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Abstract

Current climate models are not capturing the intricate feedback mechanisms driving the

accelerated warming of the Arctic. A great challenge the research is facing is the sparsity

of high resolution observations. Satellite-borne synthetic aperture radar (SAR) instruments

have the capability of monitoring Earth’s sea ice masses at high resolution, unhampered

by cloud coverage or the Arctic night. The measurements made by such instruments are

made at scales of 10’s of metres whilst still covering all of the Arctic in a matter of days.

The combination of high resolution and frequent revisit time make the instruments a prime

candidate for sea ice mapping. However, interpreting the radar signal to retrieve relevant

sea ice information, such as roughness or ice age, is difficult. This is because of the com-

plex interactions of the diverse and heterogeneous ice with the electromagnetic radar signal.

Conventional neural network based algorithms have proven adept at leveraging contextual

image data to make accurate predictions of surface ice properties comparable to those made

by human experts. They are, however, dependent on large amounts of high-quality ground

truth that is rare for the remote and dynamic sea ice. Thus, the full potential of high resolu-

tion classification that captures the intricacies of the SAR data, and robustly interprets sea

ice properties from it, is yet to be unlocked. With the advent of the MOSAiC mission, large

timeseries of SAR data and near-coincident ground measurements were made for an entire

ice season for the first time. This thesis uses the unique opportunity provided by these data

to analyse the behaviour of deep learning models. Seven months of data from the campaign

is classified and analysed, using newly developed techniques to enable robust predictions

across the timeseries. Core features are identified to facilitate robust and high-resolution

classification. The final challenge of ground truth sparsity is then overcome using innova-

tive network configurations that enable the training of > 99.99% of the model parameters

without any ground truth data. The architecture-agnostic techniques developed as part of

this thesis open up the space of sea ice property retrieval to big data technologies, where

the model is able to improve with nothing but the abundantly available SAR data. These

techniques enable the extrapolation of critically sparse reference data to a large space of sea

ice conditions and enable high resolution and robust mapping of the Earth’s region most

affected by human-made climate change.
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Introduction
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The Earth’s surface is primarily covered by vast dark oceans. It is here where life as

we know it originated, evolving creatures of ever-increasing complexity. And still, to this

day, all life depends on it. Our relationship with the H2O molecule is thus intrinsic to our

nature. As we shift our gaze from the simple molecule to microorganisms living in the ocean,

to large organisms such as ourselves dwelling on land, and finally all the way to the planet

itself, the relationship with water remains important across all scales.

Since the industrial revolution around 200 years ago, humankind has been significantly

impacting the atmosphere’s composition with the continuous emission of greenhouse gases,

dominantly carbon dioxide (CO2) and methane (CH4). For a current state of the climate

and up-to-date evaluations of it’s future, one may refer to the IPCC, 2023: Climate Change

2023: Synthesis Report . What would have been science fiction to those people who started

to revolutionise production with the help of steam-powered machinery all those years ago

has now become a reality. Humankind is rapidly changing the climate of the planet. Climate

change has at its core a straightforward recipe: the Earth’s energy imbalance. Around 150

million kilometres away, our sun fuses Hydrogen to Helium - acting like a furnace at our solar

system’s centre. A tiny little part of the energy radiated out into space arrives at Earth,

yet it is still mighty enough to drive our planet’s climate. Until now, this system has been

reasonably stable - always returning to levels facilitating life on the Earth’s surface. Recent

research by Song, Kemp, et al., 2021 has shown, however, that both the magnitude and the

rate of temperature change are significantly positively correlated with the rate of extinction

of marine species. Whilst life has endured on earth, other planets at less favourable distance

to the sun have not been so lucky. According to Way et al., 2016, our celestial neighbour

Venus is thought to once have been covered by oceans too and it’s atmosphere is now heavily

dominated by dense carbon dioxide. We do not know what caused these transitions of our

celestial neighbour, but we now find it as a barren wasteland - inhospitable to any form of

life on the surface.

The amount of the sun’s energy retained in the Earth’s system is driven by radiative

transfer. As shortwave radiation (.2µm - 3µm wavelength) hits the Earth’s surface, they

interact with the particles in two different ways. Whilst some surfaces directly reflect these

electromagnetic waves, most waves are partially absorbed and re-emitted at higher wave-

lengths (4µm - 70µm). If these longer waves could travel back into space freely, the energy

retention would be minimal. However, it still has to pass through Earth’s atmosphere. De-

spite being very thin in comparison to the Earth’s diameter, this conglomeration of gases

trapped in the Earth’s gravitational field makes a big difference: Some of the gases in the

atmosphere can reabsorb or reflect these lower-frequency light waves that are coming from

the Earth’s surface. Most impactful are the suspended liquid water droplets of cloud for-

mations, that absorb practically all light upwards of 25 µm. The resulting imbalance in the

Earth’s energy budget has slightly more energy being absorbed than emitted (quantified,

for example, in Trenberth et al., 2009). These gases thus significantly affect the amount

of energy retained in the Earth’s systems and have fittingly been called greenhouse gases.
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Figure 1.1: Figure 3 from Rantanen et al., 2022, showing Arctic amplification in the context of

four different climate model ensembles. Published in Nature Communications Earth & Environ-

ment under a Creative Commons CC BY 4.0 license. ©Nature

The surface itself also plays as big of a role. Some materials, like the surface dominating

liquid water, retain most of the sunray’s energy. Others, like snow, reflect most of the sun’s

rays that have made their way through the atmosphere. As the ice and snow cover on the

ocean lessens, the energy uptake is thus increased. This is commonly referred to as the

albedo effect. With that in mind, it comes as no surprise that the Arctic is more affected

by climate warming than all other regions on Earth. This is commonly described as Arctic

amplification and has led to the Arctic warming four times as fast as the rest of the planet

in recent years, as shown in Rantanen et al., 2022. The same work has also made clear that

the strength of the amplification is not well described by current climate models (see figure

1.1), highlighting the need for more detailed observations of the Arctic environment.

As the Earth gets warmer, the sea ice cover decreases, and more ocean surface is exposed

to solar radiation, leading to increased warming. This is the general feedback loop for the

amplification. However, a variety of additional complex effects in play are not as well

understood, as is made evident by the discrepancy of climate models and the historical

record. Additionally, with perennial ice becoming increasingly rare in the Arctic, it will be

dominated instead by thinner and younger ice. Only recently has the historical reduction

of ice volume been parametrised: Recent work by Kacimi and Kwok, 2022 uses time-series

of satellite altimeters to resolve not just the surface coverage but also the thickness of the

ice. Results of that study are shown in figure 1.2. The increasingly prevalent younger

and thinner ice develops differently both thermodynamically and under mechanical stress.

These interactions with winds, waves and ocean currents break up the ice pack and open

the ocean to interactions with the atmosphere (such as the emission of gases and aerosols,

which can act as cloud-nucleating particles). To understand and extrapolate the behaviour
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Figure 1.2: Figure 3 from the Kacimi and Kwok, 2022, showing the loss of arctic sea ice volume

(from a spring and an autumnal perspective) as observed through satellite altimeters. Published

in Geophysical Research Letters. ©John Wiley and Sons.

of the future Arctic, it is crucial to know how the responses to mechanical stress change

with the ice age and thickness. The deformation that is left behind by these events has

another effect later in its life cycle: Sea ice deformation in winter impacts the ice’s coverage

with meltwater in summer, as shown by Webster et al., 2015. The sea ice pack becoming

increasingly made up of less deformed first-year ice could increase melt pond coverage and

thus further amplify the Arctic warming. These mechanisms are not yet fully understood

(and thus not included in climate models). Current climate models not capturing observed

Arctic Amplification strongly suggests that these interactions are highly significant.

It is evident that the properties of the sea ice cover have a significant and diverse impact

on the climatology of the Arctic system. As natural sciences are inherently empirical and

the Arctic is a remote and hostile environment to the human organism, it is unsurprising
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that the wealth of data to further our understanding is limited. The most comprehensive

opportunity to monitor the Arctic sea ice cover at full scale thus comes from remote sensing

using space-borne instruments. Specifically, observations at resolutions of 10s to 100s of

metres, which reliably capture the local distribution of various ice types and open water,

are needed. However, the lack of in-situ data is still the central complication in this field

- hampering detailed observations and time series. Most importantly for this work, it also

restricts available ground truth for models and retrieval methods.

These retrieval methods from spaceborne satellites need to perform well at high resolution

and across the Arctic seasons to help us unravel the mechanisms of the sea ice and sharpen

the predictions of climate models. Neural network based models are the primary data-

driven resource to do such retrieval from synthetic aperture radar (SAR) satellites, as they

excel at incorporating the wealth of image information to achieve accurate predictions.

This method’s complications revolve around a central conflict between using data-driven

models and the sparsity of high resolution ground truth data available in the Arctic. In this

thesis, deep-learning methodologies are analysed and advanced to define and overcome this

challenge of sea ice property retrieval using synthetic aperture radar satellites. The aim is

to move toward systems able to make robust observations near the resolution of the sensor

to be able to advance the understanding of the sea ice system in a changing climate. To

do so, established and newly developed neural network based methods are analysed on long

timeseries of data acquired during the MOSAiC (Multidisciplinary Drifting Observatory for

the Study of Arctic Climate) expedition.

The overarching question is, of course, if it is even possible to build data-driven deep

learning models that perform accurately and robustly at high resolution, despite very little

high resolution ground truth being available. To answer this, a series of studies on diverse

data sets are presented in chapters 3 - 6 that answer aspects of that question empirically

and quantitatively.

To test the performance of classifiers, research is currently limited to manual labelling

(such as ice charts), and only sparse work has been done with validation from other mea-

surements. A necessary step to establish the applicability of deep learning models is to

test the robustness of these models over longer time-series and develop heuristics to enable

robust predictions, even in situations where one has no data to test it systematically. This is

tackled in chapter 3, using a long high-resolution TerraSAR-X X-Band time series acquired

during MOSAiC.

The absence of comprehensive ground truth data sets poses an important and hitherto

unanswered question. How do state of the art models perform on full resolution measured

label data, and what is the impact and consequence of using coarser manual labels, which

is common practice in the field currently? This question is answered in chapter 4 by drift

correcting and co-locating twenty airborne laser scanning topography surveys with SAR

data to construct a set of ground truth labels. It also establishes some differences between

two different approaches to classification and the necessity for a model to be able make use
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of intra-label dependencies.

To solve the ground truth sparsity for pan-Arctic classification, a core idea could be

to use scenes without any labels. Is it possible to somehow leverage the vast number of

unlabelled SAR scenes to inform retrieval models and improve their performance in the

diverse range of ice conditions? This question is answered in chapter 5 by constructing an

innovative physics-constrained adversarial network approach that uses the task of incidence

angle dependence estimation as a proxy to ice type classification on Sentinel-1 C-Band data.

In the final chapter the results from the previous studies are pooled and incorporated into

a classifier that can robustly extrapolate sparse amounts of altimeter derived ice properties

to a diverse set of ice conditions on a larger scale, near the resolution and fidelity of the

sensor. Thereby answering the question if it is possible to train advanced deep learning

architectures for high fidelity sea ice property retrieval from SAR despite high resolution

ground truth in the Arctic being critically sparse.
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2.1. SEA ICE

This chapter introduces the nature of sea ice as a medium, as well as the core instruments

and methods that will be used throughout the thesis to observe sea ice and its properties.

It includes an overview of sea ice as a medium, an introduction to Synthetic Aperture

Radar (SAR) technology and neural networks. This chapter will ease the reader into some

fundamental theory on which the following work in the thesis is based. Also included are

some observations and the qualitative interpretation of those, together with simple modelling

schemes to back-up them up. Finally, the core conundrums of using deep learning models

for sea ice retrieval are formulated, and a brief overview of existing work on the topic is

given.

2.1 Sea Ice

To understand the challenges of sea ice property retrieval, one requires some knowledge about

sea ice itself. Let us start this foray into the nature of sea ice with the humble yet powerful

water molecule. Water is made up of two hydrogen atoms bonded with one oxygen. The

most energy-effective way to bond these atoms results in an angle of approximately 104.5

degrees between the covalent bonds. Electrons dominate the side opposite the hydrogen

cores. As the electrons in the system have a higher probability of being found on the far

side, away from the hydrogen, the resulting molecule has a dipole moment. This intrinsic

orientation of the molecule is of paramount importance for the properties of water in various

states and interactions.

As water approaches its freezing point, it becomes increasingly likely to form hydrogen

bonds without them being broken up by thermal energy states. A hydrogen bond is formed

by orienting two molecules in such a manner that the hydrogen of one molecule is closest

to the oxygen of another molecule. If multiple bonds are formed to a crystal, one oxygen,

its two covalently bonded hydrogens and the two hydrogen bonds with hydrogen cores from

other molecules form approximately a tetrahedral structure. The oxygen is in the centre,

and the hydrogen atoms are at the vertices. The hydrogen will still be closer to one of the

oxygen atoms rather than in the centre of the two, favouring the side with the covalent

bond. Although this is the most energy-efficient way to organise the molecules, it is not

the most space-efficient, which leads to the water density anomaly: At normal atmospheric

pressure, water is densest in a liquid state at approximately 4 degrees Celsius. The most

energy-efficient way to organise the hydrogen-bonded lattice with tetrahedral components

results in hexagonal rings. This symmetry is preserved even at macroscopic scales and

can be observed with the human eye in, for example, snowflakes. At 0 degrees Celsius

(or 273.15K), the probability of forming these bonds becomes higher than breaking them

through Brownian motion and the crystal is formed.

As they generally do not fit well into the specific natural structure, impurities in the

crystal lattice of water are very energy inefficient. Because they cannot be incorporated

efficiently, the ice formed from lake water is comparatively pure and much cleaner than the

14



2.1. SEA ICE

water itself. Any impurities that do make their way into the ice are, hence, generally trapped

in pockets or at interfaces in the polycrystalline structure.

If salt is added to the water, the behaviour of the solution changes. Seawater typically has

salinities of around 35 parts per thousand (ppt). In the liquid state, the salt is hydrolysed into

cations and anions. The water molecule’s dipole leads to clusters around these ions, where

the dipoles are oriented in the ions’ electric fields. This increases its density in the liquid

phase and lowers both boiling and freezing temperatures. As the temperature is lowered,

the hydrogen bonds needed for solidification additionally compete with the electromagnetic

interactions with the ions. Like impurities in lake water, the salts are largely emitted from

the ice crystal during freezing and form in pockets or are expelled at the interfaces. The

brine is liquid at much lower temperatures because the salt concentration in pockets inside

the crystal is so high. Within the ice crystal, this salt will destroy the ice structure over time

and form channels. As the ice gets older, it will desalinate. The dominant mechanism for

this was identified as gravity drainage in Notz and Worster, 2009, where the colder, denser

brine in the ice releases salt via exchange with the warmer and less saline (therefore less

dense) seawater. So, whilst young ice can have salinities around 12-15 ppt, consolidated

first-year ice typically ranges around 4-6 ppt, and multiyear ice is even lower than that at

less than 2 ppt. An overview connecting the sea ice age or thickness with its salinity can be

found in Kovacs et al., 1996.

Because salinity increases the density of brine, but temperature decreases the density, a

temperature gradient in the ice results in an inverse salinity gradient in the brine to maintain

equal density (phase equilibrium). As ice cools, the brine fraction decreases and, in turn, its

salinity rises. In thermal equilibrium at -5 degrees Celsius and with a seawater salinity of 34

parts per mil, Assur, 1960 finds solid ice fractions of ca 65 % under laboratory conditions in

a closed volume. As discussed, in nature, desalination via exchange with the ocean occurs

naturally during freeze-up, and the brine volume is thus significantly lower than that of ice

grown in a closed system. Still, this measurement shows that sea ice cannot be thought of

as a solid but needs to be considered a mushy layer of polycrystalline ice and brine.

Initial sea ice freezing starts off with the formation of tiny crystals that eventually form

a slush-like layer on the top of the ocean. These crystals are known as frazil ice and are

typically on length scales of millimetres. The frazil ice either consolidates into a relatively

homogenous ice sheet called a nila - appearing first translucent, then grey - or is compressed

under the action of ocean turbulence forming pancake ice, which are rounded plates that

typically have raised edges from mutual collisions. When the ocean-atmosphere interface

is entirely covered by ice, growth can continue only in the vertical direction. The speed of

growth is related to the ice’s thermal conductivity, as the ocean’s latent heat is dissipated

into the atmosphere for the ice to grow. Younger, more saline ice is not only thinner but also

more conducive to heat - leading to accelerated ice growth of younger ice sheets in contrast

to dry and less saline multi- and second-year ice.

New ice growth on the bottom is often found to have a columnar nature. A theory for
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2.2. REMOTE SENSING OF SEA ICE

the origin of this formation is found in the desalination process of ice upon freeze-up: The

rejection of salt and latent heat results in a salty layer at the ocean-atmosphere interface

during initial freeze-up and at the ice-ocean interface after the ice has consolidated. To

maintain thermal equilibrium there, a heat flux away from that layer is a direct consequence.

However, the heat flux happens faster than the dissipation of the salt and this layer is

constantly supercooled. Thus, any perturbation or protrusion into this layer can quickly lead

to more ice growth, catalysing vertical structures. For columnar ice growth, this requires

relative calm in the ocean, which does not disturb the supercooled layer mechanically. Due to

increased ocean dynamics in the Antarctic, columnar ice is much sparser here (e.g. Eicken,

2003). A comprehensive monograph for the formation and structure of sea ice by W.F.

Weeks and S.F. Ackley, U.S. Army Cold Regions Research and Engineering Laboratory,

1982 may serve as a detailed reference.

Snow is the other major contributor to heat flux - and thus to ice growth. Snow is much

less heat conductive than the underlying ice and acts as a blanket - insulating the ice pack

from the atmosphere. Warming the underlying ice also affects its dielectric properties and,

therefore, its appearance on microwave remote sensing instruments, as was explored, for

example, by Kim et al., 1984.

Having discussed the thermodynamic growth and some basic relationships of external

conditions with the ice formation, dynamic ice events also need to be taken into account.

These affect the evolution of the properties of sea ice across all scales. Keeping in mind that

sea ice is not a solid crystal but rather a mushy layer of crystals and brine (as well as some

gas) inclusions - ice is more plastic than one might naively assume. For example, this means

it can compress under stress without breaking. A complete understanding/parametrisation

of how ice deforms has not yet been achieved. There are, however, observable dynamic

features in the Arctic and Antarctic environments. These features are born of different

kinds of dynamical events: mainly divergence, convergence or shear. As ice converges, it

is placed under increasing stress, which can eventually lead to the breaking of floes. If the

stress is high, it may be pushed together and break up the ice, creating ridges along the

fault line of the break. These pressure ridges act as sails on the ice, increasing the coupling

to the atmosphere’s winds and the amount of energy that can flow in such a manner from

one system to the other. If the ice diverges after a breaking event, it will open up a lead of

open water in the ice pack. Leads are not only hotspots of interaction between ocean and

atmosphere but also artefacts of the ice dynamics and, therefore, one of the most investigated

sea ice phenomena.

2.2 Remote Sensing of Sea Ice

As was mentioned in the introduction of the thesis, remote sensing is an important tool to

monitor the polar regions. Intrinsic to the remote sensing aspect of sea ice, is its response

to an external electromagnetic field. For a bulk material, this is described by the strength
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of the induced field in the material (permittivity) and the amount of energy transferred to

free ions (conductivity). Both of these variables are combined into a single complex variable

ϵr = ϵ+ iσ, commonly referred to as the relative permittivity or the dielectric constant. It

appears in the exponent of the wave solution to the (one-dimensional) free field equations.

For an undampened field (σ = 0) propagating along x,

∂2

∂x2
E = µϵ

∂2

∂t2
E, (2.1)

with E ∝ eiωtEx, (2.2)

⇒ Ex = e−iω
√
µϵx. (2.3)

If we consider a dampening effect due to the conductivity σ of the material, the wave

equation in turn becomes
∂2

∂x2
E = µϵr

∂2

∂t2
E. (2.4)

Again, choosing a propagation only along direction x and looking only at the spatial depen-

dence the solution becomes a little more complex, as

Ex = e−iαxe−σβx, (2.5)

with β =
ωµ

2α
, (2.6)

and α = ω
√
µϵ

[
1

2
+

1

2

√
1 +

σ2

ω2ϵ2

] 1
2

. (2.7)

Here the imaginary part of the complex permittivity σ (conductivity) contributes as multi-

plication with a negative exponential function, thus parameterising the drop of the electric

field strength in the medium. A property that is often referenced is the penetration depth

δ = σβ =
1

2

√
µ

ϵ

[
1

2
+

1

2

√
1 +

σ2

ω2ϵ2

]− 1
2

. (2.8)

The real part ϵ (permittivity) governs the strength of the response, which will be shown

below. Electromagnetic properties are largely influenced by the amount of brine present

in the ice and vary across frequencies of the external electric field. As discussed, the brine

volume changes over time, and thus so does the response on electromagnetic remote sens-

ing instruments. Whilst the conductivity discussed above describes the absorption of an

electromagnetic wave in a dielectric medium, we still need to look at the strength of the

reflection (and transmission). A macroscopic description is given by the Fresnel equations.

The symmetry-breaking element in the scattering mechanism is the orientation of the sur-

face. This results in different scattering for different polarisations and incidence angles. The

scattering mechanism/matrix can be derived from the wave equations and upholding con-

tinuity at the interface boundary. This scattering cannot lead to changes in polarization.

Polarisation flips require geometries with multiple bounces.

Assuming a horizontally polarised incident wave EH
i , Bi, with incidence angle θi, reflected

wave EH
r , Br and transmitted wave EH

t , Bt at transmitted angle θt and requiring continuity
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Figure 2.1: Fresnel scattering at a single interface between two homogeneous substances. The

wave travels from a substance of permittivity ϵi and is scattered at an interface with permittivity

ϵt.
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of the electric field at the interface gives two equations for the amplitudes:

EH
t

!
= EH

i + EH
r (2.9)

Bt cos θt
!
= Bi cos θi −Br cos θr. (2.10)

For an electromagnetic wave,

B = E
√
ϵµ. (2.11)

Constraining ourselves to non-magnetic media, the combination of the above equations yields

a relationship for the ratio of reflected to the incident wave, as

EH
r

EH
i

=

√
ϵi cos(θi)−

√
ϵt cos(θt)√

ϵi cos(θi) +
√
ϵt cos(θt)

. (2.12)

One thing that is immediately obvious is that the higher permittivity of the transmission

medium leads to lower amplitude of the reflected wave, as one would expect. One thing we

have not yet exploited is the relationship of incident and transmission angles, governed by

Snell’s law. Assuming ϵi ≈ 1, as for the atmosphere, we obtain the formulation

EH
r

EH
i

=
cos(θi)−

√
ϵt − sin2(θi)

cos(θi) +
√
ϵt − sin2(θi)

. (2.13)

Equivalently for vertical polarisation, one obtains

EV
r

EV
i

=
−√

ϵt cos(θi) +
√

1− sin2(θi)/ϵt

√
ϵt cos(θi) +

√
1− sin2(θi)/ϵt

. (2.14)

For an example of the Fresnel scattering at substances with permittivities similar to first-year

and multiyear ice over various incidence angles, see figure 2.2a.

One might have noticed that the Fresnel description only covers specular reflection. If we

operate an active satellite at a slanted incidence angle, very little or no incident wave would

be returned to the satellite via spectral reflection on a relatively level surface. One crucial

aspect that we have been missing in our description is that of surface deformation, which of

course also influences the local incidence angle of the wave. To simplify interactions across

multiple scales, one can subdivide the influence of deformation into three separate scattering

regimes. In the first case, the scatterer (or correlation length of surface deformations) can be

significantly larger than the wavelength and we can treat the scattering as largely specular

reflection. Commonly this is termed the optical regime. This would then be quite well

described by the Fresnel equations introduced above. Note that energy returning to an

active instrument viewing from a non-nadir angle would need either multiple bounces or an

optimally slanted surface to see a reflected signal. Thus in this regime, the return is largely

determined by surface geometry. In a second case, the scatterer is significantly smaller than

the wavelength, in which case we enter Raleigh scattering regime. Note, however, that there

are only a few scatterers in sea ice that fit this criterion and the scattering strength is quite

weak compared to the other contributions. Thus this type of scattering can be considered
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(a) Full IA range (b) SAR IA range

Figure 2.2: Ratio of reflected compared to initial wave energy from Fresnel scattering at a single

interface of a substance of permittivity ϵt = {3, 4} for ’first-year ice’ (FYI) and ’multiyear ice’

(MYI) respectively. The permittivity of the initial medium is set to 1. The right figure shows a

cutout to the incidence angle range, as typical for a SAR satellite.

negligible in our case. It is a reason why higher frequency microwave sensors can no longer

penetrate cloud cover, as suspended water particles facilitate significant Raleigh scattering.

Finally, if the scatterers are of similar size to the wavelength, this is described by Mie Theory

and is the most complicated of the three cases. We will not discuss it in detail here, but it

is valuable to note that scatterers with characteristic lengths near the wavelength lead to a

significant increase in radar backscatter. It is also important that Mie scattering allows for

non-zero reflection in all directions.

Having discussed the origin of varying scattering contributions, we are still lacking a

description of bulk scattering processes. We will give a brief overview here, condensing what

is commonly found in textbooks such as Woodhouse, 2017 on this subject. With an electric

field vector separated into an orthogonal basis

E =

EH

EV

 , (2.15)

a common way to rewrite the four components of this field - two amplitudes and two phases

- is the Stokes vector

I =


IH

IV

U

V

 =


⟨EHEH⟩
⟨EV EV ⟩

2 Re⟨EHEV ⟩
2 Im⟨EHEV ⟩

 . (2.16)

Whilst this decomposition seems quite arbitrary, it is historically motivated, as these compo-

nents were directly measured in original experiments. In this basis, the scattering becomes

a matrix multiplication with a matrix M of the form

Is =MIi, (2.17)
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Figure 2.3: Ground geometry of the radar footprint transmitted normal to area Aγ under inci-

dence angle θIA. Aσ is the area in the ground projection, Aβ is the area in slant range and Aγ

is perpendicular to the slant range.

with indices denoting scattered and initial wave properties. With an observer at a range r0

and assuming isotropic scattering, the amplitude is attenuated under spherical symmetry,

such that a received Stokes vector

Ir =
1

4πr20
MIi, (2.18)

where r0 is the distance from the observer to the scatterer. A convenient way to express the

scattering of an incident field, particularly when considering that most radar instruments

make two separate measurements for the horizontal and vertical polarisations, is to define

the scattering matrix

S =

SV V SV H

SHV SHH

 . (2.19)

The components describing same receiving and transmitting channels HH and VV are

called copol channels and the others crosspol channels. The scattering matrix relates incom-

ing and scattered fields asEH
s

EV
s

 =
e−ikr

r1

SV V SV H

SHV SHH

EH
i

EV
i

 , (2.20)
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where r is the range coordinate and r1 the distance of the scatterer. As per the reciprocity

principle, the SHV = SV H and thus often a vector of the scattering components

k =


SV V

SHV

SHH

 , (2.21)

is defined, so that the coherence of the channels can be written as the covariance matrix

C = kk
T
=


∣∣SV V

∣∣2 SV V S
HV

SV V S
HH

SHV S
V V ∣∣SHV

∣∣2 SHV S
HH

SHHS
V V

SHHS
HV ∣∣SHH

∣∣2
 . (2.22)

The amount of energy that is returned to the radar is described by the radar cross-section

σ =
Ir
Ii
4πr20, (2.23)

where the loss over distance is corrected as if the scattering was isotropic. In a spatial

context, it is often sensible to relate the cross-section to the area that it was acquired over.

This is done by dividing by the area Aσ of the measurement (footprint of the radar), giving

the normalised radar cross-section

σ0 =
σ

Aσ
. (2.24)

An Earth-observing satellite radar does not natively measure in the plane of Earth’s surface.

In the satellite geometry, the radar measures a cross-section β over a surface that is perpen-

dicular to the radar-looking direction Aβ . As the intensity is the same in both coordinate

systems, the cross-sections and the respective areas are related by the expression

σ0Aσ = β0Aβ . (2.25)

The two areas are related via the incidence angle θ (see fig. 2.3), via the geometric relation

sin θ =
Aβ

Aσ
. (2.26)

Combining the two equations gives the conversion from the satellite measured β0 to the

ground projected σ0, as

σ0 = β0 sin θ. (2.27)

The geometry we have used here inherently assumes a flat earth surface. In words, the

normalized radar cross setion σ0 describes, under the assumption of isotropic scattering, the

ratio of the area that was measured versus that of a flat surface.

2.3 Scattering Simulations in 1D

To gain some intuition how surface roughness can influence radar backscatter, some simple

1D simulations of radar scattering from a random periodic surface are presented. The

underlying assumption of the work presented here, is that the backscatter at the surface is
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largely specular at the top of the surface and that the length scales (correlation lengths)

of the roughness are significantly larger than the wavelength, so interference effects/Mie

scattering can be ignored. The random surfaces considered are simply randomly generated

Fourier series with diverse correlation lengths and surface heights. The energy returned to

the instrument depends on the angle of the surface (for single bounce scattering). In the

following we assume a strongly anisotropic scattering at every point of the surface, where

most energy is returned if the surface normal is parallel to the incident wave and the intensity

drops of exponentially as the the angle between surface normal and incident wave changes.

An example for scattering at such a random surface can be seen in figure 2.4.

Figure 2.4: Scattering simulation of a random surface (seen at the bottom in black). The

individual contributions of the subsampled surface are shown in a light grey in the background,

the red line shows an aerial accumulation, i.e. the approximate local normalised backscatter at

every point of the surface. The total reflected energy is also given. The arrow denotes direction

if the incident wave. Some double bounce contribution can be seen in the rightmost peak of the

triple-peaked contributions just left of the centre of the image. It must be double bounce that

contributes here as the surface normal points away from the incident wave.

To investigate the influences of surface roughness correlation lengths, five different ran-

dom surfaces are simulated with decreasing correlation lengths at incidence angle steps of a

single degree. The results of these simulations can be seen in figure 2.5. There it is shown,

that the lower the roughness correlation lengths are, i.e. the surface is ’smoother’, the more

anisotropic the scattering becomes. It might come as a surprise that a nadir incidence does

not lead to the strongest radar backscatter. This is because for the sinusoidal oscillations

used to describe the surface, the points where the slope is equal to zero (resulting in strong
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nadir reflection) are those were the changes in the slope are most extreme. Therefore the

area where the slopes are close 0 is small. As expected the brightness falls of quickly when

moving away from the incidence angles of strongest return as the strong slopes required to

scatter back a signal at higher incidence angles are increasingly rare in smoother landscapes.

Finally, it is time to look at the region of incidence angles most interesting to us: the

typical incidence angle range of a synthetic aperture radar satellite. The same results as

in the polar plot are shown for this regime in figure 2.6. Here it is clearly visible how the

gradients get shallower as the roughness correlation lengths decrease. The smoother surfaces

drop off very quickly with increased incidence angles. This is also observed for open water in

satellite images. In regards to total backscatter there does seem to be an optimal amount of

roughness, as the most rough surface’s backscatter, indicated in yellow-orange in the plot, is

not as strong as other surfaces. In this simulation the reason for that behaviour is, that the

regions of optimal slopes for radar returns lie in the shadow of other peaks. It must be noted

that these simulations do not take into account backscatter with more than two bounces,

which occur more often in these regimes, therefore one should be careful when interpreting

the simulation results for very high roughness.

To summarise the results of the simulations: The rougher a surface (i.e. smaller roughness

correlation lengths at the same surface height variance) is, the more it tends scatter more

isometrically, meaning the radar return intensity does not drop of as quickly as the incidence

angle increased. Also, across the incidence angles that are typically measured with a SAR

satellite, rougher surfaces tend to be brighter, especially at high incidence angles. The

incidence angle window where smooth and rough surfaces have approximately the same

brightness does seem to lie within the incidence angle of the satellite (this is confirmed for

open water visually, see figure 3.7 for an example).

2.4 Observations at C-Band from Scatterometer and

SAR

In real observations of the sea ice cover, one will almost always have contributions from

multiple scattering regimes, as well as multiple bounces and it is very difficult to separate

contributions of individual scatterers. Backscatter intensity over sea ice can be seen to be

approximately linearly related to incidence angle (over incidence angle ranges seen by a

satellite, see 2.2b for Fresnel scattering in these regions) and can qualitatively be related

to the nature of the ice. As shown by the simulations above, level young ice and open

water will have a strong specular response and thus the brightness will quickly fall off with

increasing incidence angle. Frost flowers growing on freshly frozen leads or old, desalinated

and deformed multiyear ice however, will have some scatterers near the wavelength of the

sensor and/or allow for multiple bounces, leading to smaller dependence on the incidence

angle. The aim of this section is to give some intuition of how to relate observations of radar

backscatter to sea ice properties.
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(a) (b)

(c) (d)

(e)

Figure 2.5: Scattering simulation of random surfaces with different correlation lengths (surfaces

are seen at the bottom in black in a-d). The backscatter was simulated at every incidence angle

between 0 and 180 degrees and the total reflection is shown on the radial axis of plot e. The

colors go from blue to orange with increasing roughness (decreasing correlation length).
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Figure 2.6: Same simulation as in figure 2.5, shown for the incidence angle window typical for

satellite SAR sensors. As above, the colors go from purple to orange with increasing roughness

(decreasing correlation length).
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(a) mean backscatter (b) slope

(c) mean backscatter in reduced IA range (d) slopes from values in reduced IA range

(e) coincident air temperature from Nandan et al., 2017 fig. 4a

Figure 2.7: Scatterometer data from a warming event in Resulte Bay, Canada. The data is at

C-band over a 16cm saline snow cover on top of landfast first-year ice. Research utilising this

data is published in Nandan et al., 2017. The lower two scatterplots show the values if restricted

to the incidence angle range 20-50 degrees, which is typical for SAR satellite imagery. The last

figure at the bottom shows the air temperature and is a copy of figure 4a in Nandan et al., 2017.

©Elsevier.
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Scatterometer A time series of real measurements made with an on-ice scatterome-

ter during a warming event in Resolute Bay in Canada in May 2012 is shown in figure 2.7.

Research has already been published on this data in Nandan et al., 2017, relating the instru-

ment’s backscatter to atmospheric conditions. The slopes’ behaviour during the warming

event is also interesting to us, but not yet explored in the paper. Especially when restricting

oneself to the incidence angle range of SAR satellites, the signal of the warming event is

much more significant in the slopes than the backscatter. This demonstrates the sensitivity

of the incidence angle slopes to physical environmental changes. The observed ice in the

experiment was first-year ice covered with a saline snow-pack of 16 cm depth. As shown in

Nandan et al., 2017, models suggest that the snow depth is larger than the penetration depth

of the radar, meaning the backscatter is dominated by the scattering from the snow layer.

This is a rare case in sea ice remote sensing at these frequencies and is facilitated by the

layer’s high salinity. Typically the snow is mostly transparent at the frequencies of common

SAR systems. So far mainly surface scattering (at the ice-atmosphere surface) has been

discussed. For more realistic deductions to be made, contributions from scatterers inside

the volume also need to be considered. This volumetric scattering is commonly considered

quasi-random, as it originates from a multitude of differently oriented surfaces inside the vol-

ume. A possible explanation for the drastic impact on the slopes in the measurements could

be that the warming of the snowpack homogenized the snow layer and destroyed the interior

structure, responsible for the volumetric scattering (quasi-random multi-bounce, leading to

more isotropic scattering behaviour). With such structures gone, the signal is dominated by

specular reflections, which leads to a stronger incidence angle slope. To put it concisely, the

warming probably smoothed the internal structures in the snowpack. Aside from demonstra-

tiongh that incidence angle dependent slopes are valuable for insight into structural change,

these observations also demnonstrate how radar response can change without changing the

ice type. In this case this was due to a saline and damp snowpack on top of landfast ice,

which is not commonly encountered on non-fast ice, however.

Synthetic Aperture Radar An example of sea ice’s backscatter and incidence angle

dependence as measured with a C-Band SAR sensor (Sentinel-1) can be seen in figure 2.8.

The slopes in these scenes are computed using a technique published in Cristea et al., 2020

and is thus only a secondary product, not a real measurement. If we assume it to be

representative of the real slopes, we can make some derivations about the structure of the

observed ice. First, it is notable that the first- and multiyear ice (FYI and MYI) are best

separated in the HV band and the HH slopes. In the HV band, multiple bounces are required

to obain a radar response. As the brightness between FYI and MYI regions is comparable in

HH band but different in HV it thus follows that MYI has more surface deformation and/or

higher penetration depths of the signal to facilitate multiple bounces (High penetration

depth would allow scattering at more interfaces in the crystal). The HH slope for MYI

being less steep than for FYI also suggests that we have increased volumetric scattering.

Because of the quasi random nature of volumetric scattering, these contributions should
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exist similarly in the HV band. Hence, the surface scattering must be stronger for FYI for

both ice types to have similar total backscatter. This is slightly atypical, as multi-year ice

often has significantly stronger backscatter in the HH band.

In summary, regarding the FYI and MYI differences, the data suggests the FYI section

has stronger surface scattering contributions, whilst the observed MYI has more volumetric

scattering. The young ice in this example has high backscatter in both channels but steep

negative slopes. The high backscatter of young ice (YI) combined with low penetration depth

due to increased salinity in the upper layers there, suggest the presence of some structures

on top of the ice scattering near the instrument’s wavelength (5,5 centimetres in this case

of Sentinel-1). As the slopes are very steep, these structures are not randomly oriented and

seem to have much stronger preferential orientation than the MYI contributions. One such

phenomenon that fits this contribution is the presence of frost flowers: thin ice crystals on

top of young ice. These grow through desublimation of the water in the warm air over the

ice. This air is warmed by the latent heat of the ice growth below and drops in temperature

rapidly in a substantially cooler atmosphere.

2.5 Radiative Transfer Modelling

Although this work focuses on the observation of sea ice across various spatial and temporal

scales, to comprehend the challenges of sea ice as a medium, we will briefly introduce a

modelling approach, summarising work from Golden et al., 1998 and giving appropriate

background information, that can be found in e.g. Woodhouse, 2017. It is only one of many

ways that sea ice can be modelled, but it is an intuitive approach that outlines the difficulty

of the modelling efforts. This illustrates why retrieval by inversion of forward models is

currently not a feasible approach to monitoring the sea ice masses of our planet.

One property that can be readily derived from the permittivity and conductivity is

the penetration depth of an electromagnetic wave: the distance in the medium where the

amplitude of the electric field has decreased by 1/e (see eq. 2.8). These calculations, however,

assume a homogenous medium, which sea ice is very much not. Similar problems of relating

sea ice’s dynamic and highly variable nature to bulk properties is challenging. Still, it cannot

be avoided when incorporating sea ice into models. This process is termed homogenization,

as one tries to describe the behaviour of a very heterogeneous material by a homogenous

one. Because the interactions being modelled are highly nonlinear regarding these variables,

simply taking a mean of some local parameters is not a successful approach. In the case

of electromagnetic wave interaction, one example of such homogenization approaches is to

extend the extinction coefficient κ = 1/δ where δ is the penetration depth, by an additional

scattering term to account for scattering along interfaces of the polycrystalline structure,

brine channels and air bubbles.

First, a general case is described, wherein a transparent volume of area A and depth

h encloses scatterers without orientation, fully defined by their radar cross section σ with
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(a) YI (b) FYI (c) MYI

(d) (e)

(f) (g)

Figure 2.8: Histograms of backscatters and incidence angle dependence slopes for the three

different ice regions (first row - HV) labelled manually. The slopes where determined using a

Gaussian clustering-based method, published in Cristea et al., 2020. The data is from a Sentinel-

1 EW mode acquisition of the central Arctic in November 2019.
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density ρ. Defining thus an effective extinction coefficient

κeff = ρ(κa + κs), (2.28)

with the extinction coefficient from the scatterers material is κa and the newly appended

scattering term κs. The effective opacity of the volume along a path s = [0, h] is

κ · s = κ
h

cos θ
. (2.29)

Computing the scattering from a beam with footprint B, incident at angle θ, we sum over

all contributions over the path s and the area, to obtain the cross-section

σvol =
B

cos θ

∫ h

0

ρσe−2zκeff/ cos θdz

=
B

cos θ

ρσ

2κeff
cos θ

[
−e−2zκeff/ cos θ

]h
0

=B
ρσ

2κeff
(1− e−2hκeff/ cos θ).

(2.30)

With the area relation B = A cos θ, where A is the area on the ground, we can now compute

the normalised radar cross section

σ0 =
σvol cos θ

B
= cos θ

ρσ

2κeff
(1− e−2hκeff/ cos θ). (2.31)

The problem with this model is that such scatterers with cross sctions independent of ori-

entation are not realistic for sea ice, where brine channels and ice growth typically have

preferred directions. For simpl air bubble inclusions, this could be suitable, but the effect

of the bulk medium have not yet been taken into consideratoin.

In the next stage, the assumptions about the orientation of the scatterers are relaxed,

and the absorption of the bulk medium of the volume is also taken into account. As covered

in the introduction of this work, sea ice growth undergoes various stages, from frazil ice

consolidation to layering of nilas to formation of pancake ice and eventual columnar ice

growth. The snow on top forms its own diverse structures, as older snow at the bottom can

be compressed or even flooded. Due to the different sea states, growth/development differs

not only regionally in the polar regions but especially when comparing Arctic and Antarctic

conditions. The openness of the Antarctic, in contrast to the sheltered Arctic, is the central

reason for these disparities.

Inspired by the different growth regimes, the following model will approximate the sea

ice cover as multilayered random media. For example, these layers could be: Fresh snow,

compressed snow, consolidated young ice, columnar ice and porous bottom ice encapsulated

by the atmosphere and ocean. Scattering in these layers will be approximated by enclosed

scatterers with given distributions of shape and orientation embedded in a medium with

given background permittivity. The model also does not incorporate effects of coherency,

interference or resonance - essentially reducing the fields to particle-like interactions.

We define the model as having N + 1 layers given by layer number n = {0, 1, . . . , N}
with boundaries located along the z axis at z = {0,−d1, . . . ,−DN}. Each layer has a
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background permittivity ϵn and is populated by a number of different types of scatterers

Mn, each of which is parametrised by a fractional volume psnj
, permittivity ϵsnj

, as well as

size and orientation distributions. The interfaces can be parametrised with a roughness

(standard deviation) and a correlation length.

The differential equation for the intensity of a field in layer n, propagating along θ, ϕ is

given by the differential equation

cos(θ)
d

dz
I(θ, ϕ, z) = −κ(θ, ϕ)In(θ, ϕ, z) +

∫
4π

dΩ′Pn(θ, ϕ, θ
′, ϕ′)In(θ

′, ϕ′, z). (2.32)

In is the Stokes vector, as introduced previously - Pn is the phase matrix and κ is the

extinction coefficient of the bulk medium. To recap, the Stokes vector in an orthogonal basis

denoted by polarisation H,V is given with the characteristic impedance η is

In =


IH

IV

U

V

 =
1

η


⟨EHE

H⟩
⟨EV E

V ⟩
2 Re⟨EHE

V ⟩
2 Im⟨EHE

V ⟩

 (2.33)

.

Scattering of the incident field Ei = (EH , EV ) in direction (θi, ϕi) to scattered field

Es = (EH , EV ) in direction (θs, ϕs) is given by a scattering matrix

S =

SV V SV H

SHV SHH

 . (2.34)

The corresponding stokes vector of the incident and scattered field are given by a 4x4

matrix L(θi, ϕi, θs, ϕs) which is dependent on S. From the matrix L, the phase matrix

P is computed by averaging (ignoring coherency effects) over the parametrisations of the

random scatterers with given joint probability distributions f . For example, consider random

scatterers of cylindrical shape, with size parametrisation a, b and orientation parametrised

by α, β. The joint distribution f(a, b, α, β) then defines the phase matrix

P (θi, ϕi, θs, ϕs) = ρ

∫
da

∫
db

∫
dα

∫
dβ f(a, b, α, β)L(θi, ϕi, θs, ϕs), (2.35)

where ρ is the number of scatterers (per unit volume).

Considering that the bounds of size and orientation are free parameters as well as the

probability distribution itself having to be parametrized, it is clear that even such a simplified

contribution in a single layer already results in a large amount of parameters that would

have to solved when trying to invert such a model. Combined with the effects of other layers

it is immediately obvious how relaxing some of the super simplistic assumptions from the

initial modelling approach results in a model with very high number of parameters. This

is despite still being a large simplification of reality with coherency effects and geometry

of the interfaces not being taken into account. Especially when regarding that often SAR

acquisitions have only one frequency and two polarization channels, inversion is thus not

remotely feasible.
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Figure 2.9: The basics of radar feature a receiver and a target. The fundamental measurements

that a radar makes are the electromagnetic field and time.

2.6 Introduction to Synthetic Aperture Radar

To observe the Arctic at high resolution (10s of meters) from space, requires the use of active

sensors. As energy should not be lost to atmospheric absorption, microwave frequencies in

the microwave atmospheric window (roughly 10−3 − 101 metres) are used most commonly.

The optimal product should yield a two dimensional mapping of the surface, to achieve

high spatial coverage. One technology that enables an acqusition of that type is a radar

system with synthetic aperture. The core feature of such an instrument is that the observed

backscatter can be observed in two dimensions, where the distance to the scatterer has no

influence on the measured signal (bar incidence-angle effects).

2.6.1 Radar Basics

Before turning to radars with synthetic apertures, the basic principles of standard radar are

established. Modern techniques started to be developed in the 1930s in several countries

independently. A historical overview is given in Skolnik, 1985. Radar (RAdio Detection and

RAnging) is a technique to measure the distance of far away objects by sending a signal and

timing the reflected echo (fig. 2.9). If the transmitted and received signals differ by a time

∆t, then the range r0 of the reflected target is

r0 =
c∆t

2
, (2.36)

where c is the speed of light in the respective medium and the factor 2 arises because the

signal travels the distance twice (to the target and back). Because a pulse of finite, non-zero

length is transmitted, the radar has only finite resolution in measuring the range. Subjects

need to be apart from one another by at least one pulse length tp, so the range resolution

δr is

δr =
c tp
2
. (2.37)

It is much more common, however, to characterise radar systems not by their pulse length

but their bandwidth ∆f , which is the difference of the maximum and minimum transmitted
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frequency

∆f = fmax − fmin. (2.38)

How bandwidth and pulse length are related is not obvious. In literature, one often finds

the relation

∆f =
1

tp
. (2.39)

To understand this relation, we need to look at the signal in frequency space. A pulse of

length tp in an electric circuit is defined by a voltage

u(t) =

0 for |t| < tp
2 ,

1 else.
(2.40)

Note that such a pulse has Energy Ep = Itp, with current A. For simplicity we choose the

current I = 1 and thus

Ep = tp. (2.41)

A pulse from an antenna is much easier described in the frequency space of electromagnetic

waves. Such a rectangular pulse as we are describing here is made up of an infinite amount

of frequencies, described by the Fourier transform

û(f) =

∫ ∞

−∞
u(t)ei2πftdt. (2.42)

Inserting u(t) reduces the integral and one obtains the following expression:

û(f) =

∫ tp
2

−
tp
2

ei2πftdt, (2.43)

which has an analytic solution taking the form

û(f) =
sin(πftp)

πf
. (2.44)

The amount of energy transferred through a bandwidth ∆f is given by

Ef =

∫ ∆f
2

−∆f
2

û(f)2df. (2.45)

Now looking at a bandwidth given by ∆f · tp = N , the Energy transmitted through the

frequencies in that bandwidth (for some N) is

Ef = tp ·



0.774 for N = 0.5,

0.903 for N = 1,

0.931 for N = 1.5,

0.950 for N = 2,

...
...

(2.46)

34



2.6. INTRODUCTION TO SYNTHETIC APERTURE RADAR

Figure 2.10: Relation of antenna opening angle to antenna length da. Note that this displays

half the opening angle, as it points from the center to the first minimum and the full opening

angle lies between the first minima. The shaded orange area represents the illuminated footprint.

So now the choice is made to set N = 1, meaning the bandwidth describes the range of

frequencies through which 90.3% of the energy is transmitted. Hence one arrives at the

previously given relation

∆f =
1

tp
. (2.47)

Inserting this into the above formula 2.37, the range resolution can be described by,

δr =
c

2 ∆f
. (2.48)

Also of particular interest is the angular resolution δa of a radar system. Principally,

this is equal to the angle at which two objects in space echo responses of the radar can

still be separated in the returning signal. If one imagines a classic radar, it is thus exactly

the opening angle of the beam θa. When originating from an emitting antenna, the width

of the antenna beam is understood as the angular distance between the first interference

minima on each side of the central maximum in the antenna pattern. The angular distance

between them can easily be computed geometrically: A minimum occurs when the beam

length from the far end of the antenna is half a wavelength longer than from the closer end
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Figure 2.11: The geometry of a synthetic aperture radar (SAR) system.

of the antenna 2.10. As we are considering far field approaches, the triangle of small opening

angle θa, opposite side λ/2 and the antenna length da as the hypotenuse, gives the relevant

relation

sin(
θa
2
) =

λ

2da
. (2.49)

For small opening angles x ≪ 1 the Taylor series expansion of sin(x) ≈ x and thus we get

the common formula for the angular antenna resolution.

δa = θa =
λ

da
. (2.50)

Now it is straightforward to compute the resolution in meters δaz, for a target at distance

r0. We use a subscript az to refer to the azimuth dimension. For a synthetic aperture radar

this is the dimension along the flight direction. Again given by the geometry

tan(θa/2) =
δaz
2r0

. (2.51)

Considering only small opening angles, the Taylor approximation yields

δaz = θar0 =
λ

da
r0 =

c

f

r0
da
. (2.52)

2.6.2 Synthetic Aperture Radar

The principle design feature of radar with synthetic aperture (SAR) is that the sensor is

moving relative to the observed object. Thus the target is illuminated for some part of the

trajectory of the sensor. The length of the path of the sensor, where the object is illuminated

is a synthetic aperture lsa - similar to a very long antenna. Note that the length of the path

of the sensor is equivalent to the beamwidth at the distance of the target r0. With the
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opening angle of the real antenna θa, we use the same formula (eq. 2.52) as for classic radar,

as it describes the same geometry.

lsa = δar0 =
λ

da
r0 (2.53)

Now we want to compute the opening angle θsa of the synthetic antenna. With an effective

antenna length lsa and equation 2.50, one obtains

θsa =
λ/2

lsa
. (2.54)

The extra factor of one-half of the wavelength might be unexpected here, as it contrasts the

regular radar antenna formulation. It arises from the fact that interference happens twice

in a SAR system, once on the way to the target and once back to the sensor, because the

trajectory of the target relative to the sensor forms an aperture of its own. In a basic radar

system, the target is stationary; thus, this term does not arise. If we substitute the length

lsa into the established formulation for θsa, we get

θsa =
da
2r0

. (2.55)

Armed with that knowledge, it is possible to compute the azimuth resolution δaz with help

of equation 2.52., as

δaz = θsar0 =
da
2
. (2.56)

The crucial element of this relation is that the azimuth resolution is independent of the

distance to the target r0. This is the key concept that enables the acquisition of scenes with

synthetic aperture radar, where (barring incidence angle dependent scattering) an objects

response does not depend on the location in the scene. Optical images generally have a

similar translationally invariant property, which is why the topics of image processing and

SAR processing can be successfully related.

2.6.3 Decoding the Signal

In this section an analysis of the returning signal will be conducted. The central problem

herein lies in the fact that the radar instrument measures a one dimensional signal (wave

amplitude over time), which has to be converted into a two dimensional target space. Such

a mapping means that

ψ : E(t) 7→ E(a, r), (2.57)

where we chose the coordinates azimut a and range r as the axes in two dimensional target

space. It is clear that this mapping could only be surjective if its image is dense. This could

only be realized with an infinitely long pulse (or one with infinite frequency), which is not

feasable in the real world.

Having established that the mapping is not going to lie dense in the target space, is a first

sign that discretisation of target space will be necessary to evaluate the signal. For now a

closer look at the information contained the return signal E(t) is in order. There are three
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components that will prove helpful decoding the return signal: the amplitude, the time delay

and the frequency.

The amplitude E(t) at a given time (t) gives the strength of the returning signal. This

will be mapped as brighter spots in the SAR scene and relates to the radar cross section

σ0 of the object in target space. The time delay tin − tout is directly proportional to the

distance of the target r1, related via the speed of light

tin − tout = 2
r1
c
. (2.58)

Realise that the distance to the target r1 is not identical to the range coordinate r0. Knowing

the distance only allows one to place the target on a curve within the radars lightcone. The

frequencies f of a signal are shifted by the Doppler effect, as the radar is operating on a

moving platform. Because signals are send and received in the same location, one can place

oneself in the inertial system of the moving platform and continue with the classical Doppler

effect, not the relativistic one (relativistic effects are results of time dilation between two

different inertial systems). The Doppler effect is easy to compute. A shift of the wavelength

occurring when an observer moving at speed v sends or receives a signal is given by the

function

D : λ, v → λ− λ

c
v, (2.59)

where λ is the wavelength of the emitted signal and v is the observer’s velocity relative to

the signal’s source. In the case of radar, there will be two shifts occurring. Assuming the

speed of the platform is much smaller than the speed of light, one can simplify and say both

shifts occur at the same speed vθ, which is the component of the speed of the platform that

is parallel to the vector pointing at the target

vθ = sin(θr)v, (2.60)

with the absolute value of the velcoity v and the angle θ between the target vector r⃗1 and

vector r⃗0, which points along the shortest distance between the flight path (parametrised

by v⃗ · t) and the target (see figure 2.11).

The final received wavelength λinafter two doppler shifts (once when emmitting, once when

receiving) is thus related to the outgoing wavelength λout and vθ by

λin = D(vθ, D(vθ, λout)) = λout − 2λout
vθ
c

+O
((vθ

c

)2
)
. (2.61)

In the following, we will ignore second and higher order terms in v
c . Before we get to

calculating the frequency from this, there is an additional effect that occurs. Namely, the

phase of the wavefunction changes relative to the absolute distance r1 to the target. The

phase dependent on the distance r1 via

φ(r1) = −4π

λ
r1. (2.62)

To interpret the signal, it is paramount to understand how the frequencies of the signal

behave for target objects at different ranges r0. Let’s choose a time coordinate t, such that
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t = 0 at the point of closest approach to the target. Under the assumption that the angle

θr between r⃗1 and r⃗2 is small, we will be satisfied with a first order Taylor approximation

of the distance:

r1 = r0 +
v2t2

2r0
, (2.63)

which we plug into the relation of the phase, which is now dependent on r0 and t, as

φ(r0, t) = −4π

λ

(
r0 +

v2t2

2r0

)
. (2.64)

Frequency is the derivative of the phase over time (up to a factor of 2π) and thus the

frequency will receive another modulation (on top of the Doppler shift) from the phase.

Finally, the relationship between incoming and outgoing frequencies in its entirety is

fin(t) =
c

λin
+

1

2π

dφ

dt
. (2.65)

Computing this to first order in v
c and using the relation from the Doppler shift (eq. 2.61)

gives

fin(t) = fout + 2
vθ
λ

− 2
v2t

λr0
. (2.66)

With vθ = sin(θr)v and the geometric relation sin(θr) =
vt
r1

this can be simplified to

fin(t) = fout + 2
v2t

λ

(
1

r1(t)
− 1

r0

)
. (2.67)

finally one can taylor expand r1(t) as we have already done previously, yielding the final

expression

fin(t) = fout −
v4t3

λr20
. (2.68)

Thus, by measuring the time delay and the frequency of the return signal, we can, in theory,

invert the signal to find the position of the scatterer with strength given by the amplitude

of the returned signal (something we have not made use of so far). Now one might think:

Wow, we have just decoded a 1-dimensional signal and got full information about an object

in 2 dimensions. Have we broken some fundamental mathematics? The answer of course is

no; this is not witchcraft. This inversion is only possible for a single scatterer. As soon as

multiple scattering signals overlap, the inversion will be under-determined. In reality, we do

not want to make an assumption about the number of scatterers, thus the techniques used

need to be different.

2.6.4 SAR Processing

In realistic SAR processing, a discrete matrix that has azimuth in one and range in the

other axis is filled. This is basically done by discretising the return signal into fixed bins

(organised in rows) and for every pulse a new column is started. Then filter functions are

computed that show, what a point target scatterer’s response would look like in this regime

in range and azimuth direction. The image is then convolved with these filter functions,

first along range, then azimuth, to reconstruct the image. This discretisation can lead to
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Figure 2.12: An example for a chirped signal as is used by synthetic aperture radars.

(a) target far ahead of radar (b) higher frequency signal

(c) target far behind radar (d) discretised higher frequency signal

Figure 2.13: (a-c) Examples of distorted return signals, at different times of observation. (d)

Discretisation of signal (b) at a sampling rate lower than the maximum frequency of the signal.

The modulation in all signals is due to Doppler shift. When the target is ahead of the satellite,

the velocity component in range direction is positive and the signal is shortened (a). When the

radar moves away from the target, the signal is lengthened (c).
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the presence of some artefacts from strong scatterers. Luckily, this is generally not the case

for sea ice acquisitions, as the backscatter is not high enough.

To explain in a little more detail, we will start by looking at the signal produced by

the instrument. The signal emitted by a SAR sensor is chirped, meaning the frequency

linearly increases with time. A signal of such nature can be seen in figure 2.12. The range

of frequencies of this chirp is known as the bandwidth of the radar. As we can see from

our description in frequency space, equation 2.68, upon return the signal is modulated by

the Doppler effect and the phase shift. This incoming signal is thus distorted depending

on the location of the scatterer. At the edge of the forward lightcone of the radar, the

frequency gets increased by the Doppler shift and the signal becomes shorter. When the

radar has passed the target and looks backwards, the frequencies are lowered and the signal

is lengthened. An example for these phenomena can be seen in figure 2.13. At the point of

closest approach, the signal will remain unmodulated, because the relative velocity between

the target and the radar in range direction is zero.

To now write the received signal intensities to a matrix, we need to discretise them. To

give a more realistic example, we will choose a sampling frequency that is slightly lower than

the maximum signal frequency. This will result in some image artefacts down the road. For

an example of this discretisation, regard figure 2.13 d.

Finally, these discrete signals are written to the target matrix as columns. For an illus-

tration of this procedure, see figure 2.14. The ambiguities introduced by undersampling the

frequency are concentric formations above and below the signal centre.

The next steps are to focus the SAR imagery. The range focussing is achieved by per-

forming a convolution with the range reference function, which in this case is simply the

signal itself (fig. 2.12). Next, the range migration has to be fixed: As the radar moves, the

distance to the target is changing and thus the center of our signal migrates. In reality this

is performed with some rather complicated filters. In our simulation we simply shift the

signal by requiring symmetry. Finally the azimuth compression is performed. As with range

compression, a theoretic signal is computed and convolved line by line. An example of all

4 processing stages of a SAR image can be seen in figure 2.15. The focussing we simulated

here in our toy example is not quite perfect, as we did not put the time and effort into this

example that a real SAR systems engineer would have, to get the convolution kernels and

the sampling rates right. The example shown also has very strong Doppler effect influence,

which would not be seen in nature, but improves visualisation of the asymmetric nature of

the signal. With a very keen eye, some artefacts can bee seen in the final azimuth compressed

image, figure 2.15 d.

2.7 Remote Sensing of Sea Ice with SAR

SAR is typically operated on wavelengths between 1 - 50 cm. A central reason for the range

of the wavelengths is that there are little to atmospheric absorption lines at these energies.
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(a) column 10 (b) column 100

(c) raw SAR signal image

Figure 2.14: Formation of the raw SAR signal, made up of 200 columns. Two columns are

displayed above and their location in the raw image is marked with a tick on top of its frame.

Ambiguities from under-sampling can be seen most notably in the concentric signature below

the real signal in the center.
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(a) raw signal (b) range compression

(c) range cell migration undone (d) azimuth compression

Figure 2.15: The various stages of SAR focussing, from the raw data to a fully focussed image.

Focussing is achieved by convoution with the expected signal as computed from theory. For this

example an unrealistically high velocity of the radar was chosen to accentuate the asymmetry

due to the doppler shift. Additional structures, apart from the skewed concentric circles from

the main target, are the result of under-sampling the return data.
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Thus the earth’s surface can be monitored without the absorption effects of clouds, rain

or other atmospheric features. Combined with the fact that SAR is an active sensor and

thus does not rely on sunlight (which is only available for half of the year in polar regions),

makes this technology a prime candidate for monitoring the arctic ice sheets. As discussed

in the introductory chapter, the electromagnetic field is sensitive to various features in the

ice, resulting in diverse radar responses to the various states of sea ice cover. With a high

resolution on the order of metres to tens of metres, SAR is a natural candidate for monitoring

the sea ice masses of our planet. The resolution of freely available SAR products like the

Sentinel-1 mission at 40 metres in extra-wide (EW) mode, which is used to monitor the

Arctic Ocean, is principally high enough to extract valuable information about physical

properties and processes in the ice that can further our understanding of dynamic processes

and climate feedback mechanisms in the Arctic. A result from such observations, one hopes,

would be the improvement of modelling efforts and thus, predictability of the Arctic and

global climate in the future.

To this day, operational ice charting is largely carried out by human analysts that man-

ually segment SAR scenes into various sea ice classes that are generally based on the ice

concentration or stage of development. Whilst this data is very valuable for marine traffic, it

does not have the level of detail one aspires to reach with autonomous classification. Instead,

these products are rather coarse and do not fully use the sensor’s high resolution.

An automated solution would not suffer from the time constraints of operational ice

charting and is in principle able to make full use of the detail of the SAR measurement.

Research towards such a retrieval method has been ongoing since the first satellite SAR

missions. Reliable observations at the native resolution of the sensor have the opportunity

to not only give more detailed information about the evolution of the sea ice cover but also

to inform about sea ice dynamics processes such as lead and ice ridge formation, floe size

distribution changes, and more. As the properties of a classifier are derivative of the training

data, naively learning from operational charts brings severe limitations.

The retrieval of sea ice properties from SAR is manifold and layered (as are most unsolved

problems in characterising large non-linear systems). At the core of the complications for

sea ice property retrieval from SAR lie two concrete challenges:

• The inverse problem: The SAR backscatter depends on many sea ice properties

and their distributions in the radar footprint/pixel. The inversion problem from one or

two or even four channels (effectively three because SHV = SHH) to bulk sea ice prop-

erties is thus significantly underdetermined. Retrieving measurable quantities (other

than the radar response itself) is therefore largely impossible. Part of the complication

herein lies in the fact that modelling efforts have not yet yielded sensible bulk elec-

tromagnetic properties that could be inverted. With the highly nonlinear nature of

the underlying interactions, there is no guarantee that such homogenised parameters

will ever be found. This underdeterminedness of the inverse problem mapping radar

backscatter to ice properties is the first major complication in the field.
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• The ground truth problem: The polar regions are very hostile to the human organ-

ism, leading to only few and arduous campaigns that can measure the ice properties in

situ. The additional complication that arises for sea ice in contrast to remote terres-

trial regions, is that sea ice observations have only very limited spatiotemporal validity:

The sea ice is constantly transforming in both space and time dimensions. Therefore,

the already sparse data collected on the ground about the properties of the sea ice

can only be related to satellite acquisitions from a very specific time. The available

ground truth in the domain is therefore severely limited.

As the local backscatter values is not sufficient to retrieve ice properties, researchers

try to leverage a priori knowledge, contextual data and generalisation to sea ice types to

make meaningful retrievals a reality. As in most things, the retrievable ice classes depend

on scale. In reality, there will mostly be a mixture of different ice in a single satellite SAR

pixel. Because small scatterers can dominate entire pixels, unmixing the contributions from

different classes is not feasible. Instead, one needs to settle for bulk classes at the scale of the

SAR product. An increasingly popular approach in the sea ice community is to automate

sea ice retrieval using machine learning approaches. The ideas here are natural insofar that

neural network-based algorithms can relate the contextual data in the vicinity to overcome

the first challenge of local information sparsity. At the core of these data-driven approaches

stands the idea that the algorithm may use the large number of scenes captured without

having to model the interaction of sea ice and the sensor explicitly. As is suggested by

the term data-driven, what these approaches need to function proficiently, is high-quality

data. Whilst we do have vast quantities of high-quality SAR data available, high-quality

labels/ground measurements are severely sparse and the ground truth problem becomes

increasingly severe when using data-driven approaches.

2.8 Neural Networks and Deep Learning

To solve the inversion problem of sea ice remote sensing with SAR, additional contextual

data needs to be taken into account. However, it is not at all intuitive how spatial context

can inform about the properties of an individual pixel. The human brain, for example, is very

capable at using additional spatial context in an image to discern more detailed information

about the nature of depictions. Neural network algorithms are data driven models that

can learn similar non-linear relations between contextual image data and depicted objects.

As the name suggests they are inspired by the organic counterparts. As they have been

shown to perform well on image data, they are natural candidates to help overcome the

inversion problem of SAR. Machine learning based algorithms have become increasingly

involved in our day-to-day lives, seeing widespread use in commercial applications and in

science. The number of machine learning publications has more than tripled from 2015 to
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Figure 2.16: A graphic representation of a neuron mapping N(xi) = A(
∑
aixi + b), with

i = {1, .., n}. Here A is some nonlinear function called the activation function. The number of

trainable parameters/weights is thus n+ 1 (ai, b).

2020, as documented in Zhang et al., 2022. This section will briefly introduce the concept

of neural networks and their application to image-like data. Later chapters in the thesis

will build on the content presented here, mostly looking at higher level connections between

inputs and outputs, rather than the individual functions mapping them. To be able to make

sense of model behaviour, it is vital to understand the underlying mathematics. Luckily,

they are not overly complicated.

2.8.1 Origins and Building Blocks

The inspiration for neural networks lies, as is suggested by the name, in the approximation

of the workings of the brain. Although a complete understanding of how the brain learns and

operates is yet to be achieved, we do know that it is made up of individual neurons capable

of transmitting electrical signals to other connected neurons. A simple, linear mathematical

formulation of synthesising a single outgoing signal from a range of incoming signals is a

multivariate linear function

F (xi) =
∑

aixi + b; i = {1, .., n}, (2.69)

where the value y, depending on a vector of incoming values xi is given by a linear

function with weights a and bias b. A typical graphic representation of such a network

node is shown in figure 2.16. A neural network consisting of exactly one of these nodes
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Figure 2.17: Some typical activation functions used to introduce non-linearity to neural networks.

is equivalent to linear approximation. However, to achieve a more general approximator,

multiple of these linear transformations can be chained together. Chains of linear operations

are still linear and thus to be able to model more complex relationships, nonlinear operations

need to be introduced. This is typically done by using an activation function A after the

linear computation F , so that an entire neuron N(xi) is given by

N(xi) = A(F (xi)). (2.70)

Typical activation functions are, for example, sigmoid, ReLU or GeLU, which can be

seen in figure 2.17. Commonly a network using such neurons as primary building blocks

are made up of layers of multiple neurons. The layers are fully connected, such that every

neuron in a layer receives the output from every neuron in a previous layer and passes it to

every output in the subsequent layer. If chaining together multiple such layers to construct a

network of greater depth (number of layers) and width (number of neurons per layer), it has

been shown that one obtains a universal approximator for well-behaved functions Cybenko,

1989. An example of a visual representation of a dense neural network with two hidden

layers is shown in figure 2.18.

2.8.2 Image Data

When looking at image data (a matrix of dimensions height × width × channels), the

simplest way would be to flatten the image to a vector and then continue with multiple fully

connected layers. However, as images can be quite large, the number of parameters and

thus computational cost rises rapidly. Therefore one is looking to exploit some fundamental

properties of the data to make the computation more efficient. A simple yet powerful

approach is to assume that the analysis of an image should have a property relating to

translational invariance. For example, detecting an edge in one part of the image should

work the same as detecting it in a different part of the image. Furthermore, pixels close

to one another are probably related more directly than pixels far away from one another.

These ideas are implemented by using sliding windows in the analysis, which compute local
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Figure 2.18: A graphic representation of a multi-layered dense network. The nodes are under-

stood as in figure 2.16.

image properties and are translationally invariant. This drastically reduces the number of

weights in the network. These sliding windows can also be interpreted as convolutions over

a discrete space and are thus called convolutional layers. A two dimensional convolutional

layer (Conv2D)is made up of a sliding window of weights, where each pixel in each channel

of the window is assigned a weight and the output of the window is computed as the sum

of all weights multiplied by the value in the input array (see fig. 2.19 for a visualisation).

An additional constant (also a learnable weight) is sometimes added to the result. This

constant is commonly called a bias. Typically a convolution function is also followed by an

activation function, for the same reason of introducing non-linearity as in dense networks

described earlier.

Thus, each pixel is primarily related to its neighbouring pixels and connections between

pixels far from each other are explored only further down the network. For classifiers, where

the output is a scalar or a vector, it is common practice to reduce the height and width

dimensions of the resulting matrices, by using strides greater than one or pooling the results

in between convolutional layers. A graphic explanation of a max pooling layer is shown in

figure 2.20. That way, the layers’ outputs are becoming narrower and deeper. Eventually,

the outputs are flattened (turned into a vector) and some fully connected layers are added

onto the end, to achieve the desired output shape.

An intuitive way of thinking about the levels of abstraction in a convolutional neural

network is to view the detected features increasing in complexity and size with the depth of

the network. Simple textures and lines are detected in the initial convolutions (sometimes

called the stem). Later in the network, these are combined to form larger features, like floe

edges or water lines. In the final stages of a classifier the network will then detect even

higher-scale composite features, such as leads, floes or other larger features of the images.

In a network set-up where the output is also a matrix, a general approach is to first

make the network narrower and deeper (as is also done for classifiers that output only a

number or a vector). Then the inverse operations are done to achieve the desired output
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(a) 2x2 Conv2D

(b) Example

Figure 2.19: A graphic representation of a discrete convolution operation commonly used in

digital image processing and computer vision tasks. The example here uses a filter of size two,

a stride of one and no additive constant. The input array values are multiplied with the weights

of the filter and then the summed over to obtain the output array. The filter strides are variable

and can be used to achieve a reduction of array dimensions.

Figure 2.20: A graphic representation of a 2x2 max pooling operation with stride 2, as is used

commonly in digital image processing and computer vision tasks. Only the maximum value in

the filter window is kept. As with convolutional layers, the stride of the filter can be varied for

different applications.
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(a) 2x2 TConv2D

(b) Example

Figure 2.21: A graphic representation of a 2x2 discrete transpose convolution operation. The

stride is 1. Larger strides lead to larger output dimensions.

dimensions. Having a lower parameter count in the middle of the network forces higher-level

parametrisations and abstraction of the input data. As with convolutional layers, we can

only decrease the width of the network, one needs an additional yet related operation: the

transposed convolution. A transpose convolution is learning a filter that is multiplied with

the input channels and then summed on the output matrix. If the stride of the filter is

greater than one, it will result in a wider output. A visual explanation is shown in figure

2.21.

2.8.3 Learning

We have so far discussed the building blocks neural networks are commonly made up of but

have not given detail on the learning aspect of a network. The overarching term to describe

the configuration of blocks used to map input to output is termed the network architecture.

Next to the architecture, we also need some way to describe how close the network is to

its desired outcome. This is handled by the loss function L, which maps the output data

(and possible auxiliary data, like ground truth) to a scalar. In case of supervised learning,

where we are trying to approximate some ground truth, the loss function could simply be

the squared difference between the prediction and the truth. To train the network then

means to reduce the value of the loss function on the training data.

Network training consists of two steps, the forward and the backward propagation. Dur-

ing the forward propagation (or inference), the network is evaluated on given data. The

learning aspect of the training then happens in the backwards propagation. This second

step consists of calculating the gradients of the loss function in regard to every parameter in
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the network and using these to adjust the parameters. In its simplest form, this is gradient

descent:

Given a dataset of inputs X and desired outputs Y , a training loop of network N with

learnable parameters {ai} and loss function L(N(X), Y ) can be described as follows: In the

forward propagation step using a datapoint (x, y)∈(X,Y )

N : x 7→ N(x), (2.71)

In the backwards propagation step, the network weights are updated with gradient descend,

such that

ai 7→ ai − α · ∂L(N(x), y)

∂ai
, (2.72)

with α as the learning rate, parameterising the strength of the update.

How reliably the network converges to the best solution (minimal loss) is often decided

not only by the network architecture but also by the preparation of the data. Additionally,

for more complex tasks, the formulation of the loss function and interplay between different

parts of the network is imperative. How well a network trains is determined by the land-

scape of the loss function. By landscape, we mean the value of the loss function on the

entire dataset for every parameter in the network. This landscape is naturally very high di-

mensional, as the dimension is equal to the number of parameters in the network. Typically,

this is on the order of tens of thousands to millions of parameters. A preferred landscape

offers as few and shallow as possible local minima and has a deep and well-localised global

minimum to converge to. Because of the high dimensionality of the space, this is reliant on

intuition and heuristics and cannot be tested quantitatively with ease.

To improve the way the network moves through this landscape during training, some

variations are made on the idea of gradient descent. A successful optimisation was achieved

with the Adam algorithm by Kingma and Ba, 2014. The major features it incorporates are

an internal momentum and learning rate decay. The momentum allows the optimizer not

to be overly affected by smaller local features of the landscape, and the learning rate decay

decreases the strength of adjustments later in the training run so that the minima are not

being overshot.

One thing to remember is that the loss must be differentiable in regards to all train-

able variables, so loss terms cannot involve non-differentiable operations like counting, his-

tograms, thresholding etc.

2.8.4 The Relationship of Data and Trained Model

So far neural networks look like perfect candidates for retrieval models. Due to the universal

approximation theorem, any relationships between inputs and outputs can in principle be

mapped and advanced versions of stochastic gradient descent give a clear way to train the

networks. The big caveat of these algorithms is that to find the desired mappings, a lot of

data is required that needs to completely span the distributions of inputs and outputs. The

networks are highly nonlinear models which have no directive on how to behave in between

51



2.8. NEURAL NETWORKS AND DEEP LEARNING

Figure 2.22: The training data used to train the demo network. Size=10000.

data points or even more crucially outside of them. Because of their non-linear nature, the

behaviour outside of the training data domain is typically quite chaotic.

Input 2

Dense x 10

Dense x 10

Dense x 10

Dense x 10

Dense x 10

Dense x 1

Output 1

Table 2.1: The demonstration network. The Relu activation function is used except for the final

layer, where sigmoid is applied.

To illustrate this behaviour, a simple dense network N with 5 hidden layers of 10 neurons

each is trained to fit a five by five checker board pattern. The relu function is used as an

activation until the final layer, which uses a sigmoid function. The loss is a cross-entropy

loss, also known as log loss

LCE(N(x), y) = −y log(N(x))− (1− y) log(1−N(x)), (2.73)

for an input x with label y. The training data is shown in figure 2.22 and consists of 10,000

samples.

In figure 2.23 the progress of training is shown. It is immediately obvious that the

algorithm does not extrapolate well on data outside of the training data domain, showing

rather chaotic behaviour outside the 5x5 square. This serves as a useful demonstration, that

networks cannot be expected outside of the training data distribution. For the same reason,

sea ice retrieval algorithms using neural networks should not be expected to work outside
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(a) epochs=40 (b) epochs=80

(c) epochs=200 (d) epochs=400

Figure 2.23: Training progress of the demo network after a given amount of epochs (number of

times iterated over all training samples).

of conditions present in the training data set. As the possible ice and snow conditions span

a large space, it is immediately obvious, that the sparse amount of ground truth in the

polar regions have a particularly pronounced effect on retrieval methods using deep learning

methods.

Above, the issues of out-of-domain classification were illustrated. Another common prob-

lem with limited data is overfitting. This describes the network fitting the training data so

closely that it loses generality. To illustrate this with the above checker board example, we

fit a network on only 500 data points, rather than 10000 and monitor the progress during

training (figure 2.24). In contrast to the previous example in figure 2.23, the network refines

the boundaries to a degree where they do not generalise as well to unseen examples, leading

to jagged edges inside of the checkerboard pattern.

2.8.5 Regularisation

To avoid overfitting the training data, some techniques have been developed that ease this

problem in a data-agnostic way. These techniques are commonly bundled under the term

53



2.8. NEURAL NETWORKS AND DEEP LEARNING

(a) data (b) epochs=20

(c) epochs=200 (d) epochs=6000

Figure 2.24: Training progress of the demo network on 500 samples after a given amount of

epochs (number of times iterated over all training samples).
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’regularisation’. One of the simplest and yet most effective regularisation techniques is called

dropout. Dropout layers simply set a random subset of input features to zero, with the prob-

ability of being ’dropped out’ given by a manually adjusted hyperparameter. Heuristically,

this forces the network not to become overly reliant on certain features in the network, as

they are not always available. The resulting diversification is useful to constrain the amount

of overfitting. When the network is predicting samples after being fully trained, the dropout

layers are typically switched off and dropout no longer occurs, so that the full wealth of

learned features can be used for prediction.

2.9 Literature Overview

To set into context the work that is done in this thesis, we will briefly discuss existing

published work, focussing on the deep learning contributions that were developed previously

or in parallel with the work shown here.

The European Remote-Sensing Satellite ERS-1 was launched in 1991 with a SAR in-

strument on board, measuring at C-band. So also started the first efforts of automatic sea

ice retrievals from SAR. Within the next year, some of the first research into autonomous

classification of sea ice types was published in Kwok, Rignot, et al., 1992, using clustering of

the normalized radar cross sections and look-up tables to distinguish classes for two scenes.

The automation techniques moved to more sophisticated methods centred around extracting

valuable features from the spatial neighbourhood. One of the main approaches used gray

level co-occurrence matrices (GLCMs), developed by Haralick et al., 1973. They were first

utilised in sea ice classification by Barber and LeDrew, 1991 and further spearheaded by Soh

and Tsatsoulis, 1999. Clausi, 2002 continued developing the methodology of co-occurrence

texture features, honing in on the effect of the quantisation of grey levels. In parallel, tex-

tures were also computed using Gabor filters, introduced by Jain and Farrokhnia, 1991.

After some further investigation by Clausi and Ed Jernigan, 2000, they were also analysed

for sea ice classification in Clausi, 2001 in comparison with GLCMs and Markov-Random-

Fields (MRFs). Here the best results were achieved for GLCM and MRF-derived features.

The authors could show that, in fact, these two features were independent of one another.

This work was expanded upon in Clausi and Yue, 2004. Markov random fields were first in-

troduced to the image segmentation worlds by Geman and Geman, 1984 and used in several

papers for sea ice classification purposes. Some early works of note include unsupervised

segmentation proposed by Deng and Clausi, 2005 and efforts towards operationalised ice

charting by Maillard et al., 2005. Other texture feature-based approaches being considered

in that time were autocorrelation features applied by Karvonen, Simila, et al., 2005 and

wavelet-based textures by Yu et al., 2002. The first approaches using neural networks to

classify sea ice were made by Hara et al., 1995, directly using local backscatter values as in-

puts. Later networks were then used on segmented data by Karvonen, 2004 and on features

from GLCMs, autocorrelation or image region growing approaches as inputs by Bogdanov et
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al., 2005. From this point onwards, machine learning developments grew with new processor

and memory technologies. Whereas the studies presented so far were usually constrained to

a handful of acquisitions, big data technologies were emerging into existence and fusion with

additional instruments was explored further. Studies by Karvonen, 2014; Karvonen, 2017

used multi-layer perceptrons (MLP), also known as dense networks, to classify sea ice using

both passive microwave and SAR radar using tens of scenes for training. Similar efforts

were made again by Malmgren-Hansen et al., 2021, this time using convolutional neural

networks (CNNs) and also by Radhakrishnan et al., 2021 using a semantic model in the

Unet, that was developed by Ronneberger et al., 2015. Different GLCM features were also

used for X-Band satellites in Ressel, Frost, et al., 2015 and appended with an investigation

into a range of polarimetry features in Ressel, Singha, et al., 2016 and Aldenhoff et al., 2018.

These methodologies were then applied to compare with freeboard measurements in Singha

et al., 2018, measured with an airborne laser scanner. Recently, researchers have been mov-

ing away from manually selected texture features and towards automatic feature distillation

with convolutional neural networks (CNNs). In general, there are two approaches here: to

classify one pixel at a time or to segment the image patch-wise. The former has been ex-

plored by Wang, Scott, et al., 2017 for sea ice concentration, Karvonen, Rinne, et al., 2022

focussing on sea ice concentration in the Baltic Sea and Boulze et al., 2020 for sea ice classes

from Sentinel-1. Lyu et al., 2022 investigated the use of CNNs for sea ice classification in

the Davis straight from the Radarsat Constellation Mission using a norm-free variant of

ResNet, which was developed in He et al., 2015. Jiang et al., 2022 used the original ResNet

variant for Sea ice classification in the Beaufort Sea. Zhang et al., 2022 classified sea ice

from Gaofen-3 SAR data with Mobilenetv3 developed byHoward et al., 2017. Khaleghian,

Ullah, Kræmer, Hughes, et al., 2021 published work using the VGG16 classifier developed

by Simonyan and Zisserman, 2015 and Ullah et al., 2021 did the same with the inclusion of

the noise profile as additional input. Both of them work on the same Sentinel-1 dataset. The

patchwise segmentation was investigated for ice and open water separation using variants of

the Unet by Ren, Xu, et al., 2020; Ren, Li, et al., 2022, the aforementioned work by Rad-

hakrishnan et al., 2021 combined this with passive microwave imagery and Wang and Li,

2021 used a stack of models for better performance. Gélis et al., 2021 also used a derivative

Unet architecture for sea ice concentration mappings. In Murashkin and Frost, 2021, the

authors used a Unet++, developed in Zhou, Siddiquee, et al., 2018; Zhou, Siddiquee, et al.,

2019, to perform sea ice classification from Sentinel-1 images.

From the short recap above, it is clear that deep learning approaches have gained in-

creasing traction in recent years. With some of these works, like Park, Korosov, Babiker,

Won, et al., 2020; Malmgren-Hansen et al., 2021; Wang and Li, 2021; Gélis et al., 2021;

Karvonen, Rinne, et al., 2022 using over a hundred scenes in their studies, it seems that the

field has arrived in the age of big data. These authors use ice charts provided by various

national ice charting agencies to facilitate this volume of labels. In fact, except for some

labelling using passive microwave radiometers, all of the works above lean on manual human
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interpretation of ice charts to generate training data. As mentioned previously, these ice

charts do not have the level of detail desired for advanced observations valuable for modelling

and a deeper understanding of the change in ice type distribution over the past decade. For

example, all ice far enough from the ice edge is usually considered old ice or of the highest

stage of development. Consequentially no meaningful separation exists in the heart of the

ice pack. This includes no labelling of leads or heavily ridged areas. This property, unfortu-

nately, translates to the resulting classifiers. As a result, we are still quite a ways away from

the optimal classifier that robustly gives sea ice classifications over multiple seasons at high

resolution. In fact, the robustness of the algorithms to changing environmental conditions

is never rigorously tested and quantified in the existing literature.
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3.1 Overview

Whilst neural network based approaches to sea ice retrieval have shown promise for retriev-

ing sea ice information from SAR imagery in the past, the possibilities of exploring long

distance connections in the SAR image, by including larger contextual windows has not

yet been tested. Also, the robustness of neural network classifiers over a larger time span

has never been studied. To do so, especially at high resolution, one needs to track sea ice

across time and space. To address these two challenges, a sea ice classification algorithm

based on convolutional neural networks is developed to classify a time series of SAR scenes

acquired during the Multidisciplinary Drifting Observatory for the Study of Arctic Climate

(MOSAiC). The footprints of the scenes are shown in figure 3.1. The aim is to establish

strategies for extrapolating manually labelled ice regions across a large span of possible

ice conditions while monitoring the algorithm’s robustness. Finally, the developed model is

compared and contrasted with the well-established image classification architecture VGG16,

developed by Simonyan and Zisserman, 2015. When orienting oneself regarding the two big

problems of sea ice remote sensing outlined in the previous section 2.7, this chapter concerns

itself with using deep learning methods to solve the inversion problem by maximising the

use of spatial contextual image data to perform accurate classification. Manually labelled

ice classes are used as training data. Therefore, the ground truth problem is not further

considered in this chapter. The body of this work has been published in Kortum, Singha,

and Spreen, 2022.

3.2 Introduction

During freeze-up and melt periods, sea ice classification becomes increasingly difficult. The

main challenges are wet snow lowering radar penetration depth, snow metamorphism and

increased ice dynamics as surmised acutely by Mahmud, Nandan, et al., 2020. A general

downward trend in radar response can be observed after freeze-up, especially for level ice

(fig. 3.2), showing that there exists a correlation with backscatter and the seasonality of

sea ice. Similarly, there is also an effect of the incidence angle (fig. 5.1 in a later chapter

addresses this in more detail). Although the difficulty of classifying due to high incidence

angles is derivative of the acquisition method, not the sea ice itself, autonomous classification

will have to perform robustly across the range of these effects.

Due to the decreased penetration depth in warmer seasons, the SAR texture features,

essential to most autonomous classification, become decreasingly reliable as the backscatter

signal becomes more uniform across the different ice types. A possible approach to tackling

this is including more contextual image data. For example, with larger sliding windows

around the ice to be classified. Then, using automated feature extraction and classification

with a convolutional neural network (CNN) is especially helpful because the neural network

can learn to relate all the information in the window to only the centre pixel one is trying

to classify. Thus, it handles large contextual windows better than texture feature-based
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Figure 3.1: All TerraSAR-X scenes that were manually labelled for this study, along the MOSAiC

drift track between October and May. Test set scenes are picked out in orange.
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Figure 3.2: Charts showing the mean sigma nought calibrated backscatter for the HH band,

for level ice (LI) and deformed ice (DI) from October through May in all labelled scenes. The

data is extracted from 52 manually labelled TerraSAR-X scenes. The right hand side shows the

chart after correcting for incidence angle dependence using values from Guo et al., 2022. Note

that, because this is only data that was selected manually for training, these values are affected

by a selection bias: Only areas are labelled, where the ice type could be determined with high

confidence. In reality the contrast between the two classes is most probably smaller.

classification, where the contribution of a pixel to the output is independent of location.

The analysis in this chapter is based on a large time series of TerraSAR-X acquisitions at

X-Band. C- and L-Band SAR have historically been preferred for sea ice classification. Not

only is there greater coverage, with large satellite missions such as Sentinel-1 and Radarsat,

longer wavelengths also offer bigger penetration depths, as detailed in Johansson, Brekke,

et al., 2018. This makes it easier to discriminate between ice classes from backscatter and

texture features alone at the longer wavelengths. The classification from X-Band SAR

consequently has more to gain from including additional contextual image data.

A core idea of the classification approach discussed in this chapter is using contextual

windows at various zoom levels, allowing the classifier to exploit long range dependencies and

larger image features. A dense conditional random field (DCRF) is used in a post-processing

step. This concept of adding spatially aware boundary refinement has been implemented in

image segmentation as early as 2014 by Chen et al., 2014. Random fields have been used

successfully in the past for automatic ice charting by Ochilov and Clausi, 2012 and have

shown promise as a post-processing step with sparse labels in image processing in Hua et al.,

2021. The combination of CNNs and conditional random fields has also recently been shown

to be successful for ice concentration mapping by Cooke and Scott, 2019.

To truly obtain a measure of the robustness of a classifier, one has to show continuity in

the classification of overlapping and near coincident SAR scenes, which demonstrate that a

patch of pack ice is predicted to be of the same class across different scenes. This is feasible

for large-resolution scenes, but even here, most research (e.g. Park, Korosov, Babiker, Won,

et al., 2020) has focused only on a few such overlapping scenes, and robustness across a
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(a)

(b)

Figure 3.3: Average incidence angle the scenes were acquired at (a) and average brightness of

different classes dependent on incidence angle (b). The red horizontal line at 45◦ in (a) indicates

the limit of the full performance range of the satellite sensor. Note that as there was also a

correlation between incidence angle and time, direct estimation of the incidence angle dependent

slopes is not possible from plot (b). These acquisitions are up to 8 Months apart.

greater range of conditions is still a challenge. At high resolution, coverage is small. Thus,

imaging a small pack ice region for an extended time is even more complex. Not only does

the drift of the ice have to be tracked, it also needs to be predicted due to the delay of

the ordering and the capturing of a scene. Over the course of MOSAiC, this task has been

tackled by various spaceborne SAR sensors. Such a dataset captured by the TerraSAR-X

satellite in Dual-pol StripMap (HH, VV) mode is used in this investigation. It presents the

opportunity to validate the robustness of a classifier over an extended time period and a

large number of scenes.

3.3 Data

Test, Training and Robustness Analysis Data Sets. This analysis’ training and test

data sets comprise 44 and 8 TerraSAR-X Dual-pol StripMap scenes, respectively. The

scenes were acquired between October 2019 and May 2020 over or near the Polarstern vessel

during its drift with the Arctic pack ice. The two channels acquired are the HH and VV

polarisations, respectively. The images have a row (azimuth) and column (range) spacing

of 3.5 m, and are typically around 16000 pixels by 4000 pixels in size. This corresponds to

an area of 56 km by 14 km. The test scenes contain one randomly chosen scene from every

month of the drift. The data points extracted from the 44 training scenes are split into two

disjoint training and validation sets, with a size ratio of 9:1. The classifier is trained on

the training set, whilst performance on the validation data set is used to stop the training

in time to prevent overfitting. The data used for robustness analysis is made up of 162

scenes. All of these entirely contain the immediate area around Polarstern (a 3 km by 3
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training data test data robustness eval. data

# scenes 44 8 162

feature labelled labelled unlabelled, contains 3x3km study area

Table 3.1: Overview over the datasets used in this analysis.

km square). To keep similar time-spacing between scenes, no more than one scene was used

daily. Henceforth, this data is referred to as the robustness evaluation dataset. An overview

over the datsets is shown in table 3.1

Due to the drift with the Arctic pack ice, the RV Polarstern entered very high latitudes

in the beginning of 2020. Figure 3.3a shows that this time, the SAR images were consistently

taken outside of the full performance range (which is between 20◦ and 45◦ for TerraSAR-X

StripMap images). The SAR measurements for such high incidence angles have significantly

lower signal-to-noise ratios, making it increasingly difficult to differentiate ice types. Weather

conditions varied throughout the mission, including events such as storms and warming

periods. Their effects concerning this study are constrained to the contribution to increased

ice dynamics, as the radar signal is not susceptible to atmospheric conditions at X-band.

label meaning colour

OW open water blue

TI thin ice green

LI level ice magenta

DI deformed ice yellow

HDI heavily deformed ice red

Table 3.2: Table showing class definitions and labels.

Labels. As mentioned in the opening paragraph of this chapter, this analysis relies on

manually labelled data. Due to the time-intensive nature of the labelling process, there is

naturally less data than when using ice charts. The ground truth problem thus manifests

itself in this labelling approach in the shortcomings of the manual labels. Apart from not

being validated, they are also quite coarse - not at the sensor’s resolution - and, therefore,

cannot capture small individual floes or deformation features. Also, the labels cannot fully

span the diverse space of possible ice and acquisition conditions during the eight months

of the dataset - especially as the freeze-up and early pre-melt seasons are included in this

time period. Labelling was done based on the X-band SAR data for five classes. These

were chosen to align with qualitative in situ observations made by members of the MOSAiC

expedition. First, suitable classes and respective areas to be labelled were found, using the

in-situ observations as a guide. Then, the established logic was manually extrapolated to the

rest of the areas using the SAR data only. The five classes are shown in table 3.2. The colour

coding used can be found there as well. In data-driven algorithms, the resulting classifier

and the training data are intrinsically linked. The challenges of the manual labels need to be

considered when designing the model’s architecture. These mainly consist of inaccuracies,
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selection bias towards larger and easy-to-identify regions away from class edges. An example

of a scene with labels is shown in figure 3.4.

3.4 Classifier Design

In this section an advanced architecture is proposed that leverages additional contextual

data and introduces some heuristics to increase the classifiers robustness and accuracy over

a traditional VGG16 style architecture. Before the individual components of the classifier

is described in detail, an overview over the deep learning approach is given. The core

of the proposed classification scheme is a convolutional neural network (CNN). To increase

robustness, a discriminator and a dense conditional random field (DCRF) are used for further

processing. The algorithm assigns one of five classes (tab. 3.2) to a given 5x5 pixel patch of

SAR imagery.

Figure 3.5 depicts the classification pipeline for the algorithm used. After pre-processing,

features of varying scope and resolution (zoom levels) are processed by the network alongside

each 5x5 image slice that is to be classified (tab. 3.3). A CNN is fed these features and

makes an initial prediction for that patch (see figure 3.6 for details). The predictions are

then checked by a second discriminating network (also trained with the same data as the

classifier) that removes some labels deemed to be misclassifications. Finally, a dense condi-

tional random field smooths over the labels by relating the spatial context of the labelled

data and the underlying image. This also fills the missing values left by the discrimination

step.

3.4.1 Pre-Processing

In the initial step of data pre-processing, the original dual polarised SAR scene is calibrated

to the slant range (β0) and a false colour composition of the data is constructed. The

composition consists of four channels: HH, VV, HH-VV, HH/VV. The difference and ratio

are common for manual ice charting and visualisation of SAR scenes, as they promote

contrast across ice types and open water. Additionally, they have been shown to be useful

for classification in the past by Geldsetzer and Yackel, 2009. The raw backscatter channels

HH and VV are rescaled with a tanh function to achieve good contrast across the dynamic

range of the image. This step also normalizes the input data between 0 and 1, which aids

the numerical stability of the network. The composite features HH-VV and HH/VV are

also scaled with a tanh function and an additional offset. The exact scaling parameters are

manually selected to give strong contrast. Whilst the network is in principle able to learn

the composite features, feeding them directly alleviates some of the workload of the network

and gave slightly improved results in preliminary testing.
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Figure 3.4: A TerraSAR-X Stripmap scene acquired during October 2019. A false colour com-

position using (VV, HH-VV, HH/VV) in the RGB channels is shown on the right, overlayed with

manual annotations. On the left the classification map is shown.

66



ROBUST DEEP LEARNING OF ICE TYPES 3.4. CLASSIFIER DESIGN

Figure 3.5: Flowchart showing the pipeline for the proposed ice classification algorithm.

3.4.2 Convolutional Neural Network

Architecture. The core of the classification approach is a Convolutional Neural Network

(CNN) (see figure 3.6). It predicts one of five classes for each 5 x 5 pixel patch of the

SAR scene. These patches (’local features’) are appended by additional information of the

surroundings. The first of these additional features is a 16 x 16 pixel patch (‘superlocal

feature’) of the surrounding area that is taken from the SAR scene and downscaled by a

factor of five. Thus, moving to the right one 5 x 5 patch in the original image moves one

pixel to the right in the rescaled product the superlocal patch is taken from. This patch

gives insight into the surrounding area, allowing the algorithm to take advantage of surface

features nearby, such as ridges or leads, to gain spatial context. For example, the CNN

might learn that heavily deformed ice is more likely to occur with well-defined edges in

the surrounding area, like the edge of a multi-year ice floe. The patch sizes of 5 x 5 and

16 x 16 were established empirically. In general, both are compromises of resolution and

accuracy: The larger the windows will get, the better the accuracy will become, as there is

more information in the image to use. However, it becomes more difficult for the classifier

to relate all this information to only the data in the centre of the patch. This leads to a

lack of effective resolution in the classified product. To give a more complete picture, the

entire scene (or the largest possible near quadratic slice of it) is additionally resized to 64x64

pixels and input to the model (‘global feature’). The StripMap data used here is captured in

rectangular strips, typically around four times longer than wide. In such a case, the scene is

split into four near quadratic slices along the azimuth axis (the long axis). The global input
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Figure 3.6: Illustration of the CNN architecture used in the proposed classifier. Wherever the

spatial dimensions in the convolutional bloacks are downsampled (decrease by more than a factor

of .5), a stride of 2 was used. Not included in the Image are the batch normalisation layers after

the first convolutional layers for each input and the dropout layers used for regularisation during

training. The parameters xg and yg denote the coordinates of the location of the local patch in

the global patch, θ is the incidence angle and t the acquisition time. Parameter count = 120421.

feature allows some insight into large-scale features, such as the general brightness of the

scene, interfaces between ice masses or (not important for this data set) the ice-water edge.

An example using Sentinel-1 SAR imagery can be seen in figure 3.7. The global features

can then be related to the high-resolution features and helped classify scenes with locally

very high backscatter or low radar response (e.g. high incidence angle). As the entire range

domain of the scene is parsed here, ensuring that the region to be classified lies in the centre

of the image is no longer possible. Consequently, a fourth input (‘extra feature’) consisting

of four parameters is provided, containing the region’s position to be classified in the larger

64x64 input. It also contains the incidence angle of the patch and the time at which the

product was acquired. A summary of these input features is included in table 3.3.

Data Augmentation. The training data set consists of 44 scenes. The scenes are often

split into four near quadratic slices for the global feature. Thus, the number of different

inputs for that feature is only ≈ 44 × 4 = 176. Herein lies a substantial risk that the

algorithm overfits to the training data. It might memorise where in each scene which ice

class is located, rather than deduce the ice class from a combination of the inputs. To combat

this potential problem, some data augmentation techniques are applied. Work by Shorten

and Khoshgoftaar, 2019 is recommended for an overview of data augmentation techniques.

Specifically, random crops, rotations and flips of the global feature input are used. These

are easy to accomplish, significantly multiplying the number of possible samples. Because
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(a) S1 HH channel (b) without global features (c) with global features

Figure 3.7: Demonstration of the effect that global features can have for ice classification. Open

water is depicted in blue, multi-year ice in red and first-year ice in yellow. The SAR scene is a

Sentinel-1 Extra Wide mode acquisition from the first of December 2019.

the classifier needs to work throughout multiple seasons, which correlate with the ice type

distribution and the radar response, the acquisition time proved to be a helpful parameter

for the model. With only 44 different acquisition times, strong artificial noise is added to

reduce the risk of overfitting. The random noise is sampled from a normal distribution with

a standard deviation of one week.

Incidence Angle Information. The effect of the incidence angle on radar backscatter

is well-researched. The correlation for labelled data in this study is shown in figure 3.3b.

However, one does not have access to the local incidence angle slopes. Clustering techniques,

as developed by Cristea et al., 2020, need a greater range of incidence angles than present

in the StripMap scene, which spans only 2-3 degrees. Incidence angle normalisation to

σ0 is useful, but this does not account for different gradients across ice classes, which are

reported, for example, by Mahmud, Geldsetzer, et al., 2018 and Lohse et al., 2021. In fact

even after normalisation, almost all ice types still have negative gradients. As a compromise,

the incidence angle is directly included as an input to the classifier. This allows the model

to learn these differing incidence angle dependencies of the sea ice backscatter, similar to

the classifier in Lohse et al., 2021, provided the range of incidence angles is covered well

enough by the training data. However, the network is not forced to use the incidence angle

information in a predefined manner - this is only done implicitly.

Layer Configuration. The exact details of the network hyperparameters are largely

based on heuristics and experiments. The 3 x 3 kernel size in the convolutional layers has

proven most useful, as the input features are not that large themselves. More success was

found in downsampling with convolutions with step size 2, instead of maxpooling layers -

in tests, it seems the network lost a little information in the maxpool layer that was still

useful for classification. The LeakyRelu activation function introduces some necessary non-

linearity and does not suffer from the problem of vanishing gradients. The latter property

is especially useful for deeper networks. Strong regularisation is achieved with multiple
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input name dimensions contents

local 5x5x4 4 channels, rrel = 1

superlocal 16x16x4 4 channels, rrel = 1/5

global 64x64x4 4 channels, rrel ≈ 1/64

extra 4 xglobal, yglobal, θinc, t

Table 3.3: Table showing input features and their content. The resolution rrel is is given relative

to the full resolution product. The four channels used are (HH, VV, HH-VV, HH/VV). The

coordinates xglobal, yglobal are the normalised pixel coordinates of the region to be classified in

the rescaled global patch.

dropout layers with a dropout rate of 0.3. This is necessary because the training data is

still quite sparse in contrast to the scope of possible backscatter signatures from sea ice, and

thus overfitting remains a concern. Additionally, small spatial dimensions after convolutions

(before flattening) and fewer neurons are used to force the network to parametrise the input

features. This leads to better extrapolation to unseen data. Batch normalisation in the early

layers slightly sped up the convergence of the network. The Adam optimizer developed by

Kingma and Ba, 2014 was used to update weights during training.

Loss Function. The network uses a categorical cross-entropy loss appended by an

additional term from the FESTA loss from Hua et al., 2021, specifically the distance of the

softmax outputs. The additional term encourages the separation of predictions independent

of correct classification, leading to a more decisive output and increased robustness.

Labels. An important step in the label preparation is to smooth the labels. Instead

of feeding a one-hot vector as a label - where the correct label is denoted as 1, all others

as 0 -, uncertainties are integrated into the labelling in a rudimentary way. The idea is

to treat the label vector as a set of probabilities rather than as a boolean vector. This is

particularly useful for the ice classes where the manual labelling is most error-prone. In this

case, distinguishing deformed and level ice benefitted most of this treatment because it is

partially non-local property. Explicitly, ice has varying deformations across larger regions so

that individual pixel-sized areas might be smooth, but it is apparent from the surrounding

ice that the area is deformed. Including uncertainties only minimally lowered the accuracy.

However, it leads to significantly increased robustness, which is preferred in this case. This

is in line with observations made in Asadi et al., 2021. To smooth the labels, a random

sample from a uniform distribution is taken from a given interval that parametrises the

uncertainties. The intervals used across the different classes are listed in table 3.4 and were

chosen qualitatively in line with the experience of which areas are difficult to label. Note

that after random sampling, each output vector is normalised. A labeled scene from the test

set is shown in figure 3.4, together with the model’s prediction.

Implementation. The network was implemented using the tensorflow library for python

(whitepaper by Martıń Abadi et al., 2015). On a an Intel i7-9850H, a commercially available

mid-range CPU, inference for an entire scene consisting of ≈ 2.5 ∗ 106 classifications takes
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ow ti li di hdi

ow U[0.7,1] 0 U[0,0.3] 0 0

ti 0 1 0 0 0

li 0 0 U[0.9,1] U[0,0.1] 0

di 0 0 U[0,0.3] U[0.7,1] 0

hdi 0 0 0 0 1

Table 3.4: Table shows the label smoothing parameters used. U[a,b] denotes a random sample

from a uniform distribution from the interval [a, b]. The label vectors were normalised after

random sampling.

around 8.5 minutes.

3.4.3 Discriminator

The discriminator model has a nearly identical structure to the classifier (fig. 3.6), except for

the additional input layer containing a proposed label and the output being one-dimensional.

Its task is to check whether the proposed label is correct. This binary classification is fun-

damentally easier than predicting one of five classes and can correct for some systematic

errors the classifier makes. The discriminator is trained on randomly mislabelled data as

ground truth for mislabelled patches, which performed better than a discriminator trained

specifically on the correctly labelled and mislabelled data of the classifier: The data suggests

specific training promotes an overfit to training data, and the whole paradigm of this archi-

tecture is to promote generalisation to a wider range of conditions. This step particularly

helps with mitigating open water and thin ice misclassifications.

3.4.4 Conditional Random Field

The pixels deemed to be wrongly classified by the discriminator are removed from the

classified product. Then, a dense conditional random field is applied that has a bilateral

kernel next to the unary potential. This fills the missing values and clears up some noise-

like mislabels, like single pixels classified differently than all their surrounding pixels. The

implementation of the dense conditional random field (DCRF) is straightforward, using

a Python implementation by Beyer, 2015 for an algorithm published in Krähenbühl and

Koltun, 2012. A bilateral approach is used, with the energy function E given by a unary ϕu

and a bilateral term ϕb, such that for N feature vectors yi and labels xi

E =

N∑
i

ϕu(xi, yi) +

N∑
i,j

µ(xi, xj)ϕb(yi, yj). (3.1)

The label compatibility function µ is learned from the classified data and describes the

relationship of how likely labels are to occur next to each other. Thus, the energy function

penalises incompatible labels close to one another. In this case, the features consist of a

vector of colour intensities I⃗ = (Ir, Ig, Ib) across the RGB channels of a colour composite
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image as well as the position of the pixel P⃗ . The RGB channels in the colour composite

image are VV, HH-VV and HH/VV, appropriately scaled to capture the relevant dynamic

range. The unary potential is given as the logarithm of the probability p(xi|yi) of label xi
given feature yi. It is modelled by the softmax output of the classifier. The bilateral term

consists of weighted differences in position and colour. Thus, the energy function can be

expressed as

E =

N∑
i

log p(xi|yi) +
N∑
i ̸=j

[
∥P⃗i − P⃗j∥

sxy
+

∥I⃗i − I⃗j∥
sc

]
, (3.2)

where ∥. . .∥ denotes the euclidian norm. The weights sxy and sc were adjusted manually to

balance smoothness and classification accuracy.

3.4.5 Robustness

As mentioned in the introduction, there are 162 scenes to test the robustness of the classifier

across eight months of different conditions in the Arctic ice. The idea is to test the ice

distribution of the same patch of sea ice over this entire time period and investigate how it

changes over this timeframe. This should give insight into how stable the classifier performs

at high resolution. Given the positioning of the RV Polarstern, no pack ice can be tracked

more accurately than the ice around the research vessel itself. Thus, this is the region to

be used. The first step is of course to classify all scenes in the robustness evaluation data

set. Then it is possible to calculate the probability of pixels not changing class, which

is a good measure of robustness. The window chosen is approximately 3 km by 3 km in

size. Of course, one cannot expect the ice to stay static over the entire time period; ice

dynamics and new ice growth will change the ice type distribution. Rapid change in ice

type is, however, constrained to the open water and thin ice classes, which are ignored for

this analysis. The other ice classes are typically stable over the period of 3 days which is

used to calculate the robustness scores. Change due to shifting of the floe is easily spotted

by looking at the individual images and thus can be taken into account qualitatively during

the model evaluation. It should also be noted that care was taken not to label the area

used for robustness analysis in the training set, so the classifier has not ’seen’ these regions.

Using the ship’s GPS information, the drift of the ice can be corrected by using a coordinate

transformation to local ship coordinates published by Hendricks, 2019. Then, it is trivial to

identify the same area for each scene.

The robustness criterion mentioned in the previous paragraph is defined concretely to

obtain a quantitative measurement of robustness. A (pixel-sized) ice area is deemed to be

classified robustly in one scene if the same prediction for the same area is made for the pre-

vious and the following scene. This criterion should be defined in a way that parametrises

robust classification in one scene, not three scenes. Note that the computed probability

P 3
i (c) of finding the same class c at the same spot for a scene i and its two nearest neigh-

bours is a product of the probabilities Pi(c) of having robustly classified in each of the scenes.
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OW TI LI DI HDI

OW 90.89% 1.85% 7.21% 0.04% 0.01%

TI 0.1% 78.84% 11.34% 6.25% 3.46%

LI 0.8% 6.48% 89.14% 3.5% 0.08%

DI 0.04% 6.82% 17.22% 75.1% 0.82%

HDI 0.01% 1.82% 0.24% 0.62% 97.85%

Table 3.5: Confusion matrix showing the percentage of the VGG16’s predicted classes (cols) for

all ground truth labels (rows) on the training data. Classes are open water (OW), thin ice (TI),

level ice (LI), deformed ice (DI) and heavily deformed ice (HDI).

P 3
i (c) = Pi−1(c)Pi(c)Pi+1(c) (3.3)

With the assumption that Pi(c) ≈ Pi+1(c), one can thus approximate the probability Pi(c)

of having classified robustly for scene i and class c as

Pi(c) =
(
P 3
i (c)

) 1
3 (3.4)

The regions of ice used to test this are the pixels in the stabilised images, such as seen in

figure (3.11). In the following analysis, any statements derived must assume that the same

pixel over three scenes actually maps to the same physical area of ice for three consecutive

scenes. As the stabilisation is imperfect and ice dynamics are neglected in this assumption,

this is not necessarily the case. Treating these phenomena as some underlying noise in the

analysis means that when robustness according to this criterion is calculated, it is only a

lower bound of the real robustness - given that random noise is entirely not robust.

3.5 Results

The classifier was trained on 44 scenes and tested on 8, which do not contribute to training

data. The eight scenes that make up the test set are randomly selected from October through

May. The performance of the classifier is analysed across both datasets. As a comparison, a

simple VGG16 (original publication in Simonyan and Zisserman, 2015) inspired architecture

is an alternative classifier (see figure 3.13 in the appendix for details). This model only uses

the superlocal 16 x 16 input data. The classifiers’ performances are shown in tables 3.5, 3.6

for the training set and tables 3.7, 3.8 for the test set.

The two classes for which both classifiers perform worst are open water and thin ice.

The classification across the other three ice classes are more accurate, particularly for the

proposed classifier. Heavily deformed ice stands out as being especially easy to classify

accurately. Open water and young ice examples are the scarcest in the training and test

scenes. Despite balancing the amount of samples per class upon training, the data set is

much less diverse for these samples. In other words, the number of regions with open water

or thin ice is significantly lower than that of the other classes. This can be seen (albeit at a

smaller scale) in figure 3.9.
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OW TI LI DI HDI

OW 99.29% 0.11% 0.38% 0.21% 0%

TI 0.28% 93.72% 1.36% 4.11% 0.53%

LI 0.16% 0.54% 97.38% 1.89% 0.02%

DI 0% 0.58% 1.47% 97.84% 0.1%

HDI 0% 0.11% 0% 0.62% 99.26%

Table 3.6: Confusion matrix showing the percentage of the developed network’s predicted classes

(columns) for all ground truth labels (rows) on the training data. For example, 0.11% of data

points of OW were incorrectly predicted to be TI. Classes are open water (OW), thin ice (TI),

level ice (LI), deformed ice (DI) and heavily deformed ice (HDI).

OW TI LI DI HDI

OW 80.89% 4.6% 14.23% 0.27% 0.01%

TI 2.4% 54.48% 17.42% 15.36% 10.34%

LI 0.54% 11.15% 81.85% 6.44% 0.02%

DI 0.17% 6.95% 13.64% 78.78% 0.46%

HDI .010% 1.36% 0.21% 0.4% 98.02%

Table 3.7: Confusion matrix showing the percentage of the (used for comparison) VGG16 style

network’s predicted classes (cols) for all ground truth labels (rows) on the test data. Classes

are open water (OW), thin ice (TI), level ice (LI), deformed ice (DI) and heavily deformed ice

(HDI).

OW TI LI DI HDI

OW 74.86% 8.12% 16.4% 0.61% 0%

TI 5.05% 71.07% 7.03% 14.32% 2.52%

LI 0.49% 0.62% 95.51% 3.38% 0%

DI 0.02% 0.55% 2% 97.37% 0.05%

HDI 0% 0.02% 0% 0.92% 99.06%

Table 3.8: Confusion matrix showing the percentage of the developed networks’ predicted classes

(cols) for all ground truth labels (rows) on the test data. For example, 8.12% of data points of

OW were incorrectly predicted to be TI. Classes are open water (OW), thin ice (TI), level ice

(LI), deformed ice (DI) and heavily deformed ice (HDI).
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To illustrate the entire process of classifier assessment, an example with two consecutive

scenes from the 13th and the 14th of December 2019 is given in figure 3.8. In the first step,

the StripMap scene is cropped along the longer range axis to a near quadratic slice, which

is needed for the global input feature (3.3). This slice is then labelled using the classifier

and checked by the discriminator. The results of this step are shown in figure 3.8a and

3.8b. The next step is to apply the DCRF to refine labels and fill in missing values left by

the discriminator. The results of the DCRF for the two example scenes are shown in figure

3.8c and 3.8d. Finally, the image is rotated and cropped to the surroundings of the RV

Polarstern, allowing us to image the same ice region continuously. For the two scenes from

December used as an example, the cropped images are shown in figure 3.8e and 3.8f.

By executing the procedure illustrated in figure 3.8 for all scenes from October through

May, the data necessary to perform quantitative robustness analysis is generated. Figure

3.9 shows the predicted ice type distribution evolution over the investigated time span in

the three by three kilometre box around Polarstern.

The distribution chart allows insight into the classifier’s performance over large timescales

and shows lower stability, especially in the discrimination of level and deformed ice. Spikes

of open water and thin ice are generally tied to some ice dynamics. To gain additional

insight into these classes’ variance, the relative standard deviation of the ice type fraction

for every scene and its four nearest neighbours (fig. 3.10) is calculated. When interpreting

this as a deviation of the classification, again, it is implicitly assumed the real ice type

distribution is stable over five neighbouring scenes, which neglects physical changes of the

surface. Specifically, one cannot include the OW and TI classes, which are rare and only

present in the case of strong sea ice dynamics such as leads forming. With lifetimes shorter

than five days, they cannot be analysed in this way.

The chart of the standard errors reveals three time periods with heightened error. In

fact, the one stable period around the beginning of January stands out. Here, conditions are

optimal, as ice dynamics are minimal and the incidence angle is inside the full performance

range. Whilst the early and later periods of increased variance can likely be explained by

snow metamorphism, wet snow or increased ice dynamics in pre-melt and freeze-up seasons,

the increased uncertainties from mid-January to early March can be rationalised with the

increased incidence angle during this time period (see fig.3.3a). It is also apparent that this

cause of error plays a role in the increased uncertainties observed during the melt season.

To qualitatively illustrate the performance of the classifier in these three periods with

increased error, a highlight of three pairs of scenes is shown in figure 3.11 from those time

spans, specifically late November, late February and finally, early May.

The scenes from the end of November are only three days apart yet drastically different

due to ice dynamics. In the earlier scene (3.11a), one can see some freshly frozen-over leads

with thin ice cover and in the later scene (3.11b), the leads have closed up again, and all

signs of young ice have disappeared. These pictures document the most drastic of these

events, where the central floe split; however, most of the strong ice-type deviations in early
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(a) 2019/12/13, θinc = 45.69◦ (b) 2019/12/14, θinc = 49.55◦

(c) 2019/12/13, θinc = 45.69◦ (d) 2019/12/14, θinc = 49.55◦

(e) 2019/12/13, θinc = 45.69◦ (f) 2019/12/14, θinc = 49.55◦

Figure 3.8: Illustration of robustness analysis for two consecutive days in December 2019. Pic-

tures (a, b) show the sub-scenes after classification and discrimination. In (c, d) the dense

conditional random field has been applied, and (e, f) shows the scenes cropped and rotated to

the region of interest. The false colour compositions (VV, HH-VV, HH/VV) are used in the (R,

G, B) channels, respectively. The top two rows additionally show the area used for robustness

analysis, which is cropped to in the final row.
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Figure 3.9: Chart showing the predicted ice distribution in the 3 km by 3 km area surrounding

the Polarstern vessel from October through May.

winter can be attributed to such events and are thus real surface changes. The pair of scenes

from late February (3.11c, 3.11d) are both taken at very high incidence angles, far out of the

full performance range of 20 − 45 degrees. It is evident from the images that the signal is

significantly weaker. At this angle, an overestimation of the deformed ice class in the second

image can be seen. This is especially notable in the top left quarter of the patch, which

contained large areas of level ice surfaces but is classified as almost entirely deformed ice in

the scene from the first of March. At such high incidence angles, the classification seems to

become more volatile. Two scenes from early May (3.11e, 3.11f) give insight into how both

ice dynamics and incidence angle changes are at least partially responsible for high variance

in the scenes from early May.

Most of the high variances in ice class distribution change can be attributed to ice dynam-

ics or struggles with high incidence angles. The classifier seems robust in the discrimination

of classes with larger areas, but the transitional areas between classes are seemingly classi-

fied less robustly (see the extend of the level ice on the left of the image 3.11e versus 3.11f)).

This effect is particularly evident at high incidence angles.

In figure 3.12, robustness development is shown across the dataset. This was smoothed

over by a moving average, weighted with a quadratic function and averaging over five scenes.

Note that the dip in the beginning is due to strong ice dynamics. Figure 3.14 shows a

comparison of the proposed model with the VGG16 (fig.3.13) inspired classifier for two

months. Additionally, an average robust classification probability over the entire time span

is shown in table 3.9.

Consider a probability Prc(c) of robust and correct classification as the product of the
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Figure 3.10: Relative standard deviation of the level deformed and heavily deformed ice distri-

bution at each date and the four nearest scenes.

LI DI HDI

Pr 88.34% 88.62% 85.34%

Table 3.9: Table showing the average probability Pr(c) of robust classification for LI, DI and

HDI across the entire dataset.

two, i. e.

Prc(c) = Pr(c)Pc(c). (3.5)

With classification probabilities Pc from table 3.8 and the lower bounds of Pr from 3.9, one

can compute the bounds of probabilities of robust and correct classification Prc for the three

solid ice classes. Results are shown in table 3.10.

Prc(c)

LI 84.09% < Prc(LI) < 95.19%

DI 86.71% < Prc(DI) < 97.84%

HDI 84.71% < Prc(HDI) < 99.26%

Table 3.10: Table showing the bounds of robust and correct classification for the classifier’s LI,

DI and HDI predictions.

3.6 Discussion

Before turning to the approach’s advantages, some limitations and challenges are discussed.

First, let us discuss the data itself – the foundation of any machine-learning approach. The

training data set of 44 scenes is not comprehensive enough to capture all the intricacies of

different backscatter from varying ice types, making it difficult to classify robustly. Leads
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(a) 2019/11/22, θinc = 40.71◦ (b) 2019/11/25, θinc = 43.33◦

(c) 2020/02/29, θinc = 57.36◦ (d) 2020/03/01, θinc = 54.27◦

(e) 2020/05/02, θinc = 36.90◦ (f) 2019/05/03, θinc = 50.82◦

Figure 3.11: Pairs of classified scenes from time intervals with low robustness. The left parts

show the cropped classified image and the right parts are false colour compositions.
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Figure 3.12: Chart showing a moving average of the probability Pr(c) of robust classification

for three ice classes: level ice, deformed ice, heavily deformed ice. Pr(c) is the percentage of

robustly classified pixels of class c per scene.

Figure 3.13: Illustration of the VGG16 inspired network architecture used as a comparison.

Parameter count = 9889605.
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(a) The proposed classifier (fig. 3.5) (b) VGG16 inspired CNN (fig 3.13)

Figure 3.14: Charts showing a moving average of the probability Pr(c) of robust classification

for three ice classes LI, DI, HDI, for the proposed classifier and a VGG16-inspired model.

freezing over is a good example of one of such phenomena. Not only is their occurrence

sparse in the data set, but the dynamics during initial freeze-over have a strong effect on

radar response and are fast relative to the revisit time of the satellite. This makes it difficult

to capture enough samples in the training set for the classifier to interpret the entire space of

possible radar backscatter correctly. One can observe this struggle in some scenes where the

radar response of a frozen lead is so bright it becomes very similar to heavily deformed ice’s

backscatter. This can, for example, occur when frost flowers form atop the lead, leading to

high volume scattering. Here, the classifier struggles to differentiate the two classes.

The open water classification also proved challenging for this data set. Traditionally, the

polarisation ratio proves very useful in distinguishing this class. At high incidence angles,

the radar response becomes very similar to that of young smooth ice, and the discrimination

between the two suffers.

Manual labelling is definitely the greatest source of underlying error and bias. Despite

having mitigated the effect of errors with the use of smooth labels, there are some biases

arising from manual labels that smooth labelling cannot compensate for. This bias is not

merely a case of being more likely to mislabel a certain class - this can be kept minimal by

only labelling classes that are discernible with certainty - it is rather that a human selection

process already filters the choice of labelled regions. For example, there is a tendency not

to label a region with a small area as it would make the labelling process very tedious. This

translates to the classifier, which struggles with smaller regions of one class, often wrongfully

labelling them to be the same as the surrounding ice class. Additionally, when manually

selecting polygons, labels at the boundaries between classes are naturally much sparser

than labels in the centre of ice classes, leading to increased classification difficulty in these

transitional areas between ice classes. When viewing the classified robustness analysis data,

this effect was obvious as the boundaries between classes shifted, whilst the classification of
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pixels in the centre of same-ice regions appeared robust. This bias could be eliminated by

deriving ground truth data from in-situ measurements.

Deformed and level ice discrimination relies on non-local features and hence suffers most

from the above-mentioned boundary problem. Deformed ice is not always identified by

a higher brightness and lower polarisation ratio for each individual pixel but also by the

density of brighter pixels in the surrounding area. Here, it is especially difficult to define

hard boundaries between classes, as the transitional areas between level and deformed ice are

not boundaries but a continuum. Hence, defining a hard boundary when manually labelling

data is difficult. Generally, the rule when labelling manually is only to label areas where

one is confident in the label. Therefore, these transitional areas are not only difficult to

classify but also sparse in the training data set, which culminates in misclassification in the

transitional areas of deformed and level ice classes, especially at high incidence angles, where

the signal-to-noise ratio suffers (fig. 3.11).

The post-processing step using a Markov Random Field relates spatial information of

classes but uses the backscatter intensities as a guide for class distributions. With no ground

truth data available, it is not at all clear that the spatial distribution of backscatter is

strongly related to the spatial distribution of ice types, as very similarly bright regions can

stem from very different ice surfaces. Therefore it is not an optimal way to introduce spatial

information to the labels. The core problem here is the lack of ground truth, meaning the

spatial ice type distributions are not available to be learned from.

The success of the algorithm is evident in the discrimination of ice classes at high accuracy

in multiple seasons and becomes increasingly apparent in contrast to the VGG16-inspired

network (see fig. 3.14, tab. 3.5 - 3.8). Furthermore, the areas of lower robustness that can

be seen to occur at high incidence angles are outside of the full performance range of the

radar instrument.

An analysis of approximately 500 scenes around the MOSAiC experiment shown in figure

3.15 demonstrates that whilst deformed ice increases due to dynamics as expected, the

heavily deformed ice does not increase. This suggests, that the processes that lead to the

transition to from the deformed ice to heavily deformed ice are not happening in the study

region over the observed timescales. This leaves two plausible reasons: The increase in

backscatter associated with this class could be due to advanced desalination of the ice, that

takes place over longer timescales. Alternatively, the forces needed to deform the ice to that

degree are not present in this part of the Arctic. This means that the heavily deformed ice

we did detect is probably either significantly older or originated in a different part of the

Arctic, where deformation processes are stronger. These results are corroborated by surface

roughnesses extracted from two airborne laser scanning flights over the study area from the

30th of November and the 27th of February, as can be seen in figure 3.16 At this point we

cannot compare the deformation rates of first and second year ice, because the classifier

does not perform at pixel level resolution. Thus additional deformation in already deformed

second year ice areas cannot be detected.
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Figure 3.15: Ice type fractions from approximately 500 StripMap scenes near the MOSAiC floe

from the most stable period of classification between December and April. A steady increase

in deformed ice can be observed, whilst the heavily deformed ice is constant until increased

dynamics in March. The increase here is most certainly due to classification of young ice in open

leads. The small scale variance in the fractions is due to uncertainty of the classifier and the fact

that the area imaged is not always exactly the same, but only a subsample of the same region.

Weather effects contribute significantly to snow wetness, metamorphism and increased

ice dynamics. The most notable of these is the seasonal warming and cooling, which leads to

decreased robustness in the analysis (fig. 3.12). However, the robustness criterion also fails

to take into account these weather-induced changes, and there is less training data available

in these shorter time periods, especially as they are at the very beginning and end of the

study period. Thus, it is difficult to isolate and make statements about the effect of weather

events on classification performance.

This classification approach was also tested on Sentinel-1 scenes and obtained comparable

results. It was found that the most important parameters to tune when applying these ideas

to different sensors are the sizes of the contextual windows (’local’ and ’superlocal’ features).

On large-scale images, including the ’global’ feature was particularly successful in ice and

open water discrimination in the marginal ice zone, where the ice water edge could be

detected (see figure 3.7.
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Figure 3.16: Increase of surface roughness (std. of surface elevation) distribution between 30th

of November and the 27th of February relative to its abundance on the earlier date. Measured

with a helicopter borne airborne laser scanning device that measured in area approximately 5 by

10km centered over the MOSAiC floe in both cases. This shows, that higher roughness areas

increased disproportionately little over the time period, suggesting that the forces involved in

their creation are not at play here. The variance increases for the very high roughness regions,

because the sample size is very small there. Also, the area flown over was not exactly the same.

Continuing the downward trend see in the plot would mean that very little to no new very rough

ice surfaces were formed between the two measurements, despite some of those the existing at

the outset.

3.7 Conclusion

Accurate geolocation and drift correction were used to construct a dataset that enabled

quantitative testing for the robustness of SAR ice-type classification. The proposed classifi-

cation method performs accurately and robustly for three surface ice classes: level, deformed

and heavily deformed ice. Open water and thin ice classes have proven harder to classify.

However, it must be noted that these classes are also sparser in the dataset and have been

more difficult to identify in some scenes, especially at higher incidence angles. Due to their

dynamic nature, one cannot perform a robustness analysis for these two ice types. It was

shown that regions of increased classification inaccuracy and lack of robustness coincide with

shortcomings of a manual labelling process.

The work presented in this chapter marks a first foray into sea ice classification using

advanced neural network configuration to incorporate additional information to further net-

work accuracy and robustness, specifically for sea ice retrieval problems. It also presents a

systematic way to test a network’s robustness using a large time series of observations. The

network architecture designed for ice classification from manual labels in this work spear-

heads three major design principles: The first is to limit the number of parameters in the
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network. Secondly, to include a large range of contextual information and thridly to incor-

porate the uncertainties of the labels and classification by using discriminators and label

smoothing. The heuristics behind limiting the number of parameters is that the training set

cannot accurately represent the full spread of ice conditions in nature. Limiting the number

of parameters makes it impossible to fit specific data features overly, forcing the network

to generalise to more universal features. The increase of contextual data is managed by

including differently sized contextual windows with diverse resolutions. A central concept

here is that features that are further away from the pixel to be classified need to be larger

to impact the class significantly. Thus, it is sensible for the contextual windows, including

a larger part of the scene, to be of lower resolution. The advances presented here help solve

the inversion problem of sea ice classification with advanced neural network configurations

tailored to the manual labels used in this study and underline that the label properties

transfer to the classification properties.
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4.1. OVERVIEW EXTRAPOLATING MEASURED CLASSES

4.1 Overview

In the previous chapter strategies for robust learning for high resolution imagery was de-

veloped, based on rough human annotations. In this chapter, machine learning approaches

are reviewed for high resolution labels, that are extracted from a co-located measurement

of the topography, made by an Airborne Laser Scanner. The aim of the following work is to

find meaningful directions for further convolutional neural network based algorithms, that

aim to extrapolate labels at the resolution of the sensor and to give a realistic perspective

on the performance of existing architectures that have thus far not been tested only on

manual annotations not on much more representative measured labels. The contents of this

work are currently under open review and published as a pre-print for discussion in Kortum,

Singha, Spreen, Hutter, et al., 2023, which is first-authored by the author of this thesis, who

conducted the research presented below.

4.2 Introduction

Sea ice classification from remote sensing and especially SAR instruments have been used

for monitoring the Arctic sea ice for multiple decades, with automation being proposed as

early as the mid eighties by Fily and Rothrock, 1986. However, even with the inception of

advanced machine learning methods and modern data analysis, there does not yet exist a

universally reliable classifier to retrieve sea ice classes from radar imagery. At this point,

with many different classifiers having been proposed and developed (e.g. Kwok, Rignot, et

al., 1992; Soh and Tsatsoulis, 1999; Hara et al., 1995; Karvonen, 2004; Ressel, Frost, et al.,

2015; Doulgeris, 2015; Johansson, Malnes, et al., 2020; Lohse et al., 2021) one must ask the

question why no meaningful direction has yet established itself in the ongoing research. The

answer to the question - aside from the complexity of the subject - is twofold. Firstly and

most important is the state of the data. Although there exists a great wealth of satellite

SAR acquisitions of the sea ice in diverse states and conditions, the corresponding ground

truth information is lacking. Secondly, the constantly varying and difficult-to-predict drift

and deformation of sea ice makes it nearly impossible to image the same area of sea ice over

longer time series to evaluate any proposed classifiers’ robustness. The latter is particularly

true for high-resolution imagery. These two shortcomings open this topic up to a plethora

of different challenges because one has almost no way to test, iterate and improve sea ice

retrieval algorithms in a structured manner. This stifles the rate at which progress in the

field can be made or even recognised.

On a mission to fill gaps in our knowledge about the Arctic sea ice and its climatology,

the MOSAiC expedition launched in the autumn of 2019 and the ship Polarstern spent a

year adrift with the ice pack. Aboard, interdisciplinary teams of scientists worked to collect

as many data as possible, which will help to further our understanding of one of Earth’s most

remote regions. With the mission came the unique opportunity to collect exactly the type

of ground truth over a long time period, that is needed to test sea ice retrieval algorithms,
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Figure 4.1: Section of ALS measured freeboard over the MOSAiC floe on April 8, 2020. RV

Polarstern can be seen in the centre of the white circle. Brighter values correspond to higher

freeboard values whereas white areas indicate no data. The displayed freeboard range is 0 to 1.5

metres.

with satellite-borne SAR data being acquired at the same time. An overview of the snow

and ice related activities is given in Nicolaus et al., 2022.

Ice and snow transects from Itkin et al., 2021 or drilling hold the most detailed infor-

mation of the underlying ice. Unfortunately, the spatial extents of these measurements are

too sparse to be used for comparison with the satellite acquisitions. Aerial measurements

taken from helicopters, such as the Airborne Laser Scanner (ALS) data products by Hutter,

Hendricks, et al., 2022b; Hutter, Hendricks, et al., 2022a being used in this approach (Fig.

4.1) provide information about the height of the snow and/or ice surface above the local

sea level, i.e. freeboard, and surface reflectance at scales of kilometres to tens of kilome-

tres. These data are therefore a prime candidate to extract ground truth information for ice

classification based on roughness and thickness.

One prominent emerging method of segmenting image data are machine learning based

approaches based on convolutional neural networks, such as published in Simonyan and

Zisserman, 2015; He et al., 2015; Liu, Mao, et al., 2022; Ronneberger et al., 2015; Zhou,

Siddiquee, et al., 2018; Zhou, Siddiquee, et al., 2019. Advancements in the field of machine

vision are being made at a rapid pace, able to leverage the improvements in chip design and

the increasing amount of data that are being generated. The image-like properties of SAR

acquisitions mean that this knowledge is transferable to the ice classification domain (e.g.

Boulze et al., 2020; Ullah et al., 2021; Wang and Li, 2021; Kortum, Singha, Spreen, and

Hendricks, 2021; Kortum, Singha, and Spreen, 2022). Historically, this has been done with

texture extraction and subsequent dense neural networks as in Ressel, Singha, et al., 2016;

Singha et al., 2018; Murashkin, Spreen, et al., 2018, pixel-wise classification using image

classifiers based on convolutional neural networks as by Boulze et al., 2020; Ullah et al.,

2021 and segmentation models that are able to segment an entire patch simultaneously like

in Wang and Li, 2021.

89



4.3. METHODOLOGY EXTRAPOLATING MEASURED CLASSES

In this study, the unique opportunity provided by 20 instances of near-coincident ALS

and SAR data over a period of 8 months is used to compare a variety of machine learning-

based classification approaches in terms of classification accuracy and robustness on classes

delineated directly from measurements. The time difference between measurements is seven

hours on average. For the first time, accurate, high resolution sea ice topography mea-

surements of freeboard and surface reflectance have been taken, which exhibit high spatial

overlap and low time differences with SAR data. This enables us to truly test the capability

of retrieving freeboard and (above snow) surface roughness based sea ice classes from SAR

data. In contrast to existing ALS and SAR datasets, such as produced in Singha et al.,

2018, the MOSAiC experiment provides the opportunity to monitor the same ice across a

large temporal time span at high resolution. The amount of colocations achieved here is

significantly greater than in previous studies, which enables the training of deep learning

models requiring large datasets.

4.3 Methodology

4.3.1 The Data

The SAR component of the analysis is made up of TerraSAR-X X-band acquisitions in

StripMap (SM) mode. The intensity scenes are normalised to σ0 and calibration is performed

as per the product specifications in Fritz et al., 2007. The resulting scenes have a pixel

spacing of 3.5 metres and a native radiometric resolution of 16 bit. Both HH and VV

bands are acquired by the satellite simultaneously. This configuration of polarisations has

been shown to yield valuable information for ice classification in Ressel, Singha, et al.,

2016Geldsetzer and Yackel, 2009. As only 2 bands can be acquired simultaeneously, the

cross-pol band is not present in the data. Each combination of two channels will have some

shortcomings, however, so this needs to be accepted. The footprint of a single scenes is

typically around 50x15km.

The ALS data from Hutter, Hendricks, et al., 2022a; Hutter, Hendricks, et al., 2022b

from 20 scenes (appendix 4.7) between October 2019 and May 2020 are used to delineate

sea ice classes. The data were acquired by flying a mow-the-lawn pattern over the ice near

the MOSAiC central observatory. The resulting ALS grid has a geospatial resolution of 0.5

metres. For midwinter flights in high latitudes of >85°N, the post-processing of the heli-

copter INS/GPS data failed and ALS data processing was performed using a lower frequency

real-time navigation solution with metre-scale undulations in GPS altitude that propagated

to the surface elevation retrieved from the ALS. The undulations in the computed freeboard

could be minimised using a correction calculated from swath-to-swath overlap. It should be

noted that the local standard deviation of the freeboard is left intact by these processing

artefacts and can still be used to derive a parametrisation of the local surface roughness,

where these undulations are present. An additional measurement aside from freeboard is

the surface reflectance at the wavelength of the laser (1064 nm), which is useful to identify
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regions of young ice that have not yet been covered by snow. For the acquisitions with

unphysical undulations in the freeboard measurement, freeboard was not used to delineate

class labels. Instead, only classes which could be inferred from the surface roughness and

reflectivity were used. The footpring of a single flight is typically around 5x10km.

Colocation: For each ALS grid, the first step for co-locating with SAR data is to find the

SAR acquisition that is closest to the ALS measurement time, whilst still having substantial

spatial overlap. Then, by using the Polarstern ship to determine a common coordinate sys-

tem, the two measurements are fused by assigning each ALS data point to the closest TSX

pixel (see. Kortum, Singha, Spreen, and Hendricks, 2021; Hendricks, 2019.) In the common

coordinate system, this means that the two measurements are in the same TerraSAR-X grid

cell relative to the ship. Because of the difference in resolutions (0.5m ALS and 3.5m SAR),

one obtains approximately 49 points of ALS measurements per SAR pixel. The freeboard

and roughness are then computed as the respective mean and standard deviation of these

points. Investigation showed that the median and mean of the local distributions where on

average within less than a percent of the span of the distribution. This lends confidence,

that the distribution is roughly symmetrical and thus the mean and standard deviation

describe the statistical nature adequately. Using the Polarstern as an origin of the com-

mon coordinate system is sensible, as accurate GPS positioning and heading account for

ice drift and rotation. The matching of the two products using this method was accurate

to a couple of metres. To further improve the accuracy of colocation, a final translation

and rotation was then determined manually. Afterwards, the features overlapped perfectly

at (TerraSAR-X) pixel resolution. The accuracy of co-location is made possible by more

than daily TerraSAR-X SAR acquisitions of the MOSAiC floe, which helps keep the time

differences between satellite and helicopter measurements small.

Determining labels: We have categorised the measured sea ice into three classes. A label

is given for each SAR pixel, for which ALS information is available. For ease of reference,

they are given names which are easier to contextualise. However, the exact definitions of the

classes is given here. They are fully given by the ALS measurement. The three classes are:

Open water and young ice (OW/YI), level first-year ice (LFYI) and deformed first-year and

multiyear ice (DFYI/MYI). These classes are defined as follows (see Fig. 4.2 for a visual

aid):

• OW/YI: Ice whose reflectance (range corrected target echo amplitude) is significantly

lower than that of the surrounding snow covered ice. Typically values around -7dB

were used as a threshold value and adjusted manually if needed. Note, that finer sep-

aration here is not possible from the data alone, but from reports of scientists on the

expedition it is known that most ice in this class will have already formed a thin ice

layer and entirely open water was very rare during the flights.
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Figure 4.2: Derived labels from the ALS acquisition on the April 8, 2020 overlayed on the

HH channel of the near-coincident SAR measurement (left) and estimated probability density

functions from the distributions of freeboard and surface roughness (in this case this is the local

standard deviation of the freeboard) (right). Yellow indicates ice with a higher freeboard than the

high inflection point of the distribution. Magenta is ice with a lower free board than that. Red

are areas with higher surface roughness than 10 cm. Blue areas are ice with surface roughness

of less than 1 cm. Cyan areas have reflectivity indicating no snow cover (less than -7dB Echo

Amplitude). For this study, yellow and red, as well as magenta and blue classes are combined.

The grey background of the surface roughness distribution denotes the region that was not used

to identify ice classes, as there was considerable mixing in this parameter region.

• LFYI: Snow-covered ice with a surface roughness (standard deviation of freeboard mea-

surements at scales of the ALS grid (0.5m) calculated over one TSX pixel (3.5m2)) of

less than 1 centimetre or a freeboard value lower than the higher inflection point in

the freeboard distribution (typically around 40 centimetres).

• DFYI/MYI: Snow covered ice with a surface roughness of more than 10 centimetres

or a freeboard greater than the higher inflection point in the freeboard distribution.

Because these labels are entirely defined by measurements of the ice surface (Fig. 4.2), one

can also infer the probabilities of belonging to each class, by assuming a gaussian distribu-

tion of ALS freeboard and reflection measurements at each TSX pixel. From the 49 ALS

measurements, the mean and standard deviation of the freeboard are computed and then

the probabilities of lying below or above any freeboard thresholds are given by the error

function. Explicitly, one can integrate the area under the curve of the gaussian distribution,

above and below the threshold, to get the desired probabilities. Thus one obtains labels

which give the probabilities of belonging to a certain class, rather than discrete classes.

Assuming a gaussian distribution also allows to infer uncertainties of the surface roughness.
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Figure 4.3: Evolution of correlations between freeboard [fb] or surface roughness [rg] and HH SAR

backscatter [σ0]over time. Note that the surface roughness is measured at the snow atmosphere

interface and at correlation lenghts of 0.5 metres, whilst the SAR sensor is most sensitive to the

ice snow interface and roughness at correlation lengths at the wavelength of the sensor, which

is only 3.1 centimetres. The same analysis with VV channels gives very similar results.

Figure 4.4: Approximate probability density functions (PDFs) for the sigma nought backscatter

of each class across the different polarization configurations, for one flight on the 8th of April.

Note that no two classes can be reliably separated using backscatter alone. Colours are as defined

as in Fig. 4.2
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The derived labels from each scene are split into two mutually exclusive connected sub-

sets. By connected it is meant, that in all but edge cases pixels are neighbouring ones from

the same subset. The training set is made up of 75% of labels whilst the test set consists

of 20%. The remaining 5% of the data is used as a validation set. The validation data is

used only to decide when to stop training. All subsets (test, training, validation) contain

data from every scene. Imbalances of the classes were handled by balancing the dataset for

pixel-wise classifiers and weighting the classes inversely to their frequency for the segmen-

tation approaches, where an entire patch is segmented at once. Thus the training of the

networks is set up so that performing equally well for each class yields the lowest loss. As

the classes are not balanced in the labels, better performance would certainly be achieved on

the training data set without balancing the classes, but it would hinder the generalisation of

the classifier and make the results more difficult to interpret. As generalisation to a larger

space of ice conditions is a property one would like to be reflected in the results as directly

as possible, balancing was undertaken here.

In Figure 4.3 the correlation between backscatter and surface topography measurements

is shown. It becomes evident immediately, that the backscatter characteristics alone are only

very weakly correlated with the topography and thus separation using the backscatter alone

would surely be futile. This is further underlined by looking at the backscatter distributions

of the delineated classes from the flight on april 8th (fig. 4.4), where the correlations are

relatively average in regards to all other flights. Here it is again obvious that the backscatter

characteristics are not very valuable for class separation. Thus most of the information

needed to classify accurately must come from contextual data.

4.3.2 Robustness

To test the robustness of each classifier, the same steps outlined in Kortum, Singha, and

Spreen, 2022 are undertaken. In brief: Using the Polarstern as an origin, a 3km x 3km

region around the ship is used as the robustness test set. This area has been identified in 162

TerraSAR-X SM scenes from different days. The robustness is then defined as the probability

of each pixel being classified the same as in the previous and subsequent acquisitions (time

between acquisitions is typically one day). Taking into account that the surface conditions

are changing over time and that Polarstern was not perfectly stationary, this approximation

of the robustness will serve only as a lower bound of the actual robustness of the classifier.

To be more precise, these calculations are done under the assumption that in a time period

of two days, the percentage of ice that has changed class (e.g. through deformation) is

significantly smaller than the percentage of ice that has remained in the same class. Note

that this test is only sensible for the two solid ice classes and not for the OW/YI class,

which is too dynamic on a daily timescale to be analysed in this manner. The robustness is

first computed for the two classes and their average is used as an indicator for the network’s

robustness.
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4.3.3 The Network Architectures

In this paper, five different architectures are compared: two established image classifiers in

the VGG16 developed by Simonyan and Zisserman, 2015 (ice classification in e.g. Khaleghian,

Ullah, Kræmer, Hughes, et al., 2021) and the ConvNext network proposed by Liu, Mao, et

al., 2022 (an improvement over ResNet, used for SAR sea ice classification in e.g. Song, Li,

et al., 2021), a custom CNN (cCNN) pixel-wise classifier introduced in the previous chapter

(and published in Kortum, Singha, and Spreen, 2022) specifically designed for ice classifica-

tion and two established segmentation models in the Unet by Ronneberger et al., 2015 (SAR

sea ice classification in e.g. Nagi et al., 2021; Ren, Li, et al., 2022) and Unet++ proposed

in Zhou, Siddiquee, et al., 2018; Zhou, Siddiquee, et al., 2019 (used in e.g. Murashkin and

Frost, 2021). These first three (VGG16, ConvNext, cCNN) and last two (Unet, Unet++)

models have one fundamental difference: Classification approaches (VGG16 etc.) are given

a patch and are then asked to predict the class of the centre of the image. Segmentation

approaches (Unet etc.) are tasked to produce a label for every pixel in the patch at the

same time. For the Unet++ the features of the multiple output layers are averaged over in

the deep supervision part of the model. The exact specifications of all the models can be

found in the appendix.

4.3.4 Training

During training, the networks are tasked with minimising the Kullback Leibler Divergence

(KLD) between the output and the label distributions. This allows us to fit the probabilities

of each class occurring at each pixel, which one can infer from the ALS measurements. As

this serves as a benchmark and comparison of these models concerning their applicability for

sea ice retrieval, no further optimisations have taken place. For each of the model architec-

tures, ten separate instances are trained. Training is stopped using the small independent

validation set (5% of data). The model population allows some additional insight into the

reliability of each architecture. The ingested SAR data are pre-processed by converting each

band to sigma nought and then applying a logarithm. The incidence angle is provided in a

third channel. The size of each patch to be classified is chosen to be 256x256 pixels, except

for the cCNN which receives input patches at various scales (a 5x5, a 16x16 and a 64x64

pixel patch).

4.4 Results

The performance of different network architectures can be seen in table 4.1. They paint

a clear picture of segmentation models’ (Unet, Unet++) improvement over centre-pixel

classification approaches. Of the centre-pixel classification approaches, the custom CNN

classifier performed best, yet it was still significantly inferior to the segmentation models.

Part of the reason for this is probably the high spatial resolution of the labels, as a label
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Model Mean acc. [%] Std. of acc. [%] Mean KLD Std. of KLD Mean rb. [%] Std. of rb. [%]

VGG16 40.52 7.83 0.8493 0.0458 79.95 5.82

ConvNext 45.12 3.17 0.872 0.0363 81.16 4.84

cCNN 47.89 3.74 0.7886 0.0240 68.52 18.81

Unet 68.07 1.74 0.6032 0.0406 84.42 1.78

Unet++ 67.92 2.13 0.6249 0.0597 82.06 1.36

Table 4.1: Network performances on the independent test set after training. For brevity, accuracy

is shortened to acc, standard deviation to std and robustness to rb. The means and standard

deviations are computed from the 10 models in the population for every architecture. Best-in-

category results are highlighted in bold font. Ten instances were trained for every model. The

Unet and Unet++ architectures show significantly better performance than the rest.

is given for every pixel from most of the ALS measurements. The centre-pixel classifiers

cannot make use of any relationships between labels, like shape, sparsity and correlations.

This seems to be detrimental to their performance.

A more detailed analysis of the output of different models (Fig. 4.5) shows, how the

VGG16 and ConvNext models struggle to relate all the information of the patch to only

the classification of the central pixel, leading to a diffuse-looking classified scene. This

seems most pronounced for the ConvNext model. A possible reason for this are the larger

convolutional kernels (7x7 in contrast to 3x3) used in the architecture. The cCNN seems

to struggle with using contextual data to separate rough ice and young ice. In general,

the predicted probabilities at each pixel are higher in the non-dominant class, leading to a

seemingly different colour palette in this visualisation. The Unet and Unet++ classifications

are largely similar. Some difficulty in the separation of deformed and young ice signatures

persists as can be seen in the mixing of yellow and cyan areas.

It is also worth pointing out that the very same cCNN and a VGG16 performed at accu-

racies around 85-95% on manual labels in the previous chapter, illustrating the difference be-

tween training and testing on quantitatively measured labels in contrast to human-generated

annotations. In Ren, Li, et al., 2022, the Unet is reported to perform sea ice and open water

separation on manual labels at 93-95 % accuracy. Wang and Li, 2021 report accuracies of

96 % for the same task, using ice charts as training data and test data and 94% accuraciy

when comparing to an operational sea ice cover product (Interactive Multisensor Snow and

Ice Mapping System, IMS). Murashkin, Spreen, et al., 2018 show classification accuracies of

the Unet++ around 96% on manually labeled training and test data across 6 classes.

Whilst the mean KLD’s are in accordance with the accuracies, the spread (std) of the

KLD’s across the model populations seems to be very similar across all models and there

is no clear gap between segmentation and classification approaches. Overall, one cannot

say that one model converges more reliably than another - as would be suggested by the

standard deviation of the accuracies alone. It is also apparent, that the cCNN does not

perform well in the robustness scores on this dataset. This model is considerably smaller

than the others (in terms of parameter count) and was heavily optimised using a different
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Figure 4.5: Comparison of classifications from different models, randomly selected from the ten

instances trained. Colours are the same as the classes discussed above, but the intensity is given

by the predicted probabilities, so mixed colours can occur. This can be seen most easily in the

cCNN classification (c). The scene was acquired over the Polarstern (center of the images) on

January 14th. The false colour composition consists of HH, VV and HH/VV channels, normalised

with a tanh function. The area shown is a 6 by 6 kilometre square.
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dataset with lower fidelity labels, which seems to have come at a cost of flexibilty/generality

of the architecture. The spread of robustnesses of the segmentation models seems to be

considerably smaller than those of the generative models - additionally indicating these

approaches are more reliable for ice classification from SAR.

The classifications (e.g. in Fig. 4.6) show a very plausible set of results, that align with

the observations of members on board the expedition. The fine labels at high resolution

seem to have transcended into a similarly detailed classification map. The examples in Fig

4.7 also illustrate a general increase of deformation in the first year ice: The magenta FYI

area close to Polarstern, marked by a black square in figure 4.6, is getting progressively more

deformed as time progresses (detail in Fig. 4.7). The areas most prone to error seem to be

the OW/YI classifications. This is to be expected as they are naturally the most sparse in

the training data set. Additionally, they are very dynamic, which leads to extremely diverse

backscatter properties that can be exhibited, in turn making them more difficult to classify.

We also observe decreasing correlation of backscatter and surface topography variables

from the onset of the expedition until early April - particularly during January and February

(4.3), where the MOSAiC expedition was met by numerous storms. Some of the decorrelation

can be accounted for because of snow accumulation and redistribution, but it is difficult to

quantify this phenomenon with the given data. As first-year ice thickness grows much faster

than second-year ice, it makes sense that freeboard and backscatter decorrelate over time.

The mechanism leading to increased backscatter in older ice were identified in chapter 3

to be processes on taking place over timescales of multiple seasons, therefore the freeboard

increases faster than the change of backscatter response - this could also be the cause of

this decorrelation. As was previously discussed, these processes are most likely linked to

desalination in the upper layers and formation of ridges. However, since this trend is broken

in April it seems that whatever drove this decorrelation is revertable to some extend and

therefore changes in the snow or geometrical influences, like the incidence angle, are a more

plausible explanation than ice deformation.

Additionally, a first-year and a second-year ice area were tracked from November to

March, and the deformation increase as predicted by the top performing Unet model is

measured. The results are shown in 4.8. The maximum and minimum measured area of

deformed ice is compared. Here it is important that we take into account, that additional

deformation cannot be resolved in areas of existing deformation. Therefore the percentage

of newly gained deformation Pn can be related to the measured deformation Pm and the

original existing deformation Pe via the relation

Pm = Pn(1− Pe). (4.1)

This can be easily solved for the new deformation

Pn =
Pn

1− Pe
. (4.2)

Using this formula and the measured values for both observed areas, we see that the second-

year ice area gained additional deformation equal to 0.186% of its area, whilst the first-year
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Figure 4.6: Collection of classified subscenes (Unet, pixel spacing = 3.5m) including the MOSAiC

floe, after a storm (a), in calm conditions with some shearing indications (b) and with some

breakup of the ice cover visible (c). The Polarstern location is indicated by the black circle.

The DFYI/MYI class probability is displayed in yellow, the LFYI probability in magenta and the

OW/YI probability is cyan. The black square marks the area shown at full resolution below (Fig.

4.7)

Figure 4.7: Full resolution excerpt from the scenes show in Fig. 4.6. The classified images

reflect the increased deformation of the first year ice area over time accurately, as the DFYI

occurence rises. The DFYI fraction is computed inside of the black border. In the first scene

some misclassification of the open lead (cyan) as older, deformed ice (yellow) is seen (outside of

the area the DFYI fraction is calculated) - this is a common issue in SAR sea ice retrieval as the

backscatter can become very similar, as also reported by e.g. Guo et al., 2022.
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(a) SYI (b) FYI

Figure 4.8: Measured deformation of two adjacent areas dominated by first- and second-year ice

respectively.

ice area gained 0.244%. Assuming that the dynamic forces acting on this area were similar

over the observed time period, which is reasonable, given they are adjacent to one another,

suggests that first-year ice deforms faster than second-year ice.

4.5 Discussion

The top models in this investigation perform at around 68% accuracy on the test data

set (Tab. 4.1). The segmentation models predictions are approximately 20% more accurate

than the classification models. The only concrete difference between these models is that the

segmentation approaches can learn from the distribution of labels, which appears to be highly

important. Even the highest accuracies measured here are considerably lower than what

many author’s report for algorithms trained with human-made labels. To understand these

discrepancies, the main differences between these measured labels and human annotations

are discussed.

The measured labels used in this study have some underlying difficulties. Because the

snow depths and densities are not known, one cannot discern how strong the correlation

of freeboard and ice-thickness is and cannot eliminate this error. Also the reflectance used

to disseminate young ice and open water is based purely on the coverage of the surface

being snow free and thus not directly correlated with ice age: if thin ice has formed the

atmospheric conditions will dictate whether or not snow has gathered on top or if the bare

ice is visible to the sensor. Thus the quality of labels could still be improved on, if more

information were available.

To assess the impact of the individual thresholds used to determine classes (e.g. the

location of the inflection point in the freeboard distribution) the top-performing Unet ar-

chitecture (accuracy ca 68%) was also evaluated on the same dataset, but excluding points

near the thresholds. To do this labels where the certainty of the most probable class was
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lower than 90% were not considered. For example in regions with local standard deviation of

approximately 3cm, that means that points within 6cm of the thresholds are not considered

and so uncertain labels do not influence the result. In case of the test dataset, these data

points account for 24.1% of all data. Under these circumstances, the average accuracy of the

Unet model is 72.5% which is an increase of less than 4% although 24.1% of the least certain

labels where removed. Thus one can conclude that the exact location of the thresholds had

only marginal impact on model performance, lending increased confidence that the model

performances are representative of performance evaluated against ground truth.

For comparison with human annotation/ice charts, the resolution is a major factor. In

this case, every individual pixel gets its own class and there is no semantic grouping of pixels

into the same class based on proximity or likeness. This is a stark contrast to ice charts,

where the labels are made up of only few polygons per scene. To test the influence that these

coarser labels have on the classifier, another batch of classifiers was trained, where the labels

were smoothed with a Gaussian kernel (sigma = 10px). The resulting classifier dropped to

around 62.5% accuracy on average, showing that the coarseness (like that of manual labels)

comes at a detriment of performance. As expected from the coarser labels, the resulting

models also had a very hard time resolving smaller features like ridges and leads.

Even when not training from such ice charts, humans generating training data for al-

gorithms at high resolution generally limit themselves to areas which they can confidently

identify. Not much can be said about the correctness of these labels per se, but one should

keep in mind that in these instances, the accuracy achieved by the classifier is constrained

to those easy-to-identify regions and are therefore not representative of the classifier’s per-

formance on the whole. Because of the size of SAR acquistions obtaining labels at pixel

resolution from human annotation is not feasible. The great advantage that labels from

measurements have is that they are truly indicative of performance on the entire scope of

ice conditions in the scene (every pixel is labelled, thus there is no selection bias). Only

by holding the testing of high resolution retrieval algorithms to this standard can one show

with certainty when an improved method of classification is developed, but of course to do

so available data sets are lacking.

This study had only a small effective study region and a large temporal span to test

the diverse conditions. Overall the constancy of the ice in the scenes should only improve

the classifiers’ performances. Unfortunately the 20 helicopter flights are not quite enough

to make meaningful statements about temporal changes in performance, as the differences

in performance will be outweighed by the local conditions in the scene. Additionally sea-

sons in the data where one would expect the classification to be most difficult (freeze-up

and pre early melt onset) are only very sparsely represented in the data. This means the

contributions of the data sparsity, seasonality and spatial variability cannot be meaningfully

separated.

In the summer season the ice surface is dominated by wet snow, bare ice and melt ponds

and more open water is found between floes. The spatial distribution of classes is very
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distinctive between the surface types, so one can expect the main result of the difference

between centre-pixel classifiers and segmentation models to persist.

In most data-driven approaches to classification, the performance of the classifier is

limited by the quality of the labels. Therefore, one should be careful when using manually

labelled data, such as ice charts, as ground truth. These practices are common in the current

research - as not many other sources of labels are available. However, the potential is much

greater than that. The challenge of course remains, that high-resolution measurements are

very sparse.

Because the MOSAiC mission provided us with an unmatched opportunity for training

and testing algorithms with measured labels over a long time period, this study has made

obvious that there is considerable room for improvement even with modern deep learning

algorithms. It needs to be mentioned, that due to the spatial constraint to the area near

the MOSAiC floe, the training dataset does not capture the full extent of possible winter

ice conditions in the Arctic, thus one cannot expect the classifier to perform equally well on

a pan-Arctic scale. Instances of OW/YI are very sparse and their entire span of possible

conditions and consequent radar response is not covered well by data. Since a better in-situ

dataset is probably not going to emerge in the near future, it is clear that measured labels

alone are not enough to train a stable algorithm that can deal with the full span of ice

conditions. It seems that to achieve this, one would need to leverage a great number of

scenes without labels. Semi-supervised and self-supervised approaches come to mind. Some

first examples of their development exist for optical data by HAN et al., 2019, ice and open

water discrimination from SAR in Li et al., 2015; Khaleghian, Ullah, Kræmer, Eltoft, et al.,

2021 and for sea ice classes from SAR in Imber, 2022.

4.6 Conclusion

The MOSAiC expedition enabled the generation of a large dataset (approx. 20 million data

points) of SAR acquisitions and appropriate labels delineated from in-situ laser scanning

measurements. It has become clear that both the freeboard and the above snow surface

roughness (at lengths of 50 cm) are only weakly correlated with X-Band SAR backscatter,

with average R2 values of 0.124 and 0.043 respectively. It has been shown that deep-learning

segmentation approaches such as the Unet can approximate these labels from the SAR mea-

surement at accuracies around 68%. Thus, the performance of modern network architectures

on a representative set of labels was measured for the first time. From the performances

of the different models, one can conclude that the segmentation approaches advantage of

being able to exploit intra-label relations is crucial (+20% accuracy) to the performance. It

is notable that these label distributions at the scale of the measurement resolution are not

contained in ice charts or human annotations, which suggests that classifying accurately at

the resolution of the measurement when trained on human-annotated labels is improbable.

As a more comprehensive dataset than created here is unlikely to be acquired in the near
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future, newly developed classifiers aiming at classification at the resolution of the sensor will

need to find some way to gain access to the spatial ice type distributions to be successful.

4.7 Appendix: Heli Flights

1 20191020 01 PS122-1 2-167

2 20191119 01 PS122-1 8-23

3 20191130 01 PS122-1 9-98

4 20191224 01 PS122-2 17-98

5 20191225 01 PS122-2 17-99

6 20191228 01 PS122-2 17-101

7 20200107 01 PS122-2 19-44

8 20200108 01 PS122-2 19-46

9 20200108 03 PS122-2 19-52

10 20200116 01 PS122-2 20-52

11 20200121 01 PS122-2 21-41

12 20200123 02 PS122-2 21-78

13 20200128 01 PS122-2 22-16

14 20200204 01 PS122-2 23-14

15 20200212 01 PS122-2 24-31

16 20200217 02 PS122-2 25-8

17 20200227 01 PS122-3 29-49

18 20200318 01 PS122-3 32-42

19 20200408 01 PS122-3 35-49

20 20200423 01 PS122-3 37-63

Table 4.2: List of the 20 helicopter flights used in this research. Data is published in Hutter,

Hendricks, et al., 2022b.

4.8 Appendix: Architectures

Briefly the network architectures used in this investigation are presented.The following con-

ventions are made use of to keep the figures concise. FCX is short for a fully connected

layer with X neurons. ConvX x Y denotes a 2D convolutional layer with filter sizes X and

number of filters Y. Unless otherwise specified the convolutional layers have stride 1. If a

layer has multiple inputs, they are concatenated before being parsed to the layer.
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Table 4.4: The Unet architecture as used in this paper and published in Ronneberger et al.,

2015. The ReLU activation is used throughout the network and the padding is set to ’same’

where applicable.

Table 4.3: VGG16 architecture as used in the paper. Published in Simonyan and Zisserman,

2015. The ReLU activation is used throughout the network. The padding is set to ’same’.
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Table 4.5: The ConvNext-T architecture used in this paper. Developed in Liu, Mao, et al., 2022.
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Table 4.6: The custom CNN architecture from Kortum, Singha, and Spreen, 2022 used in this

paper. The inputs at different scales are flattened and concatenated before being output to the

fully connected layers. Leaky ReLU is used for activation and padding is set to ’valid’. The

16x16 pixel input is downscaled from the original scene by factor 5 and the 64x64 pixel input is

a square cutout that is rescaled so that the width of the entire scene is 64 pixels. The 1D input

contains the relative coordinates of the pixel in the 64x64 pixel input.

Table 4.7: Unet++ architecture used in this paper, published in Zhou, Siddiquee, et al., 2018;

Zhou, Siddiquee, et al., 2019. Note that the left column is identical to the downwards convolution

side of the regular Unet and the lowest rows from left to right form the upwards side of the Unet.

The Unet++ then uses extra layers in between to extend the architecture. All layers within a

cell are considered to be a block, so they are all executed before parsing the output to the next

block. All layers marked ’Softmax’ are averaged before the final linear layer and the softmax are

applied. ReLU is used as the activation function throughout and the padding is set to ’same’.
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5.1. OVERVIEW LEARNING FROM UNLABELLED SCENES

5.1 Overview

The space of possible sea ice conditions is so large that labelling enough images at full

resolution to fully span this distribution is seemingly impossible. Mainly, this is due to the

fact that the ice conditions are often not known and cannot be discerned accurately, even

by an expert human observer. Even if judging human interpretation to be good enough, the

sheer amount of time it would take to label every pixel of a single 10000 x 10000 pixel scene is

a challenge. Realistically, one would need to label more than 100 scenes to capture the span of

Arctic ice conditions. In the previous chapter, it was shown that the capability of a network

to exploit relationships between labels is critical for higher accuracy classifications. Coarser

labels do not contain the label distributions and were thus show to be less informative. One

idea that is explored in the following is to use the incidence angle dependent backscatter

slopes as a proxy for ice type labels. Given the two properties are correlated, the spatial

distribution of the two should be very similar. Under this assumption, the aim of this

chapter is to derive features from SAR sea ice imagery that in part parametrise the sea ice

class distribution without using any labels at all. The innovative crux of the neural network

setup developed and discussed in this chapter, is that sea ice information can be extracted

by predicting slopes without any prior knowledge of them. If the extracted features are of

high quality, a large part of the ground truth problem could be circumvented by training

the majority of a networks parameters without any ground truth at all.

5.2 Introduction

Sea ice’s backscatter has been observed to exhibit different incidence angle dependence across

different ice types. At C-band, for example, first-year ice (FYI) backscatter decreases faster

than multiyear ice (MYI) backscatter as the incidence angle increases, whilst the inverse is

true for L-Band (see work by Mahmud, Geldsetzer, et al., 2018; Zakhvatkina et al., 2013; Gill

et al., 2015; Makynen et al., 2002; Liu, Guo, et al., 2015). This diverse relation of backscatter

to viewing angle geometry is a result of oriented structures like surface deformation, air

bubbles or brine enclosures that correlate with different stages of ice development.

As such ice types relate to a plethora of physical, chemical and biological processes of the

Arctic; any property which allows us to separate them using remote sensing measurements

is valuable. An existing classifier by Lohse et al., 2021 (also used in Guo et al., 2022)

successfully makes use of this property by first extracting incidence angle dependence of

backscatter and texture features from data labelled by humans and then relating those

observations to different ice types in the classification step. In logarithmic scaling for the

backscatter, the relation between σ0 and the incidence angle is approximately linear, as was

shown in Onstott, 1992. Thus, this property of incidence angle dependence of backscatter

can be expressed as a single number, the slope, which is constant across the incidence angle

range of Sentinel-1 scenes.

The ground truth problem in sea ice remote sensing manifests itself in suboptimal
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Figure 5.1: Measurements of sea ice backscatter (HH) slopes relative to incidence angle change

during freeze-up or winter from C-Band satellite SAR up to 2018. The y-axis corresponds to the

backscatter slope and the x-axis denotes the ice types as given in the publications: NI - Nilas,

DGI - Deformed Grey Ice, YI - Young Ice, LFYI - Level First Year Ice, FYI -First Year Ice, DFYI

- Deformed First Year Ice, SYI - Second Year Ice, MYI - Multi-Year Ice. The labels are the first

two letters of the name of the first author of the paper where the results were originally published

Makynen et al., 2002; Zakhvatkina et al., 2013; Liu, Guo, et al., 2015; Mahmud, Geldsetzer,

et al., 2018 and the final two digits of the year of publishing (all in the 21st century). For a

review of the observations up to 2017, see Mäkynen and Karvonen, 2017.
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Figure 5.2: Outlines of the Sentinel-1 EW (Extended Wide) Scenes used for this research. The

zero meridian is marked by the vertical line. The map is projected using a vertical near-side

perspective of an observer at an altitude of 1500 kilometres directly over the north pole.

Figure 5.3: The devised network architecture. The arrows denote a forward pass.
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datasets, which translate their shortcomings to data driven algorithms trained on them:

Having a dataset that does not cover the entire span of possible ice conditions results in an

algorithm that does not perform well on scenes with conditions different from those trained

or modelled on (like the checkerboard example shown in the theory section). Similarly,

low-resolution training labels will, in turn, translate to a classifier that struggles to pro-

duce high-resolution classifications. The previous two chapters showed that only because

an algorithm performs well at extrapolating coarse manual labels, does not mean the same

architecture is particularly good for predicting high resolution labels. Thus, it is very dif-

ficult to train a classifier or retrieval algorithm that performs both for a large span of ice

conditions and at high resolution. Localised incidence angle dependence near the resolution

of the instrument can help bridge this challenge, as it correlates with different ice classes

(fig. 5.1).

The issue with localised incidence angle dependence is that it also can’t be easily obtained

from observations. To do so, one historically had to make repeated observations of the same

ice at different incidence angles. In work by Mahmud, Nandan, et al., 2020, this had to

be done by hand - identifying the same patches of ice in different acquisitions or multiple

occurrences of the same type across different incidence angles. The alternative would be

to match observations using geolocation. At Sentinel-1 resolution, these observations would

need to be made within minutes due to the speed of ice drift. Such pairs of scenes are rare,

even from the Sentinel-1 constellation Mäkynen and Karvonen, 2017. A frequent coverage

of such pairs would require a very special constellation of satellites, which, at least until

now, does not exist.

One approach to predict the incidence angle dependent slopes developed by Cristea et

al., 2020 leverages the linear evolution of the brightnesses with incidence angle of similar ice

using a Gaussian mixture clustering that varies the cluster’s means with incidence angle.

This technique uses global image information of brightness evolution without any spatial or

contextual awareness. The underlying assumption is that the same type of ice is present

across a range of different incidence angles, which is not always the case. Also the results

of the algorithm are discrete clusters, whilst the real dependence comes from a continuous

space. For the same reason, mixing of different ice types in one pixel cannot be considered

either. Additionally, noise from the antenna pattern also is a function of the range and

cannot be fully corrected for - which can influence the clustering in an unwanted way.

For high-resolution observations, the incidence angle span is usually very small, meaning

this approach would have trouble in these situations. These troubles are probably not

insurmountable, but there could be merit in predicting the incidence angle dependence from

local data only.

This chapter deals with an approach to predict the incidence angle dependencies from

only local image patches. As these correlate with ice development, this forces a neural

network to implicitly learn about ice development without additional labels. The hope is to

use the incidence angle prediction task to produce features valuable for ice type classification
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Figure 5.4: Incidence angle dependent slopes from a Sentinel-1 EW scene of the central Arctic,

calculated using a Gaussian mixture model according to work published by Cristea et al., 2020.

The scene is from the third of November 2018.
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in an intermediate encoding layer (output of the encoder in figure 5.3) . This has the

potential to open up a big data approach to ice retrieval, where one can continuously improve

ice retrieval models with nothing but SAR data. Also, it offers more insight into the spatial

variability due to the slopes’ continuous parameter space.

To achieve this vision, a machine learning setup (see figure 5.3) is introduced to predict

the incidence angle behaviour from a single patch of a SAR scene, incorporating spatial

information compression with an encoding and decoding scheme. The network is best de-

scribed as a physics-informed sparse conditional Generative Adversarial Network (GAN)

(for related work seeGoodfellow, Pouget-Abadie, et al., 2014; Mirza and Osindero, 2014;

Zhou, Gao, et al., 2019). The network is trained using only the SAR data with its included

incidence angle information to predict the incidence angle dependence of each pixel in a

SAR scene without additional measurement or prior knowledge of the slopes. To evaluate

the predictions of the network 59 near-coincident laser altimeter tracks from the ICESat-2

mission are used. The derived freeboard elevation of ICESat-2’s Level 3A data product

ATL10, explained in Kwok, Markus, et al., 2019 and Kwok, Petty, et al., 2022, is used to

differentiate first-year ice (FYI) and multiyear ice (MYI) using a dynamic threshold. Using

these labels, one can then measure the average incidence angle dependence of that ice type

and compare those to the predictions.

In configurations where algorithms are trained on human-labelled data, the algorithm

can never be expected to significantly outperform humans. Whilst some label noise can be

compensated for, systematic biases arising from human annotation (like tendencies not to

label small features etc.) are very difficult to overcome. Simply put, a data driven algorithm

cannot learn from information that is not present in the training data. The machine learning

setup in this chapter performs proficiently at tasks that humans would certainly not be

capable of. In that aspect, it represents a different approach to the problem: machine

learning algorithms do not attempt to emulate human behaviour. Instead, the problem is

reformulated in a way where the algorithms can exceed human performance.

Given the measurements made by shown in figure 5.1 for HH incidence angle dependence,

very young ice like nilas seems to have a similar incidence angle dependence to first-year

ice, which is mostly lower than that of multi-year, grey and young ice. Based on this

rough estimation, knowing the incidence angle dependence restricts the plausible ice classes

considerably. If independent correlations of the same complexity also exist for the HV band

(as the algorithm will later suggest), this could be used to further narrow down the possible

ice class. The potential of being able to solve a considerable amount of the classification

problem near sensor resolution and without any labels (thus applicable to all scenes and

in principle, scaleable to all possible ice conditions, as no additional data except the SAR

scene is needed) sounds intriguing. These classification approaches, where part of the data is

used without labels on an adjacent task, are commonly termed self-supervised learning and

have shown success in a variety of tasks where ground truth is sparse (consider Liu, Zhang,

et al., 2021 for an overview). Whilst the slopes could be directly useful for classification, the
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internally learned features are probably the real treasures of the method,a s they parametrise

the spatial distribution of both backscatter and slopes, which should be strongly related to

ice types.

5.3 Data

In this section, a brief overview of the data products used in this study is given.

The primary source of data is Sentinel-1 SAR in EW (Extended Wide) mode. This prod-

uct consists of approximately 400km by 400km scenes with a pixel size of 40 metres. This

study uses the Ground Range Detected (GRD) product, which gives pixels projected to sea

level (in the case of sea ice), using an earth ellipsoid model. The scenes have an incidence

angle range of 20 to 50 degrees. The scenes have been corrected for thermal noise as well

as scalloping and calibrated to σ0 using the snap library SNAP - ESA Sentinel Application

Platform 2022 and corrections developed by the Nansen Center and detailed in Park, Ko-

rosov, Babiker, Sandven, et al., 2018; Park, Won, et al., 2019; Korosov et al., 2022. This

significantly mitigates the effect of sensor artefacts on the study. The second data product

used is the ATL-10 sea ice freeboard measurement derived from altimetry measurements of

ICESat-2. ICESat-2 operates using a 532nm laser at 10,000 pulses a second. The returned

photons are used to produce altimetry measurements accurate to approximately 3cm, by

aggregating a fixed number of photons to measurement. The ATL-10 product has variable

spacing - depending on the photon returns. The footprint of a single pulse is around 17

metres, as published in Neumann et al., 2019. Do obtain a freeboard height, the absolute

heights measured are corrected for the ocean surface elevation by identifying leads through

their reflectivity characteristics. The open leads can then serve as a reference height to

correct the freeboard. To minimise errors, only the three strong beams from ICESat-2 are

used in this study. The SAR data consists of 59 pairs of Sentinel-1 imagery (fig. 5.2) with

an ICESat-2 overflight within 10 minutes of the SAR measurement and considerable overlap

between both measurements. The SAR data is used to train the model and the altimetry

measurements only serve to validate the findings. The validation is done by identifying vari-

ous regions of ice using their measured freeboard. The ice types to be extracted are first-year

ice (FYI) and multi-year ice (MYI) (second-year ice is included in the MYI class). For that

reason, the study time is constrained to October and November. During this part of the

ice development cycle the freeboard differences between these two ice types are substantial

and easily observable from altimetry data: FYI is still young and thin with a significantly

smaller freeboard than the MYI that survived the summer. Later in the season, the ice

thickness of the FYI will catch up and get closer to the MYI thickness because of the higher

thermodynamic ice growth rates of thinner compared to thicker ice. As the snow depths on

the floes is unknown, and thicknesses vary with region and time, using constant thresholding

on the freeboards to separate classes is not feasible. Instead, those scenes are used where

the altimetry freeboard distribution is clearly bimodal – allowing for the separation of the
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Figure 5.5: Depiction of the flow of data during training and validation of the network.

two different stages of ice development from the freeboard alone. An example of overlap-

ping measurements of ICESat-2 and Sentinel-1 and the bimodal freeboard distribution can

be seen in figure 5.6. The thresholds between FYI and MYI are then simply selected to

lie at the local minimum between the two distributions. Due to the variable snow cover

and subpixel resolution structure, the two distributions are partially overlapping. Thus,

some false mixing of classes cannot be avoided. Because the scenes are dominated by MYI

this mixing will be more present in the FYI class (relative to total class size). The lowest

5 cm of freeboard measurement for the FYI class are disregarded: ice in the early stages

of development has significantly different backscatter properties and would thus skew the

distribution.

5.4 Methodology

In this section, the exact method and the various network’s used as a part of it are described

in detail. The phrase ‘incidence angle normalised’ used in this section denotes that SAR

acquisitions have been corrected so that the average backscatter across all scenes is approxi-

mately constant across all incidence angles. After logarithmic scaling a linear transformation

is sufficient to achieve this (eq. 5.3). This one transformation is calculated from all scenes

and then applied to them. Thus, all the variations in brightness across the incidence angle

range come from the differences in incidence angle dependencies between classes, not the

total average brightness decay.

5.4.1 Motivating Existence

As was mentioned in the introduction, the incidence angle dependence of different sea ice

types can only be measured through multiple observations. The question ‘is it possible to

predict the incidence angle slope for every pixel from a single patch of a SAR image?’, has

no obvious answer. To motivate the existence of such a prediction, let us first look at a

simplified version of this task by posing the following problem. Given an incidence angle

normalised SAR acquisition over sea ice (or a patch thereof) and an incidence angle, is it

possible to tell if the measurement was made at the given incidence angle or not? If the

answer to that question were yes that would imply some understanding of what different

regions (ice types) are expected to look like at certain incidence angles. Because the image
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has been normalised for the overall trend first, the mean brightness of the patch is not

a useful feature. Only the relative brightnesses of the ice types are useful features. The

discriminating task can be described as follows:

Given a dataset of SAR patches of sea ice and the incidence angles they were acquired

at (patch, θ), as well as a set of patches with incidence angles they were not acquired at

(patch, ¬θ), does there exist a discriminative function D, such that

D : (patch, θ) 7→ 1,

D : (patch,¬θ) 7→ 0?
(5.1)

Solving this task is thus only possible if the algorithm can recognise certain ice and knows

how bright it should be at different incidence angles. If an algorithm is able to learn the

relationship between brightness and ice class implicitly, it should then also be possible to

predict these relationships explicitly.

It is worth noting that this task of distinguishing between patches with correct and

incorrect incidence angles could never be done by humans at high accuracy. In fact, hu-

man ice analysts will find the discrimination between the two pairs very challenging, as

the differences between the ice classes slopes are small compared to the overall trend (av-

erage trend across classes ≈ 0.2 dB/Deg, difference between first-year and multiyear ice

≈ 0.04 dB/Deg). Machine learning algorithms, however, excel at this problem: Such dis-

criminators (with incidence angle normalisation in place) achieve accuracies surpassing 98%,

whe the false incidence angles ¬θ are off by at least 5◦ def. Note that it is imperative here

that the normalisation of the incidence angles is carried out first. Otherwise, the discrim-

inator could complete this task easily by simply learning the average brightness trend and

having little knowledge of the ice class-specific incidence angle dependencies.

To predict the incidence angle slopes using such a discriminator, a second network (the

generator) is added that estimates incidence angles dependencies (slopes) for each pixel in

a given patch. Using these slopes, one can then calculate what the patch would look at an

arbitrary incidence angle. If these newly generated patches fool the discriminator - making

it judge they are real - the probability is high that the estimated slopes are close to reality.

This is the core idea of the network setup.

5.4.2 The Network

We have motivated the existence of a prediction algorithm and also introduced the concept

of a discriminator that can reliably separate patches with correct and incorrect incidence

angles. To turn the implicit understanding of the discriminator to an explicit prediction of

incidence angle dependence, a generative adversarial network (GAN) setup (fig. 5.3) is used.

Before diving into detail, it is sensible to outline the core idea of the architecture. The core

of the concept consists of two networks with competing tasks:

The generator network is given a patch of a SAR acquisition and a single incidence angle

it was acquired at (centre of the patch) and then is tasked with predicting a linear function
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(a) Freeboard histogram (b) ICESat-2 Labels overlayed with a Sentinel-1 scene

Figure 5.6: Freeboard distribution from ICESat-2 (a) and derived labels overlayed on top of a

false colour composition (channels are HV, HH-HV, HH/HV) from Sentinel-1 SAR(b). Blue

labels correspond to open water and young ice, green to FYI and red to MYI. . The data were

acquired on the 2nd of November 2021, within 10 minutes of one another.

(i.e. a slope and an intercept) for the backscatter for each pixel depending on the incidence

angle. Using these predicted functions, one can then easily simulate what this patch would

look like at any arbitrary incidence angle.

The discriminator is given three types of patch and incidence angle pairs: Observed

patches with correct incidence angles, observed patches with incorrect incidence angles and

simulated patches with the incidence angles they were simulated at. It is tasked with sepa-

rating the real patches with real incidence angles from the rest. This is a binary classification

task conditional on the incidence angle.

During the training of these networks, the generator is tasked with fooling the discrimi-

nator into thinking the patches simulated using the predicted slopes are real. This way, the

two networks are in constant competition, facilitating continuous improvement. With this

setup, it is possible to reformulate the task of predicting incidence angle dependencies of

the pixels to a domain transfer task, in which GAN setups excel (e.g. Lin et al., 2018; Lu

et al., 2017; Wei et al., 2017). Note also that this is only feasible because the relationship

of backscatter and incidence angle is known to be linear for a given ice type; without this

known physical constraint, the task would become significantly more difficult.

In the following the three components of the setup (generator, simulator, discriminator)

are described in detail.

The Generator

The generator gets an input patch with three channels: HH, HV and θIA. Its output is a

patch with six channels that parametrise the pixels backscatter based on incidence angle.

These parameters are the slope, intercept and a noise parameter for each of the bands

(see section 5.4.2 for details). This physics-constrained linear behaviour of the patch under

change of incidence angle significantly simplifies the task to solve.

We first tried to directly predict the output with a simple Unet model (Ronneberger
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Table 5.1: The Unet architecture used in this paper as the encoder. The input has dimensions

256x256x3 and the output has dimensions 64x64x32. The architecture was originally developed

and published in Ronneberger et al., 2015. The ReLU activation is used throughout the network

and the padding is set to ’same’ for all layers.

Table 5.2: The decoder architecture used in the paper. The ReLU activation is used throughout

the network. The padding is set to ’same’. The final Conv1 layer has no activation function - it

is just a linear pixelwise mapping.

118



LEARNING FROM UNLABELLED SCENES 5.4. METHODOLOGY

et al., 2015) as a generator. However, the GAN failed to reliably converge during training,

as the generator quickly collapsed to a mode where it would simply map the backscatter

channels to the constants of the linear function and set the slopes to zero. Thus, the addition

of an encoding task also served to circumnavigate this collapse of the generator, forcing the

network to make use of spatial information. The Unet (encoder), shown in table 5.1) is now

tasked with generating a 32-dimensional feature vector for each pixel. Then the majority

of these feature vectors are randomly dropped out, and only 1/32 in the patch are kept.

From this sparse representation, a second network (decoder), shown in table 5.2, made up of

consecutive convolutions and transpose convolutions, then reconstructs the desired output

channels from the sparse representation. This solved the aforementioned training collapse.

The same idea of compression using dropout has been shown to be effective in biomedical

imaging by Zhou, Gao, et al., 2019. The output of the generator is a 6-dimensional vector

for each pixel. The exact parameters of the Unet and the decoder as used in this model,

can be found in the appendix. The number of convolutions and transpose convolutions are

chosen so that the theoretical perceptive field of an encoded vector is 27 x 27 pixels, which

is large enough to reliably decode images without gaps due to too many randomly dropped

out encoded vectors. (The probability of not finding another encoded vector in a 27 x 27

patch at a dropout rate of 31/32 is smaller than 10-10). The reason random dropout is used

instead of a bottleneck with lower dimensions is that this way, every pixel gets its own local

parametrization.

The Simulator

The simulator network consists of a single non-trainable layer that simply takes the six

parameters (aHH, aHV, bHH, bHV,∆HH,∆HV) predicted by the generator and an incidence

angle θ, to simulate a new patch by evaluating two linear equations of the form

σ = a · θsimia + b+N (0,∆) (5.2)

for both channels, where N (0,∆) denotes sampling from a normal distribution. Four pa-

rameters are the intercepts a and slopes b of the two linear functions modelling the incidence

angle behaviour of the HH and HV bands. The remaining two values ∆ parameterise the

uncertainty of the pixel backscatter, which is implemented as a random sample of a normal

distribution. It is useful to formulate this simulation as a network layer to integrate it into

the training loop for the GAN. This layer constrains the network to model the observed

physical behaviour of backscatter under incidence angle change.

The Discriminator

The discriminator architecture used is a ConvNext-T architecture that was developed by Liu,

Mao, et al., 2022 and tested as a classifier in chapter 4. The architecture is shown in table

4.5. The discriminator is given a patch with three layers (HH, HV and θIA) and performs

a binary classification, separating real patches with correct incidence angles from all other
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combinations (real patches with wrong incidence angles and simulated patches with any

incidence angles). As the result is conditional on the incidence angle, such a discriminator

is called a conditional discriminator as per Mirza and Osindero, 2014.

5.4.3 Training

In this section, the training loop and the corresponding loss function are explained in detail.

A graphic representation of the forward propagation through the network is shown in fig.

5.3. The data used during training consists of 59 Sentinel-1 scenes from the Arctic acquired

in October or November. The scenes were chosen for the existence of an ICESat-2 overflight

with ATL10 ice freeboard observations in the same area within ten minutes. This will

become relevant for the evaluation of the algorithm at a later stage. For each batch during

training the samples are randomly selected from all scenes in the dataset at runtime. A

sample consists of a 256x256 pixel patch with two channels (HH, VV), which is denoted as

preal, and the incidence angle at the centre of the patch θrealia . In addition, a second set of

incidence angles θsimia is generated by copying θrealia and then randomly offsetting half of them

by at least 20% of the incidence angle range of the sensor (approximately 6 degrees in the

case of Sentinel-1). The other half of θsimia remains equal to θrealia .

The patches’ HH and HV channels are then normalised for the incidence angle depen-

dence using a linear approximation of the average patch backscatter σ0(θIA). To scale the

pixel backscatter to lie mostly between 0 and 1, the standard deviation σ∆ of the means

after subtracting the linear approximation is used. This is purely to stabilise the training

of the network and has no physical reasoning. The normalised pixel values σnorm are then

computed from the σ0 values as

σnorm(θIA) [dB] = 0.5 +
σ0 − σ0(θIA)

12σ∆
. (5.3)

Thus, the mean backscatter of each patch is 0.5 on average. The denominator of 12σ∆

ensured that less than 1% of individual pixels were outside of the [0, 1] interval.

The correct incidence angles are then concatenated with the patches as an extra chan-

nel, which prepares the input for the generator. The generator returns a patch with six

channels. The first four contain the parameters aHH, aHV, bHH, bHV for both linear functions

σHH
norm, σ

HV
norm that describes that pixels’ HH and HV backscatter depending on incidence an-

gle. The final two outputs are standard deviations ∆ of both bands that parametrise the

Gaussian random noise added to the pixel after calculating the backscatter to allow for some

statistical simulation.

The simulator S then creates new patches using the output of the decoder, calculating

the simulated pixel backscatter as

σnorm [dB] = a · θsimia + b+N (0,∆) (5.4)

for each pixel and band. Here N denotes the normal distribution. This constitutes one pass

through the generator and simulator. The resulting simulated patches from the generator
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G can be described by:

psim = S(G(preal, θrealia )⊕ θsimia ), (5.5)

Where ⊕ denotes the concatenation of the patch, and the incidence angle expanded to

the image dimension. The next step is the evaluation of the discriminator’s performance

on real and simulated patches. The incidence angles θsimia are added as an extra layer to

the simulated patches by concatenation to prepare the input of the discriminator D. The

resulting discriminator output dsim is thus

dsim = D(psim ⊕ θsimia ) (5.6)

The discriminator is also given some real patches with correct and incorrect incidence

angles (θsimia ), generating output

dreal = D(preal ⊕ θsimia ). (5.7)

The first loss term of the generator is a pixel-to-pixel loss, which minimises the distance

between the real patch and the patch simulated at the same incidence angle:

LGpx2px = LMSE(p
real, psim)|θreal

ia =θsim
ia
, (5.8)

where LMSE is the mean squared error. Note this is only computed for the patches where

the set of modified incidence angles θsimia are unchanged from the originals θrealia . This loss

term thus encourages that patches simulated at the original incidence angle and should be

the same as the real patch. The second part of the generator loss is a binary cross entropy

term LBC. For a set of predictions Ŷ and corresponding labels Y it is defined as

LBC(Y, Ŷ ) =
∑

ŷ∈Ŷ ,y∈Y

y log(ŷ) + (1− y) log(1− ŷ). (5.9)

In the case of the generator, it describes the objective of fooling the discriminator into

thinking the simulated patches are real

LGdisc
= LBC(1, d

sim). (5.10)

The total loss of the generator is simply the sum with some coefficients ci.

LG = c0LGpx2px + c1LGdisc
(5.11)

The discriminator loss is made up of two components. The first describes the discrimina-

tion between real patches with real incidence angles and real patches with wrong incidence

angles:

LDreal
= LBC(1|θreal

ia ==θsim
ia
, dreal), (5.12)

where 1|θreal
ia =θsim

ia
denotes a vector which is equal to 1 where θrealia == θsimia and 0 otherwise.

This means the patches with real θia should be mapped to 1 and those with offset θia to 0 to
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minimise the loss. The second discriminator loss term monitors the success of recognising

the simulated patches (mapping those to 0), again using a binary cross-entropy loss.

LDsim
= LBC(0, dsim). (5.13)

The total loss for the discriminator is given by the sum

LD = c2LDreal
+ c3LDsim . (5.14)

The coefficients used for training are as follows:

c0 = 50, c1 = 0.1, c2 = 0.1, c3 = 0.1, (5.15)

Finally, some reasoning for the key hyper-parameters is given here. At first glance, it might

seem that the pixel-to-pixel loss weighted with c0 is far more important than the rest.

However, this is not true, as the loss term is a mean pixel-wise squared error, which returns

small values (on the order of 10-3) for images scaled to pixel brightnesses that lie mostly

in the interval [0, 1]. Note that they were initially chosen heuristically and then iterated

on empirically to obtain a reliably converging network. The model was trained with the

commonly used Adam optimiser from Kingma and Ba, 2014. The learning rate was set to

10-6. Low learning rates help stabilise adversarial training. The patch size of 256 x 256

pixels is a compromise of contextual information and computing power, but it is also worth

noting that the task of the discriminator - which was already the more powerful network

in this setup - is made simpler with larger patches. This imbalance could pose additional

problems at larger patch sizes and is one of the reasons why the incidence angle extraction

is more difficult at full resolution. The output patch size is 64x64, a quarter of the input

resolution.

The described architecture was trained in approximately 107 samples, taking 24 hours

on a NVIDIA RTX 2060 SUPER graphics card (specifications can be found in Nvidia,

n.d.), using the tensorflow, numpy and scipy libraries (see Martıń Abadi et al., 2015; Harris

et al., 2020; Virtanen et al., 2020 for implementation). Evaluation of a full scene takes

approximately 5 minutes.

5.5 Evaluation

Setting Expectations

Before jumping to the results of the classifier, setting some expectations for the perfor-

mance seems reasonable, outlining what this algorithm can and cannot achieve. The GAN

method improves the generator’s prediction by fooling the discriminator. As the discrimina-

tor only sees the newly generated scenes, not the dependencies themselves, there are some

implications for the results. Firstly, the spatial resolution of the extracted incidence angle

dependencies is most probably not going to be at the resolution of the SAR data. As the

gradients only have to be close enough to bring the backscatter into a reasonable range for
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the newly generated patches, the edges between different ice types and other small-scale

features are most likely not going to be predicted accurately, as they are not large enough

to be useful for discrimination. For the same reason, one should expect the gradients to be

a little smaller (in magnitude) than the measurements: they just need to be in a believable

range to be realistic. As sea ice naturally has a broader spread of intensities, even for ice

of the same class, it is enough to fool the discriminator with gradients a little smaller than

observed in nature.

Apart from discussing these shortcomings of the method, one should also define what

would be considered a success: The distribution of predicted incidence angle dependencies

for FYI and MYI should be clearly different from one another (at least in HH, where this

has been observed previously) and most importantly the predictions should be consistent

with previous measurements and consistent across ice of the same type (identified visually).

For example, it is expected that the first-year ice slopes are of greater magnitude than those

of multiyear ice in HH. From a qualitative perspective, it also means one should be able to

clearly see the separation between younger and older when looking at images of the in the

gradients.

Results

After training the above-described architecture, the results do not immediately show if the

predicted incidence angle behaviours of the generator are in accordance with measurements.

Although one cannot measure the incidence angle behaviour directly for each pixel, it is

possible to calculate it for an ensemble of pixels of the same ice type. To get such ice types,

the near coincident ICESat-2 measurements mentioned earlier in the paper are used.

The ICESat-2 ATL10 measurements are spaced by approximately 13m, as also given

by Neumann et al., 2019, resulting in 3-4 measurements for one 40x40m Sentinel-1 pixel.

Patches of 4x4 pixels are grouped by downsampling the Sentinel-1 data, giving roughly 15

ICESat-2 measurements per group for increased certainty of the measurements. Then, it is

possible to use the mean of these measurements to do the selection of classes. To measure

the incidence angle dependence of each class, the Sentinel-1 backscatter σnorm at each pixel

belonging to that class is placed into one of twenty bins in the incidence angle range. The

mean backscatters in the bins are then fitted with a linear function, giving a measured slope

(indicated as vertical lines in fig. 5.7).

Comparing the slopes measured using the ICESat-2 data with previously derived inci-

dence angle slopes for varying ice types (fig. 5.1), the MYI slope lies in the expected domain,

whilst the FYI slope is smaller than in previous studies. Part of the reason might come from

looking at the earlier freeze-up season, whilst most of the measurements compared with

are from winter. Another reason could be that the ice grouped in this class is selected by

freeboard thresholding alone. Natural ice diversity and varying snow cover will result in

other ice types also lying in this freeboard range and thus the classes are not pure. FYI is

reported to have the smallest incidence angle slope (fig. 5.1). Thus the accidental inclusion
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(a) HH slopes uncalibrated

(b) HH slopes calibrated

(c) HV slopes

Figure 5.7: Histograms depicting the model’s predicted slopes for FYI (green) and MYI (red).

Values measured using the coincident ICESat-2 data are shown as vertical lines.
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Figure 5.8: Extracted slopes (left column) for a ICESat-1 EW acquisition from the 31. October

2021 over the Arctic sea ice and the original HH and HV channels (right column) in dB. The

HH slopes are depicted between -0.25 to -0.05 and the HV slopes between -0.15 and 0.05.
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Figure 5.9: Extracted slopes (left column) for a Sentinel-1 EW acquisition from the 10. October

2019 over the Arctic sea ice and the original HH and HV channels (right column) in dB. The

HH slopes are depicted between -0.25 to -0.05 and the HV slopes between -0.15 and 0.05.

126



LEARNING FROM UNLABELLED SCENES 5.6. DEMONSTRATION

of other ice in what was here defined as FYI could be a reason for the values measured here.

For example, the lower threshold might not reliably keep out young ice with high incidence

angle dependencies. It is worth noting that this has no bearing on the trained network.

To calculate the model predictions, the generator is run on each patch, which contains

labelled pixels and gathers the parameters from the output. These parameters are then

plotted in a histogram and compared those with the slopes measured using the ICESat-2

derived classes (fig. 5.7 a, and c).

In figure 5.7, one can see that there is a separation between slopes predicted from first-

year ice and multiyear ice, similar to the ICESat-2 measurements. The measured values

are marked as vertical lines. From the separation of the distributions, one can conclude

that the algorithm has managed to successfully distinguish FYI and MYI incidence angle

dependencies. In the HH band, a general underestimation of the slopes (by approximately

6.5%) is seen, which aligns with the expectations set for the algorithm earlier. To compensate

for underestimation, the results are calibrated by multiplication with a constant. This

was chosen so that it minimises the squared distance between the modes of the predicted

distributions and the measurements from ICESat-2. The calibrated results are also shown

in 5.7.

As was previously mentioned, some mixing of the classes will have occurred, which skews

the distributions slightly. Remarkably, the FYI distribution in the HV band has split into one

part partially overlapping with and one part clearly separated from the MYI distribution.

This reinforces the notion of increased class mixing happening here. The results for the HV

band also suggest that the slopes here are just as valuable to separate ice types as the HH

slopes.

5.6 Demonstration

In this section, an example of extracted incidence angle dependencies from a Sentinel-1 scene

and a clustering analysis for improved visualisation of the results is shown. Then the method

is compared with the global clustering based method from Cristea et al., 2020, and the use

of the encoded intermediate features for ice classification is explored on an example basis.

The following analysis uses two of the 59 scenes in the dataset, which are representative

of the performance of the classifier and exemplify both the strengths and difficulties of the

approach. Figure 5.8 shows the extracted slopes for a Sentinel-1 scene from the 31. October

2021, which shows an area where FYI (upper right) meets older MYI (lower left). Some FYI

in leads can also be identified in the MYI region. Visually it is quite clear that the extracted

parameters correlate spatially with different stages of ice development: As expected from

previous measurements the younger ice has lower HH slopes than the older ice. The leads

are also well picked out by the slopes. In a scene from the 10th of October 2019 (fig. 5.9) on

can see that leads in the older ice are easily picked out by the classifier. An added feature are

some leads which show higher HH slope. Past measurements have shown increased slopes
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Figure 5.10: Information criteria scores (y-axis) of GMMs fitted to the extracted parameter

space for various amounts of clusters (x-axis). Note that the BIC (red) and AIC (blue) are

largely overlapping.

for young ice (fig. 5.1), although not quite as large as these predicted here. Nonetheless, it

is promising that even differentiation between sparse young ice types might be possible with

this approach.

Having extracted the incidence angles without any prior knowledge of different ice types,

a reasonable next step could be to cluster the extracted parameter space of slopes, intercepts

and noise. To do so a Gaussian mixture model (GMM) as in Reynolds, 2009, implemented

the scipy library by Virtanen et al., 2020, is used. As the number of clusters that are present

in the data is not known, first the number of clusters is varied continually while observing the

model performance using Akaike’s Information Criterion (AIC) and the Bayesian Informa-

tion Criterion (BIC) (fig. 5.10). This is a common practice approach when fitting clustering

models (e.g. Fraley and Raftery, 2002). As both criteria are continuously decreasing, the

analysis suggests that the data extracted does not originate from clusters that are separable

in this feature space (or not from clusters at all, but from continuous distributions). As a

compromise, a GMM using six clusters is used in the following.

After selecting and training a GMM, the coincident ICESat-2 data are used to quali-

tatively relate the clusters to the ice stage of development for visualisation purposes. To

achieve this, all patches with ICESat-2 derived labels are evaluated, giving six parameters

for each pixel (slopes, intercepts and noise values), to be used for clustering. Then the clus-

ters are sorted according to average freeboard, where cluster 1 has the lowest and cluster 6

has the highest. Mind that not all ice types mentioned in fig 5.1 are separable by freeboard,

as other properties can play a role. The results of clustering the parameter space for the

scene from figure 5.9 can be seen in figure 5.11. One can see that the lowest classes corre-

spond to young ice areas, whilst the highest class is likely related to ice deformation features

such as ridges. The classes in between cover a spectrum from level first-year to multiyear

ice. Overall the results show off strong correlations between different ice classes and the

feature space that is clustered. However, a small area in the right of the scene seems to have

some results that don’t quite align with expectations, as the ice predicted to be of cluster 3
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Figure 5.11: Clustered parameter space of the example scene shown in figure 5.9 with clusters

sorted by increase in freeboard according to ICESat-2 data.

looks very similar in the satellite imagery to that belonging to cluster 5. This scene is quite

representative of all the 59 clustered scenes - largely, the clustering looks like a reasonable

classification, but there are some regions that do not quite align with expectations. This

could have a multitude of reasons and is a common difficulty of SAR sea ice classifications.

Visually the incidence angle dependence clustering seems to have a comparable quality to

existing ice classification methods without having used any labels for training.

5.7 Comparison with GMM

So far, the results of the GAN setup have looked promising. To truly gauge the quality

of the incidence angle dependent slopes, it is compared with a gaussian mixture model

(GMM) clustering based approach by Cristea et al., 2020 for all scenes. It is immediately

apparent that the two ways of measuring give different results, with the global clustering

method qualitatively looking significantly better than the local GAN based results, with

higher contrast and sharper outlines between classes. The GAN based approach does seem

to be better at handling the swath edges, however. An example of this is shown in figure

5.12.

Given this result, using the GAN based technique to extract incidence angle dependences

should not be the preferred option. In the cases which are difficult for the clustering tech-

nique, as outlined in the introduction, it is probably still better to adapt the clustering based

method than to use the GAN method. However, the original aim of using the incidence angle

dependencies was not purely to predict them directly but also to serve as a proxy label for

ice types. Apart from the naive clustering of output variables above, one can also investigate
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Figure 5.12: Incidence angle dependent slopes from a Sentinel-1 EW scene of the central Arctic.

Once predicted by the GAN setup introduced here (l) and once calculated using a Gaussian

mixture model (right) according to work published by Cristea et al., 2020. The scene is from

the third of November 2018.
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(a) 12/32 features visualised spatially (b) average feature vectors

Figure 5.13: Visualisation of the feature space extracted by the GAN setup. The features space

is 32 dimensional. 12 of these features are shown in a. for an Sentinel-1 scene. The average

feature vector for three ice classes - as given by the ICESat-2 data - are shown in b.

the intermediate encodings, which parametrise both spatial and incidence angle dependence

information. The information contained in the encoded space is 32 dimensional per pixel.

Quantifying the information content in these 32 features is a not an easy task. Visualisation

of a subset of these features in 5.13a shows that they are diverse and have spatial complexity

similar to that of the original image. To understand how these features relate to different

ice classes, the average feature vector for OW/YI, FYI and MYI classes are computed as

suggested by the ICESat-2 ATL-10 data in figure 5.13b. This visualisation clearly shows

how the features do vary by ice type and gives the impression that features valuable to ice

type classification have been learned by the network without any supervision.

A quick experiment is conducted as per the usefulness of these features for classification.

Five of the 59 scenes in this study are coarsely labelled manually, with 5 ice classes spanning

open water, young ice, first-year ice, multi-year ice and heavily ridged multi-year ice. An

example of a scene with labels is shown in figure 5.14a. Using these manual labels, a

simple dense network with one hidden layer was trained to predict the labels from the 32

dimensional features space as inputs. This is compared with a Unet, which is trained using

the SAR data as an input instead. Because the encoder that generated the 32 dimensional

features space is also a Unet, the architecture of both of these models is essentially the same;

only one has been pre-trained in the GAN setup, and the other has not.

The results of the comparison in figure 5.14c versus figure 5.14d speak for themselves.

The Unet has no chance to extrapolate the sparse manual labels in a sensible way, strongly

overfitting to the training samples. In contrast, the model learning from the feature space

manages to extrapolate the labels and gives reasonable results on unseen data.

5.8 Discussion

In light of the expectations set earlier, the incidence angle predictor is performing at a

reasonable level: There is a clear separation between the classes, and the predicted values
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(a) manual labelled scene (b) test scene

(c) unet classification (d) GAN classification

Figure 5.14: Examples from a quick comparison demonstrating the use of the derived features,

as seen in figure 5.13. Subfigure a. shows manual labels from five classes overlayed with a false

colour composition of a SAR scene. The classes are heavily deformed ice (red), MYI (yellow),

FYI (magenta), YI (teal) and open water (blue) The RGB channels are made up of HH, HV,

and HH/HV. In subfigure b., the test scene is shown with the same colour composition. In c.,

the Unet classification is shown for the test scene, and in d., the classification that used the

GAN-derived features is given.
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match up with measurements using ICESat-2 altimetry. Spatial features such as leads or

young ice inclusions are clearly visible in extracted slopes, as are transitions between older

and younger ice areas. The predictor also suggests diverse incidence angle gradients across

ice types in the HV polarisation, and the derived feature space is sensible to ice types. As

dependencies from similar HV measurements are not readily available, it will be interesting

to see how the derived gradients compare with future observations. High gradients in young

ice as observed in Liu, Guo, et al., 2015 are also predicted by the classifier. Although these

young ice occurrences are rather rare in the scenes used here, the classifier has still learned

about the diversity of the gradients of young ice. in principle, this sensitivity, even to less

common phenomena, is a promising sign that even sparsely present ice types are picked

up by both discriminator and generator. The results for FYI and MYI are validated by

coincident ICESat-2 measurements, but they only can confirm that the average trend is

correct. A comparison with the clustering based method by Cristea et al., 2020 shows that

the extracted incidence angles seem of lower quality both in the spatial resolution and in

the precision of the extraction sense.

Whilst the calibration using ICESat-2 could be improved with some more detailed ice

type maps with more different ice types and less class mixing, this would not bring up the

quality enough to match the other method, as the calibration can only affect the absolute

values, but not the spatial aspect or relative contrast between ice types.

The other aim of the algorithm is not to use the incidence angles explicitly but instead

to use the outputs of the encoder in the middle of the network for sea ice classification. The

idea behind this is that to be able to predict the incidence angle dependence of ice from only

local data, one would also need to implicitly learn about the ice type, or at least a variety

of variables, which are also useful for ice type classification. The common approach to make

use of the symbiotic nature of these two tasks is to classify from the encoded layer, as was

briefly demonstrated above. The approach discussed here opens an avenue to leverage the

vast amounts of satellite scenes captured to learn about the diverse states of sea ice without

additional data. A promising result of this setup is that the network’s performance is not

limited by human inputs. This marks a step in the direction of sea ice property retrieval

from SAR with capabilities surpassing those of a human observer. Because it can be trained

with as many scenes as available, this should make the predictions very robust.

Unsupervised ice-water discrimination from incidence angle dependence has been demon-

strated in Cristea et al., 2020, making use of the significantly steeper incidence angle slope

of water in the HH channel. Whilst studies from Mäkynen, Kern, et al., 2014 have shown

little correlation with melt pond fraction and the radar backscatter, open water and melt

ponds have significantly different incidence angle dependence compared to sea ice. Thus, this

technology might open up a way to predict meltpond fractions from SAR, as the incidence

angle dependence should be correlated with the melt pond fraction.

133



5.9. CONCLUSION LEARNING FROM UNLABELLED SCENES

5.9 Conclusion

In this chapter, the possibilities for extracting information important to sea ice classification

were explored, using incidence angle dependencies as a proxy label for ice types. The research

shows that the slopes calculated from local data only cannot match the quality of those

calculated from global clustering. However, the features calculated in the encoding part of

the network prove very useful for ice classification, especially for sparse labels. In summary,

the work in this chapter demonstrates how incidence angle dependencies can be used as

a proxy for ice class labels in a fruitful manner. Combined with spatial encoding, a deep

learning setup can learn features which are very useful for ice classification from entirely

unlabelled data, greatly reducing the need for large amounts of ground truth data that has

typically held back machine learning approaches in sea ice classification. So far this has

only been demonstrated for coarse manual labels and in an example-based manner. Also,

the encoding was only at a quarter of the resolution of the input scene. If the same holds

true for high-resolution labels and the full resolution of the input data has not yet been

determined.
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6.1 Overview

The last chapter showed some first results, that incidence angle dependencies might serve as

valuable proxies for ice type labels. However, the incidence angle dependent slopes predicted

by the GAN setup were not of as high quality as those extracted using a linearly varying

Gaussian mixture model. This suggested that the intermediate features that were extracted,

were also suboptimal. It also was not yet clear if the features are of high enough fidelity

to be useful for high resolution classification. In this chapter, directly using the slopes

extracted using the global clustering technique as proxy labels is explored to extrapolate the

ice development as derived from ICESat-2 freeboard measurements. The resulting method

is an architecture agnostic approach that deals with the ground truth problem of sea ice

remote sensing. When using it, one only needs a small amount of ground truth data, whilst

the vast majority (> 99.99%) of network parameters are trained on unlabelled data. A

paper containing most of the work presented here has been submitted to a peer-reviewed

journal and is currently under review. This paper is first-authored by the author of this

thesis, who conducted the research presented in the paper and in this chapter.

6.2 Introduction

One approach to monitor sea ice that has been discussed at length in the previous chapters,

are synthetic aperture radar (SAR) instruments, capable of delivering year-round backscatter

measurements that are sensitive to changes in the ice cover, yet more difficult to evaluate

than optical satellite due to the diverse backscattering properties that sea ice admits in all

its different stages of development. An alternative approach, which was briefly introduced

to generate validation data in the previous chapter, is the use of altimeters, which measure

the distance to the ground in nadir with footprint sizes on the order of tens of meters.

Altimeters are very accurate and give precise information on the distance of the satellite to

the scatterer on the ground. If leads in the ice open up and can be detected, this distance can

then be converted to a freeboard measurement. This total height of the ice and snow above

the water is typically very indicative of the development of the ice underneath. The big

drawback of the altimetry measurement is that it is spatially very sparse in the transversal

direction of the flight path. Essentially, the measurement is only along thin lines over the

Arctic. Measurements from multiple flights can in principle be combined to give a more

detailed perspective. Because of the dynamic nature of sea ice, however, it is not so easy

to spatially relate multiple overflights, and resulting products are typically constrained to a

more regional scale, where drift can be ignored.

In some sense, the SAR and altimetry measurements are complementary: SAR has great

two dimensional coverage, but it is not easy to convert the collected data to information

concerning the development of the ice. Altimetry, on the other hand, has very limited

spatial coverage, but the variable it measures is very precise, easy to interpret and gives

concrete information about the underlying ice. An existing method by Karvonen, Rinne, et
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Figure 6.1: Visualisation of how the freeboard distribution (top) from an ATL-10 track is con-

verted to an ice development index (bottom).

al., 2022 combines Sentinel-1 and Cryosat-2 measurements of ice thickness. Their approach

focuses on larger spatial scales in the region of kilometres and on situations where both

measurements are available, using the SAR data to interpolate between the altimetry data.

In this chapter, a deep learning method is introduced to extrapolate ICESat-2 altimetry-

derived ice development information to Sentinel-1 SAR scenes at 100m resolution. This

builds on the knowledge generated in the previous chapter, using supervised learning of the

incidence angle slopes acquired from the global clustering technique by Cristea et al., 2020

to replace the GAN setup. The final model is no longer dependent on the altimetry data

being present in the area. At this resolution, one is still able to capture processes such as

leads opening up, the formation of large ridged areas and the breakup of the ice sheet in the

marginal ice zone.

The aforementioned spatial decorrelation of non-simultaneous acquisitions due to the sea

ice drift plays a central role in this endeavour. In this work, the SAR scenes are resampled

to 100 by 100 metres, to mitigate the effect of speckle on various parts of the procedure.

In contrast to the previous chapter this approach does not downsample the encodings by a

factor of four, so there is still an effective upgrade in resolution from 160 to 100 metres. To

gauge the maximum sensible time difference between two measurements, one can assume a

strong drift will result in displacement of 12 kilometres a day or 500 metres an hour. Then,

50 m (half of the pixel size of the downsampled SAR product) is covered in 10 minutes. Thus,

constraining the time difference between the two measurements to at most 10 minutes should

be sufficient for the measurements to still be spatially correlated and the same data as in

the previous chapter can be used.

Relating freeboard height to ice development is not straightforward because the variable
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layer of snow on top obscures the relation between freeboard and thickness. To obtain a

somewhat meaningful measure relating the altimetry to ice development that generalises to

a variety of ice conditions, this first foray into ICESat-2 and Sentinel-1 fusion will concern

itself only with scenes acquired in October and November, when the older multiyear ice

and freshly consolidated first-year ice are able to be separated from the bimodal nature of

the freeboard distribution (fig. 6.1). In this instance the characteristics of the distribution

determine the ice development measure.

The constraint to small time differences immediately leads to only a small amount of

overlap between the measurements. Part of the reason is that the availability of the ATL-10

freeboard product of ICESat-2 requires both the absence of clouds as well as the presence

of leads in the ice. Further constraints to a certain part of the year mean that the amount

of available overlapping data is not large. Between 2018 and 2021, there are approximately

60 overlapping measurement pairs that fulfil these criteria and have a substantial overlap

of more than a hundred Sentinel-1 pixels. Of these scenes, 48 admitted a clearly bimodal

freeboard distribution needed to obtain a consistent measure of ice development that allowed

to extract an ice development index as outlined below in the methodology section. The

number of overlapping resampled Sentinel-1 pixels (100x100m) in this dataset is around

20000, which is not a large amount of data when looking to train data-driven algorithms.

In this work, the input window is a 256 x 256 (= 65536) pixel image patch, so the total

number of labelled pixels corresponds to less than a third of a single image patch.

The results from chapter 4 showed, that a substantial difference is made when the high-

resolution classifier is able to learn from and make use of the spatial distribution of la-

bels/ice classes. Because this 2-dimensional spatial distribution cannot be present in the 1-

dimensional altimeter track, it is expected that traditional neural network-based approaches

not tuned to deal with the sparsity of the data will not give satisfactory results here.

Because data sparsity can be a substantial difficulty for data driven models, the work

in the previous chapter is expanded upon to show that incidence angle dependencies of the

SAR backscatter – obtained from a linearly variable Gaussian mixture model Cristea et al.,

2020 – can be used as a proxy measurement during training. This is done through a range

of experiments and a novel transfer learning approach. To recap the core idea, remember

that ice development and incidence angle dependence are correlated (see fig. 5.1), and thus

the features needed to learn one of these variables are very similar to the features needed to

learn the other. A model trained on the proxy data must therefore have learned high-level

features that can be leveraged to fit the real (target) data. This is a concept known as

transfer learning, which is very well established in machine learning (for an overview, see

for example Weiss et al., 2016). In the previous chapter this task was formulated as a self-

supervised task, but results of the incidence angle failed to live up to the global technique.

The use of incidence angle dependencies for sea ice classification is explored in existing

classifiers Lohse et al., 2021; Guo et al., 2022, which do not make use of deep learning or

machine vision techniques. A large range of deep learning classifiers have been researched
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Figure 6.2: Histogram of label occurence for ice development index in the training dataset. The

density is used as an inverse weight in the later training of the networks, to obtain a more

balanced predictor.

that use manual annotations or ice charts as ’ground truth’, but they are not designed to

work with only sparse training data (e.g. Ressel, Frost, et al., 2015; Boulze et al., 2020; Ullah

et al., 2021; Wang and Li, 2021; Nagi et al., 2021; Murashkin and Frost, 2021; Ren, Li, et al.,

2022; Kortum, Singha, and Spreen, 2022). This includes all algorithms mentioned in the

literature overview section 2.9. Another concept that is explored in this work is to further

enrich the extracted features by combining the transfer learning task with an encoding task,

the same as in the last chapter. This forces the network to encode a parametrisation of the

local backscatter values and the predicted incidence angle dependencies at the same time.

Autoencoders have been a part of the machine learning landscape for decades, dating back

to the 1980’s Goodfellow, Bengio, et al., 2016. The final learning of the ice development

measure is then trained from the encoded layer (latent space). Compressing complex image

data into a latent space before further processing is also a well established approach in the

machine learning field (e.g. Ha and Schmidhuber, 2018; Wahlström et al., 2014).

6.3 Data

The data used in this study is the same as in the previous chapter, except that the SAR

data is resampled to 100 by 100m pixel size, to obtain more freeboard measurements per

pixel. In the previous chapter this was not necessary, as the encoder network downsampled

the product by a factor of 4 to 160 by 160m pixel size. For details of the data see section

5.3. An example of IceSAT-2 and Sentinel-1 data can be seen in figure 6.3
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(a) (b)

(c) (d)

(e)

Figure 6.3: A 256 x 256 training patch of Sentinel-1 EW HH backscatter overlayed with the ice

development index extracted from ICESat-2 altimetry as in figure 6.1.
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(a) Backscatter

(b) Slopes

(c) Backscatter calibrated to 30◦

Figure 6.4: Plots of the backscatter and slopes from a chosen scene captured north of greenland

next to the entrance of the Fram Straight on November 30th 2019. The last image shows the

backscatter once it has been calibrated to 30◦ across the scene, using the slopes above.
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6.4 Methodology

6.4.1 Ice Development Index

The freeboard derived from the altimetry measurement is only 1-dimensional. Whilst it

might be possible to segment this to obtain a number of classes, that would lead to a loss of

information because of the discretisation of a continuous variable. Predicting freeboard or

ice thickness from SAR directly, however, is very difficult because it is heavily dependent on

snowfall and electromagnetic waves at C-band only have small penetration depth in arctic sea

ice. Instead, we aim to also extract a one-dimensional index of ice development, where the

snow on top of the ice can then be interpreted as some label noise. This makes it significantly

easier to deal with than the bias one would introduce by segmenting this into classes. In

chapter 4, the local surface roughness was additionally available to segment classes, so this

effect was not as prevalent there. The index is constructed by using a Gaussian mixture

to fit the bimodal freeboard distribution of a given ATL-10 track. Index 0 corresponds to

0m freeboard. The mean of the Gaussian fitting the first-year ice distribution is set to 0.25.

The point where the probability of belonging to multiyear or first-year is equal corresponds

to development index equal to 0.5 . The mean of the Gaussian fitting the multiyear ice is

set to index value 0.75; all values greater than the MYI mode plus four times the standard

deviation of that Gaussian is set to 1. All values in between are linearly stretched between

the above-mentioned tie points. The index definition is illustrated in figure 6.1. From the

index more concrete classifications into first- and multiyear ice, heavily ridged areas or young

ice areas can be easily achieved via thresholding.

6.4.2 The Incidence Angle Dependence Estimation Method

In this work, the incidence angle dependence of sea ice backscatter will play a central role. To

briefly summarise what has been established in the previous chapters: This dependence has

been observed to be approximately linear in the past Onstott, 1992 and has been shown to

correlate with the sea ice development (figure 5.1). In principle, it cannot be measured with

a single satellite acquisition. Under the reasonable assumption that the same ice type occurs

in a scene at various incidence angles, however, it can be approximated using a clustering

approach: To extract the incidence angle dependence (slope) for every pixel in the image,

the previously mentioned technique developed by Cristea et al., 2020 is used, which makes

use of the linearity of the relationship of brightness and incidence angle. Remember, that

the core concept is to fit a multivariate (for HH and HV channels) Gaussian mixture model

to the measured backscatter values, where the mean of the Gaussian clusters is allowed

to vary linearly by incidence angle whilst variance is kept constant. The linear variation

(slope) of the clusters then corresponds to the incidence angle dependence of sea ice in

that cluster. To obtain continuous slopes for this work, slopes are interpolated from the

slopes of the different clusters for each pixel, weighted with the probability of belonging to

the corresponding cluster. It is crucial to know for further tasks in this network, that the
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Figure 6.5: The network configuration presented in this chapter. Network predictions are addi-

tionally labelled with a * symbol. In the context of transfer learning, the unsupervised task is

the transfer task and the supervised task is the target task.

incidence angle variance in a single patch of the image used for training is not large enough

to infer the incidence angle dependent slopes in this manner. This clustering technique is

only feasible on a scene with a larger incidence angle span or a multitude of scenes spanning

the space.

6.4.3 Networks

Here the network architectures used in this work are described. None of them are new to

the reader of this thesis, but the information below may serve as a reminder. In general,

however, the developed methods are architecture-agnostic, meaning they do not depend on

the exact architecture used. This means the core idea is built on focusing on how to use

available data for models to converge to a desired solution, not to find the best possible

network architectures to do this. As a result, the techniques described here should translate

freely to any other network architectures with image-like output dimensions. A visualisation

of the networks is shown in figure 6.5. One of the building blocks used in this work is a

simple out-of-the-box U-net Ronneberger et al., 2015. The U-net has established itself as a

reliable baseline image-to-image model and has also been shown to perform competitively

in ice classification tasks from SAR (e.g. Nagi et al., 2021; Ren, Li, et al., 2022).

To extract features valuable for ice classification without any labels available, this work

follows two strategies as devised in the previous chapter: Firstly, the incidence angle slopes

are used as a proxy for ice type labels. Because these two quantities are correlated, it is

reasonable to assume that the features needed to predict one of the quantities are transferable

to predicting the other. As mentioned before the spatial distributions of the two should be
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very similar, therefore fulfilling the criterion for good classification set in chapter 4. Secondly,

the surrounding local spatial information of the scene is encoded into the feature vectors. As

in the last chapter, these two strategies can be aligned by building a network configuration,

where for every pixel an encoding is generated that parameterises the local neighbourhood

of the SAR image as well as the neighbourhood of the incidence angle dependencies. In

contrast to the last chapter, the mixture model extracted slopes allows to generate these

encodings at full resolution of the original (rather than a fourth of the resolution).

The overarching idea of this transfer learning is to train the majority of parameters of a

network on a proxy task, where data is abundant and where the internal features derived by

the network are also valuable for the target task. Once the network has converged on the

proxy data, the final layer(s) are reinitialised and retrained on the sparse data describing

the target task. The rest of the network parameters are kept constant during this final

training step. In our case the target task is deriving the altimetry derived ice development

index, and the proxy task is parametrising the SAR image and the local incidence angle

dependencies. The idea of fitting only a small number of parameters to the sparse data is

to avoid overfitting and to generalise well, a strategy that was shown to be successful in

chapter 3.

The Encoding Task

As mentioned above, the image-to-image network is set up in such a way that the output

encodes a parametrisation of the local SAR backscatter as well as a prediction for the

incidence angle dependencies for every pixel. This means the input to the encoding task is

the backscatter in both polarisation channels (HH and HV) as well as the incidence angle,

and the output is also the two backscatter channels plus two channels of the respective

incidence angle dependencies. In a convolutional (auto-)encoder setup, this would mean

having a bottleneck in the centre of the network, which has reduced spatial dimensions and

thus would not result in encoding for every pixel. Instead, the approach here is to take a

given image-to-image network as an encoder E (we will use a U-net in this investigation, but

any other image-to-image architecture could be used) and to expand its output channels to

the number of encoded features and then drop out the majority of encoded pixels, so that

all those that remain need to contain the information about the neighbourhood to be able

to reconstruct the entire image patch later on. For this research, we decided on a number

of 32 features. Thus, the encoder E can be described as

E : Input ∈M[256,256,3] 7→ Output ∈M[256,256,32]

(σHH , σHV , θ) → ( Features ),
(6.1)

where Mdims denotes the space of real matrices with dimensions dims and θ is the local

incidence angle. We use the hat σ̂ to describe the predicted values and no hat to describe

real values.

Additionally, a decoder D is introduced. This is another image-to-image network, that
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has as input the encoded image with 32 channels and as output the four original output

channels (backscatter and incidence angle slopes), expressible as

D : Input ∈M[256,256,32] 7→ Output ∈M[256,256,4]

( Features ) → (σ̂HH , σ̂HV , ˆ∂θσHH , ˆ∂θσHV ).
(6.2)

Here the incidence angle slopes of polarisation channel XX are written as ∂θσXX . Between

passing from the encoder to the decoder, there is a dropout layer DO.98, that randomly

drops out 98% of encoded pixels. Thereby, the decoder is forced to reconstruct the outputs

from the resulting sparse matrix. Before dropout, this results exactly in an encoded space

as desired, with encodings for every pixel. The exact architectures of the encoder (U-net)

and the decoder used in this work are found in the appendix 6.7, tables 6.3 and 6.5. The

entire encoding task from start to end can be expressed as

Enc = (D ◦DO.98 ◦ E)

Enc : (σHH , σHV , θ) → (σ̂HH , σ̂HV , ˆ∂θσHH , ˆ∂θσHV )
(6.3)

The total loss function LEnc of this step is just a sum of the mean squared errors:

LEnc = 0.5 MSE((σHH , σHV ), (σ̂HH , σ̂HV )) +

500 MSE((∂σHH , ∂σHV ), (∂̂σHH , ∂̂σHV ))
(6.4)

The co-factors of 0.5 and 500 were adjusted manually to compensate for the different scales of

the two properties. All models are trained with the Adam optimiser, developed by Kingma

and Ba, 2014, and a learning rate of 10−4.

The encoding task is trained on all available scenes, and patches are selected randomly

from the data during training at run-time. In principle, any number of scenes could be used

here, as no additional information is required. Because the incidence angle dependencies have

to be predicted and are not given as input, the encoder is forced to learn the underlying

logic of how to predict the slopes from the intensity images. The same logic should also be

useful for predicting the ice development index.

An alternative approach could have been to follow a traditional auto-encoder-like setup

and to retrain a new decoder mapping from the bottleneck to the ice development index for

the target task. However, such a decoder is naturally rich in parameters and thus would

undermine the transfer learning paradigm of keeping the number of parameters learned

on the target task small. In turn, this would make the target task more susceptible to

overfitting.

The Target Task

For the target task, the entire encoder is kept constant. On top, a tiny model F with only

a single five-neuron hidden layer is trained to map the 32 features output by the encoder

to the ice development index δ (see appendix 6.7, table 6.4). That way over-fitting to the

sparse data can be greatly reduced whilst still outputting a prediction at the resolution of
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the input image. One can express the target task as

Tar = (F ◦ E)

Tar : (σHH , σHV , θ) → (δ̂),
(6.5)

with a standard loss function

LTar =MSE(δ, δ̂). (6.6)

Here, δ̂ is the ice development index as retrieved from ICESat-2 and δ is the ice development

index predicted by the model.

6.4.4 Experiments

The following compares the performance of the transfer learned model with a direct predic-

tion of the ice development index without transfer learning using the same U-net architecture

as is used in the encoding task. Due to choosing the same U-net architecture as a backbone

to the different approaches, the only difference in performance comes from the configura-

tion of the learning tasks and not from the architecture itself. As mentioned previously the

transfer learning and encoding technique presented here should thus be freely transferable

to any other architecture.

We also test some other improvements that could be made by exploiting the incidence

angle dependences in different ways, by either using them as additional input to the classifier

and/or using them to normalise the input image to backscatter as would be seen at 30 degree

incidence angle across the entire image.

In total, there are 48 near-coincident (we allow for a maximum time difference of 10

minutes) Sentinel-1 EW mode acquisitions and ICESat-2 ATL-10 tracks. These scenes are

randomly split into 30 scenes ( 12000 pixels) for the training, 9 scenes ( 3000 pixels) for the

development set and 9 scenes ( 4000 pixels) for the test set. The development set is used to

stop training at an optimal point and the test set is what the performances are evaluated

on.

Some examples of SAR backscatter overlaid with the extracted ice development indices

from altimetry can be found in figure 6.3.

6.5 Results

For reference, the losses of the encoding task are given here: The encoding network (without

normalising the image first using the slopes from the GMM approach) performed with a root

mean squared error between the real and the reconstructed backscatter of approximately

1.5 dB and a root mean squared error of predicting the slopes around 0.05 dB/Deg. When

normalising the brightness as it would appear at an incidence angle of 30◦ for every pixel in

the scene, the estimation of the slopes improved to around 0.033 dB/Deg. The backscatter

reconstruction remained similarly accurate.
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Model avg. rmse std. rmse

Base 0.2039 0.00184

Base + Slopes 0.2057 0.00163

Base + IA cor. 0.2001 0.00522

Base + Slopes + IA cor. 0.1983 0.00768

Table 6.1: Test set performances of networks that employed the transfer learning strategy. The

root mean squared error and its standard deviation is given across 10 instances of the model

trained under the same conditions. ’Slopes’ indicates the slopes were also given directly as a

feature to the final classifier. ’IA cor.’ indicates the scenes were normalised to 30◦ incidence

angle using the slopes prior to ingestion into the network. The encoder architecture used here is a

U-net with 32 output channels. The decoder architecture uses consecutive normal and transpose

convolutions. Both can be found in detail in the appendix 6.7.

Model avg. rmse std. rmse

Base 0.2317 0.01560

Base + Slopes 0.2402 0.01078

Base + IA cor. 0.2399 0.00719

Base + Slopes + IA cor. 0.2404 0.00942

Table 6.2: Test set performances of networks that did not employ the transfer learning strategy.

The testing parameters are the same as in table 6.1. The architecture used here is a U-net with

one output channel.

(a) Training Set (b) Test Set

Figure 6.6: Model predictions without transfer learning on the training and test sets.
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(a) Training Set (b) Test Set

Figure 6.7: Model predictions with transfer learning on the training and test sets.

The tables 6.1 and 6.2 show how the inclusion of the encoding task improves the perfor-

mance of the network by a rmse of 15-20% from the base model. Although the improvement

is already significant, to truly evaluate the performances some more metrics are interesting.

For further evaluation, the best architecture trained with and without the encoding task are

chosen and their average predictions on the test set divided into 20 equally sized bins of ice

development index is plotted. The results for the bare U-net are shown in 6.6. It is clear that

even on the training set there is no meaningful separation between different ice development

stages and on the test set, the situation looks dire. it would be fair to say that the retrieval

task has failed in this case. When looking at the setup with the transfer learning in place

in figure 6.7, it is evident that some separation of the ice development stages has occurred,

although the extremes of the spectrum are still difficult to predict correctly. One needs to

keep in mind, though, that with the uncertainty of snow thickness and the uncertain cor-

relation of freeboard and ice development visible on SAR, the labels have to be considered

as being very noisy. The error bars show that this is particularly true for the younger ice

regime, where the data is sparsest (6.2). The uncertainty of the model is evident in the fact

that the predictions tend to lie close to 0.5. Visual inspection of the results suggests that

the network has captured core features of ice development and even advanced characteristics

such as heavily ridged areas, which are evidence of past deformation events.

In figure 6.8, the successes of the approach presented here in contrast to a naive prediction

without transfer learning is self-evident. Younger and older ice seem well separated with

the proposed technique and a difference in development between ice closer to the coast and

that drifting out towards the Fram Straight can be seen. Linear kinematic features can be

made out, with both leads and ridged areas being visible in the image. Some swath effects

do persist despite the denoising efforts that have been made.

To illustrate both the successes and shortcomings of the trained algorithm, we included a

predicted scene from the marginal ice zone, which can be seen in figure 6.9. Despite having
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(a) Without Encoding/Transfer Learning Task

(b) With Encoding/Transfer Learning Task

(c)

Figure 6.8: Model predictions without (a) and with (b) transfer learning and encoding of the

scene. The scenes backscatter properties are shown in figure 6.4. The ice development index is

shown in figure 6.1 and described in section 6.4.1.
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(a)

(b)

Figure 6.9: Scene from the marginal ice zone, predicted by a model using the transfer learning

and encoding technique. Note that during training no labels were included over open water or in

the marginal ice zone. The ice development index is shown in figure 6.1 and described in section

6.4.1.
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not trained in this area and no labels being available here, the algorithm has no problem

identifying open water and extrapolates even to these unseen regions well. However, some of

the younger ice close to the ice edge is predicted to have unreasonably high ice development

index.

To demonstrate the performance on an area that was more frequent in the training set,

a mosaic of five scenes is created in figure 6.10. From a visual persepectve, there seem

to be little discontinuities in the images, except for a patch of ice near the cost which is

likely young or fast ice (seen in fig 6.11 in the bottom right as a bright region without any

multiplicity due to spatial decorrelation between scenes). The other high standard deviations

in the classification seem to be due to the drift. Individually, the classification of the leads

is consistent across the scenes and the model seems robust to the difference in geometries of

the acquisitions.

6.6 Discussion

It is clear from both the quantitative as well as the qualitative results of the networks, how

the encoding task facilitates meaningful extrapolation of the altimetry-derived ice develop-

ment, capturing the key trend. The accuracy of the retrieval, however, is still sub-optimal

(figure 6.7) and hard to judge due to the underlying label uncertainty. When considering

that the amount of training data covers only a fifth of a single input patch to the network,

some remaining uncertainty should be expected. What is certain, however, is that with-

out the transfer and encoding methodology, extrapolation cannot be achieved with neural

networks. The further uses of the incidence angle slopes as an input feature do not show

significant improvement in the retrieval task on average. It is possible that the network is

prone to overfitting to these features during training. Using the slopes to calibrate the data

as it would be seen at 30◦ led to a significant increase in the variance in model training when

the encoding task is used. With slightly better mean performance and higher variance, it

comes as no surprise that the overall top 25% of all 40 models tested all come from instances

where this calibration has been undertaken.

So far, the extrapolation has been limited to only a certain season in the year, where

the extraction of an ice development index is relatively straightforward. Expanding this

approach to other seasons and the marginal ice zone will be more challenging. Part of the

reason is, that the amount of overlapping data at 10 minutes of time difference is sparser in

other months and non existing inside the marginal ice zone. Also, the freeboard distribution

is harder to interpret as snow cover increases and ice thickens. But our results show that

even from sparse data meaningful extrapolation is possible, which gives hope that in these

conditions this approach can still be successful. Preliminary results from the marginal ice

zone in figure 6.9 are promising. Obtaining labels in the marginal ice zone is not possible

from altimetry due to the influence of waves, so here some other data or even manual labels

would have to be utilised.
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(a)

(b)

Figure 6.10: Mosaic of five Sentinel-1 scenes of the central Arctic north of Greenland. All where

acquired on November 12th 2021, within 6 hours of one another.
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Figure 6.11: Standard deviation (between the different classified scenes) of the mosaic in fig.

6.10. The multiplicity of some features (mainly leads) is evidence of spatial decorrelation due to

sea ice drift.
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It is worth mentioning that there is one existing paper on overcoming sparse labels in

Khaleghian, Ullah, Kræmer, Eltoft, et al., 2021, that uses an established self supervised

learning method to overcome these problems. This has only been shown to work on manual

labels with centre-pixel classification models so far and has no access to the spatial ice type

distribution. Therefore it is not clear how well it would perform on high resolution labels.

There is currently an effort in the scientific community to obtain even more information

from the waveforms of the altimeter about the properties of the ice surface. For example

Duncan and Farrell, 2022 developed a product increasing the spatial resolution and Happ et

al., 2023 are working on advanced ice development detection. If these efforts are successful,

the extrapolation to SAR scales would certainly also be of interest, and the techniques

developed in this work would be easily transferable.

Whilst altimetry data is a very good example for sparse yet detailed measurements of

sea ice, the approach presented in this work of using incidence angle dependence as a proxy

for ice development can in principle be used for other parameters. The stronger the two are

correlated, the more fruitful this approach will be.

What is particularly exciting about this line of research is that the retrieval models can

be improved by learning from unlabelled data, which opens up the opportunity to leverage

the treasure trove of data that is the Sentinel-1 archive. The work shows a clear approach

to mitigate the problem of ground truth sparsity, which is one of the most fundamental

problems of sea ice classification or property retrieval.

6.7 Appendix: Architectures

We briefly present the network architectures used in this investigation. The following con-

ventions are used to keep the figures concise. FCX is short for a fully connected layer with

X neurons. ConvX x Y denotes a 2D convolutional layer with filter size X and Y filters.

Unless otherwise specified the convolutional layers have stride 1. If a layer has multiple

inputs, they are concatenated along the channel dimension before being parsed to the layer.
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Input 2562 Output 2562

Conv3 x 32 Conv3 x 32

Conv3 x 32 Conv3 x 32

Maxpool2 TConv2 x 32

Conv3 x 32 Conv3 x 32

Conv3 x 32 Conv3 x 32

Maxpool2 TConv2 x 32

Conv3 x 48 Conv3 x 48

Conv3 x 48 Conv3 x 48

Maxpool2 TConv2 x 48

Conv3 x 64 Conv3 x 64

Conv3 x 64 Conv3 x 64

Maxpool2

Conv3 x 96 TConv2 x 64

Conv3 x 96

Table 6.3: The Unet architecture as used in this paper as a standalone model with a final Conv1

x 1 layer to map to the ice development index or as shown here ending in the encoded space with

32 features/channels. Originally developed and published in Ronneberger et al., 2015. The ReLU

activation is used throughout the network and the padding is set to ’same’ where applicable.

Input 32

Dense x 5

Dense x 1

Output 1

Table 6.4: The final layers mapping from the encoded space to the ice development index. We

use the gelu activation function except in the output which uses sigmoid.

Input 2562

Conv3 x 32

TConv3 x 32

Conv3 x 32

TConv3 x 32

Conv3 x 32

TConv3 x 32

Conv3 x 24

TConv3 x 24

Conv3 x 16

TConv3 x 16

Conv3 x 12

TConv3 x 12

Conv3 x 8

Conv1 x 4

Output 2562

Table 6.5: The decoder architecture used in the paper. The ReLU activation is used throughout

the network. The padding is set to ’same’. The final Conv1 layer has no activation function - it

is just a linear pixelwise mapping.
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Chapter 7

Conclusion
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At the beginning of this thesis, two main problems of sea ice remote sensing with SAR

were identified: the ground truth problem and the inversion problem. Machine learning and

especially deep learning techniques have been at the forefront of research in the past years.

To be able to generate valuable information that has the potential to inform climate models,

classifiers need to perform near the resolution of the SAR sensor. Whilst convolutional neural

networks are adept at handling the inversion problem by using contextual image data for

classification, they are highly dependent on large amounts of ground truth. Therefore, it

had so far not been possible to build robust classifiers at the desired fidelity that capture

even the pixel-scale intricacies of the SAR product, as is made evident by the overview of

existing methods, which emphasised that all existing work has been done on manual labels,

which do not capture the full detail of the SAR scene and translate that quality to classifiers

trained on them. Through a series of studies presented in chapters 3 - 6, machine learning

methodologies were advanced to classify near the resolution and at similar fidelity as the

underlying SAR product. Through the construction of high frequency timeseries and full

resolution ground truth from additional measurements, these developments were tested in

the diverse ice conditions present during the uniquely comprehensive observations made

during the MOSAiC expedition.

In chapter 3, heuristics for robust classification were developed using the unique oppor-

tunity provided by long time series of the same ice from the MOSAiC campaign. It was

demoonstrated that a probabilistic treatment of the labels and large contextual windows

were critical to a robust algorithm. To facilitate the use of large contextual windows in a

way that was not detrimental to generalisation, constraining the network to a low number

of parameters was paramount. In the evaluation of the MOSAiC timeseries it was addi-

tionally found that very high backscatter floes at X-band classified as heavily deformed ice,

were either forming on larger timescales than the observed period and/or in a different part

of the Arctic (fig. 3.15). This suggests that they were most likely fractions of perennial

ice. With the region around MOSAiC being heavily dominated by first and second-year

ice, it could be a good representation for what the majority of the Arctic will look like in

the future. In that case, the classification timeseries suggests that heavy deformation to the

degree of perennial ice is less likely to form in the future sea ice pack. Airborne laser scanner

data confirmed that high roughness regions were forming disproportionately rarely in the

observed region. The work in chapter 3 also revealed how the coarse manual labels translate

to coarse predictive qualities of the classifier. Thus, the predictions give valuable insight

into the diverse regional ice conditions over the course of 7 months. They are, however, not

of high enough fidelity to retrieve information about the spatial distribution of ridges or

similar high fidelity ice properties.

To train models at such fidelity, one would need labels of that quality as well. Oppor-

tunity to gather ground truth data of that nature and have satellite SAR data available at

the same time is rare. The joined efforts of the MOSAiC mission facilitated an environment

to create such a dataset of SAR data overlapping with airborne laser scanning topography
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surveys. The synthesis of this dataset and the subsequent tests of convolutional neural net-

works is detailed in chapter 4. In the introduction, the open question of how established

machine learning model performan on high resolution ground truth was introduced. Using

the synthesised dataset, it was shown how strongly the bias of manual labels in other studies

was artificially boosting the performance of machine learning models. Previous research had

found performances upwards of 95% accuracy on ice charts and manually labelled ice types.

Using high resolution ground truth from measurements showed that the best models cannot

reach 70% of accuracy consistently. It also unveiled one of the key ingredients that deep

learning models need to make reliable predictions: the abililty of learning the spatial ice

type distribution. This information is not presented in ice charts and only in very meticu-

lous manual annotations. This poses an additional challenge to the use of machine learning

algorithms in automated sea ice retrieval.

The classifications of the MOSAiC timeseries also suggested that first-year ice areas had

experienced more deformation than second-year ice areas in terms of spatial coverage, even

when taking into account that deformation cannot be detected on top of previously existing

deformation. The uncertainty of the retrieval algorithm means this trend cannot be shown

definitively; if true, however, this suggests that the younger ice sheet of the future Arctic

would see more deformation events (more ridges forming and leads opening), which will,

in turn, affect the coupling of ocean, ice and atmosphere, and thus the climate feedback

mechanisms.

In the introduction, the question was posed if deep learning models can classify robustly

throughout different ice conditions. It was found, that models can be designed towards

robust classification (4) using a range of techniques, such as label smoothing, discriminators

and parameter constraint. However, in chapter 4, it was found that these techniques depend

on the type of training data and that the robustness of larger deep learning models seemed

largely independent of the architecture on labels derived from measurement.

The importance of the label distribution to sea ice retrieval is a considerable challenge

to retrieval models, because this kind of data simply does not exist on an Arctic-wide scale.

Therefore in chapter 5, the idea of using incidence angle dependencies as proxies for ice types

was first explored by developing an adversarial setup that allowed to prediction of incidence

angle dependencies (slopes) only from a local image patch. Due to the correlations of ice

types and incidence angle dependencies the spatial distributions of them are also related and

therefore the features to learn one were hypothesised to coincide with the features to learn

the other. In the chapter it was demonstrated that a network can learn to predict incidence

angle dependent slopes aligning with existing measurements of the same quantity, using

only a local image patch as input. However, the measurement proved to be less detailed

than an existing global clustering method for getting local incidence angle dependencies.

Nonetheless, it was shown that the encoding part of the model had learned features which

were very useful for ice classification, without having been given any labels at all. Thus,

it suggests there is a way of training a vast majority of a network’s parameters for high
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resolution ice classification without using any labels. It also proves that the incidence angle

dependencies are a useful tool for learning important information from SAR imagery of

sea ice without any labels, addressing one of the open questions that was posed in the

introduction.

Building on the previous findings, the final chapter introduced an architecture-agnostic

transfer learning strategy to make use of the detail of the incidence angle dependencies as

extracted by the global mixture model approach and to leverage them for a retrieval task.

By also using an encoding task which had proven to be crucial in the generative adversarial

setup in the previous chapter, this approach solved a large part of the ground truth problem,

as very sparse ICESat-2 altimeter measurements were meaningfully extrapolated to a far

larger space of sea ice acquisitions, without overfitting significantly to the training data.

With this methodology a vast part of the network can be trained without having any labels

at all (99.99% of parameters in the case of the Unet). Using the incidence angle dependencies

as proxies means that the ice type distribution shown to be important to successful high-

resolution classification in chapter 4, is also present for the network to learn from. Therefore,

machine learning networks can finally overcome both the inversion and the ground truth

problems at the same time. The strategy also unlocks the potential for big data technologies

to learn high resolution information from any amount of SAR scenes without any additional

labels, which allows for retrieval near the resolution and fidelity of the SAR product.

Chapter 3 visualised clearly, how the seasons have a big effect on the performance of

classifiers, but as the seasons with worst performance were also those with least amount of

data, it is unclear if the challenge of classification was just a result of the unavailability of

training labels. Having developed a strategy to overcome the two big challenges of sea ice

classification with deep learning, it is left to show that this can work on a multi-seasonal scale

as well and preserve robustness to even more diverse ice conditions and in the marginal ice

zone. Surely this will come with its own set of challenges. Due to the strategies developed in

this thesis, however, the entirety of the existing archive of Arctic SAR scenes can, in principle,

be used to combat this problem: A robust strategy has been developed, that can increase

model performance with SAR data alone. Because the developed methods are architecture

agnostic, any current and future developments of advanced machine vision architectures,

such as transformers or diffusion based networks, can also make use of this training strategy

without adjustment. It therefore presents a clear approach to elevate sea ice observations

from SAR to higher resolution, without the need for extensive high resolution ground truth

data.

To give some context for the improvements made in this thesis, some applications are dis-

cussed, that can make use of observations of the quality that the work in this thesis enables.

Novel work by Hutter, Bitz, et al., 2023, for example uses SAR observations to parametrise

sea ice dynamic processes, using only simple thresholding of the SAR data to define leads.

With better and higher resolution lead classification such studies could be further improved

upon. In the future, floe edges in the marginal ice zone can be resolved at high resolution,
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revealing information about the mechanical stresses of penetrating ocean waves that lead to

floe braking events. Retrieving deformation zones at high resolution enables a more detailed

parametrisation of form drag and coupling of ice and atmosphere. Continuous parametrisa-

tion of the deformation at such high resolution could also be connected to meltpond coverage,

which has a strong climate feedback. A core aspect of understanding future change, is the

contrast in behaviour of multi- and first-year ice, which can only be resolved with advanced

observations that the models developed in this thesis are working towards. Retrieving such

characteristics from the Sentinel-1 archive, for example, and looking at their evolution over

the course of Arctic warming, will enable more accurate predictions about how the ice prop-

erties will change in light of continuous warming. Ultimately we are currently still lacking

effective parametrisations for a variety of dynamic sea ice processes, because the community

has no high resolution historic data record of the sea ice surface properties. This situation

can be adressed in the near future with the developments presented in this thesis playing an

important part in realising such high-performance retrieval models. This will finally allow

one to connect the Arctic climate record of the recent past with high resolution observations

of the ice conditions.
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Mäkynen, Marko, Stefan Kern, Anja Rösel, and Leif Toudal Pedersen (2014). “On the Es-

timation of Melt Pond Fraction on the Arctic Sea Ice With ENVISAT WSM Images”.

IEEE Transactions on Geoscience and Remote Sensing 52.11. doi: 10.1109/TGRS.2014.

2311476.

Malmgren-Hansen, David et al. (2021). “A Convolutional Neural Network Architecture for

Sentinel-1 and AMSR2 Data Fusion”. IEEE Transactions on Geoscience and Remote

Sensing 59.3. doi: 10.1109/TGRS.2020.3004539.
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