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Abstract

written by Jan Bredereke

We investigate how an active control can stabilize a satellite’s on-board camera in an inexpensive way,
disturbed by micro-vibrations coming from the reaction wheels of the Attitude Determination and Control
System (ADCS), and maybe also disturbed by its orbital movement. In particular, in this project we
investigate how to design the digital part of the control. We use an active control running in the FPGA of
a PYNQ-Z2 board. The control is a PID controller, adjusted experimentally. It turns out that obviously
it will be feasible to implement the digital part in this way. We did not have the time and human
resources for a complete implementation of the digital part. But all digital components have either been
implemented or at least shown to be implementable. The mechanical part of a test bed was provided to
us by the VIBES project; we didn’t intend to work on it. Nevertheless, we conceived several improvements,
and we implemented a few of them. Finally, we identify in detail the work that needs to be done, both on
the digital part and on the mechanical part, such that we can conduct an experimental proof that the
control indeed reduces micro-vibrations as intended.
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Chapter 1

Introduction

written by Jan Bredereke

1.1 Context of the Project

The project “FPGA Based Active Camera Stabilization for a Small Satellite” is part of the elective
module “Embedded Systems” of Jan Bredereke. The project is conducted in the context of the research
project VIBES of the City University of Applied Sciences Bremen. VIBES investigates micro-vibrations in
satellites. Such micro-vibrations degrade the quality of photos of an on-board camera used for scientific
Earth observation. The micro-vibrations come from the reaction wheels that are part of the Attitude
Determination and Control System (ADCS), in particular.

The project VIBES is headed by Antonio García. VIBES plans to investigate the micro-vibrations using
CubeSat small satellites. It also aims to try out solutions practically in this way. VIBES will launch an
entire series of CubeSats. The first CubeSat is scheduled to launch in the end of the year 2024.

1.2 Research Question of the Project

The development of the CubeSats encompasses a wide palette of aspects and tasks. The project of the
elective module “Embedded Systems” of Jan Bredereke concentrates on one of these aspects, which is
the research question:

How can an active control stabilize a satellite’s on-board camera in an inexpensive way,
disturbed by micro-vibrations coming from the reaction wheels of the ADCS,
and maybe also disturbed by its orbital movement?

1.3 Related Work

Little detailed information is publicly available on micro-vibrations. Companies building satellites probably
have no interest in sharing their results with their competition. A notable exception are handbooks by the
European space agency ESA ([ECSS13; ESSB11]) and at least one conference paper ([SVP19]).

An internship report ([Ger23]), written in the context of VIBES, selects an optical system which can be used
to visualize the degrading effect of micro-vibration on images. It analyzes the effects of micro-vibrations
and of orbital motion. It does not investigate counter-measures.



Chapter 2

Our Approach to Reducing

Disturbances

written by Jan Bredereke

2.1 Reducing Micro-Vibrations by the Attitude Determination and

Control System

Several ways of reducing disturbances by micro-vibrations are conceivable:

Passive isolation is probably not sufficient.

Active control with an actor must be fast. It can be done either with a microcontroller or with an
FPGA.

Active compensation using a counter-vibration, with a (slowly) controlled amplitude and phase,
is less efficient, rather more difficult to realize, and therefore not necessary.

All electronics needs to withstand space radiation, requiring large structural widths on the chips, and
consequently are slow.

The following arguments influence our choice between a microcontroller and an FPGA solution:

A microcontroller requires a real-time operating system, because of the high control frequency. Other on-
board software needs a conventional operating system. This might necessitate a dedicated microcontroller.
Using a microcontroller for micro-vibration control thus is feasible, but needs valuable space, weight and
electricity.

The software defined radio of the CubeSat already uses a PYNQ-Z2 board comprising a microcontroller
and an FPGA. This microcontroller runs a conventional operating system. Only a small part of the FPGA
in the PYNQ-Z2 is used, up to now.

Therefore we decided for an active control running in the FPGA of the PYNQ-Z2.

Two approaches are available for designing the control:

An analytical modelling of the controlled system requires a lot of control theory. And it requires a
lot of details on the experimental setup.

A PID controller, adjusted experimentally, needs less knowledge of control theory. It is independent
of the experimental setup.

Therefore we chose a PID controller, adjusted experimentally.
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2.2 Mitigating Orbital Movement

The disturbances due to the orbital movement can be mitigated by making the camera follow its field
of view on Earth. This can be done either by swivelling the entire satellite, or by moving the camera
only. The former puts demands on the Attitude Determination and Control System. The latter might be
realized by an extension to the micro-vibration control already discussed.

We do not investigate further this aspect for the time being. But we keep in mind that it may prove
advantageous to have actors for micro-vibration control which also allow for movements suitable for
orbital movement mitigation.

3



Chapter 3

Mechanical Concept of the First

Version of The Test Bed

written by Jan Bredereke

The project VIBES provided a first version of a test bed to us.

3.1 Design Rationale

The approach of the project VIBES is to keep the test bed as simple as possible; the test bed thus
assumes that vibrations are strictly translational and not rotational. This simplification comes from
previous experiments. These experiments proved that it is possible to measure micro-vibrations at all.
Since translational movements are simpler than rotational ones, the simplification was kept for the first
version of the test bed here.

3.2 Geometry of the Test Bed

The first version of the test bed consists of two heavy and rigid metal plates, connected by four supporting
stands (compare Fig. 3.1 and Fig. 3.2 on the facing page). The lower plate carries a motor capable to
run at up to 6000 rpm. It carries an acceleration sensor close to the motor, too. The upper plate carries
two audio speakers. The movable parts of these speakers are connected by a thin and light, L-shaped,
3D-printed carrier plate. The carrier plate in turn carries a camera and another acceleration sensor. Both
acceleration sensors each are part of a small printed circuit board which allows to solder wires to it. A
USB cable from the camera and another cable from the acceleration sensor near the camera lead away
from the camera plate. Rubber feet support the entire setup. The off-the-shelf rubber feet are rather stiff.

3.3 Evaluation of the Geometry of the Test Bed

The first version of the test bed would not allow us to design a micro-vibration control system, neither
for translational vibrations nor for rotational vibrations. This version is designed for the simplification
to translational vibrations. But, inevitably, it will have rotational vibrations, too, interacting with the
translational sensors.

Furthermore, the cabling needs improvement. The cables from the camera platform are thick and stiff.
They are bound to introduce non-linearities, which additionally will change after every touching of the
setup. (We keep the choice of using USB, though. Its four wires are way better than what most of the
affordable RasPi cameras offer: a 15-wire flat ribbon cable.)

Consequently, we improved the concept of the test bed.
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Figure 3.1: Construction drawing of the first version of the test bed. (source: [Wit23])

Figure 3.2: Photo of the first version of the test bed. (photo: Winfried Sembritzki)

5



Chapter 4

Mechanical Concept of Our Second

and Third Versions of The Test Bed

written by Jan Bredereke

This section describes our changes to the test bed and the reduced research question for this iteration.
Furthermore, we explain that an additional, interesting measurement becomes possible.

Due to strict time constraints, we could not implement all of our ideas from the start of the term.
Therefore we describe the second version of the test bed, which we actually realized, and we describe a
third version which we propose to make the test bed fit for use in testing.

4.1 Design Rationale

Our second and third version of the test bed discard the problematic simplification to translational
vibrations. We now aim for reducing the rotational vibrations using our control system. This has the
advantage of coming closer to the real task; only rotational vibrations are relevant in orbit.

En-route we also improve the mechanics of the cabling.

We do not expect the third version of the test bed to be the final, definitive one. Quite likely, there will
be some resonances and other mechanical deficiencies.

Our goal is to demonstrate the feasibility of designing an electronic control system able to reduce
micro-vibrations at frequencies of up to 1 kHz. The demonstration shall be done at at least one frequency.
Our emphasis is on the electronic part. Improving the mechanical part is left to future iterations of the
setup.

Similarly, we will not evaluate the images of the camera for blurring. Consequently, the second, implemented
version does not comprise a camera. And the envisioned third version could use a dummy camera of
similar weight and size, unless there is sufficient time for evaluating the images of a camera, too. Such
an evaluation should use a camera with a narrow angle of view, requiring the cost of purchase.

Our second and third versions require three acceleration sensors. In order to reduce the cost for them,
we are prepared to increase the amplitude of the micro-vibrations, if necessary. The electronics of our
vibration control system is independent of the actual amplitude of the vibrations, except for sensor noise.
Sensors with less noise are more expensive. Therefore, we rather increase the amplitude of the vibrations
than invest in sensors of a higher quality. The project VIBES already did prove that micro-vibrations can
be measured with affordable sensors. We do not need to repeat this work here. Of course, a final version
of the test bed must have both the electronics system and sensors of sufficient sensitivity.
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4.2 Improved Geometry of the Test Bed

The third version of the test bed we envision keeps the main body with the motor for generating vibrations
and with the PYNQ-Z2 board. We replace the upper part with the camera platform and with the actors
only.

The camera is mounted on a movable plate held by a flexible rod. It thus can rotate around two axes,
when the rod is bent. (In principle, it can also twist around the third axis, the line-of-sight of the camera.
We will come back to this in Sect. 4.6 on page 12.) The line-of-sight of the camera is still going straight
upward from the plate.

The plate now isn’t pushed from two sides anymore. Instead, it is pushed from below by two actors.
These actors are placed 90° apart when viewed along the axis of the rod. This allows the two actors to
rotate the plate around two axes independently.

The actors are small speakers. They can handle the maximum frequency necessary easily. They are
cheap. And they can be purchased off-the-shelf. Figure 4.1 shows the 3D-printed mount for the speakers.
(Unfortunately, the speakers purchased do not fit this mount. Their dimensions advertised differ from
their actual dimensions.)

Figure 4.1: 3D-printed mount for the speakers. (photo: Winfried Sembritzki)

The size of the plate is wide enough to reach over the speakers.1 When they push upward, they push the
middle of an edge of the plate. Having small speakers, and placing them close to each other, yields the
advantage that the plate can be made smaller and thus lighter.

The speakers must be able to bear 3 W of power from the existing audio amplifier. This prevents
inadvertent destruction by experimentation errors.

Beyond our third version, we envision improved designs of the actors. A custom actor can be made of
a magnet and a coil. This would be much smaller and more robust. Figure 4.2 on the next page and
Fig. 4.3 on page 9 show drawings of a camera mount with such actors. The coils are drawn in violet color.
However, we did not have the time to iterate through several versions of such a custom actor, which
are likely to be necessary. A piezo actor might be possible, too, depending on the maximum amplitude
necessary. Since a single piezo actor typically achives a few micrometers only, we did not risk to follow
this approach for now. If possible, a piezo actor should be preferable, due to its even more increased

1Actually, the speakers purchased are too large for the plate used. But since they do not fit their mount anyway (see
above), a mechanical redesign is necessary here in any case.

7



Figure 4.2: actors made of a magnet and a coil: explosion drawing. (drawing: Winfried Sembritzki)

robustness and even smaller size.

The plate with the camera carries a printed circuit board (PCB) with the acceleration sensors. They
are arranged in an L shape. They are placed in three of the four courners of the quadratic plate/PCB.
For measuring the rotational accelerations, we use the sensors’ direction vertical to the plate only. The
difference of the accelerations of two adjacent sensors describes the rotational acceleration around the
axis perpendicular to their connecting line. One sensor is part of two such differential arrangements.2

The axes of both arrangements are lined up with the axes of the actors.

We use thin, light, flexible and short individual wires for connecting the movable camera plate with the
main body of the test bed. These wires replace the thick and stiff cables of the previous version. Both
the sensors’ SPI bus and the camera’s USB are connected in this way. The short length allows to have
no shielding for the USB wires. We use a stripboard mounted close to the camera plate for having a
mechanically robust starting point for the conventional further cabling.

We use softer, 3D-printed feet, instead of the off-the-shelf feet of the first version of the test bed.

2Sensor noise can be reduced by using all three sensors for each axis: instead of computing the difference between a
sensor A and a sensor B, we can compute the difference between the sensor A and the mean of sensor B and sensor C. This
improvement depends on a sufficient mechanical precision of the setup, such that both axes remain decoupled.

8





Figure 4.4: printed circuit board for the movable plate of the second version of the test bed. (photo:
Winfried Sembritzki)

Figure 4.5: printed circuit with the sensors and also the adapter at the other end of the cable from the
stripboard. (photo: Winfried Sembritzki)

4.4 The Electrical Interfaces of the Test Bed

The electrical interfaces of the third version of the test bed comprise:

• SPI bus for 3 sensors with 3 sub-sensors each,
from stripboard to PYNQ board:
1 bus (4 wires) plus 3 chip select wires

• USB of camera, from stripboard to PYNQ board

• 2 audio connections, from amplifier to PYNQ board:
3 wires total, headphone jack
(see Fig. 4.6 on the next page)

• motor power, from motor to (still missing) power driver:
2 wires

• PWM motor signal, from (still missing) power driver to PYNQ board:
2 wires

• USB for power and FPGA loading, from PYNQ board to external

10
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• ethernet, from PYNQ board to external:
(as soon as the microcontroller leads out measurement data
and leads in PID parameters and motor speed parameter)

Figure 4.6: the electrical connections of the audio amplifier. (photo: Winfried Sembritzki)

4.5 Research Question for the Second and Third Version of the Test

Bed

For our iteration with the second and third versions of the test bed, we reduce our research question in
Sect. 1.2 on page 1 to:

11



How can an active control stabilize a camera-like dummy using an FPGA-based digital circuit,
disturbed by vibrations at one frequency close to 1 kHz?

4.6 Measuring Vibrations Around the Third, Line-of-Sight Axis

Our arrangement of the sensors pays us a bonus: we can measure the rotational vibration around the
third axis, which is the line-of-sight of the camera. We have no actor to counter this rotational vibration.
But we can measure its angular amplitude, and we can calculate whether this angular amplitude causes
the pixels in the camera to shift less than one pixel wide.

For measuring, we use the sensor’s sub-sensors which are in the plane of the camera plate. (Each sensor
consists of three sub-sensors in three differen directions.) Again, the difference of the accelerations of
two adjacent sensors yields a value for the rotational acceleration. The difference of the accelerations of
the two non-adjacent sensors, for two perpendicular directions, yields another value for the rotational
acceleration. In total, we get three values from six applicable sub-sensors. By taking the mean value from
these three values, we can reduce the noise of the sensors. It is advisable to calculate the total rotational
acceleration directly from the values of all six sub-sensors in order to give each of them the same weight.

12





5.1.2 AXI-Stream

AXI-Stream (see [AMD21] for the specification) is a version of the AXI-Protocol that only uses one data
channel. The only mandatory components are the clock and reset signals, as well as the data signals, the
TValid, and TReady signal. Since there are no addresses involved and the Slave can not send but only
receive data, AXI-Stream can be used for high-throughput one-directional use cases. This project also
uses the TLast signal which is used to indicate that the transmitted data packet was the last one in a
sequence.

5.1.3 AXI-Interconnect

The AXI-Standard only describes the communication between a single Master and a single Slave. But in
practice, a single Master often needs to control multiple Slaves, or multiple Masters control the same
Slave. An Interconnect is a component that enables these types of communications. It has multiple
AXI-Slave and AXI-Master ports for various other components to connect to. When a master addresses a
Slave, the address data is used by the interconnect to decide to which Slave it should forward the message
to and vice versa. It also arbitrates when multiple communications are requested at the same time. In
this project the “AXI Interconnect v2.1 LogiCORE IP” is used. See [AMD22a] for the documentation.
This IP-Core also implements a translation between different AXI-Versions spoken by Master and Slave.
This allows AXI-Lite components to communicate with regular AXI components.

5.2 SPI

written by Joscha Knobloch

Serial Peripheral Interface (SPI) is a synchronous bus meant for connecting multiple peripheral devices
with a single host device. It uses a single data line per direction, a separate clock line, and chip select
lines per sub.

Different naming schemes are common and a renaming is ongoing in the industry. The common naming
before the current renaming is Master for the host device, Slave for the peripheral device, MISO(Master
in Slave out), MOSI(Master out Slave in), SS(Slave select), and CLK(Clock). Current renaming efforts
commonly use Main(formerly Master), Sub(formerly Slave), SDO(Serial Data Out, formerly MOSI), and
SDI(Serial Data In, formerly MISO). The naming for the clock line is usually kept.

The main device controls the clock line, which is used to indicate a transmission. When the main device
does not intend to transmit data, the clock is kept idle. This design means that the transmission is always
bidirectional and the protocol over top is in charge of discarding unneeded transmissions in one direction.

To access any of the connected subs the main has individual chip select lines going to each sub. This
allows for a trivial sub-selection but increases the need for output pins on the main.

There are 4 ways to interpret the clock signal which need to be equal on both ends of a communication.
This sometimes requires a reconfiguration of the interface when accessing different sub-devices on a
single bus. Clock polarity determines whether the clock is high or low when idle. Clock phase determines
whether the data needs to be valid on the first or the second edge.

Internally SPI interfaces are often implemented with a shift register on each side of the communication
forming a virtual ring buffer.

Oftentimes subs use a simple protocol to allow read and write access to a memory region where the first
byte in a transfer indicates the direction and memory address(max 7 bits). This is not part of the SPI
standard and needs to be checked for every used sensor. Some may have an extra bit for multi-byte
reads/writes.
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5.3 The Processing System and Python

written by Benjamin Bissendorf

Python is a programming language known for its accessibility to people new to programming and thus
its large user base. There is a wide range of provided, community-supported modules enhancing the
ecosystem.

The PYNQ-Z2 is a development board using features of the PYNQ framework by Xilinx. It is a Python-
based development framework that allows the combination of normal Python programs and FPGA circuits
to communicate. The board uses the ZYNQ XC7Z020-1CLG400C chip, which is a SoC that includes
an ARM® Cortex®-A9 dual core processor and an FPGA. These subsystems are called the Processing
System (PS) and the Programmable Logic (PL), respectively.

As Xilinx describes it, the power of this board is the combination of both the PS for standard tasks
benefiting from an OS like communicating with USB-devices or communication via Ethernet, and the use
of the PL for demanding or time-critical tasks [Adv22, cf.]. For interfacing between both systems, Xilinx
provides the python package “pynq” that contains classes and functions to enable communication between
these systems. For this, the “Overlay” class can be used, which dynamically loads a bitstream file into
the FPGA and provides access to the design definitions such as AXI addresses. In the default operating
system image, a Jupyter Notebook instance is included, enabling writing code via a web interface on the
board and immediately starting the written code.

5.4 Sensors

written by Benjamin Bissendorf

The ADXL312 is a 3-axis digital accelerometer sensor package made by Analog Devices. Its subsensors
each consist of a spring-suspended structure, acting as a differential capacitor and thus providing values
proportional to their acceleration. To fit a wide range of applications, the chip is highly configurable and
allows different data-rates, -resolutions, -ranges (ranging from ±1, 5g up to ±12g), and customizable
data alignment. The sensor is able to measure the current acceleration up to 3200 times a second.

The onboard chip provides access to these settings and values via serial communication interfaces such
as I²C and SPI at predefined register addresses. For the used SPI communication, 3-wire and 4-wire
configurations are supported while using the clock-phase = 1 and clock-polarity = 1 configuration. Have
a look at its datasheet for an elaborate listing and explanation of the available registers (see [ADX22,
page 19]).

Although not in the scope of this project, the chip offers different ways of saving power. While using lower
data rates already reduces the chips’ current substantially, it also offers an additional “low-power”-mode
which can be enabled in special registers. This additionally reduces the drawn current by about 30% but
comes with an increase in noise. This might be useful in projects where the amount of available power is
limited.

5.5 Actors

written by Niklas Seeliger

The camera platform is mounted on a central rod that is stiff enough to hold the platform in place when
no other forces are enacted. It is however flexible enough that it can bend slightly which allows rotation
of the entire platform. Mounted to the platform 90° from each other are rods connecting to actors that
can push the platform up and down. Because the center is fixed in space by the rod in the middle, this
causes rotation along one axis. The two actors can move the platform independently from each other in
the two relevant axes.
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These actors have to be able to move the platform very rapidly, that is with a high frequency, and with
high precision but only a small distance. For those reasons, speakers were selected. Since speakers need
to generate a very specific sound wave they have to move in a precise manner. Speakers are usually rated
to generate all frequencies in the audible spectrum from 20Hz to 20kHz. This is more than enough
to correct vibrations up to 1kHz. On the low end, it might even be enough to correct for some orbital
movement, given the shutter speed is high enough. With the exception of the membrane that couples the
actor to the air, the speakers are equivalent to a voice coil actuator. A mobile coil mounted around a
static permanent magnet. When current passes through the coil the induced magnetic field interacts with
that of the static magnet and the coil is moved linearly through a track it is mounted in.

Using speakers as the actors has the added benefit of being able to use dedicated audio hardware to
generate analog signals. In the same vein, we can use standard equipment such as amplifiers and audio
jacks. Since moving the platform simplifies to playing a sound we can make use of the on-board audio
chip on our hardware. Using readily available hardware also lowers cost and development time.

Driving the audio signal is different from typical applications only in that we cannot buffer any audio
data as that would introduce a significant delay to the feedback loop which would make the control loop
significantly more difficult to impossible. Driving an analog signal from a digital System introduces some
delay in the digital-to-analog conversion which we cannot avoid.
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The current velocity is calculated using the equation 6.2. With

v = at [cf. Men13, p.38] (6.3)

and equation 6.1 follows equation 6.4.

s(t) = s0 +
1

2
v(t) · t (6.4)

The t in this equations is the sampling time ta which is the inverse of the sampling frequency fa.

ta =
1

fa

As described in [ADX22] the measured acceleration will have a sensitivity of 2, 9 mg
LSB

. With

mg = g · 10−3 = 9, 81 · 10−3
m

s2

the unit for the acceleration a will be

[a] = 2, 9
mg

LSB
= 2, 9 · 9, 81 · 10−3

m
s2

LSB

This means, one Least Significant Bit (LSB) represents 2, 9 · 9, 81 · 10−3m
s2

. With equation 6.3 and
k = 2, 9 · 9, 81 · 10−3 this leads to

[v] = [v0] + [a] · [t]

= k

m
s2

LSB
· s

= k

m·s
s2

LSB

=
m
s

LSB

The factor k is omitted because it has no influence on the unit. With s = 1

2
vt [cf. Men13, p.38] this lead

to

[s] =
1

2
· [v] · [t]

=
m
s

LSB
· s

=
m

LSB

Like k, 1

2
has no effect on the unit. That’s why this factor is eliminated.

In consultation with Professor Bredereke, the time for t is set to 1s. This is possible because the sampling
time is constant and can be eliminated or set to 1s.

In figure 6.4 the location of all sensors is specified.
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Chapter 7

Implementation of Input Interface

written by Joscha Knobloch

This section describes the implementation of the input interface which itself is composed of a few blocks
as described in section 6.2 and visualised by image 6.2 on page 18. The blocks seen in the image are
represented by individual blocks in the Vivado block design. The SPI core is provided by Xilinx. The
SernsorCommunication block was started with the "Create and package new IP" Wizard in Vivado and is
written in VHDL. The PollingClock- and SonsorSequencer blocks are written in VHDL as well.

7.1 Sensor Communication

written by Joscha Knobloch

The SensorCommunication block connects to the SPI IP-Core via AXI Lite on the one side and the
SensorSequencer block via AXI Stream on the other side.

Figure 7.1: Screenshot showing the custom Vivado IP core with its ports

The code is attached in the appendix. It consists of a top level file A.6 on page 78 and the main logic in
a separate file A.7 on page 81.

Due to time constraints, this block is not finished and could therefore not be integrated into the overall
solution for testing. However, simulations show that the AXI Lite interface is very likely working as
expected. Due to tests done with Python as the AXI Master connected to the SPI IP-Core, the SPI
functionality could also be shown working. As the SensorCommunication block is designed to use the
same procedure on the AXI bus it is very likely that the SPI communication also works.

Therefore the only thing left would be to set up the specific sensor registers and acquire the sensor data.
This should not be a very big task. Unfortunately, we could not finish it.

There is very little good information on how to use AXI Lite with VHDL on the internet. One could look
up the details on the handshaking and implement the interface themselves. As the bus consists of five
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independent channels with their own handshaking some sites recommend starting with the template that
Vivado provides when using the "Create and package new IP" wizard for an AXI Lite Master core.

The provided template design is unfortunately not well documented and interwoven with an example that
writes and then reads specific data to/from specified registers. It is very unclear how the template is
supposed to be used. It specifies locations for “User logic”, however, it is necessary to alter code outside
of those areas to get the logic working at all. To make use of the provided code one needs to go through,
understand every line of code, and then adapt it. This might be more work than implementing the
interface from scratch.

In the concept phase of the project the SPI IP-Core was selected as AXI is the standard protocol to be
used between IP-Cores. Due to the complexity of using AXI Lite it could have been easier to implement
the SPI interface directly in VHDL.

For comprehensibility, the AXI Lite interface, the handling of the SPI-Core and the handling of the
acceleration sensors are described separately.

7.1.1 AXI Lite interface

The core contains one process per channel to facilitate the handshake. There are five channels in an AXI
Lite bus as described in the theoretical background at section 5.1.1 on page 13. For channels going from
the Master to the Slave, the valid flag needs to be set before the relevant clock cycle for the date to be
read by the Slave. For the channels going from the Slave to the Master the ready flags need to be set to
acknowledge the received data and signal the ability to receive data. These five processes were already
present in the template, but some had to be modified heavily to be used for the general purpose.

There are also two processes for indicating a done read/write which were not present in the template.
There is also a process that represents the AXI interface to the rest of the logic. It allows the next process
to set a read/write bit, the address, and data if applicable, and then just trigger the transfer. A flag is
pulsed high when the transfer is done and the results can be checked.

This part is very likely working as expected as it was tested in Vivado’s simulator together with the SPI
IP-Core. The handshake was visible and the response data made sense.

Figure 7.2: Screenshot showing the Vivado simulator with the AXI interface working

7.1.2 Handling of the SPI Core by Xilinx

To use the Xilinx SPI IP-Core it needs to be configured at startup. This is done by a procedure of AXI
transmissions. Therefore the core contains a process that can configure the SPI core and command it to
do SPI transmissions when the relevant flags are set.

To configure the SPI core a flag for configuring is set, a line is given a pulse to start the procedure,
and a done flag is waited for. When configuring the core, the process resets the SPI interface, enables
the transmit interrupt, disables the global IPIF interrupt, deselects the slave, reads the control register,
modifies some flags, and writes the control register.

To make an SPI transmission one must only set a flag for SPI transmission, set the data to send, start
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Chapter 8

Implementation of Digital Controller

written by Janek Brumund

In this section, the implemented components are described. The complete block design is shown in Appendix
D.1. There is the “Deflection_Estimator” on the left side of this figure. This block takes the measured
acceleration on an Advanced eXtensible Interface (AXI) Stream interface and determines the deflection of
the x and y axis (see section 6.3.2). The calculated data is passed on to two “Digital_P_Controller”
blocks through an “AXI4-Stream Broadcaster” Intellectual Property (IP) core. The controller blocks
calculate the actuating signal depending on the given reference variable (“Constant” core) and a given
factor for KP . The KP is given through another IP core called “AXI GPIO” (see chapter 10). To
determine which half of the data is passed on from the “Deflection_Estimator”, two more “Constant”
blocks are needed. One for a constant low level and one for a constant high level. The controller blocks
pass the data to the “Output Interface” (see chapter 9).

8.1 Filters

To implement a digital filter (“High Pass-” or “Low Pass Filter”) the “FIR Compiler” IP core is used.
It is a highly configurable core that can take one or multiple sets of coefficients. The coefficients for
each filter are calculated using the “pyFDA” ([CHI24]) tool. With this tool, it is possible to calculate
coefficients for different types of filters. Multiple data paths can be configured. The width of the input is
also configurable. Besides that the type of the coefficients is configurable. For more information on how
to configure such an IP core see [AMD22].

To keep the calculations simple these components are not included in the complete design. This decision
was made because using numbers with decimal places as coefficients leads to output values with decimal
places. This makes the calculations needed in “Deflection_Estimator” and “Digital_P_Controller” more
complex. To make it possible to solve the given problem in the given time the calculations must be easy
enough to implement.

The designed filters could be reproduced using “pyFDA”. All necessary files are available in the related
repository on the GitLab server from the university.

8.1.1 Low Pass Filter

Figure 8.1 shows the response of the designed low pass filter. At f ≈ 1.0kHz the magnitude is around
-5 dB. Before that, the magnitude is higher than this level. This means signals with a f < 1.0kHz are
almost unfiltered.
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1 pre_x_deflection := x_deflection;

2 pre_y_deflection := y_deflection;

3 pre_x_velocity := x_velocity;

4 pre_y_velocity := y_velocity;

Listing 2: Save previous values

After that, the new acceleration values are compared to the gravitational acceleration. Afterward, the
current acceleration is calculated for the axis by subtracting the gravitational acceleration. This value
is used to calculate the current velocity for the axis. The current velocity is then used to calculate the
current deflection for the axis.

1 if (z0_input_data > G_ACCEL and z1_input_data < G_ACCEL) then

2 -- left inclination

3 x_cur_accel := std_logic_vector(signed(z0_input_data) - signed(G_ACCEL));

4 x_velocity := std_logic_vector(signed(pre_x_velocity) + signed(x_cur_accel));

5 elsif (z0_input_data < G_ACCEL and z1_input_data > G_ACCEL) then

6 -- right inclination

7 x_cur_accel := std_logic_vector(signed(z1_input_data) - signed(G_ACCEL));

8 x_velocity := std_logic_vector(signed(pre_x_velocity) - signed(x_cur_accel));

9 else

10 -- no inclination

11 x_cur_accel := (others => '0');

12 x_velocity := std_logic_vector(signed(pre_x_velocity) + signed(x_cur_accel));

13 end if;

14

15 x_deflection <= std_logic_vector(signed(pre_x_deflection) + signed(x_velocity));

Listing 3: Calculate values for x axis

The calculation for the y-axis looks similar, which is why it was omitted.

Afterward, the values for the deflection on each axis are passed on to the output. The output is an
AXI4-Stream master interface.

8.3 Controller

The “Digital_P_Controller” gets the data via an AXI4-Stream Slave interface and picks one half of this.
This is determined by the “upper” port. The following is an excerpt of the complete “Digital_P_Controller”
code in section A.5.

The data goes through the calculations shown in listing 4. First, the difference between “reference_variable”
and “input_data” is calculated. Then this value is multiplied by the given factor “kp”.

1 puffer := signed(reference_variable) - signed(input_data);

2 calculated_data <= std_logic_vector(signed(kp) * puffer);

Listing 4: Calculate the current error signal and the actuating signal

After the calculation is done, the calculated data is passed on to the output. The output is an AXI4-Stream
Master interface.
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Chapter 9

Implementation of Output Interface

written by Niklas Seeliger

The output interface is made up of components. The configurator which upon getting a reset signal
configures the audio chip and the Soundmultiplexer, which receives AXI-Streams and multiplexes them
into an I²S Stream that it sends to the audio chip.

9.1 ADAU1761 Operation

We want to use the audio chip to receive I²S data and drive the left and right headphone outputs to
the levels of those channels. The headphone outputs of the chip are already hardwired to the “HP+Mic”
labeled audio jack. However, the input side needs to be mapped to FPGA signals. We want to drive the
headphone output with a sampling frequency of 48 kHz and want to operate the chip with a master
clock of 256 times that (= 12.288 MHz).

The audio chip will be configured to be the Inter Integrated Chip Sound (I²S) controller and as such the
serial clock and word select lines are inputs on the Field Programmable Gate Array which is programmed
to transmit the audio data.

Checking the datasheet [Ana10] we need to interface with the following pins:

• MCLK needs to be driven to 12.288 MHz. Configured as output on pin U5

• SDA/COUT is the SPI MISO line. Configured as input on pin T9

• ADDR1/CDATA is the SPI MOSI line. Configured as output on pin M18

• ADDR0/CLATCH is the SPI chip select line. Configured as output on pin M17

• SCL/CCLK is the SPI clock line. Configured as output on pin U9

• DAC_SDATA/GPIO0 is the I²S serial clock line. Configured as input on pin R18

• LRCLK/GPIO3 is the I²S word select line. Configured as input on pin T17

• BCLK/GPIO2 is the I²S serial data line. Configured as output on pin G18

The ADAU1761 is driven by a clock divider that divides the system clock of 125 MHz by 10 resulting in
a master clock of 12.5 MHz.
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receiveRData : process(axi_R_clk, reset)

begin

if reset = '0' then

current_R_value <= (others => '0');

axi_R_tready <= '1';

else

if rising_edge(axi_R_clk) then

if axi_R_tvalid = '1' then

current_R_value <= axi_R_tdata;

end if;

end if;

end if;

end process;

Figure 9.2: VHDL process receiving Right Channel Audio data

A little more involved is the process that outputs the audio data to the I²S stream. This is shown in
Figure 9.3. Since the audio chip is set up to control the i2s stream this process only needs to react to
the bit clock and the left-right clock. It is impossible to specify the bitclock in the sensitivity list of the
process because the output pin that goes to the sound chip is incapable of being routed to the clock
input of a flipflop. This is a limitation of the selected Field Programmable Gate Array. Because of this
the process instead relies on polling the bitclock and checks for rising and falling edges that way. This is
the reason the process is sensitive to a “master_clk” that needs to be fast enough to recognize the edges
with a low enough latency. In testing the system clock of 125 MHz was sufficient.

By reacting to word select changes on rising edges the process reacts to the new channel on the next
falling edge. This results in the 1-bit clock cycle required for I2S communication.
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updateSerialData : process(master_clk, reset)

begin

if reset = '0' then

on_bit <= 0;

i2s_sd <= '0';

last_ws <= i2s_lrclk;

current_output <= (others => '0');

last_bclk <= i2s_bclk;

elsif rising_edge(master_clk) then

if last_bclk /= i2s_bclk then

last_bclk <= i2s_bclk;

if i2s_bclk = '0' then -- falling edge on bclk

-- send bit if available

if on_bit < DATA_WIDTH then

i2s_sd <= current_output(DATA_WIDTH - 1 - on_bit);

on_bit <= on_bit + 1;

else

i2s_sd <= '0';

end if;

elsif i2s_bclk = '1' then -- rising edge on bclk

-- buffer word select because bits have to be 1 edge delayed

-- from word select line

-- if changed then reset on bit and buffer output data

if last_ws /= i2s_lrclk then

last_ws <= i2s_lrclk;

on_bit <= 0;

if i2s_lrclk = '0' then

current_output <= current_L_value;

else

current_output <= current_R_value;

end if;

end if;

end if;

end if;

end if;

end process;

Figure 9.3: VHDL process outputting the I²S data

By configuring the audio chip to control the I²S communication this process does not need to worry
about any timing or bit width constraints as the audio chip fetches the data when it is ready for it and
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Chapter 11

Implementation of Validation Data

written by Benjamin Bissendorf

This chapter describes the implementation of the previously shown concept of the “Validation Data”
component. The names used for its internal block are derived from the overview figure 6.10. In the
following, a short overview of the implementation is given and in their subsections, the details of the
blocks of this component are lined out and discussed.

The “Split and Write” block acts as an AXI4 Stream Slave connected to the “Input Interface” component.
From it, the data of the three sensors each with three values for the x-, y-, and z-axis, resulting in
3 · 64Bit = 192Bit arrives at the polling rate of 3200 times a second. The Direct Memory Access
Controller is configured to write chunks of 64 Bits of data to the RAM, so the incoming data has to be
split beforehand by the block. To send this split data, the block again acts as an AXI4 Stream Master for
the pipeline into memory.

The “Collect and Log” block runs on the PS and has two primary tasks: To configure the Direct Memory
Access Controller and to collect and write the data into a filestream. As the PL does not know where
to write the data, an AXI4 interface from the PS to the Direct Memory Access Controller is used and
configured with Python to set the destination address and amount of data. The corresponding Python
script waits for the buffer in memory to be filled and then orders the Direct Memory Access Controller to
write into a second buffer. Between being done with switching and waiting for the second buffer to be
filled, the data of the first buffer is written persistently into a file. To avoid data from being lost in the
period after the first buffer is full and the Direct Memory Access is ordered to use the second one, an
intermediate FIFO block is used, which also buffers the data and provides them in the right order to the
Direct Memory Access when it is available again. After the second buffer is filled too, this process starts
again, resulting in an endless loop of collecting data, until the user asks to stop.

The Vivado block design of this component can be seen in figure D.2 in the appendix.

11.1 Split and Write

written by Benjamin Bissendorf

The “Split and Write” block needs to act as an AXI 4 Stream Slave to receive the incoming sensor data
and as an AXI 4 Stream Master to send the split outgoing data. To follow “Seperation of Concerns”,
additional blocks are used for this. In figure 11.1 below, the outer interfaces from the block can be seen.
The Stream Slave accepts incoming data and provides them internally while signaling their arrival with a
dedicated flag. When data is ready to be sent, the Master has to be signaled with a go flag and then
confirms its transfer with a done flag. This allows the main block to concentrate on its primary task of
splitting the incoming data:
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11.4 Collect and Log

written by Simon Pfennig

The Code below is used in the Jupyter-Notebook environment on the PS. When executed, it will read
data from the sensor stream and save it to a file as bytes. See explanations of the code in table 11.2
below.

1 BUFFER_SIZE = 9600 # The number of Elements in each Buffer

2 ITERATIONS = 5 # How often every Buffer is filled

3 OUTPUT_FILE_PATH = "test.data" # Which file to append the data to

4

5 # Import Numpy and the method to allocate RAM

6 from pynq import allocate

7 import numpy as np

8

9 # Allocate and initialize 2 buffers

10 buffer_a = allocate(shape=(BUFFER_SIZE,), dtype=np.uint64)

11 buffer_a.fill(0)

12 buffer_b = allocate(shape=(BUFFER_SIZE,), dtype=np.uint64)

13 buffer_b.fill(0)

14

15 recvchannel = overlay.dma.recvchannel

16 recvchannel.start()

17

18 with open(OUTPUT_FILE_PATH, "wb") as data_file:

19 # Read one Buffer to empty the FIFO

20 recvchannel.transfer(buffer_a, 0, BUFFER_SIZE*8)

21 recvchannel.wait()

22

23 # Read into Buffer A

24 recvchannel.transfer(buffer_a, 0, BUFFER_SIZE*8)

25 recvchannel.wait()

26

27 for _ in range(ITERATIONS):

28 # Start Reading into Buffer B while writing the Contents of Buffer A into a File

29 recvchannel.transfer(buffer_b, 0, BUFFER_SIZE*8) # Send Command to start filling Buffer

30 data_file.write(buffer_a) # Write other Buffer to File

31 recvchannel.wait() # Wait for the first buffer to be filled

32

33 # Start Reading into Buffer A while writing the contents of Buffer B into a File

34 recvchannel.transfer(buffer_a, 0, BUFFER_SIZE*8)

35 data_file.write(buffer_b)

36 recvchannel.wait()

Listing 6: Python Code to Read the Validation Buffers
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Lines Explanation
1-3 Initializes Constants.

BUFFER_SIZE is the number of 64-bit integers in each buffer, it needs to be a multiple of
three because there are three sensors with 64 bits of data each. We choose 9600 since this
corresponds to one second of data when three sensors send data with a frequency of 3, 2kHz,
which is the case for this setup. This time should be sufficient to write the collected data
onto a file before the next buffer runs out of space as pointed out in section 11.3.
ITERATIONS is the number of times each buffer is read and saved to a file. Amounting
to a total of BUFFERSIZE

3
∗ ITERATIONS ∗ 2 sensor bursts being written to the file at

OUTPUT_FILE_PATH.

10-13 Allocates 2 buffers in RAM. They are returned as extensions of Numpy arrays and can be
used as such. They are extended with the physical address of the array in RAM, which is
used in the transfer()-Method to give to the Direct Memory Access.

15-16 Gets the object used to communicate with the Direct Memory Access via AXI and starts the
Direct Memory Access’s output channel.

20-21 Reads one buffer worth of data. Because the FIFO buffer on the board will fill up even when
the Direct Memory Access is not reading the data, the data in the FIFO will not match up
with the data currently supplied by the sensors. Since the FIFO is smaller than the buffer
these lines will remove this mismatch by rejecting the first buffer.

24-25 Writes the command to the Direct Memory Access to start filling the first buffer and waits
for it to be full. It uses the physical RAM address of the buffer, provided by the buffer_a
object with an offset of zero (start writing at the start of the buffer), write BUFFER_SIZE
times 8 bytes (since we save 8-byte integers)

29-31 Since Buffer A is full at this point, the Direct Memory Access is commanded to write data to
Buffer B. The slack between the moment when Buffer A is full and the moment when Buffer
B can be filled is handled by the FIFO. While Buffer B is filled, the contents of Buffer A will
be saved to a file. After that, we wait for Buffer B to be full.

34-36 The same as lines 29-31 but the roles of the buffers are reversed. This creates a loop in which
one buffer is always filled with data while the other one is saved to a file.

Table 11.2: Explanations to Listing 6

The data is saved directly as a stream of bytes. This is to ensure the PS has enough time to save the
array before the next buffer is filled. To make evaluation easier it is preferable to have the data available
in CSV format. Therefore the code below can be used to convert the byte file into a CSV file. See
explanations of the code in Table 11.3 below.

1 CSV_OUTPUT_PATH = "test.csv"

2

3 with open(OUTPUT_FILE_PATH, "rb") as data_file:

4 with open(CSV_OUTPUT_PATH, "w") as csv_file:

5 csv_file.write("X1\tY1\tZ1\tX2\tY2\tZ2\tX3\tY3\tZ3\n")

6 while True:

7 b = data_file.read(24) # Read 3 Longs of Data

8 if not b: # EOF

9 break

10 line = "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n"

11 line = line.format(

12 int.from_bytes(b[6:8], byteorder="little", signed=True), #X1

13 int.from_bytes(b[4:6], byteorder="little", signed=True), #Y1

14 int.from_bytes(b[2:4], byteorder="little", signed=True), #Z1

15

16

17
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18 int.from_bytes(b[14:16], byteorder="little", signed=True), #X2

19 int.from_bytes(b[12:14], byteorder="little", signed=True), #Y2

20 int.from_bytes(b[10:12], byteorder="little", signed=True), #Z2

21

22 int.from_bytes(b[22:24], byteorder="little", signed=True), #X3

23 int.from_bytes(b[20:22], byteorder="little", signed=True), #Y3

24 int.from_bytes(b[18:20], byteorder="little", signed=True), #Z3

25

26 )

27 csv_file.write(line)

Listing 7: Python Code to Convert the Buffer Data to CSV

Lines Explanation
3-4 Opens the file in which the sensor data is stored, as well as a new file in which the data

converted to CSV will be stored.

5 Writes the header of the CSV file.

7-9 Reads 24 bytes of data (one sensor reading) from the data file.

10-22 Converts the data into 9 16-bit integers, one for each axis of each sensor, formats them into
CSV, and writes it to the CSV file.

Table 11.3: Explanations to figure 7
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12.2 Start of operation

written by Simon Pfennig

To prepare the pynq-z2 board for operation, an SD card with the correct board image is needed. The
latest image file is available on the manufacturer’s website (see [Tul20]). The .img file then must be
written onto a bootable SD card. After inserting the card into the board and powering it up with the
included power adapter, the board signals its availability with blue flashing LEDs.

When connected to a Network via Ethernet, the board’s Jupyter-Notebook environment is exposed
http://pynq:9090/ by default. To log in you need the credentials, which by default are:

Username: xilinx

Password: xilinx

The next step is to move the Bitstream (.bit) and Hardware Handoff (.hwh) files onto the board. For this,
we used the following script to copy the files from the Vivado project onto the board. The ssh credentials
are the same as above. The .bit file and .hwh files need to have the same name and be in the same
directory on the board, otherwise, the paths can be changed.

set pynq_host=[IP of Pynq-Board]

scp VCS_FPGA.gen\sources_1\bd\main\hw_handoff\main.hwh xilinx@%pynq_host%

:~/jupyter_notebooks/embeds/py_dma_test/bitstream/main_wrapper.hwh

scp VCS_FPGA.runs\impl_1\main_wrapper.bit xilinx@%pynq_host%

:~/jupyter_notebooks/embeds/py_dma_test/bitstream/

Figure 12.2: Upload Script for Bitstream and Hardware Handoff

After loading the files onto the board you can use the Jupyter-Notebook environment to load the bitstream
and the hardware handoff-file. The following code snippet can be used for this purpose.

from pynq import Overlay

overlay = Overlay("main_wrapper.bit")

Figure 12.3: Load Bitstream onto board
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Chapter 13

Evaluation

written by Benjamin Bissendorf and Niklas Seeliger

The integration result is synthesized and implemented in Vivado. Its bitstream was generated and then
loaded onto the board as described in the previous section. Unfortunately, we were unable to sense an
immediate response to the audio output of the mechanical model. Due to time constraints, we are not
able to fully locate the source of the error. We know there is an issue with the connection from the board
to the speakers from earlier tests. But debug output of the controller indicated another problem earlier in
the chain.

On the other hand, the collected data, provided on the central data stream, was successfully written
into a file by the “Validation Data” component. We were able to process the raw values, as explained in
section 11.4, into a readable CSV file, which proved the success of this component.

Reflecting on the project as a whole we have definitely succeeded in demonstrating the capability of the
board to control vibrations. The specified design is capable of reading sensor data as fast as is required
to control the vibrations. The data can be written to RAM to be analyzed. Control Parameters can
be set for the controller. The controller is capable of calculating corrections and the output interface
is capable of driving the actors to the specified state. From a digital perspective actively controlling
vibrations is feasible. Due to a lack of time we were however unable to read acceleration data from the
sensors. Moreover, we could not drive the actors of the first testbed. Since we could drive normal wired
headphones, we conclude this is due to a wiring issue in the testbed.
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Chapter 14

Summary

written by Jan Bredereke

We investigated how an active control can stabilize a satellite’s on-board camera in an inexpensive way,
disturbed by micro-vibrations coming from the reaction wheels of the Attitude Determination and Control
System (ADCS), and maybe also disturbed by its orbital movement. This research question turned out to
have two major aspects, the digital part of the control and the mechanical part.

14.1 Digital Part of the Control

From several ways of approaching the digital part, we decided for an active control running in the FPGA
of a PYNQ-Z2 board. Furthermore, we chose the control to be a PID controller, adjusted experimentally.
See Chap. 2.

It turned out that obviously it will be feasible to implement the digital part in this way. We did not have
the time and human resources for a complete implementation of the digital part. But our design is capable
of reading sensor data as fast as is required to control the vibrations. (See Sect. 6.2 and Chap. 7.) Our
implementation took data produced at this rate in the FPGA and wrote it to a file. We then visualized it
offline for further analysis. (See Sect. 6.5 and Chap. 11.) We implemented setting the parameters used
by the control algorithm in the FPGA; we set them from the Jupyter notebook graphical user interface.
(See Sect. 6.1 and Chap. 10.) We implemented a simple control algorithm in the FPGA. (See Sect. 6.3
and Chap. 8.) We implemented outputting the control commands from the FPGA to the analog output
of the PYNQ-Z2 board. (See Sect. 6.4 and Chap. 9.) Figure 6.1 on page 17 presents an overview of the
general structure of the digital control system. All of the blocks have either been implemented or at least
shown to be implementable.

Due to lack of time and human resources, we could not complete implementing several submodules of
the digital part. We report on this future work in Sect. 15.1 below.

14.2 Mechanical Part

The mechanical part of a test bed was provided to us by the VIBES project; we didn’t intend to work on
it. Nevertheless, we conceived several improvements, and we implemented a few of them. Starting point
was the insight that the simplification to translational vibrations would prevent any digital control to work
in the test bed provided. Measuring and controlling rotational vibrations is necessary. Since rotational
vibrations, not translational vibrations, are the only vibrations relevant in orbit, we decided to improve the
design of the test bed with this respect. This allowed us, additionally, to make the task for the digital
part much more similar to the real task in orbit. Other aspects of the first version of the test bed required
improvement, too, in order to not prevent a successful demonstration of the digital part. (For details see
Chapter 3.)
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Improving the mechanical aspects of the test bed wasn’t handed to the students in the project, since their
teaching course should concentrate on the digital part. Furthermore, human resources and time were
scarce anyway. Instead, the conceptual and practical work on the test bed was done by Prof. Bredereke
in close collaboration with the lab engineer Mr. Sembritzki. We built a new printed circuit board with an
arrangement of sensors capable to handle rotational vibrations. We also improved the wiring to this board.
Designing these improvements early in the project allowed us to keep the electrical interface stable for the
rest of the project; this helped to design and implement the digital part of the control. (For details see
Chapter 4.)

We achieved the insight that integrating our new sensor board into a robust actor mount will require
substantial more work on the actors and on their mount; and it will definitely need several more iterations
of the test bed. In Chapter 15.2 below, we discuss what will be required, and we will present ideas on
what can be tried.

For preliminary testing of the digital part, finally we used the new sensor mount together with the old
actor mount. This reduced the test setup to a linear chain from sensors to actors, without the mechanical
loop back from the actors to the sensors.
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Chapter 15

Future Work

written by Jan Bredereke

Some work on the digital part of the control and substantial work on the mechanical part remains for
future work. Prof. Bredereke considers continuing the work on the digital part in another course in the
next winter term, depending on progress with the mechanical part. The open mechanical challenges
probably should be addressed by mechanical engineers of the VIBES project; nevertheless Prof. Bredereke
and the lab engineer Mr. Semritzki are interested in discussing solutions and maybe in working on selected
aspects. When all parts have been implemented, an experimental proof has to be conducted that the
control indeed reduces vibrations as intended.

Access to the Git repository with the source code may be requested from Prof. Bredereke.

15.1 Digital Part of the Control

The digital part of the control still requires the following work:

1. Most notably, the input interface needs to be completed. The major challenge here is to
understand and handle the complexities of an AXI-Lite master.

AXI is a standard interface between IP cores, in particular to pre-fabricated IP cores1. (On AXI,
see Sect. 5.1.) Nearly all of our current interfaces are AXI-Stream interfaces. AXI-Stream is the
simplest form of an AXI interface. The students managed to understand and handle this rather
rapidly.

However, the pre-fabricated IP core for accessing the SPI bus to the sensors must be accessed itself
through an AXI-Lite interface. The accessing VHDL code therefore must implement the master
side of the AXI-Lite connection. The master side is more involved that the slave side.

In many applications, developers do not need to write an AXI-Lite master. Usually, microcontroller
IP cores and DMA IP cores take this role, only. As long as the software on the microcontroller
of the System-on-Chip (SoC) orchestrates the behaviour of the digital components on the FPGA,
there is no need to write an AXI-Lite master.

Our design is special with respect to which component orchestrates the others. We don’t want to
hand this role to the microcontroller, since this would require to use a real-time operating system.
This would conflict with other requirements. For details see Chap. 2. Therefore, we need to write
at least one component capable of the AXI-Lite master role.

A preliminary test already showed that we can access the sensors via the SPI IP core, if we use the
microcontroller and a Python script as AXI-Lite master. See Chap. 7.

1An IP core is a ready-for-use digital circuit design usually providing often-used functionality, serving as building block

for rapid digital system design.
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As soon as our VHDL code can poll the sensors on the SPI bus via the AXI-Lite interface, we can
replace the current dummy data source with the real sensor data source.

2. The digital controller requires some reworking.

(a) The low pass filter and the high pass filter in front of the actual control component
are still missing.

It is clear that the pre-fabricated “FIR Compiler” can generate a suitable filter from a set of
filter parameters. Furthermore, the generated IP core uses AXI-Stream interfaces, which just
need to be chained together with little effort.

A certain challenge comes from the fact that using integer values should be preferred over
floating point values. This is supported by the FIR Compiler. But the details still need to be
worked out.

The work in Chap. 8 employs the tool “pyFDA” to calculate parameters for the filters. This
work should be revisited in order to document the design path from the high-level requirements
on the filters down to the actual filter parameters.

(b) The “deflection estimator” requires revisiting.

Its task is to take the acceleration values from the sensors and to compute the current location
of the printed circuit board (PCB) with the sensors (and, ultimately, with the camera). The
PCB can be tilted sideways on two axes. Compare Sect. 4.2.

The concept for this, documented in Chap. 6.3, requires a revisit of the physical laws
used. Currently, the formulae used implicitely assume a uniform acceleration. However, the
accelerations by the vibrations are obviously ever-changing. Therefore, a double integration is
required to calculate the current location from a history of accelerations. The integrations
need to be done using time-discrete samples. This discretization renders approximations of
the current location. Such an integration can be done by summing up over time. The current
VHDL code already does some summing up. However, it is not yet clear how this connects to
the physics of the test bed.

(c) Only if actually needed: the current controller could be extended to a full PID controller.

Currently, our controller is a simpler P controller, without I and D. It is likely that this approach
is sufficient to solve our control task.

In case that experimentation shows that the more advanced I and D parameters are actually
required, the controller needs to be improved. Currently, the P controller boils down to a
simple multiplication with the kP parameter.

Two solutions paths suggest themselves. The first is to implement a more complex controller
in VHDL manually. This should be feasible since the algorithm is of rather limited complexity.
The other path is to look for an IP core providing a PID controller. A preliminary search of us
rendered an IP core with non-matching interfaces only (Wishbone instead of AXI).

3. It should be validated that the bandwith of all data path segments of the control loop
indeed is appropriate.

The sensors shall be sampled at 3200 Hz. The following transmission via an AXI-Stream interface
is capable of higher throughput. The I2S stream on the output side is slower than the AXI-Stream
but faster than the sensors are read. Should, in the future, data be read faster than than 48 kHz,
some values would be discarded by the sound multiplexer driving the I2S connection. See Sect. 6.4.

This architecture should be validated in a systematic way with respect to potential for losing data
and minimizing latency.

4. The initialization of the audio chip might be made more self-contained.

The audio chip on the PYNQ-Z2 board (outside of the FPGA and the SoC) needs a substantial
set of initialization data written into its configuration registers. (See Chap. 9.) Currently, this
initialization is done by a Python script running on the microcontroller. If no dependency on
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software is desired, even for a one-time initialization, then this initialization should be done by
VHDL code executed on the FPGA, too.

5. An integration test including all digital components, in particular the extended an the reworked
ones, must be done.

6. Experiments with the complete test bed need to be performed in order to find suitable
parameters for the two PID controllers. This experimentation will be intertwined with the
experimental proof of vibration reduction, as discussed in Sect. 15.3 below. Experience from other
projects has shown that finding suitable parameters may need a bit of time.

When all of the above have been achieved, the following bonus value might be worked on:

7. Use the existing mechanical hardware, sensors, and digital circuitry for measuring the
vibrations around the line-of-sight axis of the camera.

We have no actor to counter this rotational vibration. But we can measure its angular amplitude,
and we can calculate whether this angular amplitude causes the pixels in the camera to shift less
than one pixel wide. See Sect. 4.6.

Our digital part already writes all relevant data to a file. Therefore, this task is just an offline
evaluation of the data in the file.

15.2 Mechanical Part

The mechanical part, including the analog electronics, requires the following work:

1. The actors need substantial work.

The current freely hovering mount for the camera and the sensor is fragile, definitely not suitable
for a rocket launch, and likely has substantial coupling between the two axes. See Sect. 3.

Our idea of placing the mount on a flexible, central rod and pushing the mount from below instead
of sideways should improve this. See Sect. 4.2. The details still need to be worked out and must
be implemented. We expect this work to require several iterations of the test bed; in particular, if
resonances shall not interfere.

Using speakers as actors, in the way proposed in Sect. 4.2, can be an intermediate step, only. They
are still too fragile for a rocket launch. A design using dedicated magnet-coil pairs will be much
more robust. Also, it will demand much less precious space onboard. See Sect. 4.2, again. However,
such a design likely will require several iterations of the test bed until being mature.

Using piezo actors potentially can improve the situation further, due to their even more increased
robustness and even smaller size. But before embarking on this solution, one should have assessed
whether a piezo actor or a stack of piezo actors can achieve an amplitude sufficient for our purpose.
Furthermore, the high voltage required might be an issue. Compare Sect. 4.2.

2. Building on the above actor design, the PCB with the sensors must be integrated with a
camera, mounted on the flexible rod, and mechanically be connected to the actors.

3. As soon as the camera-sensor mount is in place, the wiring of the camera-sensor mount must
be completed.

Our idea of using thin, short, single, unshielded wires can be used here. We have already implemented
this idea, but only for connecting the sensor mount to a temporary, fixed stripboard below it. Compare
Sect. 4.3.

An even distribution of the wires to all sides of the PCB might improve the mechanical properties of
the connections further. We will need about eleven signal wires (4 SPI, 3 SPI chip select, 4 USB).
Therefore, we should attach about three wires to each of the four sides of the PCB.
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4. The issues in the analog electronics of the test bed need to be analyzed and resolved. See
Chap. 13.

5. A camera must be added.

Starting from an iteration of the test bed where the mechanical loop is closed, we need to add a
dummy with the approximate size and weight of a camera.

As soon as the evaluation of image blurring is expected, a camera with a narrow angle of view must
be bought and added.

6. As soon as the mechanical design becomes mature and a basic control of mid-strength vibrations
has been achieved, the low-end-price sensors should be replaced by somewhat less noisy
and thus more sensitive sensors.

Using low-end-price sensors saves substantial cost in the phase of experimentation with numerous
iterations of the test bed. See Sect. 4.1. The project VIBES already did prove that micro-vibrations
can be measured with affordable sensors. But it is preferable to perform the final experimentations
with less noisy sensors.

7. Softer feet for the test bed are required.

The current off-the-shelf feet are way too stiff. We already experimented with 3D-printed feet from
a soft material. They had the form of a ball, attached at the top and at the bottom. However, this
was still too stiff.

Another idea is to reduce the ball to a thin column. This will allow for easier movements to the
sides. We expect the sideways movements of the bottom metal plate to be dominant when the
shaker motor induces rotational vibrations into the two-storey construction with the lower and the
upper metal plate. Compare Fig. 3.1 and Fig. 3.2 on page 5.

Yet another idea is to use rubber balls, but without attachments at the top or at the bottom. They
could rest in shallow bowls, instead. This renders maximal freedom for sideways movements. The
price is a more difficult handling when setting up and stowing away the test bed.

8. Resonances and other mechanical deficiencies of the test bed need to be explored and
resolved.

As proposed in Chap. 4, we should start out reducing vibrations at a single frequency close to 1 kHz,
avoiding resonance frequencies as far as possible.

After this succeded, we need to explore any resonances and other mechanical deficiencies, in order
to reduce and mitigate them. This will require further iterations of the test bed. This latter step
will be intertwined with the experimental proof of vibration reduction, as discussed in Sect. 15.3
below.

15.3 Experimental Proof of Vibration Reduction

When all parts have been implemented, an experimental proof has to be conducted that the control
indeed reduces vibrations as intended. As discussed in Sect. 15.1 above, this must be intertwined with
finding suitable parameters for the two PID controllers. As discussed in Sect. 15.2 above, this must be
iterated for exploring and resolving resonances and other mechanical deficiencies of the test bed. The
goal is to show the reduction over the entire frequency band applicable.

When the validation data taken from the sensors in the test bed indicate that the vibrations have been
reduced to a satisfactory level, a cross check should be done. We should measure how much the actual
camera images are blurred without and with vibration reduction. The internship report [Ger23] provides
substantial advice on how such measurements can be performed.

Additionally, external measuring equipment for measuring the vibrations directly might be used. For
example, a laser interferometer would provide extremely sensitive measurements. The price tag of such
equipment might be prohibitive, however.
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Appendix A

Code

A.1 SplitAndWrite

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3

4 -- Uncomment the following library declaration if using

5 -- arithmetic functions with Signed or Unsigned values

6 --use IEEE.NUMERIC_STD.ALL;

7

8 -- Uncomment the following library declaration if instantiating

9 -- any Xilinx leaf cells in this code.

10 --library UNISIM;

11 --use UNISIM.VComponents.all;

12

13 entity VD_SplitAndWrite is

14 Generic (

15 DATA_WIDTH_OUT : INTEGER := 64;

16 DATA_WIDTH_IN : INTEGER := 64*3;

17 MEM_BUFFER_SIZE : INTEGER := 100

18 );

19 Port (

20 ACLK : in STD_LOGIC;

21 ARESETn : in STD_LOGIC;

22

23 S00_AXIS_TDATA : in STD_LOGIC_VECTOR(DATA_WIDTH_IN-1 downto 0);

24 S00_AXIS_TREADY : out STD_LOGIC;

25 S00_AXIS_TVALID : in STD_LOGIC;

26 S00_AXIS_TLAST : in STD_LOGIC;

27

28 M00_AXIS_TDATA : out STD_LOGIC_VECTOR(DATA_WIDTH_OUT-1 downto 0);

29 M00_AXIS_TREADY : in STD_LOGIC;

30 M00_AXIS_TVALID : out STD_LOGIC;

31 M00_AXIS_TLAST : out STD_LOGIC

32 );

33 end VD_SplitAndWrite;

34

35 architecture Behavioral of VD_SplitAndWrite is

36

37 -- ----------- Signals ------------

38 signal data_available_flag : STD_LOGIC;



39 signal data_in : STD_LOGIC_VECTOR(DATA_WIDTH_IN-1 downto 0);

40

41 signal data_out : STD_LOGIC_VECTOR(DATA_WIDTH_OUT-1 downto 0);

42 signal go_flag : STD_LOGIC := '0';

43 signal done_flag : STD_LOGIC := '0';

44

45 type State_t is ( WaitForIncoming, SendNextChunk, WaitForDone );

46 subtype data_out_range is natural range 0 to DATA_WIDTH_IN + DATA_WIDTH_OUT;

47 signal state : State_t := WaitForIncoming;

48 signal chunk_bits_sent : data_out_range := 0;

49

50

51

52

53 -- ----------- Components ---------

54 component AXIS_To_Vector is

55 Generic (

56 DATA_WIDTH : INTEGER := 64

57 );

58 Port (

59 ACLK : in STD_LOGIC;

60 ARESETn : in STD_LOGIC;

61 S_AXIS_TDATA : in STD_LOGIC_VECTOR(DATA_WIDTH-1 downto 0);

62 S_AXIS_TREADY : out STD_LOGIC;

63 S_AXIS_TVALID : in STD_LOGIC;

64 S_AXIS_TLAST : in STD_LOGIC;

65

66 stream_data : out STD_LOGIC_VECTOR(DATA_WIDTH-1 downto 0);

67 stream_data_av : out STD_LOGIC --When data is available

68 );

69 end component;

70

71 component Vector_To_AXIS is

72 Generic ( DATA_WIDTH : INTEGER := 64;

73 SEND_LAST_AFTER : INTEGER := 100

74 );

75 Port ( ACLK : in STD_LOGIC;

76 ARESETn : in STD_LOGIC;

77

78 M_AXIS_TDATA : out STD_LOGIC_VECTOR(DATA_WIDTH - 1 downto 0);

79 M_AXIS_TREADY : in STD_LOGIC;

80 M_AXIS_TVALID : out STD_LOGIC;

81 M_AXIS_TLAST : out STD_LOGIC;

82

83 Data_i : in STD_LOGIC_VECTOR(DATA_WIDTH - 1 downto 0);

84 Done_o : out STD_LOGIC;

85 Go_i : in STD_LOGIC

86 );

87 end component;

88

89 begin

90

91 assert DATA_WIDTH_OUT mod DATA_WIDTH_IN = 0 report "WIDTH_OUT has to be a multiple of WIDTH_IN" severity failure

92

93 -- Component handling incoming AXI stream
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94 axis_input : AXIS_To_Vector

95 generic map (DATA_WIDTH_IN)

96 port map (

97 ACLK => ACLK,

98 ARESETn => ARESETn,

99 S_AXIS_TDATA => S00_AXIS_TDATA,

100 S_AXIS_TREADY => S00_AXIS_TREADY,

101 S_AXIS_TVALID => S00_AXIS_TVALID,

102 S_AXIS_TLAST => S00_AXIS_TLAST,

103 stream_data => data_in,

104 stream_data_av => data_available_flag

105 );

106

107 -- Component handling outgoing AXI Stream

108 axis_output : Vector_To_AXIS

109 generic map (DATA_WIDTH_OUT, MEM_BUFFER_SIZE)

110 port map (

111 ACLK => ACLK,

112 ARESETn => ARESETn,

113 M_AXIS_TDATA => M00_AXIS_TDATA,

114 M_AXIS_TREADY => M00_AXIS_TREADY,

115 M_AXIS_TVALID => M00_AXIS_TVALID,

116 M_AXIS_TLAST => M00_AXIS_TLAST,

117 Data_i => data_out,

118 Done_o => done_flag,

119 Go_i => go_flag

120 );

121

122 process (ACLK)

123 begin

124

125 if rising_edge(ACLK) then

126

127 if ARESETn = '0' then

128 state <= WaitForIncoming;

129 else

130 -- state machine

131 case state is

132 when WaitForIncoming =>

133 if data_available_flag = '1' then

134 state <= SendNextChunk;

135 chunk_bits_sent <= 0;

136 end if;

137

138 when SendNextChunk =>

139 -- determine range for sending

140 data_out <= data_in((DATA_WIDTH_IN - chunk_bits_sent - 1)

141 downto (DATA_WIDTH_IN - chunk_bits_sent - DATA_WIDTH_OUT));

142 chunk_bits_sent <= chunk_bits_sent + DATA_WIDTH_OUT;

143 go_flag <= '1'; -- signal data available for sending

144

145 state <= WaitForDone;

146

147 when WaitForDone =>

148 go_flag <= '0';
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149 if done_flag = '1' then

150 if chunk_bits_sent >= DATA_WIDTH_IN then

151 state <= WaitForIncoming;

152 else

153 state <= SendNextChunk;

154 end if;

155 end if;

156 end case;

157 end if;

158 end if;

159

160 end process;

161

162 end Behavioral;

163

164

Listing 8: VD_SplitAndWrite.vhd file for the ValidationData component

A.2 SensorSequencer

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4

5 -- Uncomment the following library declaration if using

6 -- arithmetic functions with Signed or Unsigned values

7 --use IEEE.NUMERIC_STD.ALL;

8

9 -- Uncomment the following library declaration if instantiating

10 -- any Xilinx leaf cells in this code.

11 --library UNISIM;

12 --use UNISIM.VComponents.all;

13

14 entity SensorSequencer is

15 port (

16 clk : in STD_LOGIC;

17 resetn : in STD_LOGIC;

18

19 trigger_poll : in STD_LOGIC;

20 sensor_data : in STD_LOGIC_VECTOR(3*16-1 downto 0);

21 comm_ready : in STD_LOGIC;

22 comm_data_valid : in STD_LOGIC;

23

24 comm_start_configure : out STD_LOGIC;

25 comm_start_data : out STD_LOGIC;

26 select_sensor : out STD_LOGIC_VECTOR(3-1 downto 0);

27 data_out : out STD_LOGIC_VECTOR(3*64-1 downto 0); -- Data format (each 16B): (s1x, s1y, s1z, /, s2x, s2y,

28 data_out_valid : out STD_LOGIC

29 );

30 end SensorSequencer;

31

32 architecture Behavioral of SensorSequencer is
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33

34 type SensorSequencerState_t is ( WaitForReady, Configure, WaitForConfigured, WaitForTrigger, RequestData, WaitForData

35 signal state : SensorSequencerState_t := WaitForReady;

36

37 signal current_sensor : natural range 0 to 3 := 0;

38

39 begin

40

41 process (clk)

42 variable buffer_upper_bits : integer range 0 to 64*3 := 0;

43 begin

44 if rising_edge(clk) then

45 if resetn = '0' then

46 data_out <= (others => '0');

47 data_out_valid <= '0';

48 comm_start_configure <= '0';

49 comm_start_data <= '0';

50 current_sensor <= 0;

51 else

52 case state is

53 when WaitForReady =>

54 current_sensor <= 0;

55 if comm_ready = '1' then

56 state <= Configure;

57 end if;

58 when Configure =>

59 current_sensor <= current_sensor + 1;

60 comm_start_configure <= '1';

61

62 state <= WaitForConfigured;

63 when WaitForConfigured =>

64 comm_start_configure <= '0';

65

66 if comm_ready = '1' then

67 if current_sensor = 3 then

68 state <= WaitForTrigger;

69 else

70 state <= Configure;

71 end if;

72 end if;

73 when WaitForTrigger =>

74 current_sensor <= 0;

75 data_out_valid <= '0';

76 if trigger_poll = '1' then

77 state <= RequestData;

78 end if;

79 when RequestData =>

80 current_sensor <= current_sensor + 1;

81 comm_start_data <= '1';

82

83 state <= WaitForData;

84 when WaitForData =>

85 comm_start_data <= '0';

86

87 if comm_data_valid = '1' then
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88 buffer_upper_bits := 64*3 - 1 - 64*(current_sensor-1);

89 data_out(buffer_upper_bits

90 downto buffer_upper_bits - 16*3 + 1) <= sensor_data;

91

92 if current_sensor = 3 then

93 state <= WaitForTrigger;

94 data_out_valid <= '1';

95 else

96 state <= RequestData;

97 end if;

98 end if;

99 end case;

100 end if;

101 end if;

102 end process;

103

104 -- Asynchronous One-Hot encoding of select_sensor by current_sensor

105 -- select_sensor = (s3, s2, s1)

106 process (current_sensor)

107 begin

108 select_sensor <= (others => '0');

109 if current_sensor > 0 then

110 select_sensor(current_sensor-1) <= '1';

111 end if;

112 end process;

113

114

115 end Behavioral;

Listing 9: SensorSequencer.vhd for the Input Interface component

A.3 Sensor Dummy

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use ieee.numeric_std.all;

4

5 entity Sensor_Dummy is

6 Generic (

7 HALF_AMPLITUDE : INTEGER := 500;

8 PERIOD : INTEGER := 1;

9 DATA_OFFSET1 : INTEGER := 0;

10 DATA_OFFSET2 : INTEGER := 100;

11 DATA_OFFSET3 : INTEGER := 200

12 );

13 Port ( ACLK : in STD_LOGIC;

14 ARESETn : in STD_LOGIC;

15 Comm_Data : out STD_LOGIC_VECTOR(3*16-1 downto 0);

16 Comm_Ready : out STD_LOGIC;

17 Comm_Data_Valid : out STD_LOGIC;

18 Comm_Start_Data : in STD_LOGIC;

19 Sensor_Select : in STD_LOGIC_VECTOR(2 downto 0)

20 );
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21 end Sensor_Dummy;

22

23 architecture Behaviour of Sensor_Dummy is

24 signal Data_Counter1 : INTEGER := DATA_OFFSET1;

25 signal Data_Counter2 : INTEGER := DATA_OFFSET2;

26 signal Data_Counter3 : INTEGER := DATA_OFFSET3;

27 signal CLK_Counter : INTEGER := 0;

28 signal Duration_Counter : INTEGER := 0;

29 signal Ready : STD_LOGIC := '1';

30

31 begin

32 Comm_Ready <= '1';

33

34 process (ACLK)

35 begin

36 if rising_edge(ACLK) then

37 if(ARESETn = '0') then

38 Duration_Counter <= 1;

39 Data_Counter1 <= DATA_OFFSET1;

40 Data_Counter2 <= DATA_OFFSET2;

41 Data_Counter3 <= DATA_OFFSET3;

42 else

43 Duration_Counter <= Duration_Counter + 1;

44 if (Duration_Counter = PERIOD) then

45 Duration_Counter <= 0;

46

47 if (Data_Counter1 = HALF_AMPLITUDE) then

48 Data_Counter1 <= -HALF_AMPLITUDE;

49 else

50 Data_Counter1 <= Data_Counter1 + 1;

51 end if;

52

53 if (Data_Counter2 = HALF_AMPLITUDE) then

54 Data_Counter2 <= -HALF_AMPLITUDE;

55 else

56 Data_Counter2 <= Data_Counter2 + 1;

57 end if;

58

59 if (Data_Counter3 = HALF_AMPLITUDE) then

60 Data_Counter3 <= -HALF_AMPLITUDE;

61 else

62 Data_Counter3 <= Data_Counter3 + 1;

63 end if;

64 end if;

65 end if;

66 end if;

67 end process;

68

69 process (ACLK)

70 begin

71 if rising_edge(ACLK) then

72 if(ARESETn = '0') then

73 Ready <= '0';

74 Comm_Data_Valid <= '0';

75 Comm_Data <= (others => '0');
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76 else

77 if(Comm_Start_Data = '1') then

78 Comm_Data_Valid <= '1';

79 if (Sensor_Select(0) = '1') then

80 Comm_Data(47 downto 32) <= STD_LOGIC_VECTOR(to_signed(Data_Counter1, 16));

81 Comm_Data(31 downto 16) <= STD_LOGIC_VECTOR(to_signed(Data_Counter1, 16));

82 Comm_Data(15 downto 0) <= STD_LOGIC_VECTOR(to_signed(Data_Counter1, 16));

83 elsif (Sensor_Select(1) = '1') then

84 Comm_Data(47 downto 32) <= STD_LOGIC_VECTOR(to_signed(Data_Counter2, 16));

85 Comm_Data(31 downto 16) <= STD_LOGIC_VECTOR(to_signed(Data_Counter2, 16));

86 Comm_Data(15 downto 0) <= STD_LOGIC_VECTOR(to_signed(Data_Counter2, 16));

87 else

88 Comm_Data(47 downto 32) <= STD_LOGIC_VECTOR(to_signed(Data_Counter3, 16));

89 Comm_Data(31 downto 16) <= STD_LOGIC_VECTOR(to_signed(Data_Counter3, 16));

90 Comm_Data(15 downto 0) <= STD_LOGIC_VECTOR(to_signed(Data_Counter3, 16));

91 end if;

92 else

93 Comm_Data_Valid <= '0';

94 end if;

95 end if;

96 end if;

97 end process;

98 end Behaviour;

Listing 10: SensorDummy.vhd file

A.4 Deflection Estimator

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 entity Deflection_Estimator is

6 generic (

7 -- Users to add parameters here

8 INPUT_DATA_WIDTH : integer := 32; -- C_S00_AXIS_TDATA_WIDTH/9

9 CALC_DATA_WIDTH : integer := 64;

10

11 G_ACCEL_INT : integer := 345; -- 2.9 mg/LSB

12 -- gravitational acceleration 9.81 m/s^2 =>

13 -- 1 LSB = X m/s^2

14 -- User parameters ends

15 -- Do not modify the parameters beyond this line

16

17

18 -- Parameters of Axi Slave Bus Interface S00_AXIS

19 C_S00_AXIS_TDATA_WIDTH : integer := 192;

20

21 -- Parameters of Axi Master Bus Interface M00_AXIS

22 C_M00_AXIS_TDATA_WIDTH : integer := 64

23 );

24 port (

25 -- Users to add ports here
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26 aclk : in std_logic;

27 aresetn : in std_logic;

28 -- User ports ends

29 -- Do not modify the ports beyond this line

30

31

32 -- Ports of Axi Slave Bus Interface S00_AXIS

33 s00_axis_tready : out std_logic;

34 s00_axis_tdata : in std_logic_vector(C_S00_AXIS_TDATA_WIDTH-1 downto 0);

35 s00_axis_tlast : in std_logic;

36 s00_axis_tvalid : in std_logic;

37

38 -- Ports of Axi Master Bus Interface M00_AXIS

39 m00_axis_tvalid : out std_logic;

40 m00_axis_tdata : out std_logic_vector(C_M00_AXIS_TDATA_WIDTH-1 downto 0);

41 m00_axis_tlast : out std_logic;

42 m00_axis_tready : in std_logic

43

44 );

45 end Deflection_Estimator;

46

47 architecture arch_imp of Deflection_Estimator is

48

49 type State_t is (IDLE, CALCULATE, PUSH_DATA);

50 signal state : State_t;

51

52 signal calc_done : std_logic;

53 signal data_pushed : std_logic;

54 signal data_pushed_delay: std_logic;

55 signal data_received : std_logic;

56

57 signal z0_input_data : std_logic_vector(INPUT_DATA_WIDTH-1 downto 0);

58 signal z1_input_data : std_logic_vector(INPUT_DATA_WIDTH-1 downto 0);

59 signal z2_input_data : std_logic_vector(INPUT_DATA_WIDTH-1 downto 0);

60

61 -- axis over sensor 1 and sensor 2

62 signal x_deflection : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

63 -- axis over sensor 2 and sensor 3

64 signal y_deflection : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

65

66 signal output_data : std_logic_vector(C_M00_AXIS_TDATA_WIDTH-1 downto 0);

67

68 constant G_ACCEL : std_logic_vector(INPUT_DATA_WIDTH-1 downto 0) :=

69 std_logic_vector(to_unsigned(G_ACCEL_INT, 32));

70

71 signal m_axis_tlast : std_logic;

72 signal m_axis_tvalid : std_logic;

73 signal m_axis_tlast_delay : std_logic;

74 signal m_axis_tvalid_delay : std_logic;

75

76 signal s_axis_tready : std_logic;

77 begin

78

79 -- I/O assignments

80 m00_axis_tlast <= m_axis_tlast_delay;
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81 m00_axis_tvalid <= m_axis_tvalid_delay;

82 m00_axis_tdata <= output_data;

83

84 s00_axis_tready <= s_axis_tready;

85

86 -- control state machine:

87 CONTROL_STATE_MACHINE : process (aclk)

88 begin

89 if (rising_edge(aclk)) then

90 if (aresetn = '0') then

91 state <= IDLE;

92 else

93 case (state) is

94 when IDLE =>

95 -- default state: waiting for data and fallback state in case of

96 -- reset

97 -- Slave actions are performed here

98 if (data_received = '1') then

99 state <= CALCULATE;

100 end if;

101

102 when CALCULATE =>

103 -- calculation state: state in which the calculation is done

104 if (calc_done = '1') then

105 state <= PUSH_DATA;

106 end if;

107

108 when PUSH_DATA =>

109 -- output state: puts calculated data to output stream

110 -- Master actions are performed here

111 if (data_pushed_delay = '1') then

112 state <= IDLE;

113 end if;

114

115 when others =>

116 state <= IDLE;

117 end case;

118 end if;

119 end if;

120 end process;

121

122 -- idle state handling:

123 IDLE_PROCESS : process (aclk)

124 variable puffer : std_logic_vector(15 downto 0);

125 begin

126 if (rising_edge(aclk)) then

127 if (state = IDLE) then

128 if (aresetn = '0') then

129 data_received <= '0';

130 s_axis_tready <= '0';

131 z0_input_data <= (others => '0');

132 z1_input_data <= (others => '0');

133 z2_input_data <= (others => '0');

134 else

135 s_axis_tready <= '1';

70



FPGA Based Active Camera Stabilization for a Small Satellite

136

137 if (s00_axis_tvalid = '1') then

138 -- Input data structure is:

139 -- | x0 [16] | y0 [16] | z0 [16] | [16] | x1 [16] | y1 [16] | z1 [16] | [16] |

140 -- | x2 [16] | y2 [16] | z2 [16] | [16] |

141 puffer := s00_axis_tdata(C_S00_AXIS_TDATA_WIDTH-1-32 downto

142 C_S00_AXIS_TDATA_WIDTH-48);

143 z0_input_data <= (others => puffer(15));

144 z0_input_data(15 downto 0) <= puffer;

145

146 puffer := s00_axis_tdata(C_S00_AXIS_TDATA_WIDTH-1-64-32 downto

147 C_S00_AXIS_TDATA_WIDTH-64-48);

148 z1_input_data <= (others => puffer(15));

149 z1_input_data(15 downto 0) <= puffer;

150

151 puffer := s00_axis_tdata(C_S00_AXIS_TDATA_WIDTH-1-64-64-32 downto

152 C_S00_AXIS_TDATA_WIDTH-64-64-48);

153 z2_input_data <= (others => puffer(15));

154 z2_input_data(15 downto 0) <= puffer;

155 end if;

156

157 if (s00_axis_tlast = '1') then

158 data_received <= '1';

159 s_axis_tready <= '0';

160 end if;

161 end if;

162 else

163 data_received <= '0';

164 s_axis_tready <= '0';

165 end if;

166 end if;

167 end process;

168

169 -- calcuation of the data:

170 CALCULATE_PROCESS : process (aclk)

171 -- axis over sensor 1 and sensor 2

172 variable pre_x_deflection : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

173 -- axis over sensor 2 and sensor 3

174 variable pre_y_deflection : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

175

176 -- axis over sensor 1 and sensor 2

177 variable x_velocity : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

178 -- axis over sensor 2 and sensor 3

179 variable y_velocity : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

180 -- axis over sensor 1 and sensor 2

181 variable pre_x_velocity : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

182 -- axis over sensor 2 and sensor 3

183 variable pre_y_velocity : std_logic_vector(CALC_DATA_WIDTH-1 downto 0) := (others => '0');

184

185 variable x_cur_accel : std_logic_vector(INPUT_DATA_WIDTH-1 downto 0) := (others => '0');

186 variable y_cur_accel : std_logic_vector(INPUT_DATA_WIDTH-1 downto 0) := (others => '0');

187 begin

188 if (rising_edge(aclk)) then

189 if (state = CALCULATE) then

190 if (aresetn = '0') then
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191 x_deflection <= (others => '0');

192 y_deflection <= (others => '0');

193 pre_x_deflection := (others => '0');

194 pre_y_deflection := (others => '0');

195 x_velocity := (others => '0');

196 y_velocity := (others => '0');

197 pre_x_velocity := (others => '0');

198 pre_y_velocity := (others => '0');

199 calc_done <= '0';

200 else

201 -- Do calcuation here

202 pre_x_deflection := x_deflection;

203 pre_y_deflection := y_deflection;

204 pre_x_velocity := x_velocity;

205 pre_y_velocity := y_velocity;

206

207 -----------------------------------------------------------------

208 -- x : compare sensor 1 to sensor 2 -----------------------------

209 -----------------------------------------------------------------

210 if (z0_input_data > G_ACCEL and z1_input_data < G_ACCEL) then

211 -- left inclination

212 x_cur_accel := std_logic_vector(signed(z0_input_data) - signed(G_ACCEL));

213 x_velocity := std_logic_vector(signed(pre_x_velocity) + signed(x_cur_accel));

214 elsif (z0_input_data < G_ACCEL and z1_input_data > G_ACCEL) then

215 -- right inclination

216 x_cur_accel := std_logic_vector(signed(z1_input_data) - signed(G_ACCEL));

217 x_velocity := std_logic_vector(signed(pre_x_velocity) - signed(x_cur_accel));

218 else

219 -- no inclination

220 x_cur_accel := (others => '0');

221 x_velocity := std_logic_vector(signed(pre_x_velocity) + signed(x_cur_accel));

222 end if;

223

224 x_deflection <= std_logic_vector(signed(pre_x_deflection) + signed(x_velocity));

225

226 -----------------------------------------------------------------

227 -- y : compare sensor 1 to sensor 2 -----------------------------

228 -----------------------------------------------------------------

229 if (z1_input_data < G_ACCEL and z2_input_data > G_ACCEL) then

230 -- back inclination

231 y_cur_accel := std_logic_vector(signed(z2_input_data) - signed(G_ACCEL));

232 y_velocity := std_logic_vector(signed(pre_y_velocity) + signed(y_cur_accel));

233 elsif (z1_input_data > G_ACCEL and z2_input_data < G_ACCEL) then

234 -- front inclination

235 y_cur_accel := std_logic_vector(signed(z1_input_data) - signed(G_ACCEL));

236 y_velocity := std_logic_vector(signed(pre_y_velocity) - signed(y_cur_accel));

237 else

238 -- no inclination

239 y_cur_accel := (others => '0');

240 y_velocity := std_logic_vector(signed(pre_y_velocity) + signed(y_cur_accel));

241 end if;

242

243 y_deflection <= std_logic_vector(signed(pre_y_deflection) + signed(y_velocity));

244

245 -- end calcuation
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246 calc_done <= '1';

247 end if;

248 else

249 calc_done <= '0';

250 end if;

251 end if;

252 end process;

253

254 -- push data handling:

255 PUSH_DATA_PROCESS : process (aclk)

256 begin

257 if (rising_edge(aclk)) then

258 if (state = PUSH_DATA) then

259 if (aresetn = '0') then

260 data_pushed <= '0';

261 m_axis_tvalid <= '0';

262 m_axis_tlast <= '0';

263 output_data <= (others => '0');

264 else

265 m_axis_tvalid <= '1';

266 m_axis_tlast <= '1';

267

268 if (m00_axis_tready = '1') then

269 output_data(C_M00_AXIS_TDATA_WIDTH-1 downto INPUT_DATA_WIDTH)

270 <= x_deflection(CALC_DATA_WIDTH-1 downto 32);

271 output_data(INPUT_DATA_WIDTH-1 downto 0)

272 <= y_deflection(CALC_DATA_WIDTH-1 downto 32);

273 end if;

274

275 if (m_axis_tvalid_delay = '1') then

276 data_pushed <= '1';

277 end if;

278 end if;

279 else

280 data_pushed <= '0';

281 m_axis_tvalid <= '0';

282 m_axis_tlast <= '0';

283 end if;

284 end if;

285 end process;

286

287 -- Delay for one clock cycle for certain signals

288 MAKE_DELAY : process (aclk)

289 begin

290 if (rising_edge(aclk)) then

291 if (aresetn = '0') then

292 m_axis_tvalid_delay <= '0';

293 m_axis_tlast_delay <= '0';

294

295 data_pushed_delay <= '0';

296 else

297 m_axis_tvalid_delay <= m_axis_tvalid;

298 m_axis_tlast_delay <= m_axis_tlast;

299

300 data_pushed_delay <= data_pushed;
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301 end if;

302 end if;

303 end process;

304

305 end arch_imp;

Listing 11: Code for “Deflection_Estimator”

A.5 Digital P Controller

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 entity Digital_P_Controller is

6 generic (

7 -- Users to add parameters here

8 KP_WIDTH : integer := 32;

9 IN_CORE_DATA_WIDTH : integer := 32; -- half of C_S00_AXIS_TDATA_WIDTH

10 -- User parameters ends

11 -- Do not modify the parameters beyond this line

12

13

14 -- Parameters of Axi Slave Bus Interface S00_AXIS

15 C_S00_AXIS_TDATA_WIDTH : integer := 64;

16

17 -- Parameters of Axi Master Bus Interface M00_AXIS

18 C_M00_AXIS_TDATA_WIDTH : integer := 32

19 );

20 port (

21 -- Users to add ports here

22

23 kp: in std_logic_vector(KP_WIDTH-1 downto 0);

24 aclk : in std_logic;

25 aresetn : in std_logic;

26

27 upper : in std_logic;

28

29 reference_variable : in std_logic_vector(KP_WIDTH-1 downto 0);

30 -- User ports ends

31 -- Do not modify the ports beyond this line

32

33

34 -- Ports of Axi Slave Bus Interface S00_AXIS

35 s00_axis_tready : out std_logic;

36 s00_axis_tdata : in std_logic_vector(C_S00_AXIS_TDATA_WIDTH-1 downto 0);

37 s00_axis_tlast : in std_logic;

38 s00_axis_tvalid : in std_logic;

39

40 -- Ports of Axi Master Bus Interface M00_AXIS

41 m00_axis_tvalid : out std_logic;

42 m00_axis_tdata : out std_logic_vector(C_M00_AXIS_TDATA_WIDTH-1 downto 0);

43 m00_axis_tlast : out std_logic;
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44 m00_axis_tready : in std_logic

45

46 );

47 end Digital_P_Controller;

48

49 architecture arch_imp of Digital_P_Controller is

50

51 type State_t is (IDLE, CALCULATE, PUSH_DATA);

52 signal state : State_t;

53

54 signal calc_done : std_logic;

55 signal data_pushed : std_logic;

56 signal data_pushed_delay: std_logic;

57 signal data_received : std_logic;

58

59 signal input_data : std_logic_vector(IN_CORE_DATA_WIDTH-1 downto 0);

60 signal calculated_data : std_logic_vector((IN_CORE_DATA_WIDTH+KP_WIDTH)-1 downto 0);

61 signal output_data : std_logic_vector(C_M00_AXIS_TDATA_WIDTH-1 downto 0);

62

63 signal m_axis_tlast : std_logic;

64 signal m_axis_tvalid : std_logic;

65 signal m_axis_tlast_delay : std_logic;

66 signal m_axis_tvalid_delay : std_logic;

67

68 signal s_axis_tready : std_logic;

69 begin

70

71 -- I/O assignments

72 m00_axis_tlast <= m_axis_tlast_delay;

73 m00_axis_tvalid <= m_axis_tvalid_delay;

74 m00_axis_tdata <= output_data;

75

76 s00_axis_tready <= s_axis_tready;

77

78 -- control state machine:

79 CONTROL_STATE_MACHINE : process (aclk)

80 begin

81 if (rising_edge(aclk)) then

82 if (aresetn = '0') then

83 state <= IDLE;

84 else

85 case (state) is

86 when IDLE =>

87 -- default state: waiting for data and fallback state in case of

88 -- reset

89 -- Slave actions are performed here

90 if (data_received = '1') then

91 state <= CALCULATE;

92 end if;

93

94 when CALCULATE =>

95 -- calculation state: state in which the calculation is done

96 if (calc_done = '1') then

97 state <= PUSH_DATA;

98 end if;
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99

100 when PUSH_DATA =>

101 -- output state: puts calculated data to output stream

102 -- Master actions are performed here

103 if (data_pushed_delay = '1') then

104 state <= IDLE;

105 end if;

106

107 when others =>

108 state <= IDLE;

109 end case;

110 end if;

111 end if;

112 end process;

113

114 -- idle state handling:

115 IDLE_PROCESS : process (aclk)

116 begin

117 if (rising_edge(aclk)) then

118 if (state = IDLE) then

119 if (aresetn = '0') then

120 data_received <= '0';

121 s_axis_tready <= '0';

122 input_data <= (others => '0');

123 else

124 s_axis_tready <= '1';

125

126 if (s00_axis_tvalid = '1') then

127 if (upper = '0') then

128 input_data <= s00_axis_tdata(IN_CORE_DATA_WIDTH-1 downto 0);

129 else

130 input_data <= s00_axis_tdata(C_S00_AXIS_TDATA_WIDTH-1 downto

131 IN_CORE_DATA_WIDTH);

132 end if;

133 end if;

134

135 if (s00_axis_tlast = '1') then

136 data_received <= '1';

137 s_axis_tready <= '0';

138 end if;

139 end if;

140 else

141 data_received <= '0';

142 s_axis_tready <= '0';

143 end if;

144 end if;

145 end process;

146

147 -- calcuation of the data:

148 CALCULATE_PROCESS : process (aclk)

149 variable puffer : signed (IN_CORE_DATA_WIDTH-1 downto 0) := (others => '0');

150 begin

151 if (rising_edge(aclk)) then

152 if (state = CALCULATE) then

153 if (aresetn = '0') then
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154 calculated_data <= (others => '0');

155 calc_done <= '0';

156 else

157 -- Do calcuation here

158 puffer := signed(reference_variable) - signed(input_data);

159 calculated_data <= std_logic_vector(signed(kp) * puffer);

160 -- end calcuation

161 calc_done <= '1';

162 end if;

163 else

164 calc_done <= '0';

165 end if;

166 end if;

167 end process;

168

169 -- push data handling:

170 PUSH_DATA_PROCESS : process (aclk)

171 begin

172 if (rising_edge(aclk)) then

173 if (state = PUSH_DATA) then

174 if (aresetn = '0') then

175 data_pushed <= '0';

176 m_axis_tvalid <= '0';

177 m_axis_tlast <= '0';

178 output_data <= (others => '0');

179 else

180 m_axis_tvalid <= '1';

181 m_axis_tlast <= '1';

182

183 if (m00_axis_tready = '1') then

184 output_data <= calculated_data((IN_CORE_DATA_WIDTH+KP_WIDTH)-1 downto

185 IN_CORE_DATA_WIDTH);

186 end if;

187

188 if (m_axis_tvalid_delay = '1') then

189 data_pushed <= '1';

190 end if;

191 end if;

192 else

193 data_pushed <= '0';

194 m_axis_tvalid <= '0';

195 m_axis_tlast <= '0';

196 end if;

197 end if;

198 end process;

199

200 -- Delay for one clock cycle for certain signals

201 MAKE_DELAY : process (aclk)

202 begin

203 if (rising_edge(aclk)) then

204 if (aresetn = '0') then

205 m_axis_tvalid_delay <= '0';

206 m_axis_tlast_delay <= '0';

207

208 data_pushed_delay <= '0';
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209 else

210 m_axis_tvalid_delay <= m_axis_tvalid;

211 m_axis_tlast_delay <= m_axis_tlast;

212

213 data_pushed_delay <= data_pushed;

214 end if;

215 end if;

216 end process;

217

218 end arch_imp;

Listing 12: Code for “Digital_P_Controller”

A.6 Sensor Communication top level

1

2 library ieee;

3 use ieee.std_logic_1164.all;

4 use ieee.numeric_std.all;

5

6 entity spiTestIP_v1_0 is

7 generic (

8 -- Users to add parameters here

9

10 -- User parameters ends

11 -- Do not modify the parameters beyond this line

12

13

14 -- Parameters of Axi Master Bus Interface M00_AXI

15 C_M00_AXI_START_DATA_VALUE : std_logic_vector := x"AA000000";

16 C_M00_AXI_TARGET_SLAVE_BASE_ADDR : std_logic_vector := x"40000000";

17 C_M00_AXI_ADDR_WIDTH : integer := 32;

18 C_M00_AXI_DATA_WIDTH : integer := 32;

19 C_M00_AXI_TRANSACTIONS_NUM : integer := 4

20 );

21 port (

22 -- Users to add ports here

23

24 -- User ports ends

25 -- Do not modify the ports beyond this line

26

27

28 -- Ports of Axi Master Bus Interface M00_AXI

29 m00_reset : in std_logic;

30 m00_axi_error : out std_logic;

31 m00_axi_aclk : in std_logic;

32 m00_axi_awaddr : out std_logic_vector(C_M00_AXI_ADDR_WIDTH-1 downto 0);

33 m00_axi_awprot : out std_logic_vector(2 downto 0);

34 m00_axi_awvalid : out std_logic;

35 m00_axi_awready : in std_logic;

36 m00_axi_wdata : out std_logic_vector(C_M00_AXI_DATA_WIDTH-1 downto 0);

37 m00_axi_wstrb : out std_logic_vector(C_M00_AXI_DATA_WIDTH/8-1 downto 0);

38 m00_axi_wvalid : out std_logic;
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39 m00_axi_wready : in std_logic;

40 m00_axi_bresp : in std_logic_vector(1 downto 0);

41 m00_axi_bvalid : in std_logic;

42 m00_axi_bready : out std_logic;

43 m00_axi_araddr : out std_logic_vector(C_M00_AXI_ADDR_WIDTH-1 downto 0);

44 m00_axi_arprot : out std_logic_vector(2 downto 0);

45 m00_axi_arvalid : out std_logic;

46 m00_axi_arready : in std_logic;

47 m00_axi_rdata : in std_logic_vector(C_M00_AXI_DATA_WIDTH-1 downto 0);

48 m00_axi_rresp : in std_logic_vector(1 downto 0);

49 m00_axi_rvalid : in std_logic;

50 m00_axi_rready : out std_logic;

51

52 m00_sensor_data : out std_logic_vector(16*3-1 downto 0);

53 m00_comm_ready : out std_logic;

54 m00_comm_start_configure : std_logic;

55 m00_comm_start_data : std_logic

56 );

57 end spiTestIP_v1_0;

58

59 architecture arch_imp of spiTestIP_v1_0 is

60

61 -- component declaration

62 component spiTestIP_v1_0_M00_AXI is

63 generic (

64 C_M_START_DATA_VALUE : std_logic_vector := x"AA000000";

65 C_M_TARGET_SLAVE_BASE_ADDR : std_logic_vector := x"40000000";

66 C_M_AXI_ADDR_WIDTH : integer := 32;

67 C_M_AXI_DATA_WIDTH : integer := 32;

68 C_M_TRANSACTIONS_NUM : integer := 4

69 );

70 port (

71

72 RESET : in std_logic;

73 ERROR : out std_logic;

74

75

76

77 M_AXI_ACLK : in std_logic;

78 M_AXI_AWADDR : out std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

79 M_AXI_AWPROT : out std_logic_vector(2 downto 0);

80 M_AXI_AWVALID : out std_logic;

81 M_AXI_AWREADY : in std_logic;

82 M_AXI_WDATA : out std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);

83 M_AXI_WSTRB : out std_logic_vector(C_M_AXI_DATA_WIDTH/8-1 downto 0);

84 M_AXI_WVALID : out std_logic;

85 M_AXI_WREADY : in std_logic;

86 M_AXI_BRESP : in std_logic_vector(1 downto 0);

87 M_AXI_BVALID : in std_logic;

88 M_AXI_BREADY : out std_logic;

89 M_AXI_ARADDR : out std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

90 M_AXI_ARPROT : out std_logic_vector(2 downto 0);

91 M_AXI_ARVALID : out std_logic;

92 M_AXI_ARREADY : in std_logic;

93 M_AXI_RDATA : in std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);
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94 M_AXI_RRESP : in std_logic_vector(1 downto 0);

95 M_AXI_RVALID : in std_logic;

96 M_AXI_RREADY : out std_logic

97 );

98 end component spiTestIP_v1_0_M00_AXI;

99

100

101 begin

102

103 -- Instantiation of Axi Bus Interface M00_AXI

104 spiTestIP_v1_0_M00_AXI_inst : spiTestIP_v1_0_M00_AXI

105 generic map (

106 C_M_START_DATA_VALUE => C_M00_AXI_START_DATA_VALUE,

107 C_M_TARGET_SLAVE_BASE_ADDR => C_M00_AXI_TARGET_SLAVE_BASE_ADDR,

108 C_M_AXI_ADDR_WIDTH => C_M00_AXI_ADDR_WIDTH,

109 C_M_AXI_DATA_WIDTH => C_M00_AXI_DATA_WIDTH,

110 C_M_TRANSACTIONS_NUM => C_M00_AXI_TRANSACTIONS_NUM

111 )

112 port map (

113 sensor_data => m00_sensor_data,

114 comm_ready => comm_ready,

115 comm_start_configure => comm_start_configure,

116 comm_start_data => comm_start_data,

117 ERROR => m00_axi_error,

118 M_AXI_ACLK => m00_axi_aclk,

119 RESET => m00_reset,

120 M_AXI_AWADDR => m00_axi_awaddr,

121 M_AXI_AWPROT => m00_axi_awprot,

122 M_AXI_AWVALID => m00_axi_awvalid,

123 M_AXI_AWREADY => m00_axi_awready,

124 M_AXI_WDATA => m00_axi_wdata,

125 M_AXI_WSTRB => m00_axi_wstrb,

126 M_AXI_WVALID => m00_axi_wvalid,

127 M_AXI_WREADY => m00_axi_wready,

128 M_AXI_BRESP => m00_axi_bresp,

129 M_AXI_BVALID => m00_axi_bvalid,

130 M_AXI_BREADY => m00_axi_bready,

131 M_AXI_ARADDR => m00_axi_araddr,

132 M_AXI_ARPROT => m00_axi_arprot,

133 M_AXI_ARVALID => m00_axi_arvalid,

134 M_AXI_ARREADY => m00_axi_arready,

135 M_AXI_RDATA => m00_axi_rdata,

136 M_AXI_RRESP => m00_axi_rresp,

137 M_AXI_RVALID => m00_axi_rvalid,

138 M_AXI_RREADY => m00_axi_rready

139 );

140

141 -- Add user logic here

142

143

144 -- User logic ends

145

146 end arch_imp;

147
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148

Listing 13: Code for “Deflection_Estimator”

A.7 Sensor Communication

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 entity spiTestIP_v1_0_M00_AXI is

6 generic (

7 -- Users to add parameters here

8

9 -- User parameters ends

10 -- Do not modify the parameters beyond this line

11

12 -- The master will start generating data from the C_M_START_DATA_VALUE value

13 C_M_START_DATA_VALUE : std_logic_vector := x"AA000000";

14 -- The master requires a target slave base address.

15 -- The master will initiate read and write transactions on the slave with base address specified here as a

16 C_M_TARGET_SLAVE_BASE_ADDR : std_logic_vector := x"40000000";

17 -- Width of M_AXI address bus.

18 -- The master generates the read and write addresses of width specified as C_M_AXI_ADDR_WIDTH.

19 C_M_AXI_ADDR_WIDTH : integer := 32;

20 -- Width of M_AXI data bus.

21 -- The master issues write data and accept read data where the width of the data bus is C_M_AXI_DATA_WIDTH

22 C_M_AXI_DATA_WIDTH : integer := 32;

23 -- Transaction number is the number of write

24 -- and read transactions the master will perform as a part of this example memory test.

25 C_M_TRANSACTIONS_NUM : integer := 4

26 );

27 port (

28 -- Users to add ports here

29

30 -- User ports ends

31 -- Do not modify the ports beyond this line

32

33

34 -- Asserts when ERROR is detected

35 ERROR : out std_logic;

36 -- AXI clock signal

37 M_AXI_ACLK : in std_logic;

38 -- resets the whole core with all state machines

39 RESET : in std_logic;

40

41

42 sensor_data : out std_logic_vector(16*3-1 downto 0);

43 comm_ready : out std_logic;

44 comm_start_configure : std_logic;

45 comm_start_data : std_logic;

46

47 -- Master Interface Write Address Channel ports. Write address (issued by master)
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48 M_AXI_AWADDR : out std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

49 -- Write channel Protection type.

50 -- This signal indicates the privilege and security level of the transaction,

51 -- and whether the transaction is a data access or an instruction access.

52 M_AXI_AWPROT : out std_logic_vector(2 downto 0);

53 -- Write address valid.

54 -- This signal indicates that the master signaling valid write address and control information.

55 M_AXI_AWVALID : out std_logic;

56 -- Write address ready.

57 -- This signal indicates that the slave is ready to accept an address and associated control signals.

58 M_AXI_AWREADY : in std_logic;

59 -- Master Interface Write Data Channel ports. Write data (issued by master)

60 M_AXI_WDATA : out std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);

61 -- Write strobes.

62 -- This signal indicates which byte lanes hold valid data.

63 -- There is one write strobe bit for each eight bits of the write data bus.

64 M_AXI_WSTRB : out std_logic_vector(C_M_AXI_DATA_WIDTH/8-1 downto 0);

65 -- Write valid. This signal indicates that valid write data and strobes are available.

66 M_AXI_WVALID : out std_logic;

67 -- Write ready. This signal indicates that the slave can accept the write data.

68 M_AXI_WREADY : in std_logic;

69 -- Master Interface Write Response Channel ports.

70 -- This signal indicates the status of the write transaction.

71 M_AXI_BRESP : in std_logic_vector(1 downto 0);

72 -- Write response valid.

73 -- This signal indicates that the channel is signaling a valid write response

74 M_AXI_BVALID : in std_logic;

75 -- Response ready. This signal indicates that the master can accept a write response.

76 M_AXI_BREADY : out std_logic;

77 -- Master Interface Read Address Channel ports. Read address (issued by master)

78 M_AXI_ARADDR : out std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

79 -- Protection type.

80 -- This signal indicates the privilege and security level of the transaction,

81 -- and whether the transaction is a data access or an instruction access.

82 M_AXI_ARPROT : out std_logic_vector(2 downto 0);

83 -- Read address valid.

84 -- This signal indicates that the channel is signaling valid read address and control information.

85 M_AXI_ARVALID : out std_logic;

86 -- Read address ready.

87 -- This signal indicates that the slave is ready to accept an address and associated control signals.

88 M_AXI_ARREADY : in std_logic;

89 -- Master Interface Read Data Channel ports. Read data (issued by slave)

90 M_AXI_RDATA : in std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);

91 -- Read response. This signal indicates the status of the read transfer.

92 M_AXI_RRESP : in std_logic_vector(1 downto 0);

93 -- Read valid. This signal indicates that the channel is signaling the required read data.

94 M_AXI_RVALID : in std_logic;

95 -- Read ready. This signal indicates that the master can accept the read data and response informati

96 M_AXI_RREADY : out std_logic

97 );

98 end spiTestIP_v1_0_M00_AXI;

99

100 architecture implementation of spiTestIP_v1_0_M00_AXI is

101

102 -- function called clogb2 that returns an integer which has the
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103 -- value of the ceiling of the log base 2

104 function clogb2 (bit_depth : integer) return integer is

105 variable depth : integer := bit_depth;

106 variable count : integer := 1;

107 begin

108 for clogb2 in 1 to bit_depth loop -- Works for up to 32 bit integers

109 if (bit_depth <= 2) then

110 count := 1;

111 else

112 if(depth <= 1) then

113 count := count;

114 else

115 depth := depth / 2;

116 count := count + 1;

117 end if;

118 end if;

119 end loop;

120 return(count);

121 end;

122

123 -- Example user application signals

124

125 signal my_read_data : std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);

126

127

128 -- TRANS_NUM_BITS is the width of the index counter for

129 -- number of write or read transaction..

130 constant TRANS_NUM_BITS : integer := clogb2(C_M_TRANSACTIONS_NUM-1);

131

132 -- Example State machine to initialize counter, initialize write transactions,

133 -- initialize read transactions and comparison of read data with the

134 -- written data words.

135 type state is ( IDLE,

136 PREPARE_READ,

137 PREPARE_WRITE,

138 READ,

139 WRITE,

140 FINISH);

141

142 signal read_write : std_logic; -- read 0, write 1

143

144 signal mst_exec_state : state := IDLE ;

145

146 type spi_control_state_t is (IDLE,

147 START_CONFIG,

148 WAIT_FOR_CONFIG,

149 START_TRANSFER,

150 WAIT_FOR_TRANSFER,

151 FINISH);

152 signal spi_control_state : spi_control_state_t := IDLE ;

153

154 signal startup_done : std_logic := '0';

155

156 signal config_transfer : std_logic := '0';

157
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158 type config_state_type is (IDLE,

159 RESET_SPI,

160 ENABLE_TRANSMIT_INTERRUPT,

161 DISABLE_INTERRUPT,

162 DESELECT_SLAVE,

163 READ_STATUS_REG,

164 WRITE_STATUS_REG,

165 FINISH );

166 signal config_state : config_state_type:= IDLE;

167 signal config_state_wait : integer range 0 to 3 := 0;

168 signal config_state_status_register : std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

169 signal config_done_pulse : std_logic:= '0';

170 signal config_start_pulse: std_logic:= '0';

171

172

173 type transfer_state_type is (IDLE,

174 SET_DATA_REGISTER,

175 SET_SLAVE_REGISTER,

176 READ_CONTROL_REG,

177 WRITE_CONTROL_REG,

178 READ_STATUS_REG_WHILE,

179 DESELECT_SLAVE,

180 READ_DATA, FINISH);

181 signal transfer_state : transfer_state_type:=IDLE;

182 signal transfer_state_wait : integer range 0 to 3:= 0;

183 signal transfer_temp_register : std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

184 signal spi_receive_data : std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

185 signal spi_send_data : std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

186 signal transfer_done_pulse : std_logic:= '0';

187 signal transfer_start_pulse : std_logic:= '0';

188

189

190 -- Initiate AXI transactions

191 signal init_axi_txn : std_logic;

192

193 -- AXI active low reset signal

194 signal m_axi_areset : std_logic;

195

196 -- AXI4LITE signals

197 --write address valid

198 signal axi_awvalid : std_logic;

199 --write data valid

200 signal axi_wvalid : std_logic;

201 --read address valid

202 signal axi_arvalid : std_logic;

203 --read data acceptance

204 signal axi_rready : std_logic;

205 --write response acceptance

206 signal axi_bready : std_logic;

207 --write address

208 signal axi_awaddr : std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

209 --write data

210 signal axi_wdata : std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);

211 --read addresss

212 signal axi_araddr : std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);
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213 --Asserts when there is a write response error

214 signal write_resp_error : std_logic;

215 --Asserts when there is a read response error

216 signal read_resp_error : std_logic;

217 --A pulse to initiate a write transaction

218 signal start_single_write : std_logic;

219 --A pulse to initiate a read transaction

220 signal start_single_read : std_logic;

221 --flag that marks the completion of write trasactions.

222 -- The number of write transaction is user selected by the parameter C_M_TRANSACTIONS_NUM.

223 signal write_done : std_logic;

224 --flag that marks the completion of read trasactions.

225 -- The number of read transaction is user selected by the parameter C_M_TRANSACTIONS_NUM

226 signal read_done : std_logic;

227 --The error register is asserted when any of the write response error,

228 -- read response error or the data mismatch flags are asserted.

229 signal error_reg : std_logic;

230 --Expected read data used to compare with the read data.

231 signal expected_rdata : std_logic_vector(C_M_AXI_DATA_WIDTH-1 downto 0);

232 --Flag marks the completion of comparison of the read data with the expected read data

233 signal last_read : std_logic;

234 signal init_txn_ff : std_logic;

235 signal init_txn_ff2 : std_logic;

236 signal init_txn_edge : std_logic;

237 signal init_txn_pulse : std_logic;

238

239

240 begin

241 -- I/O Connections assignments

242

243 --Adding the offset address to the base addr of the slave

244 M_AXI_AWADDR <= axi_awaddr;

245 --AXI 4 write data

246 M_AXI_WDATA <= axi_wdata;

247 M_AXI_AWPROT <= "000";

248 M_AXI_AWVALID <= axi_awvalid;

249 --Write Data(W)

250 M_AXI_WVALID <= axi_wvalid;

251 --Set all byte strobes in this example

252 M_AXI_WSTRB <= "1111";

253 --Write Response (B)

254 M_AXI_BREADY <= axi_bready;

255 --Read Address (AR)

256 M_AXI_ARADDR <= axi_araddr;

257 M_AXI_ARVALID <= axi_arvalid;

258 M_AXI_ARPROT <= "001";

259 --Read and Read Response (R)

260 M_AXI_RREADY <= axi_rready;

261

262 m_axi_areset <= RESET;

263 --Example design I/O

264 --init_txn_pulse <= ( not init_txn_ff2) and init_txn_ff;

265

266 ----------------------

267 --Write Address Channel
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268 ----------------------

269

270 -- The purpose of the write address channel is to request the address and

271 -- command information for the entire transaction. It is a single beat

272 -- of information.

273

274 -- Note for this example the axi_awvalid/axi_wvalid are asserted at the same

275 -- time, and then each is deasserted independent from each other.

276 -- This is a lower-performance, but simplier control scheme.

277

278 -- AXI VALID signals must be held active until accepted by the partner.

279

280 -- A data transfer is accepted by the slave when a master has

281 -- VALID data and the slave acknoledges it is also READY. While the master

282 -- is allowed to generated multiple, back-to-back requests by not

283 -- deasserting VALID, this design will add rest cycle for

284 -- simplicity.

285

286 -- Since only one outstanding transaction is issued by the user design,

287 -- there will not be a collision between a new request and an accepted

288 -- request on the same clock cycle.

289

290 process(M_AXI_ACLK)

291 begin

292 if (rising_edge (M_AXI_ACLK)) then

293 --Only VALID signals must be deasserted during reset per AXI spec

294 --Consider inverting then registering active-low reset for higher fmax

295 if (m_axi_areset = '0' or init_txn_pulse = '1') then

296 axi_awvalid <= '0';

297 else

298 --Signal a new address/data command is available by user logic

299 if (start_single_write = '1') then

300 axi_awvalid <= '1';

301 elsif (M_AXI_AWREADY = '1' and axi_awvalid = '1') then

302 --Address accepted by interconnect/slave (issue of M_AXI_AWREADY by slave)

303 axi_awvalid <= '0';

304 end if;

305 end if;

306 end if;

307 end process;

308

309

310

311 ----------------------

312 --Write Data Channel

313 ----------------------

314

315 --The write data channel is for transfering the actual data.

316 --The data generation is speific to the example design, and

317 --so only the WVALID/WREADY handshake is shown here

318

319 process(M_AXI_ACLK)

320 begin

321 if (rising_edge (M_AXI_ACLK)) then

322 if (m_axi_areset = '0' or init_txn_pulse = '1' ) then
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323 axi_wvalid <= '0';

324 else

325 if (start_single_write = '1') then

326 --Signal a new address/data command is available by user logic

327 axi_wvalid <= '1';

328 elsif (M_AXI_WREADY = '1' and axi_wvalid = '1') then

329 --Data accepted by interconnect/slave (issue of M_AXI_WREADY by slave)

330 axi_wvalid <= '0';

331 end if;

332 end if;

333 end if;

334 end process;

335

336

337 ------------------------------

338 --Write Response (B) Channel

339 ------------------------------

340

341 --The write response channel provides feedback that the write has committed

342 --to memory. BREADY will occur after both the data and the write address

343 --has arrived and been accepted by the slave, and can guarantee that no

344 --other accesses launched afterwards will be able to be reordered before it.

345

346 --The BRESP bit [1] is used indicate any errors from the interconnect or

347 --slave for the entire write burst. This example will capture the error.

348

349 --While not necessary per spec, it is advisable to reset READY signals in

350 --case of differing reset latencies between master/slave.

351

352 process(M_AXI_ACLK)

353 begin

354 if (rising_edge (M_AXI_ACLK)) then

355 if (m_axi_areset = '0' or init_txn_pulse = '1') then

356 axi_bready <= '0';

357 else

358 if (M_AXI_BVALID = '1' and axi_bready = '0') then

359 -- accept/acknowledge bresp with axi_bready by the master

360 -- when M_AXI_BVALID is asserted by slave

361 axi_bready <= '1';

362 elsif (axi_bready = '1') then

363 -- deassert after one clock cycle

364 axi_bready <= '0';

365 end if;

366 end if;

367 end if;

368 end process;

369 --Flag write errors

370 write_resp_error <= (axi_bready and M_AXI_BVALID and M_AXI_BRESP(1));

371

372

373 ------------------------------

374 --Read Address Channel

375 ------------------------------

376

377
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378 -- A new axi_arvalid is asserted when there is a valid read address

379 -- available by the master. start_single_read triggers a new read

380 -- transaction

381 process(M_AXI_ACLK)

382 begin

383 if (rising_edge (M_AXI_ACLK)) then

384 if (m_axi_areset = '0' or init_txn_pulse = '1') then

385 axi_arvalid <= '0';

386 else

387 if (start_single_read = '1') then

388 --Signal a new read address command is available by user logic

389 axi_arvalid <= '1';

390 elsif (M_AXI_ARREADY = '1' and axi_arvalid = '1') then

391 --RAddress accepted by interconnect/slave (issue of M_AXI_ARREADY by slave)

392 axi_arvalid <= '0';

393 end if;

394 end if;

395 end if;

396 end process;

397

398

399 ----------------------------------

400 --Read Data (and Response) Channel

401 ----------------------------------

402

403 --The Read Data channel returns the results of the read request

404 --The master will accept the read data by asserting axi_rready

405 --when there is a valid read data available.

406 --While not necessary per spec, it is advisable to reset READY signals in

407 --case of differing reset latencies between master/slave.

408

409 process(M_AXI_ACLK)

410 begin

411 if (rising_edge (M_AXI_ACLK)) then

412 if (m_axi_areset = '0' or init_txn_pulse = '1') then

413 axi_rready <= '1';

414 else

415 if (M_AXI_RVALID = '1' and axi_rready = '0') then

416 -- accept/acknowledge rdata/rresp with axi_rready by the master

417 -- when M_AXI_RVALID is asserted by slave

418 axi_rready <= '1';

419 elsif (axi_rready = '1') then

420 -- deassert after one clock cycle

421 axi_rready <= '0';

422 end if;

423 end if;

424 end if;

425 end process;

426

427 --Flag write errors

428 read_resp_error <= (axi_rready and M_AXI_RVALID and M_AXI_RRESP(1));

429

430

431

432 -- Expected read data
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433 process(M_AXI_ACLK)

434 begin

435 if (rising_edge (M_AXI_ACLK)) then

436 if (m_axi_areset = '0' or init_txn_pulse = '1' ) then

437 my_read_data <= (others => '0');

438 elsif (M_AXI_RVALID = '1' and axi_rready = '1') then

439 -- Signals a new write address/ write data is

440 -- available by user logic

441 my_read_data <= std_logic_vector(M_AXI_RDATA);

442 end if;

443 end if;

444 end process;

445

446

447 --implement master command interface state machine

448 process(M_AXI_ACLK)

449 begin

450 if (rising_edge (M_AXI_ACLK)) then

451 if (m_axi_areset = '0' ) then

452 -- reset condition

453 -- All the signals are ed default values under reset condition

454 mst_exec_state <= IDLE;

455 init_axi_txn <= '0';

456 start_single_write <= '0';

457 start_single_read <= '0';

458 ERROR <= '0';

459 else

460 -- state transition

461 case (mst_exec_state) is

462

463 when IDLE =>

464 if (init_txn_pulse = '1') then

465 if (read_write = '0') then

466 mst_exec_state <= PREPARE_READ;

467 else

468 mst_exec_state <= PREPARE_WRITE;

469 end if;

470 end if;

471

472 when PREPARE_READ =>

473 if (start_single_read = '0') then

474 start_single_read <= '1';

475 else

476 start_single_read <= '0';

477 mst_exec_state <= READ;

478 end if;

479

480 when PREPARE_WRITE =>

481 if (start_single_write = '0') then

482 start_single_write <= '1';

483 else

484 start_single_write <= '0';

485 mst_exec_state <= WRITE;

486 end if;

487
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488 when READ =>

489 if (read_done = '1') then

490 mst_exec_state <= FINISH;

491 end if;

492

493 when WRITE =>

494 if (write_done = '1') then

495 mst_exec_state <= FINISH;

496 end if;

497

498 when FINISH =>

499 init_axi_txn <= '0';

500 mst_exec_state <= IDLE;

501 when others =>

502 mst_exec_state <= IDLE;

503 end case ;

504 end if;

505 end if;

506 end process;

507

508 --/*

509 -- Check for write completion.

510 --

511 -- */

512 process(M_AXI_ACLK)

513 begin

514 if (rising_edge (M_AXI_ACLK)) then

515 if (m_axi_areset = '0' or init_txn_pulse = '1') then

516 -- reset condition

517 write_done <= '0';

518 else

519 if (M_AXI_BVALID = '1' and axi_bready = '1') then

520 --The write_done should be associated with a bready response

521 write_done <= '1';

522 else

523 write_done <= '0';

524 end if;

525 end if;

526 end if;

527 end process;

528

529

530 --/*

531 -- Check for last read completion.

532 -- */

533 process(M_AXI_ACLK)

534 begin

535 if (rising_edge (M_AXI_ACLK)) then

536 if (m_axi_areset = '0' or init_txn_pulse = '1') then

537 read_done <= '0';

538 else

539 if (M_AXI_RVALID = '1' and axi_rready = '1') then

540 --The read_done should be associated with a read ready response

541 read_done <= '1';

542 else
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543 read_done <= '0';

544 end if;

545 end if;

546 end if;

547 end process;

548

549

550 -- Register and hold any data mismatches, or read/write interface errors

551 process(M_AXI_ACLK)

552 begin

553 if (rising_edge (M_AXI_ACLK)) then

554 if (m_axi_areset = '0' or init_txn_pulse = '1') then

555 error_reg <= '0';

556 else

557 if (write_resp_error = '1' or read_resp_error = '1') then

558 --Capture any error types

559 error_reg <= '1';

560 end if;

561 end if;

562 end if;

563 end process;

564

565

566

567

568

569 -- axi read/write process

570 -- set read_write

571 -- set axi_awaddr <=

572 -- set axi_wdata <=

573 --OR

574 -- set axi_araddr <=

575 --set init_axi_txn <= '1';

576

577 -- wait for read_done = '1'

578 --OR

579 -- wait for write_done = '1'

580

581 -- get results from my_read_data if applicable

582

583 -- process to configure the spi ip core and transfer data via spi.

584 process(M_AXI_ACLK)

585 begin

586 if (rising_edge (M_AXI_ACLK)) then

587 if (config_transfer = '0') then

588 if (m_axi_areset = '0' ) then

589 config_state <= IDLE;

590 else

591 case (config_state) is

592 when IDLE =>

593 if (config_start_pulse = '1') then -- setup trigger

594 config_state <= RESET_SPI;

595 end if;

596 when RESET_SPI =>

597 if (config_state_wait = 0) then
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598 read_write <= '1';

599 axi_awaddr <= x"00000040";

600 axi_wdata <= x"0000000A";

601 init_txn_pulse <= '1';

602 config_state_wait <= 1;

603 elsif (config_state_wait = 1) then

604 init_txn_pulse <= '0';

605 if (write_done = '1') then

606 config_state_wait <= 2;

607 end if;

608 elsif (config_state_wait = 2) then

609 config_state_wait <= 3;

610 elsif (config_state_wait = 3) then

611 config_state <= ENABLE_TRANSMIT_INTERRUPT;

612 config_state_wait <= 0;

613 end if;

614 when ENABLE_TRANSMIT_INTERRUPT =>

615 if (config_state_wait = 0) then

616 read_write <= '1';

617 axi_awaddr <= x"00000028";

618 axi_wdata <= x"00000004";

619 init_txn_pulse <= '1';

620 config_state_wait <= 1;

621 elsif (config_state_wait = 1) then

622 init_txn_pulse <= '0';

623 if (write_done = '1') then

624 config_state_wait <= 2;

625 end if;

626 elsif (config_state_wait = 2) then

627 config_state_wait <= 3;

628 elsif (config_state_wait = 3) then

629 config_state <= DISABLE_INTERRUPT;

630 config_state_wait <= 0;

631 end if;

632 when DISABLE_INTERRUPT =>

633 if (config_state_wait = 0) then

634 read_write <= '1';

635 axi_awaddr <= x"0000001C";

636 axi_wdata <= x"00000000";

637 init_txn_pulse <= '1';

638 config_state_wait <= 1;

639 elsif (config_state_wait = 1) then

640 init_txn_pulse <= '0';

641 if (write_done = '1') then

642 config_state_wait <= 2;

643 end if;

644 elsif (config_state_wait = 2) then

645 config_state_wait <= 3;

646 elsif (config_state_wait = 3) then

647 config_state <= DESELECT_SLAVE;

648 config_state_wait <= 0;

649 end if;

650 when DESELECT_SLAVE =>

651 if (config_state_wait = 0) then

652 read_write <= '1';
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653 axi_awaddr <= x"00000070";

654 axi_wdata <= x"FFFFFFFF";

655 init_txn_pulse <= '1';

656 config_state_wait <= 1;

657 elsif (config_state_wait = 1) then

658 init_txn_pulse <= '0';

659 if (write_done = '1') then

660 config_state_wait <= 2;

661 end if;

662 elsif (config_state_wait = 2) then

663 config_state_wait <= 3;

664 elsif (config_state_wait = 3) then

665 config_state <= READ_STATUS_REG;

666 config_state_wait <= 0;

667 end if;

668 when READ_STATUS_REG =>

669 if (config_state_wait = 0) then

670 read_write <= '0';

671 axi_araddr <= x"00000060";

672 init_txn_pulse <= '1';

673 config_state_wait <= 1;

674 elsif (config_state_wait = 1) then

675 init_txn_pulse <= '0';

676 if (read_done = '1') then

677 config_state_status_register <= my_read_data;

678 config_state_wait <= 2;

679 end if;

680 elsif (config_state_wait = 2) then

681 config_state_wait <= 3;

682 elsif (config_state_wait = 3) then

683 config_state <= WRITE_STATUS_REG;

684 config_state_wait <= 0;

685 end if;

686 when WRITE_STATUS_REG =>

687 if (config_state_wait = 0) then

688 read_write <= '1';

689 axi_awaddr <= x"00000060";

690 -- bits 3 and 4 describt clock phase and clock polarity. In this case they are

691 axi_wdata <= (x"000000E6" OR config_state_status_register);

692 init_txn_pulse <= '1';

693 config_state_wait <= 1;

694 elsif (config_state_wait = 1) then

695 init_txn_pulse <= '0';

696 if (write_done = '1') then

697 config_state_wait <= 2;

698 end if;

699 elsif (config_state_wait = 2) then

700 config_state_wait <= 3;

701 elsif (config_state_wait = 3) then

702 config_done_pulse <= '1';

703 config_state <= FINISH;

704 config_state_wait <= 0;

705 end if;

706 when FINISH =>

707 config_done_pulse <= '0';
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708 config_state <= IDLE;

709 end case;

710 end if;

711 else

712 if (m_axi_areset = '0' ) then

713 transfer_state <= IDLE;

714 else

715 case (transfer_state ) is

716 when IDLE =>

717 if (transfer_start_pulse = '1') then

718 transfer_state <= SET_DATA_REGISTER;

719 end if;

720 when SET_DATA_REGISTER => -- set data register

721 if (transfer_state_wait = 0) then

722 read_write <= '1';

723 axi_awaddr <= x"00000068";

724 axi_wdata <= spi_send_data;

725 init_txn_pulse <= '1';

726 transfer_state_wait <= 1;

727 elsif (transfer_state_wait = 1) then

728 init_txn_pulse <= '0';

729 if (write_done = '1') then

730 transfer_state_wait <= 2;

731 end if;

732 elsif (transfer_state_wait = 2) then

733 transfer_state_wait <= 3;

734 elsif (transfer_state_wait = 3) then

735 transfer_state <= SET_SLAVE_REGISTER;

736 transfer_state_wait <= 0;

737 end if;

738 when SET_SLAVE_REGISTER => --set slave select register

739 if (transfer_state_wait = 0) then

740 read_write <= '1';

741 axi_awaddr <= x"00000070";

742 axi_wdata <= x"FFFFFFFE";

743 init_txn_pulse <= '1';

744 transfer_state_wait <= 1;

745 elsif (transfer_state_wait = 1) then

746 init_txn_pulse <= '0';

747 if (write_done = '1') then

748 transfer_state_wait <= 2;

749 end if;

750 elsif (transfer_state_wait = 2) then

751 transfer_state_wait <= 3;

752 elsif (transfer_state_wait = 3) then

753 transfer_state <= READ_CONTROL_REG;

754 transfer_state_wait <= 0;

755 end if;

756 when READ_CONTROL_REG => --read control reg

757 if (transfer_state_wait = 0) then

758 read_write <= '0';

759 axi_araddr <= x"00000060";

760 init_txn_pulse <= '1';

761 transfer_state_wait <= 1;

762 elsif (transfer_state_wait = 1) then
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763 init_txn_pulse <= '0';

764 if (read_done = '1') then

765 transfer_temp_register <= my_read_data;

766 transfer_state_wait <= 2;

767 end if;

768 elsif (transfer_state_wait = 2) then

769 transfer_state_wait <= 3;

770 elsif (transfer_state_wait = 3) then

771 transfer_state <= WRITE_CONTROL_REG;

772 transfer_state_wait <= 0;

773 end if;

774 when WRITE_CONTROL_REG => --write control reg

775 if (transfer_state_wait = 0) then

776 read_write <= '1';

777 axi_awaddr <= x"00000060";

778 axi_wdata <= (x"FFFFFEFF" and transfer_temp_register);

779 init_txn_pulse <= '1';

780 transfer_state_wait <= 1;

781 elsif (transfer_state_wait = 1) then

782 init_txn_pulse <= '0';

783 if (write_done = '1') then

784 transfer_state_wait <= 2;

785 end if;

786 elsif (transfer_state_wait = 2) then

787 transfer_state_wait <= 3;

788 elsif (transfer_state_wait = 3) then

789 transfer_state <= READ_STATUS_REG_WHILE;

790 transfer_state_wait <= 0;

791 end if;

792 when READ_STATUS_REG_WHILE => --read status reg

793 if (transfer_state_wait = 0) then

794 read_write <= '0';

795 axi_araddr <= x"00000064";

796 init_txn_pulse <= '1';

797 transfer_state_wait <= 1;

798 elsif (transfer_state_wait = 1) then

799 init_txn_pulse <= '0';

800 if (read_done = '1') then

801 transfer_temp_register <= my_read_data;

802 transfer_state_wait <= 2;

803 end if;

804 elsif (transfer_state_wait = 2) then

805 transfer_state_wait <= 3;

806 elsif (transfer_state_wait = 3) then

807 if ((transfer_temp_register and x"00000004") = x"00000000" ) then

808 transfer_state <= READ_STATUS_REG_WHILE;

809 else

810 transfer_state <= DESELECT_SLAVE;

811 transfer_state_wait <= 0;

812 end if;

813 end if;

814 when DESELECT_SLAVE => --deselect Slave

815 if (transfer_state_wait = 0) then

816 read_write <= '1';

817 axi_awaddr <= x"00000070";
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818 axi_wdata <= x"FFFFFFFF";

819 init_txn_pulse <= '1';

820 transfer_state_wait <= 1;

821 elsif (transfer_state_wait = 1) then

822 init_txn_pulse <= '0';

823 if (write_done = '1') then

824 transfer_state_wait <= 2;

825 end if;

826 elsif (transfer_state_wait = 2) then

827 transfer_state_wait <= 3;

828 elsif (transfer_state_wait = 3) then

829 transfer_state <= READ_DATA;

830 transfer_state_wait <= 0;

831 end if;

832 when READ_DATA =>

833 if (transfer_state_wait = 0) then

834 read_write <= '0';

835 axi_araddr <= x"0000006C";

836 init_txn_pulse <= '1';

837 transfer_state_wait <= 1;

838 elsif (transfer_state_wait = 1) then

839 init_txn_pulse <= '0';

840 if (read_done = '1') then

841 spi_receive_data <= my_read_data;

842 transfer_state_wait <= 2;

843 end if;

844 elsif (transfer_state_wait = 2) then

845 transfer_state_wait <= 3;

846 elsif (transfer_state_wait = 3) then

847 transfer_state <= FINISH;

848 transfer_state_wait <= 0;

849 transfer_done_pulse <= '1';

850 end if;

851 when FINISH =>

852 transfer_state <= IDLE;

853 transfer_done_pulse <= '0';

854 end case;

855 end if;

856 end if;

857 end if;

858 end process;

859

860

861

862

863 process(M_AXI_ACLK)

864 begin

865 if (rising_edge (M_AXI_ACLK)) then

866 if (m_axi_areset = '0' ) then

867 spi_control_state <= IDLE;

868 else

869 case (spi_control_state) is

870 when IDLE =>

871 spi_control_state <= START_CONFIG;

872 when START_CONFIG =>
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873 config_transfer <= '0';

874 config_start_pulse <= '1';

875 spi_control_state <= WAIT_FOR_CONFIG;

876 when WAIT_FOR_CONFIG =>

877 config_start_pulse <= '0';

878 if (config_done_pulse = '1') then

879 spi_control_state <= START_TRANSFER;

880 end if;

881 when START_TRANSFER =>

882 config_transfer <= '1';

883 spi_send_data <= x"0000001A";

884 transfer_start_pulse <= '1';

885 spi_control_state <= WAIT_FOR_TRANSFER;

886 when WAIT_FOR_TRANSFER =>

887 transfer_start_pulse <= '0';

888 if (transfer_done_pulse = '1') then

889 spi_control_state <= FINISH;

890 end if;

891 when FINISH =>

892 spi_control_state <= IDLE;

893 end case;

894 end if;

895 end if;

896 end process;

897

898 -- User logic ends

899

900 end implementation;

901

Listing 14: Code for “Deflection_Estimator”
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Appendix B

Filter Coefficients

No. low pass high pass

1 -0.006671 0.07239

2 -0.007837 0.02015

3 0.009766 0.02329

4 0.001364 0.027

5 -0.01856 0.03155

6 0.01703 0.03713

7 0.01411 0.04429

8 -0.04453 0.0539

9 0.0241 0.06742

10 0.05432 0.08835

11 -0.1155 0.1254

12 0.02834 0.2111

13 0.5352 0.6362

14 0.5352 -0.6362

15 0.02834 -0.2111

16 -0.1155 -0.1254

17 0.05432 -0.08835

18 0.0241 -0.06742

19 -0.04453 -0.0539

20 0.01411 -0.04429

21 0.01703 -0.03713

22 -0.01856 -0.03155

23 0.001364 -0.027

24 0.009766 -0.02329

25 -0.007837 -0.02015

26 -0.006671 -0.07239

Table B.1: Coefficients of filters rounded to 4th significant decimal places



Appendix C

ADAU1761 configuration

R
e
g
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r
A
d
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ss

Register Bit Name Setting R
e
su

lt
in

g
H

e
x

D
a
ta

4000 R0
CLKSRC 0 = direct from MCLK pin

01INFREQ[1:0] 00 = 256 × sampling frequency
COREN 1 = core clock enabled

4015 R15

SPSRS 0 = Serial port sampling rate set in Register R17

01
LRMOD 0 = LRCLK mode 50% duty cycle
BPOL 0 = BCLK polarity falling edge
LRPOL 0 = LRCLK polarity falling edge
MS 1 = Serial data port master mode

4016 R16
BPF[2:0] 000 = 64 bit clock cycles per LRCLK audio frame

00MSBP 0 = MSB first in LRCLK frame
LRDEL[1:0] 00 = Data delay from LRCLK edge 1 BCLK

4017 R17
ADOSR 0 = ADC oversampling ratio is 128x

00
CONVSR[2:0] 000 = Converter sampling rate (DAC and ACD) 48kHz

401c R22

MX3RM 0 = Mixer 3 right DAC input muted

2d
MX3LM 1 = Mixer 3 left DAC input unmuted
MX3AUXG[3:0] 0110 = Mixer input gain 0dB
MX3EN 1 = Mixer 3 enable

401d R23
MX3G2[3:0] 0000 = Mixer 2 bypasses gain control to Mixer 3 mute

00
MX3G1[3:0] 0000 = Mixer 1 bypasses gain control to Mixer 3 mute

401e R24

MX4RM 1 = Mixer 4 right DAC input muted

4d
MX4LM 0 = Mixer 4 left DAC input unmuted
MX4AUXG[3:0] 0110 = Mixer input gain 0dB
MX4EN 1 = Mixer 4 enable

401f R25
MX4G2[3:0] 0000 = Mixer 2 bypasses gain control to Mixer 4 mute

00
MX4G1[3:0] 0000 = Mixer 1 bypasses gain control to Mixer 4 mute

4023 R29
LHPVOL[5:0] 111001 = Left Headphone output 0dB

e7LHPM 1 = Left Headphone unmuted



HPEN 1 = Left Headphone volume control enabled

4024 R30
RHPVOL[5:0] 111001 = Right Headphone output 0dB

e7RHPM 1 = Right Headphone unmuted
HPMODE 1 = enable headphone output

4029 R35

HPBIAS[1:0] 00 = Headphone normal operation

03
DACBIAS[1:0] 00 = DAC normal operation
PBIAS[1:0] 00 = Playback path normal operation
PREN 1 = Playback right channel enable
PLEN 1 = Playback left channel enable

402a R36

DACMONO[1:0] 00 = DAC Stereo mode

03
DACPOL 0 = DAC polarity normal
DEMPH 0 = DAC de-emphasis filter disabled
DACEN[1:0] 11 = BOTH DAC enabled

402b R37 LDAVOL[7:0] 00000000 = Left Channel Volume 0dB 00
402c R28 RDAVOL[7:0] 00000000 = Right Channel Volume 0dB 00
40f2 R58 SINRT[3:0] 0001 = Serial input to DACs [L0, R0] ->[L, R] 01

40f9 R65

SLEWPD 1 = Enable Codec slew cock

7f

ALCPD 1 = enable ALC clock
DECPD 1 = enable decimator resync clock
SOUTPD 1 = enable serial routing output clocks
INTPD 1 = enable interpolator resync clock
SINPD 1 = enable serial routing intput clock
SPPD 1 = enable serial port clock

40fa R65
CLK1 1 = enable clock generator 1

03
CLK0 1 = enable clock generator 0

40f4 R60
LRGP3 1 = port is LRCLK

00BGP2 1 = port is BCLK
SDIGP0 1 = port is DAC_SDATA

40f8 R64 SPSR[2:0] 000 = serial port sampling rate is sampling rate 00

402d R39
DACSDP[1:0] 10 = no pullup or pulldown on DAC_SDATA

aaLRCLKP[1:0] 10 = no pullup or pulldown on LRCLK
BCLKP[1:0] 10 = no pullup or pulldown on BCLK

402f R40

CDATP[1:0] 10 = no pullup or pulldown on CDATA

aa
CLCHP[1:0] 10 = no pullup or pulldown on CLATCH
SCLP[1:0] 10 = no pullup or pulldown on CCLK
SDAP[1:0] 10 = no pullup or pulldown on COUT

100
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