
Inversion of short-lived pollutants

in the global atmosphere

using remote sensing data

Dissertation zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich für Physik und Elektrotechnik

der Universität Bremen

Vorgelegt von

Johann Rasmus Nüß
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Abstract

In the atmosphere, carbon monoxide is a trace gas with a relatively short lifetime in

the order of a few months. On a global scale, it affects the climate, because most

carbon monoxide is eventually oxidized to the greenhouse gas carbon dioxide. That

reaction is also the largest sink of hydroxyl radicals and, therefore, prolongs greenhouse

gas lifetimes. Close to the sources of carbon monoxide, concentrations can be high and

adversely impact local air quality, because it is a precursor for tropospheric ozone.

For these reasons, knowledge about the global distribution of carbon monoxide

and its sources is important. Inverse modeling is a powerful top-down technique to

constrain trace gas emissions, or refine existing bottom-up source estimates, based on

observational data. However, inverse modeling of atmospheric chemistry is not trivial

and requires the use of sophisticated systems, which combine elaborate models with a

plethora of input data, including remote sensing observations and boundary conditions

for the model, e.g. meteorology or prior emission estimates. In this work, such an

inverse modeling system will be improved by testing, updating, and revising most of

its components. Most prominently, observations from a new satellite instrument, the

TROPOspheric Monitoring Instrument (TROPOMI), are introduced into the system.

In recent years, the data quality and resolution of satellite instruments have been

steadily improving. These improvements inevitably also lead to an increase in the

amount of data to be handled. For inverse modeling systems, large observational

datasets can become problematic due to computational constraints.

In this work, methods for handling those datasets are developed. To investigate the

capabilities and limitations of the new observational dataset, multiple inversion experi-

ments are conducted. These experiments target carbon monoxide emissions from three

categories, biomass burning, fossil fuel, and secondary production, for the second half

of the year 2018 on a global scale. The results suggest that the emissions, especially in

the southern hemisphere, are well constrained by the TROPOMI observations. How-

ever, the inversion experiments also reveal biases in the optimized emissions, especially

in the northern tropics. These biases are linked to an imbalanced prior budget, i.e.

to the boundary conditions of the model before the observations are considered. The

budget and the biases are improved in multiple steps, most notably by revising the

assumed hydroxyl radical distribution and the meteorology.

i



ii



Contents

1 Introduction 1

1.1 Atmospheric composition . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Carbon monoxide and its chemistry . . . . . . . . . . . . . . . . . . . . 2

1.3 Atmospheric chemistry modeling . . . . . . . . . . . . . . . . . . . . . 5

1.4 Top-down and bottom-up emission estimates . . . . . . . . . . . . . . . 6

1.5 Objective and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methods 9

2.1 Inverse modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Formal statement of the inverse problem . . . . . . . . . . . . . 9

2.1.2 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Derivation of the cost function . . . . . . . . . . . . . . . . . . . 11

2.1.4 Solving the inverse problem . . . . . . . . . . . . . . . . . . . . 13

2.1.4.1 Analytical solution . . . . . . . . . . . . . . . . . . . . 13

2.1.4.2 Adjoint-based inversion and 4DVAR . . . . . . . . . . 15

2.2 TM5-4dvar model description . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Satellite observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Averaging kernels and comparisons to model data . . . . . . . . 20

2.3.2 Super-observations . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Efficacy of high-resolution satellite observations 23

3.1 Background and objective . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 4DVAR approach . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3.1 Inventories and emission categories . . . . . . . . . . . 27

3.2.3.2 Simultaneous inversion of multiple emission categories 30

3.2.3.3 Initial conditions, spin-up and main inversions . . . . . 31

3.2.3.4 Inversion experiments . . . . . . . . . . . . . . . . . . 33

3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



CONTENTS

3.3.1 In situ measurements . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Satellite observations . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2.1 Gridding . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2.2 Error inflation . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Mixing ratio mismatch at the surface stations . . . . . . . . . . 42

3.4.1.1 Set 1: Inversions using different biomass burning priors 42

3.4.1.2 Set 2: Inversions based on different observational datasets 46

3.4.2 Mixing ratio mismatch to the satellite observations . . . . . . . 49

3.4.3 Optimized global emission fields . . . . . . . . . . . . . . . . . . 52

3.4.3.1 Secondary production . . . . . . . . . . . . . . . . . . 52

3.4.3.2 Anthropogenic emissions . . . . . . . . . . . . . . . . . 58

3.4.3.3 Biomass burning . . . . . . . . . . . . . . . . . . . . . 60

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Towards a consistent OH climatology 63

4.1 Background and objective . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 OH field comparison . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Updated biomass burning a priori . . . . . . . . . . . . . . . . . 70

4.3.2 New OH field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2.1 Budget analysis . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2.2 Comparison to NOAA surface station measurements . 73

4.3.2.3 Comparison to TROPOMI satellite observations . . . . 76

4.3.2.4 Emission increments . . . . . . . . . . . . . . . . . . . 76

4.3.3 Addition of natural CO emissions . . . . . . . . . . . . . . . . . 78

4.3.4 Sensitivity to secondary CO production prior . . . . . . . . . . 78

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Adaptive Error inflation for high-resolution observations 83

5.1 Background and objective . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Adaptive error inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Retrieval version 1.2 versus 1.8 . . . . . . . . . . . . . . . . . . 91

5.4.2 Adaptive error inflation . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

iv



CONTENTS

6 Benefits of using an updated meteorology 99

6.1 Background and objective . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions 107

A Additional materials 109

A.1 Additional figures and tables for Chapter 3 . . . . . . . . . . . . . . . . 109

A.2 Additional figures and tables for Chapter 4 . . . . . . . . . . . . . . . . 120

A.3 Additional figures and tables for Chapter 5 . . . . . . . . . . . . . . . . 132

A.4 Additional figures and tables for Chapter 6 . . . . . . . . . . . . . . . . 134

Bibliography 134

Acknowledgments 155

v



CONTENTS

vi



List of Figures

1.1 Flowchart of tropospheric carbon monoxide chemistry . . . . . . . . . . 3

2.1 Schematic of the adjoint-based inverse modeling approach . . . . . . . 16

3.1 Zooming setup with surface stations and satellite observations . . . . . 26

3.2 Schematic of satellite footprints intersecting with a regular grid . . . . 36

3.3 Representativeness error over coverage at multiple latitude bands . . . 38

3.4 Representativeness error factors over latitude bands . . . . . . . . . . . 39

3.5 Station time series for inversions with different biomass burning priors . 43

3.6 Station time series for inversions with different observational data . . . 47

3.7 Impact of choice of biomass burning prior on optimized secondary CO . 52

3.8 Impact of choice of observational data on optimized secondary CO . . . 56

3.9 Impact of choice of observational data on optimized anthropogenic CO 58

4.1 Station time series for inversions with different OH fields . . . . . . . . 75

4.2 Impact of choice of OH field on optimized secondary CO . . . . . . . . 77

4.3 Impact of choice of secondary CO prior on optimized secondary CO . . 79

5.1 Impact of satellite product version on optimized secondary CO . . . . . 92

5.2 Lateral distribution of adaptive inflation factors . . . . . . . . . . . . . 94

5.3 Impact of error inflation approach on optimized secondary CO . . . . . 95

6.1 Impact of the used meteorological data on optimized secondary CO . . 102

6.2 Station time series for inversions with different meteorological data . . 103

6.3 Impact of meteorology on model-satellite mismatches . . . . . . . . . . 104

A.1 Annual TROPOMI CO data coverage for 2018 after quality filtering . . 109

A.2 Same as Fig. A.1, but split in 3-month periods . . . . . . . . . . . . . . 110

A.3 Impact of biomass burning prior on optimized biomass burning CO . . 110

A.4 Station-wise model-measurement mismatch for all Chapter 3 inversions 111

A.5 Monthly lateral model-satellite mismatch totals . . . . . . . . . . . . . 112

A.6 Zonal model-satellite mismatches for all experiments in Chapter 3 . . . 113

A.7 Same as Fig. A.6, but scaled to posteriors . . . . . . . . . . . . . . . . 113

vii



LIST OF FIGURES

A.8 Monthly model-satellite mismatches for all experiments in Chapter 3 . 114

A.9 Same as Fig. A.8, but scaled to posteriors . . . . . . . . . . . . . . . . 114

A.10 Monthly lateral model-satellite mismatch relative to reference . . . . . 115

A.11 As Fig. 3.7d, but for different months . . . . . . . . . . . . . . . . . . . 116

A.12 Relative differences between Fig. 3.7d and the panels of Fig. A.11 . . . 117

A.13 As Fig. A.12, but for difference in relative deviation from the prior . . . 118

A.14 Zonal mean OH from Spivakovsky et al. [2000] by season . . . . . . . 120

A.15 Zonal mean OH from TM5-MP by season . . . . . . . . . . . . . . . . . 120

A.16 Absolute difference between Figs. A.15 and A.14 . . . . . . . . . . . . . 121

A.17 Relative difference between Figs. A.15 and A.14 . . . . . . . . . . . . . 121

A.18 Lateral mean surface OH from Spivakovsky et al. [2000] by season . . 122

A.19 Lateral mean surface OH from TM5-MP by season . . . . . . . . . . . 122

A.20 Absolute difference between Figs. A.19 and A.18 . . . . . . . . . . . . . 123

A.21 Relative difference between Figs. A.19 and A.18 . . . . . . . . . . . . . 123

A.22 Station-wise model-measurement mismatch for all Chapter 4 inversions 124

A.23 Zonal model-satellite mismatches for all experiments in Chapter 4 . . . 125

A.24 Same as Fig. A.23, but scaled to posteriors . . . . . . . . . . . . . . . . 125

A.25 Monthly model-satellite mismatches for all experiments in Chapter 4 . 126

A.26 Same as Fig. A.25, but scaled to posteriors . . . . . . . . . . . . . . . . 126

A.27 Zonal mean CO production rates from TM5-MP with CBM4 chemistry 127

A.28 Same as Fig. A.27, but for TM5-MP with MOGUNTIA chemistry . . . 127

A.29 Absolute difference between Figs. A.28 and A.27 . . . . . . . . . . . . . 128

A.30 Relative difference between Figs. A.28 and A.27 . . . . . . . . . . . . . 128

A.31 Lateral mean CO production rates from TM5-MP with CBM4 chemistry 129

A.32 Same as Fig. A.31, but for TM5-MP with MOGUNTIA chemistry . . . 129

A.33 Absolute differences between Figs. A.32 and A.31 . . . . . . . . . . . . 130

A.34 Station-wise model-measurement mismatch for all Chapter 6 inversions 134

viii



List of Tables

3.1 Prior and observational setup for all experiments in Chapter 3 . . . . . 32

3.2 Model-observation mismatches for all experiments in Chapter 3 . . . . 45

3.3 Prior and posterior budgets for all experiments in Chapter 3 . . . . . . 54

4.1 Prior emission and loss term setup for all experiments in Chapter 4 . . 66

4.2 Model-observation mismatches for all experiments in Chapter 4 . . . . 71

4.3 Prior and posterior budgets for all experiments in Chapter 4 . . . . . . 72

5.1 Prior and observational setup for all experiments in Chapter 5 . . . . . 90

A.1 Station-wise model-measurement mismatch for all Chapter 3 inversions 119

A.2 Optimizer settings for emission categories for all inversion experiments 130

A.3 Station-wise model-measurement mismatch for all Chapter 4 inversions 131

A.4 Prior and posterior budgets for all experiments in Chapter 5 . . . . . . 132

A.5 Model-observation mismatches for all experiments in Chapter 5 . . . . 133

A.6 Station-wise model-measurement mismatch for all Chapter 6 inversions 135

A.7 Prior and posterior budgets for both experiments in Chapter 6 . . . . . 136

ix



LIST OF TABLES

x



Chapter 1

Introduction

This chapter introduces the background, motivation, and basic concepts underlying this

thesis. Section 1.1 gives a brief overview of the chemical composition of the atmosphere

and explains why even gases that occur at low concentrations matter. In Section 1.2,

the properties of one such gas, carbon monoxide, and its interactions in the atmosphere

are presented. Section 1.3 then introduces the challenges, capabilities, and limitations

of atmospheric chemistry and transport models, which can simulate those interactions.

In Section 1.4, the concepts of bottom-up and top-down approaches are explained,

which make use of models to estimate emissions. Finally, Section 1.5 provides the aim

and structure of this thesis.

1.1 Atmospheric composition

The atmosphere consists primarily of nitrogen (N2, 78.08% dry air mole fraction),

oxygen (O2, 20.95%), and argon (Ar, 0.93%) [Borzenkova & Turchinovich, 2009].

Another significant, but highly variable constituent is water vapor (H2O), which makes

up only about 0.25% of the mass of the atmosphere; however, locally it can vary

between almost 0 and 5% by mole fraction [Wallace & Hobbs, 2006]. Further,

there is a wide variety of gases and aerosols that occur in smaller quantities, so called

tracers. These tracers, despite existing in small quantities, can have a significant impact

on the world surrounding us.

Some of them, for example H2O and carbon dioxide (CO2), are capable of trapping

radiation within the atmosphere. This so called greenhouse effect brings the mean near-

surface temperature of the atmosphere from well below the freezing point of water to

temperatures that are capable of sustaining life as we know it [Berger & Tricot,

1992]. However, over the past century, anthropogenic emissions of greenhouse gases

have amplified this effect, leading to a rise in global mean temperature and climate

change [Forster et al., 2021]. Anthropogenic greenhouse gases are usually long-lived

tracers and most prominently include CO2 (417 ppm atmospheric mean mixing ratio

1



1 INTRODUCTION

in 2022 [Friedlingstein et al., 2022]), methane (CH4, 1857 ppb in 2018 [Saunois

et al., 2020]), and nitrous oxide (N2O, 329 ppb in 2016 [Prinn et al., 2018]).

Moreover, trace gases can also impact our surroundings locally and on shorter time

scales by affecting air quality. Here, the relevant tracers and aerosols are usually shorter

lived and, therefore, have more variable concentrations. The largest group of these

tracers are the (Non-Methane) Volatile Organic Compounds ((NM)VOCs), which are

several thousand chemical species of varying complexity. The majority of NMVOCs are

hydrocarbons (CxHy), of which isoprene (C5H8) makes up around 50% [Wallace &

Hobbs, 2006]. Another important group of tracers, especially in urban environments

[Lee et al., 1997], are nitrogen oxides (NOx = NO + NO2), which, depending on the

atmospheric conditions, can lead to the formation of nitric acid (HNO3) or tropospheric

ozone (O3) [Brasseur & Jacob, 2017]. The latter is detrimental for humans and

plants alike, even at low mixing ratios (> 120 ppb for an exposure of 1 h; or less for a

longer exposure [Mckee, 1993]). These processes will be described in more detail in

Section 1.2.

This work focuses on another trace gas with a relatively short lifetime, carbon

monoxide (CO), which affects both climate and air quality through its interactions

with other tracers.

1.2 Carbon monoxide and its chemistry

Roughly half of atmospheric CO comes from the oxidation of NMVOCs and CH4, i.e.

from secondary CO production. The rest is emitted directly and comes mostly from

incomplete combustion of fossil fuels and biomass (e.g. wildfires or domestic wood

burning), but also, in smaller quantities, from direct natural emissions from plants

(biogenic CO) and the oceans [Zheng et al., 2019]. Generally, CO is toxic [Ryter

et al., 2018] at high mixing ratios (> 9 ppm for an exposure of 8 h; much shorter

at higher mixing ratios, according to the World Health Organization [WHO, 1999]).

However, in the atmosphere, such high mixing ratios are rarely observed and mostly

only occur in direct proximity to combustion sources. Usually, the mean atmospheric

CO background mixing ratios are in the order of 54–115 ppb [Prinn et al., 2018],

which is low enough that the toxicity of CO and the resulting direct health effects are

overshadowed by the indirect effects of CO on air quality. Most notably, CO is an O3

precursor (see Reaction (1.5)) in the presence of NOx and solar radiation [Holloway

et al., 2000]. Figure 1.1 outlines the tropospheric CO chemistry described in more

detail in the following. The reaction sequence that eventually leads to O3 formation is

initiated via the reaction of CO with hydroxyl radicals (OH) to create CO2 [Brasseur

& Jacob, 2017]:

CO + OH
O2−−→ CO2 +HO2 (1.1)

2



CARBON MONOXIDE AND ITS CHEMISTRY 1.2

Figure 1.1: Carbon monoxide related chemistry in the troposphere. Note the formation of
CO2 and O3 and the cycling of NOx and OH.

which is the main sink [> 90% of the total CO loss; Logan et al., 1981; Stein et al.,

2014] for CO in the atmosphere. The O2 above the reaction sign denotes that while

the O2 is part of the reaction, it does not limit its rate, since it is in abundance in

the surrounding air. Through its reaction with OH, CO reduces the oxidative capacity

of the atmosphere and both directly (by formation of CO2) and indirectly (through

the reduced OH abundance and thus longer CH4 lifetime) increases greenhouse gas

loads [Raub & McMullen, 1991; Daniel & Solomon, 1998; Heilman et al., 2014].

The remaining CO loss is due to dry deposition to soil [Stein et al., 2014]. Overall,

the atmospheric lifetime of CO is in the order of 2months [Raub & McMullen,

1991], with a strong dependence on photochemical conditions, with shorter lifetimes

(< 1month) in the tropics and much longer lifetimes (> 12months) during polar winters

[Holloway et al., 2000]. This large variation in CO lifetime is linked to the dependence

of OH formation on photochemistry in combination with the very short lifetime of

OH (in the order of seconds, Lelieveld et al. [2016]), which prevents it from being

transported over long distances. Primary formation of OH mainly happens during

daytime when excited oxygen radicals (O(1D)) created through photolysis of ozone

O3 + hν(λ < 330 nm) −−→ O(1D) + O2 (1.2)

react with water vapor [Brasseur & Jacob, 2017]:

O(1D) + H2O −−→ 2OH (1.3)

However, most of the OH in the troposphere comes from secondary sources through

various OH recycling pathways, which depend on the local pollution levels (NOx, (Bio-

genic) Volatile Organic Compounds ((B)VOCs), etc.), as detailed in Lelieveld et al.

[2016]. While these pathways still rely on photochemistry, some of the precursors are

3



1 INTRODUCTION

longer lived than OH, which allows for transport to occur and, therefore, higher OH in

regions with low primary production.

Aside from being the main CO sink, OH also plays a large role in the secondary

CO production source by oxidizing VOCs and CH4. In the atmosphere, most VOCs

get oxidized, in some cases over many intermediate species, to eventually end up as

CO and CO2. The main oxidant in this process is OH, but O3, nitrate (NO3, dur-

ing nighttime), halogen atoms, and, in some cases, photolysis also play a role. In the

following, secondary CO production will refer to the sum over any CO that was chem-

ically produced in the atmosphere, regardless of the initial reactant (VOCs or CH4) or

the source of that reactant (biogenic, anthropogenic, etc.).

Depending on the ambient atmospheric conditions, the oxidation of either CO or

VOCs can lead to the production of tropospheric O3, which further compromises air

quality. Continuing with the HO2 from Reaction (1.1), in the presence of NOx, the

following sequence starts:

HO2 +NO −−→ OH+NO2 (1.4)

NO2 + hν
O2−−→ NO+O3 (1.5)

which has O3 as a product [Brasseur & Jacob, 2017]. Note that effectively no NOx

is used up by this process, because any NO used up by Reaction (1.4) is regenerated in

Reaction (1.5) and vice versa for NO2. Similarly, the sequence as a whole preserves OH,

which is consumed by Reaction (1.1), but regenerated in Reaction (1.4). An equivalent

sequence exists for VOCs that were (partly) oxidized by OH (RO2). In that sequence,

Reaction (1.4) is replaced by [Brasseur & Jacob, 2017]:

RO2 +NO −−→ RO+NO2 (1.6)

Either sequence depends on the available supply of NOx on the one hand and VOCs

or CO on the other hand. The vast majority of NOx in the atmosphere is produced

during high-temperature combustion processes (mostly fossil fuel, but also biomass

burning) and from lightning and soil microbes [Lee et al., 1997]. As such, most of the

troposphere, especially in remote regions, is usually NOx-limited, which leaves sufficient

OH radicals to react with CO or VOCs. In this case, the O3 production scales linearly

with NOx, but is mostly independent of CO or VOC concentrations. However, when

the NOx concentration is high, the atmosphere becomes VOC-limited and OH not only

reacts with CO and VOCs, but also with NO2 to produce nitric acid. In that case, O3

production scales linearly with CO and VOCs concentrations, but inversely with NOx.

Overall, knowledge of sources, sinks, and distributions of CO and other tracers is

crucial to assess their impact on our environment.

4



ATMOSPHERIC CHEMISTRY MODELING 1.3

1.3 Atmospheric chemistry modeling

Atmospheric tracer distributions at various spatial scales can be estimated using chem-

ical transport models (CTMs). In CTMs, the complex chemical and physical systems

of the atmosphere and their interactions are simplified into a mathematical descrip-

tion. As the name suggests, CTMs model the chemical interactions of tracers and their

transport through the atmosphere, which requires solving coupled systems of continuity

equations. As the chemistry may include photochemical reactions (e.g. Reactions (1.2)

and (1.5)), radiative processes also need to be represented in the model. Another ex-

ample of interactions between chemistry and physics is the evolution of aerosols and

their impact on cloud formation. Clouds, in turn, affect radiative processes and chem-

istry. On a more fundamental level, CTMs require the sources and sinks of their tracers

as boundary conditions. Part of the sources and sinks may be chemical transforma-

tion, e.g. CO is formed via the oxidation of VOCs and CH4 and lost via reaction with

OH (Reaction (1.1)). This part may be handled explicitly by the chemistry scheme

of the model. However, sources from direct emission require a representation of pro-

cesses that are usually not explicitly treated in CTMs, for example, the combustion

of vegetation in wildfires. Instead, CTMs handle these processes implicitly through

emission inventories, which contain information on the emitted species directly. Ad-

ditionally, non-chemical sink processes need to considered, i.e. wet deposition, when

tracers are scavenged by clouds and precipitation, and dry deposition, when tracers

are taken up by vegetation and other surfaces, especially the oceans. Any process that

is not explicitly included in the CTM, but interacts with a process that is, needs to be

parameterized in some form.

CTMs can be useful for a number of reasons. Since they represent (a subset of)

our current understanding of atmospheric processes, they may be used to test and

improve our knowledge by verifying the model results against observations. Once

verified, the CTM may be employed to make predictions by creating a forecast or fill

observational gaps by predicting tracer distributions in areas where no observations are

available. Additionally, CTMs may help with the interpretation of observational data

by extracting information from complex systems with many parameters and processes.

However, since they contain so many components, CTMs also contain many po-

tential error sources. Firstly, computational limitations dictate that the spatial and

temporal resolution of the CTM cannot be arbitrarily fine. By limiting the resolution,

the representativeness of the CTM for the real world is also limited. The representa-

tiveness can affect many processes. For example, the limited temporal resolution may

not be able to properly resolve very fast chemical processes, while the limited spatial

resolution may cause the emissions from point sources to be dispersed too quickly.

Further, there may be biases in the boundary conditions for some tracers, e.g. in the
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assumed initial conditions or sources and sinks, which then may impact other tracers

as well through their interactions. Additionally, CTMs need to limit the complexity

of their chemical mechanism, again, due to computational limitations. This limita-

tion usually happens either by considering hydrocarbons up to a certain complexity or

by employing a chemical scheme that only represents a tracer or group of tracers of

interest accurately. Any reaction that is not represented explicitly, could potentially

introduce biases. Even for those tracers that are considered explicitly, the reaction

rates may not be perfectly accurate. Another source of inaccuracies is the meteorol-

ogy, which via temperature, wind fields, humidity, and various other variable affects

most parts of the model in some form. More generally, any simplification applied in

the mathematical description of the model processes can introduce errors. This espe-

cially concerns processes that are not explicitly included, but only parameterized. A

prominent example of a simplification is the use of pre-calculated meteorological fields

in so called offline models, as opposed to online models which simulate their own mete-

orology. In offline models, many interactions between, on the one hand, the chemistry

and physics, e.g. aerosols, and, on the other hand, the meteorology will be neglected.

Lastly, computational precision presents an upper limit for the achievable precision.

Overall, the model error must be kept sufficiently small for the model to be use-

ful. As pointed out before, whether this is the case may be verified by observations.

However, this process may also be turned around, by combing models and observations

to constrain the boundary conditions of the model, e.g. to estimate the emissions of

tracers.

1.4 Top-down and bottom-up emission estimates

As outlined before, sources of tracers in the atmosphere can broadly be divided into

two types, direct emissions and secondary production, i.e. chemical formation within

the atmosphere. Sources of each type may be further divided by source category, e.g.

direct emissions from fossil fuel and direct emissions from biomass burning.

This process of dividing emission rates up by source category is not trivial, especially

when estimating local emission rates at a global scale. Current remote sensing tech-

niques can inform on global tracer distributions at relatively high spatial and moderate

temporal resolutions. However, inferring the underlying emissions by source category

requires additional information. This information can be incorporated by employing

either bottom-up or top-down approaches, which estimated source rates indirectly.

Either approach requires a model, i.e. a mathematical description of the respective

system, to extract the emission information from the observations. For bottom-up

estimates, the model describes the process that caused the emissions, and observations

of this process are used. For example, wildfire CO emissions may be extrapolated
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based on observational knowledge about the burnt vegetation and the intensity of the

fire [e.g. Wiedinmyer et al., 2023]. Conversely, for top-down estimates, the model

describes the effect of the emissions. This effect is then measured and traced back

to its source. Following again the example of wildfire CO emissions, the effect is an

elevated CO mixing ratio in the atmosphere, which can be observed and then traced

back and attributed to its source using atmospheric modeling [e.g. Krol et al., 2013].

A different and more direct kind of top-down approach is to prescribe atmospheric

concentrations directly from observations, rather than extracting the emission rates.

Such an approach can be meaningful for species where the global tracer distributions

are much better constrained from observations than the emission rates, which is the

case for some longer-lived species [Brasseur & Jacob, 2017].

Both bottom-up and top-down approaches are affected by various sources of er-

rors. Bottom-up estimates usually require direct observations of the source event and

some additional assumptions about the source itself, for example, fuel characterization

(ecosystem type, fuel loadings, and fuel consumption rates) and emission factors in the

case of biomass burning. Top-down estimates have more loose observational require-

ments but require a set of potentially more elaborate assumptions for the atmospheric

modeling, for example, about chemistry and atmospheric transport. Overall, there is

little overlap between the error sources and, therefore, one approach may be used to

reduce the uncertainties of the other.

Inverse modeling, as described in detail in Section 2.1, is such a top-down approach

which combines a CTM with observations of the atmosphere to retrieve tracer emis-

sions.

1.5 Objective and outline

The aim of this work is to use the high-quality and relatively high resolution observa-

tions from the state-of-the-art TROPOMI satellite instrument to investigate the global

atmospheric sources of carbon monoxide, which requires the creation of novel methods

for handling the observation in an existing inverse modeling framework, TM5-4dvar.

Further, various aspects of the model and its boundary conditions were refined and up-

dated throughout this work to improve the source estimates. The thesis is structured

as follows:

Chapter 2 consists of an in-depth introduction into inverse modeling, followed by

the description of a concrete implementation of that technique, the TM5-4dvar model,

and an introduction into the usage of satellite observations in inverse modeling.
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Chapter 3 describes how the TM5-4dvar model is used to conduct a series of inverse

modeling experiments, in which the global carbon monoxide emissions are optimized

based on TROPOMI observations. This application requires the introduction of new

methods for handling datasets with a large number of observations and a high spatial

resolution relative to the model. This chapter showcases multiple shortcomings of the

current setup, which are tackled in the following chapters.

Chapter 4 investigates inconsistencies between, on the one hand, the prior fields for

secondary CO production from VOCs and CH4 and, on the other hand, the prescribed

OH climatology used to simulate chemical CO loss, by introducing alternatives for

either into TM5-4dvar. Additionally, the biomass burning prior emissions are updated

and explicit handling of direct natural CO emission is introduced into the model setup.

Chapter 5 elaborates the handling of the TROPOMI observations by suggesting a

refined method for treating the error correlations within the high-resolution observa-

tions. Additionally, the satellite product is updated.

Chapter 6 discusses the benefits of the updated ERA5 meteorology and showcases

its capacity in reducing biases in the results of inverse modeling experiments.

Chapter 7 combines the findings of the previous chapters and makes recommenda-

tions for future inversion experiments with TROPOMI observations in TM5-4dvar.
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Chapter 2

Methods

This chapter covers the theoretical background and mathematical basis on which the

rest of the thesis is built. In Section 2.1, inverse modeling is introduced and the 4DVAR

approach is derived from first principles. Section 2.2 describes the TM5-4dvar inverse

modeling framework. Section 2.3 first presents the general strengths and weaknesses of

satellite observations in the context of inverse modeling and then introduces the basic

interfaces between models and satellite observations.

2.1 Inverse modeling

Inverse modeling describes the concept of utilizing observations of a system in con-

junction with a mathematical description, i.e. model, of the system to constrain the

values of a subset of the variables that are driving the system, in a way that the dif-

ference between the observations and the model is minimal. This section introduces

the concept in more detail and provides a derivation of the mathematical basis of one

specific implementation of this concept, the 4DVAR approach, and is based on the

more extensive description by Brasseur & Jacob [2017].

2.1.1 Formal statement of the inverse problem

Consider a model operator F that links the set of variables we are interested in, the

state x⃗, to a set of observations y⃗. This relationship can be expressed as

y⃗ = F(x⃗, p⃗) + ε⃗O (2.1)

where p⃗ is the set of additional parameters required by the model but not constrained

by the observations and ε⃗O is the observational error, which combines the uncertainties

of the model, the observations, and the parameters.

For illustrative purposes, in the following, we take the state x⃗ to be emissions of
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a chemical tracer, the model F to be a chemical transport model (CTM), and the

observations y⃗ to be mixing ratio measurements from satellites and surface stations.

Note that the model operator F describes our full understanding of the relationship

between x⃗ and y⃗ and as such includes the mapping from the model to the observations.

Hence, any temporal and spatial sampling of the CTM at the time and place of the

observations will also be part of F. However, depending on the problem at hand, x⃗,

F, and y⃗ can stand for various other things, even when only considering atmospheric

systems. For example, a satellite retrieval can be formulated as an inverse problem

with the sought after tracer column as the state, the radiance spectra from the satellite

instrument as the observations, and a radiative transfer model as the model connecting

the two.

Regardless of the specific quantities represented by x⃗, F, and y⃗, the corresponding

mathematical basis remains the same and so does the general problem: The model

operator F allows estimation of the observed quantity y⃗, given the driving variables x⃗.

In an inversion of F we are now interested in obtaining the optimal ⃗̂x given the observa-

tion y, so that the difference between F and y⃗ is minimized. Because the observational

error ε⃗O is generally non-zero, finding the optimal ⃗̂x is not trivial. Additionally, proper

handling of those errors is important. Assuming no errors, a state vector x⃗ with n

variables would be fully constrained by an equal number m = n of measurements in

y⃗. However, we know that errors for atmospheric measurements are usually large and

many observations (m ≫ n) are required to properly constrain atmospheric states.

Furthermore, to prevent overfitting, additional constraints on the optimal state may

need to be considered. For example, biomass burning emissions from the oceans should

be considered unrealistic and, therefore, should not be part of an optimal state. Mathe-

matically, all these conditions may be tackled by formulating the inverse problem using

Bayes’ theorem.

2.1.2 Bayes’ theorem

Let P (x⃗) be the probability density function (PDF) of the vector x⃗, so that integrating

P (x⃗) over any range of possible values for x⃗ results in the probability of x⃗ being in

that range. Similarly, let P (y⃗) denote the PDF of the vector y⃗. Additionally, we define

P (x⃗|y⃗) and P (y⃗|x⃗) as the conditional PDFs describing the probability to find a certain

realization of x⃗ given a fixed value for y⃗, and vice versa, the probability to find y⃗ given

x⃗. Bayes’ theorem connects these four PDFs:

P (x⃗|y⃗) = P (y⃗|x⃗)P (x⃗)

P (y⃗)
(2.2)

10



INVERSE MODELING 2.1

Bayes’ theorem can be used to formally state the inverse problem by identifying the

PDFs with the quantities introduced in the previous section. First, we consider x⃗ and

y⃗ again as the state and observation vectors, respectively. Then, P (x⃗|y⃗) provides the
probability that a certain state x⃗ describes the system, given a fixed set of observations

y⃗. P (x⃗|y⃗) is also called the posterior PDF, because the optimal ⃗̂x that maximizes P (x⃗|y⃗)
is the solution to the inverse problem, which can formally be expressed as:

∇x⃗P (x⃗|y⃗) = 0 (2.3)

with ∇x⃗ as the gradient operator with respect to x⃗. The counterpart of the posterior

PDF P (x⃗|y⃗), is the prior PDF P (x⃗), which defines the initial distribution of x⃗ assumed

before considering the measurements. In practice, P (x⃗) is obtained by an a priori guess

x⃗A with an uncertainty ε⃗A. P (x⃗A) constrains the solution to realistic values by making

large deviation from the prior very unlikely. Next, P (y⃗|x⃗) provides the likelihood of a

set of observations y⃗ given our current best guess for x⃗, distributed by the model and

measurement errors ε⃗O. Now, by combining Equations (2.2) and (2.3), we obtain

∇x⃗

[
1

P (y⃗)
P (y⃗|x⃗)P (x⃗)

]
= 0 (2.4)

where P (y⃗) defines the probability to make a certain observation y⃗. However, since

P (y⃗) is independent of x⃗, it will remain constant while finding the optimal ⃗̂x and can

be ignored. This simplifies Equation (2.4) and leads to the Bayesian optimal estimate

solution to the inverse problem:

∇x⃗[P (y⃗|x⃗)P (x⃗)] = 0 (2.5)

2.1.3 Derivation of the cost function

In this section, the PDFs P (y⃗|x⃗) and P (x⃗) will be stated explicitly, in order to derive

a mathematical expression, the cost function, that allows application of Equation (2.5)

to solve concrete inverse problems. First, let E[ ] be the expected value operator, which

provides the mean values of the bracketed quantity after infinitely many realizations.

By applying the expected value operator to the observational (ε⃗O) and a priori (ε⃗A)

errors, the general error statistics of y⃗ and x⃗A, respectively, may be represented in the

form of their corresponding error covariance matrices (ECMs) SO and SA:

SO = E
[
ε⃗Oε⃗

T
O

]
(2.6)

SA = E
[
ε⃗Aε⃗

T
A

]
(2.7)
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The ECMs have the variances of the respective vectors as diagonal elements and the

covariances between different entries of the vectors as off-diagonal elements. In real

world applications, neither SA nor SO are generally known with high accuracy; still,

at the very least rough estimates are required. For the inversions presented in this

thesis, the diagonal terms of SA were assumed to be constant, while its off-diagonal

terms, which represent spatial correlations in emissions, were set based on exponentially

decaying correlation lengths, leading to a band matrix-like structure of SA. More details

can be found in Section 3.2.3.1. For SO, the diagonal terms included contributions from

both the instrument and model error. The off-diagonal terms, however, were assumed

to be zero to simplify calculations. This assumption does not always hold, as discussed

in more detail in Chapter 5.

Assuming normal distributed prior and observational errors, Gaussian PDFs for

vectors may be used to describe P (x⃗) and P (y⃗|x⃗):

P (x⃗) =
1

cA
exp

[
−1

2
(x⃗− x⃗A)

TS−1
A (x⃗− x⃗A)

]
(2.8)

P (y⃗|x⃗) = 1

cO
exp

[
−1

2
(y⃗ − F(x⃗))TS−1

O (y⃗ − F(x⃗))

]
(2.9)

where cA and cO are constants of the structure (2π)
n
2 |S| 12 , with n as the dimension and

|S| as the determinant of the matrices SA and SO, respectively. However, as for the
1

P (y⃗)
in Equation (2.4), they do not depend on x⃗ and, therefore, do not matter for the

solution. Considering this, we can use Bayes’ theorem (Equation (2.2)) to obtain:

P (x⃗|y⃗) ∝ exp

[
−1

2
(x⃗− x⃗A)

TS−1
A (x⃗− x⃗A)−

1

2
(y⃗ − F(x⃗))TS−1

O (y⃗ − F(x⃗))

]
(2.10)

As established in Section 2.1.2, the optimal state ⃗̂x maximizes P (x⃗|y⃗). Maximizing

the exponential function in Equation (2.10) is equivalent to maximizing its exponent.

Additionally dividing by a constant factor of −2 further simplifies the expression and

turns the maximization problem into a minimization problem. Overall, the inverse

problem can now be expressed through the cost function

J(x⃗) = (x⃗− x⃗A)
TS−1

A (x⃗− x⃗A) + (y⃗ − F(x⃗))TS−1
O (y⃗ − F(x⃗)) (2.11)

which is to be minimized to find the maximum of P (x⃗|y⃗) at the optimal estimate ⃗̂x.

As mentioned in Section 2.1.1, the observational error ε⃗O, and thereby also its cor-

responding ECM SO, is made up from error contributions from both the observation

vector y⃗ and the model operator F. For the former, that contribution is the instrument

error SI. For the latter, the contribution is split in the model error SM (e.g. uncer-

tainties introduced by the parameters p⃗, incomplete physics, or numerics) and the
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representation error SR (uncertainties in the comparison to the actual measurements

e.g. due to limited model resolution or a discrete grid in space and time). All three

contributions can generally be assumed to be uncorrelated so that total observational

error covariance matrix is

SO = SI + SR + SM (2.12)

With this, the size of the second term in the cost function (Equation (2.11)) depends

simultaneously on the errors from both the model and the measurements. Therefore,

if either the model or the measurements are of poor quality, regardless of the quality

of the other, then the optimal state will be poorly constrained.

Furthermore, the weighting between SA and SO may impact the result. Note that

for this comparison not only the respective amplitudes of the ECMs matter, but also

their dimensions. If the number of observations is very large compared to the size of

the state vector (m ≫ n), the number of observational terms in cost functions might

overwhelm the number of prior terms, making the inversion insensitive to the prior.

Similar results are obtained when the measurement is very precise (small SO), but the

prior is not (large SA). The other way around, when the measurements have very

low confidence or are very low in number compared to the size of the state vector,

simply the prior is returned. As pointed out before, both SA and SO are usually just

rough estimates. One method to improve their relative weighting could be scaling the

observational term of the cost function by a factor. By repeatedly solving the inverse

problem while varying this factor, an improved solution may be found. From a physical

standpoint, this factor is intended to capture autocorrelations within the observations

that occur for dense datasets, but are often ignored in SO. These autocorrelations

would otherwise give too much weight to the observational part of the cost function.

This approach is further elaborated for a concrete application in Section 3.3.2.2.

2.1.4 Solving the inverse problem

2.1.4.1 Analytical solution

The minimum of the cost function (Equation (2.11)) can be found by setting its gradient

with respect to x⃗ equal to zero:

∇x⃗J(x⃗) = 2S−1
A (x⃗− x⃗A) + 2KTS−1

O (y⃗ − F(x⃗)) = 0 (2.13)

with

K = ∇x⃗F =
∂y⃗

∂x⃗
(2.14)
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as the derivative of the forward model F, which is called its Jacobian matrix. The

quantity KT(= ∇x⃗F
T) is the adjoint of the forward model, which is equal to the

transpose of its Jacobian. Assuming a linear forward model, or at least a model that

can be linearized around x⃗A, we can replace F(x⃗) by Kx⃗ and find the solution to

Equation (2.13) as

⃗̂x = x⃗A +G(y⃗ −Kx⃗A) (2.15)

with

G = SAK
T(KSAK

T + SO)
−1 (2.16)

as the gain matrix, which gives the sensitivity of the optimal estimate ⃗̂x to the obser-

vations y⃗. Finally, the error of the optimal estimate can now be fully characterized by

the posterior error covariance matrix Ŝ, which can be calculated as

Ŝ = (KTS−1
O K+ S−1

A )−1 (2.17)

The quality of the solution can be roughly evaluated by checking the following:

Firstly, the optimal estimate should be an improvement over the prior estimate, i.e.

J(⃗̂x) < J(x⃗A). Secondly, the consistency of the assumed errors may be verified with

J(⃗̂x) ≈ m + n, i.e., on average, each of the n elements of the prior and each the

m elements of the observational vector should be reproduced within their respective

variances. If, however, the cost of the optimal state J(⃗̂x) is notably larger than the sum

of those dimensions, at least some of the errors were likely assumed to be too small and

vice versa for a too small cost and too large errors. Thirdly, the mismatch between the

model and the observations should be improved, which can be verified by comparing

F(⃗̂x) − y⃗ and F(x⃗A) − y⃗. The former should overall be smaller and, ideally, uniform

white noise around zero. Otherwise, the model might be biased, the characterization

of errors might be faulty, or the choice of state might be improper for the system at

hand.

Even if all these checks are successful, the analytical solution to the inverse problem

presented above still has a number of limitations. Firstly, any a prior information that

should be included must be expressible through the P (x⃗) part of Bayes’ theorem. Sec-

ondly, the assumption of Gaussian distributed errors on the prior and the observations

may not always hold and can potentially lead to negative entries in the optimized state

vector, which may not be desirable if the state represents concentrations or emissions.

A way to circumvent the issue of negative state elements will be discussed at the end

of the next section. Thirdly, the analytical solution of the inverse problem requires

explicit construction of the Jacobian matrix K for the forward model. This process
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is computationally expensive for large state vectors and may be impractical for non-

linear models, where it potentially needs to be repeated many times before a solution

is found. For problems where the state vector is large, but the observational vector is

not, it might be easier to construct the adjoint of the forward model KT instead. This

construction still requires linearization of the model, which, again, is not always trivial.

Generally, the larger the observational and state vectors are, the harder the Jacobian

and its transpose are to estimate. If both vectors are very large and explicit construc-

tion of either matrix is no longer feasible, the adjoint model may be used instead, which

implicitly models their impact given a state.

2.1.4.2 Adjoint-based inversion and 4DVAR

As pointed out in the previous section, analytical inversions require a linear(ized) for-

ward model F and are limited by computational power. Sufficiently complex problems,

therefore, require solving the inverse problem numerically instead, by employing vari-

ational methods, which imply a reduced computational cost when considering large

state and observational vectors. Simply put, the gradient of the cost function ∇J(x⃗)

is repeatedly evaluated for different guesses for the state x⃗, while theses guesses are

improved with each iteration by some steepest-decent algorithm. In the following, one

specific implementation of this process, the adjoint-based inversion, will be introduced,

which efficiently computes the gradient of the cost function using the adjoint of the

forward model.

In an adjoint-based inversion, the transpose of the Jacobian KT is never actually

constructed. Instead, as illustrated in Figure 2.1, in each iteration, the forward model

F runs forwards in time, followed by the adjoint model, i.e. the adjoint of the tangent

linear model, running backwards in time. In case of a linear problem, the tangent

linear model is identical to the forward model. Each forward model run produces a

set of adjoint forcings, i.e. the error weighted mismatch between the model and the

observations S−1
O (y⃗ − F(x⃗)). The adjoint forcings serve as input to the adjoint model,

which then directly returns the gradient of the cost function. Based on that gradient,

the steepest-descent algorithm then updates the state for the next iteration.

To express this process mathematically, consider Equation (2.14) with a CTM with

discrete time steps ti as the forward model F. The sensitivity of the ensemble of

observations y⃗(p) at time tp to the state x⃗(0) at time t0 can be expressed as K =
(

∂y⃗(p)
∂x⃗(0)

)
.

By applying the chain rule and transposing, KT can be expressed as a series of forcings

for each time step between t0 and tp:

KT =

(
∂y⃗(0)
∂x⃗(0)

)T p∏
i=1

(
∂y⃗(i)
∂y⃗(i−1)

)T
(2.18)
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Figure 2.1: Schematic representation of an inverse modeling framework to find optimized
emissions. Note that the chemistry operator is self-adjoint, i.e. chemical loss in the forward
model does not turn in into production in the adjoint.

Each
(

∂y⃗(i)
∂y⃗(i−1)

)
corresponds to a time step in the adjoint model. With this expression

for KT, the gradient of the cost function from Equation (2.13) may be evaluated. The

initial iteration is solely driven by the prior x⃗A, which causes the first term of the

gradient to be zero:

∇x⃗J(x⃗A) = 2KTS−1
O (y⃗ − F(x⃗A)) (2.19)

After running the forward model (from time t0 to tp), the adjoint model runs backwards

in time (from time tp to t0). Mathematically, the latter is expressed by, starting with

i = p, applying the adjoint operator
(

∂y⃗(i)
∂y⃗(i−1)

)T
to the adjoint forcing S−1

O (y⃗(i)−F(x⃗A)),

which results in the adjoint variables for the pth time step. This process is then repeated

successively for the next and all following time steps (i = p − 1 to 1), however, each

time before applying the adjoint operator, the adjoint variables for the previous step

are added to the adjoint forcings of the current time step. The adjoint operator for the

final time step (i = 0) is
(

∂y⃗(0)
∂x⃗(0)

)T
to yield the full KTS−1

O (y⃗−F(x⃗A)) ∝ ∇x⃗J(x⃗A), which

leads a value for the derivative of the Jacobian (as stated above in Equation 2.19). This

value is then used in the steepest-decent algorithm to find an updated guess x⃗1 for the

state.

In the next iteration, since x⃗1 ̸= x⃗A, the first term of gradient of the cost function

16



INVERSE MODELING 2.1

is also non-zero:

∇x⃗J(x⃗1) = 2S−1
A (x⃗1 − x⃗A) + 2KTS−1

O (y⃗ − F(x⃗1)) (2.20)

However, the evaluation of the second term proceeds as in the initial iteration and a

further improved state x⃗2 can be obtained. This process is repeated until the optimal

estimate ˆ⃗x is found. Practically, the gradient will virtually never reach exactly zero.

Therefore, some other convergence criterion is usually defined at which the current

best guess x⃗i is accepted as the optimal estimate. The convergence criterion could be,

for example, a fixed number of iterations. Details on the concrete implementations

used in this thesis can be found in Section 3.2.2. One shortcoming of the adjoint-based

inversion is that it does not provide the posterior error covariance matrix Ŝ for the

optimal estimate.

Adjoint-based inverse modeling as outlined above may be implemented using the

strategy of 4-D variational data assimilation (4DVAR). The 4 dimensions (4D) are

the three spatial dimension of the forward model and time, emphasizing that, under

this strategy, the observations that are assimilated are spread out over future time

steps after the state they constrain, and that the model is sampled for each individual

observation at its time of measurement. This strategy is in contrast to, for example,

3DVAR, where the state is optimized based on observations only at discrete time

steps and only observations that occur at the same time as the state they update are

considered.

The initial description of the 4DVAR approach can be found in Talagrand &

Courtier [1987], who applied it to meteorological assimilations. Fisher & Lary

[1995] later extended the approach to assimilate atmospheric chemistry and Eskes

et al. [1999] included satellite observations as powerful constraints. All these applica-

tions were strongly limited by computational power. However, with rising computa-

tional capabilities and more extensive datasets, the field flourished since.

Overall, the solution for 4DVAR is mathematically the same as for the general

adjoint-based inversion shown above. In the following chapters, we will consider the

specific case of emissions, including their temporal evolution, as the state vector. In

this case, the state is not only the initial condition (x⃗(0)), but also has entries spread

over future time steps (x⃗(j)) and each entry is updated by any observations for future

time steps tj to tp, only limited by the lifetime of the tracer.

Since in this section the same cost function (Equation (2.13)) as for the analytical

solution presented in the previous section has been used, the limitations imposed by

assuming Gaussian distributed error statistics for the prior and observational vectors

still hold. Most notably, Gaussian error statistics allow for negative entries in the op-

timal state, which can be problematic if the state is meant to represent emissions or
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concentrations. To circumvent this issue, in the following, the approach of a ‘semiex-

ponential description of the PDF’ as outlined in Bergamaschi et al. [2009] will be

used. Instead of optimizing the emission vector e⃗ directly, a parameter vector x⃗ of the

same length is optimized. The semiexponential description connecting x⃗ and e⃗ is

e⃗ =

⎧⎨⎩e⃗A ⊙ exp(x⃗), for x < 0

e⃗A ⊙ (⃗1 + x⃗), for x ≥ 0
(2.21)

where e⃗A are the a priori emissions, 1⃗ is a vector where every entry is 1 with the same

length as x⃗ and ⊙ is the element-wise vector multiplication. The parameter x⃗ is then

optimized as outlined above, with Gaussian error statistics and an a priori of zero.

This approach ensures that e⃗ will never be smaller than zero, however, it also makes

the forward model operator F non-linear. While the tangent linear model, and with

it the adjoint model, can still be obtained, the implementation for the steepest-decent

algorithm must be capable of handling non-linear problems.

2.2 TM5-4dvar model description

Throughout this thesis, the state-of-the-art inverse modeling framework TM5-4dvar is

used as a concrete implementation of the 4DVAR inverse modeling approach outlined

in the previous section. The original TM5-4dvar inverse modeling framework, which

is based on TM4-4dvar [Meirink et al., 2006], was first applied in Meirink et al.

[2008a] and is described in detail in Meirink et al. [2008b]. The first inversion studies

based on the global atmospheric chemistry transport model TM5 [Krol et al., 2003]

and the extended TM5-zoom [Krol et al., 2005] and their respective adjoint versions

have been performed by Gros et al. [2003, 2004] for methyl chloroform and CO, and

by Bergamaschi et al. [2005, 2007] for methane. The CO branch of the TM5-4dvar

model used throughout this thesis was initially described in Krol et al. [2008] and has

been applied in multiple studies since [Hooghiemstra et al., 2011, 2012a,b; Krol

et al., 2013; Nechita-Banda et al., 2018].

Conceptually, in a model based inversion, one or more sets of observations of atmo-

spheric mixing ratios are used to optimize a set of prior emissions (a priori) to find the

set of posterior emissions that agrees best with these observations (a posteriori). The a

priori emissions are usually taken from bottom-up inventories. Inverse modeling is then

used to reduce the uncertainties of these inventories, by including information from ad-

ditional observations, which can range from spatially and temporally sparse surface

flask data [Bergamaschi et al., 2000; Pétron et al., 2002; Butler et al., 2005;

Pison et al., 2009; Hooghiemstra et al., 2011], over local aircraft measurements

[Palmer et al., 2003; Heald et al., 2004], to global satellite observations [Pétron
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et al., 2004; Arellano et al., 2004; Fortems-Cheiney et al., 2009; Hooghiemstra

et al., 2012a], or even combinations of multiple such datasets [Hooghiemstra et al.,

2012b; Krol et al., 2013; Jiang et al., 2017; Nechita-Banda et al., 2018].

TM5-4dvar is an offline model which handles atmospheric transport using prepro-

cessed meteorological fields. For advection, the slope scheme developed by Russell

& Lerner [1981] is employed. Simply put, in addition to the tracer mass, each box

is assigned three slope values to capture the gradients in noroth-south, east-west, and

up-down directions. The slopes level out over time and increase whenever tracer mass

enters or leaves the cell.

The TM5-4dvar model allows for zooming [Krol et al., 2002] based on the technique

described in Berkvens et al. [1999], where only the region of interest is simulated at

a high resolution (up to 1◦ × 1◦; longitude × latitude), while the rest of the globe is

simulated at a reduced resolution (6◦ × 4◦). The regions are two-way nested, so the

coarser region does not only provide boundary conditions for the finer region in each

time step but is, in return, itself also updated by the more precise results of the finer

region.

This thesis, specifically, makes use of the simplified CO-only chemistry version

of TM5-4dvar described in Hooghiemstra et al. [2011], where only the direct and

indirect (via O2) reactions of CO with OH (combined in Reaction (1.1)) are considered

explicitly. As for the meteorology, the OH concentrations are prescribed either from

climatological fields or via fields taken from a full chemistry model. As a second loss

process, dry deposition is considered based on the parameterization from Ganzeveld

et al. [1998], adapted for TM5.

2.3 Satellite observations

Observations from satellite instruments provide valuable input for global inverse model-

ing. For one, satellites usually feature significantly higher spatial coverage (e.g. global)

than in-situ measurements. Secondly, satellites provide long, consistent time series,

covering years to decades, which is comparable to what surface stations provide and

better than e.g. aircraft campaigns. However, those advantages come at a large com-

putational cost because both imply large amounts of data, which needs to be stored,

read, and processed. Notably, the processing includes the application of the averaging

kernels of the satellite retrieval, see Section 2.3.1. There are ways to reduce the com-

putational cost introduced by large numbers of observations. One such approach, the

use of super-observations, is introduced in Section 2.3.2.

There are further short-comings of satellite observations in general; however, these

are less significant for inverse modeling in particular. For example, global satellite in-

struments tend to lack temporal resolution, with revisiting times in the order of days
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or longer. In contrast, especially ship- or aircraft-borne in-situ campaigns often feature

much higher temporal resolutions for the regions they investigate. However, one of the

key features of (inverse) modeling is the ability to fill in gaps in the knowledge about the

atmospheric state by observing the same air parcels multiple times over longer periods.

Another short-coming of satellite observations are the relatively large uncertainties of

individual measurements, especially with respect to the vertical tracer distribution.

These uncertainties can be, at least partly, compensated by the large number of obser-

vations, and by using satellite data in conjunction with in-situ measurements, which

add further constraints to the vertical distribution in case of co-located measurements.

2.3.1 Averaging kernels and comparisons to model data

Inverse modeling with the 4DVAR method (Section 2.1.4.2) requires sampling of the

model at the time and place of an observation. This sampling process is relatively

straight forward for most in-situ measurements, where simple spatial or temporal in-

terpolations suffice. However, for satellite observations, the sampling is not as trivial,

since how those observations are derived from a spectral measurement of the true atmo-

sphere depends on the retrieval process. Part of the retrieval is obtaining an averaging

kernel A⃗ for each measurement, which signifies the sensitivity of the satellite instrument

to the true atmosphere over altitude and depends on various environmental parame-

ters, e.g. the solar zenith angle. To derive and apply the averaging kernels, assumptions

about the pressure profile p⃗ and a priori tracer profile x⃗apr need to be made.

Therefore, to properly sample the model and obtain a quantity that is comparable

to the satellite observation, we need to simulate what the satellite would have seen if

it observed the modeled atmosphere rather than the true atmosphere. The first step

is the same as for the in-situ measurements and consists of sampling the model profile

at the time and place of each satellite observation and potentially applying spatial

or temporal interpolations. The next step is rebinning the model profile from the M

pressure levels of the model to the N pressure levels used during the retrieval, which

may differ in number, thickness, distribution, and boundaries. The rebinned model

profile x⃗mod is combined with the information from the retrieval as the final step to

yield the value of the model operator F (see Section 2.1.1) for the ith observation as

F(x⃗)i =
N∑
l=1

pl−1,i − pl,i
p0,i

[Al,i (xmod,l,i − xapr,l,i) + xapr,l,i] (2.22)

where p0 is the surface pressure. Note that the pressure p⃗ is given at the boundaries

of the retrieval layers and, therefore, has N + 1 entries.
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2.3.2 Super-observations

Super-observations are obtained by combining multiple adjacent observations into a

single observation. This process reduces the resolution of the observational dataset,

which may or may not be detrimental in an inversion, depending on the relation between

the model resolution and the resolution of the super-observations. A benefit of super-

observations is that the smaller dataset leads to a reduced computational cost (reduced

storage requirements, less I/O, less data to process). Further, each super-observation

has a smaller observational error than the individual measurements it was created from.

Therefore, super-observations can be useful to save time and storage, especially if the

original (satellite) dataset had a much higher spatial resolution than the model. There

are many methods to obtain super-observations and in the scope of this thesis a new

method was developed, as presented in Section 3.3.2.1.
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Chapter 3

Efficacy of high-resolution satellite

observations

This chapter presents a series of inversion experiments as a concrete implementation

of the concepts presented in the previous chapters. Specifically, in the following, a new

satellite dataset, observations from the TROPOMI instrument, is introduced into an

existing inverse modeling setup, the impact of that dataset on the inversion results is

investigated, and the novel methods developed to handle the dataset are described.

Parts of this chapter have been submitted for publication.

Section 3.1 introduces the topic and goal of this chapter. In Section 3.2, short de-

scriptions of the used model and the inverse modeling approach are provided, followed

by an in-depth description of the model setup and the conducted experiments. Sec-

tion 3.3 introduces the used observational datasets, including descriptions of the novel

super-observation and error inflation techniques applied to the satellite observations.

Section 3.4 consists of an in-depth analysis of the inversion results obtained with the

new satellite dataset. Section 3.5 summarizes the results from this chapter.

3.1 Background and objective

Previous studies with the TM5-4dvar model (Section 2.2) employed satellite observa-

tions from the Measurements of Pollution in the Troposphere (MOPITT) instrument

[Hooghiemstra et al., 2012a,b], the Infrared Atmospheric Sounding Interferome-

ter (IASI) instrument [Krol et al., 2013] or both [Nechita-Banda et al., 2018].

Here, a new satellite dataset is introduced into the TM5-4dvar inverse model, by using

combined data from (a) the high-resolution TROPOspheric Monitoring Instrument

(TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite and (b) the NOAA

surface CO flasks from the ESRL Global Monitoring Laboratory and proposing an

iterative process to more rigorously weight both datasets against each other in the in-
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version. TROPOMI features several differences to, and advantages over MOPITT and

IASI. Most notably, the TROPOMI CO retrievals are performed solely in the short-

wavelength infrared [SWIR, around 2.3 µm; Veefkind et al., 2012] range, as opposed

to IASI’s mid-wavelength infrared [MWIR, around 4.76 µm; De Wachter et al., 2012]

range. MOPITT uses mostly the thermal MWIR bands around 4.6 µm, assisted by the

solar SWIR band around 2.3 µm [Drummond et al., 2010]. By using shorter wave-

lengths, the TROPOMI retrievals exhibit less interference from Earth radiation and

are, therefore, more sensitive to CO that resides close to the surface compared to MO-

PITT and IASI. Overall, TROPOMI has high sensitivity throughout the atmosphere,

whereas MOPITT and IASI are most sensitive to the middle and upper troposphere.

However, the combination with the SWIR band increases MOPITT’s surface-level sen-

sitivity under specific conditions [e.g. Worden et al., 2010]. Furthermore, TROPOMI

procures CO observations at a high spatial resolution of up to 7 × 7 km2 [Veefkind

et al., 2012], which is roughly 10 times higher than the resolution of MOPITT [up to

about 22 × 22 km2; Drummond et al., 2010] and the spatial sampling of IASI [up to

about 25×25 km2; Clerbaux et al., 2009]. Additionally, TROPOMI takes one day to

reach global coverage, which is comparable to IASI, whereas the MOPITT instrument

takes about five days to achieve the same.

However, the TROPOMI observations correspond to a large data volume due to

their high resolution and high coverage, which implies a large computational cost when

using these data in the TM5-4dvar inversion suit. One established way to reduce the

computational cost of global inversions is through zooming, where only a limited region

is simulated at a fine resolution, while the rest of the globe is simulated at a coarser

resolution. This way, the everlasting trade-off, where increasing the model resolution

implies not only rising precision but also rising computational cost, can be partly over-

come. This method has been proven to yield very similar results within the limited

fine resolution region compared to simulations with fine resolution globally, while sig-

nificantly reducing run times. Therefore, the coarser global simulation is still sufficient

to provide meaningful boundary conditions to the finer region of interest. Intermediate

regions may be used to provide more fluent transitions between the coarse and the fine

region. Such nested grids can be found for example in TM5-4dvar [Berkvens et al.,

1999; Krol et al., 2005], and GEOS-Chem [Wang et al., 2004; Chen et al., 2009].

Similarly, the resolution of satellite observations can be reduced by defining a grid

and aggregating all observations within each cell of this grid into a single so-called

super-observation [Eskes et al., 2003; Miyazaki et al., 2012; Boersma et al., 2016].

Here, a modified version of this super-observation approach is introduced, which is

capable of reducing the number of observations in the dataset, which in turn reduces

the computational cost they introduce in the inversion.

This chapter evaluates the added value of the new TROPOMI data in constrain-
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ing global CO emissions. An investigation focusing on the emissions in the northern

hemisphere in the second half of 2018 serves as a proof of concept. This investigation

is split into a series of experiments, in which the same inversion is run multiple times,

each time with slightly different settings. Firstly, CO emissions are optimized simul-

taneously towards TROPOMI satellite observation gridded to 0.5◦ × 0.5◦ and NOAA

surface flask measurements. This inversion will be used as a reference case, against

which all other inversions are compared. For this reference inversion, an analysis of the

increments to the a priori emissions at the global scale will be conducted, to identify

short-comings in either the model or the bottom-up inventories that serve as a priori

emissions. Secondly, by comparing the reference inversion to two inversions where the

inventories used as biomass burning a priori emissions are varied, the influence of the

a priori emissions is investigated. While biomass burning makes up less than a quarter

of the total CO source in most years, those emissions come with the largest uncertainty

(see Section 3.2.3.1 for more details), linked to their high spatial and temporal variabil-

ity compared to the other sources. Thirdly, the inversion is repeated with the same a

priori emissions as in the reference case two more times, once with only the TROPOMI

satellite observations (and no flask data) and once with only the NOAA flasks (and

no satellite observations). Comparing the results of those inversions with the reference

inversion gives insight into the impact of the TROPOMI observation on the inversion

results by highlighting areas where satellite observations and station measurements

carry unique, redundant or even conflicting information. Finally, by also running the

inversion with the full resolution satellite observations (up to 7×7 km2) in combination

with the NOAA surface flasks, the influence of gridded satellite observations on the

model at its relatively coarse resolution of 3◦ × 2◦ is analyzed.

3.2 Materials and methods

3.2.1 Model description

The Cycle 3 TM5-4dvar model (Section 2.2) as of revision 899b16 from the official

code repository of the model1 is used. In the scope of this chapter, the existing code is

extended to handle the high-resolution TROPOMI observations. Additionally, support

for anthropogenic emissions based on CMIP6 is implemented, the capabilities to use

the output from the full-chemistry model TM5-MP as initial conditions and as a priori

for the secondary sources of CO are extended, and some minor compatibility issues are

resolved. The specific code version used here is available at Nüß et al. [2022a]. All

other analysis and plotting scripts used throughout this chapter as well as any relevant

model in- and outputs are collected and available at Nüß et al. [2023]

1https://sourceforge.net/p/tm5/cy3_4dvar/, last accessed 2024-01-09
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Figure 3.1: Used zooming setup, with 6◦×4◦ grid globally (blue) and nested 3◦×2◦ grid over
the northern hemisphere (red). The locations of the background stations where the NOAA
CO flask measurements are collected are shown as black dots and labeled with their respective
station ID. The colormap shows the used global TROPOMI satellite observations for one day
(9 November 2018) as an example of the daily coverage and resolution they provide. Due
to strict quality filtering during the retrieval process [Schneising et al., 2019], many places
have no valid TROPOMI observations, despite every location on Earth being visible to the
instrument at least once per day. A more comprehensive overview of the TROPOMI CO
data coverage for all of 2018 can be found in Figures A.1 and A.2 in the appendix.

Throughout this thesis, the zooming capabilities of TM5-4dvar are used with a

region of interest simulated at only a medium resolution of 3◦ × 2◦, but covering a

very large area. The region of interest is placed over the northern hemisphere, span-

ning 2◦N–74◦N and 174◦W–174◦ E and captures all major land masses, as shown in

Figure 3.1.

The meteorological fields used to drive the inversion experiments presented in this

chapter are taken from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis project [ERA-Interim meteorology;Dee et al., 2011] coarsened

to the lateral model resolution and 34 altitude levels (from surface pressure to the top of

the atmosphere (0 hPa), with the highest resolution in the Upper Troposphere-Lower

Stratosphere (UTLS)). Similarly, the OH concentrations used to simulate chemical

loss of CO are prescribed by the widely used monthly climatological fields from the

TransCom-CH4 project described in Patra et al. [2011], in which tropospheric OH is

based on the OH fields from Spivakovsky et al. [2000], which are scaled by 0.92 as

suggested in Huijnen et al. [2010].
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3.2.2 4DVAR approach

An in-depth introduction into the mathematical basis of inverse modeling in general

and the 4DVAR approach in particular can be found in Section 2.1.

Overall, in 4DVAR, the model is sampled temporally and spatially for each individ-

ual data point, and each point provides its own contribution to the cost function. As

such, this approach is well capable of assimilating multiple datasets with different spa-

tial and temporal resolutions at once and co-sampling of observations across datasets

is neither necessary nor detrimental. One caveat is that the observations of different

datasets need to be weighted properly against each other. On the one hand, this im-

plies proper measurement error estimation. On the other hand, some form of error

inflation (Section 3.3.2.2) might be required if datasets with vastly different numbers

of observations are used, or if some datasets have a much higher resolution than the

model.

Throughout this thesis, the inversions are carried out using the non-linear M1QN3

optimizer described in Gilbert & Lemaréchal [1989]. This optimizer is capable of

handling a semi-exponential description of the probability density function for the a

priori emissions, which in turn avoids negative emissions [Bergamaschi et al., 2009],

as detailed at the end of Section 2.1.4.2. As a convergence criterion, a reduction of

the gradient norm of the cost function of 103 is chosen, i.e. the iterations are stopped

once the cost function is one thousand times less steep. This criterion was suggested in

Meirink et al. [2008b] to be sufficient to converge the emissions. With this criterion,

it takes the model around 35 iterations to converge, whereas the budget terms are near

constant for the last few iterations.

3.2.3 Model setup

The TM5-4dvar model, as described in Section 3.2.1, is used to perform multiple in-

versions of the CO emissions in the year 2018, with a specific focus on the northern

hemisphere.

3.2.3.1 Inventories and emission categories

CO production from three distinct source categories – anthropogenic, biomass burning,

and secondary CO production through chemistry – is considered. Since the contribu-

tions of oceanic and biogenic CO to the overall source are small compared to the

aforementioned categories, they have been neglected in the experiments in this chap-

ter, but will be considered explicitly in Chapter 4. Additionally, no daily cycles in

emissions or chemistry were considered, mostly due to limitations of the OH climatol-

ogy (see Section 3.2.1) and the secondary CO production a priori (introduced further

down in this section).
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The biomass burning a priori emissions are taken from FINN2.4+VIIRS [Wiedin-

myer et al., 2023], i.e. the Fire INventory from NCAR version 2.4 including additional

small fire detection via satellite observations from the Visible Infrared Imaging Ra-

diometer Suite (VIIRS) and NMVOCs speciated to the Model for OZone And Related

chemical Tracers (MOZART-T1) chemical mechanism [Emmons et al., 2020]. FINN is

based on three data products from the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) for active fires, land cover type, and vegetation continuous fields, which

are used to infer burned area and fire emissions. Compared to the original FINNv1

[Wiedinmyer et al., 2011], the FINNv2 used in this thesis features an improved rep-

resentation of large fires by merging overlapping fire pixel areas. Additionally, rather

than using a single static vegetation map for all years, the respective MODIS land

cover type and vegetation continuous field data from the previous year are used. Also,

the fuel loadings and emission factors have been updated.

As a sensitivity study, additional inversion experiments are conducted where the

FINN2.4+VIIRS inventory is replaced as the biomass burning a priori with (1) FINN2.4

(without VIIRS), and (2) emissions from the Global Fire Emissions Database version

4, including small fire boost [GFED4.1s; Randerson et al., 2017]. The inversion

experiments are introduced in more detail in Section 3.2.3.4.

GFED4.1s is based on satellite observations of burned area from MODIS, and fire

activity from both the Visible and Infrared Scanner (VIRS) and the Along Track Scan-

ning Radiometer [ATSR; Giglio et al., 2013]. These observations are combined with

datasets on vegetation characteristics and meteorology to infer burned area and fire

emissions on monthly scales, along with scaling factors to receive higher (daily or

3-hourly) temporal resolutions [van der Werf et al., 2017]. The small fire boost in-

cludes estimates for biomass burning emissions from fires that are below the detection

limit of the burned area product (MODIS), but are still visible as thermal anomalies

[Randerson et al., 2012]. While these estimates have fairly large errors on a local

scale [Zhang et al., 2018], including them leads to more realistic total biomass burning

emissions on the regional to global scale of the model used in this thesis.

Both GFED and FINN are coarsened to the resolutions of the zooming regions and

aggregated into daily bins to serve as global priors for the biomass burning emissions.

After applying the emission factors, all fire types are lumped together into a single

biomass burning fire type. Since both inventories only provide 2D surface level emis-

sions, they are used in conjunction with injection heights from the IS4FIRES Integrated

Monitoring and Modelling System for wildland fires developed at FMI [Sofiev et al.,

2012, 2013].

For calculating the contribution to the cost function, a grid-scale a priori error of

100% is assumed globally for the biomass burning emissions. This error is constructed

from the error of at least 50% provided in van der Werf et al. [2017] for the regional
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carbon emissions in GFED4.1s, combined with the error of the emission factors that are

used to convert the total (carbon) emissions of each fire type into distinct species (e.g.

CO). These are fixed per fire type and are reported with an estimate of their natural

variation in the order of one-third of the reported value [Akagi et al., 2011]. Since

GFED4.1s and FINN2.4(+VIIRS) are fairly similar in terms of spatial distribution and

amplitude of wildfire emissions (see Figure A.3 in the appendix, note the logarithmic

scale) and to keep the inversion results comparable, we assume an a priori error of 100%

for FINN2.4(+VIIRS) as well. Additionally, to prevent erroneous biomass burning

emissions in the inversion result, the a prior error is set to zero over the oceans. While

this implies fixed biomass burning emissions for some smaller islands, for example

Hawaii, emissions from larger islands, for example Indonesia, are still optimized.

TM5-4dvar allows for spatial and temporal correlations for each emission category

to be set. As introduced in Section 2.1.3, these reduce the effective number of degrees

of freedom of the inversion, which can help to prevent overfitting of the observations

and lead to more realistic results, while also reducing the number of iterations needed

to reach convergence [Meirink et al., 2008b]. The numeric values for the spatial

correlation lengths and temporal correlation times stated in the following are empirical

and follow the values provided in Krol et al. [2013] and Nechita-Banda et al.

[2018], who used a similar setup with the same model. Biomass burning events are

usually fairly temporary, so a short exponentially decreasing correlation time of 0.1

months for emissions at different times in the same grid cell is used. The usually small

spatial extent of biomass burning events (compared to the coarse model resolution) is

accounted for by using an exponentially decreasing correlation length of only 200 km for

emissions at the same time in neighboring grid cells. The biomass burning emissions

in the state are optimized at a daily resolution (i.e. the optimizer can change the

biomass burning emissions for each day separately) to best capture the high temporal

frequency of the burning events and therefore maximize the distinction between the

biomass burning emissions and the other categories. Previous studies [e.g. Krol et al.,

2013; Nechita-Banda et al., 2018] used a 3-daily resolution and in Krol et al. [2013]

a sensitivity study with daily resolution was conducted with mixed results.

Secondary CO production from the oxidation of CH4 and other VOCs is based

on 3D production fields from a simulation of the full chemistry model TM5-MP with

the extended MOGUNTIA chemical scheme described in Myriokefalitakis et al.

[2020] for the year 2018. This source is optimized with a fairly conservative a priori

error of only 20%. Fairly gradual changes in time may be expected for this source.

Therefore, an exponentially decreasing correlation time of 9.5 months is used for the

secondary CO production from the same cell, but at different times. Note that this

rather restrictive correlation time does not limit the model’s ability to capture the

seasonality of short lived VOCs like isoprene, since that seasonality is already included
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in the prior production fields. Instead, it only limits how much the deviations from

those prior fields may vary from month to month. Similarly, spatial emission changes

are also expected to be gradual for secondary production, due to the well-mixed CH4

background, leading to an exponentially decreasing correlation length of 1000 km. A

monthly resolution in the state is chosen for the secondary CO production, i.e. the

optimizer can change it only once per month and the production is constant over the

course of that month. Choosing this much coarser state resolution compared to the

daily resolution for biomass burning emissions, makes it cheaper, with respect to the

cost function, for the optimizer to capture the usually short time scale biomass burn-

ing events with the intended emission category. All of this combined, the low a priori

error, low state resolution, and large temporal and spatial correlation, reduces alias-

ing between the smooth fields of this category and the more patchy biomass burning

emissions. Conversely, since NMVOC oxidation can be quite local occasionally, this

approach bears the risk of capturing part of the secondary production in the biomass

burning emissions, specifically when the NMVOCs are emitted by fire activity.

Anthropogenic CO emissions are taken from the Climate Model Intercomparison

Project 6 (CMIP6) inventory [Eyring et al., 2016], specifically the SSP370 [Fujimori

et al., 2017; Riahi et al., 2017; Gidden et al., 2019] projection dataset [Gidden et al.,

2018]. Due to the low interannual variation of anthropogenic emissions compared to

secondary CO production or biomass burning emissions and the fairly up to date in-

ventory (with historical data up to 2014 and projected data from 2015 onwards), a

conservative a priori error of 10% is assumed, with the same monthly state resolution

as for the secondary production. Following the same argument as for secondary CO

production, an exponentially decreasing correlation time of 9.5 months is used. Simi-

larly, spatial changes in anthropogenic emission are expected to occur on the level of

countries or economic zones, leading to an exponentially decreasing correlation length

of 2000 km. As for the biomass burning emissions, changes to these anthropogenic emis-

sions are restricted to land. Thus, shipping emissions are included in the inventory,

but not optimized.

3.2.3.2 Simultaneous inversion of multiple emission categories

As mentioned in the previous section, anthropogenic emissions, biomass burning emis-

sions, and the secondary CO production are optimized simultaneously, i.e. they are all

part of the state vector x⃗ (Section 2.1) and the optimizer could adjust any of them

to minimize the cost function. This approach will inadvertently lead to some alias-

ing between the categories, despite the rigid choices for the a priori error, correlation

length and time, and state resolution for the secondary production category. However,

optimizing the biomass burning emissions on their own is not an option either, since

this will force the model to represent any mismatches by adjusting the biomass burn-
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ing emissions, even if these mismatches actually stemmed from flaws in the chemical

production or anthropogenic a priori. This extreme form of aliasing leads to very poor

convergence at the background stations, even when extremely high a priori errors are

assumed. Using not only sparse flask data, but also the high coverage, high resolution

TROPOMI observations, might help the optimizer to better distinguish between the

emission categories.

3.2.3.3 Initial conditions, spin-up and main inversions

The initial tracer distribution is an important part of the inversion. Close to the start-

ing date of the inversion period, the initial tracer distribution must fit the total columns

and horizontal distribution of the observational datasets reasonably well. If there are

considerable over- or under-estimations, the emission increments will be dominated by

the efforts of the model to fix the offset in the mixing ratios. These additional emission

will mask the actual signal of the observations, i.e. by how much the a priori emissions

differ from the true emissions. Additionally, the initial vertical CO distribution must

be realistic, since the CO depletion and transport vary with altitude. Therefore, as-

suming too high initial mixing ratios in a layer with low transport and low loss will

affect the model for a long time.

To accommodate this, the period of interest (the year 2018) is split into two separate

inversions. The first period is a spin-up inversion to harmonize the global distribution

of CO mixing ratios in the model with the observational datasets (see Section 3.3).

Harmonizing the model and the observations, especially in remote regions where trans-

port is slow, requires the model to be run over a prolonged period of time. Therefore,

the spin-up inversion is run over multiple months, from 1 January 2018 to 1 July 2018.

The second period is the main inversion, which uses the harmonized mixing ratios

from the spin-up inversion as initial conditions. It is run from 1 June 2018 over seven

months until 1 January 2019 and leads to the results of scientific interest presented in

Section 3.4.

Note the one month of overlap in the inversion periods. This overlap is necessary,

because emissions close to the end of the inversion period are verified by very few

observations. Therefore, the final month of the spin-up inversion is considered as its

spin-down period, during which confidence in the generated emissions and the resulting

mixing ratios is diminished. Similarly, the final month of the main inversion, December

2018, should be considered as its spin-down period. The duration of this period was

chosen based on the lifetime of CO of around two months [Raub & McMullen,

1991; Holloway et al., 2000]. Hence, a snapshot of the mixing ratios from the final

iteration of the spin-up inversion from 1 June 2018 is used as initial conditions for the

main inversion.

The spin-up inversion itself is started with tracer fields taken from the chemistry
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Table 3.1: A priori emissions and observational setup for the experiments conducted in
Chapter 3.

Inversion
A priori emissions Observations

biomass burning anthrop. secondary satellite flasks
spin-up FINN2.4+VIIRS

C
M
IP

6

T
M
5-
M
P

gridded yes

M
ai
n
in
ve
rs
io
n
s

S
et

1 reference FINN2.4+VIIRS gridded yes
noVIIRS FINN2.4 gridded yes
GFED GFED4.1s gridded yes

S
et

2 satellite only FINN2.4+VIIRS gridded no
stations only FINN2.4+VIIRS none yes
full satellite FINN2.4+VIIRS full yes

transport model TM5-MP, which employed the MOGUNTIA chemistry scheme. In

Myriokefalitakis et al. [2020] and sources therein, a detailed description of the

model, setup, and chemistry scheme, alongside extensive validation versus observational

data can be found. In addition to the simulation analyzed and described there, the

TM5-MP model was run with the same settings for a longer time frame, including 2018.

Here, instantaneous concentrations from that simulation are used as initial conditions

for the spin-up, and monthly chemical budget terms for the secondary source of CO

from VOC oxidation.

The validations in Myriokefalitakis et al. [2020] have shown that the TM5-MP

model generally produces reasonably realistic tracer fields in terms of both vertical

and horizontal distributions. However, some offsets to the observations still remain.

For CO specifically, Myriokefalitakis et al. [2020] found too low mixing ratios in

the northern hemisphere and too high mixing ratios in the southern hemisphere. The

spin-up inversion is necessary to confidently remove those offsets.

Additionally, the spin-up inversion facilitates a smooth transition between the dif-

ferent emission datasets used by Myriokefalitakis et al. [2020] in TM5-MP and in

the experiments presented here in TM5-4dvar. While the experiments presented here

also use CMIP6 for anthropogenic CO and the same meteorology, Myriokefalitakis

et al. [2020] use CMIP6 also for biomass burning, while here FINN2.4 or GFED4.1s is

used. This discrepancy is accepted, because, for 2018, both these inventories provide

historical data rather than projections and inversions strongly benefit from realistic

lateral a priori distributions, which cannot be obtained from projection data as those

in CMIP6. Another important difference is the handling of OH. While Myriokefal-

itakis et al. [2020] calculate their OH online, here prescribed OH fields, as described

in Section 3.2.1, are used. Both, the biomass burning prior and OH fields, are further

investigated and exchanged in Chapter 4.
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3.2.3.4 Inversion experiments

Table 3.1 gives an overview of the experimental setups for the inversions analyzed in this

chapter. The main inversion period (1 June 2018 to 1 January 2019) is chosen based

on the availability of the used input data and computational constraints. Regarding

the input data, TROPOMI was in its commissioning until March 2018 and the ERA-

Interim meteorology dataset ends in August 2019. The latter constraint will be lifted for

future studies by switching to ERA5 meteorology [Hersbach et al., 2020], as described

in Chapter 6. Still, the large zooming region over most of the northern hemisphere,

which is chosen to gain deeper insight into the general anthropogenic emission patterns,

combined with the long inversion period come at a high computational cost. Each

inversion takes about five real-world days to run (even longer with the full resolution

satellite observations). Therefore, the inversion period does not extend into 2019. In

this chapter, emissions for this period are optimized a total of six times with different

settings, split into two sets.

In the first set, the biomass burning a priori emissions are varied, while using

the same observations (global gridded TROPOMI observations in conjunction with

flask measurements from the NOAA background stations) to constrain the emissions.

More details on the a priori emission inventories and the observations used, including

the gridding process, can be found in Sections 3.2.3.1 and 3.3, respectively. These

inversions are intended to investigate the sensitivity of the optimized emissions to the a

priori, by introducing a new and updated version of FINN into the model and applying

a significantly lower grid-scale biomass burning a priori error compared to previous

studies. The first set includes (1) the reference inversion with FINN2.4+VIIRS, (2) the

noVIIRS inversion with regular FINN2.4 and (3) the GFED inversion with GFED4.1s.

In the second set, the biomass burning emissions are kept fixed to the reference case

(FINN2.4+VIIRS) and the observational datasets are varied. This way, it is possible

to assess the information content in the different datasets and the loss of information

through gridding. The second set includes (4) the full satellite inversion using the full

resolution satellite data in conjunction with the NOAA surface flasks, (5) the satellite

only inversion using only the gridded satellite observations but no surface flasks and

(6) the station only inversion using no satellite observations at all, where the inversion

is driven solely by the surface flasks.

For the spin-up inversion (1 January 2018 to 1 July 2018) the same setup as for

the reference inversion is used, i.e. FINN2.4+VIIRS as biomass burning a priori and

gridded satellite observations in conjunction with NOAA surface flasks. All of the main

inversions are started from this one spin-up, to ensure comparability of the results.
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3.3 Observations

3.3.1 In situ measurements

The in situ observations used here are the NOAA surface flask CO measurements from

various stations assembled by the Carbon Cycle Greenhouse Gases (CCGG) group

[Petron et al., 2020]. For filtering out non-background stations, the algorithm de-

scribed in Hooghiemstra et al. [2012a] is applied to the 54 stations active between

January and December 2018. Following this, only the 44 stations shown in Figure 3.1

are classified as background and subsequently used. This filtering is necessary to avoid

the large representation error introduced by non-background stations. On the one hand,

the model has a fairly low resolution and will not be able to capture local sources that

might affect the stations. On the other hand, it also has a relatively short time-step

compared to the weekly or even bi-weekly station measurements, which is why a daily

cycle may be caught by the model but not by the stations. Therefore, any station

where the model shows a large diurnal cycle is excluded. The criterion is a mean daily

standard deviation of more than 3.5 ppb, following the example of Hooghiemstra

et al. [2012a]. However, background stations and those affected by seasonal biomass

burning signals are kept; in other words, large annual standard deviations are allowed.

Using only background stations comes with the implied assumption that air masses

reaching them are well-mixed and, therefore, even the coarse resolution of the model

(6◦× 4◦) is sufficient to capture the remaining spatial and temporal variation, allowing

for a proper direct comparison of the model to the point observations. To account for

any discrepancies from this assumption, the model estimates a representation error for

each station based on the slopes (slope scheme introduced in Section 2.2) in the box

that contains the station.

For the station data, in addition to the representation error of the model, a sampling

error of 2 ppb is assumed. This error is composed of the instrument precision of 1.5 ppb

given in Gerbig et al. [1999] for the fast-response vacuum-UV resonance fluorescence

CO (VURF) instrument used at all stations in 2018 and the reproducibility of the

measurements of 0.5 ppb provided in the readme of the dataset [Petron et al., 2020].

3.3.2 Satellite observations

The second assimilated dataset consists of the CO total columns from the TROPO-

spheric Monitoring Instrument (TROPOMI) on-board Sentinel-5 Precursor (S5P) satel-

lite launched in October 2017 [Veefkind et al., 2012]. TROPOMI provides daily global

coverage with a local overpass time at 13:30. The retrieved CO columns also feature

a high spatial resolution of up to 7 × 7 km2 at a swath width of 2600 km. Compared

to that resolution, even the finest resolution of the model of 1◦ × 1◦ might seem very
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coarse. However, using high resolution observations not only implies a reduced aggre-

gated observational error if multiple observations are available in a single model grid

box, but it also gives a chance of at least some cloud-free pixels, i.e. some information,

in cloudy model grid boxes.

This thesis employs the TROPOMI/WFMD version 1.2 product from the Car-

bon and Greenhouse Gas Group at the Institute of Environmental Physics (IUP) of

the University of Bremen, retrieved with the Weighting Function Modified Differential

Optical Absorption Spectroscopy (WFM-DOAS) algorithm, which is described and

validated in Schneising et al. [2019]. In Chapter 5, the implications of using the

latest product version, version 1.8, are investigated. The retrieval makes use of the

TROPOMI observations in the shortwave infrared (SWIR) 2.3µm spectral range to

provide column-averaged dry-air mole fractions of methane and CO. The resulting to-

tal columns feature nearly constant sensitivity with respect to altitude. Notably, this

includes the troposphere and boundary layer, which is especially useful when investi-

gating biomass burning events and tropospheric air quality. In addition, observations

in the SWIR spectral range, unlike those based on visible light, are capable of seeing

through smoke plumes to some degree, making them critically valuable for investigat-

ing biomass burning events. The latter works for smoke but not clouds due to vastly

different particle sizes, as demonstrated in Schneising et al. [2020].

As detailed in Schneising et al. [2019], the retrieval employs a fairly strict quality

filter, especially with regard to cloudiness, surface brightness, and solar zenith angle

(< 75◦). This selection implies a clear sky bias in the observations, resulting in an

overestimation of photochemical conditions, as well as very sparse data over the oceans

due to their low albedo. The latter can be seen in Figure 3.1, where over the oceans

observations are only possible due to sun glint, which occurs almost exclusively in the

center of the orbits (i.e. in a nadir viewing geometry), while the sun is at the zenith.

This implies that the sparse observations over the oceans are mostly clustered together.

3.3.2.1 Gridding

Above, inversions with gridded satellite observations were referenced. These so-called

super-observations were created following the approach outlined in Miyazaki et al.

[2012]. The implementation of the gridding approach used in this thesis is available

at Nüß et al. [2022b]. As shown in Figure 3.2, for each orbit, the intersection areas

wi of the footprint of each observation ŷoi with the cells of a regular 0.5◦ × 0.5◦ grid is

calculated. This grid resolution was chosen based on sensitivity studies (unpublished

data) conducted in the LAMOS group at the IUP of the University of Bremen, which

have shown that at the coarse model resolutions used throughout this thesis, inver-

sions based on observations gridded to 0.5◦ × 0.5◦ lead to almost the same optimized

emissions as those based on the full satellite data, but with a significantly reduced
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Figure 3.2: Schematic representation of several satellite footprints (outlined with dashed
lines) intersecting with cells of a regular grid (thick, solid lines). The dotted areas show
the portion wi of each footprint that contributes to the center grid cell with area Acell. For
footprints that intersect with more than one grid cell (two examples highlighted in grey), their
contributions are further deweighted based on the ratio between their respective intersecting
area wi (i.e. the part that is both dotted and grey) and their total area Ai (the entire grey
area). For the striped area no observations are available, hence, the coverage α for the center
cell is < 1.

computational cost (using full satellite data entails roughly 25% longer computation

times per iteration).

According to Miyazaki et al. [2012], a representative super-observation for each

orbit and grid cell can be calculated as an area-weighted average:

ŷo =

∑m
i=1wiŷ

o
i∑m

i=1 wi

(3.1)

where m observations contribute to this super-observation. Notably, this average is

not weighted by the retrieval error, which stems from the nature of the retrieval, where

larger values have larger (absolute) errors, and, therefore, an error-weighted average

would be skewed towards low values, as explained in Boersma et al. [2016]. The

same process of calculating area-weighted averages is also applied to the measurement

time, the a priori profile, the pressure levels of the retrieval, and the averaging kernel,

level-wise for the latter three.

Unlike Miyazaki et al. [2012], before calculating the super-observation error as

an area-weighted average, in the approach introduced here, the error corresponding to

each individual intersection wi is first inflated, so that its weight in the cost function

(Eq. (2.11)) does not depend on the number of grid cells the corresponding footprint

intersects with. This independence can be achieved with a factor
√

Ai

wi
, where Ai is the

total area of the satellite pixel’s footprint, which contains the i-th intersection. The
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area Ai is equal to wi if the footprint intersects exactly one grid box. Otherwise it

will be larger, as exemplified in Figure 3.2, where the areas Ai, highlighted in grey, are

larger than the areas wi that are simultaneously grey and dotted for the two example

footprints. The root stems from the least-squares nature of the cost function, while

the rest is simply the inverse of the fraction of the footprint that intersects with the

current grid cell. Taken together this yields an area-weighted error:

σ =

∑m
i=1

√
Ai

wi
wiσ

o
i∑m

i=1wi

=

∑m
i=1

√
Aiwiσ

o
i∑m

i=1wi

(3.2)

Further following Miyazaki et al. [2012], this σ is then deflated by the number n of

observations that contribute to the super-observation in that grid cell. However, this

deflation is limited by the correlation c between errors of the individual observations

(i.e. systematical errors from e.g. the albedo assumed in the retrieval are correlated in

space and do not average out) as suggested in Eskes et al. [2003], and therefore, the

super-observation error can be estimated as:

σo = σ

√
1− c

n
+ c (3.3)

Exact values for c are difficult to obtain, however, an upper bound may be found by

considering the ratio of the systematic error of the TROPOMI observations versus its

random error. From the validations against other observational datasets in Schneising

et al. [2019], this ratio can be estimated to be roughly 30%. As not all systematic error

sources from observations within each 0.5◦ × 0.5◦ grid box are correlated, c = 15% is

assumed here. It should be noted that the exact value of c has nearly no influence on

the final inversion results, because a larger (smaller) c leads to overall larger (smaller)

errors, which, for the most part, will be canceled out by a larger (smaller) error inflation

(Section 3.3.2.2).

However, this σo does not yet include the representativeness error, which accounts

for potential differences between the true average tracer concentration (which includes

the parts of the cell that are not covered by observations) and the ŷo calculated above.

For example, if the satellite observes a pristine background in one part of the grid cell,

but there is also a plume with high tracer concentrations obscured by clouds in the

remaining area, ŷo would be too low. The more of the grid cell area is covered, the

smaller this representativeness error becomes.

Miyazaki et al. [2012] suggest a method to estimate this effect. First, the initial

mean observation in a cell and the coverage α =
∑m

i=1 wi

Acell
, 0 ≤ α ≤ 1, where Acell is the

total area of the grid cell, are calculated. In Figure 3.2 the
∑m

i=1wi is the total dotted

area, whereas the Acell is the total cell area enclosed by the thick, solid lines. Next, for
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Figure 3.3: The dashed black line shows the global mean representativeness error factors
over the satellite coverage in a given grid cell. This factor is zero for full coverage (α = 1) and
sharply increases at low coverage vales. The colored lines show the mean representativeness
error factors over 12◦ bands. As these are quite noisy, they are instead used to obtain a
single scaling factor for each band. These factors are then multiplied onto the global mean
representativeness error factors, which leads to the much smoother colored dotted lines.

well covered grid cells (α > 90% inMiyazaki et al. [2012]), the coverage α is artificially

reduced by randomly removing observations. For each observation removed, the mean

and coverage of the remaining observations are recalculated. The new mean is then

compared to the original value to yield a relative deviation. By repeating this process

for many grid cells, a mean relative deviation frep(α) can be calculated. Multiplying

this relative deviation with the super-observation value ŷo gives the representativeness

error for that cell. In Miyazaki et al. [2012], the mean observations are calculated

as a simple arithmetic mean, whereas here the area-weighted average, as introduced

above, is used:

frep(αk) =

⏐⏐⏐⏐⏐⏐⏐
ŷo −

∑m−k
l=1 wlŷ

o
l∑m−k

l=1 wl

ŷo

⏐⏐⏐⏐⏐⏐⏐ , 0 < k < m (3.4)

where k are the removed observations. For the sake of this analysis, the initial obser-

vations in each grid cell, i.e. before removing any of them, are treated as if they fully

covered the cell. Therefore, αk =
∑m−k

l=1 wl∑m
i=1 wi

is the coverage compared to the initially

covered area, rather than the full grid cell area.

Here, to estimate the representativeness error, 31 days of data, evenly spread over

the available observations for 2018, are analyzed. Additionally, the coverage require-

ment is relaxed to 50% to have a larger set of eligible observations, especially when

considering coarser grids (not shown in this thesis). As αk is a continuous variable, it

38



OBSERVATIONS 3.3

Figure 3.4: The black crosses are the 12◦ band-wise scaling factors for the global mean (black
line) representativeness error factors, as shown in Figure 3.3. Clearly, representativeness
errors rise towards the poles, especially in the southern hemisphere where there is less land-
cover. Additionally, the band-wise scaling factors for each 1% coverage bin, normalized over
the respective global mean for that bin, are shown as colored dots.

had to be aggregated into 1% bins for the sake of calculating the mean frep(α) over

the entire analyzed data. The resulting global mean representativeness error is shown

as the black dashed line in Figure 3.3.

The TROPOMI satellite observations show a weak intra-annual variation in the rep-

resentativeness error factor, with generally slightly larger error values in the northern

hemispheric summer. However, its magnitude is smaller than the temporal variation

on a daily basis. Therefore, the representativeness error is kept fixed in time.

In latitudinal direction, the analysis had to disregard the very few observations with

a center point beyond 89.93◦ north/south, as these might touch and reach beyond the

poles, which is problematic for area calculations in the used latitude-longitude projec-

tion. Additionally, as can be seen exemplified by the colored lines in Figure 3.3, there

seems to be a strong latitudinal dependence of the representativeness error, with larger

values towards the poles and in the southern hemisphere. This latitude dependence is

likely caused by the poorer measurement quality over the oceans and in high latitudes,

and smaller grid cell sizes towards the poles. Notably, while the magnitude of the

representativeness error increases, the general dependence on the coverage α does not

change. To capture this behavior, the representativeness error factor was additionally

averaged over α for each latitudinal 12◦ band to obtain another scaling factor f̄rep(ϕ),

with ϕ as latitude. In Figure 3.4, these band-wise factors are plotted before (colored

dots) and after (black crosses) averaging over α, all normalized over the global mean.
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With this, the total representativeness error factor used in this thesis is:

frep(α, ϕ) = f̄rep(ϕ) · frep(α) (3.5)

The resulting latitude-wise representativeness error factors are shown as colored dotted

lines in Figure 3.3. The representativeness error can now be obtained for a given mean

observation ŷo, coverage α and latitude ϕ as

σr = frep(α, ϕ) · ŷo (3.6)

This leads to the total error of the super-observations

σs =
√

σ2
o + σ2

r (3.7)

The super-observations are always assumed to be located at the center of their cor-

responding cells. This might lead to a spatial bias, because observation within an

arbitrary grid cell cannot generally be assumed to be evenly distributed.

3.3.2.2 Error inflation

The uncertainties provided for the individual satellite observations (for the full satellite

inversion) and the total error of each of the super-observations (for the inversions that

use gridded satellite observations) are inflated with a global factor that depends on the

specific inversion setup. For each inversion, this inflation factor is chosen so that the

satellite and station observations each make up roughly half of the total observational

cost, as suggested in Hooghiemstra et al. [2012a]. The intent of this inflation factor

is to capture the spatial correlation between the individual satellite footprints and to

prevent them from suppressing the signal of the surface stations by their sheer number.

In previous studies, this inflation factor has only been roughly estimated. For

example, an empirically chosen variance inflation of 2 was used in Chevallier [2007]

for Orbiting Carbon Observatory (OCO) CO2 observations gridded to 3.75◦ × 2.5◦, an

inflation of 50 was used in Hooghiemstra et al. [2012a] for MOPITT V4 level 3 CO

observations gridded to 1◦ × 1◦, and an inflation of again 50 was used in both Krol

et al. [2013] and Nechita-Banda et al. [2018] for IASI CO observations at their native

sampling resolution of up to about 25× 25 km2. This section suggests a more rigorous

approach to finding the inflation that fulfills the condition of having each dataset make

up an equal part of the observational cost.

Finding the inflation factor at which this condition is fulfilled is in itself an iterative

process, where each iteration is a complete inversion. A close look at the cost function

(Eq. (2.11)) reveals that for an attempted inflation I, the inflation I ′ for the next
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iteration can be calculated as

I ′ =

√
Jobs,sat

Jobs − Jobs,sat
· I2 (3.8)

where Jobs is the total observational cost of the attempt, Jobs,sat is the part of Jobs

contributed by the satellite observations, and the inflation factors I, I ′ are a factor

applied to the observational errors (standard deviations). It should be noted, however,

that Eq. (3.8) will always underestimate the change in inflation needed. For example,

if the initial inflation was too large, the formula will suggest an improved, but still

slightly too large inflation for the next iteration. This happens, because reducing

the inflation will increase the cost attributed to the satellite observations, which in

turn causes the inversion to improve their fit. However, a closer fit to the satellite

observations usually implies degradation of the fit to the flask observations, which will

increase their contribution to the cost function. That way, the total cost increases and a

slightly smaller inflation is needed so that the contribution of the satellite observations

makes up half of that cost. In the opposite case, if the inflation was too small, the next

guess will be better but still slightly too small.

It may seem that the inflation is solely a parameter of the observational datasets

involved and, therefore, fixed for a given set of observations. However, experience has

shown that the inflation also depends on the time of year, the error and temporal

resolution of the a priori emissions, and the a priori datasets used. Both, a larger a

priori error or a higher temporal resolution of the emissions, especially for the biomass

burning emissions, enable the model to fit the satellite observations more easily (lower

cost) without degrading the station fit, leading to lower required inflation factors to

fulfill the criterion.

The setup outlined above results in significantly different inflation factors for the

individual inversions. Inflation factors are generally larger for the main inversions

compared to the spin-up inversion (45). They are also slightly larger for both of the

FINN2.4 based inversions (72 for reference and 70 for noVIIRS ) than for the GFED

inversion (68), possibly due to better a priori fits at the stations. These (standard

deviation) inflation values are larger than the aforementioned variance inflation factors

used in Hooghiemstra et al. [2012a] for gridded MOPITT observation, and in Krol

et al. [2013] and Nechita-Banda et al. [2018] for full resolution IASI observations.

The larger values are expected, because of the higher grid resolution when compared

to MOPITT, and the better coverage of TROPOMI when compared to IASI. Due to

the much larger number of observations, the largest inflation is required for the full

satellite inversion (182). This number is an indication of the higher spatial correlation

within the individual observations compared to within the gridded observations, since

the latter are, by definition, further apart.
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The concentrations at the locations of the surface stations depend only relatively

weakly on the exact value of the inflation factor, because the well-mixed background

concentrations show much broader patterns, which are captured by either dataset to

some extent. However, very small inflation factors will still cause the station fits to

degrade heavily, because the satellite data will drown out the flasks. Conversely, for

very large inflation factors the model approaches the station only inversion. This

emphasizes the need for the inflation factor to properly weigh both datasets against

one another.

However, some issues remain with the condition of having the observational cost

equally distributed between the stations and the satellite observations. This condition

implies that satellite observations with higher coverage or lower errors are assigned

higher inflation values, i.e. higher quality data gets a lower weight in the cost function.

Inadvertently, this will lead to overfitting of the surface flasks with increasing quality of

the satellite instruments used. Additionally, while a somewhat larger inflation factor is

to be expected at higher coverage due to increased correlation between the individual

pixels, the current blanket approach of assigning a constant inflation factor to all foot-

prints ignores the actual density and correlation of the observations. This implies that

dense observations over the Sahara are inflated just as much as the sparse observations

over the oceans. In Chapter 5, an alternative inflation strategy is introduced, that

potentially resolves some of these issues.

3.4 Results

3.4.1 Mixing ratio mismatch at the surface stations

3.4.1.1 Set 1: Inversions using different biomass burning priors

In Figure 3.5, the modeled mixing ratios at 6 out of the 44 total ground-level stations

are shown before and after the inversions from the first set of experiments (reference,

noVIIRS, and GFED), where the biomass burning inventories were varied. Addition-

ally, the corresponding flask measurement values as well as their assigned uncertainties

are indicated. During the spin-up inversion (not pictured), many stations initially ex-

hibit considerable under- or overestimations. The model corrects most of these within

the first one or two months and the mixing ratios at the stations start to closely follow

the observations. This way, during the main inversions (e.g. as shown in Figure 3.5),

the modeled mixing ratios at all stations are initially close to the observations. At most

stations, the mixing ratios simulated based on the optimized emissions remain close

to the observations over the whole period of the main inversion. This can be seen for

example at Mauna Loa (Figure 3.5d) and Rapa Nui (Figure 3.5f) in the northern and
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Figure 3.5: Modeled a priori (dotted lines) and a posteriori (solid lines) mixing ratios
sampled at the locations of the stations as well as the flask observations (blue crosses) for
six example stations and the three different biomass burning a priori inventories. For each
observation, the corresponding measurement error is indicated as well. Lines are color-coded
based on the a priori used: FINN2.4+VIIRS (reference) in orange, FINN2.4 (noVIIRS ) in
green and GFED4.1s (GFED) in pink. Unlike the first four, the bottom two stations ((e)
PSA and (f) EIC) are in the southern hemisphere and, therefore, in the low resolution global
region.
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3 EFFICACY OF HIGH-RESOLUTION SATELLITE OBSERVATIONS

southern Pacific, respectively, but also at stations close to the South Pole, like Palmer

Station in Figure 3.5e, despite their very remote nature.

However, at a few stations, the posterior mixing ratios diverge from the measure-

ments to some degree. This effect is mostly limited to high (> 55◦N) northern latitudes.

For example at Alert, as shown in Figure 3.5a, mixing ratios in July and August do

not drop far enough, while towards the end of the year they do not rise high enough.

Another problematic station is Assekrem, plotted in Figure 3.5b, where the flask ob-

servations are systematically underestimated by the model.

Generally, the a priori mixing ratios feature a global accumulation of ground-level

CO over time not supported by the observations. This indicates an unbalanced budget,

with either too large sources (overestimations in the a priori), or a too small sink

(underestimations in the OH climatology). Given the setup of the inversions, the model

resolves this by reducing the emissions in either case. However, there are stations where

this does not hold and the a priori underestimates the observations. For example at

Hohenpeissenberg in Figure 3.5c, the model finds a fairly strong diurnal cycle and

generally too low a priori mixing ratios. The former is likely a result of the station

being located at the top of a mountain, where upslope conditions cause surface CO

to be transported up to the station during daytime and away during night. Even

though not clearly visible in Figure 3.5c, where the full time series is shown, the model

is only sampled at the time of the measurement, which would alleviate this issue to

some degree. The too low a priori mixing ratios, however, could point to the relative

proximity of the station to emission sources in Central Europe, and possibly indicate

that the lateral model resolution is not fine enough to properly capture this station.

In the first eight rows of Table 3.2, the mean error-weighted mismatch J̄flask between

flasks and model for all main inversions is calculated as

J̄flask(x⃗) =

∑Nflask

i=1

[
(yflask,i−F(x⃗)i)

2

ε2O,i

]
Nflask

(3.9)

where Nflask is the total number of flask measurements yflask with observational errors

εO,i, and F(x⃗)i is the model sampled at that measurement. The observational errors

include the representation error of the model and the sampling error of the flasks. If the

model is capable of capturing the variability of the observations, the unit-less quantity

J̄flask should be close to one. Larger values could point to an underestimated observa-

tional error, systematic errors in the model itself or a model with too few degrees of

freedom to capture the variability in the observations, i.e. an underestimated model

representation error. When comparing two inversions, lower values represent a better

fit. As can be seen for all three experiments of the first set (reference, noVIIRS, and

GFED), the fit after the inversion is vastly improved compared to the prior fit. Con-
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sidering how well the model captures the variability at most stations (e.g. Figure 3.5),

the a posteriori J̄flask values of 3 to 4 most likely indicate underestimated errors, rather

than systematic model errors. Table A.1 in the appendix provides the individual mean

error-weighted a priori and a posteriori mismatches for all 44 stations across all six

main inversions. The same information is also plotted in Figure A.4, ordered by the

latitude of the station.

For most stations, the choice of the biomass burning a priori has very little influence

on the final fit, as evident from the orange, green, and pink lines in Figure 3.5 coinciding

almost everywhere. Moreover, the a priori mixing ratios from the different inventories

themselves are fairly similar. In general, a priori mixing ratios are lowest before the

GFED inversion and highest before the reference inversion based on FINN2.4+VIIRS,

though this does not allow for any conclusions regarding the quality of the inventories.

With all three, the a priori mixing ratios are clearly overestimated. While GFED4.1s

generates the lowest a priori mixing ratios which are, therefore, closest to the observa-

tions (J̄flask = 15.88 is the smallest prior mismatch out of all experiments), this could

be coincidental.

3.4.1.2 Set 2: Inversions based on different observational datasets

For the same stations as in Figure 3.5, the modeled mixing ratios for the second set of

experiments (satellite only, station only, and full satellite) based on different observa-

tional input datasets are shown in Figure 3.6. At the resolution of the model employed

in this thesis, even within the zooming region (up to 3◦ × 2◦), only minor differences

in a posteriori mixing ratios are found between the full satellite inversion (green lines)

versus the reference inversion (orange lines), i.e. for the sake of this analysis, those

datasets are equivalent. This equivalence is also emphasized by very similar mismatch

values in Table 3.2. In the station only inversion, where the satellite observations are

excluded altogether (brown lines), the fit to the flask measurements gets slightly better

(lowest J̄flask in Table 3.2), though changes are mostly minimal. Larger changes are

found when comparing the former three inversions to the satellite only inversion (pink

lines), in which the model is not driven by the flasks at all. In Table 3.2, this leads to

a significantly larger J̄flask, compared to all the other experiments, yet the mismatch is

still lower than for the a priori. This shows that the error inflation factors introduced

in Section 3.3.2.2 have been chosen to meaningful values, because the station fits do

not significantly degrade due to the satellite observations in the combined inversions.

Stations at high (> 55◦) northern latitudes, like Alert in Figure 3.6a, exhibit a poor

fit quality for the satellite only inversion. During northern hemispheric summer, mixing

ratios stay close to the a priori and much higher than the flasks, while in northern

hemispheric winter they fall too low, diverging from the a priori and the flasks. This

implies that these stations systematically have large mismatches. To illustrate that
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Figure 3.6: Modeled a priori (dotted line) and a posteriori (solid lines) mixing ratios sampled
at the locations of the stations as well as the flask observations (blue crosses) for six example
stations and four inversions with different observational datasets. For each observation, the
corresponding measurement error is indicated as well. Lines are color-coded based on the
observations used: The orange lines represent the reference inversion and are identical to the
orange lines from Figure 3.5. In green the full satellite inversion is shown, which also uses
a combination of satellite and flask observations. The pink and brown lines represent the
satellite only and station only inversions, respectively. Note that because all inversions are
based on the same a priori emissions, the single dotted black line holds for all four inversions.
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3 EFFICACY OF HIGH-RESOLUTION SATELLITE OBSERVATIONS

the fit at other stations is better, J̄flask is calculated only for stations south of 55◦N

in the third and fourth row of Table 3.2. While J̄flask is significantly reduced for the

satellite only inversion, it stays almost constant for all other experiments. This implies

that the satellite observations specifically are insufficient to constrain these stations at

high northern latitudes, while the model itself is well capable of capturing them. In

the satellite only inversion, during northern hemispheric wintertime, there are very few

observations in this region, due to little light and high cloud coverage. Therefore, the

divergence from the a priori is likely driven by the unbalanced budget in the northern

tropical and subtropical regions, where emissions all year round are heavily reduced as

shown in Section 3.4.3 below. It is cheaper for the model, in terms of the cost function,

to diffuse the decrements over a larger area and shift part of them to higher northern

latitudes, than to have even deeper localized decrements in the tropics.

Aside from the northern stations, there are a few other stations that are problematic

for the model to capture. The most extreme example of these issues is the station in the

Assekrem (ASK) shown in Figure 3.6b, where the satellite drives the model to much

lower mixing ratios than the flasks. This underestimation can be clearly seen by the

very low a posteriori mixing ratios for the satellite only inversion (pink line), and by

the reference inversion (orange line) ending up consistently lower than the station only

inversion (brown line), which is seldom the case for other stations. For this specific

station, this effect is likely amplified by its positioning within the Sahara desert, where

satellite observations are plentiful due to high albedo and little cloud cover, but might

also be adversely affected by dust. This oversampling causes the satellite observations

to gain a relatively large weight in the cost function compared to the flasks at that

location, causing the reference inversion to slightly diverge from the flask observations.

Assekrem is also a high-altitude site, which could potentially be problematic with

the limited representation of topography in the model. When considering the resulting

emission increments (Section 3.4.3) it appears that the model is not capable of capturing

this station properly. Another problematic station is Hohenpeissenberg (HPB), shown

in Figure 3.6c, where the satellite only inversion, again, suggests much lower mixing

ratios. Note the larger range on the vertical axis. Similar, albeit less pronounced results

are found for Ochsenkopf station (OXK), which is relatively close to Hohenpeissenberg

station geographically. Both are located on mountains at high altitudes. Therefore, as

mentioned earlier, the coarse resolution of the model and its limited representation of

topography might adversely affect the results there. This misrepresentation will also

be further discussed in Section 3.4.3 below, where these specific stations are found to

lead to unrealistically high emission increments, similar to Assekrem station. As for

the stations at high northern latitudes, these three stations (ASK, HPB, and OXK)

degrade the global mean error-weighted mismatch exceptionally strongly. To illustrate

this, in the fifth and sixth row of Table 3.2 J̄flask is calculated for all but these stations.

48



RESULTS 3.4

Again, J̄flask for the satellite only is reduced strongly. However, there are also slight

decreases for the other experiments, suggesting that the model overall has an issue

with properly representing these stations.

Nonetheless, most other stations, regardless of geographical location, show good fits

for all four investigated combinations of observational input. As examples for northern

tropics, high southern latitudes, and southern tropics, Mauna Loa, Palmer Station,

and Rapa Nui, respectively, are shown in Figures 3.6d–f. Most notably, the satellite

only inversion manages to closely follow the flask measurements, despite them being

not assimilated. This can be seen in the seventh and eighth row of Table 3.2, where

both, the stations north of 55◦N and the problematic stations (ASK, HPB, OXK) are

excluded from the calculation and J̄flask for the satellite only inversion gets much closer

to the other experiments. These good fits suggest that inversions of current events

driven solely by TROPOMI observations are feasible, as long as the region of interest

is well south of around 55◦N.

3.4.2 Mixing ratio mismatch to the satellite observations

In the final two rows of Table 3.2, the total error-weighted mismatch Jsat between

satellite observations and model for all main inversions is calculated as

Jsat(x⃗) =
∑
i

[
(ysat,i − F(x⃗)i)

2

ε2O,i

]
(3.10)

where ysat,i are the satellite observations with observational errors εO,i, and F(x⃗)i is the

model sampled at that measurement, with the averaging kernel applied. Figure A.5 in

the appendix shows the temporal (monthly) and spatial (12◦ × 12◦ grid) distribution

of the total error-weighted mismatches for all main inversions. Unlike for the mean

error-weighted mismatch J̄flask between the flasks and the model introduced in the

previous section, there is no division by the number of observations here, hence the

total instead of the mean mismatch is calculated. Considering the total mismatch was

necessary, because the number of observations in the full satellite inversion is much

larger than in all other inversions that use the gridded super-observations. Therefore,

the mean error-weighted mismatch for the non-gridded observations is much smaller,

i.e. each single observation bears a smaller weight in the inversion. By design, the super-

observations have smaller error than each single observation they are made up from

(Section 3.3.2.1) and the error of satellite observations in the full satellite inversion is

inflated the strongest (Section 3.3.2.2). Overall, the total mismatch leads to comparable

numbers, in this case, while the mean mismatch would not. Again, as for the stations

in the previous sections, more detailed data can be found in the appendix, where

Figures A.6 and A.7 show the latitudinal distribution of the mean a priori and a
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posteriori mismatch between the model and the satellite observation in 12◦ bands for

all six main inversions.

Generally, the results are similar to the ones for the stations above. When consid-

ering the first set of inversions (reference, noVIIRS, GFED), the a priori mismatch is

again smallest for GFED and largest for reference, and for the a posteriori mismatch

this is inverted again. For the second set, the satellite only inversion results in the best

fit to the satellite observations, while the station only inversion results in the worst.

This is akin to the results from the previous section, where the station only inversion

had the best fit to the station data and the satellite only inversion had the worst fit. As

outlined above, the mismatch for the full satellite inversion is special, because it is cal-

culated with respect to the non-gridded dataset. Regardless, the mismatch reduction

is comparable to the reference inversion.

The mismatches mainly originate from regions known for biomass burning, such as

central and southern Africa, northern South America, eastern North America, Indone-

sia, and Siberia. Even the 0.5◦ × 0.5◦ grid of the super-observations is fine compared

to the model resolution of 3◦ × 2◦ or 6◦ × 4◦. Therefore, any biomass burning event

that leads to steep gradients in the observations cannot be resolved in the model and

will lead to mismatches between the modeled and observed mixing ratios.

The global a posteriori mismatches also vary in time and are largest in August dur-

ing the height of the burning season. More details on this can be found in the appendix

in Figures A.8 and A.9, which show the global total prior and posterior mismatch be-

tween the satellite observations and the model for each month of each of the main

inversions. This spike in August is especially pronounced in the station only inver-

sion, where the mismatches already rise in July and slowly taper off over the following

months. For this inversion, in addition to the coarse model resolution, the station

measurements are too sparse in time and space to properly capture individual biomass

burning events and only constrain the increases in the resulting well-mixed background

mixing ratios. Similar as for the stations, the a priori mismatches are initially low in

June and steeply rise over the following three months. The good initial fit shows that

the spin-up inversion manages to properly harmonize the modeled mixing ratio with

the observations, as intended. The following rise in mismatches also illustrates the

suspected unbalanced budget that causes CO to accumulate in the model.

Figure A.10 in the appendix provides a closer look at the monthly lateral distri-

bution of the total a posteriori mismatch between the satellite observations and the

model for each inversion compared to the reference inversion, i.e. when and where

each inversion preformed better or worse than the reference inversion. For the first

set of inversions, it becomes apparent that, while the GFED inversion leads to worse

mismatches overall, the mismatches in Indonesia are slightly smaller compared to the

reference inversion. Additionally, noVIIRS and GFED perform slightly better than
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reference in central Africa in the beginning of the burning season in August to October,

but the reference inversion performs better there for the rest of the year.

Further analysis of the second set shows that for the satellite only inversion the

lower mismatch originates mostly from the northern hemisphere. Curiously, the mis-

match towards the satellite observations around Rapa Nui in the southern Pacific is

significantly increased (roughly +50%) in the satellite only inversion for the period

October to December compared to the reference inversion, i.e. in that region, the ad-

ditional use of flask measurements in the reference inversion leads to a better fit to the

satellite observations than using the latter on their own. This apparent contradiction

can be resolved by considering that the mixing ratios at such remote locations are,

on the one hand, only weakly constrained by the sparse satellite observations over the

oceans and, on the other hand, are strongly influenced by transport from distant, land-

bound source regions [Daskalakis et al., 2022], which are much stronger constrained

by the satellite observations. The addition of the high-confidence flask measurements

from the Rapa Nui station causes the model to diverge from the a priori towards higher

emissions around that station, which also better fit the (sparse) satellite observations

in that region.

For the station only inversion, especially large mismatches are observed over north-

ern Africa during the full inversion period. This is most likely related to the issues

with the station in the Assekrem outlined in the previous section. During the burning

season (July–September) the mismatches in the station only inversion are most pro-

nounced over continental Asia, northern and central Africa, northern South America,

eastern North America, and the oceans in between those regions. Towards the end of

the year, large mismatches are also found around Indonesia. Notably, the station only

inversion shows a degrading fit to the satellite observations in high northern latitudes

(> 55◦N), i.e. the a posteriori mismatch there is worse than the a priori mismatch (see

also Figure A.6). This is the only place and time where a degrading fit occurs. As

mentioned, all of this behavior is to be expected from the station only inversion, since

the sparse station network cannot capture the full spatial and temporal variation of all

biomass burning events globally.

While the mismatches for the full satellite inversion are problematic to compare

directly to the other inversions due to the much larger number of observations and the

error inflation, the mismatches appear to be smaller in remote regions and larger in

active biomass burning regions, compared to the reference inversion. This mismatch

distribution is expected, because the higher resolution of the full satellite observations

implies finer and more pronounced structures from the individual biomass burning

events, which the model can resolve even less.

Interestingly, the mismatches from all main inversions converge in the southern

hemisphere, i.e. even the station only inversion fits the satellite observation just as
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good as the reference or even the satellite only inversion. This shows that not only is

each dataset on its own sufficient to constrain the (remote) southern hemisphere, but

they also end up at roughly the same result there.

3.4.3 Optimized global emission fields

3.4.3.1 Secondary production

Figure 3.7: Global secondary CO production for September 2018 for the first set of exper-
iments. The first four panels belong to the reference inversion (based on FINN2.4+VIIRS)
and show (a) the a priori emissions, (b) the a posteriori emissions, (c) their absolute differ-
ence, and (d) the factor by which the emissions increased. Panels (e) and (f) show this factor
for the noVIIRS and GFED inversions, respectively. Note the logarithmic color scales in the
first three panels.

Figure 3.7 provides a global overview of the optimized secondary CO production

from VOCs including CH4 for September 2018 and a comparison to the a priori emis-

sions for the reference inversion. In Panels (c) and (d), the absolute and relative

differences between the a priori (Panel (a)) and a posteriori (Panel (b)) are shown. For

comparison, the relative emission increments for the noVIIRS and GFED inversions

can be found in Panels (e) and (f), respectively. September was arbitrarily chosen,

because it is in the center of the inversion period and the results found for the other

months are fairly similar. The differences that occur over time are small and limited to
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variations in amplitude, but not in space. This is to be expected, considering the strict

temporal correlation times and spatial correlation lengths introduced in Section 3.2.3.1.

Figures A.11 to A.13 in the appendix provide a brief overview of the relative secondary

CO increments resulting from the reference inversion for the remaining six months of

the main inversion period and comparisons of those increments to the ones shown in

Figure 3.7.

All main inversions result in large decrements in a band roughly between the Equa-

tor and 40◦N. These decrements are especially deep over China and India, as can be

seen in the relative increments in Figures 3.7d–f. In the later months of the inversion

period, this region of large decrements shifts eastwards towards China for all experi-

ments. This northern tropical decrement will be analyzed in more detail later on in

Section 3.4.3.2, in the context of anthropogenic emission increments.

The band of decrements is accompanied by increased emissions north of 40◦N, espe-

cially over central Europe, North America, and Siberia. Additional positive increments

can be found between the Equator and 40◦ S, over the oceans, and in southern Africa.

These appear to occur in biomass burning outflow regions, and could point to a sys-

tematic error in the lifetime of CO in the model. Due to the band-like structure of the

positive and negative increments, this error is possibly caused by inaccurate OH values.

Further evidence for such issues with OH values can be found in Myriokefalitakis

et al. [2020], where they compare their online calculated OH to the climatological fields

from Spivakovsky et al. [2000] used here and find significant differences in those re-

gions. Notably, in the full chemistry simulation, higher OH concentrations not only

imply higher CO loss rates, but also higher secondary CO production. Here, those pro-

duction rates are paired with loss rates base on the climatological OH, as pointed out

in Section 3.2.3.3. Since in the inversion experiments throughout this thesis, the loss

rates are fixed, the model can only compensate for this mismatch by, in some places

considerably, changing the secondary CO source.

Overall, the a posteriori secondary CO source is lower than the a priori production

flux in all experiments, as can be seen in the global budgets provided in Table 3.3, where

the posterior masses at the end of the inversion period (final masses) are consistently

lower than the prior final masses. All fluxes have been extrapolated to annual budget

terms in Tg CO yr−1, which might be misleading, because the inversion period of

the main inversions includes the biomass burning season, but excludes the increased

anthropogenic emissions due to heating during most of the northern hemispheric winter.

Regardless, the extrapolated annual a posteriori budget terms found here are much

closer to the ones found in literature [e.g. Zheng et al., 2019] than the a priori terms,

implying that the a posteriori terms are more realistic. However, as expected, the

partitioning of there emission terms here is slightly different compared to Zheng et al.
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[2019], with lower anthropogenic/fossil fuel CO emissions, but higher secondary CO

production.

As for the stations in Section 3.4.1, the differences in the emission increments be-

tween the inversions in the first set (different biomass burning a priori) are rather small.

The most striking differences are the much larger increments (up to +70% higher fi-

nal emissions) over southern Africa in the GFED inversion (Figure 3.7f). These are

likely related to a known underestimation of African CO emissions in GFED4.1s as

described in Nguyen & Wooster [2020] and references therein. More subtle dif-

ferences are found in South America, where the GFED inversion only leads to minor

corrections (relative increments close to 1), while the reference and noVIIRS inversions

show clear decrements (final emissions reduced by up to −50%). These decrements

could be coincidental, considering the importance of OH-chemistry and secondary CO

production in that region. In the northern hemisphere, noVIIRS (Figure 3.7e) and

GFED (Figure 3.7f) feature slightly higher increments over eastern Europe (noVIIRS

< +10%, GFED up to +30%), North America (noVIIRS < +10%, GFED < +20%),

and Siberia (noVIIRS < +15%, GFED < +5%) compared to the reference inversion.

These differences could point to aliasing of the secondary production emission category

to the biomass burning category. FINN2.4+VIIRS, which is used as biomass burning

a priori in the reference inversion, has generally the highest emissions, mostly due to

capturing small fires, which are common in these regions. For the other two, the model

attempts to capture these missing sources, in part, through increasing the emissions

in the other categories. Again, this misattribution can also be seen in the budgets in

Table 3.3, where the posterior total emitted mass is very similar for all experiments of

the first set, but the distribution over the three emission categories varies considerably.

In Figure 3.8, one month of the relative increments for the CO production from

VOCs and CH4 are shown for the second set of inversions. Figure 3.8a is from the ref-

erence inversion based on a combination of gridded satellite observations and surface

flasks. As such, the content of Figure 3.7d above is repeated there for ease of compari-

son. Very similar results (Figure 3.8b) are obtained with the full satellite inversion, as

already shown at the surface stations in Section 3.4.1. Minor differences are visible over

North America and Siberia, likely due to less aliasing to the biomass burning category.

When the higher resolution observations are used, the short term and local biomass

burning events are more distinct, which makes it easier for the model to capture them

in the appropriate category.

For the satellite only inversion (Figure 3.8c) many regional features are much less

pronounced. However, the broader distribution of emission increments remains the

same: There are still negative increments in a band between the Equator and 40◦N

and over South America, and positive increments over southern Africa and the adjacent

oceans. The positive increments over North America, Europe, and Siberia are weaker
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3 EFFICACY OF HIGH-RESOLUTION SATELLITE OBSERVATIONS

Figure 3.8: Global secondary CO relative emission increment for September 2018 for the
second set of inversions, based on different observational datasets. The panels show the factor
by which the emissions increased for (a) the reference inversion, (b) the full satellite inversion,
(c) the satellite only inversion, and (d) the station only inversion. The locations of the surface
stations are indicated with dots for easier orientation, in the last panel additionally with their
station code. Note that Panel (a) of this figure is the same as Figure 3.7d.

and appear to be spread out over the whole northern hemisphere north of around

45◦N, including over the oceans. These weaker features are likely linked to the different

spatial distributions of observations in the two datasets; while there are many maritime

stations and stations in the remote northern hemisphere, satellite observations there

are more sparse and mostly found in continental regions. Additionally, towards the

end of the year, i.e. the second half of the main inversion period, there are no more

satellite observations at high northern latitudes, as exemplified in Figure 3.1 for one

day in early November. All of this, in combination with the spatial correlations given

to the optimizer, causes the model to prefer smooth, broad patterns to fill in any gaps.

These differences in information content between the two observational datasets

stress the importance of the error inflation (Section 3.3.2.2). If the error on the satel-

lite observations is not inflated, the optimized emissions end up very close to the ones

from the satellite only inversion, because the signal from the sparse flask measurements

is overshadowed. However, the current inflation may be too large, which causes the

optimizer to “overfit” certain stations that are not well captured by the model. As can

be seen in Figure 3.8d for the station only inversion, some stations clearly drive the

model away from these broad patterns and towards strong positive regional increments.

This overestimation is especially apparent for Assekrem (ASK) and Izana (IZO) sta-

tions, which lead to large increments over north-west Africa, and Hohenpeissenberg

(HPB) and Ochsenkopf (OXK) stations, which drive emissions over central Europe up

strongly. Neither of these increments are observed or supported by the satellite ob-
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servations. Notably, all of these stations are at high altitudes, potentially pointing to

short-comings in the representation of topography in the model. However, there are

mountainous stations, like Mauna Loa (MLO), that are captured well by the model.

Less pronounced examples of overfitted stations are Rapa Nui (EIC) and Tutuila

(SMO), which cause positive and negative increments over the southern Pacific, respec-

tively. However, it should be noted that for the satellite the number of observations

over oceans to constrain those emissions is very limited and, as shown for Rapa Nui

in Figure 3.6f, the satellite only inversion still manages to fit these stations reasonably

well.

Another factor that could play a role in the context of overfitted stations is the

strength of the vertical transport in TM5, whichKrol et al. [2018] find to be somewhat

faster than in other models. This implies low vertical gradients in the troposphere

and that modeled tracer mass might be transported upwards before the model can

be sampled at the location of the station for comparison to the real observations.

This is especially problematic for remote stations with limited surface sources in the

vicinity, such as Rapa Nui (EIC) in the south-eastern Pacific. There, the model is

forced to introduce unrealistic increments to the secondary CO source in the middle

of the Pacific. Furthermore, due to the way those emissions are handled within the

model, this will introduce additional CO over the whole column (and not only at the

surface), which then hampers the comparison to the satellite observations. Similarly,

for the station in the Assekrem, in the inversions that include station data, the low

vertical gradients cause the optimizer to introduce unrealistically high secondary CO

emissions over the Sahara. In contrast, those increments do not occur in the satellite

only inversion, because the satellite observes the total column with a very limited

vertical resolution and is, therefore, less affected by the vertical gradient in the model.

Finally, even in the station only inversion (Figure 3.8d), some station driven features

appear weaker compared to the reference inversion (Figure 3.8a). For example, the

positive increments over North America are much weaker and the spikes around the

Assekrem and in central Europe are more spread out. These weaker features are again

caused by a combination of the prescribed spatial correlations and the distribution of

the available observations. While in the station only inversion the model prefers broader

patterns to follow the prescribed spatial correlation of the emissions, in the reference

inversion there are satellite observations all around the landlocked stations, which drive

the model towards lower increments. Overall, the station only inversion is driven to

the largest emitted mass of all experiments as shown in the budgets in Table 3.3. This

is in line with the increased emissions around surface stations postulated in the context

of the (too) fast vertical transport in TM5 above.
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3.4.3.2 Anthropogenic emissions

Figure 3.9: Relative global anthropogenic CO emission increments for September 2018 for
all six inversion experiments. Panel (a) shows the reference inversion with FINN2.4+VIIRS as
biomass burning a priori, and gridded satellite observations and surface flasks as observational
input. The variations are (b) full satellite observations instead of gridded, (c) noVIIRS with
FINN2.4 as biomass burning a priori, (d) GFED with GEFED4.1s as biomass burning a
priori, and (e) satellite only and (f) station only to drive the inversion.

To better identify the aliasing between the emission categories, Figure 3.9 provides

an overview of the relative increments in the optimized anthropogenic emissions for

all six inversion experiments from this chapter. In Figure 3.9a the relative emission

increments are shown for the reference inversion based on FINN2.4+VIIRS, and a

combination of gridded satellite observations and surface flasks. The largest changes

are positive increments over Europe, and negative increments over China and India.

To investigate these increments further, one should consider that the anthropogenic a

priori emissions taken from CMIP6 are projections for 2018, rather than historical data.

For China, these projections predict relatively constant emissions. However, China

managed to significantly reduce its CO emissions in recent years [Kanaya et al., 2020]

in the scope of air quality policies, like the Coal to Gas policy only implemented in

2013 [Liu et al., 2020]. Additionally, the effect of most of these policies was somewhat

offset by strong biomass burning years up until 2015 [Zhang et al., 2020], making their

effect harder to assess in advance. Regardless, reduced CO concentrations have been
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now observed all over China, both at surface stations [Liu et al., 2019; Zhai et al.,

2019; Li et al., 2020] and from satellites [Zhang et al., 2020]. This observed reduction

has been linked to a decrease in emissions as calculated using inverse modeling [Zheng

et al., 2018]. The reduced emissions are most likely due to anthropogenic rather than

natural factors [Kang et al., 2019]. By 2018, the year analyzed here, all of this adds

up to at least part of the significant offset in CO emissions found above.

Unlike for China, there is no clear explanation for the negative increments over

India. These might be an artifact due to spatial correlation, where India’s proximity

to China implies that it is cheaper in terms of the cost function to reduce emissions over

a larger region, rather than strongly reducing only China’s emissions. This could be

compounded by low observational coverage, especially with regard to surface stations,

and an OH climatology not appropriate for recent years.

When compared to the full satellite inversion shown in Figure 3.9b, again, the incre-

ments are almost the same, further justifying the usage of gridded satellite observations

on a global scale to reduce the computational cost.

The noVIIRS (Figure 3.9c) and GFED (Figure 3.9d) inversions are slightly worse

at capturing the small fires in Europe and North America compared to the reference

inversion. The missing small fires lead to apparent anthropogenic increments, especially

for GFED, over Europe and western Russia to close the CO budget. Further evidence

for this aliasing is provided in Table 3.3, where the total a posteriori emissions for the

inversions of the first set are almost identical, but the partitioning over the emission

categories differs significantly. As such, GFED has over 35% lower biomass burning

emissions compared to reference, but almost 10% and 8% higher secondary production

and anthropogenic emissions, respectively.

For the satellite only inversion, the relative anthropogenic emission increments are

pictured in Figure 3.9e. They stay relatively close to, but below, 1 globally, i.e. the in-

version mostly agrees with the a priori. Over India and China, again, a clear decrement

is visible. Notably, there is no increment over Europe, in contrast to what is found

when flask observations are included. In Section 3.4.1, this smaller increment caused

the station at Hohenpeissenberg (Figure 3.6c) to be considerably underestimated in

the satellite only inversion.

The station only inversion shown in Figure 3.9f leads to very similar results in

terms of anthropogenic increments compared to the reference inversion. This shows

how well the NOAA station network on its own is capable of constraining the global

broad-scale background emission patterns. Differences include smaller increments over

Europe and smaller decrements over Africa and an apparent shift of the decrement

over India and China towards the East. The latter may be explained by a lack of

background stations and, therefore, a lack of observations in that region, causing the

decrement to be smoothed out due to spatial correlation.
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Overall, the anthropogenic increments shown in Figure 3.9 compared to the ones for

the secondary CO production in Figures 3.7 and 3.8 show similar general structures,

with decrements in China and India and increments in Europe. However, there are

noticeable differences both in finer scale spatial details, for example, the anthropogenic

increments over Europe are more spread out towards Eastern Europe, and large scale

patterns, with much smaller relative increments for North America. Generally, the ra-

tios of a priori to a posteriori emissions, i.e., the relative emission increments, are not

the same for all three categories. In other words, while there is some aliasing, the in-

version setup is still capable of simultaneously optimizing multiple emission categories,

which is ensured in the following ways:

Firstly, because of the different a priori errors, even in regions with similar spa-

tial structures, the amplitudes of the relative emission increments differ significantly.

Secondly, the different correlation lengths and times for each emission category, as in-

troduced in Section 3.2.3.1, ensure that only the biomass burning category is capable

of capturing short and local events. Conversely, long-lasting, large-scale mismatches

could still lead to aliasing across all categories, as is the case, for example, over China.

Thirdly, the a priori emissions of all three categories feature different spatial structures.

These a priori structures, combined with enforcing spatial and temporal correlation,

imply that it is cheapest for the model to change emissions following the ‘spatial sig-

nature’ of the correct source category, rather than evenly distributing the increments

over all categories. An example for this can be found over North America, where the

anthropogenic emissions are barely changed, while there are significant changes in the

secondary CO production.

3.4.3.3 Biomass burning

An in-depth analysis of the optimized biomass burning emissions is not included in this

thesis, because the low model resolution is not sufficient to capture individual burning

events. This promotes aliasing between the emission categories, where the biomass

burning emissions are in- or decreased in large regions co-located to the patterns ob-

served in the secondary CO production. As an example of this, Figure A.3 shows the

absolute biomass burning increments for 15 September 2018, the day in the center

of the period analyzed above. Because the temporal variability in the secondary CO

production is low, the biomass burning emissions also remain relatively constant in

time.
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3.5 Conclusions

TROPOMI satellite observations were introduced into the TM5-4dvar inverse modeling

suit to optimize global CO emissions from three distinct emission categories (biomass

burning, anthropogenic, and secondary production) in a set of six inversion experi-

ments. The model ran at a relatively coarse resolution of up to 3◦ × 2◦, which allowed

for the use of satellite super-observations gridded to 0.5◦ × 0.5◦ to reduce the compu-

tational cost. Compared to the inversion based on the full-resolution (up to 7× 7 km2)

satellite observations, differences in the final mixing ratios and optimized emission

fields were minimal. Yet, the computation time per iteration was around 25% longer

for the full resolution inversion. However, at 3◦ × 2◦ resolution, the model could not

properly resolve the spatial scale of individual biomass burning events. This resulted

in heavy aliasing of the biomass burning emissions to the other emission categories. In

future studies, using additional observations to further constrain emissions from spe-

cific sources or by employing a finer zooming region could improve model performance.

With the latter, such an inversion could make use of the full potential of the TROPOMI

observations.

The comparison of model results and observations is vastly improved by the inver-

sion and the a posteriori mixing ratios closely follow the observed values. Notably, this

even holds true in regions like China and the North Pacific, where the a priori strongly

overestimated the mixing ratio and very large emission decrements are required to reach

a good a posteriori fit. The overestimated a priori mixing ratios in those regions reveal

inconsistencies between the OH climatology used to simulate chemical loss, and the

secondary CO production terms taken from the TM5-MP model. This will be further

investigated in Chapter 4. For the inversion based only on satellite observations, siz-

able mismatches between model results and flask measurements remain for stations at

high northern latitudes. These mismatches can be explained by considering that mix-

ing ratios at high northern latitudes, on the one hand, are poorly constrained by the

satellite observations, especially towards the end of the year, and, on the other hand,

are governed by transport from the (well-constrained) mid latitudes, which leaves little

leeway for the optimizer. Additionally, in the inversions based on flask measurements,

there are very large increments around high-altitude stations. These increments are

most likely linked to the coarse model orography that comes with the overall coarse

model resolution and limitations in the representation of meteorology in the model.

The latter will be further investigated in Chapter 6. Despite good coverage in those

regions, the inversion based only on satellite observations neither confirms nor repro-

duces those strong increments. As such, for future inversions in this framework, an

increased model representation error should be applied to those specific stations, to

avoid biasing results by overfitting.
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In the southern hemisphere, results are very similar across all inversions, regardless

of the observational dataset(s) (satellite, stations, or both) used. This indicates that,

in the southern hemisphere, either dataset is equally capable of and sufficient for con-

straining the background emissions and leads to the same mixing ratios. Potentially,

these promising results could allow for inversions based solely on TROPOMI observa-

tions, so long as the region of interest is sufficiently far south of 55◦N. There, as well

as for validation, bias correction, and overall confidence in the optimized emissions,

the surface flasks still play a crucial role in the inversion. By using the TROPOMI

observations on their own, the long analysis cycle of the surface flasks could be cir-

cumvented and specific events could be investigated using this model in a more timely

manner (within weeks rather than months), and only be verified against and adjusted

by the flasks at a later stage.

Overall, the most reliable results are found from inversions using both datasets,

because they complement each other in multiple ways. Firstly, their spatial cover-

age differs slightly – while the satellite observations are mostly valid over land but

sparse over the oceans, most background stations are located on remote islands or in

coastal settings. Secondly, both datasets on their own have very limited information

on the vertical tracer distribution, where the flasks probe only the surface layer and

the satellite observations provide only total column mixing ratios. Combining those

datasets can yield better constraints on the vertical tracer distribution in places where

in situ and satellite observations are co-located. Finally, in a joint inversion, the satel-

lite observations are implicitly verified versus the flask measurements and it becomes

possible to identify potential biases in the satellite observations. However, when using

both datasets at once, the technical limitations of both apply, i.e. the high computa-

tional cost from using the satellite observations, and the long analysis cycle of the flask

measurements.

Additionally, especially in a joint inversion, properly inflating the uncertainty of

the satellite observations is crucial to weight them against the surface measurements.

Where in previous studies such an inflation factor was empirically estimated, a more

rigorous approach was introduced in this chapter. This approach still has a number of

limitations, some of which will be tackled with the further developments presented in

Chapter 5.
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Chapter 4

Towards a consistent OH

climatology

The inversion experiments conducted in the previous chapter resulted in significant

biases in the optimized CO emission, especially in the northern tropics. This chapter

presents how these biases are successively reduced by updating the boundary conditions

for biomass burning, OH concentrations, direct natural CO emissions, and secondary

CO production from VOCs and methane. Parts of this chapter are currently being

prepared for publication.

In Section 4.1, an introduction to the topic and an overview of the aims of this chap-

ter are given. Section 4.2 shortly introduces the used model setup and the conducted

experiments and includes as in-depth comparison of the used OH fields. In Section 4.3,

the results are presented, showcasing the achieved improvements. Section 4.4 then

provides a summary over the findings of this chapter.

4.1 Background and objective

The principle function of an inversion is to find a state, e.g. a set of emissions, that

reconciles a model with a set of observations. This becomes problematic if the devia-

tions to the observations are caused by a process that is not part of the state. In such

a case, the model might still be able to reach ‘realistic’ a posteriori mixing ratios that

fit the observations reasonably well and recover trends in the emissions, however, the

underlying absolute a posteriori emissions may not be meaningful [Yin et al., 2015]. As

a more concrete example, in Chapter 3 an unbalanced prior budget in the TM5-4dvar

model is found, which requires large emission corrections, especially in the northern

tropics, and points to inherent flaws in the initial assumptions. These flaws could be

benign if they are limited to the a priori emissions, since correcting those is the pur-

pose of the inversion. However, if a significant portion of those flaws originates from

63



4 TOWARDS A CONSISTENT OH CLIMATOLOGY

another part of the model, such as the chemistry parameterization, the dry deposition

scheme, transport and meteorology, or, in this case, the prescribed hydroxyl radical

(OH) fields, the inversion cannot properly represent that portion of the flaws and will

instead capture it by introducing superfluous emission increments.

The distribution and abundance of OH has a significant impact on carbon monoxide

(CO) inversions by modifying both the sources and the sinks of CO and can introduce

notable biases in the optimized emissions [Kopacz et al., 2010; Miyazaki et al., 2015;

Müller et al., 2018]. However, due to its short atmospheric lifetime (≈ 1 s), in-situ

measurements of OH are challenging [Patra et al., 2014]. Instead, OH concentrations

are estimated via proxy measurements, predominantly using the man-made solvent

methylchloroform (CH3CCl3, MCF; e.g. Naus et al. [2021]). However, Naus et al.

[2019] show OH to be currently under-constrained by the sparse available MCF mea-

surements. Hence, finding MCF alternatives is subject to ongoing research (e.g. Krol

et al. [2008]; Liang et al. [2017]). Compared to these observation-based OH estimates,

models generally find higher OH concentrations, especially in the northern hemisphere.

However, the differences between model and observation based OH distribution esti-

mates are overall within the uncertainty of the measurements [Naik et al., 2013].

Explanations for the overestimated model OH include model biases in ozone (O3) and

water vapor (H2O), both of which affect OH primary production [Naik et al., 2013],

and an underestimation of model CO in the northern hemisphere, which affects OH

loss and is possibly caused by underestimated anthropogenic surface emission [Shin-

dell et al., 2006; Stein et al., 2014] or overestimated loss to dry deposition during

northern hemispheric winter [Stein et al., 2014]. Additionally, modeled OH estimates

vary strongly between models. For example, Murray et al. [2021] find the tropo-

spheric mean OH concentrations across multiple ACCMIP models, which use the same

emissions, to vary by ±30% around the multi-model mean, and link this variation to

differences in the lifetimes of nitrogen oxides (NOx), which affect OH regeneration.

There are attempts to tackle the issue of the under-determined OH distribution

through multi-sensor and multi-species inversions. For example, in their formaldehyde

(HCHO) study, Fortems-Cheiney et al. [2012] use satellite observations of CO and

HCHO together with surface measurements of MCF and methane (CH4) to constrain

OH, among other species. Yin et al. [2015] use satellite observations of CO and station

measurements of MCF and CH4 with similar target species as Fortems-Cheiney et al.

[2012]. Both find CO to be well constrained, while the optimized OH fields depend

heavily on the prior assumptions. Miyazaki et al. [2015] employ satellite observations

of nitrogen dioxide, O3, nitric acid (HNO3), and CO and constrain OH indirectly by

optimizing, among others, species that govern the chemical processes related to OH,

namely O3 for primary production, CO for removal, and NOx for regeneration. While
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this approach reduces the gap between model- and observation-based OH estimates,

they conclude that possibly some errors remain in their modeled OH.

In this chapter, the aim is the investigation of how those model biases in CO and

OH impact inversions in the TM5-4dvar inverse modeling framework. As introduced in

Chapter 3, a substantial part of the prior emissions for the TM5-4dvar model, namely

the secondary CO production terms from the oxidation of volatile organic compounds

(VOCs) and CH4, are taken from the chemical transport model TM5-MP [Myrioke-

falitakis et al., 2020], in which the aforementioned northern hemispheric low biases

in CO and high biases in OH also exist. Currently, TM5-4dvar uses climatological OH

fields based on Spivakovsky et al. [2000], which do not match the OH field underlying

secondary CO production terms. Since OH and CO are estimated based on different

methodologies, which are in turn based on different meteorologies, inconsistencies in

(precursor) transport patterns may cause issues [compare e.g. Jiang et al., 2011]. Ad-

ditionally, in regions where the OH in TM5-MP is high, the resulting high secondary

CO production carries over to TM5-4dvar, but unlike in TM5MP, in TM5-4dvar that

CO may be subject to smaller loss due to lower climatological OH. This discrepancy

leads to the accumulation of CO in TM5-4dvar, which the inversion can only correct by

lowering the emissions to unrealistic values. Such large increments can be problematic

considering the linearized chemistry scheme, where changes in CO do not feedback

onto the prescribed OH field, causing an inversion to generally overestimate changes

[Stavrakou & Müller, 2006].

The following describes multiple attempts to find a more realistic prior by modifying

the boundary conditions of the inverse model in multiple steps, so that the inversion can

produce meaningful increments that reflect actual emission changes, rather than biases

in OH. The impact of those changes is tested by performing a series of CO inversions

constrained by satellite observations and surface station measurements and comparing

their results. The biggest modification consists of replacing the climatological OH by

monthly mean OH fields from a chemistry transport model. Similar approaches of

comparing the impact of climatological and modeled OH can be found in Jiang et al.

[2015] for optimized CO and Zhao et al. [2019] for modeled CH4. Further, the biomass

burning a priori is updated and climatological biogenic and oceanic CO emissions are

explicitly include. To round out the comparison, an additional inversion is performed,

where the prescribed model-based secondary CO production fields, see Section 3.2.3.1,

are replaced by the corresponding fields that Nechita-Banda et al. [2018] employ in

their inversion study.
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4.2 Materials and methods

All inversions analyzed in this chapter were performed using the Cycle 3 TM5-4dvar

model (Section 2.2) with the same basic setup as in Section 3.2.3, to ensure comparabil-

ity between the results of both chapters. For this chapter, the base code was updated

to revision c71f31 of the official code repository of the model. Additionally, support

for biogenic and ocean CO emissions based on MEGAN and MACC, respectively, was

added, and the capability to use the output from the full-chemistry model TM5-MP

to obtain OH fields to simulate chemical loss was implemented.

Table 4.1: A priori emissions and OH used for the conducted inversion experiments. Spiv-
OH and TM5-MP-OH refer to monthly climatological OH fields based on Spivakovsky et al.
[2000] and monthly mean OH taken from the TM5-MP model, respectively. FINN2.4 and
FINN2.5 refer to versions 2.4 and 2.5 of the FINN inventory including small fires from VIIRS.
The first two experiments, spin-up and FINN2.4, are identical to the spin-up and reference
inversions from Chapter 3, respectively.

Inversion
A priori emissions

OH
biomass anthro. secondary bio+ocean

spin-up FINN2.4

C
M
IP

6

T
M
5-
M
P

M
O
G
U
N
-

T
IA

- Spiv-OH
FINN2.4 FINN2.4 - Spiv-OH
reference FINN2.5 - Spiv-OH
MOGOH FINN2.5 - TM5-MP-OH

MEGAN FINN2.5
MEGAN
+MACC

TM5-MP-OH

CB4prod FINN2.5
TM5-MP
CBM4

- Spiv-OH

In this chapter, as outlined in Table 4.1, the setup of the reference inversion exper-

iment from Chapter 3 was successively refined in three steps:

First, the biomass burning a priori was updated to version 2.5 of the Fire INventory

from NCAR (FINNv2.5), which is available at Wiedinmyer & Emmons [2022] and

described in Wiedinmyer et al. [2023]. This defines the new reference inversion. Note

that the reference inversion from the previous chapter is referred to as FINN2.4 in this

chapter and different to the reference inversion from this chapter.

Second, updated OH fields are introduced. Previously, the inversions used monthly

climatological OH fields (Spiv-OH) from Spivakovsky et al. [2000], scaled by 0.92, as

suggested in Huijnen et al. [2010]. These were replaced with monthly-mean OH fields

(TM5-MP-OH) taken from the full chemistry model TM5-MP with the extended MO-

GUNTIA chemical scheme described in Myriokefalitakis et al. [2020]. Specifically,

the TM5-MP-OH came from the same simulation for the year 2018 as the 3D fields

used to represent secondary CO production from the oxidation of CH4 and other VOCs

introduced in Chapter 3. An in-depth comparison of the two OH fields can be found

in Section 4.2.1. The inversion experiments in this chapter still used the simplified

CO-only chemistry version of TM5-4dvar described in Hooghiemstra et al. [2011].
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In this scheme, both the OH fields and secondary CO production are prescribed and

not calculated online.

Third, an emission category for direct natural CO emissions, i.e. CO from biogenic

and ocean sources, was added. Due to their relatively small contribution to the total CO

budget in comparison to the prior errors on the other categories, they were previously

neglected. Specifically, the direct natural CO emissions were split into ocean CO from

the Monitoring Atmospheric Composition and Climate (MACC) inventory and biogenic

CO emissions from the Model of Emissions of Gases and Aerosols from Nature version

2.1 (MEGANv2.1) inventory from MEGAN-MACC distributed by the Emissions of

atmospheric Compounds and Compilation of Ancillary Data [Guenther et al., 2012,

ECCAD] repository. As in the TM5-MP simulations that generated the secondary CO

production and OH fields described above, both natural emission sources were fixed to

the fields for the year 2000. Because of weak observational constraints over the oceans,

this new category was not optimized. Additionally, according to Zheng et al. [2019],

little variation is to expected in the biogenic and ocean CO sources.

To further investigate the impact of the updated secondary CO production terms,

an additional inversion was run based on the production fields previously used in

Nechita-Banda et al. [2018] in conjunction Spiv-OH as described above. The pro-

duction fields in Nechita-Banda et al. [2018] were taken from a 2010 simulation of

the TM5-MP model with CBM4 chemistry, which is described in Huijnen et al. [2010].

To ensure a straightforward comparison, the settings were otherwise the same as for

the reference experiment. For the same reason, all inversions started from tracer fields

from the same spin-up inversion as in Chapter 3.

Overall, the optimizer settings for each category, i.e. a priori error, temporal cor-

relation of emissions in the same cell, spatial correlation of emissions in neighboring

cells, and temporal resolution of the state, remained unchanged to Chapter 3 and are

summarized in the appendix in Table A.2.

4.2.1 OH field comparison

The two OH fields used in this chapter feature several notable differences. The following

will provide an analysis of the tropospheric mean OH concentrations, the interhemi-

spheric concentration ratios, and the spatial distributions of both fields and compare

each to values reported in previous literature.

To calculate the volume- and airmass-weighted tropospheric annual mean OH con-

centrations, the volumes and the airmasses were based on the 3D pressure and temper-

ature fields for 2018 from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis project [ERA-Interim meteorology; Dee et al., 2011]. For

both OH fields the same tropopause cutoff was applied at 150 ppb ozone (O3) based
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on 3D monthly mean fields from the same 2018 TM5-MP simulation that produced

the TM5-MP-OH. Calculations for the Spiv-OH resulted in a volume-weighted mean

of 9.9× 105 molec
cm3 and an airmass-weighted mean of 10.4× 105 molec

cm3 . This tropospheric

mean is on the lower end compared to the (11.1±1.7)105 molec
cm3 [Shindell et al., 2006],

(11.1±1.6)105 molec
cm3 [Naik et al., 2013], and (11.7±1.0)105 molec

cm3 [Voulgarakis et al.,

2013] reported as airmass-weighted tropospheric multi model mean concentrations for

the year 2000 for different sub-sets of ACCMIP simulations. Furthermore, Liang

et al. [2017] present a trend-base two-box model approach, with which they estimate

the mean global mass-weighted tropospheric OH concentration at 11.2×105 molec
cm3 using

methyl chloroform (MCF) observations. In comparison, the mean tropospheric concen-

trations for the TM5-MP-OH were significantly larger, at a volume-weighted mean of

13.6× 105 molec
cm3 and an airmass-weighted mean of 13.4× 105 molec

cm3 . This overestimation

of OH points to a known issue in chemical transport models. For example, in their

multi-model comparison, Liang et al. [2017] point out that the models that calculated

OH online would have 20–30% higher OH than those that used climatological OH

fields based on Spivakovsky et al. [2000]. Similar ranges are found by Zhao et al.

[2019] who investigate the impact of using OH fields from different models in the LMDz

model. They report volume-weighted mean tropospheric OH between 8.7 × 105 molec
cm3

and 12.8× 105 molec
cm3 , with a mean of (10.5±1.1)105 molec

cm3 or an airmass-weighted mean

of 11.3 × 105 molec
cm3 . As detailed in Section 4.1, these overestimations in modeled OH

are likely linked to an underestimation of CO in the northern hemisphere.

To further describe the discrepancies in OH between models, another quantity that

is often used is the interhemispheric ratio of the tropospheric mean concentrations [e.g.

Naik et al., 2013; Patra et al., 2014; Zhao et al., 2019, and sources therein]. While

it would be sensible to split the hemispheres based on the location of the Inter-Tropical

Convergence Zone (ITCZ), for practical reasons the Equator is usually used instead.

Using the tropospheric mean concentration for each hemisphere calculated as above,

resulted in an annual mean interhemispheric OH ratio of:

10.2× 105 molec
cm3 (NH)

9.7× 105 molec
cm3 (SH)

= 0.96 (4.1)

for the Spiv-OH if using volume-weighted means and 0.99 based on airmass-weighted

means. As for the global tropospheric mean concentration, the north-south ratio of the

Spiv-OH field is in good agreement to observation based ratios, e.g. from Patra et al.

[2014], who use MCF observations from 2 station networks and an aircraft campaign

in an atmospheric chemical transport model to infer OH for 2004 to 2011 and found a

ratio of 0.97±0.12.
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For the TM5-MP-OH field, the ratio was significantly lager, at:

15.1× 105 molec
cm3 (NH)

12.1× 105 molec
cm3 (SH)

= 1.25 (4.2)

for volume-weighted means and 1.28 for airmass-weighed means. This agrees very well

with the ratios the inter-model comparisons by Naik et al. [2013] and Zhao et al.

[2019] find, of 1.28±0.1 and 1.3, respectively, each based on airmass-weighted means.

However, Naik et al. [2013] consider it likely that this ratio is overestimated in the

models due to biases in O3 and CO. Strode et al. [2015] follow a similar reasoning and

investigate possible causes for the too low modeled CO that leads to too high modeled

OH. They find the largest impact on interhemispheric OH ratio from anthropogenic

nitrogen oxides, followed by CO emissions, and that, while biases in O3 and H2O

might also play a role, the latter mostly affects global mean concentration, but not the

interhemispheric ratio.

Finally, the more detailed spatial distributions of the two OH fields differ substan-

tially in some regions. However, those differences are not represented by the broad

quantities considered above. While both fields peak in the tropical mid-troposphere,

this peak is at a greater altitude (around 600 hPa) in Spiv-OH than in TM5-MP-OH

(around 700–800 hPa, depending on season). In combination with vertical transport,

this difference affects chemistry, since with TM5-MP-OH air reaches higher OH concen-

trations sooner. Additionally, while the TM5-MP-OH is larger in most places, this is

particularly true close to the surface in the northern tropics, where concentrations are

larger by well over a factor of 2, which has significant implications for VOC chemistry.

While TM5-MP-OH is likely too large overall, this feature is in agreement with Naus

et al. [2021], who conduct a 3D inversion of MCF to constrain OH, which effectively

shifted OH towards the northern tropics compared to Spiv-OH. Spiv-OH is significantly

larger than TM5-MP-OH at higher altitudes in the southern extratropics. However,

since OH concentrations are overall low in that region, the impact on CO chemistry

should be minimal. As a side note, Spivakovsky et al. [2000] additionally claim that

their southern extratropical OH might be roughly 25% too large, making up for some

of the difference. Similar differences between modeled OH and climatological OH are

shown in Liang et al. [2017] and Yin et al. [2015].

A more detailed look at the two OH fields may be found in the appendix, where

the zonal means of the vertical distribution, per season, are shown in Figures A.14

to A.17 and the lateral distribution for the surface layer, per season, can be found in

Figures A.18 to A.21.
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4.2.2 Observations

All inversion experiments analyzed in his chapter assimilated the same two datasets.

Detailed descriptions of the datasets and any preprocessing steps, for example filtering

or gridding, can be found in Section 3.3. This section provides a short recap.

The first dataset consists of NOAA surface flask CO measurements from various

stations assembled by the Carbon Cycle Greenhouse Gases (CCGG) group [Petron

et al., 2022]. After filtering for background stations, these were assimilated with a

sampling error of 2 ppb, in addition to the representation error calculated by the model.

The second dataset is the TROPOMI/WFMD version 1.2 product from the Carbon

and Greenhouse Gas Group at the Institute of Environmental Physics (IUP) of the

University of Bremen, retrieved with the Weighting Function Modified Differential

Optical Absorption Spectroscopy (WFM-DOAS) algorithm [Schneising et al., 2019],

gridded to 0.5◦ × 0.5◦.

While this satellite product has been superseded by a more recent version, the ex-

periments in this chapter still used the version 1.2 product to maintain direct compa-

rability to the results of Chapter 3. Differences to the latest version (1.8) are presented

in Chapter 5. The satellite error inflation values used for the inversion experiments

presented here, were similar to the 72 used for the FINN2.4 inversion. The reference

and MOGOH inversions both also used 72, while MEGAN required a slightly larger

inflation factor of 74 and CB4prod a slightly smaller at 70.

4.3 Results

4.3.1 Updated biomass burning a priori

Compared to FINNv2.4, used in the FINN2.4 inversion, FINNv2.5, used in the ref-

erence inversion, has regionally up to 20% lower emissions, which leads to globally

around 8% lower biomass burning a priori emissions in the reference inversion. This

is equivalent to a reduction of < 2% in the total a priori emissions. The reduced emis-

sions caused minor reductions in the modeled mixing ratios, which in turn resulted

in marginally smaller prior mismatches, as can be seen in Table 4.2. However, the

posterior mixing ratios, and with them the posterior mismatches, remained almost the

same.

Table 4.3 shows the budgets for the inversions analyzed in this chapter. Between

the FINN2.4 and the reference inversions, the total emissions were unchanged, but

the partitioning of the emission categories had shifted from biomass burning (−4.4%)

to secondary CO (+1.5%). However, as a caveat, it should be noted that the current

setup constrained the partitioning only relatively weakly due to coarse model resolu-

tion. While the different temporal state resolutions allowed the model to distinguish
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Table 4.2: Averaged error-weighted prior and posterior mismatches between model and
observations for each inversion experiment. The first 4 rows give the mean mismatches to
different subsets of the flask measurements. Using Spiv-OH in conjunction with secondary
CO production fields from TM5-MP with MOGUNTIA chemistry leads to poor prior fits in
the northern tropics (FINN2.4 and reference). When TM5-MP-OH is used instead (MOGOH
and MEGAN ) the prior fit north of 23◦N strongly degrades, but improves on the rest of the
globe and the posterior fit improves. Using Spiv-OH with the old secondary CO production
from TM5-MP with CB4 chemistry leads to the best prior fit overall, but also to the poorest
posterior fit. Note that for satellite mismatches shown in the last row, the values were scaled
up by 103 for readability. Because of the very large observation count, the mismatch, i.e. cost
contribution, for each individual satellite observation is very small.

observations FINN2.4 reference MOGOH MEGAN CB4prod

st
a
ti
on

s

all
prior 21.91 20.59 32.34 26.84 13.79

posterior 3.61 3.63 3.43 3.31 4.03

> 23◦N
prior 20.95 19.93 60.80 49.62 21.56

posterior 5.40 5.41 4.97 4.78 5.94
northern tropics prior 47.93 45.55 10.41 8.36 11.91
(0 to 23◦N) posterior 2.90 2.90 3.02 2.97 3.23
southern prior 9.67 8.48 2.87 3.73 3.59

hemisphere posterior 1.42 1.46 1.43 1.38 1.69

satellite
prior 11.05 10.15 3.39 3.26 3.65

posterior 0.99 1.00 0.97 0.94 1.06

short pulses from biomass burning from the long-term changes in secondary CO pro-

duction and anthropogenic emissions, it could not resolve local features on the scale of

individual biomass burning events.

4.3.2 New OH field

4.3.2.1 Budget analysis

Changing the OH field from Spiv-OH to TM5-MP-OH had a major impact on the

inversion results. A broad overview of this impact can be found in Table 4.3, which

shows the global prior and posterior budget terms for all inversion experiments ana-

lyzed in this chapter. Due to the much higher tropospheric mean OH concentrations,

as discussed in Section 4.2.1, the final masses after the initial 7 month forward run

based solely on the prior emissions were significantly lower, i.e. the atmosphere was

cleaner, in the MOGOH inversion compared to the reference inversion. Notably, this

cleaner atmosphere was, in terms of total masses, much closer to the observation-based

posterior atmosphere. As pointed out before, the prior budgets in the FINN2.4 and

reference were unbalanced, but appeared to be mostly closed in theMOGOH inversion.

Further evidence for an unbalanced prior budget was also visible in the more detailed

budget terms. In the reference inversion, the emissions were reduced across the board,

which also implied notable reductions in the loss terms. The secondary production

in particular was lowered by 25%. In contrast, in the MOGOH inversion, the total
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emissions and loss terms were virtually unchanged. However, the source attribution had

shifted, with reductions in the biomass burning source, while the fossil fuel emissions

and secondary production were slightly increased. As noted in Section 4.3.1, this shift in

emissions away from biomass burning was likely linked to the coarse model resolution

rather than an actual signal from the observations. The increase in secondary CO

production of around 100Tg CO yr−1 could be related to aliasing to the direct natural

CO emission sources, which were neglected in the prior of the MOGOH inversion. The

impact of direct natural emissions will be further investigated in Section 4.3.3.

Instead of increasing the loss, another way to close the budget would be to reduce

the emissions. In Section 4.3.4 below, this is investigated further by, instead of changing

the OH, reverting the CO production from VOCs and CH4 to an older version.

Overall, the budget terms from theMOGOH inversion were not in line with previous

estimates found in the literature anymore, indicating that the addition of the TM5-MP-

OH field might balance too high chemical production by introducing too high chemical

loss. The posterior budget terms for the reference inversion, however, agreed fairly

well with previous estimates. Stavrakou & Müller [2006] find a total posterior CO

source of around 2900Tg CO yr−1 in an inversion of MOPITT CO satellite observations

for May 2000 to April 2001 using online OH. Their estimate is only around 7% larger

than the estimate from the Spiv-OH based reference inversion experiment presented

here, but more than 15% smaller than the TM5-MP-OH based MOGOH experiment.

The inversion by Kopacz et al. [2010] finds an only slightly lower total posterior

source of 2630Tg CO yr−1 compared to the reference inversion, however, their source

attribution is different with a 22% lower secondary CO source (1280Tg CO yr−1),

balanced by 27% more direct CO emissions (1350Tg CO yr−1). Similarly, the CO

inversion by Fortems-Cheiney et al. [2011] finds even higher posterior total direct

emissions of 1430Tg CO yr−1 for the years 2000 to 2010. In contrast, Shindell et al.

[2006] report for the forward models analyzed in their multi-model comparison a larger

mean secondary CO production of 1505Tg CO yr−1, which is close (< 10% difference)

to the Spiv-OH based estimate from the reference inversion. Lower total emissions are

found by Jiang et al. [2017], with a total CO source of only around 2400Tg CO yr−1,

however, they also use a modeled OH field with a relatively low mass-weighted global

annual tropospheric mean of 9.9 × 105 molec
cm3 , which emphasizes the impact boundary

condition choices can have.

4.3.2.2 Comparison to NOAA surface station measurements

The first four rows in Table 4.2 show the mean error-weighted prior and posterior

mismatches to the flask measurements for each inversion, for all stations globally (first

row) and for three subsets, split by zonal bands (second to fourth row). The individual

mismatches for each station can be found in the appendix in Figure A.22 and Table A.3.
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Considering all stations globally, the prior fit was worse for the MOGOH inversion

compared to the reference inversion, however, the posterior fit was slightly improved.

The worse prior fit originated from the underestimated CO and overestimated OH in the

northern hemisphere, as discussed at length in Section 4.2.1. This bias in the northern

hemisphere can be seen clearly when comparing the mean prior mismatches only for

the stations in the northern extratropics shown in the second row of Table 4.2 to the

other two regions. Both for the northern tropics and the southern hemisphere, prior

fits were vastly improved with the TM5-MP-OH field. This is notable for the northern

tropics, which were captured poorly with the Spiv-OH as detailed in Chapter 3. While

the posterior fit was improved globally for the MOGOH inversion compared to the

reference inversion, it was degraded slightly in the northern tropics. This could be

traced mostly to the station on the Mariana Islands, Guam (GMI), which was overall

captured poorly by the model. Notably, with TM5-MP-OH, even the prior fit in the

southern hemisphere was better than the posterior fit in either of the northern regions.

To provide a closer look at the temporal evolution of the mismatches to the stations,

six stations have been picked as examples. In Figure 4.1, for each of those stations,

the measured CO mixing ratio and the modeled prior and posterior mixing ratios are

shown for each of the inversion experiments.

Figure 4.1a represents Alert station in northern Canada as an example for high

northern latitudes. The reference prior was too large during northern hemispheric

summer compared to the measurements. In contrast, the MOGOH prior was too low

over the whole 7 month period, but especially during northern hemispheric winter. As

expected, the CO low bias from the forward model [Myriokefalitakis et al., 2020]

was reproduced in the prior. The posterior mixing ratios were similar and neither

experiment manages to capture the low mixing ratios measured in July 2018 properly.

As an example for northern mid latitudes, Figure 4.1b shows Terceira Island in

the North Atlantic. There, the unbalanced prior budget in the reference is clearly

visible, with CO accumulating over the period. As for Alert station, the MOGOH

prior underestimated the measurements throughout the inversion period, but by a

significantly smaller margin.

Figures 4.1c and 4.1d represent Mauna Loa station on Hawaii and Bukit Kototabang

in Indonesia, as examples for the northern tropics up to the Equator. For both, the

reference prior strongly overestimated the measurements (note the larger mixing ratio

range compare to the other panels in Figure 4.1), while the MOGOH prior closely

followed the measurements and only minor corrections were needed to reach the best

fit posterior.

The southern tropics and high southern latitudes are represented by Tutuila station

in the Central Pacific in Figure 4.1e and Palmer station on Antarctica in Figure 4.1f,

respectively. Similarly to the northern tropics, in the southern hemisphere the reference
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Figure 4.1: Modeled a priori (dotted lines) and a posteriori (solid lines) mixing ratios
sampled at the locations of the stations as well the flask observations (blue crosses) for 6 ex-
ample stations for each of the inversion experiments. For each observation, the corresponding
measurement error is indicated as well.
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prior continued to overestimate the measurements. While the MOGOH prior still

improved over this, it also tended to slightly overestimate mixing ratios compared to

the measurements, a trend that increased towards the South Pole.

Overall the MOGOH prior maintained the too low north-south gradient in CO of

TM5-MP. Regardless, based on either prior the model reached an optimized emission

state where the measurements were fit with similar quality. However, the emissions

that were required to reach that state were vastly different, as detailed in Section 4.3.2.4

below.

4.3.2.3 Comparison to TROPOMI satellite observations

The final row in Table 4.2 shows the global prior and posterior mismatches to the

TROPOMI satellite observations. While the prior mismatch was vastly improved for

theMOGOH inversion compared to the reference inversion, the changes in the posterior

fit were minor. The improvements in both the prior and posterior fit again originated

mostly from the northern tropics to mid-latitudes. However, the prior fit was worse

with TM5-MP-OH compared to Spiv-OH at high northern latitudes (> 50 ◦), similar to

what was found for the surface measurements in the previous section. With respect to

its temporal evolution, the prior mismatch no longer degraded strongly over time when

using TM5-MP-OH, due to the budget being no longer unbalanced (Section 4.3.2.1).

However, it still spiked in September, during the peak of the biomass burning season,

as discussed in Chapter 3. In the appendix, the zonally (Figures A.22 and A.23) and

monthly (Figures A.24 and A.25) averaged satellite-model mismatches can be found,

to provide further details.

4.3.2.4 Emission increments

The principal results of the presented inversion experiments are emission increments.

Analyzing those provides a deeper insight into how and where the changed OH field

affected the inversion than the budgets shown in Section 4.3.2.1.

Figure 4.2a shows the relative increments in secondary CO production, i.e. the opti-

mized posterior emissions divided by the a priori emissions, for the reference inversion

for September 2018. In Section 4.3.1 above, strong similarities were found between the

secondary CO production increments from the reference inversion and the ones from

the FINN2.4 inversion, which were analyzed in detail in Chapter 3. There, one very

notable finding were the unrealistically large decrements in the northern tropics, in a

band roughly between the Equator and 40◦N, and especially for India and China. This

finding is in contrast to what was found for the MOGOH inversion here. To illustrate

the differences, Figure 4.2b is the same as Figure 4.2a but for the MOGOH inversion,

i.e. using TM5-MP-OH instead of Spiv-OH. Further, Figure 4.2c shows the relative
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Figure 4.2: Global secondary CO production (a–e) and natural CO emissions (f) for Septem-
ber 2018. Panels (a) and (b) show the relative emission increments for the reference and
MOGOH inversion, respectively. The differences originate from the different OH fields used.
Panel (c) shows the relative differences between (a) and (b). Panel (d) shows the relative
differences between the MOGOH and MEGAN inversion posteriors; note the significantly
smaller range on the colorbar. Panel (e) is the absolute emission difference corresponding to
Panel (d). For comparison, Panel (f) shows the natural CO emission a priori that was added
in the MEGAN inversion compared to the MOGOH inversion.

difference between Figures 4.2a and 4.2b, which cancels out the influence of the prior.

By comparison, the decrements in the northern tropics were much more moderate in

the MOGOH inversion and could actually point to lowered anthropogenic emissions,

as discussed in Chapter 3. Additionally, the increments compared to the a priori in

the northern extratropics were larger in the MOGOH inversion, to make up for the

CO low bias in TM5-MP in that region. Notably, the largest increments (by area and

amplitude) were found over North America and northern Europe, potentially pointing

to underestimated anthropogenic emissions in those regions [Stein et al., 2014]. Sec-

ondary CO production in the southern hemisphere was mostly unchanged, with slightly

less production over land and slightly more over the oceans.
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4.3.3 Addition of natural CO emissions

Adding a dedicated emission category for direct CO emissions from natural sources, i.e.

biogenic and ocean CO emissions, brought the TM5-4dvar model further in line with

the emission setup of the full-chemistry forward model, TM5-MP. As can be seen in

Table 4.3, this additional source left fossil fuel and biomass burning posterior emissions

almost unchanged (< 1% change each) but slightly reduced the posterior secondary

CO production (−4.6%), which roughly corresponded to the amount in Tg CO yr−1

added in natural emissions. However, the secondary CO production increment was

now smaller, indicating a more balanced prior budget for the secondary CO. Overall,

the total posterior emissions and loss were almost unchanged to MOGOH and only the

attribution to the emission categories changed.

Notably, as shown in Table 4.2, the MEGAN inversion featured lower prior and

posterior model-observation mismatches compared to the MOGOH inversion. In fact,

theMEGAN inversion had the best posterior fit to the station measurements and satel-

lite observations across all inversion experiments presented in this chapter. Compared

to the MOGOH inversion, the a priori mismatches were improved in the northern

hemisphere, but slightly worse in the southern hemisphere.

Figure 4.2d shows the relative difference between the optimized secondary CO pro-

duction from the MOGOH and MEGAN inversions for September 2018. Note that

the range of the colorbar is significantly narrower than in Figure 4.2c. The largest

changes appeared to be in regions where natural CO emissions were expected. When

comparing the absolute difference between the optimized secondary CO production

from the MOGOH and MEGAN inversions in Figure 4.2e to the natural CO a priori

in Figure 4.2f, striking similarities were found, even though the former appears more

spread out.

4.3.4 Sensitivity to secondary CO production prior

Figures 4.3a and 4.3b show the relative secondary CO production increments for

September 2018 for the reference and CB4prod inversions, respectively. Those two

inversion experiments only differed by their secondary CO production prior, with one

using 2018 rates from TM5-MP with MOGUNTIA chemistry and the other using 2006

rates from TM5-MP with CBM4 chemistry. Therefore, the relative increments were

no longer directly comparable, since the respective posterior emissions were divided

by different priors. To circumvent this, Figure 4.3d instead shows the relative differ-

ence between the posterior emissions of the two experiments. As can be seen, the

reference and CB4prod inversions led to similar posterior emission fields, with relative

differences close to 1 for most regions globally. The seemingly large differences in the

remote southern extratropics occurred in regions with low absolute emissions. These
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Figure 4.3: Relative increments of global secondary CO production for (a) the reference
(same as Figure 4.2a, for convenience) and (b) the CB4prod inversion for September 2018.
Note that these are relative to different priors and can, therefore, not be compared directly.
Instead, Panels (c) and (d) to show the relative differences in the prior and posterior emissions,
respectively, between the two inversions.

similarities in posterior emissions were as expected since the CO loss was driven by the

same OH field, while the same atmospheric CO mixing ratios were well constrained

by the observations, leaving little freedom for variations in the emissions. In contrast,

Figure 4.2c shows a similar comparison between the MOGOH and reference inversions,

which used different OH fields, and featured overall much larger differences.

Figure 4.3c shows the relative difference between the prior emissions of the reference

and CB4prod inversions, again for September. Notably, the spatial distribution of the

remaining differences in Figures 4.3d relatively closely follows the spatial distribution

of the differences in those prior emissions. These similarities were expected, because

the optimization operates by “scaling the priors”, while the quadratic background term

discourages large deviations. In other words, in terms of the cost function, it is very

expensive for the optimizer to introduce large increments where prior emissions are

low and it is cheaper to instead more moderately change emission over a larger area.

Both inversion experiments lead to roughly the same total emissions needed to reach

the observed atmospheric mixing ratios. For example, as shown in Figure 4.3c, TM5-

MP with CBM4 chemistry predicts significantly lower VOC concentrations over India

compared to the MOGUNTIA chemistry, which, as shown in Figure 4.3d, resulted in

smaller posterior secondary CO production in CB4prod compared to reference for India,

but slightly larger emissions in the surrounding regions. As for the OH fields presented

in Section 4.2.1, a more detailed comparison of the secondary CO production fields can

be found in the appendix, where Figures A.27 to A.30 show the zonal means of the
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vertical distribution per season and Figures A.31 to A.33 show the lateral distribution

for the surface layer per season.

The similarities in the posterior emissions are further emphasized in the budgets

listed in Table 4.3. Compared to the reference inversion, the total emissions and

losses ended up at similar values (< 1% difference) for the CM4prod inversion. Some

minor differences exist in the attribution of emissions, with a shift away from secondary

production and towards direct emissions, especially from fossil fuels. An overestimation

of a posteriori secondary CO production in the reference experiment was expected,

since the corresponding prior was high biased compared to the prescribed Spiv-OH

field, as detailed in Section 4.3.2.1. While this bias was much smaller in the CB4prod

experiment, its prior budget was still not closed and the model arrived at a too-high

prior final mass. The CB4prod inversion then closed the budget by reducing emissions

for all categories by around 10% on a global scale.

Regardless of the still slightly unbalanced prior budget, the setup for the CB4prod

experiment led to the smallest global prior mismatch to the station measurements,

as shown in the final column of Table 4.2. However, it also led to the overall worst

posterior fit to the station measurements and satellite observations across all inversion

experiments presented in this chapter. Regionally, there were large differences between

the setups.

In the zone north of 23◦N, which contains almost half of the stations, the CB4prod

prior performed only slightly worse than the reference prior. Consequently, the CB4prod

prior performed much better there than those based on TM5-MP-OH. At the level of

individual stations, the CB4prod prior performed well in the northern mid latitudes

(e.g. Terceira Island station in Figure 4.1b). However, the CB4prod prior underesti-

mated the annual cycle at high northern latitudes (e.g. Alert station in Figure 4.1a),

with too large prior mixing ratios during northern hemispheric summer and too low

mixing ratios during northern hemispheric winter.

In the northern tropics and southern hemisphere, the prior mismatches from the

CB4prod experiment were only slightly larger compared to the TM5-MP-OH based

experiments. In turn, in both regions the prior performance of the CB4prod setup was

much better than that of the reference setup. At the level of individual stations, this

translated to generally mediocre prior performance for most of the rest of the globe

(e.g. Figures 4.1c–e). By virtue of the lowest prior emissions, the CB4prod experiment

had the closest prior fit to the stations close to the South Pole (e.g. Palmer station in

Figure 4.1f), however, that could be coincidental.

The mismatches to the satellite observations, as shown in the appendix in Fig-

ures A.23 to A.26, featured very similar spatial prior and posterior distributions as the

stations. Therefore, they are not analyzed in more detail here.
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4.4 Conclusions

A series of inversion experiments driven by global satellite observations and surface

measurements was conducted to investigate the impact of various boundary conditions

on the optimized CO emissions for the second half of 2018. In the initial setup as

used in Chapter 3, the prior budget was imbalanced, resulting in unreasonably large

posterior emission decrements in the northern tropics. This imbalance was likely caused

by inconsistencies between the OH climatology, which dominates the CO loss, and the

secondary CO production terms taken from a CTM, which constitutes the largest

CO source. Therefore, in this chapter, a special focus was set on the prescribed OH

distributions and balancing the prior budget to obtain more reliable emission estimates.

By replacing the OH climatology with OH fields from the same CTM as the sec-

ondary CO production terms, a nearly closed prior budget was achieved. The a priori

atmospheric total CO masses were close to those expected based on the observations.

The results were further improved, and aliasing to the secondary CO production was

reduced, by treating direct natural CO emissions from biogenic sources and the oceans

explicitly. Notably, the updated OH fields lead to significantly more moderate posterior

increments in the northern tropics compared to the inversions presented in Chapter 3.

In the literature, the uncertainties on the global distribution of OH, and with that on

the individual CO budget terms, are large. Still, the results presented in this chapter

suggest that the CTM derived OH fields and secondary CO production rates tend to be

too high. If those fields are used as boundary conditions in inverse modeling, the prior

and posterior total CO sources and total CO sinks will possibly be too high. Addition-

ally, compared to observations, there are spatial biases in the model derived prior CO

and OH mixing ratios. Generally, the north-south gradient in modeled CO tends to be

too low, with especially too low mixing ratios in the northern hemisphere. In turn, the

low bias in CO leads to a high bias in modeled OH in the northern extratropics. Since

the TM5-4dvar model lacks feedback between CO and OH, this high bias will result in

a high bias in the optimized CO emissions.

Instead of replacing the climatological OH fields, another attempt to close the

budget was using a different set of secondary CO production rates previously used in

this inverse modeling framework by Nechita-Banda et al. [2018], which are based on

a 2006 simulation of an older version of the same CTM mentioned above. While this

approach did not manage to entirely close the prior budget, it led to the lowest globally

aggregated prior mismatches to the observations out of all the inversion experiments

considered in this chapter. However, except for the far southern hemisphere, this does

not hold regionally. Additionally, the posterior mismatches to the observations are

notably larger compared to the other experiments, both globally and regionally. Still,

regardless of the choice of secondary CO production terms, the inversions that used the
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same OH climatology resulted in very similar posterior emissions. Similarly, the exact

choice of biomass burning prior emissions had little impact on the inversion results. As

for the model-based OH field, the climatological OH is still subject to the uncertainties

in OH as found in previous literature. The climatological OH required fine-tuning

(scaling) to come into agreement with MCF measurements and there is at best limited

evidence supporting the 3D distribution suggested by the now over two decades old

climatology. On the contrary, there are hints that it is, for example, likely too low close

to the surface in the tropics.

Overall, all inversions arrived at similar posterior mixing ratios, which fit both the

satellite observations and the station measurements reasonably well. On the one hand,

this could show how well the TROPOMI satellite observations in conjunction with the

NOAA surface flask measurements constrain global CO. On the other hand, it could

also indicate that the a priori error and correlation settings were too loose and the model

overfit the observations. The latter is subject of further investigation. First steps are

presented in Chapter 5. Notably, the inversion experiments arrive at these similar

posterior mixing ratio through different posterior emissions. Differences are especially

large if different OH fields are used, which emphasizes that the choice of OH is very

important when trying to optimize absolute CO emissions. However, OH is currently

too poorly constrained and there is a need to update the OH distributions used in

literature. Regardless, the results of this chapter allow for a deeper understanding

of potential biases, which can serve as a basis for the interpretation of future higher

resolved inversion experiments e.g. of emissions from biomass burning events.
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Chapter 5

Adaptive Error inflation for

high-resolution observations

Chapter 3 introduced TROPOMI satellite observations into the TM5-4dvar inverse

modeling framework and proposed a more rigorous approach for estimating the satellite

error inflation factor, which was historically estimated empirically in studies using the

TM5-4dvar model. However, limitations of this new approach were also found and

discussed. This chapter introduces an updated satellite retrieval product version and

investigates a novel method for handling the observational error of fine observations in

a coarse-resolution inverse model.

Section 5.1 introduces the problem, prior work in literature, and the aims of this

chapter. Section 5.2 present the new adaptive inflation approach. Section 5.3 gives a

short description of the model setup and the conducted inversion experiments. Sec-

tion 5.4 presents the results, split into showcasing the latest version of the satellite

observations and the implications from using the adaptive error inflation approach.

Section 5.5 provides a short summary of the findings of this chapter.

5.1 Background and objective

Equation (2.11) introduced the cost function, which may be split into two parts, the

background cost

Jb(x⃗) = (x⃗− x⃗A)
TS−1

A (x⃗− x⃗A) (5.1)

caused by deviations from the prior, and the observational cost

JO(x⃗) = (y⃗ − F(x⃗))TS−1
O (y⃗ − F(x⃗)) (5.2)
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caused by mismatches between the model and the observations. At the end of Sec-

tion 2.1.3, it was already discussed that the relative weighting between those two parts

matters for the quality of the inversion result. In principle, the weighting within each

part, i.e. from one observation to the next or one element of the prior to another, is

granted by the respective error covariance matrices (ECM), as outlined at the begin-

ning of Section 2.1.3. The inverse of the ratio of any pair of variances found on the

diagonal of the ECM gives the relative weight of the corresponding pair of elements

of the observational or state vector, while the error covariances, i.e. the off-diagonal

terms, inform on how much the weight of one element depends on the values of each

of the other elements.

However, the relative weighting between the observational cost and the background

cost as a whole, additionally depends on the size of the respective vectors (i.e. number

of observations and dimension of the state), the precision of the observations compared

to the precision of the prior, and whether these precision estimates are sufficiently ac-

curate. For example, if there are many observations or if their error is underestimated,

the regularization through the a priori may be lost, which can lead to slow convergence,

potentially non-unique solutions, or a solution that is no longer anchored in reality and

could be non-physical due to overfitting.

The problem regarding the relative weighting between components of the cost func-

tion is even more pronounced in inversion experiments that are based on multiple ob-

servational datasets, such as the ones presented in the previous chapters. For those

experiments, the observational cost may be subdivided further into components per

instrument, e.g. a satellite cost and a station cost, which only include contributions

from those respective datasets. To obtain meaningful results from those experiments, a

proper relative weighting between all three parts of the cost function (the background,

satellite, and station cost) is required. So long as the problem is limited to two compo-

nents and both are over- or underestimated simultaneously, the inversion still works.

With three parts, if the contribution from one part is overestimated, it will overwhelm

both of the other parts, even if those are properly defined. Even with proper estimates

for the observational and prior errors, problems can arise if one instrument provides

significantly more observations than the other(s). An example of such a problematic

setup can be found in Kopacz et al. [2010], where observations from three differ-

ent satellite instruments (MOPITT, SCIAMACHY, and AIRS) are used and the joint

inversion is dominated by the AIRS observations due to their much larger count.

Issues like that are bound to become more prevalent considering the steady rise in

observation density with recent instruments. For example, the TROPOMI observations

used throughout this thesis (described in Section 3.3.2) feature a significant increase in

observation density in comparison to the observations from the Measurements of Pol-

lution in the Troposphere (MOPITT) instrument or the Infrared Atmospheric Sound-
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ing Interferometer (IASI) instrument used previously in TM5-4dvar [Hooghiemstra

et al., 2012a,b; Krol et al., 2013; Nechita-Banda et al., 2018]. The origin of this

increase is twofold. For one, TROPOMI CO observations feature a spatial resolution

of up to 7 × 7 km2 [Veefkind et al., 2012], which is about 10 times higher than the

resolution of MOPITT of up to about 22× 22 km2 [Drummond et al., 2010] and the

spatial sampling of IASI of up to about 25×25 km2 [Clerbaux et al., 2009]. Addition-

ally, TROPOMI reaches global coverage within a day, similar to IASI, while MOPITT

requires about five days to reach global coverage. A more in-depth comparison of

the mentioned instruments can be found in Section 3.1. In addition to using lower

density observations, the previous TM5-4dvar studies also limited the use of satellite

observations to their respective region of interest. This limitation circumvents some of

the issues mentioned before. Overall, the contribution of the satellite is much smaller

compared to using global data, which makes it less likely to overwhelm the other parts

of the cost function. However, by limiting the satellite observations to the region of

interest, potentially good and useful data are discarded.

For the experiments presented throughout this thesis, the much higher coverage

of the TROPOMI satellite observations compared to the surface flask measurements

would cause the satellite cost to overwhelm the station cost, if only the instrument

errors were to be considered. In that case, the high confidence station measurements

would no longer be able to constrain CO background mixing ratios. Hence, as de-

scribed in Section 3.3.2.2, the standard deviations provided by the satellite retrieval

are multiplied by inflation factors. These inflation factors are intended to bring the

cost contribution of the high-resolution observations back in line with the rest of the

cost function. Mathematically, the inflation is supposed to capture those parts of the

observational error covariance matrix SO (see Eq. (2.12)) that are not caused by in-

strument or retrieval errors (i.e. SI), but by the model representation errors (i.e. SR).

For high density observations, the model representation errors are, in part, caused by

correlations within the instrument and retrieval errors, which are often neglected in

4DVAR inverse modeling, i.e. the off-diagonal terms of SO are assumed to be zero, so

that each observation can be handled on its own. For example, Hilton et al. [2009] de-

scribe inverse modeling setups to optimize atmospheric tracer concentrations based on

IASI radiance measurements, where the instrument error is inflated to account for error

correlations, which, in their case, are mostly caused by uncertainties in atmospheric

water vapor content. Additionally, the model representation errors also represent the

limits to the information content the model can gain from the observations, e.g. the

limited resolution of the model may not be able to resolve the finest features within

the observations.

The method of using a single constant global inflation factor, as described in Sec-

tion 3.3.2.2, has multiple shortcomings, some of which were already discussed in Chap-
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ter 3. Compared to the TM5-4dvar studies based on MOPITT and IASI observations

within their respective region of interest mentioned above, using global TROPOMI

observations requires much larger error inflation factors to reach convergence. This

issue persists even if super-observations at a coarser resolution (e.g. 0.5◦ × 0.5◦, see

Section 3.3.2.1) are used. These very large inflation factors imply that observations

in regions with sparse coverage (e.g. over the oceans) have next to no weight in the

cost function. The same applies to observations in regions with detailed structures and

spikes from potentially interesting events (e.g. biomass burning), which are smoothed

towards the background. Additionally, the very low weight of individual satellite data

points could cause overfitting of the station measurements. Such issues of large in-

flation factors would be exacerbated with improving observational data, because, in

the current setup, a lower observational error or improved coverage would result in an

increase in the inflation factor, i.e. better data gets a lower weight. Note, however, that

only improving the resolution of the observations would also imply an increase in au-

tocorrelation within them, in which case their information content does not necessarily

grow and an increase in inflation could be justified. Another issue of the approach

outlined in Section 3.3.2.2 is that the inflation factor for a specific setup is not trivial

to find, but requires a process that is in itself iterative and, therefore, computationally

expensive. Additionally, each setup having its own inflation factor makes their results

potentially harder to compare directly.

As pointed out in Liu & Rabier [2003], increasing the observation density beyond

a certain threshold is not meaningful, especially if error correlations are ignored. How-

ever, there are approaches beyond variance inflation that may still make use of high

density observations. One such approach are super-observations, see Section 2.3.2,

where several observations that are in close proximity spatially, are aggregated into

a single observation with a reduced aggregated error. An implementation of a super-

observation approach based on the works of Eskes et al. [2003], Miyazaki et al. [2012]

and Boersma et al. [2016] can be found in Section 3.3.2.1. Another widely used ap-

proach to treating high density observations is observation thinning. As described

in Lahoz et al. [2007], sufficiently thinned data can be assumed to be uncorrelated,

however, information on small scale structures within the data will also be lost. To

overcome this shortcoming, Simonin et al. [2019] suggest an approach where the full

error statistics are implemented to properly account for error correlations. Their ap-

proach allows for preservation of the full quantity of observations and, therefore, their

full information content and impact on the forecast.

In this chapter, a similar approach is implemented. The approach had to be modi-

fied, because for 4DVAR inversions the full construction of the error covariance matrices

is usually not feasible. Instead, individual error inflation factors for each satellite ob-

servation will be defined based on the local observation density. This adaptive error
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inflation approach is possible as a pre-processing step and thereby computationally

cheap compared to the rest of the inversion. As opposed to the super-observation

approach described in Section 3.3.2.1, this new approach may retain any information

contained in the full resolution TROPOMI observations. The approach also adds an

opportunity to tune the sensitivity of the inversion towards potentially interesting pat-

terns in the observations. In the wake of changing the handling of the observational

error, the TROPOMI observations (see Section 3.3.2) are also updated to the latest

TROPOMI/WFMD product, version 1.8 [Schneising et al., 2023].

5.2 Adaptive error inflation

If no error correlations are assumed for the observations, the off-diagonal terms of the

observational error covariance matrix SO are zero and only the diagonal terms remain,

which are the variances σ2
O of the individual observations. Under this assumption, the

observational part of cost function (Eq. (2.11)) may be simplified. For the inflation

approach outlined in Section 3.3.2.2, the satellite cost is then

JO,sat(x⃗,M) =
M∑
i=1

(Fi(x⃗)− yi)
2

I2σ2
O

(5.3)

with constant I as the inflation factor for the standard deviations, i as the index of each

of the M observations yi, and Fi(x⃗) as the model F(x⃗) sampled for the ith observation,

given a state x⃗. A constant inflation of I = 1 implies that the data are used as they

are provided by the retrieval.

For the adaptive error inflation, the globally constant inflation I is now replaced by

individual inflation factors Ii for each observation. Since observation thinning may be

used to reduce error correlations, the observation density may be used as an indicator

of those error correlations. Therefore, the adaptive error inflation factors Ii should

depend on the number ni of observations in ‘close proximity’ (to be defined later) to

the ith observation. Furthermore, Ii should fulfill two basic conditions. First, increasing

the number ni of observations in ‘close proximity’ to the ith observation to ni+1, should

increase the inflation Ii so that

Ii(ni) < Ii(ni + 1) (5.4)

i.e. each additional observation reduces the weight of each individual observation. Sec-

ond, this reduction should happen in a way so that the value of the cost function still

increases:

JO,sat(x⃗, ni) < JO,sat(x⃗, ni + 1) (5.5)
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i.e. each additional observation should still further constrain the inverse problem. For

a constant inflation, as in Section 3.3.2.2, JO,sat increases, on average, linearly with the

number of observations, because each observation simply adds another independent

term to the sum in Equation (5.3). As such, a constant inflation factor fulfills the

second condition, but not the first, which causes the satellite cost to become very large

for large numbers of observations and overwhelm the other parts of the cost function.

To achieve weighting by the observation density, the number ni of observations in

‘close proximity’ to the observation yi needs to be defined. The simplest approach

would be to define a circle (or box) with a certain radius (or edge length) around the

observation in question and count the number of observations enclosed within. While

such an approach is easy to implement and computationally cheap, it has distinct

disadvantages. The clear cut-off at a certain distance implies that any observations

just beyond that distance get no weight at all. Additionally, since all observations

before the cut-off get assigned the same weight (of one), their distribution is not taken

into account, i.e. an observation with many observations close by does not suffer more

from error correlation than one with the same number of observations just before

the cut-off. A way to circumvent the issues introduced by the cut-off is to instead

employ a weighing function w that depends on the actual distance between each of

the observations and integrate that function over all observations. Such an approach

has been used in Simonin et al. [2019] who use an exponentially decaying weighting

function wi,j = exp
(
−di,j

L

)
to estimate the correlations between observations, with di,j

as the distance between two observations yi and yj, and L as e-folding length. This

e-folding or de-correlation length L is roughly equivalent to the radius of the circle in the

simple approach outlined before. In fact, given a sufficiently finely resolved and evenly

distributed field of observations, both methods would arrive at the same weighting. To

avoid the spike-like structure of the exponential function for very short distances d and

to promote a clearer cut-off at longer distances, here, a Gaussian function is used as

the weighting function instead:

wi,j = exp

(
−
d2i,j
2L2

)
(5.6)

At the resolutions of the experiments presented in this thesis, the de-correlation length

L is dominated by the representativeness error of the model. Therefore, the de-

correlation length will be estimated via the average spatial scale at which the model

can resolve changes in the state. While the smallest scale at which the optimizer may

introduce changes into the emission state is given by the 200 km spatial correlation

length assigned to the biomass burning category (see Section 3.2.3.1), those emissions

only make up a fraction of roughly 20% of the total emissions. In contrast, the other

two emission categories, fossil fuel combustion and secondary CO production from
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VOCs and CH4, were assigned much longer spatial correlation lengths of 2000 km and

1000 km, respectively. Since those two categories make up the remaining 80% of the

total emissions, a substantial amount of the changes the optimizer can potentially in-

troduce will happen on those much longer spatial scales. The average scale L at which

the state changes may be computed from the spatial correlation length Lcat, the a priori

error σcat, and the fraction of the total emissions fcat for each category as

L =

∑
cat Lcatσcatfcat∑

cat σcatfcat
≈ 600 km (5.7)

where both sums go over the three CO emission categories, biomass burning, fossil

fuel, and secondary CO production. Based on the budgets presented in the previous

chapters, e.g. in Table 3.3, the fractions of the total emissions were estimated as 20%,

20%, and 60%, respectively. For the sake of simplicity, this source apportionment and

the resulting de-correlation length was used globally. However, in a future development

of this method, it might make sense to consider the local source apportionment at the

location of the ith observation instead, because close to a biomass burning event the

scale at which the optimizer can introduce changes into the state is shorter than over

the oceans.

To minimize border effects when evaluating the weighing functions wi,j for a given

observation yi, all observations yj within the same orbit and within the preceding and

following orbits are considered. While close to the poles even observations from further

orbits could be close spatially, they are at least 3 hours away in time, which is long

enough for transport and chemistry to sufficiently reduce error correlations. The sum

over all those weighting functions gives an approximation for the distance-weighted

number of observations in ‘close proximity’ to the observation yi:

ni =
M ′∑
j=1

wi,j (5.8)

where M ′ is the total number of observations in the preceding, current, and following

orbit.

In the version of the adaptive error inflation applied below, for each observation,

this distance-weighted observation count is used directly as the variance inflation fac-

tors I2i = ni. While this approach successfully reduces the satellite cost to no longer

overwhelm the other parts of the cost function, it should be noted that it only weakly

fulfills the second condition stated in Equation (5.5), i.e. especially at short distances,

additional observations only marginally increase the average cost. If necessary in the

future, fulfillment of the second condition could be more strongly ensured by applying

some function that grows slower than a linear function, e.g. a logarithm or a root, to
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the ni, instead of using them as inflation factors directly. For example, I2i =
√
ni would

strongly fulfill both conditions stated above. However, if such a square root approach

was used with the ni calculated as described above, it would also lead to overall too

low inflation factors and the satellite cost would overwhelm the station cost again.

5.3 Materials and methods

The model code used for the experiments presented below is mostly identical to the

version described in Section 4.2, with only minor changes needed to handle the up-

dated TROPOMI retrieval version and the observation-wise error inflation factors.

The TM5-4dvar model itself and the basic inversion settings are as described in detail

in Sections 2.2 and 3.2, respectively. The updated TROPOMI observations were also

gridded to super-observations using the method described in Section 3.3.2.1. Aside

from the updated observations and changed inflation factors, the only other change in

the basic setup is that the biomass burning a priori emissions were fully changed to

FINNv2.5 (from FINNv2.4, see Section 4.2 for details) for all inversion experiments.

Unlike for the FINN2.5 inversion experiment from the previous chapter, the spin-up

inversion was also rerun with FINNv2.5. This change was made for the sake of con-

sistency, despite the small impact on the inversion results caused by the differences

between FINNv2.4 and FINNv2.5 as reported in Section 4.3.1.

Table 5.1: A priori emissions and observational setup for the experiments conducted in
Chapter 5. All experiments used monthly climatological OH fields based on Spivakovsky
et al. [2000].

Inversion
A priori emissions Observations Inflation

biomass anthrop. secondary satellite flasks factor
spin-up

F
IN

N
v
2.
5

+
V
II
R
S

C
M
IP

6

T
M
5-
M
P

M
O
G
U
N
T
IA

v1.2, gridded yes 45
sat. v1.2 v1.2, gridded yes 72

full sat. v1.2 v1.2, full yes 182
sat. only v1.2 v1.2, gridded no 72

sat. v1.8 v1.8, gridded yes 65
full sat. v1.8 v1.8, full yes 165
sat. only v1.8 v1.8, gridded no 65

adaptive v1.8, full yes adaptive

Table 5.1 gives an overview of the experiments conducted for this chapter. Note

the slightly smaller error inflation for the sat. v1.8 compared to the sat. v1.2 inversion.

This discrepancy is caused by the slightly larger mean observational error (+3%) in the

version 1.8 retrieval compared to version 1.2, in combination with a slightly reduced

number of valid observations (−2%) during the period of the main inversions (June to

December). Both the larger error and the lower observation count reduce the overall
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satellite cost. Therefore, the inflation had to be adjusted down to fulfill the require-

ment introduced in Section 3.3.2.2 that the satellite and station costs should be equal.

Effectively, the larger errors got compensated by a lower inflation, which illustrates one

of the weaknesses of the previous inflation approach. Additionally, due to the different

inflation factors, the results from those inversion are harder to compare.

5.4 Results

5.4.1 Retrieval version 1.2 versus 1.8

Optimizing emissions based on data from either retrieval version leads to very simi-

lar results. Therefore, it is not meaningful to shows the optimized emissions or the

corresponding relative increments directly for each experiment, as done in the pre-

vious chapters. Relative secondary CO production increments are only included in

Figure 5.1a for the sat. v1.8 inversion for reference. For the comparison of the retrieval

versions, instead, Figures 5.1b to 5.1d show the relative differences in posterior sec-

ondary CO production for September 2018 for the three pairs of inversion experiments,

where the experimental setups in each pair only differ in using either data from prod-

uct version 1.8 or 1.2, but are otherwise identical. This direct comparison is possible,

because all inversion experiments presented in this chapter use the same prior setup.

Note that all inversion experiments analyzed in the current section use the constant

error inflation approach, as shown in Table 5.1.

Figure 5.1b compares the sat. v1.2 and sat. v1.8 inversions, i.e. the experiments

that use gridded satellite observations in combination with surface flask measurements.

Most differences globally are in the order of ±1%. However, there are some more con-

siderable differences in northern tropics, all of which are within the prior error assumed

for the secondary CO production source category. The largest difference is an almost

up to 20% higher secondary production in West Africa obtained when using data from

the updated satellite retrieval. This increment is accompanied by smaller positive

increments stretching eastward from West Africa until north-west India. These incre-

ments in secondary CO production are compensated by lowered secondary production

over the tropical Atlantic and the northern Middle East. While the increments may be

attributed to changes in the retrieval process as outlined in Schneising et al. [2023],

the decrements over the Atlantic, over which the satellite has poor coverage, are likely

simply introduced by the optimization process to compensate. The budgets shown in

Table A.4 in the appendix support this claim, as all terms for the sat. v1.2 and sat.

v1.8 inversions agree within 1–2h. The same strong agreement in budgets holds for

the other two pairs of inversion experiments that only differ in the satellite product

version and which will be analyzed in the following.
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Figure 5.1: Comparison of the global posterior secondary CO production for September
2018 for inversion experiments based on data from different TROPOMI retrieval versions
(1.2 and 1.8). Panel (a) shows the relative emission increments, i.e. the factor by which the
emissions increased, for an inversion based on data from the latest WFMD satellite retrieval
product (version 1.8). Panels (b) to (d) show the relative differences in posterior secondary
CO production between using data from retrieval version 1.2 and version 1.8, when using (b)
gridded satellite observations together with station measurements, (c) full resolution satellite
observations and station measurements, and (d) only the gridded satellite observations and
no station measurements. Note the different value ranges and asymmetry of the colorbars.

As Figure 5.1c shows, similar, albeit less pronounced patterns as for gridded satel-

lite observations are found for the comparison of the full sat. v1.2 and full sat. v1.8

inversions, which use the full resolution satellite observations instead. As discussed in

Section 3.3.2.2, using the full resolution satellite observations requires a very large in-

flation factor when applying the approach described there. This large inflation factor is

required to get the satellite cost low enough to match the station cost, due to the very

large number of observations. However, the large inflation factor also implies that each

individual observation bears very little weight. Additionally, the model, due to its low

spatial resolution, cannot capture the variability caused by the fine structures resolved

by the observations. Consequently, in regions with high observational variability, the

value of the cost function will be high with only a weak dependence on the exact model

value, since there will always simultaneously be considerably over- and underestimated

observations. In those cases, the best way for the optimizer to reduce the cost function

is to reduce the station cost as much as possible, while mostly disregarding the satel-

lite cost. Therefore, the minor differences in the different versions of the full resolution

satellite products are translated more weakly into differences in the inversion results,

compared to its gridded counterparts analyzed before.

Figure 5.1d reveals that the opposite holds for the comparison of the sat. only v1.2

and sat. only v1.8 inversions, which are driven only by the gridded satellite observa-
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tions. Here, any difference in the retrieval versions is translated fully to the inversion

result, because no other observations are considered that could direct the inversion to a

different result. In the tropics, similar structures to Figure 5.1b can be seen, but more

pronounced. Aside from the amplitude, these structures also differ slightly in lateral

shape, which can be attributed to the absence of surface measurements to drive local

emissions. Major differences between the sat. only v1.2 and sat. only v1.8 inversions

occur at higher latitudes. In the northern hemisphere, north of 50◦N , widespread,

but relatively low positive differences in the order of 5–10% can be found. The re-

sults presented here fall into northern hemispheric autumn. During that time, satellite

coverage in that high-latitude region becomes increasingly sparse. Additionally, the

updated satellite product features significantly fewer observations close to the North

Pole due to improved quality filtering [Schneising et al., 2023]. Therefore, these

widespread differences are likely not constrained by any observations. Instead, they

are introduced by the optimizer to resolve systematic mismatches between the model

and the observations. Similarly, in the southern hemisphere, widespread decrements of

a similar magnitude (note the asymmetric colorbar) are found. While sunlight is tech-

nically available for satellite soundings in this region, satellite coverage is still sparse

due to most of the area being covered in dark oceans. Additionally, secondary CO pro-

duction in this region is generally low. Therefore, these differences in the order of −5%

to −10% have little impact on the budget and the comparison to the observations.

The first eight rows of Table A.5 list the mean error-weighted mismatch J̄flask be-

tween flasks and model as introduced in Equation (3.9) for the seven inversion ex-

periments presented in this chapter. For each pair of experiments that only differ by

the version of the satellite product, the mismatches to the station measurements are

slightly higher with the version 1.8 product. These larger mismatches are expected

due to the lower satellite error inflation factors used. Furthermore, in line with the

interpretations for the relative differences in posterior emissions analyzed above, the

full sat. v1.2 and full sat. v1.8 inversions lead to the smallest mismatches and the sat.

only v1.2 and sat. only v1.8 inversions lead to the largest.

The final two rows of Table A.5 provide the total error-weighted mismatch Jsat

between satellite observations and model as introduced in Equation (3.10) for the

seven inversion experiments presented in this chapter. As outlined in Section 3.4.2,

it is necessary to consider the total mismatch rather than the mean mismatch, as

done for the stations, because of the varying number of satellite observations between

the experiments. The total mismatch for an observational dataset is equivalent to its

contribution to the cost function. Overall, the total mismatch between the satellite

observations and the model is larger for the prior when using version 1.8 of the satellite

product compared to version 1.2. This larger total mismatch (i.e. cost) is, again,

related to the lower inflation factors. However, the total posterior mismatch is lower
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when using the updated satellite observations, which, notably, implies a larger prior

over posterior cost ratio, i.e. the updated observations are more consistent with what

the model can represent.

A more in-depth comparison of inversions based on different datasets (i.e. gridded

satellite observations and stations versus gridded satellite observations alone versus full

resolution satellite observations and stations) can be found in Section 3.4. The results

for the TROPOMI product version 1.2 presented there still apply to the updated

version 1.8 introduced into TM5-4dvar here.

5.4.2 Adaptive error inflation

Figure 5.2: Adaptive error inflation factors aggregated in 12◦ × 12◦ boxes and averaged
over the inversion period (June to December 2018). For ease of comparison to the values
reported throughout this work for the constant inflation approach, the inflation factors Ii for
the standard deviation are shown, rather than the variance inflation factors I2i . Note the
generally larger values over land and smaller values over the oceans.

As can be seen in Figure 5.2, the adaptive error inflation approach generally assigns

a reduced weight (i.e. larger inflation factors) to the dense land-bound observations,

but an increased weight to the sparse observations over the oceans, compared to the

constant inflation approach as described in Section 3.3.2.2. In total, the posterior cost

contribution from the satellite observations is more than 3.2 times larger than the

station cost with the new adaptive approach. In contrast, the old constant inflation

approach required that the satellite and station costs should be equal. Therefore, with

the new approach, the satellite observations have a larger impact on the inversion

results. Conversely, giving more weight to the satellite observations degrades how well

the surface measurements are captured by the posterior state. This degradation can

be seen in Table A.5, where the posterior error-weighted mean mismatches between
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the station measurements and the model are 19% larger for the adaptive inversion

compared to the sat. v1.8 inversion on a global scale. Notably, in the extratropical

southern hemisphere (south of 23◦ S) the mismatch increases significantly less, by only

3%. However, the impact of this smaller mismatch on the global mean is limited,

because only about one quarter of the surface stations are located within that region.

For the satellite observations, the total mismatches presented in Table A.5 are harder to

compare directly, because the reduced overall inflation leads to a much larger satellite

cost. Regardless, the relative improvement from the prior to the posterior mismatch

is still around a factor of 10, similar to what the inversions based on the old inflation

approach achieved.

Figure 5.3: Relative differences in posterior CO source terms for September 2018 between
two inversion experiments using different error inflation strategies. The compared source
terms are (a) the total emissions, (b) secondary CO production from VOCs and CH4, (c)
direct CO emissions from burning fossil fuels, and (d) direct CO emissions from biomass
burning. The sat. v1.8 inversion uses the old globally constant inflation approach and the
adaptive inversion uses the new adaptive inflation approach. The total and biomass burning
emissions in Panels (a) and (d), respectively, are monthly mean emissions.

In Figure 5.3, the optimized emissions from the adaptive inversion are compared

by source category to those from the sat. v1.8 inversion, which uses the same setup

except for the inflation approach. The changes in the lateral distribution of the total

emissions are depicted in Figure 5.3a. While locally differences reach up to around

±30%, they mostly stay well below 10%. Additionally, as evident from the budget

shown in Table A.4 in the appendix, at a global scale, the total emissions for the

adaptive inversion are only less than 1% lower compared to the sat. v1.8 inversion.

Still, some of the local differences are worth discussing in detail.

For example, the differences in the total emissions in Figure 5.3a contain dipole-

like structures in South America and southern Africa. Considering the changes in
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the secondary CO production and in the direct biomass burning CO emissions shown

in Figures 5.3b and 5.3d, respectively, reveals a re-attribution from biomass burning

emissions to secondary CO production in those regions. As can be seen in the budgets

in Table A.4, on a global scale, this re-attribution leads to 3% lower biomass burning

CO emissions in the adaptive inversion compared to the sat. v1.8 inversion. However,

note that the adaptive inversion only reinforces strong local decrements in the biomass

burning CO emissions in South America and southern Africa that were already found

for the sat. v1.8 inversion. The overall decrease in biomass burning emissions in either

inversion experiment could be related to the model not being able to properly resolve

biomass burning events due to its low resolution of only 6◦ × 4◦ in those regions.

Another regional difference is found in Asia, where CO from the secondary produc-

tion (Figure 5.3b) is shifted to direct anthropogenic emissions (Figure 5.3c). Combined,

theses shifts result in a slightly larger CO source from East China and India (Fig-

ure 5.3a). This shift in source category could be a sign of aliasing. On a global scale,

as the budgets in Table A.4 show, the anthropogenic CO emissions from fossil fuels are

consequently increased by 2% from the sat. v1.8 to the adaptive inversion. Note that

either inversion experiment still finds significant emission decrements in and around

India and China, as reported in the previous chapters, and that these decrements are

just marginally smaller for the adaptive inversion.

The comparison of the total emissions from the sat. v1.8 and the adaptive inversions,

as shown in Figure 5.3a, also features notable positive differences over Australia and the

eastern tropical Pacific. These differences are attributed to changes in the secondary

CO production by the optimizer, as shown in Figure 5.3b. However, in those regions,

the adaptive inversion merely keeps the total emission increments closer to the prior,

rather than it introducing or removing additional emissions. In total, on a global scale,

there is almost no change (1%) in the secondary CO production.

Combined, all these differences in CO emissions lead to only minor changes in the

modeled mixing ratios at the locations of the surface stations. Overall, the mixing

ratios from the adaptive inversion closely follow the sat. v1.8 inversion. The largest

deviations, in the order of a few ppb, occur for the stations that were found to be prob-

lematic in Chapter 3, i.e. those at high northern latitudes and mountainous stations.

The deviations usually push the mixing ratios towards the sat. only v1.8 inversions.

This behavior is expected, because the satellite observations receive an overall higher

weight in the cost function when the adaptive inflation approach is applied. However,

the adaptive inversion still remains overall significantly closer to the sat. v1.8 inversion

than to the sat. only v1.8 inversion, which signifies that the surface flask measurements

are not overwhelmed by the satellite observations in the cost function.
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5.5 Conclusions

In this chapter, the impact of using an updated satellite product version was analyzed

and then, based on that new product, an extended satellite error inflation approach was

introduced and tested. Changing the TROPOMI product version from 1.2 to 1.8 lead to

very similar inversion results. Using version 1.8 observations produces an overall more

consistent posterior fit between model, flask measurements, and satellite observations.

On a global scale, the budget terms are almost identical. On a regional scale, moderate

lateral shifts in emissions can be found in the northern tropics, which are attributable to

changes in the retrieval process. Further differences occur at high latitudes due to the

retrieval employing an updated cloud filtering algorithm. Furthermore, this analysis

has shown that the translation of features in the observations into the inversion results

can depend on which additional datasets are used.

The new adaptive satellite error inflation approach behaves as intended, by as-

signing more weight to stand-alone observations in remote regions, especially over the

oceans, while de-weighting the highly correlated observations in densely covered re-

gions. Notably, the new inflation approach is no longer an iterative process, but can

be applied as a pre-processing step, which significantly reduces its impact on the com-

putational time. Overall, the new approach increases the weight of the high-quality

TROPOMI observations in the cost function without overwhelming the surface flask

measurements. For the latter, their mismatches to the model are degraded only mod-

erately, with almost no change in the southern hemisphere, where, according to Chap-

ter 3, the TROPOMI satellite instrument and the surface stations are equally capable

of constraining the emissions. Still, since increasing the weight of the satellite obser-

vations causes the mismatches of the surface measurements to the model to degrade,

there appear to be biases between the satellite observations and the station measure-

ments. In part, these biases originate from meteorology, as shown in Chapter 6. In

the future, a bias correction scheme might be useful to obtain more consistent emission

estimates.

For a more in-depth analysis of the merits and short-comings of the adaptive error

inflation approach, a higher resolution inversion experiment, for example, one analyzing

a specific biomass burning event, would be useful. However, as detailed in the previous

chapters, several limitations of the inversion setup used throughout this thesis currently

prevent such an application of TM5-4dvar. The most notable limitation is the discrep-

ancy between the secondary CO production a priori fields and the climatological OH

fields, as described in Chapter 4.

Furthermore, the adaptive error inflation approach, as described in the current

chapter, only represents a basic concept, with several opportunities for further devel-

opment. As mentioned at the end of Section 5.2, a more refined function to retrieve
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the inflation factors from the number of observations in close proximity to each obser-

vation might improve results. Additionally, combining the adaptive inflation approach

with super-observations could be useful to reduce the computational cost. Another

future extension could be using the correlation in observation values in addition to

their distance in the weighting function, which is used to count the number of close by

observations. By giving higher weight when the correlation is low, potentially interest-

ing patterns would be promoted. Additionally, including the observational error of the

individual satellite soundings in the weighting function could maintain the impact of

high-quality observations on the cost function, even if they happen to be surrounded

by many low-quality observations.

Moreover, the error correlations of the satellite observations are expected to be

partly flow-depended, since part of the retrieval relies on results from a chemical trans-

port model. Therefore, the de-correlation length should also be flow-dependent. While

not trivial to implement, such flow-depended weights would allow for a better separa-

tion of e.g. observations within a plume and the surrounding background.
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Chapter 6

Benefits of using an updated

meteorology

The inversion experiments in the previous chapters were driven by ERAI meteorology.

In Chapter 3, biases in the optimized emissions around the locations of the surface

stations, seemingly from overfitting of their measurements, were, in part, attributed

to limitations in the representation of (vertical) transport in the TM5-4dvar model.

This chapter investigates the efficacy of using the new ERA5 meteorology to drive the

simulation of atmospheric transport, dry deposition, and chemistry rates for global

inverse modeling experiments.

Section 6.1 introduces the topic and the meteorological fields in question. Sec-

tion 6.2 shortly introduces the conducted inversion experiments. Section 6.3 showcases

how the inversion results improve with the new meteorology, compensating for some

of the biases found in the previous chapters. Section 6.4 contains the conclusions that

can be drawn from this chapter for future inversion experiments.

6.1 Background and objective

As introduced in Section 3.2.1, TM5-4dvar is an offline model and as such does not

generate its own meteorology. Instead, transport, temperature and pressure dependent

chemistry, and dry deposition velocities are simulated based on preprocessed mete-

orological fields from a different model. Meteorological fields cover a wide range of

variables describing the atmosphere and are not limited to precipitation, wind, tem-

perature, and air pressure fields. They also include parameters describing humidity,

clouds, atmospheric heat transport, and various auxiliary parameters pertaining to the

surface, for example, for its orography, roughness, and vegetation.

Offline models can be used when the modeled processes do not impact the mete-

orology and have the advantage of a reduced computational cost compared to online
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models, which need to calculate their own meteorology with each simulation. This

advantage is especially relevant for 4DVAR inversions of atmospheric tracer emissions,

where the same period is potentially simulated many times. However, to use an of-

fline model, the complete set of preprocessed meteorological fields must be available

beforehand, which requires large amounts of storage.

The specific model setup used throughout this thesis is capable of ‘zooming’ (see

Section 3.2.1), a technique where different nested regions are simulated at different

spatial and temporal resolutions. To minimize the required computation times and I/O,

the meteorological fields are coarsened for each zooming region to its respective spatial

resolution. This process needs to be done only once per region and time span, since

the coarsened fields are then stored in intermediate files. These files are then reused in

each iteration of the inversion, which further capitalizes on both the advantages (low

run times) and disadvantages (high storage requirements) of offline models.

In the experiments presented in the previous chapters, the meteorological fields were

taken from the European Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA) project, specifically the ERA-Interim (ERAI) meteorology [Dee

et al., 2011]. However, the ERAI meteorology has recently been superseded by the 5th

generation ERA (ERA5) meteorology, which includes a wide range of improvements

in meteorological modeling and data acquisition [Hersbach et al., 2020]. Compared

to ERAI, ERA5 features increased spatial and temporal resolutions. With ERA5, the

spatial resolution is improved to 31 km (from 79 km in ERAI), the vertical resolution

is improved to 137 levels (from 60 in ERAI), and the temporal resolution is improved

to up to hourly (from up to 3-hourly in ERAI). However, it should be noted that

due to computational constraints the TM5-4dvar model used throughout this thesis is

currently run at only up to 1◦ × 1◦ (longitude × latitude) with 34 vertical layers and

either meteorology data set is coarsened to that resolution. Consequently, the hourly

temporal resolution ERA5 offers is also not required to accurately capture transport

and coarsened to 3-hourly resolution as well. Regardless, unlike ERAI, ERA5 bears

the possibility to improve the model resolution of TM5-4dvar beyond 1◦ × 1◦ in the

future. Another significant advantage of ERA5 over ERAI is that ERAI only has

meteorology available up until August 2019 (starting 1979), whereas ERA5 receives

continuous updates almost up until present day (starting 1950). ERA5 has a near real

time (NRT) product that lags 5 days behind the present, while the final product has a

lag of 2–3months.

In the following, the impact on the inversion results of using the updated and up-

graded ERA5 meteorology instead of the older ERAI meteorology will be investigated.
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6.2 Materials and methods

For the evaluation of the efficacy of ERA5 meteorology in TM5-4dvar inversions, an

additional inversion was performed. This additional inversion uses the same setup as

the sat. v1.2 inversion presented in the previous chapter (detailed in Section 5.3),

but with the ERAI meteorology being replaced by ERA5. In short, the basic inversion

settings are as described in detail in Section 3.2, with the code base updated to revision

c71f31 of the official repository as described in Section 4.2, and using FINNv2.5 as the

biomass burning a priori for both the spin-up and the main inversion as in the previous

chapter. This new inversion experiment will henceforth be referred to as ERA5, while

the sat. v1.2 experiment from the previous chapter will be referred to as ERAI to

make them easier to attribute to their respective meteorology.

Compared to the ERAI experiment, a noticeably larger satellite error inflation

factor of 80 (up from 72) was required for the ERA5 inversion to fulfill the inflation

criterion detailed in Section 3.3.2.2. The change in inflation can be attributed to a larger

relative improvement for the surface measurements than for the satellite observations

in terms of the mismatches between the measurements and the concentrations that

are modeled based on the posterior emissions. The origins of this discrepancy will be

further explained in the next section.

6.3 Results

Figure 6.1 compares the posterior emission increments for the secondary CO production

category for the ERAI and ERA5 inversions. Overall, the increments are smoother

for the ERA5 inversion (Figure 6.1b) than for the ERAI inversion (Figure 6.1b), with

a reduction in localized emission increments around the locations of certain surface

stations. In the ERAI inversion, considerable increments in the secondary CO pro-

duction can be found over the oceans upwind of these remote stations, e.g. Tudor Hill,

Bermuda, (BMW) in the Atlantic, Mariana Islands, Guam, (GMI) in the Pacific, or

Mahe Island, Seychelles, (SEY) in the Indian Ocean. There is no probable explanation

why a sudden rise in either OH concentrations or CO precursors should occur in these

remote regions with no sources nearby. Therefore, the ERA5 inversion leads to more

realistic results. As can be seen in Figures 6.1c and 6.1d, the ERA5 inversion tends

to shift the secondary CO production from remote regions towards land, where the

CO precursor sources can be found. Another promising detail is the strongly reduced

spike over Central Europe. This spike is driven mostly by Ochsenkopf (OXK) and

Hohenpeissenberg (HPB) stations, both in Germany, and was previously (Chapter 3)

linked to the limited representation of mountainous stations in the model. As shown
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Figure 6.1: Comparison of the posterior global secondary CO production for September 2018
for two otherwise identical inversion experiments based on different meteorological datasets.
Panels (a) and (b) show the relative emission increments, i.e. the factor by which the emissions
increased, for the inversions based on ERAI and ERA5, respectively. Panels (c) and (d) show
the absolute and relative differences between (a) and (b), respectively. The locations of the
surface stations are indicated with dots and their station codes for easier orientation.

below, using ERA5 allows the TM5-4dvar model to capture those stations significantly

better.

Figure 6.2 shows the measured and modeled (prior and posterior) mixing ratios at

the locations of four example stations for the ERAI and ERA5 inversions. For ease

of comparison, the example stations shown here are a subset of the stations presented

in Section 3.4.1. The number of stations was reduced, because the prior and posterior

comparisons are very similar across the globe. The remaining stations are sufficient

to represent the variability from the remote northern latitudes (Alert, Canada (ALT),

Figure 6.2a), over the northern tropics (Mauna Loa, Hawaii (MLO), Figure 6.2b) and

the Equator (Bukit Kototabang, Indonesia (BKT), Figure 6.2c), to the remote southern

latitudes (Palmer Station, Antarctica (PSA), Figure 6.2d). The stations in Germany

mentioned before (OXK, HPB) are not shown, because this representation is not mean-

ingful for them due to their high temporal variability.

With ERA5 meteorology, the simulation based on the prior emissions leads to gen-

erally higher mixing ratios close to the surface, compared to the simulation based on

ERAI meteorology. This effect is especially pronounced in the tropics (Figure 6.2c),

where differences in the order of tens of ppb occur. Note that both experiments used an

identical emission setup. Therefore, the prior differences must be caused either by dif-

ferences in transport, in the reaction rate of CO with OH (via changes in temperature

or pressure), or in dry deposition velocities (which depend on a slew of meteorological

variables). Differences in the modeled mixing ratios based on the posterior emissions
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Figure 6.2: Modeled a priori (dotted lines) and a posteriori (solid lines) mixing ratios
sampled at the locations of the stations as well the flask observations (blue crosses) for 4
example stations for two otherwise identical inversion experiments based on different mete-
orological datasets. The lines are color-coded with the ERAI-based inversion in orange and
the ERA5-based inversion in green. For each observation, the corresponding measurement
error is indicated as well. Note how for ERA5 the prior concentrations are usually slightly
higher, while the posterior concentrations are similar, and how the largest deviations occur
close to the Equator, as visible in Panel (c).

of the ERAI and ERA5 inversions are noticeably more moderate and rarely exceed

a few ppb. Yet, ERA5 still leads to overall slightly higher mixing ratios close to the

surface.

To further quantify the impact of these differences on the inversion results, the

mean error-weighted mismatch J̄flask between flasks and model as introduced in Equa-

tion (3.9) will be considered for the ERAI and ERA5 inversions. As can be seen in

Figure A.34 in the appendix, the prior mismatches between model and surface mea-

surements is improved for some stations when using ERA5 instead of ERAI, while it

is degraded for others. The numeric values displayed in Figure A.34 can be found in

Table A.6 in the appendix. Notably, the prior fit is vastly improved for the previously

very problematic OXK and HPB stations. Overall, the global mean error-weighted
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prior mismatch between model and observations is slightly improved from 20.6 for

ERAI to 20.3 for ERA5. In contrast, the posterior mismatches are improved for all

stations expect TIK. On a global level, the mean posterior mismatch is noticeably

improved from 3.7 for ERAI to 2.7 for ERA5.

Figure 6.3: Mean error-weighted a priori (dashed lines) and a posteriori (solid lines) mis-
matches between the satellite and the model for two otherwise identical inversion experiments
based on different meteorological datasets. This metric is equivalent to the average contribu-
tion to the cost function of each satellite sounding. The values are very small, because the
large error inflation factors strongly reduce the weight of each individual observation. Panels
(a) and (b) show the mismatches over the whole inversion period aggregated in 12◦ zonal
bands. Note how the mismatches are largest in the tropics, but improved for ERA5. Panels
(c) and (d) show the global monthly mean mismatches. Note how the relative improvements
due to ERA5 are consistent over time. Panels (b) and (d) show the same data as Panels
(a) and (c), respectively, but with the vertical axis scaled only by the a posteriori graphs, to
make them more easily discernible.

In contrast to the stations, the mismatches to the satellite observations, calculated

using Equation 3.10, are already improved for the simulations based on the prior emis-

sions. This improvement is shown in Figures 6.3a and 6.3c, for the monthly global

mean mismatches and mean mismatches over the whole period divided by zonal bands,
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respectively. As can be seen, the improvements from ERAI to ERA5 are largest in the

tropics, where accurate vertical transport is very important due to strong convection.

Additionally, the improvement appears to be persistent over time. Overall, the global

error-weighted mean prior mismatch is reduced by almost 20% from 10.2 × 10−3 for

ERAI to 8.3× 10−3 for ERA5.

As for the stations, the posterior mismatches to the satellite observations are sig-

nificantly improved when using ERA5 instead of ERAI. Figures 6.3b and 6.3d are the

same as Figures 6.3a and 6.3c, but zoomed in on the posterior mismatches. As for

the prior mismatches, the largest improvements from ERAI to ERA5 are found in the

tropics, but there is little variability over time. Globally, the error-weighted mean pos-

terior mismatch is reduced by more than 20% from 1.00×10−3 for ERAI to 0.77×10−3

for ERA5.

The posterior budgets of both experiments as shown in Table A.7 in the appendix

reveal only minor changes in the chemical loss of CO to OH of less than +1%. This sig-

nifies small differences in the temperature and pressures fields, implying that differences

in the results of the two experiments likely originate from transport, boundary layer

mixing, or dry deposition. The latter experienced a significant reduction, as shown in

the budget, in the order of almost −20% compared to the inversion based on ERAI.

Note that while dry deposition makes up a much smaller portion of the total loss, the

difference in dry deposition is larger than in loss to OH, even when considering absolute

values in Tg yr−1. The overall lowered loss is counterbalanced by a minor reduction in

overall emissions of roughly −0.5%, which is mostly attributed to a change in CO from

fossil fuel combustion of around −2.1%. Since the modeled posterior mixing ratios at

the locations of the surface stations remain mostly unchanged despite lowered upwind

emissions when using ERA5 instead of ERAI, the reduction in total loss due to dry

deposition is likely caused by differences in the meteorological surface fields, rather

than by overall lowered surface mixing ratios.

The improvement in global mean mismatches from ERAI to ERA5 is larger for the

surface stations (around 27%) compared to the satellite observations (around 23%).

This discrepancy occurs, in part, because the effect of the changes in dry deposition

rates boundary layer mixing is stronger on the surface measurements. Since the satellite

samples the total column, it is less affected by changes that predominantly impact the

surface layer. Additionally, most valid satellite observations occur over land and are,

therefore, close to the sources and less affected by transport and loss.

6.4 Conclusions

The meteorological fields driving the offline TM5-4dvar model were updated from ERAI

to ERA5 and the impact of this change was investigated by comparing the results from
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two otherwise identical inversion experiments. The ERA5 based inversion features

overall improvements in the mismatches between the model and both the surface flask

measurements and the satellite observations compared to the ERAI based inversion.

For the surface stations, two issues already pointed out as shortcoming of the ERAI

based setup in Chapter 3 were noticeably improved. One issue were improbable emis-

sion increments in remote regions around the locations of surface stations. These

increments were significantly reduced, which is likely linked to a more realistic rep-

resentation of dry deposition and boundary layer mixing when using ERA5 surface

parameters. The other issue was a strong spike in emission increments in Central Eu-

rope, previously linked to shortcomings in the representation of mountainous stations

in the model. This spike is considerably smaller when using ERA5 meteorology, with

both prior and posterior mismatches improved by a factor of two each. Furthermore,

both the prior and posterior mismatches of the model to the satellite observations were

improved globally, but especially in the tropics, indicating a better representation of

vertical transport in ERA5.
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Chapter 7

Conclusions

In this thesis, an inverse modeling setup that makes use of the, compared to the model,

high resolution satellite observations from the TROPOMI instrument, was created and

refined to investigate global atmospheric carbon monoxide emissions.

A major technical contribution of this thesis was the development of methods for

handling the TROPOMI observations. The issues that come along with their high

observation density and, therefore, large observation count, were tackled by the intro-

duction of novel methods for the creation of super-observations and for the estimation

of satellite error inflation factors. None of the new methods are specific to TROPOMI

and may be applied in other setups and with other instruments as well. Through

the use of super-observations, the computation time could be reduced substantially

(−20%), with minimal impact on the inversion results. A new method for estimating

a globally constant satellite error inflation factor, which was based on the approach

used in previous studies, was shown to be inadequate for the very large number of

observations provided by the TROPOMI instrument. Consequently, another method

was proposed, where each observation is assigned an inflation factor based on the lo-

cal observation density. While preliminary results look promising, further research is

required, in particular to investigate the efficacy of the new inflation method for cap-

turing biomass burning events at higher model resolutions. Because of its relatively low

lateral resolution, the current setup has only a limited capability for simultaneously

optimizing emissions from multiple categories and suffers from aliasing, specifically

from the biomass burning emissions to the other source categories. Therefore, a fu-

ture study with a high resolution zooming region, to focus on specific biomass burning

events, could be useful.

Based on the conducted inversion experiments, this work shows that the obser-

vations from the TROPOMI instrument on their own are sufficient to constrain the

background CO emissions in the southern hemisphere without having to rely on the ad-

ditional information provided by the surface flask measurements. This finding indicates

that inversions based only on TROPOMI satellite observations are feasible, as long as
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the region of interest is sufficiently far south of 55◦N, e.g. in the southern hemisphere.

Those inversion experiments could circumvent the long analysis cycle of the surface

flask measurements and analyze specific events with a reduced time lag. In contrast,

the representation of CO at high northern latitudes (> 55◦N) appears to be generally

problematic in the model, leading to poor prior performance. There, the posterior is

very poorly constrained by the TROPOMI satellite observations. Notably, this is the

case even during northern hemispheric summer time, when satellite observations at

high northern latitudes are plentiful.

These first experiments using the TM5-4dvar inverse modeling framework to opti-

mize CO emissions based on TROPOMI satellite observations and surface flask mea-

surements revealed that the initial setup had an imbalanced budget, which introduced

biases in the optimized emissions. Multiple ways to reduce those biases were investi-

gated:

To address the budget imbalance, first, the climatological OH field was replaced

with one that is consistent with the secondary CO production rates that were taken

from a full chemistry model. This approach lead to a nearly closed prior budget and

strongly reduced the largest biases, which occurred in the northern tropics. While there

is evidence for biases in the spatial distribution of the climatological OH fields, at the

same time, the model based OH fields appear to be biased in amplitude and north-south

gradient. Overall, OH remains problematic because, while it is under-constrained by

current measurements, the OH distribution is crucial to obtain meaningful optimized

CO emissions. As shown by this work, any bias in OH will directly translate to a

bias in the emissions. In contrast, the exact choice of prior emissions has a much

weaker impact on the inversion results, because emissions are optimized as part of the

state. Therefore, further research beyond CO inversions is needed to find a proper OH

distribution field for the global atmosphere.

Second, by updating to ERA5 meteorology, biases in the emissions around the

surface stations and the overall mismatch to the satellite observations, especially in

the tropics, could be reduced. Combined, an overall improved posterior fit to both

observational datasets, the satellite observations and the surface measurements, was

achieved. This improved posterior fit shows that even in the simplified model used

here, ERA5 leads to a better representation of dry deposition and vertical transport.

Third, while only a minor factor, biases in the southern hemisphere were reduced

(locally up to 17% difference in optimized emissions) through explicit handling of direct

natural CO emissions instead of considering them as part of the secondary CO source.
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Appendix A

Additional materials

A.1 Additional figures and tables for Chapter 3

Figure A.1: Daily average TROPOMI CO data coverage for 2018 after quality filtering,
normed on the mean footprint area per observation (≈ 84 km2). As in Figure 3.1 from the
main manuscript, the nested zoom regions are shown as grids and the locations of the surface
stations as dots.
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A ADDITIONAL MATERIALS

Figure A.2: Same as Fig. A.1, but split in 3-month periods to show seasonal variations.

Figure A.3: Global biomass burning CO emission for a single day, 15 September 2018, for
the first set of inversions. The panels show the a priori emissions (left) and absolute emission
increment (right) for the FINN2.4+VIIRS ((a) and (b)), FINN2.4 ((c) and (d)), and GFED
((e) and (f)) inventories.
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Figure A.6: Mean a priori and a posteriori mismatch between the satellite and the model
for all main inversions in Chapter 3 over the whole period aggregated in 12◦ latitudinal bands.
A priori is larger, expect station only in high northern latitudes.

Figure A.7: Same as above, but with the vertical axis scaled only by the a posteriori
graphs, to make them more easily discernible. Clearly, all curves converge in the southern
hemisphere.
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Figure A.8: Total a priori and a posteriori mismatch between the satellite and the model
for all main inversions in Chapter 3. A priori mismatch only rises for the first two month
of the inversion period and the reaches a plateau, pointing to the budget not being closed
properly.

Figure A.9: Same as above, but with the vertical axis scaled only by the a posteriori
graphs, to make them more easily discernible. The increased mismatch during the main
burning season (Jul–Aug–Sep) due to the models inability to properly capture local biomass
burning events is clearly visible, especially in the station only inversion.
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Figure A.11: Global relative secondary CO emission increments resulting from the reference
inversion for the remaining six months not shown in the main text. Overall, the global pattern
of increments and decrements are preserved over time, only the amplitudes differ slightly.
Most notably, the decrements in the remote northern hemisphere are more pronounced in
the beginning of the inversion period, while those in the southern hemisphere are more
pronounced towards the end of the period. The differences are shown in more detail in
Fig. A.12.
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Figure A.12: Differences in relative secondary CO emission increments resulting from the
reference inversion between September (the month shown in Fig. 3.7 of the main text) and
the remaining six months not shown in the main text (see also Fig. A.11 above). Note the
smaller range of the colorbar compared to Fig. A.11. Interpretation of these plots is not
trivial, since positive differences potentially imply a smaller/larger deviation from the prior,
if the relative increments are smaller/larger than 1, but so do negative differences, if the
relative increments are larger/smaller than one. More details for the deviation from the prior
are shown in Fig. A.13.
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Figure A.13: Differences in relative deviation from the prior for the secondary CO produc-
tion for the reference inversion for September (the month shown in Fig. 3.7 of the main text)
and the remaining six months not shown in the main text (see also Fig. A.11 above). Red
signifies areas were the relative increments deviate more from the prior than in September
and vice versa for blue areas. Note that by taking the absolute value of 1 minus the relative
increments, this does not contain information about whether the emission were increasing or
decreasing anymore.
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Table A.1: Station-wise mean error-weighted mismatch between flasks and model for the
inversion experiments described in Chapter 3. The prior (apri) mismatches are omitted for
the station only, satellite only, and full satellite inversion, because they are identical to the
ones from the reference inversion.

station
reference station only satellite only full satellite noVIIRS GFED
apri apos apos apos apos apri apos apri apos

ALT 9.35 4.82 3.49 20.10 4.35 9.46 5.61 16.16 4.42
ASC 2.65 1.43 1.10 1.82 1.41 2.50 1.86 3.26 2.89
ASK 14.70 11.76 5.69 44.62 10.08 13.43 11.94 11.20 12.12
AZR 57.80 6.82 8.84 5.36 7.13 40.49 7.13 31.39 6.57
BHD 11.31 1.27 1.49 1.91 1.24 8.48 1.35 5.65 1.34
BKT 3.69 1.39 1.13 3.65 1.35 3.15 1.47 2.72 1.20
BMW 25.42 5.55 4.05 12.00 5.22 21.78 5.89 19.18 6.58
BRW 4.95 1.86 1.59 5.84 1.74 3.12 1.84 7.21 2.15
CBA 21.77 3.87 3.46 14.00 3.61 15.90 3.96 19.05 3.77
CGO 4.83 0.39 0.35 0.72 0.42 3.47 0.39 1.74 0.42
CHR 44.66 1.37 0.94 2.99 1.29 34.30 1.37 16.29 1.78
CIB 5.09 3.78 2.95 12.01 3.61 5.45 3.83 3.34 3.42
CPT 8.17 1.24 0.90 1.66 1.22 5.55 1.23 2.61 1.37
CRZ 9.34 1.16 1.04 1.47 1.19 6.18 1.20 2.59 1.20
DRP 17.63 0.36 0.38 0.95 0.41 11.48 0.36 4.63 0.39
EIC 6.40 6.32 6.58 10.50 6.35 5.67 6.32 5.77 6.28
GMI 40.97 6.76 7.15 8.53 6.77 36.30 6.84 29.82 6.80
HBA 23.89 0.27 0.32 1.96 0.28 17.83 0.28 10.16 0.31
HPB 24.81 4.95 4.40 30.17 4.86 32.01 5.31 26.61 5.75
ICE 18.22 4.60 3.34 16.47 4.20 14.65 4.87 16.90 5.43
IZO 34.98 7.24 6.07 17.84 6.86 30.64 7.81 24.20 9.38
KEY 52.60 16.88 15.91 23.77 16.58 45.17 17.18 39.48 18.15
KUM 38.65 1.20 1.61 1.48 1.27 38.44 1.34 32.90 1.27
LMP 19.73 4.05 4.47 9.46 3.99 18.86 4.48 15.80 5.55
MEX 42.44 1.39 1.51 2.86 1.33 36.12 1.47 28.88 1.70
MHD 29.21 5.27 5.59 8.25 5.33 21.24 5.31 21.80 5.35
MID 41.72 8.72 8.59 11.16 8.64 36.04 10.40 30.94 8.90
MLO 51.42 1.40 1.60 1.82 1.43 44.68 1.52 35.65 1.49
NAT 3.88 3.15 3.11 4.89 3.11 5.06 3.52 8.32 3.72
NMB 6.61 2.80 2.94 3.45 2.82 6.28 2.97 5.50 2.98
NWR 52.03 10.78 9.92 18.83 10.53 43.35 10.99 33.67 10.86
OXK 11.46 6.04 5.26 20.78 5.94 16.48 6.44 18.90 9.69
PAL 7.11 5.11 4.19 17.75 4.93 10.33 5.59 11.37 7.54
PSA 8.90 0.27 0.26 0.45 0.28 5.48 0.27 2.04 0.27
RPB 75.91 4.36 4.77 10.18 4.48 63.58 4.33 51.05 4.35
SEY 6.32 3.09 2.88 5.53 3.06 5.20 3.18 4.71 3.10
SHM 5.58 1.29 1.52 5.90 1.28 5.85 1.42 5.31 1.07
SMO 20.44 0.49 0.50 1.03 0.48 15.75 0.52 9.07 0.57
SPO 14.92 1.37 1.36 2.35 1.44 10.45 1.37 5.28 1.38
SUM 14.90 3.48 2.77 10.55 3.47 13.12 3.71 9.29 3.84
SYO 9.99 0.37 0.35 0.84 0.38 6.47 0.38 2.68 0.39
TIK 6.23 2.53 1.93 8.38 2.41 4.89 2.88 7.70 2.02
USH 7.52 0.64 0.64 0.47 0.60 4.29 0.63 1.38 0.63
ZEP 8.30 2.84 1.93 15.52 2.58 9.18 3.17 11.10 2.99
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A.2 Additional figures and tables for Chapter 4

Figure A.14: Seasonal, volume-weighted tropospheric (cutoff at 150 ppb O3) zonal mean
OH concentrations for the climatological Spiv-OH field. From the maximum at ≈600 hPa
concentrations strictly decrease towards the surface.

Figure A.15: Same as Fig. A.14 but for the modeled TM5-MP-OH field. Note the maximum
closer to the surface (800 hPa) compared to Fig. A.14 and the secondary maximum at the
surface in the northern (sub)tropics.
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Figure A.16: Absolute difference between Figs. A.15 and A.14, highlighting the much larger
OH concentrations close to the surface in TM5-MP-OH.

Figure A.17: Relative difference between Figs. A.15 and A.14. Surface OH is roughly
twice as large in TM5-MP-OH in the northern hemisphere throughout the year. Note that
only because OH concentrations are very low towards the Poles, there appear to be large
differences.
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Figure A.18: Seasonal mean of surface layer OH concentration for the climatological Spiv-
OH field. Patterns are broad and concentrations low overall.

Figure A.19: Same as Fig. A.18, but for the modeled TM5-MP-OH field. Note the much
higher concentrations compared to Fig. A.18, the much sharper patterns, e.g. from shipping
lines, and the significantly larger concentrations in Asia during northern hemispheric spring
and summer. The finer structures are visible because of the much higher model resolution of
TM5MP compared to the Spivakovsky climatology.
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Figure A.20: Absolute difference between Figs. A.19 and A.18. While TM5-MP-OH is
much larger over the oceans and Asia, Spiv-OH is slightly in many other regions over land.

Figure A.21: Relative difference between Figs. A.19 and A.18. Note that the logarithmic
scale implies that each factor of e.g. 2 in either direction results in the same color change and
that the scale effectively goes from TM5-MP-OH is a tenth of Spiv-OH to it being ten times
larger. This highlights how in many regions the two OH fields behave very differently.
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Figure A.23: Mean a priori and a posteriori mismatch between the satellite and the model
for all main inversions in Chapter 4 over the whole period aggregated in 12◦ latitudinal bands.
Priors of MOGOH and MEGAN perform exceptionally well in northern tropics, but worth
than the Spivakovsky OH based inversions at higher northern latitudes.

Figure A.24: Same as above, but with the vertical axis scaled only by the a posteriori
graphs, to make them more easily discernible.
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Figure A.25: Mean a priori and a posteriori mismatch between the satellite and the model
for all main inversions in Chapter 4. A priori mismatch is notably smaller in MOGOH and
MEGAN. Prior mismatch for oldprod starts out small as well, but diverges for the final few
months.

Figure A.26: Same as above, but with the vertical axis scaled only by the a posteriori
graphs, to make them more easily discernible. The increased mismatch during the main
burning season (Jul–Aug–Sep) due to the models inability to properly capture local biomass
burning events is clearly visible. Notably, the overall mismatch is smallest for MEGAN and
largest for oldprod, except in the first month.
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Figure A.27: Seasonal, tropospheric (cutoff at 150 ppb O3) zonal mean secondary CO
production rates taken from TM5-MP with CBM4 chemistry for 2006.

Figure A.28: Same as Fig. A.27, but taken from TM5-MP with MOGUNTIA chemistry
for 2018.
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Figure A.29: Absolute difference between Figs. A.28 and A.27. Production rates are much
higher with the MOGUNTIA chemistry close to the surface in the tropics and northern
extratropics.

Figure A.30: Relative difference between Figs. A.28 and A.27. Aforementioned (Fig. A.29)
differences equate to 50–100%. Differences appear large close to the Poles only because of
very low absolute values there.
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Figure A.31: Seasonal mean of surface layer secondary CO production rates taken from
TM5-MP with CBM4 chemistry for 2006.

Figure A.32: Same as Fig A.31, but taken from TM5-MP with MOGUNTIA chemistry for
2018.
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Figure A.33: Absolute differences between Figs. A.32 and A.31, highlighting the vastly
higher production rates with the MOGUNTIA chemistry, especially in India during north-
ern hemispheric spring and all over Asia and in southern North America during northern
hemispheric summer.

Table A.2: Optimizer settings for the emission categories. These settings are used in all
inversion experiments presented in this thesis.

category
a priori temporal spatial state
error correlation correlation resolution

secondary 20% 9.5months 1000 km monthly
anthropogenic 10% 9.5months 2000 km monthly
biomass burning 100% 0.1months 200 km daily
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Table A.3: Station-wise mean error-weighted mismatch between flasks and model for all
Chapter 4 inversions.

station
FINN2.4 reference MOGOH MEGAN CB4prod
apri apos apri apos apri apos apri apos apri apos

ALT 9.35 4.82 8.78 4.91 77.20 3.68 65.38 3.58 18.78 4.51
ASC 2.65 1.43 2.50 1.60 1.83 1.31 1.72 1.29 2.26 1.58
ASK 14.70 11.76 14.21 11.72 40.15 8.79 31.64 8.59 37.50 15.82
AZR 57.80 6.82 53.36 6.88 58.90 5.49 45.55 5.33 10.13 6.75
BHD 11.31 1.27 9.90 1.31 4.05 1.43 6.03 1.28 3.69 1.23
BKT 3.69 1.39 3.44 1.41 2.59 1.60 2.22 1.55 4.11 2.44
BMW 25.42 5.55 23.87 5.45 57.78 5.68 48.02 5.55 15.32 5.90
BRW 4.95 1.86 4.06 1.79 19.47 2.03 15.88 1.95 4.26 1.94
CBA 21.77 3.87 19.68 3.87 75.54 4.14 60.54 3.94 14.09 4.18
CGO 4.83 0.39 4.08 0.39 1.61 0.36 2.66 0.37 1.22 0.39
CHR 44.66 1.37 41.27 1.33 2.64 1.39 4.15 1.37 18.30 1.29
CIB 5.09 3.78 4.97 3.70 30.86 3.73 23.10 3.34 14.64 3.72
CPT 8.17 1.24 6.84 1.21 2.67 1.37 4.12 1.35 4.21 1.54
CRZ 9.34 1.16 7.68 1.16 1.99 0.94 3.92 0.94 1.71 1.16
DRP 17.63 0.36 14.45 0.35 3.30 0.27 7.47 0.27 1.84 0.38
EIC 6.40 6.32 5.95 6.31 8.79 6.84 7.58 6.78 8.54 7.35
GMI 40.97 6.76 39.64 6.77 20.62 8.85 17.17 8.68 14.46 8.01
HBA 23.89 0.27 21.10 0.28 6.76 0.19 12.05 0.18 3.29 0.07
HPB 24.81 4.95 26.14 4.94 67.64 4.17 52.75 3.89 63.20 6.35
ICE 18.22 4.60 16.69 4.59 83.04 5.33 69.45 5.17 19.04 5.01
IZO 34.98 7.24 33.54 7.21 36.18 5.62 29.39 5.45 22.86 9.42
KEY 52.60 16.88 50.74 16.70 26.23 14.14 18.67 12.64 22.96 19.46
KUM 38.65 1.20 36.82 1.20 11.03 1.08 7.78 1.08 5.78 1.37
LMP 19.73 4.05 19.37 4.06 30.26 3.51 23.97 3.46 18.92 4.70
MEX 42.44 1.39 40.14 1.50 3.74 1.09 3.12 1.06 7.74 1.35
MHD 29.21 5.27 26.78 5.28 61.85 5.46 48.43 5.38 12.34 5.34
MID 41.72 8.72 39.62 8.79 35.17 7.05 28.58 6.88 11.62 8.45
MLO 51.42 1.40 49.18 1.42 4.51 1.88 3.24 1.84 11.89 1.72
NAT 3.88 3.15 4.31 3.44 4.69 3.28 4.32 3.18 8.68 4.24
NMB 6.61 2.80 6.58 2.94 5.05 2.94 5.15 2.66 7.30 3.88
NWR 52.03 10.78 49.70 10.80 48.48 9.86 39.62 9.63 26.88 11.15
OXK 11.46 6.04 12.46 6.17 67.08 6.46 55.06 6.19 39.58 6.30
PAL 7.11 5.11 7.29 5.16 117.91 5.07 100.58 4.98 33.48 4.91
PSA 8.90 0.27 7.14 0.27 1.12 0.21 3.34 0.18 0.66 0.40
RPB 75.91 4.36 71.96 4.28 13.85 2.30 10.38 2.29 15.54 4.42
SEY 6.32 3.09 5.56 3.14 7.33 3.81 5.79 3.73 3.73 3.18
SHM 5.58 1.29 5.44 1.33 69.72 1.86 54.58 1.74 13.47 1.35
SMO 20.44 0.49 18.48 0.50 0.59 0.30 0.96 0.31 4.62 0.50
SPO 14.92 1.37 12.63 1.35 3.92 0.79 6.70 0.79 3.20 1.15
SUM 14.90 3.48 13.85 3.48 100.93 3.08 84.80 3.04 25.18 3.37
SYO 9.99 0.37 8.15 0.37 2.18 0.35 4.44 0.32 1.19 0.33
TIK 6.23 2.53 5.80 2.66 10.90 3.00 8.36 2.96 3.13 4.15
USH 7.52 0.64 5.82 0.64 1.03 0.72 2.89 0.67 0.64 0.81
ZEP 8.30 2.84 7.65 2.86 99.61 2.92 84.71 2.86 25.91 2.98
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A.3 Additional figures and tables for Chapter 5
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A.4 Additional figures and tables for Chapter 6
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Table A.6: Station-wise mean error-weighted mismatch between flasks and model for two
otherwise identical inversion experiments based on different meteorological datasets. A graph-
ical representation of this data can be found in Figure A.34.

station
ERAI ERA5

prior posterior prior posterior

ALT 8.79 4.92 10.96 3.75
ASC 2.50 1.61 2.01 0.94
ASK 14.19 11.68 17.17 8.19
AZR 53.38 6.88 54.57 5.11
BHD 9.91 1.32 9.89 1.21
BKT 3.44 1.41 6.15 1.01
BMW 23.89 5.59 18.00 3.49
BRW 4.06 1.83 3.27 1.15
CBA 19.70 3.87 22.72 3.23
CGO 4.09 0.40 4.18 0.40
CHR 41.28 1.38 28.44 0.73
CIB 4.96 3.76 5.09 2.47
CPT 6.85 1.21 5.87 0.71
CRZ 7.69 1.18 7.15 0.95
DRP 14.46 0.36 14.57 0.34
EIC 5.95 6.28 5.57 5.83
GMI 39.64 6.76 39.83 4.56
HBA 21.11 0.29 24.19 0.33
HPB 26.14 5.01 11.91 2.65
ICE 16.70 4.61 17.99 3.55
IZO 33.54 7.25 35.61 7.31
KEY 50.75 17.00 49.12 9.07
KUM 36.83 1.20 45.22 0.85
LMP 19.38 4.18 19.25 2.44
MEX 40.15 1.38 23.98 0.68
MHD 26.79 5.31 32.03 5.07
MID 39.63 8.82 42.55 7.36
MLO 49.20 1.40 57.85 1.08
NAT 4.31 3.41 3.22 1.98
NMB 6.58 2.95 4.99 2.33
NWR 49.70 10.83 48.56 7.92
OXK 12.46 6.14 5.38 3.24
PAL 7.29 5.16 6.17 4.55
PSA 7.15 0.27 7.22 0.18
RPB 72.00 4.38 76.28 4.09
SEY 5.58 3.14 5.06 2.48
SHM 5.45 1.35 4.71 1.06
SMO 18.49 0.50 13.79 0.37
SPO 12.64 1.37 13.54 1.44
SUM 13.86 3.51 16.18 2.49
SYO 8.15 0.37 8.98 0.34
TIK 5.81 2.63 9.06 2.99
USH 5.83 0.64 6.44 0.58
ZEP 7.66 2.88 9.55 2.37
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