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Abstract

A promising approach to improving cloud parameterizations in climate models, and thus
climate projections, is to train machine learning algorithms on the coarse-grained output of
high-resolution storm-resolving model (SRM) simulations. The ICOsahedral Non-hydrostatic
(ICON) modeling framework enables simulations ranging from numerical weather prediction
to climate projections, making it an ideal target for developing machine learning based pa-
rameterizations. The main focus of this thesis lies in the improvement of the semi-empirical
cloud cover parameterization used in the ICON Earth System Model. It diagnoses subgrid-
scale fractional cloud cover from large-scale variables in every grid cell based on very simple
assumptions. To instead parameterize cloud cover with more detailed complexity, we first
develop three different types of neural networks (NNs) that differ in the degree of vertical
locality they assume for diagnosing cloud cover. The NNs accurately estimate cloud cover
in their training domain and globally-trained NNs can even estimate it for a distinct regional
SRM. Using the game theory based interpretability library SHapley Additive exPlanations, we
analyze our most non-local NN and identify an overemphasis on specific humidity and cloud
ice as the reason why it cannot perfectly generalize from global to regional coarse-grained
SRM data. The interpretability tool also helps visualize similarities and differences in feature
importance between regionally- and globally-trained NNs, and reveals a local relationship
between their cloud cover predictions and the thermodynamic environment. However, while
our NNs already achieve excellent predictive performance (𝑅2 > 0.9) with as few as three fea-
tures, they are climate model specific and require additional tools for post-hoc interpretation.
To avoid these limitations, we also add symbolic regression, sequential feature selection, and
physical constraints to a combined hierarchical modeling framework. Analytical equations
derived from this framework are interpretable by construction and easily transferable to other
grids or climate models. Our best equation balances performance and complexity, achieving
a performance comparable to that of NNs (𝑅2 = 0.94) while remaining simple (with only
11 trainable parameters) and physically consistent. It learns to utilize the vertical relative
humidity gradient to detect elusive marine stratocumulus clouds. Furthermore, it reproduces
cloud cover distributions more accurately than the Xu-Randall scheme across all cloud regimes
(Hellinger distances < 0.09), and matches NNs in condensate-rich regimes. When applied
and fine-tuned to ERA5 reanalysis, the equation exhibits superior transferability compared to
all other Pareto-optimal cloud cover schemes. Overall, this thesis shows the potential of deep
learning to derive accurate cloud cover parameterizations from global SRMs. It also demon-
strates the effectiveness of symbolic regression to discover interpretable, physically consistent,
and nonlinear equations for cloud cover.
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1. Introduction

1.1. Motivation

Clouds play a key role in the climate system. They regulate the hydrologic cycle and have a
substantial influence on Earth’s radiative budget (Allen and Ingram 2002). In particular, the net
average radiative effect of clouds is to cool the Earth by ≈ 20 Wm−2 , which is 5–6 times larger
than the global warming effect associated with the doubling of CO2-concentration compared
to pre-industrial levels (Lohmann et al. 2016). Clearly, Earth system models (ESMs), or, more
generally, climate models, used to make climate projections spanning multiple decades into
the future must consider the effect of clouds despite being computationally limited to grids
typically with horizontal resolutions of 50–160 km and vertical resolutions of≈ 200 m (Gentine
et al. 2021). At this coarse resolution most clouds are subgrid-scale phenomena, and need
to be parameterized, i.e., their formation and evolution need to be inferred from large-scale
variables. Without parameterizations climate models would not be able to simulate realistic
clouds. As it stands, these cloud parameterizations contribute to long-standing deficiencies,
causing for instance the response of low clouds in different climate change scenarios to be
one of the largest uncertainties in climate projections (Schneider et al. 2017a). Only in very
high-resolution simulations, Schneider et al. (2019) were able to discover that CO2-levels of
≈ 1200 ppm could induce stratocumulus decks to break up which would lead to a net average
global warming of around 8 K.
The ICOsahedral Non-hydrostatic (ICON)-ESM used for global climate research is the suc-
cessor of the Earth System Model of the Max Planck Institute for Meteorology (MPI-ESM),
building upon decades of experience (Mauritsen et al. 2019). The last release of the MPI-ESM
was used as one of the models in the Coupled Model Intercomparison Project (CMIP) Phase 6
(Eyring et al. 2016), thus providing an important basis for the assessment of climate projections
in the latest Intergovernmental Panel on Climate Change (IPCC) Report (AR6) (IPCC 2021).
The ICON-ESM is part of the ICON unified modeling framework, which shares the same
dynamical core (Zängl et al. 2015). This framework is used in realistic conditions on a variety
of timescales and resolutions. The German Weather Service (DWD) co-develops and uses the
ICON modeling framework for global numerical weather forecast since 2015 (Prill et al. 2022).
In the atmosphere component of the ICON-ESM (ICON-A), the following physical processes
are parameterized: radiation, vertical diffusion, land surface, gravity wave drag, convection,
and cloud microphysics (Giorgetta et al. 2018). Another fundamental component of its param-
eterization package is a cloud cover scheme, which, in its current form, diagnoses fractional
cloud cover from large-scale variables in every grid cell (Giorgetta et al. 2018; Mauritsen et al.
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1. Introduction

2019). The accurate estimation of cloud cover can be described as a zero-order challenge
for any general circulation model (GCM) (Quaas 2012; Tompkins 2002). As cloud cover is
used in the radiation (Pincus and Stevens 2013) and microphysics (Lohmann and Roeckner
1996) parameterizations of ICON-A, its estimate directly influences the energy balance and
the concentrations of water vapor, cloud ice, and cloud water. However, the lack of a complete
physical theory (concerning, e.g., the formation and dissipation of clouds) or an observational
database that could provide the foundation for relating large-scale variables to cloud cover
turns its physics-based parameterization into a considerable challenge (Stensrud 2009). The
current cloud cover scheme in ICON-A, based on Sundqvist et al. (1989), resorts to some crude
empirical assumptions, such as a near-exclusive emphasis on relative humidity.
Owing to its flexible applicability across resolutions, the ICON modeling framework has also
been used to conduct storm-resolving model (SRM) simulations at horizontal resolutions of
2–5 km (Giorgetta et al. 2022; Klocke et al. 2017; Stevens et al. 2019b). At these resolutions
one can generally consider deep convection to be resolved (Vergara-Temprado et al. 2020;
Weisman et al. 1997), and therefore these simulations forego the use of convective parameter-
izations. Stevens et al. (2020) have shown that SRM simulations can indeed represent clouds
and precipitation more accurately than coarse simulations with a convective parameteriza-
tion. Furthermore, Hohenegger et al. (2020) systematically compared 27 different statistics
from ICON simulations with resolutions ranging from 2.5 km to 80 km. They concluded that
global simulations with explicit convection at resolutions of 5 km or finer may be used to
simulate the climate. However, as every doubling of the horizontal and vertical resolution
can increase the computational cost roughly by a factor of 16 (Stensrud 2009), global SRMs are
currently limited to simulating only a few months to a few years.
While SRM simulations cannot be used to project the climate decades into the future yet, their
output can still be used as valuable training data for improving climate model parameteri-
zations. In particular, the use of machine learning for the parameterization of subgrid-scale
processes has been identified as a promising approach to improve parameterizations in cli-
mate models and to reduce uncertainties in climate projections (Eyring et al. 2021; Gentine
et al. 2021). With the increased availability of such high-resolution datasets and ever more
sophisticated machine learning methods, machine learning algorithms have already been de-
veloped for the parameterization of clouds and convection (e.g., Brenowitz and Bretherton
(2018), Gentine et al. (2018), Krasnopolsky et al. (2013), and O’Gorman and Dwyer (2018); see
reviews by Beucler et al. (2022) and Gentine et al. (2021)). There are only few approaches
that learn parameterizations directly from observations (e.g., McCandless et al. (2022)), as
these are challenged by the sparsity and noise of observations (Rasp et al. 2018b; Trenberth
et al. 2009). Therefore, a two-step process might be required, in which the statistical model
structure is first learned on modeled data before its parameters are fine-tuned on observations
(transfer learning), leveraging the advantage of the consistency of the modeled data for the
initial training stage before having to deal with noisier observational data.
Leveraging both machine learning and SRM output, this thesis takes a new approach for de-
riving diagnostic cloud cover parameterizations. It utilizes two distinct branches of machine

2



1.2. Key Science Questions

learning: deep learning and symbolic regression. In deep learning, neural networks (NNs)
with numerous trainable parameters are used to fit the data as accurately as possible, albeit
sacrificing potential interpretability for complexity. In contrast, the application of symbolic
regression aims to discover a closed-form (or analytical) function, with minimum prior as-
sumptions, that not only accurately represents the data but is also simple enough to interpret.

1.2. Key Science Questions

The goal of this thesis is to develop machine learning based parameterizations that can replace
ICON-A’s semi-empirical cloud cover scheme by addressing the following four key science
questions:

1. Is it possible to train a neural network based cloud cover parameterization capable of
accurately learning cloudiness from high-resolution simulations?

2. Can we develop data-driven cloud cover parameterizations that are inherently inter-
pretable and maintain the high data fidelity of neural networks while ensuring physical
consistency?

3. To what degree can data-driven cloud cover parameterizations generalize to other real-
istic datasets? Can simpler schemes be transferred more effectively?

4. Can we enhance the accuracy of the ICON-A model by directly implementing our data-
driven cloud cover schemes, without additional fine-tuning of the model?

1.3. Structure of the Thesis

Parts of this thesis, in particular the results and methods, have already been published in a
peer-reviewed journal and as a preprint in two first-author studies. In particular, Chapters 3
and 4, the Appendix, and Sections 2.3 and 2.4.1 draw from these publications, with additional
content integrated into various paragraphs across the other chapters. The author of this thesis
created all the content, including text, figures, and tables, that is presented from these publi-
cations. The publications are listed on page vii.
This thesis begins with an introduction of the scientific background in Chapter 2, namely
reviews of cloud cover parameterizations (Section 2.1), the two featured machine learning
branches (Section 2.2), and machine learning based parameterizations (Section 2.3). The last
section of the chapter (Section 2.4) covers the storm-resolving ICON simulations used as the
data source. Chapter 3 generally concerns itself with the first key science question, while
also touching upon the third. Regionally- and globally-trained NN-based parameterizations
for cloud cover are developed (Section 3.1), evaluated, and their generalization capability is
analyzed (Section 3.2). The SHapley Additive exPlanations (SHAP) interpretability library is
used to understand which physical features drive the NN predictions and errors (Section 3.2).

3



1. Introduction

The following Chapter 4 investigates the second and third key science questions. Extending
upon existing cloud cover schemes, such as the highly performant NN-based parameteriza-
tions from Chapter 3, a family of cloud cover schemes is systematically developed (Section 4.2),
and a set of physical constraints and cloud regimes is defined (Section 4.3). These schemes
are collected in a performance × complexity plane (Section 4.4), their skill on different cloud
regimes is investigated, and their generalizability to different horizontal resolutions and ERA5
reanalysis is tested. By selecting features sequentially according to whether they maximize
performance in different predictive models, feature rankings are received that provide insights
into the problem of parameterizing cloud cover. Using symbolic regression, a new, physically
consistent analytical equation for cloud cover, characterized by an excellent tradeoff between
performance and simplicity, is discovered. Section 4.5 covers the physical analysis of the dis-
covered equation. To investigate the forth key science question, the data-driven cloud cover
schemes are implemented in the ICON-A model (Chapter 5). The chapter begins with funda-
mental feasibility tests (Section 5.2), before analyzing the resulting ICON-A with a machine
learning based cloud cover scheme (ICON-ML) model (Section 5.3). A summary, discussion,
and outlook concludes the thesis (Section 6).

4



2. Scientific Background

2.1. On the Parameterization of Cloud Cover

The simplest cloud cover parameterization considers the total cloud condensate content of a
grid cell. If it exceeds a given threshold, then the grid cell is deemed fully cloudy, otherwise
it is cloud-free. However, this simple approach is only reasonable in small grid cells at very
high resolutions, where clouds typically fill entire grid cells. At resolutions common in global
GCMs, the fractional cloudiness needs to be estimated accurately instead (Tompkins 2002).
Various schemes to estimate fractional cloudiness exist. These can be grouped into relative
humidity based schemes, which include the default scheme in ICON-A (Section 2.1.1), and
statistical schemes (Section 2.1.2). Two different interpretations of cloud cover, that will be
relevant throughout the thesis, are also introduced (Section 2.1.3).

2.1.1. Relative Humidity Based Schemes

Sundqvist (1978) designed one of the first models for non-convective condensation that also
considers cloud cover. He split a grid cell into a cloudy portion, in which condensation is
assumed to take place and relative humidity matches a prescribed constant value, and a cloud-
free portion, in which evaporation is assumed to take place. On one side condensation heats
the grid cell by the release of latent heat. On the other side evaporation cools it. Doing so,
he derived an expression for the rate of latent heat release based on the change of relative hu-
midity in time (its tendency). Knowing the relative humidity tendency, Sundqvist (1978) could
compute the rate of latent heat release, and thus the rate of heating and moistening caused
by condensation. Sundqvist’s publication has been used as a basis for including fractional
cloud cover in prognostic parameterizations (Roeckner et al. 1996). While Sundqvist’s original
equation for the relative humidity tendency does not explicitly depend on cloud cover, it did
so later (Sundqvist et al. 1989). The scheme of Sundqvist et al. (1989) explicitly expresses cloud
cover as a monotonically increasing function of relative humidity (RH). It assumes that cloud
cover can only exist if the cell-averaged relative humidity exceeds a critical relative humidity
threshold RH0, which is usually stated as a function of the fraction between surface pressure 𝑝𝑠
and pressure 𝑝 (from Xu and Krueger (1991)): If

RH > RH0
def
= RH0,top + (RH0,surf − RH0,top) exp(1 − (𝑝𝑠/𝑝)𝑛),

5



2. Scientific Background

Figure 2.1.: The Sundvist Scheme (equation 2.1) for 𝑝𝑠 = 1000hPa.

then the parameterization of cloud cover from Sundqvist et al. (1989), hereafter called the
Sundqvist scheme, is given by

𝒞Sundqvist
def
= 1 −

√︃
min{RH,RHsat} − RHsat

RH0 − RHsat
. (2.1)

Equation 2.1 includes four tuning parameters that are constant during a GCM simulation
(Giorgetta et al. 2018): i) the critical relative humidity at the surface RH0,surf, ii) the critical
relative humidity in the upper atmosphere RH0,top, iii) the relative humidity in the cloudy
part of the grid cell RHsat ≈ 1, and iv) a shape factor 𝑛. Setting the tuning parameters equal
to those values, equation 2.1 can be illustrated in Figure 2.1. Equation 2.1 can be derived
from two assumptions: that the average relative humidity in the cloudy portion is constant
(to RHsat) so that the grid-mean relative humidity is

RH = 𝒞 RHsat + (1 − 𝒞)RHcloud−free ,

and that the average relative humidity in the non-cloudy portion increases linearly with 𝒞,
starting at RHcrit

RHcloud−free = 𝒞 RHsat + (1 − 𝒞)RHcrit.

In contrast to Xu and Krueger (1991), Sundqvist et al. (1989) assumes RHcrit to depend on
temperature, land fraction, and altitude.

The Sundqvist scheme was commonly chosen as the cloud cover scheme in the atmosphere
components of the MPI-ESMs (ECHAM). It is included in the ECHAM4–6, and now also in
the ICON-A GCMs (Giorgetta et al. 2013; Giorgetta et al. 2018; Roeckner et al. 1996). However,
the tuning parameters differ noticeably between versions: RH0,surf was set to 0.999/0.9/0.968,
RH0,top to 0.6/0.7/0.8, and the shape parameter 𝑛 to 4/4/2 in ECHAM4, ECHAM6, and

6



2.1. On the Parameterization of Cloud Cover

ICON-A respectively. While Sundqvist et al. (1989) envisaged using equation 2.1 only in
statically stable grid columns, in the aforementioned GCMs it is used in all grid columns,
regardless of their stability. Thus, cloud cover of convective origin is not treated explicitly.

Xu and Randall (1996) proposed a relative humidity based scheme that also depends on the
cloud condensate mixing ratio. It assures that grid cells are cloud-free in the absence of cloud
condensates. The Xu-Randall scheme was found to outperform the Sundqvist scheme when
compared on CloudSat observational data (Wang et al. 2023). In a simplified form, it can be
formulated as

𝒞Xu−Randall
def
= min{RH𝛽(1 − exp(−𝛼(𝑞𝑐 + 𝑞𝑖))), 1}, (2.2)

where 𝑞𝑐 is the cloud water mixing ratio, 𝑞𝑖 the cloud ice mixing ratio, and {𝛼, 𝛽} are two
tuning parameters.

Teixeira (2001) arrived at a diagnostic relationship for subtropical boundary layer clouds by
equating a cloud production term from detrainment and a cloud dissipation (erosion) term
from turbulent mixing with the environment. The Teixeira scheme can be expressed as

𝒞Teixeira
def
=

𝐷𝑞𝑐

2𝑞𝑠(1 − ˆ︂RH)𝐾
⎛⎜⎝−1 +

√︄
1 + 4𝑞𝑠(1 − ˆ︂RH)𝐾

𝐷𝑞𝑐

⎞⎟⎠ , (2.3)

where ˆ︂RH def
= min{RH, 1 − 10−9} limits relative humidity to a maximum of 1 − 10−9 to ensure

reasonable asymptotics, 𝑞𝑠 = 𝑞𝑠(𝑇, 𝑝) is the saturation specific humidity (Lohmann et al. 2016),
and {𝐷, 𝐾} are the detrainment rate and the erosion coefficient, which are the two tuning
parameters of the Teixeira scheme.

Relative humidity based cloud cover schemes generally have some notable drawbacks. First
of all, cell-averaged relative humidity (without knowing its history) does not fully determine
cloud cover. For instance, Walcek (1994) had shown that with an relative humidity of 80%
and a pressure between 800 and 730 hPa, the probability of observing any amount of cloud
cover can be nearly uniform. In addition, no clear critical relative humidity threshold seems to
exist. Furthermore, even though they influence cloud characteristics, relative humidity based
schemes do not directly differentiate between local dynamical conditions (e.g., whether the
grid column undergoes deep convection; Tompkins 2005). Finally, most cloud cover schemes
are based on local thermodynamic variables, yet rapid advection (e.g., updrafts) could lead to
non-locality in the relationship. To mitigate arising inaccuracies, they contain several tuning
parameters, which are adjusted following the primary goal of a well balanced top-of-the-
atmosphere energy budget (Giorgetta et al. 2018).

2.1.2. Statistical Schemes

As opposed to relative humidity based schemes, so-called statistical schemes view the cloud
cover parameterization problem by aiming to first specify the subgrid-scale distributions of
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temperature and the total water mixing ratio (which Tompkins (2002) defines as the sum
of the water vapor, cloud water and cloud ice mixing ratios). One advantage of estimating
these distributions is that they can be reused for other parameterizations as well, increasing
consistency between different parameterizations.
Using the Clausius-Clapeyron relation (or one of its approximations), the saturation vapor
pressure within a grid cell can then be computed from subgrid-scale temperature. Finally,
cloud cover is the area of the grid cell in which the total water mixing ratio exceeds the
saturation mixing ratio (see also equation 2.4). In practice, the problem is often simplified
by assuming that temperature, and thus also the saturation mixing ratio, is constant within
a grid cell. Schemes that are not based on this assumption usually estimate the distribution
of the linearized saturation deficit in place of both subgrid-scale temperature and total water
(Plant 2014; Tompkins 2002). The typical central question in statistical schemes is thus the
specification of the subgrid-scale total water mixing ratio distribution. Many different distri-
butions have been proposed (Tompkins 2005), including, e.g., uniform (Le Trent and Li 1991),
triangular (Nishizawa 2000), Gaussian (Bechtold et al. 1995), and log-normal distributions
(Bony and Emanuel 2001).

It is worth highlighting the statistical Tompkins cloud cover scheme (Tompkins 2002) as it is
the default cloud cover scheme in the initial version of ECHAM5 (Roeckner et al. 2003) and still
available on request in ECHAM6 (Giorgetta et al. 2013). Tompkins derived his prognostic cloud
cover scheme from high-resolution cloud-resolving model data in tropical deep convective
scenarios. He assumes a unimodal beta distribution 𝐺 for the total water mixing ratio 𝑟𝑡 .
The distribution 𝐺 is defined on an interval (𝑎, 𝑏), and has four free parameters {𝑎, 𝑏, 𝑝, 𝑞}
which allow the variance of 𝐺 to change over time. In the first version of the scheme, only
the parameters 𝑞 and 𝑏 − 𝑎 are continously modified by (deep) convection, turbulence, and
microphysics. Cloud cover is then the amount of total water above the saturation mixing ratio
𝑟𝑠 , given by

𝒞 =

∫ ∞

𝑟𝑠

𝐺(𝑟𝑡)𝑑𝑟𝑡 . (2.4)

Besides simplifying assumptions in the turbulence, convection and microphysics terms, the
Tompkins scheme assumes that i) the total water mixing ratio can be described by a beta
distribution, ii) supersaturation efficiently condenses into a cloud, and iii) the subgrid-scale
variability of temperature can be neglected. Assumption ii) is particularly problematic as
supersaturation with respect to ice often occurs (Heymsfield et al. 1998; Tompkins 2002).

In practice, it has been found that the Tompkins scheme grossly underestimates the subgrid-
scale variability of humidity, even more so than the Sundqvist scheme (Quaas 2012). Also, the
severity of the underestimation is not constant across vertical layers. Furthermore, it remains
unclear how the parameters 𝑝 and 𝑞 shall be determined (Wang et al. 2015). According to
Adrian Tompkins, the primary reason for not including his scheme in the ICON ESM were
instabilities occurring in climate model projections when his scheme was used in ECHAM
models. These instabilities would arise in the calculation of in-cloud liquid water in the
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microphysics scheme by Lohmann and Roeckner (1996), shared by the ICON-A, ECHAM5,
and ECHAM6 models (Giorgetta et al. 2013; Giorgetta et al. 2018; Roeckner et al. 2003).
In this microphysics scheme, in-cloud liquid water and ice are computed by dividing the
cell-averaged cloud liquid water and ice by the estimated cloud cover. It is used to estimate,
for instance, the (auto)conversion of cloud droplets into precipitating droplets. The resulting
value for in-cloud liquid water can approach infinity if cloud cover decreases more rapidly
than cloud liquid water, which is a scenario that could occur with the Tompkins scheme (A.
Tompkins, personal communication, 27 April 2023).

The distinction between relative humidity based schemes and statistical schemes is some-
times just a question of perspective. For instance, the Sundqvist scheme (equation 2.1) can also
be derived from a statistical scheme assuming a uniform distribution for total water (Quaas
2012). More generally, any statistical scheme with a fixed variance can be reduced to a relative
humidity based formulation (Tompkins 2005).

2.1.3. Cloud Volume/Area Fraction

Even though Sundqvist (1978) already emphasized the importance of representing how clouds
vary on the vertical subgrid scale, most GCMs (including ICON-A) neglect it (Brooks et al.
2005). Clouds are typically viewed as having a constant diameter in the horizontal, similar
to cylinders. This simplification is particularly questionable for vertically thin clouds, such as
marine stratus/stratocumulus (Nam et al. 2012) or tropical cirrus clouds (Dessler and Yang
2003). In models with a coarse vertical resolution, e.g., Brooks et al. (2005) found it advisable
to instead differentiate between the horizontally projected amount of cloudiness inside a grid
cell (the ‘cloud area fraction’) and the cloudy fraction of the three-dimensional grid box (the
‘cloud volume fraction’) (see Figure 2.2).

By considering how the diagnosed cloud cover is used in ICON-A, it can be deduced which
of the two interpretations is more appropriate if both quantities were available. First of all,
ICON-A’s microphysics scheme (Lohmann and Roeckner 1996) uses cloud cover 𝒞 to compute
the tendency of specific humidity (the equations for the tendencies of cloud liquid water and
cloud ice mixing ratios follow the same structure)

𝜕𝑞𝑣
𝜕𝑡

= 𝑅(𝑞𝑣) − 𝒞(𝑄𝑐
𝑐𝑛𝑑

+𝑄𝑐
𝑑𝑒𝑝

) + (1 − 𝒞)(𝑄𝑜
𝑠𝑢𝑏𝑙

+𝑄𝑜
𝑒𝑣𝑝 −𝑄𝑜

𝑑𝑒𝑝
−𝑄𝑜

𝑐𝑛𝑑
). (2.5)

The term 𝑅(𝑞𝑣) combines all changes of water vapor due to transport (convection, advection,
turbulence). As in Sundqvist (1978), the grid box is divided into a cloudy (superscript 𝑐) and
non-cloudy portion (superscript 𝑜). Depending on the portion, different values for the rate of
change of water vapor by sublimation, evaporation, deposition or condensation are assumed.
If the vertical variability of cloud properties within a grid cell were known, there should be no
reason to view cloud cover as an area fraction rather than a volume fraction in equation 2.5.
However, the microphysics scheme also computes the amount of precipitation that falls from
and through a cloud. As the motion of precipitation is mostly perpendicular to the Earth’s
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Cloud area fraction = 90%

Cloud volume fraction = 40%

Figure 2.2.: Schematic of the two distinct interpretations of cloud cover in a three-dimensional grid
box. Per definition, cloud area fraction is never smaller than cloud volume fraction.

surface, interpreting cloud cover as the cloud area fraction is more appropriate (Jakob and
Klein 1999). Additionally, cloud area fraction is a necessary input for ICON-A’s two-stream
radiation scheme (Pincus and Stevens 2013) to evaluate whether radiation penetrates through
a cloud or not. Two-stream radiation schemes assume that the radiative flux can be divided
solely into a downward and an upward component (Stensrud 2009).

2.1.4. Cloud Overlap and Inhomogeneity

Following the estimation of cloud cover in each grid cell, GCMs need to make additional
assumptions for how clouds (usually assumed to be plane-parallel layers) overlap to derive
the total cloud cover (cloud cover projected onto Earth’s surface). These assumptions can have
a strong impact on the radiative budget (Stubenrauch et al. 1997). The most common overlap
assumption is the maximum-random assumption, which postulates that two vertically adja-
cent clouds overlap maximally and two vertically distant clouds overlap randomly (Hogan
and Illingworth 2000). Unless the distribution of total water is known from a statistical cloud
cover scheme (which would also require a more intricate approach to cloud overlap such as
Pincus et al. (2005)), clouds are viewed as homogeneous entities. Thus, their average albedo
tends to be overestimated. As a countermeasure, the ECHAM5 model multiplies the cloud
optical depth with a cloud inhomogeneity parameter (which is always smaller than 1). For
warm clouds, the inhomogeneity parameter is set to ≈ 0.7 (to smaller values for optically
thick clouds and larger values for optically thin clouds). For ice clouds it is between 0.8 and
0.9, depending on the model resolution (Roeckner et al. 2003).
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2.2. Selected Branches of Machine Learning

This section introduces the two branches of machine learning that are utilized in this thesis.
Machine learning concerns itself with the automated extraction of patterns from data (Shalev-
Shwartz and Ben-David 2014). It is one of the fastest growing areas of computer science and
has become a widely used tool in every-day technology and also in scientific applications.
Machine learning algorithms are characterized by the ability to ‘learn’ a given task from data
instead of being explicitly programmed. Notable classic literature in the field of machine
learning are, e.g., Bishop and Nasrabadi (2006) and Murphy (2012).
Some of the major achievements in the history of machine learning include the victory of
DeepBlue against the chess world champion Garry Kasparov in 1997 (Goodfellow et al. 2016),
the super-human proficiency of AlphaGo at the highly complex boardgame Go (Silver et
al. 2016), the high success rate of AlexNet in recognizing images of the ImageNet competi-
tion (Krizhevsky et al. 2017), and the possibility to predict protein structure accurately with
AlphaFold (Jumper et al. 2021). These achievements only became possible with modern
computer hardware (foremost improvements of graphics processing units (GPUs)), which in
particular enabled deep learning methods to be used in practice.

2.2.1. Deep Learning

Deep learning is a subfield of machine learning that is based on the idea of representing
complex concepts in the data in terms of simpler concepts. In practice, deep learning uses
multi-layered (artificial) NNs. Generally, NNs are networks of nested functions which are
inspired by biological brains (Goodfellow et al. 2016). Throughout this thesis, only fully
connected, feedforward NNs (also called multilayer perceptrons (Gardner and Dorling 1998)) will
be used, and referred to as NNs. Starting with an input vector 𝑦1 ∈ R𝑚 consisting of𝑚 features,
an NN predicts the final output 𝑦𝑁 ∈ R𝑛 by iteratively computing

𝑦𝑘+1 =𝑊𝑘 𝜎̃𝑘(𝑦𝑘) + 𝑏𝑘 , (2.6)

where {𝑊𝑘}𝑁−1
𝑘=1 are matrices containing the weights, and {𝑏𝑘}𝑁−2

𝑘=1 are vectors containing the
biases of the network (𝑏𝑁−1 ≡ 0). These weights and biases are optimized during the training
stage of the NN. The mappings 𝜎̃𝑘 : R𝑛𝑘 → R𝑛𝑘 apply activation functions 𝜎𝑘 component-wise
(𝜎̃1 is the identity mapping). Here, 𝑁 is the number of layers, and 𝑛𝑘 the number of nodes (or
units, neurons) in the 𝑘-th layer of the NN. The 𝑘-th layer is called the input layer, if 𝑘 = 1,
the output layer, if 𝑘 = 𝑁 , and a hidden layer, if 1 < 𝑘 < 𝑁 . The layered structure of an NN
is sketched in Figure 2.3. A crucial property of an NN is that not all activation functions are
linear. Otherwise it would reduce to a linear regression algorithm, as equation 2.6 could be
collapsed entirely into a linear function.

During the training stage of the NN, the training data is usually divided into (mini)batches.
Iterating over all batches in multiple epochs, the weights and biases of the NN are adjusted
by an optimization algorithm with the goal of minimizing the loss function. The main task

11



2. Scientific Background
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Figure 2.3.: A (fully connected, feedforward) neural network with an input layer with three nodes,
two hidden layers with five nodes each, and an output layer with two nodes. Thus,
𝑊1 ∈ R5×3, 𝑊2 ∈ R5×5, 𝑊3 ∈ R2×5 are the weight matrices, 𝑏1 , 𝑏2 ∈ R5 the bias vectors,
and 𝜎1 , 𝜎2 : R→ R the activation functions of the neural network.

of the optimization algorithm is to find a minimizing set of network parameters in a very
high-dimensional space, and is usually based on stochastic gradient descent: It modifies the
network parameters by following the negative gradient of the loss function computed over the
batch (Goodfellow et al. 2016). This gradient is multiplied with a learning rate that may change
(usually decrease) during the training stage to facilitate convergence. The possibility of using
backpropagation to compute this gradient efficiently marks an important step in the history of
deep learning (Schmidhuber 2015). Normalizing the training data so that the features have
a mean of zero and a standard deviation of one before passing them to the network further
facilitates NN training (LeCun et al. 2002).

A great theoretical advantage of NNs is their universal approximation ability, which entails
that they are capable of approximating any Borel measurable function to an arbitrary degree.
This ability already holds in NNs with one hidden layer, provided that they contain enough
hidden units (Hornik et al. 1989). However, this ability often also enables NNs to memorize
the training data to such an extent that they become unusable on a different dataset. In that
case they have overfitted the training data and cannot generalize to new data. In order to increase
the ability of NNs to generalize, there exist different regularization methods (Goodfellow et al.
2016). In the following, the ones that are used in this thesis are briefly described. First of
all, NNs with fewer trainable parameters are more restricted in the type of function they can
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approximate, and are thus less prone to overfitting the training set. The predictive power
of NNs can also be restricted by penalizing them for trainable parameters that attain large
absolute values. For this, one usually adds the 𝐿1- or 𝐿2-norm of all weights to the loss function.
A very common regularization method, that does not depend on decreasing the network’s
predictive power, is that of early stopping. There, one uses a distinct validation set on which
the NN is continuously evaluated during the training stage. If the validation loss starts to
increase at a certain epoch, the training procedure is stopped. Most importantly, the validation
set is not used to train the network. As the final regularization method batch normalization
is used. It extends the idea of normalizing the network’s input features to normalizing the
inputs to its hidden layers batch-wise. Batch normalization has been quite successful in
practice, probably by helping the optimizer to avoid sharp local minima (Bjorck et al. 2018).
Furthermore, it alleviates the vanishing gradients problem of deep NNs that discourages
changes of the weights in its first hidden layers (Ioffe and Szegedy 2015). Nevertheless, its
theoretical foundations are not yet fully understood (Santurkar et al. 2018).

An NN has many hyperparameters (e.g., its number of layers/units, choice of activation
functions, choice of the optimizer and its initial learning rate) that have a major impact on its
predictive power, and whose choice depends on the task at hand. Unless a good set of hyperpa-
rameters has already been found on a similar task, it is common to first use a hyperparameter
optimization/tuning (HPO) algorithm to automatize their search (Goodfellow et al. 2016). The
two simplest HPO algorithms test different configurations either randomly or by following a
grid in a user-defined search space. Alternatively, Bayesian optimization is usually informed
by a Gaussian process that is often able to find a better set of hyperparameters in fewer itera-
tions (Snoek et al. 2012). There are also other methods for HPO that are the subject of current
research (Feurer and Hutter 2019). At the end of every HPO approach, the NN architecture
with the lowest validation loss is chosen. The training and evaluation of an architecture can
also be repeated on different splits of training/validation data (cross-validation), enhancing
robustness of the results, but also further increasing the large computational cost of training
at least one NN for every trial set of hyperparameters (Yang and Shami 2020).

In computer vision and image recognition it is common to relax the full connectivity as-
sumption of NNs. Instead, only a spatially connected patch of the input (e.g., images) feeds
into a given unit of the first hidden layer. Thus, these convolutional NNs take into account the
spatial structure of their inputs (Calin 2020). As an alternative to feedforward NNs, versions
of recurrent NNs are ubiquitous (most notably Long short-term memory-architectures (Hochre-
iter and Schmidhuber 1997)) in natural language processing (more recently also transformers
(Vaswani et al. 2017)). They include loops for dynamic temporal behavior, allowing the output
of one node to affect the output of another node on the same layer (Calin 2020).

2.2.2. Symbolic Regression

The primary goal of symbolic regression lies in the discovery of analytical, symbolic equa-
tions from data. Advantages of training/discovering analytical equations instead of NNs
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Figure 2.4.: The genetic unary mutation and binary crossover operators applied to one or two sym-
bolic equations. Note that there are many different ways to perform a mutation or
crossover operation. Besides the depicted replacement of a unit within an expression,
during mutation, new nodes may also be added, subtrees could be removed, or entire
expressions might be replaced (Cranmer 2023).

include an immediate view of model content (e.g., whether physical constraints are satisfied)
and the ability to analyze the model structure directly using powerful mathematical tools
(e.g., perturbation theory, numerical stability analysis). Additionally, analytical equations are
straightforward to communicate to a broader scientific community, to implement numerically,
and fast to execute.

In symbolic regression, the user specifies a set of mathematical operators (e.g.,+,−, sin) as its
permitted building blocks. Based on these operators, the symbolic regression library creates a
random initial population of equations (Schmidt and Lipson 2009). Inspired by the process of
natural selection in the theory of evolution, symbolic regression is usually implemented as a
genetic algorithm that iteratively ranks equations based on their performance and simplicity, so
that top equations can be selected to be included in the next population. Between iterations,
it applies evolutionary motivated operations (crossover, mutation) to a subsampled set of
candidate equations (Smits and Kotanchek 2005). These two operators are illustrated in
Figure 2.4. The usage of these two operators needs to be balanced (Stĳven et al. 2011). The
crossover operator recombines the equations that are already present in the population, and is
therefore restricted by its diversity. The mutation operator can consider new building blocks,
i.e., mathematical operators, thereby widening up the search space. However, it prevents the
genetic algorithm from converging. Stĳven et al. (2011) found that using mutation in only 10%
of the cases leads to satisfactory results.
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In this thesis, mainly the PySR symbolic regression library (Cranmer 2020) is used to auto-
matically discover cloud cover schemes from data. In the following its algorithm is outlined,
described in Cranmer (2023), while specifying default values for each hyperparameter in
parenthesis: PySR initially generates 𝑛𝑝 (= 40) populations 𝑃𝑖 of 𝐿 (= 1000) expressions each.
These populations subsequently go through multiple iterations in parallel. In each iteration, a
given population is evolved, i.e., 𝑛𝑐 (= 300 000) genetic operations are applied. In stark contrast
to Stĳven et al. (2011), the probability for choosing mutation is 99%. The expression(s) that are
to be mutated or on which crossover should be applied, is/are taken from random subset(s)
of 𝑛𝑠 (= 12) expressions. The ‘fitter’ an expression in this subset is, the more likely it is chosen.
The new expression, that results from the application of mutation or crossover, potentially
replaces the oldest expression of the population. However, it needs to pass user-specified
constraints and is subject to another random component: The new expression is more likely
to be included, if i) it has a better score than the old expression, ii) its complexity is infrequent
in the population, and iii) the algorithm is early on in the evolve routine.
What follows are simplification and optimization routines. The simplification routine attempts
to transform an equation into a ‘simpler’ form (measured by the number of nodes in an ex-
pression tree), while the optimization routine optimizes the constants in the expression using
a classical optimization algorithm (the BFGS algorithm (Nocedal and Wright 1999)). In the
final migration stage, the most accurate expressions from each complexity level across popu-
lations are collected. Furthermore, there is a slight probability that each expression may be
substituted with one of the most accurate expressions from other populations.

Notable within PySR is the assessment of an expression’s ‘fitness’, which is determined
by a combination of its accuracy and the frequency of its complexity within the population
(termed ‘frecency’). Expressions are penalized if their complexity is already prevalent in the
population, rather than for having high complexity. This approach ensures that equations of
varying complexity are consistently present in the population during each iteration. Addi-
tionally, PySR incorporates a simulated annealing technique to promote exploration of a wide
range of expressions in the population early on in the evolve routine while discouraging it
later on (see point iii) in the previous paragraph). Finally, PySR adopts an ‘age-regularized’
evolution strategy, consistently replacing the oldest expression rather than the one with the
lowest fitness. This strategy prevents premature convergence of the population. PySR also
includes many additional optional features such as nesting constraints, custom operators,
custom losses, and strategies to handle noisy data.

To the author’s knowledge, Zanna and Bolton (2020) marks the first usage of automated,
data-driven equation discovery for climate applications. Training on highly idealized data,
they used a sparse regression technique called relevance vector machine to find an analytical
equation that parameterizes ocean eddies. In sparse regression, the user defines a library of
terms, and the algorithm determines a linear combination of those terms that best matches
the data while including as few terms as possible (Brunton et al. 2016; Champion et al. 2019;
Rudy et al. 2017; Zhang and Lin 2018). In a follow-up paper, Ross et al. (2023) employed
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symbolic regression to discover an improved equation, again trained on idealized data, that
performs similarly well as NNs across various metrics and has greater generalization capabil-
ity. Nonetheless, they had to assume that the equation was linear in terms of its free/trainable
parameters and additively separable as their method included an iterative approach to select
suitable terms.

For the selection of terms, they took a human-in-the-loop approach rather than solely
relying on the genetic algorithm. Additionally, the final discovered equation relied on high-
order spatial derivatives, which may not be feasible to compute in a climate model. To prevent
this issue from occurring, features that are permitted in this thesis must be either accessible
or easily derivable in the climate model.

2.3. Machine Learning Based Parameterizations

In this section, an extensive review of significant literature on machine learning based param-
eterizations is provided. Furthermore, the necessary measures for these parameterizations to
demonstrate effective online performance when integrated into a GCM, as opposed to their
offline performance when decoupled from the model dynamics of a GCM, are discussed. This
section was already published in Grundner et al. (2022). As indicated in Section 1.3, the author
of this thesis created all the content, including text, figures, and tables, that is presented from
this publication.

The field of machine learning based parameterizations is growing and can loosely be
classified into two groups: The first group consists of studies about machine learning based
parameterizations that emulate and speed up existing parameterizations. In Beucler et al.
(2020), Gentine et al. (2018), Han et al. (2020), Mooers et al. (2020), and Wang et al. (2022) these
existing parameterizations were superparameterizations, i.e., embedded two-dimensional
cloud-resolving models (Khairoutdinov et al. 2005). For instance, in a pioneering study by
Rasp et al. (2018a), an NN was successfully trained to estimate subgrid-scale convective effects
by learning from the output of the superparameterized Community Atmosphere Model in
an idealized aquaplanet setting. Other notable members of this group, that focused on
emulating more traditional parameterizations, are Chantry et al. (2021), Chevallier et al.
(2000), Gettelman et al. (2021), Krasnopolsky et al. (2005), and Seifert and Rasp (2020). The
second group consists of studies about machine learning based parameterizations that learn
from three-dimensional, high-resolution data. In most of those studies, the high-resolution
data was coarse-grained to the low-resolution grid of the climate model. The first proof of
concept was established by Krasnopolsky et al. (2013) who trained a very small NN on coarse-
grained regional data. Later, Brenowitz and Bretherton (2018), Brenowitz and Bretherton
(2019), Brenowitz et al. (2020), Yuval and O’Gorman (2020), and Yuval et al. (2021) adapted
this approach. However, in contrast to this study, they worked with idealized aquaplanet
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simulations and coarse-graining limited to the horizontal dimension.

While some of these studies were conducted in a purely offline fashion, Brenowitz and
Bretherton (2019), Brenowitz et al. (2020), Chantry et al. (2021), Gettelman et al. (2021),
Krasnopolsky et al. (2005), Ott et al. (2020), Rasp et al. (2018a), Wang et al. (2022), Yuval and
O’Gorman (2020), and Yuval et al. (2021) also achieved stable online simulations in specific
setups. In Chapters 3 and 4, the focus lies on developing an offline (i.e., without coupling
to the model dynamics), ML-based cloud cover parameterization for ICON. While offline
skill does not always guarantee online performance once the NN is coupled to the model
dynamics, Gagne et al. (2020), Ott et al. (2020) showed that offline skill generally correlated
with the stability (although not necessarily the accuracy) of online simulations. Several time-
consuming tasks are required to achieve operational online skill, such as ensuring excellent
extrapolation skills to different distributions of state variables for stable simulations (across
climate-regimes). Then, a re-calibration of the coarse-resolution climate model against the ob-
served state of the atmosphere (tuning of top-of-the-atmosphere radiative fluxes, global mean
surface temperature, clouds, precipitation, wind fields, etc., Giorgetta et al. (2018)) is most
likely necessary, for example, since there are too few (low-level) clouds in the ICON model,
and other tunable parameters are currently calibrated to compensate for that fact (Crueger
et al. 2018). After all, the performance of a (ML-based) cloud cover parameterization always
depends on the accuracy of its inputs, which in turn are affected by other parameterizations
in an online setting (e.g., cloud ice/water mixing ratios and specific humidity are modified
by ICON’s microphysics scheme). Finally, these tasks depend on the correct implementation
of the Python-trained NNs into climate model source code (typically written in Fortran).
Despite these challenges, initial tests of the online performance of the machine learning based
cloud cover schemes are conducted in Chapter 5. These tests are referred to as initial, as the
laborious ‘art’ (Hourdin et al. 2017) of tuning the climate model is omitted.

Motivating the approach of focusing only on the parameterization of cloud cover, recent
research has suggested that emulating subgrid-scale physics on a process-by-process level
may lead to more robust climate simulations with machine learning based parameterizations
(Yuval et al. 2021). It may also facilitate interpretability and targeted studies of the interaction
between large-scale (thermo)dynamics and cloudiness.

2.4. Storm-Resolving ICON Simulations

In this section, an overview of the ICON SRM simulations that serve as the source for the
training data is provided. A simulation is considered to be ‘storm-resolving’, if it is able
to resolve convective storms (Stevens et al. 2020). This entails having a horizontal grid fine
enough to capture vertical motion and its variability. In such instances, there is no need to
parameterize deep convection. By conducting year-long simulations of the European climate,
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Vergara-Temprado et al. (2020) concluded from the simulated diurnal cycles of precipitation
over Germany and Switzerland that deep convection is best treated explicitly, and not param-
eterized, at horizontal resolutions finer than 25 km. Additionally, their analysis of radiative
fluxes at the top of the atmosphere revealed no discernible advantages of parameterizing shal-
low convection, defined as non-precipitating and at most 250 hPa deep, at resolutions finer
than 4 km. In light of studies such as Vergara-Temprado et al. (2020), simulations on grids
with horizontal resolutions of a few kilometers, typically with a minimum of 50 vertical levels
below 30 km, are considered to be storm-resolving (Hohenegger et al. 2020; Kwa et al. 2023;
Stevens et al. 2019b).

In Section 1 it was highlighted that the fine resolution of SRMs, combined with no (deep)
convective parameterization, offers an improved representation of clouds and convection.
Specifically, the diurnal (daily) cycle of clouds and important features of precipitation, such
as its diurnal cycle, location, and spatial propagation are better represented (Stevens et al.
2020). It is important to note that large-eddy simulations, at even finer resolutions than 1 km,
can provide a more detailed portrayal of clouds, encompassing their structure, size, and daily
evolution, than SRM simulations (Stevens et al. 2020). However, the global application of large-
eddy simulations is currently hampered by computational resources being limited (Satoh et
al. 2019; Schneider et al. 2017b). In this thesis, broader regional and temporal coverage is
prioritized over making additional improvements in process representation. As a result, data
from existing SRM simulations is leveraged for training the machine learning models.

2.4.1. High-Resolution NARVAL and QUBICC Simulations

The content in this section, pertaining to the simulations carried out for the Next Generation
Remote Sensing for Validation Studies (NARVAL) and Quasi-Biennial Oscillation in a Chang-
ing Climate (QUBICC) projects, has already been published in Grundner et al. (2022). As
indicated in Section 1.3, the author of this thesis created all the content, including text, figures,
and tables, that is presented from this publication. The basis of the training data for Chapter 3
form new storm-resolving ICON simulations performed in the context of the NARVAL flight
campaigns (Stevens et al. 2019a) and the QUBICC project (Giorgetta et al. 2022), with hori-
zontal resolutions of 2.5 km and 5 km respectively. Both simulations provide hourly model
output.

The first simulation is a limited-area ICON simulation over the tropical Atlantic and parts
of South America and Africa (10°S-20°N, 68°W-15°E). The simulation ran for a bit over two
months (December 2013 and August 2016) in conjunction with the NARVAL (NARVALI and
NARVALII) campaigns (Klocke et al. 2017; Stevens et al. 2019a). The model was re-initialized
at 0 UTC every day and run for 36 hours. Output from the model runs with a native resolution
of ≈ 2.5 km is used. NARVAL simulations also exists at a higher resolution of ≈ 1.2 km, but
it covers a significantly smaller domain (in 4°S-18°N, 64°W-42°W). The native vertical grid
extends up to 30 km with 75 vertical layers.
The second simulation is a global ICON simulation that was performed as part of the QUBICC
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2.4. Storm-Resolving ICON Simulations

Table 2.1.: Parameterizations used in the NARVAL and QUBICC simulations. Adapted with per-
mission from Grundner et al. (2022).

NARVAL QUBICC

Cloud Cover Diagnostic PDF All-or-nothing scheme
based on cloud condensate

Microphysics Single-moment scheme
(Doms et al. 2011; Seifert 2008)

Single-moment scheme
(Doms et al. 2011; Seifert 2008)

Radiation RRTM scheme
(Barker et al. 2003; Mlawer et al. 1997)

RTE+RRTMGP scheme
(Pincus et al. 2019)

Turbulence Prognostic TKE
(Raschendorfer 2001)

Total turbulent energy scheme
(Mauritsen et al. 2007)

Land Tiled TERRA
(Schrodin and Heise 2001; Schulz et al. 2015) JSBach4-lite (Raddatz et al. 2007)

project. Currently there is a set of hindcast simulations available of which three to work with
are chosen (hc2, hc3, hc4). Each simulation covers one month (November 2004, April 2005
and November 2005). While the horizontal resolution (≈ 5 km) is lower than in NARVAL, the
vertical grid extends higher (up to 83 km) on a finer grid (191 layers).

The two simulations used different sets of parameterization schemes. While the NARVAL
simulations were set up to run with ICON’s NWP physics package (Prill et al. 2019), the
QUBICC simulations used the so-called Sapphire physics, developed for SRM simulations
and based on ICON’s ECHAM physics package as described in Giorgetta et al. (2022). An
overview of the specifically chosen parameterization schemes can be found in Table 2.1.

Because of their high resolution, both simulations did not apply parameterizations for
convection and orographic/non-orographic gravity wave drag. For cloud microphysics they
used the same single-moment scheme, which predicts rain, snow, and graupel in addition to
water vapor, liquid water, and ice (Doms et al. 2011; Seifert 2008). Different schemes were
used for the vertical diffusion by turbulent fluxes (NARVAL: Raschendorfer (2001), QUBICC:
Mauritsen et al. (2007)), for the radiative transfer (NARVAL: Barker et al. (2003) and Mlawer
et al. (1997), QUBICC: Pincus et al. (2019)), and the land component (NARVAL: Schrodin and
Heise (2001) and Schulz et al. (2015), QUBICC: Raddatz et al. (2007)). The simulations also
differed in their cloud cover schemes. The QUBICC simulation assumed to resolve cloud-scale
motions, diagnosing a fully cloudy grid cell whenever the cloud condensate ratio exceeds a
small threshold and a cloud-free grid cell otherwise. The cloud cover scheme used in NARVAL
calculates fractional cloud cover with a diagnostic statistical scheme that combines information
from convection, turbulence, and microphysics.

A limitation of the data lies in a temporal mismatch between some model output variables
from one common time step. This is caused by the sequential processing of some parameter-
ization schemes in the ICON-A model (Giorgetta et al. 2018). For instance, the cloud cover
scheme diagnoses cloud cover before the microphysics scheme alters the cloud condensate
mixing ratio, which has led to ≈ 7% of the cloudy grid cells in the data to be condensate-free.
However, this mismatch should not exceed the fast physics time step in the model, which was
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set to 40 seconds in the QUBICC and to 24 seconds in the NARVAL simulations. Another
limitation of the QUBICC data is that the mixing length in the vertical diffusion scheme was
mistakenly set to 1000m instead of 150m, causing unrealistically strong vertical diffusion in
some situations (see also Stephan et al. (2022)).

2.4.2. DYAMOND ICON Simulations

As the source for the training data for Chapter 4, output from global storm-resolving ICON
simulations performed as part of the DYnamics of the Atmospheric general circulation Mod-
eled On Non-hydrostatic Domains (DYAMOND) project is used. The project’s first phase
(‘DYAMOND Summer’) includes simulations starting on 1 August 2016 (Stevens et al. 2019b),
while simulations in the second phase (‘DYAMOND Winter’) were initialized on 20 January
2020 (Stephan et al. 2022). These dates were chosen to cover the time periods of the NARVALII
campaign for the first phase and the EUREC4A field experiment (Stevens et al. 2021) for
the second phase. In both phases, atmosphere-only models, including ICON, were used to
simulate a 40-day period. They have provided three-hourly output on a grid with a horizontal
resolution of 2.47 km. In the vertical, they were configured to have 90 vertical layers up to a
model top of 75 km with a sponge layer above 44 km in which the amplitudes of waves were
dampened to avoid their reflection at the model top. As in the NARVAL simulations, ICON
used the NWP physics package excluding parameterizations of deep and shallow convection
and subgrid-scale orography.

With the output from the second phase becoming available in 2021 (Duras et al. 2021), the
DYAMOND ICON-NWP output includes both a boreal winter and summer season. Further-
more, it has a higher resolution than the QUBICC data, and no known error regarding the
vertical mixing length. For these reasons it was decided to choose the DYAMOND data as the
training data source for Chapter 4. The limitation regarding the temporal mismatch between
output fields (see Section 2.4.1) is circumvented by diagnosing cloud cover retrospectively
from the cloud condensate output fields.

2.4.3. ICON Grid

In this section, a short introduction to ICON’s horizontal and vertical grid is given. The
(prognostic) variables in ICON are stored in the circumcenter of grid cells, with the exception
of the horizontal velocity component (defined on cell edges, perpendicular to them) and the
vertical wind (on the lower/upper boundaries between grid cells) (Zängl et al. 2015).

Horizontal grid Every ICON simulation is conducted on an RnBk (horizontal) grid, where
𝑛, 𝑘 ∈ N are to be specified (Giorgetta et al. 2018; Zängl et al. 2015). Every RnBk grid is a
refined version of a base spherical icosahedron that covers the Earth. The two parameters
𝑛 and 𝑘 define the level of refinement that is to be applied to this icosahedron. Specifically,
the refinement is performed by first dividing the icosahedron’s triangle edges into 𝑛 parts,
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𝑛 = 4𝑛 = 3

𝑘 = 2𝑘 = 1

Figure 2.5.: The two refinements steps in the construction of an ICON grid illustrated for an
individual triangular grid cell.

creating new triangles by connecting the new edge points. Subsequently, 𝑘 edge bisections are
executed while once more connecting the new edge points after each bisection. In between the
refinement steps, the position of each vertex is slightly modified using a method called spring
dynamics, which improves the numerical stability of differential operators (Tomita et al. 2001;
Zängl et al. 2015). The refinement steps are illustrated in Figure 2.5.

The total number of (triangular) grid cells 𝑛𝑐 and edges 𝑛𝑒 on an RnBk ICON grid amounts
to

𝑛𝑐 = 20𝑛24𝑘 , 𝑛𝑒 = 30𝑛24𝑘 (2.7)

Since the Euler characteristic 𝜒 of the sphere is 2, the number of vertices is 2+𝑛𝑒−𝑛𝑐 . Equation
2.7 can be derived by first counting the number of grid cells and edges on an RnB0 grid

𝑛𝑐 = 20
𝑛∑︂

𝑚=1
(2𝑚 − 1) = 20𝑛2 (2.8)

𝑛𝑒 = 20
𝑛∑︂

𝑚=1
3𝑚 − 30𝑛 = 30𝑛2. (2.9)

In equation 2.8, the number of embedded grid cells in each of the 20 grid cells on the icosa-
hedron is counted. Similarly, the number of edges in equation 2.9 is counted, subtracting
double-counted edges of the 30 subdivided edges from the original icosahedron. The sum-
mation sign counts from the top to the bottom of a subdivided triangle in Figure 2.5. Equation
2.7 then follows from the fact that in terms of 𝑛𝑐 and 𝑛𝑒 , an RnBk grid is equivalent to an
R(𝑛2𝑘)B0 grid, allowing us to use equations 2.8 and 2.9.
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Table 2.2.: The ICON RnBk horizontal grids featured in this thesis. Here 𝑛𝑐 is the number of
grid cells, 𝑛𝑒 the number of edges, Δ𝑥 the grid resolution, and Δ𝑥𝑙𝑙 the resolution of a
latitude-longitude grid with 𝑛𝑐 many grid cells.

𝑛𝑐 𝑛𝑒 Δ𝑥 Δ𝑥𝑙𝑙

R2B4 20 480 30 720 157.81 1.779°
R2B5 81 920 122 880 78.91 0.889°
R2B9 20 971 520 31 457 280 4.93 0.056°
R2B10 83 886 080 125 829 120 2.47 0.028°

The ‘(effective) grid resolution’ Δ𝑥 of an ICON RnBk grid is defined by

Δ𝑥 =

√︃
Area𝐸𝑎𝑟𝑡ℎ

𝑛𝑐
≈
√︃

𝜋
5

6371km
2𝑘𝑛

, (2.10)

i.e., the length of the edge of an average-sized grid cell assuming it were square-shaped. In this
thesis, the common terminology is adopted which can be misleading at times: The resolution
of a horizontal grid is considered to be ‘higher’ or ‘finer’ if its (effective) grid resolution Δ𝑥

is smaller. In contrast, the resolution of a horizontal grid is ‘lower’ or ‘coarser’ if its effective
grid resolution Δ𝑥 is larger. Likewise, the resolution of a grid is ‘increased’/‘decreased’ by
decreasing/increasing the (effective) grid resolution Δ𝑥.

In ICON terminology, the ICON simulations of Sections 2.4.1, 2.4.2 used an R2B10 grid (for
NARVAL and DYAMOND) and an R2B9 grid (for QUBICC). In addition, the ICON grids
used as targets to coarse-grain to are R2B4 and R2B5 grids. The parameters of these grids are
shown in Table 2.2.

Vertical grid The default vertical grid in ICON is the extension of the Smooth Level Vertical
(SLEVE) coordinate system by Leuenberger et al. (2010) (Giorgetta et al. 2018; Prill et al.
2022). It is a hybrid height grid, with vertical layers close to the Earth’s surface following its
topography. With increasing altitude, the imprint of the topography gradually diminishes.
The topography ℎ(𝑥, 𝑦) at a given location (𝑥, 𝑦) is first written as a sum of a smoothed
representation ℎ1(𝑥, 𝑦) and small-scale contributions ℎ2(𝑥, 𝑦), i.e.,

ℎ(𝑥, 𝑦) = ℎ1(𝑥, 𝑦) + ℎ2(𝑥, 𝑦). (2.11)

The height of the grid cell 𝑧(𝑥, 𝑦, 𝜂) at a specific location and height-based vertical coordinate
𝜂 is then given by

𝑧(𝑥, 𝑦, 𝜂) = 𝜂 + 𝐵1(𝜂)ℎ1(𝑥, 𝑦) + 𝐵2(𝜂)ℎ2(𝑥, 𝑦), (2.12)

where 𝐵1 and 𝐵2 are decay functions with 𝐵1(0) = 𝐵2(0) = 1 and 𝐵1(𝐻) = 𝐵2(𝐻) = 0 at the
model top 𝐻. The functions 𝐵𝑖 for 𝑖 ∈ {1, 2} are given by

𝐵𝑖(𝜂) =
sinh((𝐻/𝑐𝑖)𝑛 − (𝜂/𝑐𝑖)𝑛)

sinh((𝐻/𝑐𝑖)𝑛)
, (2.13)
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Figure 2.6.: ICON’s terrain-following hybrid height grid. The upper-most half level coincides with
the model top, while the lower-most half level aligns with the Earth’s surface.

designed to ensure i) an almost uniform level thickness at lower altitudes, ii) a fast transition to
constant height levels at higher altitudes, and iii) a quick decay of small-scale terrain features
(Leuenberger et al. 2010; Prill et al. 2022). The 𝑐𝑖 are decay constants. Leuenberger et al.
(2010) specifies 𝑛 = 1.35 as opposed to 𝑛 = 1, its original value in Schär et al. (2002). In ICON,
vertical layers are additionally forced to have a constant height above a specific altitude, hence
it is a hybrid height grid.

It is important to note that the levels specified by equation 2.12 define the upper/lower
boundaries of grid cells in ICON, and their number increases with decreasing altitude. They
are referred to as ‘half levels’. The ‘full levels’, on which most variables are provided, are
precisely in the middle between two adjacent half levels (Figure 2.6).
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3. Deep Learning Based Cloud Cover
Parameterization for ICON

The novel approach to a cloud cover parameterization taken in this thesis is based on the
idea of training supervised deep learning schemes (i.e., NNs) on coarse-grained SRM data
(see also Section 2.4). In addition to the advantages outlined in Section 2.2.1, NNs also
have computational advantages over alternative machine learning based approaches such
as random forests (Yuval et al. 2021). Hence, an NN-powered parameterization of cloud
cover could potentially accelerate and improve the representation of cloud-scale processes
(from radiative feedbacks to precipitation statistics). As opposed to most traditional cloud
cover parameterizations, a distinction is made between the three-dimensional cloud volume
fraction and the two-dimensional cloud area fraction (see Section 2.1.3). Different NNs for
both measures of cloud cover are evaluated in Sections 3.2.2 and 3.2.3.
Complementing the first and third key science questions, the following subquestions are
covered in this chapter: For the sake of generalizability and computational efficiency should
we keep the parameterization as local as possible? Or shall we consider non-local effects
for improved accuracy? Can we apply this parameterization universally or is it tied to the
regions and climatic conditions over which it was trained upon? Can we extract useful
physical information from the NN after it has been trained, gaining insight into the interaction
between the large-scale (thermo)dynamic state and convective-scale cloudiness?
This work was already published in Grundner et al. (2022). As indicated in Section 1.3, the
author of this thesis created all the content, including text, figures, and tables, that is presented
from this publication and implemented the code1 to reproduce this study with all figures and
tables.

We begin by introducing the data preprocessing steps and the NNs (Section 3.1), before
evaluating regionally (Section 3.2.1) and globally (Section 3.2.2) trained networks in their
training regime, studying their generalization capability (Section 3.2.3) and interpreting their
predictions (Section 3.2.4, 3.2.5).

1https://github.com/EyringMLClimateGroup/grundner22james_icon-ml_cloudcover, preserved at https://
doi.org/10.5281/zenodo.5788873
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3. Deep Learning Based Cloud Cover Parameterization for ICON

3.1. Data and Methods

3.1.1. Coarse-Graining

Here, we use both NARVAL and QUBICC data (see Section 2.4.1) to derive training data for
our machine learning based cloud cover parameterization.

This requires coarse-graining the data horizontally and vertically to the low-resolution
ICON-A grid since we cannot a priori assume that the same (cloud cover) parameterization
will work across a very wide range of spatial resolutions. While, for instance, entirely cloud-
free cells are rare on coarse resolutions, they are commonplace on high resolutions. Our goal
is to mimic typical inputs of our cloud cover parameterization, which are the large-scale state
variables of ICON-A. We design our coarse-graining methodology to best estimate grid-scale
mean values, which we use as proxies for the large-scale state variables. Figure 3.1 shows an
example of horizontal and vertical coarse-graining of cloud cover snapshots from the QUBICC
and the NARVAL dataset. We coarse-grain the simulation variables from the R2B9 and R2B10
ICON grids (see also Section 2.4.3) to the default R2B4 grid of Giorgetta et al. (2018) with a
resolution of ≈ 160 km. To demonstrate the robustness of our machine learning algorithms
across typical ICON-A resolutions, we additionally coarse-grain to the low-resolution R2B5
ICON grid used in Hohenegger et al. (2020) with a resolution of ≈ 80 km. Afterwards, we
vertically coarse-grain the data to 27 terrain-following sigma height layers, up to a height of
21 km because no clouds were found above that height.

The technical aspects of our coarse-graining methodology can be found in Appendix A.
Figure 3.2 illustrates the resulting different mean vertical profiles of cloud volume fraction
and cloud area fraction. Considerable differences in their coarse-grained vertical profiles
(differing absolutely by almost 10% on some layers) corroborate the need to distinguish these
two concepts of cloud cover. We now turn towards the specifics of the NNs.

3.1.2. Neural Networks

Setup

We set up three general types of NNs of increasing representation power. Each NN follows
its own assumption as to how (vertically) local the problem of diagnosing cloud cover is.
Choosing three different NN architectures allows us to design a vertically local (cell-based), a
non-local (column-based), and an intermediate (neighborhood-based) model type.
The (grid-)cell-based model only takes data from the same grid cell level and potentially some
surface variables into account. In that sense, the traditional cloud cover parameterization
in ICON-A, being a function of local relative humidity, pressure, and surface pressure, is
similarly a cell-based parameterization (with the exception of including the lapse rate in
certain situations). Such a local model is very versatile and can be implemented in models
with varying vertical grids.
The neighborhood-based model has variables as its input that come from the same grid cell
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Fig. 1. Illustration of coarse-graining using the example of cloud cover. Here we show snapshots of the horizontal fields and vertical profiles from the high-resolution NARVAL
and QUBICC simulations (top row) and the corresponding coarse-grained horizontal fields and vertical profiles (bottom row). The blue dots in the vertical profiles represent the
mean height of a corresponding vertical layer. We coarse-grain the NARVAL/QUBICC datasets horizontally mainly from 2.5km/5km to 160km/80km and vertically from 66/87 to
27 layers up to a height of 21km. Final coarse-grained grid boxes constitute the training data for the ML models.
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Figure 3.1.: Illustration of coarse-graining using the example of cloud fraction. Here, we show
distinct snapshots of the horizontal fields (on a single layer) and vertical profiles (from
a single column) from the high-resolution NARVAL and QUBICC simulations (top row)
and the corresponding coarse-grained horizontal fields and vertical profiles (bottom
row). We coarse-grain the NARVAL/QUBICC datasets horizontally from 2.5 km/5 km
to 160 km/80 km and vertically from 66/87 to 27 layers up to a height of 21 km. Final
coarse-grained grid boxes constitute the training data for the machine learning models.
Adapted with permission from Grundner et al. (2022).

and from the ones above and below, and also includes some surface variables. The atmospheric
and dynamical conditions in the close spatial neighborhood of the grid cell most likely have
a significant influence on cloudiness as well. A grid column undergoing deep convection
for instance is very likely to have different cloud characteristics than a grid cell in a frontal
stratus cloud (Tompkins 2005). Furthermore, strong subsidence inversions that lead to thin
stratocumuli cannot be detected by looking at the same grid cell only. As an example, this
dependence of cloudiness on the surroundings has been actualized in Tompkins (2002). In
their study, the subgrid distribution of total water is described as a function of horizontal and
vertical turbulent fluctuations, effects of convective detrainment and microphysical processes.
The column-based model operates on the entire grid column at once, and therefore has as
many output nodes as there are vertical layers. In a column-based approach we do not have
to make any a priori assumptions as to how many grid cells from above and below a given
grid cell should be taken into account. Furthermore, surface variables are naturally included
in the set of predictors. Coefficients of a multiple linear model fitted to the data suggest that
the parameterization of cloud cover is a non-local problem, further motivating the use of a
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Fig. 1. Comparison of the coarse-grained mean cloud volume and mean cloud area fraction profiles. The cloud volume fraction is generally never greater than the cloud
area fraction. Close to the surface, the grid cell thickness and thereby also the vertical sub-grid variability of clouds is small. There it follows that the cloud area fraction is
approximately equal to the cloud volume fraction.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | April 8, 2022 | vol. XXX | no. XX | 1–2

Figure 3.2.: Comparison of the coarse-grained mean cloud volume and mean cloud area fraction
profiles for a) NARVAL and b) QUBICC. In a given grid cell, the cloud volume fraction
is never greater than the cloud area fraction. Close to the surface, the grid cell thickness
and thus also the vertical subgrid variability of clouds is small. There it follows that
the cloud area fraction is approximately equal to the cloud volume fraction. Adapted
with permission from Grundner et al. (2022).

column-based model (see Figure B.1). The input-output architecture of these three NN types
is illustrated in Figure B.2.

We specify three NNs to be trained on the (coarse-grained) NARVAL R2B4 data and three
networks to be trained with (coarse-grained) QUBICC R2B5 data. Using data that is coarse-
grained to different resolutions allows us to demonstrate the applicability of the approach
across resolutions. The primary goal of the NNs trained on NARVAL R2B4 data is to show the
ability to reproduce SRM cloud cover from coarse-grained variables, whereas for the globally-
trained QUBICC R2B5 NNs it is a versatile applicability and more grid-independence. In this
context, the largest differences between the R2B4- and R2B5 models exist in the specification
of the neighborhood-based models:
The set of predictors for the neighborhood-based R2B5 model contains data from the current
grid cell and its immediate neighbors (above and below it). On the layer closest to the surface
this requires padding to create data from ‘below’. The vertical thickness of grid cells decreases
with decreasing altitude. Therefore, we assume a layer separation of 0 for this artificial layer
below, allowing us to fill it with values from the layer closest to the surface.
The neighborhood-based R2B4 model considers two grid cells above and two below. We did
not extend the padding to create another artificial layer, but trained a unique network per
vertical layer. This allows for maximum flexibility, discarding input features that are non-
existent or constant on a layer-wise basis. Additionally, the R2B4 model has cloud cover from
the previous model output time step (1 hour) in its set of predictors.

An overview of the NNs and their input parameters can be found in Table 3.1. The input
parameters were mostly motivated by the existing cloud cover parameterizations in ICON-A
and the Tompkins Scheme (Tompkins 2002). All NNs have a common core set of input features.
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Table 3.1.: Overview of the neural networks and their input features. Models N1-N3 are trained
on NARVAL R2B4 and models Q1-Q3 on QUBICC R2B5 data. 2D variables (fraction
of land/lake, Coriolis parameter and surface temperature) are shaded in purple. More
information on the choices and meaning of the features can be found in Appendix B.2.
Adapted with permission from Grundner et al. (2022).

NN Type land lake Cor. 𝑇𝑠 𝑧𝑔 𝑞𝑣 𝑞𝑐 𝑞𝑖 𝑇 𝑝 𝜌 𝑢 𝑣 𝑐𝑙𝑐𝑡−1

N1 Cell-based ✓ ✓ ✓ ✓ ✓ ✓

N2 Column-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N3 Neighborhood-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q1 Cell-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q2 Column-based ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q3 Neighborhood-based ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Choosing varying additional features allows us to study their influence. However, we found
that none of these additional features have a crucial impact on a model’s performance. We
generally chose as few input parameters as possible to avoid extrapolation situations outside
of the training set as much as possible. By doing so, we hope to maximize the generalization
capability of the NNs.

Training

In this section, we explain the training methodology and the corresponding tuning of the
models’ and the optimizer’s hyperparameters (e.g., model depth, activation functions, initial
learning rate). These hyperparameters have a large impact on the potential quality of the NNs.
The importance of HPO for NN parameterizations was pointed out in Ott et al. (2020), and
Yuval et al. (2021) proposed its particular need in a real-geography setting.

The choice of hyperparameters for an NN depends on the amount and nature of the training
data which in turn depends strongly on the setup. A column-based model in an R2B4 setup
trained on NARVAL data can be trained with no more than 1.7 · 106 data samples, using all
available data. In contrast, a cell-based model in an R2B5 setup trained on QUBICC data
can learn from maximally 4.6 · 109 data samples. Table B.1 shows the amount of available
training data for every setup. Mainly the coarse-grained QUBICC data had to be (further)
preprocessed to a) reduce the size of the dataset, b) scale the cloud cover target to a common
range, c) normalize the training data, and d) combat the class imbalance of having a relatively
large number of cloud-free grid cells in the training data. Steps c) and d) were also necessary
for the coarse-grained NARVAL data. The more balanced ratio between cloudy and cloud-free
grid cells (which encourages the NNs to correctly recognize cloudy cells) for d) was achieved
by randomly sub-sampling from the cloud-free grid cells. More details on the preprocessing
can be found in Appendix B.3.

To train the NARVAL R2B4 networks we follow conventional machine learning practices
and split the (coarse-grained and preprocessed) R2B4 data into randomly sampled disjoint
training, validation and test sets (78%/8%/20% of the data). By randomly splitting the data,
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Table 3.2.: Hyperparameters of the neural networks and the optimizer. Adapted with permission
from Grundner et al. (2022).

Models N1-N3 and Q2 Models Q1 and Q3
Hidden layers 2 3
Units per hidden layer 256 64

Activation fct. for each layer ReLU → ReLU → linear tanh → leaky ReLU (𝛼 = 0.2)
→ tanh → linear

L1, L2 reg. coef. for each layer None L1: 4.7 · 10−3, L2: 8.7 · 10−3

Batch Normalization None After the second hidden layer

Optimizer N1-N3: Nadam, Q2: Adam Q1: Adam, Q3: Adadelta
↩→ Initial learning rate 10−3 4.3 · 10−4

↩→ Batch size N1-N3: 32, Q2: 128 1028
↩→ Maximal number of epochs N1-N3: 70, Q2: 40 Q1: 30, Q3: 50

we ensure (with a high probability) that the model will see every weather event present in the
training data, with the caveat that strongly correlated samples could be distributed across the
three subsets. In contrast, for the QUBICC R2B5 models, we focus on universal applicability.
We therefore use a temporally coherent three-fold cross-validation split (illustrated in Figure
B.3). Every fold covers roughly 15 days to make generalization to the validation folds more
challenging. We choose 15 days to stay above weather-timescales (so that for instance the same
frontal system does not appear in the training and validation folds) and to mitigate temporal
auto-correlation between training and validation samples. The validation folds of each split
are equally difficult to generalize to, since a part of every month is always included in the
training folds. The three-fold split itself lowers the risk of coincidentally working with one
validation set that is very conducive to the NN.

After tuning the hyperparameters using the Bayesian optimization algorithm within the
SHERPA package (Hertel et al. 2020) we found that a common architecture was optimal for
the models N1-N3 and Q2. We list the space of hyperparameters we explored in Appendix
B.4. For models Q1 and Q3 we had more training data. To counteract the increase in training
time, we increased the batch size to keep a similar amount of iterations per training epoch.
After renewed HPO we found a different architecture for models Q1 and Q3. The final
choice of hyperparameters for the NNs is shown in Table 3.2. The relatively small size of
the NNs (which is comparable to those of Brenowitz and Bretherton (2019)) helps against
overfitting the training data and allows for faster training of the networks. By performing
systematic optimization of hyperparameters we also found that these networks are already
able to capture the functional complexity of the problem.
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3.2. Results

3.2.1. Regional Setting (NARVAL)

In this section, we show the results of the NNs trained and evaluated on the coarse-grained and
preprocessed NARVAL R2B4 data (see Appendix B.3 for more details on the preprocessing).
For these regionally-trained NNs we view cloud cover as the cloud volume fraction.

The snapshots and Hovmoeller plots of Figure 3.3 provide visual evidence concerning
the capability of the (here column-based) NN to reproduce NARVAL cloud scenes. The
ground truth consists of the coarse-grained NARVAL cloud cover fields, which the NN
reconstructs while only having access to the set of coarse-grained input features. In the
Hovmoeller plots we trace the temporal evolution of cloudiness throughout four days in a
randomly chosen grid column of the NARVAL region. Given the large-scale data from the grid
column, the NN is able to deduce the presence of all six distinct lower- and upper-level clouds.
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Figure 3.3.: The column-based neural network trained and evaluated on the coarse-grained
NARVAL R2B4 data. Panels a) and b) show cloud cover snapshots with a) displaying
the cloud scene as it is estimated by the neural network and b) the reference cloud scene
from the coarse-grained NARVAL data. Note that some columns over land could not
be vertically interpolated due to overlapping topography and are therefore missing in
a). The upper plot of panel c) shows the cloud cover predictions of 1 August–4 August
2016 by the neural network in some arbitrary location within the NARVAL region.
The plot below depicts the data’s actual (coarse-grained) cloud cover. The vertical
axis shows average heights of selected vertical layers. Adapted with permission from
Grundner et al. (2022).

The models’ mean squared errors (MSEs) (shown in Table 3.3) represent the absolute average
squared mismatch per grid cell in percent between the predicted and the true cloud cover. For
a given dataset 𝑋 = {𝑋𝑖}𝑁𝑖=1, where for each of the samples 𝑋𝑖 the true cloud cover is given by
𝑌𝑖 and the predicted cloud cover by 𝑌̂ 𝑖 , the MSE is defined by
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Table 3.3.: Mean squared errors (in (%)2) of NARVAL and baseline models evaluated on the coarse-
grained and preprocessed NARVAL data. Adapted with permission from Grundner et
al. (2022).

Type

Cell-based Column-based Neighborhood-based
Neural Training set 15.16 1.64 0.84
networks Validation set 15.18 1.78 1.00

Test set 15.19 1.78 1.01

Baseline Constant output model 109.63 92.23 86.48
models Best linear model 81.71 18.56 4.79

Random forest 10.40 6.15 1.73
Sundqvist scheme 51.14

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︂
𝑖=1

(𝑌𝑖 − 𝑌̂ 𝑖)2. (3.1)

As opposed to Figure 3.3, the MSEs provide more statistically tangible information.
The column-based model (which has the largest number of learnable parameters) and the
neighborhood-based model (which consists of a unique NN per vertical layer) have lower
MSEs than the cell-based model. More trainable parameters allow for the model to adjust bet-
ter to the ground truth. We also found that by adding more input features (relative humidity,
liquid water content, lapse rate and surface pressure) to the cell-based model, we can further
decrease its MSE to ≈ 5 (%)2. On the flip side, every additional input feature bears the risk of
impeding the versatile applicability of the model and reducing its capacity to generalize to
unseen conditions. By training multiple models of the same type, we verified these MSEs to
be robust (varying by ±0.12 (%)2). The MSEs for the neighborhood-based model are averaged
over all NNs (i.e., one per vertical layer), while the upper-most two layers are left out due to
the rare presence of clouds at these altitudes.
Our data is temporally and spatially correlated. As a consequence, our division into random
subsets for training, validation, and testing leads to very similar MSEs on the respective
subsets. And the error on the training set is only slightly smaller than on the validation and
test sets.
With MSEs being below 16 (%)2, Table 3.3 shows that the NNs are able to diagnose cloud cover
better than our baseline models (with the exception of the cell-based random forest). These
baseline models are fitted to the same normalized datasets as the respective NNs. As our first
baseline we evaluate a constant output model, which outputs the average cloud cover. The
constant output model’s MSE thus also represents the variance of cloud cover in the data.
Small differences in the preprocessing of the data for each model type lead to differences
in the MSEs of the zero and constant output model. The (multiple) linear model is trained
on the data using the ordinary least squares method. For the random forests, we use the
default implementation of the RandomForestRegressor in scikit-learn, adjusting the number
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and the maximum depth of the trees so that the training duration is similar to the NNs.
Further adjustments of these two hyperparameters that would further increase or decrease
the training durations either reach computational limits or show no decrease in validation
loss. While the cell-based random forest actually achieves a lower MSE than the NN, its ≈ 105

larger size (400 GB) makes it impractical to manage. When forced to have a similar storage
requirement using the two hyperparameters mentioned above, its MSE (26.22 (%)2) becomes
larger than that of the NN.
We implemented the Sundqvist scheme as it is described in Giorgetta et al. (2018) (see also
equation 2.1 in Chapter 2.1). It is a simplified version of the currently implemented (mainly
cell-based) ICON-A cloud cover parameterization, because it does not include an adjustment
for cloud cover in regions below subsidence inversions over the ocean (see Mauritsen et al.
(2019)). We fitted the Sundqvist scheme to the data by doing a grid search over a space of
tuning parameters around the values used in the ICON-A model. The grid search yielded a
better set of tuning parameters than those found by implementing the scheme as a layer in
TensorFlow and optimizing the tuning parameters using gradient descent. To still allow for a
differentiation between grid cells over land and ocean, we found optimal sets of tuning param-
eters for cells that are mainly over land ({RHsat ,RH0,top ,RH0,surf , 𝑛} = {1.12, 0.3, 0.92, 0.8})
and for cells that are mainly over the sea ({RHsat ,RH0,top ,RH0,surf , 𝑛} = {1.07, 0.42, 0.9, 1.1}).

Figure 3.4a shows that the mean vertical profiles of cloud cover predicted by the NNs closely
align with the “Ground truth” profile of coarse-grained cloud cover. The profiles feature three
maxima that can be attributed to the three modes of tropical convection: shallow, congestus,
and deep. Note that in contrast to Müller (2019), we do find a clear peak for deep convective
clouds in the coarse-grained NARVAL and NARVALII data, which could be due to differences
in how we define cloudy grid cells (using the cloud cover model output rather than a boolean
based on the total specific cloud condensate content exceeding 0.1 g/kg).

In Figure 3.4b we show the coefficient of determination/𝑅2-value profiles for the different
models. For a given vertical layer 𝑙, the 𝑅2-value is defined by

𝑅2
𝑙
= 1 − 𝑚𝑠𝑒𝑙

𝑣𝑎𝑟𝑙
. (3.2)

For a given vertical layer 𝑙, 𝑚𝑠𝑒𝑙 is the MSE between a given model’s prediction and the
true cloud cover and 𝑣𝑎𝑟𝑙 the variance of cloud cover. Clearly, i) 𝑅2

𝑙
≤ 1, ii) 𝑅2

𝑙
= 1 implies

𝑚𝑠𝑒𝑙 = 0, and iii) if 𝑅2
𝑙
≤ 0, then a function always yielding the cloud cover mean on layer 𝑙

would outperform the model in question.
We see that the neighborhood- and column-based models generally have 𝑅2-values exceed-

ing 0.9, or equivalently 𝑚𝑠𝑒𝑙 ≤ 0.1 · 𝑣𝑎𝑟𝑙 . The somewhat lower reproduction skill for the
cell-based model concurs with the MSEs found in Table 3.3. The models exhibit strongly
negative 𝑅2-values above 19 km and are therefore not shown in the figure, i.e., on these layers a
constant-output model would be more accurate than the NNs. The reason for this is that there
are almost no clouds above 19 km; the variance of cloud cover is not greater than 10−4 (%)2.
Nevertheless, the neighborhood-based model with its unique NN per vertical layer is still able
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Figure 3.4.: Evaluation of the NARVAL R2B4 models on the coarse-grained and preprocessed
NARVAL R2B4 data. The three cloud cover maxima of panel a) are located roughly at
1 km, 5.3 km and 12.2 km. The maximal absolute discrepancy between the averaged
neural network predictions and the ground truth for a given vertical layer is less than
0.5%. In panel b), the two upper-most layers are not shown. Adapted with permission
from Grundner et al. (2022).

to learn a reasonable mapping at 19.2 km, achieving an 𝑅2-value of 0.93. Altogether, we found
the mean cloud cover statistics to be independent of how the NNs were initialized prior to
training.

3.2.2. Global Setting (QUBICC)

Having studied the performance of our regionally trained NNs, we now shift the focus to
the NNs trained and evaluated on the coarse-grained and preprocessed global QUBICC R2B5
dataset. Changing the region as well as the resolution of the training data allows us to conduct
studies across these domains in Section 3.2.4.

Table 3.4 shows the performance of the cloud volume and cloud area fraction NNs on their
validation folds. For each model type and each of the three cross-validation splits we trained
one NN and then selected the NN that has the lowest MSE on the entire QUBICC dataset.
Generally, this is also the NN with the lowest loss on its validation set. When comparing Table
3.4 with Table 3.3, we find that QUBICC(-trained) NNs exhibit larger MSEs than NARVAL(-
trained) NNs. Causes for the higher MSEs can be attributed to the data now stemming from
the entire globe and the higher stochasticity present in the higher resolution R2B5 data. Both
of these reasons allow for a larger range of outputs for similar inputs, inevitably increasing
the MSE of our deterministic model. Nevertheless, with the exception of the cell-based
random forest, we are still well below the MSEs given by our baseline models. However, as in
Section 3.2.1, the cell-based random forest requires much more (factor of ≈ 106) memory, and
a random forest of similar size to the NN has a larger MSE (85.86 (%)2). The parameters for the
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Table 3.4.: Mean squared errors (in (%)2) of the neural networks trained with a 3-fold cross-
validation split on the coarse-grained and preprocessed QUBICC data. We only show
the mean squared errors of the models with the lowest loss on their respective validation
folds. Here, the neighborhood-based models comprise one model per split, evaluated
on all layers. In parentheses we compute the losses after bounding the model output to
the [0, 100]% interval. The baseline models are trained and evaluated on coarse-grained
and preprocessed QUBICC cloud volume fraction data. Adapted with permission from
Grundner et al. (2022).

Type

Cell-based Column-based Neighborhood-based
Neural Cloud volume fraction 32.77 (28.98) 8.14 (8.03) 25.07 (20.46)
networks Cloud area fraction 87.98 (80.96) 20.07 (19.79) 52.19 (46.61)

Baseline Constant output model 684.51 431.28 558.28
models Best linear model 401.47 97.81 297.63

Random forest 25.90 161.98 54.74
Sundqvist scheme 474.12

Due to computational reasons, only 1% of the data (i.e., ≈ 107 samples) was used to
compute the MSE of the Sundqvist scheme.

Sundqvist scheme were again found using separate grid searches for grid cells that are mainly
over land ({𝑟𝑠𝑎𝑡 , 𝑟0,𝑡𝑜𝑝 , 𝑟0,𝑠𝑢𝑟 𝑓 , 𝑛} = {1.1, 0.2, 0.85, 1.62}) and for grid cells that are mainly over
sea ({𝑟𝑠𝑎𝑡 , 𝑟0,𝑡𝑜𝑝 , 𝑟0,𝑠𝑢𝑟 𝑓 , 𝑛} = {1, 0.34, 0.95, 1.35}). In a similar vein, estimating cloud area
fraction is a more challenging task than estimating cloud volume fraction. Depending on
whether a cloud primarily spans horizontally or vertically, practically any value of cloud area
fraction can be attained in a sufficiently humid grid cell. This could explain the increased
MSEs of the cloud area fraction models.
In Table 3.4 we also include bounded losses in parentheses. That means that the NN’s cloud
cover predictions that are smaller than 0% are set to 0% before its MSE is computed. Likewise,
predictions greater than 100% are set to 100%. The difference between these two types of
losses is relatively small. We can deduce that the NNs usually stay within the desired range
of [0, 100]% without being forced to do so. On average, 76.4% of the predictions of all our
QUBICC-trained NNs in their respective validation sets lie within the [0, 100]%, and 95% of
the predictions lie within the slightly larger [−1, 100]% range.

In Figure 3.5 we show that the local cell-based model – the model type with the largest MSE
– is still able to reproduce the mean cloudiness statistics of the validation sets that it did not
have access to during training. These validation sets each consist of the union of two blocks of
15 days, which is sufficiently temporally displaced from the training data to be above weather
timescales. We can see that the validation set bias of the model corresponding to the third
split is larger than that of the first two splits. The model from the second split has the overall
best performance on the QUBICC dataset and is therefore analyzed further in Section 3.2.3.

Despite the challenging setting, Figures 3.6a and 3.6c show that the models are very well
able to reproduce the average profiles of cloud volume and cloud area fraction of the global
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Figure 3.5.: The cell-based cloud volume and cloud area fraction models of the 3-fold cross-
validation split evaluated on their respective validation sets. The validation losses
of the models from split 2 are given in Table 3.4. Adapted with permission from
Grundner et al. (2022).

dataset. The same holds true for the ability to capture the variance in time and the horizontal
for a given vertical layer, which is conveyed by the 𝑅2-values being usually well above 0.8 for
all layers below 15 km. As in Figure 3.4, layers above 19 km had to be omitted in the 𝑅2-plots.
When it comes to reconstructing the QUBICC cloudiness, the column-based model with its
large amount of adaptable parameters is able to outperform the other two model types.

After introducing and successfully evaluating both regionally- and globally-trained net-
works on their training regimes, we investigate the extent to which we can apply these NNs.

3.2.3. Generalization Capability

In this section, we demonstrate that our globally-trained QUBICC networks can successfully
be used to predict cloud cover on the distinct regional NARVAL dataset. Furthermore, we
show that, with the input features we chose for our NNs, achieving the converse, i.e., applying
regionally-trained networks on the global dataset, is out of reach.

We note that, beside the regional extent, the QUBICC data covers a different timeframe
and was simulated with a different physics package and on a coarser resolution (5 km)
than the NARVAL data (2.5 km). As opposed to NARVAL’s fractional cloudiness scheme,
the QUBICC cloud cover scheme diagnosed only entirely cloudy or non-cloudy cells. These
differences make the application of NNs trained on one dataset to the other dataset non-trivial.
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Figure 3.6.: Evaluation of QUBICC cloud volume and cloud area models on coarse-grained and
preprocessed QUBICC R2B5 data. The layer-wise averaged 𝑅2-values of the cell-,
column-, and neighborhood-based models shown in b) are (0.94, 0.98, 0.94) and in
d) are (0.90, 0.97, 0.93). The ground truth profiles do not match due to differences
in preprocessing, especially in how many cloud-free cells were removed from the
respective datasets (see Appendix B.3 for more details). The column-based ground
truth profile represents the true QUBICC cloud cover profiles since its data was not
altered by preprocessing. Adapted with permission from Grundner et al. (2022).
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From global to regional
We first study the capability of QUBICC-trained models to generalize to the NARVAL data
(see Figure 3.7). We see that the models estimate cloud volume and cloud area fraction
quite accurately. This is the case despite the significant differences between QUBICC’s and
NARVAL’s mean vertical profiles of cloud cover. We generally recognize a decrease of 𝑅2-
value (by ≈ 0.2) when compared to the models’ performance on its training data (Figure 3.6).
A certain decrease was to be expected with the departure from the training regime. But as
the 𝑅2-values on average still exceed 0.7, we find that the models can be applied succesfully
to the NARVAL data. In comparison, the Sundqvist scheme we tuned on the QUBICC R2B5
data, has a layer-wise averaged 𝑅2-value of −0.54/0.29 for cloud volume/area fraction on the
NARVAL data, but only if we discard the surface-closest layer.

However, there is a significant bias affecting all three NN types, namely consistent over-
prediction of both cloud volume and cloud area fraction between 6 and 9 km. In this altitude
range, this is visible in all four plots, either through the mismatch in mean cloud cover or the
dip in 𝑅2-value. This behavior will be further investigated in Section 3.2.5. Another minor bias
is a slightly poorer generalization of the column-based model to the NARVAL data (see, e.g.,
Figure 3.7c). We can understand this as a sign of overfitting if we also take into account that the
column-based model showed a higher skill on the training data than the other two model types.

From regional to global
We have seen that the NNs are able to reproduce the cloud cover distribution of the storm-
resolving NARVAL simulation, limited to its tropical region. We coarse-grain the QUBICC
data to the same R2B4 grid resolution that the NARVAL NNs were trained with. This helps
us to investigate to what extent the NNs can actually generalize to out-of-training regimes.
We focus on the tropics first, extending the evaluation from the NARVAL region (68°W-15°E,
10°S-20°N) to the entire tropical band (23.4°S-23.4°N). Note that the QUBICC data shows a
much stronger presence of deep convection and a weaker presence of shallow and congestus-
type convection. Nevertheless, the NNs are able to reproduce the general structure of the
mean cloud cover profile, in particular the peak due to deep convection. The flattened peak of
shallow convection is most accurately represented by the neighborhood-based model, while
the weakened congestus-type convection is reproduced by both the neighborhood- and the
column-based models.

However, the NNs are not able to generalize to the entire globe. To show this, we use
two column-based models as an example. Looking at Figure B.4, we can see that they are
unable to reproduce mean cloudiness statistics over the region covering the Southern Ocean
and Antarctica. In addition, models with the same architecture produce entirely different
cloudiness profiles. In this polar region, the NNs are evidently forced to extrapolate to
out-of-training regimes and are thus unable to produce correct or consistent predictions.
Let us look exclusively at the univariate distributions of the QUBICC input features (those for
temperature and pressure are plotted on the margins of Figure 3.8b). Then we can see that their
values are usually covered by the distribution of the NARVAL training data. Only their joint
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Figure 3.7.: Evaluation of QUBICC R2B5 cloud volume and cloud area models on NARVAL R2B5
data. The layer-wise averaged𝑅2-values of the cell-, column-, and neighborhood-based
models shown in b) are (0.74, 0.74, 0.79) and in d) are (0.72, 0.71, 0.72). Adapted with
permission from Grundner et al. (2022).
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Figure 3.8.: Panel a): Evaluation of NARVAL R2B4 models (NARVAL region: 68°W-15°E, 10°S-
20°N) on QUBICC R2B4 data over the tropical zone (23.4°S–23.4°N). We plot the means
over 10 days (20–29 November 2004). Different neural networks of the same type
produce consistent mean vertical cloudiness profiles (±1%). The layer-wise averaged
𝑅2-values below 15 km of the cell-, column-, and neighborhood-based models are (-
0.88, 0.29, 0.67), and within the upper troposphere (between 6 and 12 km) they are (0.72,
0.62, 0.84). Panel b): Joint distribution of temperature and pressure in NARVAL R2B4
and QUBICC data. On the margins we see the univariate distributions of temperature
and pressure. The jagged structure emerges from the underlying coarse vertical grid.
Adapted with permission from Grundner et al. (2022).

distribution reveals that a large number of QUBICC samples exhibit combinations of pressure
and temperature that were not present in the training data. For instance, temperatures as
cold as 240 K never occur in tandem with pressure values as high as 1000 hPa in the tropical
training regime of the NARVAL data. This circumstance is particularly challenging for the
neighborhood- and column-based models. This is because the input nodes in these two
NARVAL model types correspond to specific vertical layers. So the NNs have to extrapolate
when facing (during training) unseen input feature values on any vertical layer, such as in our
example cold temperatures on a vertical layer located at around 1000 hPa.

In this section, we demonstrated that the QUBICC NNs can be used on NARVAL data,
while in our setup the converse is not feasible. This begs the question: In which way do these
NNs differ and have they actually learned a meaningful dependence of cloud cover on the
thermodynamic environment?
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3.2.4. Understanding the Relationship of Predicted Cloud Cover to Its
Thermodynamic Environment

In this section, our goal is to dig into the NNs and understand which input features drive
the cloud cover predictions. We furthermore want to uncover similarities and differences
between the NARVAL- and QUBICC-trained NNs that help understand differences in their
generalization capability.

NNs are not inherently interpretable, i.e., we cannot readily infer how the input features
impacted a given prediction by simply looking at the networks’ weights and biases. Instead,
we need to use an attribution method that uses an explanation method built on top of the NN
(Ancona et al. 2019). Within the class of attribution methods, few are adapted for regression
problems. A common choice (see, e.g., Brenowitz et al. (2020)) is to use gradient-based attribu-
tion methods. However, these methods may not fairly account for all inputs when explaining
a model’s prediction (Ancona et al. 2019). Additionally, gradient-based approaches can be
strongly affected by noisy gradients (Ancona et al. 2019) and generally fail when a model is
‘saturated’, i.e., when changes in the input do not lead to changes in the output (Shrikumar
et al. 2017).

Instead we approximate Shapley values for every prediction using the SHAP package (Lund-
berg and Lee 2017). The computation of Shapley values is solidly founded in game theory and
the Shapley values alone satisfy three ‘desirable’ properties (Lundberg and Lee 2017). Shapley
values quantify the influence of how an input feature moves a specific model prediction away
from its base value, defined as the expected output. The base value is usually an approximation
of the average model output on the training dataset. With Shapley values, the difference of
the predicted output and the base value is fairly distributed among the input features (Molnar
2020). A convenient property is that one can recover this difference by summing over the
Shapley values (‘efficiency property’).
The DeepExplainer within the SHAP package is able to efficiently compute approximations
of Shapley values for deep NNs (Lundberg and Lee 2017). SHAP also comes with various
visualization methods, which allow us to aggregate local sample-based interpretations to form
global model interpretations.

We now show how we use SHAP to compare the way NARVAL (R2B4)- and QUBICC
(R2B5)-trained networks arrive at good predictions. We focus on the column-based (cloud
volume fraction) models. These are uniquely able to uncover important non-local effects, have
the largest number of input features to take into account and have on average the lowest MSEs
in their training regimes (taking into account both Table 3.3 and 3.4).

We collect local explanations on a sufficiently large subset of the NARVAL R2B5 data. For
this, we compute the base values by taking the average model predictions on subsets of the
respective training datasets. A necessary condition for the base value is that it approximates
the expected NN output (on the entire training set) well. We found that ≈ 104 QUBICC
samples are sufficient for the average NN prediction to converge. Therefore, we used this
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3. Deep Learning Based Cloud Cover Parameterization for ICON

size for the random subsets of the QUBICC and of the smaller NARVAL training set as well.
We showed that on the NARVAL R2B5 dataset, the QUBICC models are able to reconstruct
the mean vertical profile with high 𝑅2-values (Figure 3.7). Impressively, the column-based
version of our NARVAL R2B4 models also makes successful predictions on the NARVAL R2B5
dataset (with an average 𝑅2-value of 0.93; Figure B.5) despite the doubling of the horizontal
resolution.

The size of the subset of NARVAL R2B5 data (≈ 104 samples) is chosen to be sufficiently large
to yield robust estimates of average absolute Shapley values. Averaging the absolute Shapley
values over many input samples measures the general importance of each input feature on
the output. An input feature with a large average absolute Shapley value contributes strongly
to a change in the model output. It on average increases or decreases the model output by
precisely this value.
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Figure 3.9.: Average absolute SHAP values of the QUBICC R2B5 and the NARVAL R2B4 column-
based models when applied to the same, sufficiently large subset of the NARVAL R2B5
data. We use the conventional ICON-A numbering of vertical layers from layer 21 (at
a height of ≈ 20.8 km) decreasing in height to layer 47, which coincides with Earth’s
surface. The dashed line shows the tropopause, here at ≈ 15 km, the dash dotted line
shows the freezing level (i.e., where temperatures are on average below 0 degrees C),
here at ≈ 5 km. Tests with four different seeds show that the pixel values are robust
(the absolute values never differ by more than 0.55%). The input features that are not
shown exhibit smaller absolute SHAP values (𝜌 < 1.8%, 𝑝 < 1.5%, 𝑧𝑔 < 0.7%, land/lake
< 0.1%) everywhere and are thus omitted. Adapted with permission from Grundner
et al. (2022).

The absolute SHAP values (Figure 3.9) suggest that both models learned a remarkably local
mapping, with a clear emphasis on the diagonal (especially above the boundary layer). That
means that the prediction at a given vertical layer mostly depends on the inputs at the same
location. The models have learned to act like our cell- or neighborhood-based models without
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human intervention.
The input features have a larger influence in the QUBICC model than they do in the NARVAL
model. We can also see this phenomenon, if we use a similar base value for both models (see
Figure B.6). This is most likely due to the fact that the QUBICC model was exposed to a wide
variety of climatic conditions across the entire globe during training, resulting in a greater
variance in cloud cover. The NN is thus used to deviate from the average cloud cover, putting
more emphasis on its input features, and consequently causing larger Shapley values.
Both models take into account that in the boundary layer the supply of moisture 𝑞𝑣 from below
in combination with temperature anomalies that could drive convective lifting influence the
subgrid distribution of cloud condensates and henceforth cloud cover. Such a non-local mixing
due to updrafts presents limitations for purely local parameterizations. In the boundary layer
(which we define to be at below 1 km), temperature 𝑇 and specific humidity 𝑞𝑣 are found
to be the most important variables (having the largest sum of absolute SHAP values) for the
NNs. Higher in the troposphere, the local amount of moisture has a significant impact on
cloud cover. The specific cloud water content 𝑞𝑐 is a major predictor of cloud cover below
the freezing level, while the specific cloud ice content 𝑞𝑖 is a major predictor of cloud cover
above the freezing level. In contrast to the global QUBICC model, the tropical NARVAL model
only considers the impact of 𝑞𝑖 at sufficiently high altitudes, which allow for the formation of
cloud ice. The QUBICC model also learned to place more emphasis on 𝑇 and 𝑞𝑣 in the lower
troposphere and pressure 𝑝 in the higher troposphere than the NARVAL model.
Generally, the most important variables above the boundary layer and below the freezing
level are temperature 𝑇 (for the QUBICC model) and cloud water 𝑞𝑐 (for the NARVAL model).
Above the freezing level, the QUBICC model emphasizes pressure 𝑝 most, while the NARVAL
model learns a similar impact of 𝑇, 𝑞𝑖 and 𝑝 (not shown). Due to the Clausius-Clapeyron
relation, relative humidity depends most strongly on temperature. Taking into account that
throughout the troposphere relative humidity is the best single indicator for cloud cover
(Walcek 1994), this is a likely explanation for the models’ large emphasis on temperature.

After using SHAP to illustrate which features drive the (column-based) NN predictions,
we use the same approach to understand the source of a specific generalization error of the
QUBICC NNs (Figure 3.7).

3.2.5. Understanding Model Errors

In this section, our goal is to understand the source of flawed NN predictions. We want to
analyze what type of dependence on which input features is most responsible for erroneous
predictions. This type of analysis reveals differences in the (NN-learned) characteristics of the
training dataset and a dataset to which an NN is applied to.

In the evaluation of the QUBICC (R2B5) cloud volume fraction models on NARVAL R2B5
data (Figure 3.7) we have seen a pronounced dip in performance (𝑅2 ≤ 0.8 for all models)
on a range of altitudes between 6 and 9 km. The dip was accompanied by an overestimation
of cloud cover (relative error > 15%). We specifically focus on explaining the bias at 7 km.
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3. Deep Learning Based Cloud Cover Parameterization for ICON

The vertical layer that corresponds to this altitude is the 32nd ICON-A layer. On layer 32, the
𝑅2-values are minimal (𝑅2 ≤ 0.5 for all models) making it arguably the largest tropospheric
generalization error of the models. However, the method we employ here can be used to
understand other generalization errors as well.

The NARVAL (R2B4) models are perfectly able to make predictions on NARVAL R2B5 data
on layer 32 (Figure B.5), making it a suitable benchmark model. As in the previous section
we use SHAP on the column-based models. In order to be able to compare Shapley values
corresponding to certain features individually, we follow the strategy outlined in Appendix
B.1.

Figure 3.10a shows the influence of each input feature from the entire grid column on the
average model output on layer 32. We find that the QUBICC model bias is driven by 𝑞𝑣 and
𝑞𝑖 . Compared to the NARVAL model, the QUBICC model clearly overestimates the impact of
these two variables. This impact is dampened somewhat by a net decreasing effect of 𝑝 and 𝑇
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Figure 3.10.: SHAP/Shapley value statistics per input feature for cloud cover predictions on vertical
layer 32 (at ≈ 7 km) of the column-based models with a focus on 𝑞𝑣 and 𝑞𝑖 in (b)-(e).
Input features the models have not in common are neglected. As in Figure 3.9,
the Shapley values for both models are computed on the same sets of 104 random
NARVAL R2B5 samples (using ten different seeds). (a): The sum of average SHAP
values over all vertical layers. The black lines show the range of values (min/max).
The absolute QUBICC R2B5 model bias (of 0.95%) on layer 32 (cf. Figure 3.7a) can
approximately be recovered by summing over all orange values (which yields 0.81%).
(b), (c): The vertical profiles of SHAP values for 𝑞𝑣 and 𝑞𝑖 for all ten seeds. In the
SHAP dependence plots (d), (e) we zoom in on the features with the largest SHAP
values (𝑞𝑖 and 𝑞𝑣 of layer 32). (d), (e): Each dot corresponds to one NARVAL R2B5
sample. The lines show smoothed conditional expectations computed over all seeds.
The dashed lines show the average SHAP value of the input features 𝑞𝑣 and 𝑞𝑖 on
layer 32 whose values can also be found in (b) and (c). Adapted with permission from
Grundner et al. (2022).
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on the cloud cover predictions. In the NARVAL model the impact of these features is much
less pronounced. The reason is probably once again that the model has not learned the need
for deviating much from the base value in its tropical training regime.

When investigating the vertical profile of Shapley values in Figures 3.10b and c we find that
the local values have the largest effect on cloud cover. This local importance is also corroborated
by Figure 3.9. We can zoom in and look at the more precise conditionally-averaged functional
dependence of 𝑐𝑙𝑐_32 on these local 𝑞𝑖_32 and 𝑞𝑣_32 variables (Figures 3.10d and e). We find
the two functions to be very similar, albeit differing in their slope. The QUBICC model quickly
increases cloud cover with increasing values of 𝑞𝑖_32 and 𝑞𝑣_32. The QUBICC model’s large
emphasis on 𝑞𝑖_32 could be a relict from the cloud cover scheme in the native QUBICC data.
This scheme had set cloud cover to 100%, whenever the cloud condensate ratio had exceeded
a given threshold.

3.3. Summary of the First Study

In this study we develop the first machine learning based parameterization for cloud cover
based on ICON and deep NNs. We train the NNs with coarse-grained data from regional and
global SRM simulations with real geography. We demonstrate that in their training regime,
the NNs are able to learn the subgrid-scale cloud cover from large-scale variables (Figures 3.4,
3.6). Additionally we show that our globally-trained NNs can also be successfully applied
to data originating from a regional simulation that differs in many respects (e.g., its physics
package, horizontal/vertical resolution, and time frame; Figure 3.7). Using SHAP we compare
regionally- and globally-trained NNs to understand the relationship between predicted cloud
cover and its thermodynamic environment and vertical structure (Figure 3.9). We are able to
uncover that specific humidity and cloud ice are the drivers of one NN’s largest tropospheric
generalization error (Figure 3.10).
We implement three different types of NNs in order to assess the degree of (vertical) locality
and the amount of information they need when it comes to the task of diagnosing cloud cover.
We find that by enforcing more locality, the performance of the NN suffers on its training set
(Figures 3.4, 3.6). However, the more local cell- and neighborhood-based NNs show slightly
fewer signs of overfitting the training data (Figure 3.7). Generally we found that none of
the three types clearly outperforms the other two types and that the potentially non-local
model in actuality also mostly learned to disregard non-local effects (Figure 3.9). Overall, the
neighborhood-based model trained on the global QUBICC data (Q3) is most likely the prefer-
able model. It has a good accuracy on the training data, the lowest generalization error on the
NARVAL data, is low-dimensional, easy to implement and cross-model compatible. The last
point refers to the fact that (unlike the column-based model) it is not tied to the vertical grid
it was trained on.
Furthermore, the NNs are trained to differentiate between cloud volume and cloud area frac-
tion, which are distinct interpretations of cloud cover (see also Section 2.1.3). We found cloud

45



3. Deep Learning Based Cloud Cover Parameterization for ICON

area fraction to be a somewhat more difficult value to predict. The shape of a cloud, which de-
termines its cloud area fraction, is harder to extract from grid-scale averaged thermodynamic
variables. We agree with Brooks et al. (2005) that a distinction between these two concepts
of cloud cover would be expedient inside a general circulation model for two reasons: First,
both interpretations are used in the microphysics and radiation schemes. Second, depending
on the interpretation, cloud cover can differ significantly (Figure 3.2).

The natural next step will be to implement and evaluate the machine learning based param-
eterization for cloud cover in the ICON-A model. In such an ICON-ML model, the machine
learning based parameterization would substitute the traditional cloud cover parameteriza-
tion. The NN predictions for cloud area and cloud volume fraction would be used as parame-
ters for the radiation and microphysics parameterizations, depending on which interpretation
is most appropriate in each case. Preliminary online simulations covering one QUBICC month
(not shown) demonstrate the potential of our neighborhood-based NN parameterization as it
is (a) able to process its input variables from the coarse-scale distributions while (b) pushing
the statistics of, e.g., the specific cloud water content, to that of the (coarse-grained) high-
resolution statistics as desired. However, as we have discussed in Section 2.3, more work is
required to create an ICON-ML model that produces accurate and robust results.

The presence of condensate-free clouds in the training data shows inaccuracies that are
present both in the NARVAL and the QUBICC training data. These could have been avoided
by introducing targeted multiple calls to the same parameterization scheme in the high-
resolution model that generated the data. However, we emphasize that the machine learning
approach is general enough that if the data were generated more carefully then our approach
would still work.
Our regionally-trained networks are not able to generalize to the entire globe. Similar difficul-
ties might arise when applying our globally-trained networks to a very different climate (Rasp
et al. 2018a). In practice, this would require us to filter out data samples which the NN cannot
process in a meaningful way. Alternatively, one could train the NNs with climate-invariant
features only, eliminating the need of ever extrapolating to out-of-training distributions (Beu-
cler et al. 2021). By additionally using causal discovery methods to guide their selection, one
would most likely arrive at a more rigorous and physically consistent set of input features
(Nowack et al. 2020; Runge et al. 2019). Another useful modification to our NNs would be
to add a method that allows us to estimate the uncertainty associated with a prediction, e.g.,
either by adding dropout (Gal and Ghahramani 2016) or by implementing the NNs as Bayesian
NNs.

From a climate science perspective, instead of diagnosing cloud cover from large-scale vari-
ables directly, one could also train an NN to output parameters specifying distributions for
subgrid-scale temperature and moisture. Cloud cover could then be derived from these dis-
tributions (see Section 2.1.2). By reusing the distributions for other parameterizations as well,
we could increase the consistency among cloud parameterizations. However, this approach
would require us to make assumptions concerning the general form of these distributions
(Larson 2017) and we leave this for future work.

46



3.3. Summary of the First Study

Overall, this study demonstrated the potential of deep learning combined with high-
resolution data for developing parameterizations of cloud cover.
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4. Data-Driven Equation Discovery of a Cloud
Cover Parameterization

In this chapter, for the first time a hierarchical modeling approach is used to systematically
derive and evaluate a family of cloud cover (interpreted as the cloud area fraction) schemes,
ranging from ‘traditional’ physical (but semi-empirical) schemes and simple regression mod-
els to NNs. They are evaluated according to their Pareto optimality (i.e., whether they are
the best performing model for their complexity). To bridge the gap between simple equations
and high-performance NNs, we apply equation discovery in a data-driven manner using
state-of-the-art symbolic regression methods. The work was already published in Grundner
et al. (2023). As indicated in Section 1.3, the author of this thesis created all the content,
including text, figures, and tables, that is presented from this publication and implemented
the code1 to reproduce this study with all figures and tables.

First, the datasets used for training, validation and testing (Section 4.1), the diverse data-
driven models used in this study (Section 4.2), and the evaluation metrics (Section 4.3) are
introduced, before studying the feature rankings, performances and complexities of the differ-
ent models (Section 4.4.1). Their ability to reproduce cloud cover distributions (Section 4.4.2),
transfer to higher resolutions (Section 4.4.3), and adapt to the ERA5 reanalysis (Section 4.4.4)
is investigated. An analysis of the best analytical model found using symbolic regression
(Section 4.5) concludes the results section.

4.1. Data

In this section, the two datasets used to train and benchmark our cloud cover schemes are
introduced: We first use storm-resolving ICON simulations to train high-fidelity models (Sec-
tion 4.1.1), before testing these models’ transferability to the ERA5 meteorological reanalysis,
which is more directly informed by observations (Section 4.1.2).

4.1.1. Preprocessing DYAMOND Data

In this chapter, we use SRM data from the DYAMOND project as the source for our training
data. More details concerning this choice and the DYAMOND dataset itself can be found in

1https://github.com/EyringMLClimateGroup/grundner23james_EquationDiscovery_CloudCover, preserved
at https://doi.org/10.5281/zenodo.7817392
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Section 2.4.2. Following the methodology of Appendix A, we coarse-grain the DYAMOND
data to an ICON grid with a typical climate model horizontal grid resolution of ≈ 80 km.
Vertically, we coarse-grain the data from 58 to 27 layers below an altitude of 21 km, which
is the maximum altitude with clouds in the dataset. For cloud cover, we first estimate the
vertically maximal cloud cover values in each low-resolution grid cell before horizontally
coarse-graining the resulting field. For all other variables, we take a three-dimensional integral
over the high-resolution grid cells overlapping a given low-resolution grid cell. For details, we
refer the reader to Appendix A. Due to the sequential processing of some parameterization
schemes in ICON models, condensate-free clouds can occur in the simulation output. To
instead ensure consistency between cloud cover and the other model variables, we follow
Giorgetta et al. (2022) and manually set the cloud cover in the high-resolution grid cells to
100% when the specific cloud condensate content exceeds 10−6 kg/kg and to 0% otherwise.

We remove the first ten days of ‘DYAMOND Summer’ and ‘DYAMOND Winter’ as spin-up
(as in Stevens et al. (2019b)), and discard columns that contain NaNs (3.15% of all columns).
The removal of a spin-up phase, that allows the model to evolve from an arbitrary or possibly
unrealistic initial state towards a more stable and physically realistic state, is likely to enhance
the physical consistency of the dataset. Consequently, the dataset offers a more solid basis
for deriving physically consistent schemes. It could, however, weaken the performance of
these schemes when integrated into a climate model, as they should also be capable of making
accurate predictions during the spin-up phase.
From the remainder of the data, we keep a random subset of 28.5% of the data, while removing
predominantly cloud-free cells to mitigate a class imbalance in the output (‘undersampling’
step). We then split the data into a training and a validation set, the latter of which is used for
early stopping. To avoid high correlations between the training and validation sets, we divide
the dataset into six temporally connected parts. We choose the union of the second (≈ 21
August–1 September 2016) and the fifth (≈ 9–19 February 2020) part to create our validation
set. For all models except the traditional schemes, we additionally normalize models’ features
(or ‘inputs’) so that they have zero mean and unit variance on the training set.

We define a set of 24 features ℱ that the models (discussed in Section 4.2) can choose
from. For clarity, we decompose ℱ into three subsets: ℱ def

= ℱ1 ∪ ℱ2 ∪ ℱ3. The first subset,
ℱ1

def
= {𝑈, 𝑞𝑣 , 𝑞𝑐 , 𝑞𝑖 , 𝑇, 𝑝,RH} groups the horizontal wind speed𝑈[𝑚/𝑠] and thermodynamic

variables known to influence cloud cover, namely specific humidity 𝑞𝑣 [𝑘𝑔/𝑘𝑔], specific cloud
water and ice contents 𝑞𝑐 [𝑘𝑔/𝑘𝑔] and 𝑞𝑖 [𝑘𝑔/𝑘𝑔], temperature 𝑇 [𝐾], pressure 𝑝 [𝑃𝑎], and RH
with respect to water, approximated as:

RH ≈ 0.00263
𝑝

1Pa 𝑞𝑣 exp
[︃
17.67(273.15K − 𝑇)

𝑇 − 29.65K

]︃
. (4.1)

The second subset ℱ2 contains the first and second vertical derivatives of all features in ℱ1.
These derivatives are computed by fitting splines to every vertical profile of a given variable
and differentiating the spline at the grid level heights to obtain derivatives on the irregular
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vertical grid. Finally, the third subset ℱ3
def
= {𝑧, land, 𝑝𝑠} includes geometric height 𝑧 [𝑚] and

the only two-dimensional variables, i.e., land fraction and surface pressure 𝑝𝑠 [𝑃𝑎].
In Chapter 3 we found it sufficient to diagnose cloud cover using information from the

close vertical neighborhood of a grid cell. By utilizing vertical derivatives to incorporate
this information, we ensure the applicability of our cloud cover schemes to any vertical
grid. Since our feature set ℱ contains all features appearing in our three baseline traditional
parameterizations (see Section 4.2.1), we deem it comprehensive enough for the scope of our
study.

4.1.2. Meteorological Reanalysis (ERA5)

To test the transferability of our cloud cover schemes to observational data, we also use
the ERA5 meteorological reanalysis (Hersbach et al. 2018). We sample the first day of each
quarter in 1979-2021 at a three-hourly resolution. The days from 2000-2006 are taken from
ERA5.1, which uses an improved representation of the global-mean temperatures in the upper
troposphere and stratosphere. Depending on the ERA5 variable, they are either stored on
an N320 reduced Gaussian (e.g., for cloud cover) or a T639 spectral (e.g., for temperature)
grid. Using the Climate Data Operators (CDO) package (Schulzweida 2022), we first remap
all relevant variables to a regular Gaussian grid, and then to the unstructured ICON grid
described in Section 4.1.1. Vertically, we coarse-grain from approximately 90 to 27 layers.

The univariate distributions of important features such as cloud water and ice do not match
between the (coarse-grained) DYAMOND and (processed) ERA5 data. The maximal cloud
ice values that are attained in the ERA5 dataset are twice as large as in the DYAMOND
data. We illustrate this in Figure 4.1, next to a comparison of the distributions of cloud water,
relative humidity and temperature. Due to differences in the distributions of cloud ice, cloud
water and relative humidity, we consider our processed ERA5 data a challenging dataset to
generalize to.

4.2. Data-Driven Modeling

We now introduce a family of data-driven cloud cover schemes. We adopt a hierarchical
modeling approach and start with models that are interpretable by construction, i.e., linear
models, polynomials, and traditional schemes. As a second step, we mostly focus on perfor-
mance and therefore train deep NNs on the DYAMOND data. To bridge the gap between
the best-performing and most interpretable models, we use symbolic regression to discover
analytical cloud cover schemes from data. These schemes are complex enough to include
relevant nonlinearities while remaining interpretable.
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Figure 4.1.: A comparison of the univariate distributions of four variables from the coarse-grained
DYAMOND and ERA5 datasets. The y-axes are scaled logarithmically to visualize
the distributions’ tails. While cloud ice is often larger in our processed ERA5 dataset,
cloud water tends to be smaller than in the DYAMOND data. The distributions of
temperature and relative humidity are comparable. Adapted with permission from
Grundner et al. (2023).

4.2.1. Existing Schemes

We first introduce three traditional diagnostic schemes for cloud cover and train them using
the BFGS (Nocedal and Wright 1999) and Nelder-Mead (Gao and Han 2012) unconstrained
optimizers (which outperform grid search methods in our case), each time choosing the model
that minimizes the MSE on the validation set. Before doing so, we multiply the output of
each of the three schemes by 100 to obtain percent cloud cover values. The first scheme is the
Sundqvist scheme (Sundqvist et al. 1989) (see equation 2.1 in Chapter 2.1), which is currently
also implemented in the ICON-ESM (Giorgetta et al. 2018). The Sundqvist scheme has four
tunable parameters. As properly representing marine stratocumulus clouds in the Sundqvist
scheme might require a different treatment, we allow these parameters to differ between land
and sea, which we separate using a land fraction threshold of 0.5. The second scheme is a
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simplified version of the Xu-Randall scheme (see equation 2.2 in Chapter 2.1), which has only
two tuning parameters. The Teixeira scheme with its two tuning parameters (see equation 2.3
in Chapter 2.1) defines our third traditional baseline.
Besides those three traditional schemes, we additionally train the three NNs (cell-, neighborhood-
and column-based NNs) from Chapter 3 on the DYAMOND data. These three NNs receive
their inputs either from the same grid cell, the vertical neighborhood of the grid cell, or the
entire grid column. Thus, they differ in the amount of vertical locality that is assumed for
cloud cover parameterization. As the ‘undersampling step’ has to be done at a cell-based level,
we omit it when pre-processing the training data for the column-based NN. Nevertheless,
the column-based NN is evaluated on the same validation set as all other models.

Now that we have introduced three semi-empirical cloud cover schemes, which can be used
as baselines, we are ready to derive a hierarchy of data-driven cloud cover schemes.

4.2.2. Developing Parsimonious Models via Sequential Feature Selection

Our goal is to develop parameterizations for cloud cover that are not only performant, but
also simple and interpretable. Providing many, possibly correlated features to a model may
needlessly increase its complexity and allow the model to learn spurious links between its
inputs and outputs (Nowack et al. 2020), impeding both interpretability (Molnar 2020) and
generalizability (Brunton et al. 2016). Therefore, we instead seek parsimonious models. As
our feature selection algorithm we use (forward) sequential feature selection (SFS).

Sequential Feature Selection

Sequential feature selection (SFS) starts without any features and carefully selects and adds
features to a given type of model (e.g., a second-order polynomial) in a sequential manner.
At each iteration, SFS selects the feature that optimizes the model’s performance on a com-
putationally feasible subset of the training set, which is sufficiently large to ensure robustness
(see also Section 4.1.1). More specifically; let ℱ contain all potential features of a model (type)
𝑀. Let us further assume that the SFS approach has already chosen 𝑛 features 𝑃𝑛 ⊆ ℱ at a
given iteration (note that 𝑃0 := ∅). In the next iteration, the SFS method adds another feature
𝑃𝑛+1 = 𝑃𝑛 ∪ {ˆ︁𝑓 }, such that ˆ︁𝑓 ∈ ℱ \ 𝑃𝑛 maximizes the model’s performance as measured by
the 𝑅2-value. Thus, the SFS method tests whether

𝑅2(𝑀
𝑃𝑛∪{ˆ︁𝑓 }) ≥ 𝑅2(𝑀𝑃𝑛∪{ˆ︁𝑔})

indeed holds on the training subset for all features ˆ︁𝑔 ∈ ℱ \ 𝑃𝑛 . With the SFS approach, we
discourage the choice of correlated features and enforce sparsity by selecting a controlled
number of features that already lead to the desired performance. However, if two highly
correlated features are both valuable predictors (as will be the case with RH and 𝜕𝑧RH), the
SFS NN would pick them nonetheless. Another benefit is that by studying the order of selected
variables, optionally with the corresponding performance gains, we can gather intuition and
physical knowledge about the task at hand. On the way, we will obtain an approximation
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of the best-performing set of features for a given number of features. There is however no
guarantee of it truly being the best-performing feature set due to the greedy nature of the
feature selection algorithm, which decreases its computational cost. Due to the high cost, we
could only verify that the models would pick the same first two features (or four features in
the case of the linear model) using a non-greedy selector. However, we found that for some
random data subsets the second-order polynomial temporarily outperforms the third-order
polynomial due to the earlier pick of a third-order feature that decreased the score later on.

Linear Models and Polynomials

We allow first-order (i.e., linear models), second-order, and third-order polynomials. For each
of these model types, we run SFS using the SequentialFeatureSelector of scikit-learn (Pedregosa
et al. 2011). In the case of linear models, the pool of features ℱ1 to choose from is precisely ℱ
(see Section 4.1.1). For second-order polynomials, ℱ2 also includes second-degree monomials
of the features in ℱ , i.e.,

ℱ2 = {𝑥𝑦 | 𝑥, 𝑦 ∈ ℱ } ∪ ℱ .

Analogously we also consider third-degree monomials:

ℱ3 = {𝑥𝑦𝑧 | 𝑥, 𝑦, 𝑧 ∈ ℱ } ∪ ℱ2

in the case of third-order polynomials. Thus, the set of possible terms grows from 25 to 325
for the second-order and would grow to 2925 for the third-order polynomials. However, to
circumvent memory issues for the third-order polynomials, we restrict the pool of possible
features to combinations of the ten most important features. The choice of these ten features
is informed by the SFS NNs (Section 4.2.2), which are able to select informative features for
nonlinear models. In addition to these ten features, we also incorporate air pressure to later
classify samples into physically interpretable cloud regimes. To be specific, this implies that

ℱ3 = {𝑥𝑦𝑧 | 𝑥, 𝑦, 𝑧 ∈ {1,RH, 𝑞𝑖 , 𝑞𝑐 , 𝑇, 𝜕𝑧RH, 𝜕𝑧𝑧𝑝, 𝜕𝑧𝑝, 𝜕𝑧𝑧RH, 𝜕𝑧𝑇, 𝑝𝑠 , 𝑝}}.

By considering combinations of only eleven features, we reduce the total amount of possible
terms from 2925 to 364. After obtaining sequences of selected features for each of the three
model types, we fit sequences of models with up to ten features each using ordinary least
squares linear regression.

Neural Networks

We train a sequence of SFS NNs with up to ten features using the “mlxtend” Python package
(Raschka 2018). As in the case of the linear models, the pool of possible features is ℱ . We
additionally train an NN with all 24 features in ℱ for comparison purposes. As our regression
task is similar in nature (including the vertical locality assumptions it makes for the features),
we use the “Q3 NN” model architecture from Section 3.1.2 for all SFS NNs. “Q3 NN”’s
architecture has three hidden layers with 64 units each; it uses batch normalization and its
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loss function includes 𝐿1 and 𝐿2-regularization terms following hyperparameter optimization.
After deriving the sequence of ten features on small training data subsets (see Section 4.4.1) we
train the final SFS NNs on the entire training dataset, always limiting the number of training
epochs to 25 and making use of early stopping. Without the greedy assumption of the SFS
approach we would already need to test more than 2000 NNs for three features.

Due to the flexibility of NNs, when combining SFS with NNs, we obtain a sequence of
features that is not bound to a particular model structure. In Section 4.2.2 and 4.2.3, we
therefore reuse the SFS NN feature rankings for other nonlinear models to restrict their set of
possible features. The combination of SFS with NNs also yields a tentative upper bound on
the accuracy one can achieve with 𝑁 features: If we assume that i) SFS provides the best set
of features for a given number of features 𝑁 ; and ii) the NNs are able to outperform all other
models given their features, one would not be able to outperform the SFS NNs with the same
number of features. Even though the assumptions are only met approximately, we still receive
helpful upper bounds on the performance of any model with 𝑁 features.

4.2.3. Symbolic Regression Fits

To improve upon the analytical models of Section 4.2.1 and 4.2.2 without compromising
interpretability, we use recently-developed symbolic regression packages. We choose the
PySR (Cranmer 2020) and the default GP-GOMEA (Virgolin et al. 2021) libraries, which are
both based on genetic programming. GP-GOMEA is one of the best symbolic regression
libraries according to SRBench, a symbolic regression benchmarking project that compared
14 contemporary symbolic regression methods (La Cava et al. 2021). PySR is a very flexible,
efficient, well-documented, and well-maintained library. In PySR, we choose a large number
of potential operators to enable a wide range of functions (see Appendix C.3 for details). We
also tried AIFeynman and found that its underlying assumption that one could learn from
the NN gradient was problematic for less idealized data. Other promising packages from the
SRBench competition, such as DSR/DSO and (Py)Operon, are left for future work. PySR and
GP-GOMEA can only utilize a very limited number of features. Regardless of the number of
features we provide, GP-GOMEA only uses 3–4, while PySR uses 5–6 features. For this reason,
PySR also has a built-in tree-based feature selection method to reduce the number of potential
features. Since the SFS NNs from Section 4.2.2 already provide a sequence of features that
can be used in general, nonlinear cases, we instead select the first five of these features to
maximize comparability between models. The decision to run PySR with five features is also
motivated by the good performance (𝑅2 > 0.95) of the corresponding SFS NN (see Section
4.4.1). Each run of the PySR or GP-GOMEA algorithms adds new candidates to the list of final
equations. From ≈ 600 of resulting equations, we select those that have a good skill (𝑅2 > 0.9),
are interpretable, and satisfy most of the physical constraints that we define in the following
section. The search itself is performed on the normalized training data (see also Section 4.1.1).
As a final step, we refine the free parameters in the equation using the Nelder-Mead and BFGS
optimizers (as in Section 4.2.1).
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4.3. Model Evaluation

4.3.1. Physical Constraints

To facilitate their use, we postulate that simple equations for cloud cover 𝒞(𝑋) ought to satisfy
certain physical constraints (Gentine et al. 2021; Kashinath et al. 2021): 1) The cloud cover
output should be between 0 and 100%; 2) an absence of cloud condensates should imply
an absence of clouds; 3-5) when relative humidity or the specific cloud water/ice contents
increase (keeping all other features fixed), then cloud cover should not decrease; 6) cloud
cover should not increase when temperature increases; 7) the function should be smooth on
the entire domain. We can mathematically formalize these physical constraints (PCs):

1) PC1: 𝒞(𝑋) ∈ [0, 100]%

2) PC2: (𝑞𝑐 , 𝑞𝑖) = 0 ⇒ 𝒞(𝑋) = 0

3) PC3: 𝜕𝒞(𝑋)/𝜕RH ≥ 0

4) PC4: 𝜕𝒞(𝑋)/𝜕𝑞𝑐 ≥ 0

5) PC5: 𝜕𝒞(𝑋)/𝜕𝑞𝑖 ≥ 0

6) PC6: 𝜕𝒞(𝑋)/𝜕𝑇 ≤ 0

7) PC7: 𝒞(𝑋) is a smooth function

While these physical constraints are intuitive, they will not be respected by data-driven cloud
cover schemes if they are not satisfied in the data. In the DYAMOND data, the first physical
constraint is always satisfied, and PC2 is satisfied in 99.7% of all condensate-free samples.
The remaining 0.3% are due to noise induced during coarse-graining. In order to check
whether PC3–PC6 are satisfied in our subset of the coarse-grained DYAMOND data, we extract
{𝑞𝑐 , 𝑞𝑖 ,RH, 𝑇}. We then separate the variable whose partial derivative we are interested in.
Bounded by the min/max-values of the remaining three variables, we define a cube in this
three-dimensional space, which we divide into 𝑁3 equally-sized cubes. In this way, the three
variables of the samples within the cubes become more similar with increasing 𝑁 . If we now
fit a linear function in a given cube with the separated variable as the inputs and cloud cover
as the output, then we can use the sign of the function’s slope to know whether the physical
constraint is satisfied.

On one hand, the test is more expressive the smaller the cubes are, as the samples have more
similar values for three of the four chosen variables and we can better approximate the partial
derivative with respect to the separated variable. However, we only guarantee similarity in
three variables (omitting, e.g., pressure). On the other hand, as the size of the cubes decreases,
so does the number of samples contained in a cube, and noisy samples may skew the results.
We therefore only consider the cubes that contain a sufficiently large number of samples (at
least 104 out of the 2.9 · 108).
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Table 4.1.: The percentage of data cubes that fulfill a given physical constraint. Only the cubes with
a sufficiently large amount of samples are taken into account. The last column shows
the proportion of cubes (across all sizes we consider) in which the constraint is satisfied
on average. Adapted with permission from Grundner et al. (2023).

(Maximum) Number of data cubes

1 23 33 43 53 63 73 Average (%)
PC3 100 100 100 100 100 100 100 100
PC4 100 100 83 90 73 78 71 77.5
PC5 100 100 85 50 81 83 68 73.8
PC6 100 50 100 67 72 89 75 77.7

We collect the results in Table 4.1, and find that the physical constraint PC3 (with respect to
relative humidity) is always satisfied. The other constraints are satisfied in most (on average
76%) of the cubes. Thus, from the data we can deduce that the final cloud cover scheme should
satisfy PC1–PC3 in all and PC4–PC6 in most of the cases.

To enforce PC1, we always constrain the output to [0, 100]% before computing the MSE.
With the exception of the linear and polynomial SFS models, we already ensure PC1 during
training. For PC2, we can define cloud cover to be 0 if the grid cell is condensate-free. We can
combine PC1 and PC2 to define cloud fraction 𝒞 (in %) as

𝒞(𝑋) =
⎧⎪⎪⎨⎪⎪⎩

0, if 𝑞𝑖 + 𝑞𝑐 = 0

max{min{100 𝑓 (𝑋), 100}, 0}, otherwise,
(4.2)

and our goal is to learn the best fit for 𝑓 (𝑋). In the case of the Xu-Randall and Teixeira
schemes, ensuring PC2 is not necessary since they satisfy the constraint by design.

4.3.2. Performance Metrics

We use different metrics to train and validate the cloud cover schemes. We always train to
minimize the MSE, which directly measures the average squared mismatch of the predictions
𝑓 (𝑥𝑖) (usually set to be in [0, 100]%) and the corresponding true (cloud cover) values 𝑦𝑖 :

MSE def
=

1
𝑁

𝑁∑︂
𝑖=1

(𝒞(𝑥𝑖) − 𝑦𝑖)2. (4.3)

The coefficient of determination 𝑅2-value takes the variance of the output 𝑌 = {𝑦𝑖}𝑁𝑖=1 into
account:

𝑅2 def
= 1 − MSE

Var(𝑌) . (4.4)

To compare discrete univariate probability distributions𝑃 and𝑄, we use the Hellinger distance

𝐻(𝑃, 𝑄) def
=

1√
2
∥
√
𝑃 −

√︁
𝑄∥2. (4.5)
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As opposed to the Kullback-Leibler divergence, the Hellinger distance between two distribu-
tions is always symmetric and finite (in [0, 1]).

As our measure of complexity we use the number of (free/tunable/trainable) parameters of
a model. A clear limitation of this complexity measure is that, e.g., the expression 𝑓 (𝑥) = 𝑎𝑥

is considered as complex as 𝑔(𝑥) = sin(exp(𝑎𝑥)). However, in this study, most of our models
(i.e., the linear models, polynomials, and NNs) do not contain these types of nested operators.
Instead, each additional parameter usually corresponds to an additional term in the equation.
In the case of symbolic regression tools, operators are already taken into account (see Appendix
C.3) during the selection process, and we find that the number of trainable parameters suffices
to compare the complexity of our symbolic equations in their simplified forms. Finally, this
complexity measure is one of the few that can be used for both analytical equations and NNs.

4.3.3. Cloud Regime Based Evaluation

We define four cloud regimes based on air pressure 𝑝 and the total specific cloud condensate
𝑞𝑡 (cloud water plus cloud ice) content:

1. Low air pressure, little condensate (cirrus-type cloud regime)

2. High air pressure, little condensate (cumulus-type cloud regime)

3. Low air pressure, substantial condensate (deep convective-type cloud regime)

4. High air pressure, substantial condensate (stratus-type cloud regime)

Pressure or condensate values that are above their medians (78 787 Pa and 1.62 · 10−5 kg/kg)
are considered to be large, while values below the median are considered small. Each regime
has a similar amount of samples (between 35 and 60 million samples per regime). In this
simplified data split, based on Rossow and Schiffer (1991), air pressure and total specific cloud
condensate content serve as proxies for cloud top pressure and cloud optical thickness. These
regimes will help decompose model error to better understand the strengths and weaknesses
of each model, discussed in the following section.

4.4. Results

4.4.1. Performance on the Storm-Resolving (DYAMOND) Training Set

In this section, we train the models we introduced in Section 4.2 on the (coarse-grained)
DYAMOND training data and compare their performance and complexity on the DYAMOND
validation data. We start with the sequential feature selection’s results.

Feature Ranking

We perform 10 SFS runs for each linear model, polynomial, and NN from Section 4.2.3. Each
run varies the random training subset, which consists of 𝒪(105) samples in the case of NNs
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and 𝒪(106) samples in the case of polynomials (as polynomials are faster to train). We then
average the rank of a selected feature and note it down in brackets. We omit the average
rank if it is the same for each random subset. By 𝒫𝑑, 𝑑 ∈ {1, 2, 3} we denote polynomials
of degree 𝑑 (e.g., 𝒫1 groups linear models). The sequences in which the features are selected are

𝒫1: RH → 𝑇 → 𝜕𝑧RH → 𝑞𝑖[4.3] → 𝜕𝑧𝑧𝑝[4.7] → 𝑞𝑐 → 𝑈 → 𝜕𝑧𝑧𝑞𝑐 → 𝜕𝑧𝑞𝑣 → 𝑧𝑔

𝒫2: RH → 𝑇 → 𝑞𝑐𝑞𝑖 → RH𝜕𝑧RH → 𝑇𝜕𝑧RH[5.6] → 𝑞𝑣RH[6.4] → 𝑇RH[7.4] →
RH2[7.9] → 𝜕𝑧𝑞𝑣[9.2] → 𝑈[10.1]

𝒫3: RH → 𝑇 → 𝑞𝑐𝑞𝑖 → 𝑇2RH[4.4] → RH2[5.4] → 𝑇2[6.7] → RH𝜕𝑧RH[7.4] →
𝜕𝑧RH[8.3] → 𝑝2𝜕𝑧𝑧𝑝[8.8] → 𝑇𝜕𝑧RH[9.4]

NNs: RH → 𝑞𝑖 → 𝑞𝑐 → 𝑇[4.1] → 𝜕𝑧RH[4.9] → 𝜕𝑧𝑧𝑝[6.7] → 𝜕𝑧𝑝[8.1] →
𝜕𝑧𝑧RH[8.3] → 𝜕𝑧𝑇[10.0] → 𝑝𝑠[10.1]

Regardless of the model, the selection algorithm chooses relative humidity as the most
informative feature for predicting cloud cover. This is consistent with, e.g., Walcek (1994),
who considers relative humidity to be the best single indicator of cloud cover in most of the
troposphere. Considering that the cloud cover in the high-resolution data was only derived
from the specific cloud condensate content, the models’ prioritization of relative humidity is
quite remarkable. From the feature sequences, we can also deduce that cloud cover depends
on the specific content of cloud condensates in a very nonlinear way: The polynomials choose
𝑞𝑖𝑞𝑐 as their third feature and do not use any other terms containing 𝑞𝑖 or 𝑞𝑐 . The NNs choose
𝑞𝑖 and 𝑞𝑐 as their second and third features, and are able to express a nonlinear function of
these two features. The linear model cannot fully exploit 𝑞𝑖 and 𝑞𝑐 and hence attaches less
importance to them.

Since RH and 𝑇 are chosen as the most informative features for the linear model, we can
derive a notable linear dependence of cloud cover on these two features (the corresponding
model being 𝑓 (RH, 𝑇) = 41.31RH − 15.54𝑇 + 44.63). However, given the possibility, higher
order terms of 𝑇 and RH are chosen as additional predictors over, for instance, 𝑝 or 𝑞𝑣 . Finally,
𝜕𝑧RH is an important recurrent feature for all models. Depending on the model, the coefficient
associated with 𝜕𝑧RH can be either negative or positive. If 𝜕𝑧RH ≠ 0, one can assume some
variation of cloud cover (i.e., cloud area fraction) vertically within the grid cell. Thus, 𝜕𝑧RH is a
meaningful proxy for the subgrid vertical variability of cloud area fraction. Since the effective
cloud area fraction of the entire grid cell is related to the maximum cloud area fraction at a
given height within the grid cell, this could explain the significance of 𝜕𝑧RH.

Balancing Performance and Complexity

In Figure 4.2, we depict all of our models in a performance × complexity plane. We measure
performance as the MSE on the validation (sub)set of the DYAMOND data and use the number
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of free parameters in the model as our complexity metric. We add the Pareto frontier, defined to
pass through the best-performing models of a given complexity. The SFS sequences described
above are used to train the SFS models of the corresponding type. The only exception is the
swapped order of 𝜕𝑧𝑝 and 𝜕𝑧𝑧𝑝 for the NNs, as we base the sequence shown in Figure 4.2 on
a single SFS run. For the SFS NNs with 4-7 features, it was possible to reduce the number
of layers and hidden units without significant performance degradation, which reduced the
number of free parameters by about an order of magnitude and put them on the Pareto frontier.

For most models, we train a second version that does not need to learn that condensate-
free cells are always cloud-free, but for which the constraint is embedded by equation (4.2).
For such models, condensate-free cells are removed from the training set. In addition to the
schemes of Xu-Randall and Teixeira (see Section 4.3.1), we find that it is also not necessary
to enforce PC2 in the case of NNs, since they are able to learn PC2 without degrading their
performance. PC1 is always enforced by default for all models.

We find that, even though the Sundqvist and Teixeira schemes are also tuned to the training
set, linear models of the same complexity outperform them. However, these linear models
do not lie on the Pareto frontier either. The lower performance of the Teixeira scheme is most
likely due to the fact that it was developed for subtropical boundary layer clouds. Its MSE
experiences a reduction (to 290 (%)2) when evaluated exclusively within the subtropics (from
23.4 to 35 degrees north and south). Among the existing schemes, only the Xu-Randall scheme
with its two tuning parameters set to {𝛼, 𝛽} = {0.9, 9 · 105} is on the Pareto frontier as the
simplest model. With relatively large values for 𝛼 and 𝛽, cloud cover is always approximately
equal to relative humidity (i.e., 𝒞 ≈ RH0.9) when clouds are present. The next models on the
Pareto frontier are third-order SFS polynomials 𝒫3 with 2-6 features with PC2 enforced. To
account for the bias term and the output of the polynomial being set to zero in condensate-free
cells, the number of their parameters is the number of features plus 2. We then pass the line
with 𝑅2 = 0.9 and find three symbolic regression fits on the Pareto frontier, each trained on the
five most informative features for the SFS NNs. All symbolic regression equations that appear
in the plot are listed in Appendix C.4. We will analyze the PySR equation with arguably the
best tradeoff between complexity (11 free parameters when phrased in terms of normalized
variables) and performance (𝑀𝑆𝐸 = 103.95 (%)2) in Section 4.5. The remaining models on the
Pareto frontier are SFS NNs with 4-10 features and finally the NN with all 24 features defined
in Section 4.1.1 included (𝑀𝑆𝐸 = 30.51 (%)2).

Interestingly, the (quasi-local) 24-feature NN is able to achieve a slightly lower MSE
(30.51 (%)2) than the (non-local) column-based NN (33.37 (%)2) with its 163 features. The two
aspects that benefit the 24-feature NN are the additional information on the horizontal wind
speed𝑈 and its derivatives, and the smaller number of condensate-free cells in its training set
due to undersampling (Section 4.1.1 and 4.2.1). The SFS NN with 10 features already shows
very similar performance (𝑀𝑆𝐸 = 34.64 (%)2) to the column-based NN with a (12 times)
smaller complexity and fewer, more commonly accessible features.

Comparing the small improvements of the linear SFS models (up to 𝑀𝑆𝐸 = 250.43 (%)2)
with the larger improvements of SFS polynomials (up to 𝑀𝑆𝐸 = 190.78 (%)2) with increas-
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Figure 4.2.: All models described in Section 4.2 in a performance × complexity plot. The dashed
vertical lines mark the 𝑅2 = 0.95- and 𝑅2 = 0.9-boundaries. Models marked with a
cross satisfy the second physical constraint PC2 (using equation (4.2)). Only the best
PySR and GP-GOMEA symbolic regression fits are shown. The NNs in cyan are the
column-, neighborhood- and cell-based NNs when read from left to right. The SFS
NN with the lowest mean squared error contains all 24 features described in Section
4.1.1. For the SFS NNs, the last added feature is specified in curly brackets. Since
the validation mean squared error of the SFS NNs decreases with additional features,
we can extract the features for a given SFS NN by reading from right to left (e.g., the
features of the SFS NN marked with {𝑞𝑐} are {𝑞𝑖 , 𝑞𝑐 ,RH}). Adapted with permission
from Grundner et al. (2023).
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ing complexity, it can be deduced that it is beneficial to include nonlinear terms instead of
additional features in a linear model. For example, NNs require only three features to pre-
dict cloud cover reasonably well (𝑅2 = 0.933), and five features are sufficient to produce an
excellent model (𝑅2 = 0.962) because they learn to nonlinearly transform these features.

The PySR equations can estimate cloud cover very well (𝑅2 ∈ [0.935, 0.940]). However, while
the PySR equations depend on five features, the NNs are able to outperform them with as few
as four features (𝑅2 = 0.944). This suggests that the NNs learn better functional dependencies
than PySR, as they do better with less information. However, the improved performance of
the NNs comes at the cost of additional complexity and greatly reduced interpretability.

4.4.2. Split by Cloud Regimes

In this section, we divide the DYAMOND dataset into the four cloud regimes introduced in
Section 4.3.3. In Figure 4.3, we compare the cloud cover predictions of Pareto-optimal models
(on Figure 4.2’s Pareto frontier) with the actual cloud cover distribution in these regimes. We
evaluate the models located at favorable positions on the Pareto frontier (at the beginning to
maximize simplicity, at the end to maximize performance, or on some corners to optimally
balance both). Of the two PySR equations, we consider the one with the lowest MSE (as in
Section 4.5 later). Furthermore, we explore benefits that arise from training on each cloud
regime separately and whether using a different feature set for each regime could ease the
transition between regimes.

In general, we find that the PySR equation (except in the cirrus regime) and the 6-feature NN
can reproduce the distributions quite well (Hellinger distances < 0.05), while the 24-feature
NN shows excellent skill (Hellinger distances ≤ 0.015). However, all models have difficulty
predicting the number of fully cloudy cells in all regimes (especially in the regimes with fewer
cloud condensates).

Focusing first on the predictions of the Xu-Randall scheme, we find that the distributions
exhibit prominent peaks in each cloud regime. By neglecting the cloud condensate term and
equating RH with the regime-based median, we can approximately re-derive these modes
of the Xu-Randall cloud cover distributions in each regime using the Xu-Randall equation
(2.2). With our choice of 𝛼 = 0.9, this mode is indeed very close (absolute difference at most
8% cloud cover) to the median relative humidity calculated in each regime. By increasing 𝛼,
we should therefore be able to push the mode above 100% cloud cover and thus remove the
spurious peak. However, this comes at the cost of increasing the overall MSE of the Xu-Randall
scheme.

For the PySR equation (and also the 24-feature NN), the cirrus regime distribution is the
most difficult to replicate. The Hellinger distances suggest that it is the model’s functional
form, and not its number of features that limits model performance in the cirrus regime.
Indeed, the decrease in the Hellinger distance between the PySR equation and the 6-feature
NN is larger (0.049) than the decrease between the 6- and the 24-feature NN (0.02). Technically,
the PySR equation has the same features as the 5-feature and not the 6-feature NN, but the
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Figure 4.3.: Predicted cloud cover distributions of selected Pareto-optimal models evaluated on
the DYAMOND data, divided into four different cloud regimes. The numbers in the
upper left indicate the Hellinger distance between the predicted and the actual cloud
cover distributions for each model and cloud regime. Adapted with permission from
Grundner et al. (2023).

Hellinger distances of these two NNs to the actual cloud cover distribution are almost the
same (difference of 0.003 in the cirrus regime). We want to note here that, while the PySR
equation features a large Hellinger distance, it actually achieves its best 𝑅2 score (𝑅2 = 0.84)
in the cirrus regime as the coefficient of determination takes into account the high variance
of cloud cover in the cirrus regime. In the condensate-rich regimes, the PySR equation is as
good as the 6-feature NN and even able to outperform it on the stratus regime. To improve
the PySR scheme further in terms of its predicted cloud cover distributions, and combat its
underestimation of cloud cover in the cirrus regime, we now explore the effect of focusing on
the regimes individually. By training SFS NNs just like in Section 4.4.1 but now on each cloud
regime separately, we find new feature rankings:
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Cirrus regime: 𝑞𝑖 → RH → 𝑇[3.4] → 𝜕𝑧RH → 𝜕𝑧𝑧RH[6.4]
Cumulus regime: 𝑞𝑖 → 𝑞𝑐 → RH → 𝜕𝑧RH[4.5] → 𝜕𝑧𝑧𝑝[5.1]

Deep convective regime: RH → 𝑇 → 𝜕𝑧RH → 𝑝𝑠[5.5] → 𝜕𝑧𝑧RH[5.6]
Stratus regime: RH → 𝜕𝑧RH → 𝜕𝑧𝑧𝑝 → 𝜕𝑧𝑧RH[5.9] → 𝑞𝑐[6.3]

By rerunning PySR within each regime and allowing its discovered equations to depend
on the newly found five most important features, we find equations that are better able to
predict the distributions of cloud cover. In Appendix C.5, we present one of the equations
per regime that strikes a good balance between performance and simplicity and show the
predicted distributions of cloud cover.

As expected, cloud water is not an informative variable in the cirrus regime (with an average
rank of 9.5). Based on 𝑞𝑖 , RH and 𝑇 alone, we are able to discover equations that reduce the
number of cloud-free predictions and improve the distributions for low cloud cover values
(Hellinger distances of ≈ 0.05). We do not attribute these improvements to new input features,
but rather to the ability of the equation to adopt a novel structure. Similarly, the features
𝑞𝑖 , 𝑞𝑐 and RH are sufficient to decrease the Hellinger distance from 0.049 to 0.041 within the
cumulus regime.

In the condensate-rich regimes (deep convective and stratus), cloud water and/or ice are
already present, making the exact amount of cloud condensates less pertinent. By focusing
on the three most significant features RH, 𝑇 and 𝜕𝑧RH, we find equations with an enhanced
distribution of cloud cover within the deep convective regime (with Hellinger distances of
only 0.02). The equations specific to the deep convective regime display strong nonlinearity,
with the equation selected in Appendix C.5 including a fourth-order polynomial of relative
humidity and temperature. While the five most important features of the stratus regime
also differ from the SFS NN features of Section 4.4.1, we were not able to improve upon the
Hellinger value of our single PySR equation through exclusive training within the stratus
regime. A notable aspect of the stratus regime is the increased significance of 𝜕𝑧RH, which is
discussed later (see Section 4.5.2).

While the approach of deriving distinct equations tailored to each cloud regime, emphasiz-
ing regime-specific features, holds potential for improving predicted cloud cover distributions,
the resulting MSE across the entire dataset is lower (≈ 113 (%)2) compared to our chosen single
PySR equation (≈ 104 (%)2). Moreover, the number of free parameters increases to 33, which
is three times the count of our single PySR equation. Lastly, formulating distinct equations
for each cloud regime requires special attention at the regime boundaries to ensure continuity
across the entire domain. Therefore, we henceforth focus on equations that generalize across
cloud regimes.
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Figure 4.4.: Selected Pareto-optimal models evaluated on DYAMOND data (Aug 11-20, 2018),
coarse-grained horizontally to three different resolutions. Only data below an altitude
of 21 km is considered. Adapted with permission from Grundner et al. (2023).

4.4.3. Transferability to Different Climate Model Horizontal Resolutions

Designing data-driven models that are not specific to a given Earth system model and a given
grid is challenging. Therefore, in this section, we aim to determine which of our selected
Pareto-optimal ML models are most general and transferable. We explore the applicability of
our schemes at higher resolutions, nowadays also typical for climate model simulations.

To evaluate the performance of our models at higher resolutions, we coarse-grain some
of the DYAMOND data to horizontal resolutions of ≈ 20 km (R2B7) and ≈ 40 km (R2B6) to
complement our coarse-grained dataset at ≈ 80 km (R2B5). For simplicity, in this section,
we omit any coarse-graining in the vertical and do not retune the schemes for the higher
resolutions. In Figure 4.4 we present 𝑅2-values for each resolution for the same models as in
the previous section. We note that the lack of vertical coarse-graining can explain the slight
decrease in performance on 80 km when compared to the results depicted in Figure 4.2.

We observe a clear, almost linear, tendency of all schemes to improve their 𝑅2-score on
the coarse-grained datasets as we increase the resolution. The increasing standard deviation
𝜎 of cloud cover by ≈ 1.6% per doubling of the resolution (with 𝜎 ≈ 23.8% at 80 km) is
not sufficient to explain this phenomenon. On the one hand, we find these improvements
surprising, considering that the schemes were trained at a resolution of 80 km. On the other
hand, at the low resolution of 80 km, the inputs are averaged over wide horizontal regions
and bear very little information about how much cloud cover to expect. At higher resolution,
large-scale variables and cloud cover are more closely related. Cloud water and ice reach
larger values and become more informative for cloud cover detection. This is evident in
the Xu-Randall scheme, which relies heavily on cloud condensates and shows a significant
increase in its ability to predict cloud cover at higher resolutions. Our analysis reveals that
the most skillful schemes at 20 km are the 6-feature NN and our chosen PySR equation. The
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Figure 4.5.: Performance of DYAMOND-trained Pareto-optimal cloud cover schemes on the ERA5
dataset after transfer learning. The labels on the x-axis denote how many grid columns
taken across how many time steps make up the transfer learning training set. Each set-
ting is run with six different random seeds and the diamond-shaped markers indicate
the respective medians. Adapted with permission from Grundner et al. (2023).

24-feature NN relies on many first- and second-order vertical derivatives in its input, so its
deteriorated performance could be an artifact of not vertically coarse-graining the data in this
section.

Overall, the schemes exhibit a noteworthy capacity to be applied at higher resolutions than
those used during their training.

4.4.4. Transferability to Meteorological Reanalysis (ERA5)

To our knowledge, there is no systematic method to incorporate observations into ML param-
eterizations for climate modeling. In this section, we take a step towards transferring schemes
trained on SRMs to observations by analyzing the ability of the Pareto-optimal schemes to
transfer learn the ERA5 meteorological reanalysis from the DYAMOND set.

To do so, we take a certain number (either 1 or 100) of random locations, and collect the
information from the corresponding grid columns of the ERA5 data over a certain number
of time steps in a dataset 𝒯 . Starting from the parameters learned on the DYAMOND data,
we retrain the cloud cover schemes on 𝒯 and evaluate them on the entire ERA5 dataset. In
other words, the free parameters of each cloud cover scheme are retuned on 𝒯 . The retuning
method is the same as the original training method, the difference being that the initial model
parameters were learned on the DYAMOND data. We can think of 𝒯 as mimicking a series
of measurements at these random locations, which help the schemes adjust to the unseen
dataset. Figure 4.5 shows the MSE of the Pareto-optimal cloud cover schemes on the ERA5
dataset after transfer learning on datasets 𝒯 of different sizes.
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The first columns of the three panels show no variability because the schemes are applied
directly to the ERA5 data without any transfer learning (𝒯 = ∅). None of the schemes perform
well without transfer learning (𝑅2 < 0.15), which is expected given the different distributions
of cloud ice and water between the DYAMOND and ERA5 datasets (Figure 4.1). That being
said, the SFS NNs retain their superior performance (MSE ≈ 300 (%)2 without retraining),
especially compared to the non-retrained SFS polynomials, which exhibit MSEs in the range
of 1375 ± 55 (%)2 and are therefore not shown in Panel c.
For most schemes, performance increases significantly after seeing one grid column of ERA5
data, with the exception of the SFS NNs with more than 6 features and the GPGOMEA
equation. The performance of the GPGOMEA equation varies greatly between the selected
grid columns, and the SFS NNs with many features appear to underfit the small transfer
learning training set. The models with the lowest MSEs are (1) the slightly more complex of
the two PySR equations (median MSE = 148 (%)2); and (2) the SFS NNs with 5 and 6 features
(median MSE = 200 (%)2). While we cannot confirm that fewer features (5-6 features) help
with off-the-shelf generalizability of the SFS NNs, they do improve the ability to transfer learn
after seeing only a few samples from the ERA5 data.

After increasing the number of time steps to be included in 𝒯 to 32 (corresponding to one
year of our preprocessed ERA5 dataset), the performances of the models start to converge and
the SFS NNs with 5 and 6 features and its large number of trainable parameters outperform
the PySR equation (with median ΔMSE ≈ 35 (%)2). From the last column we can conclude that
a 𝒯 consisting of 100 columns from all available time steps is sufficient for the ERA5 MSE of all
schemes to converge. Remarkably, the order from best- to worst-performing model is exactly
the same as it was in Figure 4.2 on the DYAMOND dataset. Thus, we find that the ability
to perform well on the DYAMOND dataset is directly transferable to the ability to perform
well on the ERA5 dataset given enough data, despite fundamental differences between the
datasets.

A useful property of a model is that it is able to transfer learn what it learned over an
extensive initial dataset after tuning only on a few samples. We can quantify the ability to
transfer learn with few samples in two ways: First, we can directly measure the error on the
entire dataset after the model has seen only a small portion of the data (in our case the ERA5
MSEs of the 1/1-column). Second, if this error is already close to the minimum possible error
of the model, then few samples are really enough for the model to transfer learn to the new
dataset (in our case, the difference of MSEs in the 1/1-column and the 100/1368-column). In
terms of the first metric (MSEs in (%)2), the leading five models are the more complex PySR
equation (147.6), the 5- and 6-feature NNs (199.6/199.8), the simpler PySR equation (216.8),
and the 6-feature polynomial (254.6). In terms of the second metric (difference of MSEs in
(%)2), the top five models are again the more complex PySR equation (86.0), the 6-, 5-, and
4-feature polynomials (149.1/149.4/150.5), and the simpler PySR equation (152.3). If we add
both metrics, weighing them equally, then the more complex PySR equation has the lowest
inability to transfer learn with few samples (233.7), followed by the simpler PySR equation
(369.1) and the 5- and 6-feature SFS NNs (370.5/374.5, where all numbers have units (%)2).
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As the more complex PySR equation is leading in both metrics, we can conclude that it is most
able to transfer learn after seeing only one column of ERA5 data, and we further investigate
its physical behavior in the next section.

4.5. Physical Interpretation of the Best Analytical Scheme

We find that the two PySR equations on the Pareto frontier (see Figure 4.2) achieve a good
compromise between accuracy and simplicity. Both satisfy most of the physical constraints
that we defined in Section 4.3.1. In this section, we analyze the (more complex) PySR equation
with a lower validation MSE as we showed that it generalized best to ERA5 data (see Figure
4.5). We also conclude that the decrease in MSE is substantial enough (ΔMSE = 3.04 (%)2) to
warrant the analysis of the (one parameter) more complex equation. The equation for the case
with condensates can be phrased in terms of physical variables as

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = 𝐼1(RH, 𝑇) + 𝐼2(𝜕𝑧RH) + 𝐼3(𝑞𝑐 , 𝑞𝑖), (4.6)

where

𝐼1(RH, 𝑇) def
= 𝑎1 + 𝑎2(RH − RH) + 𝑎3(𝑇 − 𝑇) + 𝑎4

2 (RH − RH)2 + 𝑎5
2 (𝑇 − 𝑇)2(RH − RH)

𝐼2(𝜕𝑧RH) def
= 𝑎3

6

(︃
𝜕𝑧RH + 3𝑎7

2

)︃
(𝜕𝑧RH)2

𝐼3(𝑞𝑐 , 𝑞𝑖)
def
=

−1
𝑞𝑐/𝑎8 + 𝑞𝑖/𝑎9 + 𝜖

.

To compute cloud cover in the general case, we plug equation (4.6) into equation (4.2), enforcing
the first two physical constraints (𝒞(𝑋) ∈ [0, 100]% and in condensate-free cells 𝒞(𝑋) = 0). On
the DYAMOND data we find the best values for the coefficients to be

{𝑎1 , . . . , 𝑎9 , 𝜖} = {0.4435, 1.1593,−0.0145 K−1 , 4.06, 1.3176 · 10−3 K−2 ,

584.8036 m, 2 km−1 , 1.1573 mg/kg, 0.3073 mg/kg, 1.06}.

Additionally, RH = 0.6025 and𝑇 = 257.06 K are the average relative humidity and temperature
values of our training set.

In this section, we use our symbolic model to elucidate the fundamental physical compo-
nents that facilitate the parameterization of cloud cover from storm-resolution data, following
the themes outlined in the subsequent subsections.

4.5.1. Relative Humidity and Temperature Drive Cloud Cover, Especially in
Condensate-Rich Environments

The function 𝐼1(RH, 𝑇) can be phrased as a Taylor expansion to third order around the point
(RH, 𝑇) = (RH, 𝑇). The first coefficient 𝑎1 specifies 𝐼1’s contribution to cloud cover for average
relative humidity and temperature values, i.e., 𝑎1 = 𝐼1

(︂
RH, 𝑇

)︂
. While 𝒞(𝑋) = 𝑎1 100% at
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Figure 4.6.: Top row: 1D- or 2D-plots of the three terms 𝐼1 , 𝐼2 , 𝐼3 as functions of their inputs. In
Panels a and b, the axis-values are bound by the respective minima and maxima in
the DYAMOND dataset, while those minima/maxima were divided by 5000 in Panel
c. The vertical black lines indicate the region of values covered by Panels d-g. Bottom
row: Conditional average plots of cloud cover with respect to relative humidity and
temperature (Panels d-f) or 𝜕𝑧RH (Panel g). Adapted with permission from Grundner
et al. (2023).

(RH, 𝑇) if 𝐼2 ≈ 𝐼3 ≈ 0, the 𝐼3-term dominates when cloud condensates are absent, setting
𝒞(𝑋) to 0. The following two parameters 𝑎2 and 𝑎3 are the partial derivatives of equation
(4.6) at (RH, 𝑇) w.r.t. relative humidity and temperature, i.e., 𝑎2 = (𝜕𝐼1/𝜕RH)|(RH,𝑇) and
𝑎3 = (𝜕𝐼1/𝜕𝑇)|(RH,𝑇). As 𝑎2 is positive, cloud cover generally increases with relative humidity
(see Figure 4.6a and 4.7a). To ensure PC3 (𝜕𝒞/𝜕RH ≥ 0) in all cases, we replace RH with

max{RH, 𝑐1 − 𝑐2(𝑇 − 𝑇)2}, (4.7)

where 𝑐1 = RH − 𝑎2/𝑎4 ≈ 0.317 and 𝑐2 = 𝑎5/(2𝑎4) ≈ 1.623 · 10−4 K−2. We derive equation (4.7)
by solving 𝜕 𝑓 /𝜕RH = 0 for RH. Condition (4.7) of replacing RH triggers in roughly 1% of
our samples. It ensures that cloud cover does not increase when decreasing relative humidity
in cases of low relative humidity and average temperature (see Figure 4.7). Modifying the
equation (4.6) in such a way does not deteriorate its performance on the DYAMOND data.
Figure 4.7b illustrates how the modification ensures PC3 in an average setting (in particular
for 𝑇 = 𝑇). It would be difficult to apply a similar modification to the NN, which in our case
violates PC3 for RH > 0.95. We can also directly identify another aspect of equation (4.6): the
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absence of a minimum value of relative humidity, below which cloud cover must always be
zero (the critical relative humidity threshold).

Since 𝑎3 = (𝜕𝐼1/𝜕𝑇)|(RH,𝑇) is negative, cloud cover typically decreases with temperature for
samples of the DYAMOND dataset (see Figure 4.6f)). However, 𝐼1 does not ensure the PC6

(𝜕𝒞/𝜕𝑇 ≤ 0) constraint everywhere. For instance, in the hot limit lim𝑇→∞ 𝐼1(RH, 𝑇), whether
conditions are entirely cloudy or cloud-free depends upon relative humidity (in particular,
whether RH > RH).

The coefficient 𝑎4 = (𝜕2𝐼1/𝜕RH2)|(RH,𝑇) is precisely the curvature of 𝐼1 w.r.t. RH, causing the
equation to flatten with decreasing RH (taking (4.7) into account). It is consistent with the
Sundqvist scheme that changes of relative humidity have a larger impact on cloud cover for
larger relative humidity values. The final coefficient 𝑎5 of 𝐼1 is a third-order partial derivative
of 𝐼1 w.r.t. 𝑇 and RH. More precisely,

𝑎5 =

(︃
𝜕3𝐼1

𝜕𝑇2𝜕𝑅𝐻

)︃|︁|︁|︁|︁
(RH,𝑇)

.

The corresponding term becomes important whenever the temperature and relative humidity
deviate strongly from their mean. In the upper or lower troposphere, where temperature
conditions differ from the average tropospheric temperature, the 𝑎5-term either further in-
creases cloud cover in wet conditions (e.g., the tropical lower troposphere) or decreases it in
dry conditions (e.g, in the upper troposphere or over the Sahara). The contribution of the
𝑎5-term for selected vertical layers is illustrated in the second row of Figure C.1. When fit to
the ERA5 data, the coefficients of the linear terms are found to be stable, while the emphasis
on the nonlinear terms is somewhat decreased; 𝑎4 is 1.53 and 𝑎5 is 2.5 times smaller.

4.5.2. Vertical Gradients in Relative Humidity and Stratocumulus Decks

The second function 𝐼2(𝜕𝑧RH) is a cubic polynomial of 𝜕𝑧RH. Its magnitude is controlled by
the coefficient 𝑎6. If 𝑎6 were 50% smaller (which it is when fit to ERA5 data), it would decrease
the absolute value of 𝐼2 by 87.5%. We introduce a prefactor of 1.5 for 𝑎7 so that −𝑎7 describes
a local maximum of 𝐼2 (found by solving 𝐼′2(𝜕𝑧𝑅𝐻) = 0). We will now focus on the reason for
this distinct peak of 𝐼2 ≈ 0.8 at 𝜕𝑧𝑅𝐻 = −𝑎7.
Removing the 𝐼2-term, we find that the induced prediction error is largest, on average, in
situations that are i) relatively dry (RH ≈ 0.6), ii) close to the surface (𝑧 ≈ 1000m), iii) over
water (land fraction ≈ 0.1), iv) characterized by an inversion (𝜕𝑧𝑇 ≈ 0.01 K/m), and v) have
small values of 𝜕𝑧RH (𝜕𝑧RH ≈ −2 km−1

= −𝑎7; compare also to the cloud cover peak in Figure
4.6g). Using our cloud regimes of Section 4.4.2, we find the average absolute error is largest in
the stratus regime (4% cloud cover). Indeed, by plotting the globally averaged contributions
of 𝐼1, 𝐼2 and 𝐼3 on a vertical layer at about 1500 m altitude (Figure C.1), we find that 𝐼2 is most
active in regions with low-level inversions where marine stratocumulus clouds are abundant
(Mauritsen et al. 2019). From this, we can infer that the SFS NN has chosen 𝜕𝑧RH as a useful
predictor to detect marine stratocumulus clouds and the symbolic regression algorithm has
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Figure 4.7.: Panel a: Contour plot of 𝜕𝑅𝐻 𝑓 as a function of relative humidity and temperature.
The contour marks the boundary where 𝜕𝑅𝐻 𝑓 = 0. Panel b: Predictions of the PySR
equation (4.6) with and without the modification (4.7) as a function of relative humidity.
For comparison, the predictions of the SFS NN with 24 features are shown. The
other features are set to their respective mean values. Adapted with permission from
Grundner et al. (2023).

found a way to express this relationship mathematically. It is more informative than 𝜕𝑧𝑇

(rank 10 in Section 4.4.1), which would measure the strength of an inversion more directly.
Indeed, stratocumulus-topped boundary layers exhibit a sharp increase in temperature and a
sharp decrease in specific humidity between the cloud layer to the inversion layer. Studies by
Nicholls (1984) and Wood (2012) reveal a notable temperature increase of approximately 5–6 K
and a specific humidity decrease of about 4–5 g/kg. In ICON’s grid with a vertical spacing of
≈ 300 m at an altitude of 1000–1500 m, the decrease in relative humidity would attain values of
≈ −2.5 km−1. It is important to note that the vertical grid may not precisely separate the cloud
layer from the inversion layer, making it reasonable to maximize the parameter 𝐼2 at a relative
humidity gradient of 𝜕𝑧RH = −2 km−1. Vertical gradients of relative humidity below −3 km−1

are extremely sporadic and confined to the lowest portion of the planetary boundary layer,
where the vertical spacing between grid cells can get very small. In such cases, the attenuating
effect of 𝐼2 is unlikely to have significant physical causes. In contrast, vertical relative humidity
gradients exceeding 1 km−1 are common in the marine boundary layer due to evaporation and
vertical mixing of moist air in the boundary layer. In this context, 𝐼2 generally increases cloud
cover which aligns with the fact that cloud cover is typically 5–15% greater over the ocean
compared to land (Rossow and Schiffer 1999). With the estimated values for 𝑎6 and 𝑎7, relative
humidity would need to increase by 10% over a height of 260 m to increase cloud cover by
10%.
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4.5.3. Understanding the Contribution of Cloud Condensates to Cloud Cover

The third function 𝐼3(𝑞𝑐 , 𝑞𝑖) is always negative and decreases cloud cover where there is little
cloud ice or water. It ensures that PC4 and PC5 are always satisfied. First of all, in condensate-
free cells, 𝜖 serves to avoid division by zero while also decreasing cloud cover by 100%.
Furthermore, the values of 𝑎8 or 𝑎9 indicate thresholds for cloud water/ice to cross to set 𝐼3
closer to zero. When tuned to the ERA5 dataset, the values for both 𝑎8 and 𝑎9 are roughly
six times larger, making the equation less sensitive to cloud condensates. As larger values for
cloud water are more common for cloud ice, we already expect 𝐼3 to be more sensitive to cases
when cloud ice actually does appear. By comparing the distributions of cloud ice/water at
the storm-resolving scale, we provide a more rigorous derivation in Appendix C.2 for why 𝑎9

should indeed be smaller than 𝑎8. A simple explanation is that we usually find ice clouds in
the upper troposphere, where convection is associated with divergence, causing the clouds to
spread out more.

Given that equation (4.6) is a continuous function, the continuity constraint PC7 is only
violated if and only if the cloud cover prediction is modified to be 0 in the condensate-
free regime (by equation (4.2)), and would be positive otherwise. The value of 𝜖 dictates
how frequently the cloud cover prediction needs to be modified. In the limit 𝜖 → 0 we could
remove the different treatment of the condensate-free case. In our dataset, equation (4.6) yields
a positive cloud cover prediction in 0.35% of condensate-free samples. Thus, the continuity
constraint PC7 is almost always satisfied (in 99.65% of our condensate-free samples).

4.5.4. Ablation Study Confirms the Importance of Each Term

To convince ourselves that all terms/parameters of equation (4.6) are indeed relevant to its
skill, we examine the effects of their removal in an ablation study (Figure 4.8). We found that
for the results to be meaningful, removing individual terms or parameters requires readjusting
the remaining parameters; in a setting with fixed parameters the removal of multiple param-
eters often led to better outcomes than the removal of a single one of them. The optimizers
(BFGS and Nelder-Mead) used to retune the remaining parameters show different success
depending on whether the removal of terms is applied to the equation formulated in terms
of normalized or physical features (the latter being equation (4.6)). Therefore, each term is
removed in both formulations, and the better result is chosen each time. To ensure robustness
of the results, this ablation study is repeated for 10 different seeds on subsets with 106 data
samples.
We find that the removal of any individual term in equation (4.6) would result in a notice-
able reduction in performance on the DYAMOND data (Δ𝑀𝑆𝐸 ≥ 3.4 (%)2 in absolute and
(𝑀𝑆𝐸𝑎𝑏𝑙 −𝑀𝑆𝐸 𝑓 𝑢𝑙𝑙)/𝑀𝑆𝐸𝑎𝑏𝑙 ≥ 3.2% in relative terms). Even though Figure 4.6g) suggests a
cubic dependence of cloud cover on 𝜕𝑧RH, it is the least important term to include according
to Figure 4.8. Applied to the ERA5 data, we can even dispense with the entire 𝐼2 term. Further-
more, we find that the quadratic dependence on relative humidity can be largely compensated
by the linear terms. The most important terms to include are those with cloud ice/water and
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Figure 4.8.: Ablation study of equation (4.6) on the DYAMOND and ERA5 datasets. The re-
moval of the function 𝐼1 leads to a very large decrease of the mean squared error
(of 1300/763 (%)2) on the DYAMOND/ERA5 datasets and is therefore not shown.
Adapted with permission from Grundner et al. (2023).

the linear dependence on temperature. Coinciding with the SFS NN feature sequences in
Section 4.4.1, cloud ice (Δ𝑀𝑆𝐸 = 96/102 (%)2) is more important to take into account than
cloud water (Δ𝑀𝑆𝐸 = 88/63 (%)2), especially for the ERA5 dataset in which cloud ice is more
abundant (see Figure 4.1). More generally, out of the functions 𝐼1, 𝐼2, 𝐼3 we find 𝐼1(RH, 𝑇) to
be most relevant (Δ𝑀𝑆𝐸 = 1300/763 (%)2), followed by 𝐼3(𝑞𝑐 , 𝑞𝑖) (Δ𝑀𝑆𝐸 = 119/123 (%)2) and
lastly 𝐼2(𝜕𝑧RH) (Δ𝑀𝑆𝐸 = 18/0 (%)2), once again matching the order of features that the SFS
NNs had chosen.

4.6. Conclusion of the Second Study

In this study, we derive data-driven cloud cover parameterizations from coarse-grained global
storm-resolving simulation (DYAMOND) output. We systematically populate a performance
× complexity plane with interpretable traditional parameterizations and regression fits on
one side and high-performing NNs on the other. Modern symbolic regression libraries (PySR,
GPGOMEA) allow us to discover interpretable equations that diagnose cloud cover with
excellent accuracy (𝑅2 > 0.9). From these equations, we propose a new analytical scheme
for cloud cover (found with PySR) that balances accuracy (𝑅2 = 0.94) and simplicity (12
free parameters in the physical formulation). This analytical scheme satisfies six out of seven
physical constraints (although the continuity constraint is violated in 0.35% of our condensate-
free samples), providing the crucial third criterion for its selection. In a first evaluation,
the (5-feature) analytical scheme is on par with the 6-feature NN in terms of reproducing
cloud cover distributions (Hellinger distances < 0.05) in condensate-rich cloud regimes, yet
underestimating cloud cover more strongly in condensate-poor regimes. When applied to
higher resolutions than their training data we found that the cloud cover schemes further
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improve their performance. This finding opens up possibilities for leveraging their predictive
capabilities in domains with increased resolution requirements.

In addition to its interpretability, flexibility and efficiency, another major advantage of our
best analytical scheme is its ability to adapt to a different dataset (in our case, the ERA5
reanalysis product) after learning from only a few of the ERA5 samples in a transfer learning
experiment. Due to the small amount of free parameters and the initial good fit on the
DYAMOND data, our new analytical scheme outperforms all other Pareto-optimal models. We
found that as the number of samples in the transfer learning sets increases, the models converge
to the same performance rank on the ERA5 data as on the DYAMOND data, indicating strong
similarities in the nature of the two datasets that could make which dataset serves as the
training set irrelevant. In an ablation study, we found that further reducing the number of free
parameters in the analytical scheme would be inadvisable; all terms/parameters are relevant
to its performance on the DYAMOND data. Key terms include a polynomial dependence on
relative humidity and temperature, and a nonlinear dependence on cloud ice and water.

Our SFS approach with NNs revealed an objectively good subset of features for an un-
known nonlinear function: relative humidity, cloud ice, cloud water, temperature and the
vertical derivative of relative humidity (most likely linked to the vertical variability of cloud
cover within a grid cell). While the first four features are well-known predictors for cloud
cover, PySR also learned to incorporate 𝜕𝑧𝑅𝐻 in its equation. This additional dependence al-
lows it to detect thin marine stratocumulus clouds, which are difficult, if not impossible to infer
from exclusively local variables. These clouds are notoriously underestimated in the vertically
coarse climate models (Nam et al. 2012). In ICON-A this issue is somewhat attenuated by
multiplying, and thus increasing relative humidity in maritime regions by a factor depending
on the strength of the low-level inversion (Mauritsen et al. 2019). Using symbolic regression,
we thus found an alternative, arguably less crude approach, which could help mitigate this
long-standing bias in an automated fashion. However, we need to emphasize that in particu-
lar shallow convection is not yet properly resolved on kilometer-scale resolutions. Therefore,
shallow clouds such as stratocumulus clouds are still distorted in the storm-resolving simu-
lations we use as the source of our training data (Stevens et al. 2020). To properly capture
shallow clouds it could be advisable to further increase the resolution of the high-resolution
model, training on coarse-grained output from targeted large-eddy simulations (Stevens et al.
2005) or observations.

A crucial next step will be to test the cloud cover schemes when coupled to ESMs, including
the ICON-ESM. We decided to leave this step for future work for several reasons. First, our
focus was on the equation discovery methodology and the analysis of the discovered equa-
tion. Second, our goal was to derive a cloud cover scheme that is climate model-independent.
Designing a scheme according to its online performance within a specific climate model de-
creases the likelihood of inter-model compatibility as the scheme has to compensate the climate
model’s parameterizations’ individual biases. For instance, in ICON, the other parameteri-
zations would most likely need to be re-calibrated to adjust for current compensating biases,
such as clouds being ‘too few and too bright’ (Crueger et al. 2018). Third, the metrics used to
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validate a coupled model remain an active research area, and at this point, it is unclear which
targets must be met to accept a new machine learning based parameterization. That being
said, the superior transferability of our analytical scheme to the ERA5 reanalysis data not only
suggests its applicability to observational datasets, but also that it may be transferable to other
Earth system models.

In addition to inadequacies in our training data (see above), which somewhat exacerbate
the physical interpretation of the derived analytical equations, our current approach has some
limitations. Symbolic regression libraries are limited in discovering equations with a large
number of features. In many cases, five features are insufficient to uncover a useful data-
driven equation, requiring a reduction of the feature space’s dimensionality. To measure
model complexity, we use the number of free parameters, disregarding the number of features
and operators. Although the number of operators in our study is roughly equivalent to the
number of parameters, this may not hold in more general applications and the complexity of
individual operators would need to be specified (as in Appendix C.3).

Our approach differs from similar methods used to discover equations for ocean subgrid
closures (Ross et al. 2023; Zanna and Bolton 2020) because we include nonlinear dependencies
without assuming additive separability, instead fitting the entire equation non-iteratively. By
simply allowing for division as an operator in our symbolic regression method, we found
rational nonlinearities in the equation whose detection would already require modifications
such as Kaheman et al. (2020) to conventional sparse regression approaches. Despite our
efforts, the equation we found is still not as accurate as an NN with equivalent features in the
cirrus-like regime (the Hellinger distance between the analytical scheme and the DYAMOND
cloud cover distribution is more than twice as large as for the NN). Comparing the partial
dependence plots of the equation with those of the NN could provide insights and define
strategies to further extend and improve the equation, while reducing the computational
cost of the discovery. There are various methods available for utilizing NNs in symbolic
regression for more than just feature selection, one of which is AIFeynman (Udrescu et al.
2020). While AIFeynman is based on the questionable assumption that the gradient of an NN
provides useful information, a direct prediction of the equation using recurrent NNs presents
a promising avenue for improved symbolic regression (Petersen et al. 2021; Tenachi et al. 2023).

Nonetheless, our simple cloud cover equation already achieves high performance. Our
study thus underscores that symbolic regression can complement deep learning by deriving
interpretable equations directly from data, suggesting untapped potential in other areas of
Earth system science and beyond.
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5. Coupling the Machine Learning Based
Parameterizations with ICON

While the previous chapters are focused on the derivation of data-driven cloud cover schemes
that perform well on various realistic datasets, this chapter covers their implementation into
the ICON-A model and the assessment of the resulting ICON-ML model simulations. For
the discussion of the differences between such an ‘online’ evaluation of the machine-learning
based parameterizations as opposed to the previously conducted ‘offline’ evaluations, see also
Section 2.3.

The primary essential tool for embedding Python-trained NNs in ICON is a bridge between
the Python and the Fortran code, which is discussed in Section 5.1. Using such a bridge,
first ICON-ML simulations that cover feasibility tests ran on the Mistral high-performance
computing (HPC) system (Section 5.2), which has been hosted by the Deutsches Klimarechen-
zentrum (DKRZ) in Hamburg. The NNs that were implemented on Mistral are only those
from Chapter 3. The insights gained from ICON-ML simulations on Mistral form an impor-
tant basis for the most recent ICON-ML simulations of this thesis on the Levante HPC system
(Section 5.3), the successor of Mistral. For the ICON-ML simulations in Section 5.3, the more
comprehensive set of cloud cover schemes from Chapter 4 is used. Given that the machine
learning based cloud cover parameterizations in this thesis are primarily designed for a target
resolution of 80 km, the coarse-scale ICON simulations in this chapter will be executed on an
R2B5 grid with a horizontal resolution of 80 km. The lack of a properly tuned ICON model
at this resolution, which has been the case until very recently, compounds the challenges
associated with the analysis of the ICON-ML model, and will be discussed in Section 5.4.
The author of this thesis conducted all simulations and implemented the code to produce all
figures and tables in Chapter 5. The corresponding code is available on the DKRZ GitLab and
will be made accessible upon a reasonable request.

5.1. Python-Fortran Bridges

The first challenge of using any machine learning based parameterization in ICON is to embed
it into the ICON code, written in the Fortran 90 programming language. There exist several
solutions such as embedding Python code using the C Foreign Function Interface (CFFI)
package (Rigo and Fĳalkowski 2022), or using the Yet Another Coupler (YAC) coupler (Hanke
et al. 2016) that already couples different components of the ICON-ESM. Alternatively, we
use the Fortran-Keras Bridge (FKB) from Ott et al. (2020) to enable the Python-based NNs
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to be readable from within the ICON code. The FKB consists of two components: The
FKB-Python component translates entire NNs (i.e., their architectures and parameters) into
text-files. Those text-files can then be read by the FKB-Fortran component from within ICON.
The FKB-Fortran component is written entirely in Fortran and loads the converted NN only
once at the start of each ICON simulation. Due to these two aspects, the FKB promises to
efficiently implement NNs into ICON. However, significant limitations of the FKB include a
lack of active maintenance (the last commit was in 2021) and an exclusive support of basic
feed-forward NN architectures. Furthermore, we found that Leaky ReLU activation functions
are silently replaced by linear or sigmoid activation functions. In the predictions of the original
and FKB-converted NNs we thus saw discrepancies of 2.5% absolute cloud cover. After fixing
this issue, we were able to implement the FKB properly in ICON, more specifically in ICON-A.
For the specific work relevant to this thesis, it is important to note that further advancements
in creating more efficient Python-Fortran bridges are still necessary, as discussed in Section
5.4 and illustrated in Figure 5.10. This remains an active area of research.

5.2. First ICON-ML Simulations on Mistral

In this section, it is investigated whether the machine learning based parameterizations from
Chapter 3 can be used in principle in ICON 2.6.1, one of the last ICON versions implemented
on the now-discontinued Mistral HPC system. By directly training NNs on coarse-scale ICON
output, it is first tested whether NNs can work at all within ICON-A (Section 5.2.1). Given
that the NNs from Chapter 3 were trained on data in which, due to the sequential processing
of parameterization schemes, the state variables and cloud cover do not align temporally (see
Section 2.4), we also investigate the impact of such a mismatch in the training data. Moreover,
one could contend that the coarse-grained high-resolution inputs, particularly the cloud con-
densates, used for training the NNs and the coarse-scale cloud condensates encountered in the
coarse-scale ICON-A model could deviate to such an extent to compromise the effectiveness
of employing an NN within the coarse-scale model. In Section 5.2.2 this concern is addressed
with a focus on cloud water.

First, the possibility for calling NNs with a cell-, column-, or neighborhood-based archi-
tecture is implemented in the mo_cover.f90 file of the ICON code. There, these NN types
constitute three new options next to the traditional cloud cover schemes. A specific NN
that adheres to one of these three types can then be chosen in the ICON runscript. One of
the challenges include making sure that the NNs receive the correct input variables due to
varying ICON-internal naming of variables. As negative 𝑅2-values in the stratosphere were
encountered (Section 3.2.1), a cutoff height (by default at 19 km) is introduced, above which
the NN-based cloud cover schemes return zero at all times. Finally, the replacement of the
cloud cover variable by cloud volume fraction and cloud area fraction (Section 2.1.3) make
further specifications necessary: Cloud area fraction is now used in the radiation scheme and
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to compute total cloud cover. Cloud volume fraction is used in the cloud microphysics scheme
(see also Section 2.1.3).

5.2.1. Feasibility of Using Neural Network Based Cloud Cover Schemes in ICON

ICON-A simulation of Nov, 2004with hourly output (80 km res.)using the condensate-based cloud cover scheme

Train NNs on the output

Run ICON-ML sim withthese NNs (same setup)

Train NNs on the output

Run ICON-ML sim withthese NNs (same setup)

Ensuring manually that the state variables and the cloudcover match

ii) iii)

ICON-A simulation of Nov, 2004with hourly output (80 km res.)using the Sundqvist cloud coverscheme

Train NNs on the output

Run ICON-ML sim withthese NNs (same setup)
i)

Figure 5.1.: Three distinct initial feasibility tests involve training NN-based cloud cover schemes on
coarse-scale output data from ICON simulations and subsequently integrating them
into the ICON-A model to perform ICON-ML simulations.

To assess whether the integration of ICON-A with an NN-based parameterization can
produce satisfactory results, at this initial testing stage an NN is trained (its weights and
biases are initialized randomly prior to training) directly on the output of a coarse-scale ICON
simulation on an R2B5 grid at a horizontal resolution of 80 km. Subsequently, the very same
ICON simulation is conducted with the trained NN as our new cloud cover scheme. With
this approach, potential issues that may arise when training on coarse-grained instead of on
coarse-scale variables are avoided. Furthermore, this approach is split into three different
types of feasibility tests (see Figure 5.1). In each case, the ICON-A model is used to simulate
one month at a coarse resolution, starting on 1 November 2004. Following Giorgetta et al.
(2018), the data to initialize the model run is taken from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The output from the
simulation serves as training data for the NNs. In setup i), an ICON model with the default
Sundqvist cloud cover scheme is run. There, the output is subject to the aforementioned
mismatch between state variables (such as cloud condensates) and the cloud cover variable
(Section 2.4). In setups ii) and iii), the cloud cover scheme in ICON-A is changed from the
default Sundqvist scheme to the simpler condensate-based scheme that diagnoses grid cells
to be fully cloudy or non-cloudy if a certain threshold of cloud condensates (10−6 kg/kg) is
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surpassed. This allows a re-diagnosis of cloud cover based on cloud condensates, thereby
eliminating the misalignment between state variables and cloud cover (setup iii)).

After completing the training process, we employ the FKB to call the NN from within the
ICON-A model and simulate the same month with the resulting ICON-ML model.

Neighborhood-based NN Column-based NN

Figure 5.2.: Averaged vertical profiles of cloud cover from ICON-ML simulations with NN-based
cloud cover schemes trained directly on coarse-scale ICON data. All simulations are
run at a horizontal resolution of 80 km. Note that only the NN architecture is taken
from Chapter 3, not its specific weights or biases. The architecture of the NN differs
between columns and the setup of the feasibility test (see Figure 5.1) between rows.

The resulting vertical profiles of cloud cover, averaged across the simulated month, are
shown in Figure 5.2. While an agreement in averaged cloud cover profiles across one month
cannot, by itself, already confirm a successful applicability of NN-based cloud cover schemes
in ICON-A, some important conclusions can still be drawn. First, good alignment between the
vertical profiles of cloud cover in the last row of the figure confirm the absence of fundamental
obstacles and FKB’s correct processing of NNs in ICON. Second, by comparing the first and
second row we find that the NNs can approximate the Sundqvist scheme better than the
discontinuous condensate-based scheme. Third, differences between the second and third
row convey that special care is advisable to avoid the mismatch between state variables. The
last insight had also motivated a more faithful diagnosis of cloud cover for the DYAMOND
data used in Chapter 4.
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Figure 5.3.: In panel (a) time series of daily, horizontally and vertically averaged cloud water mixing
ratios and in panel (b) the distributions of daily-averaged cloud water mixing ratios
for 30 simulated days (November 2004) of the coarse-grained high-resolution and five
coarse-resolution simulations are shown. The NNs used for the ICON-ML simulations
are precisely those from Chapter 3, trained on the coarse-grained QUBICC dataset.

5.2.2. Coarse-Scale Instead of Coarse-Grained Cloud Water

In the feasibility tests of the previous section coarse-graining of the training data from a
higher to a lower resolution was omitted. Thus, when the NNs are used in the ICON-A
model, they are confronted with inputs following a distribution they know from their coarse-
scale training data. Yet, to be able to actually improve a parameterization, the training data
needs to have a higher fidelity. We assume that the coarse-grained high-resolution data fulfills
this requirement. However, the coarse-scale ICON-A model (80 km resolution) is known to
have many biases, so one cannot expect the distribution of the coarse-scale input data to match
that of the coarse-grained high-resolution (2–5 km resolution) data. As a consequence, the
decreased quality of the inputs will decrease the predictive power of the NNs. Naturally,
the question arises whether the NNs can still be used as cloud cover schemes within the
coarse-scale ICON-A model.

In Section 4.1.2 we have seen that the univariate distributions of cloud water and ice tend
to differ between datasets. Additionally, we know from Section 2.1 that the cloud cover
parameterization in ICON-A influences cloud water and ice concentrations, directly through
the microphysical parameterization whose prognostic equations explicitly depend on cloud
cover (equation 2.5), and indirectly through the radiative parameterization that affects the
energy balance. Therefore, it is also expected that the distributions of cloud water and ice will
become more realistic as the cloud cover parameterization is improved. To demonstrate that
this can indeed occur, the month of November 2004 is simulated with the ICON-ML model.
Here, we employ precisely the three NNs from Chapter 3, trained on the coarse-grained
storm-resolving QUBICC data, in ICON-A.
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Figure 5.3 shows that, while the cell- and column-based NNs do not shift the time series
and distributions of cloud water towards the coarse-grained QUBICC data, the neighborhood-
based NN does. So the figure confirms that some NNs are able to adjust the distribution of
coarse-resolution cloud water towards the coarse-grained cloud water distribution.

Taking steps to anticipate these potential issues provided an important basis to conduct
further ICON-ML simulations on the Levante HPC system in the following section.

5.3. ICON-ML Simulations on Levante

When on 3 March 2022 the Mistral HPC system was succeeded by Levante, the support of
ICON 2.6.1 also ceased. There are no simple solutions to use ICON versions on Levante that
are older than ICON 2.6.4. Therefore, the coupling of the NNs and the adaptation of the ICON
code concerning the distinction between cloud volume and area fraction (Section 5.2) needed
to be repeated to enable new ICON-ML simulations. To include the machine learning based
schemes from Chapter 4 in ICON-A, support for the new NNs is added and the cloud cover
equation in terms of physical and normalized features are implemented. In ICON, vertical
derivatives are approximated using the forward Euler scheme.

5.3.1. Methods

In this section, an analysis of ICON-ML simulations, performed on the coarse R2B5 ICON
grid (horizontal resolution of 80 km), is conducted. To simplify matters, the objective is to run
the simulation in climatic conditions that closely resemble the training data (i.e., the output of
the DYAMOND simulations). Together with the start date, the boundary conditions, namely
a description of the land and vegetation, aerosols, and ozone concentrations based on the
input4MIPs project1, are the same as in the DYAMOND Winter setup. However, since the
DYAMOND simulation ran on a high-resolution R2B9 grid, the boundary conditions are
coarse-grained to an R2B5 grid using the conservative remapping approach. Since ICON-A
proved to be very sensitive to how the initial conditions are prepared, we opted to use pre-
existing conditions for 20 January 2020 on an R2B5 resolution. Therefore, the initial conditions
are taken from IFS analysis, following Giorgetta et al. (2018). Finally, prescribed sea surface
temperatures from the ECMWF and parameterizations based on ECHAM physics are used.
Covering the same time frame as that of the DYAMOND Winter project, we let the model
simulate 40 days. That way, the DYAMOND Winter data can be used as a reference. The
output is written three-hourly, theoretically enabling the investigation of the diurnal cycle
while also effectively managing the storage requirements of the ICON output. In addition
to the 40-day simulations, qualitative understanding of the stability of ICON-ML in 2-year
simulations is gained.

1https://esgf-node.llnl.gov/projects/input4mips/
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5.3.2. Results

In this section, the performance of the ICON-ML model is assessed using precisely those
machine learning based schemes that were trained in Chapter 4 now as cloud cover schemes
in ICON-A.
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Figure 5.4.: Time series of total cloud cover (clct) of a native ICON-A, the coarse-grained
DYAMOND Winter, and various ICON-ML simulations. The latter can be divided into
ICON-ML using NNs and data-driven analytical equations as cloud cover schemes.
The NNs used for the ICON-ML simulations are precisely those from Chapter 4, trained
on the coarse-grained DYAMOND dataset. Total cloud cover from ERA5, remapped
to the R2B5 ICON grid, is also plotted as a second reference. The blue rectangle traces
out the region that is relatively close to the two reference time series. The length of the
vertical arrows, used to infer the lower and upper limits of the rectangle, equals the
maximal distance at any point in time between those two time series.

40-day simulations In Figure 5.4, various time series of simulated globally averaged total
cloud cover for the last 19 days of February 2020 are shown. The coarser representation of the
atmosphere could necessitate a longer spin-up phase than the 10 days in DYAMOND (Stevens
et al. 2019b). Therefore, only the last 19 days of the simulation are analyzed, allowing a spin-up
phase of 25 days. The vertical average extends up to an altitude of 21 km. After running over
50 simulations we found that each type of ICON simulation can follow two distinct trajectories
when using identical runscripts. The underlying causes for this non-deterministic behavior
continue to elude us. In the caption of Figure 5.6, it is referred to as a ‘minor internal variability’
in an ICON model. To streamline our discussion, we focus on analyzing only one trajectory for
each type of ICON simulation. For the displayed ICON-ML time series ten different machine
learning based cloud cover schemes from Section 4.4.1 are implemented in ICON-A. The last
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ICON-ML analytical eqn. (abs_diff=0.276)ICON-ML 4-feat NN (abs_diff=0.305)ICON-A (abs_diff=0.319)
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Figure 5.5.: The bias of total cloud cover of temporally averaged low-level (altitude range of 0.3 km
to 3 km) clouds. The bias is computed by subtracting the coarse-grained DYAMOND
reference from the simulated ICON output. The temporal average comprises the last
19 days of February 2020.

three of these use the analytical equation from Section 4.5. The models corresponding to eqn.,
physical vars and eqn., normalized vars use different formulations of the same equation (equation
4.6) and the third formulation only differs in its scaling parameters. It is the only ICON-ML
simulation that takes the modified distributions of the coarse-scale ICON inputs into account.
ICON-A uses the default Sundqvist scheme as its cloud cover parameterization. As a reference,
we have coarse-grained total cloud cover from the DYAMOND Winter training data and the
ERA5 reanalysis product. A sole comparison to ERA5 reanalysis could be misleading since
it does not necessarily match the time series of the DYAMOND training data. Therefore, the
two time series together are used to define a rectangle/interval of total cloud cover that we
judge to be acceptable for the other time series to be located in.

The native ICON-A simulation is found to consistently underestimate total cloud cover and
to reside only marginally within the rectangle. In contrast, most of the ICON-ML simulations
align more closely with the reference data than ICON-A. Based on the rectangle, we consider
discarding the feature-heavy 10-feature and column-based NNs. In the following, the focus
will solely lie on the ICON-ML simulations using the 4-feature NN and the original analytical
equation.

In addition to the spatial average, global maps of cloud cover are shown in Figure 5.5, this
time preserving the spatial information. The focus here lies on total cloud cover (assuming
maximum-random overlap in the vertical) of low-level clouds, which are difficult to capture
properly in climate models. While some regional biases are enhanced (especially over Eu-
rope), the average absolute bias is slightly smaller in both ICON-ML simulations (0.305/0.276)
as opposed to the ICON-A simulation (0.319). In terms of MSE, the relative improvement of
the ICON-ML simulation with the analytical equation amounts to 14%.
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R2-values clt clivi cllvi prw tas pr rss rst rls rlt

ICON-A 0.242 -0.283 -0.406 0.898 0.939 -0.249 0.804 0.907 0.419 0.677

ICON-ML 
4-feat NN

0.133 -0.235 -0.634 0.905 0.936 -0.054 0.755 0.884 0.313 0.688

ICON-ML 
analytical 
eqn.

0.175 -0.145 -0.390 0.894 0.941 -0.027 0.760 0.885 0.364 0.670

Figure 5.6.: 𝑅2-values of total cloud cover (clt), total cloud ice (clivi), total cloud water (cllvi), total
vapor (prw), 2 m temperature (tas), precipitation flux (pr), the net shortwave radiative
flux at the surface (rss) and the top of the atmosphere (rst), and the net longwave
radiative flux at the surface (rls) and the top of the atmosphere (rlt). For each ICON
simulation a given variable is averaged over the last 19 simulated days before the
𝑅2-values are computed against the temporally averaged coarse-grained DYAMOND
Winter data. Due to minor internal variability, the values of the last row can vary
slightly (±0.04), for total cloud water and precipitation by up to ±0.1. The best 𝑅2-
value for each variable is highlighted in bold.

With the purpose of providing a more holistic evaluation of the ICON-ML simulation,
𝑅2-values of ten important variables are reported in Figure 5.6. We find that our ICON-ML
simulation outperforms ICON-A in four of the ten variables, most notably in precipitation.
However, the ICON-ML models struggle to achieve the same radiative budget as the ICON-A
model. Those budget variables are particularly important for the energy balance.

By turning our attention to the distributions of the inputs (Figure 5.7), we find that the NNs
face cloud ice and water values that can be twice as large as what they know from their training
data. Nevertheless, the ICON-ML results are still satisfactory. For cloud ice, the ICON-ML
simulation of Figure 5.7 even nudges the distribution towards lower values, to values that the
implemented NN knows from its training data. The apparent contradiction of the coarse-scale
ICON simulations producing higher cloud water values but fewer low-level clouds (Figure
5.5) could be explained by differences between cloud cover schemes and a more localized
appearance of cloud water that does not translate to much cloudiness on a global scale.

Inspired by the results on short timescales, we prolong the simulation period to two years
to study the stability of ICON-ML simulations.

2-year simulations Several ICON simulations are conducted with the same setup. However,
in order to use existing boundary conditions for a 2-year simulation, we set the initial date
to 1 November 2005. By plotting time series of critical cloud-related variables (total cloud
cover, precipitation, and ice water path) in Figure 5.8, stable model behavior over extended
time frames is observed. Notably, there is no discernible model drift both for the ICON-ML
model that uses our newly derived analytical equation and the model using the 4-feature NN.
For total cloud cover, the ERA5 time series ranges between 62% and 63%, and precipitation
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Cloud Ice [g/kg]Cloud Water [g/kg]

Figure 5.7.: Distributions of cloud water and cloud ice from ICON 40-day simulations compared
to the distributions of coarse-grained cloud water and ice from the DYAMOND Winter
(training) data (in green).

remains at approximately 3.4 · 10−5 kg/(m2s) (Birkel 2023), in accordance with Figure 5.8.
However, the models underestimate the ice water path by ≈ 45% compared to ERA5 (upper
left panel in Figure 5.9). This is compensated by an overestimation of cloud water by ≈ 30%.
In these simulations, exchanging the cloud cover scheme does not have a significant impact
on the cloud ice or water content. Considering that our machine learning based cloud cover
schemes depend on cloud ice and water, it is surprising that the 𝑅2-values for total cloud
cover and near-surface temperature are nevertheless better than those of the ICON-A baseline
(Figure 5.9). Furthermore, the root mean squared errors (RMSEs) of our equation-coupled
ICON-ML simulation are lower (by ≈ 10% for total cloud cover and ≈ 22% for near-surface
temperature). Analyses of the other variables shown in Figure 5.6 are omitted, as they did not
reveal additional significant differences between the ICON-A and ICON-ML simulations.

A significant limitation of the ICON-ML simulations is the overall increase in runtime (at
least) by a factor of 1.7 when using NNs as cloud cover schemes (Figure 5.10). Especially the
feature- and parameter-heavy neighborhood- and column-based NNs induce an increased
runtime by a factor of 2.65. In contrast, when the analytical equation is used instead, there is
no increase in runtime of the ICON-A model. Among others, the implications of this finding
are discussed in the following section.

5.4. Conclusion of the Third Study

Summary In this chapter, the machine learning based parameterizations, which were de-
veloped in Chapters 3 and 4, were successfully integrated into the ICON-A model using the
FKB framework. By first running ICON-ML with NNs trained directly on coarse-scale ICON
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Figure 5.8.: Simulated time series of important cloud-related variables (total cloud cover, precipi-
tation, and ice water path) from November 2005 until October 2007. For the ICON-ML
simulations, either the 4-feature NN or the analytical equation are used as cloud cover
schemes.
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Figure 5.9.: Simulated time series of ice water path from November 2005 until October 2007 and
global maps of biases in total cloud cover and near-surface temperature, after being
averaged over time. For the ICON-ML simulations, either the 4-feature NN or the
analytical equation are used as cloud cover schemes in ICON. Only one ICON rep-
resentative is shown for the simulated ice and liquid water path as it differs by less
than 0.001 kg/m2 (0.01 kg/m2 in the case of liquid water) between simulations. The
two numbers reported next to the global maps are the RMSE and 𝑅2-values, calculated
on the temporal averages. The figures were created using the ESMValTool (Righi et al.
2020).
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ICON-ML simulations

Figure 5.10.: Runtime of the 2-year ICON-ML simulations compared to the native ICON-A model.
The values depict the factor by how much the runtime of the ICON simulation in-
creases.

output, we had been able to establish a proof of concept for using NN-based parameteriza-
tions in ICON-A in place of the traditional cloud cover scheme (Section 5.2). Vertical profiles
of cloud cover had also revealed the importance of carefully managing consistency between
state variables and cloud cover in the training data (Figure 5.2). However, training directly
on coarse-scale data most likely does not offer further benefits in the case of the cloud cover
scheme, and the author of this thesis does not advocate its use in the training process for NNs
that aim to improve upon the existing parameterization.
Therefore, Section 5.3 covers ICON-ML simulations with machine learning based schemes ap-
propriately trained on coarse-grained storm-resolving DYAMOND data. From the plethora
of ICON-ML models available, we select two for in-depth analysis. Over a 40-day simulation
period, it is demonstrated that these models perform competitively when compared to the
native ICON-A model, as indicated by their mismatch with coarse-grained high-resolution
data (Figures 5.5, 5.6). Additionally, the machine learning based schemes exhibit robustness
to variations in the distributions of cloud water and ice inputs (Figure 5.7), and show that
they can influence these distributions (Figure 5.3). By running longer simulations covering
two years, the stability of the ICON-ML models is verified, as evidenced by the absence of a
model drift (Figure 5.8). Furthermore, the ICON-ML models feature a slight improvement in
total cloud cover and near-surface temperature, as measured through the mismatch against
ERA5 reanalysis, compared to ICON-A (Figure 5.9). However, we found that running ICON
with NN-based cloud cover schemes incurs a considerable computational cost in our current
setup (Figure 5.10).
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Discussion The biases exhibited by the baseline ICON-A model are substantial, in compar-
ison to both the coarse-grained DYAMOND dataset for total cloud cover simulated for 40
days (Figure 5.5) and the ERA5 reanalysis for ice water path simulated for two years (Figure
5.9). At first glance, it may appear more straightforward to improve upon such a biased
baseline. However, it is crucial to consider that the data-driven schemes also heavily rely on
the quality of their input data. Unlike the native cloud cover scheme in ICON-A, our data-
driven schemes had also learned to depend on cloud water and ice, whose distributions can
deviate significantly between ICON-A simulations and the DYAMOND training data (Figure
5.7). Furthermore, in contrast to the native cloud cover scheme, our data-driven schemes
have not undergone fine-tuning to operate effectively within the ICON framework. Taking
these considerations into account, it becomes more remarkable that we have already achieved
competitive results with the ICON-ML model.
One could contend that building on top of a solid baseline remains essential. However, until
very recently, no tuned version of ICON-A was available at the R2B5 resolution. In our future
work, we plan to utilize a recently tuned version from the ICON-Seamless initiative as the
baseline model to implement our data-driven schemes in. Additionally, we need to consider
tuning the resulting ICON-ML model, so that the data-driven schemes can account for re-
maining biases in the ICON-A model. In particular, the native cloud cover scheme in ICON-A
includes many tuning parameters that used to be adjusted noticeably between ECHAM model
versions and ICON-A (see Section 2.1.1). Its replacement will therefore most likely warrant
a modification of other model components. These modifications could, for instance, be new
data-driven parameterizations or tuned versions of existing parameterizations. The tuning
process itself, however, is challenging. Some of its challenges are outlined in Section 2.3.
We are confident that either of these two approaches would allow us to construct a robust
operational ICON-ML model.
As discussed in Section 5.2.2, the NNs are unlikely to encounter the same distributions of
cloud water (and ice) in an online setting (within the ICON-A model) as they did during their
offline training. Given that cloud water and ice are both inputs to and directly affected by
the NN-based cloud cover schemes, such distribution disparities can be considered both as
an obstacle and a source of motivation: If the coarse-scale distributions of cloud water and ice
were already faithful to their coarse-grained high-resolution counterparts, then the incentive
to enhance the cloud cover scheme would diminish. In contrast, we believe that the painted
obstacle merely points towards inaccuracies present in other parameterizations. In order to
fully rectify cloud water and ice of the climate model, we should, as concluded in the previous
paragraph, modify more than just the cloud cover parameterization. As a transitory measure,
one can follow the approach from Section 4.4.4, and tune our cloud cover scheme on a small
amount of coarse-scale ICON data. By carefully setting the size of this dataset, we could
potentially improve the ICON-ML results in some, while retaining the superior accuracy in
other variables.
We have seen the runtime of the ICON-A model to increase significantly when using NNs as
cloud cover schemes (Figure 5.10). On the one hand, the observed increase by a factor of 1.7 is
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still better than running high-resolution simulations directly, which would easily increase the
overall ICON runtime by a factor of 103 (according to Stensrud (2009) halving the resolution
could increase the computational runtime even by a factor of 16, i.e., a factor of 106 for simu-
lating on 2.5 km instead of on 80 km). On the other hand, taking the factors 1.7 and 103 as a
basis, a replacement of 12 parameterization by NNs would already result in the same ICON
runtime as that of the high-resolution model. However, this comparison is rather academic.
Depending on which parameterization one replaces, NNs often speed up parameterizations
significantly (Rasp et al. 2018a). Usually parameterizations are complex modules. Owing to
its exceptional simplicity, ICON-A’s native cloud cover scheme is difficult to replace without a
loss of computational performance. Two important conclusions regarding the computational
aspects can be drawn here: i) Given that parameterizations are called frequently during an
ICON simulation, an efficient Fortran-Python bridge is paramount and, ii) from a computa-
tional perspective it is preferable to use simple symbolic equations, such as our data-driven
analytical scheme, rather than complex NNs.
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6.1. Overall Summary

Mathematically, the dynamics of air can be modeled using the Navier-Stokes equations. These
equations can be used for making highly accurate predictions at scales that effectively capture
the continuous movement of the air. To model the atmosphere with such acuity, however,
immense computational resources would be required. In fact, climate models, which are used
to project conditions for decades or even centuries into the future, use a coarse grid where
only ≈ 50 grid cells cover Germany horizontally. This discretization of the atmosphere puts
most crucial processes (convection, radiation, turbulence, cloud microphysics) on a subgrid
scale and introduces closure terms in the Navier-Stokes equations. As these processes cannot
be neglected, one of the central tasks of a climate modeler consists of establishing a func-
tional relationship between the large-scale variables and the small-scale processes in so-called
parameterizations. Structural mistakes in these parameterizations often require unphysical
compensation by other parameterizations and deteriorate the entire climate model. Therefore,
it is paramount to develop sound parameterizations to enable accurate climate projections,
especially in the current era of rapid climate change (Eyring et al. 2021; Gentine et al. 2021).
This thesis outlines a novel approach to parameterizing cloud cover within the ICON Earth
System Model. It leverages two branches of machine learning, specifically deep learning
and symbolic regression, to systematically create and assess new parameterizations for cloud
cover.
The first study of this thesis, already published in Grundner et al. (2022) and presented in
Chapter 3, is guided by key science question 1: Is it possible to train a neural network
based cloud cover parameterization capable of accurately learning cloudiness from high-
resolution simulations? The first step in addressing this question consists of preprocessing
a high-resolution dataset that includes cloud cover and its typical predictors. In Chapter
3, high-resolution output from the regional NARVAL and global QUBICC simulations are
utilized, each covering two to three months and featuring real geography (Giorgetta et al.
2022; Klocke et al. 2017; Stevens et al. 2019a). The preprocessing most importantly involves
coarse-graining/interpolating the high-resolution datasets to the coarse-scale climate model
grid. Given the horizontal and vertical variability of clouds, corresponding coarse-graining
is also performed. It is argued that valuable information for the ICON-ESM is held by both
the resulting three-dimensional cloud volume and the two-dimensional cloud area fraction.
Generally, the task of a cloud cover parameterization in the ICON-ESM is the diagnosis of
(fractional) cloud cover based on accessible coarse-scale variables (Giorgetta et al. 2018). As-
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suming the coarse-grained predictors as proxies for coarse-scale variables, a training set for
the machine learning based cloud cover parameterizations is thus constructed. To investi-
gate the degree of vertical locality required to diagnose cloud cover, three different types of
NNs (cell-, neighborhood-, and column-based) of increasing non-locality are trained on these
coarse-grained datasets. Trained and evaluated on the coarse-grained NARVAL data, the
three NN types achieve excellent skill (MSEs of 15.2/1.0/1.8 (%)2) in emulating cloud volume
fraction. On the QUBICC data, the MSEs are slightly larger (32.8/25.1/8.1 (%)2), and larger
still for cloud area fraction (88.0/52.2/20.1 (%)2). Nevertheless, the NNs clearly outperform
the baselines, including the native Sundqvist cloud cover scheme (MSE of 51.1/474.1 (%)2 on
NARVAL/QUBICC data). In summary, these findings demonstrate that the NNs are capable
of accurately inferring high-resolution (fractional) cloud cover from coarse-grained variables,
thereby fully validating question 1.
While the versatility of NNs turns them into excellent approximators, that can be trained
with very little domain knowledge, this versatility comes at the cost of interpretability as
explainable artificial intelligence (XAI) methods still face major challenges (Kumar et al. 2020;
Molnar et al. 2021). Additionally, the NNs do not necessarily take physical constraints into
account. Consequently, for the second study of this thesis, published as a preprint in Grund-
ner et al. (2023) and presented in Chapter 4, key science question 2 is posed: Can we develop
data-driven cloud cover parameterizations that are inherently interpretable and maintain
the high data fidelity of neural networks while ensuring physical consistency? To address
this question, symbolic regression, sequential feature selection, and physical constraints are
leveraged in a hierarchical modeling framework. Symbolic regression is a field of machine
learning that aims to find symbolic equations to explain a given dataset, based on a set of
permitted mathematical operators as opposed to a set of basis functions (Schmidt and Lipson
2009). In this second study, the training data consists of the coarse-grained high-resolution
global dataset from the storm-resolving DYAMOND project(s) (Stephan et al. 2022; Stevens
et al. 2019b) and the target is cloud cover as an area fraction. Motivated by the excellent
performance and cross-model compatibility demonstrated by the quasi-local neighborhood-
based NN discussed in Chapter 3, an extensive set of quasi-local features to choose from is
defined. By combining sequential feature selection with NNs, parsimonious subsets of input
features that can explain cloud cover best are extracted iteratively. Considering the powerful
approximation capability of NNs (Hornik et al. 1989), these selected features can be used in
the symbolic regression libraries tasked with discovering a function with a priori unknown
properties. By striving to minimize the number of features used, the interpretability of the
equations that are generated by the symbolic regression libraries is also enhanced. All derived
cloud cover schemes are collected in a hierarchical framework, ranked by both their skill and
simplicity. The analytical equations found in this framework are interpretable by construction
and easily transferable to other grids or climate models. The best equation, discovered using
the PySR symbolic regression library (Cranmer 2023), balances performance and simplicity
Pareto-optimally, achieving a performance comparable to that of NNs (𝑅2 = 0.94) while re-
maining simple (with only 11 trainable parameters). It adheres to six out of seven carefully
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defined physical constraints, establishing its physical consistency. Key terms of the equa-
tion include a polynomial dependence on relative humidity and temperature, driving cloud
cover in condensate-rich regimes, as well as a nonlinear dependence on cloud ice and water,
exhibiting an increased sensitivity towards cloud ice. In an in-depth analysis, each term is
explained from a physical perspective, discovering that the unusual dependency on the ver-
tical derivative of relative humidity aids its detection of vertically thin marine stratocumulus
decks. Finally, the analytical cloud cover scheme reproduces cloud cover distributions more
accurately than the Xu-Randall scheme across all cloud regimes (Hellinger distances < 0.09),
and matches NNs in condensate-rich regimes. It can thus be confirmed that it is indeed possi-
ble to develop inherently interpretable data-driven cloud cover parameterization that ensure
physical consistency. It is not easy to fully maintain the same data fidelity of NNs. However,
while the NN with the same input features achieves a slightly better score (𝑅2 = 0.96) than
the analytical equation, it is not better in condensate-rich regimes. It can thus be concluded
that the interpretable data-driven parameterizations closely approach the high data fidelity of
NNs.
Key science question 3 “To what degree can data-driven cloud cover parameterizations gen-
eralize to other realistic datasets? Can simpler schemes be transferred more effectively?” is
analyzed throughout both Chapters 3 and 4. Globally-trained NNs from Chapter 3 are found
to successfully replicate subgrid-scale cloud cover of the distinct regional NARVAL simulation
(average 𝑅2-values exceed 0.7). This versatility is remarkable due to significant differences be-
tween the two simulations (e.g., their mean vertical profiles of cloud cover, physics packages,
horizontal/vertical resolutions, and time frames). Aiming to understand the source of one
NN’s largest remaining tropospheric generalization error (𝑅2 < 0.5 at an altitude of ≈ 7 km),
the interpretability library SHAP is utilized (Lundberg and Lee 2017). With it, an overempha-
sis of the NN on specific humidity and cloud ice could be identified as the main driver of this
bias. NNs, conversely trained on the regional NARVAL data, are found to be inapplicable to
the QUBICC data on a global scale. This limitation is attributed to substantial differences in
the joint distributions of temperature and pressure between the two datasets. In Chapter 4,
the generalizability of NNs compared to symbolic equations is explored in two ways. First,
the schemes are applied to data that has been coarse-grained to resolutions higher than those
encountered during their training phase. Surprisingly, the schemes exhibit an improved ca-
pacity to be applied at higher resolutions, with the most substantial improvement observed
for the symbolic equations. Second, the cloud cover schemes are fine-tuned on ERA5 reanal-
ysis (Hersbach et al. 2018). Without any retuning, all schemes struggle on ERA5 data due to
differences in the distributions of important input features, such as those of cloud water and
ice. However, after performing transfer learning experiments on only a few ERA5 samples,
the analytical equation demonstrates superior transferability to the ERA5 data compared to
all other Pareto-optimal cloud cover schemes. It is hypothesized that this success is attributed
to its limited number of free parameters combined with its initial strong performance on the
DYAMOND data. In summary, the effectiveness of machine learning based schemes depends
on the specific dataset to which they are applied. Complex NNs show strong generalizability
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to different simulations on storm-resolving scales, provided that the geographical region is
covered in the training data. Moreover, they exhibit commendable performance when ap-
plied at higher resolutions than those encountered in their training data. However, when
transferred to ERA5 reanalysis, all schemes fall short, and the simple analytical schemes with
fewer parameters can adapt to the novel dataset more quickly. This confirms their superior
transferability to ERA5 reanalysis.
The final key science question 4 “Can we enhance the accuracy of the ICON-A model by
directly implementing our data-driven cloud cover schemes, without additional fine-tuning
of the model?” is one of the most difficult of the four questions to address, primarily due
to the multifaceted nature of what ‘enhancing the accuracy of a climate model’ can signify.
Accuracy can be evaluated by comparing individual values or by focusing solely on the statis-
tical properties of different variables across different time scales. Furthermore, the absence of
well-established reference benchmarks for all variables complicates the evaluation process. It
is also worth noting that the ICON-A model is not a static entity but is subject to continuous
development, resulting in multiple versions released each year. Another challenge, particular
to this analysis, has been the unavailability of a tuned ICON version at the target horizontal
resolution of 80 km. Nevertheless, Chapter 5 describes the efforts to address question 4. Some
of the Pareto-optimal machine learning based cloud cover schemes are implemented in two
different ICON models, and short simulations of forty days and two years are conducted.
Depending on the simulation duration, the results of the resulting ICON-ML models are com-
pared either against the coarse-grained high-resolution data or the ERA5 reanalysis dataset.
The findings indicate that ICON-ML, coupled with either the analytical equation or the se-
lected NN-based cloud cover scheme, performs competitively when contrasted with the native
ICON-A model. Striving for a more comprehensive assessment, this finding is also based on
the average discrepancies of ten different variables. Over the course of two simulated years,
the ICON-ML model displays no indications of a model drift. Moreover, it demonstrates a
slight improvement in total cloud cover and near-surface temperature. The machine learn-
ing based schemes are surprisingly robust to variations in the distributions of cloud water
and ice inputs. However, running ICON with NN-based cloud cover schemes imposes a
considerable computational cost within the current setup. This underscores the importance
of efficient Fortran-Python coupling libraries and presents another advantage of symbolic
equations, such as the data-driven analytical equation. Overall, the competitive performance
of the ICON-ML model on simulated time scales of up to two years can be affirmed, even
without fine-tuning the model. Thus, at this stage, question 4 can be answered affirmatively.
Nevertheless, to comprehensively address the full scope of question 4, further research efforts
are required. These need to include conducting climate sensitivity simulations, historical
simulations, century-long projections, and statistical analyses.
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6.2. Discussion and Outlook

The interest in machine learning for weather and climate has been experiencing rapid growth.
Prominent companies, such as Google (Ravuri et al. 2021; Zhang et al. 2023), Huawei (Bi et al.
2023), Microsoft (Nguyen et al. 2023), and Nvidia (Kurth et al. 2023), are developing very
short- to medium-range forecast models using intricate machine learning architectures and
extensive computational resources. When it comes to long-term climate projections, these full-
blown machine learning approaches might be limited by a fundamental lack of climatically
relevant information in their training data (Bauer et al. 2023). Furthermore, their predic-
tions are difficult to understand or interpret, posing a challenge to the scientific community
(Ebert-Uphoff and Hilburn 2023). In this thesis, a more cautious and iterative replacement
of problematic modules within physics-based GCMs, while taking into account physical con-
straints, is advocated. First and foremost, the most uncertain modules within a GCM are
parameterizations related to, in particular, low-level clouds, causing most of the model spread
in CMIP6 projections of the equilibrium climate sensitivity (Forster et al. 2021; Schlund et al.
2020; Zelinka et al. 2020). For example, Pincus et al. (2005) maintains uncertainties in the cloud
inhomogeneity parameter (see also Section 2.1.3) to be one of the primary reasons for why the
physical parameters in a GCM might need to be changed from reasonable to unrealistic values
to ensure a realistic climate representation. Additionally, other parameterizations in ICON-A,
such as convection, gravity waves, and radiation, indirectly influence clouds and should be
revisited using machine learning approaches.
It is known that machine learning methods are constrained by the information content present
in their training data. Ideally, the process of interest is fully resolved in the dataset. Further-
more, all possible climatic conditions, including climate change effects, should be included.
Considering the efforts required to meet these demands, Krasnopolsky (2013) suggests revert-
ing to the traditional parameterization whenever the machine learning based parameteriza-
tions exhibit significant errors (a concept termed ‘compound parameterization’). This could
involve checking whether a specific data sample falls within the convex hull of the training
data to avoid extrapolation. Training the NNs exclusively with climate-invariant features
could eliminate the necessity of extrapolating to out-of-training distributions entirely (Beucler
et al. 2021). Moreover, the application of causal discovery methods to guide the selection of in-
put features for the NNs leads to a more robust and physically consistent set of input features,
as suggested by Iglesias-Suarez et al. (2023). Future work could also involve spanning the
space of all plausible feature values with a sparse regular grid. The traditional parameteriza-
tion could then be used to make predictions for all samples on this grid, thereby augmenting
the training data. This prevents the machine learning algorithm from ever having to truly
extrapolate beyond its training data. It could enable the machine learning based scheme
to achieve reasonable performance even during rare events. The concept of developing a
‘scale-aware’ parameterization applicable at different resolutions can be addressed following
a similar idea of training data augmentation: By coarse-graining a high-resolution dataset to
different resolutions, those could be used as additional training data (Chen et al. 2023) or as
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separate datasets for training machine learning models at different resolutions.
This thesis outlines successful efforts in deriving interpretable cloud cover schemes directly
from data. A key aspect of this work is a hierarchy of schemes, measured by their complexity
and performance. This hierarchical approach can be expanded upon, with simpler models
helping to identify components of added value (e.g., spatial/temporal non-locality, nonlin-
earity) in complex machine learning based schemes (Balaji 2021). Another idea for future
work for enhancing interpretability in advance involves grouping features into pairs. For
each feature pair, one could then train an NN, with the final prediction being the sum of the
individual NN predictions. This separation would allow for easy visualization of all possible
predictions from each bivariate NN, facilitating a full understanding of their individual and
collective functional behavior.
In conclusion, the author of this thesis believes that there remains a vast reservoir of un-
explored opportunities for machine learning methods that offer interpretability and follow
physical principles for improved generalizability. However, on the basis of cloud cover this
thesis is already able to demonstrate that these goals can be achieved concurrently, presenting
a way forward to combine machine learning and physics to enhance scientific knowledge.
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A. Coarse-graining Methodology

This section, describing the methodology for coarse-graining data from a high-resolution to
a low-resolution ICON grid, was already published in Grundner et al. (2022). Our goal is to
to best estimate grid-scale mean values. Ideally, we would derive the large-scale grid-scale
mean 𝑆̄ of a given variable 𝑆 by integrating over the grid cell volume 𝑉 ⊆ R3. In practice,
we compute a weighted sum over the values 𝑆𝑖 , 𝑗 of all high-resolution grid cells 𝐻. Here, 𝑖 is
the horizontal and 𝑗 is the vertical index of a high-resolution grid cell. We define the weights
𝛼𝑖 , 𝑗 ∈ [0, 1] as the fraction of 𝑉 that a high-resolution grid cell indexed by (𝑖 , 𝑗) fills. This is a
basic discretization of the integral.

To make this term easier to compute in practice, we introduce another approximation.
Instead of computing 𝛼𝑖 , 𝑗 directly, we split it into the fraction of the horizontal area of 𝑉
(denoted by 𝛾𝑖 ∈ [0, 1]) times the fraction of the vertical thickness of 𝑉 (denoted by 𝛽 𝑗 ∈ [0, 1])
that the high-resolution grid cell indexed by (𝑖 , 𝑗) fills. We first compute the weights 𝛾𝑖 and
the weighted sum over the horizontal indices 𝑖 (horizontal coarse-graining). Only afterwards
do we compute the weights 𝛽 𝑗 and the weighted sum over the vertical indices 𝑗 (vertical
coarse-graining).

Note that this is indeed an approximation. The geometric heights and vertical thicknesses
of grid cells in 𝐻 on a specific vertical layer 𝑗 do not need to match exactly. These slight
differences are lost when horizontally coarse-graining to fewer grid boxes. Therefore, the
second approximation is an approximation because we i) compute the vertical overlap 𝛽 𝑗
after we horizontally coarse-grain the grid cells and ii) work on a terrain-following height
grid which allows for vertical layers of varying heights over mountaineous land areas. Over
ocean areas, where the height levels have no horizontal gradient, this simplification in the
computation of the weights has no disadvantage.

In short, let 𝛼𝑖 , 𝑗 , 𝛽 𝑗 , 𝛾𝑖 ∈ [0, 1] be the weights describing the amount of overlap in vol-
ume/vertical/horizontal between the high-resolution grid cells and the low-resolution grid
cell. We then calculate the large-scale grid-scale mean as the weighted sum of high-resolution
variables

𝑆̄ ≡ 1
|𝑉 |

∫
𝑉

𝑆𝑑𝑥 ≈
∑︂

(𝑖 , 𝑗)∈𝐻
𝛼𝑖 , 𝑗𝑆𝑖 , 𝑗 ≈

∑︂
(𝑖 , 𝑗)∈𝐻

𝛽 𝑗𝛾𝑖𝑆𝑖 , 𝑗 . (A.1)

We also illustrate our approach in panel a) of Figure A.1.
The use of spring dynamics in between model grid refinement steps allows for the presence
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of fractional horizontal overlap 𝛾𝑖 . As our method for horizontal coarse-graining we choose
the first order conservative remapping from the CDO package (Schulzweida 2022), which is
able to handle fractional overlap and the irregular ICON grid to coarse-grain to and from.

There are locations where the low-resolution grid cells that are closest to Earth’s surface
extend significantly further downwards than the high-resolution grid cells. This is due to
topography that can only be seen at fine scales and makes it difficult to endue these low-
resolution grid cells with a meaningful average computed from the high-resolution cells. We
therefore omit these grid cells during coarse-graining. This issue is present only in scattered,
isolated grid cells over land and it affects a small fraction of all grid cells (0.2%) and columns
(4.7%). So it does not pertain entire regions, which would decrease the scope and quality of
the data set. While horizontally coarse-graining NARVAL data, we analogously omit low-
resolution grid cells that are not located entirely inside the NARVAL region.

To derive the cloud area fraction 𝐶 we cannot start by coarse-graining horizontally. We
first need to utilize the high-resolution information on whether the fractional cloud cover on
vertically consecutive layers of a low-resolution grid column overlaps or not. Therefore, we
first vertically coarse-grain cloud cover to a grid that would – after subsequently horizontally
coarse-graining – resemble the coarse-scale ICON grid as much as possible. For the first step,
we assume maximum overlap as the level separation of vertical layers is relatively small. We
thus calculate the coarse-grained cloud area fraction 𝐶 as the sum of the vertically maximal
cloud cover values max𝑗{𝐶𝑖 , 𝑗} weighted by the horizontal grid cell overlap fractions 𝛾𝑖

𝐶 =
∑︂

(𝑖 , 𝑗)∈𝐻
𝛾𝑖 max

𝑗
{𝐶𝑖 , 𝑗}. (A.2)

Equation (A.2) is exemplified in panel b) of Figure A.1. For QUBICC grid cells, which are
always either fully cloudy or cloud-free, we can directly interpret equation (A.2) as returning
the fraction of high-resolution horizontal grid points that are covered by a cloud of any non-
zero vertical extent within a coarse vertical cell. Due to the fractional cloudiness and the
maximum overlap assumption, this link is less direct for the NARVAL data.

B. Supplementary Materials for Chapter 3

This supplementary section was already published in Grundner et al. (2022).

B.1. Comparing Two Neural Networks Using Attribution Methods

We use SHAP to compare two neural networks and to decompose model errors. However,
our error decomposition framework can be used with any attribution method (LRP, LIME,
integrated gradients, etc., Samek et al. (2019)) which fulfills the property that the attributed
feature importances sum up to the predicted model output (possibly shifted by a constant
value).
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Figure A.1.: Sketch of our general coarse-graining methodology in panel a) and for cloud area
fraction in panel b). We picture a vertical slice through two grid columns. For
simplicity we assume that the grid boxes all have the same depth. The greenly hatched
area depicts a coarse-scale grid box𝑉 . Panel a): Due to our approximation the weight
𝛼2,3 for the value in grid box 𝑆2,3 is 1/6 and therefore larger than it were without the
sequential horizontal and vertical coarse-graining steps. Panel b): In the vertical range
of 𝑉 we vertically coarse-grain cloud cover values according to a maximum overlap
assumption before we coarse-grain in the horizontal. Adapted with permission from
Grundner et al. (2022).
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For a given NN ℎ, data sample 𝑋 and input feature 𝑖, the SHAP package computes the
corresponding Shapley value 𝜙ℎ,𝑋,𝑖 . Shapley values satisfy the so-called efficiency property
for every sample, which means that they sum up to the difference between the model output
and its base value (the expected model output)∑︂

𝑖∈𝐼
𝜙ℎ,𝑋,𝑖 = ℎ(𝑋) − E[ℎ(𝑋)], (B.1)

where 𝐼 ⊆ N consists of the features’ indices. A Shapley value 𝜙 𝑓 ,𝑋,𝑖 can thus be interpreted as
the amount by which an input feature 𝑖 contributes to the deviation of 𝑓 ’s prediction from the
base value. Shapley values are constructed so that 𝑓 (𝑋) − E[ 𝑓 (𝑋)] is fairly distributed among
the features.
Let 𝑓 be the QUBICC R2B5 and 𝑔 the NARVAL R2B4 NN. Their base values 𝐵 𝑓 := E[ 𝑓 (𝑋)] and
𝐵𝑔 := E[𝑔(𝑋)] are computed as the average prediction of 𝑓 and 𝑔 on a subset of their respective
training data sets (the so-called background data set). By repeatedly drawing an appropriate
sample from the training set of 𝑓 , we can construct its background data set such that 𝐵 𝑓 = 𝐵𝑔 .
Plugging 𝑓 and 𝑔 into (B.1) we get∑︂

𝑖∈𝐼
𝜙 𝑓 ,𝑋,𝑖 −

∑︂
𝑗∈𝐽

𝜙𝑔,𝑋,𝑗 = 𝑓 (𝑋) − 𝑔(𝑋) + 𝐵 𝑓 − 𝐵𝑔 = 𝑓 (𝑋) − 𝑔(𝑋), (B.2)

where 𝐼 , 𝐽 ⊆ N. Let 𝑆 be a random subset of the NARVAL R2B5 data and the overline · denote
the average over all samples in 𝑆. The size of 𝑆 is chosen to be large enough such that i) 𝑓
and 𝑔 are good approximations of the predicted averages of 𝑓 and 𝑔 on the entire NARVAL
R2B5 data set (as shown in Figures 3.7a and B.5a) and ii) the mean Shapley values are robustly
estimated.
The sum of Shapley values corresponding to input features that are present in only one model
(such as 𝜌) are in our case very small (absolute value < 0.08) and thus negligible. Hence, by
averaging over (B.2) we can approximate the mismatch between the average outputs of 𝑓 and
𝑔 by the sum of the difference of averaged Shapley values corresponding to features that 𝑓
and 𝑔 have in common

𝑓 − 𝑔 =
∑︂
𝑖∈𝐼∩𝐽

(𝜙 𝑓 ,𝑋,𝑖 − 𝜙𝑔,𝑋,𝑖) +
∑︂
𝑖∈𝐼\𝐽

𝜙 𝑓 ,𝑋,𝑖 −
∑︂
𝑖∈𝐽\𝐼

𝜙𝑔,𝑋,𝑖 (B.3)

≈
∑︂
𝑖∈𝐼∩𝐽

(𝜙 𝑓 ,𝑋,𝑖 − 𝜙𝑔,𝑋,𝑖).

So by comparing 𝜙 𝑓 ,𝑋,𝑖 and 𝜙𝑔,𝑋,𝑖 for all common features 𝑖 ∈ 𝐼∩ 𝐽 individually, we can explain
which input features contribute to the difference between 𝑓 and 𝑔. Having ensured that 𝑆
satisfies i) and ii), we can generalize (B.3) to the entire NARVAL R2B5 data set.

B.2. Definition and Choice of Input Parameters for the Neural Networks

1. land: The land fraction (in [0, 1]) is used in the ICON-A cloud cover scheme to discern
whether one might have to artificially increase relative humidity in order to take thin
maritime stratocumuli into account.
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2. lake: The lake fraction (in [0, 1]) is a parameter closely related to the land fraction. A
supply of moisture from the ground very likely influences the distribution of moisture
in the atmospheric column above, especially in the presence of convection.

3. Cor.: The Coriolis parameter (in 1/s) allows the cloud cover parameterization to vary
between different latitudes, which can be especially useful with global training data.

4. qv, T, p, zg: Specific humidity (in kg/kg), air temperature (in K), pressure (in Pa) and
geometric height at full levels (in m). These are the most important input variables for
the original ICON-A cloud cover scheme (to compute relative humidity).

5. qc, qi: The specific cloud liquid water and the specific cloud ice content (in kg/kg). They
have a direct influence on cloudiness as the presence of cloud water or ice is a necessary
requirement for the presence of clouds. In this spirit, they are for instance used in an
alternative 0-1 cloud cover scheme in ICON-A, which sets cloud cover to 1 when a certain
threshold of cloud condensate is crossed.

6. 𝝆: Air density (in kg/m3). We left it out for the R2B5 NNs, since air density can mostly
be derived from 𝑝, 𝑇 and 𝑞𝑣 by using the ideal gas law and is therefore redundant.

7. u, v: Zonal/eastward wind and meridional/northward wind (in m/s). Vertical wind
shear can induce a large difference between cloud area fraction and cloud cover.

8. clct−1: The cloud cover estimate (in [0, 100]%) from the previous timestep (1 hour before).
Undeniably, clouds have a memory effect on this time scale. However, a model that relies
on previous cloudiness cannot be used in the first time step.

The features 𝜌, 𝑢, 𝑣 are also used in the Tompkins scheme of cloud cover (Tompkins 2002).

B.3. Preprocessing the Data

For the sake of reproducibility we describe the preprocessing steps, which we define as distinct
from coarse-graining:

1. For all cell-based and QUBICC neighborhood-based models (N1, Q1 and Q3): Ensure
that the amount of data samples with 𝑐𝑙𝑐 ≠ 0 is as large (for the Q1 model twice as large
to reduce the data size) as the one with 𝑐𝑙𝑐 = 0, by downsampling the latter class of
cloud-free data samples.

2. For the neighborhood-based NARVAL models (N3): Remove the cloud cover from the
first time step of each day of the NARVAL data from the output. We cannot predict it,
because there is no previous cloud cover value which the neighborhood-based NARVAL
model would require as input.

3. QUBICC data: Remove the first time steps of the simulations because that output
incorrectly consists of an entirely cloud-free atmosphere. Scale the cloud cover to be in
[0, 100]%. Convert the data from float64 to float32 to reduce the data size.
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4. For the QUBICC cell- and neighborhood-based models (Q1 and Q3): Subsample only
every third hour from the QUBICC data set to reduce the data size. Assuming a high
temporal correlation, we should not lose a lot of information. Remove condensate-free
clouds (∼ 7% of all clouds).

5. For all models (N1-N3, Q1-Q3): Normalize the actual training data so that each input
feature to the NN is distributed according to a Gaussian with zero mean and unit
variance. In the column-based models this means that the normalization is done on
a level-by-level basis and for the cell-based and neighborhood-based models we have
one level-independent mean and standard deviation per input feature. According to
Brenowitz and Bretherton (2019), we expect the impact on our results due to these
different choices of normalization to be very small. This step of normalization can
only be done after splitting the set of all training data samples into subsets of training,
validation and test data.

B.4. Space of Hyperparameters

We explored the following space of hyperparameters used in the neural network training:

1. Number of units per hidden layer: 16, 32, ..., 512

2. Number of hidden layers: From 1 to 4

3. Activation functions: ReLU, ELU, tanh, leaky ReLU with 𝛼 ∈ {0.01, 0.2}

4. Initial learning rate: From 10−4 to 1

5. Epsilon parameter in the optimizer: 10−8, 10−7, 0.1, 1

6. Dropout: With or without after each hidden layer with parameters from 0 to 0.5

7. L1/L2-regularization: With parameters from 0 to 0.01

8. Batch normalization: With or without after each layer
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B.5. Supplementary Figures
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Figure B.1.: Coefficients of the best multiple linear model on standardized NARVAL R2B4 data. The
dashed line shows the tropopause (≈ 15 km), the dash dotted line shows the freezing
level (i.e., where temperatures are on average below 0°C) (≈ 5 km) and the dotted line
visualizes the diagonal. The coefficients suggest that the problem of diagnosing cloud
cover is non-local. The zg coefficients seem to dominate. An elevated grid cell on level
36 increases cloud cover significantly. However, due to the nature of the vertical grid,
the layers below will also be elevated, driving a decrease of cloud cover. An increase
in specific humidity, cloud water (at altitudes below the freezing level) and cloud ice
(at altitudes above the freezing level) increase cloudiness in the same grid cell. In the
upper troposphere, when we increase the pressure, we force the condensation of water
vapor at the given level and above. Adapted with permission from Grundner et al.
(2022).
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Appendix Three types of neural networks implemented
Cell-based Neighborhood-based Column-based

Input features are a subset of: Temperature; pressure; air density; zonal, meridional wind; specific humidity; cloud ice; cloud water; geometric height;fraction of lakes, land, sea ice; Coriolis parameterOutput feature: Cloud Cover

21km

0km
27𝑝 + 𝑠 inputs 27 outputs1 output3𝑝 + 𝑠 inputs𝑝 + 𝑠 inputs 1 output

1

Figure B.2.: A sketch of the three neural network types based on one grid column. The variable
𝑝 denotes the number of input features from the grid cells and 𝑠 is the number of
extra variables from the surface. In this sketch, the neighborhood-based model uses
two neighboring cells, which is only true for our QUBICC-trained neural network.
Adapted with permission from Grundner et al. (2022).

Figure B.3.: We split the R2B5 data using a three-fold temporally coherent cross-validation split. In
each split, we train a network on the blue folds and validate it on the green folds. One
fold covers approximately 15 days. Adapted with permission from Grundner et al.
(2022).
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Figure B.4.: Two different column-based models trained on NARVAL R2B4 data evaluated on
QUBICC R2B4 data over the Southern Ocean and Antarctica (< 60°S). Models from
the same type stop being consistent and deviate significantly from the ground truth.
Adapted with permission from Grundner et al. (2022).
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Figure B.5.: The neural networks trained on NARVAL R2B4 data evaluated on the coarse-grained
and preprocessed NARVAL R2B5 data. Adapted with permission from Grundner et al.
(2022).

105



Appendix

3040

25

30

35

40

45O
ri

gi
na

lB
as

e
Va

lu
e

 
 c

lc-
la

ye
r

qv

3040

25

30

35

40

45

qc

3040

25

30

35

40

45

qi

3040

25

30

35

40

45

T

3040
p-layer

25

30

35

40

45

p

0

5

10

15

20

25

30
[%]

2530354045
qv-layer

25

30

35

40

45

D
ec

re
as

ed
Ba

se
Va

lu
e

 
 c

lc-
la

ye
r

2530354045
qc-layer

25

30

35

40

45

2530354045
qi-layer

25

30

35

40

45

2530354045
T-layer

25

30

35

40

45

2530354045
p-layer

25

30

35

40

45

Figure B.6.: Average absolute SHAP values of the QUBICC R2B5 column-based model when ap-
plied to a sufficiently large subset of the NARVAL R2B5 data. By repeatedly drawing
an appropriate training sample from the QUBICC training data we decrease its base
values, aligning them closely with the cloud cover profile of the NARVAL R2B5 data.
Tests with ten different seeds have shown the values from the lower row to be robust,
with pixel values not differing absolutely by more than 1 or relatively by more than
20%. The input features that are not shown exhibit smaller absolute SHAP values
(𝑧𝑔 < 0.8%, land/lake < 0.22%) everywhere and are thus omitted. Adapted with per-
mission from Grundner et al. (2022).

B.6. Supplementary Tables

Table B.1.: Amount of training data samples for the neural networks. The tuples denote either
(time steps, vertical layers, horizontal fields) or (time steps, horizontal fields). Note that
for the R2B4 neighborhood-based model we trained one neural network per vertical
layer, so the number of training samples is equal to the number of training samples for
the R2B4 column-based model. Grid columns containing grid cells that were omitted
during coarse-graining are excluded in the ‘After coarse-graining’-column and are also
not used for training. Adapted with permission from Grundner et al. (2022).

Original data (≤ 21 km) After coarse-graining After preprocessing

Cell-based
R2B4 NARVAL 5.6 · 1011 (1721, 66, 4887488) 4.5 · 107 (1635, 27, 1024) 3.7 · 107

R2B5 QUBICC 3.9 · 1012 (2162, 87, 20971520) 4.6 · 109 (2162, 27, 78069) 8.8 · 108

Neighborhood-based
R2B4 NARVAL 8.4 · 109 (1721, 4887488) 1.7 · 106 (1632, 1024) 1.7 · 106

R2B5 QUBICC 3.9 · 1012 (2162, 87, 20971520) 4.6 · 109 (2162, 27, 78069) 1.2 · 109

Column-based
R2B4 NARVAL 8.4 · 109 (1721, 4887488) 1.7 · 106 (1635, 1024) 1.7 · 106

R2B5 QUBICC 4.5 · 1010 (2162, 20971520) 1.7 · 108 (2162, 78069) 1.7 · 108
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C. Supplementary Materials for Chapter 4

This supplementary section was already published in Grundner et al. (2023).

C.1. Global Maps of 𝐼1, 𝐼2, 𝐼3

In this section, we plot average function values for the three terms 𝐼1, 𝐼2, and 𝐼3 of equation
(4.6). We focus on the vertical layer roughly corresponding to an altitude of 1500 m to analyze
if one of the terms would detect thin marine stratocumulus clouds. Due to their small vertical
extent, these clouds are difficult to pick up on in coarse climate models, which constitutes a
well-known bias. To compensate for this bias, the current cloud cover scheme of ICON-A has
been modified so that relative humidity is artificially increased in low-level inversions over
the ocean (Mauritsen et al. 2019).
Analyzing Figure C.1, we find that the regions of high 𝐼2-values correspond with regions
typical for low-level inversions and low-cloud fraction (Mauritsen et al. 2019; Muhlbauer et al.
2014). These 𝐼2-values compensate partially negative 𝐼1- and 𝐼3-values in low-cloud regions of
the Northeast Pacific, Southeast Pacific, Northeast Atlantic, and the Southeast Atlantic. The
𝐼1-term is particularly small in the dry and hot regions of the Sahara and the Rub’ al Khali
desert and largest over the cold poles. The 𝑎5-term is the only term in 𝐼1 that cannot be
explained as a linear or a curvature term. In the upper troposphere, the term is negative due
to relatively cold and dry conditions. In August, temperatures are coldest in the southern
hemisphere, so the term has a strong negative effect, especially over the South Pole. In the
middle troposphere, temperatures are near the average of 257 K, weakening the term overall.
Negative patches in the subtropics are due to the dry descending branches of the Hadley cell.
The lower troposphere is relatively warm, especially in the tropics, resulting in a large positive
𝑎5-term under humid conditions, and a negative term under dry conditions (we note that in
August the Southern Amazon and Eastern Oregon are relatively dry, with average RH < 0.6).

C.2. The Sensitivity of Cloud Cover to Cloud Water and Ice

In Equation (4.6), cloud cover is more sensitive to cloud ice than cloud water. In this section,
we show that we can explain this difference in sensitivity from the storm-scale distributions of
cloud water and ice alone (Figure C.2). On storm-resolving scales, a grid cell is fully cloudy if
cloud condensates 𝑞𝑡 exceed a small threshold 𝑎 > 0. Otherwise it is set to be non-cloudy. We
can thus express the expected cloud cover as the probability of 𝑞𝑡 exceeding the threshold 𝑎

E[𝒞] = P[𝑞𝑡 > 𝑎] =
∫ ∞

𝑎

𝑓𝑞𝑡 (𝑞𝑡)𝑑𝑞𝑡 , (C.1)

where 𝑓𝑥 is the probability density function of some variable 𝑥. As we can express cloud
condensates as a sum of cloud water 𝑞𝑐 and cloud ice 𝑞𝑖 , we can also derive 𝑓𝑞𝑡 from 𝑓𝑞𝑐 and
𝑓𝑞𝑖 by fixing 𝑞𝑡 and integrating over all potential values for 𝑞𝑐
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Figure C.1.: The first row shows maps of 𝐼1(RH, 𝑇), 𝐼2(𝜕𝑧𝑅𝐻) and 𝐼3(𝑞𝑐 , 𝑞𝑖) on a vertical layer with
an average height of 1490 m. In the second row we zoom in on the contribution of the
term in 𝐼1 corresponding to the 𝑎5-coefficient on three different height levels (roughly
at 11 km, 4 km, 320 m). All plots are averaged over 10 days (11 August–20 August,
2016). The data source is the coarse-grained three-hourly DYAMOND data. Adapted
with permission from Grundner et al. (2023).

Figure C.2.: The distributions of cloud water and cloud ice on storm-resolving scales (2.5 km
DYAMOND Winter data). For positive values we approximate these distributions
very loosely with exponential distributions. Adapted with permission from Grund-
ner et al. (2023).
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𝑓𝑞𝑡 (𝑞𝑡) =
∫ 𝑞𝑡

0
𝑓𝑞𝑐 (𝑧) 𝑓𝑞𝑖 (𝑞𝑡 − 𝑧)𝑑𝑧. (C.2)

In the following, we introduce the subscript 𝑠 as a placeholder for either liquid or ice. Ac-
cording to Figure C.2, the storm-resolving cloud ice/water distributions feature distinct peaks
at 𝑞𝑠 = 0, which can be modeled by weighted dirac-delta distributions. For 𝑞𝑠 > 0, we can
approximate 𝑓𝑞𝑐 and 𝑓𝑞𝑖 with exponential distributions. After normalizing the distributions
so that their integrals over 𝑞𝑠 ≥ 0 yield 1 we arrive at

𝑓𝑞𝑠 (𝑞𝑠) = (𝜆𝑠 exp(−𝜆𝑠𝑞𝑠) + 𝑤𝑠𝛿(𝑞𝑠))/(𝑤𝑠/2 + 1).

By rephrasing 𝑤𝑠 in terms of 𝜆𝑠 and 𝜇𝑠 , the mean of 𝑓𝑞𝑠 , we get

𝑓𝑞𝑠 (𝑞𝑠) = 𝜆𝑠𝜇𝑠(𝜆𝑠 exp(−𝜆𝑠𝑞𝑠) + (−2 + 2/(𝜆𝑠𝜇𝑠))𝛿(𝑞𝑠)). (C.3)

By plugging in the expressions (C.3) and (C.2) into equation (C.1) and letting 𝑎 → 0+ we find
the expected cloud cover to be a function of the shape parameters 𝜆𝑠 and the means 𝜇𝑠 for
cloud water and ice

E[𝒞] = −3𝜆𝑖𝜆𝑐𝜇𝑖𝜇𝑐 + 2𝜆𝑖𝜇𝑖 + 2𝜆𝑐𝜇𝑐 . (C.4)

We can relate this expression to 𝑎8 and 𝑎9 by expanding 𝐼3 to first order around the origin

𝐼3(𝑞𝑐 , 𝑞𝑖) ≈ −1/𝜖 + 𝑞𝑐/(𝑎8𝜖
2) + 𝑞𝑖/(𝑎9𝜖

2) − 𝑞𝑐𝑞𝑖/(𝑎8𝑎9𝜖
3). (C.5)

By comparing (C.4) and (C.5) we arrive at the following analogy for 𝑞𝑠 ≈ 𝜇𝑠 :

2𝜆𝑙 ≈ 1/(𝑎8𝜖
2) and 2𝜆𝑖 ≈ 1/(𝑎9𝜖

2).

We conclude that the larger the shape parameter, i.e., the faster the distribution tends to zero,
the smaller we expect the associated parameter to be. Based on Figure C.2 we have 𝜆𝑖 > 𝜆𝑐 ,
which explains why 𝑎9 is smaller than 𝑎8. In other words, why 𝐼3 is more sensitive to cloud ice
than cloud water.

C.3. PySR Settings

This section describes our PySR setup. First of all, we restrict the runtime of the algorithm
to ≈ 8 hours. We choose a large set of operators 𝑂 to allow for various different functional
forms (while leaving out non-continuous operators). To aid readability we show the operators
applied to some (𝑥, 𝑦) ∈ R2 which we denote by superscripts. To account for the different
complexity of the operators, we split 𝑂 into four distinct subsets

𝑂
(𝑥,𝑦)
1 = {𝑥 · 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦,−𝑥}

𝑂
(𝑥,𝑦)
2 = {𝑥/𝑦, |𝑥 |,

√
𝑥, 𝑥3 ,max(0, 𝑥)}

𝑂
(𝑥,𝑦)
3 = {exp(𝑥), ln(𝑥), sin(𝑥), cos(𝑥), tan(𝑥), sinh(𝑥), cosh(𝑥), tanh(𝑥)}

𝑂
(𝑥,𝑦)
4 = {𝑥𝑦 , Γ(𝑥), erf(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥), arsinh(𝑥), arcosh(𝑥), artanh(𝑥)}
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of increasing complexity. The operators in 𝑂2/𝑂3/𝑂4 are set to be 2/3/9 times as complex
as those in 𝑂1. In this manner, for instance 𝑥3 and (𝑥 · 𝑥) · 𝑥 have the same complexity.
Furthermore, we assign a relatively low complexity to the operators in 𝑂3 as they are very
common and have well-behaved derivatives. With the factor of 9, we strongly discourage
operators in 𝑂4. We expect that for every occurrence of a variable in a candidate equation
it will also need to be scaled by a certain factor. We do not want to discourage the use of
such constant factors or the use of variables themselves and leave the complexity of constants
and variables at their default complexity of one. We obtain the best results when setting the
complexity of the operators in𝑂1 to 3 and training the PySR scheme on 5000 random samples.
Other parameters include the population size (set to 20) and the maximum complexity of the
equations that we initially set to 200 and reduced to 90 in later runs.

C.4. Selected Symbolic Regression Fits

This section lists all equations found with the symbolic regression libraries GP-GOMEA or
PySR that are included in Figure 4.2, ranked in increasing MSE order. In brackets we provide
the MSE/number of parameters. We list the equations according to their MSE. The equations
that lie on the Pareto frontier are highlighted in bold:

1) PySR [103.95/11] :

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = 203RH2
+ (0.06588RH − 0.03969)𝑻2

− 33.87RH𝑻 + 4224.6RH

+ 18.9586𝑻 − 2202.6 + (2 · 1010𝝏𝒛RH + 6 · 107
)(𝝏𝒛RH)

2
− 1/(8641𝒒𝒄 + 32544𝒒𝒊 + 0.0106)

2) PySR [104.26/19] :

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = (1.0364RH − 0.6782)(0.0581𝑇 − 16.1884)(−44639.6𝜕𝑧RH + 1.1483𝑇 − 262.16)
+ 171.963RH − 1.4705𝑇 + 158.433(RH − 0.60251)2 + (𝜕𝑧RH)2(2 · 1011𝑞𝑐 − 8 · 107RH + 7 · 107) + 316.157

+ 93319𝑞𝑖 − 1/(12108𝑞𝑐 + 39564𝑞𝑖 + 0.0111)
3) PySR [106.52/12] :

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = (57.2079RH − 34.4685)(3.0985RH + 73.1646(0.0039𝑇 − 1)2 − 1.8669) + 123.175RH

− 1.4091𝑇 + 1.5 · 107(𝜕𝑧RH)2(10619𝑞𝑐 − 4.9155RH + 4.7178) + 333.1 − 1/(10367𝑞𝑐 + 35939𝑞𝑖 + 0.0111)
4) PySR [106.95/11] :

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = 19.3885(3.0076RH − 1.8121)(3.2825RH + 73.1646(0.0039𝑇 − 1)2 − 1.9777)
+ 118.59RH − 1.423𝑇 + 1.5 · 107(3.0125 − 1.0129RH)(𝜕𝑧RH)2 + 339.2 − 1/(9325𝑞𝑐 + 34335𝑞𝑖 + 0.0109)
5) PySR [106.99/10] :

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = (58.189RH − 35.0596)(3.3481RH + 73.1646(0.0039𝑻 − 1)2
− 2.0172)

+ 116.873RH − 1.4211𝑻 + 3.6 · 107
(𝝏𝒛RH)

2
+ 339.9 − 1/(9237𝒒𝒄 + 34136𝒒𝒊 + 0.0109)

6) PySR [111.76/15] :

𝑓 (RH, 𝑇, 𝜕𝑧RH, 𝑞𝑐 , 𝑞𝑖) = (3.2665RH − 2.9617)(0.0435𝑇 − 9.0274)(16073.2𝜕𝑧RH + 0.3013𝑇 − 68.4342)
97.5754RH − 0.6556𝑇 + 175 + 123823𝑞𝑖 − 1/(9853𝑞𝑐 + 36782𝑞𝑖 + 0.0112)
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7) GP-GOMEA [121.89/13] :

𝑓 (RH, 𝑇, 𝑞𝑐 , 𝑞𝑖) = 8.459 exp(2.559RH) − 33.222 sin(0.038𝑇 + 109.878) + 24.184

− sin(3.767
√︂
|98709𝑞𝑖 − 0.334|)/(30046𝑞𝑖 + 5628𝑞𝑐 + 0.01)

8) GP-GOMEA [136.64/11] :

𝑓 (RH, 𝑇, 𝑞𝑐 , 𝑞𝑖) = (8.65RH − 0.22𝑇 − 93.14)
√︁
|0.62𝑇 − 414.23| + 2368 − 1/(28661𝑞𝑖 + 4837𝑞𝑐 + 0.01)

9) GP-GOMEA [159.80/9] :

𝑓 (RH, 𝑞𝑐 , 𝑞𝑖) = 0.009𝒆8.725RH
+ 12.795 log(229004𝒒𝒊 + 0.774(𝒆11357𝒒𝒄 − 1)) − 178246𝒒𝒄 + 66

10) GP-GOMEA [161.45/12] :

𝑓 (RH, 𝑇, 𝑞𝑐 , 𝑞𝑖) = (0.028𝑒6.253RH + 5RH − 0.076𝑇 + 4)/(183894𝑞𝑖 + 0.73𝑒6565𝑞𝑐−91207𝑞𝑖 − 0.62) + 92.3

Note that the assessed number of parameters is based on a simplified form of the equations
in terms of its normalized variables. The amount of parameters in a given equation is at
least equal to the assessed number of parameters minus one (accounting for the zero in the
condensate-free setting).

C.5. Regime-Specific Symbolic Regression Fits

This section lists the functional form of the regime-specific equations found using PySR in
each of the cloud regimes separately. Furthermore, these equations are evaluated in their
respective regime in Figure C.3 based on the Hellinger distance of the predicted cloud cover
distribution.

𝑓𝑐𝑖𝑟𝑟𝑢𝑠(𝑞𝑖 ,RH, 𝑇) = (3.008RH − 0.03327𝑇 + 8.245)(3.008RH + 3733000𝑞𝑖 − 1.558)
98710𝑞𝑖 + 0.06077

(C.6)

𝑓𝑐𝑢𝑚𝑢𝑙𝑢𝑠(𝑞𝑖 , 𝑞𝑐 ,RH) = 126.3RH − 1871000𝑞𝑐 − 8.046 − 5.215
17550𝑞𝑐 + 98710𝑞𝑖 + 0.05212 (C.7)

𝑓𝑑𝑒𝑒𝑝 𝑐𝑜𝑛𝑣.(RH, 𝑇, 𝜕𝑧RH) = −34860 𝜕𝑧RH − 1.34𝑇 + 387 (C.8)

+ 120.6(RH − 0.6)
(︂
(0.033𝑇 − 8.55)(27.2(RH − 0.6)3 − 0.6) + 1.4

)︂
(C.9)

𝑓𝑠𝑡𝑟𝑎𝑡𝑢𝑠(RH, 𝜕𝑧RH) = 3744 𝜕𝑧RH + 39310000 𝜕𝑧RH2 + 7.221𝑒3 RH − 38.64, (C.10)

where the features have been normalized over the training set. The total number of free
trainable parameters is 33 (8 + 6 + 11 + 5 for the regime-specific equations above + 2 for the
switch between cloud regimes + 1 for the condensate-free regime).
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Figure C.3.: Predicted cloud cover distributions of the selected PySR equation of Section 4.4.2
and Section 4.5 (discovered on the entire coarse-grained DYAMOND data set) and of
regime-specific equations found with PySR (for the functional form see above). Each
panel corresponds to a distinct cloud regime (cf. Section 4.4.2). The numbers in the
upper left indicate the Hellinger distance between the predicted and the actual cloud
cover distributions for each model and cloud regime. Adapted with permission from
Grundner et al. (2023).
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3.8. Panel a): Evaluation of NARVAL R2B4 models (NARVAL region: 68°W-15°E,
10°S-20°N) on QUBICC R2B4 data over the tropical zone (23.4°S–23.4°N). We
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4.1. A comparison of the univariate distributions of four variables from the coarse-
grained DYAMOND and ERA5 datasets. The y-axes are scaled logarithmically
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