
ponent or system to perform its designed function (see [Hor+22]), various different
and partially contradicting definitions for error and fault circulate. For this thesis,
the succeeding definition, previously published in [Hor+22], is followed. An error is
defined as the discrepancy between the measured, computed or received value and
the intended value, which ultimately may lead to a failure. Faults, on the other
hand, are defects of the system or component, for example, a defective memory
section. Thus, errors are consequences of faults, however, a fault must not lead to
an error, for instance, if the defective memory section is never used or faulty code
never executed.
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Akin to this distinction, in security it can be separated between vulnerability,
exploit, incident and attack. A security vulnerability is the flaw or weakness of
a component such as a design-flaw of delicate software, e.g., of the implemented
communication protocol, or the absence of proper protection mechanisms, which
could be taken advantage of by an adversary (see also [Cyb]). An exploit translates
to a sequence of actions that can be taken to abuse a specific vulnerability such as
(malicious) program code. On successful execution, the exploit leads to a security
incident; the compromise of the viewed system or data which may propagate to fur-
ther damage outside the system [Lin+06]. Thereby an incident summarizes both,
intentional and unintentional exploits. Unintentional exploits are, for example, ac-
cidental access to restricted areas by abusing a vulnerability in access control, or
the opening of phishing E-mails that leads to malicious code injections. Intentional
incidents are attacks, such as brute-force attacks on credentials of someone else to
access restricted areas and so on. Here is where the interdependencies of safety
and security have their root: A security incident or attack may lead to a safety
failure for several reasons, including but not limited to:

• Malicious tempering with input data (falsification) that leads to incorrect
output behaviour, in other words errors.

• DOS or ransomware attacks that lead to a (temporary) irresponsiveness of
the component (failures).

• Entire take over of the component by malware distribution that leads to
undefined behaviour including the above.

Furthermore, a safety error can simultaneously be a security vulnerability. As a
demonstration, automotive RADARs are prone to interference, hence the modi-
fication or disruption of a RADAR signal due to other signals [Yeh+17]. In-
terference can be both intentional (security attack) if an attacker actively sends
radio signals to interfere with a specific RADAR, or unintentional (safety error)
if the signals result from other automotive RADARs sending on the same fre-
quencies. In either way, interference may lead to failures of the subsequent pro-
cessing functions, such as object detection, which potentially can result in fatal
consequences.

2.3.2 Risk & Quality Assessment

Various approaches for assessing the risk and quality of the safety and the security
of a system exist. While qualitative approaches aim to subjectively rank the risks
of scenarios in a system in relation to the risk of other scenarios, quantitative ap-
proaches aim to measure it numerically in regard to a predefined scale [Alt95]. As
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stated by Zio [Zio07], qualitative risk yields from damage plus uncertainty, while
quantitative risk is basically the product of the damaging consequence and its prob-
ability of occurrence. Qualitative approaches often make use of semi-quantitative,
simplified scales such as low, medium and high to determine the risk of a safety
hazard, i.e. an event or effect that can lead to an undesirable effect for the health
or life of the asset, or a security threat, an event or effect that has undesirable
consequences for the information in the system (see also [Lin+06]). The automot-
ive functional safety standard ISO 26262 [18] defines a qualitative risk assessment
that essentially consists of three steps: item definition, Hazard Analysis and Risk
Assessment (HARA), and determination of a functional safety concept. In the first
step the concerned item (component or system that satisfies a vehicle function)
is defined by viewing its functional behaviour, legal requirements, constraints like
functional dependencies etc. In the next step, hazards are identified and classified
with respect to their consequences, resulting in an Automotive Safety Integrity
Level (ASIL) rating (an adaption of the prominent Safety Integrity Level (SIL)
classification for the automotive industry) that defines the risk of the system in
terms of a semi-quantitative scale regarding severity, exposure and controllabil-
ity. The ASIL determination is essential for proving the safety of the system to
regulators and the public. Safety goals, which determine how to cope with the
identified hazards, are defined and verified. Based on that, the functional safety
concept is built, specifying requirements that are needed to satisfy the identified
safety goals. A similar approach is defined for security in the ISO/SAE 21434
[21b], which can be analogously performed by a Threat Analysis and Risk Assess-
ment (TARA) and, e.g., by making use of the STRIDE9 threat model. Thereby,
instead of viewing items, assets are concerned which are something for which a
compromise of its security properties may lead to the damage of an item. In the
first step, these assets and their damage scenarios are identified. Afterwards, for
each damage scenario one or more threat scenarios are identified. These threat
scenarios describe malicious events that can lead to the occurrence of the damage
scenario. The attack paths that can lead to the threat scenarios are analysed and
a rating of their feasibility is determined by qualitative metric, e.g., an Common
Vulnerability Scoring System (CVSS)-based approach. Parallelly the impacts of
each threat are rated regarding their severity. The results of both ratings consti-
tute to the determination of risk values; a value between 1 and 5 specifying the
risk per threat scenario. In the end, the established information is used to define
treatment decisions for each threat. As an particular example, reducing the risk
through the addition of cryptographic features.

9by Microsoft https://learn.microsoft.com/en-us/previous-versions/
commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN visited on 17th July
2022
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The essential steps performed in either risk assessment are comprised in Figure
2.5. Quantitative approaches can be used to complement these qualitative risk

Item DefinitionItem Definition
Threat / Hazard 

Identification
Impact Rating

- Damage Impact Rating
- Attack Feasibility Rating
- Hazardous Event 

Classi

Impact Rating
Risk Value

Determination
- Safety Properties
- Security Properties
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- Damage Impact and 
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- Hazardous Event 
  Classification

- Security Risk Value
- Safety Goal (ASIL)

Figure 2.5: Essential Steps of a Safety/Security Risk Assessment (simplified)

assessments, by providing a risk evaluation on sublevels to support the rating pro-
cess or to verify the obtained safety and security goals. For example, the ISO
26262 [18] states that quantitative approaches should be used to assess the risk
of hardware failures. Furthermore, they can be used as an independent, paral-
lel analysis, which can be especially beneficial in highly complex systems where
qualitative approaches are difficult to apply.

Quantitative approaches are usually targeted on calculating the entry of an un-
desired event, such as the effect of the threat or hazard, in terms of a prob-
ability or occurrence rate. As an example, the probability that a system or a
component fails safety-wise (failure probability) or is successfully occupied by an
attacker (attack probability). Since security attacks usually have indirect con-
sequences to the safety it is difficult and sometimes not useful to distinguish
between them.

The main difference between a safety risk and a security risk is their behaviour
over time. Safety risk is usually assumed to behave constantly over time, meaning
that a component’s remaining life time does not depend on its already progressed
lifetime [MP10] and thus can be described by an exponential distribution.10 How-
ever, in dependence of the viewed system, additional factors, in particular, ageing
and wear of mechanical components slowly contribute to component failure. Given
that, the failure rate is often not actually constant but changing over the deploy-
ment time. Yet, since a constant failure rate immensely simplifies safety and
reliability computations an exponential distribution is usually considered any way
for electronic components [MP10]. A security risk, on the contrary, behaves dy-
namically, not necessarily increasing over time but changing in dependence to the
occurrence of certain events (exploits). The risk for a security threat to happen
may be constant in the beginning, but increases heavily in the moment a new vul-
nerability is found and decreases equally fast as soon as the security gap causing

10A probability distribution of the time between continuously and independently occurring events
at a constant average rate in a process.
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the vulnerability is closed. However, in general one could assume that an ageing
or rather time-dependent effect also exists for security:

• Implemented cryptographic measures may get outdated by becoming revers-
ible with the increasing technological progress and the associated increase
of computational power. For example, certain (small) groups used in the
Diffie-Hellman key exchange protocol as suggested in [Adr+15].

• Applied cryptographic keys lose their freshness and may get exposed or re-
verse engineered by cryptanalytic attacks.

• The attacker’s behaviour constitutes of different phases; the learning phase,
the standard attack phase and the innovative attack phase according to
[Mad+02]. In both the learning and the innovative phase, the probabil-
ity for successful attacks is much lower. Thus, it can be derived that also
the probability for an attack is increasing in relation to the experience an
attacker is gaining.

Though, the mere existence of a vulnerability is not the only factor, as it may never
be exploited. This requires an active attacker to do so which makes it valid to take
other factors such as the attack vector and the attacker’s motivation into account.
Nevertheless, also security risk is often validly described by an exponential distri-
bution. As stated in [Mad+02], analysis of collected data has shown that the time
between security breaches in the standard attack phase, the phase with the highest
probability for success, is exponentially distributed.

Quantitative approaches excel in application fields where a precise determination
of hazards and threats is difficult or impractical, yet a failure or attack behaviour
can be observed or estimated and modelled accordingly. For safety, Fault Tree
Analysis (FTA) is a historically grown method that can be extended in the base
form to allow the calculation of failure probabilities. Attack Trees (or Graphs
respectively) [Sch99] can be seen as the equivalent method for security, where
threats and possible attack scenarios are described and annotated with occurrence
probabilities to estimate the overall attack probability. While being perhaps the
most pervasive method for safety, Monte Carlo Simulation (MCS) is also often used
in the security field. Thereby, usually the system’s failure or attack behaviour is
modelled and the future behaviour predicted, which is explained in more detail
in the upcoming Section 2.5.2. Further, Markov-based approaches are largely
applied in either field as it can be seen in [Mun+15] and [ASB07]. They induce
a state-based modelling that is usually used to reflect different system states.
Changes between these states are performed by transitions that occur on a defined
rate or probability. In the end, the probability for reaching a specific state or
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group of states, that relates to a certain system state, for instance, failed can be
evaluated.

In addition to attack and failure probabilities, concomitant quality attributes of
safety and security can be assessed. The key attributes that lead to a safer sys-
tem are reliability, availability and maintainability. Often further properties like
resilience and survivability are discussed, which are however, based on these key
attributes. Similar attributes for security exist, such as confidentiality, integrity
and availability (the CIA triad), as well as authenticity, non-repudiation and pri-
vacy. Though, these attributes mainly focus on the level of information security,
while in risk assessment we usually target the system level and are interested in
the implications of security incidents to the system’s safety. Therefore, for secur-
ity we are also interested in the fulfilment of safety objectives (which can include
attributes like confidentiality, authenticity etc.).

Satisfying these safety and security attributes contributes to a dependable system;
a system such that “reliance can justifiably be placed on the service it delivers”
[Mad+02]. Subsequently, a definition of these core attributes and their quantific-
ation possibilities is given.

Reliability can be described as the ability of a system or component to continue
performing a designed function [Hor+22] over a specified time. Thus, it can be
described by the Mean Time To Failure (MTTF), the average amount of time the
item is operating correctly before it fails, for a non-repairable system or component
[Mis08]. This property is usually measured over a specified time window, notably
the deployment time of the item. For that time window it is assumed that the
item is functional at start and will cease to operate eventually, after some amount
of time has passed. The probability that the item reaches this fail state is the
failure probability. The failure probability can be defined by a function F (t) =
P (T ≤ t) for a given point in time t and the item’s lifespan T . Given the previous
determination, the function evaluates to 0 at t ≤ 0 and trends to infinity (see
also [MP10]). The reliability of an item is essentially the reverse of its failure
probability and thus it can be measured by subtracting the failure probability
from the maximum probability: R(t) = 1 − F (t). Regarding an item with an
exponentially distributed occurrence of failures, F (t) and R(t) can be rewritten
as:

F (t) = 1− e−λ·t (2.1)

R(t) = 1− (1− e−λ·t) (2.2)

with λ being a constant failure rate (1/MTTF).
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If we can distinguish from the cause of the failure state, it can be possible to
determine and separate between a safety- and a security-based reliability. In
[Mad+02] the authors introduce a Mean Time To Security Failure (MTTSF),
describing the average amount of time the (non-repairable) system is operating
correctly before it fails due to a security incident. Based on this, independent fail-
ure probabilities and reliability values could be derived, analogously to the above
definition.

Reliability and safety are related concepts but they are not identical and sometimes
even converse. While commonly a system ought to be safe and reliable, it can
also be one without the other. Recalling, a safe system is protected against the
occurrence of catastrophic events. Considering a brake assist with two different
modes for the emergency object detection; fine and coarse. The fine mode is
overcautious and thus produces many false positives, however, also captures all
actual emergencies. This mode is unreliable due to many false detections but safe
because no emergency remains undetected. The coarse mode does not suffer from
false positive detections and is reliably detecting most objects, yet not all of them.
This mode is highly reliable as it only captures actual emergencies, though, it is
not safe as it fails to capture all objects and thus the entry of catastrophic events
becomes more probable.

Maintainability or also repairability describes the ability of the system and
its components of restoring the operable condition after a failure [Mis08], which
is usually measured as a probability over a specified time window (deployment
time). Unlike repairability, which only concerns the actual repair-time, maintain-
ability concerns the down-time of the system, including repair-, administrative-
and logistic-time. This detail is however not further concerned in the course of this
thesis. Consequently, it can be described by the Mean Time To Repair (MTTR) of
the system. Maintainability is an essential property to avoid or decrease the total
down-time of the system and thus enhancing the system’s availability. Analog-
ously to the failure probability, maintainability can be described by a probability
under the assumption that the down-time can be described by a random variable
Ts [MP10]:

M(t) = P (Ts ≤ t) (2.3)

Accompanying the density function and a maintainability rate can be defined.

Besides internal repair mechanisms, it is important to note that the system can be
maintained by the outside, by e.g., performing software updates. This aspect is
also highly relevant for security as the quality of cryptographic functions relies on
up-to-date implementation of protocols and algorithms and more importantly a
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sophisticated key management. In that matter, outdated software, communication
protocols, keys and passwords are the main contributions to successful security
attacks. As stated in [TD21], the maintainability of a system characterizes its
adaptability to the detection, elimination and prevention of failures, thus fault
tolerance mechanisms (more in this regard can be found in the upcoming Section
2.4) are key to establishing a maintainable system.

Availability is important for both safety and security. It describes the property
of the system for being accessible, operational and providing the intended inform-
ation when required, relating to the proportion of time the system is available
to use [TD21]. Thereby, it is dependent on the system’s security, reliability and
maintainability, by relating the number of occurred failures (Mean Time Between
Failures (MTBF), uptime) to the ability of the system to deal with them ad-
equately (MTTR, downtime) over time: Availability = MT BF

MT BF +MT T R
. Hence, the

system is available for a certain amount of time, that may be extended due to
maintenance actions, but the time for performing these must be abstracted from
the actual uptime of the system. The probability that a system is available at
time t is given by the function V (t):

V (t) = (System is operational at time t) (2.4)

This formula depends on the system model and can equally be determined by a
boolean or stochastic modelling according to [MP10].

In a system without maintenance, the availability equals the reliability, however
in repairable systems the availability is always higher than the reliability [MP10].
From the security perspective, it is moreso essential that the access to the system
and thereby retrieved information is provided to authorized persons only. This
is a key measurement to protect the system against various kinds of malicious
attacks.

2.4 Failure Behaviour and Tolerance Strategies

Even though a plethora of approaches and techniques exist to enhance and verify
the correctness of a critical system by its design, there is no such thing as zero risk
for failures. Besides the fact that hardware faults caused by environmental effects
like radiation cannot be prevented, one major reason is that we are still unable to
produce error-free software [Tor00]. Especially in consideration of highly complex
systems like the autonomous vehicle, it must be assumed that fault avoidance
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measures, that have the purpose of handling faults by preventing their occurrence
in first place, are not capable of eliminating all faults [Hor+22]. Critical and
complex systems that rely on extensive software usage are thus required to be aware
of faults and failures instead and provide mechanisms to handle them adequately.
Therefore these systems usually implement a so-called fault tolerance strategy.
This strategy defines the system behaviour in the presence of faults, in relation
to the consequent impact for its functionality and its capability of maintaining
a safe state. The system’s functionality is defined as its expressed behaviour in
interaction with its operating environment [Sto+22], meaning the behaviour that
is relevant to perform its intended task. The safe state is defined as a state or
operational mode (according to ISO 26262 [18]) where the system does not pose
an unreasonable risk [Sto+22]. The most common fault-tolerance strategies to
maintain a safe state are fail-safe, fail-operational and fail-degraded. Stolte et al.
[Sto+22] define these as follows:

Fail-safe: A system is fail-safe in the presence of a fault combination
if it ceases its specified functionality and transitions to a well-defined
condition to maintain a safe state.

Fail-operational: A system is fail-operational in the presence of a fault
combination if it can provide its specified functionality with at least nom-
inal performance while maintaining a safe state.

Fail-degraded: A system is fail-degraded in the presence of a fault com-
bination if it can provide its specified functionality with below nominal
performance while maintaining a safe state.

In other words, a fail-safe system can tolerate zero faults, however manages to
gracefully transition into a safe failure state. A fail-operational system is capable
of tolerating one or more faults without any performance loss. A fail-degraded
system can tolerate system failures while maintaining a safe state, however is
only capable of maintaining a degraded functionality. A system is called fail-
unsafe, if it does not deal with faults at all. Thereby a safe-state cannot be
ensured.

2.5 Assessment Paradigms

Assessment approaches can be described by a plethora of attributes. Earlier we
saw that approaches can be of quantitative or qualitative nature. Coming from
another point of view, approaches can be categorized by different paradigms which
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are derived from the characteristics of the applied techniques. To provide a com-
mon basis, the following gives an outline on the paradigms analytical, numerical,
symbolic and simulation-based.

Assessment approaches consist of several layers where different techniques and
methods are applied. These layers are most simply divided into the modelling
layer and the solution layer, though further divisions may be made. On the mod-
elling layer, the concerned system is represented by a mathematical model which
can be, among others, an automaton or a mathematical equation, depending on
the approach and the aspired solution technique. On the solution layer, a mathem-
atical method is applied to solve or evaluate the system in consideration of some
property describing the evaluation goal. Analytical solution procedures are charac-
terized by being exact and solvable by pencil and paper, while numerical solution
procedures are approximate, because an exact solution cannot be obtained in finite
time and usually computer support is required. Following from that, numerical
solution procedures include algorithms such as the numerical integration and the
power method/iteration. However, simulation-based methods also characterize as
numerical, because they only approximate the problem’s solution. Symbolic solu-
tion procedures lie somewhere in between, since they solve analytical problems
with computer support by simply being capable of performing more steps than
a human by hand. As an example, automatic theorem provers are considered in
this field. Confusingly, the field of numerical model checking concerns the applic-
ation of numerical algorithms, while statistical model checking is essentially the
application of Monte-Carlo simulation. Yet, this is not contradictory, as simu-
lation can be seen as a special class of numerical methods. Figure 2.6 provides
an overview on the given specifications. The paradigm of an approach may be

NumericSymbolicAnaly�c
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 Model Checking

Monte-Carlo
Simula�on

Probabilis�c
 Model Checking Simula�on
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Provers

Numerical
Algorithm

Analy�cal
Algorithms
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A�ack Trees

Figure 2.6: Assessment Paradigms Overview

determined by its applied solution procedure. However, in practice a distinct clas-
sification can be very difficult. Purely analytical or numerical approaches are rare
due to their poor practicality in capturing complex real-world systems, and thus
several methods from different fields are used. Though, the general nature of an
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approach can be determined, which is important to describe incidental character-
istics. Sargent [Sar94] defines an analytical assessment approach as an approach
that models a system as a mathematical equation and uses an analytical equa-
tion or a numerical algorithm to solve it. The numerical algorithm can become
necessary in cases where the analytical solution cannot be solved in a reasonable
amount of time. A simulation-based approach by Sargent [Sar94] and also Zizka
[Ziz05] is defined as an approach that takes a conceptual model of a real system
and emulates its operating behaviour under consideration of the functional rela-
tions. Results are received by analysing the thereby obtained data set further.
Thus, also simulation is not necessarily free of analytical methods, as they may
become necessary to obtain the aspired results. Simulation is capable of delivering
realistic results with a possible simplified application and modelling, but it can
be extremely time-consuming and limited in regards of repeatability and addi-
tional analysis options [MS01]. Analytical assessment, on the other hand, excels
by delivering very precise results [MS01], without requiring multiple calculations
(simulation runs). However, a mathematical description of the model is required
and the approach may suffer from unrealistic and restrictive assumptions, or com-
plex modelling issues like exponential state growth. To make use of the advantages
of either approach, they can be combined into a hybrid model, where the math-
ematical model combines identifiable simulation and analytical models, as further
specified in [Sar94].

2.5.1 Probabilistic Model Checking

Probabilistic model checking is a well-established technique of computer-aided veri-
fication for the modelling and analysis of stochastic systems. A prominent method
to model stochastic systems are Markov chains or Markov processes, named after
the Russian mathematician Andrey Markov, which describe a sequence of pos-
sible events (states and transitions). Their key property is that the probability
for reaching a state only depends on the present state, which is called memory-
less and is referred to as the Markov property. This technique makes use of an
analytical modelling. In theory it can be solved analytically, however due to its
complexity, numerical algorithms or occasionally simulation-based solutions are
applied.

Varying types of Markov chains exist. The simplest one is the Discrete-Time
Markov Chain (DTMC) which is essentially a Kripke structure11 where all trans-

11A transition system proposed by Saul Kripke based on a graph structure where the nodes
represent reachable states and the edges define transitions between them.
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itions are equipped with a probability [Kat16]. Formally the DTMC is given by a
tuple (S, sinit, P, L) (see also [KNP10]) with

• S denoting a set of states,

• sinit ∈ S being the initial state,

• P : S × S → [0, 1] defining the transition probability matrix such that∑︁
s′∈S P (s, s′) = 1 for all s ∈ S

• and L : S → 2AP a labelling function that assigns each state a set of atomic
propositions AP .

When modelling a system as a DTMC each state represents a configuration of the
system, e.g., the health status of its individual components. A transition marks the
probability for changing from one state into another in a step of discrete time. A
path in the DTMC is a sequence of possible states. Probabilistic model checking of
DTMCs additions the classical analysis (e.g. determining steady-state behaviour)
by providing the ability to reason about path-based properties [KNP10]. There-
fore, a probability space is defined over the set of all paths through the model. The
desired properties are expressed using temporal logic, namely, Probabilistic Com-
putation Tree Logic (PCTL) which is specified in [HJ95]. The PCTL formulas are
built making use of atomic propositions, propositional logic connectives and oper-
ators that express time and probabilities. Thereby, path properties and state prop-
erties can be expressed that hold universally for the entire chain (operator A) or ex-
istential for selected paths (operator E). This allows us to formulate and evaluate
a plethora of system properties, from qualitative properties such as the reachabil-
ity of a specific state, to quantitative properties that determine the probability for
reaching certain state(s) is below a given threshold. For example, P <0.5 [F≤5failA]
expresses that the failure probability of some component A is below 50% within 5
steps of discrete time (transitions of the DTMC). While qualitative properties can
be reduced to reachability problems that can be solved using standard graph search
algorithms for finite-state Markov chains, quantitative properties are determined
by linear equation systems [Kat16].

Certain systems profit from a more realistic modelling of time. For example, in
reliability engineering the failure and repair behaviour of components is usually
described in rates rather than probabilities. To cover these models, one possibility
is to extend DTMCs to CTMCs. According to Katoen [Kat16] this can be done
by formulating a function r : S → R≤0 that assigns each state s ∈ S the rate
of a negative exponential distribution that determines the residence time in s.
Then the transitions between two states s, s′ ∈ S are described by : R(s, s′) =
P (s, s′) · r(s). The probability to reside maximally t time units in state s is
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expressed by 1− e−r(s)·t. Thus, the probability for moving from state s to s′ in the
time interval [0, t] is given by:

R(s, s′)
r(s) · (1− e−r(s)·t) (2.5)

Formally the CTMC is a tuple (S, sinit, R, L)

• S denoting a set of states,

• sinit ∈ S being the initial state,

• R : S × S → R≤0 defining the transition rate matrix

• and L : S → 2AP a labelling function that assigns each state a set of atomic
propositions AP .

A path in the CTMC is a sequence that alternates between states and time delays.
The temporal logic PCTL does not offer support for specifying continuous time
properties, however, it can be used to evaluate the properties of the underly-
ing DTMC. For time-based properties, the temporal logic Continuous Stochastic
Logic (CSL) can be used which extends the features of PCTL by introducing a
time-bounded and a steady-state operator as specified in [Azi+96]. This extends
the analysis options by model checking for timed reachability, such as comput-
ing a specific behaviour after a precisely defined amount of time has passed, e.g.,
P =? [F≤5 failA] which expresses the probability that a component A fails within
5 months. Of course the actual unit of the F operator is depending on the rates
set in the model, hence, in one model this time bound is related to months, in
the other to hours, minutes or seconds and so on. Let G denote the set of states
that we aim to reach in our property (P =? [F≤t G]). As stated by Katoen [Kat16;
Kat13], the properties of timed reachability can be characterized by the Volterra
integral equation system. To solve such a property, he states that a function xs(δ)
associated for every state s and every non-negative real value δ can be defined as
follows:

1. if G is not reachable from s, xs(δ) = 0 for all δ

2. if s ∈ G then xs(δ) = 1 for all δ

3. and otherwise:

xs(δ) =
∫︂ δ

0

∑︂
u∈S

R(s, u) · e−r(s)·y · xu(δ − y) dy (2.6)
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Case one regards states which do not have the possibility to transition to a state
s ∈ G and case two all states which are itself part of G. Case three is the interesting
case where the viewed state s can reach a state in G with a transition, but it does
not belong to G itself. Here the integral equation is required, as s may have
several successor states and there might be several routes in which s are capable of
reaching G and all contribute to the probability of fulfilling the property. Solving
this integral equation is, nonetheless, a non-trivial and inefficient task, but it can be
reduced to the computation of transient probabilities. These transient probabilities
have shown to be solved efficiently by the application of numerical or statistical
model checking (see also [Kat13]). In [You+06] a comparison of both techniques for
the transient analysis of stochastic systems is performed. As mentioned earlier,
statistical model checking makes use of Monte-Carlo simulation and sampling.
Thereby problems are solved by statistical hypothesis testing, which essentially
consists of producing random paths and checking whether the property that shall
be verified holds. Numerical model checking, on the other hand, makes use of
numerical algorithms, such as uniformisation, which makes it more exact than
statistical model checking, though usually far more memory intensive. Plenty of
tools exist that enable modelling and model checking of different types of Markov
chains, for example, PRISM12 and Storm13.

2.5.2 Stochastic Simulation: The Monte-Carlo Method

The general idea of (computer) simulation is to imitate the behaviour or operation
of some real world system. Therefore, the conceptual model of the real-world
problem is instantiated by a simulation model, representing the key characteristics
of the real-world object or system. Performing the simulation, the evolution of the
model is viewed usually over a defined interval of time, or after specific operations
have been processed. Based on the observations of the model an average behaviour,
allegedly picturing the real-world system, can be assessed to make statements and
predictions of the real-world system.

Computer simulation has broad application fields and thus various types exist.
Simulation techniques are widely applied across various industrial and scientific
fields. Due to its characteristics, simulation can be especially beneficial for use-
cases where the real-world system does not exist (yet), e.g., during the develop-
ment phase, or if the simulation is intended to predict the future. For example,
the authors of [SB06] apply simulation to predict climate change scenarios and
abbreviate risks for the occurrence of catastrophic events. In this case, historic

12https://www.prismmodelchecker.org/ visited on 6th July 2022
13https://www.stormchecker.org/ visited on 6th July 2022
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real-world data exists which is used to predict outcomes for the future. Further-
more, simulation can be used as a less cost- and time-intensive measure as an
addition to the regular real-world testing. Thereby, it can help to meet the exist-
ing requirements while keeping the costs on a reasonable level. This work focuses
on simulation that solves stochastic systems like Monte-Carlo simulation. These
kinds of approaches approximate the solution for the input system or equation.
Thereby the quality of the results, hence accordance to the actual solution, de-
pends on the number of performed iterations. This is explained by the law of large
numbers14

Monte Carlo Simulation is a special type of numerical simulation. It excels
by being capable of modelling systems which cannot easily be predicted due to the
intervention of random variables and uncertainties, by modelling the probability
of different outcomes [Ken21]. Technically this is achieved by repeated random
sampling and making use of a statistical evaluation to compute the final prediction
of the MCS.

First of all, a deterministic model that closely resembles the real-world system must
be developed. Various types of models can be used, to provide some examples,
Reliability Block Diagrams (RBDs) in combination with a state-based diagram for
the simulation are used in [Hei+19] and in [Car+08] neural networks and are used
to describe the structural behaviour of the system. These models dictate the sys-
tem events that may occur during the simulation. Then, instead of using average
values for (uncertain) system parameters, such as the reliability of a component,
random samples are drawn from statistical distributions and used as input values
(see also [Ray08]). This distribution is typically identified based on the historical
data, experience or expert knowledge of a particular input parameter’s compon-
ent. Fitting routines are applied to this set of historical data to identify the most
suitable probability distribution. A frequently applied method is the maximum
likelihood estimation. Afterwards, repeated random sampling is performed by the
generation of random numbers from this distribution that represent specific val-
ues for the parameter [Ray08]. The quality of the random number generator is a
deciding factor for the accuracy of the prediction. Each simulation run produces
output parameters which form one particular outcome scenario. Several simula-
tion runs are performed yielding a data collection of possible results. In the end,
statistical analysis is applied to this collection to obtain the final result. This could
be, for instance, the computation of the average behaviour of a component during
all considered simulation runs.

14The average of the results obtained from a large number of trials should be close to the expected
value and tends to become closer to the expected value as more trials are performed [Dek+05].
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Figure 2.7 visualized this concept.
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Figure 2.7: Monte-Carlo Simulation Concept

In this way, MCS also allows us to assess systems with high uncertainty and where
the input parameters are depending on various external factors. Consequently,
it is a particularly well suited method for modelling the impact of risk [Ken21],
and thus prominently applied in the finance sector and in reliability engineering.
However, it also finds great utilization in other fields such as medical science where
it can be used for dose finding in clinical trials (see [OC91]). While it has the typ-
ical benefits of a numerical approach in terms of scalability especially in regard of
large and complex systems, it can become extremely time consuming, e.g., in cases
where very low (failure) probabilities are evaluated [Car+08]. One possibility to
overcome this problem would be the application of weighted MCS [MP10], where
the simulation paths are assigned with additional probabilities as weights. Numer-
ous possibilities on performing MCS exist. Individual solutions based on common
and high-level programming languages such as C++ and Python are frequently
developed. Further, for many popular languages supporting frameworks and librar-
ies already exist. Additionally to that, specific tools and tool integrations such as
Matlab’s Simulink15 or Palisade’s @Risk16 can be used.

15https://www.mathworks.com/discovery/monte-carlo-simulation.html visited on 6th
July 2022

16https://www.palisade.com/risk/default.asp visited on 6th July 2022
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As we saw earlier, modern vehicles are controlled by an orchestration of numerous
distributed components, each fulfilling a narrowly defined task while communic-
ating with one another via dedicated bus systems. While all these components
fulfil relevant tasks, this work is interested in the components that establish or
impact the core functionality. From this point of view, we can distinguish between
components that are mandatory to this functionality, e.g., the engine control unit,
non-mandatory like the infotainment system and components that lie somewhere
in between, such as sensors providing essential data to mandatory components.
Which components are required to perform the driving task can depend on the
environment the vehicle is placed in. This makes it reasonable to distinguish
between these environments and their unique requirements for the vehicle in ana-
lysis. For instance, urban driving scenarios require various sensors and intelligent
applications to detect traffic lights, diverse street signs, pedestrians etc., and ul-
timately take profound decisions to manoeuvre around them safely. On the mo-
torway (highway, autobahn) on the other hand, traffic lights and pedestrians are
absent together with a lower variation in street signs. This leads to an assumably
simpler scenario in regard to perception and decision making requirements. Con-
sidering that, the modelling must offer a way of defining mandatory components
flexibly.

Earlier it was presented how safety and security condition one another. For in-
stance, the safety-wise failure of a cryptographic module increases the vulnerability
of the component and thus may favour security attacks. The other way around,
a component that was successfully occupied by an attacker endangers the correct
operation of other connected components by, e.g., producing unexpected outputs.
With the goal of investigating the failure behaviour of the system with respect to
its capability of preserving its core functionality in presence of diverse component
failures and incidents, it is essential that an accurate modelling considers these in-
tertwined effects. We can achieve this by firstly modelling component failures and
incidents in parallel, and secondly modelling the implications of safety to security
and vice versa.

In order to satisfy the strong safety requirements from legislators and the public,
autonomous vehicles are usually required to behave fail-safe (see Section 2.4) as
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the minimum requirement. Meaning, in case of emergency (e.g. the loss of a
mandatory component) it must be ensured that the system can always be brought
into a safe state. This safe state is characterized as a state or situation where the
safety of the passengers and the surroundings, i.e., other traffic participants and the
infrastructure, can be ensured. Given that, we can see that the safe state definition
actually depends on the current driving scenario. For driving on the motorway
manoeuvring to and halting on the verge is a typical safe state. However, in
urban driving we can assume that such a spot may not be easily accessible due to
crowded streets and pavements, parked cars or traffic structures like intersections
that forbid a quickly performed parking manoeuvre. Therefore the requirements
for the system to reach the safe state can differ, which must be considered in the
modelling and its subsequent analysis.

In the following sections the nature of these briefly introduced aspects is analysed
further. The goal is to collect, abstract and determine the relevant safety and
security effects native to automated and autonomous vehicles, to provide a trans-
ition from the real-world system into a formal modelling. This modelling defines
the frame for the later following analysis and is formally defined in the upcom-
ing Chapter 4. Therefore the modelling shall include the varying criticality levels
of components (see Section 3.1), the individual failure and incident behaviour of
components as well as the resulting implications to their intertwined safety and
security conditions (see Section 3.2), and the existing mechanisms to enhance the
tolerance against faults (see Section 3.3). In Section 3.4 possible assessment goals
and strategies based on this analysis are discussed.

3.1 Component Criticality and Redundancy

The vehicle’s components are of varying importance for establishing the core sys-
tem functionality. With respect to that, we can define their criticality to receive
a basis for reasoning about the system’s capability of staying operational to at
least reach its defined safe state. Taking a look at the previous example; we can
see that there is a large amount of comfort components in vehicles (infotainment
system, body control module etc.) that are not mandatory for driving safely and
thus can be considered uncritical. On the other side, we have components like the
engine control unit that are crucial for performing this task and thus are required
to operate correctly and reliably. We can categorize these components as critical.
Given that, a failure of a non-mandatory component does not directly lead to a
penalty of the core functionality, yet a failure of a mandatory component disables
this functionality entirely. However, there are also non-mandatory components
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that indirectly impact this functionality by perhaps enabling communication in-
terfaces, or providing functionally relevant data to mandatory components. This
makes it inadequate to view failures and incidents of mandatory components sol-
itarily and instead we must include the existing dependencies in our criticality
consideration. In that sense, the absence of an output due to a defect or a corrup-
tion of a component can have an adverse effect on the component that relies on
it. For example, if the object detection application does not receive sensor data, it
cannot perform its designated task even though it is not flawed itself. In order to
meet the high safety and reliability requirements of critical systems, components
that contribute to a critical task are often redundantly designed. These can be
critical components themselves such as the computing units of the SDS as pictured
in Section 2.2, but also sensors which are not mandatory themselves but provide
necessary outputs. For an accurate representation we have to take care of these
considerations when defining component criticality.

To support a system-wide definition for required components and required out-
puts, a criticality definition is proposed that collects all components relevant to
preserving the core functionality. These components are required to be opera-
tional. If a component of the criticality definition is redundant, all of its twins
must be included in the definition as well, with at least one of these redundant
components being required to operate correctly. Provided that, the criticality
definition specifies the minimum functionality which is required to reach the safe
state and ensure a fail-safe behaviour. Since the safe state and also the components
to preserve this functionality can differ in varying driving modes, the criticality
definition must be adjustable. In this way, a mode for urban driving can differ
from a mode effective when driving on the motorway, even though the considered
system remains unchanged.

3.2 Safety and Security

Rather than inspecting the safety and security of particular components, the goal
is to view their interplay; in how security incidents or safety failures of individual
components will contribute to a loss of the entire system, i.e., the defect or corrup-
tion of a critical component. To achieve that, firstly each component is abstracted
to a black-box that pictures its functional behaviour, failure behaviour, functional
dependencies with other components and its accessibility including security-wise
vulnerability based on the existing connections and messaging behaviour. In gen-
eral the inability of a component to provide its designated function can be the
result of a safety failure or a security incident. Even though the cause and output
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behaviour differ, the consequences for other, connected components are identical:
The output, if there is still any, cannot be trusted to be correct any more. There-
fore it is essential that we model safety and security effects in parallel. Addition-
ally to that, the interaction between safety failures and security incidents must
be considered by including both; the implications of security incidents to safety
and the implications of safety failures to security in the modelling. Thereby the
modelling concerns only the viewed system and we explicitly disregard from any
implications due to information leaving it. Hence direct implications to, e.g., other
vehicles in the environment such as the effect of provided V2X data are excluded
from the modelling. In regard of incoming data from the outside, merely the ac-
cessibility effects of components are modelled. Functional effects are neglected
by virtue of requiring further knowledge of the sending system such as availabil-
ity, failure behaviour and so on. Summarizing, privacy concerns and functional
implications to and from non-system components lie out of the scope of this meth-
odology.

Concerning security, an attack is viewed as the successful exploit of a component’s
vulnerability, which results in the attacker capturing the component and obtain-
ing the ability to manipulate its internal program. The result is twofold: On the
one hand, the manipulated program may compute wrong output data and also
cause a malfunction of the subsequent components that rely on the now manipu-
lated output. On the other hand, the attacker may use the captured component
as a basis to attack further neighbouring components (e.g. that are placed on
the same communication bus or provide some wireless access). Assuming that
initially the attacker only resides in the environment of the vehicle, the attacker
may propagate through the system by capturing further components step by step.
The probability that a vulnerability is successfully exploited depends on various
factors regarding internal implementation details, as well as the strength of the
security mechanisms installed and operating in the targeted component. Thus,
to determine the vulnerability of the component the hard- and software proper-
ties of implemented concepts, used libraries and communication protocols must be
investigated in regard of possible vulnerabilities and exploits. As a basis, for ex-
ample, the CVSS standard can be used which provides a general scheme for rating
security vulnerabilities. Furthermore, approaches like [Wan+10; KC13] explore
entries in Common Vulnerabilities and Exposures (CVE) databases to calculate
attack probabilities. Alternatively, metrics as in [Mun+15] and risk assessment ap-
proaches as in [Lon+19] can be used to identify the exploitability of components
and topologies, providing a basis for establishing probabilities for security attacks.
The main difference to safety is that security incidents always require a human
player, the attacker, to actually take advantage of the discovered vulnerabilities.
Thus, some approaches, for instance [KWS21], take the motivation of the attacker
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into account. This is reasonable, because we can assume that, e.g., the vehicle of
a celebrity or politician is more likely to be attacked than the vehicle of a nor-
mal civilian. In the modelling each component must be annotated with a rate that
describes the feasibility to perform a successful attack in terms of a probability un-
der the presumption that an attacker has some physical or virtual access (WLAN,
Bluetooth etc) to it. Independent from the internal protection mechanisms of the
component, this probability depends on the active security mechanisms provided
by other components, for example, hardware modules such as Hardware Security
Modules (HSMs) providing a root of trust or software-based cryptographic librar-
ies enabling secured communication. The outage of such components providing
these security mechanisms will increase the vulnerability of all components relying
on them.

Regarding safety the exact functionality or timing behaviour of a component is ab-
stracted by viewing the component as an abstract computation unit receiving some
input, providing some output and executing an internal program. Thereby we can
assume that a component operates correctly if it executes the designated internal
program and all components providing required inputs are operating correctly as
well. Thus, its correctness depends on the input provided by other components
and the correctness of the component’s internal hard- and software. For the mod-
elling, the component’s failure behaviour is described by a rate that indicates the
probability of occurrence for a critical failure. While in this work the focus lies on
the component’s functional safety, it is also conceivable that a component itself
remains operational, but its functionality deviates from the expected. Imagine a
RADAR sensor’s cover being obscured by mud. The sensor remains operational
but ceases to provide its intended functionality as the radio frequencies are blocked.
These kind of failures, similar to physical attacks, lie in the field of Safety Of The
Intended Functionality (SOTIF) [22]. Since they have a different source and are
commonly of temporary nature, they are not explicitly concerned here. Neverthe-
less, if we wanted to model them and are able to describe their occurrence as a
rate in accordance with the occurrence for failures, we can also cover them by this
modelling.

Estimating the risk of a component is subject to a detailed safety analysis of its
hard- and software. Typically the failure probability of a component is determined
by the probability of hardware faults, which have a tendency to lead to software
failures. Hardware faults are of physical nature and are caused by various effects
such as wear, vibration, radiation and variations in temperature. This makes them
quantifiable by, e.g., fault tree techniques [DT16] and simulation-based approaches
[WCH11] and describable by exponential distributions. For pure software faults
this is less straightforward. Software faults are by definition faults of the design
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which are of non-probabilistic nature. Though, as argued in [KES09] such a fault
may only occur if the given input sequence leads to the execution of the faulty part
in the source code (which might not happen at all), adding a certain randomness
to the in fact deterministic behaviour. Under this assumption we can model soft-
ware faults probabilistically and if all possible input sequences are known we can
determine the software’s behaviour statistically. For instance, [KES09] presents
different methods for quantifying the software failure probability in critical sys-
tems such as in nuclear power plants.

With that we are in a position of including the interaction between safety and
security in several ways: Components may turn into a non-operational state due
to a successful attack on a data providing component. Further, a component that
fails safety-wise is ineffectual in its default functionality but also as an operating
platform of the attacker. The vulnerability of a component to security incidents can
be increased by the safety failure of a component that provides security mechanisms
to it.

3.3 Fault Tolerance

The high complexity of automated and autonomous systems, especially under
the application of AI technologies like neural networks, renders classical design
approaches that afford to break down the system specification into single elements,
having knowledge of all system states at all time, obsolete. In order to meet the
high safety requirements regardless of that and thus increase the availability and
the practicability of autonomous systems, the trend is shifting from developing
fail-safe systems to fail-operational systems. Fail-operational systems are capable
of tolerating one or more faults without encountering a degradation in performance
or the need to immediately enter the safe state (see Section 2.4 or [Sto+22] for
more information).

The key measure to achieve such a fail-operational system is the implementation of
hard- and software redundancy in combination with a sophisticated failure man-
agement process [Hor+22]. Following from that, a realistic system assessment
must include the implications of the implemented failure management and repair
behaviour, as it can significantly increase its safety and security Key Performance
Indicators (KPIs).

As a primary step, the modelling must allow for the redundant definitions of com-
ponents, or rather the information they provide, as defined in the previous Section
3.1. Secondly, components that have previously been in a non-operational state
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due to safety failures or security incidents can turn operational again under pre-
defined conditions that reflect the requirements and the effort of the component’s
failure management. For this repair behaviour it is assumed that the system is
capable of efficiently identifying the non-functional components and the problem
source. In practice failure management processes (e.g. FDIR) and IDS (see also
[Al-+19]) are capable of performing this task. Owing to the fact that the success
of a repair action is dependent on the problem source which varies highly between
safety and security failures, as well as hardware and software problems, Chapter
6 provides an overview on existing methods and derives a generalized scheme to
extend the modelling.

3.4 Assessment Options

The described modelling abstracts the essential safety and security effects that
exist in critical, complex systems. The goal of this modelling is to build an ab-
straction layer which allows us to reason about these effects with the aim of pre-
dicting statements of the quality and risk of the vehicle throughout its deployment
time. Given the emphasis of safety and security dependencies, as well as failure
and incident behaviour of the components, qualitative assessment methods can
be applied to highlight possible and impossible events. Such an event would be
the defect of a component as a result of a failure, the inability of the component
to function due to missing inputs or the corruption of a component due to an
attack given by the architecture and predominant dependencies. In combination
of these events we can investigate questions such as “Can a specific component
be successfully occupied by an attacker?”, “Is it possible that first component A,
then component B gets occupied by an attacker?” or “Is my system still opera-
tional if a certain component ceases to operate correctly?”. Additionally to that,
we can analyse the paths an attacker has to take to propagate through the system
in order to reach a specific component. In the big picture, this can support the
finding of critical dependencies and attack paths that violate predominant (safety
and security) requirements.

However, most of these questions can be answered by observing the modelled
system structure alone. Further, qualitative assessment methods deliver binary
answers, but safety and security properties are not of binary nature; A system
is never 100% safe nor secure, it is safe and secure to a certain extent (under
certain conditions). Quantitative assessment methods, on the other hand, allow
us to mathematically calculate specific properties and estimate the actual sys-
tem behaviour. On the basis of failure and attack probabilities of the individual
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components, the analysis of undesired events could be extended by an evaluation
of their occurrence probability in regard to passed deployment time or happened
events. Thereby the deployment time is an important factor – in practice the
manufacturer provides guarantee and support for a certain envisaged life span of
the vehicle. Thus, from the view point of the manufacturer, who is essentially
applying such an assessment, it is important that the vehicle satisfies its require-
ment of staying safe and secure at least until its specified end of life is reached.
In contrast to qualitative assessment methods, quantitative assessment methods
let us answer questions of the type “What is the probability that first component
A, then component B is occupied by an attacker” or more generally “What is the
probability that our system fails within the maximum lifespan?”. Based on the
latter we can then obtain further safety parameters of the system such as its reliab-
ility and availability. These results can be used as supporting evidence that under
the made assumptions the system stays safe, available and reliable to a calculated
probability (extent).
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This chapter presents the mathematical methodology that formalizes the modelling
of the previous Chapter 3. The goal is to capture the intertwined effects of safety
and security in critical and interdependent systems, and offer a solution procedure
that enables the evaluation of risk and quality properties. In the first Section
4.1 the modelling layer is described. This layer specifies the model, a so called
dependency graph, to instantiate a real-world system in terms of the previously
determined properties. Thereby, the actual system is abstracted to a directed
graph, with nodes representing components and links their safety- and security-
wise relations. The second Section 4.2 concerns the solution layer. The here
presented solution procedure is a type of Markov analysis that makes it possible
to evaluate various system properties of either quantitative or qualitative nature.
The section begins with a formal transformation from a dependency graph into a
corresponding Markov chain (an instance of a CTMC). Afterwards the evaluation
of the Markov chain to obtain the aspired system assessment is discussed and the
scalability of the approach is analysed.

4.1 Dependency Graph

The dependency graph is a directed graph that is meant to represent a real-world
system abstracted to its functionality and existing safety and security dependencies
of individual components. The method was firstly introduced in [RH20b]. The
general idea is that system components are mapped to nodes and the various
interrelationships between them are abstracted to links. The profundity of the
abstraction is specific to the use case and the desired assessment goal. In our
vehicle context, a node can range from being a single ECU or sensor, over to a
more complex unit such as an entire infotainment system. But the abstraction
is not bound to physical components. It can desist from the actual hardware
and, for instance, define a software library or a software application, to give an
example, a firewall as a node. Consequently, the node breaks down the considered
system part in a functional way: The functionality is active/provided as long as
no defect/attack on the underlying hardware occurred.
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Besides the nodes that result from the system abstraction, a special node Env is
introduced reflecting the environment of the system. In this environment other
traffic participants such as connected vehicles, the manufacturer or maintainer
(server or personal in workshop), but also possible attackers reside. The Env-node
is essential to model any connections inheriting from these players connected to in-
ternal interfaces provided by the connectivity components (see also Section 2.2.4).
This design builds the basic structure to model security incidents by reflecting
possible attack interfaces.

Formally, the graph is given by a set of nodes N ∪ {Env} and a set of links
L. In order to distinguish between the semantics of the different node connec-
tions, three link types are separated. This is done by annotating each link l ∈ L
with a type τ(l) ∈ {Fct, Reach, Sec} expressing the characteristics of the depend-
ency:

• Fct-links model the functional safety dependencies of the components, for
instance, an actuator relying on the input of one or more sensors. These
links are essential to express that a component ceases to operate correctly,
if the functionally required output produced by another component is not
available anymore (due to a functional defect or corruption by an attacker).

• Reach-links express the connectivity between individual components, indicat-
ing that the source component is able to directly communicate and command
the target component. A Reach-link originating in the environment node ex-
presses that the target component is able to be accessed from the outside
directly, such as a connectivity component that is providing a Bluetooth or
WLAN interface. In this way, Reach-links describe the entry points of an at-
tacker and the routes he may take to propagate through the system: Starting
with nodes directly connected to the Env, the attacker may target further
nodes by abusing the existing Reach-links to neighbouring nodes.

• Sec-links build a selective class of functional dependencies that captures the
protective side of security. They are used to express that a component is
providing some sort of security guarantees to another component. For ex-
ample, an HSM provides cryptographic mechanisms to other connected com-
ponents. The idea is that the chances for a successful attack are lower as
long as these security guarantees can be provided.

Figure 4.1 shows a very abstracted scheme of an autonomous vehicle, covering
the different node and link types of a dependency graph. Node n5 represents
the telematics unit of the system that is accessible from the outside suggested
by the Reach-link coming from the Env-node. In reality, the telematics unit may
receive software and parameter updates which are forwarded to the computing
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unit n1, expressed by the Reach-link between them. This incoming connection is
secured by a firewall, which is modelled as n4 and is providing security guaran-
tees to the telematics unit n5. Node n1 represents the centrepiece of the system,
the computing node, that uses the sensor’s n2 input to determine the operations
that shall be performed by the actuators n3. Thus, a Fct-link from the sensor
to the computing unit is drawn to suggest that the computing unit is relying on
this data. Another Fct-link from the computing unit to the actuators suggests
that the actuators rely on the processed sensor data. Further, to express that
the computing unit is commanding the actuators, a Reach-link between them is
drawn.

Reach

Fct

Sec

n4

n2 n1

n5

n3

Env

ActuatorsComputing UnitSensors

Telematics Firewall

Figure 4.1: Motivational Example of a Dependency Graph

While between the regular system nodes all three link types can be arranged
depending on the actual system dependencies, Env-nodes are restricted to outgoing
Reach-links. The reason for that is simple: Targeting or originating Fct- or Sec-
links would suggest that the system is providing/receiving some functionality to
or from the outside. This could be a possible relation, for instance, a GPS sensor
relying on satellite information. But if we were to model this behaviour, we would
require information on the satellite’s functional behaviour, in order to model that
this information could be flawed or not provided due to a connection loss. Given
that, we would actually have to model the satellite as a system node. This shows
that originating or targeting Fct- and Sec-links cannot express a valid semantic in
our model. A similar situation arises by Reach-links targeting the Env-node. This
modelling would express that information is leaving the system. We could use
this to express privacy concerns of the component. However, this is, as discussed
(see also Section 3.2) outside the scope of this modelling. To describe the failure
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behaviour and attack vulnerability in a quantitative way, each node has occurrence
rates for safety failures and security attacks.

Definition 1 gives a complete specification of the dependency graph.

Definition 1 A dependency graph G = ⟨N ∪ {Env},L⟩ is a finite, directed graph
where

• N is a list of nodes representing the individual components of the architec-
ture.

– each node n ∈ N is annotated by a failure rate rSafe
n ∈ R≥0 and

– each node n ∈ N is also annotated by a function Secn : 2SrcSec(n) → R≥0
mapping sets of components providing security mechanisms to a rate of
a successful attack on n, where 2X denotes the powerset of X.

• L ⊆ (N ∪ {Env}) × N is a set of links between nodes. Each link l ∈ L is
annotated by a type τ(l) ∈ T with T = {Fct, Sec, Reach} being the set of link
types.

Let t ∈ T , Lt(n) = {⟨n′, n⟩ | ⟨n′, n⟩ ∈ L ∧ τ(⟨n′, n⟩) = t} denotes all links of L to
n of type t. Srct(n) = {n′ | ⟨n′, n⟩ ∈ Lt(n)} denotes all nodes that are the origin
to these links.

It is important to note that while for safety each node can simply be annotated by
a rate rSafe

n , indicating its probability to experience a critical failure, for security a
more complex definition is required. Therefore the Function Secn is defined, marry-
ing the rate that expresses the probability for an attack on the concerned node with
the rate of security guarantees provided by connected nodes via Sec-links, because
the provided security guarantees lower the probability for an attack. Firstly all
links that target the viewed node are collected by Lt(n). Then they are filtered by
their type with the function Srct and t being Sec. Ultimately the collected security
guarantees are subtracted from the initial attack rate.

For example, Figure 4.2 shows a connectivity component connected to the Env-
node with a Reach-dependency to some ECU. This ECU is protected by two nodes,
n2 and n3, whereas n3 provides encryption functionalities and n2 authentication.
Since n4 only has one incoming Reach-link SrcReach(n4) = {Env}, SrcSec(n4) = ∅
and SrcFct(n4) = ∅. n1, though, is reachable from n4 so that SrcReach(n1) = {n4}.
Furthermore, it receives security guarantees from n2 and n3, hence SrcSec(n1) =
{n2, n3}. Consequently, Secn4 merely depends on its own attack probability, while
Secn1 additionally depends on the guarantees provided by n2 and n3.
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Figure 4.2: Security Function Example

Since nodes can be in normal operation, or in experience of a safety failure or a
security attack, they actually can adopt different states. Suppose it is possible
to identify and distinguish between failures and attacks, three states of a node
can formally be defined as ∀n ∈ N . s(n) ∈ {ok, def, corr} with the following
semantic:

• ok expresses that the component represented by the node is operating cor-
rectly, hence it operates as specified. This is expected to be the initial state
of every node.

• def indicates that the represented component does not work correctly any-
more due to an internal hardware or software failure and, as a consequence,
the output (if still generated) cannot be relied on.

• corr means that an attacker has successfully occupied the represented com-
ponent and is capable of controlling it. As a consequence the attacker misuses
its communication properties and it can no longer be trusted to be producing
the correct and expected output.

This allows us to reason about the impacts of undesired events for the system and
for connected nodes. The collection of these node states comprises the state of
the dependency graph which is reflecting the health of the modelled system. This
state is essentially a configuration of all its node’s states, formally given by the
subsequent Definition 2.

Definition 2 Let G = ⟨N ∪ {Env},L⟩ be a dependency graph. Σ = {ok, def, corr}
is the set of different node states. A state of the dependency graph G is a mapping
s : N → Σ. SG denotes the set of all states of G (if G is known from the context
we simply write S).
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Let s ∈ SG, σ ∈ Σ, and n ∈ N then s[n← σ] is the state defined by s[n← σ](n) =
σ and ∀n′ ∈ N \ {n}. s[n← σ](n′) = s(n′).

In a dependency graph with four nodes as in the previous example of Figure 4.2,
the state is defined by the state of its components, i.e. (s(n1), s(n2), s(n3), s(n4)).
Recalling the definition of the attack rate of a node Secn, it becomes clear that this
occurrence rate actually depends on the current state of the dependency graph.
In the example, the ECU n1 is most vulnerable if the encryption module and the
authentication module (n2 and n3) have failed, e.g. (ok, def, def, ok), because this
would prevent the provision of any security guarantees. Thereby, it is generally
irrelevant whether these nodes are in the state def or corr, however, in the pictured
example they can never turn corr due to the given dependencies. Further, n2 and
n3 can provide different amounts or quality of protection. This means that the
vulnerability of n1 can be different in states ⟨ok, def, ok, ok⟩ and ⟨ok, ok, def, ok⟩.
For instance, with the ECU potentially being the target of malicious commands,
the validation of the commands’ authenticity is most relevant and can be seen as
a higher security guarantee than its encryption.

Since in reality components can be of varying criticality, as discussed in the pre-
vious chapter, some nodes may cease to operate without having an effect on the
performance of the system, while others directly lead to a system failure. We
instantiate the discussed criticality definition by defining a so called mode of oper-
ation. A mode of operation is represented by a boolean formula connecting nodes
that are guaranteeing the correct operation of the system in their current state
by making use of logical and-/or-operators. It evaluates as true if the system is
operational, indicated by the health states of the included nodes, false otherwise.
The included nodes are essentially all nodes that are mandatory to provide the
system’s safe state. In reverse conclusion, the mode of operation can be used to
derive failure states, which are all states where the mode is not satisfied. Definition
3 specifies the mode of operation formally.

Definition 3 Let G = ⟨N ∪ {Env},L⟩ be a dependency graph. A mode of oper-
ation is a propositional formula ϕ over {∧,∨} and logical variables {n̂ | n ∈ N}
(representing the individual nodes of N ).

A state s ∈ SG induces an assignment µs on N̂ by: µs(n̂i) = true iff s(ni) = ok.
A state s ∈ SG satisfies ϕ iff µs(ϕ) = true.

Figure 4.3 shows another very basic scheme which could be part of an automated
vehicle to explain the definition of the mode of operation. In the centre we see
a perception unit n2 that receives data from the outside via V2X n1 that can
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Figure 4.3: Nodes with Different Criticality

possibly change the system behaviour is, however, not functionally required. This
could be perhaps relevant data transmitted from other vehicles like their cur-
rent driving speed. Functionally important data is provided to the perception
unit by three sensors n5, n4 and n3. In this graph, the set of nodes is given
by N = {n1, n2, n3, n4, n5}. A possible and convenient mode of operation could
be defined by ϕ = n̂2 ∧ (n̂5 ∨ n̂4) ∧ n̂3. This declares that the perception unit
n2 must be operational and is relying on one of the RADAR sensors (n4 or n5)
and the LIDAR sensor n3 to be operational. Thus the RADARs are designed
to provide redundant information. The node of the perception unit is marked
red here to highlight that it is critical for the system itself. While nodes n3, n4
and n5 constitute to this required system functionality, they are not mandatory
themselves. This is a different semantic from the system’s point of view, but form-
ally the nodes are handled identically by being part of the mode of operation.
Thus the red highlighting is only syntactical sugar, emphasizing the criticality of
a component. To support the system’s change of criticality in different (driving)
situations, multiple independent modes of operation for the same system can be
established.

4.1.1 Application Example

Until now we only observed very basic examples of dependency graphs to visu-
alize the fundamental concepts. For real systems, the dependency graph can
quickly become very complex. Figure 4.4 shows an exemplary illustration of the
dependency graph of an abstracted but realistic architecture of an autonomous
vehicle. The implemented architecture is based on the system design of a modern
(autonomous) vehicle in accordance to the one described in the earlier Section 2.2.
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Figure 4.4: Dependency Graph of an Autonomous Vehicle

On the right hand side the legacy components (Section 2.2.2) of the comfort (up-
per) and motor (lower) CAN bus are outlined. Here several nodes were highlighted
red to emphasize their criticality. For example, the vehicle cannot function without
an operational engine control unit n10. Furthermore, functional dependencies ex-
ist, for instance, the ABS n13 is relying on the information of the rotation sensor
in the wheels n17 to fulfil its designated task. Since in reality these components lie
on a bus system which is connected to a gateway (see also Section 2.2.1) for inter-
bus communication, all of these represented components were modelled reachable
from the gateway node n9. This is necessary to express that the represented legacy
components can receive commands from other components via the gateway, which
may be exploited by an attacker. Contrary to the architecture presented in Section
2.2, the gateway of the SDS and the legacy components is modelled as a single
gateway for simplicity. To create an exact model, Reach-dependencies between
the legacy component’s nodes would need to be drawn to reflect the commanding-
semantic among the components on the bus. However, since Reach-dependencies
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are used to express vulnerability to security attacks based on existing commanding
interfaces and all of the nodes are already reachable through the same path, these
dependencies can be omitted without consequence. This would be different if one
of the legacy component’s node was connected through another path from the Env-
node, providing for a separate attack path which would increase the probability
for attacks.

Because of the gateway’s central role in communication (and reachability), an HSM
n50 was modelled to secure it by the supply of cryptographic mechanisms. The se-
mantic here is as follows: As long as the HSM is in a state ok, it is actively providing
security guarantees to the gateway and thus lowering the probability for successful
attacks on it. This indirectly lowers the attack probability for subsequent nodes,
hence the ones representing legacy components, as they can only be attacked once
the gateway node has been occupied by the attacker.

On the lower left, the SDS and its required sensors are modelled. The SDS
itself is represented by three critical system nodes n29, n30 and n31 represent-
ing CU1, CUE and CU2, just like the system architecture described in Section
2.2.3.

To accord the redundancy definition of the proposed architecture, where at least
one of the computing nodes has to be operational, we can simply write n̂29∨ n̂30∨
n̂31 in the mode of operation. The reliance on sensor data is modelled by various
Fct-links from each sensor node to each CU node. Here redundancy definitions
exist, because not all sensors are required to be operational to perform the basic
driving task. For example, we may only require one of the high dynamic-range
cameras (PGFs) to be operational which we express by adding n̂41 ∨ n̂38 to the
mode of operation. The consequences of a degraded functionality, hence the de-
gradation in quality and extent if, e.g., only the emergency CU is still working
or redundant sensors have failed, cannot be covered by this model. Further, de-
tails such as the application switching between the CUs in failure cases (between
active-hot and active instances as described in the in Section 2.2.3) cannot be
captured on this level either. However, it is possible to define separate modes of
operation for the system assessment. For instance, in some driving modes like
highway driving in comparison to urban driving, only a smaller, selected group of
sensors may be required and thus the system can stay operational through mul-
tiple sensor failures, while it would not in a different driving mode. Furthermore,
one could assume that in highly critical scenarios we actually want to have at least
one regular computing node (CU1 or CU2) and the CUE as a fallback system
active.

On the upper left of Figure 4.4 the various connectivity components (see Section
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2.2.4) are modelled. The telematics unit n1, the Bluetooth interface n4, the OBD-
II interface n5 and the VANET router n51 provide interfaces for the communication
with the outside and are thus directly targeted by Reach-links from the Env-node.
These are the nodes an attacker can attack in the first step, before corrupting any
system nodes. Based on their assumed messaging behaviour outgoing Reach-links
to other nodes have been set. In this way, the propagation of information but
also potential malware is modelled. For instance, Reach-links from the telematics
unit to the infotainment and from the infotainment to the navigational system
are established. This path exists, because it is conceivable that the telematics
unit receives updated map information that is further deployed in the naviga-
tional system via the infotainment. Additionally, Reach-dependencies between the
infotainment n8 and the gateway n9 were modelled, which are necessary to express
the distribution of parameter or software updates of the legacy components by the
manufacturer via the telematics unit. While the infotainment is already reachable
via the described paths, it is further reachable through the gateway node. Con-
trary to the case between the legacy component’s nodes, this Reach-dependency
cannot be neglected, because it expresses the existence of another Reach-path. We
can see that the OBD-II interface n5 is also reachable, however, does not target
the infotainment but the gateway. This path potentially employs a different attack
probability and thus cannot be omitted. With the same idea of the HSM, a firewall
is installed as node n6 that is providing security guarantees to the infotainment,
OBD-II interface and the VANET router nodes.

4.2 Dependency Markov Chain

With the formalization of the dependency graph Chapter 3’s essential safety and
security effects of real-world systems can be captured effectively. However, to ana-
lyse these effects and make the dependency graph assessable we need to put it into
operation, emulating the real-world system’s behaviour. Therefore the occurrence
of failures and attacks, indicated by the defined occurrence rates for every node,
has to be viewed in regard to the elapsed time of operation. The role of the de-
pendency graph is to act as a framework by dictating which effects are possible and
defining the consequences for the system’s functionality. The analysis goal is to
observe how an initially fully operational system degrades in health over time due
to failures and incidents and eventually reaches a critical state where the function-
ality cannot be preserved any more. Technically this means that our interest lies
in evaluating quantitative properties that mark the reaching of undesired states.
In the dependency graph, these states are substantially all states that do not sat-
isfy the mode of operation. To achieve that, we are required to transform the
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dependency graph into a quantitative model. The Markov chain (see also Section
2.5.1) makes an excellent candidate for several reasons: Due to its state-based
modelling, we can easily represent the states of the dependency graph by mapping
them to the states of the Markov chain. Furthermore, the occurrence of safety
failures and security incidents can be expressed by the transitions marking state
changes of the Markov chain. Additionally to that, an accurate modelling of time
can be induced if we make use of CTMCs. As a key feature, Markov chains sup-
port the automatic evaluation by probabilistic model checking which can quickly
become mandatory by the growing complexity of input models and also for sheer
comfort.

The following sections concern the transformation of a dependency graph into a
corresponding CTMC, subsequently referred to as a Dependency Markov Chain.
Therefore Section 4.2.1 formalizes the transformation, Section 4.2.2 discusses the
formal consequences for the scalability and Section 4.2.3 describes the evaluation
idea and process.

4.2.1 Transformation

The CTMC is instantiated as a Dependency Markov Chain DMC in regard of a
dependency graph and its predominant mode of operation. Looking back at the
definition of Section 2.5.1, a CTMC is a probabilistic automaton that essentially
consists of a set of states (with a defined initial state) and transitions between
those, where occurrence is defined by the transition rate matrix. For the trans-
formation, each health state of the dependency graph (s ∈ SG) is simply adopted
by a state in the Markov chain. Because our interest lies in finding the first point in
time where the system ceases to operate, we can disregard from consecutive failure
states and model them final, so they have no outgoing transitions. This lets us
comprise these failure states to a single Fail state that marks the state where things
went sideways. For simplicity a transition in the DMC only represents the state
change of a single node. This helps keeping the number of possible transitions on
a reasonable level. Considering the rather low probabilities for failures and incid-
ents of components, this interleaving of potentially concurrent events seems to be a
realistic assumption. Thereby, transitions based on safety failures (rSafe

n ) leading to
the node’s def state and transitions based on security attacks rSec

n resulting in the
corr state of the represented node are separated. Figure 4.5 illustrates the DMC
concept. From the initial state on the left, a safety failure transition (top) may be
taken on behalf of rate rSafe

n turning the fictive node n1 def, or a security attack
transition (bottom) defined by rate rSec

n may be taken turning it corr. Depending
on the underlying graph, various transitions may occur that eventually lead to
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Figure 4.5: Conceptual Illustration of the DMC

undesired states summarized by Fail. Definition 4 gives a complete and formal
specification on the transformation of a dependency graph into its corresponding
CTMC under a given mode of operation.

Definition 4 Let G = ⟨N ∪ {Env},L⟩ be a dependency graph with states SG and
nodes N = {n1, . . . , nk}. A CTMC C = (S, sinit, R, L) is a Dependency Markov
Chain (DMC) of G w.r.t. a mode of operation ϕ. Let S̄ = {s ∈ SG | µs(ϕ) = true}.

• S = S̄ ∪ {Fail}

• sinit = s ∈ SG ∩ S with ∀n ∈ N . s(n) = ok

• L(Fail) = ⟨Fail⟩ and L(s) = ⟨s(n1), . . . s(nk)⟩

• R : SG × SG is given by (for n ∈ N )

– R(s, s[n← def]) = rSafe
n if µs[n←def](ϕ) = true ∧ s(n) ̸= def

– R(s, s[n← corr]) = rSec
n (s) if µs[n←corr](ϕ) = true ∧ s(n) = ok

∧ ∃⟨n′, n⟩ ∈ LReach. (n′ = Env ∨ s(n′) = corr)

– R(s, Fail) =
|NSafe|∑︂

i=0
rSafe

ni
+
|NSec|∑︂

j=0
rSec

nj
(s)

with NSafe = {n ∈ N | s[n← def] ̸∈ S̄ ∧ s(n) ̸= def}
and NSec = {n ∈ N | s[n← corr] ̸∈ S̄ ∧ ∃⟨n′, n⟩ ∈ LReach.
(n′ = Env ∨ s(n′) = corr)}

– and R(s, s′) = 0 for all other pairs s, s′
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To define the Markov states (first item of Def. 4) in accordance with the oper-
ational states of the graph as mentioned, firstly the set S̄ is built. It consists of
all dependency graph states where the mode of operation evaluates as true. This
set of states and an explicitly labelled Fail state are adopted in the Markov chain.
The initial state, marked as sinit, is defined to be the state where all nodes are ok,
following the idea that at start the system is at full health. The third item defines
the labelling function so that the initial state can be written as ⟨ok, ..., ok⟩ and all
failure states as ⟨Fail⟩. The transition rate matrix R of the DMC assigns rates to
each Markovian state pair, specifying the transitions as we saw before, by reflecting
the health state change of a single node. To handle the varying transitions we are
required to distinguish different cases: In the first two cases we view transitions
that do not lead into the Fail state, hence, where the succeeding state still satisfies
the mode of operation. Due to divergent conditions, defects and corruptions are
handled separately. The third case represents all missing transitions which are
leading into the Fail state.

Precisely, the first subitem defines the transition into a Markov state where a con-
cerned node turns def. This transition is allowed regardless of whether the previous
state was ok or corr. The probability of the transition is simply adopted by the
fixed rate rSafe

n of the node describing its probability for a hard- or software failure
(see Definition 1). The second subitem defines the transition into the Markov state
that reflects the corruption of the node. This transition has additional conditions:
It must only be performed if the current state reflects a state where the node is ok,
because we assume that a node that is already irresponsive cannot be successfully
occupied by an attacker. Furthermore, the Reach-dependencies dictated by the
graph must be taken into account, making this transition only possible in case of
a targeting Reach-link from the Env or an already corrupted node (s(n′)) to the
concerned one exists. The probability for this transition is given by rSec

n (s), which,
in accordance to the definition in the graph, is not a fixed rate but a function
instantiated with the current Markov state. Formally this function is given in the
upcoming Definition 5.

Definition 5 Let s be a state of a dependency graph G = ⟨N ∪{Env},L⟩ then the
attack rate of n in s is defined as rSec

n (s) = Secn({n′ ∈ SrcSec(n) | s(n′) = ok}))

Recalling, the corruption of a node is indicated by a rate that describes the ex-
ploitation of a vulnerability in dependence to the security mechanisms provided
by other nodes with the latter varying if security providing nodes are corrupted or
defective themselves. To respect that different rates for an attack exist depending
on the system state, the rate must be instantiated by the current state to describe
the successful attack of the node in regard of the health of the nodes that are
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providing security guarantees. Definition 5 achieves that by making use of the Src
function as explained in the previous Section.

Now that we defined the safety and security transitions into operational states,
we must define all transitions that lead to failure states collected by Fail. Here
the computation of the occurrence probability is less straightforward: From the
Markov chain perspective all of these previously distinct failure states are sum-
marized into a single state and thereby several transitions to the same state arise,
leading to the existence of alternate paths. We can observe this phenomenon in
the upcoming Figure 4.8, where all failure states of Figure 4.7 are summarized
to single Fail state. According to the definition of the CTMC (see also Section
2.5.1)) alternate paths are required to be summed. To collect the rates of all of
these transitions we build two sets NSafe and NSec. These sets are used to sum
up all safety relevant transitions and all security relevant transitions, just in ac-
cordance to the definition of the CTMC design and property evaluation where
individual steps in the chain are multiplied, but alternate paths are summed (see
Section 2.5.1). Any other transitions that do not accord the specified design are
neglected by setting their occurrence rate to zero. Figure 4.6 shows a minimal

Reach

Fct

Sec

Env n1

n2

n3

Figure 4.6: Toy Example of a Dependency Graph

working example of a dependency graph that is capable of capturing most of its
features. This example is used to show the transformation into a corresponding
DMC. The mode of operation is exemplarily set by ϕ = n̂1 ∧ (n̂2 ∨ n̂3), declaring
that node n1 and at least one of the nodes n2, n3 must be operational to provide
the desired mode. By specifying that either node n2 or n3 must be operational,
they are defined to deliver redundant information.
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Figure 4.7 visualizes the DMC of the toy example with all failure states and
Figure 4.8 the respective summary of these to a singular Fail state. We can see
that in accordance with the mode of operation, all states where node n1, or both
nodes n2 and n3 are not operational any more, are failure states. Note that due
to the graph properties (absence of Reach-link) node n2 can never be attacked
and turn corrupted. Figure 4.7 shows that eight transitions to failure states from
three different states exist. By summarizing these failure states, the transitions
are summed with respect to their origin state yielding three transitions. For ex-
ample state ⟨ok, ok, def⟩ where the failure or the security attack on n1 (⟨def, ok, def⟩
and ⟨corr, ok, def⟩), but also the failure of n2 ⟨ok, def, def⟩ may lead to failure
states.

4.2.2 Scalability

The state space of the DMC grows exponentially in relation to the nodes of the
dependency graph, since every state in the DMC comprises a health state con-
figuration of all nodes. Considering that we have three health states, this means
that the Markov states grow by 3|N | in the worst case. Though, in practice this
is not the case as certain properties of the overlaying dependency graph lower
the state growth. Yet it always remains exponential. As we could see in the
example transformation nodes that are not reachable (are not connected by a
Reach-path that originates in an Env-node) cannot be attacked and thus never
turn corr. This lowers both the amount of yielding states and transitions. While
the goal of the developed method is to evaluate these security effects, in reality
not all system components possess commanding interfaces. For components that
solely act as data providers this is a reasonable assumption. For instance, the
automotive sensors in the application example of the previous Section 4.1.1 are
not modelled as reachable. Consequently the state space must be calculated with
respect to the amount of non-reachable nodes, as given by the following formula:

3|N−M| · 2|M| with M = {n ∈ N | Src(n)Reach = ∅} (4.1)

All non-reachable states are defined by the set M. To compute all states of
the nodes that can adopt either of the three health states, we subtract the non-
reachable nodes from set N and for these non-reachable nodes we only consider
two health states.

In addition to that, the predominant mode of operation in combination with the
failure state summary provides for further state space reduction. Recalling, the
mode of operation defines whether a state is a failure state and all failure states are
comprised to a final Fail state. In this way, dead states (and transitions), that mark
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further breakage of an already non-operational system, are omitted and reduced
to one single state. Since only nodes that are essential for the system in a sense
that their defect or corruption results in failure states, they produce less Markov
states than uncritical nodes (not providing essential data and not themselves part
of the mode). These uncritical nodes are, for example, comfort or not mandatory
connectivity components. It follows that we get the worst case of 3|N | states,
whenever all nodes of the dependency graph are reachable and uncritical (providing
an empty mode of operation). In reality whatsoever, such a system does not make
much sense, as semantically it would mean that all modelled components are either
uncritical or provide the same redundant functionality.

Given these contemplations, a tiny dependency graph with 3 nodes already pro-
duces 33 = 27 Markov states in the worst case, however, as seen in the toy ex-
ample’s DMC (Figure 4.8) the state space can actually be reduced to 4. In this
example, node n2 is not reachable which reduces the states to 32 · 21 = 12. Yet the
pictured DMC without the failure state summary (Figure 4.7) only consists of 10
states. This discrepancy is easily explained: Since failure states are final, the state
⟨def, def, def⟩ is neglected, because it may only result from states ⟨ok, def, def⟩,
⟨def, def, ok⟩ and ⟨def, ok, def⟩ which are already failure states themselves. For the
same reason the state ⟨corr, ok, corr⟩ is neglected. This case is especially interest-
ing, because it reflects the path properties of Reach-dependencies. That is, any
state ⟨. . . , . . . , corr⟩ can only be entered if n1 turns corrupted which is yet already
a final failure state. The last reduction step is simply the summary to the Fail
state where we form an individual state of the 7 failure states as depicted in the
example, yielding our 4 state system.

4.2.3 Evaluating the DMC

Now that we are able to build dependency graph-tailored CTMCs we can make
use of Markov analysis to answer the desired questions regarding the quality and
risk of our modelled system. These are, for example, “What is the probabil-
ity that our system is still operational after operating for a defined interval of
time?” or “What is the probability that our system stays at perfect health after
a defined period of continuous operation?”. To show how these questions can be
answered, subsequently the application idea of Markov analysis is shown on behalf
of the previously introduced toy example equipped with dummy failure and attack
rates.

Figure 4.9 shows the transformation of the toy example’s dependency graph into
its corresponding DMC. For a better readability in the upcoming calculations the
states were renamed as depicted and very unrealistic input rates have been chosen.
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Figure 4.9: DMC Evaluation Example

Thereby the security guarantees provided by node n2 were assumed to have a rate
of 0.05 and the internal attack rate of n1 to be 0.1. As a consequence, the rate
indicating that node n1 turns corrupted is different depending on the current state
just like defined. In s0 and s2 this rate is lower, because node n2 is still operational
and providing security guarantees (0.1−0.05 = 0.05). In s1 this rate consists solely
of the internal attack rate of n1.

Lets say we are interested in the probability that our system is still at perfect health
after 12 months of deployment and being in continuous operation. To express that
property P 1

=? [F =12 s0] is formulated. This is actually a rather simple property,
as we only have to view one state (s0) and calculate the probability that this
state is not left. Consequently, no tedious calculations including other states and
paths to them have to be considered. Following our previous contemplations (see
Section 2.5.1 or [Kat13]) we must calculate e−r(s)·t yielding the probability to be
in s after t time units have passed. Since r(s) marks the residence time, but
we have the rate matrix R(s, s′) given, we are firstly required to determine r(s)
for s0. Due to the relationship of R(s, s′) = r(s) · P (s, s′), we can calculate r(s)
and P (s, s′) from the set rate matrix. r(s) is simply calculated by summing all
transition rates of s0: R(s0, s1) + R(s0, s2) + R(s0, s3) = 0.4 (see [Kat13] for more
information). Then, for example, P (s0, s1) = r(s0) ÷ R(s0, s1) hence 0.4 ÷ 0.1 =
0.25.
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Calculating the property for t = 12 yields e−0.4·12 = 0.00082298. This means that
the probability for staying at perfect health after 12 months lies around ≈ 0.08%.
For visualization, Figure 4.10 shows how this property behaves over time regarding
months 1 to 12 in steps of 1 month.
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Figure 4.10: Plot: Property P1 over 12 Months of Continuous Operation

However, viewing only the perfect health is not sufficient in reality. States s1 and
s2 may indicate a degraded functionality with comfort features not being available
any more, yet the system is still functional. Thus, we are more interested in
calculating the probability of staying in any of these states, which is substantially
the opposite probability of reaching the Fail state. This property is defined by
P 2

=? [F =12 Fail] (“What is the probability that our system is non-functional after
12 months of continuous operation?”). For this property we do not only have
to analyse the probability for staying in a state, but entering it when we firstly
are in the initial state (s0). To enter the Fail state (s3), several paths consisting
of pairs of residence time and transition probability can be taken. Therewith
this property falls in the area of timed reachability, which is not easily calculated
[Kat13].

To evaluate this property we need to identify the reachability of our state Fail in
consideration of some elapsed time. While the reachability alone can be analysed
on the basis of the underlying DTMC, for timed reachability we must view the
probability to move to the next consecutive state at time y and the probability to
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fulfil the property. Therefore the integral equation as discussed earlier (see Section
2.5.1 and [Kat13; Kat16]) must be solved.

xs0(12) =
∫︂ 12

0
0.1⏞⏟⏟⏞

R(s0,s1)

· e−0.4·y · xs1(12− y) dy

+
∫︂ 12

0
0.2⏞⏟⏟⏞

R(s0,s2)

· e−0.4·y · xs2(12− y) dy

+
∫︂ 12

0
0.1⏞⏟⏟⏞

R(s0,s3)

· e−0.4·y · xs3(12− y) dy

(4.2)

xs1(12) =
∫︂ 12

0
0.35⏞ ⏟⏟ ⏞

R(s1,s3)

· e−0.35·y · xs1(12− y) dy (4.3)

xs2(12) =
∫︂ 12

0
0.2⏞⏟⏟⏞

R(s2,s3)

· e−0.2·y · xs3(12− y) dy (4.4)

xs3(12) = 1 (since xs3 ∈ P2) (4.5)

Equation 4.2 shows the integral equation of state s0. The integral is built from 0
to 12 according to the property. Then the rate and the residence time is inserted
in the formula accordingly. Because state s0 can reach all other three states,
all the existing paths have to be included by summing them. For s3 the formula
trivially evaluates to 1, as it is the Fail state itself and the property is reached. This
example shows that already the analysis of small toy examples can lead to complex
solving of integral equations, which is a tedious and inefficient task, making clear
that computer support is needed to analyse realistic systems. Probabilistic model
checkers offer a great perspective for solving a variety of Markov properties. If we
make use of such a tool and are indeed capable of solving the established integral
equations, we obtain the failure probability of the system which can be used to
calculate further safety parameters.

As an example, the given system is solved using the probabilistic model checker
PRISM [KNP11]. The property P2 yields ≈ 0.8958, meaning by a probability
of 89.58% the system is no longer operational after 12 months. As presented
in 2.3.2 the reliability and the availability can be directly calculated from this.
Hence the reliability of the system is 1 − 0.8958, which is here the same as the
availability, because no system repairs and maintenance were considered. Meaning
to a probability of around ≈ 10% our system is still available (operational) after
12 months of operation without any maintenance.
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In the previous chapter the formal model, consisting of dependency graphs and
their corresponding CTMC (the Dependency Markov ChainDMC), was presented.
The chapter was closed with a description of the evaluation idea and a view on the
scalability of the method. Thereby, we could see that an unavoidable exponential
state growth in regard of the modelled components (nodes) exists. This is a known
downside of Markov analysis or even analytical approaches in general. In regard
of the vast amount of components we require to model for accurately capturing an
entire automated or autonomous vehicle, this exponential state growth may easily
become the bottleneck of our method. As an illustration, the dependency graph of
the autonomous vehicle described in Section 4.1.1, Figure 4.4, consists of 51 nodes
with 24 of them being reachable. Following the previous scalability consideration
(see Section 4.2.2) the corresponding Markov chain yields the tremendous amount
of 324 · 227 = 3.790705071 × 1019 Markov states (without Fail-state reduction as
it is dependent on the predominant mode of operation). Modelling and solving
such a Markov chain is a very tedious task that can bring even probabilistic model
checkers to their limits due to the enormously required computational resources,
in particular memory.

In order to effectively solve systems of this complexity, we are required to find a
possibility for decreasing the state space of the Markov chain without greatly cur-
tailing its accuracy. Several optimization options are conceivable. On behalf of the
Markov chain, compositional verification and Markov chain abstraction [KNP10]
are well-established concepts. The idea of compositional verification is to break
the verification of the system into smaller subtasks, often implemented by making
use of Assumption-Guarantee Reasoning in non-probabilistic contexts, and reduce
the verification effort by solving these subtasks independently. Also advances
regarding compositional probabilistic model checking have been made [KNP10].
The authors of [HKK13], for example, present an Assumption-Guarantee frame-
work for Interactive Markov Chains (IMC), an extension of classical CTMC by
a new transition type. They show how compositional verification in considera-
tion with time-bounded reachability properties can be established. Markov chain
abstraction, on the other hand, covers the aggregation of Markov states that are
annotated with an interval of rates or probabilities rather than having a single
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rate or probability for each state. Thereby, varying techniques to achieve such an
abstraction for the diverse types of Markov chains exist. For CTMCs in [Kat+07]
a three-valued abstraction method including a model-checking algorithm is presen-
ted. [Smi10] applies and implements abstracted CTMCs compositionally in the
underlying Markov model of the Performance Evaluation Process Algebra (PEPA)
by abstracting each component individually. This is highly beneficial for large
Markov models where the state space may be too large to be constructed in first
place.

However, our Markov chain is generated in relation to the overlying dependency
graph which contains the semantic definition of the system model. Since this
information is translated to the Markov chain, it is difficult to extract. Thus, to
preserve the integrity of the model it is more reasonable to perform optimizations
on behalf of the dependency graph. As a matter of fact, the optimization of
graph structures is a long studied subject of theoretical computer science and
consequently various concepts and techniques already exist. For instance, graph
clustering and graph partitioning concepts can be used to reduce the graph’s size by
a node-wise division into several smaller pieces. Additionally, graph partitioning
is a widely researched field with many different application areas, prominently
parallel computing/processing, image processing and VLSI design [BS13] [Bul+16].
The literature separates two main partitioning problems arising from the different
application areas: constrained partitioning, where the parts of the partition must
be of similar size (e.g. very important for parallel computing/processing, see also
[AR06]) and unconstrained partitioning where the parts can be of highly different
sizes.

Another option could be to change the solution procedure. For instance, instead
of using Markov analysis, simulation-based methods could be used which do not
have the trouble of running into state space explosions. While a simulation-based
evaluation would bring great benefits regarding the scalability, it also has the
disadvantage of generally requiring more modelling effort and being extremely
time consuming to reach a similar level of accuracy as the Markov analysis (see
also Section 2.5.2).

Inspired by these classical graph partitioning concepts a modularization scheme on
dependency graphs is proposed. Thereby, the graph is partitioned into a hierarch-
ical system consisting of one main graph and one or more module graphs. Unlike
for parallel computing, in our use case the yielding partitions are not required to
be of equal size. Yet, to fulfil its purpose it is necessary that the partition contains
enough nodes to decrease the resulting state space in the desired way. In complex
systems, consisting of various different components, we can usually observe some
sort of functional clustering. Meaning, we can identify component groups that
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contribute to a specific functionality that is separate from the rest of the system.
For instance, taking a look back at the vehicle example of the previous chapter in
Figure 4.4, we can see that the two modelled CAN bus systems (the comfort and
the motor CAN) actually make two somewhat distinct and encapsulated subsys-
tems that are solely connected via the gateway. The idea of the modularization
scheme is now to identify these rather encapsulated subsystems and separate them
as individual dependency graphs. The original system then gets abstracted by
modelling these module graphs as nodes. For the evaluation process, the module
graph yields the necessary inputs for the node in the abstracted graph and thus
requires to be evaluated first. Regarding the solution, two possibilities have been
developed: The purely analytical evaluation where both the main and the module
graph(s) are evaluated with Markov analysis, and the hybrid where a combination
of Markov analysis (the main graph) and MCS (on the module graph(s)) is per-
formed. The decision of allowing the simulation only on certain module graphs
is simply to keep the result accuracy high, while respecting subsystem structures
that favour a numerical evaluation.

Subsequently the formal basis for the graph division is presented, which was ini-
tially published in [RH22]. Afterwards, both solution procedures are described in
detail. Thereby remarks on the decision of the evaluation method for the module
are made. Finally, heuristics for well-formed modularizations as well as indicators
for when a modularization should not be performed (with respect to the result
precision) are presented.

5.1 Dependency Graph Division

When executing the modularization, the original dependency graph which is mod-
elling some real-world system, must be split into an abstracted graph and one
or more module graphs. In order to make the modularization a sufficient way of
staying scalable, it is essential that the graph division is as accurate as possible by
reflecting the original dependency graph in the best way imaginable. Therefore,
rules must be determined for building the abstracted and the module graph(s)
from the original graph.

Given an original system modelled as a dependency graph G, a division is per-
formed that yields an abstracted graph Ga and a module graph Gm. A compre-
hensive visual example can be found in Figure 5.1, with an original example system
pictured on the left-hand side and its modularization on the right. In the first step
we identify a set of system nodes Nsub and their corresponding links that are sup-
posed to build the module graph. In the provided example these are the nodes n1,
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Figure 5.1: Modularization Example

n2 and n3. All links between the identified nodes are simply taken over to the mod-
ule untouched. Since this set of system nodes does not include an Env-node, but
the module graph may contain Reach-dependencies, just as it is the case in the pic-
tured example, a new Env-node must be added. This yields the module graph Gm

with nodes Nm and links Lm. In the next step, we construct the abstracted graph
Ga, on the basis of the original graph G, by the removal of all nodes included in
the previously identified set Nsub and the links between them. The idea is that be-
cause the abstracted graph becomes the main system, which can be evaluated with
a decreased amount of modelled components, the removed nodes and links of the
module must be considered in a more performant way than in the original model.
For that reason, a new node nsub is inserted into Ga, respectively Na, representing
the module graph. In the example this node is referred to as n7 and highlighted
with a dashed line to suggest that it is internally representing a module graph. To
accord the original system in the best possible way all links between the module
nodes Nm and the nodes of the abstracted graph Na are transferred to nsub. For
the example system this is simple: the existing Reach-link from the Env-node to n1
is transferred to the new module node n7. This kind of division yields a hierarch-
ical system where the independent evaluation of the module must be performed
before the evaluation of the abstracted graph.

Definition 6 specifies the described modularization steps in a formal course.
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Definition 6 Let G = ⟨N ∪ {Env},L⟩ be a dependency graph. A set of nodes
Nsub ⊆ N defines a modularization (Ga,Gm) by: The abstracted graph Ga =
⟨Na,La⟩ is given by

Na = N \Nsub ∪ {nsub}
La = {(n, n′) ∈ L | n, n′ ̸∈ Nsub}

∪ {(n, nsub) | ∃n′. (n, n′) ∈ L
∧ n′ ∈ Nsub, n ̸∈ Nsub}

∪ {(nsub, n) | ∃n. (n′, n) ∈ L
∧ n′ ∈ Nsub, n ̸∈ Nsub}

The module graph Gm = ⟨Nm,Lm⟩ is given by

Nm = Nsub ∪ {Env}
Lm = {(n, n′) ∈ L | n, n′ ∈ Nsub}

∪ {(Env, n′) | ∃n. (n, n′) ∈ L ∧ n ̸∈ Nsub

∧ n′ ∈ Nsub ∧ τ((n, n′)) = Reach}

In reality modularization candidates are often not entirely encapsulated systems.
This is only natural considering that complex systems are a composition of mul-
tiple subsystems that, however, are required to work together to establish their
designated function. These dependencies to neighbouring nodes are taken care
of during the replacement of the module graphs by transferring them to nsub.
In this way information loss is prevented, though, the dependencies are usually
over-approximated. This means that in certain systems, a dependency that ori-
ginally affected a single node suddenly applies to the entire subgraph represented
by the module. A special case is formed by Reach-dependencies to module nodes
that express that the target node can be accessed by the origin node. Regarding
the vulnerability analysis, Reach-paths that do not originate in an Env-node are
senseless, as an intrusion could never take place. Thus we can assume that every
existing Reach-dependency is part of a path that originates in an Env-node. To
model the access of potential attackers in the module graph, the set of module
nodes are extended by an Env-node as discussed, and Reach-links that formerly
originated in nodes of the abstracted graph are replaced by Reach-links from that
Env-node.

Mode of Operation Accompanying to the modularization of the graph, a divi-
sion of the mode of operation must be performed. Recalling, the mode of operation
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Figure 5.2: Modularization with Functional Dependencies

ϕ defines both, the operational states of the system and the semantics of its func-
tional dependencies, including potential redundancy specifications. On behalf of
a mode of operation ϕ for the original graph G, appropriate modes of operation
ϕa for the abstracted graph Ga and ϕm for the cut out module graph Gm must be
found such that

ϕ ≡ ϕa[nsub ← ϕm] (5.1)
where Ψ[n← ω] denotes the formula obtained from Ψ by replacing each occurrence
of n in Ψ by ω.

This is illustrated on behalf of a small example system. Figure 5.2 shows an
original system G and its designated module Gm in the dashed box. Gm consists
of the node n1 and the data providing nodes n5 and n6. In the original example
a functional dependency between n1 and n6 exists which must be transferred to a
newly introduced module node nsub in the abstracted graph. A possible mode of
operation for the original graph could be given by

ϕ = n̂2 ∧ (n̂3 ∨ n̂4) ∧ n̂1 ∧ (n̂5 ∨ n̂6)

expressing that n2 (in red), requires n3 or n4 as well as n1 to be operational. n1
itself requires n6 or n5 to be operational. When performing the modularization
as defined, ϕ needs to be split to satisfy the equivalence 5.1. For this example
appropriate ϕm and ϕa are given by:

ϕm = n̂1 ∧ (n̂5 ∨ n̂6)
ϕa = n̂2 ∧ (n̂3 ∨ n̂4) ∧ n̂sub

whereby the mentioned dependency between n1 to n2 in the original graph is
represented by a dependency between nsub to n2 in the abstracted graph. Although
this example showed how easily a mode of operation ϕ can be split into appropriate
modes ϕa and ϕm, this is not always the case. In graph structures where nodes
of the intended module are not well encapsulated, dividing the mode of operation
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Figure 5.3: Non-modularizable Functional Dependencies

becomes impossible. Reasons for that are functional dependencies or redundancy
specifications that cross the border of the module.

To demonstrate this, the previous example is extended by a functional dependency
from n4 to n1 as pictured in Figure 5.3. This dependency is defined to be redundant
to the existing dependencies from n5 and n6. Hence, the three nodes deliver
redundant data to n1. With this extension, the mode of operation of the original
system adjusts to

ϕ′ = n̂2 ∧ (n̂3 ∨ n̂4) ∧ (n̂1 ∧ (n̂4 ∨ n̂5 ∨ n̂6)).

Performing the split of ϕ′ creates a paradox: On the one hand, n4 is part of ϕ′a by
being a supporting node of n2 as before. On the other hand, it must also occur in
ϕ′m as a supporting node of n1. This would require n4 to be part of the module
graph and the abstracted graph at the same time. Summarizing this means, in
case a node is occurring multiple times in a mode of operation ϕ, the system can
only be transferred into a module if that node occurs always in the context of the
later ϕm formula (or in an equivalent reformulation of it). This emphasizes that
the mode of operation must be determined individually in regard of the original
graph and its original ϕ.

5.2 Analysis

The goal of the analysis, to evaluate a quantitative system property with the main
focus being the probability that the system reaches a critical failure state, remains
unchanged. Due to the hierarchical scheme of a modularized system, any module
graphs must be evaluated first, in order to generate the input (failure and attack
models) for the module node in the abstracted graph. These failure and attack
models express the failure and attack behaviour of the module’s components. This
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means that the original analysis goal and design has to be rethought for the module.
In contrast to our philosophy; the explicit integration of safety failures and security
attacks, with the goal of obtaining an overall probability or rate for a system failure,
it is now necessary to obtain independent failure and attack rates in the module’s
evaluation process.

In order to provide additional possibilities for enhancing the scalability two dif-
ferent evaluation ideas were developed. First, the recursive analytical approach,
second, the hybrid. In either way, the abstracted graph is evaluated by Markov
analyses in accordance with the previous developments. The recursive analytical
approach also evaluates the module by Markov analysis. The concrete interplay
between the Markov analysis of the module and abstracted graph as well as the
internals regarding the evaluation of independent failure models is described in the
upcoming Section 5.2.2. In the hybrid approach, the module graph is evaluated
numerically with a simulation-based method as presented in detail in Section 5.2.3.
The objective of having two different evaluation methods for module graphs is to
enhance the scalability and the accuracy of the overall analysis by providing for
an evaluation that can accord the subsystems peculiarities. In that sense, both
approaches imply individual use cases. For certain system structures a numerical
evaluation can be more beneficial than an analytical and vice versa. Thereby, it
is conceivable to use them in combination for assessing large systems with mul-
tiple modules. Section 2.5 gave a general overview on the elemental assessment
paradigms and pointed out some essential characteristics. The next section con-
nects on these points by discussing universal attributes for favouring a simulation-
based, over an analytical approach and vice versa, with respect to choosing the
module’s evaluation method.

5.2.1 Choosing the Approach

If we have no limitations regarding the existence of a mathematical description of
the system that would deny an analytical evaluation, the deciding factors for choos-
ing the evaluation approach of the module are weighted between complexity of the
model, accuracy of the results and required evaluation time. Simulation-based ap-
proaches generally require more effort, since the models can cover complex system
behaviours, the evaluation itself is very time consuming and the required num-
ber of iterations to receive a reasonable result cannot be determined beforehand.
Thereby, the module size is not the deciding factor and even the evaluation of
small systems may require a large number of iterations of the simulation to receive
realistic and accurate results, especially when very low failure probabilities lead
to a late entry of the fail state. As mentioned before (see Section 2.5.2), weighted
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MCS could be an option in these cases. The required simulation time is related to
the modelled failure probabilities and the desired mission time. Substantially, the
higher the failure probabilities of the mandatory system components, the lower
the required simulation time, as the termination criteria can be reached faster.
However, then the amount of iterations to obtain satisfying results may have to be
increased. Yet, in contrast to analytical evaluation methods, a result will always
be produced without the concern of encountering state space explosions. Princip-
ally, analytical evaluation is very fast but suffers from an immensely growing state
space, because, in contrast to simulation, every possible state must be constituted
before the analysis is performed. As we could see earlier, this state growth is usu-
ally exponential with the amount of components impacting the evaluation effort.
Thereby, uncritical components that do not constitute to reaching the fail state
(components that are not part of the mode of operation) are inflating the state
space without contributing to the termination criteria. Though, other than for
simulation, the failure probability of components and the resulting probability for
reaching the fail state are negligible. Thus, generally, it is more beneficial to eval-
uate large and complex systems numerically by simulation, while small systems
would potentially create an unreasonable overhead and can be assessed analytically
with rather low effort. Further it makes sense to model components of lower com-
plexity analytically under the condition that established failure (and attack rates)
already exist, e.g., provided by the manufacturer.

5.2.2 Recursive Analytical Approach

The idea of the recursive analytical approach is to reduce the state space of an
original system by splitting the evaluation up to multiple tasks of Markov analysis
through modularization. An hierarchical dependency exists, as the abstracted
graph acts as a superordinate system with one or multiple subordinate Markov
analyses.

As pointed out previously (see Section 4.2.2), the original graph’s state space
grows by 3|N | in the worst case. By the creation of a single module we can split
this state space in the following way: The module graph now only consists of the
partitioned nodes and thus its state space is described by 3|Nsub| in the worst case.
The abstracted graph contains all remaining nodes plus the node that represents
the module nsub, yielding 3|N |−|Nsub|+1 states in the worst case. As an example,
consider an original system that consists of ten nodes: |N | = 10 and a corres-
ponding modularization with |Nsub = 5|. The original system yields 310 = 59049
states, the module graph transforms to 35 = 243 states and the abstracted graph
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to 36 = 972 states, enabling a state space reduction of 59049 − 1215 = 57834
states.

Figure 5.4 visualizes the procedure of the hierarchical evaluation with one module
and the goal of analysing the overall failure probability of the system. Starting
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Figure 5.4: Analytical Evaluation Procedure in a Modularized System

with an overall description of the system with respect to the safety and security
dependencies of its components, an abstracted and a module dependency graph
are built in accordance to the defined formalism. As external input the depend-
ency graphs are provided with failure and attack rates of the individual system
components, given as before by, e.g., the component’s manufacturer. To analyse
the graphs via probabilistic Markov analyses they are both transformed into their
corresponding CTMCs (the DMC).

The CTMC of the abstracted graph is essentially the original graph’s CTMC
without the states of the module nodes Nsub and therefore is extended by the
states of the single module node nsub. Its transition rate matrix contains the same
rates as before with one exception: The rate for transitioning the nodes replaced
by the module node from ok to corr or def (while keeping all others identical)
needs to be determined through an evaluation of the module graph’s CTMC. It
is important to note that this rate actually consists of two rates: First, the rate
to transition into the module itself and finally, the rate it takes the module to
transition to a corr or def state. In the previous modularization example of Figure
5.1, the rate to transition into the module would simply be the state change of
node n7 in the abstracted graph. The rate it takes the module to transition to
corr (in the security case), would be the state change of n3, which requires the
prior corruption of n1 and n2. Hence consecutive dependencies exist. To handle
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these, we make use of the Chapman-Kolmogorov-Theorem and the fact that there
is only one path for this transition. The Chapman-Kolmogorov-Theorem states
that the probability to reach a state j after time (t+s) is equal to the product of
reaching state k in time t and then reaching state j in time s, summed over all
states k that lie on a path from the current state to state j (for more information
see [Pap84]). Concluding, the second rate has to be parametrized by time. That
is, the higher the point in time t the CTMC of the abstracted graph is evaluated
at, the higher the rate for the CTMC of the module graph needs to be. This can
easily be explained by the idea that the more time has passed once the first node
of the module has changed from ok to corr, the more likely it is that a mandatory
node (a node that is part of ϕm) in the module has changed to corr. Hence the
obtained probability is not described by a steady function and the corresponding
rates cannot be calculated sufficiently based on a single probability determined for
some specific point in time. This means that an individual evaluation for every
desired time point has to be performed.

To make use of the obtained probability (the failure and attack models) of the
module in the abstracted graph’s CTMC, it has to be transformed into a time-
parametrized rate, as mentioned above. This can be done via the relationship
ps,s′(t) = 1−e−R(s,s′)·t, where ps,s′(t) denotes the probability that the transitioning
from s to s′ has happened before time t, and R(s, s′) is the transitioning rate from
s to s′. That is, given the probability for time t from the module, the rate can be
calculated as

R(s, s′)(t) = − ln (1− ps,s′(t))
t

(5.2)

The pictured procedure must be performed for every evaluation step. Meaning,
if the property is meant to be evaluated for 12 months of system operation, the
process must be performed 12 times.

5.2.3 Hybrid Approach

Similar to the analytical approach the state space of the system is reduced by split-
ting the evaluation into multiple tasks. Thereby the evaluation of the abstracted
graph remains unchanged, implying the same state growth of 3|N |−|Nsub|+1. For the
module, on the other hand, the state growth is immensely decreased by making
use of a simulation-based evaluation, here focused on the Monte Carlo technique
(see also 2.5.2), that relies on a different kind of modelling. Simulation models
have the advantage of describing the system behaviour, in an event-based man-
ner. Thereby, the internal system states (on computation level) depend on the
evaluation goal. For instance, if we are interested in analysing how many times
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or to what probability a component turns defective, we must model a state that
describes it. For our focused evaluation goal this means we must model a fail state
that expresses that the system is not capable of providing its core functionality
(as before). The transitions which lead into that state are defined by probabil-
ity/rate induced events, which result from the dependency graph structure. These
events correlate to the different paths of the Markov chain. The key benefit of
Monte Carlo Simulation over Markov analysis is that it is more flexible and since
we are not bound on satisfying the Markov property, we can easily abstract and
combine system states. However, building the event-transitions can become very
complex. In that manner, the application of simulation has the advantage of never
encountering problems with the state space in the module and thus allowing for
the evaluation of very complex module graphs.

Conceptually, the idea of this hybrid approach is to compensate for the disad-
vantages of one method with the benefits of the other. For example, by applying
the simulation model on highly complex subsystems with low failure rates, while
the abstracted graph concerns more simple structures with perhaps a complex but
static redundancy definition. With that we can achieve a solution procedure for
the original system that can be applied in a reasonable amount of time without a
heavy penalty on the result precision. While this is possible in theory, in practice
it requires a sophisticated balancing between the models that considers the ad-
vantages and disadvantages of either evaluation approach. Otherwise the benefits
of the hybrid may not be exploited. In the end, the module must cover enough
components, so that the abstracted graph, evaluated by Markov analysis, does not
end up in trouble with the state space. At the same time, these components must
have been subject to an appropriate modularization and the yielding subsystem
must be suitable for simulation.

Figure 5.5 visualizes the procedure of the hybrid which is equivalent to the pro-
cedure of the analytical approach, except for the module’s evaluation. Based on
a safety and security dependency focused system description and the failure and
attack models of the components, a modularized dependency graph is obtained.
The abstracted graph is evaluated by Markov analysis and the module graph is
reinterpreted as a probabilistic simulation model acting as a basis for the MCS. As
hitherto, the currently evaluated time point in the abstracted graph must match
the module and we are obliged to evaluate the module first. Since this simula-
tion is much more time consuming and requires several iteration runs to provide
accurate results, it would be unreasonable to analyse the abstracted graph and
the module in an alternating way, and instead it would be much more reasonable
to determine the failure probability of all time points in question in one simu-
lation process. This is, nonetheless, an implementation detail. Contrary to the
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Figure 5.5: Hybrid Evaluation Procedure in a Modularized System

recursive analytical approach, various mathematical distributions can be used to
model the failure and attack behaviour. In our case, however, exponentially dis-
tributed failure and attack models are assumed. Probability distributions based on
these input rates are established for every component. Then, random samples are
drawn in each iteration of the simulation for every probability given by the system
components failure and attack behaviour, to indicate the time points where the
components are simulated to turn defective or corrupted. Similar to the Markov
model, the initial state, which is the starting point of each iteration, is the state
where all components are healthy (ok) and state transitions are marked by the
health status change of a component. This is, however, dependent on the mod-
elled states, because as mentioned, the simulation model abstracts the states we
see in the Markov.

An iteration of the simulation finishes as soon as a pre-defined point in time is
reached. In our case this is the maximum time point that shall be evaluated in
the abstracted graph. Afterwards, the state gets reset to the initial state and the
simulation is repeated by initializing a new iteration with a new set of random
samples. In every iteration the system state of the evaluated time point is stored
for later analysis (e.g. did we reach the fail state?). The number of performed
iterations must be defined uniquely in consideration to the individual character-
istics of the system, which can be very difficult to determine. In general it applies
that the higher the number of iterations the more accurate the results. When the
simulation is finished, the system states of the sampled time points are viewed
and an average failure probability can be determined. For example, if our goal is
to analyse the failure probability of the system in every month during 12 months
of continuous operation, like in the previous example, the modelled system state
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in every month is saved with the 12th month marking the termination criteria of
each iteration. Then, for each time point the number of times the fail state was
reached (in other words, where ϕ was not satisfied) is counted and the average
probability is calculated in regard to the number of performed iterations. Lets say
100 iterations were performed and in 10 of these the fail state has been reached
at time point 12, then the failure probability of the system accords 10% after 12
months of continuous operation.

In order to feed the abstracted graph with this data it is required to reformulate
each obtained failure and attack probability in terms of rate. This can be done by
rewriting the probability density function similar to the evaluation of the Markov
model:

rt = − ln (1− pt)
t

(5.3)

with t being the time point, pt the obtained probability at that time point and rt

the according rate.

Hybrid models and hybrid modelling can be categorized by different classes accord-
ing to Sargent [Sar94]. Following this classification, the presented hybrid approach
categorizes as class III, because the numerical evaluation (simulation) is applied on
a subordinate level. In [RH20a] the hybrid approach was firstly presented with the
goal of supporting the design of safe and secure autonomous vehicles, by providing
an approach that is able to analyse large and complex systems and its reliability
parameters quickly, precisely, realistically and easily.

5.3 Heuristics

The last sections presented the formalism of modularizing dependency graphs and
showed the evaluation possibilities. Thereby, we could already see that certain
graph structures forbid a modularization. In this section, the accuracy of the
modularization is discussed and structural aspects that affect the quality of the
modularization are pointed out. In the end, a loosely defined rule set based on
observations throughout the application of the modularization approach is estab-
lished.

5.3.1 Accuracy

Naturally abstraction causes loss of information, meaning the retrieved results can
by definition not be as exact as compared to an equivalent non-modularized system
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and a compromise between finding a scalable and solvable system and the precision
of the result must be made. As we saw earlier, the modularization is capable of
drastically decreasing the required state space in the solution procedure, even if the
purely analytical approach is used. This is an immense benefit for the scalability,
but what does it mean for the result accuracy? Here some challenges due to the
characteristics of the methodology must be faced. Firstly, without modularization
each state in the Markov model is representing a health state of the graph and
thus valid paths of the original system. When we slice that graph up into a module
and an abstracted graph, yielding two (more or less) individually solved systems,
failures and attacks that alternate between nodes of the abstracted and the module
graph are obscured. Figure 5.6 shows an example for this based on the system
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Figure 5.6: Example Path through Modularization

previously introduced in Figure 5.2. The upper path belongs to the original system
and the lower path is its equivalent in the modularized system (abstracted graph).
Due to the previously defined modes of operation, the system failure is reached
as soon as n1 or n2 turn defective as a result of an internal failure or the failure
of data providing nodes. When comparing both paths, it can be observed that
no single failures in the module can be considered any more, as a failure of the
module already results in a failure of the entire system. In the abstracted graph
it cannot be distinguished whether a redundant or a mandatory component failed
in the module. Thus the failure rate evaluated for the module must approximate
this behaviour. Although this may cause an issue when evaluating the original
and the modularized system, it also shows the benefits for the scalability of the
approach.

Secondly, the method was explicitly designed so that the model holds intertwined
safety and security effects, though now we are required to determine independent
safety and security rates for the module. Precisely, one rate that describes that the
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module turns non-operational on behalf of one or multiple safety failure(s) and one
that describes its inoperability due to one or multiple corruption(s). But since both
effects may be present at the same time, and perhaps even alternating, how can
the degradation cause be narrowed down? For instance, a system may experience
several non-critical safety failures where there still exist a redundant component
to take over the task. In the end, the transition to the Fail state happens due to a
corruption of a critical component (see the exemplary path in Figure 5.7). Did the
system fail safety- or security-wise? In addition to that, corrupted nodes may turn
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Figure 5.7: Imaginary Path with Defects and Corruptions

defective, leaving the represented component useless for the attacker, however, for
the system the component was non-operational already. To avoid this problem,
two distinct modules, one for safety and one for security, could be established and
evaluated separately. However, then the core concept of the method is neglected
and intertwined effects completely ignored, for instance, a functional dependency
being violated due to the corruption of a supporting node. This yields a different
methodology that does not accord with the original system and will lead to a result
divergence.

Since it does not make sense to change the methodology to solve this problem
in its detail, an approximation through the evaluation property has to be made.
Several ideas are conceivable. In the simplest way, we just view the state change of
the transition into the Fail state; if it was a node turning corrupted, it counts as a
security failure (just like in the previously displayed path) and if the node turned
defective, it counts as a safety failure. Though this has some downsides; the prop-
erty with the higher rate for occurrence is potentially shadowing the probability of
occurrence for the other. As an example, if the failure rate is high, the node may
turn defective before it has the chance of being occupied by an attacker and turning
corrupted. Furthermore, this neglects the cause of previous degradations which
made this transition to the Fail state possible. To include these, we could take
the number of defective and corrupted components into account. For example, in
paths where the fail state is reached and there exist more (critical and redundant)
defective components than corrupted, it counts a safety-wise failure and vice versa.
Following that idea, the path in Figure 5.7 would count as a safety failure. Yet,
this is problematic because oftentimes not all components are reachable and thus
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can be corrupted. This would most-likely neglect many corruption-based failures,
increasing the safety failure rate while decreasing the security failure rate. Since
this is not an option either, this thesis is focused on the cause of reaching the Fail
state.

5.3.2 Well-defined Modules

Subsequently, loose rules to build well-defined modularizations based on observa-
tions are given. While most of these apply across both analysis approaches by
being a result of the methodology, they are based on observations throughout
the appliance of the recursive analytical approach and help of the model checker
PRISM. Thereby, the shown examples are kept small to remain comprehensive.
Of course these would not require a modularization due to exploding state spaces.
The PRISM code of the displayed examples can be found in Annex A.1 and the
results of all performed computations in Annex B.1.

Resulting from the previous accuracy discussions, in general a higher accordance
with the original system can be achieved if the modularization candidate only
models one property; safety or security. Though, albeit a non-reachable subsystem
is conceivable, a subsystem without safety failures is unrealistic, making this rule
difficult to apply.

Further observations showed that the path property of Reach-links, despite being
taken care of with the time parametrization in the module, is still difficult to
approximate. Consider a system where the module contains a Reach-path as in
Figure 5.8 with ϕ = n̂7 ∨ n̂4. With n7 and n4 being redundant, the Fail state
is reached when both nodes turn corrupted (only considering security attacks for
simplicity here). In this way, it is made sure that both paths (left and right of
n5) contribute to the system failure. Due to the criticality of n4, the module node
formed in the abstracted graph is also critical and redundant to n7. Generally,

n1 n2

n4n3
Env

n5n7 n6

Figure 5.8: Problematic Security (Reach-path) Modularization
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Reach-links employ a time dependency on the rate of the concerned node: A node
that is not directly reachable may only turn corrupted once a node with a targeting
Reach-link is corrupted. With the here pictured path the module node, as well as
n1 in the original system, can only be attacked once n5 turned corrupted. Though,
in the module graph we must model a direct Reach-link to n1 which indicates that
it can be corrupted unconditionally from the start (by the set rate). Even though
we take care of the corruption of n5 in the abstracted graph to happen first, the
module’s result will be over-approximated.

To show this, the system is run with two different attack rates for n5 as pictured
in Figure 5.9. On the left hand-side, all nodes including n5 were given an attack
rate of 0.2. On the right hand-side, only the attack rate of n5 was set to 1.
The failure functions of the original and the modularized system for attack_-
rate(n5) = 0.2 show a small but clear divergence. However, with the evaluation
of later time points they converge again as they naturally strive towards 100%.
In comparison to the other plot with a higher attack rate on n5 we can see that
the modularization is more accurate. This is because in that case, the original
system more closely resembles the instantly available transition we have in the
module.

Consequently, modularized systems that contain lengthy Reach-paths pointing to a
module should be avoided, or the path should be integrated in the module. Yet, in
case the attack rates in the abstracted graph’s path are high and respectively low in
the module, the impact on the evaluation results of this effect is reduced. Another
option (that is however not in the scope of this thesis) would be to determine
a correction factor for the approximated module rate based on the length of the
Reach-path pointing the module and in consideration of the set attack rates. For
example, [ALL18] calculate correction factors to increase the accuracy of simplified
Markov models.

Since the corruption of a node describes both, the takeover of the node by an
attacker who may abuses it to attack neighbouring nodes, and the implied loss
of functionality, another problem arises in the evaluation goal of the module. In
the original system we are usually focused on the implications to the system’s
functionality alone, i.e., when the Fail state is reached as the formula of the mode
of operation evaluates to False. This applies to the majority of realistic modules
where its failure leads to the failure of the system and/or it does not have outgoing
Reach-links. Nevertheless, it is also viable to model a non-critical (or redundant)
module with outgoing Reach-links as displayed in Figure 5.10. As an example,
imagine ϕm = n̂1 ∨ n̂5 so that the system’s Fail state is reached if both n1 and
n5 are corrupted (for clarity, defects are again not considered). Hence the module
has a redundancy relation to n5. When evaluating this kind of module we actually
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Figure 5.9: Plot: Problematic Reach-path Modularization

n1

n4n5 n3

n2

Env

Figure 5.10: Problematic Security (Reach-link) Modularization

require rates for both; entering the Fail state to determine that the module node
part of ϕa has failed due to a corruption, and the takeover by the attacker to
express that the node can serve as a platform to attack further nodes. The first
rate can be determined by using ϕm. The latter is given by all nodes that have
outgoing Reach-links to nodes in the abstracted graph, which allow the attacker
to corrupt nodes outside the module from a node inside (here n3). However, it is
not possible to determine two distinct rates for the corruption of the module. If
we follow the idea via the mode of operation as before, since n2 has a Reach-link
to a node outside the module but is not required for the requested functionality
of it (specified by ϕm), the possible impact of the attacker residing in n2 would be
abstracted away by the modularization. But if we change the dependency graph so
that n2 is also part of ϕ (and thus ϕm), its attack rate will be taken into account
and the result precision increases. Thereby, we have to be careful to correctly

88



5 Modularization

picture the dependency of the main module: An appropriate mode for the module
would be given by ϕm = n̂1 ∨ n̂2. It is essential that both nodes are seen as
redundant by the use of the logical or operator in order to express that either
corruption leads to a subsystem corruption, depicting the corruption of node n3
in the original system.

To show the impact of this abstraction, an exemplary evaluation with an attack
rate of 0.15 for each node was run for all discussed system variations as displayed
in the plots of Figure 5.11. The black line shows the original example, the or-
ange one the simple modularization and the red one the adapted modularization,
where the path of n2 was included (the blue line is discussed later on). We can
see that the adapted modularization resembles more closely the original system,
yet does not match it perfectly. Consequently, for these kinds of modules, a set
of nodes with a non-trivial ϕm is not suited for modularization if there is some
node that does not occur in ϕm but has a Reach-link to some node outside the
set.
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Figure 5.11: Plot: Problematic Reach-link Modularization

Despite that, a possibility for avoiding this problem while still realizing a modu-
larization of the original system exists. Therefore, we must extend the recursion
depth and define a module inside a module so that nodes n3, n4 and n5 form a
module with depth 2 (hence the submodule) and nodes n1 and n2 with depth 1,
pointing to it via a Reach-link (see Figure 5.12). This leaves the abstracted graph
simply consisting of a single node. In this specific example the abstracted graph
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Figure 5.12: Depth-2 Modularization

could be omitted, because it would not change the semantic, yet it slightly affects
the results because a transition is added. While in this way a modularization be-
comes possible throughout maintaining the path properties of n1 and n2 as before,
we run into the same problem as discussed earlier; now the submodule (depth 2)
has a Reach−link from Env, indicating an instantly available transition which does
not match the original system. As a result, an over-approximation is made as de-
picted by the blue plotted line in Figure 5.11. In special cases this may become an
option, e.g., same as before, when attack rates in the module are low. Though, it
must be mentioned that a higher recursion depth complicates the modularization
as it increases the number of module nodes and the thereby required evaluation
runs which cannot be parallelized.

Furthermore, the security mechanism provided by one node to another cannot be
transferred to the module node, as its guarantee is substituted from the intrusion
rate of the target node in the evaluation as long as this node is functional. Thus the
guarantees provided by the security mechanism are part of the transition rate into
the corrupted state of a node, which makes it impossible to calculate a detached
rate for provided security mechanisms of a module in the present model. Given
that, modularizing systems where single nodes have Sec-links beyond the border of
the module should be avoided, as they are prone to leading to inaccurate evaluation
results. Depending on the system, it could be an option to simply transfer the
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provided security guarantee to the module node, though, this can only be an option
if there is not more than one module node providing security guarantees and also
this is a hard over-approximation.
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With the omission of the human control instance autonomous vehicles are required
to reach a certain degree of self-awareness. Meaning, the vehicle must possess
knowledge of its own state, possible actions and the result of these action for itself
and the environment [Sch+17]. This is an absolute requirement in order to act ap-
propriately and safely in any conceivable scenario. For instance, the vehicle must
be able to identify whether it is driving in the city or on the highway/autobahn and
it must recognize special situations such as accidents and act accordingly. Addi-
tionally, self-awareness on a functional level is the key to becoming fail-operational,
i.e., capable of tolerating single failures at least until a safe stop is reached [Sch+17]
(see also the previous Section 2.4). Thereby, the system monitors its functions and
identifies degradations or misbehaviours. In order to counteract, it must know
about redundant modules and activate them if in need. Self-awareness and espe-
cially automatic recovery, referred to as self-healing, are properties connected to
the field Organic Computing (OC).

Generally OC includes concepts that aim to make currently strict and inflex-
ible technical systems automatically adapt to new situations and environments
as a reaction to external and internal events, by implementing or rather imitating
biological concepts (following the definition by Tomforde [TSM17]). Apart from
self-healing it concerns properties such as self-adaption, self-protecting and self-
configuration. These are closely related to the recovery of autonomous systems,
because they describe highly advanced concepts to overcome flawed system states
by, among others, adaptively rearranging communication structures and functional
dependencies. Given that, OC concepts offer a promising solution to overcome the
challenge of specifying and verifying the complex autonomous system at design-
time. Therewith, it can be speculated that in the future, next to classical manual
recovery based on diagnosis and logging data, a growing part of a vehicle’s re-
covery mechanisms will be OC-based. However, it must be mentioned that these
concepts also may increase the risk through uncertainty; how can we be sure that
the system will execute an appropriate healing mechanism at an appropriate time
and situation?

Since the potential to recover from flawed states can significantly increase the
system’s safety and security KPIs, a holistic system assessment must be capable
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of reflecting these. Therefore, this chapter aims to derive the nature of different
recovery mechanisms with the goal of establishing generalized strategies that can
be transferred to the model in a formal manner. Therefore, the upcoming Section
6.1 provides a wide-spread overview on existing recovery mechanisms throughout
the hardware level, application level and system level. Based on that, Section
6.2 attempts to generalize these different recovery mechanisms to a computable
modelling. Finally, Section 6.3 shows how the specified formalism of Chapter 4
must be adapted to include the identified recovery strategies. The basis for this
chapter has been published in [HR23].

6.1 Recovery Approaches

Dictated by the level and area of application, over the years, many different meth-
ods and techniques for recovering a component’s flawed state have been developed.
Thereby, it is only natural that various terms have been established such as re-
covery, repair or healing. Although no uniform definition exists and literature
commonly treats these terms as synonyms, reparation usually indicates a replace-
ment of the concerned faulty part and recovery refers to a restoration of it [Mon18].
In the course of this work the term recovery is used to express any action that is
capable of changing a component or subsystem from a former flawed state back
into a functional one. However, since we have a static view on the modelled
components and view the system in continuous operation, it is disregarded from
maintenance actions and repairs that afford the physical exchange of a component
or part. Given the fact that safety issues and security incidents can have very
different causes, recovery approaches usually are targetted on either one of them.
Thereby, security-oriented methods are usually aiming to proactively prevent at-
tacks in first place. In case an attack has occurred regardless of the implemented
protection measures, these methods commonly couple the transition back into an
acceptable state with further countermeasures to close the exploited security gap,
or to stop the attack from spreading. For our context it is assumed that the effect
of these kind of security-hardening actions is integrated in the components attack
probability or expressed by received security guarantees. Naturally, a recovery
action cannot simply happen but is bound to several conditions that are unique
to the implemented measure. While some methods require human input for their
decisions, self-aware and automatic approaches are on the rise, fitting the context
of autonomous systems especially well. To determine and abstract these possible
pre-conditions with the goal of formulating them in our model, the subsequent
sections briefly view some existing approaches separated by their implementation
level.
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6.1.1 Hardware Level

Classical hardware level approaches are based on voter systems, such as Dual
Modular Redundancy (DMR) or Triple Modular Redundancy (TMR). Like indic-
ated by their name, they implement redundant modules and let a voter monitor
their computed results. In case of result divergence, the voter decides which res-
ult to trust. Note that also some software-based approaches rely on this principle
such as n-version programming. However, also more revolutionary techniques have
been developed. For instance, Khalil et al. [Kha+19] introduce, among others,
Evolvable Hardware (EHW) and Embryonic Hardware (EmHW). EHW combines
reconfigurable hardware, like an Field Programmable Gate Array (FPGA), with
a bio-inspired evolutionary algorithm that can also be used for circuit design and
synthesis. In case a fault or degradation is detected, the hardware chip is recon-
figured to a new design that excludes the faulty hardware cells. This makes a
dynamical adaption possible and increases the lifetime of the chip (availability).
EmHW follows a similar concept, though here the reconfiguration takes place on
behalf of the hardware cell. Inspired by biological stem cells, each cell is embodying
the same functionalities. Moreover, each cell has knowledge of the current func-
tionality of neighbouring cells. In case an active cell ceases to operate correctly, an
inactive, spare cell takes over and replaces the faulty cell. Due to that this concept
requires very high memory per cell and is still mostly a research topic. In [OT00] an
implementation in a commercial FPGA is presented.

6.1.2 Application Level

Given the versatility of software-errors, various concepts for performing software
recoveries exist. Monperrus [Mon18] provides an exhaustive overview on automatic
repair, hence, the transformation of an unacceptable behaviour of a program execu-
tion into an acceptable one according to a specification. Thereby, the term repair
includes other terms such as healing, patching, fixing, correction etc. The paper
separates between two categories: behavioural repair and state repair. Behavioural
repair describes approaches that change the behaviour of the program, hence its
source code or binaries. In online systems such as our context these repairs are
essentially dynamic software updates. For example, approaches that revert the
software code to an older version ([LR16]) or the repair of crashing exceptions
through automatic patching [ANM14]. State repair concerns approaches that are
changing the program state, more precisely, its heap, stack, input or environment.
Classical state repair comprises the restart (reboot) of the affected component to
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reclaim stale resources, clean up the corrupted state and fix Heisenbugs1 (see e.g.
[CF01]). Further, it concerns the rollback to a previous operational state by mak-
ing use of checkpoints and snapshots, or the entire switch to a different program,
preferably written in another language, such as the idea of n-version programming.
These presented approaches were mainly focused on recovering from safety based
failures. Some, especially behavioural repair approaches, can also work well for
recovering from security attacks (malicious code injections). However, state-based
approaches like a simple reboot will have little to no effect on security attacks:
while Heisenbugs may be extinguished, malicious code will persist. To cover these,
attack-dedicated solutions must be applied, for example, DIRA by [SC05] auto-
matically detects and recovers (control-hijacking) buffer overflow attacks by pre-
venting the identified attack from propagating and rolling back to a safe state if
necessary.

6.1.3 System Level

On system level we regard approaches that go beyond the hard- or software of
a single component, focussing on the identification and correction of poorly per-
forming processes. Oftentimes these approaches achieve their recovery through
(self-)configuration or (self-)management. For instance, in the SafeAdapt project
[SDW14], a Safe Adaption Platform Core was developed. This platform core com-
bines different hardware platforms via an adaptive network structure that lets the
resulting system reconfigure itself by intelligently reassigning computational re-
sources. It is claimed that in this way an effective fail-operational behaviour for
the architecture of autonomous vehicles can be achieved. Kain et al. [Kai+20]
followed a similar idea for achieving a fail-operational autonomous vehicle with
FDIRO, an extension of the well-established Fault Detection Isolation and Recov-
ery (FDIR) of the space domain for automotive, by the addition of an optimization
step. Recalling, the core of an autonomous vehicle consists of multiple computing
units that run several software applications as presented previously in Section 2.2.
On failure detection the concerned computing unit is isolated and it is switched to
a redundant instance to ensure the operation of the running applications. In the
recovery step, the system configuration is adapted so that safety can be guaran-
teed. However, this configuration may not be optimal, because, e.g., the redundant
unit may only provide a degraded functionality (as it is the case with the emer-
gency computing unit of Section 2.2). Therefore, the optimization step tries to
reconfigure the process occupancy. For instance, instead of mirroring all processes
on the redundant computing unit, some are switched to other computing units

1Bugs that are difficult to reproduce because they often vanish during their investigation
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to avoid it overloading. As before, these approaches can also work for the recov-
ery from security incidents. However, if not handled with care regarding security,
these might become an entry point for the attacker, e.g., if an infected software
process is switched between computing units, enabling the chance of the attack
to spread further. A security targeted answer to these are IDS. Though most
IDS are focussed on detecting and preventing attacks on the system by various
intelligent countermeasures rather than providing active measures to recover from
successful attacks (see also [Zha+20]). In [Zha+20] an attack-response framework
is presented that builds upon an existing IDS and performs a recovery action upon
the detection of a successful attack. The general idea is that in the recovery mode
the recovery controller takes over and attempts to bring the system to a safe state
based on checkpoints within a given, calculated safety deadline (the time the sys-
tem should be steered back into the target state or the latest time before it becomes
unsafe).

Despite automatic recovery actions, it is further possible to steer the recovery
from the outside. Therefore, the information logged by the IDS or FDIR ap-
proach is sent to the vehicle owner/manufacturer and a manual repair action such
as a software update, reboot or the instruction to go to the workshop could be
induced.

6.2 Model Abstraction

Based on the presented approaches and techniques we can observe some general
concepts. First of all, the success of the recovery action is not certain, because it
depends on a successful detection and identification of the problem source. Follow-
ing, the employed method must be capable of recovering the identified problem.
Given these factors the success can be measured as a probability or rate, fitting our
model. Hardware and software level approaches concern only the affected com-
ponent. Consequently, no implications on dependencies from other components
are required to be considered. For application level approaches, however, we must
consider that there is some sort of external component running as a watchdog
that will trigger a repair action on the affected component. For this action to be
successful, there must be, among others, an active non-manipulated connection
between these components. Equivalent to that, non-automatic recovery that is
based on human intervention requires an active non-manipulated connection to
the outside.
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Concluding three recovery schemes can be derived:

• Self-performed
Given the internal recovery mechanisms of the component, the component
is able to recover itself indicated by some rate or probability of success.

• Performed by another component
Given the recovery mechanism of the system, the component is recovered by
another component indicated by some rate or probability of success.

• Performed from the outside
Given the system’s detection mechanisms in combination with the configura-
tion options of the component and the capability of human interventions, the
components recovery can be triggered and steered from the outside indicated
by some rate or probability of success.

Furthermore, we saw that different approaches for safety and security exist. Since
an approach like a restart can be well suited for recovering from safety failures
(Heisenbugs), however, is not suited for recovering from security attacks like mali-
cious code injections and therefore we must distinguish between their success rate.
This flexibility increases the detail of the modelling possibilities: For instance, in
reality it is imaginable that a highly critical component or system deploys both
kinds of approaches with different maturity levels leading to diverging success
rates. Likewise, it is plausible that the safety recovery approach is implemented
on the component level, while the security recovery approach works on the sys-
tem level. By separating between them in the model, we can consider different
recovery schemes of independent success for the defect and the corruption of a
node. Thereby, the probability rate indicating the success of the recovery action
is determined by its taken steps. Regardless of the considered level or the definite
approach we can observe that the general process scheme is identical: First, a
monitoring process must detect and identify the failure or attack. For many ap-
plication level approaches, this monitoring process works like an oracle; analysing
whether the observed behaviour matches the specified behaviour. In the next step,
the location of the defect or corruption must be found and its cause diagnosed.
Once this information is gathered the system tries to adapt itself (or is reconfigured
externally to adapt). Therefore, one or more candidate fixes are generated. In the
last step, these candidate fixes are tested and the one offering the most promising
target state is deployed. In the simplest case there is only one candidate fix. Fig-
ure 6.1 visualizes this scheme in orientation to multiple sources like [PD11] and
[Kha+19]. In a fine-grained model the success rate of the recovery action could be
determined by defining a success rate for every process step. Efforts for modelling
these steps in terms of a random distribution were made in [HR23]. However, for
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Figure 6.1: General Recovery Scheme

the abstraction layer concerned in the model of this thesis it is merely relevant to
what rate or probability the recovery succeeds.

Given this process scheme and according to Khalil et al. [Kha+19], the recoverable
system must consist of three states: normal state, degradation state and defective
state. In the normal state the system is operating as expected. In the degrad-
ation state a fault has occurred but the general operation is maintained. If the
system is capable of recovering from this fault, it transitions back into the normal
state. Lastly, in the defective state the detected fault resulted in a failure and the
operational function cannot be maintained, yet the system can still recover from
the failure yielding in a transition back into the normal state. Transferring this
to our specification, slight changes have to be made. The normal state is simply
the initial state where all components are working correctly. The degraded state
is then entered as soon a component has turned defective or corrupted, yet the
system is still operational, as the component is either uncritical or redundantly
designed. A critical, broken state where the system is still operating and trying
to recover does not exist for us. This state is simply the Fail state in that the
operation cannot be maintained anymore. Based on the previous contemplations
any recovery from this state is excluded as the safety of the system cannot be
guaranteed in it, keeping it as before a final state. Thus, a recovery can only take
place from a degraded system state back into the normal state (or another less
degraded state, considering multiple component failures). Due to that, the recov-
ery of a component can enhance the system’s availability and reliability. Earlier it
was discussed that availability and reliability are equal in systems without main-
tenance, having the positive effect of simplifying the reliability computation. By
excluding recovery from the Fail state, we can see that this equation actually per-
sists: Since we never enter an unreliable state for an arbitrary long period of time
to transition back to a reliable state, the system will always be available if it can
recover. Accompanying with that, we cannot compute the maintainability of the
system.
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6.3 Formalization

In regard to the previous considerations, the formalization of the modelling first
presented in Chapter 4 must be revisited. Thereby, Definition 4, that is spe-
cifying the transformation of the dependency graph to a CTMC, must be mod-
ified by extending the transition rate matrix R(s, s′). Transitions from the def
and the corr back to the ok state must be allowed in one of the determined
strategies:

Definition 7 specifies the self-performed strategy.

Definition 7 R(s, s′) is extended by (for n ∈ N and s, s′ ∈ SG)

• R(s, s[n← ok]) = rSafeRec
n if µs′(ϕ) = true ∧ s(n) = def

• R(s, s[n← ok]) = rSecRec
n if µs′(ϕ) = true ∧ s(n) = corr

which reads for the safety case: Whenever node n turned def and the system
is still operational there is a probability rate rSafeRec

n with that n transitions
back into the ok state and equivalently for security with rSecRec

n from the corr
state.

Definition 8 comprises the other two strategies, recovery performed by another
component and recovery performed from the outside.

Definition 8 Let nrec ∈ N ∪ {Env} be the node that triggers the recovery of n
with nrec ̸= n ∧ s(nrec) = ok ∨ nrec = Env.
R(s, s′) is extended by (for n ∈ N and s, s′ ∈ SG)

• R(s, s[n← ok]) = rSafeRec
n if µs(ϕ) = true ∧ s(n) = def

∧ ∃ ⟨nrec, ni⟩...⟨nj, n⟩ ⊂ LReach with s(ni) = ok...s(nj) = ok

• R(s, s[n← ok]) = rSecRec
n if µs(ϕ) = true ∧ s(n) = corr

∧ ∃ ⟨nrec, ni⟩...⟨nj, n⟩ ⊂ LReach with s(ni) = ok...s(nj) = ok

For these strategies we require to determine a node nrec that triggers the recovery
of n. For recovery performed by another component nrec corresponds to some
regular node within the dependency graph that must be operational (ok) for the
recovery to take place. For recovery performed from the outside, however, nrec

is simply the Env node. Given that, the recovery action can take place under
the condition that the command (Reach) path is undisrupted. Hence, there must
be at least one Reach-path between both nodes in which all nodes (except for n)
are operational. Imagine a watchdog component that is not directly reaching the
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concerned defective or corrupted component. To trigger the recovery process, it
relies on a communication path via other components to route its messages. The
same applies if the recovery is triggered via the outside and the node is not directly
reachable from Env. Consequently, this path must not be disturbed in terms of
containing any corrupted or defective components.

Naturally the introduction of any new features also rises scalability concerns. Yet,
the addition of recovery mechanisms luckily does not extend the state space, be-
cause no new states are being introduced. Though, the amount of transitions
expands.

6.4 Application and Comparison

Subsequently, the effectiveness of implementing the previously defined recovery
strategies is shown. Therefore, a new example system is introduced in Figure
6.2.

Env n1

n2 n3 n5

Telematics

Gateway ECU2 Watchdog

n4

ECU1

Figure 6.2: Recovery Example System

The centre piece of the system are two critical, redundant ECUs. These ECUs
are the recoverable system components. The redundancy is mandatory to show
any effect, because otherwise their failure of any kind would lead to the non-
recoverable Fail-state. A path to the outside is established via a telematics unit
n1 and a gateway n2. This path is the only entry point for an attacker, but it
is also the only path for externally triggered recovery. The watchdog node n5 is
essentially our nrec, enabling the recovery action triggered by another compon-
ent.
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To show the effect of the different strategies the example is evaluated multiple
times:

1. Without any recovery

2. With self-performed safety and security recovery for both nodes

3. With safety and security recovery performed by the watchdog for both nodes

4. With safety and security recovery performed externally for both nodes

Note that for all runs where the watchdog component is not needed it is left
without functionality in the graph. For simplicity, all failure, attack and recov-
ery rates are set fixed to 0.05 (which is very unrealistic but helpful to show the
effect). The evaluation property for all runs is our prime property, the general
system failure, encountered through a combination of safety failures and security
attacks. Obviously these four evaluation settings do not exhaustively reflect all
possibilities and several other interesting combinations are conceivable, like having
multiple recovery paths, variations between failure, attack and recovery rates and
so on.
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Figure 6.3: Plot: Comparison of Recovery Strategies

The plots in Figure 6.3 visualize the evaluation results. Detailed results can be
found in Annex B.2 and the responsible PRISM code in Annex A. Expectedly, the
system without any recovery actions fails the earliest. Further, the system with
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the self-performed recovery strategy has the best results. This is simply explained
by the fact that it has no further conditions restricting the recovery. We can see
that the recovery from the outside is performing worse than the one triggered by
the watchdog. This is expected as well, since it reflects the system properties: One
reason is that the path to the watchdog is shorter and thus its disturbance is more
unlikely. Another reason is that the watchdog is not reachable from the Env-node
and thus it can never be attacked and turn corrupted. So one failure mode is
excluded for it. Likewise, the recovery from the outside shares the same path with
the attacker, making a corruption recovery impossible.
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While small dependency graphs can still be translated and potentially even solved
by hand, realistic examples must cover a plethora of components, and with regard
to the exponential state growth of the Markov model, it becomes clear that tool
support is needed. To provide a comfortable and efficient way of modelling and
assessing dependency graphs, a tool named ERIS was developed. ERIS provides a
Graphical User Interface (GUI) for modelling coupled with standard actions such
as loading and storing, facilitating the design of dependency graphs greatly. Re-
garding the analysis, ERIS enables an automatic translation into a corresponding
Markov model in accordance with the previously determined formalism. Addition-
ally, a connection to the probabilistic model checker PRISM [KNP11] is established
so that ERIS can automatically trigger the Markov evaluation process and prepare
the obtained results graphically.

This chapter presents ERIS from its usage to technical internals. It is structured in
the following way: Firstly, a technical insight into ERIS and a detailed explanation
of its GUI elements is given. This section is meant to serve as a lexicon for the
subsequent content. Then, it is described how the formalized model of dependency
graphs (see Chapter 4), including the specification of redundancies and the dif-
ferent dependencies, is implemented and performed by the user. Afterwards, the
transformation of the basis model into the Markov chain in terms of the PRISM
language is discussed. Based on that, the implementation of the previously estab-
lished extensions regarding dependency graph modularization (Chapter 5) and the
consideration of recovery mechanisms (Chapter 6) are portrayed and their implica-
tions to the Markov transformation shown. In most parts the specification was fol-
lowed strongly, though, in some parts modifications had to be made due to the used
model checker and also to enhance usability. In Section 7.3 the procedure of both
the dependency graph analysis with the recursive analytical approach and with the
hybrid approach is examined. The chapter is closed by demonstrating the perform-
ance of ERIS on behalf of the analysis of the previously introduced dependency
graph of an autonomous vehicle (see Section 4.1.1).
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7.1 Technical Insights

ERIS is written in C++ and makes use of the Qt Framework to provide a GUI for
a comfortable and user-friendly system modelling. It is available under the GNU
Public License (GPL) license on GitHub1. Figure 7.1 shows the main window
of the GUI. The centre piece is the Model tab, where the user can design the

Figure 7.1: ERIS Main Window

dependency graph by making use of the items in the toolboxes on the left hand-
side. Thereby two toolboxes are available: Nodes and Edges for designing the
graph and Annotations to create text-based labels as descriptions for the nodes or
the system (for more details see Section 7.1.3). Above these toolboxes, the toolbar
presented in Section 7.1.2 provides different ways for performing the evaluation
as well as manipulating GUI elements. Depending on the performed evaluation
process, computed results will be prepared in the Evaluation tab. In the top
left corner drop down menus are available for file, option settings etc., described
thoroughly in Section 7.1.1.

1https://github.com/telina/eris/
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7.1.1 Menus

Four drop-down menus are placed in the top left corner. The File menu contains
options for diverse file manipulations.

• New File clears the current model tab and resets set file names to default.

• Save File stores the dependency graph of the Model tab that is currently
in foreground. If no filename has been set by a previous action, the default
filename is used and overwritten.

• Save File as prompts the user with a file browser to select a file or enter
a new filename and then stores the dependency graph of the Model tab that
is currently in foreground accordingly.

• Open File prompts the user with a file browser to select a file containing a
stored dependency graph to be opened in the Model tab.

• Open PRISM Filename Prompts the user to provide a filename for the intern-
ally generated PRISM file. This option can be useful in cases where the user
wants to modify the PRISM file at a different point in time or independent
from ERIS. If unspecified, a default name is used.

• Export Model as stores the graphical representation of the dependency graph
in the Model tab currently in the foreground. The user is prompted to
provide a filename and choose a file type. Currently the PNG, PDF and
SVG format are supported.

Regarding saving options, dependency graph models are stored in a custom schema
of the Extensible Markup Language (XML) format which will be expected from
the open action. This allows the user to save and reload the entire model in-
cluding the individual node settings and the exact placement of all graphic ele-
ments.

The item menu contains features for manipulating graphic items, at the current
time this only includes deleting. The Help menu opens a window that provides a
short explanation on ERIS’ usage. In the Options menu, several options regarding
the model and the evaluation can be found.

• Markov Model allows the user to choose between the type of Markov model
that is generated from the dependency graph. Currently CTMCs or Markov
Decision Processes (MDPs) are supported. Based on this choice, also the
node settings are changed to ask for input rates or probabilities respectively.
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• Interpret Rates as enables switching the time representation of the provided
rates between hours, months and years. This option is only available if the
Markov model is set to CTMC, since MDPs are working with probabilities.
By default, ERIS expects that all provided rates are hour based (× 1

h
). The

user may use this option item to change the representation of all modelled
nodes to month or year and back. Thereby, ERIS attempts to compute the
desired representation from the given one for every set rate of each node.
Note that for ERIS itself the rate representation does not matter. Thus, this
is a feature the user must bear in mind when performing evaluations.

• Mode of Operation allows the user to modify the way the mode of operation
is generated. While in the default case, optimized, the generation accords
the formalism where all supporting nodes of critical nodes are taken over (for
more details see the upcoming Section 7.2), in the simple case only critical
nodes (red nodes) are added to the mode of operation. Yet, naturally all
transitions where a failure of a supporting node (functional dependency)
leads to a failure of a critical node are modelled as before. In this way,
the simple mode of operation lets the system fail later. Consequently, the
amount of generated Markov states and transitions increases and also the
evaluation result can diverge slightly.

• Define Redundancy lets the user view and define a global redundancy defin-
ition over critical nodes by opening an input window.

• Evaluation Settings opens a window where the user can modify the eval-
uation properties used within the experiment evaluation. Figure 7.2 shows
this window. Currently the properties systemfailure, describing the entry
of the Fail-state, defective, describing the system’s safety-wise failure, and
corrupted, describing the system’s security-wise failure are available. Note
that these properties correspond to the automatically generated labels in
the transformation process. The user may select which property shall be
evaluated within the experiment by making use of the installed checkboxes.
Furthermore, it is possible to provide self-written properties. This should,
however, be done with care, since the user must know about generated labels
or variable names and the property is forwarded to PRISM without semantic
and syntactic validation. In addition to the property choice, the user can
adjust the time interval and the time steps that shall be evaluated.
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Figure 7.2: Experiment Settings Window

7.1.2 Toolbar

On the left hand-side of the toolbar’s separator, actions concerning the evaluation
of the modelled system are displayed and, on the right hand-side, options for node
item manipulation:

N

Triggers the transformation process of the currently viewed dependency graph
to its corresponding Markov model in terms of the PRISM language. This
can be useful in cases where the PRISM file shall be viewed, processed inde-
pendently from ERIS, or to force a rebuild.

Transforms the dependency graph into its Markov model and triggers the
evaluation process via a PRISM experiment based on the pre-determined
options. This experiment calls PRISM in the background to evaluate the
specified properties in the provided interval and steps. When the process
finished, the results will be obtained and displayed in the Evaluation tab.
In the unusual event of PRISM failures in this process, the output log is
displayed to the user for debugging purposes.

Transforms the dependency graph into its Markov model and opens the GUI
variant of PRISM for it. This option is useful whenever the user is interested
in directly checking the generated PRISM code, or if it is necessary to change
it, by, e.g., defining custom labels for the evaluation properties (which is not
yet possible in ERIS).

Opens the node settings window for all selected node items (see Section
7.1.4). Alternatively, a double click on a node can be used.
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N

N Swaps the criticality of all selected node items. Hence, a critical node will
become uncritical and vice versa.

N1

N2 Swaps the ID between two selected nodes. Note that this button only be-
comes clickable when exactly two node items are selected. Alternatively,
another ID can be set within the node settings window.

7.1.3 Toolboxes

Two tool boxes are available on the left hand-side next to the graphic scene. The
first one, Nodes and Edges, concerns all elements required to model the depend-
ency graph. Three node types separate environment nodes, normal nodes and
critical nodes. As explained in detail in the upcoming Section 7.2, critical nodes
are syntactical sugar for nodes that are directly included in the mode of operation.
The different edge types are directly corresponding to the links of the formalism
with a Reach Edge being drawn with a dashed line, a Functional Edge with
a solid line and a Security Edge with a dotted line. The second toolbox, An-
notations, offers the possibility of generating a custom text item. These are
not connected to any other graphic items and thus can be placed freely in the
scene. Further, existing annotations can be modified. Given that, annotations
have no purpose in the evaluation but can be used as a descriptive tool, especially
meaningful when the graphic scene is exported.

7.1.4 Node Settings

In Figure 7.3 the node settings window is displayed. Reading from top to bot-
tom, in the first two lines the user can select whether the viewed node is actually
representing a module or a regular system component. Thereby, two options are
available; a Simulation model, where the user is obliged to provide a path to a
MATLAB/Octave simulation model, or an ERIS module, where the user must
provide the path to a dependency graph file in the XML format. Since the simu-
lation model is not expected to be a dependency graph, unlike the ERIS model, it
will not be opened in the GUI. If the node is representing a regular system node,
failure and attack rates as well as security guarantees can be specified. Thereby the
field Intrusion Rate corresponds to the attack rate, Failure Rate to the failure
rate as before and the Security Rate to the security guarantees supplied to an-
other node. An untreated field will be interpreted as zero and the corresponding
transition in the Markov chain will be omitted. In other words, a node that has
no failure rate can never reach the def state. In addition to this basic behaviour
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Figure 7.3: ERIS Node Settings Window

the user can define whether the node can recover from a defect or a corruption.
Hereby, the three strategies that have previously been defined in Chapter 6 are
selectable. Lastly, the field Node Dependencies is placed to precisely determine
the functional relationships of the concerned node to others. This is required since
a Fct-link does not necessarily mean that the provided data is mandatory for the
operation of the node, e.g., in cases where a redundant data provider exists, or
the link simply shall visualize this relationship. As depicted in the example entry,
some nodes n14 or n15 must be ok and n16 must be ok, so that the concerned node
can operate correctly. Note that “0” is mapped here to the ok state (for a detailed
explanation view Section 7.2.2) and further, instead of our previous symbols “∨”
and “∧” it is made use of “|” and “&”.

7.2 Modelling with ERIS

Subsequently, an introduction into the modelling with ERIS with an emphasis on
the implementation of the previously defined formalism is given.

7.2.1 Dependency Graph

The dependency graph in ERIS essentially contains the same features as form-
alized, however, some minor adjustments were made in order to provide a more
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user-friendly and straightforward modelling.

The user may choose between three edge types that accord the link types Reach,
Fct and Sec of the specification to connect the nodes in the familiar way. Unlike
the formalism, there are three node types instead of two available: normal nodes,
critical nodes and environment nodes. The environment node (Env) is, identically
to the formalism, used to model access from the outside by only allowing outgoing
Reach-links. Multiple Env nodes may be declared for visual benefits which is espe-
cially useful to keep the dependency graph clean in high complexity architectures
with several connections arising from the outside. The differentiation between
normal and critical nodes, which are both representing regular system compon-
ents, is made to make the generation of the mode of operation simpler. Therefore,
ERIS internally generates a logical formula operational which is later used in
the Markov analysis. A normal node is at first a node that is completely uncritical
for the system, hence it does not add up to the mode of operation and thus will
not be included in operational. A critical node, on the other hand, is a node
that is mandatory for the correct operation of the system and thus will be added
with a logical and (&) relation to the operational formula. Yet, indicated by the
specified dependencies and redundancy definition, this black-and-white modelling
is dispersed: Critical nodes can be defined redundant by using the global (system
wide) redundancy definition via the Options menu (see Section 7.1.1). Normal
nodes, on the contrary, cannot be set redundant for the entire system but with
respect to the functional dependencies they deploy. Meaning, in the settings of
the target node the Node Dependencies must be specified. In this way, the node
itself is not viewed as redundant but the data it provides in regard of the indi-
vidual nodes that receive it. This provides for more elaborate expressions, where,
for example, a node is providing two different nodes with data; to one of them
it is essential, while to the other it is not. Imagine the system given in Figure

n1 n2

n3

n4

Figure 7.4: Node Dependency Example

7.4, where we set the critical nodes n1 and n2 globally redundant, while for the
uncritical nodes we specify that they provide redundant data for n1 but not for
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n2. This yields a mode of operation ϕ = n̂1 ∧ (n̂3 ∧ n̂4)∨ n̂2 ∧ (n̂3 ∨ n̂4). Note that
all nodes that are specified in the Node Dependencies must have a Fct-link to the
target, making Fct-link in ERIS syntactical sugar. As explained in Section 7.1.4,
security guarantees, failure and attack rates are specified in the node settings for
each node. With that, all building blocks of the dependency graph are given and
the system can be transformed into a Markov model.

7.2.2 Transformation

Whenever any evaluation process in the toolbar (see Section 7.1.2) is triggered, the
dependency graph is transformed into its corresponding Markov model in terms
of the PRISM language. Note that the evaluation process always concerns the
currently active (in the foreground of the Model tab) dependency graph. To avoid
overhead through unnecessary rebuilds the transformation is only performed when
changes on the graph, options or node settings are recognized. The transform but-
ton though (see Section 7.1.2) always forces a rebuild.

The transformation follows the formalization specified in Chapter 4: In the first
step, for each node constants of the type double are specified to hold the defined
attack rate, failure rate and security guarantees, as exemplarily shown in Listing
7.1 for a node n1.

3 const double rn1SEC = 1.45e-6;
4 const double rn1SAFE = 1.37e-6;
5 const double rn1GUAR = 0;

Listing 7.1: Definition of Constants

Note that in this example n1 is not providing any security guarantees. Then,
individual variables that reflect the three health states of the node are declared.
Due to the impossibility of defining custom types in PRISM, we simply make use
of an Integer variable with a range from 0 to 2 and map the resulting states to our
three health states:

ok ˆ︁= 0
def ˆ︁= 1
corr ˆ︁= 2

so that a node n1 in PRISM will be defined as given in Listing 7.2.
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24 n1: [0..2] init 0;

Listing 7.2: Node Definition

Every node will be initialized with 0 to accord the previous assumption that in
the beginning every modelled component is ok.

Now the basis for defining transitions is established. Since these depend on the
structure of the dependency graph, the creation of all kinds of transitions is shown
on behalf of an example system. Therefore, we revisit our previous motivational
example of Chapter 4, Figure 4.1 and create a reasonable mode of operation so
that in ERIS the computing unit n1 and the actuators n3 were marked critical as
shown in Figure 7.5. Further, the sensors are providing functionally mandatory

Reach

Fct

Sec

n4

n2 n1

n5

n3

Env

ActuatorsComputing UnitSensors

Telematics Firewall

Figure 7.5: Transformation Example System

information to the computing unit. This yields the mode ϕ = n̂1 ∧ n̂2 ∧ n̂3. ERIS
represents this by a formula called operational in the PRISM language as shown
in Listing 7.3. This formula is used to define the fail state and restrict transitions
out of it (lowering the state space).
20 formula operational = (n1=0 & (n2=0)) & (n3=0) ;

Listing 7.3: Mode of Operation

Supporting nodes are stored in a dedicated formula for every node that receives
functionally relevant data (via Fct-dependencies). Listing 7.4 shows these for n1
in our example:
19 formula n1essentials = n2=0;

Listing 7.4: Functional Dependencies

112



7 Automation: ERIS

This keeps the transitions clearer, especially when multiple functional dependencies
lead to lengthy expressions and it is needed to model the recovery transitions as
detailed in the upcoming Section 7.2.3.

Several different transitions must be generated. First of all, every node may fail
safety-wise to its defined failure rate. Thus, a transition into the def state is
generated as presented in Listing 7.5:
31 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);

Listing 7.5: Transition into Defective State 1

In natural language this reads: Whenever n1 is ok and the fail state has not yet
been reached, there is a transition into a state where n1 is defective to the entry rate
rn1SAFE. Additionally to that, a node may enter the def state if its functionally
supporting nodes fail. In the example system this can be the case for node n1,
leading to a transition as captured in Listing 7.6:
30 [] (n1=0) & (!n1essentials) & (operational)-> (n1’=1);

Listing 7.6: Transition into Defective State 2

making use of the previously defined formula n1essentials (which is here just re-
lating to the failure of the sensors). Note that in many cases this transition is never
taken, as the Fail-state is already reached, captured by the operational formula
evaluating to False. For the security case the path property as well as possible
security guarantees are taken into account. For the telematics unit in our example
no path must be considered (previously corrupted nodes), because it is directly
reachable from Env. However, the firewall is providing security guarantees. This
results in the following two transitions of Listing 7.7:
39 [] (n5=0) & (n4=0) & (operational) -> rn5SEC-rn4GUAR : (n5’=2);
40 [] (n5=0) & (n4!=0) & (operational) -> rn5SEC : (n5’=2);

Listing 7.7: Transition into Corrupted State 1

Two transitions are required, since only in cases where the firewall is active, the
rate for transitioning into a state where the telematics unit n5 is corrupted must
be subtracted by the provided guarantees. In all other cases the defined corruption
rate of the node is used. The computing unit not being directly reachable from
Env leads to a transition that considers the state of its targeting nodes – in our
case the telematics unit as in the below Listing 7.8:
42 [] (n5=2 & n1=0) & (operational) -> rn1SEC : (n1’=2);

Listing 7.8: Transition into Corrupted State 2
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This reads: Whenever n5 is corrupted and n1 is ok, there is a transition into a
state where n1 is corrupted to the entry rate rn1SEC. Since corrupted nodes may
also turn defective, the following transition of Listing 7.9 is established for every
reachable node:
32 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);

Listing 7.9: Transition from Corrupted into Defective State

Based on these definitions PRISM internally builds a matching Markov chain. By
introducing a health variable for every node, we are able to define the system’s
behaviour node-wise, leaving the work of establishing the actual Markov chain to
PRISM. Another possibility would have been to generate all possible states result-
ing from the input dependency graph beforehand in ERIS and defining the Markov
chain state-wise with the PRISM language. This would yield a variable for each
state rather than each node. While the latter would have the advantage of creating
fine grained evaluation criteria, such as the visit of a specific Markov state, it would
also immensely increase the transformation effort. Furthermore, then some sort of
labelling is required that maps states to node health state(s) in order to reinterpret
the evaluation results for the dependency graph and thus allow for making state-
ments regarding the system’s estimated behaviour.

Listing 7.10 shows the entire PRISM code.
1 ctmc

3 const double rn1SEC = 1.45e-6;
4 const double rn1SAFE = 1.37e-6;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0;
7 const double rn2SAFE = 1.21e-6;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 1.09e-6;

10 const double rn3SAFE = 1.02e-6;
11 const double rn3GUAR = 0;
12 const double rn4SEC = 0;
13 const double rn4SAFE = 1.52e-6;
14 const double rn4GUAR = 1.98e-7;
15 const double rn5SEC = 1.04e-6;
16 const double rn5SAFE = 1.20e-6;
17 const double rn5GUAR = 0;

19 formula n1essentials = n2=0;
20 formula operational = (n1=0 & (n2=0)) & (n3=0) ;

22 module generatedScenario
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24 n1: [0..2] init 0;
25 n2: [0..2] init 0;
26 n3: [0..2] init 0;
27 n4: [0..2] init 0;
28 n5: [0..2] init 0;

30 [] (n1=0) & (!n1essentials) & (operational)-> (n1’=1);
31 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
32 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
33 [] (n1=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
34 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
35 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);
36 [] (n3=2) & (operational) -> rn3SAFE : (n3’=1);
37 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
38 [] (n5=0) & (operational) -> rn5SAFE : (n5’=1);
39 [] (n5=0) & (n4=0) & (operational) -> rn5SEC-rn4GUAR : (n5’=2);
40 [] (n5=0) & (n4!=0) & (operational) -> rn5SEC : (n5’=2);
41 [] (n5=2) & (operational) -> rn5SAFE : (n5’=1);
42 [] (n5=2 & n1=0) & (operational) -> rn1SEC : (n1’=2);

44 endmodule

46 label "systemfailure" = !operational;
47 label "defective" = (n1=1 | (n2=1)) | (n3=1) ;
48 label "corrupted" = n1=2 | n3=2 ;

Listing 7.10: ERIS-generated PRISM Code

The last three lines show automatically generated labels meant to be used for evalu-
ation, as presented in detail in the upcoming Section 7.3.

7.2.3 Recovery

In order to support the recovery mechanisms introduced in the previous Chapter 6,
ERIS allows us to define multiple recovery strategies, separating as before, between
safety failures and security incidents. In the following, the usage of the recovery
features in ERIS and the resulting PRISM code generation for these is explained.
Therefore, the system introduced in Section 6.4, Figure 6.2 is used as working
example.

As observed in the node settings window (Section 7.1.4), the user may choose via
checkboxes whether the concerned node is capable of recovering from a defect or
a corruption. Based on this choice, the window elapses and gives the possibility
to declare a success rate, identically to the failure and intrusion rates as before.
Given that, ERIS generates further constants to be used in the transitions. Below
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Listing 7.11 shows this exemplarily for the recoverable node n3 of the previously
introduced system.
12 const double rn3DEFREC = 0.05;
13 const double rn3CORREC = 0.05;

Listing 7.11: Recovery Constants

In addition to this success rate, a recovery strategy must be chosen. The avail-
able strategies cover the previously determined concept: General corresponds to
the self-performed strategy where the component has implemented some mech-
anisms that lets it recover by itself to the provided rate. Listing 7.12 shows
such a general recovery transition from the corr state to the ok state for node
n3.
42 [] (n3=2) & (operational) -> rn3CORREC : (n3’=0);

Listing 7.12: General Recovery from Corrupted State

This reads: Whenever node n3 is in the corr state and the system is still operational,
there is a transition indicated by rate rn3CORREC that node n3 turns back into
the ok state. The complete code for this strategy can be found in Annex A Listing
A.12.

Restricted accords to the strategy performed by the outside. Exactly as determ-
ined earlier, the recovery of the node may only occur to the given probability rate
in the case that a non-disrupted path to the environment node still exists. To
accomplish this, ERIS recursively searches for all paths from the selected node
back to the Env-node. These paths are stored in a dedicated formula as it can be
seen in Listing 7.13.
23 formula pathesn3DEFREC = n1=0 & n2=0;
24 formula pathesn3CORREC = n1=0 & n2=0;

Listing 7.13: Generated Restricted Recovery Paths

Since the only path for n3 to Env is via n1 to n2, these two nodes were collected
and are required to be in the ok state. Additional paths would be connected via
the logical or (|) operator. Note that in this example, n3 can recover from defects
and corruptions with the restricted strategy. Now to apply this strategy the path
formula is used as a precondition for this transition to be taken, as shown in Listing
7.14 for the defect recovery.
46 [] (n3=1) & (operational) & (pathesn3DEFREC) -> rn3DEFREC : (n3’=0);

Listing 7.14: Restricted Recovery Transition from Defective State
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The code for this strategy can be found in Annex A, Listing A.13.

And lastly, the Custom option can be used for the performed by another compon-
ent strategy. The implementation of this strategy is a bit more powerful than its
theory: Selecting this strategy opens a small input field. Similar to the node de-
pendencies, the user can define a condition under that the concerned node recovers
to the provided probability rate. For instance, the node may only recover if some
other nodes are still functional. That being so, the user can actually determine
multiple nodes to be operating correctly, rather than having one node nrec as be-
fore. However, the responsibility of specifying undisturbed Reach-paths is thereby
transferred to the user: Unlike the restricted strategy, ERIS does not collect all ex-
isting paths to the defined nodes and checks whether they are intact. This allows
us a more flexible modelling of the recovery strategy, yet also permits the spe-
cification of recovery nodes without undisturbed Reach-paths to the affected node.
Thus this strategy has to be handled with care in practice. Listing 7.15 shows this
for the recovery performed by the watchdog node n5.
24 formula pathesn3CORREC = n5=0;

...
49 [] (n3=2) & (operational) & (pathesn3CORREC) -> rn3CORREC : (n3’=0);

Listing 7.15: Custom Recovery Transition from Corrupted State

A path formula is defined that blindly transfers the user input. Hence, the user
input is checked to be syntactically correct, however, the path semantics are delib-
erately left untouched to allow the described flexibility. In Annex A, Listing A.14
the complete code for this strategy can be found.

7.2.4 Modularization

The dependency graph modularization is implemented in ERIS in the following
way. In the node settings window (see Section 7.1.4) of a selected node, the user
can define whether this node is actually representing a module. Therefore, two
options are available: A simulation model or an ERIS dependency graph module.
The simulation model leads to the hybrid evaluation scheme previously defined in
Section 5.2.3 and the ERIS model leads to the recursive analytical approach of Sec-
tion 5.2.2. Its implementation in ERIS is presented in the next Section 7.3. Note
that since for any module evaluation it is essential to know the time points that
are meant to be evaluated in the original system, only the experiment evaluation
can be used for modularized systems. Consequently, the normal transformation
process will disregard from any module nodes and solely view the focused system.
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Figure 7.6: ERIS Module
Node

In case an ERIS module is selected, the program
expects a well-defined ERIS dependency graph in
terms of an XML file that, for instance, has previ-
ously been modelled in the GUI. Once a valid file
has been supplied and the node settings are saved,
the node changes its stroke style into a dashed line
to indicate that it is representing a module. Now
the user can view the module by right-clicking on

the node and proceeding the Inspect action as shown in Figure 7.6. This action
opens a new tab next to the main modelling tab and loads the provided depend-
ency graph model. This tab works like an independent Model tab, meaning that
the user can adjust, modify and store the model, as well as trigger an independent
evaluation process for it. At this moment, it is not possible to open a new Model
tab to create dependency graphs in parallel. In case of a simulation model, ERIS
expects an independent simulation model to be provided in terms of the GNU
Octave2 language or Octave-compatible MATLAB. Similarly to before, the node
will change its stroke style, this time to a dash-dot line, indicating it is holding
a simulation model. However, this module cannot be inspected, because ERIS is
only supporting the modelling of dependency graphs and so far a generation of
dependency graph-based simulation models has not been developed. As a result
the user must make sure that the provided program is correct beforehand. During
the evaluation process, the simulation module is evaluated using Octave and ERIS
expects that after the process has ended successfully, the results will be available
on the standard output.

7.3 Evaluation

The performed evaluation process depends on the modelled system and the chosen
tool bar option (see Section 7.1.2). Since the transform button only generates a
PRISM based Markov model and the play button opens the PRISM GUI, where
the user must perform the evaluation with the settings available in PRISM, sub-
sequently it is focussed on the experiment evaluation that uses the model checker
and/or simulation tool in the background.

After the PRISM module definition, we could see a declaration of three labels, as
displayed again in Listing 7.16, that were automatically generated.

2https://octave.org/ visited on 17th July 2023
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46 label "systemfailure" = !operational;
47 label "defective" = (n1=1 | (n2=1)) | (n3=1) ;
48 label "corrupted" = n1=2 | n3=2 ;

Listing 7.16: Generated Labels

The first label systemfailure accords our basic property of reaching the Fail-
state by negating the formula generated with respect to the mode of operation.
The labels defective and corrupted concern the safety- and respective security-
wise failure of the system. While we are generally not interested in separating
the failure kinds, it is necessary for the analytical module evaluation (see Section
5.2.2). In the evaluation process these labels are used within the CSL formula
yielding something like P =? [F =T “systemfailure′′] (with T being some point in
time). PRISM uses this formula to check the Markov model for some provided
t ∈ T , computing the probability.

The experiment process scheme on a modularized system is shown in the sequence
diagram of Figure 7.7. Firstly, the user must provide information on the evaluation
process via the Evaluation Options in the Options menu (see 7.1.1). These
comprise

• the evaluation property,

• the interval,

• and the steps.

For instance, the systemfailure property in an interval of 12 time units and steps
of 1. During the dependency graph transformation ERIS searches for any module
nodes. In case a module node is found, the module evaluation is triggered before
proceeding with the original graph. Naturally the module evaluation between
ERIS and simulation models differ:

ERIS Model If the found module is an ERIS model, the user-specified in-
terval and steps are used to evaluate the module in terms of a PRISM experi-
ment. Therefore, ERIS generates a .pctl file containing the selected properties
and triggers the experiment process via the command line. Once all selected time
points have been evaluated, ERIS collects the results from PRISM, reinterprets
them as rates and stores them internally in association to the concerned module
node.
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User

ERIS PRISM Octave/MATLAB

opt Settings

loop Transformation Process

[for node in Graph]

loop Original Graph Evaluation

[for step in Steps]

alt Module Type

[Is ERIS Module]

[Is Simulation Module]
Inspect Simulation Model()

Insert Module Result for <step>()

Provide Experiment Settings(Property, Interval, Step)

Is Module()

Click Experiment Button()

Show Results in Evaluation Tab()

Store Result()

Open and Transform Module Graph()

Return Result()

Return Evaluation Results(): List

Start Module Evaluation(Property, Interval, Step)

Models Dependecy Graph()

Start Module Evaluation(Property, Interval, Step)

Transform Original Graph()

Return Evaluation Results(): List

Evaluate Step(Property, Step)

Figure 7.7: Module Evaluation Process

Simulation Model (Hybrid) If the module is a simulation model, the hy-
brid evaluation is performed. Therefore, ERIS was previously combined with a
simulation-based tool called AT-CARS [RH20a; RHK21]. AT-CARS uses a dif-
ferent kind of modelling, where the system’s reliability structure is inherited as a
Reliability Block Diagram (RBD) and is transferred into a state-based calculation
model. This model is evaluated by making use of Monte Carlo Simulation (MCS).
A detailed description of this approach can be found in the next chapter, Section
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8.2. Following the MCS principle (see also Section 2.5.2), the system behaviour
is simulated and the point in time and the belonging state of each transition re-
corded. The recorded results are used to analyse the desired safety KPI, in our
case, the failure and attack rates. Since the MCS is performed with MATLAB or
Octave, ERIS expects an Octave compatible simulation model (to maintain licence
independence) deposited via the node settings. Then, Octave is triggered in the
background via the command-line with that model. In the current implementation
ERIS expects the simulation model to contain the experiment information. Unlike
the analytical model, the simulation process is only performed once, to optimize
its performance and in accordance with the already detailed MCS process. Its con-
cluding analysis is configured to yield the rates for the desired time steps. ERIS
waits for the process to finish and then collects the output results, expecting a list
of tuples that associate time point and rate, equivalent to the stored result of the
analytical module.

User

ERIS PRISM Octave/MATLAB

opt Settings

loop Transformation Process

[for node in Graph]

Transform Original Graph()

Store Results()

Return Result(): List

Evaluate(Property, Interval, Step)

Show Results in Evaluation Tab()

Models Dependecy Graph()

Click Experiment Button()

Is Module()

Provide Experiment Settings(Property, Interval, Step)

Figure 7.8: Evaluation Process of a Non-modularized System

This procedure is performed until no more modules are found. Afterwards, the
PRISM experiment process is triggered for the original graph. Since we have to
consider the inputs generated by the module evaluation in each evaluation step
in the original graph (see also Chapter 5 for the reasons), the experiment pro-
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cess must be performed step-wise. Thus, for each step in the defined interval, the
node’s failure and attack rates are reset according to the obtained results and the
Markov model is rebuilt. Then the experiment process is triggered for one step
and the PRISM results obtained. Once the end of the interval is reached the col-
lected results are plotted in the evaluation tab of the ERIS GUI. Via right-click
the user may export the results in the CSV or PDF format. At the current state
only depth 1 modularizations are supported. Thus, modules that contain module
nodes cannot be evaluated automatically with ERIS. In case the experiment eval-
uation is triggered for a non-modularized system, the process is much simpler, as
shown in the sequence diagram of Figure 7.8. With the absence of modules, it is
not necessary to transform the graph step-wise and instead the entire experiment
evaluation can be performed in one PRISM call in the background. Note that since
the original graph cannot be a simulation model, the MATLAB/octave evaluation
becomes obsolete.

7.3.1 Performance

While the transformation process from a dependency graph into a Markov model
is a very quick task, the evaluation of modularized systems is in general a bit
slower than non-modularized systems (considering equal input systems and eval-
uation properties). This owes to the fact that the process scheme of modularized
systems affords more transformations and single-step evaluations, which require
individual program calls and the model to be constructed for every step, even
though its architecture did not change. Since the evaluation task is performed
by PRISM or Octave/MATLAB, the evaluation performance depends on these
tools and the hardware they run on. PRISM has implemented different engines
which can be manually selected. It is stated that typical computers can handle
models with a state size of 107 to 108 making use of the hybrid engine3. The
evaluation time for smaller models is very fast (a few milliseconds to seconds) but
increases heavily with a growing model size. An example for this can be seen in
the next Section 7.4. Regarding simulation, as discussed before, it is extremely
difficult to determine the time that is needed to achieve satisfying results. Thus,
the evaluation time is also very model-dependent without being connected to the
model size. However, in almost all cases it will take longer than model checking,
which must be taken into account when considering whether or not to use the
hybrid.

3See https://www.prismmodelchecker.org/manual/ConfiguringPRISM/
ComputationEngines visited on 29th October 2023
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7.4 Example Analysis

With tool support and the power to handle the exponential state growth through
modularizations we are now prepared to analyse realistic systems. Therefore, we
go back to the earlier introduced system of an autonomous vehicle, described as
a dependency graph in Section 4.1.1. We saw that this system leads to a massive
state generation in the Markov model. Precisely, the ERIS generated PRISM code
leads to 1 792 068 717 312 states and 4 819 816 742 400 transitions in the CTMC.
Thus, performing an evaluation with regular computers easily results in memory
issues, or an extremely high evaluation time. Consequently, this system profits
from modularization.

Multiple options for splitting this system are conceivable. Figure 7.9 visualizes
three convenient possibilities. All three options represent modules that are rather
encapsulated subsystems. However, in the earlier studies of well-defined modular-
izations of Section 5.3, we learned that lengthy Reach-paths pointing to the module
should be avoided. Now both CAN bus subsystems have the problem of containing
a rather long Reach-path from the Env-node. The comfort CAN bus (option 1)
models less components, however, consists of more uncritical nodes than the motor
CAN bus (option 2). As a consequence, its state space is larger and thus a modu-
larization would lead to a higher decrease of Markov states in the abstracted graph.
The SDS module (option 3) has the same Reach-path (via the Gateway-node), but
it also contains an additional, shorter Reach-path via the VANET Router. It can
be argued that as long as this Reach-path is available, it resembles an instant
reachability closer and thus leads to less over-approximation. However, this effect
is presumably rather small and depends on the defined attack rates. Moreover, this
option would decrease the state space most effectively, as it contains the highest
number of nodes with a large amount of uncritical ones.

The functional relationships between the SDS’s computing nodes and the various
LIDAR, RADAR and camera sensors permits the modularization (a split of the
mode of operation is possible). However, the functional relations must be defined
so that the GPS node n7 can be excluded from the module, because it also has a
functional dependency to the navigational system (node n2). Otherwise, it would
be required to occur in both graphs and a modularization would not be possible.
This is very reasonable as we can argue that none of the LIDAR, RADAR or camera
sensors are capable of delivering an output equal to the GPS sensor. Yet, without
any redundancy, this makes the GPS sensor a single point of failure. Table 7.1 gives
an overview on the performance indicators of the different modularization options
when built with ERIS. Any of these options are viable in theory, however, option 1
and option 2 still lead to a massive state generation in the abstracted graph, making
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Figure 7.9: Modularization Options of Autonomous Vehicle Dependency Graph

the evaluation with regular computers extremely difficult. Option 3, however, lies
with 108 Markov states in the range of computable systems, as discussed in the
previous Section 7.3.1, and thus has been chosen.

ERIS can easily model the sensor redundancy. Though, regarding the computing
units, only a flat redundancy definition is possible: While in practice the emergency
computing unit CUE acts as some sort of fallback system that is independent from
other CU but activated once they fail, in ERIS we could only define all three nodes
as equally redundant. In the same thought, if we were to model the software
applications running on these computing units they could only be represented
in a static manner, belonging to the CU as defined by functional dependencies.
However, in reality a switching between these software instances can be possible, as
it was presented in earlier sections of this thesis. Owing to this and the fact that the
simulation tool AT-CARS is actually able to model these details (see also Section
8.2), we make use of the hybrid evaluation approach.
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Table 7.1: Model Sizes of the Different Modularization Options

States Transitions
Abstracted Module Abstracted Module

Original 1 792 068 717 312 4 819 816 742 400
Option 1 1 783 783 296 324 4 480 103 520 684
Option 2 8 287 629 696 96 22 046 997 312 189
Option 3 87 913 152 149 688 221 818 496 401 436

In order to analyse the system, dummy failure and attack rates have been estab-
lished as listed in Table 7.2. In addition to that, some recovery rates and also

Table 7.2: Assumed Failure and Attack Rates

Component Type Failure Rate 1
h

Attack Rate 1
h

CAN components 1.3 · 10−7 (critical) 1.2 · 10−5
1.2 · 10−6 (uncritical)

CU1 and CU2 1.02 · 10−6 1.1 · 10−6

CUE 1.02 · 10−7 1.1 · 10−7

AI Sensors 1.01 · 10−6 – 1.95 · 10−7

Other 1.1 · 10−5 – 1.1 · 10−7 1.5 · 10−2 – 1.9 · 10−6

security guarantees have been defined. The precise definition can be withdrawn
from the PRISM code Listing displayed in Annex A.3. As a demonstration our
usual property, the system failure probability, is evaluated for 24 months of con-
tinuous operation. Therefore, the module simulation was performed in cooperation
with the authors of AT-CARS. Thereby, 100 000 iterations where run without par-
allelization which took around 336 minutes. As a demonstration of the simulation
procedure, one of these iterations is exemplarily shown in Annex B.3, Table B.6.
Due to the large state space, the subsequent model checking of the abstracted
graph was also rather timely with approximately 229 minutes. Note that the com-
putations were performed on a regular computer4. Despite not being comparable
by employing a more abstract model, it must be noted that an analytical evaluation
of the module with ERIS, to that shown specification, only takes approximately 4
seconds for all 24 steps.

Figure 7.10 visualizes the results by plotting the system failure probability on the
left hand side and the respective reliability/availability drawn from it on the right
hand side.

4Lenovo T14 intel i7-118G7 (3 GHz) and 24GB RAM on WSL Debian 11
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Figure 7.10: Plot: Option 3 Evaluation Results with AT-CARS Module

After 2 years of operation the probability that our system is still operational lies at
around 90%. Precise results can be found in Annex B.3 with Table B.4 depicting
the module rates computed by AT-CARS and Table B.5 the computed failure
probability by ERIS.

Now apart from the usually discussed availability and reliability assessment of
the system, our method could also be used as basis to performing a sensitivity
analysis. Therewith, for instance, critical attack paths or components that are
particularly endangered could be identified. As an example, we try to identify the
most probable attack path to the gateway and the SDS. Several paths to reach
these components exist: Via the VANET router, the OBD-II interface, or the
infotainment system, on behalf of previous corruptions of either the telematics unit
or the Bluetooth interface. In order to measure their vulnerability, we compute the
probability that either of these three components turns corrupted by evaluating
the following CSL properties: P =?

OBD [F =T n5 = 2], P =?
Infotainment [F =T n8 = 2]

and P =?
V ANET [F =T n51 = 2] again for 24 months of operation. Naturally a proper

sensitivity analysis would be subject to an intensive study of possible events and
the thereby following determination of appropriate evaluation properties. This
attempt is merely a demonstration of this method’s application capabilities. In
many cases the prior knowledge of the specified attack and failure rates makes the
result tendency of such an analysis predictable. However, the analysis views the
system as a whole and especially if varying Reach-paths and different nodes that
supply security guarantees, failing to individual rates, are modelled, this kind of
analysis can be very supportive.
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Figure 7.11: Plot: Option 3 Corruption Probabilities for the Sensitivity Analysis

Figure 7.11 plots all three security attack probabilities, based on the computed
results that can be found in Annex B.3. We can see that the probability that
the OBD-II interface turns corrupted is by far the highest, making it assumably
the most probable attack path. This is explained by the fact that its attack rate
was set the highest, and in comparison to the infotainment system, it is directly
reachable and therewith its corruption does presuppose a prior corruption of other
nodes. Since all three nodes receive the same security guarantees by the firewall,
it plays a negligible factor in the comparison. Of course such a high attack rate is
quite unrealistic, however, as mentioned before, the OBD-II interface is often not
well protected. If the physical protection ceases to apply in addition to the already
sparse cryptographic protection, perhaps if we view autonomous taxis rather than
customer vehicles, the vulnerability of this component increases drastically. Apart
from that, we can see that the attack probability of the VANET router seems to
level off at ≈ 7.5%. This is attributed to its ability of recovering from a corrupted
state.
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The challenge of assessing the safety and security of autonomous vehicles is in
constant rise due to the rapid advancements of technology. In comparison to clas-
sical vehicles, new parameters and failure sources must be taken into account.
Therewith, some of the formerly applied techniques have become obsolete. As a
consequence, new assessment approaches, tailored to these systems, have been de-
veloped and traditional methods have been reworked. This chapter introduces and
compares approaches related to the work of this thesis.

In 2015 Kriaa et al. [Kri+15] gave an extensive overview on approaches that
integrate or unify safety and security in different product lifecycles. Even though
this review is not targeted on the automotive domain but on industrial control
systems, it proposes an industry independent categorization and consideration
of safety and security. This categorization mainly separates between (i) generic
approaches and (ii) model-based approaches. Generic approaches regard safety
and security on a very macroscopic level of system design and risk evaluation and
thus consider, among others, the unification and the alignment of standards and
processes. For example, work like [Cui+19] that presents a framework for the
collaborative safety and security analysis of autonomous vehicles. This kind of
alignment of standards and processes builds a significant basis for the justification
of any safety and security models, however, due to their high-level perspective
they are incomparable to this work and are not further detailed here. Model-
based approaches, on the other hand, are specified by relying on a formal or
semi-formal system representation [Kri+15] which accords the methodology of this
thesis. Various developments fall into that category, for instance, models that are
built upon the combination of the safety-oriented FTA with the security oriented
Attack Trees such as presented by Kumar and Stoelinga [KS17]. Other approaches
are directly focussed on the interdependencies of safety and security, such as work
based on Boolean logic Driven Markov Processess (BDMPs), a combination of
fault trees and Markov Processes, by Piètre-Cambacédès and Bouissou [PB10].
In order to relate to the methodology of this thesis, the viewed approach must
be capable of modelling the system in a similar manner with a similar evaluation
goal. Therefore, the subsequent sections focus on two methods that satisfy this
condition.
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8.1 Markov-based Approach

The authors of [Här+23] propose a Markov-based approach for the safety and re-
liability analysis of autonomous vehicles. Similar to our modelling, the Markov
states represent the health states of the modelled system components and a trans-
ition relates to a single component’s failure or repair. At the current stage of this
research security is not concerned, though the modelling would generally allow for
its extension. Consequently, their Markov model is described by a state space of 2K

with K being the number of modelled components and 2 referring to the allowed
states operational and failed (see also [Här+23; Wal+23]). This is equivalent to our
modelling in cases where only safety is considered. However, the authors mention
a refinement that introduces an additional degraded state which would increase
the state-space accordingly to 3K , if we consider these states for every modelled
component. In the referred publication, the method is demonstrated by modelling
a sensory system of an autonomous vehicle. Despite being capable of considering
redundancies, the multiplicity of sensors is not covered in this example. The main
difference to our methodology is that the modelling takes place on behalf of the
Markov chain. This means, there is no formal specification of a superordinate
modelling layer, like the dependency graph, where the definition of the system’s
Markov chain is drawn from. Thus, all system specifications, such as redundancy
definitions, functional relations and the system’s operational capabilities, must be
considered during the modelling process of the Markov chain. This can make the
modelling process an error-prone and tedious task, especially when it comes to the
analysis of large systems, or an analysis with varying architectures. Furthermore,
while attacks could potentially be modelled in the manner of failures (occurring at
a defined rate or probability), the method would require an extension to include
possible entry points as well as attack paths a potential attacker could exploit, if
security should be considered.

The behaviour of component failures and repairs can be modelled by two differ-
ent kind of rates: Exponentially distributed rates, like in our method, and time-
dependent rates, where the rate can change during the lifetime of the analysed
system or part. This can be beneficial to reflect ageing effects or the improvement
of functions, e.g., the growing maturity level of software through updates, and
goes beyond the capabilities of our method. The model evaluation is performed
by making use of a dedicated Python library. Thereby, it is mentioned that 10 000
Markov states are somewhat a limit, when an evaluation time under an hour is
envisaged [Här+23]. Given this statement, it seems that the evaluation method
is much slower than the implementation (with the PRISM backend) in ERIS: Re-
viewing the example analysis of the previous chapter, the module evaluation with
149 688 states only required 4 seconds. Though it must be mentioned, that the
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evaluation time heavily depends on the regarded properties, input rates and used
hardware, which makes it difficult to compare the approaches performance-wise.
Despite that, by not transferring the evaluation responsibility to a model checker,
the authors are able to identify critical components more easily by viewing the
entry of states related to their failure. With ERIS this is not as simple, because
the responsibility of creating the state space is handed over to PRISM, which
makes the repatriation from single states to nodes currently not possible. In fur-
ther research [Wal+23], the authors propose the same solution to encounter the
exponentially growing state space: Modularizations. Even though the approach
does not make use of an superordinate modelling layer, the subsystems to form
the modules are performed with respect to the functional relations of the system.
Therefore, the modularization yields three systems: “Complex system”, “Module”
and “Modularized system” which correlate to our specification of (the Markov
model’s) “original graph” “module graph” and “abstracted graph”. In contrary
to our method, these modules can only be evaluated by Markov analysis and a
hybridization or the combination with other methods and techniques has not been
considered.

Concluding it can be said that very strong parallels to this approach exist. How-
ever, while in some directions it can be considered more mature, for instance, the
consideration of time-dependent failure rates or the direct connection from Markov
states to the modelled components, others, like the modelling of security implica-
tions and attacks, are being neglected entirely. Ultimately, the lack of a superor-
dinate modelling, like the dependency graph, is limiting the modelling possibilities
and it is questionable whether complex tasks like large system modularizations can
be performed correctly and reproducible in this way.

8.2 AT-CARS

In [Hei+19] a state-based Monte Carlo Simulation (MCS) approach for the safety
analysis of hard- and software components of autonomous vehicles has been presen-
ted. In later publications, the software tool resulting off of this approach is referred
to as AT-CARS [RHK21]. The main goal of this approach is to support the analysis
of autonomous vehicles by an improved focus on its fail-operational behaviour. As
presented earlier in this thesis, the key for achieving a fail-operational behaviour
is a suitable redundancy concept combined with a failure management process.
Thereby, the concept presented in Chapter 2.2, where computational resources in
terms of software applications are being switched between multiple (redundant)
computing units, are on the rise. With AT-CARS, the authors contribute to the
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safety verification of autonomous systems by developing a modelling technique
that takes these dynamic operations, which are actually dynamic changes of the
architecture, into account.

To achieve this two kinds of models are used: The reliability structure of the
concerned system is captured by a RBD-oriented modelling which is transformed
into state diagrams for the simulation process. This state-based model is oriented
on a Markov model but adjusted to avoid state-space explosions. Since AT-CARS
does not offer GUI support, the user must provide the input system specification
in terms of multiple JavaScript Object Notation (JSON) files. The RBD-oriented
structure is an abstract system description, like the dependency graph, and the
state diagram acts as the analysis basis, like the Markov model of this thesis.
In contrary to our method, a lower level of abstraction is envisaged: Hardware
components and software elements are explicitly modelled in separate: Hardware
components have a defined failure behaviour and are equipped with one or more
computing nodes, that provide computational resources. Software elements are
specified with computational resources to consume and with a failure behaviour
of their own. These software elements cannot run on their own and must be
assigned to a hardware element. The idea is, that a software element can only
run on a hardware element, as long as the required computational resources can
be provided to it. This is key to modelling the addressed dynamic behaviour: In
case a hardware component fails, its computational resources extinguish and the
software applications previously placed on it cannot run any more. However, in
case other active hardware components with computational resources are available,
the software application can be switched to run on these (if specified). In that
way, system level failure management processes like FDIR can be reflected. While
it is possible to model software and hardware as individual nodes in ERIS and
also consider a functional relation between them, it is not possible to dynamically
change these relations as it would be the case if a software application was switched
to another hardware.

The failure behaviour of hardware and software components is described in terms of
probability distributions similar to our method. However, in addition, AT-CARS
is designed to allow the definition of multiple failure modes for one component.
While this is possible in our Markov model as well, the input interface of ERIS
does currently not provide for it, apart from the distinction of safety and secur-
ity failures. With that the definition of different kinds of failure models such as
exponentially distributed failures models, Weibull distributed failure models etc.
becomes possible. In order to consider the entire FDIR process in AT-CARS, also
component recovery has been implemented, which is, however, only considered for
software applications, because the authors assume that hardware devices cannot
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recover [Hei+19]. Since in ERIS the distinction between software and hardware
must be made by the user, hardware recovery, which is possible in reality as we
saw in Section 6.1.1, can be modelled.

By making use of simulation as the evaluation method, AT-CARS follows a differ-
ent paradigm (see also Chapter 2.5.2). As a result, the approach suffers the usual
problems of stochastic simulation: The evaluation time required to receive a good
result estimate cannot be determined beforehand and the result accuracy depends
on the number of performed iterations. Consequently, the simulation time can
be very high to achieve accurate results. However, the simulation time and the
model size usually do not correlate. Therewith, other than our Markov analysis,
also very large models can be evaluated without encountering problems due to an
unmanageable state space. In the previous chapter it was shown how this benefit
and the fact that AT-CARS employs a more fine-grained modelling can be used to
create a hybrid model of ERIS and AT-CARS. The foundation for that was laid
in [RH20a].

The first steps to do so were to make sure that both approaches, regardless of us-
ing a different modelling and evaluation method, are in fact calculating the same
or rather similar results for the same inputs to avoid information loss with the
hybridization. Therefore it was necessary to introduce the modelling of security
attacks into AT-CARS. Since in the current modelling there is no option for defin-
ing the implications induced by Reach-dependencies, these implications have to be
modelled manually for the considered system. Then, security attacks are simply
modelled as an additional failure mode. Now to survey whether both approaches
are working in a similar nature, the example system shown in Figure 8.1 has been
evaluated. Figure 8.1a shows the ERIS model of this system and Figure 8.1b a
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(b) Example Modelled with AT-CARS

Figure 8.1: Small Example for Comparison

visualization of the according AT-CARS model.

As before, critical nodes are highlighted in red. The two nodes n1 and n2 represent
non-critical, data supplying components which may be reached from the outside.
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Additionally, node n1 can reach n2, and node n4 can be reached from node n2.
Node n3 cannot be reached at all but provides security guarantees to the node n4.
We defined nodes n1 and n2 to produce redundant data to n4. This yields the
following mode of operation: ϕ = n̂4 ∧ (n̂2 ∨ n̂1).

Figure 8.1b demonstrates the reliability structure of the system modelled in AT-
CARS. The parallel structure of the RBD-oriented modelling represents that at
least one of the components modelled by n1 or n2 must be operational to satisfy
the mode of operation. The respective node n4 is modelled in series to the parallel
structure of n1 and n2 to indicate that a failure of n4 leads to a system failure. To
model the security guarantees provided by n3, the attack rate on n4 is defined to
change accordingly if n3 fails. The resulting state diagram consists of four states
with the following definitions:

• State 1: n1, n2, n4 are functional

• State 1.1: n4 functional, n1 or n2 failed

• State 1.2: n4 functional, n1 and n2 failed

• State 2: n4 failed

Dummy failure and attack rates (exponentially distributed) were assumed. Precise
values and the generated PRISM code can be found in Annex A.4.

Table 8.1: Results of the Comparison

Hours ERIS Simulation ∆
States: 30 States: 4
Transitions: 65 Transitions: ∅3.31
Time: 23ms Time: 8764s

0.00 0.00% 0.00% 0.00%
1.00 19.26% 19.37% 0.10%
2.00 40.05% 40.44% 0.39%
3.00 57.51% 57.73% 0.22%
4.00 70.72% 71.02% 0.30%
5.00 80.18% 80.49% 0.31%
6.00 86.74% 87.18% 0.44%
7.00 91.19% 91.46% 0.27%
8.00 94.18% 94.44% 0.26%
9.00 96.17% 96.32% 0.15%
10.0 97.48% 97.59% 0.11%
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For the comparison, the probability that the system enters the fail state at a
given time point (specific hour) was evaluated in either model. The simulation
has been performed with 100 000 iterations. The computed results are listed in
Table 8.1. We can observe that even though the results are not identical, the
anomaly ∆ is never beyond 0.44%. Concluding it can be said that the sim-
ulation delivers a good estimation of the analytical solution of ERIS and thus
these approaches can be combined without encountering unreasonable informa-
tion loss.
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The safety and security analysis of autonomous vehicles is paramount. It involves
a comprehensive evaluation of functional safety, cybersecurity, the compliance with
standards, sophisticated testing procedures and permanent progress monitoring.
In consequence, a multitude of methods and tools are needed to yield a holistic as-
sessment approach. This dissertation presented one of them.

Subsequently, a thesis summary is given and the application possibilities of the
methodology are highlighted once more. Afterwards, the main challenges of this re-
search are addressed. At the end, the application of this approach beyond the auto-
motive domain is discussed shortly and a view on future work is given.

9.1 Summary

The developed methodology was inspired by the new architectures of autonom-
ous and automated vehicles as well as the rising challenges to verify their safety
and security. This verification is key to gain the approval of legislators and au-
thorities, but also to establish trust of autonomous driving in the general public.
The superordinate goal was to close a gap between widely adopted approaches
that target either safety or security and instead establish a methodology that can
handle both properties on an equal level and further, consider their intertwined
effects. Therefore, a graph-based model was developed that views safety and secur-
ity relations between components and distinguishes between attacks and failures of
those. Given that critical systems must be able to act fail-safe and especially since
autonomous systems are thought to be able to become self-aware, the model was
extended by the consideration of different kinds of repair and recovery actions. In
this way, both the self-induced recovery of components and the recovery triggered
from the outside could be included. Therewith, a playground to reason about the
interdependency of single components during failures and attacks, by ultimately
viewing their consequences to the system’s functionality, was established. This
is essential for enabling a holistic system assessment mandatory to capture the
system’s failure behaviour realistically.
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To perform this assessment over a specified period of time, such as the envisaged
lifetime of the system, a transformation from the static graph into a quantitative
model in terms of a CTMC was specified, making a quantitative analysis via, e.g.,
probabilistic model checking possible. While Markov models proved to allow an
accurate and fast evaluation, they also introduced an exponentially growing state
space in relation to the captured components. With the goal of being capable
of analysing vehicular system structures, it became clear that this exponential
state growth could easily become the bottleneck of the methodology, if unhandled.
To conquer this problem, a modularization scheme for dependency graphs was
developed and it was demonstrated that it enables the analysis of very large sys-
tems. Finally, the implementation of this methodology into a tool named ERIS
was presented, providing for a comfortable application.

Despite the main objective of analysing the system failure probability it is possible
to analyse further system or subsystem properties that are expressible in PCTL
or CSL. Therewith, weak points in the architecture can be narrowed down, if not
apparent due to the provided input rates, as it was demonstrated in the example
analysis. In regard to the approval of an autonomous vehicle, the reliance on
these input failure and attack rates being realistic in order to obtain legitimate
results is perhaps the biggest downside of this approach. As discussed earlier,
determining the failure behaviour and deriving matching probability rates is very
much possible for hardware, though the determination of software failure rates or
attack rates can only be a good estimate. Thus, the quality of the results can
merely be as good as the input to the model, making the assumption of worst-
case estimates as inputs the safest application. However, this only applies if the
goal is to identify definite results. Alternatively, the methodology can be used to
compare different architectures in the development process, i.e. given two different
dependency graphs modelling the same components with the same specification,
which of them is more robust with respect to potential failures and attacks? Based
on the achieved results the most suitable architecture between multiple concurrent
dependency graphs can be chosen, or a modification of the desired dependency
graph can be performed and the analysis revisited. Another option could be to
use the analysis to identify the worst-case failure and attack rates of a component,
so that it still satisfies the requirements for the system’s safety. On behalf of
these results, the concrete component to be used in production may be chosen.
For instance, one manufacturer may promise a lower failure rate RADAR than
another.
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9.2 Challenges

The strongest limitation of this research remains the lack of information on the
precise internals of vehicular architectures. Due to the ever-ongoing competition
between vehicle manufacturers but also between automotive part suppliers, this
information is largely treated as confidential. While it is understandable that this
knowledge is protected, and can even foster greater innovation [JSH14] through
scarcity, this approach constrains advancements in fields reliant on large amounts
of varied data such as in the training of AI models. Especially regarding security
the confidentiality of solutions can become obscure. The OBD-II interface makes a
great example. Recalling, this interface allows direct access to the internal vehicle
network and the possibility of installing software on connected ECUs [Amm+20].
With growing connectivity, remote access to it via, e.g., OBD-II dongles is increas-
ing. While the access to this interface is protected with an authentication scheme
standardised by ISO 15031-7 [13] (SAE J2186), it does not follow current cyber-
security guidelines: As pointed out in [Amm+20], a simple challenge-response
protocol (the seed-key protocol) on the basis of pre-shared keys is used which is
cryptographically out-dated and the protocol itself is not standardised. Further,
key length or random number generators are not specified by the prevailing stand-
ard. CAN bus tables specifying the codification of the messages specific to the car
model are kept secret, seemingly as an attempt at protection by manufacturers.
This idea is, however, projecting a false sense of security as many research public-
ations in the past have shown how easily these messages can be reverse engineered
[Kan+18; MS19]. In conclusion, a less restricted collaboration of research and
industry in automotive would constitute in finding better and faster solutions for
safety and security issues.

9.3 Extended Application

While the automotive domain served as an inspiration for this work, it must be
mentioned that the methodology is not necessarily bound to it. Thus it can be
applied in any other fields where the system that shall be modelled contains sim-
ilar characteristics and has a comparable evaluation goal. Abstractly, this makes
it applicable to any system or device that contains components of varying critical-
ity in regard to maintaining its core task, functional data dependencies, possibly
redundancies and access relationships. With the increasing connectivity of every
day devices, application possibilities are becoming vast. Albeit every day smart
devices are not highly critical systems, analysing the entry of safety- and security-
wise failure states can still be beneficial for several reasons such as determining the
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legal warranty provided by the manufacturer. As an example, we view the depend-
ency graph of a smart coffee maker in Figure 9.1. The critical nodes here simply

Env
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WLAN Interface Grinder
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Espresso Button
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Water Pump

Figure 9.1: Dependency Graph of a Smart Coffee Maker

relate to all components that are mandatory to perform its main task – produ-
cing hot coffee. Various functional relationships can be modelled, for instance, the
cappuccino program requiring the milk frother to work correctly. Some functional
relationships can be omitted, like the On/Off Switch being important to any com-
ponent, which is already provided by modelling it critical. Node redundancy can
be used for the coffee program buttons to express that at least one program must
still function so that the coffee maker is able to fulfil its task, although in a pretty
degraded manner. Since this coffee maker is a smart home device, it provides a
WLAN interface which makes it accessible from the outside, to e.g. trigger the cof-
fee making process remotely. Therefore, an Env-node with Reach-dependencies is
modelled which could potentially be abused by an attacker. This example shows
that the dependency graph is abstract and flexible enough, so that also rather
small and uncritical systems, independent from the automotive domain, can be
modelled with it.

However, apart from describing technical systems and devices the initial meaning
of the methodology could be stretched further to model different kinds of systems
such as systems of an actor-based nature. Therefore the definition of a system com-
ponent must be rethought. Previously, a node modelled a technical component,
usually in terms of an enclosed system, though we also saw that a node can relate
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to a software application (e.g. the firewall node). In the same manner, functional
data dependencies can be used to model the relationship of multiple software ap-
plications running on hardware devices. Therewith independent failure and attack
rates of single software applications can be modelled, though, once its operational
core fails the application instantly ceases to operate as well. This shows a certain
flexibility in the node definition. In actor-based systems a node would refer to an
abstract participant or entity which can represent multiple actors of a category,
rather than a specific mechanical or electronic part. When relating to multiple
actors, failure and attack rates must be comprised accordingly. The criticality of
nodes and the resulting Fail-state definition can for one depend on the importance
of the actor to the system, and for other and more interestingly, on the perspective
of a defined actor. The first is comparable to the standard system Fail-state where
the purpose of the system cannot be provided anymore and the latter to system
states that are undesirable for a certain actor.

To illustrate this idea, Figure 9.2 shows the dependency graph of a fictive payment
system in an online shop. Vendors can provide products via the webshop and
customers can place orders on these. For payment transactions, the webshop
forwards the transaction details to the bank of the customer that performs the
transaction with the bank of the vendor.

n6

n5

n4

n3

n2n1

Env

2FA

Webshop

Bank of Customer Bank of Vendor

VendorCustomer

Figure 9.2: Actor-based Dependency Graph of a Payment System

The potential customer is modelled as node n1 that employs a Reach-dependency
to the webshop n2 to place orders and so on. Further Reach-links are modelled to
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express the described interaction between the webshop, the vendor and the banks.
Since both the customer as well as the webshop are connected to the internet via
some connected computers, they are reachable via the Env-node. Thereby a Two
Factor Authentication (2FA) premise for logging in at the webshop is enhancing
its protection. In addition to that, the Sec-link from the customer to the webshop
is exploited in order to model an interesting behaviour: The direct attack on the
webshop is less probable than the attack via a registered user (the customer). With
that we can model that the attacker impersonating the customer is more successful
in manipulating the webshop than a direct attack. In the system analysis, success-
ful attacks on the modelled actors but also potential failures, which could relate to
outages of webshop’s servers, can be considered. Moreover, even a problem with
the 2FA implementation could be concerned. As described, the evaluation goal
dictated by the system’s criticality definition depends on the person of view. For
the general system failure, all nodes except for the 2FA node would be critical.
However, if we choose the perspective of the customer to, for instance, analyse the
probability that he falls victim of fraud, we would need to model his bank n3 as
critical.

By adjusting the meaning of the evaluation goal in dependence to the modelled
system it becomes possible to evaluate further system properties that have pre-
viously been neglected. For instance, privacy concerns could be regarded if we
model a system where the corruption of a node translates to the loss of privacy.
An example for that would be patient data that is stored at a health insurance
company. This highly sensitive data must be accessible by various doctors, perhaps
partially at the pharmacy and by the patient itself. Privacy and confidentiality
concerns arise for the patient, though, also integrity plays a fundamental role in
ensuring that the patient receives the correct treatment. Given that, the corrup-
tion of the node relates to the loss of the patient’s privacy and depending on the
system’s internals, it could also mean that the data’s correctness becomes ques-
tionable.

While these extended application possibilities look promising, further research
must be conducted to guarantee a safe application to non-technical systems. For
example, it must be studied whether a modularization of actor-based systems
follows the same conditions as before. If so, the modularization scheme could
perhaps be used to model the internals of an actor, e.g. the internal structure
of the webshop or the bank. Furthermore, it is questionable if we can consider
recovery in these kinds of systems: If the corruption of the node relates to stolen
credentials, then a reset of these credentials could be a recovery. However, if
the corruption of a node relates to the loss of privacy, the recovery would mean
that attackers would lose their obtained information and that is highly unlikely.
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Lastly, to justify this application and identify benefits but also downsides, the
general expressibility and evaluation possibilities of existing actor models must be
researched and compared to this method.

9.4 Future Work

The presented work shows a complete concept, yet several additions are conceiv-
able. These can be separated into two main categories: (1) modelling accuracy
and extensions and (2) evaluation and tool enhancements. The first category con-
cerns features that enhance the dependency graph with the goal of reaching a more
realistic system modelling. This category has to be handled with care, as adding
more details to the dependency graph will most likely lead to a more complex
quantitative Markov model by expanding the state and transition growth further.
The latter category mostly consists of advancements of ERIS with the intention
of making it more user-friendly and performant.

Regarding category (1), an addition to consider the effects of self-protecting meas-
ures could be made. As described in Chapter 6, several countermeasures against
security attacks include a proactive step of changing the system configuration
or communication properties. For example, a fast and effective solution is the
isolation of a successfully attacked component or a component group to limit neg-
ative effects and prevent the attack from spreading, by, e.g., stopping (ignoring)
the communication with the affected component or shutting it off in a bus-like
system. Depending on the task or communication position of the attacked com-
ponent, it could be necessary to reconfigure the communication structure in order
to maintain availability, e.g., in an internet-based context, the server is shut down
and all requests are redirected to the back up server (see also [YEM14]). A simple
possibility to add such a protective behaviour to the current way of modelling
would be the dynamic removal of Reach-links to stop an attack from propagat-
ing. Yet, Reach-links do not reflect the communication structure precisely, as they
are merely a representation of any existing access-relationships. Thus, informa-
tion on the actual connection is abstracted away: Which components are using
the same communication system? Is the connection direct or routed via several
aligned communication systems? Furthermore, a communication cut-off would
also mean that existing functional dependencies would have to be neglected. Con-
sequently, further work is required to model the communication structure more
closely, e.g., as in defining a specific type of node for it. Another promising ad-
vancement could be the consideration of failures that fall into the field of SOTIF
[22]. Since these kind of failures or attacks have a more temporary nature since
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they are not the failure of the component itself, but the surroundings leading to
an undesired behaviour, they do not fit into the current health state definition.
For instance, modelling them as a temporary change into the defective state would
clash with existing recovery transitions: In the Markov model, these rates would
be summed up, but a recovery from a functional failure such as a restart will
not fix a sensor’s obscuration. Given that, extra states are mandatory which, un-
avoidably, increase the state space again. Moreover, considering these failures may
not make much sense when the evaluation goal is set to the entire lifetime of the
system.

Concerning category (2), despite enhancing the general usability, further automa-
tions as in automatically determining modularization candidates and the genera-
tion of further CSL properties could be established. This would advance ERIS in
becoming more detached from the PRISM usage. In order to determine modular-
ization candidates automatically, rules for good and bad modularizations would
have to be defined and implemented. The basis for that has already been estab-
lished by the heuristics in Section 5.3. On behalf of that, the system model would
have to be parsed and potential subgraphs identified. The difficulty then lies in
determining which subgraphs and also the amount of subgraphs that are made into
modules, while considering the trade-off between state space reduction and loss of
accuracy. Luckily graph partitioning is a widely researched field and thus existing
algorithms could potentially be reviewed and applied. Thereby, it would be bene-
ficial to also take input rates into account. However, this requires further research
in that area. After that, the next step would be to automatically choose the most
suiting evaluation approach for the module. Though, since currently simulation
models cannot be generated by dependency graphs, the algorithm would require
additional information.
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Abbreviation

2FA Two Factor Authentication

ABS Anti-lock Braking System
AD Autonomous Driving
AI Artificial Intelligence
ALKS Automated Lane Keeping System
ASIL Automotive Safety Integrity Level

BDMP Boolean logic Driven Markov Processes

CAN Controller Area Network
CIA Confidentiality, Integrity and Availability
CSL Continuous Stochastic Logic
CSV Comma-separated Values
CTMC Continuous-Time Markov Chain
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System

DMR Dual Modular Redundancy
DOS Denial of Service
DTMC Discrete-Time Markov Chain

ECC Error Correcting Code
ECU Electronic Control Unit
EHW Evolvable Hardware
EmHW Embryonic Hardware

FDIR Fault Detection Isolation and Recovery
FPGA Field Programmable Gate Array
FTA Fault Tree Analysis

GNSS Global Navigation Satellite System
GPL GNU Public License
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Abbreviation

GPS Global Positioning System
GSM Global System for Mobile Communications
GUI Graphical User Interface

HARA Hazard Analysis and Risk Assessment
HMI Human Machine Interface
HSM Hardware Security Module

IDS Intrusion Detection System
IMC Interactive Markov Chains

JSON JavaScript Object Notation

KPI Key Performance Indicator

LDWS Lane Departure Warning System
LIDAR Light Detection And Ranging
LIN Local Interconnect Network

MAC Message Authentication Code
MCS Monte Carlo Simulation
MDP Markov Decision Process
MOST Media Oriented Systems Transport
MTBF Mean Time Between Failures
MTTF Mean Time To Failure
MTTR Mean Time To Repair
MTTSF Mean Time To Security Failure

NHTSA National Highway Traffic Safety Administration

OBD-II On-Board Diagnostic II
OC Organic Computing
ODD Operational Design Domain

PCTL Probabilistic Computation Tree Logic
PDF Portable Document Format
PEPA Performance Evaluation Process Algebra

RADAR Radio Detection And Ranging
RBD Reliability Block Diagram
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ROS Robot Operating System

SAE Society of Automotive Engineers
SDS Self Driving System
SIL Safety Integrity Level
SOTIF Safety Of The Intended Functionality

TARA Threat Analysis and Risk Assessment
TMR Triple Modular Redundancy

USB Universal Serial Bus

V2X Vehicle-to-X
VANET Vehicular ad hoc Network

WLAN Wireless Local Area Network

XML Extensible Markup Language
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A PRISM Code Listings

Subsequently, the complete ERIS-generated PRISM code of all examples evaluated
in this thesis is provided.

A.1 Modularization

This section contains the ERIS-generated PRISM code used in Chapter 5. For the
sake of clarity, subsections for each example system are established. Note that in
cases where only the input values (failure and attack rates) and not the dependency
graph have been changed, the code is only listed once.

A.1.1 Example 1: Problematic Security Modularization
(Reach-path)

1 ctmc

3 const double rn1SEC = 0.2;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.2;
7 const double rn2SAFE = 0;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.2;

10 const double rn3SAFE = 0;
11 const double rn3GUAR = 0;
12 const double rn4SEC = 0.2;
13 const double rn4SAFE = 0;
14 const double rn4GUAR = 0;
15 const double rn5SEC = 0.2;
16 const double rn5SAFE = 0;
17 const double rn5GUAR = 0;
18 const double rn6SEC = 0.2;
19 const double rn6SAFE = 0;
20 const double rn6GUAR = 0;
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21 const double rn7SEC = 0.2;
22 const double rn7SAFE = 0;
23 const double rn7GUAR = 0;

25 formula operational = (n4=0 | n7=0) & (n7=0 | n4=0) ;

27 module generatedScenario

29 n1: [0..2] init 0;
30 n2: [0..2] init 0;
31 n3: [0..2] init 0;
32 n4: [0..2] init 0;
33 n5: [0..2] init 0;
34 n6: [0..2] init 0;
35 n7: [0..2] init 0;

37 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
38 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
39 [] (n3=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
40 [] (n5=0) & (operational) -> rn5SEC : (n5’=2);
41 [] (n5=2 & n1=0) & (operational) -> rn1SEC : (n1’=2);
42 [] (n5=2 & n6=0) & (operational) -> rn6SEC : (n6’=2);
43 [] (n6=2 & n7=0) & (operational) -> rn7SEC : (n7’=2);

45 endmodule

47 label "systemfailure" = !operational;
48 label "defective" = (n4=1 & n7=1) | (n7=1 & n4=1) ;
49 label "corrupted" = (n4=2 & n7=2) | (n7=2 & n4=2) ;

Listing A.1: Example 1 Original Graph

1 ctmc

3 const double rn1SEC = 0.027632; // TBD
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn5SEC = 0.2;
7 const double rn5SAFE = 0;
8 const double rn5GUAR = 0;
9 const double rn6SEC = 0.2;

10 const double rn6SAFE = 0;
11 const double rn6GUAR = 0;
12 const double rn7SEC = 0.2;
13 const double rn7SAFE = 0;
14 const double rn7GUAR = 0;

16 formula operational = (n1=0 | n7=0) & (n7=0 | n1=0) ;
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18 module generatedScenario

20 n1: [0..2] init 0;
21 n5: [0..2] init 0;
22 n6: [0..2] init 0;
23 n7: [0..2] init 0;

25 [] (n5=0) & (operational) -> rn5SEC : (n5’=2);
26 [] (n5=2 & n1=0) & (operational) -> rn1SEC : (n1’=2);
27 [] (n5=2 & n6=0) & (operational) -> rn6SEC : (n6’=2);
28 [] (n6=2 & n7=0) & (operational) -> rn7SEC : (n7’=2);

30 endmodule

32 label "systemfailure" = !operational;
33 label "defective" = (n1=1 & n7=1) | (n7=1 & n1=1) ;
34 label "corrupted" = (n1=2 & n7=2) | (n7=2 & n1=2) ;

Listing A.2: Example 1 Abstracted Graph

1 ctmc

3 const double rn1SEC = 0.2;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.2;
7 const double rn2SAFE = 0;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.2;

10 const double rn3SAFE = 0;
11 const double rn3GUAR = 0;
12 const double rn4SEC = 0.2;
13 const double rn4SAFE = 0;
14 const double rn4GUAR = 0;

16 formula operational = (n4=0) ;

18 module generatedScenario

20 n1: [0..2] init 0;
21 n2: [0..2] init 0;
22 n3: [0..2] init 0;
23 n4: [0..2] init 0;

25 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
26 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
27 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
28 [] (n3=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
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30 endmodule

32 label "systemfailure" = !operational;
33 label "defective" = (n4=1) ;
34 label "corrupted" = n4=2 ;

Listing A.3: Example 1 Module Graph

A.1.2 Example 2: Problematic Security Modularization
(Reach-link)

1 ctmc

3 const double rn1SEC = 0.15;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.15;
7 const double rn2SAFE = 0;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.15;

10 const double rn3SAFE = 0;
11 const double rn3GUAR = 0;
12 const double rn4SEC = 0.15;
13 const double rn4SAFE = 0;
14 const double rn4GUAR = 0;
15 const double rn5SEC = 0.15;
16 const double rn5SAFE = 0;
17 const double rn5GUAR = 0;

19 formula operational = (n1=0 | n5=0) & (n5=0 | n1=0) ;

21 module generatedScenario

23 n1: [0..2] init 0;
24 n2: [0..2] init 0;
25 n3: [0..2] init 0;
26 n4: [0..2] init 0;
27 n5: [0..2] init 0;

29 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
30 [] (n1=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
31 [] (n2=0) & (operational) -> rn2SEC : (n2’=2);
32 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
33 [] (n3=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
34 [] (n4=2 & n5=0) & (operational) -> rn5SEC : (n5’=2);

36 endmodule
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38 label "systemfailure" = !operational;
39 label "defective" = (n1=1 & n5=1) | (n5=1 & n1=1) ;
40 label "corrupted" = (n1=2 & n5=2) | (n5=2 & n1=2) ;

Listing A.4: Example 2 Original Graph

1 ctmc

3 const double rn1SEC = 0.15;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn3SEC = 0.15;
7 const double rn3SAFE = 0;
8 const double rn3GUAR = 0;
9 const double rn4SEC = 0.15;

10 const double rn4SAFE = 0;
11 const double rn4GUAR = 0;
12 const double rn5SEC = 0.15;
13 const double rn5SAFE = 0;
14 const double rn5GUAR = 0;

16 formula operational = (n1=0 | n5=0) & (n5=0 | n1=0) ;

18 module generatedScenario

20 n1: [0..2] init 0;
21 n3: [0..2] init 0;
22 n4: [0..2] init 0;
23 n5: [0..2] init 0;

25 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
26 [] (n1=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
27 [] (n3=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
28 [] (n4=2 & n5=0) & (operational) -> rn5SEC : (n5’=2);

30 endmodule

32 label "systemfailure" = !operational;
33 label "defective" = (n1=1 & n5=1) | (n5=1 & n1=1) ;
34 label "corrupted" = (n1=2 & n5=2) | (n5=2 & n1=2) ;

Listing A.5: Example 2 Abstracted Graph

1 ctmc

3 const double rn1SEC = 0.15;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.15;
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7 const double rn2SAFE = 0;
8 const double rn2GUAR = 0;

10 formula operational = (n1=0) ;

12 module generatedScenario

14 n1: [0..2] init 0;
15 n2: [0..2] init 0;

17 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
18 [] (n2=0) & (operational) -> rn2SEC : (n2’=2);

20 endmodule

22 label "systemfailure" = !operational;
23 label "defective" = (n1=1) ;
24 label "corrupted" = n1=2 ;

Listing A.6: Example 2 Module Graph

1 ctmc

3 const double rn1SEC = 0.15;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.15;
7 const double rn2SAFE = 0;
8 const double rn2GUAR = 0;

10 formula operational = (n1=0) & (n2=0) ;

12 module generatedScenario

14 n1: [0..2] init 0;
15 n2: [0..2] init 0;

17 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
18 [] (n2=0) & (operational) -> rn2SEC : (n2’=2);

20 endmodule

22 label "systemfailure" = !operational;
23 label "defective" = (n1=1) | (n2=1) ;
24 label "corrupted" = n1=2 | n2=2 ;

Listing A.7: Example 2 Adapted Module Graph

1 ctmc
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3 const double rn1SEC = 0; // TBD
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;

7 formula operational = (n1=0) ;

9 module generatedScenario

11 n1: [0..2] init 0;

13 endmodule

15 label "systemfailure" = !operational;
16 label "defective" = (n1=1) ;
17 label "corrupted" = n1=2 ;

Listing A.8: Example 2 Abstracted for Depth Modularization

1 ctmc

3 const double rn1SEC = 0.15;
4 const double rn1SAFE = 0;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.15;
7 const double rn2SAFE = 0;
8 const double rn2GUAR = 0;
9 const double rn5SEC = 0.06952802547; // TBD

10 const double rn5SAFE = 0;
11 const double rn5GUAR = 0;

13 formula operational = (n1=0 | n5=0) & (n5=0 | n1=0) ;

15 module generatedScenario

17 n1: [0..2] init 0;
18 n2: [0..2] init 0;
19 n5: [0..2] init 0;

21 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
22 [] (n1=2 & n5=0) & (operational) -> rn5SEC : (n5’=2);
23 [] (n2=0) & (operational) -> rn2SEC : (n2’=2);
24 [] (n2=2 & n5=0) & (operational) -> rn5SEC : (n5’=2);

26 endmodule

28 label "systemfailure" = !operational;
29 label "defective" = (n1=1 & n5=1) | (n5=1 & n1=1) ;
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30 label "corrupted" = (n1=2 & n5=2) | (n5=2 & n1=2) ;

Listing A.9: Example 2 Main Graph Depth 1

1 ctmc

3 const double rn3SEC = 0.15;
4 const double rn3SAFE = 0;
5 const double rn3GUAR = 0;
6 const double rn4SEC = 0.15;
7 const double rn4SAFE = 0;
8 const double rn4GUAR = 0;
9 const double rn5SEC = 0.15;

10 const double rn5SAFE = 0;
11 const double rn5GUAR = 0;

13 formula operational = (n5=0) ;

15 module generatedScenario

17 n3: [0..2] init 0;
18 n4: [0..2] init 0;
19 n5: [0..2] init 0;

21 [] (n3=0) & (operational) -> rn3SEC : (n3’=2);
22 [] (n3=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
23 [] (n4=2 & n5=0) & (operational) -> rn5SEC : (n5’=2);

25 endmodule

27 label "systemfailure" = !operational;
28 label "defective" = (n5=1) ;
29 label "corrupted" = n5=2 ;

Listing A.10: Example 2 Module Graph Depth 2

A.2 Recovery

This section contains the ERIS-generated PRISM code used in the Recovery
Chapter 6 and the respective part in the example analysis in Chapter 7, Section
7.2.3.

1 ctmc

3 const double rn1SEC = 0.05;
4 const double rn1SAFE = 0.05;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.05;
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7 const double rn2SAFE = 0.05;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.05;

10 const double rn3SAFE = 0.05;
11 const double rn3GUAR = 0;
12 const double rn4SEC = 0.05;
13 const double rn4SAFE = 0.05;
14 const double rn4GUAR = 0;
15 const double rn5SEC = 0.05;
16 const double rn5SAFE = 0.05;
17 const double rn5GUAR = 0;

19 formula operational = (n3=0 | n4=0) & (n4=0 | n3=0) ;

21 module generatedScenario

23 n1: [0..2] init 0;
24 n2: [0..2] init 0;
25 n3: [0..2] init 0;
26 n4: [0..2] init 0;
27 n5: [0..2] init 0;

29 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
30 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
31 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
32 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
33 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
34 [] (n2=2) & (operational) -> rn2SAFE : (n2’=1);
35 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
36 [] (n2=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
37 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);
38 [] (n3=2) & (operational) -> rn3SAFE : (n3’=1);
39 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
40 [] (n4=2) & (operational) -> rn4SAFE : (n4’=1);
41 [] (n5=0) & (operational) -> rn5SAFE : (n5’=1);

43 endmodule

45 label "systemfailure" = !operational;
46 label "defective" = (n3=1 & n4=1) | (n4=1 & n3=1) ;
47 label "corrupted" = (n3=2 & n4=2) | (n4=2 & n3=2) ;

Listing A.11: Without Recovery

1 ctmc

3 const double rn1SEC = 0.05;
4 const double rn1SAFE = 0.05;
5 const double rn1GUAR = 0;
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6 const double rn2SEC = 0.05;
7 const double rn2SAFE = 0.05;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.05;

10 const double rn3SAFE = 0.05;
11 const double rn3GUAR = 0;
12 const double rn3DEFREC = 0.05;
13 const double rn3CORREC = 0.05;
14 const double rn4SEC = 0.05;
15 const double rn4SAFE = 0.05;
16 const double rn4GUAR = 0;
17 const double rn4DEFREC = 0.05;
18 const double rn4CORREC = 0.05;
19 const double rn5SEC = 0.05;
20 const double rn5SAFE = 0.05;
21 const double rn5GUAR = 0;

23 formula operational = (n3=0 | n4=0) & (n4=0 | n3=0) ;

25 module generatedScenario

27 n1: [0..2] init 0;
28 n2: [0..2] init 0;
29 n3: [0..2] init 0;
30 n4: [0..2] init 0;
31 n5: [0..2] init 0;

33 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
34 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
35 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
36 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
37 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
38 [] (n2=2) & (operational) -> rn2SAFE : (n2’=1);
39 [] (n2=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
40 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
41 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);
42 [] (n3=1) & (operational) -> rn3DEFREC : (n3’=0);
43 [] (n3=2) & (operational) -> rn3SAFE : (n3’=1);
44 [] (n3=2) & (operational) -> rn3CORREC : (n3’=0);
45 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
46 [] (n4=1) & (operational) -> rn4DEFREC : (n4’=0);
47 [] (n4=2) & (operational) -> rn4SAFE : (n4’=1);
48 [] (n4=2) & (operational) -> rn4CORREC : (n4’=0);
49 [] (n5=0) & (operational) -> rn5SAFE : (n5’=1);

51 endmodule

53 label "systemfailure" = !operational;
54 label "defective" = (n3=1 & n4=1) | (n4=1 & n3=1) ;
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55 label "corrupted" = (n3=2 & n4=2) | (n4=2 & n3=2) ;

Listing A.12: Strategy General: Self-performed

1 ctmc

3 const double rn1SEC = 0.05;
4 const double rn1SAFE = 0.05;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.05;
7 const double rn2SAFE = 0.05;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.05;

10 const double rn3SAFE = 0.05;
11 const double rn3GUAR = 0;
12 const double rn3DEFREC = 0.05;
13 const double rn3CORREC = 0.05;
14 const double rn4SEC = 0.05;
15 const double rn4SAFE = 0.05;
16 const double rn4GUAR = 0;
17 const double rn4DEFREC = 0.05;
18 const double rn4CORREC = 0.05;
19 const double rn5SEC = 0.05;
20 const double rn5SAFE = 0.05;
21 const double rn5GUAR = 0;

23 formula pathesn3DEFREC = n1=0 & n2=0;
24 formula pathesn3CORREC = n1=0 & n2=0;
25 formula pathesn4DEFREC = n1=0 & n2=0;
26 formula pathesn4CORREC = n1=0 & n2=0;
27 formula operational = (n3=0 | n4=0) & (n4=0 | n3=0) ;

29 module generatedScenario

31 n1: [0..2] init 0;
32 n2: [0..2] init 0;
33 n3: [0..2] init 0;
34 n4: [0..2] init 0;
35 n5: [0..2] init 0;

37 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
38 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
39 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
40 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
41 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
42 [] (n2=2) & (operational) -> rn2SAFE : (n2’=1);
43 [] (n2=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
44 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
45 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);

173



A PRISM Code Listings

46 [] (n3=1) & (operational) & (pathesn3DEFREC) -> rn3DEFREC : (n3’=0);
47 [] (n3=2) & (operational) -> rn3SAFE : (n3’=1);
48 [] (n3=2) & (operational) & (pathesn3CORREC) -> rn3CORREC : (n3’=0);
49 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
50 [] (n4=1) & (operational) & (pathesn4DEFREC) -> rn4DEFREC : (n4’=0);
51 [] (n4=2) & (operational) -> rn4SAFE : (n4’=1);
52 [] (n4=2) & (operational) & (pathesn4CORREC) -> rn4CORREC : (n4’=0);
53 [] (n5=0) & (operational) -> rn5SAFE : (n5’=1);

55 endmodule

57 label "systemfailure" = !operational;
58 label "defective" = (n3=1 & n4=1) | (n4=1 & n3=1) ;
59 label "corrupted" = (n3=2 & n4=2) | (n4=2 & n3=2) ;

Listing A.13: Strategy Restricted: From outside

1 ctmc

3 const double rn1SEC = 0.05;
4 const double rn1SAFE = 0.05;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.05;
7 const double rn2SAFE = 0.05;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0.05;

10 const double rn3SAFE = 0.05;
11 const double rn3GUAR = 0;
12 const double rn3DEFREC = 0.05;
13 const double rn3CORREC = 0.05;
14 const double rn4SEC = 0.05;
15 const double rn4SAFE = 0.05;
16 const double rn4GUAR = 0;
17 const double rn4DEFREC = 0.05;
18 const double rn4CORREC = 0.05;
19 const double rn5SEC = 0.05;
20 const double rn5SAFE = 0.05;
21 const double rn5GUAR = 0;

23 formula pathesn3DEFREC = n5=0;
24 formula pathesn3CORREC = n5=0;
25 formula pathesn4DEFREC = n5=0;
26 formula pathesn4CORREC = n5=0;
27 formula operational = (n3=0 | n4=0) & (n4=0 | n3=0) ;

29 module generatedScenario

31 n1: [0..2] init 0;
32 n2: [0..2] init 0;
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33 n3: [0..2] init 0;
34 n4: [0..2] init 0;
35 n5: [0..2] init 0;

37 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
38 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
39 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
40 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
41 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
42 [] (n2=2) & (operational) -> rn2SAFE : (n2’=1);
43 [] (n2=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
44 [] (n2=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
45 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);
46 [] (n3=1) & (operational) & (pathesn3DEFREC) -> rn3DEFREC : (n3’=0);
47 [] (n3=2) & (operational) -> rn3SAFE : (n3’=1);
48 [] (n3=2) & (operational) & (pathesn3CORREC) -> rn3CORREC : (n3’=0);
49 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
50 [] (n4=1) & (operational) & (pathesn4DEFREC) -> rn4DEFREC : (n4’=0);
51 [] (n4=2) & (operational) -> rn4SAFE : (n4’=1);
52 [] (n4=2) & (operational) & (pathesn4CORREC) -> rn4CORREC : (n4’=0);
53 [] (n5=0) & (operational) -> rn5SAFE : (n5’=1);

55 endmodule

57 label "systemfailure" = !operational;
58 label "defective" = (n3=1 & n4=1) | (n4=1 & n3=1) ;
59 label "corrupted" = (n3=2 & n4=2) | (n4=2 & n3=2) ;

Listing A.14: Strategy Custom: By another Component

A.3 Automation

This section contains the PRISM code of the autonomous vehicle example of Sec-
tion 7.4, formerly introduced in Section 4.1.1. Due to the massive code generation
of such big systems, only the original system is included in this document (Listing
A.15) as it essentially contains the modularizations as well. Disclaimer: ERIS
does not perform any optimizations regarding the generation of the operational
and essentials formula. For a better readability, they have been shortend by hand
(without affecting the semantic).

1 ctmc

3 const double rn1SEC = 1.04e-5;
4 const double rn1SAFE = 1.9e-5;
5 const double rn1GUAR = 0;
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6 const double rn2SEC = 1.2e-4;
7 const double rn2SAFE = 1.3e-5;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 1.5e-2;

10 const double rn3SAFE = 1.1e-5;
11 const double rn3GUAR = 0;
12 const double rn4SEC = 1.1e-05;
13 const double rn4SAFE = 1.3e-5;
14 const double rn4GUAR = 0;
15 const double rn5SEC = 1.7e-5;
16 const double rn5SAFE = 1.1e-6;
17 const double rn5GUAR = 0;
18 const double rn6SEC = 0;
19 const double rn6SAFE = 1.01e-6;
20 const double rn6GUAR = 1.9e-6;
21 const double rn6DEFREC = 1.3e-3;
22 const double rn7SEC = 0;
23 const double rn7SAFE = 1.01e-06;
24 const double rn7GUAR = 0;
25 const double rn8SEC = 1.3e-5;
26 const double rn8SAFE = 1.1e-5;
27 const double rn8GUAR = 0;
28 const double rn8DEFREC = 1.5e-5;
29 const double rn9SEC = 1.9e-6;
30 const double rn9SAFE = 1.1e-7;
31 const double rn9GUAR = 0;
32 const double rn10SEC = 1.2e-05;
33 const double rn10SAFE = 1.01e-07;
34 const double rn10GUAR = 0;
35 const double rn11SEC = 1.2e-05;
36 const double rn11SAFE = 1.01e-07;
37 const double rn11GUAR = 0;
38 const double rn12SEC = 1.2e-05;
39 const double rn12SAFE = 1.1e-7;
40 const double rn12GUAR = 0;
41 const double rn13SEC = 1.2e-6;
42 const double rn13SAFE = 1.3e-06;
43 const double rn13GUAR = 0;
44 const double rn14SEC = 1.2e-05;
45 const double rn14SAFE = 1.01e-07;
46 const double rn14GUAR = 0;
47 const double rn15SEC = 1.2e-05;
48 const double rn15SAFE = 1.01e-07;
49 const double rn15GUAR = 0;
50 const double rn16SEC = 1.2e-05;
51 const double rn16SAFE = 1.2e-08;
52 const double rn16GUAR = 0;
53 const double rn17SEC = 0;
54 const double rn17SAFE = 1.3e-06;

176



A PRISM Code Listings

55 const double rn17GUAR = 0;
56 const double rn18SEC = 1.2e-05;
57 const double rn18SAFE = 1.01e-07;
58 const double rn18GUAR = 0;
59 const double rn19SEC = 0;
60 const double rn19SAFE = 1.3e-6;
61 const double rn19GUAR = 0;
62 const double rn20SEC = 1.2e-05;
63 const double rn20SAFE = 1.01e-07;
64 const double rn20GUAR = 0;
65 const double rn21SEC = 1.2e-05;
66 const double rn21SAFE = 1.1e-7;
67 const double rn21GUAR = 0;
68 const double rn22SEC = 1.2e-05;
69 const double rn22SAFE = 1.3e-06;
70 const double rn22GUAR = 0;
71 const double rn23SEC = 1.2e-05;
72 const double rn23SAFE = 1.01e-07;
73 const double rn23GUAR = 0;
74 const double rn24SEC = 0;
75 const double rn24SAFE = 1.3e-06;
76 const double rn24GUAR = 0;
77 const double rn25SEC = 0;
78 const double rn25SAFE = 1.3e-06;
79 const double rn25GUAR = 0;
80 const double rn26SEC = 0;
81 const double rn26SAFE = 1.1e-07;
82 const double rn26GUAR = 0;
83 const double rn27SEC = 0;
84 const double rn27SAFE = 1.1e-07;
85 const double rn27GUAR = 0;
86 const double rn28SEC = 1.2e-05;
87 const double rn28SAFE = 1.3e-06;
88 const double rn28GUAR = 0;
89 const double rn29SEC = 1.1e-06;
90 const double rn29SAFE = 1.02e-6;
91 const double rn29GUAR = 0;
92 const double rn29DEFREC = 0.0011;
93 const double rn29CORREC = 0.0011;
94 const double rn30SEC = 1.1e-07;
95 const double rn30SAFE = 1.02e-07;
96 const double rn30GUAR = 0;
97 const double rn31SEC = 1.1e-06;
98 const double rn31SAFE = 1.02e-06;
99 const double rn31GUAR = 0;

100 const double rn31DEFREC = 0.0011;
101 const double rn31CORREC = 0.0011;
102 const double rn32SEC = 0;
103 const double rn32SAFE = 1.05e-07;
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104 const double rn32GUAR = 0;
105 const double rn33SEC = 0;
106 const double rn33SAFE = 1.01e-06;
107 const double rn33GUAR = 0;
108 const double rn34SEC = 0;
109 const double rn34SAFE = 1.01e-06;
110 const double rn34GUAR = 0;
111 const double rn35SEC = 0;
112 const double rn35SAFE = 1.01e-07;
113 const double rn35GUAR = 0;
114 const double rn36SEC = 0;
115 const double rn36SAFE = 1.01e-06;
116 const double rn36GUAR = 0;
117 const double rn37SEC = 0;
118 const double rn37SAFE = 1.6e-06;
119 const double rn37GUAR = 0;
120 const double rn38SEC = 0;
121 const double rn38SAFE = 1.95e-07;
122 const double rn38GUAR = 0;
123 const double rn39SEC = 0;
124 const double rn39SAFE = 1.6e-06;
125 const double rn39GUAR = 0;
126 const double rn40SEC = 0;
127 const double rn40SAFE = 1.45e-06;
128 const double rn40GUAR = 0;
129 const double rn41SEC = 0;
130 const double rn41SAFE = 1.95e-07;
131 const double rn41GUAR = 0;
132 const double rn42SEC = 0;
133 const double rn42SAFE = 1.05e-07;
134 const double rn42GUAR = 0;
135 const double rn43SEC = 0;
136 const double rn43SAFE = 1.01e-06;
137 const double rn43GUAR = 0;
138 const double rn44SEC = 0;
139 const double rn44SAFE = 1.01e-07;
140 const double rn44GUAR = 0;
141 const double rn45SEC = 0;
142 const double rn45SAFE = 1.01e-06;
143 const double rn45GUAR = 0;
144 const double rn46SEC = 0;
145 const double rn46SAFE = 1.05e-07;
146 const double rn46GUAR = 0;
147 const double rn47SEC = 0;
148 const double rn47SAFE = 1.05e-07;
149 const double rn47GUAR = 0;
150 const double rn48SEC = 0;
151 const double rn48SAFE = 1.01e-07;
152 const double rn48GUAR = 0;
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153 const double rn49SEC = 0;
154 const double rn49SAFE = 1.01e-07;
155 const double rn49GUAR = 0;
156 const double rn50SEC = 0;
157 const double rn50SAFE = 1.3e-6;
158 const double rn50GUAR = 1.3e-6;
159 const double rn51SEC = 1.3890e-5;
160 const double rn51SAFE = 1.1e-6;
161 const double rn51GUAR = 0;
162 const double rn51CORREC = 1.3e-4;

164 formula n2essentials = n7=0;
165 formula n13essentials = n17=0 & n16=0;
166 formula n15essentials = n19=0;
167 formula n21essentials = n20=0;
168 formula n23essentials = n26=0 & n27=0;
169 formula n24essentials = n21=0;
170 formula n25essentials = n21=0;
171 formula n26essentials = n23=0;
172 formula n27essentials = n23=0;
173 formula CUessentials = n39=0 & (n47=0 | n46=0) & (n41=0 | n38=0) & (n49=0 &

n48=0) & (n45=0 &n44=0) & (n43=0 | n42=0) & (n37=0 | n36=0) & (n35=0 &
n34=0) & (n33=0 | n32=0) & n7=0;

174 formula operational = (n10=0) & (n11=0) & (n12=0) & (n14=0) & (n15=0 & (n19
=0)) & (n16=0) & (n18=0) & (n20=0) & (n21=0 & (n20=0)) & (n23=0 & ((n26
=0 & (n23=0)) & n27=0)) & (n29=0 & CUessentials | n30=0 & CUessentials
| n31=0 & CUessentials) ;

176 module generatedScenario

178 n1: [0..2] init 0;
179 n2: [0..2] init 0;
180 n3: [0..2] init 0;
181 n4: [0..2] init 0;
182 n5: [0..2] init 0;
183 n6: [0..2] init 0;
184 n7: [0..2] init 0;
185 n8: [0..2] init 0;
186 n9: [0..2] init 0;
187 n10: [0..2] init 0;
188 n11: [0..2] init 0;
189 n12: [0..2] init 0;
190 n13: [0..2] init 0;
191 n14: [0..2] init 0;
192 n15: [0..2] init 0;
193 n16: [0..2] init 0;
194 n17: [0..2] init 0;
195 n18: [0..2] init 0;
196 n19: [0..2] init 0;
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197 n20: [0..2] init 0;
198 n21: [0..2] init 0;
199 n22: [0..2] init 0;
200 n23: [0..2] init 0;
201 n24: [0..2] init 0;
202 n25: [0..2] init 0;
203 n26: [0..2] init 0;
204 n27: [0..2] init 0;
205 n28: [0..2] init 0;
206 n29: [0..2] init 0;
207 n29internalfailure: bool init false;
208 n30: [0..2] init 0;
209 n31: [0..2] init 0;
210 n31internalfailure: bool init false;
211 n32: [0..2] init 0;
212 n33: [0..2] init 0;
213 n34: [0..2] init 0;
214 n35: [0..2] init 0;
215 n36: [0..2] init 0;
216 n37: [0..2] init 0;
217 n38: [0..2] init 0;
218 n39: [0..2] init 0;
219 n40: [0..2] init 0;
220 n41: [0..2] init 0;
221 n42: [0..2] init 0;
222 n43: [0..2] init 0;
223 n44: [0..2] init 0;
224 n45: [0..2] init 0;
225 n46: [0..2] init 0;
226 n47: [0..2] init 0;
227 n48: [0..2] init 0;
228 n49: [0..2] init 0;
229 n50: [0..2] init 0;
230 n51: [0..2] init 0;

232 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
233 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
234 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
235 [] (n1=2 & n8=0) & (n6=0) & (operational) -> rn8SEC-rn6GUAR : (n8’=2);
236 [] (n1=2 & n8=0) & (n6!=0) & (operational) -> rn8SEC : (n8’=2);
237 [] (n2=0) & (!n2essentials) & (operational)-> (n2’=1);
238 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
239 [] (n2=2) & (operational) -> rn2SAFE : (n2’=1);
240 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);
241 [] (n3=2) & (operational) -> rn3SAFE : (n3’=1);
242 [] (n3=2 & n8=0) & (n6=0) & (operational) -> rn8SEC-rn6GUAR : (n8’=2);
243 [] (n3=2 & n8=0) & (n6!=0) & (operational) -> rn8SEC : (n8’=2);
244 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
245 [] (n4=0) & (operational) -> rn4SEC : (n4’=2);
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246 [] (n4=2) & (operational) -> rn4SAFE : (n4’=1);
247 [] (n4=2 & n8=0) & (n6=0) & (operational) -> rn8SEC-rn6GUAR : (n8’=2);
248 [] (n4=2 & n8=0) & (n6!=0) & (operational) -> rn8SEC : (n8’=2);
249 [] (n5=0) & (operational) -> rn5SAFE : (n5’=1);
250 [] (n5=0) & (n6=0) & (operational) -> rn5SEC-rn6GUAR : (n5’=2);
251 [] (n5=0) & (n6!=0) & (operational) -> rn5SEC : (n5’=2);
252 [] (n5=2) & (operational) -> rn5SAFE : (n5’=1);
253 [] (n5=2 & n9=0) & (n50=0) & (operational) -> rn9SEC-rn50GUAR : (n9’=2);
254 [] (n5=2 & n9=0) & (n50!=0) & (operational) -> rn9SEC : (n9’=2);
255 [] (n6=0) & (operational) -> rn6SAFE : (n6’=1);
256 [] (n6=1) & (operational) -> rn6DEFREC : (n6’=0);
257 [] (n7=0) & (operational) -> rn7SAFE : (n7’=1);
258 [] (n8=0) & (operational) -> rn8SAFE : (n8’=1);
259 [] (n8=1) & (operational) -> rn8DEFREC : (n8’=0);
260 [] (n8=2) & (operational) -> rn8SAFE : (n8’=1);
261 [] (n8=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
262 [] (n8=2 & n9=0) & (n50=0) & (operational) -> rn9SEC-rn50GUAR : (n9’=2);
263 [] (n8=2 & n9=0) & (n50!=0) & (operational) -> rn9SEC : (n9’=2);
264 [] (n8=2 & n1=0) & (operational) -> rn1SEC : (n1’=2);
265 [] (n8=2 & n4=0) & (operational) -> rn4SEC : (n4’=2);
266 [] (n8=2 & n3=0) & (operational) -> rn3SEC : (n3’=2);
267 [] (n9=0) & (operational) -> rn9SAFE : (n9’=1);
268 [] (n9=2) & (operational) -> rn9SAFE : (n9’=1);
269 [] (n9=2 & n18=0) & (operational) -> rn18SEC : (n18’=2);
270 [] (n9=2 & n28=0) & (operational) -> rn28SEC : (n28’=2);
271 [] (n9=2 & n31=0) & (operational) -> rn31SEC : (n31’=2);
272 [] (n9=2 & n30=0) & (operational) -> rn30SEC : (n30’=2);
273 [] (n9=2 & n29=0) & (operational) -> rn29SEC : (n29’=2);
274 [] (n9=2 & n12=0) & (operational) -> rn12SEC : (n12’=2);
275 [] (n9=2 & n16=0) & (operational) -> rn16SEC : (n16’=2);
276 [] (n9=2 & n8=0) & (n6=0) & (operational) -> rn8SEC-rn6GUAR : (n8’=2);
277 [] (n9=2 & n8=0) & (n6!=0) & (operational) -> rn8SEC : (n8’=2);
278 [] (n9=2 & n15=0) & (operational) -> rn15SEC : (n15’=2);
279 [] (n9=2 & n14=0) & (operational) -> rn14SEC : (n14’=2);
280 [] (n9=2 & n23=0) & (operational) -> rn23SEC : (n23’=2);
281 [] (n9=2 & n22=0) & (operational) -> rn22SEC : (n22’=2);
282 [] (n9=2 & n21=0) & (operational) -> rn21SEC : (n21’=2);
283 [] (n9=2 & n20=0) & (operational) -> rn20SEC : (n20’=2);
284 [] (n9=2 & n10=0) & (operational) -> rn10SEC : (n10’=2);
285 [] (n9=2 & n13=0) & (operational) -> rn13SEC : (n13’=2);
286 [] (n9=2 & n11=0) & (operational) -> rn11SEC : (n11’=2);
287 [] (n10=0) & (operational) -> rn10SAFE : (n10’=1);
288 [] (n10=2) & (operational) -> rn10SAFE : (n10’=1);
289 [] (n11=0) & (operational) -> rn11SAFE : (n11’=1);
290 [] (n11=2) & (operational) -> rn11SAFE : (n11’=1);
291 [] (n12=0) & (operational) -> rn12SAFE : (n12’=1);
292 [] (n12=2) & (operational) -> rn12SAFE : (n12’=1);
293 [] (n13=0) & (!n13essentials) & (operational)-> (n13’=1);
294 [] (n13=0) & (operational) -> rn13SAFE : (n13’=1);
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295 [] (n13=2) & (operational) -> rn13SAFE : (n13’=1);
296 [] (n14=0) & (operational) -> rn14SAFE : (n14’=1);
297 [] (n14=2) & (operational) -> rn14SAFE : (n14’=1);
298 [] (n15=0) & (!n15essentials) & (operational)-> (n15’=1);
299 [] (n15=0) & (operational) -> rn15SAFE : (n15’=1);
300 [] (n15=2) & (operational) -> rn15SAFE : (n15’=1);
301 [] (n16=0) & (operational) -> rn16SAFE : (n16’=1);
302 [] (n16=2) & (operational) -> rn16SAFE : (n16’=1);
303 [] (n17=0) & (operational) -> rn17SAFE : (n17’=1);
304 [] (n18=0) & (operational) -> rn18SAFE : (n18’=1);
305 [] (n18=2) & (operational) -> rn18SAFE : (n18’=1);
306 [] (n19=0) & (operational) -> rn19SAFE : (n19’=1);
307 [] (n20=0) & (operational) -> rn20SAFE : (n20’=1);
308 [] (n20=2) & (operational) -> rn20SAFE : (n20’=1);
309 [] (n21=0) & (!n21essentials) & (operational)-> (n21’=1);
310 [] (n21=0) & (operational) -> rn21SAFE : (n21’=1);
311 [] (n21=2) & (operational) -> rn21SAFE : (n21’=1);
312 [] (n22=0) & (operational) -> rn22SAFE : (n22’=1);
313 [] (n22=2) & (operational) -> rn22SAFE : (n22’=1);
314 [] (n23=0) & (!n23essentials) & (operational)-> (n23’=1);
315 [] (n23=0) & (operational) -> rn23SAFE : (n23’=1);
316 [] (n23=2) & (operational) -> rn23SAFE : (n23’=1);
317 [] (n24=0) & (!n24essentials) & (operational)-> (n24’=1);
318 [] (n24=0) & (operational) -> rn24SAFE : (n24’=1);
319 [] (n25=0) & (!n25essentials) & (operational)-> (n25’=1);
320 [] (n25=0) & (operational) -> rn25SAFE : (n25’=1);
321 [] (n26=0) & (!n26essentials) & (operational)-> (n26’=1);
322 [] (n26=0) & (operational) -> rn26SAFE : (n26’=1);
323 [] (n27=0) & (!n27essentials) & (operational)-> (n27’=1);
324 [] (n27=0) & (operational) -> rn27SAFE : (n27’=1);
325 [] (n28=0) & (operational) -> rn28SAFE : (n28’=1);
326 [] (n28=2) & (operational) -> rn28SAFE : (n28’=1);
327 [] (n29=0) & (!CUessentials) & (operational)-> (n29’=1);
328 [] (n29=0) & (operational) -> rn29SAFE : (n29’=1) & (n29internalfailure’=

true);
329 [] (n29=1) & (operational) & (n29internalfailure)-> rn29DEFREC : (n29’=0) &

(n29internalfailure’=false);
330 [] (n29=2) & (operational) -> rn29SAFE : (n29’=1);
331 [] (n29=2 & n9=0) & (n50=0) & (operational) -> rn9SEC-rn50GUAR : (n9’=2);
332 [] (n29=2 & n9=0) & (n50!=0) & (operational) -> rn9SEC : (n9’=2);
333 [] (n29=2 & n51=0) & (n6=0) & (operational) -> rn51SEC-rn6GUAR : (n51’=2);
334 [] (n29=2 & n51=0) & (n6!=0) & (operational) -> rn51SEC : (n51’=2);
335 [] (n29=2) & (operational) -> rn29CORREC : (n29’=0);
336 [] (n30=0) & (!CUessentials) & (operational)-> (n30’=1);
337 [] (n30=0) & (operational) -> rn30SAFE : (n30’=1);
338 [] (n30=2) & (operational) -> rn30SAFE : (n30’=1);
339 [] (n30=2 & n9=0) & (n50=0) & (operational) -> rn9SEC-rn50GUAR : (n9’=2);
340 [] (n30=2 & n9=0) & (n50!=0) & (operational) -> rn9SEC : (n9’=2);
341 [] (n30=2 & n51=0) & (n6=0) & (operational) -> rn51SEC-rn6GUAR : (n51’=2);
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342 [] (n30=2 & n51=0) & (n6!=0) & (operational) -> rn51SEC : (n51’=2);
343 [] (n31=0) & (!CUessentials) & (operational)-> (n31’=1);
344 [] (n31=0) & (operational) -> rn31SAFE : (n31’=1) & (n31internalfailure’=

true);
345 [] (n31=1) & (operational) & (n31internalfailure)-> rn31DEFREC : (n31’=0) &

(n31internalfailure’=false);
346 [] (n31=2) & (operational) -> rn31SAFE : (n31’=1);
347 [] (n31=2 & n9=0) & (n50=0) & (operational) -> rn9SEC-rn50GUAR : (n9’=2);
348 [] (n31=2 & n9=0) & (n50!=0) & (operational) -> rn9SEC : (n9’=2);
349 [] (n31=2 & n51=0) & (n6=0) & (operational) -> rn51SEC-rn6GUAR : (n51’=2);
350 [] (n31=2 & n51=0) & (n6!=0) & (operational) -> rn51SEC : (n51’=2);
351 [] (n31=2) & (operational) -> rn31CORREC : (n31’=0);
352 [] (n32=0) & (operational) -> rn32SAFE : (n32’=1);
353 [] (n33=0) & (operational) -> rn33SAFE : (n33’=1);
354 [] (n34=0) & (operational) -> rn34SAFE : (n34’=1);
355 [] (n35=0) & (operational) -> rn35SAFE : (n35’=1);
356 [] (n36=0) & (operational) -> rn36SAFE : (n36’=1);
357 [] (n37=0) & (operational) -> rn37SAFE : (n37’=1);
358 [] (n38=0) & (operational) -> rn38SAFE : (n38’=1);
359 [] (n39=0) & (operational) -> rn39SAFE : (n39’=1);
360 [] (n40=0) & (operational) -> rn40SAFE : (n40’=1);
361 [] (n41=0) & (operational) -> rn41SAFE : (n41’=1);
362 [] (n42=0) & (operational) -> rn42SAFE : (n42’=1);
363 [] (n43=0) & (operational) -> rn43SAFE : (n43’=1);
364 [] (n44=0) & (operational) -> rn44SAFE : (n44’=1);
365 [] (n45=0) & (operational) -> rn45SAFE : (n45’=1);
366 [] (n46=0) & (operational) -> rn46SAFE : (n46’=1);
367 [] (n47=0) & (operational) -> rn47SAFE : (n47’=1);
368 [] (n48=0) & (operational) -> rn48SAFE : (n48’=1);
369 [] (n49=0) & (operational) -> rn49SAFE : (n49’=1);
370 [] (n50=0) & (operational) -> rn50SAFE : (n50’=1);
371 [] (n51=0) & (operational) -> rn51SAFE : (n51’=1);
372 [] (n51=0) & (n6=0) & (operational) -> rn51SEC-rn6GUAR : (n51’=2);
373 [] (n51=0) & (n6!=0) & (operational) -> rn51SEC : (n51’=2);
374 [] (n51=2) & (operational) -> rn51SAFE : (n51’=1);
375 [] (n51=2 & n31=0) & (operational) -> rn31SEC : (n31’=2);
376 [] (n51=2 & n30=0) & (operational) -> rn30SEC : (n30’=2);
377 [] (n51=2 & n29=0) & (operational) -> rn29SEC : (n29’=2);
378 [] (n51=2) & (operational) -> rn51CORREC : (n51’=0);

380 endmodule

382 label "systemfailure" = !operational;
383 label "defective" = (n10=1) | (n11=1) | (n12=1) | (n14=1) | (n15=1 | (n19

=1)) | (n16=1) | (n18=1) | (n20=1) | (n21=1 | (n20=1)) | (n23=1 | ((n26
=1 | (n23=1)) | n27=1)) | (n29=1 | (n39=1 | (n47=1 & n46=1) | (n41=1 &
n38=1) | (n49=1 | n48=1) | (n45=1 |n44=1) | (n43=1 & n42=1) | (n37=1 &
n36=1) | (n35=1 | n34=1) | (n33=1 & n32=1) | n7=1) & n30=1 | (n39=1 | (
n47=1 & n46=1) | (n41=1 & n38=1) | (n49=1 | n48=1) | (n45=1 |n44=1) | (
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n43=1 & n42=1) | (n37=1 & n36=1) | (n35=1 | n34=1) | (n33=1 & n32=1) |
n7=1) & n31=1 | (n39=1 | (n47=1 & n46=1) | (n41=1 & n38=1) | (n49=1 |
n48=1) | (n45=1 |n44=1) | (n43=1 & n42=1) | (n37=1 & n36=1) | (n35=1 |
n34=1) | (n33=1 & n32=1) | n7=1));

384 label "corrupted" = n10=2 | n11=2 | n12=2 | n14=2 | n15=2 | n16=2 | n18=2 |
n20=2 | n21=2 | n23=2 | (n29=2 & n30=2 & n31=2) | (n30=2 & n29=2 & n31

=2) | (n31=2 & n30=2 & n29=2) ;

Listing A.15: Original: From outside

A.4 Related Work

This section contains the ERIS-generated PRISM code used in the Related Work
Chapter 8.

1 ctmc

3 const double rn1SEC = 0.20;
4 const double rn1SAFE = 0.1;
5 const double rn1GUAR = 0;
6 const double rn2SEC = 0.05;
7 const double rn2SAFE = 0.2;
8 const double rn2GUAR = 0;
9 const double rn3SEC = 0;

10 const double rn3SAFE = 0.3;
11 const double rn3GUAR = 0.20;
12 const double rn4SEC = 0.25;
13 const double rn4SAFE = 0.15;
14 const double rn4GUAR = 0;

16 formula n4essentials = n1=0 | n2=0 ;
17 formula operational = (n4=0 & (n1=0 | n2=0 )) ;

19 module generatedScenario

21 n1: [0..2] init 0;
22 n2: [0..2] init 0;
23 n3: [0..2] init 0;
24 n4: [0..2] init 0;

26 [] (n1=0) & (operational) -> rn1SAFE : (n1’=1);
27 [] (n1=0) & (operational) -> rn1SEC : (n1’=2);
28 [] (n1=2) & (operational) -> rn1SAFE : (n1’=1);
29 [] (n1=2 & n2=0) & (operational) -> rn2SEC : (n2’=2);
30 [] (n2=0) & (operational) -> rn2SAFE : (n2’=1);
31 [] (n2=0) & (operational) -> rn2SEC : (n2’=2);
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32 [] (n2=2) & (operational) -> rn2SAFE : (n2’=1);
33 [] (n2=2 & n4=0) & (n3=0) & (operational) -> rn4SEC-rn3GUAR : (n4’=2);
34 [] (n2=2 & n4=0) & (n3!=0) & (operational) -> rn4SEC : (n4’=2);
35 [] (n3=0) & (operational) -> rn3SAFE : (n3’=1);
36 [] (n4=0) & (!n4essentials) & (operational)-> (n4’=1);
37 [] (n4=0) & (operational) -> rn4SAFE : (n4’=1);
38 [] (n4=2) & (operational) -> rn4SAFE : (n4’=1);

40 endmodule

42 label "systemfailure" = !operational;
43 label "defective" = (n4=1 | (n1=1 & n2=1 )) ;
44 label "corrupted" = n4=2 ;

Listing A.16: AT-CARS and ERIS Comparison Model
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B Evaluation Results

This chapter contains the results of all performed PRISM and AT-CARS computa-
tions needed to generate the plots and graphics of this thesis.

B.1 Modularization

Subsequent tables contain specific results of the example evaluations of Chapter
5, more precisely Section 5.3.
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Table B.1: Example 1: Result Probabilities and Module Rates at Time T

T Probability in Percent (rounded)
Original Modularization Original Modularization

attack_rate(n5) = 0.2 attack_rate(n5) = 1
0 0.0 0.0 0.0 0.0
1 0000029 0.0000049 0.000013 0.000021
2 0.00028 0.00047 0.0012 0.0018
3 0.0036 0.0059 0.0138 0.0197
4 0.0207 0.0328 0.0723 0.0987
5 0.0753 0.1166 0.2439 0.3194
6 0.2068 0.3129 0.6224 0.7869
7 0.4675 0.6919 0.0131 1.6109
8 0.9176 1.3291 2.4124 2.8855
9 1.6178 2.2954 3.9963 4.6755
10 2.6228 3.6480 6.1071 7.0096
11 3.9753 5.4248 8.7525 9.8806
12 5.7028 7.6414 11.9078 13.2496
13 7.8159 10.2911 15.5211 17.0534
14 10.3081 13.3476 19.5212 21.2127
15 13.1582 16.7679 23.825 25.6397
16 16.3323 20.4976 28.3447 30.2448
17 19.7868 24.4743 32.9935 34.9419
18 23.4718 28.6325 37.69 39.6523
19 27.3341 32.9065 42.3612 44.3066
20 31.3194 37.2338 46.9441 48.8466
21 35.3751 41.5568 51.387 53.2251
22 39.4516 45.8242 55.6486 57.4056
23 43.5036 49.9918 59.6981 61.3617
24 47.4912 54.0232 63.5141 65.0759
25 51.3799 57.8892 67.0831 68.5383
26 55.1411 61.5676 70.3989 71.7455
27 58.7517 65.0426 73.4608 74.6992
28 62.1941 68.3044 76.2729 77.4055
29 65.4555 71.3479 78.8428 79.8734
30 68.5277 74.1724 81.1808 82.1142
31 71.4063 76.7806 83.2991 84.1409
32 74.0902 79.178 85.2112 85.9674
33 76.5812 81.3725 86.9311 87.608
34 78.8833 83.3732 88.4732 89.0772
35 81.0026 85.1908 89.8519 90.3891
36 82.9464 86.8365 91.0811 91.5576
37 84.723 88.3218 92.1743 92.5957
38 86.3418 89.6584 93.1441 93.516
39 87.8121 90.858 94.0026 94.33
40 89.1439 91.9318 94.761 95.0486
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Table B.2: Example 2: Result Probabilities and Module Rates at Time T

T Probability in Percent (rounded)
Original Simple

Modularization
Depth-2
Modularization

Adapted
Modularization

attack_rate(ni) = 0.15
0 0.0 0.0 0.0 0.0
1 0.0021 0.0019 0.0041 0.0036
2 0.0330 0.0266 0.0617 0.0502
3 0.1589 0.1195 0.2887 0.2194
4 0.4686 0.3358 0.8316 0.5999
5 1.0543 0.7292 1.8311 1.2691
6 1.9955 1.3459 3.3967 2.2838
7 3.3494 2.2208 5.5932 3.6775
8 5.1472 3.3769 8.4376 5.461
9 7.3941 4.8248 11.9027 7.626
10 10.0721 6.5642 15.9252 10.1484
11 13.1444 8.5854 20.4158 12.9927
12 16.5605 10.8708 25.2686 16.1158
13 20.2613 13.3969 30.3716 19.4697
14 24.1828 16.1357 35.6133 23.005
15 28.2607 19.0567 40.8894 26.6727
16 32.4328 22.1277 46.1066 30.4258
17 36.6411 25.3163 51.1854 34.2207
18 40.8334 28.5908 56.0608 38.0177
19 44.9642 31.9205 60.6829 41.7816
20 48.9948 35.2768 65.0156 45.4821
21 52.8935 38.6333 69.0358 49.0931
22 56.6353 41.9662 72.7314 52.5936
23 60.2013 45.2541 76.0998 55.9664
24 63.5784 48.47 79.1461 59.1983
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B.2 Recovery

The following Table B.3 contains the detailed evaluation results of the analysed
example of Chapter 6.

Table B.3: Result Probabilities and Input Rates at Time T

T Probability in Percent (rounded)
Without Recovery Self-performed

Recovery
Recovery from
the outside

Recovery by
another component

0 0.0 0.0 0.0 0.0
1 0.2381 0.2343 0.2345 0.2343
2 0.9085 0.8804 0.8843 0.8818
3 1.9525 1.8655 1.8827 1.8715
4 3.3183 3.1279 3.1766 3.1458
5 4.9593 4.6168 4.7219 4.6563
6 6.8330 6.2877 6.4803 6.3620
7 8.9006 8.1027 8.4182 8.2275
8 11.1266 10.0291 10.5053 10.2223
9 13.4788 12.0386 12.7144 12.3197
10 15.9281 14.1074 15.0205 14.4965
11 18.4484 16.2149 17.4012 16.7323
12 21.0166 18.3437 19.8363 19.0097
13 23.6123 20.4793 22.3076 21.3131
14 26.2177 22.6096 24.7989 23.6294
15 28.8175 24.7245 27.2960 25.9470
16 31.3984 26.8159 29.7862 28.2560
17 33.9493 28.8772 32.2588 30.5481
18 36.4610 30.9031 34.7044 32.8161
19 38.9258 32.8895 37.1150 35.0539
20 41.3373 34.8333 39.4839 37.2565
21 43.6908 36.7323 41.8055 39.4197
22 45.9822 38.5849 44.0753 41.5401
23 48.2088 40.3900 46.2897 43.6149
24 50.3685 42.1047 48.4457 45.6420
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B.3 Automation Analysis Results

The subsequent tables show the results computed for analysis of the system ex-
ample in Chapter 7, Section 7.4. Table B.6 shows one simulation run of AT-CARS
as an example.

Table B.4: AT-CARS Module Rates

Month Probability Rate
Failure
(defective)

Attack
(corrupted)

0 0.0 0.0
1 0.00109745 0.0
2 0.00103438 9.70259e-06
3 0.00105395 9.53744e-06
4 0.00108267 1.71487e-05
5 0.001108 3.39089e-05
6 0.00113479 5.12639e-05
7 0.00116753 6.31768e-05
8 0.00120027 7.47584e-05
9 0.00123662 8.20148e-05
10 0.00127123 8.99793e-05
11 0.00130127 0.000101265
12 0.00133847 0.000104189
13 0.00137536 0.000106061
14 0.00140833 0.000110367
15 0.00144031 0.000114167
16 0.00146973 0.000118984
17 0.00150055 0.000120901
18 0.00153321 0.000119487
19 0.0015617 0.000120577
20 0.00158549 0.000124665
21 0.00160904 0.000127389
22 0.00163189 0.000129182
23 0.0016516 0.0001324
24 0.00167 0.00013524
Computation 336 minutesTime

Table B.5: Option 3 Evaluation with AT-
CARS Module

Month Probability in Percent
System Failure

0 0.0
1 0.354747
2 0.708293
3 1.06649
4 1.43109
5 1.79881
6 2.17149
7 2.55242
8 2.93878
9 3.33342
10 3.7324
11 4.13249
12 4.54467
13 4.96216
14 5.38046
15 5.80226
16 6.22512
17 6.65385
18 7.08921
19 7.52228
20 7.95126
21 8.38242
22 8.81475
23 9.2437
24 9.67186
Computation 229 minutesTime
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Table B.6: AT-CARS Example Iteration

Event System
Time in h

Failed Element Event Description

0 0.0 Mission Start
1 129.8407 SW Mission Planning Failure + Isolation Start
2 129.8407 SW Mission Planning Isolated + Waiting for Reconfiguration
3 280.3914 SW Detection Failure + Isolation Start
4 280.3914 SW Detection Isolated + Switching Start
5 280.3914 SW Detection Switched + Waiting for Reconfiguration
6 740.9053 SW Mission Planning Failure + Isolation Start
7 740.9053 SW Mission Planning Isolated + Switching Start
8 740.9053 SW Mission Planning Switched + Waiting for Reconfiguration
9 4718.2199 SW Prediction Failure + Isolation Start
10 4718.2199 SW Prediction Isolated + Switching Start
11 4718.2199 SW Prediction Switched + Waiting for Reconfiguration
12 5231.1182 HDL n39 Failure
13 5231.1182 SWE Detection Failure + Isolation Start
14 5231.1182 SWE Detection Isolated + Waiting for Reconfiguration
15 6838.3127 Localization Failure + Isolation Start
16 6838.3127 Localization Isolated + Waiting for Reconfiguration
17 7419.0539 CU2 n31 Failure
18 7419.0539 SW Detection Failure + Isolation Start
19 7419.0539 SW Prediction Failure + Isolation Start
20 7419.0539 SW Motion Planning Failure + Isolation Start
21 7419.0539 SW Actuation Failure + Isolation Start
22 7419.0539 SW Detection Isolated + Switching failed
23 17520 Mission Failed
Note that SW refers to the software application (defined by Autoware [Kat+18],
see also Section 2.2.3) running on the CUs as active and active hot instances. SWE

is the respective degraded version running on the emergency computing unit CUE.
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Table B.7: Corruption Result Probabilities

Month Probability in Percent
Corruption of n5
(OBD-II interface)

Corruption of n8
(Infotainment)

Corruption of n51
(VANET Router)

0 0.0
1 1.09346 6.41461e-03 0.829384
2 2.16941 0.0250678 1.57323
3 3.22798 0.0551039 2.24022
4 4.26931 0.095706 2.83813
5 5.29364 0.146099 3.37406
6 6.30111 0.205542 3.85431
7 7.29177 0.273326 4.28448
8 8.26587 0.348783 4.66974
9 9.22342 0.431268 5.01459
10 10.1648 0.520185 5.32326
11 11.0903 0.614975 5.59957
12 11.9995 0.715048 5.84646
13 12.8928 0.81991 6.06713
14 13.7709 0.929102 6.26444
15 14.6337 1.04215 6.44069
16 15.4816 1.15864 6.59815
17 16.3143 1.27813 6.73853
18 17.132 1.40021 6.86351
19 17.9356 1.52461 6.97507
20 18.7255 1.65102 7.07472
21 19.5015 1.77906 7.16339
22 20.2637 1.90844 7.24224
23 21.0129 2.03895 7.31252
24 21.7489 2.1703 7.37497
Computation 248 minutes 228 minutes 232 minutesTime
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