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Abstract

In a world of rapid climate change, a deeper comprehension of the Earth’s climate system
is central to accurate climate projections. In this regard, understanding the dynamics gov-
erning the climate system is important. The changing climate processes are influenced by
a variety of factors including both natural and anthropogenic forcings, which modulate the
interactions between major modes of climate variability. These interactions, particularly the
teleconnections between the Atlantic and Pacific oceans, have a profound impact on global and
regional climate patterns, necessitating a detailed exploration to grasp the complex networks
of interrelated impacts. In this thesis, causal discovery approaches are applied to unravel
the causal relationships for these interactions, aiming to enhance the understanding of the
processes governing the climate system.
The first part of this Ph.D. thesis delves into this complex system by applying an algorithm for
causal discovery to analyze observational and reanalysis datasets, in addition to large ensem-
ble simulations from a collection of models participating in the sixth phase of the Coupled
Model Intercomparison Project (CMIP). Dependent on the phases of the Pacific Decadal
Variability (PDV) and the Atlantic Multidecadal Variability (AMV), different regimes with
characteristic causal relationships (fingerprints) are identified in observations (and reanalyses)
as well as in CMIP6. A regime-oriented causal model evaluation is then performed to assess
the capability of CMIP6 models in representing observed changing interactions between PDV,
AMV, and their extratropical teleconnections. Causal networks from observations show both
opposite-sign and same-sign responses between AMV and PDV under specific conditions.
Historical CMIP6 simulations exhibit varying skill in simulating the observed causal patterns
but overall perform better when PDV and AMV are out of phase. Additionally, the two largest
ensembles, (in terms of number of realizations) were found to contain realizations with most
similar causal fingerprints to observations. For most regimes, these same models also showed
higher network similarity when compared to each other.
In the second part of this thesis, the focus is on examining the tropical and extra-tropical routes
connecting Pacific and Atlantic modes of variability on seasonal to interannual timescales.
Following up on recent studies, this analysis characterizes two distinctive phases: the Pacific-
driven regime (1950-1983) and the Atlantic-driven regime (1985-2014), spotlighting the varying
role of El Niño-Southern Oscillation (ENSO) in shaping sea surface temperature variability
in the tropical Atlantic. Guided by the results of the first study, the use of large ensemble
simulations in this second study intends to separate the contributions of external forcings
from natural internal variability. A comparative analysis examines results from observations
(and reanalysis) in contrast to those from Pacific pacemaker simulations, unveiling effects
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Abstract

of anthropogenic external forcing, especially in the most recent decades. Specifically, the
1985-2014 results suggest that human-induced anomalous tropical north Atlantic warming
greatly contributed to La Niña-like cooling over the tropical Pacific through the strengthening
of the Pacific Walker circulation. On the other hand, the causal analysis of the pre-industrial
control run emphasizes the importance of natural internal variability on decadal timescales in
modulating the interplay between interannual climate variability modes over the two basins.
Generally, the results presented in this thesis demonstrate the large potential of causal discov-
ery for process-oriented model evaluation that can substantially enhance our understanding
of climate variability and provide robust diagnostics for refining climate models. Further-
more, this thesis underscores the role of the intricate interplay between natural variability and
external forcings in shaping climate patterns, and advocates for further research to precisely
attribute the observed changes in the climate system. The insights gained are hence significant
for formulating more accurate and informed climate projections as well as adaptation and
mitigation strategies.
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1. Introduction

1.1. Motivation

Climate change is a pressing reality with profound implications for both human societies and
the natural world. While the impact of anthropogenic climate change is well-recognized, it is
equally crucial to understand the role of natural climate variability, driven by internal mecha-
nisms within the Earth system. Modes of natural climate variability, such as El Niño-Southern
Oscillation (ENSO), the Pacific Decadal Variability (PDV), and the Atlantic Multidecadal Vari-
ability (AMV), are integral components of the Earth’s climate system. These modes can induce
shifts in weather patterns, ocean currents, and atmospheric circulation, causing significant cli-
matic impacts at both regional and global scales. In terms of statistical properties, climate
models have shown tremendous improvements in simulating internal variability throughout
the different phases of the Coupled Model Intercomparison Project (CMIP). However, accu-
rately evaluating their ability to do so remains a formidable challenge (Eyring et al. 2019). The
limited duration and uncertainties associated with observational datasets, particularly pre-
satellite era records affected by data errors (Eyring et al. 2021b; Fasullo et al. 2020; Phillips et al.
2014), further complicate the assessment process. While climate models are often compared to
reanalysis datasets to gauge their capacity to reproduce internal variability, this approach can
still reveal systematic errors (Karmouche et al. 2023a). One of the central parts of this thesis
focuses on analyzing modes of internal variability and how the interactions between them
changed over the observed historical record. This is crucial to qualitatively assess the ability
of climate models to reproduce the observed teleconnections during specific time periods
and to enhance understanding of the underlying processes. Nonetheless, distinguishing the
effects of internal climate variability from external forcings and quantifying their respective
impacts presents a significant challenge. External forcings encompass changes to the climate
system caused by natural factors such as volcanic eruptions, solar radiation, as well as human-
induced emissions of greenhouse gases (GHGs) and aerosols. On the other hand, internal
climate variability refers to inherent fluctuations resulting from complex interactions among
the atmosphere, oceans, land, and cryosphere (IPCC 2021a). This dissertation is motivated by
the necessity to address the complex effects of a changing climate on interactions between dif-
ferent modes of climate variability while isolating internal variability from external forcing. It
also aims to advance climate model evaluation beyond conventional spatial and spectral prop-
erties and utilize novel causal discovery methods to examine whether these models accurately
simulate the observed regime-dependent lagged teleconnections between geographically dis-
tant regions. By analyzing causal relationships derived from time series data, the thesis
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1. Introduction

assesses the models’ capacity to capture unique dynamical dependencies within the climate
system and determine whether specific phenomena are faithfully represented. Furthermore,
the thesis aims to investigate the impact of a changing climate on these teleconnections and
interactions. By scrutinizing the influence of external forcing and considering the varying
states of the climate system under different regimes of long-term internal variability, this work
seeks to deepen our understanding of how these teleconnections may evolve under changing
climatic conditions.

1.2. Objective of the thesis

The primary objective of this Ph.D. thesis is to advance the understanding of the Earth’s
climate system by utilizing novel causal discovery approaches in combination with a variety
of reanalysis datasets and large ensemble simulations from the CMIP phase 6 (CMIP6, Eyring
et al. 2016). The thesis aims to investigate and evaluate the complex interactions between major
modes of climate variability, focusing on the teleconnections between the Atlantic and Pacific
oceans. In particular, the thesis provides insights into the driving mechanisms between modes
of variability over the two basins and their phase-dependent causal relationships and identifies
particular regimes with distinctive causal fingerprints. Additionally, the research seeks to
explore the influence of a changing climate on these interactions, specifically considering
the effects of external forcing and different regimes of long-term internal variability. By
integrating these research dimensions, the thesis aspires to provide a deeper understanding
of the climate system and enhance climate model evaluation, ultimately contributing to more
accurate climate change projections.

1.3. Structure of the Thesis

Note that the results of this thesis are based on two publications: Chapter 4 and Section 3.5.3
are published in Karmouche et al. 2023a, while Section 3.5.2 and Chapter 5 are part of the
recently submitted article (Karmouche et al. 2023b) to the same peer-reviewed journal (Earth
System Dynamics). These papers are two studies where the author of this thesis was the first
author. He designed and organized the study, led the interpretation of the results and the
writing of the paper, performed all data processing and analysis, and prepared all figures and
tables. Throughout this thesis, when presenting material from these studies, the pronoun
"we" is often used. This choice is made to enhance readability by reducing the use of passive
voice and to acknowledge all contributors who were involved in these studies (Chapters 4
and 5, Sections 3.5.2 and 3.5.3, and Appendices A and B). However, all the content, including
text, figures, and tables, and supplementary material derived from these papers (Karmouche
et al. 2023a; Karmouche et al. 2023b), and thus included in this thesis, is the work of the author
of the thesis. For a detailed breakdown of the author’s contributions to these studies, please
refer to the corresponding chapters.
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1.3. Structure of the Thesis

This thesis is organized to facilitate a detailed, yet accessible examination of Atlantic-Pacific
interactions within the climate system. Here is a breakdown of the structure: Following this
section, Chapter 2 presents a scientific background offering a substantive exploration of the
climate system and its variability. The initial section explores the fundamental principles of
atmospheric and ocean circulation in addition to an introduction to Earth system modeling
(Sections 2.1.1–2.1.2), before delving into ocean-atmosphere interactions (Section 2.1.3). The
latter portion discusses climate variability, elaborating on its main modes and exploring tele-
connections with a focus on Atlantic-Pacific interactions (Section 2.2.1). Chapter 3 is dedicated
to outlining the methodological approach and the data sources consulted in the research. This
includes general introductions to CMIP6 (Section 3.1), reanalysis and observational datasets
(Section 3.2), empirical orthogonal function (EOFs) in Section 3.3, a tool for climate vari-
ability diagnostics (Section 3.4), and the causal discovery scheme in Section 3.5. The latter
section also presents a proof of concept for the causal discovery method to be utilized in
the following chapters (Section 3.5.2). Section 3.5.3 presents the metric used for comparing
networks in the causal model model evaluation in the next chapter. In Chapter 4, the focus
narrows down to a detailed analysis of decadal Atlantic-Pacific interactions within the context
of CMIP6. It outlines the methodologies and data employed (Section 4.1), presents the results
of the regime-oriented causal model evaluation (Section 4.2), and culminates in a discussion
and summary, articulating the implications of the findings (Sections 4.3–4.4). Moving on to
Chapter 5, the analysis extends to examine the evolving impacts of external forces on the
Atlantic-Pacific interactions on the seasonal to interannual timescale. This chapter outlines
the data and methodologies employed Section 5.1, explores the findings from various analyses
(Section 5.2), specifically from observations Section 5.2.1, pacemaker simulations Section 5.2.2
and pre-industrial control run (Section 5.2.3, and ends with a discussion and conclusion that
integrates the insights derived from the study (Section 5.3). Finally, Chapter 6 concludes
with a summary encapsulating the most important findings from the preceding chapters
(Section 6.1), and projects potential pathways for future research in the field in an "Outlook"
section (Section 6.2).
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2. Scientific Background

2.1. The Climate System

While our comprehension of weather and climate often centers on parameters such as mean
temperature, wind speed, humidity, cloud coverage, and solar radiation, the climate system’s
complexity surpasses these elementary variables. The climate encompasses intricate interac-
tions between the atmosphere, ocean currents, land masses, and other factors such as albedo,
vegetation, and solar irradiance. To grasp Earth’s climate and predict alterations induced
by human activities, a comprehensive consideration of these interconnected components and
their associated processes within the climate system is essential. In a broader context, the
term "climate" includes both the statistical variations of the climate system as well as its over-
all condition, encapsulating a comprehensive understanding of prevailing weather conditions,
including not only average states but also seasonal fluctuations and the potential for extreme
events. The World Meteorological Organization (WMO) recommends a 30-year timeframe for
defining climate statistically. However, when examining distant epochs like the last glacial
maximum, longer time scales are necessary. It’s important to recognize that despite the pos-
sibility of rapid climate changes, substantial durations are imperative to discern disparities
between different eras (Goosse 2015). A broader perspective is emerging in the realm of climate
definition, which entails a statistical depiction of the entire climate system. This entails the
scrutiny of five crucial components: the atmosphere, hydrosphere, cryosphere, land surface,
and biosphere (Goosse 2015). The interactions among the mentioned components encompass
a range of physical, chemical, and biological processes, contributing to the complex nature
of the climate system. Notably, investigating the intricate interplay between the ocean and
the atmosphere is crucial, as it profoundly influences weather patterns and shapes climate
dynamics at both regional and global scales. The exchange of heat, moisture, and energy
between these two components serves as a pivotal driver of atmospheric circulation patterns,
subsequently influencing the distribution of temperature and precipitation across diverse re-
gions. The different components of the climate system are influenced by external forces, with
the most significant one being the Sun. Some of the radiative energy provided by the Sun is in
the form of ‘shortwave’ radiation and is either reflected back to space by clouds, aerosols, or
the surface, or absorbed in the atmosphere or at the land or ocean surface where it is converted
to heat and re-radiated in the form of infra-red or ‘longwave’ radiation. The difference between
the incoming and outgoing radiation is called the radiative imbalance (Masson-Delmotte et al.
2021). Solar energy is not supplied uniformly due to the Earth’s spherical shape, resulting in
varying energy input near the equator and poles. The daily cycle due to Earth’s rotation and
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2. Scientific Background

Figure 2.1.: A schematic view of the major components of the global climate system (highlighted in
bold), illustrating their processes and interactions (indicated by thin arrows). It also highlights certain
aspects that could undergo changes (shown by bold arrows). Figure from (Houghton et al. 2001)

the seasonal changes due to Earth’s orbit around the sun add temporal variations to the solar
energy received by the Earth. This solar heating imbalance drives large-scale atmospheric
circulation, winds, and heat transport (Flato et al. 2013). The interactions continue with evap-
oration from land and oceans providing water vapor to the atmosphere, which condenses to
form clouds altering solar radiation absorption and reflection. Condensed water vapor falls as
precipitation, changing surface reflectivity and moisture content, thus contributing to climate
variability (Flato et al. 2013). Human activities also have a direct impact on the climate system
and are considered external forcing. Figure 2.1, from the Intergovernmental Panel on Climate
Change (IPCC) Third Assessment Report (Houghton et al. 2001), illustrates a schematic view
of the key components of the global climate system along with their processes and interactions
and identifies specific aspects that have the potential to change. This visualization provides
an overview of the complex dynamics within the climate system and has long served as a
simplistic reference for understanding its interconnections.

The atmosphere is the most dynamic part of the system and contains various gases. While
gases like nitrogen (N2), oxygen (O2), and argon (Ar) have limited interaction with solar and
infrared radiation, GHGs such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),
and ozone (O3) play a crucial role in the Earth’s energy budget by absorbing and emitting
infrared radiation. Water vapor (H2O), another GHG, also contributes significantly to the
climate system as it absorbs both infrared and solar short-wave radiation (Bridgman and
Oliver 2006).
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2.1. The Climate System

The hydrosphere includes all liquid water bodies on Earth, both fresh and saline. Over 70%
of the Earth’s surface is made up of oceans, which are essential for storing and transmitting
energy as well as storing and dissolving enormous amounts of CO2. The slower circulation of
the oceans, driven by wind and density contrasts, acts as a regulator of the Earth’s climate and
contributes to natural climate variability. Ocean sea water density exhibits dependence on
both salinity and pressure, with density rising as both parameters increase, and decreases with
increasing temperature. In a simplified perspective, temperature influences density shifts at
higher temperatures, whereas salinity plays a more substantial role at lower temperatures.
The strong connection between the ocean and the overlying atmospheric layer plays a major
role in different climate phenomena, encompassing weather patterns, heat exchange, and the
modulation of Earth’s energy budget (Goosse 2015).
The cryosphere, encompassing ice sheets, glaciers, sea ice, and permafrost, reflects solar
radiation and plays a critical role in driving deep ocean water circulation. Changes in the
volume of ice sheets can potentially lead to sea level variations (Bridgman and Oliver 2006).
The land, including vegetation and soils, influences how energy from the Sun is returned
to the atmosphere. Vegetation absorbs CO2 through photosynthesis, making it essential in
the carbon cycle and affecting atmospheric chemistry and aerosol formation, which impact
climate. The biospheres, marine and terrestrial, influence the atmosphere’s composition
through their uptake and release of GHGs. They play a central role in the carbon cycle and
affect the budgets of various gases. Fossils, tree rings, and other biotic indicators from Earth’s
biosphere provide valuable information about past climates (Gettelman and Rood 2016).

The interactions between these components above result in the exchange of mass, energy,
and momentum, leading to fluctuations in climate variables, including temperature, sea level
pressure (SLP), and precipitation.

2.1.1. Primitive equations for atmospheric and ocean circulation

Based on fundamental concepts of fluid dynamics, the primitive equations are a collection of
equations that describe the motion of a fluid, e.g. air in the atmosphere or water in the ocean.
Modeling and simulating atmospheric and oceanic phenomena including weather patterns
and climate dynamics are done using such equations. This section follows explanations
from Wallace and Hobbs 2006a who explore how the dynamic processes described by the
primitive equations of atmospheric motion influence the initial stages of an atmospheric model
simulation. The atmosphere’s vertical structure is characterized by hydrostatic equilibrium.
Equatorial regions, heated intensely by the Sun, experience the ascent of less dense air, which
subsequently moves poleward at higher altitudes. The Earth’s rotation adds complexity to
atmospheric circulation. The formation of Hadley cells, driven by air ascending at the equator
and descending at approximately 30° latitude, illustrates this complexity. This phenomenon
contributes to the establishment of the Intertropical Convergence Zone (ITCZ), a prominent
atmospheric feature. The ITCZ is characterized by the convergence of ascending winds
illustrated through a band of clouds and thunderstorms that form near the equator, where
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2. Scientific Background

the trade winds meet and rise. The rising air creates a low-pressure zone that attracts more
wind from the subtropics. The ITCZ also shifts seasonally, following the sun’s position
and the thermal equator. This band of ascending motion, typically positioned around 5°N,
plays a significant role in affecting wind patterns and precipitation distribution in tropical
regions. The Coriolis force, due to Earth’s rotation causes the deflection of surface winds
and gives rise to unique wind patterns not only near the equator. The Ferrell cell, a weaker
circulation compared to the Hadley cell, governs the mid-latitude atmospheric flow. Beyond
the equatorial region and the surface boundary layer, geostrophic equilibrium plays a crucial
role in shaping atmospheric circulation patterns. This equilibrium explains clockwise wind
rotations around high-pressure systems and counterclockwise rotations around low-pressure
systems in the Northern Hemisphere (and vice versa in the Southern Hemisphere). By
capturing the underlying physical principles governing the motion of air masses, temperature
variations, and pressure gradients, the primitive equations enable us to study the complex
behaviors of the atmosphere. The comprehensive derivations of these equations are shown in
textbooks (e.g. Holton and Hakim 2012; Vallis 2017; Wallace and Hobbs 2006a). In a simplified
form, the primitive equations consist of:

The horizontal equation of motion: represents the rate of change in the velocity vector
V of a fluid element with respect to time ( 𝑑V

𝑑𝑡
). It describes its motion in a gravitational

field considering several forces acting on it, including the pressure gradient force and the
Coriolis force. Considering the horizontal wind field is defined on constant pressure surfaces,
Equation (2.1) can be written as:

𝑑V
𝑑𝑡

= −∇Φ − 𝑓 k ×V + F (2.1)

where 𝑑V
𝑑𝑡

is the Lagrangian time derivative of the horizontal velocity component of a moving
air parcel. Using the hydrostatic equation (Wallace and Hobbs 2006a), the pressure gradient
force can be represented by the term −∇Φ where Φ is the gravitational potential. The second
term on the right-hand side, 𝑓 k × V, is the Coriolis force where 𝑓 is the Coriolis parameter
and k is the local vertical unit vector, defined as positive upward. The third term, F, denotes
any external forces acting on the fluid (e.g. frictional forces).

The hypsometric equation: is a mathematical relationship between the change in geopo-
tential height (Φ) with respect to atmospheric pressure (𝑝). Equation (2.2) is given by:

𝜕Φ

𝜕𝑝
=
−𝑅𝑇
𝑝

(2.2)

here, 𝑅 represents the gas constant for dry air, and 𝑇 signifies the air temperature. The equa-
tion indicates that as pressure diminishes, geopotential height increases, and vice versa. The
negative sign indicates that higher pressure corresponds to lower geopotential height. Equa-
tion (2.2) is commonly used in meteorology and atmospheric science to calculate atmospheric
layer thickness and estimate pressure surface heights.

The thermodynamic energy equation: describes how the temperature of a system changes
over time. The equation is given in the form of a differential equation, where 𝑑𝑇

𝑑𝑡
represents
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the rate of change of temperature with respect to time and equals to:

𝑑𝑇

𝑑𝑡
=

𝜅𝑇
𝑝

𝜔 + 𝐽

𝑐𝑝
(2.3)

Here, in Equation (2.3), the first term on the right-hand side of the equation, 𝜅𝑇
𝑝 𝜔, reflects the

rate of temperature change resulting from adiabatic expansion or compression where 𝜅 is the
ratio of the gas constant to the specific heat at constant pressure, 𝑝 is the pressure, and 𝜔 is
the vertical velocity. The second term describes the effects of diabatic heat sinks and sources.
The absorption of solar radiation, the emission of longwave radiation, and the release of latent
heat are all included under this term where 𝐽 is the heating rate per unit mass and 𝑐𝑝 is the
specific heat at constant pressure. The continuity equation: describes the conservation of
mass and is given by:

𝜕𝜔

𝜕𝑝
= −∇ ·V (2.4)

Equation (2.4) is a vectorial form of the relationship between the vertical velocity of air
parcels ( 𝜔) and the divergence of the horizontal wind field (∇ ·V). Due to frictional drag, air
parcels in the atmospheric boundary layer often travel across isobars towards lower pressure.
As a result, low-level flow converges into regions of low pressure and diverges out of regions
of high pressure. The bottom boundary condition: is described by Margules’ pressure
tendency equation:

𝜕𝑝𝑠
𝜕𝑡

= −V𝑠 · ∇𝑝 − 𝑤𝑠

𝜕𝑝

𝜕𝑧
−
∫ 𝑝𝑠

0
(∇ ·V)𝑑𝑝 (2.5)

It states that, for the Earth’s surface (where 𝑝 = 𝑝𝑠 ≈1000 hPa), the rate of change of pressure
( 𝜕𝑝𝑠𝜕𝑡 ) is equal to the sum of the advection of pressure by the surface wind (−Vs ·∇𝑝), the vertical
advection of pressure due to surface motion (−𝑤𝑠

𝜕𝑝
𝜕𝑧 ), and the integral of the divergence of the

horizontal velocity from the surface to the pressure level (
∫ 𝑝𝑠

0 (∇ ·V)𝑑𝑝).
Considering that the system of primitive equations includes two components for horizon-

tal motion, it forms a set of five equations corresponding to five dependent variables: 𝑢,
𝑣, 𝜔, Φ, and 𝑇. Including diabatic heating field (𝐽) and friction field (𝐹) necessitates their
specification or parameterization as functions of the dependent variables. The thermody-
namic energy equation (2.3), the bottom boundary pressure equation (2.5), and the horizontal
equation of motion (2.1), are all “prognostic” equations because they all contain time deriva-
tives. The interrelations between the dependent variables at every given time instant are
defined by the residual “diagnostic” equations. Numerical solutions can be employed for
the primitive equations. These equations are organized on a horizontal grid with uniform
spacing and several vertical levels. Even though latitudinal spacing may not be constant,
grid points in global models frequently line up with latitude and longitude lines. In order
to make computation easier on a fixed set of grid points and levels without requiring the
grid to change with air trajectories, the equations are translated into the Eulerian form. The
initial conditions for the dependent variables are determined at time 𝑡0 while ensuring that
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the diagnostic relationships between the variables are maintained (e.g. the geopotential field
in hydrostatic conformity with the temperature field). The coefficients of orthogonal analytic
functions known as spherical harmonics are used to analyze expressions involving the hor-
izontal and vertical derivatives. Subsequently, time derivative terms ( 𝑑V

𝑑𝑡
, 𝜕𝑇

𝜕𝑡 , and 𝜕𝑝𝑠
𝜕𝑡 ) are

computed, and their three-dimensional fields are advanced through a short time increment
Δ𝑡. Diagnostic equations are then applied to compute dynamically consistent fields of other
dependent variables at time 𝑡0 + Δ𝑡. This iterative process is repeated across subsequent time
steps to show the evolution of dependent variable fields. To avoid the creation of fictitious
small-scale patterns brought on by numerical problems, the time increment 𝑡 must be small.
The acceptable time step decreases as the spatial resolution of the model increases, requir-
ing more calculations such as 𝑢(𝑡0 + Δ𝑡) ≈ 𝑢(𝑡0) + Δ𝑢

Δ𝑡 for each time step (for the example
of the u-component of the velocity field). As a result, along with increasing model spatial
resolution, the computational resources needed for numerical weather prediction and climate
modeling also significantly increase. Two significant breakthroughs around the mid-20th
century greatly enhanced our understanding of the general circulation. First, the discovery of
baroclinic instability, which creates baroclinic waves and extratropical cyclones, was made by
Charney 1947 and Eady 1949. Second, the introduction of general circulation models (GCMs)
allowed numerical representation of global atmospheric circulation using the primitive equa-
tions. These models enable the study of long-term wind patterns, precipitation, and wind
steadiness. Let’s consider a simulation starting from a state of rest, where the atmosphere
is stable and pressure and temperature are uniform horizontally. At time 𝑡 = 0, the model
is activated, causing differential heating between the tropics and polar regions that resemble
the temperature differences in the real atmosphere. Initially, the warming of the tropics and
cooling of the polar areas lead to distinct changes in pressure. The upper pressure surfaces
bulge upwards due to heat expansion in the tropics, while they bend downward over the polar
regions (see Figure 2.2a). This leads to a pressure gradient between the equator and the pole
at higher altitudes which drives a poleward flow. This flow becomes more pronounced in the
second time step. The poleward mass movement results in a redistribution of mass across
latitudes, causing surface pressure to drop in low latitudes and rise in high latitudes (Wallace
and Hobbs 2006b). This change in surface pressure creates a pressure gradient between the
equator and the pole at lower altitudes, initiating equatorward flow at these levels. This
initial response results in the establishment of a circulation cell from the equator to the pole
(Figure 2.2b). The Coriolis force causes the equatorward flow to move westward and the pole-
ward flow to move eastward (Figure 2.2c). With each subsequent time step, the flow becomes
more horizontal. The Coriolis force balances the pressure gradient force and the vertical
wind shear between low-level easterly winds and upper-level westerly winds increases due
to the stronger temperature contrast between the equator and the pole caused by meridional
heating differences. The Coriolis force is essential in building this vertical shear. Friction lim-
its the strength of surface easterly winds, while upper-level westerly winds become stronger
over time. Questions about why winds blow in certain directions and why trade winds are
more consistent than westerlies are crucial for understanding large-scale atmospheric mo-
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Figure 2.2.: Schematic showing the evolution of the atmospheric circulation from a state of stillness
within a climate model, under simplistic equinox conditions, and without the influence of land-sea
difference. Figure from (Wallace and Hobbs 2006b)

tions globally (Wallace and Hobbs 2006a). On the basis of the straightforward dynamical
logic described by the primitive equations, the developments that follow could never have
been predicted. The significance of the mid-20th-Century advancements becomes clear as
the numerical integration introduced in the last section is extended forward in time. Results
replicated from various GCMs show that, as the temperature difference between the equator
and the pole reaches a critical point, baroclinic instability emerges in mid-latitudes. This
introduces wave-like features to the flow. These waves lead to a circulation pattern similar to
that shown in Figure 2.2d. Within the forming waves, warm and moist subtropical air masses
are traveling toward the pole ahead of eastward-moving surface cyclones. Concurrently, cold
and dry polar air masses travel equatorward behind these cyclones. This interchange of warm
and cold air masses over the 45° latitude circle results in a recognizable movement of heat,
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both sensible and latent, in a poleward direction. As a result, this heat exchange mitigates
the intensification of the temperature difference between the equator and the pole. Following
generations of these waves, originating in the lower troposphere of midlatitudes and moving
upward towards the jet stream level before heading equatorward into the tropics (Wallace and
Hobbs 2006b). The tilted features of the wave during its equatorward movement result in
westerly winds in poleward-moving air, creating a net poleward transfer of momentum. This
momentum transfer leads to a shift from easterly to westerly surface winds in midlatitudes,
similar to real-world atmospheric conditions. Additionally, these waves induce weak mean
meridional circulation cells in both hemispheres, i.e. the “Ferrel cells”. In the latitude of the
storm tracks ( 45°), these cells exhibit poleward, frictionally generated Ekman drift, ascent on
the poleward side, and descent on the equatorward side. As baroclinic waves emerge, the
Hadley cells retreat toward the tropics, creating subtropical anticyclones around 30° latitude
(Wallace and Hobbs 2006b). These anticyclones define the boundary between tropical trade
winds and extratropical westerlies, as many of the world’s deserts are situated in this lati-
tude zone. This subtropical high-pressure belt hosts the pressure centers of major modes of
atmospheric variability which will be discussed in Section 2.2.1.

2.1.2. Earth system modeling

The climate we experience, including the averages and statistics of the ever-varying temper-
ature and rainfall, wind and ocean currents, and all the other attributes of the Earth System
in which we live, is a result of a complex chain of interactions, as discussed in Section 2.1.
These complex processes interconnect Earth System components in ways that prevent their
isolation, hence, the need for sophisticated models incorporating the diversity of Earth system
processes. For example is how atmospheric circulation leads to surface winds driving ocean
currents, which transport heat and moisture. This connection forms feedback loops, crucial
in climate variability, enhancing or suppressing processes (Flato et al. 2013). Moreover, bio-
geochemical processes, including biology and chemistry, extend this network of interactions
beyond physical components. Human impacts on climate, such as CO2 emissions from fossil
fuels, involve biogeochemical processes closely linked to the physical processes (Flato et al.
2013). This is to say that the processes within the climate system can be far more complex
and not simply understood from simple GCMs with only a few components (e.g. ocean-
atmosphere only). Earth system model (ESM) development has followed a path of gradual
progress, evolving from basic numerical weather prediction models of the 1960s. These initial
models focused on weather forecasts and were limited in scope. Over time, the models became
more complex, connecting the behavior of the atmosphere and oceans. A significant milestone
arrived with the emergence of fully coupled models, which can simulate climate changes over
extended timeframes, from historical periods to future predictions (Flato et al. 2013). This
was possible thanks to advancements in computer capabilities, allowing for more detailed
and accurate representations of Earth’s system behaviors (Flato et al. 2013). Collaborative
efforts, such as CMIP, played an essential role in shaping ESM development (WCRP 2022).

12



2.1. The Climate System

Figure 2.3.: Over the past decades, climate models have evolved by integrating various components
into comprehensive models. This development is evident in the increasing complexity and diversity
of processes in different aspects of the Earth’s systems, such as the atmosphere. This progression is
visually depicted by growing cylinders, signifying the advancement in process understanding. Figure
from (IPCC 2013)

CMIP standardized the setup and evaluation of ESMs, enabling scientists to work together
and compare outcomes. These projects revealed important insights, such as the ocean’s role
in heat retention and the cooling effects of aerosols on climate (WCRP 2022). The graphi-
cal representation, as depicted in Figure 2.3 from the IPCC’s Fifth Assessment Report (AR5,
IPCC 2013), provides a visual account of the progression of climate models over the past few
decades. The figure illustrates how various components of these models have been gradually
integrated into comprehensive climate models over time, with each aspect consisting of a range
of intricate processes. Over the years, there has been a noticeable increase in the complexity
and diversity of these processes, as symbolized by the growing size of the cylinders in the
diagram. This implies that our understanding of Earth’s processes and the ability to represent
them within models have significantly improved. CMIP and similar frameworks have been
crucial in extending modeling capabilities and investigating Earth’s intricacies (Eyring et al.
2016). A noteworthy advancement highlighted in the figure corresponds to the enhancement
of both horizontal and vertical resolution in the models. For example, the spectral models’
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resolution has remarkably advanced from approximately 500 km horizontal resolution and 9
vertical levels in the 1970s to less than 25 km horizontal resolution and 95 vertical levels in the
present. Additionally, ensemble techniques are increasingly prevalent in the domain of Earth
system modeling. Such techniques involve multiple calculations to enhance statistical robust-
ness, accommodate natural variability, and address uncertainty in model formulations. This
is done by utilizing larger sample sizes and diverse approaches to generate samples, encom-
passing variations in models, physics, and initial conditions. Furthermore, the refinement of
ocean grids and the integration of sophisticated grids in both oceanic and atmospheric models
have also contributed to more accurate simulations. In light of the sophistication of modern
ESMs, which now incorporate not just physical, but also biological and chemical processes,
understanding the complexities of anthropogenic climate change becomes a multi-faceted en-
deavor (Flato et al. 2013). Significant progress has been made in the portrayal of Earth system
processes, including key interactions like radiation-aerosol-cloud dynamics, cryosphere be-
havior, and carbon cycle representation. Such advancements, validated against observational
and paleoclimate data, underscore the continual refinement of these models and spotlight the
imperative to address inherent uncertainties and variabilities.

2.1.3. Ocean-Atmosphere interactions

All components mentioned in Section 2.1 interact through various physical, chemical, and bi-
ological processes, making the climate system highly complex. For example, the atmosphere
and oceans exchange water vapor and heat through evaporation and precipitation, while
precipitation affects the ocean’s salinity and thermohaline circulation. Sea ice also affects the
exchanges between the atmosphere and oceans, and the biosphere influences atmospheric
CO2 concentration through photosynthesis and respiration. Any change, whether natural or
human-induced, in the components or interactions of the climate system, or in external forc-
ing, can lead to climate variations. Understanding these interactions and feedbacks is crucial
to comprehending the climate system’s behavior and predicting climate changes accurately.
Ocean-atmosphere interactions are influenced by a combination of physical processes, includ-
ing changes in sea surface temperature (SST), ocean currents, wind patterns, and atmospheric
circulation. The exchange of heat and moisture between the ocean and the atmosphere is
a critical factor in driving these interactions. For example, warm ocean surface waters can
lead to the development of weather systems such as tropical cyclones through enhanced
atmospheric convection. Conversely, atmospheric circulation patterns can influence ocean
currents and temperature distributions. These interactions play a crucial role in generating
and modulating internal climate variability, impacting various climate phenomena across dif-
ferent temporal and spatial scales. Both atmospheric and oceanic processes exert significant
influence on SSTs. Key factors governing energy exchange at the sea surface encompass wind
speed, air temperature, cloud cover, and atmospheric humidity. SST is notably affected by
heat transfer via currents, vertical mixing, and the depth of the boundary layer on the oceanic
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side. To characterize the heat budget of the upper-ocean mixed layer, equations from (Deser
et al. 2010) can be employed:

𝜕𝑇

𝜕𝑡
=

𝑄net
𝜌𝐶𝑝𝐻

+ ( ®𝑈geo + ®𝑈ek) · ®∇𝑇 +
𝑊𝑒 +𝑊ek

𝐻
(𝑇 − 𝑇𝑏) (2.6)

In equation Equation (2.6), the symbols denote the following: 𝜌 represents seawater den-
sity, 𝐶𝑝 stands for the specific heat of seawater, 𝐻 signifies the depth of the mixed layer, 𝑇
denotes mixed-layer temperature, 𝑄net represents the net surface energy flux, and ®𝑈geo and
®𝑈ek correspond to geostrophic and Ekman current velocities, respectively. Additionally, 𝑊𝑒

signifies vertical entrainment rate, 𝑊ek denotes Ekman pumping velocity, and 𝑇𝑏 stands for
the temperature of water entrained from depth into the mixed layer. The net surface energy
flux 𝑄net can be decomposed into:

𝑄𝑛𝑒𝑡 = 𝑄𝑠ℎ +𝑄𝑙ℎ +𝑄𝑠𝑤 +𝑄𝑙𝑤 (2.7)

In Equation (2.7), 𝑄𝑠ℎ represents sensible heat flux, 𝑄𝑙ℎ stands for latent heat flux, 𝑄𝑠𝑤

denotes downward solar radiative flux minus the portion penetrating the mixed layer, and
𝑄𝑙𝑤 signifies longwave radiative flux. Turbulent energy flux, represented by 𝑄𝑠ℎ + 𝑄𝑙ℎ , is
directly proportional to wind speed and the difference in air-sea temperature or humidity.
In contrast, radiative fluxes 𝑄𝑠𝑤 + 𝑄𝑙𝑤 depend on air temperature, humidity, and cloudiness.
Well-established references like Peixoto and Oort 1992 and Hartmann 1994 provide com-
prehensive formulations for these air-sea fluxes. Contributions from Ekman and geostrophic
currents to the heat budget occur through horizontal advection, while entrainment and Ekman
pumping affect SST through vertical advection (Pond and Pickard 1983; Vallis 2006). Figure
2.4, presented by (Deser et al. 2010), illustrates the influence of random atmospheric forcing on
slow SST variations. The figure depicts a stochastic climate model paradigm, showcasing how
the mixed-layer temperature responds to randomly varying surface heat fluxes (top panel) at
two different ocean depths: shallow (50 m, middle panel) and deep (500 m, bottom panel).
SST fluctuations are observed to occur over a couple of years at the shallow layer, while they
take decades to oscillate at the deep layer.

Hasselmann 1976 proposed a stochastic climate model that divides the Earth System into
a rapidly varying "weather" system, primarily represented by the atmosphere, and a slowly
responding "climate" system, encompassing the ocean, cryosphere, land vegetation, and more.
The interaction between these systems leads to climate variability, with the ocean integrating
atmospheric noise. The atmosphere is treated as white noise, while the ocean, with its higher
heat capacity, acts as a low-pass filter, especially at mid-latitudes. As a result, SST-anomaly
feedbacks at the mixed layer have a characteristic feedback time of approximately 6 months
(Frankignoul and Hasselmann 1977).

To achieve a truly coupled atmosphere-ocean mode of variability, oceanic SST must induce
atmospheric heat and momentum fluxes to strengthen the coupling (Gill 1982; Mechoso et al.
2021). Tropical SST has a dominant effect on the atmosphere over midlatitude SST, contribut-
ing to stronger coupling in tropical modes compared to midlatitude modes. Oceans play a
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Figure 2.4.: Time series of random atmospheric heat flux forcing (top) and the resulting response in
the upper-ocean mixed-layer temperature for two different mixed-layer depths: 50 m (middle) and 500
m (bottom). Figure from (Deser et al. 2010).

significant role in providing thermal inertia and transferring it to the overlying atmosphere
mainly through turbulent fluxes of sensible and latent heat at the surface. As mentioned
earlier, these turbulent fluxes depend not only on SST but also on various atmospheric param-
eters, such as near-surface wind speed, air temperature, and relative humidity (Deser et al.
2003). At this point, it is beneficial to refer to the Clausius–Clapeyron equation (Clapeyron
1834; Clausius 1850), given by:

𝑑𝑃

𝑑𝑇
=

𝐿

𝑇(𝑉g −𝑉l)
(2.8)

where 𝑑𝑃
𝑑𝑇

is the rate of change of saturation vapor pressure with respect to temperature, 𝐿 is
the latent heat of vaporization, 𝑇 is the temperature, and 𝑉g and 𝑉l are the molar volumes of
the gas and liquid phases, respectively. This equation illustrates the exponential relationship
between the temperature and the saturation vapor pressure of water, highlighting how an
increase in SST can augment the atmosphere’s moisture-holding capacity, thereby influencing
the latent heat fluxes at the ocean-atmosphere interface.
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The Bjerknes feedback (Bjerknes 1969), is central to understanding the amplification of cer-
tain phenomena in ocean-atmosphere interactions, including ENSO which will be discussed
in more detail later Section 2.2.1. This feedback involves a positive loop between SSTs and
atmospheric circulation. When the SSTs in the central/eastern equatorial Pacific warm, the
temperature contrast between the eastern and western tropical Pacific decreases. This change
weakens the east-to-west pressure gradient across the Pacific, leading to a reduction in the
strength of the easterly trade winds. The weaker winds reduce the upwelling of cold, nutrient-
rich waters in the eastern Pacific, enhancing the warming effect. This feedback loop between
ocean warming and weakened trade winds amplifies the initial warming (Neelin et al. 1998;
Philander 1990).

The weakening or strengthening of the easterly winds is associated with another funda-
mental atmospheric circulation pattern, called the Walker circulation (Walker and Bliss 1932),
which is also inextricably linked to ENSO. In normal conditions over the equatorial Pacific,
this circulation is characterized by a continuous loop, with the lower part flowing from east to
west near the surface across much of the tropics, and the upper part moving from west to east
at higher altitudes. The Pacific Walker circulation (PWC) involves rising air over the warm
western Pacific and sinking air in the eastern Pacific, connecting the flow in one large loop. As
illustrated through the schematic in Figure 2.5, the strongest upward branch of this circulation
is found over the Maritime Continent, north of Australia, with weaker branches over eastern
Africa and northern South America, areas associated with significant precipitation during the
northern hemisphere winter. Understanding the Walker circulation is vital in grasping the
broader picture of ocean-atmosphere interactions, and it sets the stage for discussing more
complex phenomena such as ENSO and its teleconnection to the Atlantic, as will be further
discussed in later sections.

Figure 2.5.: Typical Walker Circulation in winter under ENSO-neutral conditions. The diagram illus-
trates the areas of convection linked with the ascending branches of the Walker Circulation, prominently
observed over the Maritime continent, northern South America, and eastern Africa. National Oceanic
and Atmospheric Administration (NOAA) Climate.gov drawings by Fiona Martin.
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This "overturning cell" is maintained through a SST gradient, with warmer surface waters
in the west and cooler waters in the east. Above the warmer waters, air rises, creating a region
of low pressure, while above the cooler waters, the air is dry and descends, creating a region
of high pressure. This process is facilitated by the trade winds that blow from east to west,
pushing seawater towards the west side of ocean basins, and warming it along the (Bjerknes
1969; Meng et al. 2012).

2.2. Climate Variability

As discussed in Section 2.1, the term "climate" pertains to the average condition of the Earth’s
atmosphere and its interconnected components. It’s also employed to discuss prolonged
atmospheric fluctuations that extend beyond the predictability range of typical atmospheric
forecasting. The average state, which encompasses daily and seasonal oscillations over a
specified averaging period, is termed the “climatological mean”. Any deviations from this
standard state are termed climate “anomalies” that happen over different time scales such as
weeks, years, and decades. The difference between climate “variability” and climate “change”
lies in the time frame; i.e. variability involves fluctuations within a specific time period, while
change involves differences between two different, sufficiently long time periods. The concept
of climate variability refers to extended variations or modifications in the average state. It can
be broken down as follows:

• Intraseasonal climate variability applies to month-to-month fluctuations around the
seasonally fluctuating climatological mean that occur within the same season. This
could involve, for example, distinguishing between an unusually warm July and an
exceptionally cold August.

• Interannual variability captures year-to-year changes in annual or seasonal averages.
This might be featured by contrasting mean temperatures of successive summer seasons
over a certain region (e.g. Europe or the North Pacific).

• The terms "decadal", "multidecadal", "century-scale", and so on, refer to fluctuations
spanning periods of decades, multiple decades, centuries, and beyond.

To grasp the reasons and characteristics of year-to-year climate variability, researchers have
deployed computer simulations with atmospheric models, e.g. Coupled Earth ESMs. Early
numerical experiments utilizing various models have been carried out during the recent
decades, yielding some interesting results, summarized according to (Wallace and Hobbs
2006a) as follows:

• The year-to-year variability of the tropical atmosphere is mainly influenced by external
factors, particularly variations in prescribed boundary conditions like SSTs over tropical
oceans. Realistic models show that simulated tropical climate variations closely resemble
observed variations.

18



2.2. Climate Variability

• Climate variability in extratropical latitudes is influenced by both external boundary
conditions (not as strongly as in the tropics) and internal atmospheric dynamics. Tropical
SSTs are crucial for northern hemisphere winter climate, while variations in soil moisture
and vegetation contribute to summer climate anomalies.

• Year-to-year variations in extratropical sea-ice extent and SST have subtler impacts. Run-
ning simulations with varied initial conditions but the same boundary-forcing conditions
reveals weak externally forced signals within the internally generated noise.

• The majority of intraseasonal variability in extratropical wintertime circulation appears
to originate internally within the atmosphere, indicating that the atmosphere itself
generates this variability.

The conclusions from above highlight that climate variability arising from interactions gen-
erated by the atmosphere is coupled to gradually changing components of the Earth system.
Next, we introduce well-recognized patterns of atmospheric (Section 2.2.1) and coupled modes
of climate variability (Section 2.2.1). Moreover, climate variability can also arise from external
forcing agents, such as volcanic eruptions, fluctuations in solar activity, or alterations in atmo-
spheric composition driven by human activities. Externally forced variability is introduced in
Section 2.2.2.

2.2.1. Main modes of climate variability

This section introduces the central modes of climate variability, characterized by recurring
spatial patterns in atmospheric and ocean parameters over the different timescales discussed
above. These modes represent significant and recurrent patterns in the climate system and can
be identified through the analysis of anomalies over specific regions, often using techniques
such as empirical orthogonal functions (EOFs), later discussed in Chapter 3 (see Section 3.3).
Depicted by distinctive spatial and temporal patterns, the modes introduced in this section are
central to understanding the complex dynamics of climate variability connecting the Pacific
and Atlantic basins, and thus set the stage for a deeper analysis in Chapters 4 and 5.

Atmospheric modes of variability

This section introduces atmospheric modes of climate variability which are characterized by
recurring and persistent patterns in atmospheric pressure, temperature, and circulation. Here,
results are shown based on diagnostics provided by the Climate Variability Diagnostic Package
for Large Ensembles (CVDP-LE); Phillips et al. 2020 (see also Section 3.4) using SLP data from
the 20th Century Atmospheric Reanalysis extended with ERA5 (ERA20C-ERA5), disseminated
by the European Centre for Medium-Range Weather Forecasts (ECMWF) and incorporating
observations of surface pressure. Below are some of the most prominent atmospheric modes
relevant to the scope of Atlantic-Pacific interactions:

19



2. Scientific Background

• The North Atlantic Oscillation (NAO): The NAO dominates North Atlantic atmo-
spheric variability and is characterized by alternating SLP changes between the Azores
High and the Icelandic Low (Hurrell et al. 2003). Its positive phase involves a strength-
ened Azores High, deepened Icelandic Low, and a northward-shifted jet stream. The
NAO significantly influences temperature, precipitation, winds, storm tracks, and ex-
treme events over North Atlantic-European areas (Matthews et al. 2014; Woollings et
al. 2014). An index representing the time evolution of NAO can be obtained as the
principal-component (PC) time series associated with the leading EOF of area-weighted
SLP anomalies over the North Atlantic region [20-80°N, 90°W-40°E] (Hurrell and Deser
2010). Figure 2.6a shows the NAO index using mean winter (DJF) SLP anomalies for the
historical 1900-2014 period. Linearly regressing the DJF SLP anomalies (north of 20°N)
onto the PC time series in 2.6a reveals the distinctive NAO pattern (Azores High in red
and Icelandic Low in blue, as shown in 2.6b). The percent variance explained (pcvar in
2.6b) implies that over 41% in the variability of North Atlantic winter SLP anomalies can
be explained by the leading EOF (i.e. NAO).

Figure 2.6.: North Atlantic Oscillation. (a) The NAO Index is shown as the PC time series of the leading
EOF of mean winter (DJF) SLP anomalies over the North Atlantic region based on the ERA20C_ERA5
data set during 1900-2014. (b) Regression pattern of global DJF SLP anomalies on the NAO Index in
(a).
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Ingrained in mid-latitude dynamics, NAO signals emerge as barotropic phenomena
driven by eddy-mean flow interactions (Feldstein and Franzke 2017; Lorenz and Hart-
mann 2003). These patterns span the atmospheric column and peak during winter
storms. Studies also suggest tropospheric NAO links to the stratospheric polar vortex
(Karpechko et al. 2017). Although it is considered a mode of internally-generated climate
variability, external factors do impact NAO, and these include sea surface temperature
anomalies (Baker et al. 2019), cryosphere-atmosphere coupling (Cohen et al. 2014; Screen
et al. 2018), and external forcing like volcanic eruptions and solar activity (Gray et al.
2016; Ineson et al. 2011; Le Mouël et al. 2019; Swingedouw et al. 2017). While internal
variability prevails, extensive observational records and simulations are needed to assess
the forced component within NAO (IPCC 2021a).

• The Pacific-North American (PNA) pattern: The PNA is another prominent large-
scale atmospheric circulation pattern that significantly impacts the climate of both the
North Pacific and North America. It is characterized by four primary centers of action:
a positive anomaly situated over the Aleutian Islands, a negative anomaly extending
across the North Pacific, a positive anomaly positioned over western Canada, and a
negative anomaly spanning the southeastern United States (Wallace and Gutzler 1981).
Similar to NAO, the PNA pattern is defined as the leading EOF of area-weighted SLP
anomalies over the region [20–85N, 120E–120W]. Figure 2.7 shows the PC time series
(PNA index) from mean winter (DJF) anomalies (2.7a) and the corresponding regression
pattern (2.7b). Depending on the signs of the anomalies, the PNA can manifest as
either positive or negative. In a positive PNA phase, a stronger and northward-shifted
jet stream prevails over the North Pacific, while a weaker and southward-shifted jet
stream dominates over the eastern United States. Conversely, a negative PNA phase
leads to the opposite atmospheric circulation pattern (Leathers et al. 1991; Wallace and
Gutzler 1981). Moreover, the PNA plays a vital role in shaping precipitation patterns
within the United States. During a positive PNA phase, wetter-than-normal conditions
prevail over regions like the Pacific Northwest, northern Rockies, Great Lakes, and New
England, while drier-than-normal conditions occur in California, the Southwest, and
the Southeast. The opposite holds true for a negative PNA phase (Leathers et al. 1991;
Wallace and Gutzler 1981).

• The Pacific-South American (PSA) patterns: The PSA modes stand out as prominent
atmospheric circulation features within the Southern Hemisphere (Mo and Ghil 1987).
The PSA, similar in certain aspects to the PNA pattern (Wallace and Gutzler 1981), is
characterized by an atmospheric Rossby wave train that extends from south-eastern
Australia to Argentina. However, distinctively, the PSA modes, namely PSA1 and PSA2,
are defined by two patterns rather than one, forming the second and third EOFs of SLP
anomalies across the Southern Hemisphere. Notably, the first EOF mode corresponds to
the Southern Annular Mode (SAM) which explains most of variability over the Southern
hemisphere. PSA1 and PSA2 are closely linked, as they exist in quadrature, and together
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Figure 2.7.: Similar to 2.6 but for the Pacific North American pattern. (a) The PNA Index is shown as
the PC time series of the leading EOF of mean winter (DJF) SLP anomalies over the North Pacific and
North American region. (b) Regression pattern of DJF SLP anomalies on the PNA Index in (a).

constitute the wave train phenomena. 2.8, shows the PSA1 pattern, i.e. the second EOFs
of area-weighted SLP anomalies south of 20S. The temporal manifestation of PSA modes
ranges from intraseasonal to decadal scales. The PSA patterns exert significant influence
in several domains, notably atmospheric blocking events (Renwick and Revell 1999),
South American rainfall variability (Mo and Paegle 2001), warming trends over West
Antarctica and the Antarctic Peninsula (Marshall and Thompson 2016), and Antarctic
precipitation variability (Marshall et al. 2017).

Coupled modes of variability

The modes above are considered to be outcomes of atmospheric processes. These patterns
still emerge as fundamental modes of variability even when the bottom boundaries are held
constant in extended simulations of atmospheric GCMs. Although contributions from trop-
ical forcing are evident, especially during certain seasons, the dynamics of the atmosphere
alone play the dominant role in the formation of the PNA PSA and NAO patterns. This
section introduces coupled climate variability, which involves diverse interactions between
the atmosphere and other components of the Earth system. In certain situations, these inter-
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Figure 2.8.: Similar to 2.6 but for the Pacific South America mode 1. (a) The PSA1 Index is shown as the
linearly detrended PC time series associated with second EOF of area-weighted SLP anomalies south
of 20S. (b) Regression pattern of annually averaged (ANN) SLP anomalies on the PSA1 Index in (a).

actions can give rise to modes of variability that possess distinct characteristics compared to
the variability that the atmosphere generates independently through its internal dynamics.
This indicates that when the atmosphere is coupled to the rest of the Earth’s system, it can
result in complex patterns that might not arise solely from its inherent processes. The patterns
showcased below are part of diagnostic results derived from the Extended Reconstructed Sea
Surface Temperature version 5 (ERSSTv5), a dataset managed and provided by the NOAA.

• El Niño - Southern Oscillation (ENSO): ENSO is the most prominent coupled
ocean–atmosphere phenomenon that reveals the intricate interplay between the equato-
rial Pacific’s SSTs, wind patterns, and global climate dynamics. ENSO’s central feature
involves the oscillation between abnormal warming (El Niño) and cooling (La Niña) of
the central/eastern equatorial Pacific SSTs, accompanied by shifts in overlaying winds
and precipitation patterns (Neelin et al. 1998; Philander 1990; Wang 2018). This climatic
phenomenon predominantly unfolds on interannual time scales and serves as a key
mode of tropical variability (Trenberth et al. 2002). ENSO’s significance extends beyond
its localized occurrence as it holds substantial influence over global surface temperatures
(Pan and Oort 1983; Trenberth et al. 2002) and drives climate predictability at seasonal to
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interannual scales (Philander 1990; Smith et al. 2012). ENSO indices are among the most
carefully monitored metrics used by meteorological institutes worldwide due to ENSO’s
profound implications for environmental dynamics. ENSO’s influence is evident in
its coupling of equatorial Pacific SST and SLP anomalies. El Niño events, in partic-
ular, are marked by weakened easterly trade winds, reduced equatorial cold tongue,
diminished marine biosphere productivity, and alterations in sea level gradients (Neelin
et al. 1998; Wang 2018). The shift in rainfall distribution during El Niño, impacting the
ITCZ and global atmospheric patterns, also underscores ENSO’s far-reaching influence
(Neelin et al. 1998; Wang 2018). ENSO’s monitoring involves a range of indices, such
as the Niño3 and Niño3.4 regions’ SST anomaly (SSTA) and the Southern Oscillation
Index (SOI) based on normalized SLP anomalies (Troup 1965). The diversity of ENSO
indices arises from the complex nature of its events, exhibiting variations in magnitude,
spatial structure, and seasonal timing (L’Heureux et al. 2017; Pepler 2016). This thesis
utilizes the most commonly used index for ENSO, the Niño3.4 index which is defined
through area-averaged monthly SSTAs over the Niño3.4 region [5N–5S, 170–120W].
Figure 2.9 shows the Niño3.4 index for the historical 1900-2014 period (2.9a) and the
regression of global SSTAs onto the Niño3.4 index during all El Niño winters (2.9b) and
all La Niña winters (2.9c) during the same period (see caption of 2.9).

Figure 2.9.: ENSO 1900-2014 time series and spatial composites from CVDP-LE diagnostics (see 3.4)
using ERSSTv5 data. a) Monthly SSTA time series in the Nino3.4 region (5N–5S, 170–120W, region
outlined by the black rectangle in b and c). b) Global maps of linearly detrended SST based on
compositing all El Niño events (23) using +1 standard deviation threshold of the linearly detrended
December Niño3.4 SST Index during the winter of the following year an event is defined. c) Same as
b) but based on compositing all La Niña events (19) using a -1 standard deviation threshold.
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ENSO’s remarkable predictability, surpassing the usual weather forecast limits, stems
from slowly evolving SSTAs. These anomalies persist from summer through winter,
allowing skilled predictions using statistical or coupled atmosphere–ocean models (Phi-
lander 1990; Smith et al. 2012). These forecasts extend to a variety of variables, offering
valuable insights into seasonal conditions and their repercussions for various aspects of
society and the environment.

• The Pacific Decadal Variability (PDV): Also known as the Pacific Decadal Oscillation
(PDO), PDV reveals itself as an integral mode of internal variability that broadly shapes
the North Pacific region. The name "Pacific (inter)Decadal Oscillation" (PDO), which
Mantua et al. 1997 used to describe the predominate PDV pattern, is at the center of
this discourse. This type of variability, which alternates between positive and nega-
tive phases (2.10a), has observable effects on the ecosystems of the North Pacific and
the Northern Hemisphere’s climate. The PDV index, hereupon synonymous with the
PDO index, serves as a quantifiable representation of this decadal variability pattern.
Here, the PDV index is defined as the standardized PC time series of the leading EOF
associated with area-weighted SST anomalies over the North Pacific region [20–70°N,
110°E–100°W] after subtracting the global mean (70°N–60°S), effectively detrending the
data (see 2.10a; (Mantua et al. 1997)). By regressing the global SSTAs onto the PC
time series, a “horseshoe” pattern is visible in the North Pacific (2.10b). This pattern is
prominent during the positive phase of PDV, which is associated with anomalously cool
SSTAs in the central North Pacific surrounded by anomalously warm SSTAs along the
North American west coast (2.10b). On the other hand, during a negative PDV phase,
the pattern is reversed with warmer SSTAs in the central North Pacific and cooler along
the North American west coast. The exceptional winter in 1976-1977, was later referred
to as “regime shift” as the alteration, initially highlighted by (Nitta and Yamada 1989;
Trenberth 1990), unveiled a noticeable change in the mean state of winter SLP in the
North Pacific. In the subsequent years, the exploration of interdecadal changes in the
Pacific accelerated, with the 1990s witnessing a surge in research endeavors uncovering
mechanisms behind the PDV (Arblaster et al. 2002; Mantua et al. 1997; Meehl et al. 2009;
Power et al. 1999; Zhang et al. 1997). Scientists noticed substantial changes in the North
Pacific biota during that time, which (Ebbesmeyer et al. 1991) assessed using a combined
analysis of meteorological and biological data. Building upon these seminal findings,
(Miller et al. 1994) methodically outlined the resulting climatic changes and attributed
them to the regime shift. With its far-reaching implications, PDV stands as a key ele-
ment of decadal climate variability, influencing ecosystems and climatic processes both
regionally and globally.

• The Atlantic Multidecadal Variability (AMV): Also known as the Atlantic Multi-
decadal Oscillation (AMO), AMV is a notable climatic mode manifesting slow SST
fluctuations extending across decades within the North Atlantic Ocean. This intricate
phenomenon reveals itself through basin-scale SSTAs, reflecting interactions with the
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Figure 2.10.: Pacific Decadal Variability. (a) Principle component (PC) time series associated with the
leading EOF of monthly SST anomalies over the North Pacific (after removing the global mean SST
anomaly) based on the ERSSTv5 data set during 1900–2014; showing the unsmoothed record (red and
blue) and the 5-year moving average (black line). (b) Regression pattern of global SST anomalies onto
the PC time series in (a).

atmosphere over approximately 70-year cycles (Deser et al. 2010). Additionally, the
AMV imprints are illustrated through heat content and density perturbations within the
subsurface ocean, specifically linked to fluctuations in the Atlantic Meridional Overturn-
ing Circulation (AMOC) and related oceanic processes (Zhang 2017). To analyze AMV
signals, various approaches have been employed to disentangle the externally forced
influences from the observed SST data. These encompass linear detrending method-
ologies as well as statistical techniques using both observation-based and model-based
approaches (Frajka-Williams et al. 2017; Frankcombe et al. 2015; Trenberth and Shea
2006). To represent its time evolution here, the AMV index is defined as monthly SST
anomalies averaged over the North Atlantic region (0–60°N, 80–0°W) after subtracting
the global mean (60°N–60°S) to effectively detrend the data and reduce the externally
forced signal (Trenberth and Shea 2006). The AMV time series reconstructed from
reanalysis data of the 1900-2014 period is shown below in 2.10a, with the black line
denoting the smoothed version representing the slow-fluctuating multidecadal inter-
nal variability component. The distinctive positive phase of AMV entails anomalous
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warming enveloping the entire North Atlantic region (IPCC 2021a). This warming is
particularly pronounced in the subpolar gyre, along the sea ice margins in the Labrador
Sea and Greenland/Barents Sea, and to a lesser extent in the subtropical North Atlantic
(2.11b). Simultaneously, cooler SST anomalies appear over the South Atlantic and along
the Pacific cold tongue, a pattern analogous to PDV. Inter-basin interconnections are
clearly visible in AMV-related SSTAs (2.11b), highlighting the intricate network of tele-
connections that connect nearby ocean basins, tropical and extratropical regions, as well
as land and ocean domains.

Figure 2.11.: Similar to 2.10 but for the Atlantic Multidecadal Variability. (a) The AMV Index, defined
as the average monthly SST anomaly over the North Atlantic region (0–60N, region outlined by the
black rectangle) minus the global mean monthly SST anomaly (red and blue). The black line depicts the
10-year low-pass-filtered time series representing the natural component of variability. (b) Regression
pattern of global monthly SST anomalies (after removing the global mean SST anomaly) on the AMV
Index in (a).

• Tropical Atlantic variability: The tropical Atlantic climate exhibits two dominant modes
of variability on interannual to decadal time scales: the Atlantic Zonal Mode (AZM),
also colloquially referred to as the Atlantic Niño, and the Atlantic Meridional Mode
(AMM). These modes exert a substantial influence on climate patterns across various
temporal scales, ranging from sub-seasonal to multi-year durations. The context of
this thesis primarily emphasizes the tropical North Atlantic region in the study of these
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modes. The AZM reaches its mature phase during the boreal summer upwelling season,
characterized by maximum SSTAs in the eastern equatorial Atlantic. It is often analogous
to the Pacific El Niño (Foltz et al. 2019; Keenlyside et al. 2007; Lübbecke and McPhaden
2017; Zebiak and Cane 1993). In contrast, the AMM operates on longer timescales
and exhibits its peak influence during the boreal spring. It is identified by a cross-
equatorial SST gradient with opposite signs in the northern and southern portions of
the Atlantic Ocean. Both the AMM and AZM exert significant control over the ITCZ
and related wind patterns, thereby significantly shaping climate patterns in adjacent
and remote regions. The AMM primarily arises from air-sea heat fluxes and exhibits a
thermodynamic nature (Chang et al. 2000; Foltz 2010). AZM and AMM constitute the
primary and secondary patterns of tropical Atlantic variability. These modes can be
characterized using spatial averages. The AZM is quantified by SST anomalies averaged
over the equatorial Atlantic region (3°S–3°N, 0°–20°W). The AMM can be defined as the
difference between normalized SSTAs averaged over the tropical North Atlantic (TNA)
and tropical South Atlantic (TSA). The regression of SST anomalies onto the AMM time
series (1958-2019) is shown in 2.11, adapted from IPCC 2021a, and where the black outline
represents the region for the EOF definition while the cyan boxes represent the TNA and
TSA regions. Hereupon, the TNA index is defined as the area-weighted monthly SSTAs
over the north Tropical Atlantic region (5.5–23.5 N, 58 W–15 W) (Enfield et al. 1999).
Furthermore, it is worth noting that this thesis places a particular emphasis on the TNA

Figure 2.12.: Visualization of SSTAs regressed onto the AMM time series (not shown). The AMM
during June–July–August (JJA), as represented by the standardized SST difference between the TNA
region and the TSA region of the tropical Atlantic Ocean, as indicated by the cyan boxes. Additionally,
the AMM is also estimated as the leading EOF over the tropical Atlantic Ocean (the region enclosed
by the black box); here for the period spanning 1958 to 2019 using ERSSTv5 data. Figure adapted from
IPCC 2021a.

due to recent studies indicating a potential interplay between tropical North Atlantic
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and tropical Pacific variability at interannual time scales (Ham et al. 2013b; Ham et al.
2013a; Wang et al. 2017a). This teleconnection appears to be modulated over decadal
time scales by the phases of the AMV (Wang et al. 2017a) and is further influenced by
the increasing rate in global warming (Dong et al. 2014).

• Madden–Julian Oscillation (MJO): The MJO represents the predominant mode of
tropical intra-seasonal variability, exhibiting a temporal scale ranging from 20 to 90 days
(Madden 1986). It is considered as a fundamental driver of regional climatic changes
and predictability on the sub-seasonal timescale, encompassing durations ranging from
weeks to months (Madden and Julian 1994; Vitart 2017; Wheeler et al. 2017; Zhang 2013).
This atmospheric phenomenon manifests as planetary-scale disturbances, characterized
by zonal wavenumbers spanning 1 to 3, impacting atmospheric pressure, wind patterns,
cloud formations, and precipitation. These disturbances predominantly propagate east-
ward along the equatorial belt at an average velocity of approximately 5 𝑚.𝑠−1 (Roxy
et al. 2019). More precisely, the MJO manifests as alternating zones of suppressed and
enhanced convection, intricately linked to an anomalous zonal overturning circulation
within the atmosphere (Zhang 2013).

The MJO derives its variability from internal ocean-atmosphere processes that operate
throughout the year. However, it exhibits distinct seasonality, with more pronounced
signals during boreal winter. In contrast, during boreal summer, the centers of convective
activity associated with the MJO migrate away from the equator, typically to latitudes
between 10°N and 20°N. Concurrently, they propagate northward into the Asian mon-
soon region (Madden 1986; Yasunari 1980). The MJO’s impacts can also extend beyond
the seasonal context. Even though an index for the MJO is not explicitly used the results
to be presented in this dissertation (Chapters 4 and 5), this oscillation plays an important
role in shaping the timing and intensity of ENSO events, monsoons, tropical cyclones,
and other related atmospheric phenomena (Lybarger and Stan 2019; Zhang et al. 2001).

There are additional modes of climate variability with significant regional and global
impacts. For example, the Indian Ocean Dipole (IOD) is the prominent mode of climate
variability in the Indian Ocean. Positive IOD is characterized by negative SSTAs in the
southeast equatorial Indian Ocean and weak positive anomalies in the western region.
During negative IOD, this pattern is reversed, with positive SSTAs in the southeast and
negative anomalies in the west (Zheng et al. 2010).

Within the broader context of climate variability, modes like AMV and PDV, exert dis-
tinct modulations on global surface temperature trends across (multi-)decadal intervals
since pre-industrial times. However, quantifying their individual influences remains
challenging due to their intertwined nature and the potential effects of external forcing
(Tung and Zhou 2013; Wu et al. 2011). Therefore, it is important to consider that, at the
essence of climate variability lies the distinction between internally-generated climate
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variability and externally-forced variability, both of which play integral roles in shaping
Earth’s climate and producing distinctive modes of climate variability.

2.2.2. Externally-forced variability

Natural forcing

Changes in the sun’s emission, including variations in the intensity of solar radiation across
different timescales, can externally induce climate variability. The sun’s radiation changes are
linked to interconnected phenomena such as sunspots, faculae, and flares, which arise periodi-
cally in the sun’s active zones. Sunspots are colder regions that break the photosphere’s typical
convection pattern and are accompanied by high magnetic fields. Faculae, on the other hand,
are hotter areas that emit strong magnetic fields and are frequently encountered in association
with sunspots. Flares are powerful bursts of high-energy radiation and particles from the sun’s
outer atmosphere, accompanied by magnetic fields and strong motions (Wallace and Hobbs
2006a). Solar activity follows an approximately 11-year cycle, during which these phenomena
occur in a sequence known as the solar cycle. The sun’s emissions vary with this cycle, and
during active phases, disturbances like sunspots, faculae, and flares are more frequent. Solar
energy heats the Earth’s surface, with about half in the visible short-wave part and the rest
mostly in the near-infrared part of the electromagnetic spectrum. The Earth’s surface absorbs
a significant portion of this energy, warming the land and ocean. The atmosphere also plays
a role in the exchange of energy, with GHGs trapping heat, known as the natural greenhouse
effect (Masson-Delmotte et al. 2021). This effect allows a temperature near the Earth’s sur-
face of about 14°C, while radiating the excess heat back into space (Masson-Delmotte et al.
2021). However, the human emissions of CO2, discussed in the next section, enhanced this
effect to unprecedented levels. Radiative forcing refers to the change in net downward ra-
diative flux at the tropopause or top-of-atmosphere due to an imposed perturbation relative
to a reference state (usually pre-industrial, Masson-Delmotte et al. 2021). Natural external
forcings, like variations in solar radiation or volcanic aerosols, can lead to natural variations
in radiative forcing, either positive (warming) or negative (cooling), prompting the climate
system to restore equilibrium. With their impact on the atmosphere, volcanic eruptions can
cause externally imposed climatic fluctuation. While the geothermal energy released during
volcanism has little impact on global heat balance, the climatic consequences of eruptions
are principally driven by the formation of sulfate aerosols from ejected sulfur dioxide (SO2).
These volcanic particles are removed from the troposphere by cloud droplets in a matter of
weeks. Major eruptions, on the other hand, that send plumes into the lower stratosphere, can
have a considerable impact on the Earth’s climate (Masson-Delmotte et al. 2021; Robock 2000).
Volcanic eruptions can also inject large amounts of water vapor into the stratosphere. Water
vapor is a GHG that can enhance the warming effect of other gases, but it can also form polar
stratospheric clouds that catalyze ozone depletion (Solomon et al. 2010). Since sulfate parti-
cles in the stratosphere deflect solar energy, both direct and total solar radiation reaching the
Earth’s surface are reduced. This scattering effect causes a brief drop in global-mean surface
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air temperature (Masson-Delmotte et al. 2021; Wallace and Hobbs 2006a). The warming of the
lower stratosphere due to aerosol absorption is another consequence of volcanic eruptions.
The cooling effect of volcanic eruptions on the Earth’s surface lasts longer than the lifetime of
stratospheric particles (Masson-Delmotte et al. 2021; Robock 2000; Solomon et al. 2010). This
is due to the involvement of the ocean mixed layer, which has a high heat capacity. Heat fluxes
between the ocean surface and the atmosphere respond to temperature differences induced by
aerosols, dampening the cooling impact of the atmosphere. When aerosols disperse, insola-
tion patterns normalize, the ocean mixed layer gradually recovers lost heat, and global-mean
surface air temperature eventually returns to normal (Masson-Delmotte et al. 2021; Robock
2000). Clouds also influence the Earth’s energy balance, both absorbing and emitting infrared
radiation. The net effect of clouds in the current climate is a slight cooling, as their reflection
of solar radiation compensates for their greenhouse effect (Masson-Delmotte et al. 2021).

Human-induced changes

The emission of GHGs and aerosols from human activities, such as the combustion of fossil
fuels and biomass burning, has significantly impacted the composition of the atmosphere.
Moreover, human-made halogen compounds, like chlorofluorocarbons (CFCs), not only con-
tribute to radiative forcing but also deplete the stratospheric ozone layer. In addition to that,
land use due to urbanization, deforestation, and agricultural practices alter the physical and
biological properties of the Earth’s surface, leading to changes in the radiative forcing and
potential impacts on regional and global climate (Masson-Delmotte et al. 2021). Over the past
thousand years, GHG concentrations remained relatively stable. However, since the Indus-
trial Revolution in the mid-18th century, the concentration of GHGs increased significantly.
Particularly, the concentration of CO2, has risen from 278 parts per million (ppm) in 1750 to
about 420 ppm at the time of writing this thesis (Masson-Delmotte et al. 2021; NOAA 2021).
This increase is unquestionably anthropogenic, as confirmed by the changing isotopic com-
position of atmospheric CO2. Other radiatively active compounds, such as methane (CH4)
and nitrous oxide (N2O), are also experiencing a continuous increase, primarily attributed
to extensive agricultural and industrial activities. The IPCC AR6 (Masson-Delmotte et al.
2021) puts things into context: the report says that from 2011 to 2020, the Earth’s surface
temperature was increased by 1.1ºC compared to the late 19th-century baseline predating
the industrial revolution. This temperature is unprecedented in the past 100,000 years. In a
historical context stretching back to 1850, each recent decade has successively recorded higher
average temperatures, indicating a rapid warming phase unparalleled in the last two millennia
(Masson-Delmotte et al. 2021).The concentration of GHGs in the atmosphere is experiencing
a continual increase due to human-induced emissions. Presently, the levels of carbon dioxide
are the highest observed in over 2 million years, while the concentrations of methane and
nitrous oxide have not been this high for at least 800,000 years (Masson-Delmotte et al. 2021).
The unprecedented rate at which the GHG concentration is increasing enhances the green-
house effect, by increasing the opacity of the atmosphere. Ultimately, this results in even
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higher absorption and emission of infrared radiation. The overall feedback effect amplifies the
temperature increase, making the response of the climate system much more complex than
a simple temperature rise (Masson-Delmotte et al. 2021). One of the most critical feedbacks
in the climate system is the water vapor feedback. As atmospheric temperatures rise due to
increased GHGs, the atmosphere can hold more water vapor, a potent GHG. This leads to a
further increase in the greenhouse effect, trapping more heat in the atmosphere. The strength
of the water vapor feedback has been a subject of concern and study, particularly regarding
its impact on upper tropospheric humidity. The impact of aerosols on the radiative forcing
is complex and varies in space and time. Aerosols scatter solar radiation back into space,
resulting in a negative radiative forcing that might partially offset the enhanced greenhouse
effect. However, aerosols have a short atmospheric lifetime, leading to inhomogeneous re-
gional effects, complicating their overall impact on the climate system (Masson-Delmotte et al.
2021; Neelin 2010). Land-use change is recognized as a significant contributor to changing
local, regional, and global climates. It alters the physical and biogeochemical properties of
the land surface, affecting processes like albedo and greenhouse gas exchange between land
and atmosphere. Urbanization, as a type of land use, creates urban heat islands and can influ-
ence long-term temperature records locally and globally (Masson-Delmotte et al. 2021; Neelin
2010). As mentioned earlier, to understand the climate system’s response to these human-
induced changes, numerical models based on established physical, chemical, and biological
principles are used. These models help quantify the complex non-linear climate response,
considering various coupled components of the climate system with different response times
to perturbations.

2.2.3. Teleconnections: Atlantic - Pacific interactions

In atmospheric science, “teleconnection” refers to the interconnected changes observed in
geographically distant climates, whether they occur simultaneously or with a time lag. Each
of the modes introduced in 2.2.1 has its own principal center of variability: the North Atlantic
for NAO and AMV, the tropical Pacific for ENSO, and the tropical/North Pacific for PDV. In
terms of timescale, ENSO occurs on interannual timeframes, whereas PDV and AMV occur
across decades. These oscillations coexist, but they interact and evolve over time, adding
complexity to understanding their regional climatic implications. These interactions can even
produce unexpected patterns, causing an oscillation’s influence on regional climate to diverge
from what was expected.

The intricate connections between the Atlantic and Pacific basins have been the focus of
extensive research, spanning different timescales and revealing a range of influencing mech-
anisms (Latif and Grötzner 2000; McGregor et al. 2014; Meehl et al. 2016; Meehl et al. 2021a;
Ruprich-Robert et al. 2017). These interactions involve complex processes through which one
basin can influence the other and vice versa, leading to significant interannual-to-decadal
climate variability in both regions. A tropical pathway for the Atlantic-Pacific connection is
mainly driven by modifications in the Walker circulation that affect large-scale tropical weather
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systems (Kucharski et al. 2007; McGregor et al. 2014; Nnamchi et al. 2015). Moreover, the con-
nection between the two basins is also established through extratropical routes. For example,
in the northern hemisphere, the PNA and NAO teleconnections not only link the Atlantic
and Pacific basins but also exert considerable influence over Arctic sea ice responses (Galytska
et al. 2023; Meehl et al. 2018; Polyakov and Johnson 2000) and shape European climate (Brönni-
mann 2007). Understanding these connections is essential for predicting and comprehending
long-term climate patterns and their impacts on weather systems and ecosystems.

Previous investigations have shown a bidirectional relationship, where changes in one basin
can impact the other, often mediated by the tropical Indian Ocean (Kumar et al. 2014; Levine
et al. 2017; Li et al. 2016; Yang et al. 2020). Specifically, on the decadal timescale, (Meehl
et al. 2021a) underscored how a positive AMV phase can lead to a negative PDV phase mainly
through altered Walker circulation (Fig. 2.13a). During the subsequent decades, the negative
PDV is found to drive a negative AMV. In addition to the Walker circulation, this interplay
also involves the influence of convective heating and precipitation anomalies in the tropical
Pacific, triggering connections to extratropical atmospheric variability modes like the PNA
and PSA (Meehl et al. 2021a; Fig. 2.13b). On shorter timescales, a recent study by Park
et al. 2023 explored inter-basin interactions between the Atlantic and Pacific, revealing how
ENSO affects SSTAs of the north Tropical Atlantic (NTA; 0°–15°N) during spring and summer
through both tropical and extratropical pathways. The TNA is a region of the Atlantic Ocean
that is strongly influenced by the ENSO SST variability (Park et al., 2019). Atmospheric
teleconnections connect ENSO and NTA on seasonal to interannual timescales. ENSO has
been proven in studies to have an impact on SSTAs in the NTA during the spring and summer
via both tropical and extratropical pathways (Park et al. 2023). SST variability in the NTA, on
the other hand, has the potential to impact subsequent ENSO events over the following boreal
winter by changing anomalous low-level zonal winds via atmospheric teleconnections over the
equatorial western Pacific (Park and Li 2019; Park et al. 2023) Previous studies proposed similar
mechanisms for the ENSO teleconnection to SSTAs over the TNA region (i.e. 5.5°–23.5°N,
overlapping with the 0°–15°N NTA region). Due to their overlapping spatial projection, in the
context of cross-basin interactions, both TNA and NTA regions capture the interplay between
the Atlantic and the Pacific. However, in this thesis, the TNA index is used to represent the
tropical Atlantic variability as it separates the northern part of the AMM, in contrast with
the NTA which includes regions where the AZM and TSA are defined (see 2.2.1). According
to previous studies, we can summarize mechanisms connecting Atlantic and Pacific tropical
SSTs as follows:

• The impact of ENSO on tropical Atlantic:

1. Extratropical Rossby wave train: this mechanism involves an atmospheric wave
train (PNA-related) that propagates from the North Pacific to the North Atlantic,
modulating the strength of the Azores anticyclone (NAO-related) and the trade
winds in winter. This affects the latent heat flux and the mixed layer depth in the
TNA region, affecting SST anomalies in spring (Enfield and Mayer 1997).
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2. Atmospheric bridge: this mechanism involves a change in the Atlantic Hadley
circulation induced by the PWC, affecting the subtropical high pressure and the
trade winds in winter. This also affects the latent heat flux and the mixed layer
depth in the TNA region, leading to SST changes in spring (Klein et al. 1999).

3. Tropospheric temperature mechanism: involves an eastward propagation of a
Kelvin wave front triggered by the ENSO heating anomaly in the tropical Pacific,
influencing the upper-tropospheric temperature and moist convection in the tropi-
cal Atlantic. This affects the shortwave radiation and the stability of the mixed layer
in the TNA region, leading to SST anomalies in spring (Chiang and Sobel 2002;
Chiang and Lintner 2005; Yulaeva and Wallace 1994).

4. Remote Gill-type response: another mechanism involving changes in the PWC
is the secondary Gill-type response to the zonally compensated heat source over
the Amazon basin following ENSO, proposed by (García-Serrano et al. 2017). This
mechanism generates a baroclinic anticyclonic anomaly over the TNA region that
weakens the trade winds and reduces evaporation and ocean mixing in spring
(DeWeaver and Nigam 2002, 2004; Sasaki et al. 2015).

Note that the nature of these ENSO-driven teleconnections to the TNA is influenced by
NAO and the AMM, which can either reinforce or dampen the relationship. During
spring, warmer SSTs than usual are observed over the TNA region. This warmth leads
to stronger convection; essentially, the vertical movement of warm, moist air that triggers
clouds and precipitation (Ham et al. 2013b).

• The impact of tropical Atlantic on ENSO:

1. The Rossby wave response to the west of the anomalous heat source over the TNA
enhances the trade winds over the northeastern Pacific and cools the SST there
(Ham et al. 2013a).

2. The Kelvin wave response to the east of the anomalous heat source over the TNA
interacts with the monsoonal westerly over the northern Indian Ocean and the
Marititime Continenet and induces warm SST and positive heating anomaly there
(Rong et al. 2010; Yu et al. 2016).

3. The wind–evaporation–SST–convection (WESC) feedback over the northern In-
dian Ocean and Maritime continent further generates easterly anomalies over the
equatorial western Pacific and triggers La Niña (Giannini et al. 2000; Jiang and Li
2021; Li et al. 2017).

Regimes of Atlantic-Pacific interactions between 1950-2014

The relationship between the TNA and ENSO has changed over time, with the influence
of TNA on ENSO strengthening since the mid-1980s, linked to a positive phase shift of the
AMV and/or human-caused warming (Meehl et al. 2021a; Park and Li 2019; Park et al.
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2023). In contrast, the effect of ENSO on the TNA has decreased during the same period,
leading to the identification of two contrasting regimes: a Pacific-driven regime from 1950
to the mid-1980s and an Atlantic-driven regime from the mid-1980s to 2014 (Meehl et al.
2021a; Park et al. 2023). These contrasting regimes span multiple decades and are crucial in
understanding the inter-basin interactions between the Atlantic and Pacific Oceans. Figure
2.14, adapted from Park et al. 2023 explains how the Pacific and Atlantic basins interact in
two contrasting ways, providing insights, into the mechanisms that shape the relationship
between these basins. In Fig. 2.14a shows the Pacific-driven regime, which emphasizes the
role of connections generated by ENSO across both extratropical regions. This leads to dipole
patterns of SSTAs across the Atlantic ITCZ that resemble the AMM from spring to summer. As
a result there is a contrast in precipitation along the ITCZ, where opposing reactions balance
each other out in the Pacific. This scenario reduces the influence of the Atlantic on the Pacific.
On the hand, Fig. 2.14b illustrates an Atlantic-driven regime where ENSO’s impact on the
Atlantic is weakened. During this period, internal variations in circulation within the basin
play a significant role in shaping monopole SSTA field resembling patterns seen in NAO-like
atmospheric circulation. This monopole SSTA is accompanied by an overall enhancement of
precipitation in the tropical Atlantic, leading to the modulation of zonal winds. As a result,
signals originating in the tropical Atlantic are propagated to the tropical Pacific, exerting a
modulatory impact on ENSO events. Lead-lag correlation during the 1948-2020 revealed,
according to Park and Li 2019; Park et al. 2023, that the Pacific basin influence on the Atlantic
is more easily established than vice versa.

35



2. Scientific Background

Figure 2.13.: Atlantic-Pacific interactions on decadal timescales. a) Schematic illustrating how a positive
AMV leads to an opposing negative response in PDV-associated SSTs within the tropical Pacific. This
phenomenon primarily occurs through the influence of the tropical Walker circulation. Background
SST similar to pattern in 2.11. b) Similar representation to panel a, except in this scenario, a positive
PDV in the tropical Pacific corresponds to a positive AMV in the tropical Atlantic. This interaction is
driven by both the tropical Walker circulation and extratropical teleconnections. These teleconnections
arise from positive anomalies in precipitation and convective heating in the tropical Pacific which
result in the formation of a specific PNA pattern across North America, characterized by a sequence
of anomalous low–high–low SLP patterns (L—H—L), and a comparable PSA pattern across South
America. Background SST similar to pattern in 2.10. Figure adapted with permission from Meehl et al.
2021a.
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Figure 2.14.: Diagram depicting the inter-basin interactions between the Pacific and Atlantic. a) The
formation of a tropical Atlantic mode throughout winter to late spring, and its impact on the tropical
Pacific from late spring to the next winter in the Pacific-driven regime (e.g. 1950–1983). The red, blue,
and gray shadings represent SSTA warming, cooling, and normal conditions, respectively. Dark blue
solid arrows represent low-level atmospheric circulation associated with PNA and NAO. The dotted
red and blue arrows represent atmospheric teleconnections that cause warming and cooling of the
underlying SSTAs, respectively. The straight red and blue arrows represent unusual low-level winds.
The green and brown hatching lines indicate increased and decreased precipitation, respectively. b) is
analogous to (a), but for the Atlantic-driven regime (e.g. 1985–2014). Figure adapted from Park et al.
2023.
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3.1. Coupled Model Intercomparison Project Phase 6 (CMIP6)

To facilitate a nuanced understanding of the complex interactions introduced in the previous
Chapter, this thesis employs ESMs from the most recent phase of CMIP, Phase 6 (CMIP6,
Eyring et al. 2016). Historical CMIP6 simulations are driven by a range of forcings, both natu-
ral (e.g., solar and volcanic) and anthropogenic (e.g., GHGs, aerosols, and land-use changes),
covering the period from 1850 to 2014. The scope of our analyses, however, is confined
to the sub-periods 1900-2014 (Chapter 4) and 1950-2014 (Chapter 5). In the context of en-
hanced model sophistication and carefully curated datasets, the study gains additional rigor
by utilizing large ensembles of CMIP6 historical runs. Despite persistent debates around the
"signal-to-noise paradox" within the domain of climate modeling (Chylek et al. 2020; Klavans
et al. 2021; Klavans et al. 2022; Sato et al. 2018; Scaife and et al. 2014; Smith et al. 2019; Wang
et al. 2017a), large ensembles have proven instrumental in delineating observed climatic trends
and attributing anthropogenic influences therein (Borchert et al. 2021; Deser and Phillips 2023;
Deser 2020; Klavans et al. 2022; Meehl et al. 2013; Menary et al. 2020; Tebaldi et al. 2021). Such
ensembles afford a robust sampling of internal model variability and facilitate the assessment
of changes driven by external forcings (Borchert et al. 2021; Deser and Phillips 2023; Klavans
et al. 2022; Menary et al. 2020). Consequently, these large ensembles serve as an invaluable
tool for this thesis, providing comprehensive coverage of historical natural and anthropogenic
external forcings. Furthermore, this thesis does not only utilize historical simulations; more
specifically, Chapter 5 also incorporates a CMIP6 pre-industrial control simulation to repre-
sent conditions prior to the large-scale industrialization that began in 1850. Additionally, an
ensemble of pacemaker simulations, where equatorial Pacific SSTs have been adjusted to ob-
served values, is utilized to scrutinize Atlantic-Pacific interactions in Chapter 5. Each section
provides further details on the specific models employed for the analyses.

3.2. Reanalysis and observational datasets

In general, models are frequently compared to observational or reanalysis datasets (based on
observations) in order to test their realism. Observations encompass a wide range of climate
variables, such as temperature, precipitation, sea level, and atmospheric composition, gath-
ered through instruments, satellites, and ground-based measurements. Reanalysis datasets
merge observations from various sources, including weather stations, satellites, and ocean
buoys, with the aid of sophisticated data assimilation techniques. Reanalyses offer a compre-
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hensive, spatiotemporally consistent picture of the Earth’s climate system, with the advantage
of extending back in time. The iterative process of model evaluation and refinement is central
to advancing the fidelity of ESMs, enabling more accurate climate projections, and ultimately
enhancing our understanding of the Earth’s intricate climate system. More details on the dif-
ferent observational and reanalysis datasets used in this thesis are presented in the respective
Chapters 4–5.

3.3. Empirical orthogonal function (EOFs)

Effective analysis of complex nonlinear dynamic systems requires interpreting high-dimensional
datasets with spatiotemporal correlations (Chang and Chao 2014; Hannachi et al. 2007). To
tackle this, reducing correlated variables to fewer unobserved ones is common (Bjornsson
and Venegas 1997; Chang and Chao 2014; Navarra and Simoncini 2010). However, challenges
like regional dependencies, data gaps, and nonlinearity arise (Kondrashov and Ghil 2006; Xu
2016). A principal component analysis (PCA) based on EOFs is a powerful spatiotemporal
statistical approach that stands out for addressing such challenges (Jolliffe 1990). However,
unlike traditional statistical tests, there is no predefined probability distribution or underlying
physical principles guiding EOF analysis. Instead, it partitions a field into mathematically
orthogonal modes, often interpreted as atmospheric or oceanographic structures. This tech-
nique uncovers dominant patterns by decomposing them into distinct spatial and temporal
modes (Bjornsson and Venegas 1997; Jolliffe 1990). This method enhances signal-to-noise
ratio and quantifies variations (Uwamahoro et al. 2019), playing a pivotal role in prediction,
estimation, and detection (Kim and North 1997). It adapts to data without a priori information,
making it data-driven and easy to implement, with extensions for different data types (Chang
and Chao 2014; Hannachi et al. 2007; Neha and Pasari 2022). Typically, EOFs are deduced
by computing the eigenvalues and eigenvectors of a spatially weighted anomaly covariance
matrix of a given field. The spatial weighting is typically based on quantities like the cosine of
latitude, or the more suitable square-root of cosine of latitude. The set of equations for the PCA
analysis can be found in textbooks about statistical methods used in atmospheric sciences,
e.g. (Wilks 2011). Eigenvalues offer insights into the proportion of variance accounted for
by each mode, although sampling issues might blur their distinctiveness. A heuristic from
North 1984 provides insights into discerning distinctive eigenvalues. Physical interpretation
of EOFs might face two challenges: the orthogonality constraint and domain-dependent
patterns. Real-world systems often lack orthogonality, and the patterns’ existence might
be contingent on the chosen geographical domain. Nevertheless, despite these limitations,
classical EOF analysis remains valuable (Shea 2023, last access: 15 September 2023). The utility
of EOFs have been demonstrated through the examples of the PC time series and regression
patterns of some of the main modes of climate variability discussed in Section 2.2.1 (e.g. NAO,
PNA,PSA1, PDV). Furthermore, deriving indices and spatial patterns of major modes using
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EOF analysis has been an essential part in the preprocessing and analysis underlined in both
Chapter 4 & Chapter 5.

3.4. Diagnostics for climate variability analysis

In order to scrutinize crucial aspects of inherent climate fluctuations, the study in Chapter 4
utilizes the CVDP-LE (Phillips et al. 2020), an analytical framework developed by NCAR. This
framework is designed to specifically analyze large ensemble climate model outputs, offering
a range of diagnostics for calculating key indices of coupled ocean-atmosphere and large-scale
atmospheric climate variability, such as the ones discussed in Section 2.2.1. The package also
provides the capability for evaluating these model-based diagnostics against benchmark ob-
servational databases on both temporal and spatial scales. The CVDP-LE diagnostics used in
Chapter 4, are publicly available in the form of NetCDF files through the Climate Variability
and Change Working Group (CVCWG) CVDP-LE Data Repository affiliated with the Commu-
nity Earth System Model (CESM). Within this section, the modes of interest are AMV, PDV,
PNA and PSA1, discussed in detail earlier in Section 2.2.1.

3.5. Time-series causal discovery

In climate science, traditional statistical methods have limitations in capturing causal rela-
tionships among variables. These limitations necessitate alternative methodologies capable
of identifying and interpreting causal mechanisms. The methodology in this thesis aims to
address this need. According to Pearl and Mackenzie, causal inference is the science of dis-
covering how things affect each other in the real world based on the idea that we can use data
and logic to discover the causal relationships among variables, and to answer questions about
what would happen if we intervene or change some of the variables (Pearl and Mackenzie
2018). Causal inference goes beyond the traditional statistical methods that only measure
associations or correlations, and aims to reveal the underlying mechanisms and structures
that produce the observed phenomena. In the realm of causal inference, we refer to causal
discovery as the process of reconstructing a full causal graph from data and underlying as-
sumptions, translating the causal relationships among variables (Pearl and Mackenzie 2018;
Peters et al. 2017). In climate research, understanding the causal relationships behind ob-
served phenomena is crucial. While commonly used techniques like Pearson correlation and
linear regression models are useful for identifying associations between variables, they fall
short when it comes to uncovering the underlying causes driving these relationships (Runge
et al. 2015). Pearson correlation, for instance, can mistakenly identify connections between
variables due to confounding factors or autocorrelation. Granger causality (Granger 1969),
which accounts for autocorrelation, has been applied to detect climate system teleconnections,
revealing statistically robust relationships supported by physical mechanisms. However, it has
limitations, primarily detecting lagged causal dependencies and potentially spurious causal
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links in low-resolution data. Additionally, the traditional bivariate form of Granger causality
cannot handle common drivers (Bathiany et al. 2018; Runge et al. 2014; Runge et al. 2019a).
This is where the causal discovery method used in this thesis brings an advantage. Such
methods make use of general assumptions about underlying processes to fully account for
common causes and reconstruct causal relationships among multiple variables. They provide
a valuable means of gaining deeper insights into causal processes and can be viewed as an
interpretable technique within the field of machine learning (Xu et al. 2020). In the domain of
time series causal discovery within complex dynamical systems, the objective is to statistically
estimate causal connections, including their temporal lags. This is particularly relevant for
climatic teleconnections, which manifest over varying time scales. The task can be complicated
due to the high dimensionality of the variables and their interconnected nature. In systems
with multiple variables, such as regional climate indices, correlations can result from multiple
factors including autocorrelation within the series, or because of common drivers. Effective
causal discovery aims to enhance the identification of true causal links while minimizing
false positives (Runge et al. 2019b). These methods are valuable for gaining insights into the
underlying physical processes, enhancing predictive models, and providing reliable estimates
of causal strengths.

3.5.1. PCMCI+ algorithm

One widely employed framework for causal discovery is the conditional independence-based
approach. This method relies on several key assumptions, including time-order, causal suf-
ficiency, the Causal Markov condition, and faithfulness. It utilizes iterative conditional inde-
pendence testing and has found application in various climate research areas (Bathiany et al.
2018; Di Capua et al. 2020; Ebert-Uphoff and Deng 2012; Runge et al. 2014; Runge et al. 2019a)
including exploring pathways of teleconnections (Galytska et al. 2023; Karmouche et al. 2023a;
Kretschmer et al. 2021), investigating cold-air outbreaks (Polkova et al. 2021) or conducting
process-oriented climate model evaluations (Karmouche et al. 2023a; Nowack et al. 2020). The
Peter Clark Momentary Conditional Independence (PCMCI) algorithm is a powerful causal
discovery tool for time series data, addressing some of the limitations of previous approaches
like the naive adaptation of the PC algorithm (named after its authors, Peter Spirtes and Clark
Glymour; Spirtes and Glymour 1991; Spirtes et al. 2000). PCMCI operates under specific as-
sumptions, including the absence of contemporaneous causal influences and the assumption
that the causal relationships remain stationary over time (Runge et al. 2019a). To facilitate
the causal analyses within this framework, we utilize in Chapter 4 & Chapter 5 the Tigramite
Python package (Runge 2022), an open-source tool 1 designed to efficiently estimate causal
graphs from time series datasets and which includes implementations of different PC-based
algorithms. Time series data poses unique challenges, notably autocorrelation, which can lead
to ill-calibrated conditional independence tests and low detection power. PCMCI techniques
address these issues to some extent by employing a specific selection of conditioning sets in

1Available at https://github.com/jakobrunge/tigramite (last accessed on 17 September 2023)

42

https://github.com/jakobrunge/tigramite


3.5. Time-series causal discovery

the independent tests that determine the presence or absence of an edge between a given pair
of variables. PCMCI+, implemented through the Tigramite package, extends these capabil-
ities of PCMCI by allowing for contemporaneous edges while maintaining rigorous control
over causal cycles and latent confounders (Runge 2020). PCMCI+ comprises three phases as
illustrated in Figure 3.1a:

Figure 3.1.: a) Schematic illustrating the three phases of PCMCI+ algorithm applied to a time-dependent
system given by the variables 𝑋, 𝑌, 𝑍. Details on each phase are explained in the text below. Panel (a)
is adapted from Runge 2020. b) Application to real data. Constructing causal networks through the
application of PCMCI+ to time series data of modes of climate variability from reanalysis datasets (left).
In the causal network representation (right), each node corresponds to a variable (as seen in the left
time series), with node color indicating the auto-correlation (representing self-links for each variable).
The color of the links between nodes signifies the cross-MCI partial correlation value, which conveys
both the sign and strength of the inferred causal relationship between two variables. Additionally,
the time lag associated with lagged links (curved arrows) is denoted by small labels positioned on the
links, while straight lines indicate instantaneous causal links occurring with no temporal delay. Panel
(b) is adapted from Karmouche et al. 2023a

• PC1 lagged phase (skeleton discovery): In the context of a time-dependent system
denoted as 𝑋𝑡 , comprising 𝑁 variables Xt = (𝑋1

𝑡 , ..., 𝑋
𝑁
𝑡 ), the initial phase of skeleton

discovery is initiated with the application of the PC1 Markov set discovery algorithm
(Fig. 3.2a illustrates the case for Xt = 𝑋,𝑌, 𝑍). This algorithm, rooted in the PC algorithm
(Spirtes et al. 2000), is employed on an initially fully connected graph. During each sub-
step of the skeleton phase (indexed as 𝑝), starting at 𝑝 = 0 and successively increasing
𝑝 in increments of one, the iterative PC1 procedure systematically examines each pair
of lagged nodes (variables), represented as (𝑋 𝑖

𝑡−𝜏 , 𝑋
𝑗

𝑡 ), to determine their conditional
independence in the presence of judiciously selected conditions derived from other
lagged variables. Subsequently, if conditional independence is established, the algorithm
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removes the adjacency linking these nodes. Notably, during this phase, the lagged
conditions are instrumental in estimating, for each variable 𝑋

𝑗

𝑡 , an encompassing set
of lagged parents, denoted as ℬ̂𝑡−(𝑋𝑡 𝑗), which subsequently guide the orientation of
adjacencies in a time-sequential manner (left panels in Fig. 3.2a). However, it’s important
to note that this phase may still contain spurious connections arising from autocorrelation
and false positives. Effectively addressing these challenges is handled in the next phase.

• Momentary conditional independence (MCI) phase, contemporaneous and lagged:
The primary objective of this phase is to conduct conditional independence tests to
further refine the skeleton discovery of causal relationships by eliminating spurious
connections. This is done through a series of MCI tests, which employ partial correlation
as the underlying statistical tool to examine the null hypothesis:

𝑋 𝑖
𝑡−𝜏 ⊥⊥ 𝑋

𝑗

𝑡 |𝒮 , ℬ̂
−
𝑡 (𝑋

𝑗

𝑡 ) \
{
𝑋 𝑖
𝑡−𝜏

}
, ℬ̂−𝑡−𝜏(𝑋 𝑖

𝑡−𝜏) (3.1)

These tests assess the conditional independence of variables 𝑋 𝑖
𝑡−𝜏 and 𝑋

𝑗

𝑡 with respect
to a set of variables denoted as 𝒮, conditioned on the lagged conditions ℬ̂−𝑡 (𝑋

𝑗

𝑡 ), and
the time-shifted lagged conditions of 𝑋 𝑖

𝑡−𝜏 previously acquired during the initial phase
ℬ̂−𝑡−𝜏(𝑋 𝑖

𝑡−𝜏). This iterative process encompasses subsets 𝒮 from the set Xt, representing
contemporaneous adjacencies. The computed partial correlation tests yield a 𝑡-statistic
and the degrees of freedom for these tests are determined by the effective sample size,
calculated as

𝑛 − 2 − |𝒮 , ℬ̂−𝑡 (𝑋
𝑗

𝑡 )) \ {𝑋
𝑖
𝑡−𝜏}, ℬ̂−𝑡−𝜏(𝑋 𝑖

𝑡−𝜏)}|

The outcome of this phase is a causal graph characterized by both lagged and contem-
poraneous connections (central panels in Fig. 3.2a). Subsequently, the algorithm enters
a collider orientation phase, which further refines the orientation of contemporaneous
links.

• Orientation (Collider) Phase: This phase is predicated on identifying unshielded triples
of the form 𝑋 𝑖

𝑡−𝜏 − 𝑋 𝑘
𝑡 − 𝑋

𝑗

𝑡 , where 𝜏 ≥ 0. If 𝑋 𝑘
𝑡 does not belong to the separating set

𝒮, which establishes the conditional independence between 𝑋 𝑖
𝑡−𝜏 and 𝑋

𝑗

𝑡 , the triple is
oriented as 𝑋 𝑖

𝑡−𝜏 → 𝑋 𝑘
𝑡 ← 𝑋

𝑗

𝑡 . The orientation process continues, ensuring that the
resultant graph remains acyclic (right panel in Fig. 3.2a), adhering to predefined rules
(R1-R3, as outlined in Runge 2020).

Various attributes of the derived causal relationships can be discerned directly from the
network (right panel in Fig. 3.2b). These include the directionality, sign, and magnitude of
the cross-MCI values, as well as the time lags, denoted by 𝜏, associated with each link. Each
node in the network is indicative of a time series and its color represents its auto-correlation.
Similarly, the color of the links translates the sign and strength of the corresponding causal
relationship. Lagged relationships are depicted by curved arrows, annotated with small
labels showing the time lags. If multiple significant time lags are identified for a single link,
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the label will display them sorted by strength. The resulting graph encompasses directed
lagged and contemporaneous links, along with unoriented adjacencies. These unoriented
adjacencies may indicate either Markov equivalence, where collider and orientation rules are
inapplicable (o-o), or conflicting adjacencies, a result of rule conflicts stemming from finite
sample issues (x-x). The strength of the links can be estimated in various ways, such as
standardized (causal) regression coefficients (Runge et al. 2015; Runge 2021). In Figure 3.1b
and the results in Chapter 4, the link strengths are shown as MCI partial correlation values
(cross-MCI) corresponding to the aforementioned conditional independence test statistic. In
next section’s proof of concept (Section 3.5.2) and Chapter 5, we quantify link strengths using
standardized regression coefficients, as outlined in Runge et al. 2015, employing a linear
mediation model based on the original parents identified by PCMCI+. More specifically, we
assess the influence of each variable 𝑋

𝑗

𝑡 on its respective parents, 𝑝𝑎(𝑋 𝑗

𝑡 ). Subsequently, the
regression coefficients associated with each parent provide a link coefficient that holds a causal
interpretation within the given assumptions. Assuming the variables 𝑋 and𝑌 are represented
by their time series and considering a time lag 𝜏, under the assumption of causal sufficiency
and the appropriateness of the linear model, the link coefficient (referred to as link coeff.) for
𝑋𝑡−𝜏 → 𝑌𝑡 , explains how the expected value of 𝑌𝑡 (measured in standard deviation units) will
change following a one standard deviation change in 𝑋𝑡−𝜏.

A comprehensive explanation of the original PCMCI methodology and its PCMCI+ exten-
sion, complete with their corresponding pseudo-code, proofs substantiating their asymptotic
consistency, and empirical validations, can be located in the works by Runge et al. 2019b and
Runge 2020, respectively. These scholarly contributions also discuss the foundational assump-
tions that underlie the interpretability of the identified connections within a causal context.
It is imperative to highlight that, given the potential influence of latent confounding factors,
the causal graphs generated by these methodologies strictly pertain to the variables under
examination. The application of more sophisticated approaches (Gerhardus and Runge 2020),
tailored to handle latent variables, would significantly compromise the reliability of causal
graph inferences, particularly when dealing with the constrained sample sizes characteristic
of the climatic research studies presented in this thesis.

3.5.2. Proof of concept: the 1997/1998 El Niño

The analysis and results in this section’s proof of concept are part of a recently submitted paper
to Earth System Dynamics (Karmouche et al. 2023b) where the author of this thesis was the first
author and led the study, the writing of the manuscript, and performed all the analysis.

The ENSO phenomenon (described in Section 2.2.1) has been a subject of intense scientific
interest due to its profound impacts on global climate patterns. Among the ENSO events,
the El Niño of 1997/1998 stands out as one of the most powerful and influential episodes
in recorded history. The processes and feedbacks involved with this event are relatively
well understood and documented (Lengaigne et al. 2003; McPhaden 1999). Thus, as a proof
of concept for our methodology, we apply causal discovery to analyze this event and to
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physically interpret it in the context of well-known processes. This will provide insight
to point toward the causal analysis in this paper of the less well-understood interactions
between the Pacific and the Atlantic. Through the application of the PCMCI+ causal discovery
algorithm, we identify potential cause-and-effect relationships among the selected variables,
shedding light on the intricate interactions that contributed to the onset and intensification
of the 1997/1998 El Niño event. Candidate variables for this case study, which have been
used in previous studies (Lengaigne et al. 2003; McPhaden 1999; Neelin et al. 1998; Trenberth
1997; Wang 2018) and thus applied here include SSTAs over the Niño3.4 region (SST Niño3.4),
precipitation anomalies over the central Pacific (Precip CPAC), the wind stress over the west
Pacific (WindStress WPAC), the Pacific east-west SLP anomaly gradient (SLPgrad EPAC-WPAC),
and the depth of the thermocline in the eastern Pacific (TclineDepth EPAC). We extract these
variables as monthly averages between January 1995 and December 1999 from the National
Center for Environmental Prediction-National Center for Atmospheric Research reanalysis
1 (NCEP-NCAR-R1) dataset (Kalnay et al. 1996), the Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST) dataset (Rayner et al. 2003), and two reanalysis datasets from the
ECMWF, namely, the Ocean Reanalysis System 5 (ORAS5) dataset2 and ERA5 (Hersbach et al.
2023). This means that the PCMCI+ data frame in this section has a length of 60 time steps
(months) with 5 variables, which are listed in Table 3.1 with their respective details.

Table 3.1.: Climate variables used in the 1997/1998 El Niño case study carried out in Karmouche et al.
2023b

Variables (nodes) Dataset Definition Region

SST Niño3.4 HadISST SSTAs over the Niño3.4
region [◦C]

5S − 5N, 170W − 120W

Precip CPAC ERA5 Central Pacific Precipi-
tation Anomalies [m]

5S − 5N, 170W − 120W

WindStress WPAC ORAS5 West Pacific Wind
Stress Anomalies
[N m−2]

5S − 5N, 140E − 170E

SLPgrad EPAC-WPAC NCEP Reanal-
ysis 1

East-West Sea Level
Pressure Anomaly Gra-
dient [Pa]

[5S − 5N, 100E − 160E]
minus [5S−5N, 100W−
160W]

TclineDepth EPAC ORAS5 Depth of 20C Isotherm
in the Eastern Pacific
[m]

5S − 5N, 150W − 120W

The Tigramite package offers the ability to plot causal networks where nodes represent the
time series associated with each climate variability index. Node colors indicate the coefficient
of the self-links (auto-coefficient) for each time series, and the colors of the links (arrows) denote
the linear link coefficients, with blue indicating opposite-sign (negative) inter-dependency and
red indicating same-sign (positive) inter-dependency strength. The link-associated time lags

2Copernicus Climate Change Service, Climate Data Store 2021
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are shown as small labels on the curved links. If a lagged link is detected more than once,
the indicated lags are sorted by strength (sorted by the absolute value of the link coefficient).
During this proof-of-concept section, we estimate dependencies only for lags between 1 and
3 months (𝜏𝑚𝑖𝑛 = 1, 𝜏𝑚𝑎𝑥 = 3). This is due to data availability and also because the inter-
dependencies happening on a daily-to-weekly timescale are not within the scope of this paper.
For this ENSO study, the PCMCI+ algorithm detected causal links that can be summarized
through the causal network shown in Figure 3.2. We show the time series of each variable
next to each node shown in the causal network.

Figure 3.2.: Causal networks illustrating lagged causal connections among the variables outlined in
Table 3.1 for the 1997-1998 El Niño event. These networks were constructed using the PCMCI+, applied
to the detrended time series of each variable spanning from January 1995 to December 1999. Within
these networks, nodes represent the time series corresponding to each climate variable (please refer
to Table 3.1 for node labels and descriptions). Node colors signify the self-link coefficients for each
time series (referred to as auto-coefficients, as indicated by the color bar), while the color of the links
indicates the linear link coefficient (referred to as link coefficients, as indicated by the color bar). The
time lags associated with the links are depicted as small labels on the links, with each unit representing
a one-month interval. Figure adapted from Karmouche et al. 2023b.

The results obtained from the PCMCI+ algorithm confirm previous insights into the mech-
anisms leading to the 1997/1998 El Niño event by identifying significant causal links among
the variables. One crucial node with multiple originating links is WindStress WPAC, indicating
its central role in driving various aspects of the 1997/1998 El Niño phenomenon.

• Causal Links Originating from WindStress WPAC:

1. WindStress WPAC → TclineDepth EPAC: with a 1-month lag and as same-sign re-
sponse. This link indicates that the westerly wind burst in the West Pacific con-
tributed to an increase in the thermocline depth in the Eastern Pacific during the
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following month (associated with an eastward propagating downwelling Kelvin
wave in the ocean as previously documented (Lengaigne et al. 2003; McPhaden 1999;
Wang and Picaut 2004).As the thermocline deepens in the east, upwelling brings
up warmer water from the thickened thermocline, contributing to the warming of
SSTs in the central and eastern equatorial Pacific.

2. WindStress WPAC→ SST Niño3.4: with a 2-month lag and as same-sign response.
This link indicates that as the wind stress over the West Pacific increases, it causes
the SST anomalies over the Niño3.4 region to increase with a lag of 2 months. The
deepening of the thermocline in the east and the reduction in the upwelling of
colder waters further contribute to the anomalous warming of SSTs in the central
and eastern equatorial Pacific.

3. WindStress WPAC → SLPgrad EPAC-WPAC: with a 3-month lag and as opposite-
sign response. This link indicates that the westerly wind burst in the West Pacific
contributes to a three-month lagged decrease in the sea-level pressure gradient
between the East and West Pacific. The decreasing SLP gradient means that the sea
level pressures over the West Pacific become anomalously higher than those in the
East Pacific, contributing to changes in atmospheric circulation and the thermocline
depth.

4. WindStress WPAC→ Precip CPAC: with a 3-month lag and as same-sign response.
The link indicates that the anomalous increase in wind stress in the West Pacific
contributes to an increase in Central Pacific precipitation after three months of the
wind burst. Although no link originating from Precip CPAC was detected, the shift
in precipitation patterns further amplifies the anomalous warming in the Niño3.4
region due to reduced upwelling and the Bjerknes feedback.

• Causal Links Originating from SST Niño3.4:

1. SST Niño3.4 → Precip CPAC: with a 1-month lag and as same-sign response.
This link means that the rising temperatures in the Central Pacific Niño3.4 region
contributed to the increased rainfall over the same region after a one-month lag.
The changes in precipitation patterns further affect the atmospheric and oceanic
conditions, reinforcing the warming in the Niño3.4 region.

2. SST Niño3.4→ SLPgrad with a 1-month lag and as opposite-sign strong response.
This link suggests that the rising temperatures over the Niño3.4 region greatly
decrease the East-West sea-level pressure gradient. This reduction in the SLP
gradient contributes as an indicator of a weakening of the PWC, further impacting
atmospheric and oceanic conditions during the El Niño event.

• Causal Link Originating from SLPgrad EPAC-WPAC:

1. SLPgrad EPAC-WPAC→ TclineDepth EPAC: with a 3-month lag and a same-sign re-
sponse. This link suggests that the decreasing East Pacific SLP anomalies (compared
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to the West Pacific), associated with both rising SSTs in the Niño3.4 region and the
preceding increased Wind Stress over the West Pacific, contribute to a decrease in
the thermocline depth over the East Pacific. However, this link’s interpretation is
tricky, as it suggests that the SLP gradient decreasing would cause the thermocline
to become shallower after three months, which is opposite to the one-month lagged
strong increase due to the West Pacific wind burst. This link color, on the other
hand, suggests that the effect of WindStress WPAC→ TclineDepth EPAC is stronger
in driving changes in the thermocline depth during the El Niño event than the
3-month lagged SLPgrad EPAC-WPAC→ TclineDepth EPAC link.

To summarize, a causal analysis has been applied to the El Niño event of 1997/1998 to
demonstrate the utility of such an analysis in quantifying the connections between physical
processes. Previous results are confirmed by this causal analysis in that the westerly wind burst
event in the western equatorial Pacific in March triggered an eastward traveling downwelling
Kelvin wave in the ocean that deepened the thermocline in the east and shallowed it in the west.
As SSTs warmed in the eastern equatorial Pacific, trade winds weakened. This weakening
reduced the upwelling of cold, nutrient-rich waters in the eastern Pacific and instead brought
up relatively warmer water from the thickened thermocline, contributing to the warming of
SST in the Niño 3.4 region. The identified causal links align with the mechanisms involving the
WindStress WPAC influencing thermocline depth, and leading to anomalous warming in the
Niño3.4 region, in agreement with extensive previous studies (Hu et al. 2014; Lengaigne et al.
2003; McPhaden 1999; Wang and Picaut 2004). Furthermore, the East-West SLP anomalies
and anomalous shifts in precipitation patterns are shown to be greatly affected by the SST
variations in the central east Pacific as hypothesized, and this further contributes to the
intensification and maintenance of the 1997/1998 El Niño event. Having demonstrated the
utility of causal analysis in quantifying connections among phenomena governed by well-
documented physical processes, we now extend our causal methodology to the evaluation of
CMIP6 models in simulating decadal interactions between the Pacific and Atlantic Chapter 4
which are less comprehensively explored. We also apply the same methods to investigate the
effect of external forcing on the connections between the Pacific and Atlantic SSTAs during
the post-1950 historical period Chapter 5.

3.5.3. Network similarity quantification with 𝐹1-Scores

This subsection is part of the already published article on Earth System Dynamics (Karmouche
et al. 2023a), where the author of this thesis was the first author of the paper and led the
writing and performed the data processing and analysis. To quantify the similarity between
the resulting causal graphs (networks) from model simulations and those from observations
(Chapter 4), we follow a similar modified 𝐹1-score as in the methods by Nowack et al. 2020.
The 𝐹1-score ranges between 0 (no match) and 1 (perfect network match) and is based purely
on the existence or non-existence of links in a network relative to a reference network. The
𝐹1-score combines the statistical precision (P, fraction of links in model simulation network
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that also occur in the reference network) and recall (R, fraction of links in the reference network
that are detected in the model simulation network) and is defined as:

𝐹1 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
(3.2)

with
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

and
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

where 𝐹𝑃 is the number of falsely detected links and 𝐹𝑁 is the number of not detected links. We
modify the definition as in Nowack et al. 2020 so that a link is considered a true positive (𝑇𝑃) if
it is found with the same sign of MCI partial correlation as in the reference network. We further
relax the time lag constraint by considering a 𝑇𝑃 to exist if a link is found in a ±10 time-step
interval compared to the lag in the reference network (i.e. [𝑚𝑖𝑛(𝜏𝑚𝑎𝑥 , 𝜏+10), 𝑚𝑎𝑥(0, 𝜏−10)]).

50



4. Regime-oriented causal model evaluation of
Atlantic-Pacific Interactions in CMIP6

Among the key drivers of long-term climate variability are internal modes of variability, such
as the PDV and AMV. These modes, characterized by alternating warm and cold phases (see
Figures 2.10 and 2.11), exert significant influence on regional and global climate patterns over
decadal to multidecadal timescales. Understanding the interplay between these modes and
their effects on climate is of paramount importance in climate science. This research explores
the complex relationships between the Atlantic and Pacific Oceans, with a focus on their
responses to different stages of PDV and AMV. These modes exhibit unique characteristics,
with PDV spanning the entirety of the Pacific basin’s variability and AMV predominantly
influencing the North Atlantic. Complementing this with previous literature discussed in
Section 2.2.1, we introduce indices for PNA and PSA1 modes, both recognized as extratropical
teleconnections and susceptibility influenced by the interplay between PDV and AMV. The
ultimate goal is to identify the various causal fingerprints that arise from these interactions. To
do so, we use a causal discovery process based on the PCMCI+, estimating these fingerprints in
both observational reanalyses and state-of-the-art climate models. We conduct this research
within multiple climatic regimes, each defined by the prevalent phases of PDV and AMV.
The assessment of climate models’ capability to reproduce the observed relationships is a key
component of this research. Climate models, particularly those participating in CMIP6 (Eyring
et al. 2016), are useful tools for forecasting future climatic scenarios. Hence, assessing their
ability to recreate the observed causal links between PDV, AMV (and their teleconnections
under different regimes) is significant for climate forecasts.

The work in this Chapter 4 (including text, figures and tables and supplementary material)
is already published in (Karmouche et al. 2023a). For this paper, the author of this thesis
led the writing, performed the data processing and analysis, prepared all figures and tables,
and implemented the code1 to reproduce this study with all figures and tables (Karmouche
2023). The author also contributed to the design and organization of the study and the
interpretation of the results. This chapter is organized as follows: Section 4.1 describes the
setup for the regime-oriented analysis (Section 4.1.1) and data (Section 4.1.2) that were used in
this study. Section 4.2 start with a correlation analysis to compare the SST and SLP regression
maps associated with the CMIP6-simulated time series of AMV, PDV, PNA and PSA to those
from reanalysis data (Section 4.2.1). As the causal analysis only uses time series information

1https://github.com/EyringMLClimateGroup/karmouche23esd_CausalModelEvaluation_Modes, last access:
25.09.2023
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4. Regime-oriented causal model evaluation of Atlantic-Pacific Interactions in CMIP6

of the calculated indices, this comes as a sanity check to measure the similarity between
the observed and simulated spatial patterns associated with the index time series. This is
followed by Section 4.2.2 where we show the causal networks from reanalysis data during
different regimes. These serve as reference for the regime-oriented causal model evaluation
in the subsequent Section 4.2.3. We discuss the results in Section 4.3 before closing the paper
with a summary in Section 4.4. Figure 4.1 represents the different steps carried out during the
regime-oriented causal model evaluation (see caption).

Figure 4.1.: Framework for the regime-oriented causal model evaluation. a) Gridded SST and SLP data
used to calculate indices for AMV, PDV, PNA and PSA1 modes of climate variability. Diagnostics
from the National Center for Atmospheric Research (NCAR) CVDP-LE produce the time series of these
indices and their associated spatial patterns (regression maps). b) We first, as a sanity check, compare
the CMIP6 model-simulated SST (for AMV and PDV) and SLP (for PNA, PSA1) regression maps to
those from reanalysis before c) using the time series of the four indices for the regime-oriented causal
analysis. Here we define different regimes depending on the sign of the 13-year low-pass filtered
AMV and 11-year low-pass filtered PDV time series. For every regime we run PCMCI+ to estimate
instantaneous and lagged links between nodes representing the time series of the indices calculated
in (a) from the reanalyses and model data. In this schematic example, there are four indices, with
node color indicating auto-correlation, and there is a causal link (solid black arrow) between index 2
and indices 1 and 3, and then there is a causal link between indices 3 and 4. The method identifies
and removes spurious links (see black dashed arrows) between indices 1 and 4, or 2 and 4. Unitless
representative time lags are labeled on each causal link, where index 1 lags index 2 by one time-step
(depending on temporal resolution of the time series, here yearly), index 3 lags index 2 by three, and
index 4 lags index 3 by one. Applying the method to the time series in (a) provides d) dataset- and
regime-specific causal fingerprints in a similar format to the schematic in (c), which can be used for
model evaluation and intercomparison. We calculate annual averages from the monthly time series of
PDV and AMV provided by CVDP-LE. This way, the dataframe is fit for multi-year and decadal causal
estimations. In addition to the subtraction of global mean temperatures in the CVDP-LE calculation
of PDV and AMV, the causal networks are estimated after linearly detrending the time series of the
four indices to ensure their stationarity. The estimated causal dependencies (links) are hence assumed
to be a mixture of internal variability and time-varying anthropogenic forcing (mainly from aerosols).
Figure adapted from Karmouche et al. 2023a.
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Notably, the causal analysis involves annual averages computed from monthly PDV and
AMV time series sourced from CVDP-LE (Phillips et al. 2020) with PNA and PSA1 originally
extracted in yearly resolution (DJF and ANN, respectively). To ensure stationarity, the causal
networks are estimated after linear detrending of the four index time series. Hence, for all
results to be presented in this Chapter 4, we maintain the presumption that the calculated
climate variability indices (eventually their spatial patterns and causal fingerprints) represent
a mixed response of internally-generated variability and external aerosol forcing.

4.1. Methods and data

4.1.1. Set up for regime-oriented analysis

The teleconnections between the Pacific and Atlantic ocean basins are suggested to follow
different regimes depending on the decadal phases that the AMV and PDV go through
(Meehl et al. 2021a). In order to clearly identify the time periods of each phase, we smooth
the time series data by applying 11-year and 13-year low-pass filters on PDV and AMV,
respectively. Figure 4.2a shows the observed detrended low-pass filtered AMV and PDV
time series used to specify the different phases and regimes for the masking before applying
the PCMCI+ algorithm (the labeled regimes on the time series are only three out of the
10 we run the analysis over). First, running the analysis on the complete time period is
intended to reveal the consistent causal dependencies throughout the complete historical time
series Figure 3.1b. The resulting causal networks from the complete period do not, however,
expose much information on the causal effects which are changing over shorter time periods
depending on how the PDV and AMV are varying during those phases. In order to identify
these phase-dependent causal dependencies, we perform the analysis on multiple shorter
periods (regimes) by selecting the time-steps that represent either the positive (warm) or
negative (cold) phases based on the low-pass filtered indices, with AMV+(-) for when the
value of low-pass filtered AMV is positive (negative), and the same for PDV+(-). We further
split these regimes into combinations of warm and cold PDV and AMV phases (PDV+/AMV+,
PDV+/AMV-, PDV-/AMV+, PDV-/AMV-). Additionally, since some regimes are too short to
reveal any dependencies, we also opted to run the analysis for an ’In-Phase’ regime that sums
the PDV+/AMV+ and PDV-/AMV- periods. The remaining time-steps would then consist of
the ’Out-of-Phase’ regime for the period where the two low-pass filtered indices have opposite
signs (PDV+/AMV- and PDV-/AMV+).

This means that in addition to running it on the complete period, we apply the PCMCI+
algorithm on 10 different shorter time periods (within the original 1900-2014 period) for each
dataset (see Figure 4.2a for reanalysis data). Figure 4.2b shows how we use the regimes defined
in Figure 4.2a to mask the time series before applying the PCMCI+ method. This is shown for
PDV+ and PDV- regimes as example. For each case, the gray shaded parts of the time series
are masked periods, i.e. only the black shaded periods (see time series in Figure 4.2b) are
considered. We show in Appendix Table A.4 to Table A.10, the number of years per regime for
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Figure 4.2.: a) PDV and AMV time series calculated by CVDP-LE diagnostics on ERSSTv5 data are
smoothed using 11 and 13-year low-pass filters, respectively. 10 regimes are defined (see table on the
left) in addition to the 1900-2014 complete period. The PCMCI+ algorithm is applied on unfiltered
(non-smoothed) PDV, AMV, PNA, PSA1 yearly detrended time series that are masked according to the
periods that define each regime. The right arrows on the smoothed time series represent unmasked
periods from three out of 10 regimes (PDV+/AMV+, PDV-/AMV+, and PDV+/AMV-). b) The regimes
identified in (a) are used to mask the non-smoothed (but detrended) index time series before applying
PCMCI+. Here, for example, we show how we mask the data according to the PDV- (top) and PDV+
(bottom) regimes. The grey shaded periods are masked and thus not considered during the PCMCI+
analysis. Note that the masking here refers to variables at time point ��

� while their lagged parents
can originate also from a masked period (gray shaded). This setting is referred to as mask_type=’y’
in Tigramite. Consequently, applying PCMCI+ on differently-masked time series produces different
causal networks (network in top vs network in bottom) Figure adapted from Karmouche et al. 2023a

each dataset analysed. Nonetheless, it should be stated that the results of the regime-oriented
causal analysis account for potential errors related to the sampling of the data. A study from
(Smirnov and Bezruchko 2012) demonstrated, using a variety of examples, how sampling at
lower intervals can produce large "spurious" results. We note that the low-pass filtered indices
are used only to extract the time periods that constitute each regime. We remove any linear
trend that might be present in the data prior to applying the causal discovery algorithm. In this
way, the effects of external forcings are reduced. The four indices (AMV, PNA, PDV, PSA1)
to which PCMCI+ is applied are represented by detrended yearly unfiltered (not smoothed)
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time series (see Figure 4.2b). It is worth noting that the PCMCI+ algorithm is sensitive to the
masking, and this is controlled through the mask_type=’y’ setting in the Tigramite software
package. The grey-shaded periods on the time series represent masked time-steps Figure 4.2b,
i.e., these periods are not considered during the causal analysis. Different regimes result in
distinct causal networks as shown in the figure. For the parameterization of the PCMCI+
algorithm, we chose a maximum time lag (𝜏max) of 15 years (15 time-steps), conforming with
our annual data points. The significance level (𝛼pc) for the MCI partial correlation tests is
configured at 0.05.

4.1.2. Data

The data utilized in this study are derived from climate variability diagnostic results for the
period 1900-2014, as provided by the CVDP-LE (see Sect. 3.4). The ERSSTv5 is selected as the
reference data for assessing PDV and AMV indices and spatial regression maps (Figures 2.10
and 2.11). Alternatively, for the PNA and PSA1 modes (Figures 2.7 and 2.8), we refer to the SLP
data from ERA20C-ERA5. The reference data serve for comparison to evaluate how indices
generated using a selection of 12 Large Ensemble CMIP6 historical models reproduce the
observed spatial patterns and causal dependencies. The list of CMIP6 large ensemble models
(with the number of realizations per model) is provided in Table 4.1.

We note that in the spatial correlation analysis in the next section, monthly averages are used
for AMV and PDV as that is the time resolution originally provided by the CVDP-LE for these
modes. The diagnostic package does not produce monthly fields for the PNA and PSA1, so we
use winter means (DJF) and all-year annual means (ANN), respectively. We found that most
model simulations show weak correlations with reanalysis data for the annually averaged
PNA (ANN, not shown) compared to the winter averaged PNA (DJF, Table 4.2). Hence, we
chose winter means instead of annual means for PNA to reduce any seasonal bias within the
simulated spatial patterns. The spatial patterns do not depend much on the time resolution
(yearly or monthly) of the data, as they are all calculated on the whole 1900-2014 period. Prior
to applying the causal discovery algorithm (PCMCI+), however, we yearly averaged the AMV
and PDV time series (computed based on monthly means by the CVDP-LE). This way we
unify the time resolution of our data to fit the causal analysis by using the yearly resolution to
investigate connections on long timescales.

4.2. Results

4.2.1. Comparison of simulated and observed spatial patterns

To accompany the causal analysis, initial steps involve calculating pattern correlations 𝑟 be-
tween each simulation’s SST and SLP regression maps and those derived from reanalysis
over the entire 1900-2014 period (refer to PDV, AMV, PNA and PSA1 regression maps in
Section 2.2.1). This is to quantify the similarity between the observed and simulated spatial

55



4. Regime-oriented causal model evaluation of Atlantic-Pacific Interactions in CMIP6

Table 4.1.: List of CMIP6 large ensemble (LE) historical simulations used in regime-oriented causal
model evaluation (Karmouche et al. 2023a)

Dataset Components N° realisa-
tions used

References

CMIP6 LE Institute Atmo-
sphere
model

Ocean
model

ACCESS-
ESM1-5

CSIRO HadGAM2 ACCESS-
OM2

10 Ziehn et al.
2019

CESM2 NCAR CAM6 POP2 11 Wieners
et al. 2019b

CNRM-
ESM2-1

CNRM Arpege 6.3 NEMO3.6 10 Seferian
2018

CanESM5 CCCma CanAM5 NEMO3.4.1 65 Swart et al.
2019

EC-Earth3 EC-Earth IFS cy36r4 NEMO3.6 20 Döscher
et al. 2022

GISS-E2-1-
H

NASA GISS-E2.1 HYCOM
Ocean

23 Kelley et al.
2020

INM-CM5-
0

INM INM-AM5-
0

INM-OM5 10 Volodin
et al. 2019

IPSL-
CM6A-LR

IPSL LMDZ NEMO-
OPA

32 Boucher
et al. 2018

MIROC6 JAMSTEC,
AORI,
NIES,R-
CCS

CCSR
AGCM

COCO4.9 50 Shiogama
et al. 2019

MPI-ESM1-
2-LR

MPI-M ECHAM6.3 MPIOM1.63 10 Wieners
et al. 2019a

NorCPM1 NorESM
Climate
modeling
Consor-
tium

CAM-
OSLO4.1

MICOM1.1 30 Bethke
et al. 2019

UKESM1-
0-LL

Met Office
Hadley
Centre

MetUM-
HadGEM3-
GA7.1

NEMO-
HadGEM3-
GO6.0

18 (Tang et al.
2019)
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patterns for each of the four modes of climate variability we are to analyse. The purpose is to
check if the CMIP6-simulated indices have spatial expressions that resemble those of indices
calculated from reanalysis datasets. To introduce a benchmark of model performance, we
calculate a Mean Score for each single simulation by taking the average of the four � values
(after applying a Fisher z-transform).

To look closer at how the spatial correlation values spread across every large ensemble
and how they differ from one climate variability mode to another, Figure 4.3 provides a color-
coded box-plot showing the distribution of these spatial correlation values, and their respective
averages across every Large Ensemble of CMIP6 simulations used in the analysis. It depicts
the similarity between the observed (reference maps in Figures 2.7, 2.8, 2.10 and 2.11) and the
simulated patterns from the regression maps for the four modes, with values approaching 1
indicating a better simulation of the patterns associated with the observed modes.

Figure 4.3.: Box-and-whisker plot illustrating the distribution of Pearson � pattern correlation values for
historical CMIP6 large ensembles. The number of ensemble members within each model is indicated
in parentheses on the x-axis. Each box’s lower boundary represents the first quartile (�1) or 25th
percentile, and the upper boundary signifies the third quartile (�3) or 75th percentile. The horizontal
line within the box indicates the median value (�2) or 50th percentile. The span of the box, from �1
to �3, denotes the interquartile range (IQR). The lower and upper whiskers extend from the box to the
minimum and maximum values, calculated as �1−1.5× IQR and �3+1.5× IQR, respectively. Outliers
are represented by black dots. Correlation values for PNA, PSA1, PDV, and AMV are color-coded in
purple, cyan, red, and green, respectively. Yellow boxes indicate the Mean Score, calculated as the
average of the four � values after applying a Fischer z-transform. The white dots signify the mean
values. Figure from Karmouche et al. 2023a.

Sorted by the ensemble average mean score of every CMIP6 large ensemble, Table 4.2
provides a view of the distribution (in the form of minimum, mean, maximum) of spatial
correlation values for every mode and their Mean Score for every CMIP6 large ensemble model.
It can be seen from Figure 4.3 and Table 4.2, based on the ensemble average mean score, that
most models perform quite well in simulating the observed geographical patterns of the four
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indices with pattern correlations mostly above 0.75. The UKESM1-0-LL (0.80), MIROC6 (0.80),
MPI-ESM1-2-LR (0.79), ACCESS-ESM1-5 (0.77) and CanESM5 (0.77) outperform the other
CMIP6 large ensembles in terms of recreating the spatial patterns of the four selected modes
of climate variability. The number of ensemble members within every large ensemble has
no apparent effect on the spread of the 𝑟 value distribution across the models. For example,
UKESM1-0-LL and MIROC6 with 18 and 50 realizations respectively, share similar narrow
interquartile ranges (IQR, the width between the 3rd and 1st quartiles) of 𝑟 values for the four
climate variability spatial patterns. Appendix Table A.1 shows the distribution of Pearson 𝑟

correlation between observed and simulated spatial patterns of PNA, PSA1, PDV, and AMV
from a 10th, 50th, 90th percentile perspective. Looking only at the mean score spread, Table A.1
shows the 10th-90th percentile value range is 0.78-0.83 for UKESM1-0-LL, and 0.77-0.82 for
MIROC6. This means that most members of these two model ensembles agree between each
other and show high spatial similarity with observations when simulating the four modes.
It can be concluded that the models generally do a good job in simulating the geographical
patterns of the different modes but with different precision. Although the models with high
mean scores tend to display high pattern correlations with observations for the four modes
of climate variability, the white scatter points on Figure 4.3 imply that they simulate the PNA
(purple) atmospheric mode slightly better than its South Pacific counterpart, the PSA1 (cyan)
when compared to the ERA20C-ERA5 reference patterns. These high scoring models, notably
UKESM1-0-LL, MPI-ESM1-2-LR, MIROC6, CanESM5 and IPSL-CM6A-LR also, on average,
simulate better PDV (red) monthly spatial patterns compared to AMV (green), with ERSSTv5
as a reference dataset for the 1900-2014 period. The mean scores of Community Earth System
Model (CESM)2, GISS-E2-1-H and NorCPM1 are strongly affected by the low correlation
coefficients obtained for the PSA1 mode (cyan boxes). The 50th percentile bar on the cyan box
for CESM2 suggests that there are more members with PSA1 patterns resembling the observed
ones. The opposite is true for the GISS-E2-1-H model which contains less realizations with
similar PSA1 patterns as those from reanalysis. The length of the cyan box for NorCPM1
indicate that most members fail to represent the spatial patterns of PSA1.

Table 4.2.: Pearson 𝑟 correlations between the simulated (CMIP6 large ensemble) and observed
(ERA20C-ERA5, ERSSTv5) spatial patterns of PNA, PSA1, PDV and AMV over the 1900-2014 pe-
riod. Models are sorted according to the average mean score (column in bold; descending order).
CMIP6 LE Mean Score PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly)

min mean max min mean max min mean max min mean max min mean max

UKESM1-0-LL 0.74 0.80 0.86 0.79 0.87 0.94 0.56 0.73 0.84 0.79 0.82 0.86 0.66 0.74 0.81
MIROC6 0.74 0.80 0.85 0.73 0.86 0.95 0.64 0.73 0.80 0.82 0.84 0.87 0.66 0.71 0.78
MPI-ESM1-2-LR 0.74 0.79 0.83 0.73 0.84 0.93 0.65 0.77 0.82 0.75 0.80 0.84 0.63 0.71 0.78
ACCESS-ESM1-5 0.67 0.77 0.84 0.76 0.88 0.94 0.12 0.67 0.80 0.61 0.72 0.77 0.66 0.71 0.77
CanESM5 0.51 0.77 0.81 0.71 0.82 0.90 -0.50 0.69 0.82 0.67 0.79 0.86 0.61 0.72 0.79
IPSL-CM6A-LR 0.46 0.75 0.80 0.55 0.73 0.85 -0.80 0.70 0.86 0.73 0.78 0.84 0.69 0.76 0.81
CESM2 0.59 0.74 0.84 0.83 0.88 0.92 -0.67 0.23 0.82 0.82 0.86 0.88 0.68 0.72 0.78
EC-Earth3 0.26 0.68 0.81 0.78 0.86 0.94 -0.56 0.48 0.76 -0.25 0.61 0.78 0.57 0.65 0.79
CNRM-ESM2-1 0.36 0.61 0.79 0.32 0.61 0.86 0.37 0.52 0.72 -0.42 0.45 0.78 0.71 0.75 0.80
GISS-E2-1-H 0.41 0.60 0.79 0.63 0.80 0.90 -0.72 -0.06 0.74 0.66 0.77 0.82 0.60 0.68 0.75
INM-CM5-0 0.41 0.54 0.63 0.53 0.65 0.74 -0.31 0.28 0.66 0.47 0.51 0.56 0.57 0.65 0.71
NorCPM1 0.27 0.51 0.74 -0.04 0.65 0.87 -0.61 -0.33 0.67 0.67 0.76 0.82 0.63 0.68 0.74
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Along with the release of the CVDP-LE (Phillips et al. 2020), CESM’s CVCWG freely dis-
tributes results from several CMIP simulations including the CMIP6 1900-2014 historical sim-
ulations, from which data used in this analysis have been downloaded. The results include a
pattern correlation summary with 11 key spatial metrics of oceanic and atmospheric modes of
variability. Similar to the mean score we introduced in the spatial correlation analysis above,
the CVDP-LE provides a mean score averaging the pattern correlations of the 11 metrics used.
Although the pattern correlation mean score we calculated is not exactly the same as the
one provided by the CVDP-LE tool because the number of indices used is different (four vs
11), the highest-scoring CMIP6 large ensembles from Table 4.2 (UKESM1-0-LL, MIROC6 and
MPI-ESM1-2-LR) were also the highest scoring ensembles according to the pattern correlation
summary provided on the tool’s repository (Phillips et al. 2020). Moreover, one simulation
from the UKESM1-0-LL ensemble, the r19i1p1f2 realization, was found to obtain the highest
mean score based on both the pattern correlation values2 published by CVDP-LE authors
(Phillips et al. 2020), as high as 0.88 using 11 indices whereas our calculations in Table A.2
shows 0.86 using 4 indices for the same realization.

4.2.2. Regime-oriented causal analysis of observations and reanalyses

Several mechanisms are hypothesized to contribute to PDV and AMV. PDV is initially consid-
ered as a mode of internal climate variability (Meehl et al. 2021b). However, previous research
indicates possible external contributions in the form of solar (Meehl et al. 2009), greenhouse
gas (Dong et al. 2014; Fang et al. 2014; Meehl et al. 2009) or volcanic and anthropogenic aerosol
forcings (Maher et al. 2015; Smith et al. 2016; Takahashi and Watanabe 2016; Wang et al.
2012). This means that the fingerprint of any possible external forcing acting as a confounder
is embedded in the time series information of the extracted indices of the modes of climate
variability used in this study. The linear detrending we perform prior to applying PCMCI+
will at least partially reduce such effects. However, as mentioned before, the subtraction of the
global mean temperature for PDV and AMV and the linear detrending of all time series do not
address local, nonlinear effects, which could be related to the aerosol forcing that varies over
time and space. It is then important to recall that in this paper, the indices do not represent
a fully isolated internal variability component but rather a mixture of naturally-occurring
internal variability and nonlinear effects of external forcing, mainly in the form of aerosol
forcing.

PCMCI+ is applied first to the indices of PDV, AMV, PNA and PSA1 calculated from
reanalysis data, as a proxy for observations, to reveal any causal dependencies between the
modes depicted by the observed time series information. As it is assumed that the nature
of teleconnections between the different climate variability modes can vary over decadal
timescales depending on the different phases these modes go through, we mask years of data
(as discussed in Figure 4.2) to reveal the causal structures during specific periods (regimes)

2https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_repository/CMIP6_Historical_1900-2014/metrics.html,
last access: 21.09.2023
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in time. Reference causal networks obtained by running PCMCI+ on reanalysis data for the
different regimes are shown in

The results show that the causal dependencies (links) between the four modes of climate
variability (nodes) change from one regime to another. Starting from an analysis on the
complete period (115 years, upper left panel in Figure 4.4, and see Table A.3 for exact cross-MCI
values of the complete period causal graph) PCMCI+ reveals four different links: An 11-year
lagged negative (link arrow is curved and blue) AMV→PDV link (cross-MCI = -0.25) showing
that the opposite sign effect on PDV caused by AMV is lagged by a decade (e.g. positive AMV
tends to produce negative PDV about a decade later). Therefore, this link can be interpreted as
lagged opposite sign SST anomaly changes over the Pacific in response to SST anomaly changes
over the Atlantic. The same causal graph features a strong positive (0.53) contemporaneous
PDV—PNA link (i.e. link line is straight) suggesting PDV is strongly associated to PNA. In
addition, the complete period graph implies weak South Pacific teleconnections of both AMV
and PDV which are represented by a positive contemporaneous AMV— PSA1 (0.25) link and
a lagged PSA1→PDV link. The latter ( PSA1→PDV link) is detected positive at 7 years (0.23)
and negative at 15 years (-0.31). As explained in Section 3.5.1, if a lagged link is found at
more than one time lag, the causal graph shows the link at the lag when it is most significant
(i.e higher absolute cross-MCI value) and labels the other time lags after a comma ( |−0.31|
vs |0.23| in this case, thus the "15, 7" label on the PSA1→PDV link; see upper left panel in
Figure 4.4).

The complete period graph in the upper left in Figure 4.4 is useful to show the causal
dependencies happening throughout the whole observational record used. However, this
methodology can also be used to look at specific regimes to notice the change in depen-
dencies arising from the physical state of the Atlantic and Pacific basins during those time
periods. For example, the causal graphs from PDV+ and PDV- regimes indicate that direct
decadal AMV—PDV interactions occur only during the PDV- regime (third row, left panel
in Figure 4.4), whereas during the PDV+ regime (second row, left panel in Figure 4.4) we
find a contemporaneous atmospheric teleconnection from PNA to both AMV and PDV. This
difference could be explained by the fact that the PDV- regime comprises two important At-
lantic variability events: the 1920s AMV phase-switch from negative to positive (see dashed
lines showing low-pass AMV in Figure 4.2a) and the subsequent switch from positive back to
negative during late 1960s.

The regime-oriented nature of this causal analysis provides for a separation of signals,
for example delineating the PDV+ regime that depends on the AMV phase during those 59
years (second row panels in Figure 4.4). The short length of time series, in addition to the
time-varying aerosol forcing during such regimes, can lead to inconclusive causal estimations.
The PDV-/AMV- panel at the right of the third row in Figure 4.4 (25 years) shows strongly
auto-correlated AMV and PSA1 patterns but no apparent links between any of the four
variables. However, these short regimes might also reveal interesting causal relations that are
not apparent when analysing longer periods. This is the case for the causal graph from the
25 years of the PDV+/AMV+ regime (central panel in Figure 4.4), which is the only one to
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Figure 4.4.: Causal networks calculated with PCMCI+ from reanalysis data for the complete 1900-2014
period (upper left panel) and the different regimes. Nodes represent the time series associated with
each climate variability index (see node labels) masked according to the predefined regimes. Node
colours indicate the level of autocorrelation (auto-MCI) as the self-links of each node with darker red
indicating stronger autocorrelations (color bar at lower left) while the color of the arrows (termed
"links" here) denotes the inter-dependency strength (cross-MCI) with blue indicating opposite-sign
(or negative) inter-dependency and red indicating same-sign (or positive) inter-dependency strength
(color bar at lower right). Small labels on the curved links indicate the link-associated time lags (unit
= 1 year). Straight links show contemporaneous inter-dependencies happening with no time lag (i.e.
� < 1). Each network is sub-labeled with its respective regime name and the total number of unmasked
years (time-steps) that characterize that regime (label and number of years at bottom of each panel).
Lines going through the panels are to help visualize which combinations make up the regimes. Solid
lines are for PDV, dashed for AMV. Red for warm (+), blue for cold (-) phases (e.g. PDV+/AMV-
regime panel has a solid red line and dashed blue line going through it). Figure from Karmouche et al.
2023a.
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feature a strong negative PDV→AMV link and a positive AMV→PDV link with comparable
strength. Since the causal parents that drive the variables (other variables or the same one at
different past time-steps) can originate from a masked period with respect to 𝜏𝑚𝑎𝑥 , it implies,
for example, that the strong 12-year lagged negative PDV→AMV causal link estimated during
the PDV+/AMV+ regime (second row, central panel in Figure 4.4), might have fingerprints
originating from a previous regime.

The limitation presented by the fact that some regimes might be too short to detect any
causal links (e.g. PDV-/AMV-, 25 years) is overcome when introducing causal graphs for
In-Phase and Out-of-Phase regimes (panels in the bottom of Figure 4.4). As explained in
Section 4.1.1, the In-Phase regime is made up of the time-steps where AMV and PDV happen
to be on the same phase (PDV+/AMV+ and PDV-/AMV-) while the Out-of-Phase regime
is composed of time-steps where the two modes are on opposite phases (PDV+/AMV- and
PDV-/AMV+), resulting in longer regime periods. We detect the negative lagged direct
AMV→PDV and PDV→AMV only during the Out-of-Phase regime with a strong positive
extra-tropical PDV→PNA teleconnection and a weaker AMV→PNA teleconnection. The In-
Phase regime features a fast (zero lag) PDV teleconnection to PNA, PNA connection to PSA1,
and a 12-year lagged PSA1→AMV link. As finite sample errors can lead to false positives
as well as false negatives (missing links), it is difficult to attribute a physical explanation to
every detected link. Though here both are thought to be driven by tropical precipitation and
heating anomalies, we refrain from assigning any processes that might be behind the direct
PNA— PSA1 causal links due the lack of knowledge regarding possible direct links between
the North Pacific and South Pacific extra-tropics.

Through observations of the long-term variability patterns and pacemaker simulations of
Atlantic and Pacific ocean basins, Meehl et al. 2021a explain how positive AMV could produce
an opposite-sign response, mainly through the atmospheric Walker circulation, leading to
negative PDV, and then the negative PDV subsequently contributing a same-sign response
in the Atlantic driving the AMV from positive to negative phase. This mutual contrasting
response from one basin to the other can be interpreted through the blue (negative cross-MCI)
lagged AMV→PDV links and the reddish (positive cross-MCI) lagged PDV→AMV links in
the causal networks in Figure 4.4. The results in Figure 4.4 show that the lagged AMV→PDV
causal link has been estimated over the complete period and during five out of the 10 regimes
(AMV-, PDV-, PDV+/AMV+, PDV+/AMV-, Out-of-Phase). During four of these regimes, the
link can be interpreted as a lagged opposite-sign effect of AMV on PDV (blue curved link). The
study of Meehl et al. 2021a suggests that in addition to the tropical Walker circulation, positive
convective heating and precipitation anomalies in the tropical Pacific establish extra-tropical
teleconnections to PNA and PSA which contribute to the same-sign effect of PDV on AMV.
The causal graph from the 31 years of the PDV-/AMV+ regime (third row, middle panel in
Figure 4.4) shows two possible pathways for this same-sign effect of PDV on AMV. During
that regime, PCMCI+ estimates a strong positive 13- and 6-year lagged PDV→AMV link (the
13-year lagged link was also found during the 56 years of the PDV- regime) but also shows a
positive PDV→PNA—AMV contemporaneous teleconnection where PNA seems to mediate
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the same-sign effect of PDV on AMV. Therefore, this analysis presents additional evidence
that AMV (although potentially affected by a forced aerosol signal) might serve as a predictor
of decadal variability over the Pacific (hence for PDV) and eventually the other way around
(Chikamoto et al. 2015; d’Orgeville and Peltier 2007; Johnson et al. 2020; Zhang and Delworth
2007).

An earlier study from (Zhang and Delworth 2007) proposed a mechanism in which positive
(negative) AMO would lead to high (low) SLP anomalies over the North Pacific and eventually
a positive (negative) PNA pattern. This weakening (strengthening) of the Aleutian low associ-
ated with the PNA pattern projects onto the multidecadal mode of variability over the North
Pacific. The response of North Pacific SST to the anomalous PNA pattern induced by AMO
is hypothesised to be lagged due to Rossby wave propagation and gyre adjustment where the
authors found a 3-year lag when using a model simulation compared to a 12-year lag when
they analysed the observed pattern. The extra-tropical contributions of PNA and PSA1 on the
mutual PDV—AMV interactions can be concluded from causal graphs constructed during dif-
ferent regimes (see Figure 4.4). AMV-, PDV+, PDV-/AMV+ and Out-of-Phase are all regimes
that suggest mutual Atlantic-Pacific connections can be established via PNA. The causal net-
works from the complete period and AMV- regime show that these inter-basin connections
can also happen through PSA1.

Previous research also showed that components of the PDV can be forced by tropical Pacific
variability and/or driven by atmospheric stochastic forcing which are both closely tied to
Aleutian low variability associated with the PNA pattern (Johnson et al. 2020; Newman et al.
2016). This literature finding on the PDV—PNA teleconnection validates the contemporaneous
PDV—PNA causal link estimated by PCMCI+ during most regimes (all except PDV+/AMV+
and PDV-/AMV-; see causal networks in Figure 4.4) with a strong positive cross-MCI value.
The link is directed in some regimes (straight links with arrowhead, e.g. during PDV+ regime)
while it is unoriented during other regimes (straight links with no arrowheads, e.g. during
AMV- regime). A 10-year lagged negative PNA→PDV link appears during the PDV- regime
in Figure 4.4 (and during PDV-/AMV+) which suggests that an extra-tropical teleconnection
to PNA might have the opposite effect during longer time lags.

Generally, lags ranging from interannual (1 to 5 years, Meehl et al. 2021a; Wu et al. 2011) to
decadal (12 to 17 years, Chylek et al. 2014; Wu et al. 2011) timescales have been proposed by
previous studies for Atlantic-Pacific interactions which fall in the same range of time lags at
which causal links have been estimated by PCMCI+ in this study.

4.2.3. Regime-oriented causal analysis of CMIP6 large ensembles

With the overall high level of fidelity that several models show in simulating the spatial pat-
terns of at least the major modes of climate variability presented in this paper (see Figure 4.3),
it is crucial to test whether these simulations also account for the possible lagged causal
pathways between these different modes. To benchmark the dependency structures in model
simulations, the simulated causal graphs are compared to those from reanalysis datasets (
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ERSSTv5 for PDV and AMV, ERA20C-ERA5 for PNA and PSA1). The constructed causal
graphs from the previous section illustrate the connections occurring between the different
modes of climate variability during different regimes, as estimated from reanalysis data. Rel-
ative to reanalysis, we consider the causal graphs from Figure 4.4 as reference for the CMIP6
model evaluation to be demonstrated in this section.

Figure 4.5.: Ensemble summary of the CanESM5 large ensemble model. Similar to Figure 4.4, but
aggregating causal networks from 65 realizations. The link width here shows the fraction of ensemble
members that feature that link relative to the total ensemble size (here 65); i.e. the thicker the link,
the more ensemble members were found to estimate it during that specific regime. Link colors here
translate the mean cross-MCI value among the ensemble members that estimated such link (color bar
at lower left). Links of very light color are those that ensemble members agree little on their partial
correlation sign. The link labels indicate the average time lag (rounded to the nearest integer) at
which the link is estimated among the fraction of ensemble members that find such link. Figure from
Karmouche et al. 2023a.
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The exact same PCMCI+ setting used in the section above (see Section 4.2.2) is applied for
time series indices calculated from every realization of the CMIP6 models listed in Table 4.1.
In Section 4.2.1, we found that, overall, the spatial patterns of these simulated indices compare
fairly well to the observed ones (Figure 4.3, Table 4.2). The purpose of this section is to
show how the causal fingerprints in these simulations compare to those observed. For every
realization, the analysis is run for the complete period in addition to the 10 different regimes,
similar to the regime-oriented setting on reanalysis data in the section above. As the PDV and
AMV phases occur in model simulations at different time periods than those in reanalysis
(due to randomly generated internal variability and time-varying forcing caused mainly by
aerosols), models need not show similar networks for the same periods as in observations.
However, we can assess the degree of similarity in the causal fingerprint that these simulations
hold within their modeled dynamics. The results of every realization during every regime are
compared to the reference networks from reanalysis data during that regime.

To illustrate results from an individual model, we aggregate causal networks from 65 re-
alizations from the CanESM5 model in Figure 4.5. This figure shows networks with links of
variable thickness indicating that some links are found in most ensemble members during
that specific regime (thick links, e.g. PDV—PNA in most regimes) compared to other links
(thinner links, e.g. PDV→AMV in most regimes) which were detected only by a small fraction
of ensemble members. The thicker the link, the more agreement between members of the
same ensemble in detecting that specific link. We also label the links with the rounded mean
lag at which they are detected in the ensemble members. The link color in this ensemble
summary (Figure 4.5) is informative of the level of agreement between ensemble members in
estimating that causal link with the same sign. The clearer the shade of blue (negative) or
red (positive), the better agreement between ensemble members in simulating the link with
the same sign. For example, the color of AMV—PNA links in most regimes (although mostly
estimated by few members during each regime, i.e. relatively thin links; see Figure 4.5) tend
towards reddish shades suggesting that the CanESM5 members, in which such links were
estimated, agree that the causal link is of positive sign. This can be translated to the posi-
tive (negative) AMV driving positive (negative) PNA and vice versa. This can be seen on all
causal networks in Figure 4.5, except the ones from PDV+/AMV+ and PDV-/AMV+ regimes
indicating that in a few of the CanESM5 realizations, AMV would induce an opposite sign
response on PNA (see thin blue AMV→PNA links on PDV+/AMV+ and PDV-/AMV+ causal
graphs in Figure 4.5).

Other than the PDV—PNA links (estimated by most ensemble members during all regimes),
the occurrence of a link in the CanESM5 model seems to vary from one regime to another. This
is less true for the complete period, the In-Phase and the Out-of-Phase regimes. The complete
period ensemble causal graph distinctly shows AMV—PNA interactions as same-sign causal
links between the two modes. The same graph (upper left panel in Figure 4.5) also shows
a clear blue AMV→PDV link, demonstrating the opposite-sign response driven by AMV on
PDV, similar to the one featuring in the complete period causal graph from reanalysis data
(upper left in Figure 4.4). The color and width (thickness) of this AMV→PDV link in the
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complete period graph in Figure 4.5 (upper left panel) suggest that the link was estimated
with negative cross-MCI values by a considerable fraction of CanESM5 simulations.

A more evident network similarity is evinced during the Out-of-Phase regime. Both the
graph from reanalysis (Figure 4.4, Out-of-Phase) and the CanESM5 ensemble graph (Figure 4.5,
Out-of-Phase) display a short lagged (1-year lag and 2-year mean lag, respectively) opposite-
sign (blue, negative cross-MCI) AMV→PDV causal link. Moreover, the two graphs (Out-
of-Phase causal networks in Figure 4.4 and Figure 4.5) suggest a same-sign (red, positive
cross-MCI value) contemporaneous and short-lagged (1 year) PDV—PNA causal links, and
weaker same-sign (lower positive cross-MCI values) AMV—PNA links. The latter links are
instantaneous in the reanalysis data but lagged in CanESM5. However, the short mean lag (2
years) in the simulated CanESM5 Out-of-Phase graphs imply that several members estimate
a contemporaneous link.

The CanESM5 ensemble causal graph during the In-Phase regime at the bottom of Fig-
ure 4.5 demonstrates the advantage of using large ensembles. While the reanalysis graph
during this regime suggests only PDV—PNA and lagged PSA1→AMV teleconnections (with
a debatable contemporaneous PNA— PSA1 link), the CanESM5 ensemble graph displays a
clear same-sign lagged AMV→PDV link with a third of its ensemble members simulating
such a dependency. Despite the fact that the positive AMV→PDV link is not detected in
reanalysis during the In-Phase regime (Figure 4.4, In-Phase regime causal graph), literature
supports this contrasting effect estimated by CanESM5 model data (Meehl et al. 2021a; Wu
et al. 2011). Model simulations can therefore explain causal dynamics between modes of
climate variability that might not definitively appear when analysing observations. There is
less doubt about the agreement between members of the CanESM5 ensemble, and also when
compared to reanalysis, about the occurrence of an AMV→PDV link with an opposite sign
during the Out-of-Phase regime.

Ensemble summary plots are calculated for all CMIP6 large ensembles from Table 4.1 but
we only chose to display them for CanESM5 in Figure 4.5. The ensemble summary of causal
networks from reanalysis data and the 12 CMIP6 models for the complete 1900-2014 period,
Out-of-phase and In-Phase regimes are shown in appendix Figs. A1-A3 respectively. In
order to measure the level of similarity between observed and individual ensemble member
networks across all the CMIP6 models, 𝐹1-scores are computed for every realisation and
every regime. The results reveal that most CMIP6 Large Ensembles show better network
(causal graph) similarity with reanalysis reference networks during the Out-of-Phase regime,
compared to the networks drawn during the other regimes and/or the complete period.
The whisker plot in Figure 4.6a shows the distribution of 𝐹1-scores across the CMIP6 large
ensembles for the complete period (light blue boxes), the In-Phase regime (dark blue) and the
Out-of-Phase regime (green). The range of scores during the other regimes (not shown) was
found to be much lower compared to the scores during the regimes shown in Figure 4.6a. The
white scatter points show that on average, CESM2, CanESM5, MIROC6 and MPI-ESM1-2-LR
large ensembles clearly display better network similarity with observations during the Out-
of-Phase regime. The highest scores during this regime (0.92) belong to members of CanESM5

66



4.2. Results

and MIROC6 large ensembles (see location markers on whisker plot). Figure 4.6b compares
Out-of-Phase causal graphs from these highest-scoring realizations (and their low-pass filtered
AMV, PDV time series) to those from reanalysis. The networks in Figure 4.6b agree on the
1-year lagged AMV→PDV link. The positive contemporaneous PDV—PNA link is directed
differently in reanalysis and CanESM5 r11i1p2f1, but unoriented in CanESM5 r17i1p2f1 and
MIROC6 r20i1p1f1. The Out-of-Phase graphs from these realizations also agree on a same-
sign contemporaneous AMV—PNA dependency, with a lower cross-MCI value (weaker) than
that of the PDV—PNA connection.

Figure 4.6.: a) Whisker plot showing the distribution of �1-scores across the CMIP6 large ensembles for
the causal analysis for: the complete period (light blue boxes), the In-Phase regime (dark blue boxes)
and the Out-of-Phase regime (green boxes). White scatter points denote the mean large ensemble
�1-scores. b) Reference causal network estimated from reanalysis during the Out-of-Phase regime (left,
with low-pass AMV and PDV time series below) compared to networks and time series from three
CMIP6 simulations (right, with simulated low-pass AMV and PDV time series below each network)
with the best network similarity i.e. highest �1-score. Figure from (Karmouche et al. 2023a).

In Figure 4.7 we perform intra- and cross-model network comparisons for the complete
period and long regimes. This is done by computing �1-scores with every single realization
as a reference. Averaging the �1-scores by ensemble produces an �1-matrix for every regime
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in the form of heat maps translating the degree of similarity (the redder the color, the greater
the similarity) in causal dynamics between members of the same large ensemble (boxes on
the main diagonal) and pairwise causal similarity between different large ensembles (boxes
outside the main diagonal). Every grid box on the heat maps shows how the corresponding
CMIP6 model from the axis on top (see model names on x-axis top of every panel) compares
to the reference corresponding CMIP6 model (see model names on y-axis left of each panel).
We exclude the short regimes (PDV+/AMV+, PDV+/AMV-, PDV-/AMV+ and PDV-/AMV-)
from this comparison as the PCMCI+ results during these regimes tend to be inconclusive
(i.e. the regimes are too short to estimate any causal link for several simulations from different
models). The heat maps show that CNRM-ESM2-1 large ensemble clearly stands out as the
most dissimilar model during most regimes. This is seen in the third row and third column
(from top to bottom, left to right) of each heat map (𝐹1-matrix of every regime) in Figure 4.7
indicating the lowest 𝐹1-scores (yellow and white lines on the heat maps; see also color-bar).
The model does not only have the lowest level of agreement with other ensembles but also
shows poor accordance within its own members. Generally, the other CMIP6 models exhibit
better network similarity during longer regimes (Complete period, AMV+, AMV-, PDV+,
PDV-, In-Phase, Out-of-Phase). Members of CESM2 large ensemble strongly agree between
each other in terms of causal fingerprints displayed during the analysis on the complete period;
this is shown by the dark red box on the second row and second column of the complete period
heat map (𝐹1-matrix). The INM-CM5-0 large ensemble shows low average 𝐹1-scores during
the PDV+ and Out-of-Phase regimes, but it surprisingly shows the most agreement between
its own ensemble realizations during the complete period, AMV-, PDV- and the In-Phase
regimes (see dark red grid boxes in the center of heat maps of these regimes on Figure 4.7).
This implies that the INM-CM5-0 ensemble might involve mostly simulations where PDV and
AMV are in the same phase.

The skill of CESM2, CanESM5, MIROC6 and MPI-ESM1-2-LR in recreating the observed
causal pathways of the Out-of-Phase regime is also manifested through the better similarity
the members of these models show when compared to each other. The heat maps (𝐹1-matrices
in Figure 4.7) serve to distinguish models with similar causal dynamics. The specified range
of internal variability within realizations of the same ensemble (combined with the model-
simulated time-varying aerosol forcing) can also be inferred by comparing one large ensemble
to itself.

4.3. Discussion

Previous research already suggested the improvement in simulation of dominant modes of
climate variability throughout the different phases of the CMIP archive (Eyring et al. 2021b;
Fasullo et al. 2020). Although, in general, models are able to capture the spatial patterns
of these modes, CMIP6 revealed discrepancies in the skill these large ensemble simulations
display when recreating the observed modes. Some models perform very well, while there
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Figure 4.7.: Matrices of average �1-scores for pair-wise network comparisons between ensemble mem-
bers of 12 CMIP6 large ensembles during every regime. Boxes on the main diagonal translate the level
of similarity between members of a single CMIP6 ensemble. Boxes outside the main diagonal show
the similarity between realizations of a CMIP6 large ensemble compared to realizations from another
CMIP6 large ensemble (taking every realization as a reference at a time, before averaging across ev-
ery large ensemble). The redder the grid box, the better causal network similarity it translates when
comparing realizations of the corresponding CMIP6 model (x-axis coordinate name on top of each
panel) to causal networks from the corresponding reference CMIP6 model (y-axis coordinate on the
left of each panel). The matrices for the short regimes (PDV+/AMV+, PDV+/AMV-, PDV-/AMV+
and PDV-/AMV-) are not shown as their results are not conclusive since PCMCI+ fails to estimate any
causal networks for several members of different ensembles. Figure from (Karmouche et al. 2023a).

is still room for improvement for others. This conclusion is illustrated through results of the
pattern correlations in Section 4.2.1 and the wide range of comparison metrics produced and
published by the CVDP-LE authors (Phillips et al. 2020). The ability of CMIP6 large ensembles
to recreate the spatial patterns of modes of climate variability does not, however, ensure that
they simulate the connections between those modes. Relative to the reference networks from
reanalysis datasets during the Out-of-Phase regime, CESM2, CanESM5, MIROC6 and MPI-
ESM1-2-LR large ensembles display the highest degree of similarity. During the analysis
of the complete 1900-2014 period, a considerable fraction of simulations belonging to these
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CMIP6 models estimates an opposite-sign response from AMV to PDV (represented by blue
AMV→PDV links, see Figure A.1). The clear occurrence of this opposite-sign response in
several CMIP6 large ensembles (notably, CESM2, CanESM5, MIROC6 and MPI-ESM1-2-LR)
shows that these models realistically simulate the mechanisms that connect Atlantic and
Pacific modes of SST variability. The direct connection between the Atlantic and Pacific basins
involves mainly the tropical Walker circulation and its associated SST, evaporation, wind and
SLP changes where rising temperatures in the Atlantic Ocean can cause a cooling effect similar
to La Niña in the equatorial Pacific (Kucharski et al. 2016; Li et al. 2016; McGregor et al. 2014;
Meehl et al. 2021a; Ruprich-Robert et al. 2021). Moreover, these CMIP6 large ensembles were
found to also simulate most spatial patterns with high correlation coefficients. On the other
hand, other large ensembles such as the UKESM1-0-LL and ACCESS-ESM1-5, despite their
high correlation with the observed spatial patterns, do not exhibit the same level of similarity
when comparing their causal networks to the reference networks. This discrepancy might
be due to the difference in external time-varying aerosol forcing with respect to random
internally-generated variability.

Figure 4.8.: Scatter plots: ���� � mean score (spatial correlation with reanalysis, x-axis) vs �1-score
(network similarity with respect to reanalysis, y-axis) during the different regimes. Spatial correlation
values do not change from one regime to another; these are the same mean scores calculated from the
Pearson � coefficients of the four modes in Section 4.2.1 over the 1900-2014 period. Similar to Figure 4.7,
scatter plots are shown only for the long regimes. Figure from (Karmouche et al. 2023a).
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In Figure 4.8 we plot the 𝐹1-scores for all realizations (color- and marker-coded by CMIP6
ensemble, see legend) for the long regimes with respect to the mean-score of 𝑟 spatial cor-
relations from Section 4.2.1. Similar to Figure 4.7, we choose not to show the scatter plots
for the short regimes. As the mean-scores of spatial correlations are the same for all regimes
(computed between the regression maps on the whole 1900-2014 time series of the indices),
how high (low) a single scatter point can get during a certain regime reveals its causal network
similarity (dissimilarity) with reanalysis during that regime. The scatter points closer to the
top right corner of each plot belong to realizations which simulate better the spatial patterns
and causal fingerprints of reanalysis. Considering only the complete period panel (upper left
in Figure 4.8), the upper right corner of this panel shows mainly realizations from CESM2
(orange crosses), MIROC6 (yellow triangles), CanESM5 (red plus signs) models. From the
same panel, we can notice, for example, that the UKESM1-0-LL realizations (orange 5-pointed
stars) have great spatial pattern similarity with reanalysis. These UKESM1-0-LL realizations,
however, do not show high similarity when comparing their causal fingerprint to that con-
cluded from reanalysis data. The same can be said about MPI-ESM1-2-LR realizations (cyan
6-pointed stars) which, in spite of their high level of skill in recreating the spatial regression
patterns of the four modes of climate variability, fail to obtain 𝐹1-scores as high as those from
CESM2, CanESM5 or MIROC6 during most regimes. Only during the AMV+ and Out-of-
Phase regimes that very few MPI-ESM1-2-LR simulations exceed the 0.7 𝐹1-score bar. Overall,
we can conclude that CESM2 (orange crosses), CanESM5 (red plus signs) and MIROC6 (yellow
triangles) undoubtedly outperform other large ensembles in this evaluation. This is proven
through the consistency that simulations from these two large ensembles show in resembling
the observed causal fingerprints during the different regimes. Despite obtaining high spatial
correlation coefficients, two members of the IPSL-CM6A-LR model (grey scatters) show the
best network similarity with reanalysis during the PDV+ regime while three other members
of this model show no similarity during the same regime.

It is worth mentioning that the number of realisations within an large ensemble appears to
increase the chance of a model to comprise a simulation with similar dependency structures
as those found in observations. The three simulations with the highest 𝐹1-scores during
the Out-of-Phase regime (see Figure 4.6) belong to either CanESM5 or MIROC6 which are
the large ensembles with the highest number of realisations (65 and 50 ensemble members,
respectively). This is likely related to the number of realizations needed to capture similar
random internal variability to the one observed in reanalysis data. This is less valid for
the CESM2 model, which with only 11 realizations, contains simulations with high 𝐹1-scores
during most regimes shown in Figure 4.8. In general, modeling centers previously contributed
only a small number of realizations to international climate change projection assessments
[e.g., phase 5 of the CMIP Taylor et al. 2012]. As a result, model-associated errors and internal
climate variability remained difficult, if not impossible, to disentangle (Kay et al. 2015). In
this paper, as CMIP6 includes large ensemble models, we overcome this sampling problem by
using at least 10 realizations per model (see Table 4.1). In this way, we have a better estimate of
the natural internal variability and the externally forced part. The larger the ensemble size, the
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more likely that the observed internal variability falls within the plausible internal variability
range simulated by that particular large ensemble model realizations. However, despite the
improvement of CMIP6 models in capturing the different modes of climate variability (Fasullo
et al. 2020), recent studies already pointed to persisting tropical Atlantic biases that knew little
or no improvement compared to CMIP5 (Farneti et al. 2022; Richter and Tokinaga 2020). These
biases certainly affect the simulation of Atlantic variability within CMIP6 models as they
project additional uncertainties on the AMV-related causal dynamics and spatial patterns.
Moreover, previous research showed that, on the decadal timescale, Atlantic mean SST biases
in CMIP5 models are directly related to the variability of trade winds over the region (Kajtar
et al. 2018). McGregor et al. 2018 found that the addition of the CMIP5 Atlantic bias leads to
enhanced descending motion trends in the western and eastern Pacific, and a reduced trend
in the central Pacific. The same study found that the observed northward migration of the
Intertropical Convergence Zone (ITCZ) is absent when introducing CMIP5 Atlantic bias.

The spatial pattern correlation analysis (Figure 4.3), the resulting 𝐹1-scores with respect
to reanalysis (Figure 4.6a), and the CMIP6 pair-wise network comparisons (Figure 4.7) call
for the need to investigate the coupling attributes and the simulated internal variability in
the CNRM-ESM2-1 ensemble, as its realizations clearly fail to reproduce the observed spatial
patterns and causal links between modes of climate variability compared to other CMIP6 large
ensembles. The relatively large distribution of spatial correlation values for the simulated PNA
and PDV modes (see purple and red boxes of CNRM-ESM2-1 in Figure 4.3), suggest spatial
disagreement between the realizations of CNRM-ESM2-1 model regarding the expressed PNA
and PDV patterns. This might be the result of a relatively large distribution of forced PNA
and/or PDV trends. This can be supported by the time series metrics provided by CVDP-LE
which reveal that, among the models analysed in this paper (see Table 4.1), CNRM-ESM2-1
holds the largest 10𝑡ℎ-to-90𝑡ℎ percentile range of linear PDV trends (-0.89 per 115 years to
1.18 per 115 years) during the 1900-2014 period. These values can be found on the PDV
time series ensemble summary figure as part of the historical 1900-2014 CMIP6 variability
diagnostic results3 distributed by the CVDP-LE authors (Phillips et al. 2020). Considering
that the model only counts 10 realizations, the large 10𝑡ℎ-to-90𝑡ℎ percentile range reveals that
the forced PDV trend can be significantly different from one CNRM-ESM2-1 simulation to
another. This translates not only to the dissimilarity in terms of spatial PDV patterns within
the ensemble members but most probably leads to very different causal dynamics too. The
latter can be seen through the causal networks in Appendix Figures A.1–A.2 where CNRM-
ESM2-1 simulations hardly agree on the sign of the PDV—PNA links (appearing with lighter
shades of red) compared to the other CMIP6 models (where PDV—PNA links appear with
darker shades of red).

In the present work we defined regimes explicitly based on the phases of PDV and AMV.
There are also methods to agnostically extract underlying regimes and their corresponding

3https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_repository/CMIP6_Historical_1900-2014/pdv_
timeseries_mon.summary.png, last access: 21.09.2023
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4.4. Summary

causal graphs from time series (Saggioro et al. 2020), but these are not reliable for the small
sample sizes in combination with the high dimensionality of the present datasets.

4.4. Summary

Applying PCMCI+ to reanalysis data revealed that the direct decadal opposite-sign response
from AMV to PDV, described by Meehl et al. 2021a occurs not only during the analysis of the
complete 1900-2014 period (with 11-year time lag), but also during several specified regimes:
PDV- (11-year lag), AMV- (11-year lag), PDV+/AMV- (1- and 11-year lags), and when PDV
and AMV are out of phase (1- and 11-year lags). These regimes vary from 34-year long (for
PDV+/AMV-) to 65-year long (for Out-of-Phase). For the shorter PDV+/AMV+ regime (25-
year long) we detect a positive same-sign response from AMV to PDV with a 4-year time delay.
The causal networks constructed from the reanalyses datasets have also revealed the same-sign
response from PDV to AMV during two regimes: PDV- (59-year long) and PDV-/AMV+ (31-
years long). In other words, the regime-oriented causal analysis indicates that AMV might
serve as an early predictor of decadal variability over the Pacific. We also find an indirect
connection between the Atlantic and Pacific, which is established via PNA during AMV-
and PDV+ regimes (both 59-year long), and during PDV-/AMV+. The latter is one of the two
regimes that feature a same-sign response from PDV to AMV. An indirect connection between
Atlantic and Pacific via the Pacific–South American Pattern is found during the complete 1900-
2014 period, where AMV is positively linked with PSA1, but PSA1 has a negative lagged link
to PDV. During AMV- regime, the causal graph shows opposite-sign AMV→PSA1→PDV
lagged connections.

As an example for the regime-oriented causal analysis on CMIP6 models, we showed the
CanESM5 ensemble averaged causal graphs which indicate that the opposite sign effect of
AMV on PDV (blue AMV→PDV link) is recreated by several realizations (38 out of 65) during
the Out-of-Phase regime, agreeing with the reanalysis results and literature findings (Johnson
et al. 2020; Newman et al. 2016). Appendix Figure A.1 and Figure A.2 show that this opposite
sign-lagged effect of AMV on PDV was clearly present in simulations belonging to CESM2
and MIROC6 ensembles (AMV→PDV links are clearly blue). The PDV teleconnection to PNA
in the form of mutual same-sign response (positive cross-MCI links) was clearly present in
most realizations of not only the CanESM5 model (Figure 4.5) but most of the CMIP6 large
ensemble simulations analysed. This is true considering the exception of the CNRM-ESM2-1
simulations which show less agreement between each other on the sign of the PDV—PNA
links (appearing with lighter shades of red in Figure A.1 and Figure A.2) compared to the
other CMIP6 models.

The evaluation of the Large Ensembles from the CMIP6 archive presented in this paper
unveiled how a model performs compared to other models in terms of simulating observed
spatial patterns and causal pathways between modes of climate variability. Most CMIP6
models were found to score better during the Out-of-Phase regime, with CESM2, CanESM5,
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MIROC6, and MPI-ESM1-2-LR as the best performers during this regime. We showed the
importance of using large ensembles in causal model evaluation to address the sampling is-
sue and explained possible causal pathways during specific regimes that might not appear
in causal networks constructed from reanalysis data. Several CanESM5 realizations sug-
gested a same-sign AMV→PDV link during the In-Phase regime. This link did not appear
on the In-Phase regime causal graph reconstructed from reanalysis. This same sign response
is nonetheless documented by previous research (Meehl et al. 2021a; Wu et al. 2011). The
CanESM5 and MIROC6 models with the highest numbers of members were found to out-
perform other models in simulating observed causal patterns during the long regimes (see
Figure 4.6a). Interestingly, the CESM2 model, with a relatively smaller ensemble size (11 real-
izations), was also found to display larger causal fingerprint similarity with reanalysis during
the long regimes. The causal network similarity between different CMIP6 large ensemble
models was also assessed throughout this paper. Simulations from CESM2, CanESM5 and
MIROC6 models also largely resemble each other and those from the MPI-ESM1-2-LR model
in terms of estimated causal networks during most regimes (Figure 4.7).

A deepened intra-model comparison remains essential to evaluate how realizations of the
same model ensemble differ from one another. The ’ripf’ identifier of every simulation within
the CMIP6 large ensembles used in this study show that some large ensembles only include
realizations (r) with the same initialization (i), physics (p) and forcing (f), while other large
ensembles contain realizations with different physics or forcing. On that account, it is of
high importance to inspect the documentation provided by modeling groups on the relevant
realization attributes of their model ensemble.

Causal model evaluation is also helping to better understand remote contributions to in-
ternal variability over specific regions. As we are not subtracting the ensemble mean (repre-
senting the forced response), the causal links found when analyzing observational reanalysis
and CMIP6 historical simulations are thus expected to include external forcing contributions,
especially those from space and time-varying aerosol radiative forcing. It is therefore crucial
to separate the internal variability component from the externally forced part to gain a better
understanding on the effects of external forcings on Atlantic-Pacific interactions. Meehl et al.
2021a recently examined this effect through time series pacemaker experiments in which ef-
fects from all external forcings and/or aerosols only are removed. The approach and findings
presented there motivated the follow-up study (Chapter 5 where an ensemble of pacemaker
simulations and a pre-industrial control run are to be analyzed through causal discovery algo-
rithms to reveal the impact of climate change on the teleconnections and interactions between
major modes of climate variability. Overall, the regime-oriented causal model evaluation
followed in this study has the potential of a powerful methodology that can be applied to
a number of environment-related topics, offering tremendous insight to improve the under-
standing of the complex earth system and the state-of-the-art of climate modeling.
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Atlantic-Pacific interactions

Historical analyses in recent studies suggested connections between the Atlantic and Pacific
basins underscoring the significance of processes such as the Walker circulation in forging
these connections and present the mechanisms through which distinctive climate variability
modes affect each other, engendering complex networks of interrelated impacts on global and
regional climate variability (Kumar et al. 2014; Levine et al. 2017; Li et al. 2016; Meehl et al. 2016;
Meehl et al. 2021a; Park et al. 2023; Ruprich-Robert et al. 2017; Yang et al. 2020). The discourse
on the recent Walker circulation trends continues to be a subject of scholarly debate (DiNezio
et al. 2013; Kociuba and Power 2015; Power and Kociuba 2011; Vecchi and Soden 2007). While
some studies found internal variability playing an important role in explaining the recent
strengthening of the Walker circulation (Chung et al. 2019), the role of the adjacent Atlantic
ocean in modulating tropical Pacific variability cannot be sidelined, pointing to a potential
anthropogenic influence on Atlantic SST warming and its consequences on Pacific variability
(Klavans et al. 2022; Kucharski et al. 2011; McGregor et al. 2014; Watanabe and Tatebe 2019).
In order to help with the separation of internal variability from external forcings, this section
leverages large ensemble simulations which emerge as a powerful tool to unravel observed
trends and facilitate the detection and attribution of anthropogenic climate change effects
(Borchert et al. 2021; Deser and Phillips 2023; Klavans et al. 2022; Menary et al. 2020). The
choice of CMIP6 large ensembles used to quantify the externally forced response, is based on
the climate modes evaluation carried out in Chapter 4. To deepen this inquiry, this section
narrows the scope of the thesis to examining teleconnections on a seasonal to interannual
basis, differing from the yearly-interannual to decadal timescales investigated in the previous
Chapter 4. Drawing upon the frameworks posited by Meehl et al. 2021a; Park et al. 2023,
the study conducts a causal analysis of reanalysis data to scrutinize distinct teleconnection
regimes within two historical phases: the Pacific-driven regime (1950-1983) and the Atlantic-
driven regime (1985-2014). The utilization of Pacific pacemaker simulations facilitates the
examination of the ENSO’s impact on teleconnections in both the North Pacific and North
Atlantic regions, encompassing analyses with and without the presence of externally induced
signals. Complementing this, the study uses pre-industrial control run results to substantiate
the inherent occurrence of Atlantic-Pacific interactions, devoid of anthropogenic external
forcings.

The work in this Chapter 5 (including text, figures, and supplementary material), has been
recently submitted to Earth System Dynamics journal (Karmouche et al. 2023b). Similar to
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Karmouche et al. 2023a (on which Chapter 4 is based), the author of this thesis led the study,
the writing of the manuscript, performed all the analysis and produced all figures and tables.
The code to reproduce the study in this Chapter 5 (with all figures and tables) will be publicly
available upon publication of the paper.

5.1. Data and methods

5.1.1. Indices

Candidate variables for the causal analysis of this Atlantic-Pacific study are chosen to represent
the tropical and extra-tropical pathways connecting the tropical Pacific and the tropical North
Atlantic (as discussed Section 2.2.3) and which involve ENSO, SSTAs over the Tropical North
Atlantic (TNA) region, PNA, NAO and the PWC. Indices for these variables are chosen
respectively as: the Niño3.4 index, the TNA index, the PNA index, the NAO index, and
the PWC𝑢 index. The PWC𝑢 index is calculated as the monthly zonal wind (u component)
anomaly at 925 hPa (or nearest available pressure level in simulations) over the region [6°N–6°S,
180°-150°E], following methods from Chung et al. 2019. Positive (negative) PWC𝑢 values
denote anomalous westerlies (easterlies) winds that imply a weakening (strengthening) of the
PWC.

5.1.2. Observational and reanalyses datasets

To derive the SST-based indices in the Atlantic and Pacific (TNA and Niño3.4) during the
documented historical period from 1950-2014, the HadISST dataset was employed (Rayner
et al. 2003). Additionally, the SLP and the zonal wind component (u) at 925 hPa were derived
from the NCEP-NCAR-R1 dataset (Kalnay et al. 1996) to derive indices for the atmospheric
modes (NAO and PNA) and the Walker circulation over the Pacific (PWC𝑢).

5.1.3. Pacific pacemaker simulations

To scrutinize the influences of ENSO on the Atlantic-Pacific interplay, a 10-member ensemble
of the CESM2 model (Danabasoglu et al. 2020) was employed, where the SSTAs in the eastern
tropical Pacific were prescribed according to ERSSTv5 data spanning 1880-2019. Analogous
to the reanalysis datasets detailed in Section 5.1.2 above, the evaluation revolves around the
period between 1950 and 2014. To retain the inherent state and discrepancies of the model, the
SST nudging only encompassed the anomalies and not the total SST. The ensemble counts all
CMIP6 evolving external and anthropogenic elements, representing historical forcings until
2014. The data extracted parallels that in reanalysis datasets, including surface temperature
(TS), SLP, and U variables. Comprehensive details regarding the dataset are retrievable from
the Climate Variability and Change Working Group (CVCWG) webpage1.

1Accessible via https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm2-pacific-pacemaker,
DOI: 10.26024/gtrs-tf57, last access: 01.09.2023
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5.1.4. Pre-industrial control run

To deepen the exploration of intermodal interactions in the Atlantic and Pacific basins in
an unforced setting, 120 years of data drawn from the CESM2 pre-industrial control setup
(representing the era preceding 1850, Eyring et al. 2016) was utilized. Specifically, we use data
from the beginning of year 1000 to the end of year 1119. Similar to reanalysis and pacemaker
simulations, this run incorporates monthly means of TS, SLP, and U variables. We use the
CESM2 model for its remarkable simulation of ENSO characteristics (Capotondi et al. 2020;
Chen et al. 2021; Danabasoglu et al. 2020; Deser et al. 2020) and also to facilitate the comparison
with the pacemaker ensemble results.

5.1.5. Separating internal variability from the externally forced components

To isolate internal variability from the Pacific pacemaker simulations, we first calculate a
multi-ensemble mean (MEM) for each variable, representing an estimate of the externally
forced component. This is done by averaging three CMIP6 historical large ensemble means
(with different numbers of ensemble members): CESM2 (11 members), MIROC6 (50 mem-
bers), and UKESM1-0-LL (16 members). These models were chosen to represent the MEM,
since they realistically simulate the spatiotemporal characteristics of the major modes of cli-
mate variability (notably ENSO and North Atlantic SST modes) during the historical period
(Fasullo et al. 2020; Karmouche et al. 2023a; Phillips et al. 2020). It is noteworthy that these
CMIP6 models were among the best-scoring large ensembles during the pattern correlation
and causal model evaluation in the previous Chapter 4. Moreover, to detect changes in var-
ious climate phenomena, the required number of members in an ensemble simulation may
differ. Forced changes in ocean heat content can be detected with only a few members, while
changes in atmospheric circulation or extreme precipitation and temperature may need 20-30
members (Deser et al. 2012; Smith et al. 2022; Tebaldi et al. 2021). Detecting forced changes
in the characteristics of internal variability, such as its amplitude, spatial pattern, and remote
teleconnections, may require even larger ensembles (Deser and Phillips 2023; Milinski et al.
2019; O’Brien and Deser 2023; Smith et al. 2022). The idea behind estimating the forced re-
sponse from three different large ensembles with different numbers of realizations is to reduce
any biases originating from the model’s own representation of CMIP6 forcing and/or from
the ensemble size. Because each of the 10 members in the pacemaker ensemble is subjected
to the same CMIP6 time-varying external forcing, we assume that MEM is the response to
external forcing such as GHG-induced warming trends, solar radiation, volcanic activity, land
use changes, and anthropogenic aerosols. Consequently, the discrepancies in each pacemaker
simulation relative to MEM can be attributed to internal variability. Therefore, for a given
variable X (X = 𝑆𝑆𝑇,𝑈, 𝑆𝐿𝑃), we can express the separation in a pacemaker simulation i as:

𝑋𝑖 = 𝑋MEM + 𝑋internal(𝑖) , 𝑖 = 1, 2, . . . , 10 (5.1)

where 𝑋MEM is the forced component estimated from the CMIP6 MEM and 𝑋internal(𝑖) is the
residual of the original 𝑋𝑖 minus the forced response 𝑋MEM, which varies among different
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members and shows the component associated with isolated internal variability. This is
similar to methods from Wu et al. 2021, but using the CMIP6 MEM instead of the pacemaker
ensemble mean to quantify the forced component.

Figure 5.1.: Standardized seasonally averaged time series of a) Niño3.4, b) TNA, c) PNA, d) NAO, and e)
PWC� during the observed 1950-2014 period. Unit for the standard deviations are [°C] in a and b, [Pa]
in c and d, and [m.s−1] in e. The time series in black represent the mixed signal from indices calculated
using HadISST (a,b) and NCEP-NCAR Reanalysis-1 (c-e). The time series in green are calculated after
subtracting the CMIP6 external forcing represented by MEM following Equation (5.1). In each panel,
the red line denotes the difference between the black and green line at each time step, representing the
varying effect of subtracting MEM on each index. Figure from Karmouche et al. 2023b

To isolate the internal variability in observations and the pacemaker simulations following
Equation (5.1) we subtract the MEM for SST, SLP, and U from observations and each pace-
maker simulation before calculating the indices above. Figure 5.1 illustrates the standardized
seasonally averaged time series of Niño3.4 (a), TNA (b), PNA (c), NAO (d), and PWC� (e)
indices from observations for the 1950-2014 period. For each index, the time series in black
represents the original indices from HadISST (a,b) and NCEP-NCAR-R1 (c-e), as mixed signals
including external forcing (non-linear trends). The time series in green show the indices after
subtracting MEM (producing an isolated internal variability). The difference that denotes the
effects of external forcing is shown in red. Based on 5.1, there are two indices that expose
positive trends represented by external forcings, namely Niño3.4 (a) and TNA (b). The rest of
the analyzed indices do not show distinctive trends nor significant effects of external forcing.
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5.1.6. Application of PCMCI+

On the time resolution of the PCMCI+ data frames, we note that we use seasonally averaged
time series of each index (TNA, Niño3.4, PNA, NAO, and PWC𝑢) with four seasons (time steps)
per year, as averages of January-February-March (JFM), April-May-June (AMJ), July-August-
September (JAS), and October-November-December (OND). For the parameter settings of the
PCMCI+ we set the maximum time lag to 8 time steps (𝜏𝑚𝑎𝑥 = 8 [seasons]), meaning that
we only investigate teleconnections within a maximum of two-year time lag. Additionally,
we also look at contemporaneous links detected within the same season (𝜏𝑚𝑖𝑛 = 0). These
contemporaneous inter-dependencies that happen with no time lag (i.e., 𝜏<1) are shown as
straight links on the causal networks (similar to Chapter 4). The significance threshold for
MCI partial correlation analyses was established at 0.2, to account for the limited sample
duration. As mentioned in Section 3.5.1, in this section we transform the cross-MCI to linear
link coefficients (link coeff.) using the linear mediation model (similar to results shown
in Figure 3.2). Note that the PCMCI+ resulting graphs may contain unoriented as well as
conflicting links (“o-o” or “x-x” ) at lag zero (e.g. due to Markov equivalence and conflicting
orientation rule applications). Here we orient these links to satisfy a (fully-oriented) Directed
Acyclic Graph (DAG) based on the direction in which they most appeared in all instances of that
particular contemporaneous link across the CESM2 pacemaker ensemble during each regime.
The set of directions learned from the majority ruling is used to direct unoriented links during
the reanalysis and the pre-industrial control runs as well. Such adjustment is practiced while
ensuring no occurrence of contemporaneous cycles. A detailed description of the originally
unoriented contemporaneous links, their occurrences, newly attributed directions, and the
underpinning rationale for these orientations can be found in Table B.1 of the Appendix.

5.2. Results

5.2.1. Analysis of observational and reanalysis datasets

Observed correlation patterns

To demonstrate the relationships between Atlantic and Pacific SST modes and to estimate the
effect of removing the externally forced signal (represented by MEM, for more details see
Section 5.1.5) from the original SSTs, we first calculate Pearson’s correlation between global
SSTAs with SST-derived indices based on the original HadISST dataset.

Figure 5.2 displays the regression patterns of global SSTAs during two distinct regimes: the
Pacific-driven 1950-1983 period (Figure 5.2a and b) and the Atlantic-driven 1985-2014 period
(Figure 5.2c and d). The analysis in Figure 5.2 focuses on the relationship between SSTAs
and two key climate indices (namely Niño3.4 and TNA indices) using the original SST signal,
hypothesized to contain influences of both internal variability and external forcing (as dis-
cussed in Section 5.1.5 and seen in Section 5.1.1a and b). Figure 5.3, on the other hand, shows
the same analysis but after isolating the internal variability component of the SST modes and
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Figure 5.2.: Regression pattern of global SSTAs onto Niño3.4 index (a,c) and TNA index (b,d) during
both periods: 1950-1983 (top) vs 1985-2014 (bottom). a) Pearson’s correlation coefficients (shadings)
and regression coefficients (contours) of detrended global SSTAs with the standardized Niño3.4 index
based on HadISST data during 1950-1983. b) Same as (a) but showing the SSTAs correlation and
regression with the standardized TNA index instead of Niño3.4. c) Same as (a) but for the 1985-2014
period. d) Same as (b) but for the 1985-2014 period. White-shaded areas indicate weak correlations
(between -0.1 and 0.1). The contour interval is 0.2 (°C) with dashed (solid) contours indicating regions
with negative (positive) regression coefficients. Global SSTAs are detrended by removing the global
mean at each time step. For convenience, the dashed black box shows the considered TNA region.
Figure from Karmouche et al. 2023b.
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Figure 5.3.: Similar to Figure 5.2 but after removing the externally forced signal represented by MEM
following Equation (5.1) (see methods Section 5.1.5). All SST fields have the CMIP6 MEM subtracted
prior to calculating anomalies and performing the regressions. Figure from Karmouche et al. 2023b.
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anomalies by subtracting MEM from the original SST fields following Equation (5.1). For both
Figure 5.2 and Figure 5.3, the top panel (a) illustrates Pearson’s correlation coefficients and
regression coefficients between detrended global SSTAs and the standardized Niño3.4 index
for the period 1950-1983, based on HadISST data. Similarly, the second panel (b) presents
the same correlation and regression analysis but with the standardized TNA index instead of
Niño3.4. The bottom panels (c) and (d) replicate the analyses from panels (a) and (b) but for
the period 1985-2014. To visualize the impact of subtracting MEM, the reader can compare
one panel from Figure 5.3 to its respective panel in Figure 5.2.

• SSTAs regression onto the Niño3.4 index. Before removing external forcing, during
the 1950–1983 period (Figure 5.2a), we find weak correlations between the Niño3.4 index
and SSTAs over most of the Atlantic with negative values extending from the European
west coast and decaying north of the TNA region (black dashed box in Figure 5.2a).
Within this TNA region, there are weak positive correlations extending from the Gulf of
Mexico and decaying around the center of the TNA region. This positive relationship
is consistent with several previous studies (Enfield and Mayer 1997; García-Serrano
et al. 2017; Jiang and Li 2019; Klein et al. 1999) that suggest warm (cold) SSTAs develop
over the TNA region and peak during the spring and summer following an El Niño
(La Niña) winter (Park et al. 2023). These positive values vanish when analyzing the
1985-2014 period (Figure 5.2c), where the TNA region shows mainly values between -0.1
and 0.1 for the Niño3.4 index correlation with the SSTAs over that region (see the black
dashed box in Figure 5.2c). In the North Pacific, both periods show positive correlations
extending along the west coast of North America, and negative correlations in the central
North Pacific. This horseshoe-like pattern is consistent throughout all SSTA-Niño3.4
regression maps (panels a and c in Figure 5.2 and Figure 5.3). Comparing Figure 5.3a
to Figure 5.2a, we conclude that although the positive correlations of tropical Atlantic
SSTAs with the Niño3.4 index slightly increased when subtracting MEM during the
Pacific-driven 1950-1983 period, the impact of removing the externally forced signal is
not pronounced. This conclusion also holds for the SSTA-Niño3.4 correlations during
the 1985-2014 regime as there are no major differences between the TNA box (dashed
box) in Figure 5.3c compared to the one in Figure 5.2c.

• SSTAs regression onto the TNA index. During the first period (1950-1983), the results
suggest no major difference in the relationship between the TNA index and North
Pacific SSTAs before and after removing external forcing. The correlation maps for the
Pacific-driven regime (Figure 5.2b and 5.3b) show mainly positive values in the central
equatorial Pacific and negative values in the central North and central South Pacific,
similar to the symmetric horseshoe pattern observed from the Niño3.4 regressions
shown in Figure 5.2a and 5.3a. Conversely, the subsequent 1985-2014 Atlantic-driven
period, where externally forced warming projects greatly onto the Atlantic SST changes
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(Klavans et al. 2021; Klavans et al. 2022; Mann et al. 2014), Figure 5.2d shows negative
correlation values of TNA index with SSTAs over the eastern Tropical and North Pacific.
However, the removal of the external forcing resulted in a strengthened dipole SSTA
pattern over the North Atlantic and weak positive correlations over the central and
eastern equatorial Pacific (Figure 5.3d). The removal of external forcing suppressed the
negative relationship between the TNA index and SSTAs over the tropical and northeast-
ern Pacific during the 1985-2014 period (Figure 5.3d). It is also important to highlight
that the impact of external forcing is much more pronounced during 1985-2014, given
the clear differences in the Pacific sector between the correlation maps in Figure 5.2d
and 5.3d, and which falls in agreement with previous studies (Dong et al. 2014; Dong
and McPhaden 2017; Kucharski et al. 2016; Meehl et al. 2013; Meehl et al. 2021a). This
suggests that external forcing might have played a major role in the recent effect of the
Atlantic on the Pacific. However, the nature of these connections remains unclear. Next,
the causal discovery methodology will be applied to better quantify these connections
to provide insights into the relevant physical processes.

Causal networks

To investigate the teleconnections during the two periods from a causal discovery perspective,
Figure 5.4 demonstrates causal networks of Atlantic-Pacific teleconnections based on indices
from Section 5.1.1 (Figure 5.1) from the Reanalyses datasets (Section 5.1.2). The left panels
in Figure 5.4 (a,c) show the resulting causal networks during the 1950-1983 Pacific-driven
period, while the panels on the right (b,d) show the networks for the 1985-2014 Atlantic-
driven period. For each period, the panel on top (a,b) represents the original observed signal
(corresponding to the black curve in Figure 5.1). The bottom panel shows the networks where
indices have been calculated after subtracting the MEM, effectively isolating internal vari-
ability (corresponding to the green curve in Figure 5.1). In the bottom panels (c) and (d) the
MEM is subtracted from the reanalyses before PCMCI+ is applied. Picturing Niño3.4, PNA
and PWC𝑢 as variables representing the Pacific while TNA and NAO represent the Atlantic,
we can, for example, look at how nodes from the Pacific basin are linked to each other and
to the Atlantic ones, and vice-versa. As a general note, based on Figure 5.4 (all panels), we
detect the extensively studied relationship of ENSO and PWC(Bayr et al. 2014; Trenberth
1997; Zhao and Allen 2019), illustrated through the strong positive contemporaneous causal
connection from PWC𝑢 to the Niño3.4 (PWC𝑢→Niño3.4 link). We confirm that positive values
of PWC𝑢 indicate anomalously weak easterly winds associated with the weakening of PWC
and the emergence of El Niño events. With PWC inextricably linked to Niño3.4, a conclusion
solidified throughout the results in Sections 5.2.1 and 5.2.2, we consider causal links to and
from a PWC𝑢 node to denote a causal relationship associated with ENSO. We also find a
weak opposite sign causal response from PWC𝑢 to Niño3.4 at one season lag (Figure 5.4a and c).
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Figure 5.4.: Causal networks representing Atlantic-Pacific teleconnections for 1950-1983 (left column)
vs 1985-2014 (right column) in the Reanalyses datasets. (a) Constructed by applying PCMCI+ on the
standardized time series of the five seasonally averaged indices calculated from reanalysis datasets for
the 1950-1983 period. Nodes represent the time series associated with each climate variability index
(see node labels). Node colors indicate the auto-link coefficients (auto-coeff), and the color of the links
denote the linear link coefficient (link coeff). The link-associated time lags (unit=1 season) are shown
as small labels on the curved links. Straight links show contemporaneous inter-dependencies that
happen with no time lag. (b) Same as (a) but for the 1985-2014 period. (c) same as (a), but with indices
calculated after removing MEM. (d) Same as (c) but for the 1985-2014 period. Figure from Karmouche
et al. 2023b

• Pacific-driven regime (1950-1983): The Pacific-driven 1950-1983 is found to be domi-
nated by a same-sign effect from ENSO on TNA through both tropical and extra-tropical
routes. During an El Niño event, the weakened Walker circulation allows an eastward
shift in the maximum convection center from the Maritime Continent to the central
equatorial Pacific. This tropical convection triggers a poleward-propagating Rossby
wave which extends into the midlatitudes, constituting the PNA pattern. This telecon-
nection linking the equatorial and extra-tropical Pacific is detected as a lagged positive
causal link from PWC𝑢 to PNA during 1950-1983 (Figure 5.4a and c). The wave pattern
associated with PNA contributes to the formation of an anomalous low-pressure center
over the southeast United States and the Caribbean. The presence of the PNA pattern
results in anomalous southwesterly winds over the TNA region. The negative rainfall
anomaly over the western Pacific and the Atlantic region, caused by the reversed Walker
circulation during El Niño, plays a role in inducing this anomalous low-pressure center
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over the southeast United States. Additionally, the suppressed heating response in
the Atlantic region, resembling the Gill-like pattern (Gill 1980; Matsuno 1966), also
contributes to the development of anticyclonic circulation and southwesterly wind
anomalies over the TNA region (García-Serrano et al. 2017; Jiang and Li 2019). The
combined effect of these extratropical and tropical routes leads to southwesterly wind
anomalies that weaken the northeasterly trade winds, reduce evaporation, and induce
SSTA warming over the TNA region (Casselman et al. 2021; García-Serrano et al. 2017;
Jiang and Li 2019; Meehl et al. 2021a; Park et al. 2023; Trenberth 1997; Wallace and
Gutzler 1981). The two routes for the ENSO effect on TNA, which is enhanced during
the 1950-1983 period, can be seen through the causal networks in Figure 5.4a and c
showing two positive (lagged) links from the Pacific to TNA: PNA→TNA (1 season) and
Niño3.4→TNA (1 season). The TNA→PNA link in Figure 5.4a and c is lagged by two
seasons which might suggest that the warming over the TNA region contributes back
to anomalous southwesterly winds and maintains the PNA pattern. The Pacific-driven
regime’s causal graphs show that after El Niño excites PNA, the latter appears to be
mutually connected to the NAO with a 7-season lag (PNA→NAO and NAO→PNA links
in Figure 5.4a and c). These links are however inconsistent with previous studies on
the linkage between North Atlantic and North Pacific modes of atmospheric circulation
and which suggest contemporaneous negative links between PNA and NAO. Honda
et al. 2001 conducted a study on the period between 1979 and 1994 and discovered a
negative correlation (-0.7) between the intensities of the Aleutian and Icelandic lows
(low-pressure centers of the PNA and NAO, respectively). Song et al. 2009 concluded
that the strongest negative correlations between PNA and NAO occur with no time lag
and within a range of 10-day lags. By analyzing reanalysis datasets, Pinto et al. 2011
found no significant anti-correlation between PNA and NAO between 1950 and the
mid-1970s, but this was clearly detected during the sub-period 1973–1994. A period of
weak PNA-NAO coupling might explain the undetected contemporaneous PNA→NAO
negative links during the Pacific-driven period. According to Soulard and Lin 2017, it
is the absence of tropical forcing from ENSO that strengthens the relationship between
PNA and NAO. On the other hand, observational uncertainty prior to the satellite
era can also be a reason that lagged positive links were detected between NAO and
PNA instead of contemporaneous negative links. On the Atlantic side, apart from the
influence of ENSO and PNA on TNA, NAO is also found to impact the TNA SSTAs
(contemporaneous negative NAO→TNA links in Figure 5.4a and c). The changes in
pressure gradients between the Azores high and the Icelandic low can alter trade winds,
heat fluxes, and SSTs. Reduced northeasterly trade winds contribute to trapping warm
SSTAs over the TNA region as less latent heat is released into the atmosphere (Cassou
and Terray 2001; Lee et al. 2008). We detect several causal connections between NAO
and TNA where the NAO drives changes in TNA, not only contemporaneously but also
lagged (NAO→TNA, Figure 5.4a and c). This negative relationship of the NAO index
with TNA is seen through the negative NAO→TNA links in Figure 5.4a and c. Although
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direct links connecting either Niño3.4 (or PWC𝑢) to NAO have not been detected during
the Pacific-driven regime, the NAO is thought to affect the interplay between ENSO and
TNA which is further complicated by the fact that ENSO can also influence the NAO
through extratropical pathways (Casselman et al. 2021; Doblas-Reyes et al. 2017). If
we consider the causal links that connect the SST modes (Niño3.4 and TNA) directly,
or through PWC𝑢 and PNA, then these results support the hypothesis that it was the
Pacific SSTs mainly driving the same sign response on the Atlantic SSTs between 1950
and 1983 (Meehl et al. 2021a; Park et al. 2023). Overall, comparing Figure 5.4a to c
reveals a limited effect of external forcing during the first period as no major changes
were detected in the causal graph after subtracting MEM.

• Atlantic-driven regime (1985-2014): During the second period, the monopole SSTA
pattern centered over the TNA region (shown in Figure 5.2d) suggests enhanced pre-
cipitation there. The Rossby wave energy associated with the enhanced precipitation
propagates toward the subtropical Pacific. Combined with the modulated Walker cir-
culation, this induces easterly wind anomalies over the equatorial Pacific, favoring the
development of La Niña events (Ham et al. 2013b; Park et al. 2022; Park et al. 2023).
This is illustrated in Figure 5.4b and d through the 1-season lagged TNA→PWC𝑢 neg-
ative link, an effect that evidently reaches the Niño3.4 node (strong PWC𝑢→Niño3.4
link). While the atmospheric bridge connecting the equatorial and the extra-tropical
Pacific was detected as PWC𝑢→PNA links in Figure 5.4a-c, this was detected as a di-
rect contemporaneous Niño3.4→PNA link when external forcing is removed during the
second period (Figure 5.4d). Without external forcing, the NAO is found to drive small
changes in TNA (Figure 5.4d). The contemporaneous TNA-NAO connection is found in
the opposite direction during the externally forced Atlantic-driven regime (TNA→NAO,
Figure 5.4b). The latter is also the strongest occurrence of TNA-NAO links among the
results in Figure 5.4. The ENSO effect on TNA through the extratropical pathway is
still detected when external forcing was not removed. This is seen in Figure 5.4b as
a contemporaneous link from PNA to TNA in addition to an extratropical PNA tele-
connection through PWC𝑢 anomalies (PNA→TNA and PWC𝑢→PNA links). This mild
contemporaneous PNA→TNA link is suppressed when MEM is subtracted, in contrast
to the appearance of a strong 8-season lagged PWC𝑢→NAO link (Figure 5.4d) incon-
sistent with the already proposed negative and short lagged ENSO-NAO relationship
(Brönnimann et al. 2007; Brönnimann 2007). Contrary to the first period, the contempo-
raneous negative PNA connection to NAO (Honda et al. 2001; Pinto et al. 2011; Song et al.
2009) is detected during the second period (PNA→NAO in Figure 5.4b and NAO→PNA
in Figure 5.4d). Song et al. 2009 explain the anti-correlation they found between day-to-
day variability of the Aleutian low and Icelandic low being the result of the anomalous
Rossby wave-breaking events associated with the PNA pattern. The paper shows that
when the PNA is in a positive (negative) phase, there is more Rossby wave breaking
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over the North Pacific (Atlantic), which can weaken or split the polar vortex over that
region. This can then affect the jet stream and the storm tracks over the North Atlantic,
leading to a negative (positive) NAO phase. Lagged negative causal PNA→NAO and
NAO→PNA links are also detected during the 1985-2014 period.

Summary on the effects of external forcings

It appears from Figure 5.4 that external forcing does not have significant effects on the causal
networks from the 1950-1983 regime (Figure 5.4c vs 5a), consistent with the SST correlation
maps suggesting no major difference before and after subtracting MEM (Figure 5.2a vs 4a).
Whereas for the following 1985-2014 period, changes were only detected in the tropical/extra-
tropical pathways connecting Atlantic and Pacific. The difference between Figure 5.2d and
Figure 5.3d hints at a major role played by the externally forced signal in the negative relation-
ship between the TNA index and the tropical east Pacific SSTAs during the Atlantic-driven
regime, which is not clearly detected by comparing causal graphs (Figure 5.4b vs Figure 5.4d).
Namely, the causal networks show the effect of external forcing as in TNA causing changes
in NAO and also in establishing the extra-tropical PNA connection to TNA with no seasonal
lag. The latter connection is suppressed when external forcing was removed, in contrast to
the appearance of a lagged PWC𝑢→NAO link (comparing Figure 5.4b and 5d). Most impor-
tantly, inconsistent with the correlation map in Figure 5.3d, the one-season lagged negative
TNA→PWC𝑢 link was still detected, with similar strength (link coeff.), after removing the
externally forced signal. It is important to note that this discrepancy, regarding the effect of
removing MEM during 1985-2014, was less apparent during a sensitivity test we carried out.
There, the analysis of the Atlantic-driven regime was started one year later (1986 instead of
1985) in the observational run and the respective causal graphs revealed that the negative
sign response from TNA to PWC was not detected after removing MEM (Figure B.1), consis-
tent with the correlation maps from 1985-2014. This further supports the already proposed
studies indicating an increasing impact of external forcing on North Atlantic SSTA changes
and the associated widespread effects during the most recent decades (He et al. 2023; Klavans
et al. 2022; Murphy et al. 2017). In Appendix Figure B.1, the 8-season lagged PWC𝑢→NAO
(featuring in Figure 5.4d) was detected before and after subtracting MEM.

The variability of ENSO’s relationship to TNA from one regime to another is influenced
by the decadal changes in the background mean state. A study by Park and Li 2019 found
that the relationship between ENSO and TNA SST is non-stationary and depends on the
phase of the AMV. Specifically, when AMV is trending to its negative phase, the impact
of ENSO on TNA becomes amplified and has a more prolonged effect. This was the case
during the 1950-1983 period when AMV was trending towards its negative phase. During
the 1985-2014 period, AMV was trending back from a negative to a positive phase and the
opposite was observed (reduced amplitude and shortened effect). The anomalously warm
North Atlantic SSTAs during the positive AMV phase favor the strengthening of the PWC,
which ultimately brings upwelled cold water to cool down the central equatorial pacific. The
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specific contributions of internal variability to these regime changes remain unclear. Zhang
et al. 2019 emphasizes the influence of the thermohaline circulation, particularly the Atlantic
Meridional Overturning Circulation (AMOC), on the multidecadal changes in Atlantic SSTs.
Whereas for the interannual fluctuations, the paper suggests they are primarily driven by
wind-induced changes in turbulent heat fluxes. On the other hand, a series of recent papers
(Bellucci et al. 2017; Booth et al. 2012; Klavans et al. 2022; Mann et al. 2014; Watanabe and
Tatebe 2019) show growing evidence of an increasing effect of external forcing on the AMV and
its lead/lag association with the AMOC. This suggests that internal variability and external
radiative forcing contribute to the decadal SST variations over the Atlantic (Klavans et al. 2022;
Meehl et al. 2016; Meehl et al. 2021a; Park et al. 2019; Park et al. 2023).

5.2.2. Causal analysis of Pacific pacemaker simulations

To scrutinize the potential causal dependencies between the modes, we use a 10-member en-
semble of the CESM2 Pacific pacemaker simulations (see Section 5.1.3) where Eastern Tropical
SSTAs have been nudged towards observed values (maintaining ENSO evolution, Figure 5.5a).
The rest of the coupled model is free to evolve resulting in different climate variations outside
the nudging region depending on the single realizations’ own initial conditions. The range of
possible outcomes for Atlantic SSTAs is then governed by contributions from internal variabil-
ity, CMIP6 time-varying external forcing, and the potential cross-basin contributions from the
Pacific according to the model’s dynamics. The variations of the TNA index in the pacemaker
simulations are compared in Figure 5.5b to observations (see legend top right), before and
after removing the CMIP6 time-evolving external forcing (MEM).

Figure 5.6 is similar to Figure 5.4 but shows causal networks based on an ensemble summary
of CESM2 Pacific pacemaker simulations. The causal networks are aggregated based on 10
pacemaker realizations. In the four panels (a-d), we apply the PCMCI+ on the time series of
each simulation before aggregating. The link width indicates the number of simulations that
feature that link (for reference, the width of the link between PNA and NAO in Figure 5.6a
shows the maximum width, equivalent to 10 simulations, and the link between Niño3.4 and
TNA shows the minimum width, equivalent to 2 simulations). In other words, the more
ensemble members were found to estimate the link during that particular run, the thicker the
link appeared. The mean link coefficient value averages all coefficients of that link’s instances
and the link labels denote the median time lag at which they were detected. The node color
translates the average auto-link coefficient of each time series among the pacemaker ensemble.
In Figure 5.6c and d, the MEM is subtracted from every simulation before the causal discovery
algorithm is applied. For simplicity, we directed contemporaneous links based on the most
frequent direction in which they are detected within the ensemble (treating each period and
scenario separately). We also only took into account links with absolute value coefficients
above the arbitrary threshold of 0.1.

The prominent feature of the causal analysis on the Pacific pacemaker simulations before
removing external forcing (Figure 5.6a and b) is the ability to distinguish a Pacific-driven period
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Figure 5.5.: Standardized indices from the Pacific pacemaker ensemble (10 members) with observations
(HadISST) for Niño3.4 (a) and TNA (b). Black solid (dashed) lines denote observed time series from
HadISST data before (after) multi-ensemble mean (MEM) subtraction. Green solid (dashed) lines
depict the CESM2 Pacific pacemaker ensemble average before (after) MEM subtraction. Adapted from
Karmouche et al. 2023b.

as opposed to an Atlantic-driven one. Similar to observations, the regression and correlation
maps in Figures 5.2 and 5.3, and previously introduced literature (Meehl et al. 2021a; Park et al.
2023), the causal networks in Figure 5.6 also show the 1950-1983 period was dominated by the
equatorial Pacific SSTAs driving a same-sign effect on the tropical North Atlantic SSTAs and
triggering a negative-sign response from the Atlantic onto the Pacific during the subsequent
1985-2014 period (via TNA→ PWC𝑢). This is illustrated during the first period through the
links originating from the Niño3.4 (and/or the PWC) node and reaching the Atlantic modes
(NAO and/or TNA nodes) either directly (e.g. PWC – TNA) or potentially through PNA
(Niño3.4 → PNA → NAO, Figure 5.6a-c). Both the results from the reanalysis (Figure 5.4a) and
those from the pacemaker ensemble (Figure 5.6a) show positive causal Niño3.4→TNA links
and/or PWC𝑢→TNA during the Pacific-driven 1950-1983 regime. When MEM is subtracted
during this regime (Figure 5.6c), contemporaneous PNA→TNA links were also estimated. This
means that both the tropical and extra-tropical routes for ENSO effect on TNA are detected
during the Pacific-driven regime (Figure 5.6a and c). The 1985-2014 period knows a decay
of the extra-tropical pathway (no PNA→TNA link in Figure 5.6b) and shows that several
ensemble members detect rather the negative TNA→PWC𝑢 link, which is consistent with the
causal network from reanalysis (Figure 5.4b). The thick line of the TNA→PWC𝑢 connection in
Figure 5.6b suggests that most of the CESM2 pacemaker simulations with nudged observed
SSTAs in the equatorial Pacific simulate the opposite-sign response from the Atlantic to the
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Figure 5.6.: Ensemble summary causal networks and time series from Pacific pacemaker simulations
(1950-1983 vs 1985-2014). In panels (a-d), we apply the PCMCI+ on the time series of each simulation
before aggregating the 10 causal networks into one. The link width shows the number of simulations
that feature that link. The link color shows the mean value of link coefficients averaged over the
ensemble members. The node color translates the average auto-coefficient of each time series among
the pacemaker ensemble. The link labels provide the median time latency (rounded to the closest
integer) for all ensemble members that detect a particular link. In (c) and (d) the MEM is subtracted
from every simulation before PCMCI+ is applied. The link labels provide the median time latency
(rounded to the closest integer) for all ensemble members that detect a particular link. Figure from
Karmouche et al. 2023b

Pacific during the Atlantic-driven 1985-2014 regime before subtracting MEM. In the meantime,
the positive-sign impact from the Pacific on the Atlantic (via either Niño3.4 or PWC on TNA)
was detected by at least two members in each experiment. For example, the Niño3.4→TNA
link appears in the four experiments (all panels in Figure 5.6). This link is more evident when
MEM is subtracted during the second period as Figure 5.6d shows more ensemble members
to simulate the link (thicker Niño3.4→TNA link) compared to Figure 5.6b. The simulations
from the pacemaker ensemble agree greatly with the proposed contemporaneous negative
PNA relationship to NAO (Honda et al. 2001). This was mostly detected as contemporaneous
PNA→NAO links in Figure 5.6a-c and as NAO→PNA in Figure 5.6d. As can be seen from
Figure 5.6, the similarities with the causal networks from observational data (Figure 5.4) entail
an important role of ENSO (in combination with external forcing) in shaping SST variability
over the Atlantic. While the PNA-NAO connection is found positive and lagged in observations
during the 1950-1983 period (Figure 5.4a and c), it is detected as a negative contemporaneous
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connection in most pacemaker simulations. Removing external forcing for the Pacific-driven
1950-1983 regime did not have a significant effect in the case of reanalysis and the same for the
pacemaker ensemble except for the vanishing PWC𝑢→TNA link. The relationship between
ENSO and PNA is, however, detected by fewer simulations when removing external forcing,
and it is illustrated in Figure 5.6c by a thinner and weaker (on average) positive Niño3.4→PNA
link compared to the one in Figure 5.6a.
The importance of both ENSO and external forcing is further manifested during the 1985-
2014 period through the emergence of the negative sign effect from the Atlantic (TNA) on
the Pacific (Niño3.4 through PWC), similar to the observations (Figure 5.4b). On the other
hand, when subtracting MEM from the pacemaker simulations, more members show the
positive Niño3.4→TNA link (Figure 5.6d) while the significant negative TNA→ PWC𝑢 link is
not detected (Figure 5.6d vs. b). We recall that this is different in the causal networks from the
observed 1985-2014, which feature the negative TNA→PWC𝑢 before and after subtracting the
MEM (Figure 5.4b and d). This apparent effect of external forcing being the main driver of an
Atlantic-driven regime during the second period is nevertheless implied by the results from
the correlation/regression analysis in the previous section (Figure 5.3d vs (Figure 5.2d) and
the sensitivity test in Supplementary Figure B.1. Subtracting external forcing during the most
recent period resulted in a change in the direction of the link between PWC𝑢 and Niño3.4 and
the link between NAO and PNA. As the directions of contemporaneous links were decided
by majority rule (the most frequent direction of a particular lag-zero link among all ensemble
members during a specific run), Figure 5.6d shows that more ensemble members detected
those links in the opposite direction (Niño3.4 → PWC𝑢 and NAO→PNA).

The observed Niño3.4 time series in Figure 5.5a is similar to the pacemaker ensemble mean
(because SSTAs over the Niño region are nudged towards observed values; small differences,
most likely originating from observational uncertainty, ERSSTv5 vs HadISST). The pacemaker
ensemble mean TNA (green lines in Figure 5.5b) implies an important role of ENSO in shaping
SSTAs over the Atlantic, possibly through combining internal variability processes and mod-
ulating the effects of external forcing. Despite several discrepancies between the observed and
the pacemaker-simulated TNA indices during the years following major volcanic eruptions
(e.g. the early 1990s) and during important El Niño / La Niña events (e.g. 1997–1998), the
pacemaker ensemble follows similar variations to the observed TNA through most of the 1950
to early 2000s period (green solid and dashed lines compared to black lines). The fact that
prescribing SSTAs only in the equatorial Pacific resulted in TNA SSTAs similar to observations
emphasizes the role of ENSO in the Atlantic-Pacific interactions and undermines the role of
internal variability in driving SST variability over the Atlantic during most of the analyzed
period. Literature suggests that ENSO (Maher et al. 2015; Maher et al. 2018) and its decadal
imprint, PDV (Allen et al. 2014; Dong et al. 2014), have contributions from external drivers, es-
pecially volcanic and anthropogenic aerosols. Other studies show that recent periods of global
warming hiatus are the results of anthropogenic aerosols modulating the phase of PDV rather
than canceling out other warming effects (Kaufmann et al. 2011; Smith et al. 2016). The results
in Figure 5.6 also suggest that the coupling between Atlantic and Pacific SSTs is moderately
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strong in the CESM2 model during Niño events, explaining the appearance of Niño3.4→TNA
(and/or PWC𝑢→TNA) links in all causal networks on Figure 5.6 (a-d). This also explains the
large discrepancies between the pacemaker ensemble mean (lines in green) and observations
(lines in black) in Figure 5.5b during significant El Niño years. The main difference between
the reanalysis and pacemaker causal networks remains during the Atlantic-driven regime af-
ter removing external forcing. Figure 5.5b shows increasing differences between the observed
and the pacemaker-simulated TNA after the year 2000. This difference might be due to the
overestimation of the 1998-2013 global warming rate in CMIP6 climate models (Fyfe et al.
2021; McBride et al. 2021; Smith and Forster 2021; Smith et al. 2021; Tokarska et al. 2020a;
Tokarska et al. 2020b), and inherently in MEM. Different factors contributing to such overesti-
mation in CMIP6 have been proposed including the high equilibrium climate sensitivity (ECS)
that results in too strong warming responding to anthropogenic GHGs or too weak cooling
responding to aerosols (IPCC 2013; Schlund et al. 2020; Smith and Forster 2021; Tokarska et al.
2020a; Wei et al. 2021). According to Wei et al. 2021, ECS only plays a partial role in the failure
of most CMIP6 models in simulating the early 2000s global warming slowdown. Instead, the
authors attribute the discrepancy between observed and CMIP6-simulated warming trends
mostly to the models’ deficiencies in simulating major modes of internal variability at inter-
annual, interdecadal, and multidecadal scales, thus excluding their potential effects (e.g. the
cooling effect of PDV switching to a negative phase in the early 2000s).

The different sources of external forcing, the overestimation of most recent warming trends,
and the coincidence of volcanic eruptions with ENSO events complicate the attribution of
external contributions to the Atlantic-Pacific interactions during the last decades of the histor-
ical record. To further test whether the observed teleconnections (including a change in the
regime of Atlantic-Pacific interactions) would arise only from internal climate variability, the
next section presents results from a pre-industrial control run of the CESM2 model.

5.2.3. Causal analysis of pre-industrial control run

Given 120 years of unforced simulation, we use the CESM2 pre-industrial run to analyze the
causal connections between the Atlantic and Pacific during their different states.

Figure 5.7a shows the long-term state of the two basins through the smoothed time series
of AMV (solid; red and blue) and PDV (dashed; pink and light blue) indices from 120 years
of CESM2 pre-industrial control simulation, precisely from the start of the year 1000 to the
end of 1119. We define three 40-year periods (160 seasons each) and we reconstruct a causal
network for each that represents the connections between the Atlantic and Pacific basins. We
investigate such periods the same way we did for reanalysis data and the Pacific pacemaker
simulations (Section 5.2.1 and Section 5.2.2, respectively), focusing on the links between the
Atlantic and Pacific modes. The causal graphs initially displayed several links of different link
strengths. Here in Figure 5.7b, we show only the strongest links (with absolute value link
coefficients above the arbitrary threshold of 0.15; i.e. enhanced link colors).
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Figure 5.7.: CESM2 pre-industrial control simulation. a) Smoothed AMV and PDV indices (10-year
low-pass filtered) illustrating the decadal internal variability over the Atlantic and Pacific for 120 years
(480 time steps [seasons]). We divide the time series into three 40-year periods (labelled P1, P2 and
P3; 160 seasons each), which express different states of AMV and PDV. b) For every period (P1-3)
selected in panel (a), we show the respective causal network, similar to reanalysis data (Figure 5.4) and
pacemaker simulations (Figure 5.6). Figure from Karmouche et al. 2023b

1. The first 40-year period in Figure 5.7a (P1) corresponds to PDV mainly in a positive
phase while AMV is trending from a negative to a neutral state. During this period
Niño3.4 SST changes were found to strongly affect the PWC-associated zonal winds (1
season lagged positive Niño3.4→PWC𝑢 link; P1 in Figure 5.7b). These wind-induced
changes are detected to affect extra-tropical PNA mode with a 1-season lag (positive
PWC𝑢→PNA). The PNA changes are detected to be affected by NAO changes as well
(NAO→PNA). The causal graph shows that the Pacific was contributing to tropical
North Atlantic SSTA changes mainly through the extra-tropical pathway, detected as
a contemporaneous positive PNA→TNA link, where the lower pressure center at the
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southeastern lobe of the PNA pattern reduces the Atlantic northeasterlies, trapping
warm water over the TNA region.

2. The second period (P2 in Figure 5.7a) illustrates a mostly positive AMV (trending neg-
ative towards the end of P2) while the PDV switches from a negative to a positive
phase. The causal graph (P2 in Figure 5.7b) features a positive Niño3.4→PNA link
and a strong negative contemporaneous PNA→NAO link. The ENSO-induced changes
are also found to contribute to the TNA SST anomalies (positive Niño3.4→TNA link).
Both tropical (Niño3.4→TNA) and extra-tropical (Niño3.4→PNA→NAO→TNA) routes
suggest the Pacific was mainly driving the Atlantic during this period.

3. The third period (P3 in Figure 5.7a) shows PDV trending from a strong positive phase
to a strong negative phase while the AMV curve shows mainly positive SSTAs. The
corresponding causal graph (P3 in Figure 5.7b) shows that the warm TNA SSTAs strongly
contributed to La Niña conditions over the Pacific through strengthening the PWC
(strong negative 4-season lagged TNA→PWC𝑢 link), cooling the Pacific on the decadal
timescale (see PDV during P3 in Figure 5.7a). The warming SST trends in the Atlantic
favor a strengthened PWC which ultimately cools the SSTs over the Niño3.4 due to
enhanced upwelling. The effect of the Atlantic on the Pacific during this period is
manifested in the extra-tropics as well where NAO is found to strongly contribute to
PNA variability (contemporaneous NAO→PNA link).

The PNA→NAO connection is stronger in P2 compared to the NAO→PNA links in P1 and P3.
The relatively weak magnitudes of PDV anomalies during P2 (compared to P1 and P3; Fig,
8a) suggest reduced ENSO amplitude and hence limited ENSO-like tropical forcing during
that period (despite the lagged Niño3.4→PNA). The absence of strong El Niño forcing might
explain the strength of the PNA connection to NAO in P2, as suggested by Lin and Derome
2004; Soulard and Lin 2017.

Drawing conclusions from the pre-industrial run analysis, it is evident that:

• Pacific-driven and Atlantic-driven regimes, and the phase switch between them, happen
naturally in the absence of anthropogenic forcing.

• This does not reject the possibility that human-induced forcing contributed greatly to at
least the observed 1985-2014 changes.

• The strength, direction, and lags of the cross-basins’ seasonal-to-interannual interactions
are modulated by the long-term state of the two basins (PDV and AMV).

5.3. Discussion and Conclusions

Conventional regression and correlation methods offered indications of a regime shift in
the Atlantic-Pacific interactions during the observed historical 1950-2014 period (Meehl et al.
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2021a; Park et al. 2023). The correlation maps also showed that external forcing (represented
by CMIP6 MEM) likely played a major role in setting the negative sign for the relationship
between the TNA index and north tropical Pacific SSTAs during the Atlantic-driven 1985-
2014 period (Figure 5.3d vs (Figure 5.2d). However, these approaches could not explore the
underlying pathways of these effects, which causal graphs provide by uncovering intricate
causal relationships.

Based on causal graphs derived from reanalysis data and Pacific pacemaker simulations
before separating the externally forced signal (a and b in Figure 5.4 and Figure 5.6), we find
the Pacific’s same sign influence on Atlantic during 1950-1983, aligning with prior reports
(Meehl et al. 2021a; Park et al. 2023). Estimated positive links from Niño3.4 (or PWC𝑢) to TNA
represent the tropical pathway where El Niño and the modified Walker Circulation prompt
equatorial Atlantic anticyclonic activity, weakening trade winds, and warming tropical North
Atlantic as a result of reduced evaporation. Other pathways recognized through PNA and
NAO have also been detected. Positive causal links Niño3.4 (or PWC𝑢)→PNA and PNA→TNA
highlight the extra-tropical path for the Pacific-induced effect on TNA. El Niño-associated
Rossby wave propagation enhances Southeast United States low-pressure center (positive
PNA phase), weakening North Atlantic trade winds and promoting TNA warming (García-
Serrano et al. 2017; Jiang and Li 2019; Klein et al. 1999). The transition from a Pacific-driven
to an Atlantic-driven regime is evident in reanalysis and Pacific pacemaker simulations. Dur-
ing 1985-2014, causal graphs reveal lagged negative TNA→PWC links, denoting intensifying
easterly trade winds affecting ENSO. Proposed mechanisms involve Rossby wave energy gen-
erated by enhanced precipitation over anomalously warm TNA region, impacting subtropical
Pacific and causing easterly wind anomalies and La Niña-like cooling (Park and Li 2019; Park
et al. 2022; Wang et al. 2017b). Similar to reanalysis data, Pacific pacemaker simulations dis-
tinguish Pacific and Atlantic-driven regimes in SST responses (directly or via PWC). In the
meantime, pacemaker-simulated SLP-based indices denote negative contemporaneous NAO-
PNA relationship during 1950-1983 and 1985-2014. Notably, reanalysis identified positive
7-season lagged causal links during the first period, for which mechanisms are unclear.

The study involved separating external forcing from internal variability by subtracting
CMIP6 MEM, yielding insights into external forcing’s impact on Pacific-Atlantic interactions.
Although MEM removal had modest effects on Pacific-driven regime causal graphs (panel c
vs. a; Figure 5.4 and Figure 5.6), pronounced impacts emerged in the following period (panel
b vs. d; Figure 5.4 and Figure 5.6), aligning with correlation and regression maps (Figure 5.3d
vs. Figure 5.2d). During the Atlantic-driven era (1985-2014), reanalysis graphs highlighted
TNA’s strong contribution to same-season NAO changes (Figure 5.4b), reversed after MEM
subtraction (Figure 5.4d). Additionally, a shift in the extra-tropical route linking the Pacific
and Atlantic was observed during that period. Importantly, a negative TNA to ENSO response
(via PWC) persisted despite MEM removal. In contrast, aggregated pacemaker graphs un-
derscored external forcing’s primary role in the Atlantic-driven regime, as evidenced by the
vanishing TNA to PWC link and the emergence of Pacific-driven causal links after external
forcing was removed. We note that the discrepancy between reanalysis and pacemaker aggre-
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gated causal graphs regarding the effect of subtracting MEM during 1985-2014 lessened when
conducting a sensitivity test. Initiating the Atlantic-driven regime a year later (1986 instead
of 1985) in the reanalysis yielded no detected negative TNA→PWC𝑢 link after MEM removal
(Supplementary Figure B.1), in line with correlation maps and aggregated pacemaker graphs
for 1985-2014. A major role played by external forcing in the negative effect of TNA on ENSO
falls in agreement with recent studies highlighting an increasing impact of external forcing
on North Atlantic SSTAs and associated effects in recent decades (He et al. 2023; Klavans et al.
2022; Murphy et al. 2017). This brings additions to the debate over the attribution of the
recently observed strengthening of the PWC, i.e. we suggest external forcing contributions
modulated by the Atlantic might have amplified the recent PWC strengthening, in contrast
with previous studies suggesting a dominant role of internal variability (Chung et al. 2019).
Major disparities between observed and CESM2 pacemaker-simulated TNA indices (during
the Atlantic-driven period) were discussed in Section 5.2.2 and attributed to the extensively
investigated post-2000s warming overestimation in CMIP6 (Fyfe et al. 2021; Smith and Forster
2021; Smith et al. 2021; Tokarska et al. 2020a). The pacemaker-simulated TNA index ( Fig-
ure 5.5b) time series revealed a moderately strong coupling in the CESM2 model between
Atlantic and Pacific SSTs, resulting in major differences in magnitude with the observed TNA
following important El Niño events. This might explain the appearance of Niño3.4→TNA
(and/or PWC𝑢→TNA) links in all aggregated causal networks in Figure 5.6 (a-d).

The analysis of the historical record (1950-2014) suggests external forcing’s potential contri-
butions, yet doesn’t exclude the role of internal variability driven by the Pacific and Atlantic
long-term states (PDV and AMV). To explore Atlantic-Pacific internal variability interactions in
unforced conditions, we utilized 120 years from the CESM2 pre-industrial control run, divided
into three 40-year periods. During two periods (P1 and P2), the causal graphs underscore the
Pacific’s impact on TNA variability through the tropical and extra-tropical pathways. Whereas
for the third period (P3), characterized by a predominantly positive AMV and a significant
PDV phase switch, a robust lagged negative TNA→PWC𝑢 link was evident, similar to Atlantic-
driven regime causal graphs in reanalysis (Figure 5.4b and d) and pacemaker simulations with
externally forced signal (Figure 5.6b). The lag for the TNA effect on PWC differs between the
pre-industrial control run (four seasons in P3) and observations/pacemaker ensemble (one
season). In short, our pre-industrial control analysis indicates that both contrasting response
regimes arise naturally without anthropogenic external forcing, influenced by the long-term
states of the Pacific and Atlantic basins.

Throughout this study, causal discovery revealed varying signs and lags for the links be-
tween PNA and NAO. Earlier research proposed a robust negative correlation between Aleu-
tian and Icelandic lows only during specific historical sub-periods (e.g., mid-1970s to mid-
1990s; Honda et al. 2001; Pinto et al. 2011). This might clarify the absence of contemporaneous
negative PNA→NAO links during the causal analysis for the Pacific-driven 1950-1983 era in
reanalysis (Figure 5.4a and c), where lagged positive connections were observed. However,
prior studies haven’t outlined mechanisms for such multi-season lagged positive associations.
Conversely, the simultaneous negative PNA-NAO link was consistently identified across pace-
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maker and pre-industrial control runs. This link could be the result of Rossby wave-breaking
events connecting PNA to opposite NAO phases (Song et al. 2009) or simply because, par-
ticularly in certain seasons, the two modes are spatially overlapping projections of the same
variability pattern, connecting the Aleutian and Icelandic lows (Soulard and Lin 2017).

In a concluding remark, the authors would like to highlight that causal discovery is a power-
ful tool to assess the physical mechanisms of Atlantic-Pacific interactions. However, a careful
selection of the potential variables representing the analyzed mechanisms and the length of
the time series are crucial for a robust application of causal analysis and reliable interpreta-
tion of detected connections. We experienced issues such that the algorithm rejected/added
some connections when the analyzed period was prolonged or shortened and/or shifted by
a few years. Therefore in order to make credible conclusions based on the application of
causal discovery, it is important to accurately determine the causal assumptions, clarify the
correct confounding variables, and analyze the interactions at their most relevant time scales
to achieve robust results.

Finally, this study from Karmouche et al. 2023b, aims to enhance our understanding of
the teleconnections between the Atlantic and Pacific oceans and their variability under differ-
ent regimes. The findings emphasize the significance of external forcing, particularly in the
most recent regime, and highlight the roles of ENSO, tropical and extra-tropical pathways,
and internal variability in shaping SST variability over the Atlantic on seasonal to interan-
nual timescales. Further research is warranted to refine our knowledge of these complex
interactions and improve model simulations to capture the observed teleconnections more
accurately. External forcing represented by the CMIP6 MEM has contributions from natural
(e.g. solar radiation, volcanic eruptions) and anthropogenic sources (e.g. aerosols, GHGs)
with time and space-varying effects, hence, we encourage further analysis using simulations
with single external forcing sources (e.g. aerosol-only or GHG-only simulations) to increase
the understanding and attribution of the observed changes in the climate system.
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6.1. Main Summary

Various modes of natural climate variability that are driven by internal mechanisms within
the Earth system exert significant influence on regional and global climate patterns over
decadal to multidecadal timescales. Building upon the foundational scientific background,
including ocean-atmosphere interactions and Earth system modeling (Chapter 2), and the
robust methodologies and data sources outlined in Chapter 3, this thesis focused on the
interplay between these modes and their effects over different timescales. In the study carried
out in Chapter 4, a deep analysis was undertaken to assess the performance of various CMIP6
models in replicating observed spatial patterns of the major modes of Atlantic-Pacific climate
variability and the underlying causal structures that connect them. The pattern correlation
analysis revealed that models such as UKESM1-0-LL, MPI-ESM1-2-LR, MIROC6, CanESM5,
and IPSL-CM6A-LR exhibited noteworthy fidelity in replicating the observed spatial patterns
of various climate modes, notably performing well in reproducing the spatial patterns of PDV
and PNA modes for the period 1900-2014, using ERSSTv5 as a reference.

The regime-oriented (depending on the phases of PDV and AMV) causal analysis of realiza-
tions from CESM2, CanESM5, and MIROC6 revealed their superior causal network similarity
with reanalysis data. Furthermore, the analysis underscored the ability of climate models to
score better F1-scores when AMV and PDV are out-of-phase. The evaluation highlighted that
larger ensemble sizes, seen in models like CanESM5 (65) and MIROC6 (50), were beneficial in
increasing the likelihood of simulating similar causal fingerprints (dependency structures) as
the ones learned from observations and reanalysis; this feature is attributed to a better capture
of internal variability by larger ensembles (Kay et al. 2015). It is noteworthy however that de-
spite its smaller size, the CESM2 ensemble, counting only 11 members, demonstrated robust
causal network agreement not only with respect to reanalysis but also between its own realiza-
tions. Transitioning to Chapter 5, the focus shifted to an analytical exploration of the changing
effects of external forcing on Atlantic-Pacific interactions on shorter seasonal-to-interannual
timescales, particularly focusing on two regimes between 1950 and 2014. The separation of
internal variability from the forced component utilized three of the well-performing large
ensembles learned from the pattern correlations and the causal model evaluation of the pre-
vious chapter. The analysis brought to light the existence of Pacific-driven (1950-1983) and
Atlantic-driven (1985-2014) subperiods, as demonstrated by the causal networks from obser-
vational and reanalysis data sets, further supporting findings from recent studies utilizing
different analytical approaches (Meehl et al. 2021a; Park et al. 2023). The causal analysis
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offered a deeper understanding of the changing dependencies in the northern hemisphere
Atlantic-Pacific sector during the two periods. In particular, the results spotlighted the critical
role of tropical and extra-tropical routes in the same sign effect of ENSO on tropical north
Atlantic SSTAs. While the effect of ENSO on the Atlantic was predominant during the first
analyzed period (1950-1983), the most recent period 1985-2014 was marked by the emergence
of an opposite sign response, this time by TNA on ENSO through modifications of the PWC.
A critical analysis was undertaken to compare the results from observations/reanalysis with
those from Pacific pacemaker simulations, revealing significant insights into the role of an-
thropogenic external forcing, especially in the most recent decades. The CESM2 pacemaker
simulation results suggest that human-induced external forcing substantially contributed to
the opposite sign effect of north Atlantic warming on tropical Pacific SST variability. A similar
causal analysis utilizing 120 years from a pre-industrial control run, simulating the climate
system before large-scale industrialization, highlights the importance of internal variability
fluctuations on decadal timescales in modulating the interplay between interannual climate
variability modes over the Atlantic and Pacific oceans, even in the absence of anthropogenic
forcing. The study advocates for further research, focusing on individual external forcing
sources to precisely attribute the observed changes in the climate system, aiming for a future
enriched with informed and precise climate projections.

6.2. Outlook

As we face unprecedented climate changes, the need for a deeper understanding of the com-
plex dynamics of the climate system, including both natural and human-induced external
forcings, has never been more critical. The analysis of CMIP6 models carried out in the
preceding chapters stands as testimony to this urgent requirement. Building on the insights
gained from this dissertation, there is a significant opportunity to enhance the accuracy and
sophistication of climate models. The use of large ensembles, as demonstrated in the research,
can facilitate a more nuanced understanding of climate dynamics, including a detailed ex-
ploration of various climate components such as radiation-aerosol-cloud dynamics and the
behavior of the cryosphere. Furthermore, the complex interactions between the ocean and the
atmosphere, which play a crucial role in determining weather patterns and climate dynamics
on different timescales, warrant closer scrutiny. Future research should aim to unravel the
intricate feedback mechanisms that govern these interactions. A holistic approach, integrating
research across different domains of climate science, is imperative for more accurate climate
change projections. This entails a comprehensive study of external forcings and various long-
term internal variability regimes. Moreover, a broader perspective is advocated, one that
expands beyond Atlantic-Pacific interconnections to encapsulate global modes of variabil-
ity. It is here that the utility of new causal discovery approaches comes to light, offering a
pathway to combine spatial information with time series causal discovery, thereby enhancing
our spatiotemporal understanding of global climate dynamics. In an era marked by a rapid
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escalation in the frequency and intensity of extreme climate events, the predictability of the
climate system has never been more critical. These climatic aberrations pose immense socio-
economic challenges and disturb ecological systems globally, underscoring the urgency for
refined scientific insights into the changing teleconnections that forge our climate system. Im-
proved climate models have potential applications in various areas, including policy-making,
disaster readiness, and the development of mitigation strategies, contributing to the foun-
dation for building sustainable, climate-resilient societies. Integrating climate science with
socio-economic models is also a key area, facilitating the creation of strategies to anticipate
and navigate the challenges posed by changing climate conditions.
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Appendix

A. Supplementary Materials for Chapter 4

As of Chapter 4, all figures and tables here in Appendix A are published in Karmouche et al.
2023a.

Figure A.1.: Similar to Figure 4.5 but for the 12 CMIP6 models during the complete 1900-2014 period.
Each panel has a label stating the model name and the number of ensemble members between
parenthesis. The auto-MCI values were not taken into consideration.
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Figure A.2.: Similar to Figure 4.5 but for the 12 CMIP6 models during the Out-of-Phase regime.
Each panel has a label stating the model name and the number of ensemble members between
parenthesis. The auto-MCI values were not taken into consideration.
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Figure A.3.: Similar to Figure 4.5 but for the 12 CMIP6 models during the In-Phase regime. Each panel
has a label stating the model name and the number of ensemble members between parenthesis.
The auto-MCI values were not taken into consideration.
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Table A.1.: Distribution of Pearson 𝑟 correlation values between the simulated (CMIP6 LE) and observed
(ERA20C_ERA5, ERSSTv5) spatial patterns of PNA, PSA1, PDV, AMV and their Mean Score over the
1900-2014 period. Sorted by Alphabetical order.

CMIP6 LE Percentile PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly) Mean Score

ACCESS-ESM1-5 10th 0.80 0.57 0.68 0.67 0.67
50th 0.90 0.72 0.71 0.71 0.78
90th 0.93 0.79 0.77 0.75 0.80

CESM2 10th 0.84 -0.64 0.82 0.68 0.61
50th 0.88 0.66 0.87 0.73 0.79
90th 0.91 0.77 0.88 0.77 0.82

CNRM-ESM2-1 10th 0.38 0.39 -0.06 0.73 0.40
50th 0.59 0.53 0.68 0.74 0.64
90th 0.84 0.63 0.77 0.79 0.71

CanESM5 10th 0.76 0.56 0.75 0.68 0.73
50th 0.83 0.75 0.79 0.72 0.77
90th 0.88 0.81 0.82 0.76 0.80

EC-Earth3 10th 0.81 -0.40 0.45 0.58 0.49
50th 0.85 0.69 0.71 0.63 0.73
90th 0.92 0.75 0.77 0.71 0.79

GISS-E2-1-H 10th 0.73 -0.70 0.73 0.62 0.46
50th 0.79 -0.55 0.77 0.68 0.56
90th 0.86 0.73 0.81 0.72 0.76

INM-CM5-0 10th 0.53 -0.08 0.47 0.62 0.48
50th 0.67 0.38 0.50 0.66 0.54
90th 0.73 0.57 0.56 0.71 0.60

IPSL-CM6A-LR 10th 0.66 0.70 0.75 0.72 0.72
50th 0.73 0.80 0.79 0.76 0.77
90th 0.82 0.84 0.81 0.79 0.80

MIROC6 10th 0.81 0.68 0.83 0.67 0.77
50th 0.86 0.73 0.84 0.71 0.80
90th 0.91 0.78 0.85 0.74 0.82

MPI-ESM1-2-LR 10th 0.76 0.70 0.75 0.64 0.74
50th 0.86 0.79 0.80 0.72 0.79
90th 0.93 0.82 0.83 0.77 0.82

NorCPM1 10th 0.38 -0.58 0.72 0.64 0.41
50th 0.72 -0.51 0.76 0.68 0.49
90th 0.82 0.58 0.79 0.72 0.70

UKESM1-0-LL 10th 0.83 0.65 0.80 0.68 0.78
50th 0.88 0.75 0.82 0.74 0.80
90th 0.91 0.79 0.86 0.79 0.83

Table A.2.: Pearson correlation values obtained using 18 UKESM1-0-LL simulation, with respect to the
observed (ERA20C_ERA5, ERSSTv5) spatial patterns of PNA, PSA1, PDV, AMV and their Mean Score
over the 1900-2014 period. Sorted by mean score.

UKESM1-0-LL PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly) Mean Score
Ensemble member

r19i1p1f2 0.91 0.84 0.86 0.80 0.86
r6i1p1f3 0.89 0.75 0.86 0.78 0.83
r3i1p1f2 0.90 0.76 0.85 0.76 0.83
r14i1p1f2 0.94 0.75 0.82 0.68 0.82
r2i1p1f2 0.88 0.78 0.84 0.75 0.82
r1i1p1f2 0.87 0.81 0.82 0.78 0.82
r11i1p1f2 0.91 0.68 0.81 0.76 0.81
r8i1p1f2 0.90 0.78 0.79 0.70 0.80
r17i1p1f2 0.80 0.76 0.84 0.81 0.80
r7i1p1f3 0.86 0.78 0.82 0.72 0.80
r4i1p1f2 0.90 0.67 0.82 0.73 0.80
r16i1p1f2 0.86 0.75 0.81 0.72 0.79
r10i1p1f2 0.88 0.74 0.83 0.66 0.79
r9i1p1f2 0.89 0.56 0.82 0.77 0.79
r18i1p1f2 0.88 0.60 0.82 0.76 0.78
r5i1p1f3 0.85 0.75 0.81 0.68 0.78
r13i1p1f2 0.84 0.71 0.80 0.74 0.78
r12i1p1f2 0.79 0.67 0.80 0.68 0.74

106



A. Supplementary Materials for Chapter 4

Table A.3.: Cross-MCI and auto-MCI values calculated by PCMCI+ from reanalysis timeseries data
for the complete 1900-2014 period. Values are relative to the complete period causal graph shown in
Figure 3.1b (right panel) and Figure 4.4 (upper left panel). The table presents the cross-MCI (cross-
correlation) values denoting the sign and strength of the causal link between node i and node j for lags
between 0 and 𝜏𝑚𝑎𝑥 . In bold are the highest absolute cross-MCI values for that specific link (detected
within the statistical significance threshold, 𝛼𝑝𝑐 ≤ 0.05) and for which links are apparent on the causal
graphs. The values are rounded to two decimal places.

time lag 𝜏 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i j

AMV

AMV 0.00 0.45 0.22 0.14 0.17 0.21 0.18 0.18 0.09 0.11 0.05 0.05 0.18 0.09 0.03 0.05
PNA 0.18 -0.20 -0.06 0.01 -0.13 -0.11 -0.17 -0.04 0.01 -0.04 -0.13 -0.18 -0.17 -0.19 -0.16 -0.06
PDV -0.04 -0.18 -0.16 -0.07 -0.12 -0.15 -0.16 -0.18 -0.06 -0.13 -0.21 -0.25 0.02 -0.18 -0.06 -0.11
PSA1 0.25 -0.05 -0.01 -0.06 -0.10 -0.11 -0.12 -0.05 -0.06 -0.00 -0.02 -0.07 -0.04 -0.08 -0.00 0.08

PNA

AMV 0.18 -0.05 -0.02 -0.03 -0.09 -0.12 -0.07 0.03 -0.05 0.01 0.01 -0.04 0.05 0.07 0.03 0.03
PNA 0.00 0.06 0.05 0.04 -0.04 0.10 0.02 0.00 -0.06 -0.11 0.03 -0.14 -0.01 -0.06 -0.11 0.05
PDV 0.53 -0.07 0.10 -0.05 -0.04 0.14 0.16 -0.02 -0.18 -0.10 -0.02 0.01 0.00 -0.07 -0.17 -0.02
PSA1 0.11 -0.09 0.06 -0.12 -0.08 -0.01 -0.03 -0.05 -0.13 0.00 -0.13 -0.11 0.12 -0.12 -0.10 0.13

PDV

AMV -0.04 -0.03 -0.01 -0.04 -0.09 -0.15 -0.09 -0.05 0.00 -0.02 0.02 0.02 0.01 0.10 0.12 0.14
PNA 0.53 0.17 0.09 0.04 0.21 0.21 0.05 -0.02 -0.08 -0.08 0.06 0.00 -0.01 -0.02 -0.10 -0.07
PDV 0.00 0.33 0.18 0.07 0.18 0.18 0.08 0.02 -0.12 -0.01 0.09 0.11 0.02 -0.09 -0.21 -0.15
PSA1 -0.07 0.11 0.14 0.02 0.03 0.07 0.00 -0.17 -0.13 -0.06 -0.12 -0.09 -0.07 -0.03 -0.09 0.03

PSA1

AMV 0.25 -0.09 0.15 -0.09 -0.07 -0.07 -0.06 -0.21 -0.16 -0.14 -0.19 -0.17 -0.16 -0.20 -0.19 -0.15
PNA 0.11 -0.10 0.18 -0.10 0.04 0.06 0.04 0.21 0.01 0.07 -0.10 0.11 0.11 -0.01 -0.17 -0.09
PDV -0.07 0.03 0.11 -0.01 0.02 0.09 0.09 0.23 0.08 -0.07 -0.13 -0.07 -0.08 -0.10 -0.21 -0.31
PSA1 0.00 0.04 0.18 0.03 0.19 0.04 0.10 -0.02 -0.16 0.02 -0.09 0.01 -0.09 -0.19 -0.19 0.01
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Table A.4.: Number of years for every regime for: Reanalysis and CMIP6 simulations 1-40.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
ACCESS-ESM1-5_r5i1p1f1 115 51 64 60 55 82 33 39 21 12 43
ACCESS-ESM1-5_r1i1p1f1 115 57 58 63 52 71 44 38 25 19 33
ACCESS-ESM1-5_r9i1p1f1 115 57 58 66 49 44 71 26 40 31 18
ACCESS-ESM1-5_r2i1p1f1 115 57 58 63 52 31 84 18 45 39 13
ACCESS-ESM1-5_r8i1p1f1 115 53 62 65 50 59 56 31 34 22 28
ACCESS-ESM1-5_r7i1p1f1 115 64 51 68 47 53 62 35 33 29 18
ACCESS-ESM1-5_r10i1p1f1 115 69 46 58 57 36 79 24 34 45 12
ACCESS-ESM1-5_r4i1p1f1 115 56 59 59 56 42 73 21 38 35 21
ACCESS-ESM1-5_r3i1p1f1 115 68 47 54 61 35 80 21 33 47 14
ACCESS-ESM1-5_r6i1p1f1 115 51 64 48 67 48 67 16 32 35 32
CESM2_r1i1p1f1 115 74 41 61 54 44 71 32 29 42 12
CESM2_r8i1p1f1 115 54 61 54 61 47 68 20 34 34 27
CESM2_r2i1p1f1 115 62 53 42 73 29 86 9 33 53 20
CESM2_r6i1p1f1 115 63 52 67 48 21 94 18 49 45 3
CESM2_r10i1p1f1 115 66 49 50 65 41 74 21 29 45 20
CESM2_r11i1p1f1 115 50 65 54 61 39 76 14 40 36 25
CESM2_r7i1p1f1 115 65 50 51 64 27 88 14 37 51 13
CESM2_r3i1p1f1 115 64 51 58 57 53 62 30 28 34 23
CESM2_r5i1p1f1 115 58 57 56 59 37 78 18 38 40 19
CESM2_r9i1p1f1 115 62 53 57 58 10 105 7 50 55 3
CESM2_r4i1p1f1 115 55 60 65 50 35 80 20 45 35 15
CNRM-ESM2-1_r11i1p1f2 115 44 71 61 54 74 41 32 29 12 42
CNRM-ESM2-1_r4i1p1f2 115 53 62 56 59 28 87 11 45 42 17
CNRM-ESM2-1_r1i1p1f2 115 70 45 59 56 32 83 23 36 47 9
CNRM-ESM2-1_r5i1p1f2 115 54 61 56 59 99 16 47 9 7 52
CNRM-ESM2-1_r7i1p1f2 115 63 52 54 61 70 45 36 18 27 34
CNRM-ESM2-1_r9i1p1f2 115 51 64 65 50 43 72 22 43 29 21
CNRM-ESM2-1_r10i1p1f2 115 54 61 54 61 59 56 26 28 28 33
CNRM-ESM2-1_r3i1p1f2 115 56 59 53 62 82 33 38 15 18 44
CNRM-ESM2-1_r8i1p1f2 115 65 50 76 39 50 65 38 38 27 12
CNRM-ESM2-1_r2i1p1f2 115 54 61 64 51 59 56 31 33 23 28
CanESM5_r15i1p1f1 115 59 56 61 54 45 70 25 36 34 20
CanESM5_r11i1p1f1 115 49 66 66 49 28 87 14 52 35 14
CanESM5_r1i1p2f1 115 60 55 64 51 37 78 23 41 37 14
CanESM5_r19i1p2f1 115 56 59 46 69 39 76 13 33 43 26
CanESM5_r26i1p2f1 115 51 64 63 52 49 66 24 39 27 25
CanESM5_r33i1p2f1 115 62 53 56 59 65 50 34 22 28 31
CanESM5_r31i1p2f1 115 65 50 61 54 61 54 36 25 29 25
CanESM5_r13i1p2f1 115 61 54 55 60 39 76 20 35 41 19
CanESM5_r29i1p2f1 115 55 60 56 59 28 87 12 44 43 16
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Table A.5.: Number of years for every regime for: Reanalysis and CMIP6 simulations 41-80.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
CanESM5_r22i1p2f1 115 58 57 55 60 40 75 19 36 39 21
CanESM5_r23i1p1f1 115 47 68 51 64 71 44 27 24 20 44
CanESM5_r6i1p1f1 115 70 45 60 55 33 82 24 36 46 9
CanESM5_r2i1p2f1 115 48 67 48 67 25 90 3 45 45 22
CanESM5_r38i1p2f1 115 65 50 68 47 50 65 34 34 31 16
CanESM5_r19i1p1f1 115 63 52 65 50 37 78 25 40 38 12
CanESM5_r37i1p2f1 115 45 70 63 52 41 74 17 46 28 24
CanESM5_r24i1p1f1 115 59 56 56 59 44 71 22 34 37 22
CanESM5_r4i1p1f1 115 65 50 62 53 40 75 26 36 39 14
CanESM5_r25i1p1f1 115 55 60 57 58 65 50 31 26 24 34
CanESM5_r22i1p1f1 115 61 54 55 60 57 58 29 26 32 28
CanESM5_r12i1p1f1 115 60 55 56 59 63 52 32 24 28 31
CanESM5_r23i1p2f1 115 49 66 64 51 48 67 23 41 26 25
CanESM5_r13i1p1f1 115 53 62 66 49 44 71 24 42 29 20
CanESM5_r4i1p2f1 115 54 61 63 52 50 65 26 37 28 24
CanESM5_r27i1p2f1 115 54 61 55 60 32 83 13 42 41 19
CanESM5_r10i1p2f1 115 61 54 65 50 63 52 37 28 24 26
CanESM5_r16i1p2f1 115 59 56 59 56 47 68 25 34 34 22
CanESM5_r18i1p2f1 115 47 68 49 66 45 70 13 36 34 32
CanESM5_r32i1p2f1 115 59 56 61 54 17 98 11 50 48 6
CanESM5_r17i1p1f1 115 49 66 62 53 28 87 12 50 37 16
CanESM5_r14i1p2f1 115 56 59 52 63 41 74 17 35 39 24
CanESM5_r5i1p1f1 115 51 64 68 47 34 81 19 49 32 15
CanESM5_r24i1p2f1 115 56 59 49 66 50 65 20 29 36 30
CanESM5_r30i1p2f1 115 49 66 58 57 38 77 15 43 34 23
CanESM5_r14i1p1f1 115 54 61 55 60 54 61 24 31 30 30
CanESM5_r21i1p1f1 115 53 62 63 52 27 88 14 49 39 13
CanESM5_r16i1p1f1 115 70 45 56 59 27 88 19 37 51 8
CanESM5_r36i1p2f1 115 51 64 59 56 33 82 14 45 37 19
CanESM5_r3i1p1f1 115 51 64 65 50 49 66 25 40 26 24
CanESM5_r8i1p1f1 115 65 50 51 64 27 88 14 37 51 13
CanESM5_r7i1p2f1 115 43 72 50 65 58 57 18 32 25 40
CanESM5_r6i1p2f1 115 50 65 64 51 67 48 33 31 17 34
CanESM5_r25i1p2f1 115 60 55 43 72 62 53 25 18 35 37
CanESM5_r20i1p1f1 115 54 61 61 54 42 73 21 40 33 21
CanESM5_r5i1p2f1 115 61 54 61 54 35 80 21 40 40 14
CanESM5_r39i1p2f1 115 61 54 51 64 33 82 15 36 46 18
CanESM5_r11i1p2f1 115 52 63 57 58 48 67 21 36 31 27
CanESM5_r2i1p1f1 115 60 55 58 57 25 90 14 44 46 11
CanESM5_r15i1p2f1 115 59 56 62 53 72 43 39 23 20 33
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Table A.6.: Number of years for every regime for: Reanalysis and CMIP6 simulations 81-120.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
CanESM5_r9i1p2f1 115 53 62 55 60 49 66 21 34 32 28
CanESM5_r1i1p1f1 115 58 57 60 55 39 76 21 39 37 18
CanESM5_r12i1p2f1 115 59 56 61 54 59 56 32 29 27 27
CanESM5_r18i1p1f1 115 56 59 52 63 57 58 25 27 31 32
CanESM5_r28i1p2f1 115 45 70 51 64 47 68 14 37 31 33
CanESM5_r20i1p2f1 115 55 60 60 55 34 81 17 43 38 17
CanESM5_r10i1p1f1 115 49 66 55 60 59 56 24 31 25 35
CanESM5_r17i1p2f1 115 50 65 56 59 45 70 18 38 32 27
CanESM5_r35i1p2f1 115 57 58 54 61 68 47 32 22 25 36
CanESM5_r3i1p2f1 115 46 69 63 52 62 53 28 35 18 34
CanESM5_r21i1p2f1 115 54 61 56 59 41 74 18 38 36 23
CanESM5_r7i1p1f1 115 58 57 53 62 18 97 7 46 51 11
CanESM5_r8i1p2f1 115 64 51 67 48 36 79 26 41 38 10
CanESM5_r40i1p2f1 115 56 59 63 52 26 89 15 48 41 11
CanESM5_r9i1p1f1 115 42 73 63 52 46 69 18 45 24 28
CanESM5_r34i1p2f1 115 51 64 58 57 20 95 7 51 44 13
EC-Earth3_r22i1p1f1 115 42 73 60 55 45 70 16 44 26 29
EC-Earth3_r6i1p1f1 115 61 54 48 67 28 87 11 37 50 17
EC-Earth3_r23i1p1f1 115 62 53 55 60 30 85 16 39 46 14
EC-Earth3_r3i1p1f1 115 44 71 58 57 33 82 10 48 34 23
EC-Earth3_r17i1p1f1 115 50 65 57 58 46 69 19 38 31 27
EC-Earth3_r19i1p1f1 115 54 61 55 60 56 59 25 30 29 31
EC-Earth3_r12i1p1f1 115 43 72 59 56 47 68 17 42 26 30
EC-Earth3_r20i1p1f1 115 54 61 59 56 46 69 22 37 32 24
EC-Earth3_r10i1p1f1 115 62 53 53 62 20 95 10 43 52 10
EC-Earth3_r18i1p1f1 115 45 70 61 54 21 94 6 55 39 15
EC-Earth3_r24i1p1f1 115 56 59 72 43 43 72 28 44 28 15
EC-Earth3_r9i1p1f1 115 58 57 57 58 46 69 23 34 35 23
EC-Earth3_r1i1p1f1 115 61 54 59 56 47 68 26 33 35 21
EC-Earth3_r14i1p1f1 115 59 56 69 46 103 12 58 11 1 45
EC-Earth3_r16i1p1f1 115 61 54 37 78 27 88 5 32 56 22
EC-Earth3_r7i1p1f1 115 55 60 50 65 30 85 10 40 45 20
EC-Earth3_r4i1p1f1 115 54 61 54 61 37 78 15 39 39 22
EC-Earth3_r21i1p1f1 115 59 56 68 47 64 51 38 30 21 26
EC-Earth3_r2i1p1f1 115 64 51 56 59 51 64 28 28 36 23
EC-Earth3_r25i1p1f1 115 59 56 66 49 82 33 46 20 13 36
GISS-E2-1-H_r2i1p5f1 115 55 60 60 55 46 69 23 37 32 23
GISS-E2-1-H_r1i1p5f1 115 63 52 68 47 42 73 29 39 34 13
GISS-E2-1-H_r1i1p1f2 115 58 57 55 60 50 65 24 31 34 26
GISS-E2-1-H_r8i1p1f1 115 62 53 70 45 73 42 45 25 17 28
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Table A.7.: Number of years for every regime for: Reanalysis and CMIP6 simulations 121-160.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
GISS-E2-1-H_r4i1p1f2 115 48 67 61 54 26 89 10 51 38 16
GISS-E2-1-H_r7i1p1f1 115 49 66 53 62 77 38 32 21 17 45
GISS-E2-1-H_r5i1p1f1 115 61 54 53 62 55 60 27 26 34 28
GISS-E2-1-H_r9i1p1f1 115 56 59 67 48 50 65 29 38 27 21
GISS-E2-1-H_r1i1p3f1 115 56 59 63 52 48 67 26 37 30 22
GISS-E2-1-H_r4i1p3f1 115 59 56 66 49 48 67 29 37 30 19
GISS-E2-1-H_r6i1p1f1 115 61 54 57 58 57 58 30 27 31 27
GISS-E2-1-H_r3i1p1f1 115 62 53 56 59 65 50 34 22 28 31
GISS-E2-1-H_r2i1p3f1 115 57 58 58 57 48 67 24 34 33 24
GISS-E2-1-H_r10i1p1f1 115 58 57 51 64 52 63 23 28 35 29
GISS-E2-1-H_r5i1p3f1 115 54 61 54 61 33 82 13 41 41 20
GISS-E2-1-H_r2i1p1f2 115 50 65 53 62 72 43 30 23 20 42
GISS-E2-1-H_r4i1p1f1 115 59 56 63 52 61 54 34 29 25 27
GISS-E2-1-H_r2i1p1f1 115 48 67 64 51 53 62 25 39 23 28
GISS-E2-1-H_r3i1p1f2 115 65 50 50 65 26 89 13 37 52 13
GISS-E2-1-H_r3i1p5f1 115 47 68 55 60 69 46 28 27 19 41
GISS-E2-1-H_r3i1p3f1 115 59 56 61 54 77 38 41 20 18 36
GISS-E2-1-H_r1i1p1f1 115 62 53 51 64 62 53 30 21 32 32
GISS-E2-1-H_r5i1p1f2 115 53 62 61 54 33 82 16 45 37 17
INM-CM5-0_r2i1p1f1 115 60 55 55 60 72 43 36 19 24 36
INM-CM5-0_r6i1p1f1 115 60 55 58 57 63 52 33 25 27 30
INM-CM5-0_r9i1p1f1 115 54 61 57 58 46 69 21 36 33 25
INM-CM5-0_r8i1p1f1 115 60 55 45 70 84 31 37 8 23 47
INM-CM5-0_r4i1p1f1 115 60 55 56 59 53 62 27 29 33 26
INM-CM5-0_r7i1p1f1 115 61 54 59 56 41 74 23 36 38 18
INM-CM5-0_r5i1p1f1 115 60 55 49 66 24 91 9 40 51 15
INM-CM5-0_r1i1p1f1 115 52 63 63 52 56 59 28 35 24 28
INM-CM5-0_r10i1p1f1 115 55 60 55 60 79 36 37 18 18 42
INM-CM5-0_r3i1p1f1 115 60 55 56 59 53 62 27 29 33 26
IPSL-CM6A-LR_r9i1p1f1 115 55 60 54 61 44 71 19 35 36 25
IPSL-CM6A-LR_r15i1p1f1 115 69 46 60 55 30 85 22 38 47 8
IPSL-CM6A-LR_r6i1p1f1 115 71 44 61 54 29 86 23 38 48 6
IPSL-CM6A-LR_r28i1p1f1 115 63 52 65 50 63 52 38 27 25 25
IPSL-CM6A-LR_r31i1p1f1 115 65 50 55 60 45 70 25 30 40 20
IPSL-CM6A-LR_r25i1p1f1 115 51 64 58 57 60 55 27 31 24 33
IPSL-CM6A-LR_r27i1p1f1 115 64 51 58 57 49 66 28 30 36 21
IPSL-CM6A-LR_r30i1p1f1 115 57 58 55 60 51 64 24 31 33 27
IPSL-CM6A-LR_r24i1p1f1 115 59 56 55 60 59 56 29 26 30 30
IPSL-CM6A-LR_r5i1p1f1 115 62 53 60 55 61 54 34 26 28 27
IPSL-CM6A-LR_r22i1p1f1 115 58 57 52 63 79 36 37 15 21 42
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Table A.8.: Number of years for every regime for: Reanalysis and CMIP6 simulations 161-200.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
IPSL-CM6A-LR_r26i1p1f1 115 56 59 65 50 48 67 27 38 29 21
IPSL-CM6A-LR_r8i1p1f1 115 57 58 59 56 37 78 19 40 38 18
IPSL-CM6A-LR_r14i1p1f1 115 63 52 54 61 42 73 22 32 41 20
IPSL-CM6A-LR_r10i1p1f1 115 60 55 52 63 45 70 21 31 39 24
IPSL-CM6A-LR_r16i1p1f1 115 54 61 62 53 45 70 23 39 31 22
IPSL-CM6A-LR_r4i1p1f1 115 64 51 56 59 53 62 29 27 35 24
IPSL-CM6A-LR_r20i1p1f1 115 51 64 56 59 62 53 27 29 24 35
IPSL-CM6A-LR_r1i1p1f1 115 56 59 57 58 54 61 26 31 30 28
IPSL-CM6A-LR_r3i1p1f1 115 48 67 52 63 45 70 15 37 33 30
IPSL-CM6A-LR_r7i1p1f1 115 51 64 48 67 44 71 14 34 37 30
IPSL-CM6A-LR_r13i1p1f1 115 65 50 54 61 56 59 30 24 35 26
IPSL-CM6A-LR_r19i1p1f1 115 52 63 56 59 85 30 39 17 13 46
IPSL-CM6A-LR_r23i1p1f1 115 50 65 59 56 36 79 15 44 35 21
IPSL-CM6A-LR_r18i1p1f1 115 53 62 52 63 34 81 12 40 41 22
IPSL-CM6A-LR_r29i1p1f1 115 47 68 56 59 44 71 16 40 31 28
IPSL-CM6A-LR_r2i1p1f1 115 54 61 48 67 35 80 11 37 43 24
IPSL-CM6A-LR_r11i1p1f1 115 56 59 61 54 52 63 27 34 29 25
IPSL-CM6A-LR_r32i1p1f1 115 53 62 62 53 54 61 27 35 26 27
IPSL-CM6A-LR_r21i1p1f1 115 63 52 59 56 35 80 21 38 42 14
IPSL-CM6A-LR_r17i1p1f1 115 50 65 60 55 39 76 17 43 33 22
IPSL-CM6A-LR_r12i1p1f1 115 57 58 54 61 66 49 31 23 26 35
MIROC6_r35i1p1f1 115 46 69 55 60 38 77 12 43 34 26
MIROC6_r32i1p1f1 115 64 51 55 60 46 69 25 30 39 21
MIROC6_r40i1p1f1 115 58 57 56 59 47 68 23 33 35 24
MIROC6_r20i1p1f1 115 60 55 60 55 41 74 23 37 37 18
MIROC6_r11i1p1f1 115 58 57 58 57 33 82 17 41 41 16
MIROC6_r44i1p1f1 115 66 49 59 56 54 61 32 27 34 22
MIROC6_r4i1p1f1 115 46 69 57 58 42 73 15 42 31 27
MIROC6_r13i1p1f1 115 59 56 67 48 39 76 25 42 34 14
MIROC6_r3i1p1f1 115 51 64 62 53 56 59 27 35 24 29
MIROC6_r46i1p1f1 115 63 52 49 66 47 68 22 27 41 25
MIROC6_r9i1p1f1 115 60 55 57 58 42 73 22 35 38 20
MIROC6_r14i1p1f1 115 58 57 61 54 58 57 31 30 27 27
MIROC6_r15i1p1f1 115 42 73 60 55 41 74 14 46 28 27
MIROC6_r21i1p1f1 115 59 56 63 52 49 66 28 35 31 21
MIROC6_r38i1p1f1 115 59 56 57 58 25 90 13 44 46 12
MIROC6_r31i1p1f1 115 57 58 58 57 62 53 31 27 26 31
MIROC6_r16i1p1f1 115 64 51 73 42 50 65 36 37 28 14
MIROC6_r29i1p1f1 115 63 52 65 50 55 60 34 31 29 21
MIROC6_r2i1p1f1 115 44 71 48 67 51 64 14 34 30 37
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Table A.9.: Number of years for every regime for: Reanalysis and CMIP6 simulations 201-240.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
MIROC6_r34i1p1f1 115 61 54 47 68 69 46 31 16 30 38
MIROC6_r1i1p1f1 115 70 45 53 62 52 63 30 23 40 22
MIROC6_r39i1p1f1 115 64 51 54 61 57 58 30 24 34 27
MIROC6_r8i1p1f1 115 52 63 61 54 68 47 33 28 19 35
MIROC6_r42i1p1f1 115 57 58 57 58 59 56 29 28 28 30
MIROC6_r27i1p1f1 115 74 41 60 55 73 42 46 14 28 27
MIROC6_r26i1p1f1 115 66 49 55 60 42 73 24 31 42 18
MIROC6_r17i1p1f1 115 55 60 59 56 49 66 24 35 31 25
MIROC6_r48i1p1f1 115 56 59 66 49 69 46 38 28 18 31
MIROC6_r6i1p1f1 115 53 62 57 58 45 70 20 37 33 25
MIROC6_r30i1p1f1 115 57 58 53 62 53 62 24 29 33 29
MIROC6_r49i1p1f1 115 54 61 63 52 52 63 27 36 27 25
MIROC6_r5i1p1f1 115 58 57 68 47 57 58 34 34 24 23
MIROC6_r41i1p1f1 115 64 51 57 58 46 69 26 31 38 20
MIROC6_r23i1p1f1 115 56 59 55 60 46 69 21 34 35 25
MIROC6_r12i1p1f1 115 54 61 55 60 42 73 18 37 36 24
MIROC6_r10i1p1f1 115 57 58 67 48 37 78 23 44 34 14
MIROC6_r24i1p1f1 115 62 53 56 59 51 64 27 29 35 24
MIROC6_r33i1p1f1 115 55 60 66 49 38 77 22 44 33 16
MIROC6_r7i1p1f1 115 57 58 58 57 26 89 13 45 44 13
MIROC6_r36i1p1f1 115 74 41 59 56 42 73 30 29 44 12
MIROC6_r28i1p1f1 115 57 58 56 59 46 69 22 34 35 24
MIROC6_r37i1p1f1 115 62 53 62 53 63 52 36 26 26 27
MIROC6_r47i1p1f1 115 61 54 48 67 44 71 19 29 42 25
MIROC6_r19i1p1f1 115 50 65 59 56 62 53 28 31 22 34
MIROC6_r18i1p1f1 115 56 59 55 60 48 67 22 33 34 26
MIROC6_r22i1p1f1 115 65 50 49 66 35 80 17 32 48 18
MIROC6_r43i1p1f1 115 67 48 57 58 31 84 20 37 47 11
MIROC6_r50i1p1f1 115 58 57 47 68 26 89 8 39 50 18
MIROC6_r25i1p1f1 115 57 58 55 60 49 66 23 32 34 26
MIROC6_r45i1p1f1 115 70 45 59 56 32 83 23 36 47 9
MPI-ESM1-2-LR_r2i1p1f1 115 62 53 55 60 66 49 34 21 28 32
MPI-ESM1-2-LR_r10i1p1f1 115 54 61 50 65 51 64 20 30 34 31
MPI-ESM1-2-LR_r3i1p1f1 115 59 56 64 51 58 57 33 31 26 25
MPI-ESM1-2-LR_r5i1p1f1 115 64 51 61 54 42 73 26 35 38 16
MPI-ESM1-2-LR_r8i1p1f1 115 59 56 51 64 57 58 26 25 33 31
MPI-ESM1-2-LR_r7i1p1f1 115 50 65 68 47 23 92 13 55 37 10
MPI-ESM1-2-LR_r9i1p1f1 115 60 55 58 57 65 50 34 24 26 31
MPI-ESM1-2-LR_r4i1p1f1 115 64 51 55 60 48 67 26 29 38 22
MPI-ESM1-2-LR_r6i1p1f1 115 52 63 61 54 58 57 28 33 24 30
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Table A.10.: Number of years for every regime for: Reanalysis and CMIP6 simulations 241-289.
Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
MPI-ESM1-2-LR_r1i1p1f1 115 64 51 66 49 57 58 36 30 28 21
NorCPM1_r20i1p1f1 115 58 57 49 66 48 67 20 29 38 28
NorCPM1_r19i1p1f1 115 54 61 58 57 27 88 12 46 42 15
NorCPM1_r13i1p1f1 115 53 62 51 64 31 84 10 41 43 21
NorCPM1_r29i1p1f1 115 56 59 53 62 52 63 23 30 33 29
NorCPM1_r4i1p1f1 115 53 62 44 71 48 67 15 29 38 33
NorCPM1_r18i1p1f1 115 59 56 58 57 40 75 21 37 38 19
NorCPM1_r30i1p1f1 115 63 52 52 63 62 53 31 21 32 31
NorCPM1_r27i1p1f1 115 52 63 65 50 44 71 23 42 29 21
NorCPM1_r2i1p1f1 115 56 59 61 54 34 81 18 43 38 16
NorCPM1_r5i1p1f1 115 57 58 47 68 55 60 22 25 35 33
NorCPM1_r22i1p1f1 115 59 56 47 68 37 78 14 33 45 23
NorCPM1_r3i1p1f1 115 56 59 65 50 48 67 27 38 29 21
NorCPM1_r16i1p1f1 115 44 71 59 56 26 89 7 52 37 19
NorCPM1_r17i1p1f1 115 66 49 48 67 35 80 17 31 49 18
NorCPM1_r9i1p1f1 115 60 55 56 59 33 82 17 39 43 16
NorCPM1_r8i1p1f1 115 46 69 52 63 55 60 19 33 27 36
NorCPM1_r11i1p1f1 115 50 65 43 72 54 61 16 27 34 38
NorCPM1_r6i1p1f1 115 65 50 64 51 54 61 34 30 31 20
NorCPM1_r23i1p1f1 115 55 60 65 50 29 86 17 48 38 12
NorCPM1_r1i1p1f1 115 57 58 70 45 44 71 28 42 29 16
NorCPM1_r14i1p1f1 115 61 54 55 60 63 52 32 23 29 31
NorCPM1_r21i1p1f1 115 54 61 50 65 33 82 11 39 43 22
NorCPM1_r7i1p1f1 115 59 56 57 58 55 60 28 29 31 27
NorCPM1_r10i1p1f1 115 64 51 56 59 87 28 46 10 18 41
NorCPM1_r26i1p1f1 115 54 61 47 68 40 75 13 34 41 27
NorCPM1_r25i1p1f1 115 65 50 63 52 67 48 40 23 25 27
NorCPM1_r12i1p1f1 115 60 55 53 62 54 61 26 27 34 28
NorCPM1_r24i1p1f1 115 58 57 56 59 43 72 21 35 37 22
NorCPM1_r28i1p1f1 115 66 49 50 65 31 84 16 34 50 15
NorCPM1_r15i1p1f1 115 67 48 45 70 65 50 31 14 36 34
UKESM1-0-LL_r16i1p1f2 115 62 53 67 48 70 45 42 25 20 28
UKESM1-0-LL_r3i1p1f2 115 63 52 58 57 54 61 30 28 33 24
UKESM1-0-LL_r8i1p1f2 115 46 69 59 56 44 71 17 42 29 27
UKESM1-0-LL_r14i1p1f2 115 57 58 59 56 73 42 37 22 20 36
UKESM1-0-LL_r13i1p1f2 115 49 66 52 63 80 35 33 19 16 47
UKESM1-0-LL_r11i1p1f2 115 71 44 56 59 12 103 12 44 59 0
UKESM1-0-LL_r12i1p1f2 115 68 47 69 46 26 89 24 45 44 2
UKESM1-0-LL_r9i1p1f2 115 59 56 54 61 46 69 22 32 37 24
UKESM1-0-LL_r7i1p1f3 115 60 55 74 41 37 78 28 46 32 9
UKESM1-0-LL_r17i1p1f2 115 50 65 68 47 35 80 19 49 31 16
UKESM1-0-LL_r1i1p1f2 115 62 53 51 64 44 71 21 30 41 23
UKESM1-0-LL_r5i1p1f3 115 65 50 50 65 72 43 36 14 29 36
UKESM1-0-LL_r2i1p1f2 115 45 70 49 66 47 68 13 36 32 34
UKESM1-0-LL_r10i1p1f2 115 47 68 51 64 47 68 15 36 32 32
UKESM1-0-LL_r19i1p1f2 115 73 42 57 58 39 76 27 30 46 12
UKESM1-0-LL_r18i1p1f2 115 48 67 66 49 41 74 20 46 28 21
UKESM1-0-LL_r6i1p1f3 115 70 45 60 55 47 68 31 29 39 16
UKESM1-0-LL_r4i1p1f2 115 56 59 63 52 52 63 28 35 28 24
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B. Supplementary Materials for Chapter 5

As of Chapter 5, all material herein (Appendix B) has been recently submitted to Earth System
Dynamics (Karmouche et al. 2023b).

Table B.1.: Directing unoriented contemporaneous links based on most detected direction within a
specific run among the 10 simulations of the CESM2 pacemaker ensemble (Figure 5.6).

Unoriented Links Instances Direction Ruling

PNA—NAO Figure 5.4d NAO→PNA Most detected direction for "1985-2014 minus MEM" regime

Niño3.4—PNA Figure 5.4d Niño3.4→PNA Based on the 1-season lagged instances in all regimes

Niño3.4—PWC𝑢 P1 and P2 in Figure 5.7b PWC𝑢→Niño3.4 Most detected direction in all regimes

Figure B.1.: Atlantic-driven regime starting in 1986 (instead of 1985) shows vanishing TNA→PWC𝑢

link when MEM is subtracted. a) Similar to Figure 5.4b but for 1986-2014. b) Similar to Figure 5.4d
but for 1986-2014 period
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2.13. Atlantic-Pacific interactions on decadal timescales. a) Schematic illustrating
how a positive AMV leads to an opposing negative response in PDV-associated
SSTs within the tropical Pacific. This phenomenon primarily occurs through
the influence of the tropical Walker circulation. Background SST similar to
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2.14. Diagram depicting the inter-basin interactions between the Pacific and Atlantic.
a) The formation of a tropical Atlantic mode throughout winter to late spring,
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3.2. Causal networks illustrating lagged causal connections among the variables
outlined in Table 3.1 for the 1997-1998 El Niño event. These networks were
constructed using the PCMCI+, applied to the detrended time series of each
variable spanning from January 1995 to December 1999. Within these networks,
nodes represent the time series corresponding to each climate variable (please
refer to Table 3.1 for node labels and descriptions). Node colors signify the self-
link coefficients for each time series (referred to as auto-coefficients, as indicated
by the color bar), while the color of the links indicates the linear link coefficient
(referred to as link coefficients, as indicated by the color bar). The time lags
associated with the links are depicted as small labels on the links, with each
unit representing a one-month interval. Figure adapted from Karmouche et al.
2023b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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4.1. Framework for the regime-oriented causal model evaluation. a) Gridded SST
and SLP data used to calculate indices for AMV, PDV, PNA and PSA1 modes
of climate variability. Diagnostics from the NCAR CVDP-LE produce the time
series of these indices and their associated spatial patterns (regression maps). b)
We first, as a sanity check, compare the CMIP6 model-simulated SST (for AMV
and PDV) and SLP (for PNA, PSA1) regression maps to those from reanalysis
before c) using the time series of the four indices for the regime-oriented causal
analysis. Here we define different regimes depending on the sign of the 13-
year low-pass filtered AMV and 11-year low-pass filtered PDV time series.
For every regime we run PCMCI+ to estimate instantaneous and lagged links
between nodes representing the time series of the indices calculated in (a)
from the reanalyses and model data. In this schematic example, there are four
indices, with node color indicating auto-correlation, and there is a causal link
(solid black arrow) between index 2 and indices 1 and 3, and then there is
a causal link between indices 3 and 4. The method identifies and removes
spurious links (see black dashed arrows) between indices 1 and 4, or 2 and 4.
Unitless representative time lags are labeled on each causal link, where index
1 lags index 2 by one time-step (depending on temporal resolution of the time
series, here yearly), index 3 lags index 2 by three, and index 4 lags index 3 by
one. Applying the method to the time series in (a) provides d) dataset- and
regime-specific causal fingerprints in a similar format to the schematic in (c),
which can be used for model evaluation and intercomparison. We calculate
annual averages from the monthly time series of PDV and AMV provided by
CVDP-LE. This way, the dataframe is fit for multi-year and decadal causal
estimations. In addition to the subtraction of global mean temperatures in the
CVDP-LE calculation of PDV and AMV, the causal networks are estimated after
linearly detrending the time series of the four indices to ensure their stationarity.
The estimated causal dependencies (links) are hence assumed to be a mixture
of internal variability and time-varying anthropogenic forcing (mainly from
aerosols). Figure adapted from Karmouche et al. 2023a. . . . . . . . . . . . . . . 52
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4.2. a) PDV and AMV time series calculated by CVDP-LE diagnostics on ERSSTv5
data are smoothed using 11 and 13-year low-pass filters, respectively. 10 regimes
are defined (see table on the left) in addition to the 1900-2014 complete period.
The PCMCI+ algorithm is applied on unfiltered (non-smoothed) PDV, AMV,
PNA, PSA1 yearly detrended time series that are masked according to the
periods that define each regime. The right arrows on the smoothed time series
represent unmasked periods from three out of 10 regimes (PDV+/AMV+, PDV-
/AMV+, and PDV+/AMV-). b) The regimes identified in (a) are used to mask
the non-smoothed (but detrended) index time series before applying PCMCI+.
Here, for example, we show how we mask the data according to the PDV- (top)
and PDV+ (bottom) regimes. The grey shaded periods are masked and thus
not considered during the PCMCI+ analysis. Note that the masking here refers
to variables at time point 𝑋 𝑗

𝑡 while their lagged parents can originate also from
a masked period (gray shaded). This setting is referred to as mask_type=’y’ in
Tigramite. Consequently, applying PCMCI+ on differently-masked time series
produces different causal networks (network in top vs network in bottom) Figure
adapted from Karmouche et al. 2023a . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3. Box-and-whisker plot illustrating the distribution of Pearson 𝑟 pattern corre-
lation values for historical CMIP6 large ensembles. The number of ensemble
members within each model is indicated in parentheses on the x-axis. Each
box’s lower boundary represents the first quartile (𝑄1) or 25th percentile, and
the upper boundary signifies the third quartile (𝑄3) or 75th percentile. The
horizontal line within the box indicates the median value (𝑄2) or 50th per-
centile. The span of the box, from 𝑄1 to 𝑄3, denotes the interquartile range
(IQR). The lower and upper whiskers extend from the box to the minimum and
maximum values, calculated as 𝑄1−1.5× IQR and 𝑄3+1.5× IQR, respectively.
Outliers are represented by black dots. Correlation values for PNA, PSA1, PDV,
and AMV are color-coded in purple, cyan, red, and green, respectively. Yellow
boxes indicate the Mean Score, calculated as the average of the four 𝑟 values
after applying a Fischer z-transform. The white dots signify the mean values.
Figure from Karmouche et al. 2023a. . . . . . . . . . . . . . . . . . . . . . . . . . 57

124



List of Figures

4.4. Causal networks calculated with PCMCI+ from reanalysis data for the complete
1900-2014 period (upper left panel) and the different regimes. Nodes represent
the time series associated with each climate variability index (see node labels)
masked according to the predefined regimes. Node colours indicate the level
of autocorrelation (auto-MCI) as the self-links of each node with darker red
indicating stronger autocorrelations (color bar at lower left) while the color of
the arrows (termed "links" here) denotes the inter-dependency strength (cross-
MCI) with blue indicating opposite-sign (or negative) inter-dependency and
red indicating same-sign (or positive) inter-dependency strength (color bar at
lower right). Small labels on the curved links indicate the link-associated time
lags (unit = 1 year). Straight links show contemporaneous inter-dependencies
happening with no time lag (i.e. 𝜏 < 1). Each network is sub-labeled with its
respective regime name and the total number of unmasked years (time-steps)
that characterize that regime (label and number of years at bottom of each
panel). Lines going through the panels are to help visualize which combinations
make up the regimes. Solid lines are for PDV, dashed for AMV. Red for warm
(+), blue for cold (-) phases (e.g. PDV+/AMV- regime panel has a solid red line
and dashed blue line going through it). Figure from Karmouche et al. 2023a. . 61

4.5. Ensemble summary of the CanESM5 large ensemble model. Similar to Fig-
ure 4.4, but aggregating causal networks from 65 realizations. The link width
here shows the fraction of ensemble members that feature that link relative to
the total ensemble size (here 65); i.e. the thicker the link, the more ensemble
members were found to estimate it during that specific regime. Link colors
here translate the mean cross-MCI value among the ensemble members that
estimated such link (color bar at lower left). Links of very light color are those
that ensemble members agree little on their partial correlation sign. The link
labels indicate the average time lag (rounded to the nearest integer) at which
the link is estimated among the fraction of ensemble members that find such
link. Figure from Karmouche et al. 2023a. . . . . . . . . . . . . . . . . . . . . . . 64

4.6. a) Whisker plot showing the distribution of 𝐹1-scores across the CMIP6 large
ensembles for the causal analysis for: the complete period (light blue boxes), the
In-Phase regime (dark blue boxes) and the Out-of-Phase regime (green boxes).
White scatter points denote the mean large ensemble 𝐹1-scores. b) Reference
causal network estimated from reanalysis during the Out-of-Phase regime (left,
with low-pass AMV and PDV time series below) compared to networks and
time series from three CMIP6 simulations (right, with simulated low-pass AMV
and PDV time series below each network) with the best network similarity i.e.
highest 𝐹1-score. Figure from (Karmouche et al. 2023a). . . . . . . . . . . . . . . 67
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4.7. Matrices of average 𝐹1-scores for pair-wise network comparisons between en-
semble members of 12 CMIP6 large ensembles during every regime. Boxes
on the main diagonal translate the level of similarity between members of a
single CMIP6 ensemble. Boxes outside the main diagonal show the similar-
ity between realizations of a CMIP6 large ensemble compared to realizations
from another CMIP6 large ensemble (taking every realization as a reference at
a time, before averaging across every large ensemble). The redder the grid box,
the better causal network similarity it translates when comparing realizations
of the corresponding CMIP6 model (x-axis coordinate name on top of each
panel) to causal networks from the corresponding reference CMIP6 model (y-
axis coordinate on the left of each panel). The matrices for the short regimes
(PDV+/AMV+, PDV+/AMV-, PDV-/AMV+ and PDV-/AMV-) are not shown
as their results are not conclusive since PCMCI+ fails to estimate any causal net-
works for several members of different ensembles. Figure from (Karmouche
et al. 2023a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8. Scatter plots: 𝑅𝑐𝑜𝑒 𝑓 mean score (spatial correlation with reanalysis, x-axis) vs 𝐹1-
score (network similarity with respect to reanalysis, y-axis) during the different
regimes. Spatial correlation values do not change from one regime to another;
these are the same mean scores calculated from the Pearson 𝑟 coefficients of the
four modes in Section 4.2.1 over the 1900-2014 period. Similar to Figure 4.7,
scatter plots are shown only for the long regimes. Figure from (Karmouche
et al. 2023a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1. Standardized seasonally averaged time series of a) Niño3.4, b) TNA, c) PNA,
d) NAO, and e) PWC𝑢 during the observed 1950-2014 period. Unit for the
standard deviations are [°C] in a and b, [Pa] in c and d, and [m.s−1] in e. The
time series in black represent the mixed signal from indices calculated using
HadISST (a,b) and NCEP-NCAR Reanalysis-1 (c-e). The time series in green are
calculated after subtracting the CMIP6 external forcing represented by MEM
following Equation (5.1). In each panel, the red line denotes the difference
between the black and green line at each time step, representing the varying
effect of subtracting MEM on each index. Figure from Karmouche et al. 2023b . 78
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5.2. Regression pattern of global SSTAs onto Niño3.4 index (a,c) and TNA index
(b,d) during both periods: 1950-1983 (top) vs 1985-2014 (bottom). a) Pearson’s
correlation coefficients (shadings) and regression coefficients (contours) of de-
trended global SSTAs with the standardized Niño3.4 index based on HadISST
data during 1950-1983. b) Same as (a) but showing the SSTAs correlation and
regression with the standardized TNA index instead of Niño3.4. c) Same as
(a) but for the 1985-2014 period. d) Same as (b) but for the 1985-2014 period.
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