
A Thesis Submitted for the Degree of Dr.-Ing.

Self-Verification
Verification of Embedded Systems after Deployment

by
Martin Ring

the 28th of May 2021

Supervisor: Prof. Dr. Christoph Lüth
Second Referee: Prof. Dr. Martin Fränzle

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Introduction ⋅⋅⋅ 1

Self-Verification ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 21.1
Structure ⋅⋅⋅ 41.2
About this thesis ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4

Source code ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 51.3.1
Disambiguation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 61.3.2

1.3

1

A Priori Verification ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7
Background ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 72.1
Hardware Design Abstractions ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9

The Informal Specification Level (ISL) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 92.2.1
The Formal Specification Level (FSL) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 92.2.2
The Electronic System Level (ESL) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 102.2.3
The Register Transfer Level (RTL) and below⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 112.2.4
Different Levels of Abstraction ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 112.2.5
Example: an Access Control System ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 122.2.6

2.2

Working with SysML ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 14
Scope of the Language⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 152.3.1
Syntax⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 152.3.2
Semantics ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 172.3.3
Reference Compiler ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 172.3.4

2.3

A Framework for Change Impact Analysis⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 17
Related Work ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 172.4.1
Underlying Semantics⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 192.4.2
Semantic Relations Across Specification Levels ⋅⋅⋅⋅⋅⋅⋅ 222.4.3
Syntactic Representation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 232.4.4
Syntactic Difference Analysis ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 242.4.5
Semantic Difference Analysis ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 242.4.6
Change Impact Analysis ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 272.4.7

2.4

Reasoning about OCL ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 282.5
A User Interface for Change Impact Analysis⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 292.6

2

i

Conclusion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 322.7
Fundamentals of Self-Verification ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 33

General Idea ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 343.1
Implementation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 37

The Design Process ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 383.2.1
The Design Process At Work ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 393.2.2

3.2

Evaluation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 45
Evaluation⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 463.3.1
Practical Exploitation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 483.3.2

3.3

Discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 503.4
Conclusion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 513.5

3

Design of Self-Verifying Systems ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 53
Self-Verification, Design Time & Run-time Verification ⋅⋅⋅⋅⋅ 534.1
Case Study ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 56

Informal Description ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 564.2.1
Formal Specification ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 584.2.2
When to Verify ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 614.2.3

4.2

Realization ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 63
Applying the Design-Flow for Self-Verification ⋅⋅⋅⋅⋅⋅⋅ 634.3.1
The Demonstrator⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 654.3.2

4.3

When to Prove ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 694.4
Conclusion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 704.5

4

Proof Partitioning⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 71
Fixing Free Variables ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 725.1
Verification Run Time Analysis ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 765.2
Proposed Solution ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 785.3
Implementation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 81

Evolutionary Algorithms ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 815.4.1
EA-based Verification Run Time Analysis⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 825.4.2

5.4

Experiments and Results ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 84
Set-up ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 855.5.1
Considered Benchmarks ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 855.5.2
Obtained Results⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 865.5.3
Further Discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 895.5.4

5.5

5

ii

Conclusion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 905.6
The Future of Self-Verification ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 91

Predictive Self-Verification⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 916.1
Just-in-Time Verification ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 92

Prerequisites ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 946.2.1
Operation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 946.2.2

6.2

Dependent Operation⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 976.3
Verification Aware Inference ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 986.4
Conclusion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 996.5

6

Conclusion ⋅⋅⋅ 101
Contributions⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1037.1
Future Work ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1047.2
Conclusion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1057.3

7

References ⋅⋅⋅ 107

iii

Disclaimer
I hereby declare that

Martin Ring, the 19th of April 2021

this dissertation is my own original work,
it has been completed without claiming any illegitimate
assistance and
I have acknowledged all sources used (both, verbatim and
regarding their content).

•
•

•

iv

1 Introduction
Contemporary embedded and cyber-physical systems have become
so commonplace that we, almost unconsciously, rely on their correct
functioning — we just expect our smartphone, our car, our home ap-
pliances to work. This is contrary to the fact that these systems have
reached a complexity where the verification of their correct behav-
iour becomes prohibitively expensive. In the past decades, the verifi-
cation of embedded and cyber-physical systems has become a press-
ing, complex and elaborate problem for which a number of high-end
tools are available [5]–[8]. Designers and verification engineers have
access to an enormous amount of computational power, e.g. in terms
of high-end design and compute servers. Yet, time-to-market con-
straints pressurize the early release of products. As a result, full cor-
rectness proofs are often reserved for only the most safety-critical
systems. For all other devices, errors during the design process may
remain undetected in the final product.

The exponential nature of the problem is fundamentally tied to the
combinatorial explosion in verification scenarios [7]. Each year, more
complex systems are being designed and need to be verified. As sys-
tems incorporate more components and interconnections, the num-
ber of potential states and behaviors to verify grows disproportion-
ately. Moore’s Law, which observes a doubling in transistors in inte-
grated circuits approximately every two years [9], exemplifies this es-
calating complexity. This vast increase in elements and their interde-

1

1.1

pendencies challenges traditional verification processes [10]. Iterative
improvements have been proposed in the past years, e.g. the intro-
duction of higher levels of abstraction for design such as the Formal
Specification Level [11] and the Electronic System Level [12], or the lifting of
SAT solvers to solvers for SAT Modulo Theory (SMT) [13]–[17], but these
cannot and will not be able to cope with the complexity. The conse-
quences are evident today: While several years back, the actual im-
plementation process was the core activity in any design flow, verifi-
cation dominates today. In fact, more than 40% of the time and costs
within the design are devoted to prove the correctness of a system
[18].

Because of this situation, we are convinced that verification cannot
solely be addressed by incremental improvements of existing ap-
proaches anymore, but rather a shift in the existing verification para-
digm. In this thesis, we are proposing a methodology towards such a
paradigm shift.

Self-Verification

Current verification techniques such as theorem proving, model
checking, static analysis or testing are conducted at design time and
finished before deployment, for two reasons: firstly, we want to make
sure the system has no errors before putting it into operation, and
secondly, it is not entirely clear how to conduct verification at run-
time. But this approach has the drawback that the time for verifica-
tion is limited; errors which are not caught by the time the system is
going into operation will remain undetected and may later on have
unintended, unpleasant, or even catastrophic consequences.

On the other hand, verification does not necessarily need to termi-
nate with the end of the development. In run-time verification, we check
whether a particular run of the system satisfies desired properties.
This has the advantage that we do not need to stop verification if we
deploy the system, and checking whether a specific run of the sys-

Self-Verification

2

tem satisfies the desired property is of lower complexity compared to
model-checking [19]. The drawbacks are that it may be costly to con-
tinuously monitor the behaviour of the system at run-time, and that
discovering an error post-deployment can often mean that corrective
measures are either limited or potentially more costly to implement.
This is particularly true for hardware, and systems where the split
between hardware and software is decided rather late in the develop-
ment process.

The idea of self-verification as envisioned in [20] is to investigate the
middle ground in between: verify properties of the system as soon as
practically possible, but as late as necessary. In other words, verifica-
tion does not terminate with deployment, but is also not deferred un-
til the last moment. The authors of [20] name three benefits that self-
verification yields:

Of these aspects, the scope of this work is the latter: How can infor-
mation gained during operation be utilised to speed up the verifica-
tion process so drastically that it becomes feasible? This thesis is not
concerned with the former two aspects and does not investigate how
computing power and time of deployed systems may be combined.
Contrarily, we assume less computational power and time, as we aim
to prove properties during normal operation on individual devices
with far less capabilities than a dedicated compute server has.

More resources – the computational power and verification effort
of thousands of deployed devices may be combined.
More time – the deployment of a system does no longer mark an
end to the verification.
More information – the environment of a deployed unit becomes
concrete and by this can substitute abstract variables with defin-
itive observations.

(1)

(2)

(3)

1 Introduction

3

1.2

1.3

[1]

[2]

Structure

The thesis is structured as follows:

About this thesis

This cumulative thesis is based on the following original publications:

M. Ring, J. Stoppe, C. Luth, and R. Drechsler, “Change impact analysis
for hardware designs — from natural language to system level,” in Fo-
rum on Specification & Design Languages (FDL 2016), Bremen, Germany,
Sep. 2016, pp. 1–7

My contribution: I was responsible for the entire implementation process and col-
laborated closely with the co-authors on the manuscript, leading the process of
drafting, revising, and finalizing the content.

M. Ring, F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Better Late
Than Never — Verification of Embedded Systems After Deployment,” in
Design, Automation Test in Europe Conference Exhibition (DATE 2019), Flo-
rence, Italy, Mar. 2019, pp. 890–895

Chapter 2 gives a brief overview of the state of the art in specifi-
cation of cyber-physicial and embedded systems and introduces
advanced concepts of a-priori verification which we build upon
in the following chapters.
Chapter 3 introduces and evaluates a simple scheme that can be
applied to postpone parts of a proof into run-time.
Chapter 4 dives deeper into the impacts self-verification has on
the development and how design decisions should be made.
Chapter 5 introduces a methodology to analyse proofs with re-
spect to the question, which parts offer the most reduction in
prover run time when instantiated during system run-time.
Finally, we sketch some advanced ideas for future work in
Chapter 6 and
conclude with a brief summary of the results in Chapter 7.

•

•

•

•

•

•

Structure

4

[3]

[4]

1.3.1

My contribution: I solely conducted the implementation process and was deeply in-
volved in the writing phase, actively collaborating on drafting, revisions, and shap-
ing the overall narrative. Additionally, I designed and executed the evaluation.

M. Ring and C. Lüth, “Let’s Prove It Later — Verification at Different
Points in Time,” in International Conference on Software Engineering and For-
mal Methods (SEFM 2019), Oslo, Norway, Sep. 2019, pp. 454–468

My contribution: I solely conducted the implementation from conception to com-
pletion, ensuring the work aligned with our research objectives. My collaboration
on the manuscript included leading of discussions as well as drafting, and finalizing
of all sections.

M. Ring, F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Verification
Runtime Analysis — Get the Most Out of Partial Verification,” in Design,
Automation Test in Europe Conference Exhibition (DATE 2020), Grenoble,
France, Mar. 2020, pp. 873–878

My contribution: I was solely responsible for the entire implementation, ensuring
its accuracy and relevance to our study. In the writing phase, I collaborated closely
with my co-authors, contributing to all sections of the paper. Additionally, I took
the lead in designing and executing the evaluation, ensuring our findings were both
robust and insightful.

Source code

This thesis is accompanied by a large amount of code, implementing
the described concepts, benchmarking these and providing user in-
terfaces for interactive exploration. All code is publicly hosted on the
code hosting platform GitHub. Whenever a section is accompanied
by an implementation, a link of the following form is provided:

martinring/thesis

PhD Thesis

JavaScript

1 Introduction

5

https://github.com/martinring/thesis

1.3.2

These links can be clicked in the HTML version of this thesis as well
as the PDF but obviously not in the printed form. They resolve to a
github link of the form https://github.com/<repo> where <repo> is the
name of the repository. E.g. the above link can be accessed as
https://github.com/martinring/thesis.

Disambiguation

We talk about different notions of time in this thesis and are con-
fronted with the ambiguous nature of the term “runtime”, “run-time”
or “run time”. While there exists no clear definition and all three dif-
ferent spellings may be used for every meaning of the word, in this
thesis we assign distinct meanings to the terms:

Unfortunately this distinction has not previously been made and
hence, the original publication [4] “Verification Runtime Analysis”
breaks these rules and should rather be titled “Verification Run Time
Analysis”.

All linked source code was developed solely by the author of this thesis, un-
less explicitly indicated otherwise.

run time is the length of time taken by the execution of a process.
E.g. “The run time of the verification was 42 seconds”.
run-time is the time at or during which a process runs. E.g. “The
property could be proven during run-time”. May be used as an
attributive adjective as in “run-time information” (referring to
information available during run-time).
finally a runtime is shorthand for Runtime Environment as in Java
Runtime or Haskell Runtime.

•

•

•

This thesis is typeset in HTML and CSS and is also available online:

https://thesis.martinring.de

About this thesis

6

https://thesis.martinring.de/

2

2.1

A Priori Verification
To allow thought about the verification of systems after deployment,
we will first establish a top-down agile work flow for a priori verifi-
cation in this chapter. To this end, we will introduce the different ab-
straction levels from informal, naturally phrased specifications down
to implementational aspects and show how these can be connected in
such a way that requirements can be tracked and verified across dif-
ferent abstraction levels. In the subsequent chapters, this will allow
us to choose where self-verification plugs into the flow.

Background

Traditional hardware design languages (HDLs) such as Verilog or
VHDL which are supposed to be synthesised into hardware are in-
creasingly unable to handle large scale designs due to their inherent
limitations. For example, they require designers to specify systems
to the point where they can be synthesised automatically. The result-
ing designs need to be built from the bottom up and can only be ver-
ified by thorough testing once complete [21], [22]. This approach can-
not cope with the shorter design cycles and reduced time to market
required in today’s marketplace.

The remedy suggested in this chapter is to provide designers with
more abstract languages that allow systems to be designed top-down,
starting with an abstract model of the system and its requirements.

7

Several of these languages are being used today. Natural language
specifications are the most abstract form of describing a system, al-
lowing the designers to use arbitrary language to explain how the
system is supposed to behave and be structured. Formal modelling
languages such as the UML or SysML build on a formal definition to
avoid the issue of ambiguities in the description. System-level mod-
elling language such as SystemC are the last step before synthesisable
HDLs, allowing to build virtual prototypes that can be simulated
without actually implementing in the final hardware design.

These languages form a hierarchy and are supposed to be used subse-
quently: providing a natural language description first, then formal-
ising it, providing a system level model and finally implementing the
design at the register transfer level gradually leads designers through
the process.

However, when following this approach, several new challenges
arise: firstly, we have to keep the models in the different levels of ab-
straction consistent across the different languages and formalisms in-
volved, secondly, we need a uniform notion of refinement, and thirdly,
we want to be able to track changes and their impacts across the differ-
ent levels of abstraction.

In this chapter we will present a framework which aims at meeting
these challenges. The framework provides a uniform management of
specifications in these languages at a syntactic level, semantics to re-
late their meaning (as far as possible) by a notion of refinement, and
a comprehensive change management across all levels. We have im-
plemented the framework in a prototype of the Change Impact Analy-
sis and Control Tool (ChImpAnC) to demonstrate its principal applica-
bility. It is particularly the change management which makes this ap-
proach viable, because we need to be able to handle changing specifi-
cations effectively; changes are the norm, rather than the exception,
as the design will rarely be correct the first time, and moreover the

Background

8

2.2

2.2.1

2.2.2

tool supported afforded at the more abstract levels will help us to find
errors earlier in the design process, necessitating these changes.

Hardware Design Abstractions

This section gives an overview over different abstraction levels in sys-
tem design, starting with the most abstract description and succes-
sively approaching traditional HDLs.

The Informal Specification Level (ISL)

The most abstract way to describe a system is natural language.

When designing a system, specifying its properties without having to
worry about details of mathematical notation and simply using the
language one is familiar with instead is a straightforward way to start
the design process.

Natural language does not restrict the designer in any way. This open-
ness means that this description cannot be formalised: while natural
languages come with grammars that restrict the available constructs,
these rules do not mean that the result is an unambiguous description
of the system. While natural language processing (NLP) techniques
can address some issues, an automatic formalisation of arbitrary text
is neither possible nor desired, meaning that these specifications
need to be processed manually.

The Formal Specification Level (FSL)

The next step to describe a system in a more exact way are formal lan-
guages. Standardised languages such as the Systems Modelling Lan-
guage (SysML) give designers a way to describe the system readily
but at the same time force them to adhere to a formal grammar that
makes these descriptions unambiguous [23]. SysML thus offers a way
to add precision to the system description.

2 A Priori Verification

9

2.2.3

Still, this formalised notation does not specify all aspects of the sys-
tem; e.g. the SysML lacks the ability to express non-functional re-
quirements such as timing properties. In other words, FSL models
formalise the constraints inherent in the design; e.g. structural dia-
grams enriched with OCL limit what actions may be performed by
the system and how the output values may then be structured. How-
ever, while these models may be used to locate potential errors early
on in the design process, they are neither complete nor actually exe-
cutable.

The Electronic System Level (ESL)

The next step in refining the system is to create a working prototype
without going into the implementation details required by HDLs.
System level modelling languages such as SystemC can describe the
behaviour of systems without specifying how this functionality is
supposed to be implemented.

SystemC, as the current de-facto ESL standard language [24], allows
systems to be described using the C++ programming language while
at the same time offering designers the means to describe the struc-
tural features of a hardware design. The result is a virtual prototype
that can be simulated: parts that are meant to represent hardware are
managed by a dedicated simulation kernel which invokes the relevant
software parts. This means that the ESL design is much less abstract
than at the FSL, representing a model of the system that can be exe-
cuted, while still being too abstract to be translated into hardware.

However, there are several modern alternatives to SystemC with less
commercial traction (for now) such as Chisel [25], a DSL embedded in
Scala, and Clash [26], a language based on Haskell. These share the ad-
vantage of having explicit semantic models, which allow for sophis-
ticated static analysis as well as synthesis of lower level RTL models
(see below).

Hardware Design Abstractions

10

2.2.4

2.2.5

In the following we will only consider SystemC (due to its commercial
traction and importance in the community) and Clash (for its exten-
sibility and clear semantics).

The Register Transfer Level (RTL) and below

From the ESL, we can map the system design further down to the
Register Transfer Level, which gives designers the ability to design
systems that may be translated into hardware [27].

Dedicated HDLs are specifically designed to be mapped to hardware,
focusing on the description of structural features and parallel exe-
cution while at the same time limiting the designer concerning ele-
ments that cannot be built as hardware parts such as loops (which
need to be unrolled and hence bounded).

Where ESL models can just specify that a module calculates a result
using arbitrary means (such as a call to a given software library), RTL
designs need to specify how exactly the results are computed.

Different Levels of Abstraction

These different abstraction levels all have particular purposes and
use cases:

All the different levels describe the same system, yet they are written
in different and at first sight unconnected languages. Thus, we need

Natural language offers a way to quickly come up with an initial
description of a given system that is well-readable without prior
training and not restricted concerning the described properties;
FSL models specify system properties in a precise way amenable
to formal analysis and reasoning;
ESL models offer virtual prototypes to be run and tested;
RTL implementations allow the design to be translated into
hardware.

•

•

•
•

2 A Priori Verification

11

2.2.6

to ensure that the models at the different abstraction levels are con-
sistent: the natural language requirements need to be represented as
formal properties at the FSL, the classes modelled at the FSL need to
appear at the ESL in corresponding form etc. Further, one abstraction
level may contain several models of the system at different degrees of
abstraction: at first, an FSL model should be no more than a transla-
tion of the natural language requirements, while a more detailed FSL
model should be detailed enough such that we can translate it into
SystemC at the ESL. This is called refinement: gradually adding more
details which constrain the model of the system. Keeping the models
throughout the development consistent with each other is called func-
tional change management.

Example: an Access Control System

As an example, consider the design of an access control system (ap-
propriated from [28]). It should control the access of people to build-
ings by controlling the doors. Initial natural language requirements
state facts about their relations (Figure 2.1).

Figure 2.1 Example - Informal Specification Level

To formalise requirements such as these, we introduce SysML blocks,
with added OCL constraints. Here, classes initially include people
and buildings; associations include aut and sit, which point to the
buildings someone is authorised to enter, or is currently in, respec-
tively (Figure 2.2).

There is one OCL constraint which states that every person can only
be in a room she or he is authorised for, i.e. sit ∈ aut. (Figure 2.3).

These formalised but very loose constraints can now be refined fur-
ther. For example, we introduce doors which connect buildings, and

P1: The model is composed of people and buildings1
P5: Any person in a given building is authorised to be there2

Hardware Design Abstractions

12

Building

Person

pass(b : Building)

0..*

building

0..*

gate
0..*aut 1sit

Figure 2.2 Example - Formal Specification Level (block definition diagram)

Figure 2.3 Example - Formal Specification Level (ocl constraint)

context Person1
inv P5: self.aut/>includes(self.sit)2

people are authorised to access certain doors. To make this into an
ESL specification, we then describe the actual mechanics of operating
the door in more detail: when a person is approaching the door, a
green or red light should indicate whether access is granted or de-
nied, and a turnstile should open (or not). This can be expressed by a
state machine diagram in SysML (Figure 2.4).

Waiting

Refusing

refuse(p : Person)

off_red()

Accepting

pass_thru()

off_grn()

accept(p : Person)

Figure 2.4 Example - Formal Specification Level (state machine diagram)

In our refinement steps, we have replaced modelling classes such as
people and buildings by implementation classes like doors. The final
refinement step translates a state machine diagram into a SystemC
implementation, with doors (but not people) becoming components

2 A Priori Verification

13

2.3

(called SC_MODULE in SystemC), comprised of a card reader, a turnstile,
and green and red LEDs. The turnstile has a method operate which im-
plements the state machine diagram above (Figure 2.5).

Figure 2.5 Example - Electronic System Level

Working with SysML

When working with OCL-constrained SysML models, there is a large
collection of tools available, which let us design diagrams. These can
be classified into two groups. On the one hand those which have an
underlying semantic model and on the other hand graphical tools
without a semantic model (of SysML). Examples for the former are
Astah SysML, Papyrus, System Architect or Enterprise Architect. Since we
want to formally verify compliance to the specification, we are de-
pendent on the semantic model and thus will not consider the tools
from the latter class (e.g. Microsoft Visio or Capella).

We have chosen to support Papyrus, which is based on the Eclipse
Modelling Foundation. However, since SysML is thoroughly specified
[29], it should be fairly straight forward to map between different
representations.

SC_MODULE(Door)1
{2

////.3
LED grn;4
LED red;5
Turnstile ts;6
Gate gc;7

}8
9

SC_MODULE(Gate)10
{11
////.12
void operate()13
{14

////.15
}16

};17

Working with SysML

14

2.3.1

2.3.2

The reason we chose Papyrus is the fact, that it is the only Framework
which allows for semantically meaningful OCL constraints. All other
tools we have investigated treat constraints as verbatim text with a
language annotation that can indicate an OCL constraint or any other
language (another specification language, natural language or a pro-
gramming language), without the possibility to semantically connect
the OCL constraint to the surrounding model.

We have developed our own textual representation of SysML (called
SPECifIC SysML) which is based on the graphical appearance of dia-
grams. In this section we give an overview over the language.

Scope of the Language

SPECifIC SysML covers a formally well-defined subset of SysML, in
particular it does not support parametric diagrams since they are re-
dundant and can be expressed with OCL constraints. In addition we
dropped activity, sequence and use case diagrams, since they only
represent test cases and cannot be used to fully specify the behaviour
of a system. State machine diagrams are the only behavioural dia-
grams we support. All other behavioural aspects have to be modelled
by means of the OCL. However, since SPECifIC SysML compiles to
Papyrus Models it can still be combined with any diagram type that is
not supported in the textual representation.

Syntax

The language tries to mimic the appearance of drawn diagrams while
keeping it “writable”. We use indentation to indicate the structure of
a diagram and transfer every textual rule that SysML specifies into
the grammar of the language. Most other aspects such as comments,
literals and delimiters are taken from the OCL Language specifica-
tion. Constraints are always assumed to be written in OCL and by this
don’t require language annotations. In Figure 2.6 the example from
Section 2.2.6 is expressed in SPECifIC SysML.

2 A Priori Verification

15

Figure 2.6 The example from Section 2.2.6 expressed in SPECifIC SysML

bdd [package] fsl6/:acs [ACS]1
---2

3
block Building4

references5
gate: Building[*] /- building6
derive: org_dom.dest/>asSet()7

building: Building[*] /- gate8
org_dom: Door[*] /- org9

10
block Person11

operations12
admitted(q: Door): Boolean { query }13
post P17: q.org = self.sit and self.aut/>includes(q.dest)14

references15
aut: Building[*]16
sit: Building[1] { subsets aut }17

18
block Door19

values20
green: Boolean21
derive: dap/>notEmpty()22

red: Boolean23
operations24

accept()25
pre: not (green or red)26

refuse()27
pre: not (green or red)28
post: red29

pass_thru()30
pre: green31

off_grn()32
pre: green33

off_red()34
post: not red35

references36
org: Building[1] /- org_dom37
dest: Building[1]38

owned behaviors39
state machine EnterBehavior40
initial state Waiting41

accept / /> Accepting42
refuse / /> Refusing43

state Accepting44
off_grn / /> Waiting45
pass_thru / /> Waiting46

state Refusing47
off_red / /> Waiting48

Working with SysML

16

2.3.3

2.3.4

2.4

2.4.1

Semantics

The semantics of the language are completely externalised to the un-
terlying Papyrus framework. Every Diagram expressed in SPECifIC
SysML is mapped to a Papyrus SysML Diagram.

Reference Compiler

Further details about the syntax and semantics of the lanugage can be
found online in the reference implementation which is freely avail-
able. Here, also further tooling around the language can be found.

DFKI-CPS/specific-sysml

Textual Modelling Language for a formal subset of SysML

HTML 1

A Framework for Change Impact
Analysis

Functional change management calculates the impact of syntactical
changes using the semantics of the documents. In order to implement
it across the different levels of abstraction, we need a unifying se-
mantics for the different levels.

Related Work

Change impact analysis offers more than the currently used source
code management (SCM) tools (Git, Subversion, Mercurial, etc.); our
work does not compete with any of these but augments them with
functional change management, and the proposed solution could be
easily integrated into any of these existing SCM solutions.

There are several isolated approaches to functional change manage-
ment for some of the individual specification levels we described.

2 A Priori Verification

17

https://github.com/DFKI-CPS/specific-sysml

EMF itself for example offers a toolset to analyse differences between
two models [30], there exists a change management systems for UML
diagrams [31], and there is a wealth of techniques on traceability and
requirements management [32]. However, these systems share sev-
eral limitations, the foremost being that there are no semantic con-
nections to external models which could be taken into consideration,
leaving the user without knowledge about impacts to other speci-
fication layers. Furthermore, we are not aware of any other change
management tool available which is able to calculate the impact of
changes on the correctness of SysML/OCL refinements. In addition,
ChImpAnC supports impact analysis between different abstraction
levels.

The analysis of SystemC designs is a complex task that is a research
field on its own. Embedding SystemC into a change managed work-
flow is thus a non-trivial task as a various C++ dialects need to be sup-
ported, each tied to compilers that generate an optimised binary ver-
sion of the design to be run that is stripped of all non-essential meta
information. Different approaches to extract the given information
include parsing the source code [33]–[37] (which results in the sup-
port of only a subset of SystemC, as no existing parser supports all
given dialects) or using modified compilation workflows in order to
modify the executable design to trace and store the required data it-
self [38]–[40] (which results in the support of all designs that are built
using the compiler being used). In order to keep our approach as ap-
plicable as possible, the approach given in [41] was used: instead of re-
lying on the source code, the compiler-generated debug symbols are
used. While the format itself differs between compiler architectures,
it is always standardised and/or accessible, resulting in a reliable in-
terface to retrieve structural descriptions from SystemC designs.

The OCL approach to specification with preconditions, postcondi-
tions and invariants is called design by contract and goes back to [42].
More recently, this approach can be found in component-based de-
sign (rich components [43]), or so-called light-weight specification

A Framework for Change Impact Analysis

18

2.4.2

languages based on a programming language, such as JML [44] for Ja-
va or ACSL [45] for C. The latter two focus on what corresponds to
the lowest abstraction layer in our setting, the ESL. Existing tools for
the whole workflow across all abstraction layers are rare; most close-
ly related are so-called wide-spectrum languages [46] which cover the
whole of the design flow. For example, our running example was orig-
inally conceived for the B language [47]. Atelier B, the tool supporting
B, covers the whole design flow, similar to Event-B, an extension of B
with events, which is supported by the Rodin tool chain [48]. Anoth-
er prominent example is SCADE [49], which supports seamless and
rigorous development from abstract specification down to executable
software or RTL code by code generation techniques.

The drawback of all these languages and tools is that they tie the
user into one language and methodology for the whole design flow,
whereas our approach offers designers a best-of-breed approach, and
integrates into existing design flows. Moreover, we are not aware of
any attempts to apply impact analysis on any of these wide-spectrum
languages.

Underlying Semantics

We base our reasoning about the semantics on the reduction to Krip-
ke structures. At its core a Kripke structure consists of a set of states,
a transition relation between states, and an associated set of atomic
propositions for each state, which hold within that state. By adopting
Kripke structures, we are able to encapsulate crucial concepts like
state transitions and state-dependent behaviors, offering a founda-
tional basis for verifying properties and understanding the behavior
of our system.

Each considered specification level carries its own semantics, shed-
ding light on specific aspects of the system:

2 A Priori Verification

19

Informal Specification LevInformal Specification Levelel

The ISL cannot have a mathematically precise semantics, as such
would counteract our motivation to use natural language in the
first place (we want users to be able to express initial specifica-
tions without having to worry about mathematical rigour at the
same time). Instead, we use NLP techniques to decompose the
natural language requirements into single semantically mean-
ingful requirements, which form the semantic entities at the ISL.
Additionally, if NLP does not offer satisfying results, connections
between elements of the FSL and the ISL can be drawn manually
in order to properly detect the impact of changes across the dif-
ferent abstraction levels.

FFormal Specification Levormal Specification Levelel

Our interpretation of the Formal Specification Level (FSL) is
based on a semantically well-defined subset of SysML, which
includes class, object and state diagrams as well as OCL con-
straints.

In this context, class and object diagrams provide a notion of
state (see [50] for details). Classes describe the system state
through an object model, while object diagrams represent spe-
cific instances of these states (in particular, the initial states).
The transitions between these states are governed by OCL con-
straints, which specify the conditions under which state transi-
tions may occur.

A formal definition of our FSL subset as introduced in [51], is giv-
en by the tuple:

SP = ⟨M, init,OPN, inv, pre, post, st⟩

M denotes the set of classes within the specification, essen-
tially forming the object model for OCL expressions.
init specifies the initial states of the system.

•

•

A Framework for Change Impact Analysis

20

The semantics of such an FSL specification can be modeled as a
Kripke structure, denoted as [[SP]] = ⟨S, I,→⟩, where:

ElectrElectronic System Levonic System Levelel

At the ESL, the semantics are given by the SystemC semantics.
States are given by the instances of the SystemC modelling class-
es (SC_MODULE etc.), and transitions are given by the simulation (see
[52] for details; however, we use a reasonable abstraction from
the concrete SystemC implementation instead of a mathemati-
cally precise model of the implementation). Thus, the semantic
entities at the ESL are classes, attributes, and methods. For this,
we have implemented a semantic meta model for SystemC based
on EMF:

OPN represents the set of class operations available in the
specification.
inv includes class invariants that must always hold true.
pre and post are functions that define the pre- and postcon-
ditions for the operations in OPN.
st comprises the set of state diagrams, which are simplified
in our formal subset to exclude hierarchical states and con-
current regions. This allows representing state diagrams as
pre- and post-conditions over virtual class attributes that
track the state.

•

•
•

•

S is the set of all possible states of the system.
I is the set of initial states that satisfy both the conditions in
init and the invariants in inv.
The transition relation → encapsulates all permissible state
transitions for any operation o ∈ OPN from one state σ

1

∈ S

to another σ
2

∈ S, under the following conditions:
All invariants hold in both σ

1

and σ

2

.
The preconditions of o are satisfied in σ

1

.
The postconditions of o are satisfied in σ

2

.

(1)
(2)
(3)

•
•

•

2 A Priori Verification

21

2.4.3

DFKI-CPS/scemf

EMF Metamodel SystemC and C++ Standard Library

Java

Semantic Relations Across Specification Levels

The semantic entities on the respective abstraction levels give rise to
notions of mapping between them. From the ISL to FSL and ESL, we
map each requirement to one or more specification elements which
implement them. Within the FSL, we can utilize a more formal notion
of refinement based on the underlying Kripke structures as intro-
duced in [51]:

a concrete specification C is a refinement of an abstract specification
A if each state transition in C can be mapped back to a state transition
inA, i.e. C restricts the possible state transitions ofA. This refinement
can be realised by refining the state (data refinement) or the opera-
tions (operational refinement). An example of data refinement is the
introduction of new classes or attributes; an example of operational
refinement is the implementation of a single operation by a state dia-
gram.

From the FSL to the ESL, we have the usual implementation of SysML
diagrams, except that we may map classes in the FSL to instances of
the sc_module class (corresponding to the fact that in hardware, objects
exist more or less a priori). Within the ESL (i.e. between two SystemC
models) we do not consider refinement, as this would require a more
sophisticated semantic modelling of SystemC to consider e.g. timing
requirements.

A system development consists of several layers L

1

,… ,L

n

, which
group specifications from one abstraction level. The first layer typi-
cally contains the natural language specifications, and the last layer
L

n

ESL or RTL specifications. Between layers, specifications are re-

A Framework for Change Impact Analysis

22

https://github.com/DFKI-CPS/scemf

2.4.4

lated via refinement: a specification SP from layer L
i

is mapped to a
specification SP

′ of layer L

i+1

if SP ′ is a semantic refinement. This
mapping allows us to keep track of properties; for example, if all ini-
tial ISL requirements are mapped to formal properties which are lat-
er proven we can be confident that the implementation satisfies the
original specifications.

The mappings are mostly constructed automatically (see Section 2.4.7
below), but some have to be constructed by the user (in particular, the
mapping of ISL requirements).

Syntactic Representation

The specifications on the different levels are written in different for-
malisms, each in their own syntax. Since we aim to support a wide
variety of file types in an extensible way, it would be inflexible to im-
plement a parser for every concrete input syntax. Hence we decided
to employ the widely adopted, generic Eclipse Modelling Framework
(EMF) [53], which serves as a common basis for other file types. This
means that any format is supported as soon as there is a translation
into EMF.

At the ISL, specifications are represented as a list of SysML require-
ments. At the FSL, we use the SysML tools provided by the Papyrus
Framework [54], as well as the EMF OCL representation. For the ESL,
we make use of the fact that SystemC models are valid C++ source
files, and employ the debug output of the clang compiler to generate
an EMF model. The files contain DWARF debug information that can
be extracted using the libdwarf/dwarfdump tools. The resulting data
is translated to the EMF format using a custom parser/translator. The
final result includes namespace and class structures with type hierar-
chies, operations and attributes.

2 A Priori Verification

23

2.4.5

2.4.6

Syntactic Difference Analysis

The architecture of the functional change management has been de-
rived from previous work in the generic GMoC system [55]. A generic
diff algorithm for hierarchical annotated data serves as a basis [56],
and provides support for syntactic difference analysis. We adapted
this algorithm to operate on generic EMF objects (EObjects). This way
we can obtain a minimal set of changes between two EMF files. The
GMoC diff algorithm allows us to specify equivalence between the
objects; in our case, which attributes identify an object, which order-
ings have a meaning and which do not. The example in Figure 2.7
states that a SysML block is identified by its name, and that the order
of the contained attributes and operations is irrelevant, while on the
other hand the order of the parameters of an operation has a seman-
tic meaning.

Figure 2.7 Example ecore.equivspec file

Semantic Difference Analysis

The distinctive feature of the diff algorithm is that it takes the intend-
ed semantics of the documents into account. This is achieved by rep-
resenting the semantics as a graph (explicit semantics). The semantic

element Block {1
annotations {2

name!3
}4
constituents {5

unordered { _ }6
}7

}8
9

element Operation {10
annotations {11

name!12
}13
constituents {14

ordered { _ }15
}16

}17

A Framework for Change Impact Analysis

24

graph is extracted from the syntactic graph by graph rewrite rules,
which can be efficiently implemented in Neo4j; after extraction, the
nodes of this semantic graph are connected to the origin nodes of the
syntactic tree (Figure 2.8).

< package name=’acs’>

< block name=’Person’>

< attribute name=’age’>
< reference name=’home’

eType=’Building’>

< block name=’Building’>

Block

name: Person
status: added

Block

name: Building
status: added

Attribute
name: age
status: added

Reference

name: home
status: added

ha
sA

hasA ty
pe

origin

origin

origin

origin

Figure 2.8 Change management via explicit semantics after initial extrac-
tion

When a change in an input file occurs, a diff is applied to the syntactic
tree. Then, we mark the nodes of the semantic graph as “deleted”
(Figure 2.9) and extract the graph again (Figure 2.10). Nodes that are
already present in the graph are marked as “preserved”, nodes that do
not exist are marked as “added”, and all other nodes remain marked
as “deleted”. During this process additional semantic knowledge can
be used to handle individual nodes as required.

Thus, we have the syntactic graph which consists of the abstract syntax
trees, and the semantic graph extracted from them. We store both
graphs uniformly in the Neo4j graph database, because it allows us
to efficiently traverse and transform them while providing superb

2 A Priori Verification

25

< package name=’acs’>

< block name=’Person’>

< attribute name=’age’>

< block name=’Building’>

< reference name=’neighbours’

eType=’Building’>

Block

name: Person
status: deleted

Block

name: Building
status: deleted

Attribute
name: age
status: deleted

Reference

name: home
status: deleted

ha
sA

hasA ty
pe

or
ig
in

or
ig
in

or
ig
in

Figure 2.9 Change management via explicit semantics after application of
syntactic diff

< package name=’acs’>

< block name=’Person’>

< attribute name=’age’>

< block name=’Building’>

< reference name=’neighbours’

eType=’Building’>

Block

name: Person
status: preserved

Block

name: Building
status: preserved

Attribute
name: age
status: preserved

Reference

name: home
status: deleted

Reference

name: neighbours
status: added

ha
sA

hasA ty
pe

type

hasA
or
ig
in

or
ig
in

or
ig
in origin

Figure 2.10 Change management via explicit semantics after second extrac-
tion

A Framework for Change Impact Analysis

26

2.4.7

scalability. On top of this we implemented an interface from EMF to
Neo4j which allows us to analyse differences between files on disk
and the persisted syntactic tree in the database:

DFKI-CPS/egraph

Store ECore resources in neo4j database

Scala

DFKI-CPS/secore

Semantic diffs and merges on ECore models

Scala

Change Impact Analysis

The semantic graphs of specifications from adjacent layers can be
mapped semi-automatically by inspecting naming, types and struc-
ture of models. Users are always in control of these mappings and can
alter or complement them where required to reflect their intentions.

Change propagation follows syntactic changes across the origins
along the mappings of the semantic graph. That is, if a syntactic
change occurs we find which parts of the semantic graph have their
origins in that part of the syntactic graph which has changed, and
then check which mappings either point into, or originate from, this
part of the semantic graph. To illustrate, consider our example
(Section 2.2.6): ISL requirement P5 (left) gets mapped to OCL invari-
ant P5 (middle-left); if either the requirement or the OCL invariant is
changed, the other is impacted by the change, as inconsistencies be-
tween the two might arise. If the user changes the state diagram in
the ESL, this change might impact the ESL implementation, or on the
other hand the OCL invariants of the class diagram.

2 A Priori Verification

27

https://github.com/DFKI-CPS/egraph
https://github.com/DFKI-CPS/secore

2.5

For data or operation refinements, we can calculate the impact of
changes more accurately. If we add additional operations to the class
Building in Section 2.2.6, all data refinements of Building will remain
valid. The situation gets more complex when we consider the proof
obligations that arise from refined OCL constraints. These proof
obligations are of the form c

1

∧. . . ∧c

n

⟹ d, where c

1

to c

n

are con-
straints on the refined level and d is a constraint in the abstract level.
If this is proven, we can discharge the obligation and insert additional
dependency edges between the constraints c

1

,… , c

n

and d. If one of
these constraints changes the proof will be invalidated and the proof
obligation pops up again.

Impact rules such as these are described directly as Neo4j queries;
this makes them fast to execute and keeps the impact system extensi-
ble.

Reasoning about OCL

To discharge proof obligations that arise from the formal specifica-
tion level, we need a method to transfer constraints into lower level
representations. For OCL there exists a thorough specification of the
semantics [57], however SystemC (and especially its extensions, e.g.
TLM) has no such specification, and even the host language C++ is not
unambiguous across compilers and platforms.

So Clash (See Section 2.2.3) is a natural choice if we not only want
to map and trace changes across layers but also conduct verification
(and trace verification results) across layers. For this we have devel-
oped a dedicated backend that can translate Clash designs into SMT
Bitvector logic (See also Section 3.2.2 Paragraph D). In addition we
have built a small tool that can generate the proof obligations as SMT
assertions from the SysML Model, the OCL Constraints and the Map-
pings to the ESL design.

Reasoning about OCL

28

2.6 A User Interface for Change Impact
Analysis

In this section, we explore a user interface tailored for change man-
agement analysis: ChImpAnC. Developed as part of our approach to
a priori verification, this interface serves as a practical tool to illus-
trate how changes in the system can be analyzed more effectively, of-
fering insights into potential applications and future enhancements.

ChImpAnC is realised as a web interface and can either run locally or
on a team server. When users open the application in a browser they
get presented a multi-column layout representing the different spec-
ification layers (Figure 2.11). The leftmost column is the most abstract
one — typically natural language — while every additional column to
the right represents a refinement step. There are usually more refine-
ment steps involved than would fit into the user interface, so there is
a navigation bar on the top where one can select the layer in focus.

Figure 2.11 The ChImpAnC user interface

Natural language descriptions are treated specially due to the fact
that they might be mapped to arbitrary lower specification layers. I.e.
it might be intended that an abstract formal description does not con-
tain every requirement described by a stake holder and that the re-

2 ���&�$&����&�����(�$#

29

quirements are taken care of in subsequent refinements. They may be
locked by clicking on the lock icon on the lower right, such that the
user is able to relate the natural language description to lower level
refinements.

All extracted model elements are represented as bold identifiers.
Mapped model elements appear green. When a user hovers the
mouse over such a mapped element, the corresponding refinement is
visually emphasised (Figure 2.12).

Figure 2.12 Highlighting of mappings

Inconsistencies are highlighted with red wavy underlines. These in-
clude elements (abstract models, attributes, references, operations or
parameters) which are unmapped in a refinement (Figure 2.13), as
well as mismatching mapped types and inconsistent multiplicities of
references. In addition, unproven OCL refinements are displayed as
a red number next to the respective class definition which indicates
the number of open proof obligations. Conversely, discharged proof
obligations appear as a green number (Figure 2.14). When the user
moves the mouse over a marked element, a tooltip will appear con-
taining information about the inconsistency.

Content warnings are highlighted with orange wavy underlines.
These are currently only present in natural language where we auto-
matically rate the quality of refinements, using the techniques from
[58]. Again, a detailed description of the warning can be obtained by
hovering the mouse over the marked element (Figure 2.15).

���'�&��#(�&������$&����#����"%��(��#�!-'�'

30

Figure 2.13 Highlighting of inconsistencies

Figure 2.14 Inline display of proof obligations

Figure 2.15 A content warning in natural language

Finally, change management support is implemented by impacts. An
impact can either indicate that a refinement has changed or that the
abstraction has been changed or removed; impacts warnings are the
default fallback when there is no automatic solution to propagate a
change across layers. It still offers a high value to developers because
the possibly affected portions of refinements and abstractions can
be narrowed down to small fractions of the specification and incon-
sistencies can easily be identified. Removed refinements do not trig-
ger an impact warning because they already result in an inconsis-
tent model, and thus an inconsistency error. Impact warnings ap-

2 ���&�$&����&�����(�$#

31

2.7

pear as orange elements indicating that user attention is required
(Figure 2.16).

Figure 2.16 An impact warning

Conclusion

This chapter introduced the different layers of abstraction that may
be used to design systems top-down. We presented SPECifIC SysML
a textual modelling language that supports a formal subset of the
SyML. We integrated all this in ChImpAnC, a tool which supports a
comprehensive system design flow across different levels of abstrac-
tion, from natural language down to system-level models. ChIm-
pAnC manages the models of the systems at the different abstraction
levels, keeps track of dependencies, and calculates the impact of
changes. Moreover, it can warn about inter layer inconsistencies that
would previously be left unnoticed by the established tool chain. The
tool is freely available online:

DFKI-CPS/chimpanc

Graphical user interface to explore and integrate functional
change management, verification and NLP techniques from
the SPECifIC project

JavaScript

We will use this foundation to develop the idea of self-verification in
the subsequent chapters.

�$#�!)'�$#

32

https://github.com/DFKI-CPS/chimpanc

3 Fundamentals of
Self-Verification
In this chapter, we propose a simple design and verification method-
ology which conducts verification after deployment. To this end, we
start with the observation that contemporary systems are designed to
operate in a variety of operating contexts. In order to do so, configura-
tions are used, i.e. parameters which are set post-deployment by the
particular environment of the individual system. While these para-
meters may not change frequently, they are not fixed and hence ver-
ification, which, thus far, is conducted prior to deployment, has to
consider all possible configurations.

We indicate these configurations as quasi-static. Consequently, de-
signers and verification engineers are faced with verifying systems
with huge possible search spaces, while after deployment just a frac-
tion is used.

Engineers might restrict the set of allowed configurations at design
time in order to reduce the search space and make verification suc-
ceed, but this increases costly design time, and runs the risk of ex-
cluding possible configurations, decreasing availability, making the
system less versatile and hence less marketable than strictly neces-
sary.

33

3.1

Motivated by this observation, this chapter proposes a design and
verification methodology which conducts verification after deploy-
ment, i.e. in the field and once the actual configuration is observable.
Even though it results in continuous verification tasks as the environ-
ment keeps changing, the drastic reduction of the search space out-
weigh this. As a result, embedded and cyber-physical systems can be
verified even on a much weaker machine and with much less sophis-
ticated tools, while prior to deployment verification failed due to the
exponential complexity.

In order to assess the feasibility of the proposed methodology, we
have implemented the proposed design and verification flow and
used a lightweight version of the SAT solver MiniSat [59] to solve
the resulting verification conditions after deployment. The evalua-
tion of a number of case studies showed that, following the proposed
methodology, verification problems which failed prior to deployment
(using high-end verification tools and machines) could be completed
after deployment using the lightweight solver on reduced hardware.

General Idea

The key idea of the proposed approach presented here is to defer part
of the verification until after deployment. At first sight, this seems like
a rather strange idea. A system deployed in the field is likely to have
far less computational power, memory and network resources avail-
able than a design server. However, it has a main advantage which, we
argue, outweigh these deficiencies: after deployment, there is gener-
ally more information about the operating context available.

In order to enjoy this benefit, the design needs to be geared towards
verification after deployment. At an abstract level, the general idea is
to partition the system state space into one part which changes fre-
quently post-deployment and thus has to be explored symbolically,
and one part (preferably as large as possible) which only changes in-
frequently. This part is called the configuration. Marking a variable as

General Idea

34

a configuration variable means that its value rarely changes, and en-
tails that we can substitute actual values before verification post-de-
ployment. By marking variables of n bits as configuration variables,
we reduce the search space we need to explore for verification by 2

n –
turning the exponential growth into an exponential reduction.

The idea and its benefits are illustrated by the following (running) ex-
ample, which has been deliberately kept simple in order to keep the
focus on the methodology.

Example 3.1

The simple light controller system sketched in Figure 3.1 works as the
running example in the following. This system connects a controller
to a luminosity sensor and a light switch. The controller should turn
on the light if the sensor e drops below a given level e

lo

, and turn
it off if it exceeds a given level e

hi

. To avoid a flickering effect when
the luminosity varies close to a given threshold, the lower and up-
per threshold levels are not equal (hysteresis), and the system should
switch off the light only with a certain delay d.

The threshold levels e

lo

, e

hi

and the delay d are configuration vari-
ables, and can be changed post-deployment.

Systems like these are designed in a flexible fashion, so that they can
be applied in various contexts. For the light controller, the threshold
levels and delay are not fixed at design or production time but will
be set post-deployment. Hence, in order to verify the correctness of
the system, we need to take into account all possible configurations,
which increases the search space exponentially. It also means that a
lot of possible configurations are checked during verification which
may never be applied during the system’s lifetime. Hence, if we in-
stantiate the configuration variables after deployment and keep only

3 Fundamentals of Self-Verification

35

Controller

Light switch

Luminosity
sensor

e l

Figure 3.1 Bringing light into darkness: The light
controller is connected to a luminosity sensor and
switches a light on or off when it becomes too dark
or bright.

the variables of the system which change frequently arbitrary, we get
a much smaller search space to explore.

The reduced search space can be handled comfortably by a light-
weight solver after deployment, even under the prevailing conditions
of limited computational resources. But note that this verification is
only valid for the particular configuration (i.e. the supplied values for
e

lo

, e

hi

and d) and, thus, can principally not be done prior to deploy-
ment without severely reducing the flexibility and versatility of the
system.

General Idea

36

3.2

Example 3.1 (continued)

Consider again the running example. If we assume a width of 8 bit for
the input values (the luminosity sensor and subsequently for the up-
per and lower bounds) and the time delay, and one bit for the light
switch status (these are lower bounds for a realistic system), we get
the following search space (where cnt is a variable counting up to de-
lay):

e

lo

e

hi

d

8 8 8
configuration

e cnt status total

8 8 1 = 41
(3.1)

Thus, we need to check an overall search space of 241 states to verify
the system, a huge search space for a very simple example.

In contrast, once the system is deployed and applied in the field, the
values for e

lo

, e
hi

and d rarely change (once when the system is de-
ployed, and afterwards only if the user actively changes the configu-
ration), as opposed to the values of e, cnt and status which vary con-
stantly. Thus, we can mark e

lo

, e
hi

and d as configuration variables,
and verify the system only when the configuration is changed. By
keeping the values of e

lo

, e
hi

and dfixed for the verification, the search
space reduces to 2

17 states.

Implementation

The previous section illustrated the potential of conducting verifica-
tion after deployment. Based on that, we now describe in detail a pos-
sible implementation of this methodology. We first describe the de-
sign process in more detail, and then demonstrate it at work with a
formal development of the running example considered in the previ-
ous section.

3 Fundamentals of Self-Verification

37

3.2.1The Design Process

The design flow starts with a modelling phase, where the structure and
behaviour of the system is modelled at an abstract level without re-
ferring to any implementation (see Figure 3.2). In our case, we use
SysML [29] and OCL [50] to specify the structure and formalise con-
straints on its behaviour as well as the functional hardware descrip-
tion language Clash [26] for a uniform, executable and synthesiseable
model of the system.

The actual specification and implementation languages are of no par-
ticular relevance and could be replaced by others (e.g. we could use
UML instead of SysML, or SystemC instead of Clash), but serve here
to point out the level of abstraction in the corresponding part of the
design process.

From the model, we can synthesise an implementation of the system by
generating a representation in a low-level hardware modelling lan-
guage such as VHDL or Verilog, which is used to program an FPGA –
constituting the actual implementation. Moreover, we want to verify
that the generated system behaves as specified. In order to do so,
we generate a list of verification conditions from the executable system
model and the specification which have to be shown in order to guar-
antee this.

Specifically, we translate both the Clash model and the constraints
from the OCL specification into bit-vector logic (i.e. first-order logic
with bit-vectors). Trying to show these in an SMT prover such as Yices
[16] or Z3 [17] fails for non-trivial examples, as does trying to show
the properties translated into conjunctive normal form (CNF) with a SAT
solver such as MiniSat. This is where verification usually fails.

However, post-deployment after we have instantiated the configura-
tion variables, the search space may become small enough to allow
verification of the corresponding properties even by a lightweight

Implementation

38

3.2.2

solver [59]. By this, verification of all properties becomes possible.
Recall that this instantiation cannot be done at the design time, be-
cause at that point the instantiating values are still unknown. There-
fore, the proofs must be rerun if the values of the configuration vari-
ables are changed.

The Design Process At Work

In the following, we apply the design flow (Figure 3.2) to the simple
example from Section 3.1.

SysML + OCL

bdd [package] controlle r [Controlle r]

«block»

Contro lle r

operations

tick()

«block»

Sensor

values

value : Int

«block»

Light

values

sta tus: Boolean

«block»

Configuration

values

e_lo: In t
e_h i: In t
de lay: In t

1
1

11 1 1

ClaSH

Bitvector logic

Instantiated
CNF

Lightweight
SAT-Solver

D
es

ig
n

tim
e

In
 th

e
fie

ld

CNF SAT solver
(e.g. MiniSat, zChaff)

SMT prover
(e.g. Yices, Z3)

Instantiated configuration variables

State space to be verified

Verilog, VHDL

FPGA

Model

Implementation

Verification

Specification

Deployment

Figure 3.2 Design flow for verification after deployment. We start with
modelling the system behaviour, then derive an implementation and verifi-
cation conditions. By proving the verification conditions, we make sure the
system behaves as specified. Due to the large search space, the proofs are not
possible pre-deployment. But instantiation of the configuration variables re-
duces the size of the search space significantly and makes proofs possible
post-deployment.

3 �)#��"�#(�!'�$����!�2��&�����(�$#

39

A

B

Specification (top of Figure 3.2)

The specification of the system is provided in terms of a SysML block
definition diagram as shown in Figure 3.3. The structure is composed
of the controller as the central block, with one luminosity sensor, and
one light switch (actuator) connected. The variables specifying the
lower and upper threshold of luminosity and the delay when switch-
ing off are in a separate block marking them as configuration vari-
ables.

Figure 3.3 SysML specification of the light controller

The behaviour is provided in OCL as shown in Figure 3.4. We model
state transitions by an explicit operation tick(); The pre- and post-
condition of the state transition are denoted as pre- and postcondi-
tions of this operation.

Model (middle of Figure 3.2)

Based on the specification, a Clash model is derived.

Clash is a strongly typed domain-specific language to model hard-
ware. It is embedded into the functional programming language
Haskell, and describes the hardware as functions of the language. The

Implementation

40

Figure 3.4 OCL specification of the behaviour of the light controller

context Controller1
def e: sensor.value2
def off: e > config.e_hi3
def on: e < config.e_lo4
def off_s: cnt/=config.delay5

6
context Controller/:tick()7

post a1: not off implies cnt=08
post a2: off implies cnt=cnt@pre+ 19
post a3: on implies light.status10
post a4: off_s implies not light.status11
post a5: not (on or off_s) implies12

light.status=light.status@pre13

C

strong type system guarantees that everything we can describe in
Clash is still synthesiseable, and allows us to model the hardware at
an abstract but still executable level.

The model describes the hardware by combinators (higher-order
functions), building up complicated circuits by composing elemen-
tary ones. Figure 3.5 shows the model, essentially a finite-state ma-
chine (a Mealy automaton) with the luminosity values (Unsigned 8)
and the configuration as input, the light switch (Bool) as output, and
an internal state (ControllerState) which keeps track of the light switch
and a counter to implement the delay when switching off. The func-
tion controllerT is the state transition function of the automation, tak-
ing the state and the input, and returning a tuple of new state and out-
put.

Implementation (left-hand side of Figure 3.2)

From the Clash model, we generate Verilog, which is then compiled
onto the FPGA by the proprietary tool chain of the FPGA vendor (in
our case, Xilinx). Thus, the Clash model is the foundation of the veri-
fication after deployment.

3 Fundamentals of Self-Verification

41

Figure 3.5 Clash model of the light controller

data Configuration = Configuration {1
e_lo /: Unsigned 8,2
e_hi /: Unsigned 8,3
delay /: Unsigned 84

} deriving Show5
6

configurationControllerT /: Configuration7
/> (Bool, Configuration)8
/> (Configuration,Configuration)9

configurationControllerT oldConfig (enable,config) =10
if enable then (config,config) else (oldConfig,oldConfig)11

12
configurationController /: Signal (Bool, Configuration)13

/> Signal Configuration14
configurationController =15

mealy configurationControllerT (Configuration 63 191 127)16
17

data ControllerState = ControllerState {18
switchState /: Bool,19
cnt /: Unsigned 820

} deriving Show21
22

data ControllerInput = ControllerInput {23
configuration /: Configuration,24
e /: Unsigned 825

} deriving Show26
27

controllerT /: ControllerState28
/> ControllerInput29
/> (ControllerState,Bool)30

controllerT31
(ControllerState switchState cnt)32
(ControllerInput (Configuration e_lo e_hi delay) e)33
| e < e_lo = (ControllerState True cntn,True)34
| e > e_hi /& cnt /= delay = (ControllerState False cntn,False)35
| otherwise = (ControllerState switchState cntn,36

switchState)37
where cntn = if e > e_hi then if cnt < delay then cnt + 138

else cnt else 039
40

controller /: Signal ControllerInput /> Signal Bool41
controller = mealy controllerT (ControllerState False 0)42

43
topEntity /: Signal (Bool,Configuration,Unsigned 8)44

/> Signal Bool45
topEntity input =46

controller (fmap (uncurry ControllerInput) $47
bundle (cfgOut,sensor))48

where (enable,config,sensor) = unbundle input49
cfgOut = configurationController (bundle (enable,config))50

Implementation

42

D Verification (right-hand side of Figure 3.2)

To prove the verification conditions, we translate them into CNF,
which is suitable as input for reasoning engines such as SAT solvers.
This translation proceeds in two steps. We first translate both the
Clash model and the specification into bit-vector logic, which in the
second step can be translated into CNF by Yices. The translation from
Clash is done with an extension of the Clash compiler we have devel-
oped for this work:

martinring/clash-compiler

CAES Language for Synchronous Hardware

Haskell

The translation of OCL is done by the tool-chain described in
Chapter 2.

Figure 3.6 shows a small excerpt of the bit-vector representation of
the model from Figure 3.5. We are modelling the state transition ex-
plicitly, so for each state variable (e.g. switch, cnt) we have a variable
to model the pre-state (here, preSwitch, preCnt). Figure 3.6 asserts that
the state switches to true if the luminosity value drops below e_lo and
it switches to false if the luminosity is above the threshold and cnt is
larger or equal to the configured delay.

Figure 3.6 Implementation modelled in bit-vector logic (excerpt)

(define preSwitch /: bool) ; light switch before1
(define switch /: bool) ; light switch after2
(assert3

(= switch4
(ite (bv-lt e e_lo)5
true6
(ite (and (bv-gt e e_hi) (bv-ge preCnt delay))7

false8
preSwitch9

))))10

3 Fundamentals of Self-Verification

43

https://github.com/martinring/clash-compiler

E

To verify the implementation, we translate the specification from
OCL into bit-vector logic; for example, the two clauses a4 and a5 from
Figure 3.4 become:

We generate a CNF formula from the negated conjunction of all five
clauses (and the invariants) in Figure 3.4, together with the model
from Figure 3.6. This formula is satisfiable iff the specification is vio-
lated (because we assert the negated specification).

Because we explore the complete search space (there is no state ab-
straction involved), this procedure is not only sound but also com-
plete; if we cannot find a counter-example, the verification condition
holds for all reachable states within the reduced search space.

Instantiation after Deployment (bottom of Figure 3.2)

Finally, the configuration variables are instantiated in order to reduce
the search space. This is directly conducted in the obtained CNF. In
order to give an impression of the generated CNF, we just consider
the very simple assertion e ≤ e

hi

, which translates into bit-vector log-
ic as the assertion:

Using only two bits for e and e

hi

, Yices generates the CNF as shown
in Figure 3.7, which represents these bit-vectors as variables, corre-
sponding to the formula. Here, x is an auxiliary variable. e

1

and e

2

de-
notes the first respectively the second bit of the bit-vector e. The same
notation applies to e

hi

.:

(¬e

1

∨ x) ∧ (e

2

∨ ¬e

hi,2

) ∧ (e

2

∨ x)∧

(e

hi,1

∨ x) ∧ (¬e

hi,

2

∨ x) ∧ (e

1

∨ ¬e

hi,1

∨ ¬x).

(3.2)

Yices keeps track of the encoding of the variables, i.e. to instantiate
the configuration variables, we add corresponding unit clauses, e.g. to

(/> off_s (not switch))))1
(/> (not (or on off_s)) (= switch preSwitch))))2

(assert (not (bv-lt e e_hi))).

Implementation

44

Figure 3.7 CNF in DIMACS format for a very simple assertion. Lines starting
with c are comments; the line starting with p states the number of variables
and clauses; the following lines are the clauses, each line containing one con-
junct consisting of a disjunction of variable i or its negation −i (terminated
by 0). A suitable representation of this format is used post-deployment.

c e_hi //> [5 6]1
c e //> [3 4]2
p cnf 7 63
-3 7 04
4 -6 05
4 7 06
5 7 07
-6 7 08
3 -5 -7 09

3.3

instantiate e

hi

with the value 2 (10 in binary) we add two unit clauses
stating

e

hi,1

∧ ¬e

hi,2

.

The instantiations now significantly reduce the search space. This can
be exploited to solve the resulting instance after deployment using a
lightweight solver. As we can see, the actual reduction of the search
space depends on the values we instantiate the variables with.

Evaluation

So far, the proposed methodology has been illustrated by means of an
intentionally rather limited example. Moving on from that, we have
applied the idea of verification after deployment, and the proposed
verification as described in Section 3.2, to more sophisticated home
automation controller in order to demonstrate its applicability.

The home controller has been realised on top of a ZedBoard, which
comprises an ARMv7 core running Linux to control a Xilinx FPGA,
and which for the purposes of verification has been equipped with
a lightweight SAT solver [59]. The obtained results are summarised
in this section. Furthermore, we also discuss possible ramifications

3 Fundamentals of Self-Verification

45

3.3.1

which have to be considered when utilizing the proposed methodol-
ogy in practice.

Evaluation

The proposed methodology has been evaluated on a set of systems
which are natural extensions of the light controller considered above
to highly versatile home automation controllers as follows:

ssimpleimple
The simple light controller with one light and one luminosity
sensor (as considered in the running example).

avavererageage
An extended version of the controller which includes up to 16
sensors to be connected and controls one actuator by averaging
the values obtained by those sensors. Input and output are
generic, i.e. we can control any kind of actuator and read from
any kind of sensor as long as it gives us integer values.

wweighted_aveighted_avgg
A similar version with 32 sensors that allows to add a config-
urable weight to each sensor when computing the average.

smartsmart
A smart home controller, which allows up to 32 sensor inputs
to be connected to up to 32 actuator outputs. Each input can be
connected with each output, making the controller very versatile
and resulting in a huge search space. The smart home controller
can be used e.g. to control lights, heating and blinds for a number
of rooms in an office setting.

multipliermultiplier
A 16 bit multiplier component, used to apply the weights in
weighted_avg and smart. Can be verified with a constant factor
once the configuration is set.

Evaluation

46

For all these systems, we have specified their intended behaviour in
OCL, similar to the specification of the simple light controller in
Figure 3.4, and have verified that the implementation satisfies this
specification.

Table 3.1 and Table 3.2 list the results. Column System gives the name
of the considered system. The remaining columns summarise the re-
sults in two groups: Table 3.1 for verification according to the estab-
lished verification flow (i.e. verifying all properties at design time)
and Table 3.2 for the verification methodology proposed here (using
the lightweight solver on the target system). For each group, we give
the size of the search space (i.e. the number of possible solutions to
be checked); the number of variables; the number of clauses of the re-
sulting CNF; and the run time (in seconds). The run time is measured
on systems which would typically be used for verification, so they are
directly comparable: for the established verification flow, a compute
server (Intel Xeon E3-1270 v3, eight cores, 16 GB memory) and, for the
proposed verification flow, the ZedBoard (ARMv7, 1GB memory).

Table 3.1 Evaluation Results (Established Flow)

System Search space Variables Clauses Time

simple 2

41 161 539 < 0.1s

average 2

177 11807 40086 131.0s

weighted_avg 2

545 43569 146642 > 24h

smart 2

9504 1421153 4761633 > 24h

multiplier 2

32 1177 6096 > 24h

The obtained results clearly show the benefits of the proposed ap-
proach. Typical embedded systems (as the ones considered here) al-
low for a huge variety of configurations. As shown in Table 3.1, this
results in a rather large search space and SAT instance for the verifi-
cation, which takes a significant amount of time to solve (in some cas-

3 Fundamentals of Self-Verification

47

Table 3.2 Evaluation Results (Proposed Flow, with ran-
domly assigned values)

System Search space Variables Clauses Time

simple 2

17 131 539 < 0.1s

average 2

137 8181 40086 1.4s

weighted_avg 2

265 31374 146642 28.5s

smart 2

544 1421153 2704606 1.5s

multiplier 2

16 809 2467 418.0s

3.3.2

es, the corresponding verification task could not be solved within the
given time-limit of one day). In contrast, after deployment, configu-
ration variables can be instantiated with their actual values, as dis-
cussed in Section 3.1. This substantially reduces the search space and
allows to solve the verification task even on the limited resources of
an embedded system as shown in Table 3.2.

Of course, the search space is only one complexity indicator: as the
multiplier system shows, even a comparatively small search space
may require a long time to be verified, because of its inherent com-
plexity. However, the proposed verification flow reduces the run time
significantly in this example as well, and thus allows us to verify a
system which was previously out of reach for established tools.

Practical Exploitation

Our approach may be applied in various ways. In the following we il-
lustrate a possible practical application to the design of a smart home
controller as described above.

Requirements and properties are established during design time and
checked with contemporary verification tools. Refinements are
tracked and verified down to the electronic system level. All proper-
ties which cannot be automatically checked during design time are

Evaluation

48

then collected. Some of these properties might be provable with in-
teractive theorem provers. The effort has to be weighted up with the
win here. Those properties which cannot economically be proven are
then prepared for self-verification using our approach.

In the deployed system, a verification controller is constantly watch-
ing the values of the configuration variables and triggers a proof if a
value change is requested. For example, if a light is connected to the
smart home controller, the configuration is updated, and the proofs
have to be re-run. Since the system would now be in an unverified
state, it will either stop operating or defer the value change until the
proofs have successfully finished; this way, it continues operating
with guaranteed safety. (If the risk is considered acceptable, the sys-
tem might instantly change the value and continue to operate while
the proofs are running.)

This results in a transient state where the system is unverified for the
time it takes to conduct the proof. There are three possible ways to
cope with this:

None of these situations is desirable and thus the verification con-
troller might use statistical observations for the prediction of future
variable-states and proactively verify them during idle-time. If any of
these states occurs, the system can instantaneously continue operat-
ing with guaranteed safety (see also Section 6.1).

For acceptable risks, the system can just continue operating
while the verification is running in parallel.
We can delay the change of the variable and ignore the connected
light until correctness has been proven. This sacrifices function
for safety.
We can stop operation and only continue after the system is
proven safe again. This potentially violates non-functional re-
quirements on timing but safety and function are unaffected.

(1)

(2)

(3)

3 Fundamentals of Self-Verification

49

3.4

If a proof fails for the resulting configuration, the system informs
the user about the failed proof. The user can disconnect the sensor
again or try a different configuration until the proof succeeds and the
change results in a safe state. This especially means that the system
can still operate safely even though some functionality is missing.
Furthermore, the manufacturer is informed about the failed configu-
ration, and can use this information to take appropriate measures.

Discussion

The results obtained by the conducted cases studies summarised
above clearly show the promises of the proposed verification
methodology. However, some obvious ramifications have to be dis-
cussed when evaluating the general applicability of this methodolo-
gy.

The proposed methodology obviously requires the system to be
equipped with on-board verification tools to conduct the verification
tasks. Since the considered systems are substantially less powerful
than usual desktop systems or verification servers, this requires
lightweight but still efficient versions of those tools. Here, recent de-
velopments on lightweight methods [59], [60] as well as endeavours
towards efficient hardware solvers [61], [62] provide promising plat-
forms for this purpose. Besides, it should be noted that the proposed
verification methodology yields an exponential reduction in the
search space, so even less powerful verification tools might be able to
cope. Our evaluation results corroborate this assumption.

Besides that, the obvious question is what happens if the verification
after deployment fails, and the deployed system turns out to be er-
roneous? This would be rather unfortunate, but we still believe that
conducting verification after deployment has its value. First, note
that this is a strict improvement over the existing situation, where
the error would not have been detected at all, while verification after
deployment at least shows its existence. This gives vendors the possi-

Discussion

50

3.5

bility to react (e.g. by calling the system back, issuing software patch-
es or hardware fixes). Second, verification failure does not necessarily
indicate an erroneous system; it may equally indicate that the config-
uration variables are instantiated with erroneous values. In this case,
the system may just pause until it is re-configured with allowed val-
ues, in this way guaranteeing correct functionality.

Our approach differs from run-time verification, which is concerned
with “checking whether a run of a system under scrutiny satisfies or
violates a given correctness property” [63]. The central notion of run-
time verification is the trace (or run) of a system, and central ques-
tions are how to derive monitors checking a concrete run against an
abstract specification. The logics employed are typically temporal or
modal logics. In our work, we are not concerned with monitoring the
system at all, we instead specialise given variables in an abstract speci-
fications if they do not change often.

Conclusion

This Chapter introduced a general approach to Self-Verifying Sys-
tems and showed it’s feasibility by applying it to several case studies.
We were able to show the general applicability of the approach but a
couple of important questions have yet to be answered:

The following chapters will address these questions respectively.

When exactly should the verification take place and what are the
consequences of late vs. early verification?
Which parts of a system should belong to it’s configuration and
how can we systematically determine these parts?

(1)

(2)

3 Fundamentals of Self-Verification

51

Conclusion

52

4

4.1

Design of
Self-Verifying
Systems
In this chapter, we investigate the effects of self-verification on the
development. That is, we want to explore when to prove properties
and which ones, and we want to investigate how self-verification in-
teracts with the development process. For this, we introduce a more
abstract view on self-verification and widen the somewhat simplistic
concept of configurations to trigger transitions: Transitions of a system
that trigger a verification (i.e. in terms of Chapter 3, a change of the
configuration).

Self-Verification, Design Time &
Run-time Verification

The key advantage of self-verification as described in Chapter 3 is
that after deployment, the concrete values of parameters may be-
come known for verification. Some may be instantiated early on after
deployment, and not change after that at all, or only very infrequent-
ly; others may change, but not that often; and even others may be
sensor data which are read in small intervals, but where the rate of

53

change may be limited. All of this information may be utilised at run-
time for more efficient verification.

This observation hinges on the fact that proving a property ϕ de-
pends, inter alia, on the number of free variables in ϕ, and that pa-
rameters as mentioned above usually occur as free (or universally
quantified) variables in ϕ. Then, proving ϕ [t

x

] with a ground term t

instantiated for x is typically orders of magnitude easier than prov-
ing ϕ.

Comparing self-verification to run-time and a priori design time veri-
fication on a more abstract level, we consider specific runs of the sys-
tem ⟨σ

i

⟩

i∈N

, consisting of states σ
i

, and a safety property ϕ. Usual de-
sign time verification proves the general property that for all runs,
∀i. ϕ(σ

i

), i.e. the safety property holds for all states. In OCL and re-
lated formalisms, this is achieved by an inductive argument, showing
that we start in a safe state, ϕ(σ

0

), and that from a safe state we can
only get to a safe state, ϕ(σ

i

) implies ϕ(σ
i+1

).

Run-time verification, on the other hand, considers whether a spe-
cific run satisfies ∀i. ϕ(σ

i

) and does not restrict the transitions of the
system; unsafe states can be reached, but this is always detected.

In self-verification, instead of restricting transitions, we classify
them into trigger transitions and ordinary transitions. The idea is
that when the system goes through a trigger transition σ

i

→ σ

i+1

,
self-verification shows that all states σ

k

reachable with ordinary
transitions from σ

i+1

are safe, i.e. ϕ(σ
k

). If another trigger transition
is reached, the self-verification is run again. Note that the classifica-
tion of trigger transitions and ordinary transitions depends on the
particular ϕ and is a design decision (see Section 4.2 below). A priori
and run-time verification can be seen as extreme cases of self-verifi-
cation: in design time verification only one transition (the one lead-
ing to the initial state of the system) is classified as a trigger transi-
tion, while in run-time verification every transition is a trigger tran-

Self-Verification, Design Time & Run-time Verification

54

sition. Figure 4.1 illustrates the effect of different sets of trigger tran-
sitions for one system.

1 2

3 4

Figure 4.1 Four different points in time chosen for verification, from design
time (leftmost) to run-time (rightmost). Trigger transitions are marked with
small boxes; they trigger verification tasks which show that every possible
path through the state space which does not include other trigger transitions
is safe. Green boxes mark successful verification, and red boxes mark failed
verification tasks. The solid red state is unsafe; it violates the safety property
ϕ. Grayed-out states are not reachable, because they come after a failed ver-
ification (open red box). Design time verification (on the left) would identify
the system as erroneous and prohibit its execution. Second to left, the system
is verified early after deployment and thus is allowed to execute only a small
fraction (6 transitions) of the system, blocking two transitions and leaving
6 transitions unreachable. Third to left, most of the system is executable (11
transitions) but two transitions are blocked and one transition is not reach-
able. The rightmost example allows all but one transition. Note that in the
last example the system gets deadlocked in state 4 when taking the leftmost
path.

Because the effort to state and prove ϕ increases with the number of
states we want to cover, self-verification allows us to strike a balance:
we may prove ϕ with little effort for a small number of states, and so
have to reprove it more often, or we may prove ϕ for more states, but
with more effort.

When we specify the desired behaviour of the system with design
time verification, we need to state the required preconditions very

4 Design of Self-Verifying Systems

55

4.2

4.2.1

precisely — they need to be strong enough to be able to actually show
that the system globally satisfies the specified properties, and to pre-
clude unwanted behaviour, but weak enough to still allow all desired
implementations. If we move verification into run-time, we can relax
preconditions at design time, allowing for more readable specifica-
tions and speeding up the development process. Consider Figure 4.1
again: to make the system usable as well as correct, one would have
to e.g. refine the specification (or the implementation) to exclude the
transitions from states 1 and 2 to 3. With self-verification, we can al-
low a more liberal specification or implementation and still remain
safe, making the development process easier.

Thus, in essence specification becomes easier and faster to write, and
moreover we are liberated from having to prove everything a priori
and can instead adapt the proving strategy to the problem at hand.

Case Study

In the following, we introduce a case study building loosely on Abrial
[28]. The case study is simple enough to be easily understood, yet
complex enough to show the subtle effects of verification at different
points in time. Note that this case study is strictly different from the
similar example in Chapter 2 and must not be confused.

Informal Description

To motivate our case study, think of a building where fine-grained
access control is needed for security or safety reasons, e.g. a nuclear
power plant, but which also needs to be able to be evacuated very fast
in the case of an emergency. In that case, we want to be able to elim-
inate access control (to allow fast evacuation) and just open some of
the doors in such a way that all users are able to get out, but no user
gains access to a room where they are not allowed to enter.

Case Study

56

More precisely, we have a building consisting of several rooms. The
rooms are connected by doors, which are unidirectional (think of
turnstiles; normal two-way doors are an obvious generalization).
Thus, doors lead from one room to another one, which is equivalent
to each room having a set of entries and exits.

Users are represented in the system by cards which regulate the access
to rooms. (In the following, we use cards and users interchangeably;
the formal specification only has cards.) Each card authorises access
to a set of rooms, by restricting passage through the doors. The access
control system operates in two modes: in normal mode, a door may
only be passed (using a card) if the card authorises access to the room
the door is leading to. However, we can declare an emergency for the
whole building; in that modus, some doors are opened, allowing any-
one to pass through.

Opening doors in an emergency is subject to two safety properties: first-
ly, it should allow any user (card) to eventually arrive in a safe room,
and secondly, it should not allow any user to enter a room they are not
authorised to. A subset of rooms is considered to be safe; in the sim-
plest case, this can just be the outside modelled as a room.

As an example for the necessity of the safety properties, take the nu-
clear power plant: even in case of an emergency, one would not want
anybody to exit through the reactor core.

This rather innocuous specification allows some subtle effects. Con-
sider the simple building in Figure 4.2. The depicted situation violates
the safety property, as in case of an emergency, we cannot disable ac-
cess control and open the doors in such a fashion that neither user
A or user B are allowed to access rooms they are not authorised to
(rooms b and a, respectively), and at the same time both are able to get
to a safe room (s).

Hence, we need to prevent a situation like this from happening. This
could be done by

4 Design of Self-Verifying Systems

57

a b

c

s

A B

Figure 4.2 Example of a very simple building. The user with card A is au-
thorised for room a, user B is authorised for room b, both are authorised for
rooms c and s. Room s is the only safe room (it is the outside). The situation
shown violates the safety property.

4.2.2Formal Specification

We can now give a formal specification of our access control system.
We will use the subset of SysML and OCL introduced in Chapter 2,
where block definition diagrams model the structure of the system,
and OCL constrains the dynamic behaviour.

In Figure 4.3, we can see blocks modelling the building, doors, rooms
and cards respectively. The building has a Boolean attribute emergency.
A door leads from exactly one to another room, but a room may have
many (or no) entries and exits. A door may only connect rooms which
are part of the same building:

either restricting the layout of the building in such a way that sit-
uations like this do not happen (this is what is usually done, with
layouts were corridors are the default escape route, and users do
not have to traverse long sequences of rooms);
or by restricting the authorizations of the cards in such a way
that a situation like above does not happen;
or by checking that before a users enters a room no situation vio-
lating the safety property like above is created.

•

•

•

Case Study

58

Block Definition Diagram [package] selfie::acs ACS

«block»
Building

values
emergency: Boolean

«block»
Door

values
isOpen: Boolean

operations
pass(card: Card): Unit

«block»
Card

«block»
Room

values
isSafe: Boolean

rooms[*]building[1]

cards[*]

exits[*]

from[1]

entries[*]

to[1]

authorized[*]

authorizations[*]

checkedIn[*]

location[1]

Figure 4.3 Formal specification of an access control system.

Furthermore cards are also associated to buildings and may only au-
thorise access to rooms which belong to the same building:

Cards have a set of authorizations (rooms which the holder of the card
is allowed to enter) and exactly one location, which determines the
current location of the card, and which must always be contained in
the set of authorizations1. On the other hand, rooms have a set of au-
thorised cards (those cards which have the room in their set of autho-
rizations), and a set of checkedIn cards (the set of cards whose location
is this room).

context Door1
inv: from.building = to.building2

context Card3
inv: authorizations/>forall(r| r.building = self.building)4

context Room5
inv: checkedIn/>forall(p | authorized/>contains(p))6

context Card7
inv: location/>forall(r | authorizations/>contains(r))8

1. We assume an idealised scenario where we can reliably track the location of a card
holder and can prevent that people share their cards

4 Design of Self-Verifying Systems

59

Rooms have a Boolean attribute isSafe which determines whether the
room is safe during an emergency. A door has a method pass, which
determines whether a given card is allowed to pass. This is the case
if either the door is open (see immediately below), or if the card is in
the room this door is opening from, and the card is authorised for the
room the door is opening to. We have encapsulated this precondition
as an OCL function mayPass in order to reuse it later. The postcondi-
tion of the pass method is that the location of the card has changed to
the room the door is opening to. Doors are only allowed to be opened
in case of an emergency.

We now want to the safety property: in an emergency, users can al-
ways reach a safe room, yet no user has access to a room they are
not authorised to. To formalise a user being able to reach a room,
we formalise the notion of recursive access, which models the traver-
sal along a sequence of connected rooms: users have access to the
room they are currently in, and recursively to all rooms which can be
reached through doors which may be passed (i.e. rooms which have
an entry from an accessible room that this card has access to). We
formulate this notion as an OCL function hasAccess which for a given
room determines whether a given card has access to this room. Since
OCL does not allow non-terminating functions we pass the set of al-
ready traversed rooms to the helper function hasAccess$ such that we
do not traverse cycles:

context Door9
def: mayPass(card: Card): Boolean =10

isOpen or from.building.emergency11
and card.authorizations/>contains(to)12

inv: isOpen implies from.building.emergency13

context Door/:pass(card: Card):14
pre: mayPass(card) and card.location = from15
post: card.location = to16

Case Study

60

4.2.3

We can now specify the safety properties: firstly, that users can al-
ways reach a safe room, and secondly, that users only have access to
rooms they are authorised for:

When to Verify

a b

c

s

A

d
B

a b

c

s

A

B

d

e

Figure 4.4 Situations which are safe. On the left, user B cannot enter room c
until user A has left. On the right, a similar situation, but the user B may have
taken the long path through room e and d quite unnecessarily before not be-
ing able to proceed further.

In order to preclude an unsafe situation as in Figure 4.2, we have to
show our system satisfies the safety property. Of course, in full gen-
erality — universally quantified over all buildings and all authoriza-
tions — the safety property does not hold; we can easily find coun-
terexamples (such as Figure 4.2). If we want to show the safety prop-

context Room17
def: hasAccess(card: Card): Boolean = hasAccess$(card,Set{})18
def: hasAccess$(card: Card, visited: Set(Room)): Boolean =19

card.location = self or20
visited.excludes(self) and entries/>exists(e |21
e.mayPass(card) and22
e.from.hasAccess$(card, visited/>including(self)))23

context Card:24
inv safe1: building.rooms/>exists(r |25

r.isSafe and r.hasAccess(self))26
inv safe2: building.rooms/>forall(r |27

not r.authorized/>contains(self) implies not r.hasAccess(self)))28

4 Design of Self-Verifying Systems

61

erty at design time, we have to formalise conditions which are suffi-
cient for the safety property (i.e. preclude unsafe buildings).

With self-verification, we can show the safety property after deploy-
ment, at different points in time:

In case (a), we would either need an explicit and sufficient characteri-
zation of “every user always has a safe exit route”, or we need to search
a lot of instances (all paths for all users from all rooms). For most
buildings, we will be able to find counterexamples of unsafe configu-
rations of users and access rights, but we may be able to restrict ac-
cess rights in such a way that we can prove the safety property. If we
can prove the safety property at this point, we are done, but this may
not always be possible.

The other extreme case is (c); this is fairly straightforward to verify
but might be inconvenient to the user. (Thus, this is an example of
making a system safe by restricting its availability.) Consider the sit-
uation in Figure 4.4 with the same authorizations as in Figure 4.2. On
the left, user B cannot enter room c until user A has left, because oth-
erwise we would have the situation from Figure 4.2 which is not safe.
This might result in situations like on the right of Figure 4.4, where
user B might take a long tour through room e to room d only to find
they cannot proceed any further.

A good compromise is case (b): we verify the safety property each
time the authorizations change, for a specific building and specific
authorizations. In most cases, this should be reasonably efficient —

right after deployment to a specific building, for all possible
cards, authorizations and allocations of users to rooms; or
after authorization has changed, for a specific building, but for
all possible allocations of users to rooms; or
when a user requests access to a different room: if the new con-
figuration of the user in this different room is unsafe, access is
not granted.

(a)

(b)

(c)

Case Study

62

4.3

4.3.1

the search space is through all possible allocations of users to rooms
— but still precludes unsafe allocations.

Note how self-verification allows us to relax the development
process: because we can prove the safety property at run-time, we
do not need to specify all its preconditions at design time (here, we
do not need to characterise the preconditions to make buildings and
authorizations safe). This makes the development process more agile
without compromising safety.

Realization

Applying the Design-Flow for Self-Verification

We apply the design flow introduced in Chapter 3 to our case study.
As demonstrated in Section 4.2, we use the same subset of SysML2 to-
gether with OCL as a specification formalism. Block definition dia-
grams and state machine diagrams can be given a formal semantics
(which is not the case for all SysML diagrams), so our specifications
have a mathematically well-defined, formal meaning. This is indis-
pensable if we want to perform formal correctness proofs.

We use our textual representation of block definition diagrams and
state machine diagrams (Figure 4.5). Parts of the corresponding OCL
specifications have been shown in Section 4.2 above.

The implementation is given as an executable system model. To stay
independent of a specific programming language, we again use the
functional hardware description language Clash [26] as modelling
language, since it allows us to simulate the system as well as synthe-
sise an implementation in VHDL or VeriLog. Another possibility with
more commercial traction would be SystemC, but that has a less clear
semantics and it is embedded in C++, technically a lot more awkward
to handle (in Clash, adding proof support was merely a question of

2. The case study only uses block definition diagrams.

4 Design of Self-Verifying Systems

63

Figure 4.5 SysML block definition diagram expressed in SPECifIC SysML

bdd [package] selfie/:acs [ACS]1
-------------------------------2

3
block Building4

references5
rooms: Room[*] /- building6
cards: Card[*] /- building7

values8
emergency: Boolean9

10
block Door11

references12
from: Room[1] /- exits13
to: Room[1] /- entries14

values15
isOpen: Boolean16

operations17
pass(card: Card)18
pre: mayPass(card) and card.location = from19
post: card.location = to20

constraints21
def: mayPass(card: Card): Boolean =22

if from.building.emergency then isOpen23
else card.authorizations/>contains(to)24

inv: isOpen implies from.building.emergency25
26

block Card27
references28

authorizations: Room[*] /- authorized29
location: Room[1] { subsets authorizations } /- checkedIn30
building: Building[1] /- cards31

constraints32
inv: authorizations/>forall(r| r.building = self.building)33
inv: building.rooms/>forall(r| not r.authorized/>contains(self)34

implies not r.hasAccess(self)))35
inv: building.rooms/>exists(r| r.isSafe and r.hasAccess(self))36

37
block Room38

references39
building: Building[1] /- rooms40
exits: Door[*] /- from41
entries: Door[*] /- to42
authorized: Card[*] /- authorizations43
checkedIn: Card[*] { subsets authorized } /- location44

values45
isSafe: Boolean46

constraints47
def: hasAccess(card: Card): Boolean =48

card.location = self or entries/>exists(e |49
e.mayPass(card) and e.from.hasAccess(card))50

Realization

64

4.3.2

adding an additional backend; in SystemC, we do not even have an
explicit representation of the model to start from).

Our tool chain (as introduced in Chapter 2) reads the SysML and OCL
specification, performs the appropriate type checks, reads the Clash
model, and generates the corresponding first-order proof obligations
in bitvector format (first-order logic with limited width integers as
datatypes). The proof obligations are essentially obtained by taking
a representation of the system model in bitvector logic, and showing
they satisfy the OCL constraints (pre/postconditions and invariants).
They can be either processed at design time by an SMT prover such
as Yices or Z3, or transferred to run-time. Proving at run-time is ei-
ther performed by an SMT prover running on the target system, if the
latter is powerful enough, or by converting the proof obligations in-
to conjunctive normal form (e.g. using the Yices prover) before trans-
ferring it to the target system, and using a SAT solver at run-time (ei-
ther as a lightweight software SAT solver [59] or even a hardware SAT
solver [62])

The Demonstrator

If we implement the case study in our usual design flow, we derive a
hardware implementation, e.g. on an FPGA. In order to explore the
implications of proving at different points in time, and to demon-
strate the effects of self-verification in an easily accessible setting, we
implemented the case study as an interactive demonstrator. For this,
we leveraged the two previously developed tool flows for the instan-
tiation of our model from Chapter 2. This allows us to semi-automat-
ically translate the above SysML definition into an executable system
by generating implementation stubs as well as translating the model
into a refinable SMT instance.

Simulating the hardware turned out to be very slow, so instead we
chose to adapt our flow: the implementation is an interactive SVG,
with the dynamic behaviour implemented in TypeScript.

4 Design of Self-Verifying Systems

65

The core of the system is generated as implementation stubs, using an
adapted form of our design flow (see Figure 4.6).

SysML + OCL

bdd [package] controlle r [Controlle r]

«block»

Contro lle r

operations

tick()

«block»

Sensor

values

value : Int

«block»

Light

values

sta tus: Boolean

«block»

Configuration

values

e_lo: In t
e_h i: In t
de lay: In t

1
1

11 1 1

Instantiated
prf. obl.Z3 via

websocat

D
es

ig
n

tim
e

In
 th

e
fie

ld

Bitvector logic
SMT prover
(e.g. Yices, Z3)

Instantiated parameters

State space to be verified

SVG, TypeScriptTypeScriptT

TypeScript

Model

Implementation
Verification

Specification

Deployment

SVG
DOM

Figure 4.6 Design flow adapted to our demonstrator.

We have chosen TypeScript [64] as the target language (TypeScript is
like JavaScript, but with added type security), because it allows us to
dynamically modify the abstract syntax tree (the DOM) of the SVG.
This allows the demonstrator to be displayed and run on any recent
web browser. In addition to the specified behaviour we manually im-
plemented means to add and remove cards and change their access
rights, and reading building topologies from a non-interactive SVG.
We have implemented access cards (and implicitly their owners) as
automated agents which randomly roam the building. This allows
us to observe the implications of the different points in time of the
verification; for example, the behaviours mentioned for case (c) in
Section 4.2 above manifest themselves in agents hovering in one
place unable to proceed because of the violation of the safety property
this would incur.

The generated SMT proof obligations can be processed by an SMT
prover at design time. As mentioned above, the prover quickly finds

���!�.�(�$#

66

counter examples since our specification can easily be violated in
general. By adding run-time information in the form of assertions,
we refine the instance on the fly. This was realised by establishing a
WebSocket connection between the SVG and the Z3 prover. For this,
we use the websocat utility, which wraps a WebSocket server around a
command-line program. This allows us to load the general proof and
then incrementally send assertions restricting the state space.

Technically, the arbitrarily mutable state of our simulation is in prin-
ciple not compatible with the monotonous nature of adding asser-
tions: assertions can only add information but not change or remove.
Fortunately, SMT-LIB (the common language used by most SMT
provers) allows us to use scopes (with the commands push and pop) for
this. In order for this to work, we introduce a fixed order in which in-
formation is added, which is based on the order of execution in the
system, ideally corresponding to the frequency of change. First, we
add the general building topology, then the access rights, and after
that, the tracked locations of the card holders. Between every asser-
tion, we save the current size of the assertion stack with the push com-
mand. If any information changes, we remove the assertion with the
now outdated information as well as any assertion which came after-
wards. Then we only need to add the updated assertions. Depending
on the point in time chosen, we can check satisfiability anywhere be-
tween.

An interesting feature of our implementation is that we did not im-
plement any algorithm which opens the doors. Instead, we use the
prover to give us a model of the existentially quantified safety prop-
erty, which states that there must be a safe way to exit (i.e. a set of
doors to open in case of emergency). Through self-verification not
only did we not have to characterise buildings, access rights or safe
paths through the building, we even did not have to implement a path
finding algorithm at all.

4 Design of Self-Verifying Systems

67

The demonstrator is shown in Figure 4.7. It connects the implemen-
tation to the proof engine running the SMT instance. We can manu-
ally choose one of the three different information levels for the proof,
which result in different assertions being added as well as different
triggers for the proof.

Figure 4.7 The demonstrator is implemented as an interactive SVG docu-
ment, displayed here in a web browser.

Users can explore the consequences of the different points in time for
the self-verification. For example, if they choose to verify early on
(after a new card has been added or access rights change) and add a
lot of cards, they will notice a considerable slow-down when adding
new cards or changing access rights. If they choose to verify late (be-
fore a user enters a room), and construct situations like in Figure 4.4,
they will realise how users congregate in front of a room unable to get
in. (The demonstrator is intended to be used together with addition-
al interactive explanation, not stand-alone, as situations like this will
have to be constructed consciously.)

The source code of the demonstrator is publicly available on GitHub:

���!�.�(�$#

68

4.4

DFKI-CPS/selfie-demo

Interactive demonstrator -- exploration of self-verification

TypeScript

When to Prove

The focus of the case study has been to investigate the implications
and consequences of the point in time at which the proof of safety
properties take place at run-time.

Generally, the earlier we can prove, the more general the proven safe-
ty property, but the larger the search space is and subsequently the
longer it will take. How to pick the right points in time depends on the
actual system and is very much a design decision.

However, we have made a number of observations which can help to
assist in finding the right set of trigger transitions. The set of trigger
transitions should be large enough such that verification tasks can be
completed in a timely manner (again, acceptable verification times
depend on the concrete use case) but reduced in a way such that no
critical transition is included. Trigger transitions might be prohibited
by self-verification in case the specification is violated (fails to veri-
fy in the concrete instance), so critical transitions should not be in-
cluded in the set of trigger transitions: e.g. if we verify the existence of
an escape route in case of an emergency it is clearly too late to handle
failure. On the other hand, administrative operations like changing
access rights are far better suited to be included as trigger transitions,
since a potential failure is presented to a trained user of the system.
Lastly, one should avoid transient states (e.g. a user is inside a securi-
ty gate) which can only be left through trigger transitions since self-
verification may lead to a system dead-locked there, as in Figure 4.1.

4 Design of Self-Verifying Systems

69

https://github.com/DFKI-CPS/selfie-demo

4.5Conclusion

The vehicle of our investigations in this chapter was a case study con-
sisting of an access control system, which is parameterised in many
dimensions (the building under control, the access rights, the users)
that can be instantiated at different points in time.

In order to make our results concrete and tangible, we have developed
a demonstrator — the access control system implemented as an in-
teractive SVG, which can be viewed and run in any web browser.
Users can directly experience the effect of choosing different verifica-
tion triggers.

The demonstrator also exhibits the applicability of self-verification
and the versatility of our tool chain, which could be adapted to sup-
port a different implementation platform (SVG and TypeScript in-
stead of Clash) with moderate effort.

This raises the question of the general applicability of the approach.
As presented here, some kinds of safety-critical systems could not
be addressed adequately, namely fail-safe systems [65], where there
is no default safe state which we can always revert to if self-verifi-
cation does not succeed. On the other hand, an attractive avenue for
further exploration is “just-in-time verification”, where one tries to
prove properties at run-time as they are needed (see Section 6.2)

In Chapter 5, we will further investigate how the designer can be as-
sisted in the design decisions; in particular, how we can systemati-
cally find out which variables offer the most reduction in proof time
when instantiated.

Conclusion

70

5 Proof Partitioning
The central means to reduce the search space during run-time and,
by this, reduce the run time of the reasoning engine is to set a certain
amount of the given variables to a fixed value. While the general
methodology has been explored in the previous chapters, the ques-
tion which variables to fix in order to achieve the largest reduction
of verification run time has not been addressed yet. While in theory
fixing one Boolean variable would reduce the search space and run
time by half, actual instances show a much smaller and less uniform
reduction due to the optimizations by the proof engine. Some vari-
ables may hardly have an effect at all, while others may immediately
cut down a day-long verification process to a few moments. Because
of that, it is essential for verification engineers to have a clear under-
standing about the impact of fixing a particular variable on the ver-
ification run time, so they can follow the general idea of fixing some
variables in order to get a partial result out of the verification process
covering as many cases as possible. However, no systematic investi-
gation on this effect has been conducted so far.

In this chapter, we introduce a methodology to analyze verification
run time, and to measure it practically in a meaningful way. The main
problem is how many and which variables are fixed. For this, we first
state a formal criterion describing an optimal solution to this prob-
lem. Based on that, a cost function is defined which can be used to

71

5.1

employ stochastic and heuristic methods in order to eventually de-
termine solutions optimised for this goal.

Using a proof-of-concept implementation based on evolutionary al-
gorithms, we were able to confirm the potential of the proposed
methodology. In fact, experimental evaluations confirmed that this
methodology indeed determines a set of variables to be fixed which
keeps the verification run time within specified limits while still cov-
ering as much as possible of the search space.

In general, the methodology works for any other heuristic which op-
timises with respect to a given cost function, and the proposed analy-
sis method is independent from both the reasoning engine and the
underlying logical language, i.e. we treat the reasoning engine as a
completely opaque black box which either proves a proposition or
not.

This offers valuable information for designers following the ap-
proach of the previous chapters, to choose which parts of a proof offer
the highest potential to be postponed for self-verification.

Fixing Free Variables

In the following, we consider a verification problem as a single
proposition3

ϕ that shall be proven with contemporary reasoning en-
gines such as SAT solvers [13], [66], SMT solvers [15], [17], [67], or sim-
ilar. The particular logic and reasoning engine used do not matter, as
long as the proof procedure is fully automatic. We are interested in
problems that cannot be solved using the given resources, where the

3. Note that a number of verification conditions can of course always be combined into
a single proposition by conjoining them. Furthermore, we consider all variables to be
Boolean. This does not restrict the methodology (because other types such as integer
variables can be encoded as bit vectors) but significantly simplifies the exposition in
the following.

Fixing Free Variables

72

verification process would be aborted and the verification engineers
would get no result at all.

In contrast, when enough variables are set to fixed values (we say the
variables are fixed), the search space is reduced and the reasoning en-
gine eventually yields a verification result. Even if such a result would
not cover all instances of the verification problem, proving an in-
stance of ϕ may still be of potential value.

This yields the questions how many and which variables should be
fixed. So far, no detailed analysis exists on whether the number and
selection of variables matters, on by how much the verification time
is actually reduced, and how to measure these effects in the first
place. In an idealised scenario, answers to these questions would be
as sketched in the following example:

Example 5.1

Consider a verification problem ϕ whose complete verification takes
a certain time T

ϕ

. Setting all variables of ϕ to a fixed value will allow
for a more or less instantaneous completion of the verification task.4

Moreover, in an idealised scenario, the proof time would be reduced
exponentially with respect to the number of fixed variables. This is
sketched by the green solid line in Figure 5.1, showing an idealised graph
plotting the (presumed) average proof time (in logarithmic scale) over
the number of fixed variables. In this idealised scenario, answers to
the two questions raised above are trivial: It does not matter which
variables are fixed (any differences are averaged out) and the number is
basically determined by the available resources, i.e. the available time
(on the y-axis) determines the corresponding number of variables (on
the x-axis).

4. In some logics (e.g. with nested quantifiers), this might not be the case, but the general
principle that proving ground term propositions is much faster is still valid.

5 Proof Partitioning

73

However, such an idealised scenario almost never occurs. In fact, it
quickly becomes clear that the relation between the number of fixed
variables and the proof time is rather erratic. Again, this is illustrated
by means of an example:

Example 5.2

Consider a representative benchmark taken from the SMT-LIB
benchmark library [68]5 for which the relation between proof time
and sets of fixed variables have been evaluated. The obtained results
are shown in Figure 5.1. Here, each data point at (n, t) corresponds
to the average proof time t of ϕ with n different variables fixed. As
can clearly be seen, there is no obvious relation between proof time
and the number of fixed variables. Instead, there are a number of data
points which are better than the idealised scenario discussed before
in Example 5.1, i.e. points which lie below the diagonal in Figure 5.1.

As illustrated by these observations, simply fixing a certain number
of variables of ϕ often does not yield the desired result. Moreover, a
straightforward enumeration is not suitable because of the following
issues:

ComplexityComplexity
Even if the number of variables to be fixed is given as saym, there
still would be 2m possible combinations left to try out.

QualityQuality
Proving ϕ with all variable fixed except for one certainly will be
very fast, but will hardly give more insight than an aborted ver-
ification process. Hence, verification engineers are interested in

5. The SMT-LIB library is composed of various benchmarks to challenge reasoning en-
gines — including many problems from the verification of circuits and systems — and,
hence, provides a representative source of problems to be considered within the scope
of this work.

Fixing Free Variables

74

0 100 200

103

104

105

106

107

108

idealizedidealized
observedobserved

Number of fixed variables |X|

Pr
oo

f T
im

e T̂
 φ

Figure 5.1 Idealised and observed run time of a representative verification
problem.

restricting only as little variables as needed before the exponen-
tial blow-up kicks in.

EffectivEffectivenesseness
We are particularly interested in verification problems which
cannot be completed due to a time-out; here, we are looking for
the data points which lie as much to the left in Figure 5.1 as pos-
sible but are still below the time-out. These are hard to find by
enumeration as one would run into time-outs a lot.

In summary, we are interested in finding the data points in the lower
left corner of Figure 5.1, which represent instances where only a small
number of variables are fixed (i.e. the instance is as little restricted as
possible), while at the same time run time is kept small.

5 �&$$����/(�(�$#�#�

75

5.2Verification Run Time Analysis

The observations and discussions from above motivate an analysis of
the verification run time in order to determine the best possible data
points. This poses an optimization problem which has not been clear-
ly defined so far. In the following, a corresponding definition is pro-
vided which is used as a basis for the remainder of this work.

The inputs of the optimization problem are as follows:

Note that the actual time units are irrelevant, but we assume that the
time is deterministic and reproducible.6 Furthermore, the proof pro-
cedure may not terminate; in that case, T

ϕ

is a time unit which is larg-
er than any finite one.

Let FV (ϕ) denote the set of free variables occurring in ϕ. Given a sub-
set X ⊆ FV (ϕ) of the free variables of ϕ, we define the average verifi-
cation run time ^

T

ϕ

(X) as the average time it takes to prove ϕ with the
variables in X set to ground terms, and the rest in FV (ϕ) ∖X kept
free. That is, ^T

ϕ

(X) is the expected verification run time if the variables
in X are set to an arbitrary fixed value. We have found that, for a giv-
en X, we can approximate ^

T

ϕ

(X) with a small number (five) of repre-
sentative samples.

A reasoning engine (such as a SAT solver, SMT solver, or similar)
which, given a proposition, either returns true, false or does not
terminate.
A proposition ϕ which takes the time T

ϕ

to prove using the rea-
soning engine.

•

•

6. In the experiments summarised below, we use the number of elementary operations of
the SMT solver Z3 [17] as time unit (rlimit count), since this is deterministic and inde-
pendent of architecture or memory.

Verification Run Time Analysis

76

Example 5.3

Figure 5.1, which has already been discussed before, also provides an
illustration of this notation. The figure plots the average verification
run time ^

T

ϕ

(X) at the y-axis over the number of fixed variables (i.e.
the cardinality |X| of X) at the x-axis for the representative bench-
mark discussed in Example 5.2. Each data point in the diagram corre-
sponds to (|X|,

^

T

ϕ

(X)) for a particular set X of variables to be fixed.

The aim of the analysis is to determine a set X which is as small as
possible while still corresponding to a reasonable average verifica-
tion time. To this end, we need to investigate how the function map-
ping X to ^

T

ϕ

(X) behaves. With ∅ ⊆ X ⊆ FV (ϕ), we can state that

However, in between, the behaviour is not so well defined. From the
above, we might guess that the smaller the set X, the larger the av-
erage verification run time (i.e. ^

T

ϕ

(X) is anti-monotone over the size
of the variable set), but this turns out not be true (also confirmed by
Figure 5.1 discussed in Example 5.2). Mathematically, given two dif-
ferent subsets X,Y ∈ FV (ϕ), we have

|X| ≤ |Y | ⟹̸

^

T

ϕ

(X) ≥

^

T

ϕ

(Y). (5.1)

In other words, increasing the number of fixed variables does not
necessarily decrease the average verification run time. This is because
variables may depend on other variables, i.e. if we set one of them to
a fixed value, the other one is restrained as well.

^

T

ϕ

(FV (ϕ)) is the minimum, because it proves a ground term (no
free variables), and
^

T

ϕ

(∅) = T

ϕ

is the maximum, because we prove the original
proposition ϕ.

•

•

5 Proof Partitioning

77

5.3

Hence, the problem remains how to determine an optimal subset X of
variables (optimal in the sense of smallest set X such that the average
verification time ^

T

ϕ

(X) is still acceptable).

Proposed Solution

The problem motivated and introduced above can be addressed in
a number of different ways. A straightforward approach might em-
ploy an iterative scheme as follows: Determine the variable with the
smallest verification run time (i.e. determine the variable x such that
^

T

ϕ

({x}) is minimal). Then, leave it free and determine the variable
with the smallest verification run time among the remaining vari-
ables. Repeat this process until you reach an average run time which
is not feasible anymore. However, because of Equation 5.1, such
straight-forward approaches do not lead to satisfactory results in
most cases. The optimal solution for say two variables is not neces-
sarily a subset of the optimal solution for three variables (they are not
even guaranteed to intersect at all). So, we lack an order structure on
the space of possible solutions — all subsets of FV (ϕ) — which can
guide a search process to the optimal solution. To determine a solu-
tion in a rather unstructured space of solutions (such as this one), a
number of probabilistic and heuristic approaches are available (e.g.
simulated annealing, evolutionary algorithms, etc.). However, all of
these need a dedicated cost function which unambiguously describes
the quality in a quantifiable fashion (i.e. as a number) to guide the
search.

To get this cost function, we propose a geometric interpretation of the
data points in Figure 5.1. We are looking for the one which is closest
to the bottom left corner, i.e. which has the least distance to the ori-
gin. Geometrically, if we consider our data points as vectors, we are
looking for the vector with the smallest length. In order to make the
cost function behave uniformly for different propositions ϕ, we scale
both axes with the maximum, i.e. the size of the set of fixed variable

Proposed Solution

78

|X| with the total number of free variables |FV (ϕ)| and the average
verification run time ^

T

ϕ

(X) with the proof time of the original propo-
sition T

ϕ

. Thus, for a set X of variables to be fixed, our cost function is

q(X) ≜

⎷(|X|

|FV (ϕ)|

)2

+(log(

^

T

ϕ

(X))

log(T

ϕ

)

)
2

. (5.2)

Example 5.4

Figure 5.2 visualises the contours of the cost function (q from
Equation 5.2). The theoretical optimum lies at q(0, 0) = 0. When ap-
plied to the results of Figure 5.1, a ranking of the data points becomes
apparent, ordering the data points by the distance to the origin (high-
lighted by solid lines in Figure 5.2). Considering this as cost metric,
the optimal solution is the point marked with a green circle in
Figure 5.2.

Our cost function requires a concrete value for T
ϕ

which can only be
approximated (see Section 5.4), as we are considering propositions
where T

ϕ

is very large (in practice, a time-out). Hence, we need an up-
per limit for the solutions to consider during the analysis, otherwise
we would constantly run into time-outs. Given an upper limit T

max

which is considered acceptable for the analysis, the threshold τ(ϕ) is
defined as the number of variables to be fixed such that the average
verification run time is still below T

max

. The value of τ(ϕ) can be effi-
ciently approximated e.g. through a binary search. This confines the
number of data points to be considered to the ones which can be ana-
lyzed within acceptable run time.

5 Proof Partitioning

79

0 0.5 1
0

0.2

0.4

0.6

0.8

1
observedobserved
bestbest

Ratio of fixed variables |X|

R
at

io
 o

f L
og

ar
ith

m
ic

 P
ro

of
 T

im
e T̂

 φ(
X)

τ(φ)

Tmax

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0
1.1

1.2

1.3

Figure 5.2 Contour of the cost function

Example 5.5

For the example considered above, assume an acceptable time limit
T

max

. Based on this, approximate τ(ϕ) as illustrated by the dotted
lines in Figure 5.2. Now, only the data points between the left bottom
corner and these lines are considered during analysis. This way, it is
ensured that a good solution is derived while, at the same time, the
analysis time remains efficient.

Using this cost function and the threshold, any heuristic method of
choice can be applied to determine a set X such that q(X) is min-
imised – this will be our desired solution.

�&$%$'����$!)(�$#

80

5.4

5.4.1

Implementation

In this section, we describe one possible implementation of the pro-
posed solution described above. As a heuristic, we decided to use Evo-
lutionary Algorithms (EAs, [69], [70]) which represent an established
method to solve optimization problems, with applications in hard-
ware design [71], [72] or multi-objective optimization [73], [74]. In the
following, we briefly review the basic concepts of EAs in general, be-
fore discussing how those concepts are utilised in order to address the
problem.7

Evolutionary Algorithms

Evolutionary algorithms are stochastic search methods inspired by
the natural evolution process. The goal is to find a group of individ-
uals (representing solutions) which have the best fitness according to
a requested property (in our case, which best satisfy the cost function
stated in Equation 5.2).

In order to use EAs for an optimization problem, the following as-
pects need to be formulated with respect to the considered problem:

IndividualsIndividuals
An individual represents a possible solution for a considered
problem, and a set of individuals constitute a population repre-
senting a set of solutions. The idea of EAs is that these popula-
tions (and hence solutions) are improved over generations.

MMutation operutation operationation
Each individual of a population is subjected to mutations which
change the solution each individual represents, and hence ex-
plore new parts of the search space.

7. However, note that any other optimization methodology can be applied as well, and
that the usage of EAs only constitutes a representative.

5 Proof Partitioning

81

5.4.2

A

RRecombination operecombination operationation
Recombinations combine the characteristics of more than one
individual, hoping to merge beneficial traits out of them towards
a better solution. Recombinations aim for employing changes to
individuals in order to explore new parts of the search space as
well, but also converge on existing individuals.

FFitness functionitness function
After each mutation and recombination, new individuals (the
offspring population) are generated. To decide which individuals
shall be considered further, a fitness function selects the best in-
dividuals and promising candidates for the next generation.

Overall, the typical flow of EAs starts with the generation of an initial
population. Afterwards, a sequence of mutation and recombination
operations is conducted which yield new generations of populations.
The fitness function selects the individuals for the next generation.
This process is continued until the process converges (i.e. no real im-
provements are observed any more) or until a time limit terminates
the process.

EA-based Verification Run Time Analysis

In the following, we describe how EAs can be utilised for the op-
timization problem defined above. Recall that we are interested in
keeping the set X of variables to be fixed as small as possible while
the average verification run time ^

T

ϕ

(X) remains feasible for the rea-
soning engine. With this as a basis, we can formulate the different EA
aspects with respect to the considered problem as follows:

Individuals

An individual represents a potential solution X as a bit vector
I = ⟨I

i

⟩

i=1,…,|FV (ϕ)|

of size |FV (ϕ)| such that for every variable

Implementation

82

B

C

D

E

x

i

∈ FV (ϕ) there is a corresponding bit I

i

in I which indicates
whether x

i

∈ X.

Mutation

Based on the description of an individual, mutations are performed
as follows: Given an individual I and a mutation rate p

m

, every bit of
its vector is flipped with probability p

M

. This leads to a new individ-
ual J , representing the new solution.

m(I, p

m

) = ⟨J

i

⟩

i=1,…,|FV (ϕ)|

J

i

= {flip I

i

with p

m

I

i

otherwise

Recombination

Recombinations are performed as follows: Given two individuals I, J
and a recombination bias p

c

, we combine the two bit vectors by re-
taining bits which have equal values in both vectors, but randomly
choose bits from I or J at positions where they differ. The recombina-
tion bias is applied here to prefer one of the individuals. The recom-
bination leads to a new offspring K.

r(I, J, p

r

) = ⟨K

i

⟩

i=1,…,|FV (ϕ)|

K

i

=

⎧⎨⎩
I

i

, if I

i

= J

i

I

i

, with p

c

J

i

, otherwise

Fitness Function

We employ q from Equation 5.2 as the fitness function, with T

ϕ

ap-
proximated as T

max

⋅ 2

τ(ϕ). ^

T

ϕ

(X) is approximated by averaging the
results of a small number of concrete measured times.

Implementation Aspects

The implementation is available on GitHub:

5 Proof Partitioning

83

5.5

DFKI-CPS/verification-runtime-analysis

Sources of the DATE 2020 Paper "Verification Runtime Analysis"

The initial population is obtained by first approximating the threshold
τ(ϕ) with a binary search and then instantiating random individuals
with τ(ϕ) positive bits. We employ the algorithm with a very low mu-
tation rate p

m

, since this yields better recombination results. Individ-
uals to recombine are randomly chosen using a normal distribution
which prefers the best individuals. In addition, we apply a recombi-
nation bias p

r

towards the individual with the better score. We mon-
itor the progress of the optimization and spawn increasingly many
independent individuals as the optimization slows down. In the be-
ginning, these random individuals are of cardinality |X| where X is
the best solution found so far. With every generation which does not
yield an improvement over the last, we increase the deviation from
|X| in order to avoid getting stuck in a local optimum.

Even though the strategies described here constitute only one possi-
ble implementation, it yields very promising results, as the experi-
mental evaluations summarised in the next section will show.

Experiments and Results

The solution proposed above has been implemented and evaluated
using a large corpus of verification instances. This section summaris-
es the most important results obtained by this evaluation. To this end,
we first briefly provide details on the actual set-up as well as the con-
sidered benchmarks. Afterwards, the obtained results are presented
and discussed.

Experiments and Results

84

https://github.com/martinring/clash-compiler/tree/yices

5.5.1

5.5.2

Set-up

As input for the considered problem, we used verification bench-
marks provided by the SMT-LIB benchmark library [68] (in the bit
vector logic QF_BV), and the SMT solver Z3 [17] as the reasoning en-
gine. The EA has been implemented in the programming language
Scala. This language runs on the Java Virtual Machine (JVM), so we
use the Java bindings of Z3.

In order to have a deterministic and reproducible notation of time for
the analysis, we used Z3’s rlimit count as a time unit, which provides
the number of elementary operations required to solve an instance.
This way, the time measurements (required for the fitness function of
the EA) remain independent from the actual platform and hardware.
The target time-out T

max

was set to an rlimit count of 500 000 which
is roughly equivalent to 0.5s of computation on the utilised compute
server8.

Using this set-up, the verification run time analysis determines the
desired set X out of which the variables to be set to fixed values can be
obtained. Afterwards, the originally given propositionϕ as well as the
proposition with the variables in X set to ground terms is solved by
Z3 again — showing the impact of the obtained analysis results. For
the evaluations, solving times have been measured on an Intel Xeon
(E3-1270 v3) compute server with 8 cores and 16 GB of memory run-
ning Linux.

Considered Benchmarks

Our methodology is meant for hard verification tasks which do not
terminate before a given time-out. The SMT-LIB library provides a
huge, representative corpus of such problems from the verification
of circuits and systems, constituting a representative source of prob-

8. Note that there is no exact relation between Z3’s rlimit count and real time since
rlimit also considers memory operations.

5 Proof Partitioning

85

5.5.3

lems for our evaluations. We considered non-iterative quantifier-free
bit vector logic (QF_BV) benchmarks from the category “industrial”
which are marked as “unsat”, where τ(ϕ) (determined by binary
search as described above) is larger than 10; the latter ensures that
trivial benchmarks which complete in less than roughly
T

max

⋅ 2

10

≈ 512s are omitted.

With the remaining set of hard benchmarks, the proposed method
has been evaluated on a total of 333 propositions. The mean run time
t

A

of the analysis was 86 seconds. 34% (114) of the benchmarks were
analyzed in under 60 seconds, 93% (309) finished in less than 10 min-
utes, and the longest took 23 minutes 37 seconds. There was no sig-
nificant relation between the run time of the analysis and the original
proof time.

Obtained Results

A representative subset of results is summarised in [#tab:rta-results]
(For the full results see the linked github repository). Here, the first
columns denote the problem size: the number of SMT variables, and
the number of bits (|FV (ϕ)|) representing those SMT variables. The
next group of columns shows the results of the analysis: τ(ϕ) is the
initially approximated number of variables that has to be fixed, |X| is
the size (in bits) of the found solution X; and t

A

is the run time of the
analysis itself. The last column group shows the reduction in verifica-
tion run time: T (ϕ) is the run time with state-of-the-art verification
(which results in a time-out for all problems because we explicitly
consider hard ones). ^

T

rnd

ϕ

(|X|) denotes the run time when just an ar-
bitrary selection of variables Y ⊂ FV (ϕ) with the same size |Y | = |X|

is set to a fixed value, while ^

T

ϕ

(X) denotes the run time when exactly
the variables in X are set to a fixed value.

The results clearly confirm the benefits of our approach. While it is
in general not surprising that fixing a number of variables reduces
the verification run time, our analysis yields a small number |X| of

Experiments and Results

86

variables to fix for maximum effect. By this, verification engineers get
much more out of partial verification since it allows them to only set
a small portion of the variables to a fixed value. E.g. for calypto/prob-
lem_22.smt2, a naive method would have led them to set τ(ϕ) = 128

variables to a fixed value; with the sophisticated analysis method
proposed in this work, just fixing |X| = 13 is sufficient — yielding
substantially larger coverage.

Moreover, the results confirm that not only the number |X| of vari-
ables is important (how many?), but also which variables should be
set to a fixed value (which?). This can clearly be seen in the last two
columns of Table 5.1 randomly fixing |X| variables often leads to a
time-out (600s). In contrast, fixing exactly those variables X obtained
by the proposed analysis allows solving all benchmarks in negligible
run time.

The identified candidates do indeed reduce run time significantly
with respect to randomly constrained instances. Out of 333 instances
there were 221 which were sped up by factor 10 or more, 167 were
sped up by factor 100 or more and 94 were sped up by factor 1000 and
more. For 11 benchmarks the reference time could not be determined
due to time-outs of factor >10000.

Those benchmarks which were not significantly sped up can actually
be recognised during analysis because they show no clear relation
between sets of variables and run time and thus have large fluctua-
tions within the population over generations of the EA. We identified
several reasons, why this can happen: when too much information is
represented by a single SMT variable; when there are only pseudo-
random dependencies between variables and when too much of the
heavy lifting happens in local function definitions. However, these
instances can be quickly identified and might be fixable by adapting
the representation of the proof.

5 Proof Partitioning

87

Table 5.1
O

btained Results

Problem
 Size

A
nalysis

Verification R
un tim

e Reduction
Benchm

ark
SM

T Variables
|
F
V
(
ϕ
)
|

τ
(
ϕ
)

|
X
|

t

A

T
(
ϕ
)

^

T

r
n
d

ϕ

(
|
X
|
)

^

T

ϕ

(
X
)

calypto/problem
_22.sm

t2
33

205
128

13
173s

> 3600 s
> 600.00 s

0.02 s
float/new

ton.1.3.i.sm
t2

427
8498

135
33

92s
> 3600 s

> 600.00 s
0.12 s

float/test_v5_r10_vr10_c1_s7608.sm
t2

855
17860

91
35

298s
> 3600 s

64.15 s
0.16 s

float/test_v5_r15_vr5_c1_s23844.sm
t2

1280
26710

235
48

492s
> 3600 s

301.85 s
0.23 s

float/test_v7_r12_vr1_c1_s10576.sm
t2

1431
29853

234
50

525s
> 3600 s

113.98 s
0.26 s

float/test_v7_r17_vr5_c1_s25451.sm
t2

2024
42194

157
65

326s
> 3600 s

94.39 s
0.36 s

m
cm

/23.sm
t2

33
363

10
11

45s
> 3600 s

62.04 s
0.03 s

m
cm

/63.sm
t2

36
432

29
12

49s
> 3600 s

155.09 s
0.04 s

m
cm

/69.sm
t2

33
396

12
12

47s
> 3600 s

108.72 s
0.04 s

tacas07/Y86_std.sm
t2

246
5795

700
109

437s
> 3600 s

> 600.00 s
0.07 s

uum
/uum

16.sm
t2

190
3428

29
16

27s
> 3600 s

> 600.00 s
0.01 s

uum
/uum

20.sm
t2

234
5244

36
20

29s
> 3600 s

> 600.00 s
0.02 s

* = tim
e-out

*
*

*
*

*

*
*

*
*

5.5.4 Further Discussion

The obtained results show how many and which variables to fix to
get as much as possible out of partial verification. In this regard, note
that there may be external reasons to fix (or not fix) a variable. For ex-
ample, it makes no sense to fix sensor input which changes rapidly,
but it makes a lot of sense to fix configuration parameters which
rarely change. Obviously, such considerations can easily be integrat-
ed into the proposed analysis e.g. by adding a weight to the variables
such that instantiating some variables (which do not change often) is
favourable to instantiating others (which do change often). In addi-
tion to further increase the usefulness of the results, the induced state
space of variables should be taken into account, not only considering
it’s possible values but also the variables that it directly affects. This
again, can be easily integrated with weights.

With regard to related work, we need to take a look at the decision
heuristics implemented by contemporary SAT- or SMT-solvers, since
a lot of effort and research has been invested in their optimisation.
However, in a first approach utilising the decision heuristics of
MiniSAT and Z3 as a basis, our experiments have shown, that while
they are very well suited to identify single variables that have a large
impact on the verification time, they fail to identify sets of variables:
The identified optimal subset X as identified by our approach doesn’t
necessarily contain the single most impactful variable identified by
the solver (see also Equation 5.1). Explicitly stated, for any two sets
of variables X and Y , which is are optimal sets of variables of their
respective sizes |X| and |Y | where |X| < |Y |, we observed examples,
where |X| ∩ |Y | = ∅. This property unfortunately prohibits any
straight forward exploitation of such decision heuristics and justifies
our approach. The accuracy of our approach despite being less so-
phisticated than the existing heuristics is not surprising, as our ap-
proach is not required to make a very fast decision – like the estab-
lished heuristics – but rather thoroughly analyses the real runtimes

5 Proof Partitioning

89

5.6

of the proof engine, leading to an vastly more expensive but also
more accurate result. In addition our approach allows to extract the
actual average runtimes, giving an indication on the feasibility of the
proof on the target system.

The term “partial verification” is also used with model checking, in
particular software model checking (see e.g. [76]), referring to tech-
niques to reduce the search space in order to find counterexamples
(and, hence, bugs), or referring to the exchange of results between
different automatic tools (model checkers, static analyzers, theorem
provers) such that the combination of partial results makes the whole
verification succeed (see e.g. [78]). This is also referred to as condition-
al model checking [79]. Furthermore, the term is also used in the con-
text of agents [81], but refers to verification of truthfulness. However,
the methodology proposed in this chapter here is not related to any
of these previous works and, hence, is novel to the best of our knowl-
edge.

Conclusion

In this chapter, we presented a systematic verification run time
analysis which shows how many and which variables to fix for max-
imum verification run time reduction. Experimental evaluations
based on a proof-of-concept implementation confirmed the potential
and demonstrated that the proposed analysis method does not only
yield a partial verification result, but also gets the most out of it. Con-
sidering that further analysis methods can be implemented on top
of this methodology, this work provides a promising basis for future
work in this direction.

In the context of self-verification this analysis method is able to indi-
cate to the designer, which parts of a proof are worthy to transfer or
postpone into run-time and by this enhances the workflow.

Conclusion

90

6

6.1

The Future of
Self-Verification
Self-Verification is an entirely new approach to the verification of cy-
ber-physical and embedded systems and opens up its own field of po-
tential research directions. We present four promising ideas in this
chapter.

Predictive Self-Verification

If neither safety nor functionality can be sacrificed, whenever a trig-
ger transition is reached during the run-time of a system, the system
must pause until it is proven safe to operate again (See also
Section 3.3.2). This may lead to unacceptable delays in the execution.
One possible remedy could be to utilise the idle-time of the proof sys-
tem to proactively prove possible future trigger transitions. However,
this imposes a couple of hard problems:

The prediction of future transitions in cyber-physical systems is
completely dependent on the scope of the system and may involve ar-
bitrary scientific disciplines, as such systems interact with the phys-
ical world. Assume a self-driving vehicle as an example: We may use

We need a method to predict future transitions and
we need to cache discharged proofs.

(1)
(2)

91

6.2

meteorologic information to predict the static and adhesive friction
of the road due to rain, ice and wind conditions. We might use statis-
tical traffic data for the prediction of traffic jams, psychological ap-
proaches to intention recognition to predict the behaviour of the oth-
er road users, etc. It becomes clear that this direction is by no means
a venture that can be easily taken. Not because these methods do not
exist, but because complex techniques from numerous scientific dis-
ciplines have to be combined. However, even rudimentary approach-
es can give us a benefit. We utilise “free” idle time between trigger
transitions and every hit will improve the responsivenes of the sytem.

Even with a suitable method of prediction, problem (2), caching of
discharged proofs, remains. We are working with huge state spaces
(recall, that they were too large to handle prior to deployment) and
over time, an arbitrarily large amount of discharged proofs may ac-
cumulate (by this, too large to keep in memory). There are two ideas
to cope with this (which may be combined):

Overall, predictive verification is a promising approach to increase
the availability and responsiveness of self-verifying systems.

Just-in-Time Verification

So far, we have worked with statically assigned trigger transitions
such as a change of the configuration or an environment variable. If
these variables are under the control of the system this allows for a
completely safe system while we might sacrifice some functionality
(when a proof fails) or have to accept delays (when a proof consumes
more time than predicted). However, variables that are externally

We may employ “garbage collection” which clears proofs for
states that were predicted under entirely different conditions but
stayed unused.
Proof results could be condensed by proving patterns of states
and storing only the pattern.

(1)

(2)

Just-in-Time Verification

92

controlled might leave the system unverified for a period of time or
even proven erroneous during execution. For instance, a self-driving
car may encounter unexpected road conditions, traffic signals, or
pedestrians that require immediate verification of its safety and
functionality. In such cases, waiting for a correctness proof to com-
plete before resuing the execution may not be feasible or desirable. In
addition, verifiying properties of the system over general unbounded
time intervals may be undecidable or intractable, as it often involves
checking properties over infinite non-conflatable state spaces.

As a remedy for these shortcomings, we propose a novel approach
called just-in-time verification, which dynamically triggers time-bounded
verifications during run-time of the system. Time-bounded verifica-
tion is a method of checking the correctness of real-time systems over
time intervals of fixed, bounded length. It is useful for verifying prop-
erties that are relevant only for a certain duration, such as deadlines,
timeouts, or response times. However, in our use-case time-bounded
verification can also be a means to avoid some of the undecidability
and complexity issues of unbounded verification [82]. Time-bounded
verification can be applied to various logics and models of real time,
such as timed automata, metric temporal logic, event-clock automa-
ta, and perturbed timed automata. It can also be combined with oth-
er techniques, such as partial-order reduction, preemption locks, and
priority locks, to improve the efficiency and scalability of the verifi-
cation process. [83]

The idea of just-in-time verification is to monitor the system state
and the environment variables continuously, and to repeatedly con-
duct time-bounded verifications. The verification is performed over
a time interval that is sufficient to ensure the correctness of the sys-
tem for a time span long enought to finish the proof of the next time
period. If the verification succeeds, the system can proceed with the
execution. If the verification fails, the system can fall-back to a safety
measure.

6 The Future of Self-Verification

93

6.2.1

6.2.2

Prerequisites

Just-in-time verification imposes two essential requirements that
have to be met during the design of the system:

The central requirement is the existence of a safety measure that can be
executed in any state of the system and bring the system into a sta-
ble safe state. E.g. for a vehicle this might be pulling over and com-
ing to a safe stop or requesting human intervention. The time t

safe

it
takes to execute this safety measure may be dynamically dependent
on the state of the system (e.g. the speed of a vehicle) but it (or its up-
per bound) must be predictable from any given state.

In addition, we need a heuristic η(t,σ) that gives us a conservative es-
timate of the timespan we can prove from the current state σ of the
system into the future, given the available proof time t. The results of
Chapter 5 indicate that such a heuristic could be inferrable. The re-
cent dramatic advances in machine learning, especially deep neur-
al networks, offer another encouragement to investigate this. Even
a very basic heuristic will never leave the system in an unsafe state,
but might cause inconvenience, as the system will trigger unneces-
sary emergency stops (i.e. the safety measure).

Operation

For its operation a just-in-time verified system has to be equipped
with a self-verification system, composed of a monitor, a verifier and
a controller. The self-verification system is responsible for verifying
the system dynamically during operation, as well as for adapting the
system behavior accordingly.

The monitor component observes the state of the system and the en-
vironment. The monitor can be implemented e.g. with sensors, event
logs or access to internal state of the deployed system. The monitor
communicates the information to the verifier component, which runs
the verification tasks of the system using time-bounded verification.

Just-in-Time Verification

94

The verifier can e.g. utilise an SMT-solver or model checker. The ver-
ification results are communicated to the controller, which has the
power to trigger the safety measure at any time of the system execu-
tion, as well as resume normal execution of the system.

After the system is deployed or when the safety measure has been
triggered, the proof system has to be bootstrapped by proving a
timespan t

0

which ends at ⊣
t

0

. When this is successful, the controller
can can start or resume the normal operation of the system. During
operation, the proof engine will continuously trigger proofs in a loop
follwing the schema:

Control

Verification

t safe
tproofn

tn − 1

tn + 1

tn

V
er
if
ic
at
io
n
H
or
iz
on

N
ow

Figure 6.2 Reasons to exit the proof cycle: an error is detected before
t

n−1

− |t

safe

|. The system starts the emergency measure just in time

the proof for time span t

n−1

completes.
we trigger a proof for time span t

n

with ⊣

t

n

>⊣

t

n

−1

+t

safe

. The
proof itself consumes the timespan t

proof

n

. t
n

is determined by our
heuristic η.
when the proof completes before ⊣

t

n

−t

safe

we can continue from
(1) (Figure 6.1). This is the the stable just-in-time proof cycle.
when verifier proves the violation of a property or does not yield
a proof result in time (i.e. before ⊣

t

n

−t

safe

) the controller in-
terrupts the proof cycle by executing the safety measure.
(Figure 6.2, Figure 6.3)
when the system reaches a safe state after execution of the safety
measure, the verifier can bootstrap the proof cycle again and
start from (1)

(1)
(2)

(3)

(4)

(5)

6 The Future of Self-Verification

95

Control

Verification

t safe

tproofn tproofn + 1

tn − 1

tn + 1

tn

V
er
if
ic
at
io
n
H
or
iz
on

N
ow

Figure 6.1 The ideal jit scenario: . t
n−1

is the timespan that was previously
verified. In this ideal scenario t

proof

n

ends before the end of ⊣
t

n−1

− |t

safe

|. Op-
eration can continue and the next proof (n+ 1) is triggered.

Control

Verification tproofn

tn − 1

tn + 1

tn

t safe
V
er
if
ic
at
io
n
H
or
iz
on

N
ow

Figure 6.3 Reasons to exit the proof cycle: the proof does not complete be-
fore t

n−1

− |t

safe

|, hence the result will not be usable even if proven correct.
The system starts the emergency measures just in time

The proof cycle is always safe, but can in the worst case restrict func-
tionality of the system completely if the heuristic η always overesti-
mates the time t that can be proven or the proof is never faster than
the execution. Hence, the unanswered research questions that arises
from this approach are:

We have implemented experiments, namely a simplified simulation
of an adaptive cruise control and several planning algorithms but un-
til now failed to find the sweet spot, where a stable proof cycle can be

Is there a reliable method to infer a “good enough” η for a given
system?
Are there real-world systems to which just-in-time verification
can be applied without severely restricting functionality?

(1)

(2)

Just-in-Time Verification

96

6.3

permanently established while also verifying interesting properties
and operating in real time. However, we still believe, that it is worth
investigating further as just-in-time verification has several advan-
tages over the static trigger-based approach:

Dependent Operation

In the context of just-in-time verification, we propose Dependent Op-
eration as a critical concept, that may aid in establishing a stable proof
cycle. Particularly for systems where operational parameters directly
influence the verification process or the safety measure. This is exem-
plified by an autonomous vehicle:

This observation could be the key to practically applicable just-in-
time verification: The system adapts its operation to the proof system
and vice versa. By this, both system availability and safety can be
maximised dynamically.

It can ensure safety even in the presence of uncertain and unpre-
dictable environments.
It can drastically reduce the verification overhead and the execu-
tion delay by focusing on the relevant scenarios and properties.
It can increase the availability and responsiveness of the system
by avoiding unnecessary delays due to long running verification
tasks.
It could enable the evolution and integration of the system by al-
lowing the verification of new components.

(1)

(2)

(3)

(4)

The speed of an autonomous vehicle is proportional to the time
it takes to bring the vehicle to a safe stop (i.e. t

safe

reduces).
The speed of an autonomous vehicle also exponentially reduces
the search space of time-bounded veficiation tasks as the surface
of potential positions of the vehicle within the relevant time in-
terval shrinks. (i.e. verification time reduces)

•

•

6 The Future of Self-Verification

97

6.4

A continuous feedback loop is integral to this process. It involves real-
time monitoring of both the system’s state and the environment. Ad-
justments to operational parameters are based on this ongoing as-
sessment. However, implementing Dependent Operation poses sev-
eral challenges:

The application of dependent operation holds significant promise in
enhancing both the safety and efficiency of complex, real-time sys-
tems. Its adaptability makes it suitable for a wide range of applica-
tions beyond autonomous vehicles, including industrial automation
and smart infrastructure management.

Verification Aware Inference

Inferred systems or components of systems, which are the result of
modern machine learning approaches (e.g. deep neural networks) are
usually black boxes for verification methods. Their quality assurance
usually focuses on the training inputs. There are several first at-
tempts to the verification of such trained models [84], [85]. However,
they share the problem of non-scalability. With the recent advent of
transformer models, it seams feasible to train models not to produce

Real-time Data Analysis: The system must efficiently process
and analyze data in real-time to make informed adjustments.
This requires advanced algorithms capable of quick and accurate
decision-making.
Predictive Accuracy: The system’s ability to predict the implica-
tions of parameter adjustments on verification outcomes is cru-
cial. Ensuring the accuracy of these predictions is paramount,
particularly in safety-critical scenarios.
Balancing Safety and Operational Efficiency: It is vital to strike a
balance between maintaining operational efficiency and ensur-
ing safety. Overly conservative adjustments might hinder sys-
tem performance, while aggressive adjustments could compro-
mise safety.

(1)

(2)

(3)

Verification Aware Inference

98

6.5

continuous single decisions based on the current state but instead re-
peatedly update the actual plan or code that is suitable to handle the
current situation of the system based on the observation of the envi-
ronment.

If we take into account the observations from Section 6.3, that con-
trollable variables can not only have an effect on t

safe

but also on the
search space, we can imagine an inferred system that is optimised to
produce plans that not only serve to perform their primary tasks but
also reduce verification time, so that it becomes feasible to establish
a proof cycle as outlined in Section 6.2. Transformer models respond
very well to feedback (e.g. Reinforcement learning from human feed-
back) and by this might be optimisable to produce plans that are easy
to verify, by using the verification time (and result) as basis for feed-
back to the transformer model. For complex systems with (for hu-
mans) impenetrable inter-dependencies this might well be the only
way to establish dependent operation at all.

Conclusion

In this chapter, we have explored potential future directions of Self-
Verification in cyber-physical and embedded systems, highlighting
innovative approaches like Predictive Self-Verification, Just-in-Time
Verification, Dependent Operation, and Verification Aware Inference.

The presented concepts relate to the principles of any-time algo-
rithms [86], as they offer valid outputs even if interrupted and the
quality of the response increases with the available computation
time. However, we believe that just-in-time verification may be a
simpler concept that allows for a clearer devision of implementation
and verification as the verification system can be integrated in a late
phase of the development, while any-time algorithms impose in-
creased development costs in the early implementation phase.

6 The Future of Self-Verification

99

The exploration of Self-Verification in this chapter could represent a
significant shift in how we approach the verification of complex sys-
tems in the future, moving towards more dynamic and responsive
methodologies. This is in response to the increasing complexity and
autonomy of contemporary systems but also an acknowledgment of
the need for adaptive verification strategies. The concepts and
methodologies discussed are also indicative of a broader movement
towards seamlessly embedding verification into system operation.

Conclusion

100

7 Conclusion
This thesis, has elaborated on self-verification — systems which are
not verified a priori, during the design phase, but where the proof
obligations incurred during the development are postponed until af-
ter deployment, and are proven at run-time. This makes proofs eas-
ier, as we can instantiate a number of the parameters of the system
which are unknown at design time but become known at run-time.
This reduces the state space, turning the exponential growth of the
state space — the bane of model-checking — into exponential re-
duction. Self-verification is supported by a tool chain we have devel-
oped, which allows specification in SysML/OCL, system modelling in
Clash, and verification using SMT provers and SAT checkers.

Despite the use of specific modelling languages and prover tools in
our evaluation, the basic idea is independent of these. As long as we
can translate the verification conditions into a format where we can
track the variables to be instantiated into run-time, and which is suit-
able to automatic proof, the approach is viable and competitive, be-
cause of the exponential reduction of the search space.

We have investigated the implications, self-verification has on the
development and were able to establish a core set of development
rules regarding the applicability of the approach as well as design de-
cisions that should be made:

101

For the latter point, we have developed a methodology which can in-
dicate which sets of variables of a proof offer the largest reduction in
verification run time, aiding the designer in this decision. We demon-
strated the practical application of the methodology through a proof-
of-concept implementation and extensive experimental evaluation,
offering a novel perspective on managing computational resources in
post-deployment verification tasks, emphasizing the strategic fixa-
tion of variables to balance verification coverage and computational
efficiency.

Note that self-verification is not meant to replace the existing verifica-
tion flow but rather enhances it. We should by all means use all well-
known powerful tools at design time to discharge verification con-
ditions as before. However, self-verification offers a different way to
tackle proof obligations which cannot be shown at design time, sup-
plementing design time verification, and offering the designer to pick
the best of all possible worlds.

Self-verification is especially well suited for systems, that may
sacrifice availability for safety. This explicitly excludes fail-safe
systems but nevertheless includes a large portion of application
domains.
Proof obligations should be discharged as early as possible but as
late as needed. For this a minimal set of trigger transitions should
be selected, which defines the transitions of the system that ini-
tiate a verification task.
Trigger transitions must not themselves be safety critical: the
non-execution or delay of a trigger transition should never vio-
late the specification — if we verify our parachute upon pulling
the release cord it is clearly too late to handle failure.
Trigger transitions should maximise the reduction in prover run
time. A trigger transition which does not significantly reduce the
verification run time, may as well be left as a normal transition.

•

•

•

•

Conclusion

102

7.1 Contributions

This cumulative thesis offers significant contributions to the field
of embedded system verification that span conceptual frameworks,
methodological advancements, and empirical validations:

Chapter 3 delved into the fundamentals of self-verification, present-
ing a novel design and verification methodology that defers a portion
of the verification process until after deployment. This methodology
leverages the specific operating context of systems to reduce the com-
plexity of verification tasks. Several case studies, based on an imple-
mentation that uses a lightweight SAT solver not only validate the
proposed methodology but also demonstrate its practical applicabil-
ity and effectiveness.

Chapter 4 further explores the application of self-verification within
the system development lifecycle, specifically through the lens of de-
sign time verification, run-time verification, and their relationship
with self-verification. By classifying system transitions and optimiz-
ing verification efforts, the chapter presents a nuanced model that
enhances system safety and flexibility without compromising on
functionality. A detailed case study on an access control system ex-
emplifies the real-world applicability of self-verification, providing
methodological insights.

Chapter 5 presents a novel approach to determining the optimal
number and selection of variables to be fixed for verification tasks,
employing evolutionary algorithms. The effectiveness of this
methodology is confirmed by experimental evaluations, which
demonstrate significant reductions in verification run times over
random variable selections. It goes beyond the capabilities of estab-
lished decision heuristics as it considers the real runtimes of proofs
for sets of variables.

7 Conclusion

103

7.2

Together, this thesis contributes a comprehensive framework for
self-verification that encompasses conceptual foundations, practical
implementation strategies, and empirical validations. It proposes in-
novative methodologies and tools for optimizing verification
processes, and validates these approaches through extensive evalua-
tions. These contributions mark a significant step forward in the de-
sign, verification, and maintenance of ebedded systems, with the po-
tential to have a lasting impact on the field.

Future Work

The idea of self-verification opens up numerous possiblities for fu-
ture work, which did not fit the scope of this thesis:

More thorough empirical studies and real-world deployments of
self-verification methodologies would provide valuable insights into
their practicality and effectiveness. This includes conducting large-
scale evaluations across diverse application domains, from critical
infrastructure to consumer electronics, to assess the adaptability and
resilience of self-verification-enabled systems. Such studies would
not only validate theoretical models and simulation results but also
identify practical challenges and opportunities for refinement.

To leverage the concept even further, it would be highly beneficial
to implement the verification engines as dedicated hardware com-
ponents, maybe even specifically tailored for the concrete proof in-
stances.

A natural progression from the foundational work laid out in this
thesis is the exploration of more sophisticated self-verification
frameworks that can dynamically adjust to changing operational
contexts and system states (as outlined in Chapter 6). This involves
developing adaptive algorithms that can not only verify but also op-
timise system configurations in real-time, enhancing system relia-
bility and performance without human intervention. Research could

Future Work

104

7.3

focus on creating models that predict configuration changes and as-
sess their impact on system behavior, ensuring that self-verification
processes remain efficient and effective under varying conditions.

Furthermore, the exploration of decentralised self-verification ap-
proaches for distributed systems offers significant potential. In envi-
ronments where systems consist of multiple interacting components,
such as in the Internet of Things (IoT) or distributed ledger technolo-
gies, traditional centralised verification approaches as illuminated
in this thesis may not be feasible. Research could focus on develop-
ing distributed self-verification protocols that allow individual com-
ponents to independently verify their operation while contributing
to the overall system’s integrity. This would require novel consensus
mechanisms and trust models to ensure that verification processes
are reliable and tamper-resistant.

Conclusion

Despite the required future research, the evaluations and discussions
in this thesis show that, following the proposed ideas, allows for a
novel verification methodology that can be adapted today, which does
not rely on incremental improvement of existing tools and methods
but tackles complexity from a completely different angle. While self-
verification offers immense potential, it also comes with challenges
and limitations that must be addressed in the future. Balancing opti-
mism with a realistic evaluation of these challenges, further research
as well as collaborative efforts between academia and industry are
necessary to find the sweet spots in delaying of verification tasks.
This will be crucial in advancing self-verification, pushing the
boundaries of systems reliability, safety, and efficiency in an increas-
ingly automated world.

7 Conclusion

105

Conclusion

106

References
M. Ring, J. Stoppe, C. Lüth, and R. Drechsler, “Change impact analysis for
hardware designs — from natural language to system level,” in Forum on Spec-
ification & Design Languages (FDL 2016), Bremen, Germany, Sep. 2016, pp. 1–7,
doi: https://doi.org/10.1109/FDL.2016.7880369.

[1]

M. Ring, F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Better Late Than
Never — Verification of Embedded Systems After Deployment,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE 2019), Florence, Italy, Mar.
2019, pp. 890–895, doi: https://doi.org/10.23919/DATE.2019.8714967.

[2]

M. Ring and C. Lüth, “Let’s Prove It Later — Verification at Different Points
in Time,” in International Conference on Software Engineering and Formal Methods
(SEFM 2019), Oslo, Norway, Sep. 2019, pp. 454–468, doi: https://doi.org/
10.1007/978-3-030-30446-1_24.

[3]

M. Ring, F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Verification
Runtime Analysis — Get the Most Out of Partial Verification,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE 2020), Grenoble, France,
Mar. 2020, pp. 873–878, doi: https://doi.org/10.23919/
DATE48585.2020.9116543.

[4]

J. Yuan, C. Pixley, and A. Aziz, Constraint-Based Verification. Springer, 2006.[5]

R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based stimuli genera-
tion in the SystemC Verification library,” in Forum on Specification & Design Lan-
guages (FDL 2009), Sophia Antipolis, France, Sep. 2009, pp. 1–6.

[6]

E. M. Clarke Jr., O. Grumberg, and D. A. Peled, Model Checking, 2nd ed. MIT
Press, 2018.

[7]

107

https://doi.org/10.1109/FDL.2016.7880369
https://doi.org/10.23919/DATE.2019.8714967
https://doi.org/10.1007/978-3-030-30446-1_24
https://doi.org/10.1007/978-3-030-30446-1_24
https://doi.org/10.23919/DATE48585.2020.9116543
https://doi.org/10.23919/DATE48585.2020.9116543

A. Koczor, L. Matoga, P. Penkala, and A. Pawlak, “Verification approach based
on emulation technology,” in International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS 2016), Kosice, Slovakia, Apr. 2016, pp.
169–174, doi: https://doi.org/10.1109/DDECS.2016.7482447.

[8]

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proc.
IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998, doi: https://doi.org/10.1109/
jproc.1998.658762.

[9]

R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, pp. 3, Apr. 2009.[10]

R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level — Towards
Verification-Driven Design Based on Natural Language Processing,” in Forum
on Specification & Design Languages (FDL 2012), Vienna, Austria, Sep. 2012, pp.
53–58.

[11]

G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification — A Prescription
for Electronic System Level Methodology. Morgan Kaufmann, 2007.

[12]

N. Eén and N. Sörensson, “An Extensible SAT-solver,” in International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2003), Santa
Margherita Ligure, Italy, May 2003, pp. 502–518, doi: https://doi.org/10.1007/
978-3-540-24605-3_37.

[13]

M. Bozzano et al., “The MathSAT 3 System,” in International Conference on Au-
tomated Deduction (CADE 2005), Tallinn, Estonia, Jul. 2005, pp. 315–321, doi:
https://doi.org/10.1007/11532231_23.

[14]

R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “SWORD: A SAT
like prover using word level information,” in IFIP International Conference on
Very Large Scale Integration (VLSI-SoC 2007), Atlanta, GA, USA, Oct. 2007, pp.
88–93, doi: https://doi.org/10.1109/VLSISOC.2007.4402478.

[15]

B. Dutertre, “Yices 2.2,” in International Conference on Computer Aided Verification
(CAV 2014), Vienna, Austria, Jul. 2014, pp. 737–744, doi: https://doi.org/
10.1007/978-3-319-08867-9_49.

[16]

L. M. de Moura and N. Bjørner, “Z3 — An Efficient SMT Solver,” in Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2008), Budapest, Hungary, Mar. 2008, pp. 337–340, doi:
https://doi.org/10.1007/978-3-540-78800-3_24.

[17]

H. D. Foster, “Why the design productivity gap never happened,” in Interna-
tional Conference on Computer-Aided Design (ICCAD 2013), San Jose, CA, USA,
Nov. 2013, pp. 581–584, doi: https://doi.org/10.5555/2561828.2561943.

[18]

Conclusion

108

https://doi.org/10.1109/DDECS.2016.7482447
https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/11532231_23
https://doi.org/10.1109/VLSISOC.2007.4402478
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.5555/2561828.2561943

M. Leucker and C. Schallhart, “A brief account of runtime verification,” The
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, May 2009,
doi: https://doi.org/10.1016/j.jlap.2008.08.004.

[19]

R. Drechsler, M. Fränzle, and R. Wille, “Envisioning Self-Verification of Elec-
tronic Systems,” in International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC 2015), Bremen, Germany, Jun. 2015, pp. 1–6,
doi: https://doi.org/10.1109/ReCoSoC.2015.7238101.

[20]

D. L. Perry, VHDL: Programming by Example. McGraw-Hill Education, 2002.[21]

D. Thomas and P. R. Moorby, The Verilog® Hardware Description Language.
Springer New York, 2002.

[22]

R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level,” in Models,
Methods, and Tools for Complex Chip Design, vol. 265, J. Haase, Ed. Springer, 2014,
pp. 37–52.

[23]

C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and W. Rosentiel, “Ob-
ject-oriented modeling and synthesis of SystemC specifications,” in Asia and
South Pacific Design Automation Conference (ASP-DAC 2004), Yokohama, Japan,
Jan. 2004, pp. 238–243, doi: https://doi.org/10.1109/ASPDAC.2004.1337573.

[24]

J. Bachrach et al., “Chisel — constructing hardware in a Scala embedded lan-
guage,” Design Automation Conference (DAC 2012). ACM Press, pp. 1216–1225,
Jun. 2012, doi: https://doi.org/10.1145/2228360.2228584.

[25]

C. P. R. Baaij, M. Kooijman, J. Kuper, W. A. Boeijink, and M. E. T. Gerards,
“ClaSH: Structural Descriptions of Synchronous Hardware using Haskell,” in
EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools
(DSD 2010), Lille, France, Sep. 2010, pp. 714–721, doi: https://doi.org/10.1109/
DSD.2010.21.

[26]

L. J. Hafer and A. C. Parker, “A Formal Method for the Specification, Analysis,
and Design of Register-Transfer Level Digital Logic,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 2, no. 1. IEEE, pp.
4–18, Jan. 1983, doi: https://doi.org/10.1109/tcad.1983.1270016.

[27]

J.-R. Abrial, “System study: Method and example,” 1999. Accessed: Mar. 17,
2021. [Online]. Available: http://atelierb.eu/ressources/PORTES/Texte/
porte.anglais.ps.gz.

[28]

“Systems Modeling Language (SysML), Version 1.6,” Object Management
Group, Dec. 2019. [Online]. Available: https://www.omg.org/spec/SysML/1.6/
PDF.

[29]

7 Conclusion

109

https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1109/ReCoSoC.2015.7238101
https://doi.org/10.1109/ASPDAC.2004.1337573
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/tcad.1983.1270016
http://atelierb.eu/ressources/PORTES/Texte/porte.anglais.ps.gz
http://atelierb.eu/ressources/PORTES/Texte/porte.anglais.ps.gz
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/SysML/1.6/PDF

The Eclipse Foundation, “EMF Diff/Merge,” 2012. http://www.eclipse.org/
diffmerge/ (accessed Mar. 18, 2021).

[30]

L. C. Briand, Y. Labiche, and L. Sullivan, “Impact analysis and change man-
agement of UML models,” in International Conference on Software Maintenance
(ICSM 2003), Amsterdam, Netherlands, Sep. 2003, pp. 256–265, doi:
https://doi.org/10.1109/ICSM.2003.1235428.

[31]

M. Jarke, “Requirements tracing,” Communications of the ACM, vol. 41, no. 12.
ACM, pp. 32–36, Dec. 1998, doi: https://doi.org/10.1145/290133.290145.

[32]

G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and R. Drechsler, “ParSyC:
an efficient SystemC parser,” in Workshop on Synthesis And System Integration
of Mixed Information technologies (SASIMI), Kanazawa, Japan, Oct. 2004, pp.
148–154.

[33]

FZI Karlsruhe, “KaSCPar - Karlsruhe SystemC Parser Suite,” 2012.
http://www.fzi.de/sim/kascpar.html (accessed Mar. 07, 2018).

[34]

J. Castillo, P. Huerta, and J. I. Martinez, “An open-source tool for SystemC to
Verilog automatic translation,” Latin American Applied Research, vol. 37, no. 1,
pp. 53–58, 2007.

[35]

C. Brandolese, P. Di Felice, L. Pomante, and D. Scarpazza, “Parsing SystemC
— an open-source, easy-to-extend parser,” in IADIS International Conference on
Applied Computing (AC 2006), San Sebastian, Spain, Feb. 2006, pp. 706–709.

[36]

D. Berner, J.-P. Talpin, H. Patel, D. A. Mathaikutty, and S. Shukla, “System-
CXML — An extensible SystemC front end using XML,” in Forum on Specifi-
cation & Design Languages (FDL 2005), Lausanne, Switzerland, Sep. 2005, pp.
405–409.

[37]

C. Genz and R. Drechsler, “Overcoming limitations of the SystemC data in-
trospection,” in Design, Automation Test in Europe Conference Exhibition (DATE
2009), Nice, France, Apr. 2009, pp. 590–593, doi: https://doi.org/10.1109/
DATE.2009.5090734.

[38]

M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa: An extraction tool
for systemc descriptions of systems-on-a-chip,” in Conference on Embedded soft-
ware (EMSOFT 2005), Jersey City, NJ, USA, Sep. 2005, pp. 317–324, doi:
https://doi.org/10.1145/1086228.1086286.

[39]

D. Große, R. Drechsler, L. Linhard, and G. Angst, “Efficient Automatic Visual-
ization of SystemC Designs,” in Forum on Specification & Design Languages (FDL
2003), Frankfurt, Germany, Sep. 2003, pp. 646–658.

[40]

Conclusion

110

http://www.eclipse.org/diffmerge/
http://www.eclipse.org/diffmerge/
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1145/290133.290145
http://www.fzi.de/sim/kascpar.html
https://doi.org/10.1109/DATE.2009.5090734
https://doi.org/10.1109/DATE.2009.5090734
https://doi.org/10.1145/1086228.1086286

J. Stoppe, R. Wille, and R. Drechsler, “Data extraction from SystemC designs
using debug symbols and the SystemC API,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2013), Natal, Brazil, Nov. 2013, pp. 26–31, doi:
https://doi.org/10.1109/ISVLSI.2013.6654618.

[41]

B. Meyer, “Applying ‘design by contract,’” Computer, vol. 25, no. 10. IEEE, pp.
40–51, Oct. 1992, doi: https://doi.org/10.1109/2.161279.

[42]

L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Sangiovanni Vincentelli, “Con-
tract-Based Design for Computation and Verification of a Closed-Loop Hy-
brid System,” in International Workshop on Hybrid Systems: Computation and Con-
trol (HSCC 2008), St. Louis, MO, USA, Apr. 2008, pp. 58–71, doi:
https://doi.org/10.1007/978-3-540-78929-1_5.

[43]

P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond Assertions — Ad-
vanced Specification and Verification with JML and ESC/Java2,” in Interna-
tional Conference on Formal Methods for Components and Objects (FMCO 2005),
Amsterdam, The Netherlands, 2006, pp. 342–363, doi: https://doi.org/
10.1007/11804192_16.

[44]

P. Baudin et al., “ACSL: ANSI/ISO C Specification Language Version 1.16,” IN-
RIA, 2020. [Online]. Available: http://frama-c.com/download/acsl.pdf.

[45]

F. L. Bauer et al., “Towards a wide spectrum language to support program
specification and program development,” ACM SIGPLAN Notices, vol. 13, no.
12, pp. 15–24, Dec. 1978, doi: https://doi.org/10.1145/954587.954588.

[46]

J.-R. Abrial and C. A. R. Hoare, The B-book: assigning programs to meanings. Cam-
bridge University Press, 2005.

[47]

J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin,
“Rodin: an open toolset for modelling and reasoning in Event-B,” International
journal on software tools for technology transfer, vol. 12, no. 6, pp. 447–466, 2010.

[48]

B. Dion and J. Gartner, “Efficient Development of Embedded Automotive
Software with IEC 61508 Objectives using SCADE Drive,” in VDI 12th Interna-
tional Conference: Electronic Systems for Vehicles, 2005, pp. 1427–1436.

[49]

M. Richters and M. Gogolla, “OCL: Syntax, Semantics, and Tools,” in Object
Modeling with the OCL, T. Clark and J. Warmer, Eds. Springer, 2002, pp. 42–68.

[50]

R. Drechsler, S. Autexier, and C. Lüth, “Model-Based Specification and Re-
finement for Cyber-Physical Systems,” in Dynamics in Logistics, Springer In-
ternational Publishing, 2016, pp. 3–17.

[51]

7 Conclusion

111

https://doi.org/10.1109/ISVLSI.2013.6654618
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-540-78929-1_5
https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/11804192_16
http://frama-c.com/download/acsl.pdf
https://doi.org/10.1145/954587.954588

“Standard SystemC Language Reference Manual,” in IEEE Std 1666-2011 (Re-
vision of IEEE Std 1666-2005), IEEE, 2012.

[52]

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling
Framework. Pearson Education, 2008.

[53]

A. Lanusse et al., “Papyrus UML — an open source toolset for MDA,” in Euro-
pean Conference on Model-Driven Architecture Foundations and Applications (ECM-
DA-FA 2009), Enschede, the Netherlands, Jun. 2009, pp. 1–4.

[54]

S. Autexier and N. Müller, “Semantics-Based Change Impact Analysis for
Heterogeneous Collections of Documents,” in ACM Symposium on Document
Engineering (DocEng2010), Manchester, UK, Sep. 2010, pp. 97–106, doi:
https://doi.org/10.1145/1860559.1860580.

[55]

S. Autexier, “Similarity-Based Diff, Three-Way-Diff and Merge,” International
Journal of Software and Informatics, vol. 9, no. 2, pp. 259–277, Aug. 2015.

[56]

“Object Constraint Language (OCL), Version 2.4,” Object Management Group,
Feb. 2014. [Online]. Available: https://www.omg.org/spec/OCL/2.4/PDF.

[57]

M. Soeken et al., “Quality Assessment for Requirements based on Natural
Language Processing,” in Forum on Specification & Design Languages (FDL 2014),
Munich, Germany, 2014, pp. 1–4.

[58]

F. Bornebusch, R. Wille, and R. Drechsler, “Towards Lightweight Satisfiabil-
ity Solvers for Self-Verification,” in International Symposium on Embedded Com-
puting and System Design (ISED 2017), Durgapur, Dec. 2017, pp. 1–5, doi:
https://doi.org/10.1109/ISED.2017.8303924.

[59]

A. Balint and U. Schöning, “Engineering a Lightweight and Efficient Local
Search SAT Solver,” in Algorithm Engineering — Selected Results and Surveys,
Springer, 2016, pp. 1–18.

[60]

T. Ivan and E. M. Aboulhamid, “An Efficient Hardware Implementation of
a SAT Problem Solver on FPGA,” in EUROMICRO Conference on Digital System
Design (DSD 2013), Los Alamitos, CA, USA, Sep. 2013, pp. 209–216, doi:
https://doi.org/10.1109/DSD.2013.31.

[61]

B. Ustaoglu, S. Huhn, D. Große, and R. Drechsler, “SAT-Lancer: A Hardware
SAT-Solver for Self-Verification,” in ACM Great Lakes Symposium on VLSI
(GLVLSI 2018), Chicago, IL, USA, May 2018, pp. 479–482, doi: https://doi.org/
10.1145/3194554.3194643.

[62]

M. Leucker and C. Schallhart, “A brief account of runtime verification,” The
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, May 2009.

[63]

Conclusion

112

https://doi.org/10.1145/1860559.1860580
https://www.omg.org/spec/OCL/2.4/PDF
https://doi.org/10.1109/ISED.2017.8303924
https://doi.org/10.1109/DSD.2013.31
https://doi.org/10.1145/3194554.3194643
https://doi.org/10.1145/3194554.3194643

A. Hejlsberg, “TypeScript Version 4.2,” 2021. https://www.typescriptlang.org
(accessed Apr. 11, 2021).

[64]

D. Essame, J. Arlat, and D. Powell, “Available fail-safe systems,” Tunis,
Tunisia, Oct. 1997, doi: https://doi.org/10.1109/ftdcs.1997.644721.

[65]

A. Biere, “PicoSAT Essentials,” Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), vol. 4, pp. 75–97, 2008.

[66]

R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for Bit-Vec-
tors and Arrays,” in International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2009), York, UK, 2009, pp. 174–177, doi:
https://doi.org/10.1007/978-3-642-00768-2_16.

[67]

“Official SMT-LIB repository,” 2018. https://clc-gitlab.cs.uiowa.edu:2443/
SMT-LIB-benchmarks (accessed Dec. 14, 2020).

[68]

D. B. Fogel, “Evolutionary algorithms in theory and practice,” Complexity, vol.
2, no. 4, pp. 26–27, 1997.

[69]

Z. Michalewicz and M. Schoenauer, “Evolutionary Algorithms for Con-
strained Parameter Optimization Problems,” Evolutionary Computation, vol. 4,
no. 1, 1996.

[70]

B. Korousic-Seljak, J. Silc, and G. Papa, “An Evolutionary Approach to Prob-
lems in Electrical Engineering Design,” 2005.

[71]

Z. Vasícek and L. Sekanina, “Evolutionary Approach to Approximate Digital
Circuits Design,” IEEE Transactions on Evolutionary Computation, vol. 19, pp.
432–444, Jul. 2015, doi: https://doi.org/10.1109/TEVC.2014.2336175.

[72]

R. Chen, K. Li, and X. Yao, “Dynamic Multiobjectives Optimization With a
Changing Number of Objectives,” IEEE Transactions on Evolutionary Computa-
tion, vol. 22, pp. 157–171, Feb. 2018, doi: https://doi.org/10.1109/
TEVC.2017.2669638.

[73]

K. Deb, “Multi-Objective Evolutionary Algorithms,” in Handbook of Computa-
tional Intelligence, J. Kacprzyk and W. Pedrycz, Eds. Springer, 2015.

[74]

P. Parizek and F. Plasil, “Partial Verification of Software Components: Heuris-
tics for Environment Construction,” in EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO 2007), Lübeck, Germany,
Aug. 2007, pp. 75–82, doi: https://doi.org/10.1109/EUROMICRO.2007.46.

[75]

7 Conclusion

113

https://www.typescriptlang.org/
https://doi.org/10.1109/ftdcs.1997.644721
https://doi.org/10.1007/978-3-642-00768-2_16
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
https://doi.org/10.1109/TEVC.2014.2336175
https://doi.org/10.1109/TEVC.2017.2669638
https://doi.org/10.1109/TEVC.2017.2669638
https://doi.org/10.1109/EUROMICRO.2007.46

A. Groce and W. Visser, “Heuristics for model checking Java programs,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 6, no. 4, pp.
260–276, Aug. 2004, doi: https://doi.org/10.1007/s10009-003-0130-9.

[76]

V. Wüstholz, “Partial Verification Results,” PhD dissertation, ETH Zürich,
2015.

[77]

D. Beyer, “Partial Verification and Intermediate Results as a Solution to Com-
bine Automatic and Interactive Verification Techniques,” in Leveraging Appli-
cations of Formal Methods, Verification and Validation: Foundational Techniques (ISo-
LA 2016), Corfu, Greece, Oct. 2016, pp. 874–880, doi: https://doi.org/0.1007/
978-3-319-47166-2_60.

[78]

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler, “Conditional
Model Checking — A Technique to Pass Information Between Verifiers,” in
International Symposium on the Foundations of Software Engineering (FSE 2012),
Cary, NC, USA, Nov. 2012, pp. 1–11, doi: https://doi.org/10.1145/
2393596.2393664.

[79]

I. Caragiannis, E. Elkind, M. Szegedy, and L. Yu, “Mechanism Design: From
Partial to Probabilistic Verification,” in ACM Conference on Electronic Commerce
(EC 2012), New York, NY, USA, Jun. 2012, pp. 266–283, doi: https://doi.org/
10.1145/2229012.2229035.

[80]

L. Yu, “Mechanism design with partial verification and revelation principle,”
Autonomous Agents and Multi-Agent Systems, vol. 22, no. 1, pp. 217–223, Jan. 2011,
doi: https://doi.org/10.1007/s10458-010-9151-4.

[81]

J. Ouaknine, A. Rabinovich, and J. Worrell, “Time-Bounded Verification,”
CONCUR 2009 - Concurrency Theory. Springer, pp. 496–510, 2009, doi:
https://doi.org/10.1007/978-3-642-04081-8_33.

[82]

J. Ouaknine and J. Worrell, “Towards a Theory of Time-Bounded Verification,”
Automata, Languages and Programming. Springer, pp. 22–37, 2010, doi:
https://doi.org/10.1007/978-3-642-14162-1_3.

[83]

N. Narodytska, “Formal Verification of Deep Neural Networks,” in 2018 For-
mal Methods in Computer Aided Design (FMCAD 2018), Austin, TX, USA, Oct.
2018, p. 1, doi: https://doi.org/10.23919/fmcad.2018.8603017.

[84]

X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural network con-
trolled autonomous systems,” in ACM International Conference on Hybrid Sys-
tems: Computation and Control (HSCC 2019), Montreal, Quebec, Canada, Apr.
2019, pp. 147–156, doi: https://doi.org/10.1145/3302504.3311802.

[85]

Conclusion

114

https://doi.org/10.1007/s10009-003-0130-9
https://doi.org/0.1007/978-3-319-47166-2_60
https://doi.org/0.1007/978-3-319-47166-2_60
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2229012.2229035
https://doi.org/10.1145/2229012.2229035
https://doi.org/10.1007/s10458-010-9151-4
https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1007/978-3-642-14162-1_3
https://doi.org/10.23919/fmcad.2018.8603017
https://doi.org/10.1145/3302504.3311802

J. Grass and S. Zilberstein, “Anytime algorithm development tools,” SIGART
Bull., vol. 7, no. 2, pp. 20–27, Apr. 1996, doi: https://doi.org/10.1145/
242587.242592.

[86]

7 Conclusion

115

https://doi.org/10.1145/242587.242592
https://doi.org/10.1145/242587.242592

	Self-Verification
	Table of Contents
	Introduction
	Self-Verification
	Structure
	About this thesis
	Source code
	Disambiguation

	A Priori Verification
	Background
	Hardware Design Abstractions
	The Informal Specification Level (ISL)
	The Formal Specification Level (FSL)
	The Electronic System Level (ESL)
	The Register Transfer Level (RTL) and below
	Different Levels of Abstraction
	Example: an Access Control System

	Working with SysML
	Scope of the Language
	Syntax
	Semantics
	Reference Compiler

	A Framework for Change Impact Analysis
	Related Work
	Underlying Semantics
	Semantic Relations Across Specification Levels
	Syntactic Representation
	Syntactic Difference Analysis
	Semantic Difference Analysis
	Change Impact Analysis

	Reasoning about OCL
	A User Interface for Change Impact Analysis
	Conclusion

	Fundamentals of Self-Verification
	General Idea
	Implementation
	The Design Process
	The Design Process At Work
	Specification (top of Figure 3.2)
	Model (middle of Figure 3.2)
	Implementation (left-hand side of Figure 3.2)
	Verification (right-hand side of Figure 3.2)
	Instantiation after Deployment (bottom of Figure 3.2)

	Evaluation
	Evaluation
	Practical Exploitation

	Discussion
	Conclusion

	Design of Self-Verifying Systems
	Self-Verification, Design Time & Run-time Verification
	Case Study
	Informal Description
	Formal Specification
	When to Verify

	Realization
	Applying the Design-Flow for Self-Verification
	The Demonstrator

	When to Prove
	Conclusion

	Proof Partitioning
	Fixing Free Variables
	Verification Run Time Analysis
	Proposed Solution
	Implementation
	Evolutionary Algorithms
	EA-based Verification Run Time Analysis
	Individuals
	Mutation
	Recombination
	Fitness Function
	Implementation Aspects

	Experiments and Results
	Set-up
	Considered Benchmarks
	Obtained Results
	Further Discussion

	Conclusion

	The Future of Self-Verification
	Predictive Self-Verification
	Just-in-Time Verification
	Prerequisites
	Operation

	Dependent Operation
	Verification Aware Inference
	Conclusion

	Conclusion
	Contributions
	Future Work
	Conclusion

	References

